

Lecture Notes in Computer Science 7053
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Pascal Bouvry
Mieczysław A. Kłopotek
Franck Leprévost
Małgorzata Marciniak
Agnieszka Mykowiecka
Henryk Rybiński (Eds.)

Security and Intelligent
Information Systems

International Joint Conference, SIIS 2011
Warsaw, Poland, June 13-14, 2011
Revised Selected Papers

13

Volume Editors

Pascal Bouvry
ILIAS, University of Luxembourg
E-mail: pascal.bouvry@uni.lu

Mieczysław A. Kłopotek
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
E-mail: klopotek@ipipan.waw.pl

Franck Leprévost
University of Luxembourg
E-mail: franck.leprevost@uni.lu

Małgorzata Marciniak
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
E-mail: malgorzata.marciniak@ipipan.waw.pl

Agnieszka Mykowiecka
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
E-mail: agnieszka.mykowiecka@ipipan.waw.pl

Henryk Rybiński
Institute of Computer Science, Warsaw University of Technology, Poland
E-mail: h.rybinski@ii.pw.edu.pl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25260-0 e-ISBN 978-3-642-25261-7
DOI 10.1007/978-3-642-25261-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011944280

CR Subject Classification (1998): C.2.4, C.2.5, H.2.8, I.2.9, K.3.1, K.4.4, I.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains papers selected from those accepted for presentation at the
International Joint Conference on Security and Intelligent Information Systems
(SIIS) which was held in Warsaw, Poland, June 13–14, 2011. The conference
was organized by the Institute of Computer Science of the Polish Academy of
Sciences, the Institute of Computer Science at the Warsaw University of Tech-
nology, and the University of Luxembourg as a joint meeting of the Second
Luxembourg-Polish Meeting on Security and Trust and the 19th International
Conference on Intelligent Information Systems.

The papers submitted to the conference were organized into three thematic
tracks: security and trust, data mining and machine learning, and natural lan-
guage processing. Based on anonymous peer-review of the 60 submissions, 29
papers were accepted for inclusion in this volume. Moreover, the volume con-
tains two invited papers by Gerhard Frey and Joakim Nivre.

New technologies have emerged in these last few decades. They allow better
and easier collaboration and interaction between people, which in turn leads to
new threats and dangers. In order to enable any economic or social exchange,
trust between the actors is a necessity. A formal definition of trust is needed
in this context, and the means to enable and measure trust are required. It is
also necessary to fight all potential crimes and attacks. Security and trust are
therefore two very key topics in our society. Under these circumstances, it is no
wonder that the Security and Trust track of the SIIS 2011 joint conference
was given a primus inter pares status.

The scientific part of the SIIS 2011 conference was opened by an invited
plenary talk given by Gerhard Frey entitled “Is Arithmetic Geometry Necessary
for Public-Key Cryptography?”. The talk presented the challenges of current
public-key cryptology based discrete logarithm problems (DLP) in finite cyclic
groups. G. Frey and E. Kani’s paper entitled “Correspondences on Hyperelliptic
Curves and Applications to the Discrete Logarithm Problem” — published in
these proceedings — addresses these issues. More precisely, the authors recall
that divisor class groups of carefully chosen curves over finite fields provide the
main source of groups for DLP. They also recall that curves of genus g ≥ 4
and non-hyperelliptic curves of genus g = 3 have to be avoided for security
reasons. Furthermore, Smith showed that ‘many’ hyperelliptic curves of genus 3
have to be avoided too. The deep reason is due to the existence of isogenies of
low degrees between the Jacobians of these hyperelliptic curves to the Jacobians
of non-hyperelliptic curves (of the same genus), and hence the DLP is ‘easily’
transferred from one Jacobian to another. G. Frey and E. Kani take the point of
view of correspondences and isogenies: for each g, their paper describes how to
find a Hurwitz space parametrizing a subspace of those hyperelliptic curves C of
genus g which admit a non-trivial correspondence to a curve D of genus g that

VI Preface

can be expected to be non-hyperelliptic. Their approach is purely geometric at
the beginning (where they assume the ground field to be algebraically closed)
and they focus on rationality issues in a second step. In the frontier case g = 3,
they give a parametrization of these hyperelliptic curves of genus 3 in terms of
a Hurwitz moduli space with monodromy group S4, the symmetric group on 4
letters. In particular, they recover Smith’s results, and announce that a future
paper of E. Kani extends these results to the situation where the ground field
has the characteristic 2. G. Frey and E. Kani’s important paper, together with
other results, leads to the conclusion stated at the end of his talk: according
to today’s knowledge, it is safer to avoid curves of genus ≥ 3 for cryptographic
purposes and use only elliptic curves or (simple) Jacobians of genus 2 curves.

The Security and Trust Track, opened by G. Frey’s talk, also included
presentations of the following eight papers. In terms of trust metrics in modern
ad-hoc networks, M. Seredyński et al. present in “Solving Soft Security Issues in
MANETs Using an Evolutionary Approach” new approaches where decentralized
strategies are discussed for trust computation. The paper “Camera Sabotage De-
tection for Surveillance Systems” by D. Ellwart et al. describes new methods for
detecting anomalies in camera surveillance systems. A. Poniszewska-Maranda, in
the paper “Implementation of Access Control Model for Distributed Information
Systems Using Usage Control,” presents an enhanced model for access control
based on extensions of role-based access control that enables more dynamic man-
agement. Nowadays, cryptography is able to help in authentication, signature,
encryption, and non-repudiation. But additional mechanisms are required to
help erase all available traces of information exchange between partners. The
paper “Beyond TOR: The TrueNyms Protocol” by N. Bernard and F. Leprévost
introduces TrueNyms that allows the masking of all information during the ex-
change on an encoded channel that might remain in the packet headers (e.g.,
source of the packet, number of packets, etc.). The paper “A Signature Scheme
for Distributed Executions Based on Control Flow Analysis” by S. Varrette et
al. describes a way to help certify the results on distributed platforms such as
desktop-based grids. In the paper “Computational Aspects of Attack-Defense
Trees,” B. Kordy et al., after introducing the extension of attack-trees called
attack-defense trees, demonstrate that the computational complexity of this ap-
proach remains equivalent to those of attack trees. D. Priemuth-Schmid presents
two attacks on simplifed versions of the stream cipher K2 which was introduced
at SECRYPT 2007 by S. Kiyomoto, T. Tanaka, and K. Sakurai.

Data Mining and Machine Learning (DM and ML) was the next con-
ference track. It was opened by an invited plenary talk by Alessio Lomuscio
entitled “Verification of Multi-Agent Systems.” Serial and parallel algorithms
for symbolic model checking for temporal-epistemic logic as well as bounded-
model checking procedures were discussed in the talk. Moreover, applications of
the methodology to the automatic verification of security protocols, Web ser-
vices, and fault-tolerance were surveyed. (The paper elaborating on the issues
presented in the talk will appear elsewhere and hence it is not included in this
volume.)

Preface VII

Regarding DM and ML methods, several new methods of model discovery
from data are presented. The paper “Model Selection in Logistic Regression Us-
ing p-Values and Greedy Search” by J. Mielniczuk and P. Teisseyre proposes
a new method of model selection from a set of candidate models, and demon-
strates its effectiveness and applicability in step-wise model construction. The
paper “Landau Theory of Meta-Learning” by D. Plewczynski aims at creating
and applying machine-learning algorithms in such a way that, for a given problem
under scrutiny, a multitude of slightly different decision models can be derived,
which can then make final decisions based on a majority vote. The author lists
a number of such algorithms, proposes new ones, as well as their combinations,
and demonstrates their good properties. In the paper “Multi-Test Decision Trees
for Gene Expression Data Analysis,” M. Czajkowski at al. argue that the voting
should be performed at a single attribute level. It deals with ways to surpass
the known problem with proper model construction when a number of different
attributes have a similar predictive capability. Under such circumstances deci-
sion trees may perform worse than other approaches. The authors claim and
demonstrate that one can keep the explanatory power of decision trees while at
the same time making more reliable decisions by letting many tests vote at a
given branching point of the tree. The paper “Rule-Based Approach to Compu-
tational Stylistics” by U. Stańczyk suggests on the other hand that one can start
building a model (say, a classifier) filling it with a multitude of constituent rules
of varying quality, and then identifying poorly performing features and removing
rules which contain these features. Significant increases in decision quality are
observed.

Another group of papers, pertaining to DM and ML tools, is devoted to issues
in evolutionary optimization. The paper “Differential Evolution for High-Scale
Dynamic Optimization” by M. Raciborski at al. proposes and explores a new
area of application for differential evolution, showing its reliability in tasks with a
dynamically changing environment. The paper “Towards an OpenCL Implemen-
tation of Genetic Algorithms on GPUs” by T. Puźniakowski and M. Bednarczyk
deals with the technical side of the performance of genetic algorithms, demon-
strating that the proper choice of an offspring selection method may provide a
significant speed-up of the optimization process due to the technical properties
of graphic cards. The paper “Evolutionary Algorithm Parameter Tuning with
Sensitivity Analysis” by F. Pinel et al. tackles the delicate issue of tuning the
many parameters of a typical evolutionary algorithm. The key idea is that sensi-
tivity analysis allows us to identify the parameters that most strongly influence
the performance for a given application, allowing the researcher to concentrate
on tuning them properly.

The last group of papers in the DM and ML track is application-oriented.
The paper “Image Recognition System for Diagnosis Support of Melanoma Skin
Lesion” by W. Paja et al. deals with the application of image understanding in
the medical domain, in particular for computer-aided automated classification
of melanocytic skin lesions. Instead of a simple classification scheme, a mech-
anism for chaining diverse image processing methods is developed in order to

VIII Preface

extract features from images. The paper “Playing in Unison in the Random
Forest” by A. Wieczorkowska et al. addresses the issues related to the identi-
fication of instruments of an orchestra in the very difficult case of unison play
(same tune for each instrument). It turns out that the techniques to be applied
and features to be used differ significantly from those used for the recognition
of a single instrument. Random forest classifiers are trained and used in the
identification process. The paper “Scale Invariant Bipartite Graph Generative
Model” by S. Chojnacki and M. K�lopotek is devoted to an important issue of
modelling social networks with different modalities, such as user-item, author-
paper, or actor-film networks. Traditionally used random graph models failed to
represent some important aspects of such networks, such as node degree distri-
butions in conjunction with clustering behavior. The newly introduced mecha-
nisms allow for a much easier fitting of a model to real-world data. The last two
papers address text/Web mining problems. The paper “Introducing Diversity
to Log-Based Query Suggestions to Deal with Underspecified User Queries” by
M. Sydow et al. explores the application of a concept of document set diversifi-
cation, in order to improve responses to search engine queries. It turns out that
to achieve a diversification in the response, there is no need to recall the original
documents and one can rely on characteristics of previous queries only, enhanced
possibly with some Wikipedia-based statistics. Wikipedia data are also valuable
when categorizing documents, as K. Ciesielski et al demonstrate in the paper
“Wikipedia-Based Document Categorization.” A mapping between the words of
a language and hierarchical Wikipedia categories is created on the basis of a
Wikipedia category graph and page graph. It constitutes a foundation of map-
ping the whole document to a set of categories which is then rectified based on
common supercategories and tfidf (term frequency inverse document frequency)
like statistics.

The last track of the SIIS 2011 Joint Conference was devoted to Natural
Language Processing (NLP). It was opened by an invited plenary talk by
Joakim Nivre entitled “Bare-Bones Dependency Parsing.” The author presented
the general methodological and implementational issues connected with inducing
parsers on the basis of annotated examples. In contrast to many other experi-
ments, the presented approach does not utilize intermediate phrase structures.

In the Internet era, when more and more electronic texts in many natural
languages become available each day, automatic processing of these texts is one
of the most important tasks for computer applications. Among the two main
approaches to NLP application building — rule-based and machine learning
paradigms — the latter has become more popular. These methods are a common
denominator of the first group of papers.

Regarding the problems of dependency parsing techniques, in addition to the
invited paper by J. Nivre, A. Wróblewska and M. Woliński present preliminary
experiments in the induction of a dependency parser for Polish. Although such
experiments were already conducted for many languages, there were no results
reported for Polish data yet. The next three papers in the NLP section con-
cern various aspects of dealing with natural language semantics. In the first one

Preface IX

B. Broda et al. describe an evaluation methodology for automated Wordnet ex-
pansion algorithms. The next paper by �L. Kobyliński addresses the problem of
word sense disambiguation in a limited domain (in this case economy). The au-
thor uses class association rules to create an effective and human-understandable
rule-based classifier. The third paper is devoted to semantic relations extraction.
In this paper, A. Pohl describes an ontology-based method for selecting testing
examples for relation extraction, and a method of their validation.

The subsequent four papers in the NLP section describe problems concern-
ing words and phrases: M. Marcińczuk et al. describe the recognition of proper
names in texts, using a very rich set of features for training CRF models. E. Ha-
jnicz describes the creation of a semantic valence dictionary. T. Śniatowski and
M. Piasecki present the outcomes of combining the results of three Polish tag-
gers. Finally, the problems of lemmatization of nominal phrases in Polish are
presented by �L. Degórski.

In the final two papers included in the NLP section M. Junczys-Dowmunt and
A. Sza�l present the concept of symmetrical word alignment, which outperforms
one-way alignment, and A. Wawer and K. Sakwerda describe an experiment with
building an ontology for sentiment analysis in the process of text annotation.

We would like to express our thanks to the invited speakers and the authors
of papers for their contributions. We would also like to thank all the Program
Committee members and invited reviewers for their excellent job. Last but not
least, we gratefully acknowledge the generous support from the Office of Naval
Research Global and Fonds National de la Recherche Luxembourg.

Pascal Bouvry
Mieczys�law A. K�lopotek

Franck Leprévost
Ma�lgorzata Marciniak

Agnieszka Mykowiecka
Henryk Rybiński

Conference Organization

Steering committee

Pascal Bouvry University of Luxembourg
Mieczys�law A. K�lopotek Institute of Computer Science PAS, Poland
Jacek Koronacki Institute of Computer Science PAS, Poland
Franck Leprévost University of Luxembourg
Józef Lubacz Warsaw University of Technology, Poland
Ma�lgorzata Marciniak Institute of Computer Science PAS, Poland
Mieczys�law Muraszkiewicz Warsaw University of Technology, Poland
Agnieszka Mykowiecka Institute of Computer Science PAS, Poland
Björn Ottersten University of Luxembourg
Henryk Rybiński Warsaw University of Technology, Poland
Miros�law S�lomiński Warsaw University of Technology, Poland

Publishing Chair

Leonard Bolc Polish Japanese Institute of Information
Technology, Poland

Programme Committee

Witold Abramowicz Poznań University of Economics, Poland
Stanis�law Ambroszkiewicz Institute of Computer Science PAS, Poland
Alex Biryukov University of Luxembourg
António Horta Branco University of Lisbon, Portugal
Luis Miguel de Campos University of Granada, Spain
Andrzej Czyżewski Gdańsk University of Technology, Poland
Jan Daciuk Gdańsk University of Technology, Poland
Tapio Elomaa Tampere University of Technology, Finland
Piotr Gawrysiak Warsaw University of Technology, Poland
Marek Gorgoń AGH University of Science and Technology,

Poland
Jerzy W. Grzyma�la-Busse University of Kansas, USA
Wojciech Jamroga University of Luxembourg
Józef Korbicz University of Zielona Góra, Poland
Zbigniew Kotulski Warsaw University of Technology, Poland

XII Conference Organization

Anna Kupść University of Bordeaux 3, France
Alessio Lomuscio Imperial College London, UK
Ramón López-Cózar Delgado University of Granada, Spain
Krzysztof Marasek Polish Japanese Institute of Information

Technology, Poland
Nicola Di Mauro University of Bari, Italy
Sjouke Mauw University of Luxembourg
Maciej Michalewicz IBM Netezza Poland
Zbigniew Michalewicz University of Adelaide, Australia
Karel Pala Masaryk University, Czech Republic
Wojciech Penczek Institute of Computer Science PAS, Poland
Maciej Piasecki Wroc�law University of Technology, Poland
Gábor Prószéky MorphoLogic, Hungary
Adam Przepiórkowski Institute of Computer Science PAS, Poland
Zbigniew W. Raś University of North Carolina at Charlotte, USA
Jan Rauch University of Economics, Czech Republic
Gilbert Ritschard University of Geneva, Switzerland
Peter Ryan University of Luxembourg
Abdel-Badeeh M. Salem Ain Shams University, Egypt
Franciszek Seredyński Institute of Computer Science PAS, Poland
Andrzej Skowron Warsaw University, Poland
Marian Srebrny Institute of Computer Science PAS, Poland
Marcin Sydow Polish Japanese Institute of Information

Technology, Poland
Stan Szpakowicz University of Ottawa, Canada
Roman Świniarski San Diego State University, USA
Ryszard Tadeusiewicz AGH University of Science and Technology,

Poland
Jonathan Timmis University of York, UK
Krzysztof Trojanowski Institute of Computer Science PAS, Poland
Angelina Tzacheva University of South Carolina Upstate, USA
Jerzy Urbanowicz Institute of Computer Science PAS, Poland
Antti Valmari Tampere University of Technology, Finland
Zygmunt Vetulani Adam Mickiewicz University, Poland
Alicja Wakulicz-Deja University of Silesia, Poland
S�lawomir T. Wierzchoń Institute of Computer Science PAS, Poland
Peter Wittenburg Max Planck Institute for Psycholinguistics,

The Netherlands
Karsten Wolf University of Rostock, Germany
Bożena Woźna-Szcześniak Jan D�lugosz University, Poland

Conference Organization XIII

Invited Reviewers

Nicolas Bernard
Elżbieta Hajnicz
Eric Joanis
Andrew V. Jones
Hugo Jonker
Alistair Kennedy
Miros�law Kurkowski
Jacek Ma�lyszko
Marek Ostaszewski

Jakub Piskorski
Peter Ryan
Marcin Seredyński
Jaros�law Skaruz
Miros�law Szaban
Piotr Świtalski
Sebastien Varrette
Alina Wróblewska

Organizing Committee

Piotr Borkowski
Micha�l Ciesio�lka
Grzegorz Mańko
Marek Miszewski
Antoni Siennicki

Table of Contents

Invited Papers

Correspondences on Hyperelliptic Curves and Applications to the
Discrete Logarithm . 1

Gerhard Frey and Ernst Kani

Bare-Bones Dependency Parsing . 20
Joakim Nivre

Security and Trust

Solving Soft Security Problem in MANETs Using an Evolutionary
Approach . 33

Marcin Seredynski and Pascal Bouvry

Camera Sabotage Detection for Surveillance Systems 45
Damian Ellwart, Piotr Szczuko, and Andrzej Czyżewski

Implementation of Access Control Model for Distributed Information
Systems Using Usage Control . 54

Aneta Poniszewska-Maranda

Beyond TOR: The TrueNyms Protocol . 68
Nicolas Bernard and Franck Leprévost

A Signature Scheme for Distributed Executions Based on Control Flow
Analysis . 85

Sébastien Varrette, Benôıt Bertholon, and Pascal Bouvry

Computational Aspects of Attack–Defense Trees . 103
Barbara Kordy, Marc Pouly, and Patrick Schweitzer

Attacks on Simplified Versions of K2 . 117
Deike Priemuth-Schmid

Data Mining and Machine Learning

Model Selection in Logistic Regression Using p-Values and Greedy
Search . 128

Jan Mielniczuk and Pawe�l Teisseyre

Landau Theory of Meta-learning . 142
Dariusz Plewczynski

XVI Table of Contents

Multi-Test Decision Trees for Gene Expression Data Analysis 154
Marcin Czajkowski, Marek Grześ, and Marek Kretowski

Rule-Based Approach to Computational Stylistics . 168
Urszula Stańczyk

Differential Evolution for High Scale Dynamic Optimization 180
Miko�laj Raciborski, Krzysztof Trojanowski, and Piotr Kaczyński

Towards an OpenCL Implementation of Genetic Algorithms on
GPUs . 190

Tadeusz Puźniakowski and Marek A. Bednarczyk

Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis 204
Frédéric Pinel, Grégoire Danoy, and Pascal Bouvry

Image Recognition System for Diagnosis Support of Melanoma Skin
Lesion . 217

Pawe�l Cudek, Wies�law Paja, and Mariusz Wrzesień

Playing in Unison in the Random Forest . 226
Alicja A. Wieczorkowska, Miron B. Kursa, Elżbieta Kubera,
Rados�law Rudnicki, and Witold R. Rudnicki

Scale Invariant Bipartite Graph Generative Model 240
Szymon Chojnacki and Mieczys�law A. K�lopotek

Introducing Diversity to Log-Based Query Suggestions to Deal with
Underspecified User Queries . 251

Marcin Sydow, Krzysztof Ciesielski, and Jakub Wajda

Wikipedia-Based Document Categorization . 265
Krzysztof Ciesielski, Piotr Borkowski, Mieczys�law A. K�lopotek,
Krzysztof Trojanowski, and Kamil Wysocki

Natural Language Processing

Preliminary Experiments in Polish Dependency Parsing 279
Alina Wróblewska and Marcin Woliński

Evaluation Method for Automated Wordnet Expansion 293
Bartosz Broda, Roman Kurc, Maciej Piasecki, and
Rados�law Ramocki

Mining Class Association Rules for Word Sense Disambiguation 307
�Lukasz Kobyliński

An Ontology-Based Method for an Efficient Acquisition of Relation
Extraction Training and Testing Examples . 318

Aleksander Pohl

Table of Contents XVII

Rich Set of Features for Proper Name Recognition in Polish Texts 332
Micha�l Marcińczuk, Micha�l Stanek, Maciej Piasecki, and
Adam Musia�l

Similarity-Based Method of Detecting Diathesis Alternations in
Semantic Valence Dictionary of Polish Verbs . 345

Elżbieta Hajnicz

Combining Polish Morphosyntactic Taggers . 359
Tomasz Śniatowski and Maciej Piasecki

Towards the Lemmatisation of Polish Nominal Syntactic Groups Using
a Shallow Grammar . 370

�Lukasz Degórski

SyMGiza++: Symmetrized Word Alignment Models for Statistical
Machine Translation . 379

Marcin Junczys-Dowmunt and Arkadiusz Sza�l

How Opinion Annotations and Ontologies Become Objective? 391
Aleksander Wawer and Krzysztof Sakwerda

Author Index . 401

Correspondences on Hyperelliptic Curves

and Applications to the Discrete Logarithm

Gerhard Frey1 and Ernst Kani2,�

1 Institute for Experimental Mathematics, University of Duisburg-Essen,
45219 Essen, Germany
frey@iem.uni-due.de

http:www.esaga.uni-due.de/gerhard.frey
2 Department of Mathematics and Statistics, Queen’s University

Kingston, Ontario, K7L 3N6, Canada
Kani@mast.queensu.ca

http:www.mast.queensu.ca/~kani/

Abstract. The discrete logarithm is an important crypto primitive for
public key cryptography. The main source for suitable groups are divi-
sor class groups of carefully chosen curves over finite fields. Because of
index-calculus algorithms one has to avoid curves of genus ≥ 4 and non-
hyperelliptic curves of genus 3. An important observation of Smith [17]
is that for “many” hyperelliptic curves of genus 3 there is an explicit
isogeny of their Jacobian variety to the Jacobian of a non-hyperelliptic
curve. Hence divisor class groups of these hyperelliptic curves are mapped
in polynomial time to divisor class groups of non-hyperelliptic curves.
Behind his construction are results of Donagi, Recillas and Livné us-
ing classical algebraic geometry. In this paper we only use the theory
of curves to study Hurwitz spaces with monodromy group S4 and to
get correspondences for hyperelliptic curves. For hyperelliptic curves of
genus 3 we find Smith’s results now valid for ground fields with odd char-
acteristic, and for fields with characteristic 2 one can apply the methods
of this paper to get analogous results at least for curves with ordinary
Jacobian.

Keywords: hyperelliptic curves, discrete logarithms, curves of genus 3.

1 Introduction

One fundamental need for many applications of public key cryptography is the
construction of groups with hard discrete logarithm. Nowadays, the main source
for such groups comes from arithmetic geometry and consists of divisor class
groups of curves over finite fields Fq with q elements.

This development was a great stimulus for computational arithmetic geometry.
A bit disappointing is that the same methods used for construction of candidates
for cryptographically strong curves can be used for attacks (see Section 2).
� Supported by a Discovery Grant from the Natural Sciences and Engineering Research

Council of Canada (NSERC).

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 1–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http:www.esaga.uni-due.de/gerhard.frey
http:www.mast.queensu.ca/~kani/

2 G. Frey and E. Kani

The outcome is that curves of genus larger than 3 do not provide strong
groups. Even more surprising is Diem’s result [3] that for genus 3 there is an
index-calculus algorithm which makes the divisor class groups of generic curves
weak but does not affect the (more special) hyperelliptic curves.

Assume now that the characteristic of the ground field is different from 2. It
was Smith [17] who first realized that explicit isogenies for hyperelliptic curves
of genus 3 can be used to transfer divisor classes of O(q5) hyperelliptic curves to
those of non-hyperelliptic curves of genus 3 and so make the discrete logarithm
insecure again. In his work he used results from “classical” algebraic geometry
due to Recillas, Donagi and Livné [4].

The purpose of this paper is to give an elementary approach to Smith’s results
which uses only the theory of curves and elementary algebra and is otherwise
self-contained. This is based on the observation that the so-called “trigonal con-
struction” of Recillas, Donagi and Smith is a consequence of the study of certain
curve covers of P1 whose monodromy (or Galois) group is the symmetric group
S4. As a result, we find for every g a Hurwitz space (cf. Section 4) which pa-
rameterizes a subspace of those hyperelliptic curves C of genus g which admit a
non-trivial correspondence to a curve D of genus g that can be expected to be
non-hyperelliptic.

Moreover, if the ground field is Fq, then this correspondence is computable in
polynomial time in log(q).

For g = 3 we find the results of Smith again (and are able to extend them
to the case of characteristic 3 which he excludes.) To be more precise: By our
methods we find a rapidly computable isogeny from the Jacobian variety JC of
C to the Jacobian variety JD of D of small degree. A more detailed study of the
correspondence shows that this isogeny has as kernel an isotropic subspace of
the points of order 2 of JC and is indeed the isogeny studied by Smith. (Details
will be given in a forthcoming paper of the second author [9].) But we emphasize
that for application to cryptography the results given in this paper are sufficient.

In addition we show that the space of hyperelliptic curves for which the cor-
respondence exists is parameterized by the (g + 1)-fold product of the generic
elliptic curve with a point of order 3 which gives immediately and without any
heuristic that O(qg+2) isomorphism classes of hyperelliptic curves over Fq are
affected.

Another advantage of our approach is that it can be applied also in charac-
teristic 2 (but at present only to curves with an ordinary Jacobian variety). In
the last section we give a short sketch of this generalization; for details we again
refer to [9].

1.1 Discrete Logarithms

Many protocols for public key crypto systems are based on discrete logarithms
in groups G of prime order � (see [5]).

Definition 1. The computational Diffie-Hellman problem (DHCP) for G is: For
randomly given elements a, b ∈ G compute k ∈ Z/(ord(b)) such that bk = a. In
this case we write: k := logb(a).

Correspondences on Hyperelliptic Curves 3

There are families of algorithms using only the structure “group” (and called
generic) that compute discrete logarithms (DL) with complexity O(�1/2), e.g.
the baby-step-giant step algorithm of Shanks and Pollard’s ρ-algorithm ([1]). By
work of Maurer and Wolf [14] we know that in black box groups we cannot do
better. This motivates the search for families of “concrete” groups G for which
DHCP cannot be solved with algorithms of complexity smaller than ∼

√
�, and

we shall say that the discrete logarithm in G is “weak” if we find an algorithm
that computes discrete logarithms faster, for instance with complexity O(�d)
with d < 1/2, or polynomial in log(�) or subexponential in log(�) ([1]).

1.2 Index-Calculus

All known algorithms that compute the DL in groups G′ faster than the generic
ones are built in the following way. One finds a transfer of the DL in G′ to the
DL in a group G that is computed in subexponential or even polynomial time
and in G one can apply the pattern of index-calculus, which we want to describe
now.

One destroys the “homogeneity” of groups and chooses a “factor base” con-
sisting of relatively few elements. Then one computes G as Z-module given by
the free abelian group generated by the base elements modulo relations.

Next one has to prove that with high probability every element of G can be
written (fast and explicitly) as a sum of elements in the factor base.

So one has to find a method to create sufficiently many relations in a short
time. Usually this is done by a kind of “sieving”. Crucial for the method is to
balance the number of elements in the factor base to make the linear algebra
over Z manageable and to guarantee “smoothness” of arbitrary elements with
respect to this base.

The classical example for index-calculus is applied to the discrete logarithm in
the multiplicative group of finite fields. The method was discovered by Kraitchik
1922 [12], re-invented several times and named as index-calculus by Odlyzko
1984 [16]. Theorems about the distribution of numbers with only small prime
divisors and sieving (algebraic number field sieve and function field sieve) yield
an algorithm of subexponential complexity with α = 1/3.

2 Discrete Logarithms in Divisor Class Groups

The success of the classical index-calculus method relies on the fact that points
on the group scheme Gm, the multiplicative group, can be easily lifted to points
defined over number fields. This picture changes radically if we replace the multi-
plicative group by abelian varieties of positive dimension, for instance by elliptic
curves or more generally by Jacobian varieties of curves of genus ≥ 1 because of
structural results like the Mordell-Weil theorem, which prevents the existence of
“smooth” points over number fields.

To compute in JC one presents its points by divisor classes of degree 0.

4 G. Frey and E. Kani

If not otherwise stated, a curve C defined over a perfect field K (i.e. all
algebraic extensions of K are separable) is assumed to be projective, smooth
and geometrically connected. Its genus is denoted by g(C).

With Ks we denote the algebraic closure of K, and with Cs the curve obtained
from C by constant field extension from K to Ks.

By GK we denote the Galois group of Ks/K, i.e. the group of automorphisms
of Ks that fix K elementwise.

A divisor on Cs is a formal sum D =
∑

P∈C(Ks)
zPP with zP ∈ Z and almost

all zP = 0. The degree of D is
∑
zP . Two divisors D1, D2 are equivalent iff

there is a function f on Cs such that the divisor of zeros and poles of f is equal
to D1 −D2. Pic0(Cs) is the group of divisor classes of degree 0 of Cs. There is
(after the choice of a “point at infinity” P∞ ∈ C(Ks)) a canonical isomorphism
between JC(Ks) and Pic0(Cs).

We now assume that P∞ ∈ C(K). Since GK acts on points, divisors, functions
and hence on the divisor class group of Cs in a canonical way, we get that the
divisor class group of degree 0 of C is Pic0(C) = Pic0(Cs)GK and that this group
is canonically isomorphic to JC(K).

The whole arithmetic in these divisor class groups is ruled by the theorem of
Riemann-Roch. As one consequence we state that with fixed P∞ we can represent
(not necessarily uniquely) elements in Pic0(C) by divisors P1 + · · ·+Pt − t ·P∞
with t ≤ g(C) and Pi ∈ C(Ks) such that the natural action of GK leaves this
sum invariant.

To use these groups for cryptographic purposes one chooses C over a finite field
Fq and one has to solve deep problems in computational arithmetic geometry
like point counting and addition formulas in divisor class groups. For the needs
of cryptography, this has been solved at least partly in a satisfying way. We state
in particular that the results of Heß [7] yield algorithms for group operations in
divisor class groups that are of polynomial complexity both in g(C) (with fixed
q) and log(q) (with fixed g(C)).

As was said above, one of the main motivation for suggesting divisor class
groups for DL-systems (by Miller [15] and Koblitz [10],[11] around 1985) was
the difficulty to apply the “classical” index-calculus, and this is true till today.
But there are various other ways to find “special” elements in Pic0(C) if the
genus of C is larger than 1: There are classes which are presented by less than
g(C) points, and it may happen that the points representing the given class are
rational over K. Hence one can find factor bases, do index-calculus in a very
refined way and gets the following result:

Theorem 1 (Diem, Gaudry, Thomé, Thériault[2]). There exists an algo-
rithm which computes, up to log(q)-factors, the DL in the divisor class group of
curves of genus g(C) in expected time of O(q(2−2/g(C))).

As one consequence of the Hasse-Weil theorem (which is the analogue of the
Riemann hypothesis for curves), we get that for K = Fq the order of Pic0(C)
is O(qg(C)). It follows that for genus g(C) > 3 the index-calculus algorithm is
much faster than the generic algorithms, and hence these curves yield rather
weak crypto systems and should be avoided.

Correspondences on Hyperelliptic Curves 5

But a closer look, done by Diem [3], shows that one can alter the factor base
such that the degree of a plane model of C becomes the essential measure for
the efficiency of the index-calculus algorithm.

Theorem 2 (Diem). If C is given by a plane curve of degree d (singularities
allowed) then the DL in the group of divisor classes of degree 0 is, up to log(q)-
factors, of complexity O(q2−

2
d−2).

One sees immediately that curves of genus 1 (elliptic curves) and of genus 2 are
not affected by these results since for them the order of Pic0(C) over Fq is O(q)
respectively O(q2).

3 Isogenies and Correspondences

Let C be a curve over K of genus g(C) > 0 with Jacobian variety JC .
We exploit the fact that Pic0(C) is canonically isomorphic to JC(K) and use

the theory of abelian varieties.

Definition 2. Let A,A′ be abelian varieties of dimension g over K and let
η : A → A′ be a K-rational homomorphism1 whose kernel is a finite group
scheme A0. Then η is called an isogeny and A is isogenous to A′. The degree of
η is the order of A0. Moreover, an isogeny η is separable iff A0 is an étale group
scheme, and then the degree of η is |A0(Ks)|.

Remark 1. – The homomorphisms of abelian varieties are analogous to those
of abelian groups. In particular, for any finite (K-) subgroup scheme A0 of
A there is a (K-rational) isogeny of A with ker(η) = A0 and this isogeny is,
up to isomorphisms, uniquely determined.

– On the other hand, abelian varieties are kind of rigid: If η is a morphism
from A to A′ mapping the neutral element 0A of A to the neutral element
0A′ of A′ then η is a homomorphism.

– As above, assume that A,A′ are abelian varieties of the same dimension and
that A or A′ is simple, i.e. has no proper abelian variety as subvariety. Then
a morphism η : A→ A′ mapping 0A to 0A′ is an isogeny iff it is not constant.

Let f : D → C be a non-constant K-rational morphism from the curve D to the
curve C. Then f induces an embedding f∗ of the function field F (C) of C into
the function field F (D) of D, and the degree deg(f) := [F (D) : f∗F (C)] of this
field extension is called the degree of f .

As before, let Cs and Ds be the curves over Ks obtained by constant field
extension from K to Ks. Then f induces a morphism fs : Ds → Cs (which we
usually denote by f again).

The morphism f : D → C induces two homomorphisms f∗ and f∗ on the
associated divisor groups. To define the first, let P ∈ C(Ks) be a point. Then

1 i.e. η is a morphism of varieties compatible with the addition morphisms on A and
A′.

6 G. Frey and E. Kani

f∗(P) is by definition the divisor of Ds which is given by the formal sum of
the points (with multiplicity in ramification points) lying in f−1(P). By linear
extension f∗ defines a homomorphism from the divisor group of Cs to the divisor
group of Ds, called the conorm map (associated to f).

It is a basic fact of curve theory that divisors of degree n are mapped to
divisors of degree deg(f) · n and that principal divisors are mapped to principal
divisors. We thus obtain an induced homomorphism from Pic0(Cs) to Pic0(Ds)
which is again denoted by f∗. This map is Galois invariant, and so it maps
Pic0(C) to Pic0(D).

The map f∗ is by definition the linear extension of f to the group of divisors
of Ds. Since f∗ maps a principal divisor (t) to the principal divisor (N(t)) of
its norm, we see that f∗ induces a homomorphism, again denoted by f∗, from
Pic0(Ds) to Pic0(Cs) that is Galois invariant. It is called the norm map (asso-
ciated to f).

Using the functorial properties of Jacobians, one can show that f∗ induces an
(algebraic) homomorphism from JC to JD and that f∗ induces an (algebraic)
homomorphism from JD to JC .

Now assume that C1, C2, D are curves over K. Let fi : D → Ci be non-
constant K-rational morphisms. It follows that Tf1,f2 := (f2)∗ ◦ f∗

1 induces a
homomorphism from JC1 to JC2 that we call the correspondence attached to
(f1, f2).

We shall describe Tf1,f2 explicitly in the special case that f1 is fully ramified
in a point P∞ ∈ C1(Ks); i.e., that there is a unique point Q∞ of Ds that is
mapped to P∞ by f1.

We can represent a divisor class c of degree 0 of C1 by
∑

i≤g1
Pi − g1P∞,

where g1 = g(C1). Let (Qi,j)1≤i≤g1,1≤j≤deg(f1) be the set of points (listed with
multiplicities) in D(Ks) which are mapped to P1, . . . , Pg1 by f1. Then Tf1,f2(c)
is the divisor class of

∑
i,j f2(Qi,j) − deg(f1)g1f2(Q∞).

Lemma 1. In the above situation, assume in addition that JC1 is a simple
abelian variety, and that there is no non-constant morphism of degree ≤ deg(f1)
from C2 to the projective line. Then Tf1,f2 has a finite kernel, and if g(C1) =
g(C2), then Tf1,f2 is an isogeny.

Proof. Since JC1 is simple, it is enough to show that Tf1,f2 is not the zero
map. So take a point Q1 ∈ D(Ks) \ f−1

2 (f2(Q∞)) and let c be the class of
P − P∞, where P = f1(Q1). Then Tf1,f2(c) is the class of the divisor DP :=∑

Q∈f−1
1 (P) f2(Q) − deg(f1) · f2(Q∞). Note that DP 	= 0 (as a divisor). If the

class of DP is trivial, then we find a non-constant function on C2 with pole order
≤ deg(f1) and hence a non-constant map of C2 to the projective line of degree
≤ deg(f1), contradiction.

4 Hurwitz Spaces Attached to Hyperelliptic Curves in
Odd Characteristic

4.1 The Case of Algebraically Closed Ground Field

In this subsection we assume that K = Ks is algebraically closed.

Correspondences on Hyperelliptic Curves 7

For the first statements of this section K is allowed to have arbitrary charac-
teristic but for the major part it is necessary to assume that the characteristic
of K is odd. This hypothesis will be done in due time.

We first review the following concepts and terminology.
Let f : D → C be a non-constant separable morphism of curves. We call f

(or D, if the context is clear) a cover of C. Let F̃ be the splitting field (or Galois
closure) of the associated extension F (D)/f∗F (C) of function fields. Since K is
algebraically closed, it follows that F̃ = F (D̃) is the function field of a curve
D̃/K. Moreover, the inclusion F (D) ⊂ F̃ induces an (essentially unique) cover
f ′ : D̃ → D. We call the composition f̃ = f ◦ f ′ : D̃ → C the Galois closure of
the cover f : D → C.

The monodromy group of f : D → C is the group Gf := Aut(f̃) = {α ∈
Aut(D̃) : f̃ ◦ α = f̃} of automorphisms of its Galois closure f̃ . Thus, Gf is
(isomorphic to) the Galois group of the Galois field extension F̃ /f∗F (C), i.e.,
Gf � Gal(F̃ /f∗F (C)).

If P ∈ D̃(K), let GP = GP (f̃) = {α ∈ Gf : α(P) = P} be the ramification
group (or decomposition group) at P . Thus |GP | = eP (f̃) is the ramification
index of P . The set Ram(f̃) of ramified points Q of f̃ on C is the set of points
in C(K) for which one (and hence each) point in f̃−1(Q) has ramification index
> 1.

We recall that a cover f : D → C is tamely ramified if it is separable and if all
ramification indices are prime to the characteristic of the ground field. In this case
all ramification groups GP are cyclic, the contribution of the point P ∈ D(K)
to the discriminant divisor of f is |GP | − 1 and the Riemann–Hurwitz genus
formula (used many times in the following) is very easy to handle. Moreover
the compositum of tamely ramified covers is tamely ramified, and the so-called
Lemma of Abhyankar holds. For all these facts we refer to [18].

The cover f̃ (respectively f) is unramified if Ram(f̃) = ∅.
We observe:

Lemma 2. If C = P1, then Gf = 〈GP 〉P∈D̃(K).

For U := 〈GP 〉P∈D̃(K) has as its fixed field the function field of an unramified
cover of P1 , so U = Gf because P1 has no non-trivial unramified covers.

The collection ({GP }P∈f̃−1(Q) : Q ∈ Ram(f̃)) of the conjugacy classes of
the ramification subgroups of Gf (indexed by the set Ram(f̃)) is called the
ramification type C of the cover f̃ (or of the cover f).

A Hurwitz space is a moduli space which parameterizes (isomorphism classes)
of covers h : C → P1 of the projective line of given degree n and given ram-
ification type. Hence Hurwitz spaces are moduli spaces for covers with given
ramification type and monodromy group.

We now turn to the construction of certain covers (and associated Hurwitz
spaces) whose monodromy group is S4, the symmetric group of degree 4. For
this, we shall assume for the rest of this subsection that char(K) 	= 2.

8 G. Frey and E. Kani

Lemma 3. Assume that f : C → P1 is a tamely ramified cover of degree n
and that for every ramified point Q ∈ P1(K) the number of points in f−1(Q)
with even ramification order is even. Then Gf ⊂ An, the alternating group of
degree n.

Proof Let {P1, . . . , Pt} be the ramified points over Q. Let ei be the ramification
index of Pi. Since ei is prime to the characteristic of K by hypothesis, the
multiplicity of the discriminant divisor of f atQ is

∑t
i=1(ei−1) and hence is even.

So the field discriminant disc(F (C)/f∗F (P1)) is a square in f∗F (P1) � K(x),
and hence by field theory, Gf ≤ An.

Theorem 3. Let f2 : C1 → P1 be a cover of degree 3 such that every point on
P1 has at least one unramified extension.

Let f1 : C → C1 be a cover of degree 2 with ramification points P1, . . . , P2t on
C1 such that exactly one point in f2

−1(f2(Pj)) is unramified with respect to f1
and such that all ramification points of f2 are unramified under f1.

Define f : C → P1 by f = f2 ◦ f1. Denote by C̃1 the Galois closure of the
cover given by f2, by C̃ the Galois closure of the cover f : C → P1 and by CΔ

the cover over P1 obtained by adjoining the square root of the discriminant of f2
to the function field of P1 .

1. The monodromy group of f2 is isomorphic to S3, the symmetric group of
degree 3.

2. The cover C̃1/CΔ is unramified and is cyclic of degree 3.
3. The monodromy group Gf of f is isomorphic to S4.

Proof. 1. The assumption on the ramification behavior of f2 forces that f2 cannot
be Galois. Since deg(f2) = 3, it thus follows that its Galois closure has Galois
group S3.
2. From part 1. (or otherwise), we see that that the discriminant divisor disc(f2)
of f2 cannot be a square, and hence CΔ is the unique quadratic cover of P1

over which f̃2 factors. By Galois theory, C̃1/CΔ is a Galois extension with cyclic
Galois group of order 3. Since all ramification indices of f2 (and hence of f̃2) are
≤ 2, we see that C̃1/CΔ is unramified.
3. Let F = F (P1), F1 = F (C1) and F2 = F (C) be the function fields of the
curves P1, C1 and C. Then f1 and f2 induce inclusions F ⊂ F1 ⊂ F2. Since
the assumptions of Lemma 3 are satisfied for f , we see from the proof of the
lemma that disc(F2/F) is a square in F , and so the hypotheses of the following
Proposition 1 are satisfied. It thus follows from that proposition that Gf � S4,
as claimed.

Proposition 1. Let F ⊂ F1 ⊂ F2 be a tower of separable field extensions, and
let F̃2/F be the Galois closure (or splitting field) of F2/F . Assume that Fi/F is
not normal for i = 1, 2 and that [F2 : F1] = 2 and [F1 : F] = 3. If the discrimi-
nant disc(F2/F) is a square in F and if char(F) 	= 2, then Gal(F̃2/F) � S4.

Proof. Let F̃1 be the Galois closure of F1/F . Since [F2 : F1] = 2, we see that
F̃2/F̃1 is a compositum of quadratic extensions which are all conjugate to F2F̃1,
and so N := Gal(F̃2/F̃1) is an elementary abelian 2-group.

Correspondences on Hyperelliptic Curves 9

Since disc(F2/F) is a square, we know that G := Gal(F2/F) is a subgroup of
the alternating group A6. Thus also N ≤ A6. But every non-cyclic elementary
abelian 2-group of A6 is of the form {gigj}, where g1, g2, g3 ∈ S6 are 3 disjoint
transpositions, and hence |N | ≤ 4. Now N 	= 1 because otherwise F2 = F̃1,
so F2/F would be normal, contradiction. Moreover, |N | 	= 2 because otherwise
N = 〈g〉 � G, where g ∈ A6 is a (2, 2)-cycle. Since 3 = [F1 : F] | |G|, ∃σ ∈ G
of order 3 which therefore centralizes g. But no such pair (g, σ) exists in A6,
contradiction. Thus |N | = 4, and hence |G| = [F̃2 : F̃1][F̃1 : F] = |N | · 6 = 24.

Let P3 = 〈σ〉 be a 3-Sylow subgroup of G. If P3 � G, then the “Normaliza-
tor/Centralizator theorem” [8] yields thatG/CG(P3) with CG(P3) the centralizer
of P3 would be a subgroup of Aut P3 and hence CG(P3) would have index divid-
ing 2. So it would contain N . This is a contradiction because as was mentioned
above, the elements of N do not centralize σ. Thus, by Sylow, G has 4 distinct
3-Sylow subgroups P3,i and so the conjugation action on the set {P3,i}4

i=1 de-
fines a homomorphism ϕ : G→ S4 whose kernel is N1 := ∩4

i=1NG(P3,i). Clearly,
3 � |N1|, so |N1| | 2 (because |NG(P3,i)| = 6). If |N1| = 2, then N1 	≤ N because
N has no subgroup of order 2 which is normal in G. But then N1N is an ele-
mentary abelian subgroup of order 8 in A6, contradiction. Thus N1 = 1, so ϕ is
injective and hence yields an isomorphism G � S4.

Remark 2. In the situation of Theorem 3, assume that s points Q1, . . . , Qs of
P1 ramify in the cover f2. Then the Riemann-Hurwitz formula [18] shows that
g(C1) = s/2 − 2 and g(CΔ) = s/2 − 1. In particular, s ≥ 4 because g(C1) ≥ 0.

Moreover, if (as in Theorem 3) 2t points of C1 ramify in the cover f1, then
g(C) = 2g(C1) − 1 + t = s+ t− 5.

We thus see that s + t points of P1 ramify in the S4-cover f̃ : C̃ → P1.
Since all have ramification index 2, we see by the Riemann-Hurwitz formula
that g(C̃) = 6(s+ t− 4) + 1.

The ramification structure of f̃ is a follows. If Q′ ∈ C̃(K) lies above some Qi,
then Q′ is unramified over C̃2 so GQ′ is generated by a transposition (because
Gal(C̃/C̃2) = N contains all (2, 2)-cycles of S4). On the other hand, if P ′ ∈ C̃(K)
lies above some f2(Pi), then P ′ is ramified over C̃2, so GP ′ is generated by a
(2, 2)-cycle. Thus, the ramification type C of f̃ consists of s conjugacy classes of
transpositions and t conjugacy classes of (2, 2)-cycles of S4.

The covers considered in Theorem 3 naturally give rise to Hurwitz spaces H̃s,t

and Hs,t as follows. For a given s ≥ 4 and t, let H̃s,t(K) denote the set of
isomorphism classes of covers f = f2 ◦ f1 : C → P1 of the type defined in
Theorem 3. (As usual, two covers f : C → P1 and f ′ : C′ → P1 are called
isomorphic if there is an isomorphism α : C → C′ such that f ′ ◦ α = f .)
Moreover, since the group Aut(P1) acts on H̃s,t(K) (via (α, f) �→ α ◦ f), we can
also consider the orbit space Hs,t(K) := Aut(P1)\H̃s,t(K). Then we have

Theorem 4. The moduli problem H̃s,t is finely represented by a Hurwitz space
H̃s,t/K of dimension s + t and the moduli problem Hs,t is coarsely represented
by the quotient space Hs,t = Aut(P1)\H̃s,t of dimension s+ t− 3.

10 G. Frey and E. Kani

Proof. By Theorem 3 and Remark 2 we see that we can identify H̃s,t(K) with the
set Hin(S4,C) of S4-covers with ramification type C as in Remark 2. Since this
extension is tamely ramified, the assertions follow from the work of Fried/Völklein
and Wewers, as was discussed in [6], p. 37.

4.2 Rationality

We now investigate to what extent the constructions of the previous subsection
can be done over an arbitrary perfect ground field K (with char(K) 	= 2). Here
a basic difficulty is that the technique of Galois closure does not lead in general
to curve covers.

To explain this in more detail, let f : D → C be a K-cover of curves, i.e. f
is a separable, non-constant K-morphism of curves over K. As before, f gives
rise to a separable extension F (D)/f∗F (C) of the associated function fields,
and so we can consider the splitting field (or Galois closure) F̃ of the extension
F (D)/f∗F (C).

However, F̃ in general does not need to be the function field of a (geomet-
rically connected) curve D̃/K. For this it is sufficient and necessary that K is
algebraically closed in F̃ . In this case we say that f admits a Galois closure, for we
have as before two induced Galois covers f ′ : D̃ → D and f̃ = f ◦ f ′ : D̃ → C. It
is immediate that if f̃ exists, then this construction commutes with base-change,
and so Gf := Aut(f̃) � Gfs is the (geometric) monodromy group of the Ks-cover
fs : Ds → Cs

Theorem 5. Let f2 : C1 → P1
K and f1 : C → C1 be two K-covers of curves

such that their base-changes with Ks satisfy the hypotheses of Theorem 3.
Then f = f2 ◦ f1 : C → P1

K admits a Galois closure if and only if the field
discriminant δ := disc(F (C)/f∗F (P1

K)) is a square in f∗F (P1
K) � K(x). If this

is the case, then the Galois closure of f is an S4-cover f̃ : C̃ → P1
K .

Proof. Let F := f∗F (P1
K) ⊂ F (C) =: F2, and let F̃ be the splitting field of the

extension F2/F .
Suppose first that f admits a Galois closure, i.e. that K is algebraically closed

in F̃ . Then F̃ and Ks are linearly disjoint over K, so F̃Ks is the splitting field
of the extension F2Ks/FKs, and Gal(F̃ /F) = Gal(F̃Ks/FKs). By the proof of
Theorem 3 we know that Gal(F̃Ks/FKs) ≤ A6, and so also Gal(F̃ /F) ≤ A6.
By field theory, this means that δ ∈ (F×)2.

Conversely, assume that δ is a square in F . Then the tower F ⊂ F1 :=
f∗
1F (C1) ⊂ F2 of field extensions satisfies the hypotheses of Proposition 1, and

so Gal(F̃ /F) � S4. Since also Gal(F̃Ks/FKs) � S4 by Theorem 3, it follows
that F̃ and Ks are linearly disjoint over K, so K is algebraically closed in F̃ and
hence f admits a Galois closure.

Remark 3. In the situation of Theorem 5, suppose that δ is not a square in
F � K(x). Since δ is a square in FKs = Ks(x) (cf. Theorem 3), we see that
F ′ := F (

√
δ) is a quadratic constant extension of F , i.e., F ′ = FK ′, where

K ′ = K(
√
c), for some c ∈ K. Thus, it follows that the cover fK′ : CK′ → P1

K′

(which is obtained from f by base-change with K ′) does admit a Galois closure.

Correspondences on Hyperelliptic Curves 11

Moreover, by replacing the quadratic cover f1 : C → C1 by its quadratic twist
fχ
1 : Cχ → C1 (associated to the extension K ′/K), we see that the twisted cover
fχ = f2 ◦ f ′

1 : C′ → P1
K satisfies the hypotheses of Theorem 5 and hence admits

a Galois closure f̃χ : C̃′ → P1
K with group S4.

So we get: Either f : C → P1 or its twist fχ : C′ → P1 admits a Galois
closure, which is a S4-cover.

4.3 The Hyperelliptic Case

For the rest of this section and for the whole following section we take s = 4.
This is equivalent to the hypothesis that g(C1) = 0 or to the hypothesis that
C is a hyperelliptic curve of genus t − 1 with hyperelliptic cover f1. The curve
CΔ is an elliptic curve E, and we can choose as the origin of E for instance the
unique point over Q1. Then the cover E/P1 is given by computing modulo −idE ,
i.e., by mapping a point on E to its x−coordinate, if E is given by a Weierstraß
equation.

The moduli space of hyperelliptic curves MH,t−1 of genus t−1 has dimension
2t− 3.

For t = 3 Theorem 4 shows that the dimension of Ht := H4,t is 4 and hence
larger than the dimension of the moduli space MH,2 of curves of genus 2. (Recall
that all curves of genus 2 are hyperelliptic.). We can interpret this by the fact
that there are infinitely many covers f2 which give rise to the same isomorphism
class of curves of genus 2. In fact for a given set of 6 points on P1 there are
infinitely many maps of degree 3 such that pairs of these points have the same
image.

For t > 4 the dimension of Ht is smaller than the dimension of MH,t−1, and
so we will get only very special hyperelliptic curves attached to points on Ht.

But the interesting case is t = 4. We get hyperelliptic curves of genus 3, and
the moduli space of such curves is irreducible and has dimension 5.

By elementary linear algebra we shall see in Subsection 5.1 that every hyper-
elliptic curve of genus 3 covers P1 by a map f such that f corresponds to a point
in Ht, and that, generically, to given hyperelliptic curve C there are exactly 2
such covers up to equivalence. Hence we get a 2-fold cover map from Ht to the
moduli space of hyperelliptic curves of genus 3.

Construction of Points on Ht. Take f = f2 ◦f1 : C → P1 as above. It follows
that both CΔ and C̃1 are elliptic curves E and E′, respectively, which come
equipped with an isogeny ρ : E′ → E of degree 3.

We have a bit more: The monodromy group of f2 is S3. We embed it into the
group of automorphisms AutK(E′). Let ϕ be such an automorphism. Then ϕ is
of the form ±idE′ + tV where tV is the translation on E′ by a point V .

Let σ ∈ S3 be an element of order 2 and τ ∈ S3 be an element of order 3.
Since 〈σ, τ〉 = S3, we have σ = −idE′ + tR with R ∈ E′(Fq) and τ = tV3 , where
V3 is a point of order 3 of E′. By an appropriate choice of the neutral elements
of E and E′ (we use that K = Ks) we can assume that V = 0 and that f2 is an
isogeny.

12 G. Frey and E. Kani

Let R1, R
′
1, R2, R

′
2, . . . , R2t, R

′
2t be the set of points on E′ which ramify in

C ×C1 E
′/E′. Then we find εj ∈ {−1, 1}; 1 ≤ j ≤ t such that after a suitable

ordering we get Rk = −R′
k for k = 1, . . . , 2t and Rj = Rt+j + εj · V3 for

j = 1, . . . , t.
Conversely, begin with an elliptic curve E with Q′

1, . . . , Q
′
4 ∈ E(K)[2], the

group of points of order 2 of E. We normalize and assume that Q′
1 is the neutral

element of E and denote by πE the map from E to E/〈−idE〉 = P1. Define
Qj := πE(Q′

j).
Take E′ with point V3 of order 3 such that ρ : E′ → E is an isogeny of degree

3 with kernel 〈V3〉.
Since ρ(0E′) = 0E , the curveE′/〈−idE′〉 is a projective line coveringE/〈−idE〉

by a map fρ of degree 3 that is ramified exactly in Q1, . . . , Q4 in the follow-
ing way: In the inverse image of Qi under fρ there is one point with ramifica-
tion index 2 and one unramified point. Hence the discriminant divisor of fρ is
Q1 + · · · +Q4.

Define Γρ as the subset of E′t consisting of all the t-tuples (R1, . . . , Rt) for
which {±Rj,±(Rj + εj · V3)); 1 ≤ j ≤ t} (the signs ± taken independently) has
strictly less than 4t elements.

Next choose t points R1, . . . , Rt ∈ E′(K) \ Γρ.
Take P1, . . . , P2t as the images under πE′ of {Rj, Rj + εj · V3, j = 1, . . . , t}.

By assumption, these points are distinct and we have fρ(Pj) = fρ(Pj+t) for
j = 1, . . . , t.

It follows that fρ, P1, · · · , P2t give rise to a point in Ht.
From the above considerations we know that we get all points of Ht by this

construction.
Before we summarize we make one remark. We have to look at covers f

modulo the equivalence relation induced by automorphisms of P1. But applying
such an automorphism does not change the isomorphism class of the elliptic
curve E. Moreover elliptic curves with points of order 3 are parameterized by
the modular curve X1(3) (which has genus 0).
Theorem 6. We get a surjective map from the set of points of {(E′, V3) ∈
X1(3)(K), (R1, . . . , Rt) ∈ E′(K)t \ Γρ} to Ht(K) with finite fibres.

Hence there is a rational dominant morphism from (E3)t
X1(3) (the t-fold fibre

product over X1(3) of the universal elliptic curve E3 over X1(3)) to Ht(K) with
finite fibres.

4.4 The Trigonal Construction

The basic task of the classical “trigonal construction” of Recillas, Donagi and
Livné (cf. [4]) is the following. Given a curve C/K equipped with cover
f = f2◦f1 : C → P1 with degree f1 = 2 and f2 = 3 (for short this is called usually
a (2,3)-cover), construct another curve D/K equipped with cover g : D → P1

that has degree 4 and a surjective homomorphism h : JC → JD (of a specific
type). In the cases studied by these authors, g(C) = 3, but this hypothesis is
not necessary. Here we shall see that the construction of the S4-cover via Galois
closure (cf. Subsection 4.1) naturally solves this task.

Correspondences on Hyperelliptic Curves 13

Thus, let f = f2 ◦ f1 : C → P1 be a (2, 3)-cover as in Theorem 3, and let
f̃ = f ◦ f ′ : C̃ → P1 be its Galois closure. Thus Gf = Aut(f̃) � S4. The Galois
group H := Aut(f ′) of C̃/C has order 4 and contains two transpositions; let σ
be one of these. Then σ is contained in precisely two of the stabilizers T1, . . . , T4

of the elements {1, 2, 3, 4} on which S4 acts. If T = Ti is one of these, then we
have T ∩H = 〈σ〉.

Let πT : C̃ → D := C̃/T be the quotient map. Then f̃ factors over πT as
f̃ = g ◦ πT , where g : D → P1 has deg(g) = 4. Note that g is primitive (does not
factor over a quadratic subcover).

We can use the Hurwitz genus formula to compute the genus of D. (Assume
s = 4.) Since the Galois closure of g : D → P1 is f̃ : C̃ → P1, we see that exactly
the points on P1 ramified in C̃ are ramified in D. Since the fixed field of the
subgroup A4 is CΔ = E, the discriminant divisor of g equals the discriminant
divisor of CΔ/P1 plus 2 times another divisor. This is enough to conclude that
the points Q1, . . . , Q4 have one ramified extension of order 2 and the t points
in {f2(P1), . . . , f2(P2t)} (recall that the image under f2 of {P1, . . . , P2t} consists
of exactly t points) have 2 ramified extensions. It follows that the genus of D is
equal to t− 1, and hence is equal to the genus of C.

Finally, we construct a correspondence from JC to JD. For this, let πσ : C̃ →
D′ := C̃/〈σ〉 be the quotient map. Then f ′ factors over πσ as f ′ = ϕ1 ◦ πσ and
similarly πS factors as πS = ϕ2 ◦ πσ.

We remark that ϕ1 cannot be unramified. For otherwise the compositum of
the function fields F (D′) and F (C̃1) would be unramified over F (C) · F (C̃1).
But the discussion in the proof of Theorem 3 shows that this is not true. We
choose one of these ramification points as P∞ on C and so the assumptions of
Lemma 1 are satisfied for ϕ1 : D′ → C.

Definition 3. The correspondence TC(f) := Tϕ1,ϕ2 is the homomorphism from
Pic0(C) to Pic0(D) induced by ϕ2∗ ◦ ϕ∗

1.

Using Lemma 1, we obtain:

Theorem 7. Assume that the Jacobian JC is a simple abelian variety and that
D is not hyperelliptic. Then TC(f) is an isogeny.2

4.5 Rationality Questions over Finite Fields

Let K be the finite field Fq with q elements (q odd), and let Ks be its separable
closure. Let C be a hyperelliptic curve of genus g(C) > 1 defined over Fq with
cover f : Cs → P1 defined over Ks as above. We want to give conditions for the
rationality of the isogeny of JCs induced by the correspondence TC(f).

Given C, there is a uniquely determined Fq-rational 2-cover f1 of C to the pro-
jective line, denoted by C1, with 2t = 2g(C)+2 ramification points P1, . . . , P2t ∈
2 A closer study ([9]) of the situation shows that the theorem is true without the extra

assumptions, and that the kernel of TC is a maximally isotropic subgroup of JC [2].
In addition it is shown that TC(f) induces the isogeny constructed in [4].

14 G. Frey and E. Kani

C1(Ks). The discriminant divisor disc(f1) = P1 + · · · + P2t is K-rational, so in
particular the set {P1, . . . , P2t} is invariant under GK .

Conversely, to a given Galois invariant set {P1, . . . , P2t} of points on C1 = P1

we find (in general) two hyperelliptic covers C/P1 and C′/P1 whose branch
loci are {P1, . . . , P2t}. These two curves are twists of each other and become
isomorphic over Ks.

We now assume that the set {P1, . . . , P2t} is given and that we have a 3-cover
f2 : P1 → P1 defined over Fq which maps {P1, . . . , P2t} pairwise to t points on
P1. Then we know from Remark 3 that there is exactly one Fq-rational quadratic
cover f1 of P1 such that f := f2 ◦ f1 admits a Galois closure with Galois group
S4 and so there is a uniquely determined hyperelliptic curve cover C/P1 defined
over Fq with branch points {P1, . . . , P2t}. By the discussion of the “trigonal
construction” in Subsection 4.4, it is clear that the constructed curve D and
the correspondence TC(f) from JC to JD are both defined over Fq. Hence the
question about rationality of curve C with rational TC(f) boils down to the
question of finding f2.

This motivates the study of covers h = f2 : C1 = P1 → P1 with h of degree
3 defined over Fq with discriminant divisor Q1 + · · · + Q4, Qi 	= Qj ∈ P1(Ks)
for i 	= j. First we see that {Q1, . . . , Q4} is Galois invariant. Let Q′

1, . . . , Q
′
4

be the unramified extensions of Q1, . . . , Q4 under h. These 4 points are exactly
the ramification points of C̃1/C1 where as usual C̃1 is the Galois closure of
h : C1 = P1 → P1. Hence C̃1 is an absolutely irreducible curve over Fq of genus
1. Moreover, since our ground field is Fq, the curve C̃1 is an elliptic curve E′

defined over Fq. The monodromy group of h is S3. As was seen in the discussion
before Theorem 6, this implies that E′ has an Fq-rational point V3 of order 3.

Lemma 4. Let h : P1 = C1 → P1 be as above. Then C̃1 is characterized as the
elliptic curve E′ which is uniquely determined by an affine equation Y 2 = g′4(X)
with zeroes Q1, . . . , Q4 and which has an Fq-rational point V3 of order 3.

Let E = E′/〈V3〉. Then h induces an isogeny of degree 3 from E′ to E and E
has an Fq-rational point of order 3. This determines uniquely the twist class of E.

Conversely: Let E′ be an elliptic curve with a K-rational point V3 of order 3 and
let ρ : E′ → E be the isogeny with kernel 〈V3〉. Let σ′ = −idE′ + tR with some
point R ∈ E′(Fq) be an automorphism of E′ of order 2 and C1 := E′/〈σ′〉. Take
σ = −idE + tρ(R) and P1 = E/〈σ〉. Then ρ induces a map h′ : C1 → P1 with
C̃1 = E′ and the required properties.

Theorem 8. Let {P1, . . . , Pt} be a G(Ks/Fq)-invariant set of t points in P1(Ks).
Let g4(X) be a polynomial of degree 4 over Fq with distinct roots such that the el-
liptic curve E′ : Y 2 = g4(X) has an Fq-rational point Q of order 3. Let P̃1, . . . , P̃t

be points on E′ with X-coordinates P1, . . . , Pt. Choose ε1, . . . , εt ∈ {1,−1} and
define Pt+j as the X-coordinate of P̃j + εjQ. Assume that the cardinality of
{P1, . . . , Pt,Pt+1, . . . , P2t} is 2t (this is generically true).

Then there is an (up to Fq-isomorphism) unique hyperelliptic curve cover
C/P1 with branch points {P1, . . . , Pt, Pt+1, . . . , P2t} that has an Fq-rational cor-
respondence of the form TC(f).

Correspondences on Hyperelliptic Curves 15

Remark 4. From the point of view of Hurwitz spaces Theorem 8 is a satisfying
result. But it does not solve the problem: For given C decide whether E′ exists
and compute the equation for E′.

We shall see an explicit result for g(C) = 3 in the next section.

4.6 Computational Aspects

We continue to take K = Fq and we assume that the conditions of Theorem 8
are satisfied for the curve C.
Precomputation
1) We know equations for E′/C1 and we can compute the isogeny ρ.
2) Next compute an equation for H := C ×C1 E

′ (i.e. compute the compositum
F (C)F (E′) of the function fields of C and E′ over the rational function field
Fq(T) embedded by the cover maps C → C1 and E′ → C1).
3) Knowing ρ, we can compute an equation for a conjugate Hτ of H with respect
to the automorphism τ of order 3 of E′ and hence for the Galois closure H̃ = C̃
of f .
4) Determine a subcover D′ = C̃/〈σ〉 of degree 2 of C̃ which covers C but not
E′ and compute an equation of the cover ϕ1 : D′ → C.
5) Choose a point P∞ ∈ C(Fq) (this exists in all interesting cases) and compute
ϕ∗

1(P∞) = R1
∞ +R2

∞.
6) Determine a subcover D of degree 3 over D′ and compute an equation for D
and for the cover ϕ2 : D′ → D.
7.) Compute Sj

∞ = ϕ(Rj
∞).

All these computations can be performed (cf.[7]) in time and space polynomial
in log(q).
Transfer of DL: Let c be a divisor class group of C. Present c by∑

j=1,...,g(C)

Pj − g(C) · P∞.

Lift the points Pj to points Ri,j on D′ by using the equation of the curve cover
ϕ1 : D′ → C (or of the extension F (D′)/F (C)).
Determine the images Si,j of Ri,j on the curve to D by using the equation of
the curve cover ϕ2 : D′ → D.
Then T (f)(c) is the class of

∑
j=1,...,g(C),i=1,2 Si,j − g(C)(S1

∞ + S2
∞).

By methods of [7] one finds a representative of T (f)(c) as difference of divisors
of degree bounded by g(D) in polynomial time in log(q).

Result: For a known map f : C → P1 one can compute TC(f) in polynomial
time in log(q).

5 Curves of Genus 3

5.1 The Construction of Trigonal Subcovers

We recall that to every Fq-rational point on H4 we have an attached hyperelliptic
curve C of genus 3 and a map f : C → P1 of degree 6 such that TC(f) is

16 G. Frey and E. Kani

Fq-rational. C is determined up to Fq-isomorphisms, and TC(f) is computable
in time and space polynomial in log(q).

Let us look at the situation over Ks. Since the dimension of H4 is 5 we get a
dominant map from H4 to the moduli space of hyperelliptic curves of genus 3. In
other words: For given Weierstraß points Q1, . . . , Q8 of a “generic” hyperelliptic
curves C we find a cover f2 : P1 → P1 over Ks that maps these points pairwise
to 4 different points. In fact, there will be generically 2 such covers ([4]). We give
a proof for this fact by elementary linear algebra.

Theorem 9. Over Ks there is a rational dominant map of degree 2 from H4 to
MH,3, the moduli space of hyperelliptic curves of genus 3.

Proof. We fix 8 different points on P1(Ks) lying in an affine part with affine
coordinates u1, . . . , u8.

We look for a rational function h(U) = U3+x1U2+x2U+x3
x4U3+x5U2+x6U+x7

with xi ∈ Ks such
that (without loss of generality) h(u1) = h(u2) = 0;h(u3) = h(u4) = ∞, h(u5) =
h(u6) = 1 and h(u7) = h(u8) = t where t is an appropriately chosen element
in Ks.

Hence (x1, . . . , x7) has to be a solution of the system of linear equations⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u2
1 u1 1 0 0 0 0
u2

2 u2 1 0 0 0 0
0 0 0 u3

3 u2
3 u3 1

0 0 0 u3
4 u2

4 u4 1
u2

5 u5 1 −u3
5 −u2

5 −u5 −1
u2

6 u6 1 −u3
6 −u2

6 −u6 −1
u2

7 u7 1 −t · u3
7 −t · u2

7 −t · u7 −t
u2

8 u8 1 −t · u3
8 −t · u2

8 −t · u8 −t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

x5

x6

x7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u3
1

−u3
2

0
0

−u3
5

−u3
6

−u3
7

−u3
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The parameter t occurs linearly exactly in two rows of the system and hence the
determinant of the extended matrix of the system is a polynomial of degree 2 in
t over Ks. The condition of solvability of the system, namely that the rank of
the extended matrix is ≤ 7, is satisfied if t is a zero of this polynomial, and so
generically two values are possible for t.

Now take a hyperelliptic curve C over Fq given by an equation Y 2 = f8(X)
and let {u1, . . . , u8} be the set of roots of f8. On this set we have an action of the
absolute Galois group of Fq. We know that these values come in pairs uj, u4+j

(j = 1, . . . , 4) with members behaving in the same way under the Galois action,
and we look for a Fq-rational map h with h(uj) = h(u4+j) = tj .

A first condition is that the set {t1, . . . , t4} is Galois invariant, too.
In addition, one knows that the absolute Galois group of Fq is generated by

the Frobenius automorphism φq , and so the cycles induced by this action on
{t1, . . . , t4} induce cycles of quadratic polynomials defined over Fq(t1, . . . , t4)
with zeros uj, . . . , u4+j. This is enough to list necessary and sufficient conditions
for the rationality of h (over a possibly quadratic extension of Fq) in terms of
the decomposition of f8(X) in irreducible factors over Fq.

For a detailed discussion we refer to [17].

Correspondences on Hyperelliptic Curves 17

Algorithmic Aspects. For a given f1 : C → P1, we first check whether the
Weierstraß points satisfy the Galois condition from above. If so, we solve the
linear system found in the proof of Theorem 9 if possible, and hence we obtain
the rational map h (= f2 in our notation above). These computations are done in
an extension field of Fq of degree at most 8. Next we compute the discriminant of
h and so we find the elliptic curves E and E′. To determine the twist class of C,
we compute the class of the discriminant of h◦ f1 modulo squares (alternatively,
one can check whether there is a point on P1(Fq) that is completely split under
h ◦ f1). Now we can proceed as in subsection 4.6.

5.2 Application to Discrete Logarithms

We now apply our results to hyperelliptic curves C of genus 3 with the additional
assumption that the Jacobian JC is a simple abelian variety. (This is the inter-
esting case for cryptography and is true generically.) First assume that K = Ks.
We shall use two facts about curves of genus 3.

– The moduli space of curves of genus 3 is connected and has dimension 6.
Generic curves of genus 3 can be given by plane curves of degree 4 (without
singularities).

– The moduli space MH,3 of hyperelliptic curves of genus 3 is connected and
has dimension 5 and the generic hyperelliptic curve has no primitive cover
to P1 of degree 4.3

Thus, if C is a generic hyperelliptic curve of genus 3, then the curve D con-
structed by the above trigonal construction cannot be hyperelliptic because D
is a primitive cover of P1 of degree 4.

Consequence
There is a 5-dimensional subvariety U of MH,3 such that for C ∈ U the curve
D is not hyperelliptic.

Now take K = Fq and q large. Then the number of isomorphism classes of
hyperelliptic curves C of genus 3 defined over Fq and satisfying

1. JC is a simple abelian variety
2. C ∈ U
3. Tf (C) is rational over Fq

is of order O(q5).4

By Theorem 7 TC(f) is an isogeny over Ks and hence over Fq if C ∈ U .
Even a very coarse and elementary estimate of the degree of this isogeny shows
that for cryptographically interesting primes � we get a transfer of the DL in
Pic0(C)[�] to the DL in Pic0(D)[�] in polynomial time and Theorem 2 yields
that the complexity of the discrete logarithm in Pic0(C)[�] is, up to logarithmic
factors, O(q).
3 The authors would like to thank Lange ([13]) for pointing out this result.
4 For a sharper estimate see [17].

18 G. Frey and E. Kani

Theorem 10 (Smith). There are O(q5) isomorphism classes of hyperelliptic
curves of genus 3 defined over Fq for which the discrete logarithm in the divisor
class group of degree 0 has complexity O(q), up to log-factors.

Since |Pic0(C)| = O(q3), the DL system of these hyperelliptic curves of genus
3 is weak.

6 The Case of Characteristic 2

The above method extends to the case of char(K) = 2 with some minor mod-
ifications, provided that C is an ordinary hyperelliptic curve of genus 3. Two
of the main differences here are that (i) the S4-extension is now wildly ramified
and that (ii) we cannot use the arguments involving the square roots of field
discriminants. But both these problems can be circumvented in the ordinary
case. We briefly outline the main ideas involved.

Let K = Fq, where q = 2n, and let C/K be a hyperelliptic curve of genus 3
with hyperelliptic cover f1 : C → C1 = P1. Then C is ordinary (i.e. its Hasse-
Witt invariant σC (or the 2-rank of JC) equals 3) if and only if the discriminant
divisor of f1 is of the form disc(f1) = 2(P1+· · ·+P4), where P1, . . . , P4 ∈ C1(Ks)
are 4 distinct points.

By the linear algebra method of Subsection 5.1 it is easy to construct (many!)
degree 3 subcovers f2 : C1 → P1 such that f2∗(disc(f1)) = 4(P̄1 + P̄2), with
P̄1 	= P̄2 ∈ P1(Ks).

As before, put f = f2 ◦ f1 : C → P1
K , and let fs : Cs → P1 be the cover

induced by base-change. Then one can show that the monodromy group of fs

is again S4. To see this, note that the hypothesis of “ordinary” implies that all
non-trivial ramification groups GP are still cyclic of order 2, and that each is
generated by a (2, 2)-cycle in S6. Thus, by Lemma 2, it follows that Gfs ≤ A6,
and so the proof of Proposition 1 can be modified to show that Gfs � S4.

By Galois theory (and group theory), the splitting field F̃ of F (C)/f∗F (P1
K)

is a Galois extension of F := f∗F (P1
K) of order dividing 48. Since we know by

the above that Gal(F̃Ks/FKs) � S4, we see that either Gal(F̃ /F) � S4, and
that hence f has a Galois closure with group S4, or that there is a quadratic
twist fχ

1 of f1 : C → C1 such that fχ := f2 ◦ fχ
1 has a Galois closure f̃χ with

group S4.
Thus, up to a quadratic twist, f : C → P1

K has a Galois closure f̃ : C̃ →
P1

K with monodromy group S4. By the method of the trigonal construction of
Subsection 4.4, we thus obtain a K-rational curve D equipped with a primitive
cover g : D → P1

K of degree 4 and a correspondence TC(f) : JC → JD which
turns out to be an isogeny. This latter fact requires the arguments mentioned
in the footnote to Theorem 7. It is to be hoped that D turns out to be non-
hyperelliptic, but at present the authors do not know if the analogue of the
second “known” fact of Subsection 5.2 is true in characteristic 2.

Acknowledgment. The authors would like to thank very much the referee for
encouragement, careful reading of the manuscript and for very helpful comments.

Correspondences on Hyperelliptic Curves 19

References

1. Cohen, H., Frey, G. (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptog-
raphy. CRC (2005)

2. Diem, C., Gaudry, P., Thomé, E., Thériault, N.: A double large prime variation
for small genus hyperelliptic index calculus. Math. Comp. 76, 475–492 (2007)

3. Diem, C.: An Index Calculus Algorithm for Plane Curves of Small Degree. In: Heß,
F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 543–557. Springer,
Heidelberg (2006)

4. Donagi, R., Livné, R.: The arithmetic-geometric mean and isogenies for curves of
higher genus. Ann. Scuola Norm. Sup. Pisa Cl. Sci(4) 28(2), 323–339 (1999)

5. Frey, G.: Relations between Arithmetic Geometry and Public Key Cryptography.
Advances in Mathematics of Communications (AMC) 4(2), 281–305 (2010)

6. Frey, G., Kani, E.: Curves of genus 2 with elliptic differentials and associated
Hurwitz spaces. Contemp. Math. 487, 33–81 (2009)

7. Hess, F.: Computing Riemann-Roch spaces in algebraic function fields and related
topics. J. Symbolic Comp. 33(4), 425–445 (2002)

8. Huppert, B.: Endliche Gruppen I. Springer, Heidelberg (1967)
9. Kani, E.: On the trigonal construction (in preparation)

10. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–
209 (1987)

11. Koblitz, N.: Hyperelliptic cryptosystems. Journal of Cryptology 1, 139–150 (1989)
12. Kraitchik, M.: Théorie des nombres, vol. 1. Gauthier-Villars (1922)
13. Lange, H.: e-mail to G. Frey (March 24, 2009)
14. Maurer, U.M., Wolf, S.: Lower bounds on generic algorithms in groups. In: Nyberg,

K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 72–84. Springer, Heidelberg
(1998)

15. Miller, V.: Short programs for functions on curves (1986),
http://crypto.stanford.edu//miller/

16. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic signif-
icance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS,
vol. 209, pp. 224–314. Springer, Heidelberg (1985)

17. Smith, B.: Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3
Hyperelliptic Curves. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965,
pp. 163–180. Springer, Heidelberg (2008); Revised version in: J. Cryptology 22,
505–529 (2009)

18. Stichtenoth, H.: Algebraic function fields and codes. Springer, Berlin (1993)

http://crypto.stanford.edu//miller/

Bare-Bones Dependency Parsing

Joakim Nivre

Uppsala University
Department of Linguistics and Philology

Box 635, 75126 Uppsala, Sweden
joakim.nivre@lingfil.uu.se

http://stp.lingfil.uu.se/~nivre/

Abstract. If all we want from a syntactic parser is a dependency tree,
what do we gain by first computing a different representation such as a
phrase structure tree? The principle of parsimony suggests that a simpler
model should be preferred over a more complex model, all other things
being equal, and the simplest model is arguably one that maps a sen-
tence directly to a dependency tree – a bare-bones dependency parser.
In this paper, I characterize the parsing problem faced by such a system,
survey the major parsing techniques currently in use, and begin to exam-
ine whether the simpler model can in fact rival the performance of more
complex systems. Although the empirical evidence is still limited, I con-
clude that bare-bones dependency parsers can achieve state-of-the-art
parsing accuracy and often excel in terms of efficiency.

Keywords: natural language parsing, dependency parsing.

1 Introduction

The notion of dependency has come to play an increasingly central role in nat-
ural language parsing in recent years. On the one hand, lexical dependencies
have been incorporated in statistical models for a variety of syntactic represen-
tations such as phrase structure trees [10], LFG representations [51], and CCG
derivations [9]. On the other hand, dependency relations extracted from such
representations have been exploited in many practical applications, for exam-
ple, information extraction [11], question answering [3], and machine translation
[12]. Given these developments, it is not surprising that there has also been a
growing interest in parsing models that map sentences directly to dependency
trees, an approach that will be referred to as bare-bones dependency parsing to
distinguish it from parsing methods where dependencies are embedded into or
extracted from other types of syntactic representations.

The bare-bones model can be motivated by the principle of parsimony, which
says that we should prefer the simplest of two models that explain the same phe-
nomena. If we can show that bare-bones dependency parsers produce dependency
trees with at least the same accuracy and efficiency as more complex models,
then they would be preferred on grounds of simplicity. In this paper, I will be-
gin by explaining how the parsing problem for bare-bones dependency parsers

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 20–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Bare-Bones Dependency Parsing 21

Fig. 1. Dependency graphs: dag (left), tree (middle), projective tree (right)

differs from the more familiar parsing problem for phrase structure parsers. I
will go on to survey the main techniques that are currently in use, grouped into
four broad categories: chart parsing, constraint-based parsing, transition-based
parsing, and hybrid methods. Finally, I will examine a number of recent studies
that compare the performance of different types of parsers, demonstrating that
bare-bones dependency parsers achieve strongly competitive results.

2 Parsing Problem

In this section, I will define the formal syntactic representations used by bare-
bones dependency parsers, discuss the parsing problem they face, and briefly
review metrics and data sets used to evaluate them.

2.1 Dependency Graphs

We will take a dependency structure for a sentence S = w1, . . . , wn to be a
directed graph G = (V,A), where

1. V = {1, . . . , n} is a set of nodes, with the node i representing the token wi,
2. A ⊆ V ×R×V is a set of arcs, with the arc (i, r, j) representing the syntactic

relation r from the head wi to the dependent wj (given some relation set R).

Sometimes, unlabeled dependency graphs are used, in which case an arc is simply
a pair of nodes (i, j). I will use the notation i → j to indicate that there is an
arc from i to j (with or without a label).

Depending on what additional constraints we want to impose on dependency
structures, we get different classes of dependency graphs, with different expres-
sivity and complexity.

– If we only require graphs to be connected and acyclic, then words can have
more than one head, which is convenient for representing deep syntactic
relations, as exemplified in Figure 1a, where the word you is analyzed as the
subject not only of the finite auxiliary did but also of the main verb see.

– If we require the graph to be a tree, then each word can have at most one
head, but we can still represent extraction phenomena using non-projective
arcs, as shown in Figure 1b, where the word who is analyzed as the direct
object of the main verb see.

– If we require every subtree to have a contiguous yield, finally, we get the
class of projective trees, where long-distance dependencies cannot always
be represented directly, as illustrated in Figure 1c, where the word who is
analyzed as a dependent of the auxiliary did instead of the main verb see.

22 J. Nivre

OBJ ROOT SBJ VG Relation ri ∈ R
OUTPUT 4 0 2 2 Head hi ∈ V ∪ {0}

INPUT 1 2 3 4 Node i ∈ V
who did you see Word wi ∈ S
WP VBD PRP VB Tag ti ∈ T
.

Fig. 2. Dependency parsing as assignment of heads (hi) and relations (ri) to nodes (i)

Formally, an arc i→ j in a dependency tree is projective if there is a path from
i to every node k that occurs between i and j in the linear order. A dependency
tree is projective if all its arcs are projective. Equivalently, a dependency tree is
projective if every subtree has a contiguous yield, that is, if the nodes in every
subtree form a contiguous substring of the sentence. Hence, the tree in Figure 1b
is non-projective because the arc see → what spans the words did and you, which
are not reachable from see, and the subtree rooted at see has the discontiguous
yield who . . . see.

2.2 Parsing

Regardless of what restrictions we put on dependency graphs, the basic parsing
problem for a bare-bones dependency parser consists in finding the optimal set
of arcs, given the nodes as input. This is different from phrase structure parsing,
where only the terminal nodes are given as input and where both internal nodes
and edges have to be inferred during parsing. Many algorithms for dependency
parsing are restricted to projective trees, which reduces the complexity of the
parsing problem, but a number of systems are capable of handling non-projective
trees, either by using non-standard algorithms or through post-processing. Very
few systems can deal with directed acyclic graphs.

If we restrict our attention to trees, then the parsing problem can be simplified
further and reduced to finding a head hi and a dependency relation ri for every
node i (including a dummy head and relation for the root of the tree). Figure 2
gives a schematic representation of the input and output for a parse of the
sentence who did you see with the non-projective tree in Figure 1b. Note that
the input is typically a sequence of words annotated with part-of-speech tags
and possibly preprocessed in other ways.

2.3 Evaluation

Dependency parsers are usually evaluated by measuring precision and recall on
dependency relations (arcs), with or without labels. When dependency graphs
are restricted to trees, precision and recall coincide and are often referred to as
the attachment score (AS).

Dependency parsers for English are standardly evaluated on data from the
Penn Treebank (PTB) [28], which requires that the original phrase structure
annotation is converted to dependency graphs. Two widely used conversions are

Bare-Bones Dependency Parsing 23

Penn2Malt [41], which uses the head-finding rules to produce strictly projective
trees with a restricted set of generic dependency labels, and Stanford Typed De-
pendencies [29], which uses a richer inventory of labels and is not restricted to
trees. Another important benchmark corpus is the Prague Dependency Treebank
(PDT) [18], which is the largest treebank annotated with dependency trees, 25%
of which are non-projective.1 Finally, the CoNLL shared tasks on multilingual
dependency parsing created data sets for 13 languages in 2006 [4] and 10 lan-
guages in 2007 [43]. Many of these data sets are converted from other types of
annotation, most of them contain non-projective dependencies, and all of them
are restricted to dependency trees.

3 Parsing Techniques

In this section, I will review the major approaches that are currently used for
bare-bones dependency parsing, grouping them into chart parsing, constraint
satisfaction, transition-based parsing, and hybrid methods that combine two or
more of the basic techniques.

3.1 Chart Parsing Techniques

A straightforward method for dependency parsing is to view it as a restricted
form of context-free parsing and reuse chart parsing algorithms like CKY and
Earley, an idea that is implicit already in [21] and [16] and that has been exploited
in a number of grammar-based dependency parsers [55,56,22,27,2]. The widely
used algorithm of Eisner [13,14] exploits the special constraints on dependency
trees to reduce parsing complexity to O(n3) for lexicalized parsing – as opposed
to O(n5) for the naive application of CKY or Earley – by using a split-head
representation where chart items represent a head and its dependents on one
side only.

Statistical models for disambiguation are used to score candidate dependency
trees for a given sentence, and the parsing problem amounts to finding the highest
scoring tree T ∗(S) for a given sentence S:

T ∗(S) = argmax
T∈T (S)

F(S, T)

where F(S, T) is the score of the dependency tree T for S and T (S) is the space of
possible dependency trees for S. When combined with chart parsing techniques,
the global scoring function needs to factor by subgraphs corresponding to chart
items and usually takes the following form:

F(S, T) =
∑
g∈T

f(S, g)

1 This refers to the analytical (surface syntactic) annotation layer, as opposed to the
tectogrammatical (deep syntactic) annotation layer, where all trees are projective.

24 J. Nivre

Table 1. First-, second- and third-order models for chart-based dependency parsing
(UAS = unlabeled attachment score on PTB under the Penn2Malt conversion)

Model Subgraph Complexity UAS Reference

1st-order O(n3) 90.9 McDonald et al. [32]

2nd-order O(n3) 91.5 McDonald and Pereira [34]

3rd-order O(n4) 93.0 Koo and Collins [24]

where f(S, g) is the score of the subgraph g for S.2 The score f(g) is typically
computed as a linear combination of a high-dimensional feature vector f , which
captures salient properties of g, and a corresponding weight vector w, which
indicates the relative importance of these properties in distinguishing good parse
trees from bad. Weights are normally estimated using empirical data in the form
of a treebank, and the maximal scope of features is determined by the size of
the subgraphs. A first-order model has subgraphs corresponding to single arcs
[32]; a second-order model scores pairs of arcs, usually sibling arcs on the same
side of the head [34]; and a third-order model scores triples of arcs, for example,
sibling arcs plus a grandparent arc [24]. As shown in Table 1, models of higher
order tend to give better parsing accuracy but also lead to increased parsing
complexity. Third-order grand-sibling models currently constitute the state of
the art for this kind of parsing technique.

One drawback of the chart parsing approach, besides the strict limitations on
feature scope, is that it does not easily extend to non-projective trees, let alone
directed acyclic graphs. Algorithms have been proposed for restricted subsets
of non-projective trees, but the best parsing complexity is O(n7), which is of
little practical use [26,17]. However, as shown by McDonald and Pereira [34],
it is possible to recover both non-projective arcs and multiple heads through
post-processing, a technique that was used in one of the two top-ranked systems
in the CoNLL shared task 2006 [33].

3.2 Parsing as Constraint Satisfaction

A different approach is to view dependency parsing as a constraint satisfaction
problem, where we start from a compact representation of all dependency graphs
compatible with the input and successively eliminate invalid graphs through the
propagation of grammatical constraints, as originally proposed by Maruyama
[31]. By adding numerical weights to constraints, Menzel and Schröder [37]
turned this into an optimization problem:

T ∗(S) = argmax
T∈T (S)

∏
c:¬c(S,T)

f(c)

Here c(S, T) is true if S and T satisfies the constraint c, f(c) is the weight of
c, and T ∗(S) is again the optimal dependency tree for S. The main difference
2 When scores represent probabilities and the natural operation is multiplication, we

can use a logarithmic transformation to turn this into an additive model.

Bare-Bones Dependency Parsing 25

with respect to the scoring model considered earlier for chart parsing is that the
factorization is over constraints, not subgraphs of the tree. In addition, weights
are multiplied instead of added, because constraint weights range from 0 to 1
and weights closer to 0 indicate more severe constraints.

Constraint-based parsing can easily accommodate different classes of depen-
dency graphs and does not have the same inherent limitations on features or
constraints and chart parsing, because the constraint model is independent of
any particular algorithm for constructing dependency trees. The downside of
this, however, is that constraint satisfaction is computationally intractable in
general, so exact search methods cannot be used except in special cases. Hence,
Foth et al. [15] use transformational search, starting from an arbitrary tree and
trying to improve the score through tree transformations. Other techniques that
have been explored with promising results are integer linear programming [50,30],
Gibbs sampling [39], and loopy belief propagation [57].

An interesting special case of the constraint-based approach is the maxi-
mum spanning tree parser of McDonald et al. [35], which can be regarded as
a constraint-based model:

T ∗(S) = argmax
T∈T (S)

∑
c:c(S,T)

f(c)

where the constraint ci→j(S, T) is true just in case the arc i → j is in the tree
T for S. Under this model, finding the optimal dependency tree is equivalent
to finding the maximum directed spanning tree in a complete graph containing
all possible arcs, a problem that can be solved exactly in O(n2) time using
algorithms from graph theory. A distinct advantage of this approach is that it
gives us a very efficient parser for (possibly) non-projective trees, and McDonald
et al. [35] showed that this significantly improves unlabeled attachment score for
PDT compared to a projective chart parsing model with the same feature scope.
Unfortunately, however, the spanning tree technique is restricted to first-order
models, as any attempt to extend the scope of constraints beyond single arcs
makes the parsing problem NP complete [36].

3.3 Transition-Based Parsing

A third prominent method is to view parsing as deterministic search through a
transition system (or state machine), guided by a statistical model for predicting
the next transition, an idea first proposed by Yamada and Matsumoto [59]. By
way of example, Figure 3 shows the arc-eager transition system for projective
dependency trees first described in [40]. In transition-based parsing, dependency
graphs are scored indirectly by scoring the sequence of transitions that derive
them. If s(S) is the start state for sentence S, then the optimal parse is defined
by the transition sequence t1, . . . , tm that maximizes the sum of scores for each
transition ti given the result of applying all the previous transitions:

T ∗(S) = argmax
T=[tm◦ ··· ◦ t1](s(S))

m∑
i=1

f(ti, [ti−1 ◦ · · · ◦ t1](s(S)))

26 J. Nivre

Start state: ([], [1, . . . , n], { })

Final state: (S, [], A)

Shift: (S, i|B, A) ⇒ (S|i, B, A)

Reduce: (S|i, B, A) ⇒ (S, B, A)

Right-Arc: (S|i, j|B, A) ⇒ (S|i|j, B, A ∪ {i → j})

Left-Arc: (S|i, j|B, A) ⇒ (S, j|B, A ∪ {i ← j})

Fig. 3. Transition system for arc-eager dependency parsing. A parser state consists of a
stack S of partially processed nodes, and input buffer B of remaining input nodes, and
a set A of dependency arcs defining the (partially built) dependency graph. The parser
starts in a state where S and A are empty and applies one of four transitions repeatedly
until it reaches a state where B is empty. Whatever arcs have been accumulated in A
then defines the output dependency graph. The transitions Shift and Right-Arc both
move a node from B to S but the latter first adds an arc connecting the top node of
S to the first node in B. The transitions Reduce and Left-Arc both pop the stack but
the latter first adds an arc connecting the first node in B to the top node in S.

Finding the optimal transition sequence is often intractable, and transition-based
parsers therefore use greedy, often completely deterministic search, just taking
the highest-scoring transition out of every parser state. This approach has two
distinct advantages. The first is that it avoids the limited feature scope of chart
parsing, since parsing decisions can be based on very rich feature representations
of the derivation history (including the partially built tree). The second is that
it avoids the efficiency problems in constraint-based parsing and chart-parsing
with higher-order models or non-projective trees. Transition-based parsers run
in O(n) time for projective trees [40] and limited subsets of non-projective trees
[1]. For arbitrary non-projective trees, the worst-case complexity is O(n2), but
observed running time can still be linear with an appropriate choice of transition
system [42]. Moreover, transition systems can be extended to handle directed
acyclic graphs, still in linear time [54].

The main drawback with transition-based parsing is that it may suffer from
error propagation due to search errors especially if the scoring model is only
trained to maximize the accuracy of local transitions rather than complete tran-
sition sequences. Nevertheless, a locally trained, completely deterministic system
was one of the two top-ranked systems in the CoNLL shared task 2006 [45]. More
recently, Zhang and Clark [61] have shown how these problems can be alleviated
by training models to maximize the accuracy of complete transition sequences
and by using beam search instead of strictly deterministic parsing. Huang and
Sagae [23] report further improvements by using a graph-structured stack for
ambiguity packing.

3.4 Hybrid Methods

For parsing as for many other problems, it is often possible to improve accuracy
by combining methods with different strengths. Thus, Zeman and Žabokrtský

Bare-Bones Dependency Parsing 27

Table 2. Parsing results for English (PTB, Penn2Malt); unlabeled attachment scores.
An asterisk (∗) indicates that the evaluation score is not included in the paper cited.

Parser Type UAS

Yamada and Matsumoto [59] Transition-Local 90.3
McDonald et al. [32] Chart-1st 90.9
Collins [10]∗ PCFG 91.5
McDonald and Pereira [34] Chart-2nd 91.5
Charniak [7]∗ PCFG 92.1
Koo et al. [25] Hybrid-Dual 92.5
Sagae and Lavie [53] Hybrid-MST 92.7
Petrov et al. [48]∗ PCFG-Latent 92.8
Zhang and Nivre [62] Transition-Global 92.9
Koo and Collins [24] Chart-3rd 93.0
Charniak and Johnson [8]∗ PCFG+Rreranking 93.7

[60] reported substantial improvements in parsing Czech by letting a number
of parsers vote for the syntactic head of each word. A drawback of this simple
voting scheme is that the output may be a cyclic graph even if all the compo-
nent parsers output trees. This problem was solved by Sagae and Lavie [53],
who showed that we can use the spanning tree method of McDonald et al. [35]
for parser combination by letting parsers vote for arc weights in the first-order
model, a technique that was used by the top-ranked system in the CoNLL shared
task 2007 [19]. Essentially, the same idea was exploited by Koo et al. [25], who
used the framework of dual decomposition to combine a first-order spanning tree
parser, which ensures the tree constraint, with a third-order approximate chart
parser, which has a much richer feature model but may produce ill-formed de-
pendency trees, thereby improving the state of the art for PDT and other data
sets containing non-projective dependency trees. A different hybrid technique is
parser stacking, where one parser is used to generate input features for another
parser, a method that was used by Nivre and McDonald [46] to combine chart
parsing and transition-based parsing, with further improvements reported by
Torres Martins et al. [58].

4 Comparative Evaluation

When Yamada and Matsumoto [59] presented the first comparative evaluation
of dependency parsing for English, using data from PTB with the Penn2Malt
conversion, they observed that although their own bare-bones dependency parser
had the advantage of simplicity and efficiency, it was not quite as accurate as
the parsers of Collins [10] and Charniak [7]. However, as the results reported
in Table 2 clearly show, there has been a tremendous development since then,
and bare-bones dependency parsers now perform at the same level of accuracy as
PCFG-based methods and are usually superior in terms of efficiency. As shown in

28 J. Nivre

Table 3. Parsing results for Czech (PDT); unlabeled attachment scores. An asterisk
(∗) indicates that the evaluation score is not included in the paper cited.

Parser Type UAS

Collins [10]∗ PCFG 82.2
McDonald et al. [32] Chart-1st 83.3
Charniak [7]∗ PCFG 84.3
McDonald et al. [35] MST 84.4
Hall and Novák [20] PCFG+Post 85.0
McDonald and Pereira [34] Chart-2nd+Post 85.2
Nivre [42]∗ Trans-Local 86.1
Zeman and Žabokrtský [60] Hybrid-Greedy 86.3
Koo et al. [25] Hybrid-Dual 87.3

Table 3, a similar development has taken place in the case of Czech dependency
parsing but with a greater advantage for bare-bones dependency parsers due to
the presence of non-projective dependencies.

Cer et al. [6] evaluated systems for producing Stanford typed dependencies
[29] and found that bare-bones dependency parsers like MaltParser [44] and
MSTParser [34] had considerably lower accuracy than the best phrase structure
parsers like the Berkeley parser [48,49] and the parser of Charniak and Johnson
[8]. However, the evaluation was performed after converting the parser output
to so-called collapsed dependencies, a conversion process that is less accurate for
dependency trees than for phrase structure trees. More importantly, the bare-
bones dependency parsers were run without proper optimization, whereas most
of the phrase structure parsers have been optimized for a long time not only
for English but in particular for the type of Wall Street Journal text that was
used in the evaluation. It is therefore likely that the results, although representa-
tive for out-of-the-box comparisons on this particular data set, do not generalize
to other settings. Evidence for this conclusion comes from a similar study by
Candito et al. [5], where parsers were evaluated on data from the French Tree-
bank, and where there was practically no difference in accuracy between the best
bare-bones dependency parsers (MaltParser, MSTParser) and the best phrase
structure parser (Berkeley), although the transition-based MaltParser was about
ten times faster than the other two parsers.

Rimell et al. [52] evaluated a number of statistical parsers specifically on their
capacity to recover unbounded dependencies like those involved in different types
of relative clauses, interrogative clauses and right node raising. The evaluation
was extended to bare-bones dependency parsers in [47], and the overall results
show that systems like MaltParser and MSTParser, augmented with simple post-
processing for inferring multiple heads, perform at least as well as other types
of treebank parsers, although not quite as well as grammar-driven systems like
those of Clark and Curran [9] and Miyao and Tsujii [38].

Bare-Bones Dependency Parsing 29

5 Conclusion

Although the available evidence is still scattered and incomplete, the empirical
results so far seem to support the hypothesis that bare-bones dependency parsers
can achieve the same level of accuracy as more complex systems. Since they have
the advantage of simplicity and efficiency, they should therefore be the method
of choice in contexts where the main requirement on syntactic analysis is to
produce a dependency tree, especially if run-time efficiency is crucial.

References

1. Attardi, G.: Experiments with a multilanguage non-projective dependency parser.
In: Proceedings of the 10th Conference on Computational Natural Language Learn-
ing (CoNLL), pp. 166–170 (2006)

2. Barbero, C., Lesmo, L., Lombardo, V., Merlo, P.: Integration of syntactic and
lexical information in a hierarchical dependency grammar. In: Proceedings of the
Workshop on Processing of Dependency-Based Grammars (ACL-COLING), pp.
58–67 (1998)

3. Bouma, G., Mur, J., van Noord, G., van der Plas, L., Tiedemann, J.: Question
answering for dutch using dependency relations. In: Peters, C., Gey, F.C., Gonzalo,
J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo,
D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 370–379. Springer, Heidelberg (2006)

4. Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency pars-
ing. In: Proceedings of the 10th Conference on Computational Natural Language
Learning (CoNLL), pp. 149–164 (2006)

5. Candito, M., Nivre, J., Denis, P., Henestroza Anguiano, E.: Benchmarking of sta-
tistical dependency parsers for French. In: Coling 2010: Posters, pp. 108–116 (2010)

6. Cer, D., de Marneffe, M.C., Jurafsky, D., Manning, C.: Parsing to stanford de-
pendencies: Trade-offs between speed and accuracy. In: Proceedings of the Sev-
enth Conference on International Language Resources and Evaluation, LREC 2010
(2010)

7. Charniak, E.: A maximum-entropy-inspired parser. In: Proceedings of the First
Meeting of the North American Chapter of the Association for Computational
Linguistics (NAACL), pp. 132–139 (2000)

8. Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and MaxEnt discrimina-
tive reranking. In: Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 173–180 (2005)

9. Clark, S., Curran, J.R.: Parsing the WSJ using CCG and log-linear models. In:
Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 104–111 (2004)

10. Collins, M.: Head-Driven Statistical Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania (1999)

11. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In: Pro-
ceedings of the 42nd Annual Meeting of the Association for Computational Lin-
guistics (ACL), pp. 423–429 (2004)

12. Ding, Y., Palmer, M.: Synchronous dependency insertion grammars: A grammar
formalism for syntax based statistical MT. In: Proceedings of the Workshop on
Recent Advances in Dependency Grammar, pp. 90–97 (2004)

30 J. Nivre

13. Eisner, J.M.: Three new probabilistic models for dependency parsing: An explo-
ration. In: Proceedings of the 16th International Conference on Computational
Linguistics (COLING), pp. 340–345 (1996)

14. Eisner, J.M.: Bilexical grammars and their cubic-time parsing algorithms. In: Bunt,
H., Nijholt, A. (eds.) Advances in Probabilistic and Other Parsing Technologies,
pp. 29–62. Kluwer (2000)

15. Foth, K., Daum, M., Menzel, W.: A broad-coverage parser for German based on
defeasible constraints. In: Proceedings of KONVENS 2004, pp. 45–52 (2004)

16. Gaifman, H.: Dependency systems and phrase-structure systems. Information and
Control 8, 304–337 (1965)

17. Gómez-Rodŕıguez, C., Weir, D., Carroll, J.: Parsing mildly non-projective depen-
dency structures. In: Proceedings of the 12th Conference of the European Chapter
of the Association for Computational Linguistics (EACL), pp. 291–299 (2009)

18. Hajič, J., Vidova Hladka, B., Panevová, J., Hajičová, E., Sgall, P., Pajas, P.: Prague
Dependency Treebank 1.0. LDC, 2001T10 (2001)

19. Hall, J., Nilsson, J., Nivre, J., Eryiğit, G., Megyesi, B., Nilsson, M., Saers, M.: Single
malt or blended? A study in multilingual parser optimization. In: Proceedings of
the CoNLL Shared Task of EMNLP-CoNLL 2007, pp. 933–939 (2007)

20. Hall, K., Novák, V.: Corrective modeling for non-projective dependency parsing. In:
Proceedings of the 9th International Workshop on Parsing Technologies (IWPT),
pp. 42–52 (2005)

21. Hays, D.G.: Dependency theory: A formalism and some observations. Language 40,
511–525 (1964)

22. Holan, T., Kuboň, V., Plátek, M.: A prototype of a grammar checker for Czech.
In: Proceedings of the 5th Conference on Applied Natural Language Processing
(ANLP), pp. 147–154 (1997)

23. Huang, L., Sagae, K.: Dynamic programming for linear-time incremental parsing.
In: Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 1077–1086 (2010)

24. Koo, T., Collins, M.: Efficient third-order dependency parsers. In: Proceedings of
the 48th Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 1–11 (2010)

25. Koo, T., Rush, A.M., Collins, M., Jaakkola, T., Sontag, D.: Dual decomposition for
parsing with non-projective head automata. In: Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Processing, pp. 1288–1298 (2010)

26. Kuhlmann, M., Satta, G.: Treebank grammar techniques for non-projective depen-
dency parsing. In: Proceedings of the 12th Conference of the European Chapter of
the Association for Computational Linguistics (EACL), pp. 478–486 (2009)

27. Lombardo, V., Lesmo, L.: An Earley-type recognizer for dependency grammar. In:
Proceedings of the 16th International Conference on Computational Linguistics
(COLING), pp. 723–728 (1996)

28. Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated cor-
pus of English: The Penn Treebank. Computational Linguistics 19, 313–330 (1993)

29. de Marneffe, M.C., MacCartney, B., Manning, C.D.: Generating typed dependency
parses from phrase structure parses. In: Proceedings of the 5th International Con-
ference on Language Resources and Evaluation (LREC) (2006)

30. Martins, A., Smith, N., Xing, E.: Concise integer linear programming formulations
for dependency parsing. In: Proceedings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP (ACL-IJCNLP), pp. 342–350 (2009)

Bare-Bones Dependency Parsing 31

31. Maruyama, H.: Structural disambiguation with constraint propagation. In: Pro-
ceedings of the 28th Meeting of the Association for Computational Linguistics
(ACL), pp. 31–38 (1990)

32. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of depen-
dency parsers. In: Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 91–98 (2005)

33. McDonald, R., Lerman, K., Pereira, F.: Multilingual dependency analysis with a
two-stage discriminative parser. In: Proceedings of the 10th Conference on Com-
putational Natural Language Learning (CoNLL), pp. 216–220 (2006)

34. McDonald, R., Pereira, F.: Online learning of approximate dependency parsing
algorithms. In: Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), pp. 81–88 (2006)

35. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency pars-
ing using spanning tree algorithms. In: Proceedings of the Human Language Tech-
nology Conference and the Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pp. 523–530 (2005)

36. McDonald, R., Satta, G.: On the complexity of non-projective data-driven depen-
dency parsing. In: Proceedings of the 10th International Conference on Parsing
Technologies (IWPT), pp. 122–131 (2007)

37. Menzel, W., Schröder, I.: Decision procedures for dependency parsing using graded
constraints. In: Proceedings of the Workshop on Processing of Dependency-Based
Grammars (ACL-COLING), pp. 78–87 (1998)

38. Miyao, Y., Tsujii, J.: Probabilistic disambiguation models for wide-coverage HPSG
parsing. In: Proceedings of the 43rd Annual Meeting of the Association for Com-
putational Linguistics (ACL), pp. 83–90 (2005)

39. Nakagawa, T.: Multilingual dependency parsing using global features. In: Proceed-
ings of the CoNLL Shared Task of EMNLP-CoNLL 2007, pp. 952–956 (2007)

40. Nivre, J.: An efficient algorithm for projective dependency parsing. In: Proceedings
of the 8th International Workshop on Parsing Technologies (IWPT), pp. 149–160
(2003)

41. Nivre, J.: Inductive Dependency Parsing. Springer, Heidelberg (2006)
42. Nivre, J.: Non-projective dependency parsing in expected linear time. In: Proceed-

ings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP
(ACL-IJCNLP), pp. 351–359 (2009)

43. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The
CoNLL 2007 shared task on dependency parsing. In: Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pp. 915–932 (2007)

44. Nivre, J., Hall, J., Nilsson, J.: Maltparser: A data-driven parser-generator for de-
pendency parsing. In: Proceedings of the 5th International Conference on Language
Resources and Evaluation (LREC), pp. 2216–2219 (2006)

45. Nivre, J., Hall, J., Nilsson, J., Eryiğit, G., Marinov, S.: Labeled pseudo-projective
dependency parsing with support vector machines. In: Proceedings of the 10th
Conference on Computational Natural Language Learning (CoNLL), pp. 221–225
(2006)

46. Nivre, J., McDonald, R.: Integrating graph-based and transition-based dependency
parsers. In: Proceedings of the 46th Annual Meeting of the Association for Com-
putational Linguistics (ACL), pp. 950–958 (2008)

47. Nivre, J., Rimell, L., McDonald, R., Gómez Rodŕıguez, C.: Evaluation of depen-
dency parsers on unbounded dependencies. In: Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics (Coling 2010), pp. 833–841 (2010)

32 J. Nivre

48. Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and
interpretable tree annotation. In: Proceedings of the 21st International Conference
on Computational Linguistics and the 44th Annual Meeting of the Association for
Computational Linguistics, pp. 433–440 (2006)

49. Petrov, S., Klein, D.: Improved inference for unlexicalized parsing. In: Proceedings
of Human Language Technologies: The Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL HLT), pp. 404–
411 (2007)

50. Riedel, S., Clarke, J.: Incremental integer linear programming for non-projective
dependency parsing. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 129–137 (2006)

51. Riezler, S., King, M.H., Kaplan, R.M., Crouch, R., Maxwell III, J.T., Johnson, M.:
Parsing the Wall Street Journal using a Lexical-Functional Grammar and discrim-
inative estimation techniques. In: Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 271–278 (2002)

52. Rimell, L., Clark, S., Steedman, M.: Unbounded dependency recovery for parser
evaluation. In: Proceedings of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 813–821 (2009)

53. Sagae, K., Lavie, A.: Parser combination by reparsing. In: Proceedings of the Hu-
man Language Technology Conference of the NAACL, Companion Volume: Short
Papers, pp. 129–132 (2006)

54. Sagae, K., Tsujii, J.: Shift-reduce dependency DAG parsing. In: Proceedings of
the 22nd International Conference on Computational Linguistics (COLING), pp.
753–760 (2008)

55. Sleator, D., Temperley, D.: Parsing English with a link grammar. Tech. Rep. CMU-
CS-91-196, Carnegie Mellon University, Computer Science (1991)

56. Sleator, D., Temperley, D.: Parsing English with a link grammar. In: Proceedings of
the Third International Workshop on Parsing Technologies (IWPT), pp. 277–292
(1993)

57. Smith, D., Eisner, J.: Dependency parsing by belief propagation. In: Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 145–156 (2008)

58. Torres Martins, A.F., Das, D., Smith, N.A., Xing, E.P.: Stacking dependency
parsers. In: Proceedings of the Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pp. 157–166 (2008)

59. Yamada, H., Matsumoto, Y.: Statistical dependency analysis with support vector
machines. In: Proceedings of the 8th International Workshop on Parsing Technolo-
gies (IWPT), pp. 195–206 (2003)

60. Zeman, D., Žabokrtský, Z.: Improving parsing accuracy by combining diverse de-
pendency parsers. In: Proceedings of the 9th International Workshop on Parsing
Technologies (IWPT), pp. 171–178 (2005)

61. Zhang, Y., Clark, S.: A tale of two parsers: Investigating and combining graph-
based and transition-based dependency parsing. In: Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 562–571
(2008)

62. Zhang, Y., Nivre, J.: Transition-based parsing with rich non-local features. In:
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics (ACL) (2011)

Solving Soft Security Problem in MANETs

Using an Evolutionary Approach

Marcin Seredynski1 and Pascal Bouvry2

1 University of Luxembourg,
Interdisciplinary Centre for Security, Reliability and Trust,

6, rue Coudenhove Kalergi, L-1359, Luxembourg, Luxembourg
marcin.seredynski@uni.lu
2 University of Luxembourg,

Faculty of Sciences, Technology and Communication,
6, rue Coudenhove Kalergi, L-1359, Luxembourg, Luxembourg

pascal.bouvry@uni.lu

Abstract. Local trust systems are used independently by participants
of a mobile ad hoc network in order to build direct and indirect reciprocity-
based cooperation in packet forwarding. They enable nodes to distinguish
between selfish (untrustworthy) and cooperative (trustworthy) users. The
type of information used to evaluate the behaviour of other network
participants impacts the performance of such systems. Depending on
whether the information considers the status of a node’s own packets
or the packets of others, it can be partitioned into personal and general
classes. In this paper we show that the size of the network should have
an influence on a node’s decision whether to use personal or general data
classes by its trust system. To demonstrate this we use an evolutionary
approach based on replicator dynamic. The results obtained using the
approach and computer simulation allow us to predict how data classes
might be used for trust evaluation by independent network users act-
ing out of self-interest. Our simulation studies demonstrate that, in the
presence of a small number of nodes, a node should evaluate the level
of cooperation of other network participants using personal and general
data. However, if the network size is large, then relying on personal data
only is the best choice for the node.

Keywords: MANETs, cooperation, trust management, direct and in-
direct reciprocity, evolutionary approach, replicator dynamic.

1 Introduction

Mobile ad hoc networks (MANETs) are composed of a set of devices (nodes)
wirelessly connected without a support of any fixed infrastructure. Packet de-
livery is based on a multi-hop routing, therefore nodes act as both terminals
and routers. This means that users which are not within the radio range of
their communication devices can still exchange information using some interme-
diate nodes. Therefore, cooperation in packet forwarding is one of the network’s
silent requirements. Due to the fact that most of the devices in MANETs rely

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 33–44, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 M. Seredynski and P. Bouvry

on batteries, one of their most important characteristics is energy-constrained
operation. As a result, the probability that nodes are going to be reluctant to
packet forwarding responsibility in order to conserve their energy is very high. In
civilian applications MANETs nodes belong to different authorities. Therefore,
its users act out of self-interest. In consequence, a top down approach, which
assumes direct control of the behaviour of each entity in the system, is not
possible. In order to avoid free-riding behaviour nodes can collectively create a
distributed cooperation enforcement mechanism. Such mechanism can be either
pricing or trust/reputation-based [4]. The pricing-based approach can be seen as
an economic view of the problem. The general idea is that nodes have to pay for
receiving service and are paid for providing it. The work presented in this paper
is limited to the second category – trust/reputation-based mechanisms, where
the general idea is that intermediate nodes forward packets only on behalf of
cooperative (therefore trustworthy) nodes. Several trust-based cooperation en-
forcement mechanisms have been proposed in the literature (e.g. [1,10,6,11,19]).
The key components of such mechanisms are trust systems. They enable coop-
erative nodes to be distinguished from selfish. Trust systems are often extended
with reputation systems. The main difference between the two is that, in the
former, a node evaluates a subjective view of the entity’s level of cooperation,
while in the latter the view of the whole community is taken into account [8].
Trust systems can be combined with routing protocols in order to bypass mis-
behaving nodes (see e.g. [9,7]). Trust/reputation management in the context of
cooperation enforcement mechanisms can be seen as a soft security approach
(similar to the social control mechanisms [13] used in Internet commerce). Its
goal is to create a network that is resistant to the behaviour of selfish (but not
malicious) users wanting to exploit it. This differs from the goal of hard security
mechanisms, which is to provide protection against malicious nodes [8]. This
paper deals only with the problem of selfish nodes.

A node evaluates the trustworthiness of others using trust data. Such data
refer to the forwarding behaviour of other networking participants and are col-
lected during the executions of a routing protocol. They can be classified into
personal and general [17]. Personal data refer to the status of packets originated
by a node itself, while general data refer to the status of packets sent by other
nodes. Hence, personal data contribute to a development of cooperation on the
basis of direct reciprocity, while general data on the basis of indirect reciprocity.
The question that we want to answer in this article is how should nodes use
these classes together to evaluate the trustworthiness of other network partici-
pants. Four modes of a trust system differing in the use of trust data classes are
evaluated. The approach based on replicator dynamic introduced in our previous
work [18] is used to discover the best mode for a given size of the network.

The article is structured as follows. The next section provides a survey of
the related work. Section 3 introduces the model of the network. Section 4 pro-
vides information about the approach used to discover the best mode of a trust
system and computer simulation procedure. Section 5 provides a specification
of parameters and simulation results. The final section summarises the main
conclusion.

Solving Soft Security Problem in MANETs Using an Evolutionary Approach 35

2 Related Work

The most closely-related work is concerned with the classification of data classes
for the evaluation of the cooperation level of nodes. A distinction is made be-
tween first- and second-hand information. In general, first-hand observations are
more reliable than second-hand [8]. The question of whether to use second-hand
information or not is basically related to the trade-off between the speed of
the evaluation of the level of cooperation and the robustness of such an evalu-
ation [12]. In [10], a cooperation enforcement mechanism called CORE is pre-
sented. According to the proposal, the level of cooperation is evaluated using
first- and second-hand evaluations (both having the same significance). How-
ever, the second-hand ratings include only information about cooperative be-
haviour. Consequently, the possibility of the malicious broadcast of negative
ratings for legitimate nodes is avoided. The reliability of the trust evaluation
is also positively correlated with the number of evaluations taken into account
and its variance. In [1] the authors propose a protocol called CONFIDANT,
where negative second-hand rating is allowed. However, a node’s own experience
is rated higher than second-hand reports. In [2,3] the use of second-hand infor-
mation is further investigated. A Bayesian approach is introduced: opinions that
deviate from the first-hand observations and from the opinion of the majority
are excluded. As a result, the reputation system is much more robust against
false accusations and benefits from a faster detection of selfish nodes. In [12]
the authors apply the mean-field approach to a proposed stochastic process
model to demonstrate that liars have no impact unless their number exceeds
a certain threshold. In the SORI algorithm of [6], ratings are only exchanged
between neighbours. The level of cooperation of the rater is positively corre-
lated with its ratio of packets forwarded to packets discarded on behalf of the
evaluator.

The rationale behind a further classification of trust-related information into
personal and general classes in the presence of selfish and colluding nodes is
investigated in our previous paper [17]. The work demonstrates that in the pres-
ence of a large number of selfish and colluding nodes, prioritising the personal
data improves the performance of cooperative nodes and creates a better defence
against colluding free-riders.

A direct reciprocity-based cooperation with several forwarding strategies
present in the network is analyzed in [21,22,15]. In these works the authors
demonstrate that cooperation is very likely to be developed on the basis of
defection-tolerant versions of the reciprocal tit-for-tat approach.

In [16] we demonstrate that, if nodes use general trust data for the evaluation
of the level of cooperation of network participants, then discarding packets can be
seen as an act of altruistic punishment. In such a situation an intermediate node
that discards packets from selfish senders pays a cost expressed as a decrease of
the level of cooperation among other nodes. If the cost of punishing free-riders
is too high, then nobody has an incentive to be the punisher.

36 M. Seredynski and P. Bouvry

3 System Model

We use a simple reciprocity-based model of behaviour of nodes introduced in [16].
It is defined by two elements: a trust data capture mechanism (specifying how
nodes collect and classify information about behaviour of other network par-
ticipants) and a response mechanism (defining whether a packet received for
forwarding should be passed-on to the next hop or dropped). The response
mechanism includes a trust system. In this paper the following assumptions
about the network are made: it is self-organising and the network layer is based
on a reactive, source routing protocol. Its topology is unpredictable and changes
dynamically. Each device is equipped with an omnidirectional antenna with sim-
ilar radio range, bi-directional communications and promiscuous mode. Network
users pursue their own self-interest.

3.1 Data Collection and Modes of a Trust System

Trust data collection is based on the commonly used watchdog (WD) mechanism
introduced in [9]. The observable elements used to derive the level of coopera-
tion of the source of the message are two network events: “packet forwarded”
and “packet discarded”. As a source routing protocol is used, a list of inter-
mediate nodes is included in the header of the packet. Information regarding
the packet forwarding behaviour of other nodes (trust data) is gathered only
by nodes directly participating in the communication session. There is no ex-
change of ratings between nodes. The communication session involves a source
node (sender), several forwarders (nodes that forward packets) and a destina-
tion node. Trust data collection is performed in the following way: nodes are
equipped with a watchdog mechanism that enables them to check whether a
packet was delivered to its destination. A node that requests another node to
forward a packet verifies by means of a passive acknowledgement whether the
requested node actually forwarded the packet. As an example, let us assume
that node A originates a message to node D via intermediate nodes B and C,
and the message is eventually discarded by node C. This event is recorded by
the watchdog mechanism of node B, which next informs A about the selfish
behaviour of C. As a result, the trust system of node A is updated with two
events – “packet forwarded by B” and “packet discarded by C”, while the trust
system of B is updated with the event “packet discarded by C”. However, these
events have different meanings to nodes A and B. In the case of node A, they
are related to its own packets, therefore, data gathered from these events are
referred to as personal. The situation of node B is different. In this case it only
witnesses the status of packets originated by node A, hence, it collects general
data. Thus, senders collect personal, while forwarders collect general trust data.
Such a distinction allows to define four basic modes of a trust system [17]. In
the first mode, a node evaluates the level of cooperation of others using only
general trust data (the mode is denoted by G). In the second one (denoted by
P), only personal trust data are taken into account. In the third one (denoted by
PG), both data classes are considered (with no distinction between them being

Solving Soft Security Problem in MANETs Using an Evolutionary Approach 37

made). In the final mode (denoted by PPR), personal data are preferred over
general, i.e. general data are used only if personal ones are unavailable.

3.2 Reciprocity-Based Response Mechanism

Each time an intermediate node i receives a packet for forwarding it checks
whether its source (node s) is trustworthy or not. The trustworthiness is defined
as a ratio of packets forwarded by s to all packets received for forwarding by the
node. If the ratio is greater or equal to the value of a parameter called cooperation
threshold (specified by the trust system of node i), the packet is forwarded.
Otherwise, it is discarded. The range of data used by i for the evaluation is
defined by the mode of its trust system. For instance, if i uses the system in
the P mode, then it only verifies whether s forwarded its packets (that is, the
behaviour of s towards packets of other nodes is not taken into account).

There are two special cases concerning messages received for forwarding from
unknown nodes. If a node receives a packet in the initial period of the existence of
the network (specified by a threshold parameter tunkn), the packet is forwarded
with a probability p1. When the network is established, the packet from an
unknown node is forwarded with a probability p2. The value of p1 is high so
that the network could be easily created. On the other hand, the value of p2 is
low in order to discouraged network participants from whitewashing attack [5].
The attack is defined as a situation, where a selfish node repeatedly rejoins the
network under new identities in order to take advantage of cooperative approach
towards unknown nodes.

When a nodes wishes to send its own packets it first chooses a route with the
best rating. The rating is calculated as an arithmetic mean of trustworthiness of
all nodes belonging to the route.

3.3 Types of Nodes

Three types of nodes are defined. The nodes of the first type are referred to as
R-type. They use the reciprocity-based scheme described above. Depending on
the modes of their trust systems, these nodes are denoted by R-P, R-PPR, R-PG
or R-G. The remaining two types represent two particular patterns of behaviour
that one might expect to be present to some extent in a typical MANET. These
are selfish and altruistic nodes. The former forward packets with a probability
equal to 0.2, while the latter unconditionally cooperate (i.e. accept all forwarding
requests).

4 Evaluation Model and Computer Simulation Procedure

In order to evaluate the influence of trust data classes on the performance of
nodes we use the approach introduced in our previous work [18]. The network
is modelled as an evolutionary game, where players correspond to nodes. The
strategy set of each player is composed of the modes of his trust system (P, PG,
PPR and G). Games are played between a source of a packet and intermediate

38 M. Seredynski and P. Bouvry

nodes that can either transmit the packet to the next hop or discard it. Payoffs
obtained by players using a particular strategy are translated into fitness. Strate-
gies are passed through nonoverlapping generations. The frequency of a given
strategy within the population is positively correlated with the average fitness
of individuals using that strategy in the preceding generation. The growth rate
of a given strategy is described by replicator dynamic [14].

Two populations of players are defined. Players that belong to the first one
are referred to as LEARNERS. They are of R-type, thus they can choose one of
the four strategies of their trust systems. The goal of these players is to contin-
uously adapt to the networking conditions by selecting appropriate strategies.
The adaptation is modelled by the evolutionary process simulating the survival
of the fittest. Therefore, strategies of these players converge to a solution (un-
derstood as the best mode of a trust system for given networking conditions
according to a fitness function). Players that belong to the second population
are referred to as TESTERS. Their goal is to preserve certain properties of the
network by employing behaviours (selfishness and altruism) that one could ex-
pect to be present in a typical MANET. Hence, TESTERS are composed of
selfish and altruistic nodes (see Section 3.3). Their behaviour does not change
through generations. Overall conditions of the network are determined by all
players, that is, by coevolving population of LEARNERS and fixed (in terms of
behaviour) population of TESTERS.

The scheme of the computer simulation is composed of three steps. Its over-
view is shown in Fig. 1. In the first step, strategies are assigned to LEARNERS.
All strategies are represented in equal proportion. In the second step they are
evaluated in a MANET. The third step updates the strategies of LEARNERS.
Steps 2 and 3 are repeated for a predefined number of times (referred to as
generations). Detailed procedure description can be found below.

Step 1: Set Values of the Parameters

1. Specify values of the parameters: M as a number of players participating in
the network and R as a number of rounds.

2. Setup the population of LEARNERS: specify L as its size and assign the
initial strategies to the players.

3. Setup the population of TESTERS: specify T as its size and assign players
with types.

Step 2: Evaluate the Strategies

1. Specify r (round number) as r := 1.
2. Specify i (source node) as i := 1.
3. Randomly select player j (destination of the packet) and intermediate play-

ers, forming several possible paths from player i to j.
4. If more than one path is available, calculate the rating of each path and

choose the path with the best rating.
5. Let player i initiate a communication session (originate a packet). The packet

is next either passed on or dropped by intermediate players according to their
forwarding approaches.

Solving Soft Security Problem in MANETs Using an Evolutionary Approach 39

6. After the completion of the communication session update trust data.
7. If i < M , then choose the next player (i := i+ 1) and go to point 3. Else go

to point 8.
8. If r < R, then r := r+ 1 and go to point 2 (next round). Else, go to point 9.
9. For each strategy calculate the average payoff and stop the evaluation pro-

cedure.

Step 3: Update of Strategies of LEARNERS Using Discrete Replicator
Dynamic.

1. Let xg
s denote the proportion of players in the population that use strategy

s in generation g.
2. The new proportion of players using strategy s in the subsequent generation

(xg+1
s) is given by the following equation:

xg+1
s = xg

s

fs

f̄
, (1)

where fs is the average fitness of players that used strategy s and f̄ is the
average population fitness.

The fitness of a strategy is calculated as an average payoff received by nodes
that used the strategy. The payoff of node i is calculated as follows:

payoffi =
npsi

npfi
, (2)

where npsi is a number of packets successfully sent by node i and npfi is a
number of packets forwarded by i.

......

......

1: ALLC

T: ALLC

...

SN - selfish node
ALLC - altruistic node

3: SN

PPR

PPR

PPRPPR

PPR

PPR

PG

PG

PG

PGPG

PG

P

P

P

P

P

P

G
G

ALLC
SN

ALLC

SN

ALLC

evaluation of strategiesstep 2:

alg. #1

1: R-PG

2: R-PPR

3: R-P

replicator

L: R-PG

L
E

A
R

N
E

R
S

T
E

S
T

E
R

S

dynamic

:
s
e
t
th

e
p
a
ra

m
e
te

rs
s
te

p
1

step 3: update of strategies

PG

PPR

P

PG

.....

SN

SN

ALLC

SN

ALLC

G

2: SN

Fig. 1. Overview of the experimental procedure

40 M. Seredynski and P. Bouvry

5 Numerical Results

The computational experiments were carried out to study the influence of per-
sonal and general data classes on the performance of players in the function of
the size of the network. Strategies corresponding to the four modes of the sys-
tem were evaluated in different network sizes (ranging from 30 to 600 players).
LEARNERS were composed of R-P, R-PPR, R-PG and R-G players, while self-
ish and altruistic players constituted the population of TESTERS. In the initial
generation, all six types of forwarding behaviours were represented in equal pro-
portions. As generations passed, the distribution of strategies used by LEARN-
ERS changed, because these players adapted their behaviour to the networking
conditions. Each experiment was repeated 100 times (referred to as runs). The
mean value of performance measure of players was calculated over all runs of
the experiment. Simulation time was set to 600 rounds. The path length ranged
from 1 up to 5 hops with the following probabilities: one hop – 0.1, two hops –
0.3 and three to five hops – 0.2. The number of available paths from a source to a
given destination ranged from 1 to 4 (randomly chosen). Forwarding probability
of selfish players was set to 0.2. The cooperation thresholds ranged from 0.85
to 1 (randomly chosen from the interval). The parameter specifications of the
experiments are given in Table 1.

Table 1. Specification of the simulation parameters

Parameter Value

number of all nodes in the network (M) 60
simulation time (number of rounds (R)) 600

strategy set of LEARNERS P, PG, PPR, G
cooperation threshold 0.85-1 (equiprobable)

forw. prob. of LEARNERS towards unknown (p1) 1.0
forw. prob. of LEARNERS towards unknown (p2) 0.3

tunkn of LEARNERS round # 50
trust of an unknown node in for path rating 0.5
path length/probability of a given # of hops 1/0.1, 2/0.3, 3-5/0.2

number of available paths 1-4 (equiprobable)

Fig. 2 shows the evolutionary outcomes under the continuous replicator dy-
namics for a small network of 30 players. At first, all defined types of players
of LEARNERS and TESTERS were uniformly distributed: 5 players of each
type (R-PG, R-P, R-PPR, R-G, selfish and altruistic) were present in the ini-
tial generation. As the time passed the distribution of strategies of LEARNERS
changed. The first thing that happened was that after 23 generations the G
strategy disappeared from the population. On the other hand, the PG strategy
grew in popularity, so that after about 100 generations it dominated the popu-
lation of LEARNERS by being used by 96% of the players. As generations went
by, the shares of P and PPR strategies decreased slowly. By the 213th genera-
tion the PPR strategy completely disappeared. On the other hand, after about

Solving Soft Security Problem in MANETs Using an Evolutionary Approach 41

100 generations the P strategy established its presence (4% share). These out-
comes were observed in a small network. The question remains, what happens
if network size increases?

Generation number

P
ro

p
o
rt

io
n

o
f
th

e
p
o
p
u
la

ti
o
n

o
f
L
E

A
R

N
E

R
S

PG strategy

PPR strategy

P strategy

G strategy

Fig. 2. Evolutionary outcomes of LEARNERS under the continuous replicator dynam-
ics: network is composed of 30 players (5 players of each type). The outcome is the PG
strategy.

This issue is addressed in Fig. 3, where the evolutionary outcomes in the func-
tion of the network size are shown. Again, all types of players were represented
in equal proportions in the initial generation. Four outcomes were observed. In
a small network (below 40 players) PG was a dominant strategy. However, some
copies of the P strategy managed to survive until the last generation. In the sec-
ond outcome, when the network’s size was between 40 and 65 players, PG was
the only strategy that lasted until the end. When the network was composed of
65 up to 100 players, two strategies, PG and P, evenly shared the population.
Finally, when the network size was greater than 100 players, P was a dominant
strategy. In general, the bigger the network was, the better the P strategy did.
For instance, in a network composed of 120 players it took the P strategy around
150 generations to overtake the population. As soon as the size of the network
was increased to 600, the same outcome was achieved after only 40 generations.

Additional experiments were carried out to tell whether the outcomes shown
in Fig. 3 are evolutionary stable against the other three strategies. A strategy
is said to be an evolutionary stable strategy (ESS) if a population of individu-
als adopting that strategy cannot be invaded by individuals adopting different
strategy, i.e. the ESS is the most profitable in a population of players, where al-
most everyone is using it [20]. The verification procedure was as follows: 95% of

42 M. Seredynski and P. Bouvry

50
60

70

80
90

100

Number of nodes of each type/total number of nodes

G
e
n
e
ra

ti
o
n

n
u
m

b
e
r

220

110
120

130

140

150

160

170
180

190

200

210

a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a

outcome

...

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

PG strategy

PPR strategy

P strategy

G strategy

5/ 15/ 20/ 25/ 30/ 35/ 40/ 45/ 50/ 100/10/
30 60 90 120 150 180 210 240 270 300 600

Fig. 3. Evolutionary outcomes of LEARNERS under the continuous replicator dynam-
ics in the function of the network size. In a small network, the PG strategy is the best
choice. However, as the network grows in size, the P strategy is the final outcome.

LEARNERS used the strategy discovered for a network of a given size, hereafter
referred to as the main strategy. The remaining players belonging to LEARN-
ERS used one of the alternative strategies. Therefore, three independent cases
corresponding to each of the three alternative strategies were analysed. Table 2
shows the average payoff of each strategy.

Table 2. Average payoffs of strategies used by the majority (95% of the population of
learners) and the alternative strategy (used by 5% of the population of learners)

popularity of popularity of
main alternative

strategy strategy PG PPR P G

19 (PG) 1 0.537-0.549 0.502 0.518 0.420
38 (PG) 2 0.518-0.524 0.498 0.510 0.432

57 (PG/P) 3 0.501-0.506 0.488 0.501-0.504 0.429
76 (P) 4 0.497 0.480 0.503-0.506 0.434

...
380 (P) 20 0.497 0.483 0.603-0.604 0.418

These results demonstrate that the outcomes shown in Fig. 3 are evolutionary
stable. In every case the players that used the alternative strategy obtained worse
payoffs than the players that used the main strategy. For instance, in the smallest

Solving Soft Security Problem in MANETs Using an Evolutionary Approach 43

network, 19 TESTERS used the main strategy (PG) and 1 TESTER used the
alternative strategy. In such a case, the PG strategy obtained payoffs ranging
from 0.537 to 0.549 (depending on the alternative strategy), while the payoffs of
the alternative strategies where equal to 0.502 (PPR), 0.518 (P) and 0.420 (G).
For a network size of 90, where PG and P strategies were previously found to
perform equally well, the PG strategy obtained slightly higher payoff than P
when G was the alternative strategy (0.506 vs. 0.504). Nevertheless, in such a
setting both strategies (in any proportion) are evolutionary stable.

6 Conclusion

In order to avoid free-riding behaviour, users of a MANET can collectively create
a reciprocity-based cooperation enforcement mechanism. In such a case, each
node uses a local trust system that enables cooperative nodes to be distinguished
from selfish. The question is what kind of information regarding the behaviour
of nodes should be used by the system to evaluate the cooperation level of other
network participants. In this paper we have investigated the significance of the
partitioning of trust data into personal and general classes in the function of
the size of the network. As shown in our simulation studies, in the presence of
a small number of nodes, the evaluation of the level of cooperation of network
participants should rely on personal and general data. However, if the network
size is large, the use of personal data only is the best choice for a node.

References

1. Buchegger, S., Boudec, J.Y.L.: Performance analysis of the CONFIDANT proto-
col. In: Proc. 3rd International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc 2002), pp. 226–236 (2002)

2. Buchegger, S., Boudec, J.Y.L.: The effect of rumor spreading in reputation systems
for mobile ad-hoc networks. In: Proc. Workshop on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt 2003), pp. 131–140 (2003)

3. Buchegger, S., Boudec, J.Y.L.: A robust reputation system for p2p and mobile
ad-hoc networks. In: Proc. Second Workshop on the Economics of Peer-to-Peer
Systems (2004)

4. Carruthers, R., Nikolaidis, I.: Certain limitations of reputation-based schemes in
mobile environments. In: Proc. 8th ACM international symposium on Modeling,
analysis and simulation of wireless and mobile systems (MSWiM 2005), pp. 2–11
(2005)

5. Feldman, M., Papadimitriou, C., Chuang, J., Stoica, I.: Free-riding and white-
washing in peer-to-peer systems. IEEE Journal on Selected Areas in Communica-
tions 24(5), 1010–1019 (2006)

6. He, Q., Dapeng, W., Khosla, P.: SORI: a secure and objective reputation-based
incentive scheme for ad-hoc networks. In: Proc. Wireless Communications and
Networking Conference (WCNC 2004), vol. 2, pp. 825–830 (2004)

7. Jensen, C.D., Connell, P.O.: Trust-based route selection in dynamic source routing.
In: Stølen, K., Winsborough, W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006.
LNCS, vol. 3986, pp. 150–163. Springer, Heidelberg (2006)

44 M. Seredynski and P. Bouvry

8. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems 43(2), 618–644 (2007)

9. Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: Proc. ACM/IEEE 6th International Conference on Mobile
Computing and Networking (MobiCom 2000), pp. 255–265 (2000)

10. Michiardi, P., Molva, R.: CORE: A COllaborative REputation mechanism to en-
force node cooperation in mobile ad hoc networks. In: Proc. 6th Conference on
Security Communications, and Multimedia (CMS 2002), pp. 107–121 (2002)

11. Milan, F., Jaramillo, J., Srikant, R.: Achieving cooperation in multihop wireless
networks of selfish nodes. In: Proc. Workshop on Game Theory for Communications
and Networks (GameNets 2006). ACM (2006)

12. Mundinger, J., Boudec, J.Y.L.: Analysis of a reputation system for mobile ad-hoc
networks with liars. Performance Evaluation 65(3-4), 212–226 (2008)

13. Rasmusson, L., Jansson, S.: Simulated social control for secure internet commerce.
In: Proc. 1996 Workshop on New Security Paradigms (NSPW 1996), pp. 18–26.
ACM (1996)

14. Samuelson, L.: Evolutionary Games and Equilibrium Selection. MIT Press (1998)
15. Seredynski, M., Bouvry, P.: Evolutionary game theoretical analysis of reputation-

based packet forwarding in civilian mobile ad hoc networks. In: Proc. 23th IEEE
International Parallel & Distributed Processing Symposium, NIDISC Workshop
(2009)

16. Seredynski, M., Bouvry, P.: The cost of altruistic punishment in indirect
reciprocity-based cooperation in mobile ad hoc networks. In: Proc. Sixth
IEEE/IFIP International Symposium on Trusted Computing and Communications
(TrustCom/EUC 2010), pp. 749–755 (2010)

17. Seredynski, M., Bouvry, P.: Trust management for collusion prevention in mobile
ad hoc networks. In: Proc. GLOBECOM Workshops, Workshop on Management
of Emerging Networks and Services (MENS 2010), pp. 523–528 (2010)

18. Seredynski, M., Bouvry, P.: Nature inspired approach for the evaluation of data
types for trust management in MANETs. In: Proc. 25th IEEE International Sym-
posium on Parallel & Distributed Processing, NIDISC Workshop, pp. 361–368
(2011)

19. Seredynski, M., Ignac, T., Bouvry, P.: Probabilistic packet relaying in wireless
mobile ad hoc networks. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Was-
niewski, J. (eds.) PPAM 2009. LNCS, vol. 6067, pp. 31–40. Springer, Heidelberg
(2010)

20. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press
(1982)

21. Yan, L., Hailes, S.: Cooperative packet relaying model for wireless ad hoc networks.
In: Proc. 1st ACM International Workshop on Foundations of Wireless Ad Hoc and
Sensor Networking and Computing, pp. 93–100. ACM (2008)

22. Yan, L., Hailes, S.: Designing incentive packet relaying strategies for wireless ad
hoc networks with game theory. In: Wireless Sensor and Actor Networks II, pp.
137–148. Springer, Boston (2008)

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 45–53, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Camera Sabotage Detection for Surveillance Systems

Damian Ellwart, Piotr Szczuko, and Andrzej Czyżewski

Gdańsk University of Technology, Multimedia Systems Department
Narutowicza 11/12, 80-233 Gdańsk, Poland

{ellwart,szczuko,andcz}@sound.eti.pg.gda.pl

Abstract. Camera dysfunction detection algorithms and their utilization in real-
time video surveillance systems are described. The purpose of using the
proposed analysis is explained. Regarding image tampering three algorithms for
focus loss, scene obstruction and camera displacement detection are
implemented and presented. Features of each module are described and certain
scenarios for best performance are depicted. Implemented solutions are
evaluated as independent events and final results are discussed. A detection
efficiency improvement method is proposed.

Keywords: surveillance, tampering, defocus, displacement, obstruction.

1 Introduction

Video surveillance systems are commonly used as a mean of safety. Researchers
develop complex methods allowing for so called smart or intelligent systems to
be built. The recordings from monitoring systems often serve as an evidence in
case of crimes. Therefore vital areas need to be observed continuously and the
acquired videos should meet a good quality level requirements. There are many
recommendations describing as how the cameras should be located and what
additional conditions should be fulfilled to acquire the highest area coverage and yield
best system performance. Hence, stationary cameras placed once should not be moved
providing reliable image at all times. Most of the currently produced outdoor cameras
are equipped with a weather and damage proof enclosure securing the camera itself,
and guarantying proper work in various conditions. Despite these precautions the
video provided by the camera can be damaged in different ways, for example by
painting the camera lens or enclosure. In case of indoor monitoring, the cameras
might be accessed quite simply making them an easy target susceptible of being
tampered or damaged. To deal with this kind of threats, tamper detection algorithms
are developed. There are some hardware implemented solutions already on the market
but most of them require additional processing card and a dedicated software.
Currently much work is dedicated to video analysis which enables detection of threat
related situations. The tampering detection algorithms described in this paper are
considered as a part of a larger smart surveillance system. Therefore, besides the
algorithm detection accuracy, its low complexity is important making it useful for
real-time processing.

46 D. Ellwart, P. Szczuk

2 Camera Dysfunctio

The main purpose of detect
being recorded. The prob
literature briefly. Only a fe
[1][2][3][4]. This task is d
mentioned in the introducti
smart surveillance system.
background subtraction an
background model is being
Such model becomes the
processing. Detailed descrip
following sections. The de
called in a certain order. In
occlusion should be perform
detection. Our experiments
leads to errors, therefore th
obstruction is detected, then

2.1 Obstruction Detectio

To assure that the observed
occlusions is used. It utiliz
the corresponding backgro
entropy of the image to
obstructing object is place
resulting in lower light exp
reduces dramatically.

Fig. 1. Sample camera view u

ܧ
where: P(Ik) is the probabili

ko, and A. Czyżewski

on Detection

ting camera dysfunctions is to assure that reliable vide
blem of camera sabotage detection is mentioned in
ew methods for detecting camera tampering were propo
difficult as the problem itself is hard to define. As it w
ion, this algorithm is to be integrated as a part of a lar
. Typically, the first operations in such systems incl

nd object detection. Hence, during tampering detectio
used, utilizing Gaussian Mixture Model based method

e template to compare the analyzed frame to dur
ption of detecting each tampering event is presented in
etection process is performed by three separate modu
n the literature [3] it is shown that the detection of cam
med first, then camera focus loss, and finally the scene s
s show that the focus analysis of already displaced cam
he sequence of these modules is changed. First the cam
n displacement and finally focus loss.

n

d area is visible at all times a module for detecting cam
es the information from a grey scaled analyzed frame
ound model. Misting over the camera view causes
be reduced. This assumption stays true as long as
ed close to the camera or directly on the cameras le
posure (Fig. 1). In such situations entropy of the image

under normal conditions (left) and after camera occlusion (righ

ൌ െ ෍ ܲሺܫ௞ሻ݈݃݋ଶሾܲሺܫ௞ሻሿ௄

ity of k-level pixel intensity.

o is
the

osed
was
rger
lude
on a
[5].
ring
the

ules
mera
shift
mera
mera

mera
and
the
the

ens,
(1)

ht)

(1)

The camera occlusion de
analyzed frame and the bac

݊݋݅ݏݑ݈ܱܿܿ
where: α is the detection s

Eframe denotes the e
Ebackground is the en
the literature descr

This condition allows d
detected cases additional
histograms is used. If thi
continues for a set number
high frame entropy. This si
to the camera.

2.2 Displacement Detecti

Moving the camera from it
An example of a shifted c
translation detection a pop
developed for motion estim
application.

Fig. 2. Originally oriente

There are several shift d
it is required to operate in r
time and acquired accurac
Three Step Search (TTS)
procedure describing the alg

Camera Sabotage Detection for Surveillance Systems

etection occurs by comparing the entropy of curren
kground model, to a defined sensitivity related factor (2

݊ ൌ ۔ۖەۖ
,݁ݑݎݐۓ ௕௔௖௞௚௥௢௨௡ௗܧ௙௥௔௠௘ܧ ൏݁ݏ݈݂ܽן, ௕௔௖௞௚௥௢௨௡ௗܧ௙௥௔௠௘ܧ ൐ן

sensitivity,
entropy of current image entropy,
ntropy of background model built and updated according
ription [5].

detecting only a specified set of situations. To extend
condition based on the comparison of both ima

is difference in the meaning of Bhattacharyya dista
r of frames, camera obstruction alert is triggered desp
ituation can occur if an object is placed in close proxim

ion

ts original position can result in a loss of vital informati
amera is shown in the Fig. 2. For the purpose of cam
pular block matching method is used. Although it w

mation in video compression field, it performs well for

ed camera view (left) and the view after camera shift (right)

detection algorithms beside the block matching method.
real-time system a compromise between the computatio
cy has to be reached [6]. Therefore a slightly simplif
algorithm is implemented fulfilling this assumption. T
gorithm is presented in Fig. 3.

47

ntly
2):

(2)

g to

the
ages
ance
pite

mity

ion.
mera
was
this

. As
onal
fied
The

48 D. Ellwart, P. Szczuko, and A. Czyżewski

Fig. 3. Three Step Search algorithm calculation procedure. As the result image shift estimation
is acquired.

As the minimization criteria the Minimum Squared Difference (MSD) (3) is estimated
in each block-matching step. ܦܵܯ ൌ 1ܻܺ ෍ ෍൫Iሺ݅, ݆ሻ െ Bሺ݅, ݆ሻ൯ଶ௒

௝
௑
௜ (3)

where: I(i,j) is the gray scaled analyzed frame,
B(i,j) depicts the background image.

Using this approach currently processed image is compared with the scene
background model. To reduce the image shift calculation time further the analyzed
video frame is downscaled. If cameras within the system are not equipped with
hardware or software stabilization, a small tolerable transpositions of the observed
scene can occur. Therefore, before triggering camera displacement alert, a threshold
for minimal detected shift is applied (4): ݐ݈݊݁݉݁ܿܽ݌ݏ݅ܦ ൌ ൜݁ݑݎݐ, ௫ܲ,௬ ൐ ,݁ݏ௠௜௡݂݈݄ܽݐ ௫ܲ,௬ ൏ ௠௜௡݄ݐ (4)

where: Px,y denotes the estimated analyzed frame displacement
thmin is the minimum shift threshold.

This approach allows detecting camera shifts assuming low and medium object
movement in the scene. If the camera observes a small area, the visible objects can
cover a greater part of the view resulting in errors. Therefore, as well as for two other
modules, time averaging is applied reducing the false positive errors.

2.3 Defocus Detection

In surveillance systems focus loss may occur in various situations. The least possible
one is caused by an electro-mechanic failure in the camera itself. More often it may

be a result of the system o
Focused image contains rel
camera observing an entran
plate becomes unreadable if

Fig. 4. Illustration of the focu
detailed information making it

The method utilized for
modified solution propose
algorithm was proven to be
the purpose of processing
representation. Edges prese
the Canny algorithm. The
weighted sum (5): ܤ௘ௗ௚௘௦
where: Bedges represents th

Iedges are the edges
μ is the learning ra

The acquired image con
edges” are present. This pr
gradients in the process ima
parts of the image.

In the literature [3] a m
edges is proposed. As the a
edges can be covered resul
even in case of highly defo
this work the gradient ener
calculated (6): ܩ

Camera Sabotage Detection for Surveillance Systems

operator error or by atmospheric conditions such as f
levant details allowing people and vehicle identification
nce gate is presented in Fig. 4, where the vehicle lice
f the camera is out of focus.

us loss problem. The defocused image (right) shows the lack
t impossible to read the license plate.

r focus loss detection in this work is based on a sligh
ed in the literature [3], as the original version of
e quite robust for variously changing light conditions.

g, input RGB image is being reduced to its gray sc
ent in the image are detected utilizing Sobel operator
e result acquired in this way is accumulated using

ൌ ߤ · ௘ௗ௚௘௦ܫ ൅ ሺ1 െ ሻߤ · ௘ௗ௚௘௦ܤ

he accumulated edges image,
of the currently processed frame,

ate factor.

ntains a set of edges, but after thresholding only “stro
rocess is presented in Fig. 5. As the camera losses foc
age decrease simultaneously, especially for the strong e

measure of focus based on a gradient energy along th
activity in the observed scene rises, a large amount of
lting in a non-reliable energy estimation. It is noticed t

ocused images a set of edges can be detected. Therefore
rgy of a common part of frame edges and strong edge

ܩ ൌ ∑ ∑ ܵሺ݅, ݆ሻ௒௝௑௜ · ,ሺ݅ܥ ݆ሻ∑ ∑ ,ሺ݅ܫ ݆ሻ ·௒௝௑௜ ,ሺ݅ܥ ݆ሻ

49

fog.
n. A
ense

k of

htly
this
For
cale
and
the

(5)

ong
cus,

edge

hese
the

that
e, in
es is

(6)

50 D. Ellwart, P. Szczuko, and A. Czyżewski

where: I(i,j) is the input gray scaled image,
S(i,j) is the same image after applying Sobel operators,
C(i,j) denotes the common part of the strong edges and the edges in currently
processed frame.

Fig. 5. Examples depicting averaged image edges and the result of applying a threshold

The normalized gradient measure is calculated for the processed frame and the
background image. By comparing these values with a set sensitivity, the level of the
camera focus loss can be detected (7):

ݏݑܿ݋݂݁ܦ ൌ ۔ۖەۖ
,݁ݑݎݐۓ ௕௔௖௞௚௥௢௨௡ௗܩ௙௥௔௠௘ܩ ൏ ߚ

,݁ݏ݈݂ܽ ௕௔௖௞௚௥௢௨௡ௗܩ௙௥௔௠௘ܩ ൐ ߚ (7)

where: Gframe and Gbackground are the normalized gradient energy for the analyzed
frame and the background image,
β denotes the detection sensitivity.

Before any detection occurs, strong edges need to be learnt. Therefore the detection
process in this module is started after at least 1/μ frames (μ is the learning rate factor).
Similarly to the previous detection algorithms, the results are averaged over a set
number of frames before an alert is triggered.

3 Experiments

Two parameters for each tampering event were evaluated during experiments - the
algorithm accuracy for a set of prepared recordings and the average calculation time.
Algorithms were run using a regular PC with 2GB of RAM memory and 2.4GHz dual
core processor. Approximately 6 hours of recordings were processed. The test
recordings included scenes at different camera viewpoints shown in Fig. 6. Various
weather and variable lightning conditions were considered as well. The original

recordings resolution (70
to 352x288. During the re
balance were set manually.
do not vary resulting in unw

Fig. 6. Sample frames o

All three modules were
As to the focus loss and oc
Regarding displacement de
briefly mentioned in the m
time window corresponding
alert is expected to be slight

Table 1.

Tampering event
Occlusion

Displacement

Defocus

Camera Sabotage Detection for Surveillance Systems

04x576) was reduced for the purpose of process
ecordings preparation camera focus as well as the wh

It is important to keep these settings at a set value so t
wanted image changes.

of the test recordings presenting various camera viewpoints

tested using same settings for all the prepared recordin
cclusion detection the sensitivity parameter was set to 0
etection, the minimum shift was set to 4 pixels. As it w

module description, the detections results are averaged. T
g to 4 seconds of recording is utilized. Hence, the detect
tly delayed. The evaluation results are presented in Tab.

The results of modules efficiency evaluation

True detections False alarms Calc. time [ms]
12/16 2 0,55 ± 0,03
20/26 5 11,20 ± 0,58
20/22 12 6,33 ± 0,25

51

sing
hite
they

ngs.
0.9.
was
The
tion
. 1.

52 D. Ellwart, P. Szczuko, and A. Czyżewski

The most time-consuming module is the camera displacement detector, although a
simplified version of TTS is utilized. Still the overall algorithms calculation time
analysis show that the presented approach is possible of being applied along with
other complex video processing methods utilized in smart surveillance systems.

As to the detection accuracy, a lot of false alarms are present. Displacement
detector as well as the focus loss detector seem to fail often for closed-up views. The
shift detection errors manifest especially when a great part of the view is occupied by
a moving object. This situation often occurs at the vehicle entrance gate. This problem
can be dealt with by extending the average time window length. Moreover, the
algorithm can fail if the shifted camera view has no significant common parts with the
original scene. In such a case, depending on the view, defocus or occlusion detection
may occur. For a precise camera displacement detection in this situation, further
research needs to be done to solve the problem. Omitting close-up views in the testing
set results in a decrease in false alarms, what makes the result more acceptable. Focus
loss detection algorithm proposed in the literature turns out to be more quite
dependent to the light changes variations. Hence, a high count of false alarms occurs
during the mentioned algorithm testing.

4 Conclusions

A set of methods for camera tampering events detection was presented in the paper.
Three processing modules were introduced for camera focus loss, displacement and
view occlusion detection. As the conducted experiments show the algorithms are
suitable of being used in real time processing with a large margin. Therefore, their
application as a part of a complex smart surveillance system is possible.
Unfortunately the system accuracy needs to be improved further before being applied
in real monitoring systems, especially regarding still too high false positive error rate.
Various approaches for close ups and distance views should be introduced in the
future for better performance.

Acknowledgements. Research funded within the project No. POIG.02.03.03-00-
008/08, entitled “MAYDAY EURO 2012 – The supercomputer platform of context-
dependent analysis of multimedia data streams for identifying specified objects or
safety threads”. The project is subsidized by the European regional development fund
and by the Polish State budget.

References

1. Ribnick, E., Atev, S., Masoud, O., Papanikolopoulos, N., Voyles, R.: Real-Time Detection
of Camera Tampering. In: IEEE International Conference on Video and Signal Based
Surveillance, Australia (November 2006) ISBN: 0-7695-2688-8

2. Gil-Jiménez, P., López-Sastre, R., Siegmann, P., Acevedo-Rodríguez, J., Maldonado-Bascón,
S.: Automatic Control of Video Surveillance Camera Sabotage. In: 2nd International work-
conference on Nature Insired Problem-Solving Methods in Knowledge Engineering:
Interplay Between Natural and Artificial Computation, Spain (June 2007) ISBN: 978-3-540-
73054-5

 Camera Sabotage Detection for Surveillance Systems 53

3. Harasse, S., Bonnaud, L., Caplier, A., Desvignes, M.: Automated camera dysfunctions
detection. In: 6th IEEE Southwest Symposium on Image Analysis and Interpretation, USA
(March 2004) ISBN: 0-7803-8387-7

4. Sağlam, A., Temizel, A.: Real-time Adaptive Camera Tamper Detection for Video
Surveillance. In: 6th IEEE International Conference on Advanced Video and Signal Based
Surveillance, Italy (September 2009) ISBN: 978-0-7695-3718-4

5. Czyżewski, A., Dalka, P.: Moving object detection and tracking for the purpose of
multimodal surveillance system in urban areas. In: Proc. 1st Int. Symp. on Intell. Interactive
Multim. Syst. and Services, Piraeus, Greece (2008)

6. Turage, D., Alkanhal, M.: Search Algorithms for Block-Matching in Motion Estimation,
Mid-Term project (1998),
http://www.ece.cmu.edu/~ee899/project/deepak_mid.htm

Implementation of Access Control Model

for Distributed Information Systems
Using Usage Control

Aneta Poniszewska-Maranda

Institute of Information Technology,
Technical University of Lodz, Poland

anetap@ics.p.lodz.pl

Abstract. Currently, the rapid development of information technology
requires also the additional features for access control domain. The infor-
mation is more and more distributed through the networks or federation
of numerous information systems located in different places in a coun-
try or on the globe. In order to meet the requirements and problems of
modern access control, a new implementation of access control model,
called implementation of Role-based Usage Control (iRBUC) model is
proposed. Proposed iRBUC assures the usage control in accessing data,
which is very important especially in distributed information systems,
and assures the organization of access control strategies well-described
in RBAC (Role-Based Access Control) model or its extensions.

1 Introduction

Currently, the modern information systems evolve very quickly. The informa-
tion, that is very important and precious resource, is more and more distributed
through the networks or federation of numerous information systems located in
different places in a country or on the globe. The rapid development of informa-
tion technology requires also the additional features for access control domain.
Not less important is the protection of data against improper disclosure or mod-
ification in the information systems. This requirement is always obligatory in
development process of information system and its security approach. But nowa-
days the information technology, as well as other information science domains,
changes very quickly and new products appear every day. The access modes
to the information have been also changed. New protocols appeared to exchange
the information. All these changes cause new security problems against which
the existing models or architectures of access control security should make a
stand.

On the other side, distributed information systems or federation of informa-
tion systems provide the access of many different users to huge amount of data,
sometimes stored in different localizations and secured by different strategies,
security policies and models or inner enterprise rules. These users have different
rights to the data according to their business or security profiles that depend

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 54–67, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Implementation of Access Control Model 55

on their organization positions, actual localizations and many others conditions.
Also, the system’s data is transferred between particular nodes of distributed sys-
tem. On the other hand, it is also important to protect the information against
non-controlled utilization and control the usage and diffusion of this informa-
tion. It gives the possibility to specify how it can be used and to specify the
utilization constraints. All these new problems are connected with traditional
access control models and usage control. They necessities new mechanisms to
apply in distributed information systems.

The problems with access control in domain of distributed information sys-
tems can be caused by many reasons. Each local component of such system can
be secured by another security strategy (e.g. centralized vs. decentralized autho-
rization, ownership vs. administration paradigm), by other access control model
(e.g. DAC, MAC, RBAC). The security heterogeneities can be caused also by
different kinds of access rights (positive, negative or mixed), different autho-
rization units (subjects, users, group, roles) or different access administration
concepts (Grant, Revoke, etc.). In order to meet these requirements and prob-
lems in modern access control, a new implementation of access control model,
called implementation of Role-based Usage Control (iRBUC) model is proposed.

Proposed iRBUC model assures the usage control in accessing data, which
is very important especially in distributed information systems, and assures the
organization of access control strategies well-described in RBAC (Role-Based
Access Control) model or its extensions. We propose the new implementation
of access control model for distributed information systems that additionally
provides the common coherence of distributed information system’s components
on the global level of access control strategy.

The paper is structured as follows: first part presents the related works on
access control models and deals with existing traditional access control models
and usage control model. The second part describes our proposition of new
implementation of access control model for information systems that can become
the access control approach comprehensible for the components of information
system.

2 Access Control to Secure Information Systems

The security policies of a system generally express the basic choices made by an
institution for its own data security. They define the principles on which access
is granted or denied. The access control imposes the constraints on what a user
can do directly, and what the programs executed on behalf of user are allowed
to do. A security access system can be defined using two parts that cooperate
with each other: strategy of security access that describes all the environments
and specifications of entire organization on the security level (i.e. organizational
and technical aspects), and access model with:

– set of concepts to describe objects (data access) and subjects (users),
– definition of users’ access rights to the data,

56 A. Poniszewska-Maranda

– access control policy which describes how users can manipulate data, defines
data structure and administers the users’ access rights to data.

2.1 Related Work on Access Control Policies

The development of access control models has a long history. There are two main
approaches in this field. The first one represents the group of traditional access
control models. Discretionary Access Control (DAC) model [1, 11, 12] was the
first model in this group. However, DAC model has the inherit weakness that
information can be copied from one object to another and it is difficult for DAC
to enforce the safety policy and protect the data against some security attacks.

In order to prevent the shortcomings of DAC model, the Mandatory Access
Control (MAC) model was created to enforce the lattice-based policies [1, 13].
MAC does not consider the covert channels but they are expensive to eliminate.
Next, Sandhu et al. proposed Role-Based Access Control (RBAC) model [2–4]
that has been considered as an alternative to DAC and MAC models. The RBAC
model was a progress in access control but it is still centered around the access
control matrix [11].

The second approach of access control models corresponds to temporal models
that introduce the temporal features into traditional access control. The tempo-
ral authorization model was proposed by Bertino and al. in [14] and it is based
on temporal intervals of validity for authorization and temporal dependencies
among authorizations. Next, Temporal-RBAC (TRBAC) model was proposed
in [15]. This model introduces the temporal dependencies among roles. Other
model - Temporal Data Authorization model (TDAM) was presented in [16] and
extends the basic authorization model by temporal attributes associated to data
such as transition time or valid time. Recently, the TRBAC model was extended
to Generalized Temporal RBAC (GTRBAC) model in [17] to express the wider
range of temporal constraints.

However, all these models propose still the static authorization decisions that
are based on subject’s permissions which can be performed on target objects. If
the access to an object is permitted, the subject can access it repeatedly at the
valid time intervals, i.e. during the logging session. The Usage Control (UCON)
was proposed to solve these problems [18–20]. The UCON model consider the
temporal attributes as mutable attributes of subjects or objects. The model
permits to evaluate the usage decision also during the access to information to
which we want to control the usage. It is realized based on three decision factors:
authorizations, obligations and conditions.

2.2 Access Control Policies and Their Models

There are some access control policies and models that can be used for securing
the information systems. Sometimes, traditional access control models are not
sufficient and adequate for actual distributed information systems, which connect
different environments by the network. We can find some disadvantages of these
models in security domain of information systems:

Implementation of Access Control Model 57

– authorization only - traditional access control models do not provide the
mechanisms for definition of obligations or conditions in access control,

– access rights can be only pre-defined by the developers or security adminis-
trators and granted to the subjects,

– no ongoing control - decision about the access are made before the required
access,

– no consumable rights - it is not possibly to define the mutable attributes of
subjects and objects.

These disadvantages and needs caused the creation of unified model that can
encompass the use of traditional access control models, trust management and
digital right management (DRM). We have chosen two access control models in
our studies to develop the new implementation model for distributed informa-
tion systems: extended RBAC model and UCON model. The first one allows
to represent the whole system organization in complete, precise way while the
second one allows to describe the usage control with authorizations, obligations,
conditions, continuity (ongoing control) and mutability attributes.

Role-Based Access Control (RBAC) model [2–4] requires the identification of
roles in a system. The role is properly viewed as a semantic structure around
which the access control policy is formulated. The role can represent the com-
petency to do a specific task and it can embody the authority and responsibility
of the system users. The roles are created for various job functions in an organi-
zation and the users are assigned to the roles based on their responsibilities and
qualifications.

In extended RBAC (eRBAC) model [8, 9] each role realizes a specific task
in enterprise business process and it contains many functions that the user can
take. For each role it is possible to choose the necessary system’s functions. Thus,
a role can be presented as a set of functions that this role can take and realize.
Each function can have one or more permissions, and a function can be defined
as a set or a sequence of permissions. If an access to an object is required, then
the necessary permissions can be assigned to the function to complete the desired
job. Specific access rights are necessary to realize a role or a particular function
of this role. Therefore, we extended classical RBAC model by addition of some
elements, i.e. function, object, method, class, operation, to express more complex
elements of enterprise information system that are secured by this model (Fig. 1).

The Usage Control (UCON) model [18, 19, 22] is based on three decision
factors: authorizations, obligations and conditions that have to be evaluated for
usage decision. It consists of eight main components: subjects, objects, subject
attributes, object attributes, rights, authorizations, obligations and conditions
(Fig. 2). The traditional access controls use only the authorizations for a decision
process. The obligations and conditions are added to the model to resolve certain
shortcomings characteristic for traditional access control strategies.

The UCON strategy is characterized by two features: mutability and conti-
nuity. Mutability means the mutability of subject and object attributes - with a
mutability property the attributes can be either mutable or immutable. The mu-
table attributes can be modified by subjects’ actions and immutable attributes

58 A. Poniszewska-Maranda

Session

Permissions*
*

*
*

Operation

Roles

*

1

*

1

Users Functions

Method Object

Class

1

*
1..*

1..* *

1

*

1

* 1..* * 1..*
*

*

Fig. 1. Extended RBAC model

Authorizations

ConditionsObligations

Subjects
decision
Usage

Subject attributes Object attributes

Rights Objects
decision
Usage

Fig. 2. UCON model

can be modified only by administrative actions. The continuity means that a
decision can be made even after an access [18, 22].

3 Access Control Model for Distributed Information
Systems

The access control in information systems is responsible for granting direct access
to system’s objects in accordance with the modes and principles defined by
protection policies and security model.

In distributed information systems the stage of checking of access rights and
principles should be realized depending on an object(s) to which a user (i.e. sub-
ject) wants to access. If the object operates in the same component of information
system as the user, then only the local security rights should be examined. If not
- if the object and the user are attached to two different components - the secu-
rity rights for these two components should be checked on local or/and global
level.

It is necessary to have more expressive access control model to define better
the access control of distributed information systems. Such model should allow
to define the complex structure of actual information systems on logical security
level and also should provide the concepts for identification of dynamic approach
of access control [21, 23].

Implementation of Access Control Model 59

Therefore, there is the need to create access control model, which will de-
scribe the secured organization, their structure in proper and complex way, like
extended RBAC model does, and on the other side it will be appropriate and
sufficient for dynamic distributed information system, like UCON model.

3.1 Proposition of New Implementation of Access Control Model

The proposed implementation of access control model was based on two models:
extended RBAC model and UCON model. It was named implementation of Role-
based Usage Control (iRBUC) model. General structure of proposed iRBUC
model is shown in figure 3.

Permission

*

1

*

1

*

1

*

1

Role Function

Object Method

Class Operation

Authorization

Session

Condition

AtomicMethod

CompositeMethod

SubjectAttributes

Obligation

Group

Subject

User

ObjectAttributes

Constraints

*
* *

*

*

*
1

1..*

1..*

*
1..*

1..*

*

1..*

Fig. 3. Implementation of Role-based Usage Control model

The iRBUC model was defined using the elements came from extended RBAC
model [8–10] and from UCON model [18, 19]. The core part of the model es-
sentially represents the extended RBAC model. We distinguished two types of
users in iRBUC model: single user (User) and group of users (Group). These two
elements are represented by the element Subject that is superclass of User and
Group. Subject permits to formalize the assignment of users and groups to the
roles. Subject can be viewed as base type of all users and groups in a system. It
can be presented as an abstract type, so it can not has direct instances - each sub-
ject is either a user or a group. A User is a human being, a person or process in
a system, so it represents the system’s entity, that can obtain some access rights
in a system. A Group represents a group of users that have the same rights.
Subjects can be assigned to the groups by aggregation relation SubjectGroup
that represents an ordering relation in the set of all system’s subjects.

The subject can be associated with the obligations Obligation which repre-
sent different access control predicates that describe the mandatory requirements

60 A. Poniszewska-Maranda

performed by a subject. These requirements should be verified before or during
a usage realized by a user. They can represent the security constraints that are
defined on the subjects (i.e. users or/and groups) and they can be static or
dynamic.

The Session element represents the period of time during which a user is
logged in a system and can execute its own access rights. In our model the Session
is assigned directly to a Subject. On the other hand a session is connected with
the roles and this association represents the roles that can be activated during
one session. Session is also connected with the set of conditions Condition that
represent the features of a system or application. They can describe current
environmental or system status and states during user’s session that are used
for usage decision.

A Role is a job function or a job title within the organization with some
associated semantics regarding the authority and responsibility conferred on a
member of the role. The role can represent a competency to do a specific task,
and it can embody the authority and responsibility. The roles are created for
various job functions in an organization. The users are assigned indirectly to the
roles, based on their responsibilities and qualifications. The direct relation is es-
tablished between roles and subjects that represent the users or groups of users.
The user can take different roles on different occasions and also several users can
play the same role (Group element). It is also possible to define the hierarchy
of roles, represented by aggregation relation RoleHierarchy, which provides the
hierarchical order of system roles. Hierarchy of roles represents also the inher-
itance relations between the roles. The role of the part end of the association
inherits all privileges of the aggregate.

The association relation between the roles and subjects is described by asso-
ciation class SubjectAttributes that represents additional subject attributes
(i.e. subject properties) as in UCON model.

Each role defined in extended RBAC model [8, 9] allows the realization of spe-
cific task associated to enterprise process. The same we have in iRBUC model. A
role can contain many functions Function that a user can apply. Consequently,
a role can be viewed as a set of functions that this role can take to realize a
specific job. It is also possible to define the hierarchy of functions as the hi-
erarchy of roles has been specified for roles. It is represented by aggregation
relation named FunctionHierarchy, which provides the hierarchical order of sys-
tem functions. Hierarchy of functions, just like hierarchy of roles, represents also
the inheritance relations between the functions. The function of the part end of
the association inherits all privileges of the aggregate.

Because each function can perform one or more operations, a function needs
to be associated with a set of related permissions Permission. A function can
be defined as a set or sequence (depending on the particular situation) of permis-
sions. To perform an operation one has the access to required object, so necessary
permissions should be assigned to the corresponding function. Therefore, all the
tasks and required permissions are identified and they can be assigned to users
to give them the possibility to perform the responsibilities involved when they

Implementation of Access Control Model 61

play a particular role. Due to cardinality constraints, each permission must be
assigned to at least one function.

One or more permissions Permission can be associated with each function.
The permission determines execution right for a particular method on particular
object. In order to access the data stored in object a message has to be sent to
this object. This message causes the execution of particular method Method on
this object Object. We can say that permission is the possibility of method’s
execution on an object in order to access the data stored in this object. Very often
the constraints have to be defined in assignment process of permissions to the
object. Such constraints are represented by the authorizations. Authorization
is a logical predicate attached to permission that determines the permission’s
validity depending on access rules, object attributes and subject attributes. A
constraint determines that some permission is valid only for a part of object’s
instances. Therefore, the permission can be presented as a function p(o, m,
c) whereo is an object, m is a method that can be executed on this object
and c is a set of constraints that determine this permission. According to this,
the permission is given to all instances of the object class except the contrary
specification.

The relation between objects and their permissions are additionally described
by association class ObjectAttributes that represents the additional object
attributes (i.e. object properties) that can not be specified in the object’s class
and they can be used for usage decision process. The examples of object at-
tributes are security labels, ownerships or classes. They can be also mutable or
immutable as subject attributes do.

Extended RBAC model [8] has also the concept of class and operation. A
method is a particular instance of an Operation, so each operation can have
one or more methods that can differ in number of attributes. The same situation
exists for the objects. An object is an instance of particular Class and each class
can have a few objects.

The Method element can be also differentiated between two types of methods:
atomic method and composite method. The first one, AtomicMethod repre-
sents the low-level actions that can be directly mapped to the objects, e.g. read,
write or execute. The CompositeMethod are high-level actions that repre-
sent more complex activities that can be realized on the objects. Moreover, it
is also possible to define the aggregation relation between Method and Compos-
iteMethod, named MethodHierarchy. It is used to order the composite methods
in groups of methods.

The last element of the model is a set of constraints. The constraints can be
defined for each element of model presented above, and also for the relationships
among these elements. The concepts of Conditions, Obligations and Authoriza-
tions represent the idea of constraints related to selected elements of iRBUC
model, i.e. Conditions are constraints related to Session, Obligations are related
to Subject and Authorizations are related to Permissions. The other elements,
such as Roles, Functions can have the constraints defined for them.

62 A. Poniszewska-Maranda

The concept of constraints is described widely in the literature [6, 7]. It is
possible to distinguish different types of constraints, static and dynamic that can
be attached to different model elements. The most popular type of constraints
are Separation of Duty (SoD) constraints [6].

The metamodel of iRBUC model with the set of all elements and relationships
presented above are shown in figure 4.

Permission

*

1

*

1

*

1

*

1

Role Function

Object Method

Class Operation

Authorization

Session

Condition

AtomicMethod

CompositeMethod

SubjectAttributes

Obligation

Group User

** **

Subject

Constraints

ObjectAttributes

*
* *

*

*

*

*

*
1

1..*

1..*

*

* *

*

1..*

1..*

1..*

RoleHierarchy FunctionHierarchy

SubjectGroup

MethodHierarchy

Fig. 4. Metamodel of iRBUC model

3.2 Formal Definition for Implementation of Role-Based Usage
Control Model

The formal definition for implementation of Role-based Usage Control model is
based on description presented above.

Definition 1. The iRBUC model can be defined with the use of following com-
ponents:

– main sets of elements: U - users, G - groups, S - subjects, R - roles, F -
functions, P - permissions, M - methods, O - objects and Sn - sessions,

– additional sets of elements: Cl - classes, Op - operations, ATT(S) - subject
attributes, ATT(O) - object attributes, AM - atomic methods and CM -
composite methods,

– functional decision predicates: A - authorizations, B - obligations and C -
conditions,

– UA ⊆ U ×R is many-to-many user-to-role assignment relation,
– GA ⊆ G×R is many-to-many group-to-role assignment relation,
– RH ⊆ R × R - a partial order on R set, called the role hierarchy or role

dominance relation,
– FA ⊆ F ×R - many-to-many function-to-role assignment relation,
– FH ⊆ F × F - a partial order on F set, called the function hierarchy or

function dominance relation,
– PA ⊆ P × F - many-to-many permission-to-function assignment relation,

Implementation of Access Control Model 63

– user : Sn → U is a function mapping each session sni to single user
user(sni),

– group : 2Sn → G is a function mapping set of sessions Sn to the group of
users group(users(sni)),

– roles : Sn → 2R is a function mapping each session sni to a set of roles
roles(sni) ⊆ {r|(user(sni), r) ⊆ UA} and session sni has the functions⋃

r∈roles(sni)
{f |(f, r′) ⊆ FA},

– taking into consideration the hierarchy of roles: roles : Sn → 2R is a func-
tion mapping each session sni to a set of roles
roles(sni) ⊆ {r|(∃r′ ≥ r)[(user(sni), r′)] ⊆ UA} and session sni has the
functions

⋃
r∈roles(sni)

{f |(∃r′′ ≤ r)[(f, r′′) ⊆ FA]},
– functions : R → 2F is a function mapping each role ri to a set of func-

tions functions(ri) ⊆ {f |(f, ri) ⊆ FA} and role ri has the permissions⋃
f∈functions(ri)

{p|(p, f) ⊆ PA]},
– taking into consideration the hierarchy of functions: functions : R → 2F

is a function mapping each role ri to a set of functions functions(ri) ⊆
{f |(∃f ′ ≥ f)[(f, ri)] ⊆ FA} and role ri has the permissions⋃

f∈functions(ri)
{p|(∃f ′′ ≤ f)[(p, f ′′) ⊆ PA]},

– permission : M × O → P is a function mapping a pair: method mi and
object oj to the permission p(mi, oj),

– AUTH ⊆ 2A ×P , many-to-many assignment relation of authorizations to a
permission,

– OBLIG ⊆ 2B × S, many-to-many assignment relation of obligations to a
subject,

– COND ⊆ 2C × Sn, many-to-many assignment relation of conditions to a
sessions.

3.3 Access Control Elements Using iRBUC Model - Case Study

It is necessary to have more expressive access control model in order to define
the access control for distributed information systems. Such model should allow
the greatest structure of security policy to make possible the decomposition of
this policy and make easy its definition. It should be possible to express more
then simple authorizations but also the interdictions or obligations that should
be fulfilled in order to obtain an access to data of information system. The model
should also allow the expressing of rules assigned to conditions for system state
or for access context of a system.

The complexity of actual organizations (i.e. matrix based organizational struc-
ture) has guided our proposition to extend the standard RBAC model by role
management facilities that allow a finer distribution of responsibilities in an
enterprise (Fig. 1) [9].

On the other side, the dynamism of actual information systems, especially
distributed information systems or federation of information systems was the
reason to use the concepts of Usage Control to develop the new implementation of
access control models to support the management of information system security.

64 A. Poniszewska-Maranda

Persons employed by a company can have many professional responsibilities.
Therefore, a set of roles can be attached to them. Each role defined in iRBUC
model allows the realization of specific task associated with an enterprise process.
Since every role can contain many functions that a user can apply, it is possible
to choose functions of the system that are necessary for it. Consequently, a role
can be viewed as a set of functions that this role can take to realize a specific
job. Because each function can perform one or more operations, a function needs
to be associated with a set of related permissions. To perform an operation one
has the access to a required object, so necessary permissions should be assigned
to the corresponding function.

This function level allows more flexibility in the security management and
partition of responsibilities. For example, the necessity arises to set up a new
organization in an enterprise or to integrate a new application in the informa-
tion system. This situation generally causes the necessity to redistribute the
functions to different actors of this enterprise. In this case, the security adminis-
trator should only modify the allocations of functions to the roles, with the new
reorganization in mind. The users will always have the same roles but with new
assigned functions. Likewise, if a function should be changed in the enterprise,
it is possible to update the allocations of its permissions without any changes
for the roles that use this function.

The example of distribution of roles can be presented by an application found
in typical university information system. The user ”professor” can have two
roles: Teacher and Researcher, to perform his teaching activity and researching
activity. The teaching role has a number of functions: prepare lectures, give
lectures, prepare exams, record results, modify results, etc. The researching role
contains functions like: create a theory, test the theory, document the results,
etc. These functions are mapped to sets of permissions that grant the accesses
to perform the works required by each function (Fig. 5).

Professor

Teacher

Researcher

prepare lecture

give lecture

prepare exams

record results

modify results

create theory

test theory

document results
p

p
p

p

p

p

p

p

p
p

p
p

SUBJECT
e.g. USER FUNCTIONSROLES PERMISSIONS

Fig. 5. Example of roles-functions-permissions mapping

This example gives the possibility to identify some elements of iRBUC model,
for example:

Implementation of Access Control Model 65

subject := Professor
listRoles := Teacher, Researcher
listFunctions := prepare lectures, give lectures, prepare exams, record results,

modify results, create theory, test the theory, document the results
The examples of other elements of iRBUC model can be proposed basing on

elements determined above:
user := Prof. Tomas Smith
group := professors at IT department
SubjectAttribute := position (role) of ”Professor” at the department
Condition := role ”Dean” can be taken only during one Session at the partic-

ular moment of time
Another example, an application ”Management of grades” to manage the re-

sults of students in university information system is presented in figure 6 using
the use case diagram of UML (Unified Modeling Language). This diagram con-
tains the actors (Teacher, Student, etc.) representing the roles and the use cases
(visualization, edition, etc.) representing the functions of iRBUC model.

Therefore, it is possible to obtain the list of roles from this diagram:
listRoles := Dean, Teacher, Secretary, Student
and the list of functions:
listFunctions := visualization of grades, edition of grades, presentation of re-

sults, configuration, user validation

configuration

Teacher
Student Secretary

Dean

presentation
of results

edition
of grades

visualization
of grades

user
validation

<<include>>

<<include>>

<<extends>>

<<include>>

<<include>>

Fig. 6. Example of use case diagram

Next, each function (use case) can be described by means of scenario to find
the permissions of iRBUC model associated to the function. For example the sce-
nario of function ”Visualization of grades” determines the behavior of following
elements: a role (Student), some objects (one of class WShowGradeStudent, one
of class WShowListStudent, one of class listStudent, one of class listLectures, one
of class listExams, one of class Exam and one of class Grade) and the messages
sent from the actor or objects to another objects. It is possible to obtain from
such scenario the set of permissions for the function ”Visualization of Grades”
and attach them to role ”Student”:

66 A. Poniszewska-Maranda

role := Student
function := visualization of grades
listMethods := active(), content(), chose(), validStudent(), getLecture

(Student), getExam(Lecture, Student), getGrade(Student, Lecture, Exam), get-
Value(), close()

listObjects := :WShowGradeStudent, :WShowListStudent, :listStudent,
:listLectures, :listExams, :Exam, :Grade

listPermissions := (active(), :WShowGradeStudent), (active(), :WShowList-
Student), (content(), :listStudent), (getLecture(Student), :listLecture), (getExam
(Lecture, Student), :listExam), (getGrade(Student, Lecture, Exam), :Exam), ...

The examples of remaining elements of iRBUC model assigned to above ele-
ments can be defined as follows:

Authorization := ”Student” can visualize only his own Grades
ObjectAttribute := weight (importance) of particular grades for the total grade

4 Conclusions

The presented implementation of Role-based Usage Control model allows defin-
ing the access control policy based on access request, as traditional access control
models, and access decision can be evaluated during the access to information
to which we want to control the usage. The model takes into consideration the
provisional aspects in access security.

All the elements of iRBUC model, presented in the previous section form fairly
complex model to present the whole organization of each enterprise on access
control level. The components of iRBUC model can create the framework for
classifying the family of models. Such classification can be based on three criteria:
functional decision predicates (i.e. authorizations, obligations and conditions),
continuity feature (control decision can be taken before or during the access)
and mutability feature (updates of subject or object attributes can be done at
different time).

It seems that iRBUC model can also support the security of dynamic infor-
mation systems, such as distributed information system. It can be done thanks
to mutable concept came from Usage Control approach where dynamic change
of security policy can be translated to the change of values of subject attributes
or object attributes. Moreover, these modifications can be realized before the
information access, during information access or at the end of such access.

The future works on iRBUC model will focus on its realization with the use
of object-oriented techniques, for example the Unified Modeling Language and
next on creation of iRBUC family models.

References

1. Castaro, S., Fugini, M., Martella, G., Samarati, P.: Database Security. Addison-
Wesley (1994)

2. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access Con-
trol Models. IEEE Computer 29(2), 38–47 (1996)

Implementation of Access Control Model 67

3. Sandhu, R.S., Samarati, P.: Access Control: Principles and Practice. IEEE Com-
munication 32(9), 40–48 (1994)

4. Ferraiolo, D., Sandhu, R.S., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Role-Based Access control. ACM TISSEC (2001)

5. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison Wesley (1998)

6. Ahn, G.-J.: The RCL 2000 Language for Specifying Role-Based Authorization
Constraints. ACM Transactions on Information and Systems Security (1999)

7. Ahn, G.-J., Sandhu, R.S.: Role-based Authorization Constraints Specification.
ACM Transactions on Information and Systems Security (2000)

8. Poniszewska-Maranda, A., Goncalves, G., Hemery, F.: Representation of extended
RBAC model using UML language. In: Vojtáš, P., Bieliková, M., Charron-Bost,
B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 413–417. Springer,
Heidelberg (2005)

9. Goncalves, G., Poniszewska-Maranda, A.: Role engineering: from design to evalua-
tion of security schemas. Journal of Systems and Software 81(8), 1306–1326 (2008)

10. Poniszewska-Maranda, A.: Access Control Models in Heterogeneous Information
Systems: from Conception to Exploitation. In: Proc. of IEEE International Multi-
conference on Computer Science and Information Technology, Wisla, Poland (2008)

11. Lampson, B.W.: Protection. ACM Operating Systems Review 8(1), 18–24 (1974)
12. Dows, D., Rub, J., Kung, K., Jordan, C.: Issues in discretionary access control. In:

IEEE Symposium on Research in Security and Privacy, pp. 208–218 (1985)
13. Bell, D., Lapadulla, L.: Secure computer systems: Unified exposition and multics

interpretation, Mitre Corporation (1975)
14. Bertino, E., Bettini, C., Samarati, P.: A Temporal Access Control Mechanism for

Database Systems. IEEE TKDE 8(1) (1996)
15. Bertino, E., Bonatti, P., Ferrari, E.: A Temporal Role-based Access Control Model.

ACM TISSEC 4(3), 191–233 (2001)
16. Gal, A., Atluri, V.: An Authorization Model for Temporal Data. ACM Transaction

on Information and System Security 5(1) (2002)
17. James, B., Joshi, E., Bertino, U., Latif, A., Ghafoo, A.: A Generalized Tempo-

ral Role-Based Access Control Model. IEEE Transitions on Knowledge and Data
Engineering 17(1), 4–23 (2005)

18. Park, J., Sandhu, R.: The UCON ABC Usage Control Model. ACM Transactions
on Information and System Security 7 (2004)

19. Park, J., Zhang, X., Sandhu, R.: Attribute Mutability in Usage Control. In: 18th
IFIP WG 11.3 Working Conference on Data and Applications Security (2004)

20. Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A survey.
Computer Science Review 4(2), 81–99 (2010)

21. Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Communications
of the ACM 49(9) (2006)

22. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal Model and Policy
Specification of Usage Control. ACM TISSEC 8(4), 351–387 (2005)

23. Jiang, Z., Hu, S., Gan, S., Shu, Y.: Research on an UCON model supporting
distributed management. In: Proc. of ICIA 2008, pp. 1520–1524 (2008)

Beyond TOR: The TrueNyms Protocol

Nicolas Bernard and Franck Leprévost

University of Luxembourg, LACS, 162 a, Avenue de la Faïencerie,
L-1511 Luxembourg

{Nicolas.Bernard,Franck.Leprevost}@uni.lu

Abstract. How to hide who is communicating with whom? How to hide
when a person is communicating? How to even hide the existence of on-
going communications? Partial answers to these questions have already
been proposed, usually as byproducts of anonymity providing systems.
The most advanced one available today is Onion-Routing and is imple-
mented in Tor and I2P. Still, Onion-Routing is exposed to a series of
serious attacks. The current paper classifies these series of attacks, and
announces the TrueNyms unobservability protocol. We describe here how
TrueNyms handles one of the families of attacks applying to the current
Onion-Routing system, namely traffic analysis on the "shape", and give
some evidence on its performance. Developed since 2003, TrueNyms is
not anymore an academic answer to a privacy problem, but is a heavily
tested and efficient product providing unobservability and anonymity.
Although it cannot be used (for the time-being) for very low-latency ap-
plications like telephony over IP, TrueNyms can be efficiently used for
most low-latency applications like Web browsing and HTTP-based pro-
tocols (RSS for instance), Instant Messaging, File transfers, audio and
video streaming, remote shell, etc. TrueNyms allows parties to communi-
cate without revealing anything about the communication — including
its very existence — to any observer, despite how powerful such an ob-
server might be.

1 Introduction

For low-latency communications, protocols like SSL [25] or IPsec [16] allow the
encryption of data and authentication of parties. Still, these protocols do not
protect all aspects of communication over the Internet. Notably, an observer is
still able to learn the identity of the communicating parties, or the nature of the
content (Web browsing, file transfer, VoIP, etc.).

The questions we address here are: How to hide who is communicating with
whom? How to hide when a person is communicating? How to even hide the
existence of ongoing communications?

Partial answers to these questions have already been proposed, usually as
byproducts of anonymity providing systems. The most advanced one available
today is Onion-Routing [6,12,24] and is implemented in Tor [8] and I2P [15]; en-
hancements to these systems have been proposed (e.g. [27]). Still, Onion-Routing
is not sufficient, and is exposed to a series of serious attacks.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 68–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Beyond TOR: The TrueNyms Protocol 69

In this paper, we recall in section 2 how Onion-Routing works, raise the per-
formance issues, and classify its security issues into three families of attacks.
In section 3 we address one of these security issues, namely preventing traffic
analysis on the "shape", and introduce our protocol TrueNyms. Although based
on Onion-Routing, TrueNyms bypasses all its security drawbacks [3]. In sec-
tion 4 we provide the first performance measurements of our protocol after a
very intensive testing phase. As a consequence, TrueNyms provides a concrete,
practical, and efficient answer to the questions addressed above, which can be
resumed as looking for the missing link to privacy. In other words:

– TrueNyms solves all the security issues applying to Onion-Routing;
– In terms of perfomance, although TrueNyms’s latency suffers from the secu-

rity improvements over Onion-Routing, TrueNyms is more efficient than the
Onion-Routing implementations (Tor, and I2P), as far as the establishment
of communications, and the throughput are concerned ;

– The current version of TrueNyms can be used for most applications like Web
browsing and HTTP-based protocols (RSS for instance), Instant Messaging,
File transfers, audio and video streaming, remote shell, etc. The applications
excluded (for the time-being) are those needing a very low latency (like
telephony over the Internet).

Henceforth, with TrueNyms, it is now possible to communicate without revealing
anything about the communication — including its very existence — to any
observer (passive or active), as powerful as such an observer may be.

A more complete description of our TrueNyms protocol will appear else-
where [3], where we will further detail the adopted methods not only against traf-
fic analysis but against all three families of attacks applying to Onion-Routing,
the in-depth security architecture of the TrueNyms program itself, and further
performance data.

2 Description of Onion-Routing and Its Weaknesses

Alice and Bob want to communicate in a very secure way. They want to keep
secret not only the content of their communications, but the very fact that they
are communicating should be itself a secret too: they want unobservability. We
suppose nothing about the observers, which may be the computer engineer in the
company you are working in, the intelligence service of a very powerful nation-
state, or even a combination of such intelligence services like Echelon (see e.g. [9],
especially Chapter 2, and [5]). The monitoring of the observers can be targeted
on Alice and / or Bob or can be a global and ubiquitous system. Eve is a passive
observer; Mallory is an active one.

2.1 From Encryption to Onion-Routing

Let us recall that using some encryption to ensure unobservability is not suf-
ficient. It usually protects only the content of the data packets, and not the

70 N. Bernard and F. Leprévost

headers. As a consequence, an observer sees that the communication takes place
between Alice and Bob.

A natural approach to overcome this weakness is to introduce a relay R be-
tween Alice and Bob. The sender Alice first encrypts her original message M
with Bob’s key kB , then encrypts the result {M}kB with the relay’s key kR, and
finally sends the newly encrypted message {{M}kB}kR to the relay. Now, when
the relay R receives this message, he removes one layer of encryption, recovers
hence the message {M}kB , which he sends to Bob, who in turn is able to recover
the original message M sent by Alice. With this approach, the message sent by
Alice to R is distinct from the message resent by R to Bob, and hence an ob-
server cannot a priori be able to make the link between the messages sent to R,
and the messages sent by R. Moreover, the headers containing the IP addresses
of the sender and of the receiver, added at the beginning of each encrypted
packet, are a priori misleading the observer. Such systems are available on a
commercial basis, but with encryption only between Alice and the relay R (see
e.g. anonymizer.com, swissvpn.net, xerobank.com).

However, this approach suffers from some serious drawbacks, as R knows the
identities of both Alice and Bob, who furthermore must trust R.

2.2 Brief Description of Onion-Routing

One can rely on nested tunnels established through multiple relays R1, R2, etc.
(in what follows, a node denotes either a relay or Alice or Bob). These relays
accept to take part in an anonymity system, but are not necessarily trusted.
Indeed, some of them can cooperate with Eve or Mallory. Relays see only enci-
phered traffic and know only the previous and next nodes on the route. They do
not know if those nodes are other relays or end-points. This approach, known as
Onion-routing (see [12,24]), or as Pipenet [6], and is illustrated in Figure 1.

P

{
{P}kR3

}
kR5

{P}kR3

{{
{P}kR3

}
kR5

}
kR9

{{{
{P}kR3

}
kR5

}
kR9

}
kR4

Alice

Bob

P

R9

R1

R5

R4

R3

R8
R7

R6

R2

Fig. 1. illustrates how Onion-Routing works, using the notations of 2.1 in an obvious
way: to communicate with Bob, Alices creates a set of nested encrypted tunnels. For
every packet, each relay removes the outermost encryption layer (hence the name of
this scheme).

Beyond TOR: The TrueNyms Protocol 71

Throughout this article, an encrypted tunnel between Alice and one of the
nodes is called a connection. Then, a set of nested connections between Alice
and Bob is called a route. Despite being created by Alice, those routes are not
related to IP source routing or other IP-level routing. Standard IP routing is
still used between successive nodes if these nodes are on an IP network as we
consider here. A communication is a superset of one or more routes between
Alice and Bob that are used to transmit data between them. A communication
can use multiple routes simultaneously and / or sequentially.

The concept of Onion-Routing goes back to 1996, and is the most advanced
system available today. A few implementations of Onion-Routing exist, the bet-
ter known being probably Tor [8] and I2P [15]. Still, Onion-Routing is not suf-
ficient to achieve unobservability. Onion-routing is subject to a set of serious
attacks, and has also performance issues described in the following sections.

2.3 Performance Issues

Establishment time, latency and throughput lead to performance issues for
Onion-Routing.

The establishment time is the first issue in Onion-Routing. If Alice creates a
route with n relays to communicate with Bob, she has to create n+1 connections
instead of only one as she would do in a classical TCP-connection. Moreover, the
time to establish these connections is impacted by key-establishment and partial
authentication protocols.

The latency considered here is the time for a packet to go from one end of
the route to the other end. Latency depends mostly on the path taken by the
packets on the network. With a standard communication using standard routing
mechanisms, latency between Alice and Bob would probably be low if Alice and
Bob are close (in a network sense) to each other. However, with Onion-Routing,
the total latency LAB between Alice and Bob is the sum of the latencies between
each couple of consecutive nodes on the route (notwithstanding some processing
time), and is given by the following formula, assuming there is an average latency
L̂ between two nodes:

LAB = LAR1 +
n−1∑
i=1

LRiRi+1 + LRnB ≈ (n+ 1)L̂ . (1)

Finally, the throughput between two nodes measures the amount of data trans-
mitted between these nodes per time unit. Clearly, the throughput TAB between
Alice and Bob is limited by the lowest throughput between two successive nodes:

TAB ≤ min
{
TAR1 ,

{
TRiRi+1 , 1 ≤ i < n

}
, TRnB

}
. (2)

These three issues have multiple consequences, ranging from minor annoyances
to the user (delays, slower downloads, etc.) to the point where some protocols
can hardly be used (e.g. Telephony over IP) with Onion-Routing.

72 N. Bernard and F. Leprévost

2.4 Classification of Security Issues

The security issues of Onion-Routing may be classified in three categories of
attacks:

– Analysis of connection creation;
– Replay attacks;
– Analysis of the shape of the traffic.

None of these attacks is exactly new [1,7,11,22,26,28,29,30,33,34], but no low
latency system was solving all of them before TrueNyms.

While it would be easier to perform these attacks by monitoring the whole
network, note that it is not needed to make pretty accurate guesses. Even if
the observer (passive or active) is not able to observe every node or even every
node on a route, correlation on the connections going through the part(s) of the
network the observer monitors will give him important information, notably if
both Alice and Bob are part of the area the observer looks at [21].

Beginning / End of Connections. Let us assume that Eve can view a part
of the network, and let us consider Figure 2, representing this part. When a

R2

R7

R4

R8

R6

R9

R5

R3
R1

R2

R4

R1

R8

R6

R9

R5

R3

R7

Fig. 2. Background activity at time t (left) and a new route (right)

route is established over the network, even if there are other routes, there will
be little change in these while the new route is established if the connections
are made without pausing. For instance, let us assume that at some point the
network looks like the left part of Figure 2. Then imagine that an activity is
ongoing leading to the situation depicted on the right, with the establishment of
a connection between the node R4 and the node R5, then from R5 to R3, then
R3 to R6, and assume that the background picture of the network stays globally
invariant like in the left part of Figure 2. If there is no further activity for some
times, Eve will guess that the dashed route has just been established between
the nodes R4, and R6. The situation is similar when a route is no longer needed
and is destroyed.

Beyond TOR: The TrueNyms Protocol 73

Replay Attacks. An issue with standard cryptography modes when used in
Onion-Routing is that they allow an active replay attack1. Let us examine the
situation at a relay at a given time: for instance, let us assume that this specific
relay is a part of three routes, as depicted in Figure 3.

ORSUAT
ZAFPFL
ECZAFV
ORWCMX

ABCDEF
XNSXAX
3NTUBM
LAMPFB

CLOCRW
VOYUAV
4NBXVE
XLDTFH

ETEOPG
QXBGFA
DM3XRE
TUZLFB

TTPAXO
CFBAQL
AUTFYF
NAELF2

7TEXIF
WXOVGR
OATGBX
FWULFO

A

B

C 3

2

1

QXBGFA

ABCDEF
XNSXAX

LAMPFB
XNSXAX

ETEOPG
QXBGFA

TUZLFB

ORSUAT
ZAFPFL
ECZAFV
ORWCMX

CLOCRW
VOYUAV
4NBXVE
XLDTFH

TTPAXO
CFBAQL
AUTFYF
NAELF2

7TEXIF
WXOVGR
OATGBX
FWULFO

A

B

C 3

2

1

Fig. 3. Cryptography hides connection bindings to a passive observer (left), but not
to an active observer able to inject duplicate packets (right)

On the left of Figure 3, Mallory sees three distinct incoming connections (A,
B, C). As an encryption layer is removed on each connection, he does not know
the corresponding outgoing connections. However, as cryptography is determin-
istic, a given packet entered twice through the same incoming connection will be
output twice — in its form with an encryption layer removed — on the corre-
sponding outgoing connection. So Mallory takes a packet and duplicates it, say
on the connection A, which leads to the right side of Figure 3. He then looks for
two identical packets on the output, and finds them on the connection 3, so he
learns that connection A and connection 3 are part of the same route. Obviously,
depending on the interest of Mallory, he can perform a similar attack on the next
relay having the connection 3 as an incoming connection, and then see where
this leads ultimately. Or he can perform the same attack on the other incoming
connections B and C, and figure out exactly which outgoing connection 1 or 2
corresponds to them. Other attacks, depending on the encryption mode, are also
considered in [3].

Analysis of the “Shape” of the Traffic. The third class of security issues
stems from what could be called “the shape” of the traffic (see e.g. [26]). In-
deed, each connection has a very specific signature given by a graph having as
x-coordinate the moment when a packet is observed, and its size as y-coordinate.
Moreover, this signature shape reveals, despite the encryption, the kind of traf-
fic passing over this connection. For instance, figure 4 illustrates this, where
the incoming connection A (resp. connection B, resp. connection C) probably
encapsulates Web traffic (resp. VoIP, resp. File transfer).
1 This is different of the replay attacks well known in cryptography, where an attacker

can play part of a protocol back from a recording, and that are usually prevented
by the use of nonces or timestamps.

74 N. Bernard and F. Leprévost

3

2

1A

B

C

Fig. 4. It is easy to match connections when there is no traffic shaping

Obviously, Eve can easily match the shapes of the incoming connections to
the shapes of the outgoing ones to discover that connection A corresponds to
connection 3, connection B to connection 1, and connection C to connection 2.

In fact, if an attacker is only able to observe Alice (i.e. far less powerful than
what we have assumed so far) and hence is not able to observe any relay, he
still can use the shape of the traffic to know what Alice does, for instance by
combining attacks like those described in [4,13,14,17,31,32].

3 The TrueNyms Protocol and Its Approach to Traffic
Analysis

The previous section described three families of security issues in Onion-Routing
that must be solved. This section considers only the last one (a more complete
description of the countermeasures against the other families of attacks will
appear in [3]), and introduces our TrueNyms protocol.

The shape of the traffic on a connection depends on the specific number of
packets this connection sends and receives, the size of each packet, and the time
distribution of the packets being related to the ongoing traffic. While it is easy
to impose a specific shape of the traffic, this has consequences that have to be
addressed, as we see below.

3.1 Traffic Shaping

The problem of the different size for the packets can be solved by imposing
the size: each and every packet will be of the same size. Shorter packets will be
padded before encryption, bigger packets will be split in two or more. Similarly, it
is possible to impose a specific number of packets per second on every connection.
Doing these two operations is traffic shaping.

However, while it solves the visibility of the shape problem, traffic shaping
has its own issues that must, in turn, be solved. The first one is an optimization
problem: if both packet size and the number of packets per second are imposed,
what are the optimal parameters for these? Although the answer can be tricky
(see [3]), let us however assume that we have fixed reasonable parameters. Still,
two security issues remain:

Beyond TOR: The TrueNyms Protocol 75

– first, while the input-output link is not immediate anymore, the issue of
the total number of packets on connections is not solved yet. The way this
problem is addressed in TrueNyms is described in [3];

– second, the loss, or even the delay, of a single packet can expose the hidden
link. This issue and how TrueNyms solves it is described in 3.2.

3.2 What Happens When a Packet Is Lost?

When a packet is lost (and some will be as experience shows), if nothing is done
to prevent it, the situation depicted in Figure 5 arises. The relay has nothing to

C 3

2

1A

B

Fig. 5. Lost packets are an issue with traffic shapping

send when it should send the missing packet, and hence sends nothing. Observing
this, Eve immediately knows connection B and 1 are parts of the same route.
She may even be able to “follow” the missing packet from relay to relay until it
“reaches” the end of the route.

A naive approach to solve this issue could be for the relay to drop a packet
on each outgoing connection. While it would prevent an observer to see the link,
it would amplify the loss of a single packet to all the routes going through this
relay, and would lead to obvious problems.

A more suitable approach is for the relay to insert a dummy packet (i.e.
consisting of random data) each time a packet is lost. Its content being random,
this packet cannot be distinguished from a normal, enciphered packet, by anyone
but its destination, either Alice or Bob.

3.3 Issues with Dummy Packets

Assumptions. Let us now clarify the assumptions used, and their first conse-
quences. The idea is to build an application allowing unobservable communica-
tions. It needs to be an application because the assumptions include:

1. it is not possible to change the core network infrastructure (routers, etc.);
2. users will not change their operating system only to have unobservability.

76 N. Bernard and F. Leprévost

These assumptions imply the system cannot be at the operating system kernel
level (or else it would imply a lot more development work). The system cannot
be a mere library either: the need to hide its global use has to be coordinated
between applications in the case more than one of them are running, and has
also to be ensured in the case no application is running.

Implicit Model. Being an application, the logical choice is to use between re-
lays the default communication mechanism, namely TCP sockets, i.e. standard
reliable (but insecure) stream oriented connections: this is the implicit model.
The reliability of TCP means (apart network failure), all data put at one end
of the connection arrive at the other end, the lost packets being retransmitted.
If we represent two successive relays on a route, the situation is as depicted in
Figure 6.

TCP send buffer

i i+1

Kernelspace

Userspace

Fig. 6. Implicit model up to now: application level forwarding program linked through
TCP connections

TCP is handled at the operating system kernel level (“kernelspace”), while the
relaying process is an application (in the “userspace”). The operating system of
a relay stores a sent packet in a “send buffer” until the next relay acknowledges
its reception (then, it is deleted). While TCP is reliable, the need for reliability
on a route from one end to the other end implies that the relaying application
must be reliable too, i.e. it must not lose or discard packets.

The implicit model will be discarded as we need to send dummy packets. In-
deed, let us consider what happens with the implicit model if a dummy packet is
inserted when a packet is “lost” (or delayed, as reliable underlying TCP connec-
tions are used). On each relay, the program alternates between a reading phase,
where it receives packets on the network, and a writing phase, where, for each
connection, one and only one packet is sent. If multiple packets are received on a
connection, one only is sent, the other ones are queued. If no packet is received,
a dummy one is created and sent.

Let us assume at time t (see Figure 7), that both programs are in their reading
phases and receive a packet on each of the two pictured relays (relays i and i+1)2.

2 Things are presented as synchronized to make the picture clearer. However there is
no real synchronization in the actual system, but for a common parameter for the
number of packets per second. Clock skew is not an issue, neither at the timescale
of a connection (too small) nor between connections (irrelevant).

Beyond TOR: The TrueNyms Protocol 77

At time t+ 1, both programs send the previously received packet. Unbeknownst
to relay i, the packet it sent is lost. At time t+ 2 (Figure 8, left), both programs

i i+1
t t+1

i i+1

BANG!

Fig. 7. Packets received (left) are then forwarded (right), but one of them is lost

are, again, in their reading phase. The program on node i gets a packet, but the
program on node i+ 1 gets none, as the packet was lost. Meanwhile, the operat-
ing system of node i+1 receives an “ACK” from node i+2, and so it discards the
copy of the packet it still had in its send buffer: at time t+ 3 (Figure 8, right),

t+2
i i+1

???

ACK

Dummy
i i+1

t+3

Fig. 8. Due to the lost packet, node i + 1 does not receive data in time (left). It must
then send a dummy packet (right).

both programs are in a new writing phase. Relay program i just sends the packet
it got at time t + 2, which means it gives the packet to the operating system,
requesting its delivery to relay i+ 1. The operating system still has the copy of
the previous packet in its send buffer. The exact timing can vary, but in essence,
the operating system will then send both the new and the old packet on the
network. While there are two packets on a connection at the same time, this
is not by itself a security issue, as long as there is no correlation with what
appeared, appears, or will appear on other connections. Meanwhile, node i + 1
has to send a packet, but it has received none in the imparted time. Hence, it
creates a dummy packet with random data, and sends it. At time t + 4 (Fig-
ure 9, left), both programs are again reading. Relay i receives a new packet, and
relay i+ 1 gets at the same time the two packets sent by i. Here is the issue: at
time t+ 5 (Figure 9, right), each program, must send one and only one packet.
This is no issue for relay i, but relay i+ 1 has to send one packet and to queue

78 N. Bernard and F. Leprévost

t+4
i i+1

t+5
i i+1

Fig. 9. Relay i + 1 now receives two packets at the same time (left). But it can send
only one (right).

the other one. In the following instants, it will receive the packet sent by relay
i. Then it will be able to send the packet in its queue, but then will have to add
the new packet, etc. Relay i+ 1 will have to juggle with packets hereafter.

The issue with the implicit model is twofold:

– first, the FIFO queues on the nodes have an impact on the latency: each lost
packet, even if it was a dummy packet, increases the latency on the route
overtime;

– second, it uses memory; one can imagine a denial of service attack where
Mallory ensures some specific packets are lost so that some router is out of
memory.

The solution is to abandon the implicit model, and adopt an unreliable model
which allows relays to discard packets (while still insuring end-to-end reliability
between Alice and Bob).

3.4 Handling Reliability: Our Unreliable Model

The problem caused by sending a dummy packet over a reliable connection as
described in 3.3 has no obvious solution. When designing TrueNyms, the choice
was made to change the model and to build our system over unreliable channels,
leading to our unreliable model. Once relays are able to discard packets and do
not have a FIFO queue, the issue caused by dummy packets disappears. It is not
even mandatory to change the underlying communication protocol away from
TCP. However, except for some cases where it should be used and not another
protocol, TCP is now only a second choice. Indeed, the reliability TCP offers
between two relays is useless. What counts is the connection of each node of
the route with Alice and, except on the first relay, that packets can have been
discarded by a previous relay on this connection.

Worse, when a packet is lost between two relays, TCP will retransmit it. How-
ever, while the packet is retransmitted, the relay program will not be able to get
anything: the packets following the one that was lost are delayed until it is re-
transmitted. During this waiting time, the relay has to generate dummy packets
for traffic shaping. When at last the missing packet is retransmitted, it is given

Beyond TOR: The TrueNyms Protocol 79

to the program, at the same time as all the subsequent packets arrived meanwhile.
As the program is anyway unable to forward them all, it will discard most of
them. The loss of a packet that may have been a dummy packet is so transformed
in the loss of multiple packets, including possibly non-dummy packets. So: in an
unreliable model, TCP must be considered harmful. In TrueNyms, TCP is only
used when another, unreliable, protocol cannot be used.

While either or both the underlying protocol and the relays are able to lose
packets, end-to-end reliability is still needed in most cases. To the initial implicit
model of host-to-host reliability, TrueNyms substitutes an unreliable model that
still provides end-to-end reliability between Alice and Bob. However, even this
end-to-end reliability is optional in TrueNyms. This means that when Alice and
Bob are communicating through a protocol that does not need end-to-end relia-
bility, it is possible to discard this end-to-end reliability, to the profit of latency
for instance. Being able to provide both reliable and unreliable transport to
the upper layers, TrueNyms’ conceptual position in the TCP/IP network model
can be located between IP and the applicative layer. However, to have a better
compatibility with existing networks and networking applications (packet filters,
etc.), TrueNyms is actually built upon UDP (with TCP as a backup).

This section described how TrueNyms solves the issue of the shape of the
traffic. Actually TrueNyms solves the other families of problems as well [3] and
is a complete system.

4 Implementing TrueNyms: Addressing Performance
Issues

Implementation of TrueNyms started in the last quarter of 2003 as a prototype.
TrueNyms is implemented in the C language (ISO C99) and runs on Unix / Posix
systems. TrueNyms consists in a peer-to-peer daemon, to which native clients can
connect. A library is provided to write native clients. It is, however, not necessary
for most uses: a Socksv5 proxy is provided that allows existing software to
interface with the daemon.

Regarding the choice of the parameters for our tests, we chose a priori sensible
values for a generic use of TrueNyms, with 10 packets per seconds and a packet
size of 1044 bytes (when over UDP). This packet size gives MTUs of 988 and
996 bytes for respectively reliable and unreliable packets in our unreliable model.
Latency could be decreased by sending more packets per second. Unless the size
of each packet is decreased, it would also increase the throughput per route, but
would increase the burden on the network and disallow the use of the TrueNyms
system on slower accesses (like dial-up POTS connections for instance).

During the whole development, the program was constantly tested on a LAN.
To gain insights on performance over a real network, we also later deployed
(safely) the program on distinct locations linked through the Internet.

80 N. Bernard and F. Leprévost

4.1 Test Network

Such a test deployment was done by sending small (and secure) computers to
miscellaneous universities through Europe (University of Luxembourg, Technis-
che Universität Berlin, University Joseph Fourier in Grenoble, École Normale
Supérieure in Lyon, University of Liège, University of Namur). All these uni-
versities are connected to the Internet through their national research network,
which in turn are themselves connected together through the European research
network Géant 2. The network links between the relays were both low latency,
with an average round-trip time t̂rtt between two relays of about 30 ms, and
high throughput. We tested and optimized TrueNyms over this network during
more than two years.

4.2 Performance

We measured the performances of the latency and of the time needed to establish
a communication.

Latency. With standard Onion-Routing, latency LOR can be approximated by

LOR = n× t̂rtt + 2n× tproc , (3)

where n is the number of relays, t̂rtt the average round-trip time between two
relays and tproc the average processing time of a packet on a relay. However, when
traffic shaping is used, the new important parameter t̂wait must be considered.
On average, if the duration between two send phases is called tsl, there is a
waiting time of t̂wait = tsl

2 . As a consequence, TrueNyms’ latency LTN becomes

LTN = n× t̂rtt + 2n× tproc + 2n× t̂wait . (4)

Obviously, the dominant term depends on both the chosen parameters, the net-
work and the computers used as relays. On the testbed network, and with a
configuration specifying to send 10 packets/sec, the parameters were the follow-
ing:

t̂rtt ≈ 30 ms, tproc ≈ 5 ms, t̂wait ≈ 50 ms . (5)

The graph in Figure 10 shows expected latency as well as latency measured over
our tests of TrueNyms. This shows that while this kind of latency will not allow
to use some protocols needing a very low latency (e.g.Telephony), TrueNyms is
still suitable for most uses with three relays on a route (which provides a more
than adequate security).

Time to Establish a Communication. We consider this aspect as important as
latency. Indeed, even if both throughput and latency were excellent, if it required
to wait a few minutes between the time a request is sent and the time the answer
arrives, it would restrict the use of the system to a few aspects (e.g. automated
transfers). However, as described in [3], TrueNyms uses a pool of pre-established

Beyond TOR: The TrueNyms Protocol 81

0

0.2

0.4

0.6

0.8

1

1.2

2 3 4 5 6

la
te

nc
y

in
se

co
nd

s

length of the route (n)

tAR × n + tproc × 2n — without shaping — theory
twait × 2n + tAR × n + tproc × 2n — with shaping — theory

With shaping — measurements

Fig. 10. Theoretical and measured latency for TrueNyms

proto-routes to accelerate the establishment of communications. With six relays,
about 90 seconds are needed on average to establish a route. The pool of routes
provides a dramatic improvement: it reduces this establishment time to around
one second (average 0.75 seconds with three relays, 1.13 with six).

5 Conclusions

The TrueNyms protocol allows Alice and Bob to communicate without any ob-
server knowing it. When parties are using TrueNyms for their communications,
an observer, as powerful as he may be, is unable to know who they are commu-
nicating with. He is unable to know when a communication occurs. He is even
unable to know if a communication occurs at all.

TrueNyms is based on Onion-Routing, to which it adds protection against all
forms of traffic analysis. With the current knowledge, it seems out of reach to
achieve a formal proof of security of such a system. However, some tried and true
principles exist to minimize the risks. These principles and concepts were applied
during the design of TrueNyms to make it future-proof, and harden it against yet
unknown attacks. To date, this approach was fruitful: since we began our work
on TrueNyms, other attacks have been discovered against Onion-Routing or Tor.
Some are specific to Tor, due to specific features integrated in it but not related
to Onion-Routing [18,19,23]. Others are related to Onion-Routing but, again,
specific to Tor. They are due, for instance, to optimizations made to enhance
Tor’s performance, which in fact lead to the introduction of flaws [2]. At last,
some are pretty generic, like [20,10]. While we did not foresee these attacks, none
of them worked against TrueNyms, without changing a single line of the code.
This is due to the “security over performance” and “security in depth” approaches
used when designing TrueNyms. TrueNyms was extensively tested for more than

82 N. Bernard and F. Leprévost

two years on a test network. Its performance is experimentally validated and is
appropriate for most uses : Web browsing and HTTP-based protocols (RSS for
instance), Instant Messaging, File transfers, audio and video streaming, remote
shell, etc.

While focused on unobservability, for situations where communicating par-
ties may want to authenticate themselves at a upper layer, TrueNyms provides
anonymity as a byproduct. This anonymity is at the network level, and is much
stronger than what other comparable systems (like e.g. Onion-Routing) provide.
The paper [3] completes the present article in providing much more details on
TrueNyms, its implementation, its in-depth security, and its performances.

Acknowledgements. The authors thank P. Bouvry, M. Muraszkiewicz, F.
Seredynski for their careful reading of [3], and the referees, as well as the Tech-
nische Universität Berlin, the University Joseph Fourier of Grenoble, the École
Normale Supérieure of Lyon, the University of Liège and the University of Na-
mur for joining the first test campaign. The FNR/04/01/05/TeSeGrAd grant
partially supported this research.

References

1. Back, A., Möller, U., Stiglic, A.: Traffic analysis attacks and trade-offs in anonymity
providing systems. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 245–257.
Springer, Heidelberg (2001)

2. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing
attacks against Tor. In: Proceedings of the Workshop on Privacy in the Electronic
Society (WPES 2007), Washington, DC, USA (October 2007)

3. Bernard, N., Leprévost, F.: Unobservability of low-latency communications: the
TrueNyms protocol. Work in Progress (2011)

4. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy vulnerabilities in
encrypted HTTP streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS,
vol. 3856, pp. 1–11. Springer, Heidelberg (2006)

5. Campbell, D.: A new way to do anonymity. STOA European Parliament
168.184/Part.4 (April 04, 1999)

6. Dai, W.: A new way to do anonymity. Post to Cypherpunks Mailing List (February
07, 1995)

7. Danezis, G.: The traffic analysis of continuous-time mixes. In: Martin, D., Serjan-
tov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 35–50. Springer, Heidelberg (2005)

8. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

9. Ebrahimi, T., Leprévost, F., Warusfel, B. (eds.): Enjeux de la sécurité multimédia.
Informatique et Systèmes d’Information, Hermes-Lavoisier (2006)

10. Evans, N., Dingledine, R., Grothoff, C.: A practical congestion attack on tor using
long paths. In: Proceedings of the 18th USENIX Security Symposium (August
2009)

11. Fu, X., Graham, B., Bettati, R., Zhao, W.: Active traffic analysis attacks and
countermeasures. In: Proceedings of the 2003 International Conference on Com-
puter Networks and Mobile Computing, pp. 31–39 (2003)

Beyond TOR: The TrueNyms Protocol 83

12. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding Routing Information. In:
Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 137–150. Springer, Heidelberg
(1996)

13. Herrmann, D., Wendolsky, R., Federrath, H.: Website fingerprinting: attacking
popular privacy enhancing technologies with the multinomial naïve-bayes classifier.
In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security (CCSW
2009), pp. 31–42. ACM, New York (2009)

14. Hintz, A.: Fingerprinting websites using traffic analysis. In: Dingledine, R., Syver-
son, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 171–178. Springer, Heidelberg
(2003)

15. The Invisible Internet Project: Introducing I2P (200x), http://www.i2p2.de/
16. Kent, S., Atkinson, R.: RFC 2401 Security Architecture for IP. IETF (1998)
17. Liberatore, M., Levine, B.N.: Inferring the Source of Encrypted HTTP Connec-

tions. In: Proceedings of the 13th ACM Conference on Computer and Communi-
cations Security (CCS 2006), pp. 255–263 (October 2006)

18. McLachlan, J., Hopper, N.: On the risks of serving whenever you surf: Vulnera-
bilities in Tor’s blocking resistance design. In: Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2009). ACM (November 2009)

19. Murdoch, S.J.: Hot or not: Revealing hidden services by their clock skew. In: Pro-
ceedings of CCS 2006 (October 2006)

20. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: Proceedings of the
2005 IEEE Symposium on Security and Privacy. IEEE CS (May 2005)

21. Murdoch, S.J., Zieliński, P.: Sampled traffic analysis by internet-exchange-level
adversaries. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 167–
183. Springer, Heidelberg (2007)

22. O’Connor, L.: On blending attacks for mixes with memory. In: Barni, M., Herrera-
Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS,
vol. 3727, pp. 39–52. Springer, Heidelberg (2005)

23. Øverlier, L., Syverson, P.: Locating hidden servers. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy. IEEE CS (May 2006)

24. Reed, M.G., Syverson, P.F., Goldschlag, D.M.: Anonymous connections and onion
routing. IEEE Journal on Selected Areas in Communications 16(4), 482–494 (1998)

25. Rescorla, E.: SSL and TLS – Designing and Building Secure Systems. Addison-
Wesley (2001)

26. Rybczyńska, M.: Network-level properties of modern anonymity systems. In: Pro-
ceedings of the International Multiconference on Computer Science and Informa-
tion Technology, pp. 837–843 (2008)

27. Rybczyńska, M.: A round-based cover traffic algorithm for anonymity systems. In:
2009 International Conference on Intelligent Networking and Collaborative Sys-
tems, pp. 93–99 (2009)

28. Serjantov, A., Sewell, P.: Passive attack analysis for connection-based anonymity
systems. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 116–131. Springer, Heidelberg (2003)

29. Shmatikov, V., Wang, M.H.: Measuring relationship anonymity in mix networks.
In: Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2006)
(October 2006)

30. Wang, M.-H.: Timing analysis in low-latency mix networks: Attacks and defenses.
In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189,
pp. 18–33. Springer, Heidelberg (2006)

http://www.i2p2.de/

84 N. Bernard and F. Leprévost

31. Sun, Q., Simon, D.R., Wang, Y.M., Russell, W., Padmanabhan, V.N., Qiu, L.:
Statistical identification of encrypted web browsing traffic. In: Proceedings of the
2002 IEEE Symposium on Security and Privacy, Berkeley, California (May 2002)

32. Wright, C.V., Monrose, F., Masson, G.M.: On inferring application protocol be-
haviors in encrypted network traffic. Journal of Machine Learning Research 7,
2745–2769 (2006)

33. Zalewski, M.: Silence on the Wire: a Field Guide to Passive Reconnaissance and
Indirect Attacks. No Starch Press (2005)

34. Zhu, Y., Fu, X., Graham, B., Bettati, R., Zhao, W.: On flow correlation attacks
and countermeasures in mix networks. In: Martin, D., Serjantov, A. (eds.) PET
2004. LNCS, vol. 3424, pp. 207–225. Springer, Heidelberg (2005)

A Signature Scheme for Distributed Executions

Based on Control Flow Analysis

Sébastien Varrette1, Benôıt Bertholon2, and Pascal Bouvry1

1 Computer Science and Communication (CSC) Research Unit
2 Interdisciplinary Centre for Security Reliability and Trust,

University of Luxembourg
6, rue Richard Coudenhove-Kalergi
L-1359 Luxembourg, Luxembourg

Firstname.Name@uni.lu

Abstract. This article proposes a dynamic and flexible signature scheme
to verify at runtime the execution of a distributed program. Extend-
ing [20], the approach relies on the analysis of a trace that represents
such an execution using Control Flow Graph (CFG). This mechanism
ensures the detection of flow faults that do not correspond to the CFG,
i.e. that tamper the normal run of the application. Most effects of mali-
cious code injection commonly met on distributed computing platforms
such as grids are covered by this approach. The execution engine used in
our signature scheme is certified with the TPM-based Certification of a
Remote Resource (TCRR) protocol [5].

Our approach has been implemented in KAAPI, a C++ middleware
library to execute and schedule fine or medium size grain programs on
distributed platforms. The concrete validation on two parallel programs
(Fibonacci and NQueens) reveals the scalability of the approach and its
relatively low overhead.

Keywords: Distributed Executions, Cloud, Clusters, CFG, DFG, TPM.

1 Introduction

The research presented in this article holds in the context of distributed com-
puting platforms i.e clusters, computing grids [7] or Clouds [28]. These in-
frastructures are subjected to various threats, such as [Distributed] Denial of
Services ([D]DoS), malwares, trojan horses or vulnerabilities exploits. These at-
tacks typically lead to crashes, buffer overflows or machine-code injection that,
more generally, affect the integrity of the distributed executions carried out over
the platform.

Our goal is then to tackle these issues using an abstract representation of
a program called Control Flow Graph (CFG). This model is used, for a long
time now, to analyze the source code of programs [3]. In complement to this
approach, a Data-Flow Graph (DFG) can be used as part of the execution engine
on a distributed platform to schedule and execute tasks. Moreover, DFG can be
used in a variety of efficient fault-tolerance mechanisms where the objective is to

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 85–102, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 S. Varrette, B. Bertholon, and P. Bouvry

detect and eventually correct corruptions in order to make the execution resilient
against different classes of faults. Historically, the first class of faults addressed
by DFG was crash-faults that model computing node volatility. Such errors are
typically due to hardware or software failures together with nodes disconnections
(as a result of a DoS attack for instance). At this level, a general idea relies
on checkpoint/rollback mechanisms that store (either periodically or at specific
events like communications or task theft) a view of the execution state. DFG
precisely provides a consistent global state of the execution and is therefore used
in this context to provide efficient checkpoint/rollback algorithms [13,12].

Later on, it was proposed to handle with DFG a more complex kind of faults
referred to as cheating faults. Generally speaking, the computing resources of the
execution platform cannot be fully trusted and such faults represent the conse-
quences of cheaters that alter intermediate or final results of the computation.
Whether this is the consequence of malicious code execution or an abnormal yet
non-malicious behaviour, they still have been experimented in SETI@Home or
BOINC [18], the famous projects that operate on a desktop grid topology. More
generally, such a selfish behaviour should not be underestimated on grids, es-
pecially when the cloud computing paradigm and its money-oriented incentives
raises so much euphoria. In all cases, the detection of cheating faults over a given
execution is usually done via result checking techniques. At this level, the only
generic approach relies on tasks duplication, either total or partial. By tracking
the exact tasks dependencies, DFG analysis permitted to design generic verifica-
tion algorithms by partial duplication that minimize the number of intermediate
result checks i.e. the number of tasks duplicated on safe resources. This was pro-
posed for instance in [26,21] with theoretical bounds that proved the efficiency
of the approach on Fork-Join or recursive programs but unfortunately a huge
overhead in the general case.

To reduce this overhead and noticing that cheating faults commonly lead to
the modification of the normal flow of instructions being executed, the purpose
of this article is to address flow-faults in the context of distributed executions.
The motivation behind this work was to evaluate if a weaker model of faults
can be handled efficiently over all kind of programs using Control Flow analysis.
The answer is positive and this paper describes a concrete signature scheme that
checks a distributed execution against flow faults in a distributed environment.
As with classical signature schemes for numeric documents, the fingerprint is
first elaborated offline by analysing the source code of the program to extract a
skeleton that identify the structure of the program to be executed. In practice,
we build an automaton derived from the CFG of each task that compose the
program. At run-time, the execution of any sub-task of the program (in general
on a remote computing node) is accompanied with the evaluation of a specific
hash value deduced from the dynamic and distributed execution. This hash is
used as a transition value to move between the states of the automaton such
that any tampering on the normal flow would result in a move into an invalid
state. It follows that abnormal behaviours can be reported in real-time which is
of particular importance in a dynamic computing environment. Our signature
scheme have been implemented in Kernel for Adaptative, Asynchronous Parallel

A Signature Scheme for Distributed Executions 87

and Interactive programming (KAAPI), a C++ middleware library that uses
a dynamic DFG (unfold at run-time) to execute and schedule fine or medium
size grain program on distributed platforms. Being integrated at the middleware
level, it makes the approach fully transparent to the user.

This article is organized as follows: §2 recalls the related work. The main
contribution of this article i.e. a signature scheme for distributed executions
is detailed in §3. Implementation aspects in the KAAPI library are described
in §4 while §5 expounds the experiments conducted to validate the approach.
In particular, we analyse the overhead of the signature process on two parallel
applications; firstly a naive Fibonacci to illustrate the impact on a large recursive
program; secondly a NQueens solver to evaluate a more realistic application. §6
concludes this article and provides some perspectives.

2 Related Work

This section gives a brief overview of the existing literature in the domain of
execution flow checking, more commonly referred as control flow checking. It is
important to notice that all the approaches presented here operate on sequen-
tial program while the mechanism described in this article deals with parallel or
distributed applications. In all cases, two complement approaches can be distin-
guished: one corresponds to static methods applied before or after the execution
(see §2.1). The other way relies on dynamic techniques that will be detailed in
§2.2.

2.1 Static Methods

This approach operates at two levels, firstly on the system reinforcement through
various software techniques (sand-boxing, virtualization, quotas, activity scan-
ners etc.) [27]. Secondly, on the detection of malicious codes. In this later context,
one idea that dates back to the 90’s is to determine a fingerprint that identifies
a program or a specific piece of code to detect and/or prevent the execution of
malicious code. This approach is typically applied nowadays for malware detec-
tions [6]. Signature checkers, for instance, scan the binary file before the run to
recognize a known pattern supposed to identify the malware. Integrity checkers
complete this process to verify the checksum of the file on pattern recognition
to reduce the instances of false positives reported by the scanner.

Instead of detecting a local malware patterns, an alternative approach consists
in the construction of a formal proof based on strong mathematical properties
able to ensure the integrity of a program prior to its remote execution. In this
context, Proof Carrying Code (PCC) [19] is a technique that can be used for
safe execution of untrusted code. In a typical instance of PCC, a code receiver
establishes a set of safety rules that guarantee safe behavior of programs, and
the code producer creates a formal safety proof that proves, for the untrusted
code, adherence to the safety rules. Then, the receiver is able to use a simple and
fast proof validator to check, with certainty, that the proof is valid and hence
the untrusted code is safe to execute.

88 S. Varrette, B. Bertholon, and P. Bouvry

2.2 Dynamic Methods

Whereas all the previous techniques certify the integrity of the code against flow
faults before the run, they do not cover dynamic attacks altering the execution
in the run-time. Indeed, the key problem is that although a program at the be-
ginning of its execution can be verified as authentic, while running, its execution
flow can be redirected to externally injected malicious code using, for example,
a buffer overflow exploit [2]. At this level, one approach consists in modeling
the program behavior in order to prevent further malicious computation. For in-
stance, Wagner and Dean [29] provide the first use of statically extracted model
of the program behavior (which is control-flow based) to verify security prop-
erties at run-time. Yet the generation of the model requires multiple runs of
the complete application which is not realistic for distributed executions over
large-scale computing platforms. Haldar & al. [10] proposed the remote verifica-
tion of program behavior using a trusted Virtual Machine (VM). In this sense,
the approach is close to oracle-based techniques proposed in the field of result-
checking algorithms. It follows that the verification of the full program would
require a complete re-execution on the trusted VM such that the computing
platform would not be exploited correctly.

In a rather different approach, Kirovski & al. [14] describes a Secure Program
Execution Framework that combines architectural and compilation techniques
to ensure software integrity at run-time. More precisely, encrypted, processor-
specific signatures are embedded into each block of instructions during software
installation and then checked at run-time to guarantee the execution of unmod-
ified programs. Yet the validation of this technique demonstrates that the verifi-
cation of the instructions introduces a very huge overhead. One way to cope with
this issue was proposed in [16] by checking only the last signature block. This
assumes unfortunately that the memory containing the program instructions is
write-protected and that the processor organization is modified to include two
hardware resources (a Basic Block Signature Table and a Basic Block Signa-
ture Verification Unit). This is currently not realistic for distributed computing
environments based on off-the-shelf computers.

In a related perspective, Oh&al. in [20] proposed a scheme to check dynam-
ically that a program is in a valid state. This is done in two steps, firstly by
generating the CFG to determine the flow of execution such that in a second
phase, a daemon can verify at runtime that each state of the program correspond
is valid. Each state is associated with a unique id value and a global register keep
track of the current state the program. This verification is done just before or at
the same time as the execution of the code. A derived approach (without daemon
nor global register) has been used later by Abadi&al [1], this time focusing on
context switching via the jump commands.

The core of the work presented in this article is to extend the work of Oh&al
in [20] in two directions, firstly to operate at the middleware level and secondly
over distributed executions (instead of a sequential one) which implies a post-
verification instead of a pre-verification as done in [20]. In this context, we present

A Signature Scheme for Distributed Executions 89

in the next section a flow fault detection mechanism that relies on a signature
scheme elaborated though Control Flow analysis.

3 Proposed Framework for a Checkable Signature of
Execution Flow

In the sequel, we consider a (parallel) program P executed on a computing plat-
form M . Note that M can be a single machine, a cluster or a computing grid.

Fig. 1. Overview of the proposed technique for flow-fault detection in distributed ex-
ecutions

3.1 Control Flow Analysis and Fault Model

Our proposal is based on an abstract and portable representation for the dis-
tributed execution of P for a given granularity which is the trace of the execution.

Definition 1 (Control Flow Graph [3]). A control flow graph is a directed
graph in which the nodes represent basic blocks i.e. linear sequence of program
instructions and the edges represent control flow paths. The entry point of a given
function is associated to the ”Start” state in its CFG. The ”End” state is further
assigned to any legitimate return step in the function.

90 S. Varrette, B. Bertholon, and P. Bouvry

Definition 2 (Flow fault). Let G denotes the Control Flow Graph of P over
M . Let T be the trace of an execution of P over M . Then T is said faulty or
victim of a flow fault if T does not end in an end state of the graph G.

Whereas this definition (and furthermore the signature scheme proposed in this
paper) can be applied for any granularity of the graph, we will consider here the
smallest program unit of execution i.e. a task in G as a middleware function of
the source code.

3.2 General Overview

The figure 1 represents an overview of the signature scheme for flow faults de-
tection proposed in this article. As in classical signature schemes, our approach
involves two different phases: (1) A static (offline) generation of the reference
flow fingerprint for each task that compose the program to be executed (see §3.3
– the set of all fingerprints is referred as the code signature) and (2) a dynamic
(online) execution flow verification based on the code signature (see §3.4). This
last process is recursive, distributed and handled by execution agents spread on
every computing nodes that belongs to the computing platform. The general
idea is that when an execution agent is in charge of executing a task t, it will
load the control flow graph of each sub-tasks ti, receive from each ti a fingerprint
and finally use both elements to detect the occurrence of flow faults.

Note that in this signature scheme part, the terms fingerprint and signature do
not induce classical cryptographic properties. it was decided to use this terminol-
ogy with regards of their initial meaning (respectively an identifier and a check-
able mechanism of validity). Furthermore, this scheme is not a result-checking
technique. As mentioned in the introduction, we focus here on a weaker model
of faults. In particular, an execution with a validated flow could still integrate a
data value modification (compared to the execution in a fault-free environment).

Error
\

tk

si

t1

t2

Fig. 2. A state
in the automaton
signature

Finally, one can immediately argue that this scheme is still vul-
nerable to mimicry attacks [30] where the attacker compute
and return the expected signature to the verification process
while executing a completely different task as part of the global
program run. But in order to assert the integrity of the Execu-
tion Agent we remotely verify the integrity of the node using
the TPM-based Certification of a Remote Resource (TCRR)
protocol described in [5]. Relying on the Trusted Computing
concepts and the Trusted Platform Module (TPM) [25], the
TCRR protocol permits to prove that the execution engine
running on top of the Operating system (OS) of the remote
computing node is reliable i.e. that it has not been tampered

with. The figure 3 shows how the TCRR protocol’s communications ensures that
the EA is reliable. This protocol has been verified using two of the reference tools
in automatic verifications which are AVISPA and Scyther. Detailing this proto-
col is clearly outside the scope of this paper. The interested reader can refer to
[4] or [5] for its complete analysis.

A Signature Scheme for Distributed Executions 91

Fig. 3. TPM-based Certification of a Remote Resource (TCRR)

3.3 Offline Execution Fingerprint by Source Code Analysis

In our proposal, the reference fingerprint of P also known as its signature, is
computed offline by analysing the source code of the program (typically in C or
C++ yet with no support for exceptions i.e. throw clauses and catch blocks).
More precisely, it consists in a set of non deterministic finite automata (NFA)
A(t) constructed for each task t that compose the program P. A path from the
initial state Begin to the final one End corresponds to a path in the execution flow
of t to reach a return instruction. The states of the automaton are associated
to the sub-tasks met in all possible correct execution of t.

Transitions between a state si

End

Begin

End

Begin

f2

f1

fn

f1, f2, . . . , fn

H(fn)

H(f1)

H(f2)
H(H(f1),H(f2),. . . ,H(fn))

(a)

Begin

End

H(f2)

f2 f2

f3

Af1

H(f3)

H(f2)

(b)

Fig. 4. (a) Optimization phase applied for
paths composed by two or more states. (b)
Illustration of the non-deterministic aspect of
automaton signatures.

and sj is authorized for a specific
hash values H(sj) that will be de-
tailed in §3.4. We use a special tran-
sition value H(nil) to refer to the
return instruction. Furthermore,
once every legitimate transition
from a state si are evaluated, an
implicit transition to the special
state Error is added. The special
transition value “\” is used for this
movement or, more simply, this
transition is represented without
value but as a dot line.

All those elements are illustrated
in figure 2. In particular, in the con-
text of the example given in this
figure, the “\” transition value

should be understood as“everything except the values of the set {t1, . . . , tk}”. Note
that in the sequel and unless otherwise specified, the implicit transition to the Er-
ror state is not represented to improve the readability of the signature automaton.

92 S. Varrette, B. Bertholon, and P. Bouvry

H(nil)

 f(...)
}

if(...) {
 f(...)
} else {
 g(...)
}

 f(...)
}

while(...){
 f(...)
}

for(...) {
 f(...)
do {

} while(...)

H(f)

f(...) Error

H(f)

f(...) Error

H(f)

f(...) Error H(f) f(...)

Error
H(nil)

H(nil)

g(...)

H(f)

H(nil)

H(f)

H(nil)

H(nil) H(f)

H(nil)

if(...) {

Fig. 5. Structure of control handling for the signature generation

The signature automaton take also into account the control structures and the
loops (i.e. the sequences if...else, for, while etc.). Those elements affect
the construction of the signature as illustrated in figure 5. Once a signature
At is built for each task t, we apply an optimization phase for each of them
to accelerate the future online verification of paths having more than one state
(besides Begin and End). More precisely, a new branch is added in this case
with a single agglomerated state. The transition value to this state derives from
those met on the path to synthesize – this process will be detailed in §3.4. In
all cases, this optimization phase is shown in the figure 4. Finally, we mentioned
that the automaton is non deterministic. This is due to the fact that for some
states, a valid transition to distinct states is done with the same hash value as
illustrated in the figure 4. Such ”conflicts”are solved in the same way Generalized
LR parsers handle this kind of issues: at parsing time, we keep in memory all
possible paths to drop afterwards those leading to impossible cases [15].

3.4 Online Signature Verification

Hash value construction. The execution of a task t is accompanied with the
computation of its hash value defined as follows.

Definition 3 (Flow hash). Let t represents a task of P over M .
The flow hash associated to the execution of t is defined by:

H(t) = (prototype,flow detail)

In this definition, prototype details the function prototype i.e. the function name
together with the typed arguments associated to the function (input, output
and return type). At execution time, this information is given by the string
__PRETTY_FUNCTION__ (set at compilation time). flow detail corresponds to infor-
mation about the executed flow for the task t considered i.e. the trace of the
execution. In the context of this paper, it consists in the information gathered
during the full graph traversal (in the sequential order): the prototype of the sub-
tasks executed over this path are collected to form what will be the flow detail
part of the hash value. This is illustrated in figure 6.

A Signature Scheme for Distributed Executions 93

f

int int

int

 int c = g(a);
 int d = h(a,b);

}

int f(int a, int b){

 return h(c,d);

(sequential execution order)
graph traversing

int int

h

int

g

h

int

int
d

Begin

End

int f(int, int)

prototype

dataflow graph unfolding
Execution

a b

c

ba

H(g)
H(g),H(h)

H(g),H(h),H(h)

H(nil)

int f(int, int)

signature automaton for f

g

h

h

H(g)

H(h)

H(h)

DFG(f)

Af

generated from Gref(f)

Fig. 6. Elements of the hash value relative to the execution of a task f . For reference,
the signature automaton of f is given.

The DFG is used to schedule the tasks to be executed, typically with an online
work-stealing algorithm as in KAAPI– see §4. This engine uses agents spread on
each computing node. The signature verification is a fully distributed process.
Let’s suppose the processor p is responsible for running a function f called during
the execution of a function F . We describe here the dynamic recursive process
that checks the flow of f and returns the hash value H(f) to the agent linked to
the execution of F . The execution engine unfolds the graph DFG(f) associated
to the execution of f . Let’s assume that this graph is composed by the sub-tasks
f1, . . . , fn (in the example proposed in figure 6, n = 3, f1 = g and f2 = f3 = h).
Each of them have to be executed, either on p or on another processor. Even if
the task may not be executed in the sequential order, as the execution engine
uses the DFG to execute tasks, they are called and add in the list of functions to
be executed in the sequential order. At the end of the execution of the sub-task
fi on a processor pi, the hash value H(fi) is returned from pi to p, the later being
responsible for checking it. This verification is based on fi’s automaton Afi and
involves two phases: (1) checking that H(fi).prototype matches the prototype
signature of fi (2) ensuring that the path H(fi).f low detail permits to reach
the End state of Afi .

Whenever one of those conditions does not hold, a flow fault is detected as
demonstrated in proposition 2. Otherwise, no flow fault intervened in any of fi’s
executions so the hash value H(f) can be computed with the two elements men-
tioned in the definition 3: (1) the effective prototype of f (for instance using the
__PRETTY_FUNCTION__ string) and (2) the flow summary of f ’s execution which
has been filled during the successive verifications of the sub-tasks {f1, . . . , fn} as
the sequence: H(f).f low detail = H(f1).prototype, . . . , H(fn).prototype. Even-
tually, H(f).f low detail does not correspond to this potentially long sequence
but to a compressed version.

94 S. Varrette, B. Bertholon, and P. Bouvry

In all cases, the hash value H(f) is returned to the agent P responsible for
the execution of the function F (which again can detect flow faults that may
have happened during the execution of f). As it can be seen, the full verification
process is fully distributed and permits to reach “leaf” functions for which the
hash value is limited to the only prototype. Furthermore, the verification process
ends in a finite time as stated in the proposition 1.

Proposition 1. As soon as the execution of the program P ends, the verification
process ends in a finite time.

Proof. If the program P ends, then the macro dataflow G representing the
execution of P is composed by a finite number of tasks. Consequently, a finite
number of dataflow graphs have be unfolded and each of them is associated with
the verification of a single signature automaton. Furthermore, each automaton
owns a finite number of states and checking a signature is linear in the number
of states on a critical path. it follows that the verification process of P ends in
a finite time. The detection of flow faults results from the proposition 2.

Proposition 2. Let {At1 , . . . ,Atn} denotes the set of automaton signatures
elaborated from the analysis of P’s source code. Let T be the trace representng of
an execution of P over M , composed by t1, . . . , tn tasks. ∃i ∈ [1, n] such that the
verification process of Tti the automaton signature Ati ends in the Error state
=⇒ T is faulty.

Proof. ⇒ Ati has been constructed to reflect all possible flows in the execution
of ti as a path from Begin to End. Reaching the Error state indicates a abnormal
transition value Consequently, Tti /∈ Ati and T is faulty. It follows that if any
flow fault, which does not correspond to the CFG, that intervenes during the
execution of the program P is detected by our verification process.

Execution Engine and Signature Verification. In order for this signature
scheme to work, the execution agents as to certified, this can be done using the
TCRR protocol [4] which verifies that all the code running on the machine cor-
respond to an unmodified code, specially the boot loader, the Operating System
and the KAAPI execution engine. We have then a trustable execution engine
based on dynamic macro dataflow graph construction. In order to gain this prop-
erty, the machine has to fulfill the hypothesis defined in [4] which is no physical
intrusion in the running machine and the correct setup of the machine.

4 Implementation

Our signature scheme have been implemented in KAAPI, a C++ middleware
library that uses a dynamic data flow graph (unfold at runtime) to execute
and schedule fine or medium size grain program on distributed platforms. We
now present the internals of this library relevant for this work, together with
the associated programming interface. The elements of the signature scheme
implementation are then detailed in §4.

A Signature Scheme for Distributed Executions 95

KAAPI stands for Kernel for Adaptive, Asynchronous Parallel and Inter-
active programming [17]. It is a C++ library for distributed computing that
allows to execute multithreaded computation with data flow synchronization
between threads. The library is able to schedule fine/medium size grain pro-
gram on distributed machine. In particular, KAAPI construct dynamically at

Listing 1.1. Programming a naive Fi-
bonacci algorithm with the Athapascan
interface of KAAPI (simplified view)

#include <athapascan−1>
int Fiboseq(int n); // Sequential version
void Sum(Shared w<int> res,
Shared r<int> res1, Shared r<int> res2){

res = res1+res2;}
void Fibo(Shared w<int> res, int n,
int threshold int n) {

if (n < threshold)
res = Fiboseq(n);

else {
Shared<int> res1;
Shared<int> res2;

/∗the Fork keyword => spawn new task ∗/
Fork<Fibo>(res1, n−1, threshold);
Fork<Fibo>(res2, n−2, threshold);
Fork<Sum>(res, res1, res2);

}
}

runtime and with a low overhead the
dataflow graph of the tasks to be exe-
cuted; this description is used to sched-
ule the tasks using a work-stealing
algorithm [9]. The KAAPI programming
level relies on the Athapascan interface
and is based on a global address space
called global memory and allows to de-
scribe data dependencies between tasks
that access objects in the global mem-
ory. The language extends C++ with
two keywords: the Shared keyword which
is a type qualifier to declare objects in
the global memory and the Fork key-
word which creates a new task that may
be executed in concurrence with other
tasks. An example of the use of this pro-
gramming interface is proposed in the
listing 1.1. We will use this program to

illustrate the implementation of the signature scheme. The KAAPI low level
interface allows to build the macro dataflow graph between tasks during the ex-
ecution of Athapascan program. This interface defines several objects. A Closure
object represents a function call (i.e. a task t) with a state. An Access object
represents the binding of an formal parameter in the global memory. All objects
are pushed in a stack, called Frame, which is associated to each control flow.
Finally, Closure, Access and Frame objects are uniquely identified over the net-
work. This will help us to determine the process responsible for the verification
of a given task. The execution of a KAAPI program on a distributed platform
is done by a dynamic set of processes, one per multi-processor, communicating
through a network. These are the execution agents mentioned in §3.4 who will
be also responsible for signature checking tasks. Each agent has several threads
of control to execute tasks. At deployment step, one of the agent is designed to
be the leader which starts the thread that executes the main task. It is therefore
the leader that will deliver a potential certification of the correct execution. As
precised in the section 3, our approach involves two different phases, one off-line
to generate the code fingerprint, the other on-line to check the signature in a
fully distributed process.

Off-line fingerprint generation. As mentioned in §3.3, a set of Non-deterministic
Finite Automata (NFA) A(t) are generated off-line for each task t that compose
the source code of the KAAPI program. In this context, we developed a dedicated

96 S. Varrette, B. Bertholon, and P. Bouvry

software that parse the preprocessed code of the program (obtained via the
GNU Compiler Collection [23] and the command g++ -E) with the C++ parser
Elsa [22] and the Generalized LR parser Elkhound [15]. From the parse tree it
creates the signature automaton for each function (as describe in §3.3). NFAs are
stored in encrypted files under the dot format [8]. They are read at run time by
the KAAPI agents (who hold the key to decrypt them) to operate the signature
verification process. The dot format The dot format simplified the automatic
generation of a human-readable view of the signatures. An example of such an
output is proposed in Figure 7 by applying this process to the Fibonacci pro-
gram with the main function defined with a for loop calling Fork<Fibo>(res,
n, threshold);

main Fibo

S u m Fibo Seq

source

des t ina t ion

nil Fibo

H(Fibo)

source source

nil

H(Fibo)

source

Fibo Seq

H(Fibo_seq)

Fibo

H(Fibo)

des t ina t ion

nil

Fibo

H(Fibo)

S u m

H(Sum)

nil

des t ina t ion

nil

des t ina t ion

nil

n

Fibo

threshold

r e s

n

Fibo

threshold

r e s

n - 1 threshold n - 2 threshold

Fibo Fibo

r e s

S u m

r e s

n - 1 threshold n - 2 threshold

Fibo Fibo

r e s

S u m

r e sverif

TaskVerification

verifverif

TaskVerification TaskVerification

TaskVerification

(a) (b)

Fig. 7. (a) small Signature automata generated for the Fibonacci program. (b) Data-
flow graph without (left) and with (right) the Taskverification function responsible
for checking the execution flow against the appropriate signature automaton.

On-line signature verification. The flow integrity control is implemented using
a dedicated KAAPI Closure object called TaskVerification. This checking
task is added at the end of each frame and is responsible for operating the sig-
nature verification of the associated task. Following the mechanism described in
§3.4, this task communicates with the TaskVerification closures beneath and
above it using a KAAPI Shared variable verif to (1) collect hash values from
the agent that executed the sub-tasks i.e. the Closure objects present in the
frame and (2) return the hash value to the frame at the upper level. The effect
on the macro dataflow of the program is highlighted in Figure 7. Furthermore,
the Taskverification closure check the returned hash value of each Closure
objects in his frame. As stated in §3.4, this has to be done in the sequential
order. This is very simple to operate as KAAPI chains the Closure objects
in a frame in this precise order. Moreover, and contrary to normal Closure in
KAAPI, the TaskVerification task cannot be stolen by other agents, so as

A Signature Scheme for Distributed Executions 97

to keep the signature process local to the agent responsible for the execution of
the frame checked. Finally, it is important to notice that the approach is fully
transparent to the user as the implementation details provided in this paragraph
have been applied at the middleware level.

5 Experimental Validation

The proposed signature scheme has been validated on two typical applications
(Fibonacci and N-Queens). Version 2.4 of the KAAPI library have been used for
those experiments which have been conducted on the clusters of the University of
Luxembourg. Each computing node can have one of the following configurations:
C1 Intel Dual Core Pentium D, 3.2 GHz and 4 GBytes of main memory (2 cores)
C2 Two Intel Xeon Quad-Core, 2.0 GHz and 32 GBytes of main memory (8
cores)

Signature checking activated, 2 cores (C1)
Signature checking activated, 4 cores (C1)
Signature checking disabled, 2 cores (C1)
Signature checking disabled, 4 cores (C1)

 20
 25

 30
 35

 40
n

 0
 5

 10
 15

 20
 25

 30
Threshold

 0

 50

 100

 150

 200

Ti
m

e
(s

)

(a)

 25
 30

 35
 40

 0
 5

 10
 15

 20
 25

 30

 1

 2

 3

 4

 5

 6

O
ve

rh
ea

d
ra

tio
 (4

 c
or

es
, C

1)

nThreshold

O
ve

rh
ea

d
ra

tio
 (4

 c
or

es
, C

1)

(b)

Fig. 8. Overhead of the embedded signature checking process when executing the Fi-
bonacci program (a) absolute (b) relative (for configuration C1 and 4 cores)

Fibonacci computation. A first set of experiments of the folk recursive Fi-
bonacci number computation has been executed based on the code provided in
the listing 1.1. This benchmark program demonstrates a configuration with mas-
sive task creation, which is the worst configuration for our signature scheme as
every new task created is associated with a verification procedure. The granular-
ity of the program is fully controlled by the threshold parameter: a small value
increases drastically the number of forked tasks, letting the sequential ”leaf”func-
tions of the data-flow graph (i.e. Fibosec tasks) with little work to operate. On
the contrary, bigger values for the threshold limits the number of spawned tasks
and makes the sequential functions longer, i.e. able to cover the task creation
process or, in our case, the signature checking operation. This aspect is illus-
trated in Figure 8 where the Fibonacci program is evaluated for different values

98 S. Varrette, B. Bertholon, and P. Bouvry

of the parameters n and threshold on 1 or 2 computing nodes (each in con-
figuration C1). Figure 8(a) displays the execution time and shows the overhead
of activating the signature verification, compared to classical executions where
the verification mechanism is also embedded yet disabled. Figure 8(b) derives
directly from the previous evaluation and proposes an overview of the relative
overhead computed by the formula: Roverhead = Exec time with sig. checking

Exec time without sig. checking
.

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
ov

er
he

ad

Threshold / n

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16

Ti
m

e
(s

)

Number of cores (configuration C2)

(1) Native Kaapi
(2) Kaapi with signature module, without checking

(3) Kaapi with signature module, with checking

(b)

Fig. 9. (a) Relative overhead vs. relative threshold for a Fibo(39) computation over 2
nodes in configuration C1 with n = 39. (b) Speedup on the computation of Fibo(42)
(with threshold=20) in the following configurations: (1) native KAAPI middleware
(2) KAAPI middleware with embedded signature module without checking and (3),
as (2), but with signature checking.

In particular, we can see that Roverhead can go up to a value of 6 which
makes the execution accompanied with signature checking 6 times longer than
a normal execution. This represents of course a high overhead. Luckily, it is
limited to parameters areas unrealistic for an efficient distributed execution, in
particular the threshold is very low, leading to a massive task creation where the
signature verification applied for each of them is hardly covered by the runtime
of the sequential part of the program. This is probably clearer on Figure 9.
Anyway, it can be seen that for a relative threshold r = threshold

n
greater than

0.5, the overhead of the signature checking is relatively low. Another important
aspect illustrated in this experiment is the scalability of the approach in terms
of number of tasks handled. Remember that every forked task is associated to
a TaskVerification procedure. With a threshold of 1 for the computation of
Fibo(39), more than 108 tasks have been checked transparently by the system.
The speedup of the computation is presented in Figure 9 where we compare the
overhead of the signature scheme implementation (with or without checking)
against the native KAAPI library. Even if this evaluation was done in a context
where we saw a very low overhead for the signature checking (as r = 0.41), this
experiment still reveals the negligible overhead induced by the signature module
implementation inside KAAPI.

A Signature Scheme for Distributed Executions 99

 1

 10

 100

 1000

 10000

 16 17 18 19 20
 1

 1.25

 1.5

 1.75

 2

Ti
m

e
(s

)

R
at

io

N (chess board size)

Signature checking activated
Signature checking disabled

Relative overhead

Fig. 10. Overhead of the embedded signa-
ture checking process when executing an
NQueen parallel solver over 16 cores (con-
figuration C1)

NQueens computation
To illustrate our approach on a
more realistic program, we eval-
uate the signature mechanism on
a NQueen solver. The standard
NQueen’s problem is about how to
place N queens on an chess board of
N rows and N columns in order to
avoid that any of them can hit any
other in one move. Note that this
is an NP-Complete problem [11].
The parallel NQueens implementa-
tion used for this experiment is
based on the NQueens sequential
code developed by Takaken [24].
This program helped the KAAPI

team to be awarded a special prize for the best performances achieved during
the Plugtest contest held in 2006 [9].

The results of our experiments are presented in Figure 10. In this problem,
the threshold is fixed. We can notice that the relative overhead induced by the
signature checking process decrease from a factor 1.68 to 1.004 times. For large
instances (i.e. for N > 8 common in distributed computations), the overhead is
negligible. The result for small instances has the same explanation than those
corresponding to Fibonacci executions: i.e. the computing part is not sufficient
to cover the work operated by the signature checking tasks as well as the setting
up of the signature scheme which needs to read the NFAs of the different tasks.

#include <athapascan−1>
void Fibo(Shared w<int> res,

int n, int threshold int n);
void main(){

int n, threshold ;
Shared<int> res;
...
for(int i = 0 ; i < 10 : i ++)

Fork<Fibo>(res, n, threshold);
...

(a)

#include <athapascan−1>
void Fibo(Shared w<int> res,

int n, int threshold int n);
void main(){

int n, threshold ;
Shared<int> res;
...
for(int i = 0 ; i < 10 : i ++)

Fork<Fibo>(res, n, threshold);
Fork<Fibo>(res, n, threshold);
...

(b)

Fig. 11. 2 almost similar versions of the main function of the Fibo program

Flow Fault detection
It is hard to get a metric for the detection of fault, without confronting the
scheme with the real world. Nonetheless, some Experimentation has been done
to verify that a flow fault is detected with this approach. The previous KAAPI

version of the naive Fibonacci computation (cf lst. 1.1) has been modified on one
of the nodes by add one more ”Sum” function in the Fibo function. As expected

100 S. Varrette, B. Bertholon, and P. Bouvry

This always result in the detection of a flow fault (when this node was used
to compute the Fibo function). It also appears to us that all flow fault can’t be
detected using this scheme because the verification use NFA to check the validity
of the signature. For example the two program in listing 11 would result into two
different NFA but if we want to execute (a) on a distributed platform and one
of the node M execute (b), the scheme won’t detect it. Indeed if M execute the
main function, the resulted signature H(f) will be valid. This is due to the fact
that a for statement is represented in an NFA as a loop, it is then impossible
to determine that the extra Fibo in (b) is not part of the loop by analyzing flow
detail. In all case this last problem, won’t trigger any false positive alarm. This
scheme is then able to detect most of the flow fault that we can encounter but
won’t reveal the presence of some of them.

6 Conclusions and Future Work

In this article, a dynamic and flexible signature scheme has been proposed to
certify at runtime a distributed execution against flow faults that alter the struc-
ture of the graph i.e. tamper the normal run of the application. This solution
encompasses most of the effects of malicious code execution. Our approach is
based on the analysis of the trace that represents the program execution. It in-
volves two phases. The first one is operated offline to generate the fingerprint
of the program code. The second phase is operated online in a fully distributed
way to assert the execution flow using the program fingerprint. We implement
our approach in KAAPI, a C++ middleware library that uses a dynamic data
flow graph (unfold at runtime) to execute and schedule a distributed program.
The whole scheme is therefore fully transparent to the user. In particular, the
source code does not require any modification. The proposed approach has been
validated over a Fibonacci computation and a NQueen solver. The experiments
confirm the low overhead induced by the signature checking mechanism. In ad-
dition, the scalability of the approach has been highlighted for the speedup ca-
pabilities on a distributed platform as well as in terms of checked tasks. Our
mechanism assumes a trusted execution engine. To ensure this strong property
we use the TPM-based Certification of a Remote Resource (TCRR) protocol
that rely on the Trusted Computing concepts and TPMs to ensure, using this
last tamper-proof cryptographic co-processor, that the execution engine running
on top of the system of the remote computing node has not been tampered. As
future work, we plan to benchmark the developed signature scheme using other
applications, and optimize it to reduce the overhead induced.

Acknowledgments. The authors gratefully acknowledge the KAAPI team and
more precisely Thierry Gautier, Xavier Besseron, Serge Guelton and Jean-Noël
Quintin for useful discussions and help when implementing the proposed scheme.
The present project is supported by the National Research Fund of Luxembourg.

A Signature Scheme for Distributed Executions 101

References

1. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity. In: CCS
2005: Proceedings of the 12th ACM Conference on Computer and Communications
Security, pp. 340–353. ACM, New York (2005)

2. Aleph1. Smashing the stack for fun and profit. Phrack (49) (1996),
http://www.phrack.org/phrack/49/P49-14

3. Allen, F.E.: Control flow analysis, 1–19 (July 1970)

4. Bertholon, B., Varrette, S., Bouvry, P.: The tcrr protocol to certify a remote ma-
chine. Technical report, http://certicloud.gforge.uni.lu/

5. Bertholon, B., Varrette, S., Bouvry, P.: Certicloud: a novel tpm-based approach to
ensure cloud iaas security. In: Proc. of the 4th IEEE Intl. Conf. on Cloud Comput-
ing (CLOUD 2011), July 4–9, IEEE Computer Society, Washington DC (2011)

6. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware
malware detection. In: Proceedings of the 2005 IEEE Symposium on Security and
Privacy (Oakland 2005), Oakland, CA, USA, pp. 32–46 (May 2005)

7. Foster, I., Kesselman, C.: The Grid: Blueprint for a new Computing Infrastructure.
Morgan Kaufman Publishers (1998)

8. Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P.: A technique for drawing
directed graphs. IEEE Trans. Software Eng. 19(3), 214–230 (1993)

9. Gautier, T., Besseron, X., Pigeon, L.: KAAPI: a Thread Scheduling Runtime Sys-
tem for Data Flow Computations on Cluster of Multi-Processors.. In: Workshop
on Parallel Symbolic Computation 2007 (PASCO 2007). ACM, London (2007)

10. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation - virtual ma-
chine directed approach to trusted computing. In: Virtual Machine Research and
Technology Symposium, pp. 29–41. USENIX (2004)

11. Hoos, H.H., Stützle, T.: Stochastic Local Seacrh Funcdations and Applications.
Morgan Kaufmann (2005)

12. Jafar, S., Krings, A., Gautier, T.: Flexible rollback recovery in dynamic heteroge-
neous grid computing. IEEE TDSC 6(1) (January 2009)

13. Jafar, S., Varrette, S., Roch, J.-L.: Using Data-Flow Analysis for Resilence and
Result Checking in Peer to Peer Computations. In: Proc. of the 1st Int. Workshop
on Grid and Peer-to-Peer Computing Impacts on Large Scale Heterogeneous Dis-
tributed Database Systems (GLOBE 2004). IEEE Computer Society (September
2004)

14. Kirovski, D., Drinić, M., Potkonjak, M.: Enabling trusted software integrity. In:
ASPLOS-X: Proc. of the 10th Intl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pp. 108–120. ACM, New York (2002)

15. McPeak, S., Necula, G.C.: Elkhound: A fast, practical GLR parser generator. In:
Duesterwald, E. (ed.) CC 2004. LNCS, vol. 2985, pp. 73–88. Springer, Heidelberg
(2004)

16. Milenković, M., Milenković, A., Jovanov, E.: A framework for trusted instruction
execution via basic block signature verification. In: ACM-SE 42: Proceedings of the
42nd Annual Southeast Regional Conference. ACM (2004)

17. MOAIS Team. KAAPI (2005), http://kaapi.gforge.inria.fr/

18. Molnar, D.: The SETI@Home Problem (November 2000),
http://www.acm.org/crossroads/columns/onpatrol/september2000.html

19. Necula, G.C., Lee, P.: Proof-Carrying Code. In: Proceedings of the ACM Sympo-
sium on Principles of Programming Languages, Paris, France (January 1997)

http://www.phrack.org/phrack/49/P49-14
http://certicloud.gforge.uni.lu/
http://kaapi.gforge.inria.fr/
http://www.acm.org/crossroads/columns/onpatrol/september2000.html

102 S. Varrette, B. Bertholon, and P. Bouvry

20. Oh, N., Shirvani, P.P., Mccluskey, E.J.: Control-flow checking by software signa-
tures. IEEE Transactions on Reliability 51, 111–122 (2002)

21. Roch, J.-L., Varrette, S.: Probabilistic Certification of Divide & Conquer Al-
gorithms on Global Computing Platforms. Application to Fault-Tolerant Exact
Matrix-Vector Product. In: PPASCO 2007 (2007)

22. Weimer, W., Liblit, B., Foster, J., McPeak, S., Wilkerson, D., Nichols, J.: Elsa:
The Elkhound-based C/C++ Parser

23. Stallman, R.M., et al.: Using GCC: The GNU Compiler Collection Ref Man. FSF
(2005)

24. Takaken. The NQueens Problem,
http://www.ic-net.or.jp/home/takaken/e/queen/

25. TCG. TCG Specification Architecture Overview – Rev 1.4. Technical report
26. Varrette, S.: Sécurité des Architectures de Calcul Distribué: Authentification et

Certification de Résultats. PhD thesis, INP Grenoble and Universitédu Luxem-
bourg (September 2007) (in French)

27. Varrette, S., Roch, J.-L., Duc, G., Keryell, R.: Building Secure Resources to Ensure
Safe Computations in Distributed and Potentially Corrupted Environments. In:
César, E., et al. (eds.) Euro-Par 2008. LNCS, vol. 5415, pp. 211–222. Springer,
Heidelberg (2008)

28. Viega, J.: Cloud computing and the common man (2009)
29. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: IEEE Symposium

on Security and Privacy, pp. 156–168 (2001)
30. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.

In: CCS 2002: Proceedings of the 9th ACM Conference on Computer and Commu-
nications Security, pp. 255–264. ACM, New York (2002)

http://www.ic-net.or.jp/home/takaken/e/queen/

Computational Aspects of Attack–Defense Trees

Barbara Kordy�, Marc Pouly, and Patrick Schweitzer��

CSC and SnT, University of Luxembourg,
6, rue Coudenhove–Kalergi, L–1359 Luxembourg

{barbara.kordy,marc.pouly,patrick.schweitzer}@uni.lu

Abstract. Attack–defense trees extend attack trees with defense nodes.
This richer formalism allows for a more precise modeling of a system’s
vulnerabilities, by representing interactions between possible attacks and
corresponding defensive measures. In this paper we compare the compu-
tational complexity of both formalisms. We identify semantics for which
extending attack trees with defense nodes does not increase the compu-
tational complexity. This implies that, for these semantics, every query
that can be solved efficiently on attack trees can also be solved effi-
ciently on attack–defense trees. Furthermore, every algorithm for attack
trees can directly be used to process attack–defense trees.

1 Introduction

Systems become more and more complex as technology is advancing faster and
faster. This technological development goes along with more sophisticated at-
tacks on systems. In 1999, Schneier [1] suggested attack trees as a visual method
to evaluate the security of complex systems. An attack tree is an AND-OR struc-
ture detailing an attack scenario. Schneier advocated attack trees, but he was
not the first to suggest such an approach. Weiss [2] and Amoroso [3] were two
pioneers in the usage of trees in security analysis. But even as early as the 1960s,
tree-like structures were used in risk analysis, see Vesely et al. [4]. In 2005, Mauw
and Oostdijk [5] augmented attack trees with semantics, providing a solid, formal
and methodological framework for security assessment. Since then, the attack
tree methodology has been taken up by numerous researchers, see [6–11].

Attack trees are widely used to evaluate vulnerabilities of systems. However,
there are several important aspects of security that they cannot model. Besides
the fact that the attack tree formalism only considers an attacker’s point of view,
it can neither capture the interaction between an attacker and a defender, nor
is it well-suited to depict the evolution of attacks and subsequent defenses.

To overcome these limitations, Kordy et al. recently extended the attack tree
formalism with defensive measures, by introducing attack–defense trees, see [12].
A main difference between attack trees and attack–defense trees is that the latter
allow for a more precise analysis of scenarios by repeatedly changing between

� Supported by grant No. C08/IS/26 from the National Research Fund, Luxembourg.
�� Supported by grant No. PHD-09-167 from the National Research Fund, Luxembourg.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 103–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

104 B. Kordy, M. Pouly, and P. Schweitzer

an attacker’s and a defender’s perspective. Thus, the new formalism enlarges
the modeling capabilities of attack trees. Moreover, attack–defense trees can be
interpreted with several semantics, which allows us to deal with different facets of
security. In particular, the choice of an appropriate semantics becomes essential
when performing a quantitative analysis of an attack–defense scenario.

An especially important semantics for attack–defense trees is the propositional
semantics. It is well-suited to answer feasibility questions, such as whether a sys-
tem is vulnerable to an attack, whether special equipment is needed to perform
an attack, or how many different ways of attacking exist. The propositional se-
mantics has been studied in [13], where it was shown that satisfiability of an
attack–defense tree is equivalent to the existence of a winning strategy in a
two-player binary zero-sum game.

Our contribution. The main goal of [12] was to enrich the well-established
attack tree model, but this work did not consider computational aspects. The
following questions therefore remained unanswered:
– How hard is query evaluation on attack–defense trees with respect to query

evaluation on attack trees?
– Are there queries that can efficiently be solved on attack trees but not on

attack–defense trees?
– Are new algorithms needed to efficiently process attack–defense trees?

In the current paper, we address these problems for a large class of semantics for
attack–defense trees. We prove that, when the propositional semantics is used,
attack trees and attack–defense trees both represent monotone Boolean func-
tions. Moreover, we show that the same holds if the semantics is induced by
arbitrary De Morgan lattices. This lets us conclude that, for every semantics in-
duced by a De Morgan lattice, enriching attack trees with defense nodes has not
increased the computational complexity of the model. In particular, we argue
that algorithms for attack trees can also be used to process attack–defense trees.
Query evaluation on attack–defense trees is thus not harder than the correspond-
ing query evaluation on attack trees. Hence, every query that can efficiently be
solved on attack trees, can also efficiently be solved on attack–defense trees.

Structure. In Section 2, we recall basic definitions and introduce necessary
notation. Section 3 proves our results for the propositional semantics. In Sec-
tion 4, we show how to generalize them to semantics induced by De Morgan
lattices. We discuss practical consequences and applications of our theoretical
results in Section 5. Finally, Section 6 lists possible directions for future research.

2 Preliminaries

We start by recalling necessary facts about attack–defense trees, attack–defense
terms and Boolean functions.

2.1 Attack–Defense Trees

Attack trees [1, 5] are a well-known methodology for assessing the security of
complex systems. An attack tree is a rooted tree representing an attack scenario.

Computational Aspects of Attack–Defense Trees 105

The root of an attack tree depicts the main goal of an attacker, and the other
nodes constitute refinements of this goal into sub-goals. Two kinds of refinements
are possible: conjunctive and disjunctive. A conjunctively refined (sub-)goal is
satisfied if all its children are fulfilled, and a disjunctively refined (sub-)goal is
satisfied when at least one of its children is fulfilled. The leaves of an attack tree
represent basic actions which are used to build complex attacks.

Attack–defense trees [12] are attack trees extended with defense nodes. They
represent attack–defense scenarios involving actions of an attacker trying to com-
promise a system and counteractions of a defender trying to protect the system.
Consequently, an attack–defense tree can be seen as a game between two play-
ers: an attacker and a defender. Each node of an attack–defense tree depicts a
(sub-)goal of one of the players, and the root node represents the main goal of
an attacker or of a defender, depending on the modeler’s perspective. There-
fore, instead of talking about attacker and defender, we rather refer to them
as proponent and opponent. By proponent we mean the player related to the
root node, and by opponent we mean the other player. As in the case of attack
trees, every node of an attack–defense tree can be refined in a conjunctive or a
disjunctive way. The refinement is modeled using child nodes of the same type
(proponent or opponent) as the type of the parent node. In addition, each node
of an attack–defense tree may have one child of the opposite type. Such a child
then represents a countermeasure that can be applied to counter or mitigate the
(sub-)goal represented by its parent. Finally, every node without any child of
the same type represents a basic action. Contrary to attack trees, such a node
does not have to be a leaf, because it can still have a child of the opposite type.

2.2 Attack–Defense Terms

Attack–defense trees can formally be represented using so-called attack–defense
terms. We briefly recall the construction of these terms and refer to [12], for a
more detailed description.

Let S = {p, o} be a set of types representing a proponent and an opponent.
Given a player s ∈ S, we write s to denote the opposite player. By B we denote
a set of constants called basic actions. The set of basic actions B is partitioned
into the set of basic actions of the proponent’s type, denoted by Bp, and the set
of basic actions of the opponent’s type, denoted by Bo. We use the typed opera-
tors ∨p,∧p to model disjunctive and conjunctive refinements for the proponent
and the corresponding operators ∨o,∧o for the opponent. Moreover, to connect
actions of one player with counteractions of the other player, we use the counter
operators c

p and c
o.

Definition 1. Attack–defense terms (ADTerms) are typed ground terms recur-
sively constructed from B using the typed operators ∨s,∧s, cs, for s ∈ S. The set
of all ADTerms is denoted by T.

Given a player s ∈ S, we say that an ADTerm t is of type s, if its head symbol
is ∨s,∧s, cs, or if t is a constant from Bs. The typed operators ∨s and ∧s are
unranked, i.e., they take an arbitrary number of terms of type s as arguments

106 B. Kordy, M. Pouly, and P. Schweitzer

and return a term of type s. The counter operator c
s is binary. It takes a term

of type s as the first argument and a term of type s as the second argument, and
returns a term of type s. By Tp we denote the set of ADTerms of the proponent’s
type and by To the set of ADTerms of the opponent’s type. The ADTerms of
the proponent’s type constitute formal representations of attack–defense trees.
Finally, the elements of Tp which are built by using the operators ∨p and ∧p

only represent attack trees and are called ATerms.

Example 1. Let a, b, d ∈ Bp be basic actions of the proponent’s type and let
e, g ∈ Bo be basic actions of the opponent’s type. The ADTerm

t = ∧p
(a, cp

(∨p
(b, d),∨o

(e, g)))

is of the proponent’s type. It expresses a scenario in which, in order to achieve
his goal, the proponent has to execute the action a and one of the actions b
or d. At the same time, the opponent has the possibility to counter the pro-
ponent’s actions b and d by executing at least one of the actions e or g. The
opponent’s ability of countering is indicated by the operator c

p, which takes the
term ∨p

(b, d) of the proponent’s type as the first argument and the term ∨o
(e, g)

of the opponent’s type as the second argument.
Different attack–defense trees (and therefore different ADTerms) may repre-

sent the same attack–defense scenario. Hence, we consider ADTerms modulo an
equivalence relation.

Definition 2. A semantics for ADTerms is an equivalence relation on T which
preserves types.

Every semantics partitions the set T into equivalence classes, and ADTerms
belonging to the same equivalence class represent the same scenario.

Several distinct semantics for ADTerms have been introduced in [12]. One of
them is the propositional semantics discussed in the following section.

2.3 Propositional Semantics for ADTerms

The idea behind the propositional semantics for ADTerms is to first associate
a propositional formula with every ADTerm and then deduce an equivalence
relation on T from the canonical equivalence relation of propositional logic.

In this paper, r denotes a countable set of propositional variables. First, with
every basic action b ∈ B, we associate a propositional variableXb ∈ r. We assume
that for b, b′ ∈ B, with b �= b′, we have Xb �= Xb′ . In particular, since the sets of
basic actions of the proponent’s and of the opponent’s type are disjoint, we have

{Xb | b ∈ Bp} ∩ {Xb | b ∈ Bo} = ∅.

Second, a propositional formula tP is associated with every ADTerm t, as follows

tP =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Xb, if t = b ∈ B,

t1P ∨ · · · ∨ tkP , if t = ∨s
k(t1, . . . , tk),

t1P ∧ · · · ∧ tkP , if t = ∧s
k(t1, . . . , tk),

t1P ∧ ¬t2P , if t = c
s
(t1, t2),

Computational Aspects of Attack–Defense Trees 107

where s ∈ {p, o} and k ∈ N. A formula tP is referred to as propositional ADTerm.
In case of an ATerm, the corresponding formula is called a propositional ATerm.

By ≈ we denote the equivalence relation on propositional formulæ. Recall that
two propositional formulæ ψ and ψ′ are equivalent (ψ ≈ ψ′) if and only if, for
every assignment ν of Boolean values to variables in r, we have ν(ψ) = ν(ψ′

).

Definition 3. The propositional semantics for ADTerms is the equivalence re-
lation ≡P on T defined, for all t, t′ ∈ T, by t ≡P t′ if and only if tP ≈ t′P .

2.4 Boolean Functions

The set of propositional ADTerms can be seen as a representation language for
Boolean functions. The analysis of this language, performed in Section 3, allows
us to compare the computational complexity of ADTerms and ATerms. The
current section gathers necessary definitions and facts about Boolean functions.

A configuration with finite domain d ⊆ r is a function x : d → {0, 1} that
associates a value x(X) ∈ {0, 1} with every variableX ∈ d. Thus, a configuration
x ∈ {0, 1}d represents an assignment of Boolean values to the variables in d.

Definition 4. A Boolean function f with domain d is a function f : {0, 1}d →
{0, 1} that assigns a value f(x) ∈ {0, 1} to each configuration x ∈ {0, 1}d.

Given a configuration x with domain d ⊆ r, we denote by x↓u the projection of x
to a subset u ⊆ d. This notation allows us to introduce the following definition.

Definition 5. Let f and g be two Boolean functions with domains d and u,
respectively. The conjunction (f ∧ g) and the disjunction (f ∨ g) of f and g are
Boolean functions with domain d ∪ u, defined for every x ∈ {0, 1}d∪u by

f ∧ g(x) = min{f(x↓d
), g(x↓u

)}, f ∨ g(x) = max{f(x↓d
), g(x↓u

)}.

The negation of f , denoted by ¬f , is a Boolean function with domain d, defined
for every x ∈ {0, 1}d by (¬f)(x) = 1 − f(x).

Let u ⊆ r be a finite set of propositional variables. By eu : {0, 1}u → {0, 1} we
denote the Boolean unit function, i.e., eu(x) = 1, for every x ∈ {0, 1}u. Given
a Boolean function f with domain d, we denote by f↑d∪u the vacuous extension
of f to d ∪ u, defined as f↑d∪u

= f ∧ eu\d.

Definition 6. Two Boolean functions f and g, with respective domains d and
u, are said to be equivalent (denoted by f ≡ g) if and only if, ∀x ∈ {0, 1}d∪u, we
have f↑d∪u

(x) = g↑d∪u
(x).

As shown in [14], f ≡ g if and only if ∀x ∈ {0, 1}r, f↑r
(x) = g↑r

(x). The advan-
tage of an equivalence relation using finite sets of variables, as in Definition 6, is
that the construction described in this paper is practical and implementable.

Remark 1. Since equivalent propositional formulæ represent equivalent Boolean
functions, two ADTerms t and t′ are equivalent under the propositional seman-
tics, if they represent equivalent Boolean functions.

108 B. Kordy, M. Pouly, and P. Schweitzer

Of particular importance for our studies are positive, negative and monotone
Boolean functions.

Definition 7. Let f be a Boolean function with domain d ⊆ r, and let X ∈ d
be a propositional variable.

– f is positive in X if f(x, 0) ≤ f(x, 1), for all x ∈ {0, 1}d\{X},
– f is negative in X if f(x, 0) ≥ f(x, 1), for all x ∈ {0, 1}d\{X},
– f is monotone in X ∈ d if it is either positive or negative in X.

Note that if X ∈ r does not occur in the domain of a Boolean function f , then
f is insensitive to the values assigned to X . In this case, we may say that f is
positive, negative and monotone in X .

Definition 8. A Boolean function f is positive (resp. negative, monotone) if it
is positive (resp. negative, monotone) in every variable X ∈ r.

The following lemma shows that the classes of positive, as well as negative
Boolean functions are closed under conjunction and disjunction.

Lemma 1. Let f and g be Boolean functions,

– if f and g are positive in X, then f ∧ g and f ∨ g are positive in X,
– if f and g are negative in X, then f ∧ g and f ∨ g are negative in X.

Proof. Both statements follow directly from the monotonicity of minimization
and maximization. ��

Note however, that the results from Lemma 1 do generally not hold for monotone
Boolean functions.

Example 2. The Boolean function f(X,Y) = X ∧ ¬Y is positive in X and neg-
ative in Y . Thus, f is monotone. For similar reasons, the Boolean function
g(X,Y) = Y ∧ ¬X is monotone. However, it can easily be checked that the
function f ∨ g is not monotone.

Next we show that monotone Boolean functions are closed under negation.

Lemma 2. Let f be a Boolean function, and let X ∈ r be a variable. If f is
positive (resp. negative) in X, then ¬f is negative (resp. positive) in X.

Proof. Let us assume that f is positive in X , and let the domain of f be denoted
by d. If X �∈ d, then, by convention, f is positive in X and ¬f is negative in X . If
X ∈ d, then from the positivity of f inX , we have f(x↓d\{X}, 0) ≤ f(x↓d\{X}, 1),
for all x ∈ {0, 1}d. Therefore,

(¬f)(x↓d\{X}, 0) = 1 − f(x↓d\{X}, 0) ≥ 1 − f(x↓d\{X}, 1) = (¬f)(x↓d\{X}, 1).

This shows that ¬f is negative in X . The proof for the other case is similar. ��

Computational Aspects of Attack–Defense Trees 109

Note that Lemma 2 holds because negation ¬ reverses the order, i.e., for a, b ∈
{0, 1}, we have a ≤ b if and only if ¬a ≥ ¬b. This is crucial in Section 4, where
we generalize this result from the propositional algebra to De Morgan lattices.

From Lemmas 1 and 2, we deduce the following result.

Corollary 1. If f and g are two Boolean functions, such that f is positive (resp.
negative) in a variable X and g is negative (resp. positive) in X, then the Boolean
function f ∧ ¬g is positive (resp. negative) in X.

3 Transformation of ADTerms to ATerms

The objective of this section is to compare the computational complexity of
the propositional ADTerms language with the computational complexity of the
propositional ATerms language. We achieve this by analyzing the classes of
Boolean functions represented by both languages.

3.1 Expressiveness of Propositional ADTerms

We start by analyzing the language of propositional ATerms. ATerms constitute
formal representations of attack trees, which are AND-OR trees containing only
proponent’s nodes. Therefore, every propositional ATerm is a formula generated
by the following grammar AT

P : Xp | P ∨ P | P ∧ P, (AT)

where Xp ∈ {Xb | b ∈ Bp}. Theorem 1 characterizes propositional ATerms using
Boolean functions.

Theorem 1. Boolean functions represented by propositional ATerms are posi-
tive.

Proof. Consider the grammar AT . The Boolean function represented by Xp is
positive. The positivity of the Boolean functions represented by P ∨P and P ∧P
is a direct consequence of Lemma 1. ��

In order to characterize the language of propositional ADTerms, we extend the
grammar AT to the grammar ADT generating all propositional ADTerms

P : Xp | P ∨ P | P ∧ P | P ∧ ¬N
N : Xo | N ∨N | N ∧N | N ∧ ¬P, (ADT)

where Xp ∈ {Xb | b ∈ Bp} and Xo ∈ {Xb | b ∈ Bo}. The formulæ of the
form P (resp. N) are propositional ADTerms for the terms of the proponent’s
(resp. opponent’s) type. Theorem 2 characterizes propositional ADTerms using
Boolean functions.

Theorem 2. Boolean functions represented by propositional ADTerms are mon-
otone.

110 B. Kordy, M. Pouly, and P. Schweitzer

In order to prove Theorem 2, we use the following Lemma.
Lemma 3. Consider the grammar ADT . Every Boolean function represented
by a formula of the form P (resp. N) is
– positive (resp. negative) in every variable Xb, for b ∈ Bp,
– negative (resp. positive) in every variable Xb, for b ∈ Bo.

Proof. We provide a proof in the case of P . A proof for N is analogous. We
reason by induction over the structure of P . If P = Xp ∈ Bp, then the Boolean
function represented by P is clearly positive in Xp. According to our convention,
P is also positive in every Xb ∈ Bp \ {Xp} and negative in every Xb ∈ Bo.

Now, consider a formula P which is not a single variable, and assume that the
lemma holds for all formulæ composing P . If P is of the form P ∨P or P ∧P , the
result follows from Lemma 1 and the induction hypothesis. If P is of the form
P ∧ ¬N , the result follows from Corollary 1 and the induction hypothesis. ��
Since the sets Bp and Bo are disjoint, we can conclude that every formula gener-
ated by ADT represents a monotone Boolean function. This proves Theorem 2.
Note that the assumption that Bp and Bo are disjoint is crucial. Without this
assumption, Lemma 3 would not hold, see Example 2.

3.2 From Propositional ADTerms to Propositional ATerms

Since every ATerm is also an ADTerm, it is obvious that all Boolean functions
represented by propositional ATerms can also be represented by propositional
ADTerms. In this section, we show that the converse holds as well.
Theorem 3. Let f be a Boolean function with domain d and let X ∈ d. We
define a Boolean function g with the same domain, as follows

g(x, 0) = f(x, 1) and g(x, 1) = f(x, 0),

for all x ∈ {0, 1}d\{X}. The function g is positive (resp. negative) in X if and
only if the function f is negative (resp. positive) in X.

Proof. If f is positive in X ∈ d, then, for all x ∈ {0, 1}d\{X}, we have g(x, 1) =

f(x, 0) ≤ f(x, 1) = g(x, 0), i.e., g is negative in X . The other case is similar. ��
Note that the functions f and g in Theorem 3 are not equivalent in the sense of
Definition 6, but there is a one-to-one correspondence between their satisfying
assignments, i.e., between the elements of the sets of f−1

({1}) and g−1
({1}).

It follows from Theorem 3 that every monotone Boolean function, which is
not positive, can always be transformed to a positive form. Moreover, Lemma 3
guarantees that such a transformation is linear with respect to the size of the
function’s domain. Consequently, whenever we want to reason about a proposi-
tional ADTerm, we can analyze a positive Boolean function instead of a mono-
tone one. Hence, the following result holds.
Corollary 2. Propositional ADTerms represent positive Boolean functions.
This proves that the language of propositional ADTerms and the language of
propositional ATerms both represent positive Boolean functions. Practical con-
sequences of this fact are discussed in Section 5.

Computational Aspects of Attack–Defense Trees 111

4 Generalizations

An important feature of ADTerms is that they can be equipped with different
semantics. This allows for the analysis of various security aspects. However, the
previous sections focus on the propositional semantics, where basic actions are
allowed to take propositional values, and ADTerms over the set of variables d rep-
resent Boolean functions of the form {0, 1}d → {0, 1}. Hence, the propositional
semantics is a semantics induced by the Boolean algebra 〈{0, 1},∧,∨,¬〉. In this
section we show that the transformation from ADTerms to ATerms, presented
in Section 3 for the propositional semantics, applies to all semantics induced by
more general algebraic structures 〈A,+,×,¬〉, such as De Morgan lattices.

Let 〈A,+,×,¬〉 be an algebraic structure defined over a non-empty set A
with two binary operations, + and ×, and a unary operation ¬. Since we still
consider propositional variables, ADTerms and ATerms now represent functions
of the form {0, 1}d → A. From the isomorphism property of Boolean algebras,
we directly obtain the following corollary.

Corollary 3. For every semantics induced by a finite Boolean algebra
〈A,+,×,¬〉, ADTerms can efficiently be transformed to ATerms.

In the rest of this section, we show that the transformation even works with
less algebraic structure. To distinguish between positive, negative and monotone
functions of the form {0, 1}d → A, over the structure 〈A,+,×,¬〉, the set A
must exhibit a partial order that behaves monotonically under the operations +

and ×. It is well-known that if 〈A,+,×〉 is a lattice it can always be equipped
with a canonical partial order, defined for all a, b ∈ A, by

a � b if and only if a+ b = b. (�)

This order is monotonic with respect to the operations + and ×, see [15]. This
allows us to generalize Lemma 1. We then extend 〈A,+,×〉 with a negation
operation which reverses the order �.

Definition 9. A tuple 〈A,+,×,¬〉 is called a De Morgan lattice if 〈A,+,×〉 is
a distributive lattice and, for all a, b ∈ A, we have

¬(a+ b) = (¬a) × (¬b), ¬(a× b) = (¬a) + (¬b), ¬(¬a) = a.

To validate Lemma 2, we show that in De Morgan lattices the order � is indeed
reversed under negation.

Lemma 4. In a De Morgan lattice we have a � b if and only if ¬b � ¬a.

Proof. Assume that a � b, i.e., a+ b = b. It follows from the definition of a De
Morgan lattice that ¬b = ¬(a+ b) = (¬a) × (¬b). Moreover, in every lattice we
have b = a × b if and only if a = a + b, see [15]. Therefore, we conclude that
¬b = (¬a)× (¬b) if and only if ¬a = (¬a)+ (¬b). This proves that a � b implies
¬b � ¬a. Conversely, assume ¬b � ¬a. From the first part of this proof we know
that ¬b � ¬a implies ¬(¬a) � ¬(¬b), and therefore we have a � b. ��

112 B. Kordy, M. Pouly, and P. Schweitzer

Observe that De Morgan lattices are more general than Boolean algebras, be-
cause the former do not have to satisfy the law of the excluded middle and the
law of non-contradiction.

Example 3. The tuple 〈[0, 1],max,min,¬〉, where ¬a = 1−a, for every a ∈ [0, 1],
is a De Morgan lattice which is not a Boolean algebra.

Consider a De Morgan lattice 〈A,+,×,¬〉 and a finite set d ⊆ r of variables. A De
Morgan valuation with domain d is a function of the form f : {0, 1}d → A. Note
that De Morgan valuations satisfy the properties of valuation algebras, see [16].
Similar to Definition 6, equivalence of De Morgan valuations is again defined by
point-wise equality of their vacuous extensions. Furthermore, we obtain positive,
negative and monotone De Morgan valuations by modifying Definition 7: we
replace Boolean functions by De Morgan valuations and the order ≤ by �.

The above considerations guarantee that the statements of Corollary 1 and
Theorem 3 still hold if Boolean functions are replaced by De Morgan valua-
tions. This means that the transformation of ADTerms to ATerms, described
in Section 3 for the propositional semantics, actually holds for a larger class of
semantics that we define below.

Let 〈A,+,×,¬〉 be a De Morgan lattice. As in the case of the propositional
semantics, we consider the set of propositional variables {Xb | b ∈ B}. With
every ADTerm t we associate a De Morgan valuation ft, called a De Morgan
ADTerm, as follows. If t = b and b is a basic action, then ft is a function of the
form fb : {0, 1}{Xb} → A. With the help of fb, we express how the value assigned
to a basic action b changes depending on whether the basic action b is satisfied
(Xb = 1) or not (Xb = 0). De Morgan ADTerms associated with composed
ADTerms are then defined recursively, as follows. For s ∈ {p, o}, k ∈ N, we set 1

f∨s(t1,...,tk) =

k∑
i=1

fti , f∧s(t1,...,tk) =

k∏
i=1

fti , fcs(t1,t2) = ft1 × ¬ft2 .

Definition 10. The semantics for ADTerms induced by the De Morgan lattice
〈A,+,×,¬〉 is the equivalence relation ≡DM on T defined, for all t, t′ ∈ T, by
t ≡DM t′ if and only if the corresponding De Morgan valuations ft and ft′ are
equivalent.

Before presenting the main result of this section, we briefly compare the usability
of semantics induced by De Morgan lattices with the propositional semantics.
Every Boolean algebra is a De Morgan lattice. Thus, the propositional semantics
is the semantics induced by 〈{0, 1},∨,∧,¬〉, where a basic action b is interpreted
as the Boolean function fb(Xb) = Xb. Such a propositional interpretation implies
that each action which is present is fully feasible, i.e., fb(Xb = 1) = 1. This
shows that the use of Boolean functions is not appropriate when one wants
to describe the components of an attack–defense tree with more fine grained
1 ∑ and

∏
stand for extensions of sum and product of two valuations to any finite

number of valuations. They are correctly defined, due to associativity of + and ×.

Computational Aspects of Attack–Defense Trees 113

feasibility levels, such as, fully feasible (T), partially feasible (M) and infeasible
(F), for instance. In particular, the propositional semantics cannot be applied
to determine up to which level a proposed scenario is actually feasible. However,
such a more detailed analysis can be performed using the semantics induced
by the De Morgan lattice 〈{T,M,F},max,min,¬〉, where F < M < T and
¬F = T , ¬M = M and ¬T = F , as shown is Example 4.

Example 4. Consider the ADTerm t = c
p
(b,∧o

(d, e)) and the semantics induced
by the De Morgan lattice 〈{T,M,F},max,min,¬〉. We assume that when the
actions b, d and e are not present, they are infeasible

fb(Xb = 0) = F, fd(Xd = 0) = F, fe(Xe = 0) = F.

Moreover, the presence of the actions b and e ensures their full feasibility, but
the presence of the action d guarantees its partial feasibility, only

fb(Xb = 1) = T, fd(Xd = 1) = M, fe(Xe = 1) = T.

Analyzing the De Morgan valuation associated with t, given by ft(Xb, Xd, Xe) =

min{fb(Xb),¬(min{fd(Xd), fe(Xe)})}, allows us to reason about feasibility of
the scenario represented by t. We have

ft(0, 0, 0) = F ft(0, 1, 0) = F ft(1, 0, 0) = T ft(1, 1, 0) = T

ft(0, 0, 1) = F ft(0, 1, 1) = F ft(1, 0, 1) = T ft(1, 1, 1) = M.

From f−1
t ({M,T }), we deduce that the scenario is at least partially feasible for

the proponent if the action b is present, independently of the actions d and e.

The considerations described in this section imply the following theorem.

Theorem 4. De Morgan ADTerms are positive De Morgan valuations.

This proves that the results obtained in Section 3 for the propositional semantics,
generalize to every semantics induced by a De Morgan lattice.

5 Consequences

As discussed in [12], an obvious limitation of attack trees is that they cannot
capture the interaction between attacks on a system and the defenses put in
place to mitigate the attacks. To surpass this limitation, attack–defense trees
have been developed. By allowing alternation between attack and defense nodes,
attack–defense trees take the effects of existing defensive measures into account
and allow us to consider the evolution of a system’s security. In contrast to this,
the results in Sections 3 and 4 compare attack and attack–defense trees on the
computational level. We formally proved that, under a semantics induced by
a De Morgan lattice, both models represent positive valuations and therefore
exhibit the same computational complexity.

114 B. Kordy, M. Pouly, and P. Schweitzer

Result 1. Attack–defense trees extend attack trees to a richer model without
increasing the computational complexity, provided that their semantics is induced
by a De Morgan lattice.

Result 1 can be applied, for instance, to query evaluation on ADTerms. A query
on ADTerms is a function Q : T → A which assigns to every ADTerm t an
element Q(t) ∈ A called the answer for Q on t.

Example 5. Consider a function QSAT : T → {�,⊥} which assigns � to an
ADTerm t if the corresponding Boolean function f admits at least one satisfying
assignment, i.e., if there exists a configuration x, such that f(x) = 1. Otherwise,
⊥ is assigned to t. The function QSAT is an example of a query on ADTerms. It
models satisfiability check, when the propositional semantics is used.

Result 2 characterizes how hard query evaluation is on ADTerms with respect
to query valuation on ATerms.

Result 2. When a semantics induced by a De Morgan lattice is used, the com-
plexity of query evaluation on ADTerms is the same as the corresponding com-
plexity for ATerms.

It follows from Result 2 that, when a semantics induced by a De Morgan lattice
is used, a query can efficiently be solved on ADTerms if and only if it can
efficiently be solved on ATerms. As an example, when the propositional is used,
satisfiability check on ADTerms can be performed in constant time, because all
positive Boolean functions are satisfiable.

Theorem 3 and subsequent considerations in Section 4 show that, for a large
class of semantics, we can effectively transform ADTerms to ATerms. Therefore,
we obtain the following result.

Result 3. When using a semantics induced by a De Morgan lattice, ADTerms
can always be processed by algorithms developed for ATerms.

Moreover, our constructive transformation guarantees that Result 3 holds for all
existing and all future algorithms for ATerms.

Finally, knowing that not all Boolean functions are positive and taking into
account Corollary 2, we deduce that there exist Boolean functions which cannot
be represented by any propositional ADTerm.

Result 4. The propositional language defined by propositional ADTerms is not
complete.

For instance, there is no ADTerm corresponding to the Boolean function rep-
resenting the tautology. This example also shows that the set of propositional
ADTerms represents a proper subset of the set of positive Boolean functions.

6 Open Problems

One of the particularities of positive Boolean functions is that they admit a
unique modulo associativity and commutativity (AC), complete and irredundant

Computational Aspects of Attack–Defense Trees 115

DNF representation, see [17]. This means that no other DNF representation of
a positive Boolean function can be as short as its complete DNF, i.e., the dis-
junction of all its prime implicants. We can therefore conclude that ADTerms
under the propositional semantics possess unique modulo AC normal forms. We
believe that this provides a sufficient argument to find a finite axiomatization of
the propositional semantics for ADTerms. This would be a first step towards an
efficient implementation of an attack–defense tree tool that captures all seman-
tics preserving transformations and is able to execute equivalence check between
ADTerms. The importance of such transformations has been pointed out by
Mauw and Oostdijk in [5].

Furthermore, we would like to know whether it is possible to apply our re-
sults to other classes of semantics. Of particular interests would be to replace
propositional variables with multi-state variables, as in [18]. The advantage of
multi-state variables is that they can express security levels more accurately than
propositional variables. Using them we can, for instance, model nominal values
or categories, such as high, medium and low.

We also plan to investigate the relation between modeling capabilities and
computational complexity of attack–defense trees under the multiset semantics,
introduced in [12]. The importance of this semantics arises from its compatibility
with a multitude of attributes, such as the cost of the cheapest attack, the
maximal damage caused by an attack or the probability of a successful attack.

Finally, we would like to take a look at other languages for representing
Boolean functions. The topic has exhaustively been studied by Darwiche and
Marquis. In [19], they established a taxonomy of complete propositional lan-
guages, based on the succinctness of the representation, the queries that can
efficiently be answered on a given representation and the transformations that
can be applied to a given language in polynomial time. Their paper consid-
ers several queries, including satisfiability and validity checks, model counting,
model and counter-model enumeration. In the spirit of this taxonomy, we would
like to answer runtime questions for the corresponding queries on our incomplete
language of propositional ADTerms.

7 Conclusion

In this paper we perform an exhaustive analysis of a wide class of semantics
for ADTerms. First, by employing known results from propositional logics, we
prove that propositional ADTerms and propositional ATerms represent the same
class of Boolean functions. We then show that this result can be generalized from
Boolean functions to De Morgan valuations. We deduce that, for every semantics
induced by a De Morgan lattice, the computational complexity of the attack tree
model and the attack–defense tree model is the same. This proves that enriching
the attack tree formalism with defense nodes was not done at the expense of
computational complexity.

We also discuss several important consequences that can be derived for
ADTerms interpreted using De Morgan valuations. In particular, we deduce that

116 B. Kordy, M. Pouly, and P. Schweitzer

the complexity of query evaluation on ADTerms is the same as the correspond-
ing complexity on ATerms. Moreover, by showing that ADTerms can efficiently
be transformed to ATerms, we conclude that algorithms for ATerms can be used
to reason about ADTerms.

References

1. Schneier, B.: Attack Trees. Dr. Dobb’s Journal of Software Tools 24(12), 21–29
(1999)

2. Weiss, J.D.: A system security engineering process. In: 14th Nat. Comp. Sec. Conf.,
pp. 572–581 (1991)

3. Amoroso, E.G.: Fundamentals of Computer Security Technology. Prentice-Hall,
Inc., Upper Saddle River (1994)

4. Vesely, W.E., Goldberg, F.F., Roberts, N., Haasl, D.: Fault Tree Handbook. Tech-
nical Report NUREG-0492, U.S. Regulatory Commission (1981)

5. Mauw, S., Oostdijk, M.: Foundations of Attack Trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

6. Cervesato, I., Meadows, C.: One Picture Is Worth a Dozen Connectives: A Fault-
Tree Representation of NPATRL Security Requirements. IEEE TDSC 4, 216–227
(2007)

7. Edge, K.S., Dalton II, G.C., Raines, R.A., Mills, R.F.: Using Attack and Protection
Trees to Analyze Threats and Defenses to Homeland Security. In: MILCOM, IEEE,
pp. 1–7 (2006)

8. Morais, A.N.P., Martins, E., Cavalli, A.R., Jimenez, W.: Security Protocol Testing
Using Attack Trees. In: CSE (2), pp. 690–697. IEEE Computer Society (2009)

9. Jürgenson, A., Willemson, J.: Serial Model for Attack Tree Computations. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 118–128. Springer, Heidelberg
(2010)

10. Bistarelli, S., Peretti, P., Trubitsyna, I.: Analyzing Security Scenarios Using De-
fence Trees and Answer Set Programming. ENTCS 197(2), 121–129 (2008)

11. Yager, R.R.: OWA trees and their role in security modeling using attack trees. Inf.
Sci. 176(20), 2933–2959 (2006)

12. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of Attack–
Defense Trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011)

13. Kordy, B., Mauw, S., Melissen, M., Schweitzer, P.: Attack–Defense Trees and Two-
Player Binary Zero-Sum Extensive Form Games Are Equivalent. In: Alpcan, T.,
Buttyán, L., Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 245–256.
Springer, Heidelberg (2010)

14. Kohlas, J.: Information Algebras: Generic Structures for Inference. Springer,
Heidelberg (2003)

15. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press (1990)

16. Pouly, M., Kohlas, J.: Generic Inference: A Unifying Theory for Automated Rea-
soning. John Wiley & Sons, Inc. (2011)

17. Crama, Y., Hammer, P.: Boolean Functions: Theory, Algorithms and Applications.
Cambridge University Press (2011)

18. Wachter, M., Haenni, R.: Multi-state Directed Acyclic Graphs. In: Kobti, Z., Wu,
D. (eds.) Canadian AI 2007. LNCS (LNAI), vol. 4509, pp. 464–475. Springer,
Heidelberg (2007)

19. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. J. Artif. Intell. Res. 17,
229–264 (2002)

Attacks on Simplified Versions of K2

Deike Priemuth-Schmid

LACS, University of Luxembourg
deike.priemuth-schmid@uni.lu

Abstract. In 2007, S. Kiyomoto, T. Tanaka and K. Sakurai presented
the stream cipher K2 at SECRYPT. In this paper, we present two attacks
on simplified versions of K2. We show a differential chosen IV attack with
key recovery on a simplified version with 5 initialization clocks with time
complexity of 28.1 clocks. For a simplified version with 7 initialization
clocks, we show a distinguishing attack with time complexity of 234.8

clocks.

Keywords: cipher K2, stream ciphers, cryptanalysis.

1 Introduction

The stream cipher K2 was proposed by S. Kiyomoto, T. Tanaka and

K. Sakurai at SECRYPT 2007 [4].

A security evaluation is given in [1] with the conclusion that no weaknesses

were found. Some side-channel attacks are applied on K2 in [3] showing that K2

offers reasonable resistance to side-channel attacks even without countermea-

sures.

In this paper, we present two attacks on simplified versions of K2. We show

a differential chosen IV attack with key recovery on a simplified version with 5

initialization clocks with time complexity of 2
8.1

clocks and needed keystream

of 28 words. For a simplified version with 7 initialization clocks, we show a

distinguishing attack with time complexity of 2
34.8

clocks and needed keystream

of 2
32

words. Both attacks have negligible memory requirements.

This paper is organized as follows. We give a description of the cipher K2

and its simplification K2
⊕

in Section 2. The differential chosen IV attack with

key recovery on K2
⊕

with 5 initialization clocks is presented in Section 3. In

Section 4, we describe the distinguishing attack on K2
⊕

with 7 initialization

clocks. Some conclusions are given in Section 5.

2 Description of K2 and K2⊕

S. Kiyomoto, T.Tanaka and K. Sakurai proposed the stream cipher K2 at

SECRYPT 2007 [4]. It consists of two FSRs, a dynamic feedback controller and

a nonlinear function as shown in Fig. 1.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 117–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

118 D. Priemuth-Schmid

α0

Sub SubSub Sub

DFC

1
or
α3

0 2 43

L2

L1

R2

R1

zL

FSR-A

FSR-B

NLF

zH

1

7 5 3 210 9 8 6 4 1 0

α1
or
α2

Fig. 1. keystream generation of K2

The first FSR, called FSR-A, has 5 registers (a4, . . . , a0) each of size one word

(32 bit). The feedback function is

at
4 = α0a

t−1
0 ⊕ at−1

3

where the multiplier α0 is a constant, chosen as the root of an irreducible polyno-

mial of degree four in GF (2
8
)[x]. The second FSR, called FSR-B, has 11 registers

(b10, . . . , b0) each of size one word. The feedback function of FSR-B is selected

by the dynamic feedback controller. This controller has two clock control bits

cl1 and cl2 which are described as

cl1t = at
2[30] and cl2t = at

2[31]

Attacks on Simplified Versions of K2 119

with at
2[30] being the second most significant bit of at

2 and at
2[31] being the most

significant bit (abbr. msb) of at
2. Then the feedback function of the FSR-B is

bt10 = (α
cl1t−1
1 + α

1−cl1t−1−1
2)bt−1

0 ⊕ bt−1
1 ⊕ bt−1

6 ⊕ α
cl2t−1
3 bt−1

8

where the multipliers α(1,2,3) are constants, each one chosen as the root of a

different irreducible polynomial of degree four in GF (2
8
)[x]. The nonlinear func-

tion (abbr. NLF) has four words memory (L1, L2, R1, R2) and four times a Sub
function. This Sub function operates on a word and uses the 8-bit AES S-box

and the AES Mix-Column operation [2]. The exact work flow is: divide the word

into four bytes, apply on each byte the 8-bit AES S-box, mix the resulting bytes

using the AES Mix-Column operation yielding a word again. To update the

memory words of the NLF, compute

L1
t
= Sub(R2

t−1 � bt−1
4) L2

t
= Sub(L1

t−1
)

R1
t
= Sub(L2

t−1 � bt−1
9) R2

t
= Sub(R1

t−1
) .

With each clock, the output of the NLF is the keystream of two words (zH
t , z

L
t)

computed as

zH
t = (bt10 � L2

t
) ⊕ L1

t ⊕ at
0

zL
t = (bt0 �R2

t
) ⊕R1

t ⊕ at
4 .

The symbol ’⊕’ denotes the bit-wise xor and the symbol ’�’ denotes addition

modulo 2
32

.

The K2 cipher uses a four word key K = [K0,K1,K2,K3] and a four word

IV IV = [IV0, IV1, IV2, IV3]. For the loading step, two intermediate results are

computed using the Sub function

S1 = Sub[(K3 � 8) ⊕ (K3 � 24)] ⊕ 0x01000000

S2 = Sub[((K0 ⊕K1 ⊕K2 ⊕K3 ⊕ S1) � 8)

⊕((K0 ⊕K1 ⊕K2 ⊕K3 ⊕ S1) � 24)]⊕ 0x02000000 ,

the constants at the end are given in hexadecimal numbers. Then the FSRs are

loaded

a0 = K0 ⊕ S1 b3 = IV1

a1 = K3 b4 = K0 ⊕ S1 ⊕ S2

a2 = K2 b5 = K1 ⊕ S2

a3 = K1 b6 = IV2

a4 = K0 b7 = IV3

b0 = K0 ⊕K2 ⊕ S1 ⊕ S2 b8 = K0 ⊕K1 ⊕K2 ⊕K3 ⊕ S1

b1 = K1 ⊕K3 ⊕ S2 b9 = K0 ⊕K1 ⊕ S1

b2 = IV0 b10 = K0 ⊕K1 ⊕K2 ⊕ S1 .

The four memory words of the NLF are initialized with zero. Then, during the

initialization the cipher is clocked 24 times doing

120 D. Priemuth-Schmid

1. get the output from the NLF (zH
t , z

L
t),

2. update the NLF,

3. update FSR-A with zL
t is xored to the new word of FSR-A,

4. update FSR-B with zH
t is xored to the new word of FSR-B.

After this initialization, the K2 cipher produces the keystream and the FSRs

are updated without feedback from the NLF.

For the rest of the paper, we consider a simplified version of K2 where all

additions modulo 2
32

are replaced with xor and denote this version with K2
⊕
.

In our attacks, we only need to compute equations similar to the equations

computed for the keystream and the update of the FSRs. In each clock of K2
⊕
,

four such equations are computed (two equations for the keystream and two

equations for the FSRs update). We measure the time complexity for our attacks

in K2
⊕

clocks.

3 Differential Chosen IV Attack with Key Recovery

Considering a differential chosen IV scenario, we choose two different IVs IVa

and IVb. We know the keystream from both pairs (K, IVa) and (K, IVb) with

unknown key K. Both IVs only differ in IV word IV1 which takes the longest

until it enters the NLF. The dynamic feedback controller always takes the most

and second most significant bit of a2. Thus, we do not want to have a difference

there. Accordingly, we choose the starting difference Δd with most and second

most significant bit equal to zero. Our goal is to recover the whole internal state

right after the loading step which means we get the unknown key K.

From the differences in the keystream and the partially known differences

in the FSRs, we compute the differences in the words of the NLF. We then

need to know how the differences in the NLF words propagate through the Sub
function. Let vt−1

a and vt−1
b be two arbitrary words at time t−1 with the following

equations

Δvt−1
= vt−1

a ⊕ vt−1
b , wt

a = Sub(vt−1
a), wt

b = Sub(vt−1
b),

Δwt
= wt

a ⊕ wt
b = Sub(vt−1

a) ⊕ Sub(vt−1
b) .

We define a new notation

out

Δ Sub(Δvt−1
)

def.
= Sub(vt−1

a) ⊕ Sub(vt−1
b) .

During the keystream generation, we have the following equations for the

differences at clock t

ΔzH
t = Δbt10 ⊕ΔL1

t ⊕ΔL2
t ⊕Δat

0 ΔzL
t = Δbt0 ⊕ΔR1

t ⊕ΔR2
t ⊕Δat

4

ΔL1
t
=

out

Δ Sub (ΔR2
t−1 ⊕Δbt−1

4) ΔR1
t
=

out

Δ Sub (ΔL2
t−1 ⊕Δbt−1

9)

ΔL2
t
=

out

Δ Sub (ΔL1
t−1

) ΔR2
t
=

out

Δ Sub (ΔR1
t−1

) .

Any fixed input difference (ΔR2
t−1⊕Δbt−1

4) �= 0 results in nearly 2
28

possible

output differences ΔL1
t
, because any input difference in the small 8-bit AES

S-box results in 127 different output differences. If we know or fix the input-output

Attacks on Simplified Versions of K2 121

difference of Sub at clock t− 1 and t meaning (ΔR2
t−1 ⊕Δbt−1

4)
Sub−→ ΔL1

t
, we

can recover on average (2 · 126
127 +4 · 1

127)
4

= 16.51 sorted pairs of individual values

for Sub. This means that we have
16.51

2 ≈ 8 possible values for ΔL2
t+1

. If we

know or fix this difference as well, then we have only one sorted pair of individual

values left which satisfies the sequence (ΔR2
t−1⊕Δbt−1

4)
Sub−→ ΔL1

t Sub−→ ΔL2
t+1

.

The same holds for the sequence (ΔL2
t−1 ⊕Δbt−1

9)
Sub−→ ΔR1

t Sub−→ ΔR2
t+1

.

If we have collected enough individual values for the NLF, we can derive some

words for the FSR-B from the update equations L1
t
= Sub(R2

t−1 ⊕ bt−1
4) and

R1
t
= Sub(L2

t−1 ⊕ bt−1
9) of the NLF. The insertion of the individual values of

the NLF together with some words of FSR-B in the keystream equations yields

some words for FSR-A. At the end, we know enough words of the NLF, FSR-B

and FSR-A to clock backwards and reveal the secrect key.

We reduce the number of initialization clocks of K2
⊕

to 5. After these 5

clocks of initialization, the starting difference Δd enters the word R1 of the

NLF. During the keystream computation, there is no more feedback from the

NLF to the FSRs anymore. Therefore, we know all differences of FSR-A as Δd
enters it in clock 4 and then propagates linearly. For FSR-B, the computation

of the differences only depends on the unknown bits of the dynamic feedback

controller which select the multipliers for the FSR-B feedback.

The work flow of K2 has two steps, first displaying the keystream words, then

updating the internal state. Thus, the differences of the keystream words for

clock 0 are

ΔzH
0 = Δb010 ⊕ΔL1

0 ⊕ΔL2
0 ⊕Δa0

0

ΔzL
0 = Δb00 ⊕ΔR1

0 ⊕ΔR2
0 ⊕Δa0

4 ,

where the differences in ΔL1
0, ΔL2

0, Δa0
0, Δb

0
0, ΔR2

0
are zero and Δa0

4 = Δd.
Hence, we know Δb010 and ΔR1

0
. The update equation of FSR-B implies Δb010 =

Δb−1
10 = Δb09 and Δb010 = Δb19. With ΔR1

0
, we know the input-output sequence

(ΔL2
−1 ⊕ Δb−1

9)
Sub−→ R1

0
and as explained above on average we can recover

16.51 sorted pairs of individual values for Sub resulting in 8 possible values for

R2
1
.

Clock 1 gives us ΔzH
1 = Δb110 = Δb29 because all other differences are zero.

For ΔzL
1 , we can rewrite the keystream equation in the following way

ΔzL
1 = Δb10 ⊕ΔR1

1 ⊕ΔR2
1 ⊕Δa1

4

⇔ ΔR1
1

= ΔR2
1 ⊕Δb10 ⊕Δa1

4 ⊕ΔzL
1

⇔
out

Δ Sub(ΔL2
0 ⊕Δb09) = ΔR2

1 ⊕Δb10 ⊕Δa1
4 ⊕ΔzL

1 ,

that we know all differences at the right side. Here we can insert all 8 pos-

sibilities of ΔR2
1
, then undo the Mix Column operation by multiplying with

its inverse and check byte by byte whether the computed value on the right

side is a valid difference for the left side. The time complexity for this check

is 2 clocks and only one pair (ΔR1
1, ΔR2

1
) will remain due to

228·8
232 < 1. The

known difference ΔR2
1

leaves only one sorted pair which fulfills the sequence

122 D. Priemuth-Schmid

(ΔL2
−1 ⊕ Δb−1

9)
Sub−→ ΔR1

0 Sub−→ ΔR2
1
. The known difference ΔR1

1
fixes the

sequence (ΔL2
0 ⊕Δb09)

Sub−→ ΔR1
1

which results in nearly 16.51 sorted pairs of

individual values following 8 possible differences for R2
2
.

In clock 2, Δb210 has two possibilities because in its update equation

Δb210 = (αcl11
1 + α1−cl11−1

2)Δb10 ⊕Δb11 ⊕Δb16 ⊕ αcl21
3 Δb18

all differences are equal to zero except for Δb18. Hence, we have Δb210 = Δb18 or

Δb210 = α3Δb
1
8 because we have a zero in the msb of Δa1

2 = Δd. We can rewrite

the keystream equation in the following way

ΔzH
2 = Δb210 ⊕ΔL1

2 ⊕ΔL2
2 ⊕Δa2

0

⇔ ΔL1
2

= Δb210 ⊕ΔL2
2 ⊕Δa2

0 ⊕ΔzH
2

⇔
out

Δ Sub(ΔR2
1 ⊕Δb14) = Δb210 ⊕ΔL2

2 ⊕Δa2
0 ⊕ΔzH

2 ,

that we know all differences at the right side. We insert both possibilities for

Δb210, undo the Mix Column operation and check byte by byte whether the

computed value on the right side is a valid difference for the left side. The

time complexity for this check is
1
2 clock and only one pair (Δb210, ΔL1

2
) will

remain. We know Δb210 = Δb39 and ΔL1
2

fixes the sequence (ΔR2
1 ⊕Δb14)

Sub−→
ΔL1

2
which results in nearly 16.51 sorted pairs of individual values following 8

possibilities for ΔL2
3
. For ΔzL

2 , we do exactly the same as described for ΔzL
1 at

clock 1.

For clock 3, we have two possibilities for Δb310 and 8 possibilities for ΔL2
3
.

Thus, we rewrite the equation

ΔzH
3 = Δb310 ⊕ΔL1

3 ⊕ΔL2
3 ⊕Δa3

0

⇔
out

Δ Sub(ΔR2
2 ⊕Δb24) = Δb310 ⊕ΔL2

3 ⊕Δa3
0 ⊕ΔzH

3 ,

insert all listed possibilities, undo the Mix Column operation and check byte

by byte. The time complexity for this check is 4 clocks and only one triple

(Δb310, ΔL1
3, ΔL2

3
) will remain due to

228·2·8
232 = 1. We know Δb310 = Δb49 and

ΔL1
3

fixes the sequence (ΔR2
2⊕Δb24)

Sub−→ ΔL1
3

which results in 8 possibilities

for ΔL2
4
. The known difference ΔL2

3
fixes the pair of individual values for the

sequence (ΔR2
1 ⊕Δb14)

Sub−→ ΔL1
2 Sub−→ ΔL2

3
. For ΔzL

3 , we do exactly the same

as described for ΔzL
1 at clock 1.

In clock 4, 5 and 6 we do exactly the same as described for clock 3.

Now we have collected enough individual values for the NLF. So far, the time

complexity is 2 +
1
2 + 2 + 4 · 4 = 20.5 clocks.

We have to insert these individual values in the keystream and update equa-

tions. Since we collected 10 sorted pairs of individual values and two keystreams

with the corresponding system of equations, we need to decide for each value to

be filled in into which equation system. Wrong allocations will have contradic-

tions somewhere in the equations and are dispelled this way. This would result

a time complexity of 2
8

clocks. For the right allocation at clock 6, we can clock

backwards and receive the secret key with time complexity of 6 clocks.

Attacks on Simplified Versions of K2 123

The overall time complexity in K2
⊕

clocks is

20.5 + 2
8
+ 6 = 2

8.1 .

The needed keystream amounts to 2 words per clock for 7 clocks for each pair

(K, IVa) and (K, IVb) which yields 28 keystream words. The memory require-

ments are negligible.

4 Distinguishing Attack

We now consider K2
⊕

with the number of initialization clocks reduced to 7.

To distinguish the cipher from a random function, we build a multiset over all

possible 2
32

values of one word using 2
32

different key-IV-pairs and check whether

the xored sum over all first keystream words zH
0 is equal to zero. For a random

function the probability is 2
−32

that this sum is zero.

For all 2
32

key-IV-pairs, we take the same unknown key. The four words

of the IV = [IV0, IV1, IV2, IV3] are loaded in the FSR-B; where the word IV1

loaded in b3 takes the longest time until it enters the nonlinear function. For this

word IV1, we make a multiset in a way that all values [0, 232 − 1] occur exactly

once. We emphasize that we need the multiset in ascending order starting with

zero. Then we know that all IV1 values in the first half have msb equal to

zero whereas all IV1 values in the second half have msb equal to one. We will

use this fact about the msb later. The multiset in IV1 yields 2
32

different IVs

IV i
= [IV0, i, IV2, IV3], i = 0, . . . , 232 − 1 with arbitrary words IV(0,2,3). For

each pair (key, IV i
), we run the K2

⊕
cipher with 7 initialization clocks and get

the first keystream word
izH

0 .

Now we explain why the xored sum over all keystream words is equal to zero.

Our goal is to prove the multiset propagation through K2
⊕

as shown in Table 1.

In this table, we only show the multiset and its behavior. All values which are the

same in all 2
32

key-IV-pairs are omitted (empty in the table). We put the ’?’ for

those sets we do not know anything about. With the symbol ’M
s
’, we denote the

multiset in the starting order. The symbols ’M
1
’, ’M

2
’ and ’M

3
’ denote different

multisets. In each of them, each value [0, 232 − 1] occurs exactly once, but we

do not know in which order. Thus, also the xored sums over these multisets

are zero. The symbol ’S0’ denotes a multiset, where the characteristic that each

value [0, 232 − 1] occurs exactly once is lost, but the feature that it sums up

(xored) to zero still remains. To prove this feature for the ’S0’ multisets, it is

sufficient to consider the sets in bt10. We will check them in reverse order. The

update equation for the xored sum over all
ibt10 is

232−1∑
i=0

ibt10 =

232−1∑
i=0

(
imt−1

msb

i
bt−1
8 ⊕ ibt−1

6 ⊕ ibt−1
1 ⊕ imt−1

smsb

i
bt−1
0

⊕ ibt−1
10 ⊕ iL2

t−1 ⊕ iL1
t−1 ⊕ iat−1

0

)
. (1)

Here, the variable
imt−1

msb denotes the multiplier depending on the msb of
iat−1

2 .

In particular,
imt−1

msb = α3 if the msb of
iat−1

2 is equal to one and
imt−1

msb = 1 if

124 D. Priemuth-Schmid

msb=0. Likewise, the variable
imt−1

smsb denotes the multiplier depending on the

second most significant bit of
iat−1

2 . In particular,
imt−1

smsb = α1 if the second

most significant bit of
iat−1

2 is equal to one and
imt−1

smsb = α2 otherwise.

Table 1. Propagation of the multiset through K2⊕ during Initialization

clock FSR-B FSR-A NLF
ini 10 9 8 7 6 5 4 3 2 1 0 4 3 2 1 0 L1 L2 R1 R2

0 Ms

1 Ms

2 Ms

3 Ms Ms

4 S0 Ms Ms

5 S0 S0 Ms Ms Ms M1

6 S0 S0 S0 Ms S0 Ms Ms ? M2

7 S0 S0 S0 S0 Ms ? S0 Ms Ms M3 ? ?

From now on, we mean always xored sum when we write sum or the sigma

sign. The keystream is produced at clock zero after the initialization. For the

internal states, we write the number of the initialization clock as superscript,

because we need to go backwards through the initialization clocks to prove the

multiset propagation. We know about the sum of all words
izH

0

232−1∑
i=0

izH
0 =

232−1∑
i=0

(
ib710 ⊕ iL2

7 ⊕ iL1
7 ⊕ ia7

0

)
.

For all 2
32

key-IV-pairs, the values for L2
7

and a7
0 remain constant for all pairs

meaning the sum over them is zero. The values
iL1

7
form a multiset in which

each value [0, 232 − 1] occurs exactly once, but in an unknown order. The Sub
function preserves this property that each value [0, 232 − 1] occurs exactly once,

but destroys the known starting order. Thus we have

232−1∑
i=0

izH
0 =

232−1∑
i=0

ib710 . (2)

Now we will prove that the sum over all
ib710 is zero. We look up the values for

(1) at clock 7 in Table 1 and see which values remain constant meaning the sum

over them is zero. We omit those zero sums and get (1) for clock 7

232−1∑
i=0

ib710 =

232−1∑
i=0

im6
msb

i
b68 ⊕

232−1∑
i=0

im6
smsb

i
b60 ⊕

232−1∑
i=0

ib610 . (3)

We take a closer look on the sum over
ib610. After omitting all zero sums (empty

values in Table 1), (1) is

232−1∑
i=0

ib610 =

232−1∑
i=0

im5
msb

i
b58 ⊕

232−1∑
i=0

im5
smsb

i
b50 ⊕

232−1∑
i=0

ib510 .

Attacks on Simplified Versions of K2 125

The choice for the multipliers depends on the value of a5
2 which remains constant.

Thus, we do not know which multiplier is chosen but we know it is the same for

all 2
32

key-IV-pairs. The values for b50 remain constant meaning the sum is zero.

Therefore, our equation reduces to

232−1∑
i=0

ib610 = m5
msb

232−1∑
i=0

ib58 ⊕
232−1∑
i=0

ib510

= m5
msb

232−1∑
i=0

ib310 ⊕
232−1∑
i=0

ib510 . (4)

For the sum over all
ib510, (1) reduces to

232−1∑
i=0

ib510 =

232−1∑
i=0

ib410 (5)

because the choice for the multipliers is constant due to the constant value of

a4
2. For clock 4, the choice for the multipliers in (1) is constant as well yielding

232−1∑
i=0

ib410 = m3
smsb

232−1∑
i=0

ib30 ⊕
232−1∑
i=0

ib310 . (6)

With the constant choice for the multipliers at clock 3, (1) reduces to

232−1∑
i=0

ib310 =

232−1∑
i=0

ib21 . (7)

Now we take (5), (6) and (7) and include them in (4) which yields

232−1∑
i=0

ib610 = m5
msb

232−1∑
i=0

ib21 ⊕m3
smsb

232−1∑
i=0

ib30 ⊕
232−1∑
i=0

ib21

= m5
msb

232−1∑
i=0

ib03 ⊕m3
smsb

232−1∑
i=0

ib03 ⊕
232−1∑
i=0

ib03

= m5
msb

232−1∑
i=0

i⊕m3
smsb

232−1∑
i=0

i⊕
232−1∑
i=0

i = 0 . (8)

Here, we can directly see our multiset and know that the sum is zero.

Equation (3) now has only two summands left both depending on the value

of a6
2. From the update equation for a6

2 = a4
4, we know

232−1∑
i=0

ia4
4 =

232−1∑
i=0

(
ia3

3 ⊕ α0
ia3

0 ⊕ ib30 ⊕ iR2
3 ⊕ iR1

3 ⊕ ia3
4

)
.

126 D. Priemuth-Schmid

The values for a3
3, a

3
0, R2

3, R1
3

and a3
4 remain constant for all pairs. We denote

the sum of them with C = a3
3 ⊕ α0a

3
0 ⊕R2

3 ⊕R1
3 ⊕ a3

4 which does not depend

on i and is unknown to us. With this simplification, we obtain

232−1∑
i=0

ia4
4 =

232−1∑
i=0

(
ib30 ⊕ C

)
=

232−1∑
i=0

(
i⊕ C

)
. (9)

As a result of the multiset, we know that in each bit of i the number of ones

and zeros occurring is exactly 2
31

which is an even number. This means that the

second most significant bit of a4
4 has 2

31
ones and 2

31
zeros. Taking this and the

fact that the value of b60 remains constant, we obtain for the second summand

of (3)

232−1∑
i=0

im6
smsb

ib60 =

231−1∑
i=0

α1b
6
0 ⊕

231−1∑
i=0

α2b
6
0 = 0 . (10)

Altogether (3) simplifies with (8) and (10) to

232−1∑
i=0

ib710 =

232−1∑
i=0

im6
msb

ib68 =

232−1∑
i=0

im6
msb

ib410 (11)

where the choice of the multiplier depends on the msb of the value a6
2 = a4

4 and

the value of b410 does not remain constant. We emphasized at the beginning the

ascending order of our multiset. This means that the first half of our multiset

has msb zero and the second half has msb one. Accordingly, the msb of all
ia4

4

with i = 0, . . . , 231 − 1 is the msb of unknown constant C, see (9), whereas the

msb of all
ia4

4 with i = 2
31, . . . , 232 − 1 is the opposite of the msb of unknown

constant C. Thus, we divided the sum into a first and a second half. We need to

check whether we can also divide the set of
ib410. From (6) with (7) we know

232−1∑
i=0

ib410 = m3
smsb

232−1∑
i=0

ib30 ⊕
232−1∑
i=0

ib21 = m3
smsb

232−1∑
i=0

i⊕
232−1∑
i=0

i .

The choice of the multipliers is constant but unknown to us. We can divide both

sums into a first and a second half.

Now with the two possibilities of the msb of a4
4 (first half zero and second half

one, or the other way around), for (11) we can compute two values

X1 =

⎛
⎝m3

smsb

231−1∑
i=0

i⊕
231−1∑
i=0

i

⎞
⎠⊕ α3

⎛
⎝m3

smsb

232−1∑
i=231

i⊕
232−1∑
i=231

i

⎞
⎠

X2 = α3

⎛
⎝m3

smsb

231−1∑
i=0

i⊕
231−1∑
i=0

i

⎞
⎠⊕

⎛
⎝m3

smsb

232−1∑
i=231

i⊕
232−1∑
i=231

i

⎞
⎠ .

For the sums over exactly one ordered half of the multiset the property of sum-

ming up to zero is preserved. Accordingly, the values X1 and X2 are both zero.

Attacks on Simplified Versions of K2 127

Thus, we have proven the assumed multiset propagation through K2
⊕

which

results in
232−1∑
i=0

izH
0 =

232−1∑
i=0

ib710 = 0 .

We have shown that we can distinguish the K2
⊕

from a random function with

probability 1 − 2
−32

. The time complexity is 2
32 · 7 ≈ 2

34.8
clocks of K2

⊕
. We

need the first keystream word for all 2
32

pairs (key, IV i
) with (i = 0, . . . , 232−1).

The memory requirements are negligible.

5 Conclusions

We have shown a differential chosen IV attack with key recovery on K2
⊕

with

5 initialization clocks. The complexity for this attack is 2
8.1

clocks of K2
⊕

with

needed keystream of 28 words and negligible memory requirements. The exten-

sion of this attack to 6 or 7 initialization clocks is the topic of ongoing research.

A distinguishing attack on K2
⊕

with 7 initialization clocks is also presented.

With a multiset and its predictable propagation through these 7 clocks, we can

distinguish K2
⊕

from a random function with probability 1 − 2
−32

. The com-

plexity for this attack is 2
34.8

clocks of K2
⊕

with needed keystream of 2
32

words

and negligible memory requirements. We can not extend this attack to 8 initial-

ization clocks because in L1
8

we will get a set we do not know anything about

and therefore resulting in a random sum.

Acknowledgements. I would like to thank Alex Biryukov and Ralf-Philipp

Weinmann for helpful comments.

References

1. Bogdanov, A., Preneel, B., Rijmen, V.: Security Evaluation of the K2 Stream Cipher
(March 2011), http://www.cryptrec.go.jp/estimation/techrep_id2010_2.pdf

2. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

3. Henricksen, M., Yap, W.S., Yian, C.H., Kiyomoto, S., Tanaka, T.: Side-Channel
Analysis of the K2 Stream Cipher. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010.
LNCS, vol. 6168, pp. 53–73. Springer, Heidelberg (2010)

4. Kiyomoto, S., Tanaka, T., Sakurai, K.: K2: A stream cipher algorithm using dy-
namic feedback control. In: Hernando, J., Fernández-Medina, E., Malek, M. (eds.)
SECRYPT, pp. 204–213. INSTICC Press (2007)

http://www.cryptrec.go.jp/estimation/techrep_id2010_2.pdf

Model Selection in Logistic Regression Using

p-Values and Greedy Search

Jan Mielniczuk
1,2

and Pawe�l Teisseyre
1,�

1 Institute of Computer Science, Polish Academy of Sciences,
Ordona 21, 01–237 Warsaw, Poland
{miel,teisseyrep}@ipipan.waw.pl

2 Warsaw University of Technology, Faculty of Mathematics and Information Science,
Politechniki Sq. 1, 00–601 Warsaw, Poland

Abstract. We study new logistic model selection criteria based on p-
values. The rules are proved to be consistent provided suitable assump-
tions on design matrix and scaling constants are satisfied and the search
is performed over the family of all submodels. Moreover, we investi-
gate practical performance of the introduced criteria in conjunction with
greedy search methods such as initial ordering, forward and backward
search and genetic algorithm which restrict the range of family of models
over which an optimal value of the respective criterion is sought. Scaled
minimal p-value criterion with initial ordering turns out to be a promis-
ing alternative to BIC.

Keywords: logistic regression, model selection, greedy search methods,
p-values.

1 Introduction

Model selection and properties of ensuing postmodel selection estimators is one

of the central subjects in theoretical statistics and its applications. In particular,

variable selection in regression models with dichotomous response e.g. a logistic

models is widely used (cf. e.g. [6]). In the paper we focus on the first from the

two main related problems of statistical modelling which are explanation (i.e.

finding an adequate model) and prediction. The present paper provides some

insights into behaviour of logistic model selection criteria based on p-values. In

this approach introduced for parametric families of densities by Pokarowski and

Mielniczuk ([9]) competing models are viewed as alternative hypotheses with null

hypothesis being the minimal model and choosing the model for which appropri-

ately scaled p-value of LRT test statistic is the smallest one. In the paper we in-

vestigate basic property of such rules concerning identification of the true model

namely their consistency which means that probability of choosing a minimal

true model tends to 1. Moreover, we focus on the situation when the number of

potential regressors is large and only search of an optimal model over a restricted

� Corresponding author.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 128–141, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model Selection in Logistic Regression Using p-Values and Greedy Search 129

family of submodels feasible. That is, we investigate in numerical experiments

the performance of the considered criteria coupled with greedy search methods

such as initial ordering, forward and backward search and genetic algorithm.

We provide some evidence that a scaled minimal p-value criterion introduced in

Section 2 in conjunction with forward search compares favourably with Bayesian

Information Criterion.

2 Logistic Regression Model and Model Selection
Criteria

2.1 Logistic Regression Model

Let y1, . . . , yn be a sequence of independent random variables such that yi has

Bernoulli distribution P (yi = 1) = 1 − P (yi = 0) = πi. Let x′
1, . . . ,x

′
n be a

sequence of associated covariates, xi = (xi,1, . . . , xi,M)
′
with x′

denote a trans-

pose of x. Suppose that the expectations of response variables are related to

explanatory variables by the logistic model

πi(β) =
exp(x′

iβ)

1 + exp(x′
iβ)

. (1)

Vector β = (β1, . . . , βM)
′

is an unknown vector of parameters. Denote Yn =

(y1, . . . , yn)
′
as the response vector and Xn = (x1, . . . ,xn)

′
as the design matrix.

The conditional log-likelihood function for the parameter β is

l(β,Yn|Xn) =

n∑
i=1

{yi log[πi(β)] + (1 − yi) log[1 − πi(β)]}. (2)

The maximum likelihood estimator (MLE) is β̂ = arg maxβ∈RM l(β,Yn|Xn).

Let Π(β) = diag{π1(β)(1− π1(β)), . . . , πn(β)(1− πn(β))}. A useful quantity is

the Fisher information matrix for the parameter β which is defined as

In(β) = −E
∂2l(β,Yn|Xn)

∂β∂β′ = −∂
2l(β,Yn|Xn)

∂β∂β′ = X′
nΠ(β)Xn.

Define also the score function sn(β) =
∂l(β,Yn|Xn)

∂β .
Suppose now that some covariates do not contribute to the prediction of expec-

tation of Y in a sense that the corresponding coefficients are zero. It is assumed

that the true model is a submodel of (1). As any submodel of (1) containing

pj variables (xi,j1 , . . . , xi,jpj
)
′
is described by set of indexes j = {j1, . . . , jpj} it

will be referred to as model j. The minimal true model will be denoted by t. So

pt is the number of nonzero coefficients in equation (1). The empty model for

which P (yi = 1) = 1 − P (yi = 0) =
1
2 will be denoted briefly by 0 and the full

model (1) by f = {1, . . . ,M}. Vector βj of parameters for model j is augmented

to M × 1 vector in such a way that βk = 0, for k /∈ j. Let β̂j be a Maximum

Likelihood Estimator (MLE) of β calculated for the model j also augmented by

zeros to M × 1 vector. We denote β̂f , MLE in the full model, briefly by β̂. Let

M be a family of all subsets of a set f .

130 J. Mielniczuk and P. Teisseyre

2.2 Model Selection Criteria

The main objective is to identify the minimal true model t using data (Xn,Yn).

Consider two models j and k such that the j model is nested within the model

k. Denote by Dn
jk likelihood ratio test (LRT) statistic, based on conditional

likelihoods given Xn, for testing H0 : model j is adequate against hypothesis

H1 : model k is adequate whereas j is not, equal to

Dn
jk = 2[l(β̂k,Yn|Xn) − l(β̂j ,Yn|Xn)]. (3)

Let F and G be univariate cumulative distribution functions and T be a test

statistic which has distribution function G not necessarily equal to F . Let

p(t|F) = 1 − F (t). By p-value of a test statistic T given the reference distri-

bution F (which will correspond to the approximate null distribution) we will

mean p(T |F). We consider p-values of statistic Dn
jk given chi square distribution

with pk −pj degrees of freedom in view of Fahrmeir (1987) ([4]) who established

asymptotic distribution of Dn
jk for generalized linear model (cf. Theorem 1 for

the logistic regression). In order to make notation simpler, p(Dn
jk|χ2

pk−pj
) will

be denoted as p(Dn
jk|pk − pj). Deviance Dn

jk of the model k from the model j
will be formally defined by (3) even if j is not nested within k.

We define the model selection criteria based on p-values of Dn
jk (cf [9]).

Minimal P-Value Criterion (mPVC)

Mn
m = argminj∈Mepjanp(Dn

0j |pj),

where p(Dn
00|0) = ean/

√
n. Observe that when an = 0 then from among the pairs

{(H0, Hj)} we choose a pair for which we are most inclined to reject H0 and we

select the model corresponding to the most convincing alternative hypothesis. If

an > 0 the scaling factor epjan is interpreted as additional penalization for the

complexity of a model. We will assume throughout that an = O(log(n)).

Maximal P-Value Criterion (MPVC)

Mn
M = argmaxj∈Me−pjanp(Dn

jf |M − pj),

where p(Dn
ff |0) = 1, an → ∞ and an = O(log(n)). The motivation is similar

as in the case of mPVC, namely we choose a model which we are least inclined

to reject when compared to the full model f . We stress that the additional

assumption an → ∞ needed for consistency of MPVC is not required to prove

consistency of mPVC.

Bayesian Information Criterion (BIC) is defined as

Bayesian Information Criterion (BIC)

BICn
= argminj∈M[−2l(β̂j ,Yn|Xn) + pj log(n)].

2.3 Model Selection Criteria Based on a Restricted Search

Selection rules given above require calculations for all members of M what for

large number of possible regressors carries considerable and often enormous com-

putational cost. In order to mend this drawback we consider the following meth-

ods whose aim is to restrict the family of models over which the optimal value

Model Selection in Logistic Regression Using p-Values and Greedy Search 131

of the criterion is sought. The restricted search can be applied for any of the cri-

teria considered above. Assume temporarily that the minimum of the criterion

is sought.

1. Initial ordering (I0). The covariates {j1, j2, . . . , jM} are ordered with re-

spect to the decreasing values of LRT statistics

Dn
(f−{j1})f ≥ Dn

(f−{j2})f ≥ . . . ≥ Dn
(f−{jM})f .

Let MIO = {{0}, {j1}, {j1, j2}, . . . , {j1, j2, . . . , jM}}. The selection criteria

with initial orderingMn
m,IO, Mn

M,IO, BICn
IO are defined analogously as Mn

m,

Mn
M , BICn

. The optimization is now performed over set MIO.

2. Forward selection (FS).The procedure begins with the null model and at

each stage adds the attribute that yields the greatest decrease in the given

criterion function. The final model is obtained when none of the remaining

variables leads to the decrease of the criterion.

3. Backward elimination (BE). A nested sequence of models of decreasing

dimensionality beginning with the full model is constructed. At each step a

variable is omitted that yields the greatest decrease in the criterion function.

FS and BE are widely used techniques for model selection (see e.g. [7])

4. Genetic algorithm (GA). We used an algorithm proposed in [12] with the

settings considered there. Each model, also called an individual, is described

by a binary vector z = (z1, . . . , zM)
′
, where jth gene zj = 1 indicates that jth

variable is included in the model. Each generation consists of 40 individuals

(models) . The initial population is randomly generated in such a way that

zj = 1 with probability 0.9. Instead of using fitness proportionate selection

as in [12] we applied truncation selection (see e.g. in [8]) which performed

better. Namely the two individuals with the smallest values of the given

criterion function are selected as parents. To create the offspring two integer

points are randomly selected from the interval [0,M−1], and ordered so that

v2 ≥ v1. The offspring gets the first v1 genes from the first parent, the next

v2 − v1 genes from the second parent and the last M − v2 genes again from

the first parent. This procedure is repeated 40 times to match the size of

the previous generation.The individuals of each generation are also mutated

before model estimation. Each gene of each individual is flipped, from zero

to one or vice versa, with probability 0.01. The procedure outlined above is

repeated until convergence is achieved.

3 Consistency Properties of Introduced Criteria

We first state some properties of LRT statistic Dn
jk. They are necessary to prove

the consistency of selection rules Mn
m and Mn

M introduced in the previous sec-

tion. We discuss now some technical conditions imposed on the logistic model.

We assume throughout that X′
nXn has full rank. This condition will ensure that

the information matrix In(β) is positive definite for all β ∈ RM
as Π(β) is

positive definite. Let λmin (λmax) denote the smallest (the largest) eigenvalue of

132 J. Mielniczuk and P. Teisseyre

a symmetric matrix. Let A1/2
be a left square root of positive definite matrix

A, i.e. A1/2
(A1/2

)
′
= A. The right square root is defined as AT/2

= (A1/2
)
′
. As

a left square root one can take QΛ1/2Q′
, where QΛQ′

is a spectral decomposi-

tion of A or the lower triangular matrix from Cholesky decomposition. A−1/2

will denote the inverse of A1/2
. Wn = OP (1) means that the sequence of ran-

dom variables is bounded in probability and
d−→ (

P−→) denotes convergence in

distribution (in probability). The following conditions will be needed.

(A1) γn ≤ λmin(In(βt)) ≤ λmax(In(βt)) ≤ κn holds for some positive constants

γ and κ.

(A2) max1≤i≤n ||xi||2 log(n)/n→ 0, as n→ ∞.

As log(n)/n is decreasing, condition (A2) is equivalent to ||xn||2 log(n)/n → 0.

Define the sequence Nn(δ), δ > 0, of neighborhoods of βt as

Nn(δ) = {β : ||In(βt)
T/2

(β − βt)|| ≤ δ}, n = 1, 2,

The following auxiliary condition is assumed for proving Theorem 1.

(F) For all δ > 0,

max
β∈Nn(δ)

||In(βt)
−1/2In(β)In(βt)

−T/2 − I|| → 0,

as n→ ∞.

The following Theorem (cf [4]) states the asymptotic result of LRT statistic Dn
jk.

Theorem 1. Assume λmin(In(βt)) → ∞ as n → ∞ and (F). Then Dn
jk

d−→
χ2

pk−pj
as n→ ∞ provided that model j is true.

Remark 1. Assume max1≤i≤n ||xi||2/n → 0, as n → ∞ and (A1). Then con-
dition (F) holds. Namely letting δ2n = max1≤i≤n x′

iI
−1
n (βt)xi and in view of

(A1)-(A2)

δ2n ≤ max
1≤i≤n

||xi||2λmax(I−1
n (βt)) ≤

max1≤i≤n ||xi||2
nγ

→ 0.

It follows now from Corollary 2 in [5] that the convergence δ2n → 0 implies (F).

In particular it follows from the above Remark that conditions (A1) and (A2) im-

ply (F). Recall that βt = (βt,1, . . . , βt,pt)
′

is a vector of parameters for

model t. Let d2
n = min{[max1≤i≤n ||xi||2]−1, [mink(1/2)βt,k]

2} and observe that

d2
nn/ log(n) → ∞ as n → ∞. Below we state two propositions. The main idea

here is to prove that under mild conditions on the design matrix certain proper-

ties of averaged deviance hold, which are weaker than its law of large numbers.

However, these properties are sufficient for consistency of BIC and p-valued cri-

teria which we prove in Theorem 2. Consider now two models w and c where

the first model is a wrong one (i.e. it does not include at least one explanatory

variable with corresponding coefficient not equal zero) and the second model is

a correct model (although it is not necessarily the simplest one).

Model Selection in Logistic Regression Using p-Values and Greedy Search 133

Proposition 1. Under (A1), (A2) P (Dn
wc ≥ α1nd

2
n) → 1, as n→ ∞, for some

α1 > 0.

Proposition 2. Assume (F) and that for some ε > 0 and for some α > 0

max1≤i≤n ||xi||n−ε ≤ α, as n→ ∞. Then n−(1+ε)Dn
0c = OP (1) as n→ ∞.

Note that the larger ε results in a weaker conclusion of the Proposition 2. In

view of Remark 1, (A1) and (A2) imply assumptions of the 2 for ε = 1/2.

Apart from the asymptotic results of LRT statistic the following approximation

of p(x|pj) for x → ∞ will be used. For x > 0 and p ∈ N define C(x, p) =

e−
x
2
(

x
2

) p
2−1 [

Γ
(

p
2

)]−1
and B(x, p) = C(x, p)

[
x

x−(p−2)

]
.

Lemma 1. If Z ∼ χ2
p then

(i) for p = 1 and x > 0, B(x, 1) ≤ P (Z > x) ≤ C(x, 1);
(ii) for p > 1 and x > 0, C(x, p) ≤ P (Z > x), if p > 1 and x > p − 2,

P (Z > x) ≤ B(x, p);
(iii) for x→ ∞ P (Z > x) = C(x, p)[1 +O(x−1

)].

The above Lemma is proved in [9].

Now we state consistency property of Bayesian Information Criterion and the

introduced selectors Mn
m and Mn

M .

Theorem 2. Under (A1), (A2) BIC , Mn
m and Mn

M are consistent i.e. P (t̂ =

t) → 1, as n→ ∞ when t̂ denotes any one of these selectors.

The strong consistency of Bayesian Information Criterion is proved in [11] where

assumption (A1) is also imposed. Condition (C.2) in [11] after taking into account

(A1) can be restated as max1≤i≤n ||xi||2 log log(n)/n→ 0 i.e. it is slightly weaker

than our condition (A2). However, we avoid assuming any extra conditions, in

particular condition (C.5) in [11], a certain technical condition which seems

hard to verify. From the main result there follows consistency of the greedy

counterparts of the method.

Corollary 1. Under (A1), (A2) BICn
IO, Mn

m,IO and Mn
M,IO are consistent.

In order to explain the main lines of reasoning we prove Theorem 1 in the case

of BIC and Corollary 1 here. More technically involved proofs of the remaining

part of Theorem 1 as well as proofs of auxiliary results are relegated to the

Appendix.

Proof of Theorem 2 (BIC case). Consider the case j ⊃ t i.e. model t is a proper

subset of a model j. We have to show that

P [−2l(β̂t,Yn|Xn) + pt log(n) < −2l(β̂j ,Yn|Xn) + pj log(n)] → 1,

as n → ∞ which is equivalent to P [Dn
jt > log(n)(pt − pj)] → 1 as n → ∞. The

last convergence follows from the fact that Dn
jt = OP (1) which is implied by

Theorem 1. The convergence for j � t follows directly from Proposition 1 and

assumption nd2
n/ log(n) → ∞.

134 J. Mielniczuk and P. Teisseyre

Proof of Corollary 1. Let jc be an index corresponding to the variable in t and

jw an index corresponding to the variable which is not in t. Note that

P [Dn
(f−{jc})f ≥ Dn

(f−{jw})f] → 1

as n→ ∞ which follows from the fact that by Proposition 1 Dn
(f−{jc})f → ∞ in

probability and by Theorem 1Dn
(f−{jw})f = OP (1). This implies the convergence

P (t ∈MIO) → 1 which in conjunction with Theorem 2 yields the consistency of

a respective two-step rule with an initial ordering.

4 Numerical Experiments

In this section the finite-sample performance of the discussed variable selection

procedures is investigated. We considered Bayesian Information Criterion (BIC)

and two scaled p-value criteria with scalings which performed well in the sim-

ulations, namely minimal p-value criterion with an = log(n)/2 (mPVC2)and

maximal p-value criterion with the same an (MPVC2). Every of the three per-

taining criteria was considered in conjunction with any of four search methods

resulting in twelve final methods. Our objective is to study the impact of both

a criterion function and a search method on the probability of the minimal true

model identification in the case when the number of possible variables M is

large compared to the number pt of the true ones. Let t̂ be a model selected by

the considered rule. As the measures of performance, besides P (t̂ = t), we also

consider positive selection rate (PSR) defined as E(pt∩t̂/pt) and and the false

discovery rate (FDR) E(pt̂\t/pt̂). The last two measures are more appropriate

when the probabilities of correct model selection are low (cf. model S3 below).

The simulation experiments were carried out for n = 100 and repeated N = 200

times.

The following logistic regression models have been considered:

(S1) t = 1, β1 = 1,

(S2) t = (1, 2), β = (1,−1)
′
,

(S3) t = (1, 2, 3, 4), β = (0.75, 0.75, 1, 1.25)
′
,

(S4) t = (1, 2, 3), β = (1, 1, 1)
′
.

The covariates x1, . . . ,xn were generated independently from the standard nor-

mal M -dimensional distribution and the binary outcome is drawn as Bernoulli

r.v. with probability defined in (1). Results of our simulation study show that for

the given criterion employed search method can affect considerably the probabil-

ity of the true model selection. Moreover, the analogous results with variable M
(cf. Figures 1 and 2 below) indicate that the differences between search methods

become larger with increasing M . It is also interesting to note that the search

method for which given criterion works the best depends on the criterion used,

e.g. for BIC it is usually initial ordering method, whereas for methods based on

p-values it is forward search. When for the given criterion and the model the

best search method is chosen we see that MPVC2 criterion (with forward search)

Model Selection in Logistic Regression Using p-Values and Greedy Search 135

works better than BIC with any of the considered search methods in the case of

model S1 and the same is true for mPVC2 criterion (with forward search) for

models S2 and S4. The latter also behaves comparably to MPVC2 in the case of

S1. We have shown in Figures 1 and 2 probabilities of correct identification as

a function of horizon M for BIC and mPVC2 for models S1 and S4, whereas in

Tables 1 and 2 indices for all the methods and M = 30 are given for models S2

and S3.

Note that in the case of the model S3, when P (t̂ = t) is small overall and for

a fixed search method, both FDR and PSR are larger for BIC than for p-based

methods indicating that BIC has a tendency for choosing too large subset of

variables, whereas p-value based methods choose a proper subset of true vari-

ables but rarely include superfluous ones. This is also true for other considered

models. The first observation is concordant with [1] and [2]. We also noted (re-

sults not shown) that generating dependent predictors with covariance matrix

Σ = (ρij = ρ|i−j|
) may result in a change of optimal search method for a given

criterion. For ρ = 0.8 IO is replaced by FS as the the best search method for

BIC (actually, BIC with FS became the best method overall). Note also that

the genetic algorithm worked uniformly worst for any of the criteria and model

considered.

We also investigated in more detail usefulness of initial ordering as the search

method. Figure 3 shows probabilities of correct ordering (i.e. true variables pre-

ceding superfluous ones) together with P (t = t̂) as the function of M in model

S1 with β1 = 1 and β1 = 0.5 for BIC and mPVC2. For mPVC2 they do not differ

significantly indicating that the crucial problem is choice of a restricted family

of models over which criterion is optimized. Discrepancy between P (BICn
= t)

and probability of correct ordering is mainly due to choice of too large model.

Summarizing, mPVC2 method turns out to be a worthy competitor for BIC

when used with an appropriate search method in the case when the number of

potential predictors in logistic model is large. Performance of combined selection

rule seems worth investigating. This is also confirmed by a real data example

we considered. Namely, we investigated performance of BIC and mPVC2 with

IO and FS for urine data set ([10], n = 77) by the means of parametric boot-

strap. Two variables (calcium and mmho having the smallest p-values in the full

model) were chosen as predictors and logistic regression model was fitted with Y
being occurrence of crystals in urine. The value of β̂ equals (0.5725,−0.1186)

′
.

A parametric bootstrap (see e.g. [3]) was employed to check how the considered

selection criteria perform for this data set. The true model was the fitted logistic

model with the original two regressors, β = β̂ from which 200 samples and ad-

ditional superfluous explanatory variables were created in pairs by drawing from

the two-dimensional normal distribution with independent components, which

mean and variance vector matched that of the original predictors. We considered

k = 3, 7, . . . , 19 additional pairs what amounted to horizons M = 8, 16, . . . , 40

when the true variables were accounted for. Figure 4 shows summary of the re-

sults. For both search methods mPVC2 performs considerably better, however

in the case of IO it behaves much more stably when M increases.

136 J. Mielniczuk and P. Teisseyre

Table 1. Simulation results for model S2 with M = 30

(a) Fractions of correct model
selection and their SEs

IO BE FS GA

BIC 0.40 0.30 0.32 0.18
(0.03) (0.03) (0.03) (0.03)

mPVC2 0.62 0.68 0.70 0.46
(0.03) (0.03) (0.03) (0.03)

MPVC2 0.42 0.43 0.51 0.28
(0.04) (0.04) (0.04) (0.03)

(b) Positive selection rates and
false discovery rates

IO BE FS GA

BIC PSR 0.945 0.965 0.963 0.958
FDR 0.261 0.332 0.285 0.407

mPVC2 PSR 0.875 0.917 0.905 0.917
FDR 0.095 0.086 0.061 0.187

MPVC2 PSR 0.657 0.675 0.760 0.695
FDR 0.164 0.152 0.019 0.271

Table 2. Simulation results for model S3 with M = 30

(a) Fractions of correct model
selection and their SEs

IO BE FS GA

BIC 0.12 0.14 0.19 0.12
(0.02) (0.02) (0.03) (0.02)

mPVC2 0.08 0.12 0.12 0.10
(0.02) (0.02) (0.03) (0.02)

MPVC2 0.04 0.02 0.07 0.04
(0.01) (0.01) (0.02) (0.01)

(b) Positive selection rates and
false discovery rates

IO BE FS GA

BIC PSR 0.814 0.858 0.845 0.843
FDR 0.272 0.341 0.214 0.319

mPVC2 PSR 0.631 0.714 0.650 0.698
FDR 0.102 0.199 0.065 0.204

MPVC2 PSR 0.497 0.545 0.540 0.544
FDR 0.104 0.186 0.034 0.161

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M

P
ro

ba
bi

lit
y

of
 tr

ue
 m

od
el

 s
el

ec
tio

n

10 15 20 25 30

●

●

●

●

●

●

IO
BE
FS
GA 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

M

P
ro

ba
bi

lit
y

of
 tr

ue
 m

od
el

 s
el

ec
tio

n

10 15 20 25 30

●

●

●

●
●

●

IO
BE
FS
GA

(a) (b)

Fig. 1. Estimated probabilities of correct model selection with respect to M for BIC
(figure (a)) and mPVC2 (figure (b)) for model S1

Model Selection in Logistic Regression Using p-Values and Greedy Search 137

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M

P
ro

ba
bi

lit
y

of
 tr

ue
 m

od
el

 s
el

ec
tio

n

10 15 20 25 30

●

●

●

●
●

●

IO
BE
FS
GA 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

M

P
ro

ba
bi

lit
y

of
 tr

ue
 m

od
el

 s
el

ec
tio

n

10 15 20 25 30

●

●

●

●

●

●

IO
BE
FS
GA

(a) (b)

Fig. 2. Estimated probabilities of correct model selection with respect to M for BIC
(figure (a)) and mPVC2 (figure (b)) for model S4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 o

rd
er

in
g

an
d

se
le

ct
io

n

5 10 15 20 25 30

β1=1
β1=0.5

correct ordering
correct selection 0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M

P
ro

ba
bi

lit
y

of
 c

or
re

ct
 o

rd
er

in
g

an
d

se
le

ct
io

n

5 10 15 20 25 30

β1=1
β1=0.5

correct ordering
correct selection

(a) (b)

Fig. 3. Estimated probabilities of correct model selection and correct ordering in IO
method with respect to M for BIC (figure (a)) and mPVC2 (figure (b)) for model S1
with β1 = 1 and β1 = 0.5

138 J. Mielniczuk and P. Teisseyre

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M

P
ro

ba
bi

lit
y

of
 tr

ue
 m

od
el

 s
el

ec
tio

n

8 16 24 32 40

BIC+IO
mPVC2+IO 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

M

P
ro

ba
bi

lit
y

of
 tr

ue
 m

od
el

 s
el

ec
tio

n

8 16 24 32 40

BIC+FS
mPVC2+FS

(a) (b)

Fig. 4. Estimated probabilities of correct model selection with respect to M for IO
(figure (a)) and FS (figure (b)) for urine dataset

Appendix

Proof of Theorem 2. (Consistency of Mn
m). Assume first that t �= 0 and

consider the case j � t. As the family of logistic models is finite it is sufficient

to show that as n→ ∞

P [eptanp(Dn
0t|pt) ≥ epjanp(Dn

0j |pj)] → 0, (4)

The probability in (4) does not decrease when Dn
0j is replaced by max(Dn

0j , 2)

Thus for pj > 1 in view of Lemma 1 (ii) the above probability is bounded from

above by

P{eptanp(Dn
0t|pt) ≥ epjane−max(Dn

0j ,2)/2
max(Dn

0j/2, 1)

pj
2 −1Γ−1

(
pj

2
)}.

As max(Dn
0j/2, 1)

pj
2 −1 ≥ 1 in view of Lemma 1 (iii) it suffices to show that

P{e(D
n
0t−max(Dn

0j ,2))/2 ≤
e(pt−pj)anΓ (

pj

2
)Γ−1

(
pt

2
)(Dn

0t/2)
pt
2 −1

[1 +O(1/Dn
0t)]} → 0,

as n→ ∞. The above convergence follows easily form Propositions 1 and 2.

For pj = 1 we apply part (i) of Lemma 1 together with

e−x/2
(x

2

)−1/2
(

x

x+ 1

)
≥ 2

3
e−x/2−log(x/2)/2 ≥ 2

3
e−x.

for x = max(Dn
0j , 2) ≥ 2. For pj = 0 the proof is similar. Consider now the case

j ⊃ t. We have to show (4). Using Lemma 1 (iii) we obtain for pt ≥ 1

P
[
1

2
Dn

jt ≤
(pt

2
− 1

)
log

(
Dn

0t

2

)
−
(pj

2
− 1

)
log

(
Dn

0j

2

)
+ log Γ−1

(pt

2

)
−

Model Selection in Logistic Regression Using p-Values and Greedy Search 139

logΓ−1
(pj

2

)
+ log[1 +O(1/Dn

0j)] − log[1 +O(1/Dn
0t)] + an(pt − pj)

]
=

P
[
1

2
Dn

jt ≤
(pt

2
− 1

) Dn
jt

2
(Dn∗

jt)
−1 −

(pj

2
− pt

2

)
log

(
Dn

0j

2

)
+ logΓ−1

(pt

2

)
−

logΓ−1
(pj

2

)
+ log[1 +O(1/Dn

0j)] − log[1 +O(1/Dn
0t)] + an(pt − pj)

]
→ 0,

where Dn∗
jt belongs to the segment joining Dn

0j/2 and Dn
0t/2. The above conver-

gence follows from pj > pt and Theorem 1 and Proposition 1 which imply that

Dn
jt = OP (1) and Dn

0t, D
n
0j → ∞. For pt = 0 we have to show that P [ean/

√
n >

epjanp(Dn
0j |pj)] → 0, which follows from the fact that p(Dn

0j |pj)
d−→ U([0, 1]) as

n→ ∞ and pj ≥ 1. �
Consistency of Mn

M . Assume first that t �= f and consider the case j � t. We

have to show that

P [e−ptanp(Dn
tf |M − pt) ≤ e−pjanp(Dn

jf |M − pj)] → 0, (5)

as n→ ∞. It follows from Theorem 1 that p(Dn
tf |M − pt)

d−→ U([0, 1]) and from

Proposition 1 that Dn
jf → ∞. Thus using Lemma 1 (iii) it sufficies to show

P
[
1

2
Dn

jf ≤
(
M − pj

2
− 1

)
log

(
Dn

jf

2

)
+ logΓ−1

(
M − pj

2

)
+ log[1 +O(1/Dn

jf)] + an(pt − pj)

]
→ 0,

as n→ ∞. The above convergence follows easily from Proposition 1.

Consider the case j ⊃ t. We have to show (5). For j �= f the desired convergence

follows from Theorem 1 which implies that p(Dn
tf |M − pt), p(D

n
jf |M − pj)

d−→
U([0, 1]), as n→ ∞. For j = f this is implied by P (e−pf an < (e−ptanp(Dtf |M −
pt) → 1 which in its turn follows from pt < M and an → ∞. For the case t = f
the proof is similar and uses the assumption that an = O(log n). �
Proof of Proposition 1. First we will show that under (A1) and (A2)

In(β) ≥ τIn(βt) (6)

for some positive constant τ and for β ∈ An = {β : ||β − βt|| ≤ dn}. Recall

that d2
n = min{[max1≤i≤n ||xi||2]−1, [mink(1/2)βt,k]

2}. Using Cauchy-Schwarz

inequality we have

sup
β∈An

|x′
n(β − βt)| ≤ sup

β∈An

||xn|| · ||β − βt|| ≤ 1 (7)

In order to prove (6) it suffices to show that there exists a positive constant

τ > 0 such that πi(β)(1 − πi(β)) > τπi(βt)(1 − πi(βt)), for all i = 1, . . . , n and

β ∈ An. This follows easily from (7) as it implies that it is enough to show that

inf
β∈An

1 + ex
′
iβt

1 + ex
′
iβ

> inf
β∈An

max

(
1

e−x′
iβt + ex

′
i(β−βt)

,
e−x′

iβt

e−x′
iβt + ex

′
i(β−βt)

)
> 0,

for all i which is easy to verify by the second application of (7).

140 J. Mielniczuk and P. Teisseyre

The difference l(β̂c,Yn|Xn) − l(β̂w,Yn|Xn) can be written as

[l(β̂c,Yn|Xn) − l(βc,Yn|Xn)] + [l(βt,Yn|Xn) − l(β̂w|Xn,Yn)]. (8)

It can be shown using one term Taylor expansion, proof of Theorem 1 in [5] and

condition (F) that the first term in (8) is OP (1). We omit the details. We will

show that the probability that the second term is greater or equal α1nd
2
n, for

some α1 > 0 tends to 1. Define Hn(β) = l(βt,Yn|Xn)− l(β,Yn|Xn). Note that

H(β) is convex and H(βt) = 0. For any incorrect model w we have β̂w /∈ An.

Thus it suffices to show that P (infβ∈∂An Hn(β) < α1nd
2
n) → 0, as n → ∞, for

some α1 > 0. Consider the following Taylor expansion

l(β,Yn|Xn) − l(βt,Yn|Xn) = (β − βt)
′sn(βt) − (β − βt)

′In(β̃)(β − βt)/2,

where β̃ belongs to the line segment joining β and βt. Note that sn(βt) is a

random vector with zero mean and the covariance matrix In(βt).

Using the equality above, assumption (A1), (6) and Markov’s inequality we

have, taking α1 < γτ

P [inf
β∈∂An

Hn(β) < α1nd
2
n] ≤ P [sup

β∈∂An

(β − βt)
′sn(βt) ≥ (γτ − α1)nd

2
n) =

P [||sn(βt)||dn ≥ (γτ − α1)nd
2
n) ≤ tr(In(βt))d

2
n

(γτnd2
n − α1nd2

n)2
≤ Mκnd2

n

n2d4
n(γτ − α1)

2
→ 0,

as n→ ∞ . �
Proof of Proposition 2. Call max1≤i≤n ||xi||n−ε ≤ α assumption (A). We

have the following decomposition

Dn
0c = l(β̂c,Yn|Xn) − l(βc,Yn|Xn)+

l(βc,Yn|Xn) − El(βc,Yn|Xn) + El(βc,Yn|Xn) − n log(1/2). (9)

It was proved in the proof of Proposition 1 that under (F) l(β̂c,Yn|Xn) −
l(βc,Yn|Xn) = OP (1) and thus n−(1+ε)

[l(β̂c,Yn|Xn)− l(βc,Yn|Xn)]
P−→ 0. We

will show that

n−(1+ε)
[l(βc,Yn|Xn) − El(βc,Yn|Xn)]

P−→ 0.

This follows from the Law of Large Numbers using Schwarz inequality since

V ar[n−(1+ε)l(βc,Yn|Xn)] = n−2(1+ε)V ar(

n∑
i=1

yix′
iβc) ≤

||βc||2n−2(1+ε)
n∑

i=1

||xi||2 → 0

as n→ ∞ by assumption (A). In view of (9) it suffices to show that

|n−(1+ε)El(βc,Yn|Xn)| ≤ α2, for α2 > 0. The following inequality holds

|n−(1+ε)El(βc,Yn|Xn)| ≤ n−(1+ε)
(

n∑
i=1

|x′
iβc| +

n∑
i=1

log(1 + ex
′
iβc)). (10)

Model Selection in Logistic Regression Using p-Values and Greedy Search 141

The first term in (10) is bounded in view of the Schwarz inequality and assump-

tion (A). The following inequality holds

log(1 + x) ≤ 2 log(x)1{x > 2} + x1{x ≤ 2} ≤ 2 log(x)1{x > 2} + 2. (11)

Using (11) and the Schwarz inequality the second term in (10) is bounded from

above by n−(1+ε)
[2
∑n

i=1 |x′
iβc|+2n] which is bounded by assumption (A). �

References

1. Broman, K.W., Speed, T.P.: A model selection approach for the identification of
quantitative trait loci in experimental crosses (with discussion). J. Roy Stat. Soc.
B 64, 641–656, 731–775 (2002)

2. Chen, J., Chen, Z.: Extended Bayesian criteria for model selection with large model
spaces. Biometrika 95(3), 759–771 (1995)

3. Davison, A., Hinkley, D.: Bootstrap Methods and Their Applications. Cambridge
University Press (1997)

4. Fahrmeir, L.: Asymptotic testing theory for generalized linear models. Statistics 1,
65–76 (1987)

5. Fahrmeir, L., Kaufmann, H.: Consistency and asymptotic normality of the max-
imum likelihood estimator in generalized linear models. The Annals of Statis-
tics 1(13), 342–368 (1985)

6. Harrell, F.E.: Regression Modelling Strategies: with Applications to Linear Models.
Logistic Regression and Survival Analysis. Springer, New York (2001)

7. Hastie, T.J., Pregibon, D.: Generalized Linear Models. Wadsworth and
Brooks/Cole (1992)

8. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeder Ge-
netic Algorithm, I: Continuous Parameter Optimization. Evolutionary Computa-
tion 1(1), 25–49 (1993)

9. Pokarowski, P., Mielniczuk, J.: P-values of likelihood ratio statistic for consistent
model selection and testing (2011) (in preparation)

10. SAS datasets, http://ftp.sas.com/samples/A56902
11. Qian, G., Field, C.: Law of iterated logarithm and consistent model selection cri-

terion in logistic regression. Statistics and Probability Letters 56, 101–112 (2002)
12. Tolvi, J.: Genetic algorithms for outlier detection and variable selection in linear

regression models. Soft Comput. 8(8), 527–533 (2004)

http://ftp.sas.com/samples/A56902

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 142–153, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Landau Theory of Meta-learning

Dariusz Plewczynski

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Pawinskiego 5a Street, 02-106 Warsaw, Poland

darman@icm.edu.pl

Abstract. Computational Intelligence (CI) is a sub-branch of Artificial
Intelligence paradigm focusing on the study of adaptive mechanisms to enable
or facilitate intelligent behavior in complex and changing environments.
Several paradigms of CI [like artificial neural networks, evolutionary
computations, swarm intelligence, artificial immune systems, fuzzy systems and
many others] are not yet unified in the common theoretical framework.
Moreover, most of those paradigms evolved into separate machine learning
(ML) techniques, where probabilistic methods are used complementary with CI
techniques in order to effectively combine elements of learning, adaptation,
evolution and Fuzzy logic to create heuristic algorithms. The current trend is to
develop meta-learning techniques, since no single machine learning algorithm
is superior to others in all-possible situations. The mean-field theory is
reviewed here, as the promising analytical approach that can be used for
unifying results of independent ML methods into single prediction, i.e. the
meta-learning solution. The Landau approximation moreover describes the
adaptive integration of information acquired from semi-infinite ensemble of
independent learning agents, where only local interactions are considered. The
influence of each individual agent on its neighbors is described within the well-
known social impact theory. The final decision outcome for the meta-learning
universal CI system is calculated using majority rule in the stationary limit, yet
the minority solutions can survive inside the majority population, as the
complex intermittent clusters of opposite opinion.

Keywords: Adaptive integration, Artificial Intelligence, Cellular automata, Social
strength, Minority survival, Machine Learning, Computational Intelligence, Meta-
Learning, Landau theory.

1 Introduction

Several meta-learning approaches were proposed in machine learning (ML) field
focusing on the integration of results from different algorithms into single prediction
[1-9]. The typical meta-learning procedure is trying to balance the generality of
solution and the overall performance of trained model. The main problem with such
meta-approaches is that they are static, i.e. adaptivity is not included. The meta-
approach is typically optimized for certain combination of single machine learning
methods and particular representation of training data. Yet, the actual output of the
training should impact the parameters of the method, then allowing for iterative

 Landau Theory of Meta-learning 143

procedure that is able to adapt to changing environment and further optimization of
training model. This dynamical view of machine learning is especially useful for
robotic vision applications [10, 11], general robots [10, 12-20], and bioinformatics [6,
21-24]. In those applications, the balance between environment and trained model can
be described similarly to ensemble learning theory as the global parameter affecting
all learners [25], where each distributed intelligent agent performs training on
available input data toward classification pressure described by the set of positive and
negative cases. When the query testing data is analyzed each agent predicts the query
item classification by “yes”/”no” decision. The answers of all agents are then gathered
and fused into the single prediction. The integration scheme allows for adaptive
changes when different set of input data is presented to the system by retraining all
learners.

The first mathematical approach to the analysis of opinion formation in groups of
individuals was made by Abelson [26]. The other class of models that is based on
probabilistic cellular automata was later proposed by Nowak et al. [27]. A computer
simulation model of the change of attitudes in a population resulting from the
interactive, reciprocal, and recursive operation of previously known Latane's theory of
social impact [28]. Surprisingly, several emerging macroscopic phenomena were
observed, yet resulting from relative simple operation of microscopic rules of opinion
change. The mean-field theory, with intermittent behavior, shows a variety of
stationary states with a well localized and dynamically stable clusters (domains) of
individuals who share minority opinions. The statistical mechanical model of social
impact formulated by Lewenstein [29] postulates the impact of a group of N agents on
a given learner is proportional to three factors: the "strength" of the members of the
whole ensemble, their “social” distance from the individual, and their number N. The
extension of the model was done by Kohring [30, 31], where Latane's theory was
extended to include learning. Lewenstein’s class of models of cellular automata with
intrinsic disorder was later extended to continuous limit by Plewczynski [32], and
proved that even the model of Cartesian social space (therefore not fully connected)
and containing no learning rules, one can also observe different phases (small clusters
in the sparse phase with large role of strong individuals, and high density phase with
almost uniform opinion).

2 Ensemble Learning

We use social impact theory, where individual differences and the social influence
decaying with distance are assumed [29]. The model of meta-learning is based on
several assumptions:

1. Binary Logic
We assume binary logic of individual learners, i.e. we deal with cellular automata

consisting of N agents, each holding one of two opposite states (“No” or “YES”).
These states are binary σi=+/-1, similarly to Ising model of ferromagnet. In most
cases the machine learning algorithms that can model those agents, such as support
vector machines, decision trees, trend vectors, artificial neural networks, random
forest, predict two classes for incoming data, based on previous experience in the

144 D. Plewczynski

form of trained models. The prediction of an agent address the question: is a query
data contained in class A (“YES”), or it is different from items gathered in this class
(“NO”).

2. Disorder and random strength parameter
Each learner is characterized by two random parameters: persuasiveness pi and

supportiveness si that describe how individual agent interacts with others.
Persuasiveness describes how effectively the individual state of agent is propagated to
neighboring agents, whereas supportiveness represents self-supportiveness of single
agent. In present work we assume that influential agents has the high self-esteem pi =
si, what is supported by the fact that highly effective learners should have high impact
on others in the meta-learning procedure. In general the individual differences
between agents are described as random variables with a probability density p(pi,si).

3. Learning space and learning metric
Each agent is characterized by its location in the learning space, therefore one can

calculate the learning distance d(i,j) of two learners i and j. The strength of coupling
between two agents tends to decrease with increasing learning distance between them.
Determination of the learning metric is a separate problem, and the particular form of
the metric and the learning distance function should be empirically determined, and in
principle can have a very peculiar geometry. In our present manuscript, I will analyze
two dimensional Euclidian geometry, with a constant, finite-range metric. In that case,
the decay of learning coupling is described by a function g=1/d(i,j), equal to constant
value g for d(i,j)<R and ∞ for more distant pairs. In addition we choose g(0)=1/ß,
where ß=1/kT, and T represents temperature of the system, that allows for simulating
the competition between persuasiveness and supportiveness of each agent.

4. Learning coupling
Agents exchange their opinions by biasing others toward their own classification

outcome. This influence can be described by the total learning impact Ii that ith agent
is experiencing from all other learners. Within the cellular automata approach this
impact is the difference between positive coupling of those agents that hold identical
classification outcome, relative to negative influence of those who share the opposite
state, and can be formalized as

I
i
= I

p
(

j
∑

t(p
j
)

g(d(i, j))
(1− σ

i
σ

j
)) − I

s
(

j
∑

t(s
j
)

g(d(i, j))
(1+ σ

i
σ

j
)) , (1)

where g(d(i,j)) is a decreasing function of distance d(i,j), and t(pi,si) is the strength
scaling function. The strength scaling can be taken to be t(x)=x, providing redefinition
of the probability density distribution p(pi,si).

The equation of dynamics of the learning model defines the state σi of ith
individual at the next time step as follows:

 σ i
' = −sign(σ

i
I

i
) , (2)

with rescaled learning influence:

I
i
=

j
∑

p
j

(s + p)g(d(i, j))
(1− σ

i
σ

j
) −

j
∑

s
j

(s + p)g(d(i, j))
(1+ σ

i
σ

j
)

(3)

 Landau Theory of Meta-learning 145

We assume a synchronous dynamics, i.e. states of all agents are updated in parallel.
By introducing a weighted majority-minority difference for a system:

m
i
=

j≠ i

∑
(s

j
+ p

j
)σ

j

(s + p)g(d(i, j))
,

and random parameters to describe effective self-supportiveness of each agent:

a

i
=

s − p

s + p
+

β
s + p

s
i
,

we finally get the dynamical equation in noise absent limit:

σ
i
' = sign(m

i
)θ(m

i
− a

i
) + σ

i
sign(a

i
)θ(a

i
− m

i
) .

5. Presence of noise
The randomness of the state change (phenomenological modeling of various

random elements in the learning system, and training data) is given by introducing
noise into the dynamics:

 σ i
' = −sign(σ

i
I

i
+ h

i
) (4)

where hi is the site-dependent white noise, or one can select a uniform white noise,
where for all agents hi=h. In the first case, hi are random variables independent for
different agents and time points, whereas in the second case h are independent for
different time points. We assume here, that the probability distribution of hi is both
site and time independent, i.e. it has uniform statistical properties. The uniform white
noise simulates the global bias affecting all agents (like impurities in training data),
whereas site-dependent white noise describes local effects (such as prediction quality
of individual learner etc.).

6. The mean-field approximation
The mean-field approximation is introduced by replacing the actual value of mi by

its mean value calculated by averaging over disorder values < mi >. This equation is
valid for slowly decaying interactions, when the equilibrium solution is not reached
rapidly.

The further considerations will be performed using the continuous representation
of the above discrete equation in a field-theoretical framework. The sum over agents j
translates in this approach into an integral over n-dimensional Euclidean space
multiplied by the proper density function. The advantage of mean-field theory is
given by the fact that it is able to reduce the full dynamics described by above
functional equations with disorder to the averaged functional equation:

m' (x) = g(x,[m]) + n

0
(x,[m]) ,

provided that m(x) does not change its sign, therefore it is for example close to
uniform state [29].

The system defined in this way is similar to previously postulated cellular automata
models of opinion change in social sciences [29, 32]. The main differences of those
approaches from the previously described cellular automata models are given by the

146 D. Plewczynski

short-range interactions. In addition, the random strength parameters are introduced,
therefore allowing for more complex behavior of the system. Individual agents are
described using probability density p(pi,si), so they differ from each other. Moreover,
the n-dimensional learning space geometry presents an interesting real-life case for
further analytical analysis. There, the coupling between agents decreases with
increasing Euclidean distance between them. The mean-field theory provides very
well defined and controlled approximation allowing for solving the dynamical
equations of the model. The dynamical “order” parameter has to be defined, to show
the decay of minority groups in the form of “staircase” dynamics [29, 32-34].

3 Landau Theory

Now we are ready to introduce continuous limit for the dynamic given by the
equation (2). In order to search for analytical solutions in the system we constrain
ourselves to the case of Euclidean space with arbitrary dimensionality n, when only
nearest-neighbors couplings are taken into account. Our postulates in this simplified
case are presented as follows:

1. Continuous field of states
A new real value field is introduced v(x,t) that describes the state of the system in

the point defined by n-dimensional vector x in the Euclidean space at a given time
moment t. The field is an abstract representation of a single agent state, allowing for
the search of analytical solutions for the system.

2. Positive strength function
The strength of each learning agent is described here using real, positive value,

function f(x).
3. Nonlinearity in the model

The degree of nonlinearity in the system is governed by the parameter ß=1/kT,
which is introduced in order to ensure the stability of two special states +/-1 that
describe to opposite classification outputs of individual learners. This is crucial for
machine learning applications of the model, when the binary classification is selected
for predicting class membership for new testing data.

4. Locality of interactions
The strength of coupling between neighboring agents is given by the real parameter

α, and we assume only the nearest-neighbor interactions. This is strongly supported
by the Euclidean metric of the space, where fast decaying coupling function g(d(i,j))
ensures that only neighbors are connected. In the case of machine learning ensemble
of agents ordered for the purpose of the consensus in the Euclidean space by their
training parameters values, this assumption means that algorithms with similar values
of parameters tend to have similar results. Such observation can be supported by
training similar machine learning algorithms on similar data, or can be modeled as
strong coupling between neighbors in the Euclidean space of their parameters values
space.

Rewriting the equation (4) similarly as in [32], yet for the more general case of
n-dimensional Euclidean space we find:

 Landau Theory of Meta-learning 147

σ
i
(t + 1) − σ

i
(t) = −σ

i
(t) +

sign

s
i + 1

+ p
i + 1

(s + p)g(d (i, i + 1))
σ

i + 1
(t) +

s
i − 1

+ p
i − 1

(s + p)g(d (i, i11))
σ

i − 1
(t) +

s
i + 1

− p
i + 1

+ s
i − 1

− p
i − 1

(s + p)g(d (i, i + 1))
σ

i
(t) + 2β

s
i

(s + p)
σ

i
(t)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

,

with the continuous limit given by the following substitutions:

 σ i
(t + 1) − σ

i
(t) → v(x,t) ,

−σ
i
(t) → −v(x,t) ,

s
i+1

+ p
i+1

(s + p)g(d(i,i + 1))
σ

i+1
(t) → f (x + dx)v(x + dx,t) ,

s
i−1

+ p
i−1

(s + p)g(d(i,i − 1))
σ

i−1
(t) → f (x − dx)v(x − dx,t) ,

2β

s
i

(s + p)
σ

i
(t) → β f (x)v(x,t) .

In addition the third term in the sign function argument is approaching zero in the
continuous limit.

The continuous form of the dynamical equation for the system is therefore given
by the formula:

v(x,t) = −v(x,t) + f (x)v(x,t) − γ v3(x,t) + α δ 2

δ x2
f (x)v(x,t) (5)

This equation governs the dynamics of learning space, i.e. how the state of agent
located in space point x and time t is changing during the course of its evolution. The
first term describes the process of decaying when there is no coupling to other
learners (no self-support). The second one-agent term represents the positive strength
function. The third non-linear term weighted by parameter γ introduce the global
preference for two stationary solutions uniform for the whole system (“YES” and
“NO”). The last two-agent term represents the Euclidean metric using only nearest
neighbors scaled by α parameter.

The functional description of the model is given by the equation:

w(x,t) = −w(x,t) − γ w3(x,t)

f (x)
+ α f (x)∇2 f (x)w(x,t) , (6)

with

 w(x,t) = f (x)v(x,t)

148 D. Plewczynski

as a new field. The dynamics of the system is then governed by the general functional
form similar to the Schrödinger equation:

δ H

δ w(x,t)
=

δ H

δ w(x,t)
, (7)

where H denotes the Hamiltonian (or Lyapunov function) for the system:

H = ∫ ∂x

w2 (x,t)

2
+

γ w4 (x,t)

4 f (x)
− f (x)

w2 (x,t)

2
+

α
2

∇(f (x)w(x, t))2
⎡

⎣
⎢

⎤

⎦
⎥

(8)

Defining the potential energy for the system by

V (x,t) =

w2(x,t)

2
+

γ w4(x,t)

4 f (x)
− f (x)

w2(x,t)

2
+

α
2

∇(f (x)w(x,t))2 (9)

We get more clear form of the dynamic equation:

H = ∫∂t∫∂x

w2 (x,t)

2
− V (x,t)

⎡

⎣
⎢

⎤

⎦
⎥ . (10)

This form of dynamical equation allows for applying the standard mathematical
formalisms of statistical physics, the analytical analysis of the system is therefore
much easier in comparison to other types of topology.

The stationary solutions for the system can be computed by using the Thomas-
Fermi approximation that neglects the kinetic term in the equation (6), i.e. sets α=0.
This approximation and further analytical analysis of the system similar to presented
in this manuscript is presented elsewhere [32] for the one dimensional case of the
nearest neighbors coupling. We will not repeat here the analysis, yet we would like to
recapitulate the generic stationary solutions of the system. We will describe here the
together with generic phases that can be observed in dynamics governed by the such
general equation (6). The presented here results are valid for any dimensionality of
the Euclidean learning space and strongly support the existence of stable solutions for
the system governed by real Schrödinger equation similarly to one dimensional case.
The solutions for the system are given by the minority clusters surrounded by the
majority agents, and the dynamic is of the “staircase” character in the presence of
small noise [9, 29, 32].

We recapitulate the previous findings by describing three different types of
solutions for the equation (6) for different values of parameters γ and α [32]:

1) When γ=α=0
The equation of dynamic is given by the equation:

 v(x,t) = −v(x,t) + f (x)v(x,t) ,

with the stationary solution:

 v(x,t) = e f (x)−1tv(x,t) .

The subspace of learning space, where f(x)>1, are not stable, the learners for which
f(x)=1 do not change their state, and finally clusters with f(x)<1 in the final state
agents does not differ in opinion.

 Landau Theory of Meta-learning 149

2) When γ>0 α=0
The stationary solution for a system is given by the equation:

 f (x) − 1 = γ v2 (x,t) ,

with two different classes of solutions depending of the sign of f(x)-1 term. For larger
values of agent strength f(x)>1 there are one unstable solution v(x,t)=0 and two
stable ones:

v(x,t) = ±

f (x) − 1

γ
.

Learners with self-strength above average influence from others easily get and
maintain their state. For weaker agents we have only one stable, stationary solution
v(x,t)=0. Such learners rapidly collapses their state into average consensus value, and
cannot maintain their own prediction outcome adjusting themselves to average
opinion.

3) When γ<0 α=0
The equation of dynamic similarly to one-dimensional case [32] is given by the

equation:

 v(x,t) = −v(x,t) + f (x)v(x,t) − γ v3(x,t) ,

with the two unstable solutions:

v(x,t) = ±

1− f (x)

−γ
,

and one stable one given by the v(x,t)=0, independent of the actual value of f(x).
Summarizing, three different solutions of the dynamical equation (6) can be

observed in the stationary limit. Each agent either support its own prediction outcome,
or change its state in accordance with the state of majority of learners. The whole
abstract learning space can be divided into subspaces, each with non-zero or zero
solution. The clusters with non-zero solution have the mean size proportional to the
correlation length in the system.

4 Meta-learning

The meta-learning solution for the system is given by the equilibration of the system,
i.e. the solution close to stationary state, can be described by expanding the original
equation (5):

(f (x) − 1)v(x) − γ v3(x) = −α δ 2

δ x2
f (x)v(x) ,

around the stationary solution from Thomas-Fermi approximation:

v

0
(x) = ±

f (x) − 1

γ
,

150 D. Plewczynski

for f(x)>1 or

 v0
(x) = 0

otherwise. The dynamical equation is given by the formula:

 (f (x) − 1− γ v
0
2(x))v(x) = −α δ 2

δ x2
f (x)v(x) . (11)

This equation describes the changes of states on the border of a selected cluster
(where f(x)>1). Now, we introduce similarly to one-dimensional case [32] the new
variable:

w(x) = f (x)v(x) ,

namely the state weighted by the strength of the agent, and effective potential:

V

eff
(x) = (f (x) − 1) − γ v

0
2 (x) = f (x) − 1,

for f(x)>1 or

V

eff
(x) = 0 ,

otherwise. The linear approximation near the cluster edge is therefore described by
equation [32]:

f ' (x
0
)

f 2(x
0
)
(x − x

0
)w(x) − γ v3(x) = α δ 2

δ x2
w(x) ,

that has solutions as Airy functions for new variable z

z = 1
h

(x − x
0
) ,

where:

h3 = α
f 2(x

0
)

f ' (x
0
)

.

The final stationary solution for the whole cluster given by equation (11) smoothed by
the transitory layer with thickness equal to h described by Airy-like function:

()
3

221
34~

z

iA z z e
−−

,

in the direction perpendicular to the cluster borders in multidimensional space. The
thickness h should be much smaller than the average size of the cluster, and the mean
distance between clusters.

The statistical description of the whole system can be calculated by averaging a
set of variables (such as total area of non-zero clusters, thickness of transitory layer,
mean area of one cluster or the number of clusters) over the strength function f(x).
For example, the equation for total area of non-zero clusters is given by simple
average:

P
tot

= θ(f (x) − 1) ,

 Landau Theory of Meta-learning 151

the average thickness of transitory layer is given by the formula:

h
eff

= h = α
f 2 (x

0
)

f ' (x
0
)

3 .

The order parameter of the system is given by the

2 eff

S
hη =

,

with S as the mean distance between clusters [32]. Three phases of the system can be
therefore observed: a) sparse phase η>>1, small minority clusters; b) middle density
phase η>1, some clusters are close to each other; c) large density phase 0<η<1, with
clusters close to each other, and uniformity of opinion is almost reached. The time of
collapse of the minority cluster (the equilibration of the system) is given by simple,
finite value [32]:

()
2
0

02max
Rt

f R
=

The solution for the adaptive integration procedure is given by the minimization of
the potential energy for the system (see eq. (9)):

∂V (x)

∂x
=

∂
∂x

[
w2 (x)

2
+

γ w4(x)

4 f (x)
− f (x)

w2 (x)

2
+

α
2

∇(f (x)w(x))2] = 0

i.e. the solution of the stationary state should be given as rewritten equation (6):

−w(x,t) − γ w3(x,t)

f (x)
+ α f (x)∇2 f (x)w(x,t) = 0 .

The minimization of the global solution should be done numerically in respect to the
space variables within constrain that both global answers for the system should sum
up to one.

5 Concluding Remarks

We showed above that similarly to the original one dimensional case [32], three
phases for ensemble learning system emerge: sparse (large isolation of agents),
middle density (an interesting transient, meta-stable global configurations), and large
density state (large value of learning coupling, near the uniformity edge). In the first
case clusters of both types of states exist, and when the weak coupling is present there
is no bias toward uniform solution. In this regime the intermittent layer approximation
is valid and one can estimate the thickness of transient layer and the approximate size
of clusters. In the second case a variety of sophisticated geometries, shapes of clusters
are present, some are robust and meta-stable, other disappearing slowly changing their
state in agreement with majority rule. Here, no analytical solutions are easy to find,
therefore computer simulations have to be applied. The selection of the stationary
state, i.e. the adaptive integration procedure, can be described by numerical

152 D. Plewczynski

maximization of the free energy of the system with constrain that the sum of
probabilities (the integral over the whole learning space) for both answers should sum
up to one.

Acknowledgments. This work is supported by the Polish Ministry of Education and
Science (N301 159735) and other financial sources.

References

1. Plewczynski, D.: Brainstorming: Consensus Learning in Practice. Frontiers in
Neuroinformatics (2009)

2. Ying, H., et al.: A fuzzy discrete event system approach to determining optimal
HIV/AIDS treatment regimens. IEEE Trans. Inf. Technol. Biomed. 10(4), 663–676 (2006)

3. Burton, J., et al.: Virtual screening for cytochromes p450: successes of machine learning
filters. Comb. Chem. High Throughput Screen 12(4), 369–382 (2009)

4. Capobianco, E.: Model validation for gene selection and regulation maps. Funct. Integr.
Genomics 8(2), 87–99 (2008)

5. Do, C.B., Foo, C.S., Batzoglou, S.: A max-margin model for efficient simultaneous
alignment and folding of RNA sequences. Bioinformatics 24(13), i68–i76 (2008)

6. Gesell, T., Washietl, S.: Dinucleotide controlled null models for comparative RNA gene
prediction. BMC Bioinformatics 9, 248 (2008)

7. Khandelwal, A., et al.: Computational models to assign biopharmaceutics drug disposition
classification from molecular structure. Pharm. Res. 24(12), 2249–2262 (2007)

8. Plewczynski, D., Spieser, S.A., Koch, U.: Assessing different classification methods for
virtual screening. J. Chem. Inf. Model. 46(3), 1098–1106 (2006)

9. Plewczynski, D.: Mean-field theory of meta-learning. Journal of Statistical Mechanics:
Theory and Experiment 11, P11003 (2009)

10. Joshi, A., Weng, J.: Autonomous mental development in high dimensional context and
action spaces. Neural Netw. 16(5-6), 701–710 (2003)

11. Sharma, R., Srinivasa, N.: Efficient Learning of VAM-Based Representation of 3D
Targets and its Active Vision Applications. Neural Netw. 11(1), 153–171 (1998)

12. Huang, P., Xu, Y.: SVM-based learning control of space robots in capturing operation. Int.
J. Neural Syst. 17(6), 467–477 (2007)

13. Knuth, K.H.: Intelligent machines in the twenty-first century: foundations of inference and
inquiry. Philos. Transact. A Math. Phys. Eng. Sci. 361(1813), 2859–2873 (2003)

14. Lau, K.K., et al.: An edge-detection approach to investigating pigeon navigation. J. Theor.
Biol. 239(1), 71–78 (2006)

15. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real
environments. Artif. Life 2(4), 417–434 (1995)

16. Peters, J., Schaal, S.: Reinforcement learning of motor skills with policy gradients. Neural
Netw. 21(4), 682–697 (2008)

17. Qin, J., Li, Y., Sun, W.: A Semisupervised Support Vector Machines Algorithm for BCI
Systems. Comput. Intell. Neurosci., 94397 (2007)

18. Reinkensmeyer, D.J., Emken, J.L., Cramer, S.C.: Robotics, motor learning, and neurologic
recovery. Annu. Rev. Biomed. Eng. 6, 497–525 (2004)

19. Roberts, S., et al.: Positional entropy during pigeon homing I: application of Bayesian
latent state modelling. J. Theor. Biol. 227(1), 39–50 (2004)

 Landau Theory of Meta-learning 153

20. Tani, J., et al.: Codevelopmental learning between human and humanoid robot using a
dynamic neural-network model. IEEE Trans. Syst. Man Cybern. B Cybern. 38(1), 43–59
(2008)

21. Miller, M.L., Blom, N.: Kinase-specific prediction of protein phosphorylation sites.
Methods Mol. Biol. 527, 299–310 (2009)

22. Tang, B.M., et al.: The use of gene-expression profiling to identify candidate genes in
human sepsis. Am J. Respir. Crit. Care Med. 176(7), 676–684 (2007)

23. Thomas, G., et al.: IDOCS: intelligent distributed ontology consensus system–the use of
machine learning in retinal drusen phenotyping. Invest. Ophthalmol. Vis. Sci. 48(5),
2278–2284 (2007)

24. la Cour, T., et al.: Analysis and prediction of leucine-rich nuclear export signals. Protein
Eng. Des. Sel. 17(6), 527–536 (2004)

25. Engelbrecht, A.P.: Computational Intelligence. John Wiley & Sons Ltd. (2007)
26. Abelson, R.P.: In: Frederksen, N., Gulliksen, H. (eds.) Contributions to Mathematical

Psychology. Holt, Reinehart & Winston, New York (1964)
27. Nowak, A., Szamrej, J., Latane, B.: From Private Attitude to Public Opinion: A Dynamic

Theory of Social Impact. Psychological Review 97(3), 362–376 (1990)
28. Latane, B.: Am. Psychol. (36), 343 (1981)
29. Lewenstein, M., Nowak, A., Latane, B.: Statistical mechanics of social impact. Phys. Rev.

A 45(2), 763–776 (1992)
30. Kohring, G.A.: Ising models of social impact: The role of cumulative advantage. Journal

De Physique I 6(2), 301–308 (1996)
31. Kohring, G.A.: J. Phys. I France (6), 301–308 (1996)
32. Plewczynski, D.: Landau theory of social clustering. Physica A 261(3-4), 608–617 (1998)
33. Fronczak, A., Fronczak, P., Holyst, J.A.: Mean-field theory for clustering coefficients in

Barabasi-Albert networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4 pt 2), 046126
(2003)

34. Lambiotte, R., Ausloos, M., Holyst, J.A.: Majority model on a network with communities.
Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3 pt 1), 030101 (2007)

Multi-Test Decision Trees for

Gene Expression Data Analysis

Marcin Czajkowski
1
, Marek Grześ

2
, and Marek Kretowski

1

1 Faculty of Computer Science, Bialystok University of Technology,
Wiejska 45a, 15-351, Bialystok, Poland

{m.czajkowski,m.kretowski}@pb.edu.pl
2 School of Computer Science, University of Waterloo,

200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
mgrzes@cs.uwaterloo.ca

Abstract. This paper introduces a new type of decision trees which are
more suitable for gene expression data. The main motivation for this
work was to improve the performance of decision trees under a possibly
small increase in their complexity. Our approach is thus based on uni-
variate tests, and the main contribution of this paper is the application
of several univariate tests in each non-terminal node of the tree. In this
way, obtained trees are still relatively easy to analyze and understand,
but they become more powerful in modelling high dimensional microar-
ray data. Experimental validation was performed on publicly available
gene expression datasets. The proposed method displayed competitive
accuracy compared to the commonly applied decision tree methods.

Keywords: Decision trees, classification, gene expression, univariate
tests.

1 Introduction

Decision trees represent one of the most popular classification techniques [19,20].

Their chief advantage is the fact that they are easy to understand by humans

which makes them particularly useful when the aim of modelling is to understand

the underlying processes of the environment. Decision trees are also applicable

when the data does not satisfy rigorous assumptions required by more traditional

methods [15,7]. However, existing attempts to apply decision trees to the clas-

sification of gene expression data showed that standard decision tree algorithms

are not sufficient for inducing competitive classifiers [14].

In this paper, we introduce a new type of decision trees that allow testing

more than one feature in a single node of the tree. Every split of such trees is

composed of a set of univariate tests and is called a multi-test split. Trees which

are based on such tests are called Multi-Test Decision Trees (MTDT).

1.1 Background and Motivation

Gene expression data is extremely challenging for computational tools and math-

ematical modelling [21]. Each observation is described by a high dimensional

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 154–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MTDT for Gene Expression Data Analysis 155

feature vector with a number of features reaching even a few dozens of thou-

sands, whereas the number of observations is rarely higher than one hundred.

This high ratio of variables/cases requires new era computational tools to ex-

tract significant and meaningful rules from this kind of data. Existing deci-

sion tree learning algorithms can easily find a split which separates the training

data very well at a given level in the tree, but such a split can correspond to

noise only. This situation is more probable at intermediate and lower levels of

the tree.

A short example will illustrate this problem. Assuming that at a given level

of the tree there are 20 observations (10 from class A and 10 from class B)

and 2 × 10
5

features, the number of possible partitions of this training set (the

number of combinations of choosing 10 out of 20 instances) is smaller (the exact

number is 184, 756) than the number of available features. This makes it very

easy to find a split, i.e., an attribute and its corresponding threshold, which

can split this data perfectly. When there are only 10 observations in the node,

the number of combinations is only 250 whereas the number of attributes is 3

orders of magnitude higher. When there is only one univariate test that splits

the data, there is a very high risk of choosing faulty splits which correspond

to noise.

In this paper we tackle the problem of improving the performance of deci-

sion trees on gene expression data. Our focus is on univariate trees since they

are a ‘white-box’ technique and this fact makes them particularly interesting

for scientific modeling. They are much easier to understand than trees with

multivariate splits and much easier to learn from data. However traditional al-

gorithms, for example, C4.5 [23] or CART [4], fail to produce decision trees

with high classification accuracy on gene expression data. Our previous work

with various univariate decision tree algorithms showed that these algorithms

produce considerably small trees which classify the training data perfectly but

fail in classifying unseen instances [14]. Only a small number of attributes is used

in such trees and their model complexity is low (high bias) therefore they under-

fit the training data [20]. Producing bigger trees using standard algorithms such

as C4.5 does not solve the problem in the case of gene expression data because

small trees often classify the training data perfectly [14].

This indicates that the issue of split complexity could be advocated here since

not much can be gained from bigger univariate decision trees on this kind of data.

Standard techniques of improving the performance of classification algorithms,

e.g., ensemble methods when applied to decision trees result in complex clas-

sifiers that are almost impossible to understand by humans [8,24]. There are

also algorithms which apply multivariate tests [6] based mostly on a linear com-

bination of features. These kinds of decision trees with multivariate splits or

bagging/boosting methods often outperform existing univariate algorithms on

gene expression data [25,16]. They generate, however, more complex classifica-

tion rules that from the medical point of view are more difficult to understand

and analyze.

156 M. Czajkowski, M. Grześ, and M. Kretowski

Some feature selection should be taken into account especially in the context

of microarray data. Providing a group of genes that contributes most to the

classification task like in [1,10] may significantly improve the performance of

decision trees.

1.2 Related Work

One of the approaches that addresses the issue of the test complexity in decision

trees was explored by Berzal et al. [3] who proposed multi-way decision trees

using multi-way splits. In [3], a hierarchical clustering of attribute values is com-

bined with the standard greedy decision tree algorithm. The author reduces the

tree complexity (in terms of the number of nodes) by using multiple thresholds

in each split on a single numerical attribute. This will potentially increase the

branching factor of such splits, however such tests will be more expressive and

the overall number of nodes in the corresponding decision tree will be smaller.

In contrast to our solution, multi-way splits used in [3] are based on a single at-

tribute which is not sufficient to overcome the high ratio of features/observations

in the gene expression data.

The specific character of gene expression data and its influence on the process

of building decision trees was investigated by Li et al. [18]. This solution was

focused on using committees of trees to aggregate the discriminating power of

a bigger number of significant rules and make more reliable predictions. Firstly,

all features are ranked according to the gain ratio [23]. In the next step, the first

tree using the first top-ranked feature in the root node is built. Next, the second

tree using the second top-ranked feature in the root node is built and the process

continues until the k-th tree using the k-th top-ranked feature is obtained. The

classification of the final committee of k decision trees is governed by weighted

voting. It was observed that:

– well performing rules often contain features which are globally low-ranked;

– if the construction of a tree is confined to a set of globally top-ranked features,

the rules in the resulting tree may be less accurate than rules derived from

the entire feature space;

– alternative trees often outperform or compete with the performance of the

greedy tree.

This work also supports our approach to use many univariate splits in multi-

test decision tree induction algorithm. In particular, our aim is to make use of

features which are globally lower-ranked and use them jointly in multi-tests.

However, our aim is also to preserve simplicity of final decision trees, which is

not the case in [18].

The rest of the paper is organized as follows. In the next section, an algo-

rithm to learn multi-test decision trees is presented. In Section 3, the proposed

approach is experimentally evaluated on real gene expression data. The paper is

concluded in the last section and future work is also discussed.

MTDT for Gene Expression Data Analysis 157

2 Multi-Test Decision Trees

Regardless which approach to construct decision trees is used, one of the di-

mensions by which decision trees can be characterized is the number of features

which are tested at each node. Standard algorithms, such as C4.5 [23], use uni-

variate splits, which means that only one feature is checked in each internal node

of the tree. In this paper, we introduce a new type of decision trees that allow

testing more than one feature in a single internal node of the tree. Every split

of our trees is composed of a set of univariate tests and is called a multi-test

split. The fact that these elementary splits are univariate and the way they are

combined show that our approach is substantially different from multi-variate,

e.g. oblique, spits. Trees which are based on our approach are called Multi-Test

Decision Trees (MTDTs), because several univariate elementary tests can be

applied in every internal node of the tree. Every univariate test of the multi-test

corresponds basically to one split from classical algorithms such as C4.5, and our

extension is about combining such individual tests into more complex multi-test

splits. The reminder of this section introduces our algorithm for learning and

applying for classification such multi-test splits.

Decision trees can be constructed using different methods among which top-

down induction is the most common. In what follows, it is assumed that such

top-down induction is used, and the further description focuses on our novel idea

of multi-test splits, which could be essentially used with other types of decision

tree learning methods as well.

2.1 Learning Multi-Test Splits

Let M be a number of training instances X = {x1, x2, . . . , xM} in a given node.

Each instance is described by P attributes denoted as F = {f1, f2, . . . , fP }. Let

xi,j denote the value of the attribute j of the instance i. Each non-terminal node

contains a set of W multi-tests denoted as MT (MT = {mt1,mt2, . . . ,mtW })
from which only one will be chosen in order to split the training instances into

two groups and create a branch for each outcome of the test. Each i-th multi-

test is composed of a group of no more than N univariate tests in which one is

called a primary splitter (PSi) and the rest N −1 surrogate splitters (Si,j where

1 ≤ j < N). The parameter denoted as N represents the maximum number of

one-dimensional tests that constitute the multi-test.

The MTDT splitting criterion is directed by the majority voting mechanism

where the result of each test constitutes a single vote. For this reason, surrogate

tests have considerable impact on decisions of multi-tests because they can out-

vote the primary splitters. It should be noted that this impact can be positive

as well as negative and effects the gain ratio for the entire multi-test. Addition-

ally, we create not one but W multi-tests that can compete with each other.

Therefore, the best multi-test that will be used as a splitting criterion may not

contain the test with highest gain ratio (PS1). This can happen when a com-

petitive multi-test mti (1 < i ≤ W) has a higher gain ratio than mt1. The

illustration of finding the splitting rule for an internal node of the MTDT is

showed in Fig. 1.

158 M. Czajkowski, M. Grześ, and M. Kretowski

Fig. 1. An example of finding the best multi-test from the set of multi-tests for a
non-terminal node in MTDT

First, the algorithm searches for the best possible thresholds. This process is

similar to the search function in the C4.5 algorithm. Next, the W multi-tests are

calculated and the one with the highest gain ratio is chosen to split the training

instances. The algorithm that finds the splitting rule (the best multi-test) for a

given node of the MTDT during top-down induction is presented below.

Inputs:
M - number of training instances X={x1,x2,...,xM} in a node
P - number of attributes F={f1,f2,...,fP}
W - number of multi-tests

Initialize:
V - Vector of pairs: {threshold h, gain ratio gr}
MT - Empty vector MT={mt1,mt2,...,mtW}

Training:
FOR i in {1,...,P}

FOR j in {1,..,M-1}
h_(i,j) = 0.5*(x_(i,j) + x_(i,j+1))
IF IsCandidateThreshold(h_(i,j)) is True

gr = gain ratio of h_(i,j)
add pair {h_(i,j),gr} to V

ENDIF
ENDFOR

ENDFOR
Sort V decreasingly according to the highest gain ratio
MT[1] = BuildMultitest(V[1].h)
FOR i in {2,...,W}

h = FindCompetitive(V,MT)
MT[i] = BuildMultitest(h)

MTDT for Gene Expression Data Analysis 159

ENDFOR
FOR i in {1,...,W}

calculate gain ratio for MT[i]
ENDFOR

RETURN multi-test with the highest gain ratio from MT

Specific functions, such as IsCandidateThreshold, BuildMultitest and

FindCompetitive, are discussed in detail in subsequent sections.

IsCandidateThreshold. Function IsCandidateThreshold guides the search

process of the possible thresholds. At the beginning of the algorithm, we search

for a vector V that contains pairs of a threshold and a gain ratio that is calcu-

lated from the univariate test obtained from that threshold. If the attributes are

nominal, the set of possible values an attribute can take is limited and usually

small. Finding the potential set of tests for the continuous-valued attributes is

somewhat more difficult. In this case, one needs to calculate and rank all tests

that involve one feature only. Each single test compares the value of an attribute

fj (1 ≤ j ≤ P) against a threshold hk,j : fj ≥ hk,j where hk,j denotes the value

of the k-threshold (1 ≤ k < M − 1) on the attribute j. To formulate the test,

we sort the training instances based on the values of an attribute fj in order to

obtain a finite set of values {x1,j , x2,j , . . . , xM,j}.
Any threshold hk,j between xi,j and xi+1,j (1 ≤ i < M) will have the same

effect when dividing the training instances, so we need to check only M − 1

possible thresholds for each numerical attribute fj . In Fig. 2, it can be observed

that some regular thresholds should not be considered, for example, h1,j , h4,j

and hM−1,j . Tests performed on those thresholds are useless for creating new

tests because they split two training instances from the same class. Therefore in

order to optimize the performance, we consider only the relevant threshold called

candidate threshold [11]. The proposed algorithm performs this optimization

using the IsCandidateThreshold function. All candidate thresholds are added

to the vector V and sorted according to the highest gain ratio. In our work,

the gain ratio criterion is used to determine the best possible threshold, and

the midpoint, hk,j , of the interval [xi,j , xi+1,j] is applied as the value of this

threshold: hk,j =
xi,j+xi+1,j

2 . It differs slightly from the implementation in the

C4.5 algorithm, where the threshold is set to the largest value of fj in the entire

training set that does not exceed the above interval midpoint.

BuildMultitest. Let us consider the first multi-test mt1. Let PS1 be a single

univariate test performed on a threshold from the input parameter of BuildMul-

titest function for mt1. In this particular case, the PS1 will have the highest gain

ratio in the node because it was built on the best possible threshold (V [1].h).

However we believe that applying a single test based on one attribute may cause

the classifier to underfit the learning data due to low complexity of such a clas-

sification rule. For this reason, the multi-test is composed of a group of N uni-

variate tests. The parameter denoted as N represents the maximum number of

one-dimensional tests that constitute the multi-test in each non-terminal node.

160 M. Czajkowski, M. Grześ, and M. Kretowski

Fig. 2. Candidate thresholds on attribute fj

Those tests will support the division of the training instances made by the pri-

mary splitter PS1. In other words, the remaining tests of the multi-test should,

using the remaining features, branch the tree in similar way to PS1.

In order to determine surrogate tests, we have adopted a solution proposed in

the CART system. The use of the surrogate variable at a given split results in a

similar node impurity measure. It also mimics the chosen split itself in terms of

which and how many observations goes to the corresponding branch. Therefore,

the measure of similarity between the primary splitter and remaining tests of

the multi-test is the number of observations classified in the same way. In our

method, we also consider tests that classify instances in a inverse (opposite) way

to PS1. For such tests, we reverse the relation between attribute and interval

midpoint, and recalculate the score. The primary splitter PS1 and up to N − 1

surrogate tests S1,l (1 ≤ l < N) constitute the single multi-test denoted as mt1.

FindCompetitive. Function searches for a threshold that will be applied in the

BuildMultitest function formti where 1 < i ≤W . This threshold will be used to

build an i primary splitter (PS) for the i multi-test. The process of obtaining the

first multi-test denoted as mt1, whose primary splitter PS1 has the highest gain

ratio, was shown in previous paragraph. Here we describe alternative multi-tests

that are also built in each non-terminal node and which compete with mt1. The

process of building multi-tests, mti (1 < i ≤ W), requires finding new primary

splitters PSi which together with their surrogate tests may outperform mt1.
Two factors should be taken into consideration while choosing PSi. Firstly,

the primary splitters PSi should be competitor splitters to PS1. Competitor

splitters, alike surrogate splitters S1,i, yield high gain ratio but are not as good

as the primary splitter PS1. A significant difference between these splits is the

way variables are ranked. Surrogate splitters are not evaluated on how much

improvement they yield in reducing node impurity but rather on how closely

they mimic the split determined by the primary splitter. Competitor splits are

runners-up to the primary split and are ranked according to the highest gain

ratio. We denote splitters as competitor splitters if their gain ratio is higher

than q% of the best gain PS1 (the default value equal to 95%). Using more

competitor tests in the search process for the primary split (low q value) may

lead to the selection of tests with low gain ratio. However, decreasing the number

MTDT for Gene Expression Data Analysis 161

of competitor tests (high q) may cause the PSi be too similar to PS1. To sum up:

the surrogate splitters are similar to the primary splitter, whereas competitor

splitters are those which have highest gain ratio.

The second element that should be taken into consideration is that the same

variable is often listed as both a competitor and a surrogate. It may result

in obtaining alternative multi-tests, mti, that contain similar or identical uni-

variate tests and do not provide any improvement. Therefore competitor splits

should be diversified to make the alternative multi-tests also diversified. Function

FindCompetitive finds the primary splitter PSi in a loop for W −1 multi-tests.

Each PSi must be a competitor splitter to PS1 and be the worst average surro-

gate to all primary splitters PSj where j < i. The next step is to build multi-test

mti according to PSi in the same way as in Section 2.1.

2.2 Multi-Test Size and Prediction

The size of the multi-test has a critical impact on its performance and a splitting

decision. The parameter denoted as N represents the maximum number of uni-

variate tests in a multi-test and is defined by the user. To classify observations,

simple majority voting mechanism is employed in which each test has an equal

vote. In the case of a draw, the decision is made in accordance with the primary

splitter. In order to determine the final decision, the gain ratio for each of W
splits determined by multi-tests, mti (1 ≤ i ≤ W), is calculated and compared.

The multi-test with the highest gain ratio is then applied in a given node.

The exact size of the multi-test depends on the difference between the primary

splitter and surrogate tests. The main idea of the MTDT is to use a group of

similar tests in a single node instead of one test as in the classical approach to

univariate decision trees. If there are tests that do not have a right substitute,

surrogate tests should not be added in order to avoid discrepancy in the multi-

test. An inappropriate set of surrogate tests may dominate the primary splitter

and deteriorate the splitting criterion. Therefore, surrogate tests added to the

multi-test should not be different from the primary splitter more than b percent.

When b = 0%, it means that no surrogates are accepted, which is equivalent to

setting N = 1. In this case, the decision tree would become similar to the tree

generated by the C4.5 algorithm as only one attribute will be used in each multi-

test. When b = 100%, it means that all N−1 surrogates join the multi-test. The

threshold, b, can be defined by the user (default value equal 10%).

3 Experimental Results

In this section the proposed solution is experimentally verified using real mi-

croarray datasets. The results of the MTDT algorithm were compared with

several popular decision tree systems.

3.1 Setup

The performance of the MTDT classifier was investigated using publicly avail-

able microarray datasets described in Table 1. These datasets are from the Kent

162 M. Czajkowski, M. Grześ, and M. Kretowski

Table 1. Kent Ridge Bio-medical gene expression datasets

Datasets Attributes Training Set Testing Set

Breast Cancer 24481 34/44 12/7
Central Nervous System 7129 21/39 -
Colon Tumor 6500 40/22 -
DLBCL Standford 4026 24/23 -
DLBCL vs Follicular Lymphoma 6817 58/19 -
DLBCL NIH 7399 88/72 30/50
Leukemia ALL vs AML 7129 27/11 20/14
Leukemia MLL vs ALL vs AML 12583 20/7/20 4/3/8
Prostate Cancer 12600 52/50 27/8

Ridge Bio-medical Dataset Repository [17] and are related to studies of hu-

man cancer, including: leukemia, colon tumor, breast and prostate cancer. For

datasets that were not pre-divided into the training and testing parts, the 10-

fold stratified cross-validation was applied
1
. Leave-one-out cross-validation was

also considered however no significant influence on classification accuracy was

observed. To ensure stable results, the average score of 10 runs is presented in

all experiments.

The classification process for all algorithms was preceded by feature selection

using the Relief-F [1] method which is common for microarray data analysis. In

the first step, Relief-F draws instances at random and computes their nearest

neighbors. Afterwards, Relief-F adjusts a feature weighting vector to give higher

weight to those attributes which discriminate the instance from neighbors of

different classes. The number of neighbors in Relief-F was equal to 10 and in

order to improve the computation time, the number of selected attributes was

arbitrary limited to the top 1000. Restriction for the number of attributes has no

significant influence on classification accuracy however it speeds the algorithms

up.

We have employed two alternative multi-tests mt2 and mt3 in addition to the

primary test, mt1, so the number of multi-tests analyzed in each non-terminal

node, was equal to 3 (W = 3). Performed experiments show that employing

a higher number of multi-tests, besides significant increase of the calculation

time, did not yield any improvement in classification accuracy. To prevent data

over-fitting, C4.5-like pessimistic pruning was applied.

3.2 Multi-Test Decision Tree Results

In Table 2, we compare the influence of the multi-test size on the accuracy.

Results show that the number of univariate tests N used in a single multi-test

has a significant impact on the classifier accuracy. The average score of the

1 Pre-divided datasets were also tested with cross-validation but since the obtained
performance was the same as with the original division into training and testing
parts, due to lack of space, we report results with that original division only.

MTDT for Gene Expression Data Analysis 163

Table 2. A comparison of the MTDT accuracy under different numbers of tests in
the multi-test

Dataset / Classifier MTDT N = 1 MTDT N = 5 MTDT N = 11

Breast Cancer 68.42 57.89 57.89
Central Nervous System 60.50 72.17 74.33
Colon Tumor 80.40 85.83 83.92
DLBCL Standford 81.75 85.25 86.60
DLBCL vs Follicular Lymphoma 84.82 83.42 85.42
DLBCL NIH 51.25 60.00 62.50
Leukemia ALL vs AML 91.17 91.17 88.23
Leukemia MLL vs ALL vs AML 86.67 100.00 100.00
Prostate Cancer 26.47 61.76 44.11

Average score 70.16 77.50 75.89

multi-test with N > 1 was higher on most of the datasets. On only one dataset

(Breast Cancer), the result of the multi-test algorithm was lower than expected,

although the overall improvement is noticeable. We conjecture that the main

cause of lower classification accuracy of the MTDT approach with N = 1 was

due to under-fitted decision trees. It is worth emphasizing that the MTDT with

a single one-attribute test in a node, N = 1, behaves similarly to the standard

C4.5 algorithm. It was also observed that using too many genes in the multi-test

may not only induce more complex rules but also over-fit learned trees to the

training data.

In order to detect and exclude the possibility of over-fitting in the training

phase of our method, we created artificial datasets which were copied from those

listed in Table 1 where attributes were left exactly the same but class labels were

randomly changed. This is usually referred to as the Y-randomization test [27].

The MTDT classification accuracy was significantly lower on randomized data

than on original data and therefore this indicates that there is no evidence of

over-fitting in our method.

Experiments performed on the Dual-Core CPU 1.66GHz machine with 2GB

of RAM showed that the proposed solution is scalable and can manage large

datasets. Average computation time on analysed datasets for increasing numbers

of tests in the multi-test: N = 1, N = 5, and N = 11 was 2.8, 5.3 and 8.8 seconds

correspondingly.

Leukemia MLL vs. ALL vs. AML Dataset. In one of our experiments,

the dataset from Armstrong [2] was evaluated. Dataset describes the distinction

between Leukemia MLL and other conventional ALL subtypes. There are a total

of 57 3-class training samples (20 for ALL, 17 for MLL, and 20 for AML) and 15

test samples (4, 3, and 8 correspondingly).MTDT decision trees withN = 1 and

N = 5 when evaluated on the training instances have the classification accuracy

equal 100%. The actual trees are illustrated in Fig. 3. Although decision trees

compared in this figure have the same performance on the training data, there

is a significant difference in results on the testing instances. Table 3 shows the

164 M. Czajkowski, M. Grześ, and M. Kretowski

Fig. 3. Multi-Test decision trees with N=1 and N=5 tests in a single node

Table 3. Multi-Test Decision Tree with N = 1 and N = 5

MTDT N = 1 MTDT N = 5

(a) (b) (c) (a) (b) (c) Classified as:

6 2 0 8 0 0 (a): AML
0 1 2 0 3 0 (b): MLL
0 2 2 0 0 4 (c): ALL

Accuracy 60% Accuracy 100%

confusion matrix for decision trees. In this experiment, decision trees with multi-

test size N = 1 and N = 5 have the same structure, number of nodes and the

same primary splitters. However, for other values of parameter N or different

datasets this may not be the case. Differences in the tree structure may occur

when alternative multi-tests outperform the mt1 test or surrogate splits outvote

the primary splitters. In spite of an equal tree size between MTDT with N = 1

and N > 1, a larger number of univariate tests in a multi-test generates more

complex nodes. Hopefully, the multi-tests contain only univariate tests which are

easy to understand by human experts. For most datasets shown in Table 1, there

is a relevant biological literature which identifies marker genes that are highly

correlated with the class distinction. In order to evaluate whether the MTDT
results are biologically meaningful, we checked if discovered genes from our model

match biological finding in the literature. The comparison showed that most of

the genes from our MTDT model were also identified in biological publications.

For this particular dataset, 4 out of 5 genes that built MTDT multi-test in the

root node were also distinguished in article [2] and patent [13]. Attributes that

built multi-tests in the lower parts of the MTDT tree usually do not appear

in biological publications as they distinguish only small sets of instances. We

believe that MTDT is capable of finding not only the most significant groups

of marker genes but also low-ranked genes that when combined may also be

meaningful.

MTDT for Gene Expression Data Analysis 165

Table 4. Comparison of classification accuracy

DT/CL AD BF J48 RF CT

Breast Cancer 42.10 47.36 52.63 68.42 68.42
Central Nervous System 63.33 71.66 56.66 75.00 73.33
Colon Tumor 74.19 75.80 85.48 75.80 75.80
DLBCL Standford 95.74 80.85 87.23 95.74 82.97
DLBCL vs Follicular Lymphoma 88.31 79.22 79.22 88.31 83.11
DLBCL NIH 50.00 60.00 57.50 52.50 62.50
Leukemia ALL vs AML 91.17 91.17 91.17 82.35 91.17
Leukemia MLL vs ALL vs AML * 73.33 80.00 86.66 73.33
Prostate Cancer 38.23 44.11 29.41 29.41 44.11

Average score 67.88 69.28 68.81 72.68 72.75

3.3 Comparison of MTDTs to Other Classifiers

The comparison of MTDTs to other decision trees was also performed. The

following classification algorithms were selected for this analysis:

1. AD Tree - alternating decision tree [12].

2. BF Tree - best-first decision tree classifier [22].

3. J48 Tree - pruned C4.5 decision tree [23].

4. Random Forest - algorithm constructing a forest of random trees [5].

5. Simple Cart - CART algorithm that implements minimal cost-complexity

pruning [4].

The implementation of standard algorithms in the Weka package [26] was used

in our evaluation. All classifiers, including the MTDT algorithm, were employed

with default values of parameters on all datasets. The results are presented in

Table 4. AD Tree can be applied only to binary class dataset therefore there are

no results for Leukemia MLL vs ALL vs AML dataset.

Results in Tables 2 and 4 show that MTDTs with N = 5 tests in a single node

yielded the best average accuracy, 77.50%, over all classification problems. How-

ever, the proposed MTDT method managed to achieve high accuracy whereas

comprehensive decision rules were maintained via univariate tests used in multi-

test splits. It is worth emphasizing that the MTDT with a single binary test in a

node, i.e., N = 1, performed similarly to all remaining ‘univariate test’ methods.

It can be compared to the J48 tree algorithm as they both use the gain ratio

criterion. Their trees in most cases separated the training data perfectly, but

performed considerably worse on testing instances. This may be caused by the

under-fitted decision tree model. A slight increase in the number of tests in each

split improved classification accuracy which can be observed in Table 2.

4 Conclusion and Future Directions

In this paper, we presented the multi-test decision tree approach to gene expres-

sion data classification. A new splitting criterion was introduced with the aim

166 M. Czajkowski, M. Grześ, and M. Kretowski

of reducing the under-fit of decision trees on these kind of data and improving

classification accuracy. The experimental sections showed that our method led to

competitive results as it outperformed the standard decision trees. Additionally,

proposed method can be used with incomplete or noisy datasets since it uses

internal surrogate tests. The preliminary comparison with the biological litera-

ture showed that decision trees learned by the MTDT algorithm have biological

interpretation. Therefore, biologists can benefit from using this ”white box” ap-

proach as it builds accurate and biologically meaningful models for classification.

In our future work, we are planning to apply MTDT to solve the problem of

missing values.

Even though, our results on the existing version of the algorithm and the

current parameter tuning are promising, additional work on the influence of the

test size, N , could yield an interesting insight into the behavior of our algorithm.

Overall, we observed that the size, N , of the multi-test has significant impact

on discovered rules and classification accuracy. We are working at the moment

on the algorithm that through internal cross-validation could set this parameter

automatically depending on training data. Another improvement concerns the

pre-pruning mechanism that will reduce the size of the multi-test in lower parts

of the tree. Our observations showed that the split subsets may have an incorrect

size which can then increase the tree height and lead to data over-fit. We are

planning also to look for adequate values of the percentage threshold b, which

measures the similarity between surrogate tests and the primary splitter. We

observed that replacing default settings with individually calculated values for

each dataset could also improve classification results.

Acknowledgments. We thank Wojciech Kwedlo for reading this paper and pro-

viding constructive feedback. This work was supported by the grant S/WI/2/08

from Bialystok University of Technology.

References

1. Aldamassi, M., Chen, Z., Merriman, B., Gussin, D., Nelson, S.: A Practical Guide
to Microarray Analysis of Gene Expression. UCLA Microarray Core & Nelson Lab,
UCLA Department of Human Genetics (2001)

2. Armstrong, S.A.: MLL Translocations Specify a Distinct Gene Expression Profile
that Distinguishes a Unique Leukemia. Nature Genetics 30, 41–47 (2002)

3. Berzal, F., Cubero, J.C., Maŕın, N., Sánchez, D.: Building multi-way decision trees
with numerical attributes. Information Sciences 165, 73–90 (2004)

4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Wadsworth Int. Group (1984)

5. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
6. Brodley, C.E., Utgoff, P.E.: Multivariate Decision Trees. Machine Learning 19,

45–77 (1995)
7. Chen, X., Wang, M., Zhang, H.: The use of classification trees for bioinformatics.

Wires Data Mining Knowl. Discov. 1, 55–63 (2011)
8. Dettling, M., Buhlmann, P.: Boosting for tumor classification with gene expression

data. Bioinformatics 19(9), 1061–1069 (2003)

MTDT for Gene Expression Data Analysis 167

9. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (2006)

10. Dramiski, M., Rada-Iglesias, A., Enroth, S., Wadelius, C., Koronacki, J., Ko-
morowski, J.: Monte Carlo feature selection for supervised classification. Bioin-
formatics 24(1), 110–117 (2008)

11. Fayyad, U.M., Irani, K.B.: On the Handling of Continuous-Valued Attributes in
Decision Tree Generation. Machine Learning 8, 87–102 (1992)

12. Freund, Y., Mason, L.: The alternating decision tree learning algorithm. In: Six-
teenth International Conference on Machine Learning, Bled, Slovenia, pp. 124–133
(1999)

13. Golub, T.R., Armstrong, S.A., Korsmeyer, S.J.: MLL translocations specify a
distinct gene expression profile, distinguishing a unique leukemia, United States
patent: 20060024734 (2006)

14. Grześ, M., Kretowski, M.: Decision Tree Approach to Microarray Data Analysis.
Biocybernetics and Biomedical Engineering 27(3), 29–42 (2007)

15. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning.
In: Data Mining, Inference and Prediction, 2nd edn. Springer, Heidelberg (2009)

16. Hu, H., Li, J., Wang, H., Shi, M.: A Maximally Diversified Multiple Decision Tree
Algorithm for Microarray Data Classification. In: I Workshop on Intelligent Sys-
tems for Bioinformatics, ACS (2006)

17. Kent Ridge Bio-medical Dataset Repository,
http://datam.i2r.a-star.edu.sg/datasets/index.html

18. Li, J., Liu, H., Ng, S., Wong, L.: Discovery of significant rules for classifying cancer
diagnosis data. Bioinformatics (19 suppl. 2), 93–102 (2003)

19. Murthy, S.: Automatic construction of decision trees from data: A multi-
disciplinary survey. Data Mining and Knowledge Discovery 2, 345–389 (1998)

20. Rokach, L., Maimon, O.Z.: Data mining with decision trees: theory and application.
Machine Perception Arfitical Intelligence 69 (2008)

21. Sebastiani, P., Gussoni, E., Kohane, I.S., Ramoni, M.F.: Statistical challenges in
functional genomics. Statistical Science 18(1), 33–70 (2003)

22. Shi, H.: Best-first decision tree learning, MSc dissertation, University of Waikato
(2007)

23. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
San Mateo (1993)

24. Tan, A.C., Gilbert, D.: Ensemble machine learning on gene expression data for
cancer classification. Applied Bioinformatics 2(3), 75–83 (2003)

25. Tan, P.J., Dowe, D.L., Dix, T.I.: Building classification models from microarray
data with tree-based classification algorithms. In: Orgun, M.A., Thornton, J. (eds.)
AI 2007. LNCS (LNAI), vol. 4830, pp. 589–598. Springer, Heidelberg (2007)

26. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

27. Wold, S., Eriksson, L.: Statistical Validation of QSAR Results. In: van de Water-
beemd, H. (ed.) Chemometrics Methods in Molecular Design, VCH, pp. 309–318
(1995)

28. Yeoh, E.J., Ross, M.E.: Classification, subtype discovery, and prediction of outcome
in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer
Cell 1(2), 133–143 (2002)

http://datam.i2r.a-star.edu.sg/datasets/index.html

Rule-Based Approach to Computational Stylistics

Urszula Stańczyk

Institute of Informatics, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland

Abstract. Decision algorithms correspond to the rule-based approach
to classification and pattern recognition problems. While to shorten the
processing time we need as few constituent decision rules as possible,
when their number is too low it may lead to a poor performance of
the classifier. The decision rules can be found by providing the minimal
cover of the training samples, by calculating rules with some genetic
algorithms, by the exhaustive search for all rules. This last option offers
the widest choice of rules, which enables tailoring the final algorithm
to the task at hand, yet this is achieved by the additional cost of rule
selection process. Usually there are assumed some measures indicating
the quality of individual decision rules. The paper presents a different
procedure, which is closer to feature reduction. In the first step there
are selected condition attributes that are discarded, then the rules that
contain conditions on these attributes are removed from the algorithm.
The classifier performance is observed in the domain of computational
stylistics, which is a study on characteristics of writing styles.

Keywords: Decision Algorithm, Computational Stylistics, Rough Sets,
DRSA, Condition Attribute, Rule Support.

1 Introduction

When invented by Zdzislaw Pawlak in the early 1980s, rough set approach dealt
only with abstract or discrete data, which enables only nominal classification
[9]. When the input data sets contain continuous values, discretisation becomes
problematic and it can be difficult to ensure high coverage of the input space,
which in turn can result in the low classification accuracy. What is more, in
multicriteria decision making it often happens that the value sets are ordered.
To take an advantage of this observation and allow for ordinal classification,
Dominance-based Rough Set Approach (DRSA) has been proposed, replacing
the indiscernibility relation with dominance [5,4].

Basing on the knowledge contained in a decision table, theory of rough sets
offers tools for calculation of decision rules. Their premise parts list conditions on
the attributes that describe objects of the Universe, while the conclusion parts
state the decisions when the conditions are met. The rules are found by applying
the variety of algorithms. Sometimes the minimal cover of the learning samples
gives satisfactory results, but far more often some wider selection, even the

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 168–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Rule-Based Approach to Computational Stylistics 169

exhaustive search, is needed to ensure a high classification accuracy. A selection
of rules forms a decision algorithm, which can be applied in a classification task.

To arrive at the smallest set of the most important decision rules typically
the research path goes in two ways. In the first the most important attributes
are determined, by referring to the concept of reducts and core. A reduct is a
subset of condition attributes which keeps intact the quality of approximation
of the decision table. The core is found by intersecting all reducts and the at-
tributes included in it are considered to be more important than others [8,6].
However, when the core is empty, the importance of attributes is not necessarily
so straightforward and to establish it some domain knowledge can be required.

In the second approach some measures of rule quality are defined and cal-
culated for all individual decision rules, for example based on their parameters
such as support, length, conditions specified, or even more elaborated [7].

A rule support indicates for how many learning samples a rule returns the
correct decision. As the rule describes some detected pattern, a high support
means that this pattern is present in many training samples. Thus it is reasonable
to expect that it will also be present in the samples from the testing set. Long
rules mean the risk of overfitting the data: decision rules so closely describe the
learning samples that they may fail when generalisation for the testing samples
is required. Thus shorter rules can be considered as more adaptable.

The paper presents a methodology for construction of a custom decision al-
gorithm by merging these two ways, focusing both on condition attributes and
generated decision rules, with selection of rules for the tailored algorithm by
assuming indirect rule importance indicators, referring to attributes involved,
using them as rule selectors.

Within the methodology firstly the decision rules are found by applying some
algorithm, possibly exhaustive search. The condition attributes are used in con-
struction of rules with varying degrees. Some attributes are exploited more often
than others, some appear frequently in the rules with a higher support and some
with lower. This line of reasoning puts condition attributes in a new perspective.
The distribution of rule support for attributes is analysed and it gives base to
their ordering that reflects their importance.

Next the established orderings are exploited for attribute reduction, yet with
actual target being reduction of rules. When a condition attribute is discarded,
all rules referring to it are discarded as well, regardless on their conclusions
and other conditions. The methodology results in building tailored decision al-
gorithms, which preserve the classification accuracy. The performance of the
modified classifier is compared against the decision algorithm corresponding to
the previously found set of rules, with constraints on rule support to maximise
the classification accuracy which is typically employed.

The performance of the rule-based classifier is studied in the area of compu-
tational stylistics, which belongs with information retrieval, text mining, data
mining. Within the textual analysis there are found numerical characteristics
that in the quantitative terms express individual writing styles, allowing for
author characterisation, comparison and attribution [10].

170 U. Stańczyk

2 DRSA Methodology

DRSA offers a modification of Classical Rough Set Approach (CRSA) defined
by Z. Pawlak [9], by replacing the indiscernibility relation with dominance. The
former enables observation of only presence or absence of features (the objects
either are or are not indiscernible with respect to their features) thus leading
to nominal classification. Dominance allows for ordinal properties in attribute
value sets and it has been proposed to deal with multi-criteria decision making
problems [11,5].

With �q standing for a weak preference relation on the set of objects with
respect to some criterion q, if for all q ∈ P , x �q y, then x dominates y with
respect to P ⊆ C (denoted as xDP y). A set of objects dominating x is denoted
as D+

P (x), and a set of objects dominated by x is indicated by D−
P (x).

If the set of decision attributes contains just one attribute D = {d}, it parti-
tions the Universe into some finite number of classes Cl ={Clt}, for t = 1, . . . , n,
which are preference ordered. The increasing preference is indicated with the in-
creasing indices of classes. The sets of objects to be approximated are upward
or downward unions of classes, or dominance cones:

Cl≥t =

⋃
s≥t

Cls (1)

Cl≤t =

⋃
s≤t

Cls

For P ⊆ C, and t = 1, . . . , n, P -lower approximation of Cl≥t , P (Cl≥t), is the set
of objects belonging to Cl≥t , while P -upper approximation of Cl≥t , P (Cl≥t), is
the set of objects that could belong to Cl≥t :

P (Cl≥t)= {x ∈ U : D+
P ⊆ Cl≥t } (2)

P (Cl≥t)= {x ∈ U : D−
P ∩ Cl≥t �= ∅}

The differences between upper and lower approximations define the boundary
regions of Cl≥t and Cl≤t with respect to P :

BnP (Cl≥t)=P (Cl≥t) − P (Cl≥t) (3)

BnP (Cl≤t)=P (Cl≤t) − P (Cl≤t)

Quality of approximation of Cl by the criteria P ⊆ C can be defined as

γP (Cl) =

∣∣∣∣∣
(
U −

(⋃
t∈{2,...,n}

BnP (Cl≥t)

))∣∣∣∣∣
|U | (4)

Each irreducible subset P ⊆ C for which the quality of approximation with
the selected criteria is preserved (γP (Cl) = γC(Cl)) is called a reduct. The
intersection of all reducts is called the core.

Rule-Based Approach to Computational Stylistics 171

Approximations of the dominance cones is the starting point for the process of
induction of decision rules. The rules can be certain, possible, or approximate. A
set of decision rules is complete when no object of the table remains unclassified.
It is minimal when it is complete and irredundant.

Unfortunately, the minimal set of rules does not guarantee the highest classifi-
cation accuracy. It assumes to include only the rules that are necessary to cover
the training samples and they hardly can cover all points of the multidimen-
sional input space. Therefore, instead of always using minimal cover algorithms,
there are also tried approaches generating all rules and then by some selection
procedure an optimised classifier is built. It contains only some of rules, basing
on their length, support, some assumed weights, or measures of importance [8,1].

3 Aims of Computational Stylistics

Authorship attribution is usually regarded as the most important task within
computational stylistics or stylometry. Typical applications, both historic and
contemporary, comprise proving or disproving the authenticity of documents,
establishing authorship for unattributed or disputed texts, detecting plagiarism.
Other tasks of stylometric analysis include author characterisation and author
comparison [2].

Computational stylistics relies on the fundamental notion that any writing
style can be uniquely described by not only qualitative but also some quantitative
measures. These measures have to be defined in such a way that, on one hand,
enables recognition of an individual writing style, but, on the other hand, makes
imitating it if not exactly impossible, then next to impossible. That is why
stylometry uses in its processing such features of texts that are employed in
rather subconscious way. Instead of observing some striking language patterns
that are easily spotted by anyone who reads the text, usually there are exploited
more subtle textual markers of lexical or syntactic type [3].

Lexical descriptors give frequencies of usage for single letters, words, or groups
of words, while syntactic markers reflect the structure and patterns of sentences
by referring to punctuation marks. Past research shows that both these types of
textual descriptors perform well as characteristic features of a classifier needed
for authorship attribution studies [12].

Wide corpus of texts processed ensures that characteristics found are more
reliable. Construction of samples ends the initial pre-processing phase within
the stylometric analysis. The next step requires application of some data mining
methodology to go through available data, to find some patterns and trends
in it, and return a classifier capable of authorship attribution with satisfactory
accuracy. Techniques employed come from either statistic-oriented computations
or artificial intelligence domain, such as rough set methodology.

When term frequencies are used as characteristic features for the constructed
classifier, there is no doubt that the observed values are ordered, yet their pref-
erence cannot be established within stylometric domain, as some universal, a
priori knowledge about these frequencies with reference to particular authors

172 U. Stańczyk

does not exist. However, as basing on them we definitely can determine author-
ship, it is reasonable to expect that such preference does exist. That is why the
preference order as required by DRSA is either assumed arbitrarily or found in
some experimental way.

4 Experimental Setup

In the experiments described in the paper a set of 25 markers was used, with
frequencies of usage for the selected function words (17) and punctuation marks
(8): but, and, not, in, with, on, at, of, this, as, that, what, from, by, for, to, if, a
fullstop, a comma, a question mark, an exclamation mark, a semicolon, a colon,
a bracket, a hyphen. The frequencies were calculated for the samples included in
the training (180 samples) and two testing sets (60 and 48 samples, respectively
named Test60 and Test48). The samples were constructed basing on chapters
from the selected novels of two writers, Thomas Hardy and Henry James.

The granules of knowledge considered in DRSA are the dominance cones,
hence no discretisation of real-valued input values is required, and in the first
step the decision table is constructed from the set of the training samples. Basing
on these samples all relative reducts were calculated (6664) and their core turned
out to be empty. Next there were built decision rules specifying conditions on
attributes involved to arrive at a decision, finding only enough rules to provide
a minimal cover of the learning samples, and calculating all rules on examples.

The minimal cover algorithm (found with DOMLEM algorithm implemented
in 4eMka software employed in the research) contained only 61 rules, while all
rules on examples (exhaustive search) decision algorithm had 46,191 constituent
rules. When both were tested without any additional constraints upon them, the
first gave only 40% correct decisions while the latter 0%. These results from the
fact that all cases with ambiguous decisions corresponding to no rules matching
or verdicts with several contradicting decisions were treated as incorrect, and for
the full algorithm with its high number of rules it was unavoidable that there
were ambiguous decisions.

To reduce at least some rules from the full algorithm, DRSA suggests im-
posing some threshold value for the minimal support the rules must have to be
included in the final algorithm. This threshold value of support was tested in
the whole range, giving the performance of the classifier as depicted in Fig. 1a.
With increasing values of minimal support required the classification accuracy
increases gradually from 0 to the level of 76%, for support equal at least 40 or
41. Then the accuracy starts to decrease as there are not enough rules left in the
algorithm to ensure good results.

Limiting support values means obtaining a reduced decision algorithm with
fewer rules, so the classifier performance can be observed in relation to the
number of rules included in it, as shown in Fig. 1b. Two algorithms with the
highest classification accuracy of 76% contain 90 rules (for support at least 40)
and 80 rules (for support at least 41) respectively, which is more than in the
minimal cover algorithm. Yet, as clearly can be seen in the full algorithm, high

Rule-Based Approach to Computational Stylistics 173

0

10

20

30

40

50

60

70

80

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Threshold value of rule support

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 [
%

]

0

10

20

30

40

50

60

70

80

1 10 100 1000 10000 100000

Number of rules in a decision algorithm

C
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 [
%

]

a) b)

Fig. 1. Classification accuracy in relation to: a) threshold values of support imposed
on the rules to be included in a decision algorithm, b) numbers of rules (displayed in
logarithmic scale) included in decision algorithms with limited support. All results for
the testing set Test60.

number of rules is not necessarily an advantage in itself but only through the
much wider choice of rules it subsequently offers.

The selection of decision rules for a reduced algorithm can result from reduc-
tion of some of condition attributes by analysing how many times they are used
in construction of relative reducts and decision rules, which was described in the
past research [13]. Furthermore, both reducts and rules can be studied through
their parameters: for reducts it is important to observe their cardinalities, and for
rules their length, support, condition attributes or detailed conditions included.

When there are found all rules on examples within the exhaustive search, many
of them typically have relatively low support when compared to the maximum
obtained. Quite noticeable portion of rules are true for single training samples.
Out of the total 46191 decision rules generated within the performed research
as many as 20976 have support equal 1, which means 45% of rules supported by
single samples.

In order to treat the values of support as indicators of the decision rule sig-
nificance in the process of classification and recognition, and to establish how
this significance in turn reflects on condition attributes the rules refer to, more
detailed analysis of support distribution for attributes is needed, as presented in
Table 1. Since supports of rules range from 1 to 64, their values were grouped
into 7 subranges. In the table for each attribute there is given the total number of
rules this attribute is included in, with specifying how many rules have supports
belonging to each range. The attributes are ordered according to the increasing
number of rules they were included in.

From Table 1 it is clear that the majority of rules have support falling into
the lowest range between 1 and 10. In general the higher the range the fewer
rules with such supports. Only two attributes are present in rules with support
in the range with the highest values. With such overall variety of supports it is
necessary to consider which ranges of values should be consulted to provide some
base for ordering of attributes. It is possible to treat all ranges independently and

174 U. Stańczyk

Table 1. Distribution of rule supports for condition attributes

Number Support in range
of rules 1-10 11-20 21-30 31-40 41-50 51-60 61-64 Attribute

3928 3872 42 12 2 0 0 0 but
4173 3256 530 214 95 56 21 1 and
6167 6117 39 6 3 1 1 0 that
6173 6069 91 10 3 0 0 0 what
7450 7370 74 5 1 0 0 0 for
7469 7355 95 12 4 3 0 0 ?
7615 6651 669 216 51 25 3 0 from
7692 7545 111 30 3 3 0 0 if
7951 7589 270 54 18 14 6 0 (
7997 7845 127 20 5 0 0 0 -
8451 7575 639 163 48 15 11 0 by
8472 8279 164 26 2 1 0 0 as
8647 8570 55 16 2 2 2 0 with
9083 8953 109 16 5 0 0 0 at
9798 9683 93 17 5 0 0 0 ;

10241 9720 376 105 28 10 2 0 in
10306 9736 444 92 24 4 5 1 not
10327 9928 325 59 12 3 0 0 :
10640 10307 260 52 18 3 0 0 !
11005 10795 176 29 5 0 0 0 .
11177 10913 232 26 5 1 0 0 ,
11427 11177 188 42 11 8 1 0 this
11839 11579 206 40 8 3 3 0 to
12922 12523 324 57 17 1 0 0 on
13311 12921 303 66 15 6 0 0 of

test within each, or group them together according to some arbitrary fashion,
which makes for many possible combinations.

The three orderings used in the performed tests are given in Table 2. In
general it was assumed that higher support values are preferred. Firstly there
were studied numbers of rules with supports in the median and higher than
median range of values, that is equal at least 31 (Table 2a). Secondly, there was
observed only the median range of support values for rules (Table 2b), from 31
to 40. And thirdly the focus was on these rules with the highest support and
these maximal supports were ordered (Table 2c).

It should be noted that for all three orders given, from the side considered
as less significant, as the first one on the list there is always the same feature
(“for”), which results in the same version of the decision algorithm. From the
more significant side there can also be observed some similarities.

Three orderings of condition attributes, obtained through the analysis of rule
support, resulted in three groups of tests performed. Each of these groups could
be further divided into two parts, one corresponding to reduction of rules with
attributes considered as more important in the current context while keeping

Rule-Based Approach to Computational Stylistics 175

Table 2. Ordering of attributes: a) based on the number of rules with support in
median and higher ranges (Order 1) that is at least 31, b) based on the number of
rules only with support in median range (Order 2) from 31 to 40, c) based on the
maximal support (Order 3).

a)
Attribute Order 1

for
. L1

what
but
;
at
- L2 M11

on L3
,
as M10
! L4
: M9
if L5
?
of M8

this L6 M7
that L7 M6
in L8

with
to M5

from M4
(M3
by M2
not M1
and

b)
Attribute Order 2

for
with L1
as
if L2
, L3
.

what
that
but
;
?
at M7
- L4
to M6

this L5 M5
of L6
: M4

on L7
! M3
(L8

not
in M2
by

from M1
and

c)
Attribute Order 3

for
at L1
but L2
. L3
-
; L4

what L5
as L6 M11
on L7 M10
, L8
! M9
? L9 M8
of L10
: M7
if L11 M6

this L12 M5
in L13 M4
to L14 M3

that M2
with
from
by
(M1

and
not

these less important, another with removing rules with less important features
and leaving the ones with more important attributes. The former of the series is
denoted by letters M, the latter with letters L. Increasing numbers indicate more
removed attributes and rules and gradual shortening of the decision algorithm.
In some cases only single attributes with their rules were discarded, while in
other several attributes at the same time. When some condition attribute was
disregarded, from the set of rules there were removed all decision rules referring to
this attribute in their premise parts, regardless of the particular local conditions,
all other attributes (if there were any), and conclusions.

5 Results and Discussion

Tests from M-labelled series were characterised by very fast decrease in the
number of decision rules left. As the still remaining rules were these with lower

176 U. Stańczyk

supports, the performance of the resulting classifier was getting steadily worse
and worse, quickly becoming unacceptable, not only lower than for the full al-
gorithm, but lower than 50%. For Order 1 only 4 attributes could be reduced,
for Order 2 only one (the same as the first in this series for Order 1), and for
Order 3 only two (the same as the second in this series for Order 1). This poor
performance could not be repaired with restrictions as to the minimal support
required for the decision rules, because incorrect decisions were mainly due to
no rules matching rather than to ambiguous decisions.

On the other hand, in the initial phase of the reduction process these M
series gave base to the algorithms with the highest classification accuracy of
all, as listed in Table 3. It should be noted that in M4 decision algorithm just
4 condition attributes were discarded along with their rules, and it resulted in
reducing the set of rules by more than half.

Table 3. Best decision algorithms for the first ordering of attributes with reduction of
features from more significant side (classification for Test60 set)

Decision algorithms M1 M2 M3 M4
Number of attributes 24 23 22 21
Number of rules left 42018 32175 25388 20173
Support 33 28 30 20 10 11 14
Number of rules in
the shortened algorithm 19 43 31 75 301 244 134
Classification [%] 83 78 76 76 80 78 76

L-labelled series for all three orderings of characteristic features allowed for
much more significant reduction of attributes and their rules than M-labelled
ones, while at least preserving the original power of the classifier. As stated
before, for the full algorithm the highest classification accuracy was 76% and the
highest minimal support requested for rules to achieve that was 41 which limited
the number of rules to be included to 80. In relation to that threshold support
value of 41 there are given parameters of decision algorithms in Fig. 2, the
number of condition attributes being reduced and resulting from that reduction
the number of remaining decision rules with support equal to or higher than the
required threshold.

From these three series plotted in the graph the best performance is for the
second ordering, which reflected the number of decision rules with supports in
median range for all condition attributes. Within this series the number of rules
with support at least 41 is cut by half, from the initial 80 for the full algorithm
to 40 rules when there are only 6 condition attributes left, which means keeping
only 25% of more important characteristic features and even some increase in
the classification accuracy.

Within all three orderings of condition attributes for various values of thresh-
old support required, there were several versions of decision algorithms with
higher classification accuracy than for the complete set of attributes. The short-
est of these with the highest classification accuracy is obtained when a single

Rule-Based Approach to Computational Stylistics 177

30

35

40

45

50

55

60

65

70

75

80

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of attributes

N
um

be
r

of
 r

ul
es

 in
 d

ec
is

io
n

al
go

ri
th

m
s

Order 1 Order 2 Order 3

Fig. 2. Number of decision rules in relation to the number of condition attributes for
decision algorithms with support limited to at least 41. For Test60 set, for Order 1
classification accuracy is 76%, only for 9 and 8 attributes it falls to 75%. For Order 2
classification equals 76% for 24, 22, 21, and 8 attributes, while for 13 and 11 attributes
it increases to 78%, and for 6 attributes it is 81%. For Order 3 classification is 76% till
there are 9 or 8 attributes left, when it falls to 75 and 70% respectively.

attribute, corresponding to the frequency of usage of “and”, is removed, along
with all rules referring to it in their premise parts, and requiring decision rules
to have the support equal at least 33. It consists of five rules with the conclusion
"hardy", and fourteen for "james". It is as follows.

Decision Algorithm Rus12M1 (24 attributes and 42018 rules, for support≥33
limited to 19 rules containing 12 attributes, for Test60 set classification 83%)

Rule 4073 (not >= 0,0061) & (from >= 0,0035) & (!>= 0,0022)
=> hardy

Rule 4190 (of >= 0,0206) & (from >= 0,0035) & (by >= 0,0041)
& (, >= 0,0629) => hardy

Rule 6015 (by >= 0,0055) & (, >= 0,058) => hardy
Rule 9076 (not >= 0,0059) & (at >= 0,0055) & (from >= 0,0033)

& (? >= 0,0029) => hardy
Rule 11259 (from >= 0,0038) & (by >= 0,0048) => hardy
Rule 17108 (from <= 0,0025) & (by <= 0,0035) & (! <= 0,0076)

=> james
Rule 18227 (in <= 0,0159) & (on <= 0,007) & (from <= 0,003)

=> james
Rule 18229 (in <= 0,0159) & (from <= 0,003) & (by <= 0,0065)

=> james
Rule 18454 (in <= 0,0155) & (on <= 0,0069) & (from <= 0,0032)

=> james
Rule 19601 (in <= 0,015) & (from <= 0,0034) & (by <= 0,0053)

178 U. Stańczyk

& ((<= 0) => james
Rule 24945 (of <= 0,0271) & (this <= 0,0064) & (from <= 0,0029)

& ((<= 0) => james
Rule 31626 (not <= 0,0058) & (in <= 0,0162) & (from <= 0,0035)

=> james
Rule 31793 (not <= 0,0058) & (of <= 0,0289) & (from <= 0,0035)

& (by <= 0,0045) => james
Rule 39780 (on <= 0,0079) & (from <= 0,0035) & (by <= 0,0032)

& (! <= 0,0071) => james
Rule 42141 (on <= 0,0074) & (of <= 0,0289) & (from <= 0,0028)

=> james
Rule 43633 (not <= 0,006) & (in <= 0,0166) & (from <= 0,0029)

=> james
Rule 43635 (not <= 0,006) & (from <= 0,0029) & (by <= 0,0044)

=> james
Rule 43641 (in <= 0,0166) & (from <= 0,0029) & (by <= 0,0044)

=> james
Rule 44499 (on <= 0,0067) & (from <= 0,0032) & (by <= 0,0034)

=> james

Since the testing set Test60 was used to find maximal threshold support val-
ues, which by limiting the rules of decision algorithms resulted in the highest
classification accuracy, for additional verification of conclusions there was per-
formed the second round of tests, for the testing set Test48. The tests confirmed
that in all three orderings of condition attributes in L-labelled series when the
features were reduced and previously established support threshold values im-
posed, the classification accuracy was kept at the same (72%) or higher level
(75%). In M-labelled series the acceptable results are for the same decision al-
gorithms as for Test60, but for the decision algorithm Rus12M1 the supports at
least 29 are needed to get 75% correct decisions for 54 decision rules remaining.
For support of 33 the classification decreases to 66%. On the other hand, for
support at least 29 the classification accuracy for Test60 is 83%.

6 Conclusions

The paper presents results of authorship attribution studies for the literary
works. The methodology employed bases on rough set theory with dominance re-
lation substituting the original indiscernibility relation, which allows for not only
nominal but also ordinal classification. Decision algorithms constructed within
DRSA methodology are tailored by exploiting observations on supports for gen-
erated rules and how they reflect upon the significance of individual condition
attributes. Such analysis of characteristic features does not require any addi-
tional domain knowledge or computationally complex calculations and results
in noticeable reduction of the decision algorithms while the classification accu-
racy is either kept at the same level or even increased. Thus considering the
attributes from the perspective of rule supports brings more insight as to their

Rule-Based Approach to Computational Stylistics 179

role in the classification task and could be treated as an additional feature to
the methodology of constructing decision algorithms by limiting rule supports
and their lengths.

Acknowledgments. In search for decision rules there was used 4eMka System
- a rule system for multicriteria decision support integrating dominance relation
with rough approximation, developed in the Laboratory of Intelligent Decision
Support Systems, Institute of Computing Science, Poznan University of Tech-
nology, (http://www-idss.cs.put.poznan.pl/).

References

1. Baszczynski, J., Sowinski, R., Szelaga, M.: Sequential covering rule induction algo-
rithm for variable consistency rough set approaches. Information Sciences 181(5),
987–1002 (2011)

2. Burrows, J.: Textual analysis. In: Schreibman, S., Siemens, R., Unsworth, J. (eds.)
A Companion to Digital Humanities. Blackwell, Oxford (2004)

3. Craig, H.: Stylistic analysis and authorship studies. In: Schreibman, S., Siemens,
R., Unsworth, J. (eds.) A Companion to Digital Humanities. Blackwell, Oxford
(2004)

4. Greco, S., Matarazzo, B., Słowiński, R.: Handling missing values in rough set analy-
sis of multi-attribute and multi-criteria decision problems. In: Zhong, N., Skowron,
A., Ohsuga, S. (eds.) RSFDGrC 1999. LNCS (LNAI), vol. 1711, pp. 146–157.
Springer, Heidelberg (1999)

5. Greco, S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in
Multi Criteria Decision Making. In: Gal, T., Hanne, T., Stewart, T. (eds.) Advances
in Multiple Criteria Decision Making, pp. 14.1–14.59. Kluwer Academic Publishers,
Dordrecht Boston (1999)

6. Hu, X., Han, J., Lin, T.Y.: A new rough sets model based on database systems.
Fundamenta Informaticae 20, 1–18 (2004)

7. Li, J., Cercone, N.: Introducing a rule importance measure. Transactions on Rough
Sets 5, 167–189 (2006)

8. Moshkov, M., Piliszczuk, M., Zielosko, B.: On partial covers, reducts and decision
rules with weights. Transactions on Rough Sets 6, 211–246 (2006)

9. Pawlak, Z.: Rough sets and intelligent data analysis. Information Sciences 147,
1–12 (2002)

10. Peng, R., Hengartner, H.: Quantitative analysis of literary styles. The American
Statistician 56(3), 15–38 (2002)

11. Słowiński, R., Greco, S., Matarazzo, B.: Dominance-based rough set approach to
reasoning about ordinal data. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H.,
Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 5–11. Springer,
Heidelberg (2007)

12. Stańczyk, U.: Dominance-based rough set approach employed in search of authorial
invariants. In: Kurzyński, M., Woźniak, M. (eds.) Computer Recognition Systems
3. AISC, vol. 57, pp. 315–323. Springer, Berlin (2009)

13. Stańczyk, U.: DRSA decision algorithm analysis in stylometric processing of lit-
erary texts. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q.
(eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 600–609. Springer, Heidelberg
(2010)

http://www-idss.cs.put.poznan.pl/

Differential Evolution

for High Scale Dynamic Optimization

Miko�laj Raciborski
1
, Krzysztof Trojanowski

2
, and Piotr Kaczyński

1

1 Cardinal Stefan Wyszyński University
Faculty of Mathematics and Natural Sciences

Wóycickiego 1/3, 01-938 Warsaw, Poland
2 Institute of Computer Science, Polish Academy of Sciences

Ordona 21, 01-237 Warsaw, Poland

Abstract. This paper studies properties of a differential evolution ap-
proach (DE) for dynamic optimization problems. An adaptive version
of DE, namely the jDE algorithm has been applied to two well known
benchmarks: Generalized Dynamic Benchmark Generator (GDBG) and
Moving Peaks Benchmark (MPB). The experiments have been performed
for different numbers of the search space dimensions starting from five
until 30. The results show the influence of the problem complexity on
the quality of the returned results both in case of varying and constant
number of fitness function calls between subsequent changes.

1 Introduction

In [8] uncertainty is divided into four main types. In the first type, a noise is

present in the optimized function. Uncertainty of the second type is present

when for some reason (for example, high computational costs), instead of using

a function, we use approximation evaluation of function values. The third type

of uncertainty occurs when the main aim is to find a solution not only of the

highest quality, but — more importantly — one whose neighbors are equally

good, that is, when the most important issue is the robustness of the returned

solution. The last of the four types of uncertainty is observed when the function

dynamically changes during the search process. In this case, the main task is an

immediate adaptation to the changes. Problems with this type of uncertainty are

often referred to as dynamic problems. This last type of uncertainty concerning

the search space defined in Rn
is the subject of interest in the presented research.

The number of already published dynamic benchmarks is quite impressive.

Benchmarks given in [1,12,17] consisted of a number of moving peaks, cones

or hills of varying height and width. Later on, in [6,21] authors used a set of

n-dimensional gaussian functions. In [9] authors proposed a dynamic landscape

consisting of a number of static component functions which rise up and fall down

during the process of search. In [15] authors proposed Continuous Dynamic Op-

timization Problem Generator (CDOPG) which is a real-valued version of a

XOR DOP benchmark [18]. A new type of changes, that is, rotation of fitness

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 180–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Differential Evolution for High Scale Dynamic Optimization 181

landscape components appeared in Dynamic Rotation Peak Benchmark Gen-

erator [10], however, the largest number of deformation types applied to the

fitness landscape components can be found in Generalized Dynamic Benchmark

Generator (GDBG) mentioned first in [11] and then also in [10].

There were also proposed many heuristic approaches to dynamic optimization

problems (DOPs). A review of them can be found, for example, in [19,20]. In spite

of significant number of research and published results dynamic optimization is

still a subject of interest and new methods devoted to this area are developed.

Recently, a number of approaches were presented at the special session Com-
petition on Dynamic Optimization accompanying the Congress CEC’09 where

the competitors compared their approaches using GDBG mentioned above. The

winner was a self-adaptive differential evolution algorithm [4] (called jDE). We

decided to study jDE and especially check its performance in high dimensional

dynamic optimization benchmarks. The results of our research are presented in

this paper.

Differential evolution approach which originated with the Genetic Annealing

algorithm [13] has been heavily studied from many points of view (for detailed

discussion see, for example, monographs [5,14]). The presented version of the

DE algorithm [3] differs form the basic approach in that a self-adaptive control

mechanism is used to change the control parameters F and CR during the run.

This approach has been studied for static optimization tasks and proved its

efficiency and effectiveness [2].

The paper is organized as follows. In Section 2 a brief description of the opti-

mization algorithm is presented. Section 3 includes some details of the selected

testing environment and the applied measure. Section 4 shows the results of

experiments. Section 5 concludes the presented research.

2 The Algorithm

The differential evolution algorithm is an evolutionary method with a very spe-

cific mutation operator controlled by the scale factor F . Three different, ran-

domly chosen solutions are needed to mutate a target solution xi
: a base solution

x0
and two difference solutions x1

and x2
. Then, a mutant undergoes discrete

recombination with the target solution which is controlled by the crossover prob-

ability factor CR ∈ [0, 1]. Finally, in the selection stage trial solutions compete

with their target solutions for the place in the population. This strategy of pop-

ulation management is called DE/rand/1/bin which means that the base solu-

tion is randomly chosen, 1 difference vector is added to it and the crossover is

based on a set of independent decisions for each of coordinates, that is, a number

of parameters donated by the mutant closely follows a binomial distribution.

The jDE algorithm (depicted in Figure 1) extends functionality of the basic

approach in many ways. First, each object representing a solution in the pop-

ulation is extended by a couple of its personal parameters CR and F . They

are adaptively modified every generation [3]. The next modifications have been

introduced just for better coping in the dynamic optimization environment. The

182 M. Raciborski, K. Trojanowski, and P. Kaczyński

Algorithm 1. jDE algorithm

1: Create and initialize the reference set of (k · m) solutions
2: repeat
3: for l = 1 to k do {for each subpopulation}
4: for i = 1 to m do {for each solution in a subpopulation}
5: Select randomly three solutions: xl,0, xl,1, and xl,2

such that: xl,i �= xl,0 and xl,1 �= xl,2

6: for j = 1 to n do {for each dimension in a solution}
7: if (rand(0, 1) > CRl,i) then
8: ul,i

j = xl,0
j + F l,i · (xl,1

j − xl,2
j)

9: else
10: ul,i

j = xl,i
j

11: end if
12: end for
13: end for
14: end for
15: for i = 1 to (k · m) do {for each solution}
16: if (f(ui) < f(xi) then {Let’s assume this is a minimization problem}
17: xi = ui

18: end if
19: Recalculate F i and CRi

20: Apply aging procedure for xi

21: end for
22: Do overlapping search
23: until the stop condition is satisfied

population of solutions has been divided into five subpopulations of size ten.

Each of them has to perform its own search process, that is, no information is

shared between subpopulations. Every solution is a subject to the aging pro-

cedure protecting against stagnation in local minima and just the global-best

solution is excluded form this. To avoid overlapping between subpopulations a

distance between subpopulation leaders is calculated and in the case of too close

localization one of subpopulations is reinitialized. However, as in previous case

the subpopulation with the global-best is never the one to reinitialize. The last

extension is a memory structure called archive. The archive is increased after

each change in the fitness landscape by the current global-best solution. Recall-

ing from the archive can be executed every reinitialization of a subpopulation,

however, decision about the execution depends on a few conditions. For details

of the above-mentioned extension procedures the reader is referred to [4].

3 Plan of Experiments

3.1 Benchmarks

Among the existing dynamic benchmarks, we have selected two: Generalized

Dynamic Benchmark Generator (GDBG) [10] and the Moving Peaks Benchmark

Differential Evolution for High Scale Dynamic Optimization 183

(MPB) generator [1]. In both cases optimization is carried out in a real-valued

multidimensional search space, and the fitness landscape is built of multiple

component functions individually controlled by their parameters.

GDBG consists of two generators of benchmarks: Dynamic Rotation Peak

Benchmark Generator (DRPBG) and Dynamic Composition Benchmark Gen-

erator (DCBG). There are five types of component functions: peak (F1), sphere

(F2), Rastrigin (F3), Griewank (F4), and Ackley (F5). F1 is applied for DRPBG

whereas all the remaining types are applied for DCBG.

There were also defined six change types of the GDBG control parameters

which represent different characteristics of variability. Among them we did our

experiments with just three of them: small step change (T1 — eq. (1)), large

step change (T2 — eq. (2)), and random change (T3 — eq. (3)). The change Δ
of a parameter value is calculated as follows:

Δ = α · r · (max−min),where α = 0.04, r = U(0, 1), (1)

Δ = (α · sign(r1) + (αmax − α) · r2) · (max−min),

where α = 0.04, r1,2 = U(0, 1), αmax = 0.1 (2)

Δ = N(0, 1) (3)

In the above-mentioned equations max and min represent upper and lower

boundary of the search space, N(0, 1) is a random value obtained with gaus-

sian distribution where μ = 0 and σ = 1, and U(0, 1) is a random value obtained

with uniform distribution form the range [0, 1].

In the case of MPB, three scenarios of the benchmark parameters control are

defined [1]. We did experiments for two versions of the second scenario. In this

scenario the fitness landscape has been defined for the five-dimensional search

space with the same boundaries for each dimension, namely [−50; 50]. The fitness

landscape consists of a set of moving cones which randomly vary their heights

within the interval [30; 70], their widths within [1; 12] and their positions by

the distance of one. In the first version of the scenario 2 there are ten moving

cones whereas in the second version 50 moving cones is in use. We extended this

definition and did our tests also for ten, 20 and 30 dimensions of the search space

for both versions of the selected benchmark instance.

For the experimental purpose we reimplemented the selected benchmarks. A

new version is based on the Eigen C++ library [7] which makes execution of

the computer program fast. The structure of the C++ code is based on a fitness

landscape model where the landscape consists of a number of simple components.

The components are individually controlled by a number of unified parameters.

This allows to create multiple classes of dynamic landscapes and particularly to

simulate easily a number of existing benchmarks like MPB, DRPBG and DCBG.

Our algorithm has no embedded strategy for detecting changes in the fitness

landscapes. Simply, the last step in the main loop of the algorithm executes the

reevaluation of the entire current solution set. Therefore, our optimization system

is informed of the change as soon as it occurs, and no additional computational

effort for its detection is needed.

184 M. Raciborski, K. Trojanowski, and P. Kaczyński

3.2 The Measures

We used measures of the obtained results proposed for both of the benchmarks

by their authors. This gave opportunity for fair comparison of the algorithm

efficiency. For GDBG there were defined four measures:

Avgbest
=

Nexp∑
i=1

min
j=1,...,Nchanges

Ei,j
last/Nexp, (4)

Avgmean
=

Nexp∑
i=1

Nchanges∑
j=1

Ei,j
last/(Nexp ·Nchanges), (5)

Avgworst
=

Nexp∑
i=1

max
j=1,...,Nchanges

Ei,j
last/Nexp, (6)

STD =

√√√√ 1

Nexp ·Nchanges − 1

Nexp∑
i=1

Nchanges∑
j=1

(Ei,j
last −Avgmean)2, (7)

where Nexp is a number of repeated experiments for the same control parameter

settings of the algorithm,Nchanges is a number of changes in the fitness landscape

appearing during a single experiment run, and Ej
last is an absolute function error

value:

Ej
last = |f(xj

best) − f(x∗j
)|, (8)

where xj
best — current best solution which has been found since the last j-th

change in the fitness landscape, x∗j
— real optimum solution for the fitness

landscape after the j-th change.

In the case of MPB most of the publications contain the values of offline

error measure obtained for performed experimental research. The offline error

represents the average deviation from the optimum of the best solution value

since the last change in the fitness landscape. Formally:

oe =
1

Nchanges

Nchanges∑
j=1

⎛
⎝ 1

Ne(j)

Ne(j)∑
i=1

(f(x∗j
) − f(xji

best))

⎞
⎠ , (9)

where Ne(j) is a total number of solution evaluations performed for the j-th
static state of the landscape. It should be clear that the measure oe should be

minimized, that is, the better result the smaller the value of oe.

3.3 The Tests

We performed experiments with a subset of GDBG benchmark functions as well

as with two versions of MPB scenario 2 and for different numbers of dimensions

of the search space. The group of tests in the MPB testing environment was

repeated twice for two different calculation rules of the number of fitness function

Differential Evolution for High Scale Dynamic Optimization 185

calls between subsequent changes. The first group was performed according to

the rules as in the CEC’09 competition, that is, for 10
4 · n fitness function calls

between subsequent changes where n is a number of search space dimensions.

The second group — for 5000 calls as it is recommended for experiments with

MPB. The group of tests in the GDBG testing environment was performed once

just for 10
4 · n fitness function calls between subsequent changes.

For each of the environment configurations the experiments were repeated 20

times and each of them consisted of 60 changes in the fitness landscape.

4 The Results

The results can be divided according to the applied measures. Tables 1, 2, 3,

and 5 contain values of measures specific for GDBG (Avgbest
, Avgworst

, Avgmean
,

and STD), whereas, Tables 4, and 6 — offline error (oe) values specific rather for

MPB. It must be stressed, however, that both measures were calculated for every

experiment. This way we can compare our results with other already published

results obtained both for MPB and GDBG.

Table 1. Error values achieved for DRPBG problems F1 for three change types: T1,
T2, T3 and the number of fitness function calls equal 104 · n, where: n — number of
dimensions of the search space

Errors n 10 moving peaks 50 moving peaks

T1 T2 T3 T1 T2 T3

Avgbest 5 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0 0.0 0.0

20 3.8 · 10−7 3.8 · 10−7 0.0 7.6 · 10−7 1.5 · 10−6 7.6 · 10−7

30 7.2 · 10−6 8.0 · 10−6 8.4 · 10−6 8.7 · 10−6 1.0 · 10−5 8.0 · 10−6

Avgworst 5 0.294 0.206 0.578 5.864 5.698 6.431

10 0.101 0.0315 0.143 4.759 5.255 3.906

20 0.611 1.132 0.159 3.542 4.437 3.631

30 0.0083 0.586 1.385 3.853 5.598 3.556

Avgmean 5 0.005 0.004 0.016 0.389 0.471 0.930

10 0.0016 0.0005 0.009 0.272 0.289 0.502

20 0.014 0.046 0.005 0.235 0.347 0.386

30 0.0001 0.015 0.093 0.277 0.496 0.374

STD 5 0.165 0.076 0.263 1.229 1.274 2.035

10 0.0584 0.0176 0.146 1.083 1.081 1.591

20 0.262 0.396 0.073 0.854 0.984 1.245

30 0.0047 0.183 0.728 0.993 1.430 1.169

186 M. Raciborski, K. Trojanowski, and P. Kaczyński

Table 2. Error values achieved for DCBG problems F2 and F3 for three change types:
T1, T2, T3 and the number of fitness function calls equal 104 · n, where: n — number
of dimensions of the search space

Errors n F2: sphere F3: Rastrigin

T1 T2 T3 T1 T2 T3

Avgbest 5 0.0 0.0 0.0 8.41 5.20 4.97

10 0.0 0.0 0.0 14.97 14.92 14.92

20 0.0 0.0 1.9 · 10−7 51.08 78.11 64.97

30 1.6 · 10−6 1.3 · 10−6 3.7 · 10−6 166.42 138.13 154.82

Avgworst 5 3.869 4.421 5.758 829.7 861.1 763.5

10 2.759 7.381 5.864 3687.4 3732.4 3675.1

20 5.026 6.182 5.274 10312 10567 10264

30 8.051 15.403 6.806 18237 18521 18101

Avgmean 5 0.138 0.130 0.353 405.5 421.9 389.4

10 0.085 0.251 0.402 1910.7 1986.1 1941.2

20 0.257 0.246 0.338 5508.4 5647.3 5585.2

30 0.472 1.196 0.910 9958 10045 9729

STD 5 0.923 0.882 1.355 184.3 189.3 178.4

10 0.681 1.398 1.582 850.0 861.6 850.3

20 1.437 1.457 1.269 2509.3 2546.1 2471.8

30 2.110 3.834 2.795 4546.7 4563.1 4579.6

Table 3. Error values achieved for DCBG problems F4 and F5 for three change types:
T1, T2, T3 and the number of fitness function calls equal 104 · n, where: n — number
of dimensions of the search space

Errors n F4: Grievank F5: Ackley

T1 T2 T3 T1 T2 T3

Avgbest 5 0.0 0.018 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.00038 0.00034 0.00038

20 0.0 0.0 0.0 0.0015 0.0018 0.0017

30 0.0 0.0 0.0 0.0035 0.0043 0.0042

Avgworst 5 4.785 4.835 5.657 7.84 14.69 6.86

10 6.378 5.554 9.245 11.58 14.86 6.004

20 0.104 0.129 0.331 25.03 41.06 40.74

30 0.244 0.262 0.348 189.2 199.9 189.9

Avgmean 5 1.368 1.371 1.889 0.69 1.05 0.97

10 0.984 0.602 2.213 0.902 1.491 0.697

20 0.002 0.003 0.011 3.957 7.159 6.738

30 0.005 0.004 0.008 93.92 94.239 86.85

STD 5 1.111 1.046 1.284 2.16 3.45 2.05

10 1.461 1.1001 1.976 2.85 3.83 1.77

20 0.030 0.0423 0.075 6.52 10.67 9.32

30 0.055 0.052 0.069 63.11 64.11 63.87

Differential Evolution for High Scale Dynamic Optimization 187

Table 4. Mean values of oe achieved for DCBG problems F1, . . . F5 for three change
types: T1, T2, T3 and the number of fitness function calls equal 104 · n, where: n —
number of dimensions of the search space; values in the brackets represent std. error
for the series of repeated experiments

P n T1 T2 T3

F1 5 2.500 (0.598) 2.590 (0.616) 3.934 (0.884)
10 10 3.583 (0.395) 4.032 (0.654) 5.121 (0.734)
moving 20 6.008 (0.632) 7.099 (0.665) 6.453 (0.861)
peaks 30 7.411 (1.003) 9.001 (0.635) 8.556 (1.671)

F1 5 3.473 (0.654) 3.898 (0.509) 5.951 (1.643)
50 10 4.756 (0.584) 5.288 (0.462) 6.481 (1.331)
moving 20 6.843 (0.625) 7.824 (0.376) 7.817 (1.154)
peaks 30 8.835 (0.749) 9.978 (0.831) 9.651 (0.943)

F2 5 1.730 (0.432) 3.298 (0.974) 8.157 (1.585)
10 8.414 (2.196) 18.218 (3.159) 41.792 (4.723)
20 62.17 (9.945) 104.65 (19.509) 168.01 (20.98)
30 160.47 (22.089) 241.01 (28.88) 348.95 (25.82)

F3 5 613.58 (43.5) 599.10 (51.6) 389.43 (54.7)
10 2869 (94.25) 2973.3 (105.0) 3050.4 (100.9)
20 8137 (242.2) 8534.9 (179.75) 8574.4 (169.3)
30 14706 (411.6) 14921 (402.16) 14853 (553.9)

F4 5 0.164 (0.026) 0.140 (0.021) 0.388 (0.050)
10 0.952 (0.245) 0.631 (0.136) 2.617 (0.511)
20 1.037 (0.251) 1.181 (0.216) 2.781 (0.222)
30 1.942 (0.368) 1.593 (0.396) 2.819 (0.234)

F5 5 9.87 (1.979) 11.41 (1.631) 15.70 (1.137)
10 18.90 (2.970) 21.078 (3.403) 23.57 (2.202)
20 57.10 (3.516) 54.88 (3.957) 52.16 (3.783)
30 142.31 (9.243) 129.91 (7.681) 153.2 (8.189)

Table 5. Error values achieved for two versions of MPB sc. 2: with ten and 50 moving
component functions in the landscape and for two max. numbers of fitness function
calls between subsequent changes: 5000, and 104 ·n, where: n — number of dimensions
of the search space

Dim. number: n = 5 n = 10 n = 20 n = 30

fitness fun. calls: 5000 104 · n 5000 104 · n 5000 104 · n 5000 104 · n
10 Avgbest 0.042 0.0 0.81 5.15 · 10−6 1.007 0.618 4.546 2.09

mov. Avgworst 23.674 12.489 31.172 18.919 62.95 31.937 68.687 32.517

cones Avgmean 7.869 1.87 14.165 4.889 11.162 13.357 15.091 15.762

STD 7.673 3.401 10.84 6.365 10.178 10.881 12.107 11.075

50 Avgbest 0.006 3.82 · 10−7 1.231 1.106 · 10−5 2.179 0.801 4.254 0.112

mov. Avgworst 16.641 10.371 27.38 14.742 64.53 31.778 56.211 26.079

cones Avgmean 5.39 2.556 13.462 4.491 11.82 12.143 18.586 9.847

STD 4.909 2.933 10.224 4.231 9.215 9.897 12.233 8.389

188 M. Raciborski, K. Trojanowski, and P. Kaczyński

Table 6. Mean values of oe achieved for two versions of MPB sc. 2: with ten and 50
moving components in the landscape and for two max. numbers of fitness function calls
between subsequent changes: 5000, and 104 · n, where: n — number of dimensions of
the search space; values in brackets represent std. error

Dim. number n: n = 5 n = 10
fitness fun. calls: 5000 104 · n 5000 104 · n
10 moving cones 11.111 (4.119) 2.489 (1.192) 17.022 (6.318) 5.81 (3.6)

50 moving cones 7.112 (1.909) 3.307 (0.893) 15.709 (6.438) 5.183 (1.401)

Dim. number n: n = 20 n = 30
fitness fun. calls: 5000 104 · n 5000 104 · n
10 moving cones 21.371 (7.552) 13.994 (6.353) 20.799 (8.115) 16.16 (7.223)

50 moving cones 17.390 (4.0) 12.455 (6.379) 20.297 (7.104) 10.202 (4.497)

5 Conclusions

In the presented research an experimental comparison of the optimization al-

gorithm efficiency has been performed. We observed changes of the algorithm

efficiency for higher numbers of the search space dimensions. One of the interest-

ing conclusions is that the formula for the number of fitness evaluations ”10
4 ·n”

should be carefully applied. For some test-cases linear dependency of the evalu-

ation number on n did not compensate growth of the errors (see, e.g., values of

Avgmean
obtained for F2, F3 and F5 — Tables 2 and 3) whereas in others the

errors even decreased (F1 and F4 — Tables 1 and 3). In the case of oe, however,

increase was observed for every case which means that the two measures, oe and

Avgmean
, evaluate different features of the search process.

Comparing with the results presented in [4] the values of Avgbest
, Avgworst

,

Avgmean
, and STD obtained by our version of jDE for DCBG for ten-dimensional

search space are smaller for all the test-cases except from F5 (composition of

Ackley functions) and two selected cases: the first one defined as F1 with 50

moving peaks and dynamics T1 and the second one — F3 with dynamics T1.

On the other side, the results for the second benchmark, that is, offline error

obtained for both versions of MPB and 5-dimensional search space are worse

than those published for example in [16]. This shows, that the features of the

two benchmarks represent different demands for the optimized algorithm.

Acknowledgments. This research has been partially supported by the Euro-

pean Regional Development Fund with the grant no. POIG.01.01.02-14-013/09:

Adaptive system supporting problem solution based on analysis of textual contents
of available electronic resources.

References

1. Branke, J.: Memory enhanced evolutionary algorithm for changing optimization
problems. In: Proc. of the Congr. on Evolutionary Computation, vol. 3, pp. 1875–
1882. IEEE Press, Piscataway (1999)

2. Brest, J., Boskovic, B., Greiner, S., Zumer, V., Maucec, M.S.: Performance com-
parison of self-adaptive and adaptive differential evolution algorithms. Soft Com-
put. 11(7), 617–629 (2007)

Differential Evolution for High Scale Dynamic Optimization 189

3. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

4. Brest, J., Zamuda, A., Boskovic, B., Maucec, M.S., Zumer, V.: Dynamic optimiza-
tion using self-adaptive differential evolution. In: IEEE Congr. on Evolutionary
Computation, pp. 415–422. IEEE (2009)

5. Feokistov, V.: Differential Evolution. In: Search of Solutions, Optimization and Its
Applications, vol. 5. Springer, Heidelberg (2006)

6. Gallagher, M., Yuan, B.: A general-purpose tunable landscape generator. IEEE
Trans. Evol. Comput. 10(5), 590–603 (2006)

7. Guennebaud, G., Jacob, B., et al.: Eigen v2.0.15 (2010),
http://eigen.tuxfamily.org

8. Jin, Y., Branke, J.: Evolutionary algorithms in uncertain environments – a survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

9. Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using
the multi-objective optimization concept. In: Raidl, G.R., Cagnoni, S., Branke,
J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori,
E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS,
vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

10. Li, C., Yang, S.: A generalized approach to construct benchmark problems for
dynamic optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V.,
Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi,
Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 391–400. Springer, Heidelberg (2008)

11. Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numer-
ical global optimization. In: IEEE Swarm Intelligence Symposium, Pasadena, CA,
USA, pp. 68–75 (2005)

12. Morrison, R.W., De Jong, K.A.: A test problem generator for non-stationary envi-
ronments. In: Proc. Congr. on Evolutionary Computation, vol. 3, pp. 1859–1866.
IEEE Press, Piscataway (1999)

13. Price, K.V.: Genetic annealing. Dr. Dobb’s Journal, 127–132 (October 1994)
14. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution, A Practical Ap-

proach to Global Optimization. Natural Computing Series. Springer, Heidelberg
(2005)

15. Tinós, R., Yang, S.: Continuous dynamic problem generators for evolutionary algo-
rithms. In: IEEE Congr. on Evolutionary Computation, pp. 236–243. IEEE (2007)

16. Trojanowski, K.: Properties of quantum particles in multi-swarms for dynamic
optimization. Fundamenta Informaticae 95(2-3), 349–380 (2009)

17. Trojanowski, K., Michalewicz, Z.: Searching for optima in non-stationary environ-
ments. In: Proc. of the Congr. on Evolutionary Computation, vol. 3, pp. 1843–1850.
IEEE Press, Piscataway (1999)

18. Yang, S.: Non-stationary problem optimization using the primal-dual genetic al-
gorithm. In: Proc. of the 2003 IEEE Congr. on Evolutionary Computation CEC
2003, pp. 2246–2253. IEEE Press (2003)

19. Yang, S., Ong, Y.-S., Jin, Y. (eds.): Evolutionary Computation in Dynamic and
Uncertain Environments. SCS. Springer, Heidelberg (2007)

20. Yang, S., Yao, X.: Population-based incremental learning with associative memory
for dynamic environments. IEEE Trans. Evol. Comput. 12(5), 542–561 (2008)

21. Yuan, B., Gallagher, M.: On building a principled framework for evaluating and
testing evolutionary algorithms: a continuous landscape generator. In: IEEE Congr.
on Evolutionary Computation, pp. 451–458. IEEE (2003)

http://eigen.tuxfamily.org

Towards an OpenCL Implementation
of Genetic Algorithms on GPUs�

Tadeusz Puźniakowski1 and Marek A. Bednarczyk2,3

1 Institute of Informatics, University of Gdańsk, Gdańsk, Poland
2 Faculty of Informatics, Polish-Japanese Institute of Information Technology,

Gdańsk Campus, Poland
3 Institute of Computer Science, Polish Academy of Sciences, Gdańsk, Poland

Abstract. The paper compares usual sequential implementations in C
of a Genetic Algorithm with parallel implementations in OpenCL. It
turns out that the speedup obtained by turning parallel depends on the
choice of the selection methods used in GA. In particular the simple tour-
nament selection method yields better results than the selection based on
the roulette rule. In case of the latter which requires a synchronization of
threads which manipulate individual chromosomes. This is done to com-
pute the joint fitness of a population and find the best specimen. With
the help of scan method this can be achieved with O(log n) complexity.

1 About the OpenCL Standard

TheOpenCL is a new standard for heterogeneous systems. It appeared in response
to the need for a unified framework for conducting computations on graphic cards
and specialized computing accelerators. Previously there were many solutions
which were not compatible with each other. Each one was created by different
company, i.e., AMD had its CTM technology, while NVidia developed CUDA. In
2008 the OpenCL working group has been created and it finished working on the
standard in a year time. Current version of the standard is 1.1.
OpenCL allows for computing on any kind of computing device, at least in

theory. In practice, it is possible to execute code either on standard CPU, or on
GPU, or on a dedicated accelerator (like Tesla cards). In theory it could even
be implemented on, for example, audio processors or on processors running on
smartphones.
This flexibility is achieved mostly by using embedded programming language

– OpenCL C – which is based on C99 and extension schema similar to the one
used in OpenGL. The OpenCL applications does not need to be compiled using
special compiler like in CUDA. The OpenCL application is compiled using the
compiler of choice and linked to library called OpenCL, so compilation on Linux
can look like:
Every OpenCL application consists of code that is executed on host (CPU)

and the code executed on computing device (usually GPU). The host code is

� Work supported by a Polish MoSaHE project funded in years 2010-2012.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 190–203, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards an OpenCL Implementation of Genetic Algorithms on GPUs 191

gcc −lOpenCL mandelbrot . c −o mandelbrot

Listing 1.1. Compilation of OpenCL application in Linux

called host program, the code executed on device is called OpenCL program or
program and the whole application is called OpenCL application or application.

2 The Classical Genetic Algorithm

Genetic Algorithms (abbr.: GA) are widely used to cope with many optimization
problems. Over the years the GA approach proved to give good suboptimal
solutions to many practical problems in engineering and science.
The pseudocode of typical sequential implementation of GA is shown in list-

ing 1.2. It consists of a loop in which a population of specimen or chromosomes is
forced to evolve. This evolution is performed by newGeneration function which
implements selection, crossover and mutation methods.

oldpop = i n i t i a l i z e P o p u l a t i o n ()
countF i tnes s (oldpop)
c oun t S t a t i s t i c s (max ,min , sumfitness , oldpop)
generat ion = 0
f o r generat ion in 1 to maxgen do
begin

newpop = newGeneration (oldpop)
countF i tnes s (newpop)
c oun t S t a t i s t i c s (max , min , sumfitness , newpop)
oldpop := newpop

end

Listing 1.2. Sequential Genetic Algorithm

The implementation of GA in our experiment is almost straight forward trans-
lation of the idea presented by Goldberg in its classical book, see [3].
Classical implementation of genetic algorithms described above uses selection

based on roulette rule. This selection method requires that the sum of fitness
value is computed over all specimens in a polulation.
For the need of the experiment, the tournament selection has also been used

instead of the roulette selection. Tournament selection does not need any infor-
mation about the global statistics of the population. Using this kind of selection
allows to skip the countStatistics phase in the loop.

3 An OpenCL Implementation of GA for OneMax

The experiment has been performed on function OneMax, which counts the
number of 1’s in an array of bits. This function is one of the most common
examples in prototyping genetic algorithms.

192 T. Puźniakowski and M.A. Bednarczyk

Formally, given a bit array a of length n OneMax function is defined as follows.

OneMax(a, n) =

n∑
i=0

ai (1)

The fitness function f of a specimen a of length n is defined as follows.

fa =

(
OneMax(a, n)

n

)5

(2)

In the application, the chromosomes were constructed as shown in listing 1.3.
The bits were implemented as array of chars containing values 1 or 0.

typedef s t r u c t specimen {
char c [spec imenb i t s] ;
f l o a t f i t n e s s ;

} specimen ;

Listing 1.3. OneMax chromosome definition

The OpenCL does not provide any random number generator which can be
called from kernels. Common approaches involve sharing one global variable
which stores random seed and whenever the random number generator is in-
voked, the variable is updated to a new seed. In heavily parallel environment
such a synchronisation would be a bottleneck. Moreover, in extreme cases change
parallel algorithm into sequential algorithm. This problem has been solved here
by using a copy of random number generator form GNU libc and temporary
global seed which is passed on kernel invocation and updated afterwards. The
kernel adds own rank to the global seed (in private memory) and then uses it as
usual random function.

3.1 OpenCL Solution

The algorithm implementation consists of multiple kernels. Most kernels are as
similar as possible to functions presented in [3].
The problem implementation is in separate files, so the application can be

easily set to solve problems other than OneMax.
The host code works as a supervisor for functions executed on OpenCL de-

vice and it does not perform any computations. This code is also independent
of problem implementation. Even gathering results is done in generic way, so
the host code does not need to be compiled in compliance with chromosome
representation.

3.2 Initialization of Population

The first step is to create initial population of chromosomes. This is done using
kernel shown in listing 1.4

Towards an OpenCL Implementation of Genetic Algorithms on GPUs 193

k e r n e l void in i tPopu l a t i on (g l o b a l specimen ∗ newpop ,
g l o b a l environment ∗ data ,
const i n t s i z e ,
long random seed)

{
const i n t i = g e t g l o b a l i d (0) ;
i f (i >= s i z e) r e turn ;
i n t seed = random seed + i ;
generateSpecimen (&newpop [i] , data , &seed) ;

}

Listing 1.4. Kernel creating initial population

This kernel calls function generateSpecimen from problem implementation
to generate specimens.

3.3 Counting Fitness

The fitness function is parallelized in the same fashion as initialization of popu-
lation. This kernel is invoked in as many instances as the size of population, so
every thread counts its own specimen fitness. The source code of this kernel is
shown in listing 1.5.

k e r n e l void countF i tnes s (g l o b a l specimen ∗ pop ,
g l o b a l environment ∗ data ,
const i n t s i z e ,
long random seed)

{
const i n t i = g e t g l o b a l i d (0) ;
i f (i >= s i z e) r e turn ;
i n t seed = random seed + i ;
specimen sp = pop [i] ; // Here i s copying in to provate
memory

pop [i] . f i t n e s s = f i t n e s s (&sp , data , &seed) ;
}

Listing 1.5. Kernel counting fitness for each specimen in population

Note the way random seed is used. It is obtained from the host program, copied
with addition of kernel instance rank into private variable called seed . Then the
seed is used in usual way passing it to function fitness as a parameter.
Note that kernel countFitness uses private memory in variable sp for storing

specimen. According to OpenCL standard this should be the fastest memory
available [4].The function fitness is provided in problem implementation. In the
experiment it was the function in listing 1.6.

f l o a t f i t n e s s (specimen ∗ sp , g l o b a l environment ∗ data , i n t ∗
random seed) {

194 T. Puźniakowski and M.A. Bednarczyk

in t s = 0 ;
i n t i = 0 ;
f o r (i = 0 ; i < spec imenb i t s ; i++) {

s += (in t) (sp−>c [i]) ;
}
f l o a t r = ((f l o a t) s) / spec imenb i t s ;
r e tu rn pow(r , 5) ;

}

Listing 1.6. Fitness function utilised in experiment

3.4 Counting Fitness of the Entire Population and the Best Specimen

Our implementation uses massive parallelism for solving the problem, so count-
ing the sum of fitness values of all specimen in a population has also been done
in parallel. Note that this can be accomplish only when all fitness values have
been computed. This has a negative impact on the speed of computation.
Our first approach to compute the sum was to use so called OpenCL tasks.

Unfortunately,this turned out to be a sequential solution. The approach finally
adopted involves parallelization which works just likeMPI Allreduce in MPI.
The source code of kernel performing distributed summation and finding best
specimen is in listing 1.7. The sequential implementation iterates through all the
specimens and is too simple to be presented here.

k e r n e l void countSummaryFitnessP (g l o b a l specimen ∗ pop ,
g l o b a l environment ∗ data , g l o b a l specimen ∗ best ,
g l o b a l f l o a t ∗ sumfitness , g l o b a l f l o a t ∗ tmpf i tness ,
const i n t s i z e , l o c a l f l o a t ∗ sumf i tne s sLoca l , l o c a l
i n t ∗ bes tLoca l)

{
const i n t wgs ize = g e t l o c a l s i z e (0) ;
const i n t rank = g e t g l o b a l i d (0) ;
i n t j ;
i n t best Index = 0 ;
f l o a t b e s tF i t n e s s ;
f l o a t sumFitnessPrv = 0 ;

// Gathering data in to one work item (1)
i f (rank < wgsize) {

j = rank % wgsize ;
i f (j < s i z e) {

sumFitnessPrv = pop [j] . f i t n e s s ;
best Index = j ;
b e s tF i t n e s s = sumFitnessPrv ;
f o r (j = j+wgsize ; j < s i z e ; j+=wgsize) {

f l o a t f = pop [j] . f i t n e s s ;
sumFitnessPrv += f ;
i f (b e s tF i t n e s s < f) {

Towards an OpenCL Implementation of Genetic Algorithms on GPUs 195

best Index = j ;
b e s tF i t n e s s = f ;

}
}

}
bestLoca l [rank] = best Index ;
sumf i tne s sLoca l [rank] = sumFitnessPrv ;

}
ba r r i e r (CLK LOCALMEM FENCE) ;

// scan algor i thm (2)
i n t currStep = 1 ;
f o r (; currStep < wgsize ;) {

// gather ing r e s u l t s in p a r a l l e l
i f ((rank % (currStep<<1) == 0) && (rank < wgsize)) {

i f ((rank + currStep) < wgsize) {
sumf i tne s sLoca l [rank] += sumf i tne s sLoca l [rank+
currStep] ;

i f (pop [bes tLoca l [rank]] . f i t n e s s < pop [
bes tLoca l [rank+currStep]] . f i t n e s s) {
bes tLoca l [rank] = bes tLoca l [rank+currStep

] ;
}

}
}
ba r r i e r (CLK LOCALMEM FENCE) ;
currStep ∗= 2 ;

}

i f (rank == 0) {
sumf i tne s s [0] = sumf i tne s sLoca l [0] ;
best [0] = pop [bes tLoca l [0]] ;

}
}

Listing 1.7. Counting the sum of all specimen fitnesses and finding best specimen

3.5 Selection Algorithms

There are two selection algorithms available – the roulette rule shown in list-
ing 1.9 and the tournament selection shown in listing 1.8. Note that tournament
selection does not use sumfitness parameter, so this is not computed if this se-
lection algorithm is in use. In both algorithms the random seed is passed as a
parameter.

i n t se l e c tSpec imen (f l o a t sumfitness , g l o b a l specimen ∗pop ,
i n t s i z e , i n t ∗ random seed , i n t rank) {
i n t i , j ;

i = rand in t (random seed) % s i z e ;

196 T. Puźniakowski and M.A. Bednarczyk

j = (rand in t (random seed) % (s i z e − 1)+i +1)%s i z e ;
i f (pop [i] . f i t n e s s > pop [j] . f i t n e s s) r e tu rn i ;

r e tu rn j ;
}

Listing 1.8. Tournament selection function

The roulette rule selection is dependent on sum fitness of all specimens. This
is the selection method used in first GA implementations. Even though it is
more sophisticated method, it does not perform as well as tournament selection
in simple function optimizations like OneMax.

i n t se l e c tSpec imen (f l o a t sumfitness , g l o b a l specimen ∗pop ,
i n t s i z e , i n t ∗ random seed , i n t rank) {
f l o a t partsum , rnd ;
i n t j ;
partsum = 0 ;
rnd = sumf i tne s s ∗ r a nd f l o a t (random seed) ;
f o r (j = 0 ; j < s i z e ; j++) {

partsum += pop [j] . f i t n e s s ;
i f (partsum > rnd) {

r e tu rn j ;
}

}
r e tu rn 0 ;

}

Listing 1.9. Roulette rule selection function

3.6 New Generation

The algorithm for computing new generation is also heavily inspired by Gold-
berg’s approach. This function can be easily parallelized i a way that every kernel
instance calculates two specimens. The selection is done using roulette rule with-
out elite. The source code for new generation is in listing 1.10. The same code
is also used in version that uses tournament selection.

k e r n e l void newGeneration (g l o b a l specimen ∗ pop , g l o b a l
environment ∗ data , g l o b a l specimen ∗ newpop , g l o b a l
f l o a t ∗ sumfitness , const i n t s i z e , long random seed) {
const i n t i = g e t g l o b a l i d (0)<<1;
i f (i >= s i z e) r e turn ;
i n t seed = random seed + i ;
specimen parent [2] ;
specimen o f f s p r i n g [2] ;

Towards an OpenCL Implementation of Genetic Algorithms on GPUs 197

parent [0] = pop [s e l e c tSpec imen (sumf i tne s s [0] , pop , s i z e ,
&seed , i)] ;

parent [1] = pop [s e l e c tSpec imen (sumf i tne s s [0] , pop , s i z e ,
&seed , i)] ;

i f (r a n d f l o a t (&seed) < pcros s) {
c r o s s ov e r (parent , o f f s p r i n g , &seed) ;

} e l s e {
o f f s p r i n g [0] = parent [0] ;
o f f s p r i n g [1] = parent [1] ;

}
mutate(& o f f s p r i n g [0] , &seed) ;
newpop [i] = o f f s p r i n g [0] ;
i f (i+1 < s i z e) {

mutate(& o f f s p r i n g [1] , &seed) ;
newpop [i +1] = o f f s p r i n g [1] ;

}
}

Listing 1.10. Kernel performing new generation

3.7 Sequential Solution

The sequential solution consists of the same set of functions as in OpenCL ver-
sion. The implementation of problem is included using C preprocessor directive
#include, so the problem is solved in the same way as in OpenCL version. Ker-
nel functions are called in a way simulating the real kernel calls. The fragments
showing this approach is shown in listing 1.11. Note that in order to correctly
compile the application it is needed to define OpenCL keywords like kernel .
The OpenCL C functions like get global id are simulated by just declaring ap-
propriate C functions. The fake kernel execution is performed by calling ”kernel”
function in loop. This allows for OpenCL application and standard C applica-
tion to share as much code as possible, thus allowing for a better performance
comparison.

#de f i n e g l o b a l
#de f i n e con s t an t const
#de f i n e k e r n e l i n l i n e
#de f i n e l o c a l

i n t g l o b a l i d [1] = {0} ;
void r e s e t g l o b a l i d () {

g l o b a l i d [0] = 0 ;
}
i n t g e t g l o b a l i d (i n t n) {

r e tu rn g l o b a l i d [n] ;
}

i n t g e t l o c a l s i z e (i n t n) {

198 T. Puźniakowski and M.A. Bednarczyk

re turn 1 ;
}
. . .
r e s e t g l o b a l i d () ;
f o r (i = 0 ; i < pop s i z e ; i++) {

i n i tPopu l a t i on (populat ion dev , environment dev , pop s i ze ,
∗ random seed) ;

g l o b a l i d [0]++;
}

Listing 1.11. Calling kernel functions from sequential application

4 Results

The experiments aimed to compare two implementations:

– Standard sequential implementation in C compiled with optimizations en-
abled and kernels compiled in as inline.
– The OpenCL version run on CPU and on GPU.

Each of the implementations had two variants depending on the selection method
used, i.e., one for the roulette rule, another for the tournament method.
The sources used in experiment have been compiled with -O2 optimization

enabled and -mtune=generic. The hardware configuration details are in ap-
pendix. The algorithm has been configured in the following way.

– Crossover probability: 0.8
– Mutation probability (of each gene): 0.000033
– Chromosome length: 63bit
– Selection method: roulette or tournament

Let us start the analysis of the experiments with diagrams presented on Fig-
ure 1. Both represent the total execution time of the implementations as a func-
tion of the population size. The iteration count is constant and equal to 60.
The fitness was 1 (best solution found) for the population size of at least 110
and 220 for tournament and roulette respectively. Diagram on the left describes
the results for GA with selection based on the roulette, while on the right GA
used selection with tournaments of size 2. On both diagrams we consider the
same algorithm run either on CPU or on GPU with and without the cost of
pre-compilation taken into account.
One immediate observation is that the initialization phase of the CPU imple-

mentation is neglegible — the two curves are almost indistinguishable on both
diagrams. In case of OpenCL implementations the overhead related to the pre-
compilation of the kernels is substantial. However, in practice the cost would be
paid only once. Hence, if one is interested in repeated computation of GA’s it
does not really matter. Consequently, the cost the initialization phase is omitted
from discussion in the sequel.

Towards an OpenCL Implementation of Genetic Algorithms on GPUs 199

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 500 1000 1500 2000

A
lg

or
ith

m
 e

xe
cu

tio
n

tim
e

[s
]

Population size

Algorithm with roulette rule

CPU computation
CPU complete execution

OpenCL computation
OpenCL complete

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 500 1000 1500 2000

A
lg

or
ith

m
 e

xe
cu

tio
n

tim
e

[s
]

Population size

Algorithm with tournament selection

CPU computation
CPU complete execution

OpenCL computation
OpenCL complete execution

Fig. 1. Comparison of total execution time – sequential code compared to OpenCL
code on Nvidia GeForce GTS 250. The iteration count is 60 for both cases.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.02 0.04 0.06 0.08 0.1 0.12

B
es

t f
itn

es
s

Algorithm execution time [s]

Constant population size of 128, variable iteration count

GTS 250 - roulette
GTS 250 - tournament

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.005 0.01 0.015 0.02 0.025 0.03

B
es

t f
itn

es
s

Algorithm execution time [s]

Constant iteration count of 60, variable population size

GTS 250 - tournament
GTS 250 - roulette

Fig. 2. Comparison of fitness and execution time on two different implementations
run on Nvidia GeForce GTS 250

Another observation that can be drawn from Figure 1 is that in case of the
GA with roulette the cost of computation grows linearly with OpenCL imple-
mentation, and seems worse than linear in case of CPU implementation. In case
of the tournament selection the execution on CPU grows linearly with respect
to the population size, and seems almost constant in case of OpenCL.

4.1 Roulette Rule versus Tournament Selection on GPU

Let us compare the efficiency of the two OpenCL implementation from the poin
of view of the selection method each of them uses, see Figure 2. The diagram
on the left demonstrates that in case of tournament selection for a fixed size
of population the parallel implementation converges towards solution in, rougly,
linear time. In case of the roulette selection the convergence is much slower. This
is similar to the sequential case — a comparison of these two selection methods
gave similar results, see [5].

200 T. Puźniakowski and M.A. Bednarczyk

4.2 CPU Versus GPU

From the above it follows that GA with tournament selection performs better
than the same GA but with selection based on roulette rule. This difference in
convergence can be better understood when one looks more closely at the way
the two selection methods are implemented on parallel hardware. Our basic idea
to distribute chromosomes among threads is at odds with the need to compute
the sum of fitness values of each of them. Simply, such sum can only be computed
when all these values are known. This introduces a synchronisation point among
the threads of the parallel implementation. In case of tournament selection there
is no need for such synchronisation.
Nevertheless, even in case of GA with roulette selection the implementation

on parallel hardware gives better results than the same implementation run on
CPU, see Figure 3. The experiment has been performed on population sizes
ranging from 2 to 2000.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000 1200 1400 1600 1800

C
om

pu
ta

tio
n

tim
e

[s
]

Population size

Constant 60 iterations, variable population size

GTS 250 with parallel sum
GTS 250 with sequential sum

Fig. 3. OpenCL computation time

4.3 Different OpenCL Implementations on the Same Hardware

We have created one experiment in order to compare:

1. NVIDIA OpenCL on GTS 250 in Linux (as reference) (PC 1)
2. AMD OpenCL on Radeon HD5850 (Cypress) in Windows XP (PC 2)
3. AMD OpenCL on Radeon HD5850 (Cypress) in Linux (PC 2)
4. AMD OpenCL on Phenom II x2 3.1GHz in Linux (PC 2)

Towards an OpenCL Implementation of Genetic Algorithms on GPUs 201

The results are in figure 4. The tournament selection was used. The population
size varied from 32 to 8192 with constant iterations count of 128. Of course
it was only performance comparison, because the best fitness was achieved by
population of 128. The genetic algorithm implementation was exactly the same
on every setup, except for the compilation, which was done on Linux by GCC
and on Windows by MinGW. The optimization switches (-mtune=generic -O2
-mpc32) were always used for compilation. The (PC 1) was the computer used
in the primary experiment. The (PC 2) was used only for this experiment.

 0.001

 0.01

 0.1

 1

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

C
om

pu
ta

tio
n

tim
e

[s
]

Population size

Algorithm execution time. Tournament selection

Phenom II X2 3.1GHz Linux
Cypress Linux

Cypress Windows
GeForce GTS 250 Linux

Sequential CPU Linux (reference)

Fig. 4. Different OpenCL implementations

There is slight difference between Cypress on Linux and Windows.
The conclusion is that in order to achieve the best performance, one have to

check its program on multiple hardware+software configurations and choose the
best one for its problem.

5 Conclusions

The paper shows that OpenCL performs quite well in computing genetic algo-
rithms on parallel hardware offered by today’s GPUs.
One has to consider, however, that not all population manipulation mecha-

nisms equally well undergo parallelization. In particular, the roulette wheel se-
lection proved to be very inefficient compared to the much simpler tournament
selection.

202 T. Puźniakowski and M.A. Bednarczyk

However, the computation time of OpenCL version GA was faster than the
sequential code for large enough computational problems. For example, inten-
sive computations involving GAs have recently been performed in the studies of
search paths in SAR operations, see [1]. In order to tune the GA we have cre-
ated a framework in which many instances of a GA problem can be distributed
among many computers, see [2]. In the sequel we plan to investigate a mixture
of distribution of of tasks with their efficient computation on parallel hardware
provided by GPUs.
When implementing many GA computations in parallel one often has to im-

plement some methods that are needed as well. For instance, we have to provide
local instances for computing pseudorandom numbers for each parallel thread.

References

1. Bednarczyk, M.A., Kitowski, Z., Piotrowski, M., Przybyszewska, A., Puźniakowski,
T., Pyrchla, J., Siekielski, A., Sławiński, J., Wierzchoń, S.T.: GASPS — genetic
algorithm search path simulator. In: Recent Advences in Intelligent Information
Systems. Academic Publishing House EXIT, Warsaw (2009)

2. Bednarczyk, M.A., Neumann, J., Pawłowski, W., Siekielski, A., Sławiński, J.: To-
wards an object-oriented framework for higher order genetic algorithms. In: In-
ternational Conference on Artificial Inteligence. Publishing House of University of
Podlasie (2009)

3. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company (1989)

4. Group, K.O.W.: The OpenCL Specification. Khronos Group (2010)
5. Zhong, J., Hu, X., Zhang, J., Gu, M.: Comparison of performance between different
selection strategies on simple genetic algorithms. In: International Conference on
Computational Intelligence for Modelling, Control and Automation, vol. 2, pp. 1115–
1121 (2005)

Appendix

A Experiment Configuration

The main experiment (PC 1) has been performed on the following hardware:

– Processor: Dual AMD Phenom(tm) II X2 550 Processor. Cores parameters:
• Frequency: 3100MHz
• Cache size: 512Kb
• bogomips: 6227.80

– Memory: 4096MB
• Frequency: 1600 MHz
• Dual Channel

– OpenCL device (video card): nVidia Corporation G92 [GeForce GTS 250]:
• Driver version: 270.26 Linux-x86
• Frequency: Graphics 740MHz, Processor 1836MHz, Memory 1100MHz

Towards an OpenCL Implementation of Genetic Algorithms on GPUs 203

• Memory: 512MB
• Memory interface: 256bit
• CUDA Cores: 128
• BIOS Version: 62.92.7d.00.11
• bus type: PCI Express x16 Gen2

The software configuration:

– Linux distribution: Linux Mint with all updates from 2011-03-14
– Linux x86 kernel 2.6.35-25-generic-pae
– NVIDIA drivers 270.26 Linux-x86
– XOrg 1.9.0

The additional experiment comparing different OpenCL implementations was
performed on:

– Processor: Intel(R) Core(TM) i5 CPU 760 @2.80GHz. Cores parameters:
• Frequency: 2794MHz
• Cache size: 8192Kb
• bogomips: 6227.80

– Memory: 4096MB
– OpenCL device (video card): AMD Radeon HD5850 (Cypress):

• Driver version: 270.26 Linux-x86
• Frequency: GPU 725Mhz
• Memory: 512MB
• OpenCL Driver Version: CAL 1.4.1353
• OpenCL Version: OpenCL 1.1 AMD-APP-SDK-v2.4 (Windows & Linux)

For both - Windows and Linux there was the current stable driver version as of
day 2011-05-12.
Software configuration (Linux):

– Linux distribution: Linux Mint with all updates from 2011-03-14
– Linux x86 kernel 2.6.35-25-generic-pae
– NVIDIA drivers 270.26 Linux-x86
– XOrg 1.9.0

Software configuration (Windows):

– Windows Microsoft Windows XP, Multiprocessor Free, Professional + SP3
– Windows product version 5.1, kernel build 2600

Evolutionary Algorithm Parameter Tuning

with Sensitivity Analysis

Frédéric Pinel, Grégoire Danoy, and Pascal Bouvry

FSTC/CSC/ILIAS, University of Luxembourg
6 Rue R. Coudenhove Kalergi, L-1359 Luxembourg

{frederic.pinel,gregoire.danoy,pascal.bouvry}@uni.lu

Abstract. This article introduces a generic sensitivity analysis method
to measure the influence and interdependencies of Evolutionary Algo-
rithms parameters. The proposed work focuses on its application to a
Parallel Asynchronous Cellular Genetic Algorithm (PA-CGA). Experi-
mental results on two different instances of a scheduling problem have
demonstrated that some metaheuristic parameters values have little in-
fluence on the solution quality. On the opposite, some local search pa-
rameter values have a strong impact on the obtained results for both
instances. This study highlights the benefits of the method, which sig-
nificantly reduces the parameter search space.

Keywords: Evolutionary Algorithm, Parameter Tuning, Sensitivity
Analysis.

1 Introduction

Evolutionary Algorithms (EAs) have been used since many years to optimize

combinatorial and continuous hard problems. These nature-inspired algorithms

function by iteratively applying specific operators in order to modify potential

solutions to a problem and converge to an optimal or near-optimal solution.

Despite their application success, EAs remain highly dependent on their param-

eterization but also on the optimization problem class. Moreover, the complexity

of recent EAs, such as cellular genetic algorithms (CGAs), implies an increase

in the number of parameters to be set. As mentioned by De Jong in [8], the No

Free Lunch (NFL) theorem state that no single algorithm will outperform all

other algorithms on all classes of problems. This induces several key questions,

including: “which parameters are useful to improve the EA performance?”. Al-

though a lot of works have been conducted in the field of parameter setting for

EAs, most of these focused on independently searching for the best parameter

values without considering if these parameters have a direct influence on the EA

performance.

The contribution of this paper is the proposal of a generic of sensitivity anal-

ysis method to quantitatively study the influence and interdependencies of the

parameters of an EA when applied on a specific optimization problem. The ob-

jective is to help the algorithm designer in parameter setting by narrowing the

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 204–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis 205

parameter search space prior to optimizing their values. We here focused on a

Parallel Asynshronous Cellular Genetic Algorithm (PA-CGA) [22] and analyzed

its parameters influence on two different instances of a scheduling problem of

independent tasks in a grid.

The paper structure is detailed next. The next section contains a brief survey

on parameter setting techniques. Then section 3 presents the sensitivity analysis

method. In section 4 a detailed description of the scheduling problem and of the

PA-CGA is given. Section 5 and 6 respectively present the experimental setup

used and discusses the obtained results. Finally in section 7 the conclusion and

perspectives of the work are presented.

2 Related Work

Parameter setting can greatly influence the performance of Evolutionary Algo-

rithms and therefore focused the interest of many researchers. Comprehensive

surveys have been introduced by De Jong in [8], Eiben [10] and more recently

by Kramer in [17].

As mentioned by Maturana et al. in [19], one of the main problems is to

assess which parameters can lead to the algorithm transformation, i.e. improve-

ment. Yet, they proposed a classification of parameters, distinguishing behavioral
parameters (operators probabilities, population size) and structural parameters
(encoding, choice of operators). A similar classification was proposed by Smit

and Eiben in [27] distinguishing between numerical and symbolic parameters. In

this work we focused on behavioral, respectively numerical parameters setting.

The EA parameter space can be explored in offline (before the search) or online

(during the search) setting. Eiben in [9] classified these parameter techniques

as parameter tuning, and parameter control. In this work we are interested in

parameter setting before the run (i.e. tuning), for which a taxonomy extension

has been proposed by Kramer in [17] (see Fig. 1).

Tuning by hand induces user experience for setting the EA parameters before-

hand. This solution is largely predominant in the literature in which parameters

are usually set based on empirical evaluations as mentioned in [19].

Parameter Setting

Tuning Control

By Hand

Design
of Experiments

Meta-Evolution Deterministic

Adaptive

Self-Adaptive

during the run

Fig. 1. Parameter setting in EA’s taxonomy [17]

206 F. Pinel, G. Danoy, and P. Bouvry

The second tuning class, design of experiments (DoE), refers to Bartz-Beiel-

stein work on Sequential Parameter Optimization (SPO) [3] which is a heuristic

combining classical and modern statistical techniques (e.g. latin hypercube sam-

pling - LHS). The objective is to design the experimental plan prior to doing the

experiments. Some works have focused on analyzing the sensitivity of parame-

ter, but limited to the study of the independent influence of parameters values

on the fitness. De Castro et al. in [7] studied the sensitivity of 3 parameters

(number of antibodies, number of generated clones and amount antibodies to be

replaced) of their Clonal Selection Algorithm (CLONEALG). Similarly, Ho et

al. in [13] have analyzed the sensitivity of parameters of their Intelligent Genetic

Algorithm (IGA), including mutation and crossover probabilities. In [20] Min et

al. analyze the sensitivity of the population size and the termination condition

(maximum number of generations) of a standard GA on a reverse logistics net-

work problem. Finally, most lately Geem et al. in [11] analyzed the sensitivity of

Harmony Search (HS) parameters (harmony size, memory considering rate and

pitch adjustment).

The last parameter tuning class, meta-evolution, is also referred to as nested

evolution. This is a two-level evolutionary process in which one algorithm opti-

mizes the parameters of the second one. A recent approach has been proposed by

Nannen and Eiben in [21], Relevance Estimation and Value Calibration of EA

parameters (REVAC). It estimates the expected performance of the EA when

parameter values are chosen from a probability density function (PDF) and in-

cludes a measure of the parameter relevance (normalized Shannon entropy).

The contribution of this work lies in the DoE class, in which existing ap-

proaches provide information on the best parameter values for the specific prob-

lem tackled. However these do not answer to two important questions:

1. Do all EAs parameters influence the algorithm performance on a specific

problem instance?

2. What are the interdependencies between the parameters? Since, as Eiben

already mentioned in [10] parameters are not independent.

The following section describes how sensitivity analysis can answer the draw-

backs of the aforementioned approaches.

3 Sensitivity Analysis

Sensitivity analysis aims to identify how uncertainty in each of the parameters

influence the uncertainty in the output [25] of a model. This technique can answer

the following question: which factors cause the most and the least uncertainty in

the output (also known as screening). This measures the importance of factors

in the model analyzed. It is useful when designing experiments (DoE activity)

and setting parameter, because it allows to focus on the most influential factors,

possibly setting arbitrary values to the least influential ones. Moreover, this

knowledge is also useful at design-time. The designer of a model intuitively

develops an idea of its behavior. Sensitivity analysis allows the designer to verify

Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis 207

his hypothesis, and modify the model accordingly. This work therefore proposes

to use sensitivity analysis to study the influential parameters of an EA on a

specific problem class, i.e. scheduling problem of independent tasks in a grid.

The objective is to reduce the EA parameter search space.

3.1 Desirable Sensitivity Analysis Properties

There are several ways to conduct a sensitivity analysis. Section 2 listed a few.

Before presenting the suggested method, the desired characteristics of a method

for sensitivity analysis are presented below. The method should:

– be model independent (it does not place requirements on the type of model

to work),

– evaluate the effect of a parameter while varying other parameters (most man-

ual analysis vary one parameter at a time, which hides interactions between

parameters),

– cope with the influence of scale and shape in the model (the probability

density function and its parameters),

– describe the influence of uncertainty in the parameters in a quantitative

mode (the relative importance of each parameter should be quantified),

– capture the interaction between parameters.

3.2 Selected Method

These desired properties restrict the possible methods (such as using entropy as

a measure of output uncertainty [21]). The chosen method is based on decom-

posing the variance of the output, as introduced by Saltelli et al. in [25]. The

exact implementation used is an extension to the Fourier Amplitude Sensitivity

Test proposed by Saltelli et al., called Fast99 [26]. This method allows the com-

putation of first order effects and interactions for each parameter. Parameters

interaction occurs when the effect of the parameters on the output is not a sum

of their single (first order) effects.

3.3 Application of Sensitivity Analysis

The chosen method benefits from the properties presented in Section 3.1, there-

fore there are no model specific restrictions.

First, the goal of the analysis must be stated and the output of the model

defined accordingly. For an evolutionary algorithm, this can be the quality of

the solutions, the number of evaluations, the runtime of the implementation,

etc. For each parameter of the model analyzed, the range of possible of values

is required, along with their distribution in the range. These values come from

experts in the application domain, or from the literature. Unless there are many

parameters (greater than 30) or if the evaluation takes too much time (due

to the number of parameters combinations), the Fast99 method mentioned in

Section 3.2 is suitable. Otherwise, the qualitative method of Morris is better

208 F. Pinel, G. Danoy, and P. Bouvry

suited (it is a One-At-a-Time method, or OAT). The method then produces a

list of parameter combinations, for which the model is evaluated. In the case

of an algorithm, the implementation of the algorithm is run with the prepared

parameter combinations. The number of combinations is Nsamples ×Nparameters

(1000 samples are typical). The method for the sensitivity analysis then collects

the evaluation results and presents the linear and non-linear influence of each

parameter. The next sections present a worked application.

4 Example Application

The presented sensibility analysis is performed on a parallel asynchronous cel-

lular genetic algorithm [22] for scheduling of independent tasks in a grid. The

following section provides a description of the problem and its representation,

and section 4.2 presents the algorithm and the parameters used.

4.1 Problem Description

The problem the EA attempts to solve arises quite frequently in parameter sweep

applications, such as Monte-Carlo simulations [6]. In these applications, many

tasks with almost no interdependencies are generated and submitted to the grid

system. Efficiency means to allocate tasks as fast as possible and to optimize

some criterion, such as makespan or flowtime. Makespan is among the most

important optimization criteria of a grid system. Indeed, it is a measure of its

productivity (throughput). Task scheduling is treated as a single objective opti-

mization problem, in which the makespan is minimized. Makespan, the finishing

time of latest task, is defined as

min
S

max{Ft : t ∈ Tasks} , (1)

where Ft is the finishing time of task t in schedule S.

More precisely, assuming that the computing time needed to perform a task is

known (assumption that is usually made in the literature [5,12,16]), the problem

is represented with the Expected Time to Compute (ETC) model by Braun et

al. [5]. The instance definition of the problem is as follows:

– nb tasks: the number of independent (user/application) tasks to be sched-

uled.

– nb machines: the number of heterogeneous machine candidates to partici-

pate in the planning.

– The workload of each task (in millions of instructions).

– The computing capacity of each machine (in mips).

– readym: ready time indicating when machine m will have finished the pre-

viously assigned tasks.

– The Expected Time to Compute (ETC) matrix (nb tasks × nb machines)
in which ETC[t][m] is the expected execution time of task t on machine m.

Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis 209

The two benchmark instances used for this study consist of 512 tasks and 16

machines. Both instances represent different classes of ETC matrices. The classi-

fication is based on three parameters: task heterogeneity, machine heterogeneity,

and consistency [2]. Instances are labelled as u x yyzz where:

u stands for uniform distribution (used in generating the matrix).

x stands for the type of consistency (c for consistent, i for inconsistent, and

s for semi-consistent). An ETC matrix is considered consistent when the

following is true: if a machine mi executes a task t faster than machine

mj , then mi executes all tasks faster than mj . Inconsistency means that a

machine is faster for some tasks and slower for some others. An ETC matrix

is considered semi-consistent if it contains a consistent sub-matrix.

yy indicates the heterogeneity of the tasks (hi means high, and lo means low).

zz indicates the heterogeneity of the resources (hi means high, and lo means

low).

4.2 Parallel Asynchronous Cellular GA

The chosen EA is a parallel asynchronous CGA (PA-CGA) [22], based on [23].

Cellular genetic algorithms (cGAs) [1] are a kind of GA with a structured pop-

ulation in which individuals are spread in a two dimensional toroidal mesh and

are only allowed to interact with their neighbors. The algorithm iteratively con-

siders as current each individual in the grid, and individuals may only interact

with individuals belonging to their neighborhood, so parents are chosen among

the neighbors with a given criterion. Crossover and mutation operators are ap-

plied to the individuals, with probabilities pc and pm respectively. Afterwards,

the algorithm computes the fitness value of the new offspring individual (or in-

dividuals), and inserts it (or one of them) instead of the current individual in

the population following a given replacement policy. This loop is repeated until

a termination condition is met.

In the PA-CGA, the population is partitioned into a number of contiguous

blocks with a similar number of individuals (Figure 2). Each block contains

pop size/#threads individuals, where #threads represents the number of con-

current threads executed. In order to preserve the exploration characteristics of

the CGA, communication between individuals of different blocks is made pos-

sible. This neighborhood may include individuals from other population blocks.

This allows an individual’s genetic information to cross block boundaries.

The different threads evolve their population block independently and do not

wait on the other threads to complete their generation (the evolution of all the

individuals in their block) before pursuing their evolution. Hence, if a breeding

loop takes longer for an individual of a given thread, the individuals evolved by

the other threads may go through more generations.

The combination of a concurrent execution model with the neighborhoods

crossing block boundaries leads to concurrent access to shared memory. To en-

able safe concurrent memory access, we synchronize access to individuals with a

POSIX [15] read-write lock. This high-level mechanism allows concurrent reads

210 F. Pinel, G. Danoy, and P. Bouvry

Fig. 2. Partition of an 8x8 population over 4 threads

from different threads, but not concurrent reads with writes, nor concurrent

writes. In the two latter cases, the operations are serialized.

The algorithm employes a local search operator, specific to the scheduling

problem considered. This operator moves a randomly chosen task from the most

loaded machine (a machine’s load is the total of the tasks completion times) to

a selected candidate machine among the N least loaded (N is a parameter). A

candidate machine is selected if its new completion time, with the addition of

the task moved, is the smallest of all the candidates. This new completion time

must also remain inferior to the makespan. This operation is performed several

times (a parameter of the local search).

The following parameters have been used for the PA-CGA. The population

is initialized randomly, except for one individual obtained with the Min-min
heuristic [14]. The selection operator used is binary tournament. The recombi-

nation operator used is the one-point (opx) crossover and the mutation operator

moves one randomly chosen task to a randomly chosen machine. The neigh-

borhood shape used is linear 5 (L5), also called Von Neumann neighborhood,

composed of the 4 nearest individuals (measured in Manhattan distance), plus

the individual evolved. The replacement strategy is “replace if better”, i.e. the

newly generated offspring replaces the current individual if it improves the par-

ent fitness value.

5 Experimental Setup

The studied parameters of the PA-CGA, called factors in the context of sensi-

tivity analysis, are summarized in Table 1.

For each factor considered in this study, a uniform distribution of the values is

considered since we have no a priori indication of the correct values. Population

size represents the dimension of the square shaped grid of the cellular GA, which

can range between 8X8 to 32X32 individuals. Crossover rate is defined in a

range between 0.1 to 1.0. Mutation is defined by its rate, ranging between 0.1

Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis 211

Table 1. Uncertainty in the model parameters

Factor Distribution Range of values

Population size uniform 8x8 – 32x32
Crossover rate uniform 0.1 – 1.0
(P crossover)
Mutation rate uniform 0.1 – 1.0
(P mutation)
Mutation iterations uniform 1 – 5
(Iter mutation)
Local search rate uniform 0.1 – 1.0
(P search)
Local search iterations uniform 1 – 10
(Iter search)
Load for local search uniform 0.1 – 0.9
(Load search)
Threads uniform 1 – 4

and 1.0, and the maximum number of mutations, ranging from 1 to 5. Local

search is defined by the same properties (rate between 0.1 and 1.0 and maximum

number of iterations between 1 and 10). The value range for the number of least

loaded machines to consider 4.2 is 0.1 to 0.9. Finally, as the algorithm can be

parallelized, the number of threads also varires between 1 and 4.

The stop condition for each run of the EA is 100 generations. Each set of

factors generated for the analysis is used for 4 runs. The result is the average of

the makespan over those 4 runs. The sensitivity analysis therefore considers a

total of 6400 parameters combinations.

Sensitivity analysis is performed on the algorithm for two different instance

files for which we provide their Blazewicz [4] notation:

– u c 512x16 hihi: Q16|26.48 ≤ pj ≤ 2892648.25|Cmax;

– u c 512x16 lolo: Q16|1.44 ≤ pj ≤ 975.30|Cmax.

The intention is to discover if different problem instances modify the factor

prioritization results. The Fast99 implementation of the sensitivity analysis is

provided by the R Sensitivity Analysis package [24].

6 Results

Figure 3 presents for each factor, their linear and non-linear (or interaction)

effects on the output for the problem instance with high tasks and resources

heterogeneity: the quality of the solution (the average makespan over 4 indepen-

dent runs).

The benefits of the sensitivity analyzis are immediately visible. Indeed, the

local search parameters and notably the maximum number of iterations, influ-

ence the most the output. It is indeed twice more important than the second

212 F. Pinel, G. Danoy, and P. Bouvry

Pop P_mutation Iter_mutation P_crossover P_search Iter_search Load_search Threads

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Fig. 3. Sensitivity analysis, hihi instance

Pop P_mutation Iter_mutation P_crossover Threads

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Fig. 4. Sensitivity analysis, hihi instance with fixed local search parameters

most influential parameter, the local search rate. This result is consistent with

related works in the scheduling literature which enlightened the importance of

the local search when dealing with hybrid metaheuristics. This also justifies the

hand tuning of the parameters performed for [22]. The third most important

parameter the crossover rate. This is highlighted in Figure 4 which analyzes the

effects on the output of the GA parameters, thus using fixed values for the local

search. It appears that the crossover rate is at least six times more important

than all the other GA parameters.

Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis 213

Pop P_mutation Iter_mutation P_crossover P_search Iter_search Load_search Threads

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Fig. 5. Sensitivity analysis, lolo instance

Pop P_mutation Iter_mutation P_crossover Threads

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

main effect
interactions

Fig. 6. Sensitivity analysis, lolo instance with fixed local search parameters

These results also highlights that some parameters play a limited role, i.e.

population size, mutation rate and iterations as well as the number of threads.

This is also beneficial because values which have a positive impact on other

aspects of the algorithm, such as runtime, can be selected without impacting

the quality of the solutions. Indeed, this algorithm was designed to be run for a

limited period of time (wall clock), therefore choosing a smaller population size

and a higher number of threads will allow the computation of more generations.

214 F. Pinel, G. Danoy, and P. Bouvry

Figure 5 shows the same analysis for the instance with low tasks and resources

heterogeneity. The two most influential parameters are similar to the hihi in-

stance, local search iterations followed by the of local search rate. One difference

can be noticed at the level of the third parameter in terms of importance. This

parameter now consists in the ”GA population size” while the ”crossover rate”

was used for the hihi instance. As can be seen in Figure 6, crossover has indeed

40% less influence than population size. Finally the load for local search has

almost no influence on the output in the hihi case. Figure 6 shows that there are

significant interaction effects, which mean that the remaining parameters com-

bined, influence the output more than individually. The interaction part shows

the total interactions (between two, three, etc parameters).

To conclude, these first results are promising because they brought a first

exploration of the relationship between the algorithm’s influential parameters

and the classes of problem instances.

7 Conclusion

In this paper, a variance based sensitivity analysis has been proposed to study

the influence and interdependencies of the parameters of a Parallel Asynchronous

Cellular Genetic Algorithm (PA-CGA). Experimental results on two different

instances of a scheduling problem of independent tasks on a grid have shown

that, for both problem instances, the two most impacting parameters are the

local search ones. As expected, the GA parameters have a limited influence on the

solution quality, except the crossover rate and the population size, respectively

for the hihi and lolo instance. Current implementations are available [24] to make

this analysis a systematic step in any EA experiment.

Future works will include studying the cost of the proposed approach and

extending the sensitivity analysis of the PA-CGA parameters on a larger set

of scheduling problem instances with different properties. Another targeted ob-

jective is to study the parameters sensitivity of the scheduling problem model

itself.

References

1. Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Operations Re-
search/Compuer Science Interfaces. Springer, Heidelberg (2008)

2. Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D., Ali, S.: Representing task and
machine heterogeneities for heterogeneous. Journal of Science and Engineering,
Special 50 th Anniversary Issue (3), 195–207 (2000)

3. Bartz-Beielstein, T., Lasarczyk, C.W.G., Preuss, M.: Sequential Parameter Opti-
mization. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 773–780.
IEEE (2005)

4. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics 5, 11–24
(1983)

Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis 215

5. Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hengsen, D., Freund, R.F.: A comparison
of eleven static heuristics for mapping a class of independent tasks onto hetero-
geneous distributed computing systems. Journal of Parallel and Distributed Com-
puting 61(6), 810–837 (2001)

6. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling
parameter sweep applications in grid environments. In: Heterogeneous Computing
Workshop, pp. 349–363 (2000)

7. de Castro, L., Von Zuben, F.: Learning and optimization using the clonal selection
principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)

8. DeJong, K.: Parameter setting in eas: a 30 year perspective. In: Lobo, F.G., et al.
(eds.) [18], pp. 1–18

9. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evolutionary Computation 3(2), 124–141 (1999)

10. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in
evolutionary algorithms. In: Lobo, F.G., et al. (eds.) [18], pp. 19–46

11. Geem, Z.: Harmony search algorithm for solving sudoku. In: Apolloni, B., Howlett,
R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 371–378.
Springer, Heidelberg (2007)

12. Ghafoor, A., Yang, J.: Distributed heterogeneous supercomputing management
system. IEEE Comput. 26(6), 78–86 (1993)

13. Ho, S.Y., Chen, H.M., Ho, S.J., Chen, T.K.: Design of accurate classifiers with a
compact fuzzy-rule base using an evolutionary scatter partition of feature space.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2),
1031–1044 (2004)

14. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on
nonidentical processors. Journal of the ACM 24(2), 280–289 (1977)

15. IEEE and The Open Group: Posix (ieee std 1003.1-2008, open group base specifi-
cations issue 7) (2008), http://www.unix.org

16. Kafil, M., Ahmad, I.: Optimal task assignment in heterogeneous distributed com-
puting systems. IEEE Concurrency 6(3), 42–51 (1998)

17. Kramer, O.: Evolutionary self-adaptation: a survey of operators and strategy pa-
rameters. Evolutionary Intelligence 3, 51–65 (2010)

18. Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms. SCS, vol. 54. Springer, Heidelberg (2007)

19. Maturana, J., Lardeux, F., Saubion, F.: Autonomous operator management for
evolutionary algorithms. Journal of Heuristics 16, 881–909 (2010)

20. Min, H., Ko, H.J., Ko, C.S.: A genetic algorithm approach to developing the multi-
echelon reverse logistics network for product returns. Omega 34(1), 56–69 (2006)

21. Nannen, V., Eiben, A.E.: Relevance estimation and value calibration of evolution-
ary algorithm parameters. In: Proceedings of the 20th International Joint Confer-
ence on Artifical Intelligence, pp. 975–980. Morgan Kaufmann Publishers Inc., San
Francisco (2007)

22. Pinel, F., Dorronsoro, B., Bouvry, P.: A new parallel asynchronous cellular genetic
algorithm for scheduling in grids. In: Proceedings of the 2010 IEEE International
Symposium on Parallel and Distributed Processing, Workshops and Phd. Forum,
IPDPSW 2010 (2010)

23. Pinel, F., Dorronsoro, B., Bouvry, P.: A new parallel asynchronous cellular genetic
algorithm for de novo genomic sequencing. In: Proceedings of the IEEE Interna-
tional Conference on Soft Computing and Pattern Recognition (SOCPAR 2009),
pp. 178–183 (2009)

http://www.unix.org

216 F. Pinel, G. Danoy, and P. Bouvry

24. Pujol, G.: sensitivity: Sensitivity Analysis (2008), r package version 1.4-0
25. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in Prac-

tice: A Guide to Assessing Scientific Models. Wiley (2004)
26. Saltelli, A., Tarantola, S., Chan, K.: A quantitative, model independent method

for global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)
27. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary al-

gorithms. In: Proceedings of the Eleventh Conference on Congress on Evolutionary
Computation, CEC 2009, pp. 399–406. IEEE Press, Piscataway (2009)

Image Recognition System

for Diagnosis Support of Melanoma Skin Lesion

Pawe�l Cudek, Wies�law Paja, and Mariusz Wrzesień

University of Information Technology and Management,
Institute of Bimedical Informatics,

Sucharskiego 2, 35- 225 Rzeszow, Poland
{pcudek,wpaja,mwrzesien}@wsiz.rzeszow.pl

Abstract. In this paper, computer-aided automatic system for classi-
fication of melanocytic skin lesions is described. The main goal of our
research was to elaborate and to present new approach to classifica-
tion of melanocytic lesions based on medical images recognition. Here,
functionality, structure and operation of this approach is presented. Our
approach is based on well known ABCD formula, a very popular medical
method to prepare non-invasive diagnosis. Now, we present progress in
development of our system and also explanation of applied approach.

Keywords: diagnosis support system, image recognition, teledermatol-
ogy, Total Dermatoscopy Score, ABCD formula.

1 Introduction

Melanoma is the most deadly form of skin cancer. The World Health Organi-

zation estimates that more than 65000 people a year worldwide die from too

much sun, mostly from malignant skin cancer [6]. It is the cutaneous tumour

with the worst prognosis and its incidence is growing, because most melanomas

arise on areas of skin that can be easily examined. Early detection and suc-

cessful treatment often is possible. Most dermatologists can accurately diagnose

melanoma in about 80% of cases according to ABCD process [10]. Meanwhile

the incorporation of dermatoscopic techniques, reflectance confocal microscopy

and multiespectral digital dermatoscopy have greatly enhanced the diagnosis of

this cutaneous melanoma. While these devices and techniques could give derma-

tologists a closer look at suspicious skin lesions. This, in turn, can help derma-

tologists find suspicious lesions earlier than before and better determine whether

a biopsy is needed. None of these devices can confirm that a suspicious lesion is

melanoma. It is, however, not yet possible to tell if a patient has melanoma or

any type of skin cancer without a biopsy. It is important to combine the clas-

sically ABCDs and biopsy to prevention and diagnosis of melanoma. In recent

years there are a lot of available articles about investigation in the domain of

non-invasive diagnosis support systems for melanoma classification [3,8,9,1].

In the domain of automatic skin lesion recognition there are some informa-

tion system available to use for dermatologists. The MoleExpert software [5] is

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 217–225, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

218 P. Cudek, W. Paja, and M. Wrzesień

an example of such a system. This system was developed for the support of the

diagnostic identification. The system does not give a diagnosis, but instead pro-

vides measurement results on expansion, color, net structure, globules and the

border which can be evaluated in comparison with many hundred lesions at any

time. Another system SkinSeg [12] is simple tool used for skin lesion segmenta-

tion. First, image is converted to intensity image and then the lesion edges are

detected.

Our approach is a part of complementary system for supporting of diagnosis

of melanocytic lesions. This main system provides user interface in form of a

website to get the access to its three working modules (see Figure 1). The first

one is dedicated to medical doctors without specialized medical knowledge, and

serves diagnosing using simple dermatoscope. This module allows to determine

all symptoms required for correct classification of a given skin lesion.

Fig. 1. Structure of the complementary diagnosing support web centered system

The second module, called medical images recognition system, is based on

automatic analysis and recognition of medical images. This module is the main

subject of our paper. This approach consists of a system solution designed to an-

alyze images of the patient’s injury using image processing techniques where the

dermatologists will capture the image of a melanoma using a digital dermato-

scope. Next, a set of algorithms will process the image and provide an output

diagnosis automatically. Detailed information is given in the next sections.

In turn, the third module enables to generate the exhaustive number of sim-

ulated images, which considerably broaden the informational source database,

and can be used in the process of training less experienced medical doctors. It

contains algorithms of semantic conversion of textual description of melanocytic

lesion into respective image of the lesion.

2 Melanocytic Skin Lesion Image Classification

According to the previous section one of the main task of our research was to

extend the general system with diagnostic module based on automatic analysis

of real digital images of melanocytic lesions on the skin. Created tool could

be treated as a supplement of diagnosing process and may facilitate suitable

Image Recognition System for Diagnosis Support of Melanoma Skin Lesion 219

medical procedures, giving an indication for the necessity of the lesion’s surgical

removal. After analysis of methods described in literature [11,2,7], that are used

by dermatologists in recognition process of skin lesions we decided to focus on

Stolz algorithm. It is formally based on the primary version of ABCD rule.

In this method, four parameters are estimated: A (Asymmetry) concerns the

result of evaluation of lesion’s asymmetry, B (Border) estimates the character

of lesion’s border, C (Color) identifies the number of colors (one or more, from

6 allowed) present in the investigated lesion, and D (Diversity of structures)

identifies the number of structures (one or more, from 5 allowed). Values of

ABCD elements are used to calculate TDS parameter (Total Dermatoscopy
Score) [4] as follow (equation 1):

TDS = (1.3 ∗ Asymmetry) + (0.1 ∗ Border) + (0.5 ∗
∑

Colors)+
+(0.5 ∗

∑
Diversity) (1)

Depending on the TDS value, investigated lesion could be assigned to one of four

accepted categories: Begin nevus, Blue nevus, Suspicious nevus or Malignant
melanoma (see Table 1).

Table 1. Values of TDS parameter and corresponding lesion’s category

TDS value Category of lesion

TDS <4.76 and lack of color blue Begin nevus
TDS <4.76 and color blue is present Blue nevus
4.76 ≤ TDS <5.45 Suspicious nevus
TDS ≥ 5.45 Malignant melanoma

In this part of article we focus on automatic acquisition of ABCD parameters

which is not difficult from the standpoint of a medical specialist but automation

of this process is a great challenge.

3 Structure and Operation of the System

Our automated system for lesions classification provides the ability to analyze

medical images in different graphic formats like JPG, BMP, PNG, and TIF .

After loading of an investigated image (see Figure 2) the preprocessing opera-

tion is performed. Next, system locates the lesion’s area. If the area of lesion is

determined, system tries to estimate the values specified in the ABCD formula.

Finally, TDS parameter is calculated and lesion is classified according to rules

presented in Table 1. The main structure of our automatic image recognition

system is shown on Figure 2. Additionally its graphical interface is presented on

figure 3. Details about each operations are presented in next subsections.

220 P. Cudek, W. Paja, and M. Wrzesień

Fig. 2. The main structure of image recognition system

Fig. 3. Graphical interface of image recognition system

3.1 Preprocessing Module

Preprocessing module is responsible for improving the quality of picture and

creating the next version of the image used in subsequent stages. First of all

algorithm converts color image into grayscale according to equation 2.

Y = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B (2)

where: Y - pixel value in grayscale, R, G, B - components of RGB color value

Next step of preprocessing is adaptive histogram equalization used to improve

the local contrast in the image. To achieve this, the Contrast Limited Adaptive

Image Recognition System for Diagnosis Support of Melanoma Skin Lesion 221

Histogram Equalization (CLAHE) [13] method were applied. This method com-

putes several histograms, each corresponding to a distinct section of the image,

and uses them to redistribute the lightness values of the image. At this stage a

blurred version of image is also created. This version is used to apply segmenta-

tion process.

3.2 Evaluation of Asymmetry Feature

Asymmetry evaluation in ABCD formula devotes to information about number

of symmetry axes located in lesion’s area. There is a three logical values of

Asymmetry attribute: symmetric spot (there are two perpendicular axes of

symmetry), 1-axial asymmetry (there is only one axis of symmetry) and 2-
axial asymmetry (there is no axis of symmetry). The numerical values used

in the calculation of TDS parameter for the above logical values are 0, 1 and 2

respectively.

Fig. 4. Diagram of algorithm for the evaluation of lesion’s asymmetry

The developed algorithm for evaluation of asymmetry (see Figure 4) is based

on the analysis of the black and white image created as a result of segmentation.

In this image white dots belongs to lesion area and black dots represents an area

of healthy skin. In the first step a center of gravity (GC) is determined. Next,

algorithm creates an array containing the length of straights (radiuses) outgoing

from the GC point with angle in range between 0 and 359 degrees. Next task

is to find straights, which can be symmetry axis of lesion. For this purpose,

for each of the 180 potential axis of symmetry SFAα is calculated as a sum of

222 P. Cudek, W. Paja, and M. Wrzesień

similar radiuses inclined to the tested axis at angles β and -β (see Figure 5). The

main axis of symmetry of the lesion is that for which the SFA is the largest and

exceeds the threshold value agreed in researches (indicating axis as a symmetry

axis).

Fig. 5. Comparison of radiuses for the potential axis of symmetry with an angle α = 0

3.3 Evaluation of Border Feature

To estimate the character of a border of lesion, the image is divided into eight

equal parts by using four lines crossing in the center of gravity (see Figure 6).

Fig. 6. Lesion divided into eight parts

Next, in each created part of lesion the sharpness of transition between lesion

and health skin is evaluated. For this purpose, set of samples containing the pixel

values in grayscale are collected within the area of crossing lesion to healthy skin.

In our initial research it was about 20 samples in each octal part. Analysis of

a single sample acquired from an octal part of lesion apply the least squares

method to determine the slope factor a (see Equation 3) of the linear function

passing through the collected values.

Image Recognition System for Diagnosis Support of Melanoma Skin Lesion 223

a =
n
∑
xiyi −

∑
xi

∑
yi

n
∑
x2

i − (
∑
xi)

2
(3)

where: xi - number of sample, yi - sample value in grayscale, n - number of all

samples

If the slope factor exceeds determined threshold the transition between the

lesion and the skin in a given sample then it is considered to be sharp border (see

Figure 7). If most of samples in investigated octal part was classified as a sharp

transition then this part has value 1 and Border value in ABCD rule increase by

one.

Fig. 7. The slope factor determined for sharp and unsharp border

3.4 Evaluation of Color Feature

In this research, all collected images are saved in the RGB color system. Thus,

the precise determination of the similarity between colors is not possible. Anal-

ysis of literature has shown that the most appropriate and recommended color

space for colorimetric purpose is Lab system. Direct conversion of colors from

RGB to Lab is not possible and requires the transformation through the XYZ
color space.

In the Lab space, the color value is defined by the brightness (L) with values

from 0 to 100, in turn component a specifies position on the green-red axis, and

component b specifies position on the blue-yellow axis. This color space is based

224 P. Cudek, W. Paja, and M. Wrzesień

on the perception of color by the human eye and allows calculate the difference

between colors as the difference of points in three dimensional space. It is also

independent of the hardware device.

After performing transformation to Lab color space the identification of colors

is applied using k-means algorithm. In this algorithm difference between colors

is measured using city block distance. In the research central values of allowed

colors expressed in Lab value which are start points in k-means algorithm were

determined. Result of clustering allows to specify the number of colors presented

in the area of lesion and use it as a C parameter in ABCD formula.

3.5 Evaluation of Diversity of Structure

This part of the system is in the process of implementation and will be described

in future publications. The main goal of this approach is to build classifier, which

for selected area of lesion will be able to decide: if in the investigated area are

known type of structures. For this purpose, we intend to determine the vector of

features of the study area and build a neural network, which makes classification

based on the input vector.

4 Initial Results and Conclusions

Initial results of our experiments were gathered using developed information

system for image recognition. These results are presented in Table 2. During ex-

periment 53 images of melanocytic lesions were investigated. Accuracy of recog-

nition is presented in second column of Table 2. Most of cases are recognized

correctly. Thus, it could be said that applied methods are effective and should

be developed by using numerous of testing images.

Table 2. Error rate for classified images

Investigated feature Classification error rate

Asymmetry:
symmetric spot 6%
1-axial asymmetry 8%
2-axial asymmetry 9%

Border 21%
Color 28%

According to medical doctors [10] correct classification of pigment skin lesions

is possible using histopatological research of lesion. The newest trend of diagnos-

ing devoted to using non-invasive methods, has become cause of disseminating

of information technology tools supporting this process.

During our research, practical development of a new approach to diagnosis

support was applied. This approach is based on automatic recognition of medical

Image Recognition System for Diagnosis Support of Melanoma Skin Lesion 225

images acquired during early examination by dermatologists. This automatic

examination is possible only by using images with proper quality and dimension

acquired using dermatoscopic devices. In this research, application of ABCD

formula were discussed, but in the future research it could be extended to new

algorithms or methods of recognition. Additionally, better results of error rate

are expected during extensive research and also mobile version of our system

could be presented.

References

1. Amalian, B., Fatichah, C., Widyanto, M.R.: Abcd feature extraction for melanoma
skin cancer diagnosis. In: Proceedings of the 9th International Conference on Ad-
vanced Computer Science and Information System, ICACSIS 2009, pp. 224–228
(2007)

2. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino,
M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin
lesions. com-parison of the abcd rule of dermatoscopy and a new 7-point checklist
based on pattern analysis. Archives of Dermatology 134, 1563–1570 (1998)

3. Bajcar, S., Grzymaa-Busse, J., Grzymaa-Busse, W., Hippe, Z.: Diagnosis of
melanoma based on data mining and abcd formulas. In: Abraham, A., Köppen,
M., Franke, K. (eds.) Design and Application of Hybrid Intelligent Systems, pp.
614–622. IOS Press, Amsterdam (2003)

4. Braun-Falco, O., Stolz, W., Bilek, P., Merkle, T., Landthaler, M.: Das dermatoskop.
eine vereinfachung der auflichtmikroskopie von pigmentierten hautveranderungen.
Hautarzt 40 (1990)

5. Datinf gmbh tubingen: Introduction (12/02/2011),
http://moleexpert.com/micro/intro.shtml

6. Lucas, R., McMichael, T., Smith, W., Armstrong, B.: Solar ultraviolet radiation.
global burden of disease from solar ultraviolet radiation. Environmental Burden of
Disease Series 13, 1–17 (2006)

7. Menzies, S.: Surface microscopy of pigmented skin tumors. Australas J. Derma-
tol. 38, 40–43 (1997)

8. Oka, H., Hashimoto, M., Argenziano, G., Iyatomi, H., Tanaka, M., Soyer, H.:
Internet-based program for automatic discrimination of dermoscopic images be-
tween melanoma and clark nevi. British Journal of Dermatology 150, 1041 (2004)

9. Papastergiou, A., Hatzigaidas, A., Zaharis, Z., Tryfon, G., Moustakas, K., Ioanni-
dis, D.: Introducing automated melanoma detection in a topic map based image
retrieval system. In: Proceedings of the 6th WSEAS International Conference on
Applied Computer Science, pp. 452–457 (2007)

10. Rigel, D., Russak, J., Friedman, R.: The evolution of melanoma diagnosis: 25 years
beyond the abcds. A Cancer Journal for Clinicians 60, 301–316 (2010)

11. Stolz, W., Braun-Falco, O., Bilek, P., Landthaler, M., Burgdorf, W., Cognetta, A.:
Atlas of Dermatoscopy. Czelej Edit. Office (2006)

12. Xu, L., Jackowski, M., Goshtasby, A., Yu, C., Roseman, D., Bines, S., Dhawan, A.,
Huntley, A.: Segmentation of skin cancer images. Image and Vision Computing 17,
65–74 (1999)

13. Zuiderveld, K.: Contrast limited adaptive histogram equalization, pp. 474–485.
Academic Press Professional, Inc., San Diego (1994)

http://moleexpert.com/micro/intro.shtml

Playing in Unison in the Random Forest

Alicja A. Wieczorkowska
1
, Miron B. Kursa

2
, Elżbieta Kubera

3
,

Rados�law Rudnicki
4
, and Witold R. Rudnicki

2

1 Polish-Japanese Institute of Information Technology,
Koszykowa 86, 02-008 Warsaw, Poland

alicja@poljap.edu.pl
2 Interdisciplinary Centre for Mathematical and Computational Modelling,

University of Warsaw, Pawińskiego 5A, 02-106 Warsaw, Poland
{M.Kursa,W.Rudnicki}@icm.edu.pl

3 University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
elzbieta.kubera@up.lublin.pl

4 The University of York, Department of Music, Heslington, York, YO10 5DD, UK
radek.rudnicki@york.ac.uk

Abstract. In this paper, we deal with the difficult problem of auto-
matic identification of multiple instruments playing sounds of the same
pitch, i.e. in unison. Random forests have been selected to be used as a
classifier. Training data represent isolated sounds of selected instruments
which originate from three commonly used repositories, namely McGill
University Master Samples, The University of IOWA Musical Instrument
Samples, and RWC. Testing data represent audio records especially pre-
pared by one of the authors for research purposes, and next carefully
labeled. The experiments on identification of instruments in a frame-by-
frame manner and the obtained results are presented and discussed.

Keywords: Music information retrieval, Random forests, Sound recog-
nition.

1 Introduction

Identification of a musical instrument playing in a polyphonic recording is a

challenging task, especially when instruments play in unison, i.e. play sounds of

the same pitch. This task is an example of research within the area of interest

in the domain of Music Information Retrieval (MIR). MIR research focusses on

such tasks as pitch-tracking of a melody sung or whistled by the user (often with

errors), in order to find the tune in the database, or identification of a piece of

music on the basis of a short excerpt (often noisy), when user wants to know

the title and the performer. Such systems already exist, see for example [18] or

[22], to facilitate searching through constantly growing audio data sets available

in both private collections and in the Internet. The users of such repositories

may also want to find tunes/excerpts played by a specified instrument, for ex-

ample the first flute solo in “Boléro” by M. Ravel. This requires identification of

timbre (of musical instrument) in polyphonic and polytimbral environment. The

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 226–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Playing in Unison in the Random Forest 227

research on identification of instrument has already been performed, and in the

case of recognition of a single instrument playing a single isolated sound it can

even reach 100% (if just several instruments are considered), although results

vary depending on the number of instruments and sounds investigated (down to

40% for about 30 instruments), as well as the sound parameterization method,

the classifier, and the validation method used. However, when instruments play

in unison, then the correct identification is much more difficult, because instru-

ment identification is based to a large degree on features describing the sound

spectrum, but harmonic partials in the spectrum overlap in the case of unison,

see Figure 1. Such sounds can be difficult to discern even for human listeners.

Fig. 1. Spectra of sounds of the same pitch, 440 Hz, and similar timbre: (a) trumpet
sound, (b) trombone sound, (c) trumpet and trombone sound. Harmonic peaks rep-
resent the fundamental frequency (the first peak, corresponding to the pitch) and its
multiples. Since all these sounds are of the same pitch, harmonic partials coincide and
the spectra overlap to a large extent.

The starting point of any training of a classifier is sound parameterization,

because digitally recorded sound is represented as a sequence of amplitude values

interpolating time-domain graph of the sound wave, i.e. amplitude vs. time, in

discrete form. In the case of CD recordings, amplitude values are quantized using

16 bits, i.e. 2
16

amplitude levels, and 44,100 samples per second per channel.

Such data are inconvenient to deal with, not only because of long sequences

228 A.A. Wieczorkowska et al.

of values, but also because these values may vary significantly even for similar

sounds. Therefore, audio data are parameterized. The created feature set can be

based on the time-domain representation, or, more often, on the spectrum of the

sound, describing frequency content, and changes of the spectrum in time (time-

frequency representation, i.e. spectrogram). The spectrum and the spectrogram

can be obtained using the Fourier or wavelet transform, or other methods.

Various researchers conducting experiments aiming at identification of musical

instrument sounds use various feature sets. Many of these features were included

in the MPEG-7 standard as low-level audio descriptors [8]; also, Mel-Frequency

Cepstral Coefficients (MFCC), originating from speech recognition, are applied

in MIR [5], including the recognition of musical instruments [3]. An overview of

parameterization techniques applied in musical instrument sound identification

tasks is presented in [7].

The quality of identification of the instrument depends both on the parame-

terization used, as well as the classifier used. In the case of recognition of single

sounds of instruments, many classification methods have already been applied:

k-nearest neighbors (k-NN), artificial neural networks (ANN), rough-set based

classifiers, support vector machines (SVM), decision trees and random forests,

see [7], [9]. However, methods that work well for isolated single sounds (even

such simple algorithms as k-NN) may not work as well for polyphonic sounds,

and they are prone to errors when tried on duets [17]. In polyphonic and poly-

timbral (i.e. representing plural instruments) recordings, with more than one

sound present at the same time, the recognition of instruments is much more

challenging, so more sophisticated algorithms might be needed.

When identification of instruments in polyphonic recordings is performed,

sounds of the same pitch pose substantial difficulties. This is because harmonic

components of their spectra coincide, as their represent multiples of the same

fundamental frequency. When polyphonic music is investigated, harmonic peaks

representing interfering tones are unreliable and they can be even excluded from

the classification process [4] thus improving the identification of sounds of differ-

ent pitches. In a different approach [1], prestored independent instrument spectra

are used to correct collided harmonics; prior knowledge of instrument spectra

is applied. The uncollided harmonics are matched to the ones contained in a

pre-stored spectrum library, and then each harmonic series is assigned to the

appropriate instrument, so the corrupted harmonics can be restored using data

taken from the library. Similar approach is applied in [25], where instruments

in polyphonic recordings are identified one by one, starting with the one with

most prominent harmonic peaks in the spectrum of the polyphonic recording, on

frame-by-frame basis. After identifying the most similar frame in the database,

whose set of harmonics is the closest to the set of harmonics corresponding to the

most prominent pitch, the found spectrum is subtracted from the investigated

one. This procedure is repeated until no useful peaks are left in the spectrum.

So far, we have already performed the research on identification of instru-

ments in mixes and polyphonic recordings, including mixes of musical instru-

ment sounds of the same pitch [11], [13], [24]. The previous research proved

Playing in Unison in the Random Forest 229

that random forests perform very well, better than other classification methods,

outperforming such a highly valued methods as SVM by an order of magnitude.

Therefore, we decided to continue experiments using random forests as classifiers.

In order to make our research independent of the initial audio segmentation into

sound events (notes) which is prone to errors, and time consuming when prepar-

ing ground-truth data, the investigations described in this paper are performed

in a frame-by-frame manner, and no prior information on the borders of notes

is required. The data were especially prepared for the purpose of this research,

including the recording and the ground-truth labeling of the audio data.

2 Feature Set

In our previous research, we have already performed experiments on identifica-

tion of musical instruments, including polyphonic sounds, and also unisons [24].

Therefore, we decided to base our work on the parameters we used before, yet

adjusting the feature set to capture more details of the investigated sounds.

The feature set we applied in this research is designed to parameterize sounds

of definite pitch, containing harmonic partials in their spectra. The feature vec-

tor was calculated on frame-by-frame basis, with 30-ms offset (hop size). Fourier

transform with Hamming window was applied to obtain the spectrum for each

subsequent audio frame. Our features can be grouped into 2 sets: static fea-

tures, describing properties of 40-ms frame of audio data, and dynamic features,

describing changes of sound properties, as they can improve the accuracy of in-

strument identification [10]. Dynamic features show differences between values

of each static feature for a given 40-ms frame and for the 40-ms frame at the

position shifted by 20 ms. For consistency, 60-ms frames are taken to calculate

both static and dynamic features. Calculations of static features are performed

for the first 40 ms of the 60-ms frame, and the remaining 20 ms are ignored.

The features we use represent MPEG-7 low-level audio descriptors [8], and

other descriptors used in research on automatic recognition of instruments. Two

features from MPEG-7 were also added to the set of dynamic features, namely,

HarmonicSpectralV ariation and Flux. Altogether, the following features con-

stitute our feature vector:

– static features:

• AudioSpectrumCentroid - power weighted average of the frequency bins

in the power spectrum; coefficients are scaled to an octave scale anchored

at 1 kHz [8];

• AudioSpectrumSpread - RMS (root mean square) value of the deviation

of the Log frequency power spectrum wrt. AudioSpectrumCentroid for

the frame [8];

• NonMPEG7 −AudioSpectrumCentroid - a differently calculated ver-

sion - in linear scale;

• NonMPEG7 − AudioSpectrumSpread - a different version; the de-

viation is calculated in linear scale, with respect to NonMPEG7 −
AudioSpectrumCentroid;

230 A.A. Wieczorkowska et al.

• RollOff - the frequency below which an experimentally chosen percent-

age equal to 85% of the accumulated magnitudes of the spectrum is con-

centrated. It is a measure of spectral shape, used in speech recognition

to distinguish between voiced and unvoiced speech;

• AudioSpectrumFlatness, flat1, . . . , f lat25 - multidimensional parame-

ter describing the flatness property of the power spectrum (obtained

through the Fourier transform) within a frequency bin for selected bins;

25 out of 32 frequency bands were used for a given frame;

• ZeroCrossingRate - time-domain descriptor; zero-crossing is a point

where the sign of time-domain representation of sound wave changes;

• Energy - energy (in logarithmic scale) of the spectrum of the parame-

terized sound;

• MFCC - vector of 13 Mel frequency cepstral coefficients. The cepstrum

was calculated as logarithm of the magnitude of the spectral coefficients,

and then transformed to the mel scale, used instead the Hz scale, to

better reflect properties of the human perception of frequency. Twenty-

four mel filters were applied, and the obtained results were transformed

to twelve coefficients. The thirteenth coefficient is the 0-order coefficient

of MFCC, corresponding to the logarithm of the energy [10], [19];

• HarmonicSpectralCentroid - the mean of the harmonic peaks of the

spectrum, weighted by the amplitude in linear scale [8];

• HarmonicSpectralSpread - represents the standard deviation of the

harmonic peaks of the spectrum with respect to HarmonicSpectral-
Centroid, weighted by the amplitude [8];

• HarmonicSpectralDeviation - represents the spectral deviation of the

log amplitude components from a global spectral envelope, where the

global spectral envelope of nth
harmonic partial is calculated as the av-

erage value of the neighboring harmonic partials: no. n−1, n, and n+1;

• FundamentalFrequency; maximum likelihood algorithm was applied for

pitch estimation [26];

• r1: ratio of the energy of the fundamental to the total energy of all

harmonic partials;

• r2: amplitude difference [dB] between 1
st

partial (i.e., the fundamental)

and 2
nd

partial;

• r3: ratio of the sum of energy of 3
rd

and 4
th

partial to the total energy

of harmonic partials;

• r4: ratio of the sum of partials no. 5-7 to all harmonic partials;

• r5: ratio of the sum of partials no. 8-10 to all harmonic partials;

• r6: ratio of the remaining partials to all harmonic partials;

• r7: brightness - gravity center of spectrum;

• r8: contents of even partials in spectrum,

r8 =

√∑M
k=1 A

2
2k√∑N

n=1A
2
n

Playing in Unison in the Random Forest 231

where An - amplitude of nth
harmonic partial,

N - number of harmonic partials in the spectrum,

M - number of even harmonic partials in the spectrum;

• r9: contents of odd partials (without fundamental) in spectrum,

r9 =

√∑L
k=2 A

2
2k−1√∑N

n=1A
2
n

where L – number of odd harmonic partials in the spectrum;

• r10: mean frequency deviation for partials 1-5 (when they exist),

r10 =

∑N
k=1 Ak · |fk − kf1| /(kf1)

N

where N = 5, or equals to the number of the last available harmonic

partial in the spectrum, if it is less than 5;

• r11: partial (i=1,...,5) of the highest frequency deviation;

– dynamic features:

• changes (measured as differences) of the static features for two 40-ms

subframes within the 60 ms frame: the starting 40 ms and the last 40

ms (i.e. with 20-ms offset);

• Flux - the sum of squared differences between the magnitudes of the

DFT points calculated for the starting 40 ms sub-frame of the given 60

ms frame, and the ending 40 ms sub-frame (starting with 20 ms offset);

this feature by definition describes changes of magnitude spectrum, thus

it cannot be calculated in a static version;

• HarmonicSpectralV ariation (HSV) - the normalized correlation be-

tween amplitudes of harmonic peaks of the two 40 ms sub-frames of

the 60 ms frame (see Flux), calculated in the following way:

HSV = 1 −
∑N

n=1An(1) ·An(2)√∑N
n=1A

2
n(1) ·

√∑N
n=1A

2
n(2)

where An(i) - amplitude of nth
harmonic partial in ith 40-ms subframe,

i = 1, 2 [8].

We decided to perform identification of instruments on frame-by-frame basis,

to stay independent of detection of the beginning and the end of each sound.

This is why we did not include features pertaining to whole sounds, for instance

LogAttackT ime, TemporalCentroid, even though these features were used in

our previous research [14], [13], and they were significant in the instrument recog-

nition process, as shown using the Boruta feature selection algorithm [15], [16].

Still, our research on polyphonic multi-pitch identification of musical instruments

shows that such a frame-by-frame instrument recognition is possible [12].

232 A.A. Wieczorkowska et al.

3 Audio Data

The purpose of our experiments was to identify musical instruments playing in

unison, which is the most difficult situation in case of simultaneously sound-

ing sounds. In order to train classifiers to identify particular instruments, we

used recordings of representing single, isolated sounds of these instruments.

Three repositories of musical instrument sound were used for this purpose,

namely McGill University Master Samples (MUMS) [20], The University of

IOWA Musical Instrument Samples (IOWA) [23], and RWC Musical Instru-

ment Sound Database (RWC) [6]. Marimba, vibraphone, piano, trumpet, and

trombone sounds were taken from these repositories.

In order to obtain testing data, several recording sessions were performed at

the University of York, recorded and mixed by one of the authors (R. Rudnicki)

as a mixing project manager. The obtained audio data represent simultaneously

played sounds of the same pitch. The recordings include [21]:

1. vibraphone (Enrico Bertelli) and piano (Cheong Li) playing scales in unison,

legato and staccato;

2. trumpet (Matthew Postle) and marimba (Enrico Bertelli) playing scales in

unison, legato and staccato, recorded in Sir Jack Lyons Concert Hall, The

University of York;

3. trumpet (Matthew Postle), trombone (Noah Noutch), and piano (Dave

Smyth), playing scales.

Firstly, the scales were recorded 16bit/44.1kHz in the case of recordings no.

1 and no. 2, and 32bit/44.1kHz in the case of the recording no. 3. Piano, vi-

braphone, and marimba were recorded stereo (with 2 microphones), whereas

trumpet and trombone were recorded mono (with 1 microphone). Secondly, after

panning and different volume setting applied, each track was rendered to stereo

16bit/44.1kHz (with cross-talks from neighboring instruments). Final mixes con-

taining all the contributing tracks were rendered in .wav format, 16bit/44.1kHz.

All these tracks were used as a basis for segmentation, i.e. creation of ground-

truth data, with starting and ending points marked for each sound.

The instruments recorded in duos and in trio represent three families of in-

struments, namely idiophones (marimba and vibraphone), strings/chordophones

(piano), and aerophones (trumpet and trombone - brass). Instruments repre-

senting the same family sound similar, so we can expect confusing marimba and

vibraphone, and also confusing trumpet and trombone. Playing in unison makes

discernment yet more difficult and challenging for classifiers.

4 Random Forests

Random Forest (RF) is a classifier consisting of a set of decision trees; weak,

weakly correlated and non-biased classifiers. It has been shown that RF are

quite good classifiers and they often outperform other methods for various clas-

sification problems [2]. RF is constructed using the following procedure, that

Playing in Unison in the Random Forest 233

minimizes bias and correlations between individual trees. Every tree is built us-

ing different N -element bootstrap sample of the training N -element set. Since

the elements of the bootstrap sample are drawn with replacement from the orig-

inal set, roughly one-third (called OOB, out-of-bag) of the training data are not

used in the bootstrap sample for any given tree.

For a P -element feature vector, p attributes (features) are randomly selected

at each stage of tree building, i.e. for each node of any tree in RF (p� P , often

p =
√
P). The best split on these p attributes is used to split the data in the node.

The best split is determined as minimizing the Gini impurity criterion, which is

a measure how often an element would be incorrectly labeled if randomly labeled

according to the distribution of labels in the subset. Each tree is grown to the

largest extent possible, i.e. without pruning. After repeating this randomized

procedure M times, a collection of M trees is obtained, constituting a random

forest. Classification of an object is done by simple voting of all trees in the RF.

4.1 Training of RF in Our Experiments

Each audio file used in training represents a single isolated sound of an instru-

ment; the sound is first normalized to RMS=1. Next, the preceding and the

following silence is removed as follows. A smoothed version of amplitude is cal-

culated starting from the beginning of the audio file, as moving average of 5

subsequent amplitude values. When this value increases by more than a thresh-

old, experimentally set to 0.0001, this point is considered to be the end of the

initial silence. The ending silence is removed analogously. After removing the

starting and ending silence, we perform parameterization, and train RF to iden-

tify each instrument – even when accompanied by other sound of the same pitch.

Next, we perform training on 60 ms frames of instrument sounds, mixing from

1 to 4 randomly chosen instruments with random weights and then normalized

again to RMS=1. The battery of one-instrument sensitive RF binary classifiers

is then trained. 3,000 mixes containing any sound of a given instrument are fed

as positive examples, and 3,000 mixes containing no sound of this instrument are

fed as negative examples. Since we want to obtain random forests which can be

applied in a general task of instrument recognition, mixing is done irrespective

of the pitch. Therefore, training data include both unisons and mixes of sounds

of different pitch. The random forests trained this way yielded good results (pre-

cision exceeding 80%, over 93% in most cases) in the task of the recognition of

instruments in real polyphonic recordings of 4 instruments [12], when the forests

were trained for 8 instruments. Now we decided to check whether random forests

trained using this methodology can be successfully applied to a particular case

of recordings, i.e. for instruments playing in unison.

When identification of N instruments in recordings is aimed at, we need a

battery ofN random forests (N = 5 in the case of this research), each one trained

to identify one instrument. Quality test of the battery is performed on 100,000

mixes, prepared the same way as the training data. The battery trained this

way is then ready to be applied in experiments on frame-by-frame recognition

of instruments in recordings mentioned in Section 3.

234 A.A. Wieczorkowska et al.

5 Experiments and Results

After preparing audio data (recordings and labeling), the training of the RF

classifier was performed, using sounds taken from MUMS, IOWA and RWC

repositories. The results of the training for OOB objects are shown in Table 1,

and the results of the quality test of this training are shown in Table 2. As we can

see, the battery of RF can recognize OOB objects with about 69–95% accuracy,

and the quality test yields about 69–87% accuracy at the end of the training.

Table 1. The results of the RF training for OOB objects, for mixes created with
weights w exceeding the indicated levels for the target instrument

w = 0.5 w = 0.3 w = 0.1 w = 0.0 Average

Instrument Accuracy [%]

marimba 87.1 78.7 71.5 69.3 76.6
piano 85.0 78.9 74.7 71.7 77.6

trombone 92.3 87.3 82.1 78.4 85.0
trumpet 95.1 92.8 88.4 84.9 90.3

vibraphone 88.0 77.9 72.3 70.1 77.1

Average 89.5 83.1 77.8 74.9

Table 2. The results of the quality test of the RF training, for mixes created with
weights w exceeding the indicated levels for the target instrument

w = 0.5 w = 0.3 w = 0.1 w = 0.0 Average

Instrument Accuracy [%]

marimba 76.9 73.0 71.2 69.2 72.6
piano 73.5 71.8 73.9 71.4 72.7

trombone 76.9 78.4 81.0 77.9 78.6
trumpet 77.1 82.6 87.3 83.6 82.6

vibraphone 75.6 73.4 71.3 68.7 72.3

Average 76.0 75.8 76.9 74.2

When the training phase was completed, we performed experiments with iden-

tification of instruments in the recordings mentioned in Section 3. General results

of these experiments are shown in Table 3. The results were weighted by RMS

measured for each instrument track. Therefore, precision was calculated as the

sum of the RMS values of the sound frames marked as correct in our ground-

truth labeling and found by the RF, divided by the sum of the RMS values of all

sound frames found by the RFs, for a given target instrument. Similarly, recall

was calculated as the sum of the RMS values of the sound frames marked as

correct in our ground-truth labeling and found by the RF, divided by the sum

of the RMS values for all frames labeled with this instrument in ground-truth

data.

Playing in Unison in the Random Forest 235

As we can see, instruments of similar timbre are often confused. Vibraphone

is mistaken with marimba (recordings no. 1 and no. 2), and trumpet is mistaken

with trombone (recording no. 2). On the other hand, the obtained precision is

very high, at the cost of quite low recall. However, recall increases and the num-

ber of false positives decreases when confusing instruments play together, or if

a pair of confusing instruments is not present in the recording: see improved

recall when both trombone and trumpet are playing together, and improved

false positives when neither marimba nor vibraphone are playing (recording

no. 3).

Table 3. Classification results for the recordings of instrument sounds played in unison,
weighted by RMS measured for each instrument track

1. Piano and vibraphone

marimba piano trombone trumpet vibraphone

precision [%] - 99.49 - - 99.97
recall [%] - 46.65 - - 71.72
false positives [%] 85.71 - 03.21 21.87 -

2. Marimba and trumpet

marimba piano trombone trumpet vibraphone

precision [%] 99.38 - - 100 -
recall [%] 57.00 - - 13.90 -
false positives [%] - 08.10 51.61 - 65.68

3. Piano, trombone, and trumpet

marimba piano trombone trumpet vibraphone

precision [%] - 99.82 97.21 93.96 -
recall [%] - 28.83 49.83 55.78 -
false positives [%] 24.94 - - - 10.94

Since we deal with simultaneously played sounds, no confusion matrix can

be produced, because multiple input sounds produce multiple output predic-

tions. Instead, we present the results as graphs (Figures 2 and 3), indicating

annotated areas (Ann), i.e. ground-truth, and RF-predictions (RF), all RMS-

weighted. Presence of an instrument is encoded in shades of gray; darker colors

represent higher intensities, and white represents absence of this instrument. As

we can see, errors mainly happen when the sound intensity is high, i.e. during

the attack, which is a transient state, always prone to errors because of non-

stationarity of the audio signal. Transients lead to erroneous results even in the

case of monophonic sounds (for example, in pitch-tracking), so errors in a dif-

ficult task of identification of multiple instruments in unison recordings were

actually expected.

236 A.A. Wieczorkowska et al.

0
2

4
6

8

t
[s

]

A
n
n

R
F

A
n
n

R
F

A
n
n

R
F

A
n
n

R
F

A
n
n

R
F

vibraphonetrumpettrombonepianomarimba

4D

4E

4F#

4G

4A

4B

5C#

5D

5E

5F#

5G

5A

5B

6C#

6D

6C#

5B

5A

5G

5F#

5E

5D

5C#

4B

4A

4G

4F#

4E

4D

0
2

4
6

8
1
0

t
[s

]

A
n
n

R
F

A
n
n

R
F

A
n
n

R
F

A
n
n

R
F

A
n
n

R
F

vibraphonetrumpettrombonepianomarimba

3F

3G

3A

3A#

4C

4D

4E

4F

4G

4A

4A#

5C

5D

5E

5F

5E

5D

5C

4A#

4A

4G

4F

4E

4D

4C

3A#

3A

3G

3F

F
ig

.
2
.

R
es

u
lt

s
o
f

th
e

re
co

g
n

it
io

n
o
f

in
st

ru
m

en
ts

p
la

y
in

g
in

u
n

is
o
n

,
fo

r
th

e
b

a
tt

er
y

o
f

R
F

tr
a
in

ed
fo

r
5

in
st

ru
m

en
ts

(m
a
ri

m
b

a
,

p
ia

n
o
,

tr
o
m

b
o
n

e,
tr

u
m

p
et

,
a
n

d
v
ib

ra
p

h
o
n

e)
.
T
o
p
:

v
ib

ra
p

h
o
n

e
a
n

d
p

ia
n

o
;
B
o
tt
o
m

:
m

a
ri

m
b

a
a
n

d
tr

u
m

p
et

Playing in Unison in the Random Forest 237

0
10

20
30

40
50

60

t [
s]

A
nnR
F

A
nnR
F

A
nnR
F

A
nnR
F

A
nnR
F

vibraphonetrumpettrombonepianomarimba

2E
2F
2F#
2G
2G#
2A
2A#
2B
3C
3C#
3D
3D#
3E
3F
3F#
3G
3G#
3A
3A#
3B
4C
4C#
4D
4D#
4E
4F
4F#
4G
4G#
4A
4A#
4B
5C
5C#
5D
5D#
5E
5F
5F#
5G
5G#
5A
5A#
5A
5G#
5G
5F#
5F
5E
5D#
5D
5C#
5C
4B
4A#
4A
4G#
4G
4F#
4F
4E
4D#
4D
4C#
4C
3B
3A#
3A
3G#
3G
3F#
3F
3E
3D#
3D
3C#
3C
2B
2A#
2A
2G#
2G
2F#
2F
2E

F
ig

.
3
.

R
ec

o
g
n

it
io

n
o
f

tr
u

m
p

et
,

tr
o
m

b
o
n

e,
a
n

d
p

ia
n

o
,

p
la

y
in

g
in

u
n

is
o
n

,
fo

r
th

e
R

F
b

a
tt

er
y

tr
a
in

ed
fo

r
5

in
st

ru
m

en
ts

(m
a
ri

m
b

a
,

p
ia

n
o
,

tr
o
m

b
o
n

e,
tr

u
m

p
et

,
a
n

d
v
ib

ra
p

h
o
n

e)

238 A.A. Wieczorkowska et al.

6 Summary and Conclusions

In the research reported in this paper, we wanted to check whether a battery of

random forests, trained to identify instruments in sound mixes, can be applied

to identify instruments playing in unison. This is an extremely difficult case,

since partials in spectra of such sounds overlap to a great extent. Moreover,

when instruments play together, they can imitate another instrument and be

recognized as this another instrument by humans. Therefore, we expected low

results, and the obtained high precision is rather surprising, whereas low recall

was actually expected. If an instrument is recognized by our battery of random

forests, the precision of this recognition is high. False positives stem from simi-

larity of sound timbre to other instruments. Low recall and relatively high false

positives rate indicate that probably more advanced methodology is necessary

to identify instruments playing in unison.

We are planning to continue our research. This includes expanding the train-

ing set, in order to include more unison samples. Also, since the quality of clas-

sification depends on parameterization, we consider adding more sophisticated

features to describe audio data. If this succeeds, we would also like to add more

instruments to the set.

Acknowledgments. The authors would like to express thanks to the musicians

who recorded our test audio data: Matthew Postle (trumpet), Enrico Bertelli

(marimba, vibraphone), Noah Noutch (trombone), Cheong Li (piano), and Dave

Smyth (piano).

This project was partially supported by the Research Center of PJIIT, sup-

ported by the Polish National Committee for Scientific Research (KBN). Com-

putations were performed at ICM, grant G34-5.

References

1. Bay, M., Beauchamp, J.W.: Harmonic Source Separation Using Prestored Spectra.
In: Rosca, J.P., Erdogmus, D., Pŕıncipe, J.C., Haykin, S. (eds.) ICA 2006. LNCS,
vol. 3889, pp. 561–568. Springer, Heidelberg (2006)

2. Breiman, L.: Random Forests. Machine Learning 45, 5–32 (2001),
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_papers.htm

3. Brown, J.C.: Computer identification of musical instruments using pattern recog-
nition with cepstral coefficients as features. J. Acoust. Soc. Am. 105, 1933–1941
(1999)

4. Eggink, J., Brown, G.J.: Application of missing feature theory to the recognition
of musical instruments in polyphonic audio. In: ISMIR (2003)

5. Foote, J.: An Overview of Audio Information Retrieval. Multimedia Systems 7(1),
2–11 (1999)

6. Goto, M., Hashiguchi, H., Nishimura, T., Oka, R.: RWC Music Database: Mu-
sic Genre Database and Musical Instrument Sound Database. In: Proceedings of
ISMIR, pp. 229–230 (2003)

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_papers.htm

Playing in Unison in the Random Forest 239

7. Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmenta-
tion for music content description: a critical review of instrument classification
techniques. In: International Symposium on Music Information Retrieval, ISMIR
(2000)

8. ISO: MPEG-7 Overview, http://www.chiariglione.org/mpeg/
9. Klapuri, A., Davy, M. (eds.): Signal Processing Methods for Music Transcription.

Springer, New York (2006)
10. Kubera, E.: The role of temporal attributes in identifying instruments in polytim-

bral music recordings (in polish). Ph.D. dissertation, Polish-Japanese Institute of
Information Technology (2010)

11. Kubera, E., Wieczorkowska, A., Raś, Z., Skrzypiec, M.: Recognition of Instrument
Timbres in Real Polytimbral Audio Recordings. In: Balcázar, J.L., Bonchi, F.,
Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp.
97–110. Springer, Heidelberg (2010)

12. Kubera, E., Kursa, M.B., Rudnicki, W.R., Rudnicki, R., Wieczorkowska, A.A.:
All That Jazz in the Random Forest. In: Kryszkiewicz, M., Rybinski, H., Skowron,
A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 543–553. Springer,
Heidelberg (to appear, 2011)

13. Kursa, M.B., Kubera, E., Rudnicki, W.R., Wieczorkowska, A.A.: Random Musical
Bands Playing in Random Forests. In: Szczuka, M., Kryszkiewicz, M., Ramanna,
S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 580–589.
Springer, Heidelberg (2010)

14. Kursa, M., Rudnicki, W., Wieczorkowska, A., Kubera, E., Kubik-Komar, A.: Mu-
sical Instruments in Random Forest. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa,
T. (eds.) ISMIS 2009. LNCS (LNAI), vol. 5722, pp. 281–290. Springer, Heidelberg
(2009)

15. Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta: A System for Feature Selec-
tion. Fundamenta Informaticae 101, 271–285 (2010)

16. Kursa, M.B., Rudnicki, W.R.: Feature Selecion with the Boruta Package. J. Stat.
Soft. 36, 1–13 (2010)

17. Livshin, A.A., Rodet, X.: Musical Instrument Identification in Continuous Record-
ings. In: Proc. of the 7th Int. Conference on Digital Audio Effects (DAFX 2004),
Naples, Italy, October 5–8 (2004)

18. MIDOMI, http://www.midomi.com/
19. Niewiadomy, D., Pelikant, A.: Implementation of MFCC vector generation in clas-

sification context. J. Applied Computer Science 16(2), 55–65 (2008)
20. Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)
21. Rudnicki, R.: Instrumental duos and trios. Recording and mixing. Trumpet - M.

Postle, trombone - N. Noutch, marimba, vibraphone - E. Bertelli, piano - C. Li, D.
Smyth (2010)

22. Sony Ericsson: TrackID, http://www.sonyericsson.com/trackid/
23. The University of IOWA Electronic Music Studios: Musical Instrument Samples,

http://theremin.music.uiowa.edu/MIS.html
24. Wieczorkowska, A.A., Kubera, E.: Identification of a dominating instrument in

polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. J. Intell.
Inf. Syst. 34(3), 275–303 (2010)

25. Zhang, X.: Cooperative Music Retrieval Based on Automatic Indexing of Music by
Instruments and Their Types. Ph.D thesis, Univ. North Carolina, Charlotte (2007)

26. Zhang, X., Marasek, K., Raś, Z.W.: Maximum Likelihood Study for Sound Pattern
Separation and Recognition. In: 2007 International Conference on Multimedia and
Ubiquitous Engineering MUE 2007, IEEE, pp. 807–812 (2007)

 http://www.chiariglione.org/mpeg/
http://www.midomi.com/
http://www.sonyericsson.com/trackid/
http://theremin.music.uiowa.edu/MIS.html

Scale Invariant Bipartite Graph

Generative Model

Szymon Chojnacki and Mieczys�law A. K�lopotek

Institute of Computer Science PAS,
J.K. Ordona 21, 01-237 Warsaw, Poland

{sch,klopotek}@ipipan.waw.pl

Abstract. The purpose of this article is to present new undirected bi-
graph generator. Bigraphs (or bipartite graphs) contain nodes of two
types and there exist edges only between nodes of different types. This
data structure can be observed in various real-life scenarios. Random
generator can be used to describe and better understand the scenarios.
Moreover, the generator can output a wide range of synthetic datasets.
We believe that the datasets can be utilized to evaluate performance of
various algorithms that are deployed in such settings. The generative
procedure is based on the preferential attachment principle. The princi-
ple is combined with the iterative growth mechanism and results in the
power-law node degree distribution. Our algorithm extends the classic
Barabási - Albert model. We obtain the same scaling exponent as in the
classic model, when we set equal parameters for both modalities. How-
ever, when we abandon the symmetry we are able to build graphs with
wider spectrum of scaling exponents.

1 Introduction

Bipartite or affiliation networks describe a situation in which we have two types

of nodes and direct links only between nodes of different kinds. The first modal-

ity can be users (or actors). The second modality can be interpreted as items

(or events). Bipartite graphs are an efficient data structure used to represent

sparse matrices. Such matrices are characteristic e.g. for the settings in which

recommender systems are deployed. For example, the customers of an internet

bookstore are the first modality of the nodes. Books are perceived as the second

modality. An edge is drawn between a user and an item if the user bought the

item.

More formally, a graph is an ordered pair G = (V,E) comprising a set of

vertices (or nodes) V and a set of edges (or links) E. A bipartite network is a

graph, whose vertices can be labeled with two types of tags. The set of vertices

V can be split into two disjoint sets V = {VA ∪ VB : VA ∩ VB = ∅}. An edge

can be drawn only between nodes of different types E ⊆ VA × VB. The number

of direct neighbors of node v is called the degree of v. The degree distribution

of all nodes in a graph is an important structural measure. It is correlated with

such topological properties as the diameter, the size of the largest connected

component or the pace of the spread of innovations.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 240–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Scale Invariant Bipartite Graph Generative Model 241

In this article we study node degree distributions in bipartite graphs. We

show that the long-tail relation is observed in various real-life datasets. This

relation can be quantified by the probability density function of the power-law

distribution

f(x; a, ϕ) = a · x−ϕ. (1)

The parameter ϕ is called the scaling exponent. The tail of the power-law distri-

bution vanishes slower than the tail of an exponential distribution with the same

mean value. The shape of the density function is scale invariant f(cx) ∝ f(x).
One can verify that f(cx) = a · (cx)−ϕ

= c−ϕf(x) ∝ f(x). The node degree dis-

tribution of real-life datasets is often drawn in a log-log scale. We can show that

log f(x) = −ϕ log(x)+log a. Because of this equation the power-law distribution

becomes a straight line when drawn in a log-log scale scatter plot.

It is not an easy task to build a random graph with the above distribution. A

straightforward approach proposed by Erdös results in the binomial node degree

distribution [1]. The first model that was able to output the power-law relation

for classic unipartite graphs was described in [2]. We modified this model and

placed the algorithm in the bipartite setting.

The rest of the paper is organized as follows: Section 2 surveys the related

work. Section 3 contains the analysis of real-life bipartite datasets. In Section 4

we describe in detail the proposed random bipartite graph generator. We verify

the properties of the generator with both formal and experimental tools. We

conclude and discuss the implications of our findings in the last fifth section.

2 Related Work

In the classic Barabási - Albert model, a graph is initialized with a set of m0

vertices. The generator runs t epochs. A new node is added to the graph during

each iteration. The node comes with p new edges. The edges get connected to the

nodes that are already present in the graph. The probability that an existing

node is selected by the new node is proportional to the degree of an existing

node [2]. This process reflects the rich gets richer phenomenon. It generates the

power-law node degree distribution with the scaling exponent equal to 3.

Various extensions of the base model have been introduced. The extended

models enable us to build networks with the exponent ranging from 2 to infinity.

In the winners don’t take all model, the probability that a node is selected

is modified and controlled by an additional threshold parameter. If a random

number is greater than the threshold, the probability that an existing node is

selected becomes uniform [3]. It has been shown that a similar outcome can be

obtained by means of the stochastic urn transfer model [4]. The generalization

described in [5] allows us to add edges between existing nodes. The most complex

extension was described in [6]. The following three actions may happen in one

step: adding a node, adding an edge or rewiring an edge. The copying model is

an example of a graph generator that gives the power-law distribution, but does

not utilize the preferential attachment mechanism [7, 8].

242 S. Chojnacki and M.A. K�lopotek

The heavy-tailed node degree distribution is an important property of various

networks. In this paragraph we review other properties that have been observed

in real-life datasets and are not visible in the graphs analyzed by Erdös. It has

been shown by Milgram that an average graph distance between two random

people is close to six [9]. The phenomenon of the smallworld is explained by

the models that allow local structures to be connected to random distant nodes

[10, 11]. Another interesting feature was reported for dynamic networks. It has

been shown that the proportion of the number of edges to the number of nodes

increases over time. This densification feature was explained by a generic Com-

munity Guided Attachment model. This observation was attributed to the hier-

archical structure of connections among the nodes [12]. It has also been shown

that an effective diameter of a network decreases over time [13]. A very powerful

model to simulate this pattern, based on an adjacency matrix multiplication,

was proposed [12]. In [8] the users of a social network were divided into three

groups: linkers, inviters and passive. This enabled to create a model that simu-

lates the structure of the largest connected component and the middle region in

a real network.

Most of the described research was focused on the analysis of classic uni-

partite graphs. An early analysis of affiliation networks was limited by the size

of available data. In [14] a network of only twenty-six CEOs and their club

memberships was analyzed. It is a common practice to induce a classic uni-

partite graph from the data that are bipartite. It is performed by projecting

a bigraph onto one of the modalities. This operation preserves some proper-

ties (e.g. the relative size of the largest connected component). However, other

important measures may differ (e.g. node degree distribution) [15]. Therefore,

it is important to distinguish the two situations and build a generator dedi-

cated only for bigraphs. There are not many bigraph generators described in

the literature. Two examples can be found in [15] and [16]. In the former, the

number of all nodes is fixed. A degree of each node is drawn from a predefined

distribution. The edges are created by matching the nodes of opposite modal-

ities. An iterative model for bipartite graph generation was proposed in [16].

Firstly, a node of a preselected modality is added to a bigraph. Secondly, the

degree of the new node is drawn from a predefined distribution. Thirdly, the

new node is connected to an existing node or to a new node. The drawback

of the two models is the fact that one has to preselect the degree distribu-

tion of each analyzed node. In the model that we describe the node degree

distribution results from an atomic process and does not need to be chosen in

advance.

3 Observations

In this section, we analyze eight real-life bipartite graphs. The datasets are de-

fined in the first three subsections. In the last subsection we describe the results.

Scale Invariant Bipartite Graph Generative Model 243

3.1 BibSonomy Dataset

The BibSonomy dataset was used during ECML/PKDD 2009 Discovery Chal-

lenge [17]. It contains a full snapshot of the actions taken by the users of the

BibSonomy bookmarking portal until the end of 2008. We processed a tas table,

which contains 401 104 tag assignments made by 3 617 users to 235 328 web-

sites using 93 756 distinct tags. This dataset enabled us to build three bipartite

graphs: user-resource, user-tag and resource-tag.

3.2 CiteULike Dataset

The structure of the main table in the CiteULike dataset is similar to the Bib-

Sonomy dataset. The two datasets differ in the magnitude. Moreover, the users

of CiteULike bookmarked publications instead of websites. We also obtained ad-

ditional table with assignments of CiteULike users to thematic groups. The table

contains 2 657 227 tag assignments made by 18 467 users to 557 101 articles by

means of 166 504 tags. The second file linking groups with users contains only

2 336 groups and 5 208 users. We created three bipartite graphs from the first

table and one from the second table.

3.3 Movies Database

The table contains information about links between actors and films. It was

downloaded from Notre Dame Center for Complex Network Research website.

The bipartite graph contains information about 383 640 actors and 127 823 films

retrieved from The Internet Movie Database.

3.4 Degree Distributions

The node degree distributions of the eight bipartite graphs are presented in

Figure 1. In most cases, the points are shaped in a straight line on a log-log

scale. It is a necessary condition for the power-law distribution. The levels of

the scaling exponents were assessed by means of the least squares regression

after removing overly influential observations. This step was done with DFFITS

statistic [18]. In most cases, there are outliers at the beginning and at the end

of the domain. The values of estimated exponents are between 1 and 4. A good

example of how outliers affect the shape of the regression is visible in the last

graph. The value of the cleaned exponent calculated for the actors modality

equals to 1.84. The value of the exponent obtained without cleaning is 2.41.

4 Proposed Model

In the following subsections we describe the details of the generative procedure.

We present formal proof that the node degree distribution is power-law. Finally,

we compare the asymptotic scaling exponents to the exponents obtained from

generated bigraphs.

244 S. Chojnacki and M.A. K�lopotek

USER - RESOURCE graph (CiteULike)

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000 10,000 100,000 1,000,000

node's degree

fre
qu

en
cy

user
resource

φ = 1.96

φ = 1.15

USER - RESOURCE graph (BibSonomy)

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000 10,000 100,000

node's degree

fre
qu

en
cy

user
resource

φ = 3.33

φ = 1.60

USER - TAG graph (CiteULike)

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000 100,000 1,000,000

node's degree

fre
qu

en
cy

user
tag

φ = 1.68

φ = 1.14

USER - TAG graph (BibSonomy)

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000 100,000

node's degree

fre
qu

en
cy

user
tag

φ = 2.08

φ = 1.20

TAG - RESOURCE graph (CiteULike)

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000 10,000 100,000 1,000,000

node's degree

fre
qu

en
cy

tag
resource

φ = 1.68

φ = 1.98

TAG - RESOURCE graph (BibSonomy)

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000 100,000

node's degree

fre
qu

en
cy

tag
resource

φ = 2.45

φ = 1.71

USER - GROUP graph (CiteULike)

1

10

100

1,000

10,000

1 10 100

node's degree

fre
qu

en
cy

user
group

φ = 1.73

φ = 3.01

MOVIE - ACTOR graph

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000

node's degree

fre
qu

en
cy

actors
movies

φ = 2.17

φ = 1.84

φ = 2.41

Fig. 1. The node degree distributions calculated for real-world bigraphs. A straight
line of points on a log-log scale is characteristic for the power law distributions. The
dotted line is a linear regression obtained with the least squares method. The values
of the scaling coefficients are given next to the dotted lines.

Scale Invariant Bipartite Graph Generative Model 245

4.1 Generative Procedure

The graph is initialized with m0 edges linking vertices of type A with vertices

of type B. During each iteration we add a node v of type A and a node w of

type B to the graph. We connect v with p existing nodes of type B and w with

q existing nodes of type A (Fig. 2).

B A

p

q

Fig. 2. During each iteration, one node of type A and one node of type B are added
to the graph. A node of type A is connected to p existing nodes of type B and a node
of type B is connected to q existing nodes of type A. The selection of existing nodes is
based on the preferential attachment principle.

After t iterations the number of vertices is equal to |V (t)| = 2 · (t+m0). The

number of edges at epoch t is |E(t)| = t · (p + q) + m0. After relatively many

iterations (t � m0) we can neglect m0 and write |E(t)| ≈ t · (p + q). Let us

denote with ki the degree of node i. The probability that node j ∈ VB is drawn

equals to

πj =
kj∑

x∈VB
kx
. (2)

The probability that node i ∈ VA is drawn equals to

πi =
ki∑

x∈VA
kx
. (3)

The number of edges in a bipartite graph can be calculated in two ways∑
i∈VA

ki =

∑
j∈VB

kj = |E|. (4)

Hence, both Eq. 2 and Eq. 3 can be simplified. In the following, we limit our

deduction to measuring only the degree distribution of nodes of type B. The

246 S. Chojnacki and M.A. K�lopotek

degree distribution of the nodes of type A can be obtained in an analogous way.

The probability that a node j ∈ VB is selected at step t by one of the edges

created by new node v is πj =
kj

|E(t)| . The node j has p chances to become

selected. As a result, the expected growth of the degree of j between t and t+ 1

is

p
kj

|E(t)| (5)

If we assume that all nodes with degree k evolve with the same pace, we can

write down the global evolution rule as

∂k

∂t
=

k · p
(p+ q) · t . (6)

The assumption is referred to as the mean field approach. The differential equa-

tion enables us to derive the asymptotic degree distribution of nodes j ∈ VB .

In order to derive the degree distribution of i ∈ VA, we could use the following

equation

∂k

∂t
=

k · q
(p+ q) · t . (7)

In the section 4.2 we will use Eq. 6 and describe the details of the mathematical

reasoning.

4.2 Asymptotic Properties

The mathematical technique that we apply in this section is called the continuum
approach in the field of statistical physics [2].

Theorem 1. The degree distribution obtained for the nodes of VB is power-law
with the scaling exponent equal to ϕ = q/p+ 2.

Proof. Let’s reorganize Eq.6 and calculate corresponding integrals:∫
1

k
dk =

∫
p

(p+ q) · tdt. (8)

The initial degree of node j equals to q. The node was added to the graph at

time t0. Hence, the solution is

log k − log q =
p

p+ q
[log t− log t0], (9)

by using both sides of the above equation as powers of e we get

k(t) = q · (t/t0)s, where s =
p

p+ q
. (10)

By means of mean field assumption, the above solution applies to each j ∈ VB .

Let’s put this result into a cumulative distribution function of k.

Scale Invariant Bipartite Graph Generative Model 247

P (kj(t) < k) = P (t0 > t · (k/q)−1/s
) (11)

= 1 − P (t0 ≤ t · (k/q)−1/s
) (12)

= 1 − t · (k/q)−1/s/2(t+m0). (13)

We can move from step (12) to step (13) as one can assume that new nodes are

added to the graph at equal time intervals. We can also assume that t � m0

and substitute t/2(t+m0) with 1/2 . In order to obtain P (k) we make one more

step

P (k) =
∂P (kj(t) < k

∂k
= c · k−1/s − 1, (14)

and finally

P (k) = c · k−(2+q/p), (15)

where c is a positive expression independent on k, hence ϕ = q/p+ 2.

In particular when p = q we get ϕ = 3, which is consistent with the preferential

attachment model studied by Barabási.

5 Experiments

In this subsection we verify the impact of initial number of edges on the stability

of the scaling exponents in graphs obtained after finite number of iterations. The

results let us suspect that the power law distribution is obtained early. However,

the value of the scaling exponent differs significantly from the theoretical result,

when we use all the observations. Because of this reason, we also evaluate the

impact of the overly influential nodes on the exponent estimation and verify

that the empirical exponent is close to the theoretical after the removal of the

outlying points. We simulated the above described procedure with initial number

of edges m0 varying from 1 to 30. We run 20 000 iterations for each graph. We

set p = 2 and q = 3. The results are given in Fig. 3.

We can see a slightly increasing trend of the values of the exponents for both

modalities. The higher the number of initial edges the steeper the distribution

is observed. It is a consequence of the fact that some of the m0 nodes were not

selected by the preferential attachment rule even once during 20 000 iterations.

We present in Figure 4 the node degree distribution obtained for a graph with

m0 = 5. The points are shaped in a straight line, which indicates the power-

law relation. We have observed the straight line in all 30 graphs. However, the

value of the estimated scaling exponent in Figure 3 differs significantly from the

asymptotic theoretical result. The slope estimated for nodes of type A is around

1.5 and for nodes of type B only around 2.5. According to the Theorem 1. the

values should converge to (2.66 = 2 + 2/3) and (3.5 = 2 + 3/2) respectively.

It turns out that the level of 2.66 and 3.5 can be obtained when we remove

the overly influential observations. The detailed analysis of this phenomenon

248 S. Chojnacki and M.A. K�lopotek

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Initial number of edges

es
tim

at
ed

 s
ca

llin
g

ex
po

ne
nt

nodes of type A nodes of type B

Fig. 3. The values of estimated scaling exponents differentiated by the number of edges.
All points of corresponding empirical node degree distributions were used to calculate
the slope of the regression.

node degree (log scale)

fre
qu

en
cy

 (l
og

 s
ca

le
)

φ = 3.16

φ = 2.56

φ = 2.21

φ = 3.61

φ = 1.05

Fig. 4. The degree distribution of node of type B. The graph was generated after 20 000
iterations (m0 = 5, p = 2 and q = 3). The scaling exponent estimated for all points
is 2.56. The scaling exponents estimated for intervals containing twenty subsequent
points differ from 1.05 to 3.61

is presented in Figure 4. Let us remark that a point is considered an outlier,

when the value of the estimated regression function calculated for the point

differs more than three standard errors from the value of the regression function

estimated without this point.

Scale Invariant Bipartite Graph Generative Model 249

6 Conclusion

In this article we have shown that the power-law node degree distribution can

be observed in various real-life datasets. We have described a random graph

generator, which can output bipartite graphs resembling the properties of real-

life datasets. Similarly to the unipartite setting, the power-law property can be

attributed to the preferential attachment principle. Formal mathematical rea-

soning enables us to proof that the node degree distribution of both modalities

converge to the power-law relation. The model can build graphs with the expo-

nents between 2 and infinity. There exists a relation between the exponents of

both modalities. If an exponent of one modality is 2 + p/q than the exponent of

the second modality is 2 + q/p. The results of the simulations suggest that the

number of initial edges in random graphs influences the stability of the estimated

exponents even after several thousand of iterations. Moreover, we found it very

difficult to decide how to estimate the slope of the regression. The results most

similar to the theoretical were obtained after the removal of overly influential

points at the beginning and at the end of the domain.

Acknowledgments. This work was partially supported by Polish state budget

funds for scientific research within research project Analysis and visualization of
structure and dynamics of social networks using nature inspired methods, grant

No. N516 443038.

References

[1] Erdös, P., Renyi, A.: On the evolution of random graphs. Publication of the Math-
ematical Institute of the Hungarian Academy of Sciences (1960)

[2] Barabási, A., Albert, R.: Emergence of scaling in random networks. Sci-
ence 286(5439), 509–512 (1999)

[3] Pennock, D.M., Flake, G.W., Lawrence, S., Glover, E.J., Giles, C.L.: Winners
don’t take all: Characterizing the competition for links on the web. Proc. Natl.
Acad. Sci. USA 99(8), 5207–5211 (2002)

[4] Levene, M., Fenner, T.I., Loizou, G., Wheeldon, R.: A stochastic model for the
evolution of the web. Computer Networks 39(3), 277–287 (2002)

[5] Dorogovtsev, S., Mendes, J., Samulkin, A.: Structure of growing networks: Ex-
act solution of the barabasi-albert model. Physical Review Letters 85, 4633–4636
(2000)

[6] Albert, R., Barabási, A.: Topology of evolving networks: Local events and univer-
sality. Physical Review Letters 85(24), 5234–5237 (2000)

[7] Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The
web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H.,
Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627,
pp. 1–17. Springer, Heidelberg (1999)

[8] Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal,
E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual
Symposium on Foundations of Computer Science (FOCS), Redondo Beach, CA,
USA, pp. 57–65. IEEE CS Press (2000)

250 S. Chojnacki and M.A. K�lopotek

[9] Milgram, S.: The small-world problem. Psychology Today 2, 60–67 (1967)
[10] Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Na-

ture 393, 440–442 (1998)
[11] Waxman, B.: Routing of mulitpoint connections. IEEE Journal of Selected Areas

in Communications 6, 1617–1622 (1988)
[12] Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C.: Realistic, mathemat-

ically tractable graph generation and evolution, using kronecker multiplication. In:
Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS (LNAI), vol. 3721, pp. 133–145. Springer, Heidelberg (2005)

[13] Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: KDD 2005: Proceeding of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining, pp. 177–187. ACM Press, New York (2005)

[14] Galaskiewicz, J., Wasserman, S., Rauschenbach, B., Bielefeld, W., Mullaney, P.:
The influence of class, status, and market position on corporate interlocks in a
regional network. Social Forces (1985)

[15] Newman, M., Watts, D., Strogatz, S.: Random graph models of social networks.
P. Natl. Acad. Sci. USA 99, 2566–2572 (2002)

[16] Guillaume, J.-L., Latapy, M.: Bipartite structure of all complex networks. Inf.
Process. Lett. 90(5), 215–221 (2004)

[17] Eisterlehner, F., Hotho, A., Jaschke, R. (eds.): ECML PKDD Discovery Challenge
2009 (DC 2009). CEUR-WS.org, vol. 497 (September 2009)

[18] Harrell, F.E.: Regression Modeling Strategies, with Applications to Linear Models,
Survival Analysis and Logistic Regression. Springer, Heidelberg (2001) ISBN 0-
387-95232-2

Introducing Diversity to Log-Based Query Suggestions
to Deal with Underspecified User Queries

Marcin Sydow1,2, Krzysztof Ciesielski1, and Jakub Wajda1

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2 Polish-Japanese Institute of Information Technology, Warsaw, Poland
{msyd,k.ciesielski,jakub.wajda}@ipipan.waw.pl

Abstract. This paper presents novel approaches to deal with ambiguous or under-
specified user queries in search engines. We propose two algorithms for automatic
query suggestion that are based on query logs. Furthermore, we propose a novel
approach of diversifying the suggestions in order to improve user experience and
present a novel adaptation of the MMR diversification algorithm to this prob-
lem. We propose two novel query-similarity measures that are utilised by the
algorithm. We also present promising preliminary experimental results that are
conducted on real data.

1 Introduction

One of the main problems in information retrieval systems such as web search engines
is underspecification of the user’s information need that is imperfectly represented by
a query, which is usually very short. The problem is especially important in case of
ambiguous or broad queries i.e. queries that can be interpreted in many different ways
or that have many different aspects, respectively. The examples of these two cases are:
“jaguar” (a car, an animal, etc.) and “toshiba” (a will to purchase a notebook, informa-
tion about company, etc.), respectively.

One of the approaches to deal with this problem is personalisation i.e. utilising some
available information concerning the user behind the query in order to clarify their
implicit information need. For example, the information that the user is very interested
in nature may be utilised to boost the “animal” interpretation of the “jaguar” query when
returning the search results (at the expense of the “car” interpretation).

Typically, to implement personalisation the search system records and analyses some
additional information concerning the users collected during serving the user operations
prior to submitting the query. This information can have many forms such as: user
profiles, search history or click history of users. The following issues arise:

– it may be difficult or impossible to collect information or data from the user to
successfully build their profile

– collecting such data usually violates user privacy

Independently, another (complementary) approach to deal with underspecification of
user information need is query suggestion i.e. the system automatically suggests a set
of queries, based on the original query, such that each proposed suggestion represents

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 251–264, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

252 M. Sydow, K. Ciesielski, and J. Wajda

different possible interpretation or aspect of the implicit information need. For example,
given the ambiguous query “linux” the system can suggest, for example “linux debian”
or “linux installation” to clarify the user’s intent.

The subsequent selection of particular suggestion done by the user helps the system
to present results that are better suited to particular aspect or interpretation.

Leaving aside (for the moment) the technical problem of how to automatically gen-
erate good query suggestions, there is another problem. Usually the limited space avail-
able in the interface of the search engine and limited user capacity usually makes the
number of query suggestions possible to display significantly smaller than the number
of possible interpretations or aspects of the query.

This problem is partially alleviated if personalisation is available, as explained be-
fore, by providing the means of narrowing the range of possible aspects/interpretations
potentially interesting to the user in order to efficiently reduce the number of query sug-
gestions that are likely to be relevant to the particular user. However, if personalisation
is not available or desired (due to one of the problems mentioned earlier) the system
has to maximise the likelihood of meeting the needs of particular unknown user in the
absence of any knowledge about their profile.

This idea is close to the approach of search results diversification that is recently
gaining increasing interest in the information retrieval community, e.g.: [3,4,1].

In this approach, the search results are diversified so that the system maximises the
number of covered aspects or interpretations of the query in the context of unknown ac-
tual user information need and the lack of user profile. In this way the average relevance
of returned results is sacrificed in order to avoid query abandonment i.e. the situation
when user finds no relevant result among the top ones.

In this paper we propose a novel approach of diversifying query suggestions instead
of search results (or, perhaps, independently of, as these techniques can be used to-
gether). To this end, we propose in this paper to adapt one of the techniques previously
used for result diversification to the problem of diversifying query suggestions.

To all the problems discussed above, we propose to use historical search engine
query-logs as the basis of automatic computation of query suggestions. Such a solu-
tion has numerous advantages. First, it is knowledge-poor, i.e. not much knowledge
of natural language, grammar or domain knowledge is necessary prior to operation. In
particular, the approach is completely language-independent, provided the logs in ap-
propriate language are available. Second, it is leveraging the “wisdom of the crowds”,
i.e. the results are guaranteed to be previously used by statistically significant popula-
tion of human users. Thus it is robust and adaptive to specifics of particular language
or even some temporal trends (e.g. some topics might be more important due to recent
events). Such adaptivity is very difficult to be automatically obtained.

By definition, the query suggestions provided by such a method will be most likely
well formed and represent real trends in information needs of users.

Finally, the approach does not break user privacy since it ignores the information
concerning particular users (such as cookie or IP) and uses global statistics instead.

A disadvantage of the method is its limited availability of the real query-log datasets
as it is extremely sensitive data that is usually owned only by specific companies like
search engines or alike and difficult to be accessed by academic research community.

Introducing Diversity to Log-Based Query Suggestions 253

Related Work. There exists a body of literature devoted to the concept of personali-
sation in the context of the web, some examples are [2] or [8] in the particular context
of web search. The need for diversification in search was identified very early in in-
formation retrieval research [6] however the first practical algorithm to diversify search
results was presented much more recently [3]. Afterwards, many more diversity-aware
measures e.g. [4] or algorithms e.g. [1] were proposed. The connection between web
search personalisation and result diversification is discussed in [13]. Utilising query
logs to automatically measure the ambiguity of queries is studied in [5]. The idea of
applying the analysis of query logs to diversify search results is studied in [14].

Contributions of this paper are as follows:
– novel approach of diversified query suggestions as the substitute of personalisation

in the context of missing user profiles
– two novel algorithms for automatic query suggestion based on historical query logs:

time-succession-based and suffix-based
– demonstration of the results of a prototype implementation of the algorithms
– adaptation of the MMR diversification technique to diversified query suggestion
– two novel measures of query similarity: edit-distance-based and semantic-based
– preliminary experimental demonstration of the diversified query suggestion ap-

proach on unique real dataset

Despite the fact, that the topics of diversification, query suggestion or personalisation
are well represented in the research literature, this paper seems to be the first one to
discuss the idea of diversification of query suggestions, up to the authors’ knowledge.

2 Log-Based Query-Suggestion Algorithms

In this section we propose two algorithms for automatic query suggestion based on
appropriately preprocessed dataset that consists of historical query logs of a search
engine. Both algorithms work on a directed graph G(V,E) that is automatically built
from the dataset in the pre-processing phase. Every query in the logs is represented by
some vertex v ∈ V of the graph and every directed weighted arc e ∈ E represents some
relation between queries that is extracted from the logs. The algorithms differ in the
way the relation is defined and in the way of computation of the weights on arcs. The
details will be explained in subsections 2.2 and 2.3.

Once the query graph G is built, our query suggestion algorithm works as follows.
Given a user query q and the number k ∈ N , the node vq ∈ V representing the query is
identified and the set R(vq) of nodes, that represent suggestions to q is returned.R(vq)

consists of the set of vertices v ∈ V such that (vq, v) ∈ E and that are the top-k such
vertices with regard to the value of the weights w((vq , v)) (if outDeg(vq) < k then
respectively smaller number of suggestions is returned).

2.1 Dataset

The data used in the experiments presented in this paper was made available to the
authors by two Polish search-engine-related IT companies1. The data concerns Polish

1 Thanks are due to Gemius S.A. and NetSprint S.A., for providing the data.

254 M. Sydow, K. Ciesielski, and J. Wajda

queries that limits the examples presented in this paper, however by its definition, the
method is language-independent and, as we believe, can be successfully applied to other
natural languages if appropriate data is available.

The data used to conduct our experiments has been extracted from integrated query
logs comprising approximately 1 million records from early 2010. Each line of the
query log contained the following fields: timestamp query hashedUserId 2

Since the raw data originated from heterogeneous sources it was subsequently pre-
processed and cleaned, including: removing empty queries, re-coding all the queries
to common encoding (UTF-8), unification of word separators, removing unreadable
queries (due to, for example, uncorrect encoding, etc.), capitalisation, normalisation.
The logs were then sorted by timestamp and (hashed) user ID.

2.2 Algorithm Based on Time Succession

The first presented approach is based on time succession of the queries in the logs. A
graph G(V,E) is build so that each vertex v ∈ V represents some unique query found
in the logs and there is an arc (v, w) ∈ E iff the following conditions are satisfied:

– the query w occurs at least once directly after (in terms of time) the query v in the
logs and was submitted by the same user (represented by the hashed user ID)

– the difference in time between submitting the queries is not higher than some
threshold T , that is one of the parameters

The arc weight is the occurrence frequency of the pair of queries as recorded in the logs.
Provided that there is sufficiently much data available, the following approach is

quite powerful since the suggestions are based on real query reformulations done by real
users observed sufficiently frequently. The approach has also some negative properties:

– suggestions can be generated only for queries that are found in the historical logs
– since the hashed user ID does not truthfully represent one-to-one mapping between

the user IDs and real users (e.g. multiple users can be represented by the same IP,
etc.) the “reformulation” relation is contaminated with casual successions, etc.

The approach was implemented and experiments showed that the most important prob-
lem with this approach is the sparsity of data. I.e. it turned out that the size of input data
that was at our disposal (i.e. approximately 1 million of original logs) is definitely too
low to produce results of satisfactory quality except some small fraction of cases.

Selected promising examples results produced by this approach are presented on
figure 1. As can be seen from the presented examples, a very strong point of this ap-
proach is the ability of the algorithm to suggest queries that are completely dissimilar in
terms of “surface” string appearance (e.g. “tyres” -> “rims”) or even semantically not
very related (such as “Cracow” -> “guest rooms”) but that are actually very reasonable
as they reflect real mental steps that humans do (e.g.: planning a trip to Cracow and then
looking for accommodation, etc.).

On the other hand, we observed that not all the suggestions seemed to be of high
quality in this approach, due to data sparsity. We believe that the results would by much

2 userId was encoded on the company’s side due to the sensitivity of the data.

Introducing Diversity to Log-Based Query Suggestions 255

query total 1st suggestion 2nd suggestion 3rd suggestion
opony 67 felgi (28) opony samochodowe (5) opony ciężarowe (3)

Kraków 190 pokoje gościnne (28) zabytki Kraków (28) forum Kraków (16)
komputery 70 monitory (10) notebooki (7) komputery Warszawa (4)

query total 1st suggestion 2nd suggestion 3rd suggestion
tyres 67 rims (28) car tyres (5) lorry tyres (3)

Cracow 190 guest rooms (28) Cracow monuments (28) Cracow forum (16)
computers 70 monitors (10) notebooks (7) computers Warsaw (4)

Fig. 1. Time-succession-based query suggestions, examples. Upper part: original queries and cor-
responding suggestions in Polish; lower part: the same translated to English

more satisfactory, provided that much larger dataset is available. Due to the unavail-
abilty of larger data, we designed, implemented and tested another approach that is
adapted to limited size of query-log dataset and is described in the next subsection.

2.3 Suffix-Based Algorithm

As explained in section 2.2, our preliminary experimental results with the approach to
query suggestion based on direct time succession failed seems to have great potential
but suffers from sparsity of data if it is not large enough.

Due to the above, another log-based method, that is suffix-based, was designed, that
“forgets” time and user dimensions and thus makes the data more dense that can work
better for smaller datasets (such as the one available to the authors)

The method uses a large set P of query phrases extracted from query logs, together
with some other statistics (e.g. query or word frequencies, etc.). The phrases from P
serve as candidates for query suggestions. The phrases can be extracted also from other
large text corpora, e.g. by keyword-identification techniques, but using query logs guar-
antees (to some extent) that suggested queries will be well-formed user queries.

The idea is very simple. Elements of P are sequences of words c = w1, w2, ..., wl,
where l is the length of phrase (the number of words). The helper graph G = (V,E)

is built so that each v ∈ V represents exactly one phrase p ∈ P and there is arc (q, c)
between two vertices (phrases) q = v1, ..., vm and c = w1, w2, ..., wl iff l > m and
∀i=1,...,mvi = wi i.e. c constitutes p extended by some suffix (on the word level). For
example, if q corresponds to phrase “linux debian” and c corresponds to “linux debian
download”, then (q, c) is a valid arc of E in G = (V,E). To extend the applicability
of the method, we decided also to add to the set of vertices V in the helper graph, all
wordsw that start any phrase in P even if w does not constitute a complete query found
in query logs. Each arc (q, c) has associated a weight w1 that is the frequency of c in
P (as derived from the query logs, in our case). Thus, given a user query q such as
“linux debian”, all phrases found in the logs, that start with words “linux debian” are
considered as candidates c for suggestion.

The algorithm returns top-k (where k ∈ N is given in input, usually k = 3, 5, 10)
suggestions sorted non-increasingly by weights (frequency).

In our implementation we also use a helper weight w in order to obtain finer distinc-
tion between the suggestions (if the values of v are tied, what happens frequently, the

256 M. Sydow, K. Ciesielski, and J. Wajda

suggestions are secondarily sorted by w). In current implementation, for a candidate
suggestion c, its secondary weight w is the number of times c occurs as a prefix in any
query in the logs. We also experiment with other, e.g. word-frequency-based definitions
of w. We observed that the introduction of the helper weight w seems to improve the
quality of the results.

The method has been implemented and our preliminary experimental results demon-
strate that it seems to perform satisfactorily (i.e. it produces reasonable and useful sug-
gestions) on all tested cases, even on limited-size dataset that was at our disposal. See
selected examples on figure 2.

query→ opony opony zimowe zamek
no v w suggestions: v w suggestions: v w suggestions:
1st 9 25 opony zimowe 4 4 opony zimowe ceny 2 4 zamek Czocha
2nd 8 36 opony letnie 1 1 opony zimowe ranking 2 3 zamek Drakuli
3rd 4 15 opony rolnicze 1 1 opony zimowe Warszawa 2 2 zamek noclegi
4th 4 12 opony używane 1 1 opony zimowe Mokotów 2 2 Zamek Królewski na Wawelu

5th 4 4 opony zimowe ceny 1 1 opony zimowe R13 1 1 zamek nie zapina się
6th 4 4 opony letnie wyprzedaż 0 0 - 1 1 zamek w Sorkwitach zdjęcia

query → tyres winter tyres castle
no v w suggestions: v w suggestions: v w suggestions:
1st 9 25 winter tyres 4 4 winter tyres prices 2 4 czocha castle
2nd 8 36 summer tyres 1 1 winter tyres ranking 2 3 dracula’s castle
3rd 4 15 agricultural tyres 1 1 winter tyres warsaw 2 2 castle accommodation
4th 4 12 used tyres 1 1 winter tyres mokotow 2 2 king’s castle wawel
5th 4 4 winter tyres prices 1 1 winter tyres R13 1 1 zip does not fasten
6th 4 4 summer tyres sale 0 0 - 1 1 sorkwity castle photos

Fig. 2. Examples of suffix-based query suggestions in Polish (upper part) and their translations
to English (bottom part). The query “zamek” is ambiguous in Polish – the suggestion concerning
the meaning other than “castle” is in bold. Notice that the word order can be changed due to
translation. “Mokotów” is the district of Warsaw. “Czocha” is the name of a famous castle in
southern Poland. “Wawel” is the name of the historical king’s castle in Cracow - the former
capital of Poland.

Importantly, the method can produce reasonable suggestions in significantly more
cases than the time-succession method. The obvious restriction is that the method can
produce suggestions only for queries that constitute (word-level) prefixes of any query
found in the logs. One possible idea for relaxing this restriction is to use other text
corpora (than query logs) to extract candidate phrases from (e.g. Wikipedia).

Motivation for Diversification. As our preliminary experimentation demonstrated, the
suffix-based method produces high-quality suggestions and seems to have quite high
coverage. However, the “zamek” example shown on figure 2 illustrates another im-
portant problem. The word “zamek” in Polish has many very different interpretations
concerning: the context of historical architecture (“castle” in English); cars, doors, win-
dows, anything that can be locked, etc. (“lock” in English); garments (“zip” in English);
a part of firearms, guns, etc. (“gunlock” in English).

Introducing Diversity to Log-Based Query Suggestions 257

As seen on the figure, the top-6 suggestions are dominated by one interpretation only
(“castle”) while the other are completely missing (only the 5-th suggestion concerns
another interpretation: “zip”). Thus, a user that is interested in other meanings of the
word will not find any relevant query suggestions. In the remaining part of the paper we
propose a solution to this problem by the means of diversification of query suggestions
in order to improve user experience.

3 Diversification of Suggestions

To improve the coverage of different interpretations or aspects of an underspecified
query in the set of query suggestions, we propose to adapt one of the diversification
methods proposed in document retrieval.

In this paper we describe novel adaptation of the MMR (“Maximal Marginal Rele-
vance”) algorithm [3], usually used to diversify recommendations or search results to
the novel application of query suggestion.

The original formulation of MMR can be viewed as finding a balance between the
relevance of returned documentsDi to the user query q and pairwise dissimilarity of the
results. More precisely, given the user query q and precomputed set R of the relevant
“candidates” to the query, the items of the target “diversified” set S are chosen greedily
in iterations so that an appropriate objective function is maximised in each iteration
(until k “diversified” items are collected).

MMR = argmaxDi∈R\S [λsim1(Di, q) − (1 − λ)maxDj∈Ssim2(Di, Dj)]

where λ ∈ (0, 1] is a parameter; the lower the value of λ the higher emphasis is put
on the diversification of the results (at the expense of the relevance). In the extreme
case λ = 1 (no diversification), the results are sorted only by relevance. Experiments
reported in [3] show that good practical results were obtained for a small initial value
of λ = 0.3 that was subsequently increased in next iterations.

The key ingredients in the formula are the functions sim1 and sim2 that measure
similarity between the query and the items and pairwise similarity between the selected
items, respectively. There are many possible text-based similarity measures in this con-
text, for example tf-idf vector similarity, etc. We propose to adapt this method to our
problem of diversified query suggestions. Thus, the adapted formula is as follows:

qSuggMMR = argmaxqi∈R\S [λsim1(qi, q) − (1 − λ)maxqj∈Ssim2(qi, qj)]

where q is the original (underspecified) user query and R is the set of candidate query
suggestions and qi represent candidates to be selected to the final set of query sugges-
tions S. We propose to use one of the methods for (undiversified) query suggestion
described in sections 2.2 and 2.3 to compute the initial set of candidates R.

Concerning the similarity measures sim1 and sim2 between the queries one can
first consider some standard text-based similarity measures used in the original result
diversification problem. However, as practical experiments shown, such choice does
not work well in practice because the queries constitute too short texts to make the
standard text-based methods (such as tf-idf) work well, unlike in the case of longer
textual documents.

258 M. Sydow, K. Ciesielski, and J. Wajda

Thus, we propose two query similarity measures adapted to our problem: a fast
and “shallow” similarity measure based on comparing strings and “deep” but more
computation-demanding “semantic” similarity measure.

3.1 Query Similarity Measure Based on Edit-Distance

The first query similarity measure that we propose is based on string-distance between
two queries. After studying the results of extensive experimentation with various string-
distance metrics [12,11,10] and their performance on various information-retrieval or
extraction tasks on real data, we decided to design and implement a special adaptation
of the Levenshtein string-edit distance [7] to our task.

We modified and extended the classic Levenshtein algorithm to better adapt it to
query similarity measurement problem and to the specific properties of the Polish lan-
guage. One of the modifications is to reverse the order of computation (from the end of
strings, backwards) in order to allow for arbitrary costs of suffix append operation that
is particularly important in Polish. Other features include Polish-diacritic awareness,
encoding some typical orthographic errors and treating word separation symbols in a
special way so that the cost of splitting or merging two words is significantly higher than
other operations. We compute the similarity value as the inverse of the edit-distance.

3.2 Semantic-Based Query-Similarity Measure

An alternative approach to the string-distance-based similarity metrics is taxonomy-
based approach. One of the widely used taxonomies is the Wordnet dictionary3. Main
drawback of Wordnet and alike dictionaries is that they focus on general language,
contrary to search engine users’ queries, which frequently contain named entities.

Moreover, Wordnet is relatively slowly extended with new entities (i.e. iPad). In-
stead, Wikipedia can be used as an up-to-date source of semantic information.

Wikipedia is less formal than Wordnet, but more intensively updated. In Polish ver-
sion from January 2011, it contains almost 800K pages, categorised in 75K categories.
Categories themselves are organised into a hierarchy4. Additional advantage is that
Wikipedia contains special disambiguation pages and redirect pages, which can be used
to identify semantic similarity between synonymous forms of search queries.

We have adapted semantic similarity measures used to assess similarity between
synsets in Wordnet [9] to obtain similarity measures between categories. All of those
measures are based on two concepts: Information Content (IC) and Most Specific
Common Abstraction (MSCA).

In Wordnet, for a given synset s, IC(s) was equal to the number of its hyponyms,
i.e. more detailed synsets in the Wordnet taxonomy. In Wikipedia, in place of synsets
we used categories and instead of computing just the number of subcategories, we have
taken the total number of pages assigned to a given category subgraph. Finally, we have
normalised IC to [0, 1] interval. More precisely, for a given Wikipedia category k:

IC(k) = 1 − log(1 + |S(k)|)
log(1 +WP)

3 http://wordnet.princeton.edu
4 http://en.wikipedia.org/wiki/Special:Categories

http://wordnet.princeton.edu
http://en.wikipedia.org/wiki/Special:Categories

Introducing Diversity to Log-Based Query Suggestions 259

where WP is the total number of pages in Wikipedia, and S(k) is the set of all pages
assigned to a given category or one of its subcategories (direct or indirect). It should
be noted that very specific categories have highest IC, while main (root) category has
IC = 1 − log(1 +WP)/log(1 +WP) = 0.

For the two categories, k1 and k2, we can find their generalisation, called a Most
Specific Common Abstraction (MSCA). MSCA is the most specific supercategory of
both k1 and k2. For instance, in case of Unix and Windows categories, MSCA is their
direct common supercategory: “operating systems”. Then value MSCA is calculated
as IC for such a common supercategory, i.e. MSCA(k1, k2) = max{IC(k) : k ∈
CA(k1, k2)}, where CA(k1, k2) is the set of all categories subsuming both k1, k2.

There exist a number of similarity measures exploiting MSCA and IC concepts
in context of Wordnet, e.g. Resnik, Jiang or Lin measures [9]. We have translated all
of them to Wikipedia. In our experiments, the most precise appeared to be Pirro-Seco
measure, proposed in [9]. Pirro-Seco measure promotes similarity between very specific
categories (which carry most of the semantic information):

simPirroSeco(k1, k2) = (1/3) ∗ (2 + (3 ∗MSCA(k1, k2)) − IC(k1) − IC(k2))

Having defined similarity measure between categories, we have derived another simi-
larity measure, between Wikipedia pages. Every page in Wikipedia is assigned to one or
more categories (some pages are not categorised - in this case we have used simple al-
gorithm to assign categories on the basis of categories assigned to the set of pages which
are linking to a given page). Similarity measure between Wikipedia pages is then sim-
ply defined as the maximal similarity between any pair of the categories of these pages:
simPAGE(pagei, pagej) = max{simPirroSeco(ki, kj) : pagei ∈ ki ∧ pagej ∈ kj}

Finally, having defined Wikipedia pages similarity, we can define semantic-based
similarity between queries. First, we try to map all the terms (i.e. words and phrases)
in a given query to a set of Wikipedia pages, which contain given term. For instance, in
the query “robert altman film”, our algorithm will identify the phrase “robert altman”
and it will map it to the appropriate Wikipedia page. Then a single word “film” will
be maped to a set of Wikpedia pages which has this word in their title. Order of words
is ignored as long as they are adjacent (i.e. “altman robert” will be treated exactly
the same way as the “robert altman” phrase, while “altman film robert” will not be
identifed as a phrase).

Obviously, such a mapping of query terms to Wikipedia pages will often be ambigu-
ous. I.e. some terms are mapped to an empty set of pages, some are mapped to exactly
one page (unambiguous mapping), and other terms are mapped to multiple pages. The
latter case is disambiguated. From a set of mapped Wikipedia pages, we choose exactly
one page – the one which maximises similarity with all other mappings. After disam-
biguation step, each term identified in the query is mapped to exactly one Wikipedia
page. For example, in case of “altman film” query, the ambiguous word “altman” will
be disambiguated to Wikipedia page “Robert Altman”, and the word “film” will be
disambiguated to the page “MASH” (film).

At this stage, the query is assigned with a small set of Wikipedia pages, one for each
term. Each of the pages is assigned to a set of categories. We aggregate these mappings
to obtain query categorisation. Each query term (a word or a phrase) has weight equal to

260 M. Sydow, K. Ciesielski, and J. Wajda

its idf (inverse document frequency) in all Wikipedia pages: idf(t) = log(WP/df(t)),
where WP is the total number of Wikipedia pages and df(t) is the number of pages
which contain term t. This weight is divided among categories of the Wikipedia page
assigned to this term and is treated as a "weighted vote" for this category. Finally, votes
from all terms in the query are summed up and we obtain weighted ranking of categories
for a given query. For instance, in case of “altman film” query, most voted category
would be “M*A*S*H”, followed by numerous cinematography-related categories.

Given two queries, qi and qj , each query is categorised with the above-described al-
gorithm, which produces two rankings. Semantic similarity between the two queries is
calculated as weighted aggregation of those rankings. We decided not to use correlation
or cosine measure here, since categories in this ranking are tightly interrelated, i.e. in
that case we would disregard information that “Adaptations” and “Adaptations by au-
thors” are semantically very similar, however they are not exactly the same categories.
Precisely speaking, our semantic similarity measure is defined as:

simQUERY(qi, qj) = avg{wi · wj · simPirroSeco(ki, kj) : qi ∈ ki ∧ qj ∈ kj}

where avg is the weighted average, ki and kj and categories in rankings related to
queries qi and qj , respectively, and wi and wj are weights (sums of votes) assigned to
the categories ki and kj .

3.3 Experimental Results

We have implemented and integrated the algorithms for query suggestion and diversifi-
cation presented in this paper. This section demonstrates some selected results obtained
by this prototype implementation on the real dataset described in section 2.1.

In all experiments the base setR of candidate suggestions was obtained by the suffix-
based algorithm described in section 2.3. We considered maximum of 100 candidate
suggestions. Next, the suggestions were diversified with the MMR-based diversification
algorithm presented in section 3. We experimented with various settings of the diversi-
fication parameter λ: 1, 0.875, 0.65, 0.5, 0.375, 0.25, 0.125 and various combinations of
similarity functions sim1 and sim2 used by the algorithm. More precisely, we consid-
ered the following similarity functions: (L): Levenshtein edit-distance-based similarity
function adapted for Polish queries, as described in section 3.1 , (S): semantic-based
similarity function described in section 3.2 and additionally (O): occurrence-frequency-
based relevance function (only used as sim1 in some settings of the MMR diversifica-
tion algorithm) as 1−1/v (where v is described in section 2.3). We tested the following
combinations of similarity function pairs (sim1,sim2): (O,L), (O,S), (L,L), (L,S), (S,S),
(S,L).

Figure 3 demonstrates the performance of our system for the query “windows” for
the (O,L) and (O,S) settings (only suffixes of the suggestions are shown to save space,
i.e. “7 download” on the figure corresponds to “windows 7 download”, for example). In
general, while the platform can be still considered as a prototype and our experimental
work is ongoing, the preliminary results are interesting and seem to have significant
potential of improving user experience since the novel aspects of queries are brought

Introducing Diversity to Log-Based Query Suggestions 261

Suggested suffixes for query “windows”
(O,L) (sim1 =occurrence (log-based frequency), sim2 = Levenshtein-based similarity):

lambda: 1.0 lambda: 0.5 lambda: 0.125
nr query suggestion: MMR query suggestion: MMR query suggestion: MMR

1 7 download 0.8824 7 download 0.4412 7 download 0.1103
2 7 0.833 7 0.4103 7 0.0933
3 7 opinie 0.8 media player 0.3901 media player 0.0889
4 media player 0.7917 7 opinie 0.3898 7 opinie 0.0821
5 xp download 0.75 7 aktywator 0.3679 7 aktywator 0.0813
6 7 aktywator 0.75 xp download 0.35 vista zmiana języka 0.0561
7 media player 10 0.6667 media player 10 0.3095 movie maker download 0.0545
8 7 pl 0.6 7 pl 0.2762 live messenger 0.0538
9 7 dla studentów 0.5 vista zmiana języka 0.2463 xp zmiana klucza 0.0538

10 xp zmiana klucza 0.5 movie maker download 0.2455 7 dla studentów 0.0533

(O,S) (sim1 = occurrence (log-based frequency), sim2 = semantic-based similarity):
lambda: 1.0 lambda: 0.5 lambda: 0.125

nr query suggestion: MMR query suggestion: MMR query suggestion: MMR

1 7 download 0.8824 7 download 0.4412 7 download 0.1103
2 7 0.833 7 0.4165 7 0.1041
3 7 opinie 0.8 7 opinie 0.4 7 opinie 0.1
4 media player 0.7917 media player 0.3958 media player 0.099
5 xp download 0.75 xp download 0.375 xp download 0.0938
6 7 aktywator 0.75 xp zmiana klucza 0.25 xp zmiana klucza 0.0625
7 media player 10 0.6667 vista zmiana języka 0.25 vista zmiana języka 0.0625
8 7 pl 0.6 7 porównanie 0.1667 7 porównanie 0.0417
9 7 dla studentów 0.5 7 starter 0.1667 7 starter 0.0417

10 xp zmiana klucza 0.5 7 aktywator 0.0547 download peb.pl 0.0
11 media connect 0.5 98 pobierz 0.015 jar 128x160 chomikuj 0.0

Fig. 3. Suggestions for the query “windows”. The left-most column shows non-diversified results
(λ = 1.0) returned by the suffix-based algorithm. Next columns demonstrate increasing levels of
diversification with the MMR-based algorithm. The query “windows” has multiple aspects, for
example: “windows 7”, “windows media player”, “windows xp”, etc. Each highest occurrence of
a new aspect on the list is in bold. One can observe increasing number of new aspects brought to
the top results as the value of lambda decreases (i.e. the diversification level increases).

into the top suggestions as the level of diversification increases (i.e. the value of the
λ parameter decreases). The results obtained for the (O,L) similarity pair seem to be
especially promising, see figure 3, upper part, for an example.

Concerning the semantic-based similarity measure, we believe that it has even more
potential than the simple Levensthein-based one. However, at the current stage of the
development our implementation cannot compute semantic similarity for some pairs of
queries (we temporarily fill these missing values with 0) that significantly deteriorates
the performance (figure 3, bottom part). Part of our ongoing work focuses on improving
this. Besides this, the semantic-based function produces quite good results too.

262 M. Sydow, K. Ciesielski, and J. Wajda

Suggested suffixes for query “zamek”
sim1 and sim2: string-distance-based similarity measure:

lambda: 1.0 lambda: 0.5 lambda: 0.125
1 czocha 0.02 czocha 0.01 czocha 0.0025
2 drakuli 0.0175 drakuli 0.0013 ryglowy podwójny -0.0038
3 w kręgu 0.0175 w kręgu 0.0013 królewski wynajęcie sali -0.004
4 noclegi 0.0175 ze szkła 0.0007 królów pruskich wrocław -0.0041
5 ze szkła 0.0156 długa 24 0.0003 w dąbrówce starzeńskiej -0.0041
6 długa 24 0.0156 książąt legnickich 0.0003 siedlisko wizualizacje -0.0043
7 w tucznie 0.0141 patentowy do szafki 0.0001 obronny zdjęcia malbork -0.0043
8 w meissen 0.0141 ryglowy podwójny 0.0001 kamieniec ząbkowicki -0.0047
9 hakowy mcm 0.0128 obronny zdjęcia malbork 0.0001 w malborku prezentacje -0.0048

10 w będzinie 0.0128 skibo zdjecia 0.0001 trzy ośmiokątne wieże -0.0049
11 w krokowej 0.0128 film kafka chomikuj 0 patentowy do szafki -0.0049
12 w ujeździe 0.0128 hakowy mcm 0 w sorkwitach zdjęcia -0.005

Fig. 4. Diversified query suggestions for ambiguous Polish query “zamek”. English translations
of its interpretations include: “castle” (most of the suggestions in the table concern particular
historical castles in Poland), “lock” (“patentowy”, “ryglowy” in the table). “zamek ze szkła” is
the title of a song, “noclegi” means “accommodation” and “wynajęcie” means “hiring”.

Figure 4 presents results for the ambiguous query “zamek” with the modified Lev-
enshtein string similarity function applied both as sim1 and sim2 ((L,L) setting). Sur-
prisingly, the simple edit-distance performs quite well in this example (and a few other
examples that we studied).

Finally, we did a preliminary mini-evaluation experiment of our system as follows.
First, by manually inspecting the query logs, we have selected 6 queries that have mul-
tiple interpretations (“zamek”, “komórka”,“program”) or multiple aspects (“windows”,
“radio”, “money”.) in Polish. Next, for any combination of three different similarity
function settings ((O,L),(L,L) and (O,S)) and query we generated two lists of suffix-
based suggestions: undiversified (equivalently: λ = 1) and diversified (with very low
value of λ = 0.125). Subsequently, we manually inspected how many new aspects or
interpretations of the query were brought into the top-k suggestions (for four different
levels of k = 3, 5, 10, 15) by the diversifier compared with the undiversified list. The
results of this experiment are presented on figure 5.

This preliminary evaluation on a controlled small set of queries clearly shows that
there is a potential in all the studied settings as in most cases novel aspects or interpre-
tations are introduced into the top suggestions. On the other hand, one can see that there
is still much room for improvement (many non-positive numbers in the table) by tuning
the parameters and modifying the suggestion or diversification algorithms.

Due to limitations of this paper, we postpone fuller demonstration of the results and
extensive experimental evaluation for future work.

Introducing Diversity to Log-Based Query Suggestions 263

(sim1,sim2)=(O,L) (sim1,sim2)=(L,L) (sim1,sim2)=(O,S)
new aspects in top k new aspects in top k new aspects in top k

query↓ k=3 k=5 k=10 k=15 query↓ k=3 k=5 k=10 k=15 query↓ k=3 k=5 k=10 k=15
komórka -1 -1 0 0 komórka 0 0 0 0 komórka 0 0 0
money -1 0 3 4 money 1 2 3 2 money 0 0 0 0
program 1 -1 2 1 program 1 2 3 4 program 1 1 1 1
radio 0 0 1 0 radio 0 0 -2 -2 radio 0 0 0 -2
windows 1 -1 3 2 windows 2 2 3 5 windows 0 0 2 3
zamek 0 1 0 -2 zamek 0 0 -1 1 zamek 0 0 1 0

total: 0 -2 9 5 4 6 6 10 1 1 4 2

Fig. 5. Counts of novel aspects or interpretations of queries brought by the diversifier into the
top-k suggestions for a selected set of evaluated queries. Negative number means that the number
of different aspects/interpretations actually dropped compared to the undiversified list.

4 Conclusions and Further Work

We have presented novel approaches to improve user experience in search engines by
means of automatic, log-based query suggestion, in particular, diversified query sug-
gestion that can be used as a substitute for search personalisation in the absence of user
personal profile data. The demonstrated preliminary experimental results of a prototype
implementation of our system that are based on real query logs are quite promising.

One of the most important next steps is to design and conduct systematic experimen-
tal evaluation, including user evaluation experiments in order to objectively assess the
proposed approaches. Another thing would be to design some performance comparison
experiments with some existing query-suggestion systems, although the authors are not
aware of publicly available competitors for Polish. To some extent, the results can be
compared with those observable on user interfaces of commercial search engines.

If larger datasets are available, it would be interesting to repeat experiments with the
time-succession method. The same concerns the datasets in other languages than Polish.
There exist some publicly available query logs in English (e.g. KDDCup2005), but they
usually lack time, user or even the frequency counts that is crucial to our approach.

Since the time-succession query suggestion algorithm (section 2.2) is generally ca-
pable of automatically detecting time search patterns that are very hard to detect by
other techniques (such as string or semantic similarity), provided that dataset contains
an appropriate case, it may be desired to experiment with a hybrid approach, so that
only if time-succession algorithm has no sufficient evidence in the data, another, less
data-demanding algorithm (such as the suffix-based one) is applied. This, cascade-style
approach can be used with more than two algorithms, of course, or another way of
aggregation of suggestions from various algorithms can be used.

A natural extension of the approach described in section 3.2 is the categorisation of
the query search results, not the queries themselves. Documents (or snippets) retrieved
as a search result bring much more textual content than queries, thus their categorisation
(as well as the disambiguation of ambiguous terms) is more precise. Obviously, better
categorisation should lead to high-quality semantic similarity identification. We plan to
tackle this issue in our further research.

264 M. Sydow, K. Ciesielski, and J. Wajda

Acknowledgements. The research is supported by POIG.01.01.02-14-013/09 grant
at the Institute of Computer Sciences, Polish Academy of Sciences, aiming at build-
ing NEKST, an experimental, semantically enhanced web search engine particularly
adapted for Polish language.The first author is also supported by the N N516 481940
grant of Polish Ministry of Science and Higher Education. The third author is supported
by IEFRR and EU in the MPD programme.

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: WSDM,
pp. 5–14 (2009)

2. Anand, S.S., Mobasher, B.: Intelligent Techniques for Web Personalization. In: Mobasher,
B., Anand, S.S. (eds.) ITWP 2003. LNCS (LNAI), vol. 3169, pp. 1–36. Springer, Heidelberg
(2005)

3. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering docu-
ments and producing summaries. In: SIGIR 1998: Proceedings of the 21st Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
335–336. ACM, New York (1998)

4. Clarke, C.L.A., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher, S., MacK-
innon, I.: Novelty and diversity in information retrieval evaluation. In: SIGIR, pp. 659–666
(2008)

5. Paul, C., et al.: Multiple approaches to analysing query diversity. In: Proceedings of the 32nd
Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 734–735. ACM (2009)

6. Goffman, W.: A searching procedure for information retrieval. Information Storage and Re-
trieval 2(2), 73–78 (1964)

7. Levenshtein, V.: Binary Codes for Correcting Deletions, Insertions, and Reversals. Doklady
Akademii Nauk SSSR 163(4), 845–848 (1965)

8. Liu, F., Yu, C., Meng, W.: Personalized web search for improving retrieval effectiveness.
IEEE Transactions on Knowledge and Data Engineering 16, 28–40 (2004)

9. Pirrò, G., Seco, N.: Design, implementation and evaluation of a new semantic similarity
metric combining features and intrinsic information content. In: Chung, S. (ed.) OTM 2008,
Part II. LNCS, vol. 5332, pp. 1271–1288. Springer, Heidelberg (2008)

10. Piskorski, J., Sydow, M.: String Distance Metrics for Reference Matching and Search Query
Correction. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 353–365. Springer,
Heidelberg (2007), doi:10.1007/978-3-540-72035-5-27

11. Piskorski, J., Sydow, M., Wieloch, K.: Comparison of string distance metrics for lemmatisa-
tion of named entities in polish. pp. 413–427 (2009)

12. Piskorski, J., Wieloch, K., Sydow, M.: On knowledge-poor methods for person name match-
ing and lemmatization for highly inflectional languages. Information Retrieval 12(3), 275–
299 (2009)

13. Radlinski, F., Dumais, S.: Improving personalized web search using result diversification. In:
Proc. of the 29th Annual International ACM SIGIR Conf. on Research and Development in
Information Retrieval, pp. 691–692. ACM, NY (2006)

14. Santos, R.L.T., Macdonald, C., Ounis, I.: Exploiting query reformulations for web search
result diversification. In: Proceedings of the 19th International Conference on World Wide
Web, WWW 2010, pp. 881–890. ACM, New York (2010)

Wikipedia-Based Document Categorization

Krzysztof Ciesielski, Piotr Borkowski,

Mieczys�law A. K�lopotek, Krzysztof Trojanowski, and Kamil Wysocki

Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, 01-237 Warszawa, Poland

{kciesiel,piotrb,klopotek,trojanow}@ipipan.waw.pl

Abstract. A novel method of text categorization for Polish language
documents, based on Polish Wikipedia resources is presented. The
distinctive feature of the approach is that document labelling can be per-
formed with no additional categorized corpora. Experiments with two dif-
ferent types of document semantic disambiguation have been performed,
and evaluated according to the several quality metrics.

1 Introduction

Nowadays growing interest in an automated text document categorization can

be observed. There appear multiple practical applications, primarily for assisting

in text retrieval tasks, e.g. via expanding queries with new terms (from hierar-

chical categories), expanding and/or improving ontologies, but also applications

of query reformulation, query answering, e-mail and memo organization as well

as web page classification and many others. The text document categorization

should be understood as an assignment of one or more labels (categories) to a

single document, possibly in the context of other documents. The task of the text

document categorization may be approached either as a special case of a text

classification or as a clustering task. However, the text document categorization

requires methodologies on its own because the vocabulary of labels to be used

is quite large in most cases.

Typical text categorization methods require an extensive well-structured tax-

onomy along with a large corpus of categorized texts. Wikipedia (W) appears to

be one such candidate and, what is more, it has already been used in this role

successfully for the English language documents. To our best knowledge, Polish

version of W has not been used for the extensive text categorization yet. There is

a couple of good reasons for it: Polish language is characterized with strong flex-

ion, hence for, e.g., the text matching or the phrase identification almost all the

words and phrases have to be reformulated. In our method, the categorization

is performed just on the graph structure of W, and beside the titles of W pages,

no other text content is used, therefore, we can avoid most of the text-related

quality problems.

In Section 2 we review previous work. Then we explain our approach to

measure W page similarity (Section 3), to the document content mapping on

W structure (Section 4) and to the mapping disambiguation (Section 5). The

proposed method of text document categorization is presented in Section 6. In

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 265–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

266 K. Ciesielski et al.

Section 7 we demonstrate the experimental results of the proposed categorization

methods. Section 8 concludes and points at some future research issues.

2 Related Work

In the past, a number of approaches to the document categorization have been

proposed. Many of them were based on some kind of clustering mainly. Let us

just mention “nonnegative matrix factorization (NMF)”, latent semantic analysis

(LSA), probabilistic LSA (PLSA), finite mixture of multidimensional Bernoulli

distributions and similar, described in an overview [7].

Another branch of the research concentrates around mapping of document

contents to some semantic resources, in particular the English language W. This

was used, for example, in WikipediaMiner Project1
, developed at the University

of Waikato in Hamilton, New Zealand [2,4,5]. Authors of the project proposed

a method of keyphrase indexing, which maps document phrases onto related

terms of a controlled vocabulary, that is, W. The method consists of two stages.

The former selects a set of possible indexing terms whereas the latter evaluates

candidate terms and selects most appropriate ones.

For any term or phrase selected as a keyword candidate (that is, a term or

phrase which appears in the anchor test in any W entry) the so-called keyphrase-

ness [3] is assigned. Keyphraseness estimates the probability of the term being

a link, that is, this is a fraction of the number of W articles in which this term

appears as a link to the total number of documents in W containing it. In case

of an ambiguous term (that is, being assigned to multiple W pages), the W page

which is the most similar to the document context represents the term sense.

In the second stage potential “outliers” are selected and eliminated. First, for

each of the terms semantic and statistic features are calculated. Then classifica-

tion algorithm is applied to evaluate final ranking of the terms – see [2] and [5].

The outlier selection is performed based on the results of this ranking. Another

approach can be found in [1] where a local random walk PageRank computation

is used to point the terms related to the document with the highest probability.

Our work differs from the WikipediaMiner approach in that (1) we use Polish

Wikipedia, (2) we do not train any classifiers which means that no additional

manually classified texts are needed, and (3) for calculations of the similarity

we do not use the structure of links between W pages, but instead we apply

taxonomic measures fashioned after Wordnet [6], that makes the method more

robust and immune to overfluous links.

3 Taxonomy-Based W Pages Similarity Measures

3.1 Preparing and Cleansing W Graphs

W graph consists of two subgraphs: the page graph and the category graph. In

this study, we use the Polish W graph of January 2011. It consists of 730,180

1 http://wikipedia-miner.sourceforge.net/

http://wikipedia-miner.sourceforge.net/

Wikipedia-Based Document Categorization 267

pages interconnected with over 30,000,000 hyperlinks. The number of hyperlinks

(ca.40 per page on average) is quite high in comparison with many other graphs

(e.g. Web graph or social network graphs). It is characteristic for W that some

links are inserted between semantically weakly related pages.

The frequency information is used to differentiate significance of words and

phrases via computation of inverse document frequency for the measure tfidf
(term frequency inverse document frequency). As Polish is featured by strong

inflection, page content and titles are lemmatized using a Polish lemmatiser

Morfologik
2
.

In W categories also form a connected, (nearly) acyclic graph which consists

of 76,154 nodes and 133,774 edges, with a single root, the category Kategoria.

Categories are linked by relations more general/more specific (in analogy to

hyperonymy/hyponymy relations encountered e.g. in Wordnet). The category

graph is not a tree; hence a category can have multiple direct hyper-categories

and there exist multiple paths from a given category to the graph root. We had

to restore graph acyclicity by removing several cycles of length over 1 and nearly

1000 cycles of length one.

W pages are assigned with categories, what provides the connection between

the graph of pages and the graph of categories (taxonomy). One page can be

assigned to one or more categories. The total number of page-to-category links

is 1,813,498 (on average 2.48 category per page). Regrettably some pages are

not assigned to any category.

In our experiments we use the XML-formatted W dumps3
as our data source

(texts and graphs). The data are loaded to a database and cleaned, that is, the

acyclicity of the graph is carefully analyzed and restored where necessary (for

example, contradictory links are removed manually).

Cleaning the page graph means also the page title lemmatization and adding

42,356 disambiguation pages as separate graph nodes as well as adding their

titles as additional titles of disambiguated pages (after removing disambiguation

word from the title). The disambiguated pages are supplemented with a word or

phrase expressing the context of a given meaning. Such context phrases represent

additional titles, e.g., for a page with the title “Fedora (kapelusz)”, we add titles:

“Fedora”, “Fedora kapelusz” and “kapelusz Fedora”, but not just “kapelusz”

alone (“hat” in English). Every such a phrase is stored in a dictionary of phrases

and used later on during indexing of document content.

Regrettably, disambiguation pages contain also links to pages that do not help

in the disambiguation of the main meaning. For example, the page “Olimpiada

(ujednoznacznienie)” (Olympiad disambiguation) contains the diverse meanings

of the word “olimpiada”, but also there is a link to the page “Kalendarz grecki”

(“Greek calendar”). Currently we use a simple rule to reject such links: target

pages sharing no word with the disambiguation page title are omitted.

In the last phase we process (and lemmatize) the W text, and calculate fre-

quencies of words and phrases in such a textual corpus. Anchor texts are ex-

tracted and added as additional titles to graph nodes.
2 http://sourceforge.net/projects/morfologik
3 http://download.wikimedia.org/plwiki

http://sourceforge.net/projects/morfologik
http://download.wikimedia.org/plwiki

268 K. Ciesielski et al.

We remove superfluous link via a heuristic method which finds nodes in the

page graph with the number of ingoing links exceeding a threshold (currently

1,000). For each neighbor of such a page we compute a categorical similarity (see

Section 3.2) of both of them. If the similarity is less than a threshold (0.5), we

remove this link. Using this method we selected over 7,000,000 links to remove

(that is almost 20% of all links).

The categorical similarity threshold of 0.5 was chosen based on the analysis

of similarity of linked and unlinked pages, depicted in Fig. 1. In this figure the

horizontal axis presents the categorical similarity value (more precisely, PIRRO-

SECO measure, see Eq. (2) in Section 3.2), and the vertical axis is the frequency

of occurring of such a similarity. We can clearly see that links carry some semantic

information: in the category graph, linked pages lie more closely to one another

than unlinked pages.

(a) (b)

Fig. 1. Semantic link locality in W. Category-based similarity of pages (a) connected
by a link (b) not connected by a link.

3.2 Similarity Measures of W Categories and Pages

While elaborating a categorical similarity measure for Polish W, we followed the

experience of authors dealing with Wordnet, described in [6]. These measures

exploit two basic concepts: IC (Information Content) and MSCA (Most Specific
Common Abstraction).

To accommodate these measures to the particular form of W, a slight mod-

ification, taking into account the number of pages belonging to a category, is

proposed here. We define IC as follows
4
: IC(k) = 1 − log (1 + sk) /log (1 +N),

where sk is the number of W pages in the category k and all its subcategories, and

the N is the total number of pages in W. So the highest values of IC are assigned

to the categories without any subcategory and with only few pages belonging

to. The main category has the value of IC = 1 − log(1 +N)/log(1 +N) = 0.

For the given two categories, k1 and k2, the MSCA(k1, k2) value is equal to

max{IC(k) : k ∈ CA}, where CA is the set of super-categories for both

4 Pirro and Seco proposed formally identical formula, but they considered sk as the
number of hyponyms of a given synset in Wordnet, and N as the total number of
synsets.

Wikipedia-Based Document Categorization 269

categories k1, and k2. The properties of IC(k) measure ensure that the cate-

gory chosen is most specific amongst the common super-categories.

In the literature dealing with Wordnet, a number of interesting measures,

based on IC and MSCA have been elaborated [6]. Let just mention:

simCATEGLin(k1, k2) =
2 ·MSCA(k1, k2)

IC(k1) + IC(k2)
(1)

simCATEGPirroSeco (k1, k2) = (2 + 3 ·MSCA(k1, k2) − IC(k1) − IC(k2)) / 3 (2)

Characteristic feature of the PIRRO-SECO measure (Eq. (2)) is that its maxi-

mum value is not always equal 1 (i.e., simPirroSeco(k, k) = (2 + IC(k)) / 3). The

main advantage of simPirroSeco lies in its sensitivity to IC, so that similarity

between more specific categories is promoted.

To measure similarity between two W pages pi and pj the similarities between

their categories are aggregated using MAX aggregation method (we have also

experimented with other types of aggregation, which – contrary to our expecta-

tions – led to worse results than simple MAX aggregation):

simPAGE(pi, pj) = max{simCATEGORY(ki, kj) : pi ∈ ki ∧ pj ∈ kj} (3)

4 Document Mapping to Semantically Related W Pages

The next component of our document categorization algorithm is the method of

mapping document content terms (words and phrases) to vertices of W graph

(i.e. W pages). The basic outline of the algorithm, mapping a text T of a query

or a document into a list of W pages is as follows:

1. The text T is split into a set of words W ,

2. P(W) (see below) is applied to get the set S of W pages p containing in the

title at least one of the words from W ,

3. to each page p ∈ S, the largest set Wp ⊂ W is assigned, such that all the

words from this set are contained in the title of p and, for a document, occur

within a window of n words (in this way we approximately identify phrases

in the original text T , up to various variants).

The above mentioned algorithm makes use of a function P which relates words

to their sets of W pages. The domain of P is a set of words occurring in a title,

redirection or disambiguating page or in any anchor text of any W page. To

each of the words from the domain the function P assigns the set of W pages

containing this word in its title.

Words and phrases (terms) t from {Wp; p ∈ S} ⊂W are assigned with weights.

Those t for which no corresponding W page was found have the weight of 0. For

the remaining ones weights are combinations of the following factors:

– tf (term frequency) within the text T ,

– idf = log(N/df(t)), where N is the number of W pages, df(t) is the number

of occurrences of the term t in the content of the whole W,

270 K. Ciesielski et al.

– the total number of links pointing to pages from the set P(t) within W
(an approximation of popularity of the term in page titles),

– indicator of term keyphraseness, proposed in the WikipediaMiner project [3].

5 W-Based Disambiguation

To reduce the number of pages assigned to a single term (word or phrase) by

the algorithm described in the previous section, a document/query mapping

disambiguation algorithm has been designed.

Two separate cases are distinguished:

1. one or more terms in the document (or search query) have been mapped to

exactly one W page (unambiguous assignment),

2. all terms suffer from ambiguous mappings.

The second case is beyond the scope of this paper because it very rarely occurs

for full-text documents. But it is quite frequent for too general (or ambiguous)

user queries.

5.1 Case with Some Unambiguous Terms

This case means that a document or query contains terms that have a unique

interpretation (one W page). As this is more probable for words than for phrases,

unique phrases are rewarded at the expense of single words.

The algorithm proceeds as follows:

1. we divide the terms into unambiguous (with one-element lists of W pages)

and ambiguous ones. For each ambiguous term we try to select the page best

reflecting its meaning.

2. for each W page and for each category of this page we assign the fraction of

IC of that category (see Section 3.2) to the sum of ICs of all categories of

the page. This shall prevent advantage of pages with multiple categories.

3. for each query/document term its weight is computed (tfidf , where tf part

results from the document, and idf refers to the whole Polish W.)

4. weights are normalized separately for words and multi-word phrases by the

highest ranking word/phrase (so both a word and a phrase with highest

tfidf has weight 1).

5. For each term from the set of ambiguous terms we proceed as follows:

– for each of the pages assigned to this term, we calculate the categorical

similarity of the page to all the pages assigned unambiguously to some

other term in the text.

– an average of similarities – weighted by term weights – (see Section 3.2)

is calculated, and – among the pages assigned to the ambiguous term –

the page which maximizes weighted average similarity is selected as the

disambiguated mapping for the given term.

Wikipedia-Based Document Categorization 271

6 W-Based Document Categorization

The document categorization algorithm starts with mapping words and phrases

found in the text of the document onto lists of W pages (see Section 4). There-

after tfidf weights of all found terms (words and phrases) are computed, with idf
factor being computed in the corps of whole Polish W. Too rare terms (occurring

on less than 5 pages) or too frequent (occurring on more than 50000 W pages)

are dismissed in subsequent steps of the algorithm. The remaining weights are

normalized as described in Section 5, separately for words and for phrases, to in-

crease the impact of latter ones, as they carry more precise semantic information

than single words.

The second step of the algorithm consists in disambiguation of the lists of

pages obtained in the above-described step (see Section 5), in order to obtain

unambiguous mapping: one W page per term.

At this stage each term is assigned with a vector of categories. The vectors

differ in length as the pages may be assigned to the different number of categories.

To avoid unnecessary impact of the vector length, the vector of categories is

normalized for each term, so that the sum of weights assigned to the categories

is equal to tfidf value for the associated term (cf. Section 5).

Thus, the impact of each term is proportional to its normalized tfidf weight.

We compute the category vector for the document by summing up the vectors

for the individual terms, weighting the summands by the respective weight (i.e.,

we do weighted category voting).

We did tests with two variants of category label assignment to documents.

1. Highest Weights: we take the K categories with the highest weights; we

ignore the similarity between the categories occurring on the ranked list

which is the main drawback of this method;

2. SPA approach: we apply one-step of the Spreading Activation (SPA)
algorithm on W category graph

5
to cluster similar categories; this solution

tends to provide with more general labels at the expense of the more detailed

ones.

Note that through the application of the SPA algorithm a kind of diversification

of the results can be achieved (that is, the results are presented to the user with

differing semantic categories to choose from). We will discuss the impact of this

diversification on the resulting categorization in the next section.

7 Experimental Results

7.1 Benchmark Dataset

Our test-bed based on the DMOZ
6

taxonomy consists of 2805 text files. Each of

them includes complete text from a single Polish language web page containing

5 For the details, cf. http://en.wikipedia.org/wiki/Spreading_activation
6 Open Directory Project http://www.dmoz.org

http://en.wikipedia.org/wiki/Spreading_activation
http://www.dmoz.org

272 K. Ciesielski et al.

Fig. 2. Political essay: an example of the spanning tree on the similarity graph of
predicted categories

at least 1000 characters just with html tags removed but without any additional

text preprocessing. The files are divided into 34 categories having their repre-

sentation in W (and in the DMOZ taxonomy as well, cf. Table 3 below). For

the detailed description and the benchmark documents saved in CSV format the

Reader is referred to the benchmark web page
7
.

7.2 Categorization Efficiency Measures

Because of the taxonomical properties of the category graph, neither classi-

cal (“flat”) classification efficiency measures, nor hierarchy-based classification

measures are not directly applicable to the document categorization evaluation.

Therefore two new measures have been proposed, generalizing the concepts of

precision and recall. We consider the set of categories predicted by our algorithm

and the real ones (that is, categories assigned by a human editor).

For each real category ki we compute sim′
(ki) = max{sim(ki, kpred) : kpred},

(similarity to the most similar predicted category). Then we average over all real

categories to obtain a generalized precision saying how close on average a real

category matches its best predicted counterpart.

7 http://www.ipipan.waw.pl/~kciesiel/iis/DMOZ_PL_dataset.html

http://www.ipipan.waw.pl/~kciesiel/iis/DMOZ_PL_dataset.html

Wikipedia-Based Document Categorization 273

The generalized recall measure is obtained by inverting the roles of real and

predicted categories. Note that both measures are parameterized with a chosen

similarity measure. We will discuss some choices in the next section.

Let us show an example. Weights indicate the relative importance of a cat-

egory, the LIN measure is taken as the similarity measure in precision-recall

calculations. The real categories of the W page Organizacja Ukraińskich Nacjon-
alistów na Ukrainie (Organization of Ukrainian Nationalists in Ukraine) are:

ukraińskie partie polityczne (political parties in Ukraine), nacjonalizm ukraiński

po 1991 (ukrainian nationalism after 1991), partie nacjonalistyczne (national-

ist parties). Predicted categories are: ukraińscy dzia�lacze spo�leczni (Ukrainian

activists; weight: 2), ludzie zwia̧zani ze Lwowem (people from Lviv; weight: 2),

pochowani na Cmentarzu �Lyczakowskim we Lwowie (buried in Lychakiv Ceme-

tery; weight: 2), ukraińscy politycy (Ukrainian politicians; weight: 2). General-

ized precision in this case is 0.56 and recall – 0.61.

7.3 Methods, Results and Discussion

In our experiments, we compared two term disambiguation methods (cf. Section

5): the first one based on the LIN (eq. (1)) similarity measure and the second

one based on the PIRRO-SECO (denoted further as P-S) (eq. (2)) similarity

measure, both described in Section 3. We have investigated two methods of the

final category selection, based on Highest Weights (denoted No SPA below) and

SPA, both described in Section 6. We have also varied the number of predicted

categories, what is denoted with #1 (we predict just a single category) and #3

(3 categories are predicted).

Below we present results of the DMOZ dataset categorization. Tables 1, 2

show generalized precision and recall values averaged respectively over 34 DMOZ

categories, listed as shown in Table 3. Pages within each category have been

split according to their length, i.e., the number of characters in textual content.

Short pages have less than 2000 characters, medium length pages have at least

2000 characters but less than 10000 characters, and long pages have at least

10000 characters. The columns are labeled with type of similarity measure used

in the generalized precision/recall calculations (cf. Section 7.2) and with the

appropriate page length group.

Generalized precision and recall have been computed in three variants, with

the following similarity measures (cf. definitions in Section 7.2):

– the SHORTEST-PATH measure, equal to 1/2SP
, where SP is the length

of the shortest path in the W category graph between DMOZ/W category

node and the node of the category predicted by the proposed algorithm;

– the SUBCATEGORY measure, similar to the previous one, but equal to

1 if predicted category is a subcategory of a real DMOZ category, and 0

otherwise. Motivation for this measure is given below;

– the LIN similarity measure, from Eq. (1) see Section 3.

The rows are labeled with the type of categorization algorithm used: the fi-

nal categorization algorithm, the similarity measure used in the disambiguation

and the number of predicted categories. Thus, e.g., a row with P-S NoSPA

274 K. Ciesielski et al.

#3 means that PIRRO-SECO measure was used for disambiguation, Highest

Weights method for final category selection and three categories have been pre-

dicted. P-S SPA #3 on the other hand means that one-step Spreading Activation

has been applied to the results from the previous (that is, NoSPA) experiment.

Table 1. Average values of generalized Precision measure

LIN SHORTESTPATH SUBCATEGORY

Experiment Disambig. short medium long short medium long short medium long
type measure

SPA#3
LIN 0.367 0.437 0.459 0.392 0.435 0.461 0.448 0.723 0.623
P − S 0.388 0.456 0.487 0.416 0.443 0.489 0.441 0.723 0.646

NoSPA#3
LIN 0.254 0.359 0.34 0.299 0.359 0.375 0.538 0.716 0.723
P − S 0.271 0.36 0.344 0.33 0.371 0.387 0.572 0.723 0.723

NoSPA#1
LIN 0.163 0.202 0.245 0.213 0.225 0.283 0.379 0.458 0.523
P − S 0.168 0.229 0.236 0.225 0.256 0.272 0.386 0.471 0.515

Table 2. Average values of generalized Recall measure (note that the SUBCATEGORY
measure makes no sense in this context, thus it has been omitted)

LIN SHORTESTPATH

Experiment Disambig. short medium long short medium long
type measure

SPA#3
LIN 0.196 0.231 0.281 0.243 0.272 0.317
P − S 0.21 0.224 0.291 0.258 0.276 0.327

NoSPA#3
LIN 0.154 0.199 0.225 0.192 0.227 0.26
P − S 0.16 0.204 0.23 0.209 0.236 0.268

NoSPA#1
LIN 0.163 0.202 0.245 0.213 0.225 0.283
P − S 0.168 0.229 0.236 0.225 0.256 0.272

It should be stressed that values coming from the three generalizations of

precision and recall measures (i.e. LIN, SHORTESTPATH, SUBCATEGORY)

reflect different aspects of categorization output. In case of the LIN measure,

presented values are proportional to the generality of the category subsuming

both real and predicted categories. In particular, such a measure does not take

into account that predicted category can be a very specific subcategory of a real

DMOZ category (i.e., the Black holes in case of the Physics DMOZ category).

The more specific is the predicted subcategory, in comparison with generality of

the DMOZ category, the lower is the value of the LIN measure. This is obviously

undesirable feature, thus we decided to provide two more variants of evaluation

based on different category similarity measures.

The SHORTESTPATH evaluation is based on the lengths of the shortest

paths between real (DMOZ) and predicted categories, but without taking cat-

egory specificity into account (i.e., Information Content in our case). Still it

has drawback of the LIN measure, since it does not award correct but specific

predictions placed within a general DMOZ concept.

Wikipedia-Based Document Categorization 275

The last measure, SUBCATEGORY, captures vertical relations between real

(DMOZ) and predicted categories within W taxonomy. The SUBCATEGORY

measure simply gives 1 if predicted category is a subcategory of a given DMOZ

category, and 0 otherwise. Then 1’s are summed up and averaged. Such solution

is still far from being perfect, however, together with LIN and SHORTESTPATH

generalizations gives some insights on the categorization process quality.

In most cases, the PIRRO-SECO based disambiguation of words and phrases

gives slightly better results than the LIN-based disambiguation – both in terms

of precision and recall. It is mainly due to promotion of specific categories in

case of PIRRO-SECO in comparison with the LIN measure. Narrow categories

describe a concept space of a given document more precisely, and they allow for

better disambiguation of a meaning of ambiguous terms appearing in the text.

Not surprisingly, prediction of more categories (3 instead of 1) results in bet-

ter precision, and slightly lower recall. Also a quite expected result – especially

in the case of the DMOZ high-level categorization – is that application of SPA

algorithm increases precision. Since the DMOZ categorization we used is rather

general, and using one-step Spreading Activation algorithm replaces more spe-

cific predictions with more general ones, i.e. with categories being higher in

taxonomy graph, the LIN measure value is increased, and shortest paths lengths

are decreased. It has almost no effect on the SUBCATEGORY measure, be-

side cases when SPA generalization goes above the real DMOZ category in the

taxonomy graph (replacing 1 with 0).

Generally speaking, results in Tables 1 and 2 show a very good performance of

our categorization methods, to the extent where it can be measured with DMOZ

general categories. One can see the high percentage of cases where the pre-

dicted category is a subcategory of the real DMOZ category, especially in case of

medium-length and long documents. Also the SHORTESTPATH measure shows,

that in most cases taxonomy paths between the real category and the predicted

one are short. For instance, precision value 0.489, in case of long documents,

PIRRO-SECO based disambiguation and SPA #3 experiment shows, that on

average the shortest path has length near 1 (0.489 = 1/2SP
, i.e., SP = 1.03).

Category quality evaluation is strongly related to the quality of the document

content and to the quality of the DMOZ categorization itself. Various DMOZ

categories we have taken into consideration bring themselves various levels of

precision. In Table 3 detailed results are presented, where generalized precision

is computed within each DMOZ category. One can notice that some categories

(such as science-related categories: “fizyka” (physics),“informatyka” (informat-

ics)) are characterized with much higher precision, while other categories (such

as travel-related categories: “azja” (asia), “turystyka” (tourism)) are more fre-

quently missed with our categorization approach. Documents in the latter group

more frequently discuss many vague or just unrelated topics, which are captured

with our algorithm and are not related by the DMOZ taxonomy. It is another

dimension, which should be taken into account during construction of an ideal

evaluation measure (as well as benchmark datasets): that is, the fact that in the

real world documents are often related to more than one concept simultaneously.

276 K. Ciesielski et al.

Table 3. Precision within each DMOZ category for the experiment SPA#3, i.e.,
PIRRO-SECO with Spreading Activation and 3 predicted categories (s – short, m –
medium, l – long)

LIN SHORTESTPATH SUBCATEG.

DMOZ category s m l s m l s m l

afryka (africa) 0.326 0.551 0.784 0.191 0.308 0.412 0.4 0.6 1
ameryka pó�lnocna (n. america) 0.061 0.427 0.6 0.081 0.239 0.36 0 0.6 0.8

ameryka po�ludniowa (s. america) 0.323 0.592 0.724 0.25 0.389 0.421 0 0.6 0.8
archeologia (archeology) 0.623 0.618 0.536 0.66 0.7 0.708 0.6 0.6 0.5
astronomia (astronomy) 0.606 0.296 0.636 0.459 0.494 0.721 1 1 0.8

australia i oceania (oceania) 0.037 0.244 0.997 0.037 0.227 0.707 0 0.2 1
azja (asia) 0.103 0.391 0.652 0.069 0.268 0.454 0.2 0.6 1

biologia (biology) 0.23 0.197 0.51 0.331 0.138 0.447 0.2 0.4 0.6
ekologia (ecology) 0.254 0.085 0.174 0.324 0.216 0.234 0.2 0 0

ekonomia (economy) 0.104 0.295 0.234 0.385 0.547 0.624 0.4 0.8 0.8
filantropia (philanthropy) 0.449 0.559 0.103 0.382 0.417 0.108 0.2 0 0

filozofia (philosophy) 0.616 0.409 0.408 0.571 0.441 0.566 0.8 0.6 0.6
fizyka (physics) 0.628 0.321 1 0.766 0.5 1 0.8 0.4 1

geografia (geography) 0.315 0.158 0.099 0.463 0.271 0.427 0.75 0.6 1
geologia (geology) 0.631 0.646 0.089 0.812 0.7 0.375 1 0.8 1
grafika (graphics) 0.015 0.568 0.028 0.053 0.5 0.063 0 0 0

grupy etniczne (ethnic gr.) 0.134 0.259 0.257 0.216 0.327 0.256 0 0.2 0.2
historia (history) 0.425 0.114 0.15 0.46 0.371 0.389 1 1 1

hydrologia (hydrology) 0.086 0.66 −− 0.402 0.628 −− 0 0.66 −−
informatyka (informatics) 0.508 0.521 0.403 0.447 0.55 0.435 0.6 0.6 0.4

internet 0.969 0.74 0.938 0.766 0.433 0.624 0.8 0.8 1
jȩzykoznawstwo (linguistics) 0.396 0.552 0.363 0.41 0.199 0.397 0.4 0.6 0.2
matematyka (mathematics) 0.412 0.568 0.998 0.553 0.606 0.927 0.4 0.6 0.75

pedagogika (pedagogy) 0.504 0.701 0.346 0.46 0.655 0.541 0 0.25 0.5
politologia (political science) 0.15 0.647 −− 0.5 0.594 −− 0 0.75 −−

polityka (politics) 0.255 0.424 0.12 0.346 0.512 0.297 0.8 1 1
polonia (polish diaspora) 0.185 −− 0.348 0.075 −− 0.25 0 −− 0

prawo (law) 0.49 0.759 0.819 0.442 0.666 0.654 0.5 1 1
psychologia (psychology) 0.661 0.713 0.552 0.525 0.512 0.543 0.8 0.8 0.6

religioznawstwo (relig. studies) 0.934 0.812 1 0.625 0.625 1 1 1 1
rolnictwo (agriculture) 0.334 0.605 0.012 0.374 0.589 0.088 0 0.2 0
socjologia (sociology) 0.437 0.435 0.237 0.544 0.585 0.36 0.5 0.4 0.2
technika (technology) 0.307 0.433 0.787 0.583 0.512 0.654 0.6 1 1
turystyka (tourism) 0.065 0.307 0.186 0.184 0.25 0.275 0 0 0.2

One can notice that in most cases longer documents are categorized with higher

precision (especially within well-defined DMOZ categories).

We have manually inspected some of the categorization results. Some exam-

ples of proper and flawed categorizations are presented below. These categoriza-

tions were carried out with PIRRO-SECO as a disambiguation measure, with

one-step Spreading Activation (SPA) applied to highest-weight categories, and

with three predicted categories (i.e., SPA#3 experiment from the table 1).

Wikipedia-Based Document Categorization 277

The first example of a poor categorization is the page http://ptaki.ovh.org,
which has the DMOZ category biologia. However, it just discusses the fact, that

the new bird-related portal has been started, and almost no biology-related

terminology is used. The generalized LIN precision equals 0.01 and the recall –

0.01. Three highest-ranked predicted categories are:

– aplikacje internetowe (web applications), weight: 0.243

– strony internetowe (websites), weight: 0.243

– oprogramowanie wed�lug producenta (software by company) , weight: 0.181

The next example is the page http://www.galeriajk.to.pl with the DMOZ

category turystyka. The page contains almost no content, just links to author’s

photos (mainly from Croatia, thus our predicted categories). The generalized

LIN precision equals 0.04, the recall – 0.03, and predicted categories are:

– wyspy chorwacji (list of islands of croatia), weight: 0.113

– miesia̧ce (months), weight: 0.108

– podzia�l administracyjny chorwacji (counties of croatia), weight: 0.106

Yet another example is the page of math-related newspaper http://www.mmm.
uni.wroc.pl with the DMOZ category matematyka. The page content is very

short and related more to subscriptions and archived volumes of the newspaper,

than to math itself. The generalized LIN precision equals 0.02, the recall – 0.02,

and predicted categories are:

– wydarzenia (events), weight: 0.179

– biblioteki cyfrowe (digital library), weight: 0.114

– polskie biblioteki (polish library), weight: 0.081

The last example of a poorly evaluated categorization, which as a matter of

fact is more precise than the DMOZ categorization is the page http://www.
technologiagps.org.pl. The page is assigned with the DMOZ category ge-
ografia, but is focused on GPS issues. However, both the generalized LIN preci-

sion and the recall values are low (0.08 and 0.06 respectively), predicted

categories are precisely showing GPS topic:

– satelitarne systemy nawigacyjne (satellite navigation systems), weight: 0.630

– przyrza̧dy pomiarowe (measuring instrument), weight: 0.055

– geodezja (geodesy), weight: 0.054

We conclude this section with two examples of categorizations which are coherent

with the DMOZ taxonomy. The first one is the page http://www.adamklimowski
.pl/matematyka-wedyjska.html, which has the DMOZ category matematyka.

Our predicted categories (the precision equals 1, the recall – 0.83) are:

– matematyka (mathematics), weight: 0.217

– dzia�lania (operations), weight: 0.121

– arytmetyka (arithmetic), weight: 0.071

The page http://psychologia-procesu.org.pl has the DMOZ category psy-
chologia. Our predicted categories (the precision equals 1, the recall – 0.65) are:

– psychologia (psychology), weight: 0.279

– terapie (therapy), weight: 0.142

– psychologia kliniczna (clinical psychology), weight: 0.124

http://ptaki.ovh.org
http://www.galeriajk.to.pl
http://www.mmm.uni.wroc.pl
http://www.mmm.uni.wroc.pl
http://www.technologiagps.org.pl
http://www.technologiagps.org.pl
http://www.adamklimowski
.pl/matematyka-wedyjska.html
http://psychologia-procesu.org.pl

278 K. Ciesielski et al.

8 Conclusions

In the future we plan to deal with the following issues: (1) minimization of the

input data quality (that is, the merit of the content present in the input doc-

uments) on the algorithm performance, (2) exploiting other features of W, like

infoboxes, being frames for systematic presentation of information on objects

of some specific types (e.g., country infobox etc.), (3) improvement of methods

used for appropriate mapping terms on the ontology concepts, that is, appli-

cation of new measures taking into account context of the term appearance,

(4) creation of more sophisticated methods of categorization clustering includ-

ing also diversification of the results in case of multi-topic documents. We also

plan to extend W taxonomy with other semantic knowledge sources, such as

Wiktionary (Wikis�lownik), DBPedia, YAGO or Freebase.

Acknowledgement. this research has been partly supported by the European

Regional Development Fund with the grant no. POIG.01.01.02-14-013/09: Adap-
tive system supporting problem solution based on analysis of textual contents of
available electronic resources.

References

1. Coursey, K., Mihalcea, R.: Topic identification using Wikipedia graph centrality.
In: NAACL 2009: Proceedings of Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, Companion Volume: Short Papers, pp. 117–120. Association for Com-
putational Linguistics, Morristown (2009),
http://portal.acm.org/citation.cfm?id=1620887

2. Medelyan, O., Witten, I.H., Milne, D.: Topic indexing with wikipedia. In: Proceed-
ings of the First AAAI Workshop on Wikipedia and Artificial Intelligence, WIKIAI
2008 (2008)

3. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge.
In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge
Management, CIKM 2007, Lisbon, Portugal, November 6-10, pp. 233–242. ACM
(2007)

4. Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness
obtained from wikipedia links. In: Proceedings of the First AAAI Workshop on
Wikipedia and Artificial Intelligence, WIKIAI 2008 (2008)

5. Milne, D.N., Witten, I.H.: Learning to link with wikipedia. In: Proceedings of the
17th ACM Conference on Information and Knowledge Management, CIKM 2008,
Napa Valley, CA, USA, October 26-30, pp. 509–518. ACM (2008)

6. Pirrò, G., Seco, N.: Design, implementation and evaluation of a new semantic sim-
ilarity metric combining features and intrinsic information content. In: Chung, S.
(ed.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1271–1288. Springer, Heidelberg
(2008)

7. Seppänen, J.K., Bingham, E., Mannila, H.: A simple algorithm for topic identifica-
tion in 0–1 data. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.)
PKDD 2003. LNCS (LNAI), vol. 2838, pp. 423–434. Springer, Heidelberg (2003)

http://portal.acm.org/citation.cfm?id=1620887

Preliminary Experiments
in Polish Dependency Parsing�

Alina Wróblewska and Marcin Woliński

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
{alina.wroblewska,wolinski}@ipipan.waw.pl

Abstract. Preliminary experiments presented in this paper consist in
the induction and evaluation of a dependency parser for Polish. We train
data-driven dependency models with publicly available parser-generation
systems (MaltParser and MSTParser) given a converted dependency
structure bank for Polish. Induced Polish dependency parsers are evalu-
ated against a set of gold standard dependency structures using labelled
and unlabelled accuracy metrics.

Keywords: dependency parsing, Polish parsing,MaltParser, MSTParser.

1 Introduction

In recent years two shared tasks on multilingual dependency parsing have been
organised at the Conference on Computational Natural Language Learning
(CoNLL 2006 [3] and CoNLL 2007 [13]). Different languages were represented in
these tasks, among other some Slavic languages such as Slovene, Bulgarian and
Czech. Polish has not been represented in any of these tasks. What is more, de-
pendency parsing is hardly represented by the Polish NLP community1 and we
are not aware of any experiments with data-driven Polish dependency parsing.
According to our knowledge, no publicly available Polish dependency parser ex-
ists, even if it would be an useful tool in different language processing domains.
The predicate-argument structure transparently encoded in dependency-based
syntactic representations may be useful in machine translation, question an-
swering or information extraction. As mentioned NLP applications are in the
early development stage in Polish, a well performing dependency parser may
contribute to improve their quality.
The main goal of our preliminary experiments presented in this paper is the

induction and evaluation of a dependency parser for Polish. In order to induce a
Polish dependency parser we will proceed according to the following procedure.

� This research is supported by the POIG.01.01.02-14-013/09 project which is co-
financed by the European Union under the European Regional Development Fund.

1 The only dependency parser we are aware of was developed by Obrębski [16,17].
However, this rule-based parser was only tested against a small artificial test set and
no wide-coverage grammar seems to accompany the work. An interesting element of
Obrębski’s thesis is a proposition of a set of relation labels for Polish.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 279–292, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

280 A. Wróblewska and M. Woliński

First, we start with the conversion of an existing Polish constituency treebank
[21] into dependency-based representations that constitute our training corpus.
Second, labelled dependency graphs serve for training and optimising a parsing
model which our dependency parser will be based on. The data-driven depen-
dency model training is performed with two freely available parser-generation
systems: MaltParser [14] and MSTParser [9]. Finally, we evaluate trained Polish
dependency parsers and compare them in terms of parsing accuracy.
Our paper is structured as follows. Section 2 introduces the constituency tree-

bank of Polish and describes its conversion into a Polish dependency bank. In
Section 3 we present parsing systems used in our experiments. Section 4 de-
scribes the experimental methodology. Section 5 reports achieved results and
compares induced dependency parsers. Section 6 concludes with some ideas for
future research.

2 Training Data for Our Experiments

2.1 A Constituency Treebank of Polish

A bank of constituency trees for Polish is under preparation at the Institute of
Computer Science PAS [21]. The planned size of the bank is 20,000 sentences
taken from the balanced hand-annotated subcorpus of the National Corpus of
Polish (NKJP, [18]). However, as the project is still ongoing, we have only avail-
able trees for about 5000 sentences.
The treebank is being developed in a semi-automatic manner. Candidate parse

trees are generated by the parser Świgra [22] and one tree is selected and val-
idated by human annotators. The project uses a new version of Świdziński’s
formal definition of Polish [20]. The treebank and the grammar are developed
in parallel: the feedback given by annotators is used to improve the grammar,
which leads to regenerating some trees in the treebank.
The project constructs constituency trees, however, their structure is designed

with convertibility in mind. In particular each constituent has its syntactic centre
marked, which enables us to convert the trees into dependency structures.
Due to the method of construction the current treebank is biased by the

incomplete grammar. It consists only of the sentences accepted by the current
version of the grammar. As the grammar is being enriched the bias will be
reduced. In consequence it currently makes no sense to test our trained parsers
on general text, and so we only use cross validation for evaluation. However, we
think it is a good idea to start experiments early, so that any deficiencies leading
to problems with conversion to dependency structures can still be cured in the
source treebank.

2.2 Conversion of Constituency Trees into Dependency Trees

The process aims at converting the source treebank to a bank of labelled depen-
dency structures. The dependency structure of a sentence is a graph with arcs rep-
resenting directed binary relations between lexical nodes (tokens). One of related

Preliminary Experiments in Polish Dependency Parsing 281

tokens is regarded as a head of the dependency relation, while the other one is its
dependent. Arcs linking lexical nodes are named with dependency labels. We have
predefined 29 fine-grained dependency labels in the Polish language. The most
important dependency types are represented by subject (subj), different objects2,
object in dative (obj th), different obliques3, sentence predicate (pred), adjunct
(adj), relative clause (crel). We also distinguish some incidental dependencies: ap-
position (app), predicative argument (pd) and pseudo-dependencies representing
agglutinative affixes (aglt), auxiliaries (aux), complementizer of a finite clausal
object (cobj fin form), conjuncts of a coordination (conjunct), conjunction (co-
ord form), punctation mark conjunction (coord punct), negation particles (neg),
interrogative pronoun (pron int), punctuation marks (punct), reflexive markers
(refl). An example of the Polish dependency structure is given in Figure 1.

• Tłumaczyli nam , że źle na nich wychodzą .

explained to us that badly on them come out

pred

punct

cobj fin form

obj th
punct

sobj

aobl
adj

pobj

Fig. 1. Dependency structure of the sentence Tłumaczyli nam, że źle na nich wychodzą.
eng. ‘They explained to us that they come out badly on them (photographs).’

Converted dependency structures are stored in the column-based data format
of CoNLL shared task [3]. Ten columns contain following data: ID (integer token
identifier), FORM (word form or punctuation symbol), LEMMA (lemma of a word
form), CPOSTAG (coarse-grained part-of-speech tag), POSTAG (fine-grained part-
of-speech tag), FEATS (set of syntactic and/or morphological features separated
by a vertical bar), HEAD (head ID of the current token), DEPREL (dependency
relation label to the HEAD), PHEAD (projective head ID of the current token)
and PDEPREL (dependency relation label to the PHEAD). All mentioned token
attributes except for PHEAD and PDEPREL are represented in converted depen-
dency structures. If a value is not available from the constituency treebank, an
underscore is used as a default value. Since the underlying tagset makes no dis-
tinction between CPOSTAG and POSTAG, we currently use CPOSTAG values identical
to POSTAG.

2 Object arguments: indirect question object (cobj fin), infinitival clausal object
(cobj inf), object of a numeral (nobj), (direct) object (obj), adjectival/adverbial ar-
gument of a preposition (paobj), nominal argument of a preposition (pobj), argument
of a subordinatig conjunction (sobj), verbal object (vobj).

3 Oblique arguments: adverbial oblique argument (aobl), prepositional oblique argu-
ment of an adjective/adverb (apobl), nominal oblique argument(obl), prepositional
oblique argument (pobl).

282 A. Wróblewska and M. Woliński

Converted dependency structures stored in the CoNLL data format are basis
of our further experiments.

3 Dependency Parsers

Shared tasks on multilingual dependency parsing at CoNLL 2006 [3] and CoNLL
2007 [13] arouse interest in data-driven dependency parsing. The interest has
turned into development of different methods for data-driven dependency pars-
ing. Two of them have dominated other methods: transition-based dependency
parsing and graph-based dependency parsing. A transition-based dependency
parser uses a deterministic parsing algorithm that builds a dependency struc-
ture of an input sentence based on transitions (shift-reduce actions) predicted
by a classifier. The classifier learns to predict the next transition given training
data and the parse history. A graph-based dependency parser, in turn, induces
parameters of a parsing model over substructures of a dependency graph. The
parser learns to score correct trees higher than incorrect ones given an annotated
input. The parser finds the highest scored dependency tree. Transition-based and
graph-based dependency parsing methods have been implemented asMaltParser
[14] and MSTParser [7], [9], respectively. Even if the considered parsers use dif-
ferent parsing methods, they have achieved similar results for a wide range of
languages as described in [8]. We are going to compare both methods in the real-
istic scenario of dependency parsing of Polish, which is a language not included
in any CoNLL shared task on dependency parsing.

3.1 MaltParser – Transition-Based Dependency Parser

The data-driven parser-generator MaltParser4 [14] trains a transition-based de-
pendency parser for a language given a portion of annotated data in this lan-
guage. The architecture of an induced deterministic parser consists of three main
components: a parsing algorithm deriving a labelled dependency structure
from an input sentence, a feature model helping in prediction of the next
parser action, and a treebank-induced classifier deterministically predicting the
optimal next action given a feature representation of a parser configuration in
the current state.

Parsing algorithm. A deterministic parsing algorithm provides a basis both
for learning and parsing in the MaltParser system. While learning, an oracle
module maps every tree in the dependency structure bank to a transition se-
quence that derives this tree, i.e., valid transition sequences are reconstructed
from annotated dependency trees. A training oracle is required to train a clas-
sifier. While parsing, a transition system builds labelled dependency graphs ac-
cording to predicted transitions. Transition sequences are predicted by a trained

4 We use MaltParser 1.4.1 downloaded from http://maltparser.org.

http://maltparser.org

Preliminary Experiments in Polish Dependency Parsing 283

classifier that makes use of a history-based feature model. The MaltParser sys-
tem provides some built-in implementations of parsing algorithms for projec-
tive5 (nivreeager, nivrestandard and covproj [10] or stackproj [11]), for
non-projective6 (covnonproj [10], stacklazy [15], and stackeager [11]), and
for planar7 (planar [6]) dependency structures.

Feature model. The history-based feature model is used by MaltParser clas-
sifier to predict next actions at non-deterministic choice points given a feature
vector. Features are defined in terms of token attributes, i.e., word form (FORM),
part of speech (POS), morphological features (FEATS), and lemma (LEMMA)
available in input data or dependency types (DEPREL) extracted from partially
built dependency graphs and updated during parsing.

Learning algorithm. The MaltParser system enables switching between two
implementations of machine learning algorithms used to induce a classifier given
training data: the LIBSVM library [4] being the implementation of support vec-
tor machines and the LIBLINEAR package [5] with various linear classifiers
implemented in it.

3.2 MSTParser – Graph-Based Dependency Parser

A data-driven dependency parser may be trained with the graph-based MST-
Parser system8 [7] given a sufficient amount of annotated data. The MST parsing
consists in searching for the maximum spanning tree (MST) in a directed graph.
MSTParser selects the highest scored dependency tree y as the correct analysis
of an input sentence x. The score of the dependency tree is the sum of scores of

5 Projective dependency structure – the dependency analysis of a sentence is con-
strained on the linear word order, i.e., dependency edges are non-crossing with re-
spect to the word order. For example:

w1 w2 w3 w4

6 Non-projective dependency structure models non-local syntactic constructions such
as topicalization, WH-movement, discontinuos NPs, or other resulting in crossing
edges, e.g.:

w1 w2 w3 w4

7 The concept of planarity [19] is similar to the projectivity idea regarding the re-
quirement that dependency links drawn above words in a sentence do not cross. The
following structure is planar but not projective because of the root node:

w1 w2 w3 w4

8 We use MSTParser 0.4.3b downloaded from http://mstparser.sourceforge.net.

http://mstparser.sourceforge.net

284 A. Wróblewska and M. Woliński

all edges in this tree. The score of an edge s(i, j) is defined by [9] as the dot prod-
uct between a high dimensional feature representation of this edge f(i, j) and a
weight vector w learnt during training. The score of a complete dependency tree
y for a sentence x is defined as:

s(x, y) =

∑
(i,j)∈y

s(i, j) =

∑
(i,j)∈y

w · f(i, j)

The parser endeavours to find the highest scored dependency tree using one of
two parsing algorithms that are available in the MSTParser system: the algo-
rithm of Eisner [7] which deals with the projective structures and the Chu-Liu-
Edmonds algorithm [9] which manages non-projective structures. The Eisner
parsing algorithm is a bottom-up dynamic programming algorithm with a run-
time O(n3

) and the Chu-Liu-Edmonds maximum spanning tree algorithm is a
greedy recursive one with the O(n2

) complexity.
Both presented systems are applied to train Polish dependency parsers as

described in following sections.

4 Experiments

In this section we present some experiments carried out with MaltParser [14]
and MSTParser [9]. Polish is a highly inflected language with flexible word or-
der, what may cause some difficulties for syntactic parser developing. However,
both mentioned parsing systems provide an opportunity for adapting parser to
characteristic phenomena of a language. We are going to take this opportunity
and tune parser parameters, in order to train optimal parsing models.

4.1 MaltParser

Baseline MaltParser. The baseline parsing model for Polish is induced using
default settings of the MaltParser system. At first, we compare outputs by two
baseline parsing models with default settings and different machine learning al-
gorithms which a classifier is trained with. Cross-validation shows that a parser
with the LIBLINEAR-classifier performs slightly better (79.5% LAS9 and 85.8%
UAS10) than the other one with the LIBSVM-classifier (79.1% LAS and 85.6%
UAS). The difference between accuracy of baseline parsing models is not consid-
erable. Neverthless, we have decided to use LIBLINEAR library in our further
experiments, as it is faster than the other one. The baseline MaltParser for Polish
(default settings and LIBLINEAR classifier) with the labelled attachement score
of 79.5% constitutes a point of reference to compare optimized parsing models.

9 Labelled attachment score (LAS) – the percentage of tokens that are assigned a
correct head and a correct dependency type.

10 Unlabelled attachment score (UAS) – the percentage of tokens that are assigned a
correct head.

Preliminary Experiments in Polish Dependency Parsing 285

Experiment 1: Transition System Selection. Taking into account that our
dependency bank is converted from constituent trees, we only have projective
dependency structures. Even if we deal with projective dependency structures,
we test out all built-in transition systems, in order to find out the best one
applying to the Polish parsing scenario. According to our results (see Table 2 in
Section 5), the best performing projection system is nivrestandard11 and the
best non-projective system is stacklazy. These two transition systems achieve
almost the same results with 82.4% LAS and 88.9/89% UAS. Since our data is
projective, we have decided to choose the nivrestandard projective system for
our further experiments.

Experiment 2: Feature Model Estimation. The history-based feature
model is a combination of static (FORM, POS, LEMMA, FEATS) and dynamic
(DEPREL) features. In this experiment we are going to find out the feature
combination that improves the parsing performance. We consider the built-in
NivreStandard as the baseline feature model. It is based on FORM, POS and DE-
PREL features. We expand this baseline model by addition of LEMMA and/or
FEATS features. The default and additional features used in the experiment are
presented in Table 1.

Table 1. Repertoire of history-based features. Rows correspond to tokens in a parser
configuration: TOP (the token on the top of a stack), NEXT (the next token in the
remaining input), HEAD(TOP) (the head of TOP in a partially built tree), LDEP(TOP/NEXT)
(the leftmost dependent of TOP or NEXT), RDEP(TOP/NEXT) (the rightmost dependent of
TOP or NEXT). Columns correspond to feature types: FORM (word form), POS (part
of speech), DEPREL (dependency relation), LEMMA, FEATS (set of morphological
features). ⊕ (default features for the NivreStandard model); + (additional features in
the optimised model).

FORM POS DEPREL LEMMA FEATS
Stack: TOP ⊕ ⊕ + +
Stack: TOP-1 ⊕
Input: NEXT ⊕ ⊕ + +
Input: NEXT+1 ⊕ ⊕ + +
Input: NEXT+2 ⊕
Input: NEXT+3 ⊕
Tree: HEAD(TOP) ⊕ +
Tree: LDEP(TOP) ⊕
Tree: RDEP(TOP) ⊕
Tree: LDEP(NEXT) ⊕
Tree: RDEP(NEXT) ⊕

4.2 MSTParser

Baseline MSTParser. We induce a baseline parsing model for Polish using de-
fault settings of the MSTParser system. The Eisner projective parsing algorithm
11 The stackproj projective transition system scores just as good as nivrestandard.
We have decided to use nivrestandard in further experiments.

286 A. Wróblewska and M. Woliński

is running 10 times during training a parsing model. The baseline MSTParser
specifies 1-best parses to create constraints and uses first order features.

MSTParser Optimisation. As we previously mentioned (see Section 3.2),
MSTParser enables switching between two built-in parsing algorithms: the Eis-
ner algorithm and the Chu-Liu-Edmonds algorithm. Our baseline model applies
the Eisner parsing algorithm designed for projective dependency structures. Al-
though our training data is projective, we test out the Chu-Liu-Edmonds algo-
rithm designed for non-projective structures as well. As expected, MSTParser
with the Chu-Liu-Edmonds algorithm performs slightly worse than the baseline
MSTParser (see Table 4).
Hereinafter, we concentrate on the order-of-features factor used to score de-

pendency trees. We may choose between first-order and second-order dependency
parsing. In case of the first-order factorization, the score for a dependency graph
factors only over single adjacent edges, while in the second-order scoring, the tree
score is the sum of adjacent edge pair scores (see Figure 2). The second-order
function s(i, j, k) scores a pair of adjacent edges on the same side of the parent
node. If the middle argument is ignored, the first-order scoring substitutes the
second-order scoring. All adjacent edge pair scores are added up to score the
dependency tree.

w1 w2 w3 w4

First-order factorization Second-order factorization
s(1, 3) + s(1, 4) + s(3, 2) s(1,−, 3) + s(1, 3, 4) + s(3,−, 2)

Fig. 2. First-order and second-order factorization

The baseline model applies first-order dependency parsing, as it is a default
setting in MSTParser. We are going to test out if the change of the order-of-
feature factor influences the Polish MSTParser performance.
The next section reports results of described experiments.

5 Data, Evaluation and Results

The performance of Polish dependency parsers is evaluated with the following
metrics: labelled attachment score (LAS) and unlabelled attachment score (UAS).
We evaluate trained parsers in two ways. In the optimisation phase we apply
ten-fold cross-validation using the same split of training data for both induced
parsers. The final evaluation is performed against the unseen validation data set.
We start this section with the presentation of our data and continue with results
gained by the Polish MaltParser and the Polish MSTParser.

Preliminary Experiments in Polish Dependency Parsing 287

5.1 Data

The conversion of constituent trees results in 4,601 dependency structures (44,883
tokens). We split the entire dependency bank into a training set with 4,141 sen-
tences (40,346 tokens) and a validation set with 460 sentences (4,537 tokens). As
our training data is relatively sparse, we have decided to apply ten-fold cross-
validation in the optimisation phase. The validation set is used for the final
parser evaluation. It is worth mentioning that sentences in our data set are not
long and contain 9.75 tokens on average. Therefore, we suppose to deal with
relatively simple syntactic structures in most cases.

5.2 Evaluation of the Polish MaltParser

Experiment 1. Transition System Selection. In section 4.1 we gave an
account of our first experiment that consists in verification of the built-in tran-
sition systems. Results presented in Table 2 show that two parsing models with
default parameters and either nivrestandard projective system or stacklazy
non-projective system perform the best (the highest scores are marked in bold).
Both parsers perform better than the baseline (nivreeager) and their evalua-
tion scores are about 3 percentage points higher. It is also worth noting that we

Table 2. Evaluation of transition systems built in MaltParser. Evaluation metrics:
labelled attachment score (LAS) and unlabelled attachment score (UAS).

Parsing Algorithm Structures Cross-Validation
LAS UAS

nivreeager (baseline) Projective 79.5 85.8
nivrestandard Projective 82.4 88.9
covproj Projective 80.3 87.0
covnonproj Non-Projective 80.2 86.8
stackproj Projective 82.3 88.9
stackeager Non-Projective 82.3 88.9
stacklazy Non-Projective 82.4 89.0
planar Planar 78.6 84.9

get an improvement of parsing performance compared to the baseline parser in
case of all built-in transition systems except for planar system.
Comparing labelled and unlabelled attachment scores of considered parsing

models, we notice that UAS is about 6.5 percentage points higher than LAS. The
difference between LAS and UAS may be influenced by relatively small amount
of training data.

Experiment 2. Feature Model Estimation. The second experiment aims at
identification of the optimal feature model. The default feature model consists of

288 A. Wróblewska and M. Woliński

word form (FORM), part-of-speech (POS) and dependency relation (DEPREL)
features as presented in Table 1. A parser with the default feature model, the
nivrestandard transition system and the LIBLINEAR classifier achieves 82.4%
LAS and 88.9% UAS. Addition of the LEMMA feature to the considered default
feature model slightly improves the parser performance, but the difference is
below 1 percentage point. Much better improvement is achieved, if the FEATS
values are taken into account while predicting the next parser action (4 per-
centage points above accuracy of the parser with the default feature model).
According to results presented in Table 3, the optimal feature model consists
of all examined attributes. The parser making use of the optimal feature model
achieves 86.9% LAS and 90.2% UAS.

Table 3. Feature model estimation. Evaluation metrics: labelled attachment score
(LAS) and unlabelled attachment score (UAS).

Feature Model Cross-Validation Final Test
LAS UAS LAS UAS

nivrestandard (FORM, POS, DEPREL) 82.4 88.9 84.2 90.5
nivrestandard + LEMMA 83.1 89.1 84.4 90.6
nivrestandard + FEATS 86.4 90.1 88.0 91.7
nivrestandard + LEMMA + FEATS 86.9 90.2 88.8 92.2

We evaluate the best scoring parser with the nivrestandard transition sys-
tem, the LIBLINEAR classifier and the feature model with all attributes against
a final validation set (460 dependency structures) and achieve even better re-
sults then in cross-validation. The final Polish MaltParser may achieve 88.8%
LAS and 92.2% UAS.

5.3 Evaluation of the Polish MSTParser

In the experiment, we try to optimise the induced MSTParser changing two
parameters: the parsing algorithm and the order-of-features factor. According to
our conjectures, the non-projective Chu-Liu-Edmonds algorithm should not be
used to train a dependency parser given projective data. However, the difference
between the baseline model and the Chu-Liu-Edmonds parsing model is not
significant (about 1 percentage point). Polish admits non-projective structures
and they are quite frequent. We suppose that the Chu-Liu-Edmonds parsing
algorithm could be a good starting point while training a dependency parser on
Polish non-projective data. What is more, results presented in Table 4 show that
the order-of-features factor may slightly improve the parsing quality. However,
it is true only in cross-validation of MSTParser and not in the final evaluation
performed with the unseen test set of 460 sentences. The final Polish MSTParser
achieves the 85% LAS and 92% UAS.

Preliminary Experiments in Polish Dependency Parsing 289

Table 4. Evaluation of MSTParser for Polish. Evaluation metrics: labelled attachment
score (LAS) and unlabelled attachment score (UAS). Explanation: the Eisner algorithm
(Eisner), the Chu-Liu-Edmonds algorithm (Chu-Liu-Edmonds), first-order dependency
parsing (1-order), second-order dependency parsing (2-order).

Parameter Settings Cross-Validation Final Test
LAS UAS LAS UAS

Eisner + 1-order (baseline) 83.9 90.6 85.2 91.9
Chu-Liu-Edmonds + 1-order 83.0 89.5 83.8 90.5
Eisner + 2-order 84.3 91.0 84.4 91.5

5.4 Comparative Error Analysis

The final Polish MaltParser achieves the labelled accuracy score of 88.8% and the
unlabelled accuracy score of 92.2%. The best performing Polish MSTParser is
our baseline parser at the same time, with 85.2% LAS and 91.9% UAS. It follows
that MaltParser has the advantage over MSTParser with regard to the labelled
accuracy score (3.6 percentage points). In terms of the unlabelled accuracy score
the Polish MaltParser slightly outperforms MSTParser.
We predefined 29 fine-grained dependency labels, which the Polish parsed sen-

tences are annotated with. We evaluate individual labels in terms of precision,
recall and f-measure. Automatically labelled dependencies in the final test set are
evaluated against the gold standard set. Furthermore, we count the frequency
of individual labels in the final set of gold annotated sentences. According to
our results, some labels annotated both by MaltParser and by MSTParser have
f-score over 90% (aglt, paobj, cobj fin form, cobj inf, coord form, neg, pobj, pred,
punct, refl, sobj, vobj). Other labels with the label attachement below 90% (f-
score) are listed in Table 5. F-score of about 80% is achieved for following labels:
adj, conjunct and nobj. pobl reports f-score above 60% and cobj fin over 40%.
Both parsers perform equaly poorly while annotating oblique arguments, espe-
cially aobl and apobl. In case of aobl, it is mostly mixed with adj, as both of them
may be represented by the same part-of-speech tag and morphological features.
apobl, in turn, is mixed either with adj or pobl represented by a prepositional
phrase. As both aobl and apobl are sparsely represented in the validation set,
they may appear rarely also in the training corpus. The conclusion is that we
need more training data to solve this data sparseness problem. The Polish Malt-
Parser considerably outperforms MSTParser in labelling app, crel, obj th, obl,
pd and especially in case of obj and subj, when it achieves over 90% f-score. The
Polish MSTParser labels two pseudo-dependency relations more exactly than
MaltParser: coord punct and pron int. It is worth noting that we obtain bal-
anced precision and recall values in most cases. If precision and recall values are
unequal, than precision value more frequently enhances recall. It follows that if
a parser finds a dependency relation between two tokens it is a great chance to
label it correctly. The problem is to find all relevant relations what may cause
degrade in recall.

290 A. Wróblewska and M. Woliński

Table 5. Labelled accuracy for fine-grained Polish dependency types. Evaluation met-
rics: precision (Prec), recall (Rec) and f-measure (F).

Dependency Frequency MaltParser MSTParser
Prec Rec F Prec Rec F

adj 1304 83.9 82.6 83.2 82.0 82.9 82.4
aobl 17 50.0 17.6 26.1 0.0 0.0 0.0
apobl 9 50.0 11.1 18.2 40.0 22.2 28.6
app 26 65.6 80.8 72.4 75.0 23.1 35.3
cobj fin 9 44.4 44.4 44.4 75.0 33.3 46.1
conjunct 250 77.5 81.2 79.3 76.0 81.2 78.5
coord punct 23 62.5 65.2 63.8 67.8 82.6 74.5
crel 18 84.2 88.9 86.5 61.1 61.1 61.1
nobj 31 82.9 93.5 87.9 79.5 100.0 88.6
obj 217 89.5 94.0 91.7 71.9 75.6 73.7
obj th 41 86.0 90.2 88.1 79.3 56.1 65.7
obl 50 66.7 68.0 67.3 46.1 24.0 31.6
pd 54 89.1 75.9 82.0 71.7 61.1 66.0
pobl 168 67.4 72.6 69.9 68.6 63.7 66.0
pron int 7 62.5 71.4 66.7 75.0 85.7 80.0
subj 354 93.8 93.8 93.8 75.5 81.1 78.2

6 Conclusions and Future Work

In experiments presented in this paper, dependency parsing models for Polish
have been trained using two parser-generators:MaltParser and MSTParser. Both
the transition-based MaltParser and the graph-basedMSTParser are data-driven
systems designed for induction of a dependency parser for a language for which
an annotated dependency bank exists. As Polish lacks any dependency bank,
we automatically converted trees from the existing constituency treebank into
dependency structures.
According to final evaluation results, the Polish MaltParser (89% LAS and

92% UAS) slightly outperformed the Polish MSTParser (85% LAS and 92%
UAS) taking their labelled accuracy scores into account. Achieved results are
quite good, but we may not forget that our dependency bank contains short
sentences (9.7 tokens per sentence on average) which do not have to represent
complex syntactic structures.
As no Polish dependency parser is publicly available, the accuracy of depen-

dency parsers for Czech and Russian constitutes our point of reference while eval-
uating Polish dependency parsers. Czech is one of languages that has participated
in CoNLL 2006 and CoNLL 2007. Dependency parsers for Czech were trained
on Prague Dependency Treebank [2] with 72,700 sentences (1,249,000 tokens and
17.2 tokens per sentence on average) in CoNLL 2006 and with 25,400 sentences
(450,000 tokens and 17 tokens per sentence on average) in CoNLL 2007. Accord-
ing to results, the Czech MaltParser achieved 78.4% LAS and 84.8% UAS in the
first task and 77.2% LAS and 82.3% UAS in the second CoNLL task. MaltParser
was outperformed by the Czech MSTParser with 80.2% LAS and 87.3% UAS.

Preliminary Experiments in Polish Dependency Parsing 291

The Russian MaltParser [12] have been trained on the large dependency tree-
bank SynTagRus [1] containing over 32,000 sentences (460,000 tokens) taken
from different genres. The best Russian MaltParser achieved 82.2% LAS and
89.1% UAS. Polish parsers seem to perform better than dependency parsers for
Russian and Czech. However, we should take into account simplicity of Polish
training data. Even if Polish dependency parsers trained on preselected training
data perform well, they may not be appropriate for parsing general text.
We need more training data to cover the bulk of syntactic phenomena of the

Polish language. As the Polish constituency treebank is going to be completed
in a few months, we will gain four times more training data. The full treebank
will be comparable in size to treebanks used for training Czech and Russian
dependency parsers. So we expect to be able to achieve a reasonable corpus
coverage with parsers trained on the entire corpus. It is an interesting question,
however, what accuracy scores can we achieve for that future parser.
In case we need still more training data we plan to explore an alternative

solution: an automatic annotation using the projection method. As some well-
performing dependency parsers for English exist, they may be applied to analyse
the English part of a parallel Polish-English corpus. Using automatic generated
word alignment links, English dependencies will be projected onto corresponding
Polish tokens. As result, a large Polish dependency bank may be induced. Future
studies will show, if a well-performing dependency parser may be trained on a
great amount of presumably noisy data.

References

1. Boguslavsky, I., Chardin, I., Grigorieva, S., Grigoriev, N., Iomdin, L., Kreidlin, L.,
Frid, N.: Development of a Dependency Treebank for Russian and its possible Ap-
plications in NLP. In: Proceedings of the 3rd International Conference on Language
Resources and Evaluation, Las Palmas, Gran Canaria, pp. 852–856 (2002)

2. Böhmová, A., Hajič, J., Hajičová, E., Hladká, B.: The PDT: a 3-level annotation
scenario. In: Abeillé, A. (ed.) Treebanks: Building and Using Parsed Corpora, Text,
Speech and Language Technology, ch. 7, vol. 20. Kluwer Academic Publishers,
Dordrecht (2003)

3. Buchholz, S., Marsi, E.: CoNLL-X shared task on multilingual dependency pars-
ing. In: Proceedings of the Tenth Conference on Computational Natural Language
Learning, CoNLL-X 2006, pp. 149–164. Association for Computational Linguistics
(2006)

4. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/~cjlin/libsvm

5. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A li-
brary for large linear classification. Journal of Machine Learning Research 9, 1871–
1874 (2008)

6. Gómez-Rodŕıguez, C., Nivre, J.: A transition-based parser for 2-planar dependency
structures. In: Proceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2010, pp. 1492–1501. Association for Computational
Linguistics (2010)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

292 A. Wróblewska and M. Woliński

7. McDonald, R., Crammer, K., Pereira, F.: Online large-margin training of depen-
dency parsers. In: Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics, ACL 2005, pp. 91–98 (2005)

8. McDonald, R., Nivre, J.: Characterizing the errors of Data-Driven dependency
parsing models. In: Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pp. 122–131 (2007)

9. McDonald, R., Pereira, F., Ribarov, K., Hajič, J.: Non-projective dependency pars-
ing using spanning tree algorithms. In: Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural Language Processing,
HLT 2005, pp. 523–530 (2005)

10. Nivre, J.: Algorithms for deterministic incremental dependency parsing. Compu-
tational Linguistics 34, 513–553 (2008)

11. Nivre, J.: Non-projective dependency parsing in expected linear time. In: Proceed-
ings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the AFNLP,
ACL 2009, vol. 1, pp. 351–359. Association for Computational Linguistics (2009)

12. Nivre, J., Boguslavsky, I.M., Iomdin, L.L.: Parsing the SynTagRus treebank of
Russian. In: Proceedings of the 22nd International Conference on Computational
Linguistics, COLING 2008, vol. 1, pp. 641–648 (2008)

13. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The
CoNLL 2007 shared task on dependency parsing. In: Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007, pp. 915–932. Association for Com-
putational Linguistics, Prague (2007)

14. Nivre, J., Hall, J., Nilsson, J.: Maltparser: a data-driven parser-generator for de-
pendency parsing. In: Proceedings of LREC 2006, pp. 2216–2219 (2006)

15. Nivre, J., Kuhlmann, M., Hall, J.: An improved oracle for dependency parsing with
online reordering. In: Proceedings of the 11th International Conference on Parsing
Technologies, IWPT 2009, pp. 73–76. Association for Computational Linguistics
(2009)

16. Obrębski, T.: Automatyczna analiza składniowa języka polskiego z wykorzys-
taniem gramatyki zależnościowej. Phd thesis, Institute of Computer Science. Polish
Academy of Sciences, Warsaw (2002)

17. Obrębski, T.: Mtt-compatible computationally effective surface-syntactic parser.
In: Proceedings of First International Conference on Meaning-Text Theory, Paris,
pp. 259–268 (2003)

18. Przepiórkowski, A., Górski, R.L., Łaziński, M., Pęzik, P.: Recent developments in
the National Corpus of Polish. In: Proceedings of the Sixth International Confer-
ence on Language Resources and Evaluation, LREC 2010, ELRA, Valetta, Malta
(2010)

19. Sleator, D.D., Temperley, D.: Parsing English with a link grammar. In: Third
International Workshop on Parsing Technologies, pp. 277–291 (1993)

20. Świdziński, M.: Gramatyka formalna języka polskiego. Rozprawy Uniwersytetu
Warszawskiego, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa (1992)

21. Świdziński, M., Woliński, M.: Towards a bank of constituent parse trees for polish.
In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2010. LNCS (LNAI),
vol. 6231, pp. 197–204. Springer, Heidelberg (2010)

22. Świgra – an implementation of the formal grammar of Marek Świdziński (2005),
http://nlp.ipipan.waw.pl/~wolinski/swigra/

http://nlp.ipipan.waw.pl/~wolinski/swigra/

Evaluation Method
for Automated Wordnet Expansion�

Bartosz Broda, Roman Kurc, Maciej Piasecki, and Radosław Ramocki

Institute of Informatics
Wrocław University of Technology

Wybrzeże Wyspiańskiego 27,
Wrocław, Poland

{bartosz.broda,roman.kurc,maciej.piasecki}@pwr.wroc.pl

Abstract. Laborious construction of large wordnets (lexico-semantic
networks) can be supported by automatic wordnet expansion methods.
Several methods were proposed but mostly were not thoroughly evalu-
ated and compared. In the paper an evaluation methodology for auto-
mated wordnet expansion algorithms is proposed. Basic requirements for
it are formulated in relation to the linguistic process. The general scheme
based on the idea of automated wordnet reconstruction is presented. The
methodology is illustrated by applying it to the comparison of the two
top level wordnet expansion algorithms: Algorithm of Activation-area
Attachment and the algorithm of Snow et al.. The latter was reimple-
mented and adopted to the Polish language tools.

1 Introduction

Wordnets1 became important language resources, even fundamental ones, at
least for those languages for which they have been built. Unfortunately, con-
struction of a large wordnet is a laborious process, which requires a lot of efforts
of trained linguists. However, huge amounts of available electronic texts and the
development of methods of automatic extraction of linguistic knowledge from
corpora have created a possibility of supporting manual work with automatic
tools suggesting attachment places for new words in the wordnet.

There are two main paradigms of automated extraction of lexico-semantic re-
lations: pattern-based and clustering based, cf [12]. However, methods of both
types express some intrinsic limitations, e.g., pattern-based methods offer mostly
good precision but low recall while measures of semantic relatedness (clustering
paradigm) assign some value to any pair of words but can hardly distinguish
between different relations2. Clustering based methods are often referred to as

� Work financed by Innovative Economy Programme project POIG.01.01.02-14-
013/09.

1 Wordnet is an electronic thesaurus following the structure of Princeton WordNet [5].
2 Measures of semantic relatedness produce high values not only for word pairs ex-

pressing synonymy or hypernymy but also for more fuzzy associations.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 293–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

294 B. Broda et al.

Distributional Semantics. The core task of automated wordnet expansion is to
identify for a word all its senses and all instances of the lexico-semantic rela-
tions in which it participates, i.e., respectively, synsets3 (word sets) and word
pairs in which the given word should be included. Both tasks require extrac-
tion of the significantly precise semantic information. Moreover the large scale
of the wordnet requires extensive coverage. Contemporary approaches to the au-
tomated wordnet expansion are mostly based on a combination of two or more
extraction methods.

Caraballo [4] combined agglomerative hierarchical clustering of words together
with the manually constructed patterns. The basic structure was obtained by
clustering and the patterns were applied to identify hypernyms for word clusters
and refine the structure. The overall accuracy of Caraballo’s approach was not
high, according to limited manual evaluation.

Several projects have explored building an extended wordnet over an existing
one. The advantage is the possibility of using the wordnet structure already in
place, especially the hypernymy structure, as a knowledge source.

In [1] Distributional Semantics methods were applied first to assign a mean-
ing representation to synsets. Next, instead of using patterns, the existing hy-
pernymy structure was used as a kind of decision tree. A place for a new word
was found by traversing the tree and comparing the word’s description with the
vectors assigned to synsets. A similar, but more radical approach was presented
in [19], in which wordnet is converted into a decision-tree-like structure by up-
ward propagation of meaning descriptions to the root. The descriptions are based
on Distributional Semantics. In evaluation on two subtrees from GermaNet, the
best accuracy of exact classification was 14% and 11%, comparable to that in [1].
In a similar way, in [18] attach points for a word are suggested in those synsets
of the hypernymy hierarchy in which semantic neighbours of the new word are
concentrated. The neighbours are identified on the basis of the similarity of the
co-occurrence, in a 15-word window, with 1000 most frequent words. Evaluation
was on the British National Corpus [2] and randomly selected common nouns of
varied frequency. Synsets identified by the algorithm were compared with their
exact hypernyms. The best accuracy of finding the direct hypernym, with no
intervening nodes, producing exact reproduction of the wordnet (among 4 high-
est ranked labels) was 15% for k = 3 neighbours taken into account, but the
overall classification (considering hypernyms located up to 10 links away from
the suggested site in the wordnet structure) gave only 42.63%.

In [16] the expansion of wordnet hypernymy structure is described in terms
of a probabilistic model. Attachment of new elements transforms the former
structure T into a new structure T’. The most appropriate T’ maximises the
probability of the change in relation to the evidence at hand. This algorithm
will be described in details in Sec. 3.1, and, for the needs of this paper, it will be
called Probabilistic Wordnet Expansion (PWE). PWE precision equal to 84%
was manually assessed on random sample of the 100 words from 10000 added.
The evaluation method applied in [16] will be discussed in Sec. 2.1.

3 Simplifying, a synset is a set of near synonyms.

Evaluation Method for Automated Wordnet Expansion 295

For the needs of the WordnetWeaver system a wordnet expansion algorithm
was proposed and called the Algorithm of Activation-area Attachment (AAA)
[10,12]. AAA is capable of utilising heterogeneous knowledge sources charac-
terising word lexico-semantic relations. AAA was applied to a combination of
results generated by different pattern-based methods and Distributional Seman-
tics. WordnetWeaver has been supporting large scale wordnet expansion for sev-
eral years [12]. WordnetWeaver and AAA will be discussed in Sec. 3.2. Accord-
ing to an evaluation method based on automatic wordnet reconstruction, AAA
achieved precision of 67.99% in the partial reconstruction of plWordNet4 version
1.0 in relation to the highest-scoring attachment suggestions.

A taxonomy iterative construction or expansion method called the Metric-
based Framework (MF) was proposed [20]. In a similar way to AAA, the method
allows for the utilization of many knowledge sources in making decisions con-
cerning subsequent words. Each decision is made on the basis of fifteen features.
The features represent results obtained with different extraction methods (“con-
textual, co-concurrence, patterns, syntactic dependency, word length difference
and definition”). Contrary to the unsupervised work of PWE and AAA, MF is
based on supervised learning approach according to which parameters of the
ontology metric – defining transformation of the feature values into ontological
distance – are tuned on the basis of the word pairs acquired from an existing tax-
onomy. MF is limited to the construction of a taxonomy and hypernymy as the
primary relation (however it was also applied to the meronymy). It was tested
on taxonomies extracted from, e.g., WordNet. MF precision was calculated on
the basis of the number of relation instances (word pairs) correctly rediscovered.
The algorithm was compared with some re-implementation of PWE. MF per-
formed slightly better, however the description of the applied PWE version is
too general to analyse possible changes introduced. There is also no analysis of
the statistical significance of the differences. It is worth to be emphasised that
the goal of MF – taxonomy reconstruction, not the whole wordnet – is much
more limited in comparison to AAA and PWE.

Several wordnet expansion algorithms (or lexically grounded semantic net-
works in general) have been proposed. However, the proposed algorithms are
mostly evaluated on the basis of different methods and not all of them have been
compared with respect to their performance. The goal of the work presented here
it to develop a methodology for evaluating wordnet expansion algorithms, and,
next, apply it to the selected, best performing algorithms. Moreover, as the com-
parison can be interesting for wordnet developers by itself, we want to perform
it in in an objective and uniform way analysing performance of the algorithms
on the identical, large scale data and in a similar setting.

2 Evaluation Methods for Automated Wordnet Expansion

Automated wordnet expansion (or construction) produces complicated relation
graphs. Precision calculated in terms of words placed on the ‘appropriate’
4 A large wordnet for Polish, see www.plwordnet.pwr.wroc.pl

www.plwordnet.pwr.wroc.pl

296 B. Broda et al.

positions is the first natural candidate for a basic evaluation measure, however
several problems appears. Are any ‘appropriate’ positions defined in a word-
net? A wordnet is a result of a linguistic process and hardly one can get two
identical wordnets with two groups of equally trained linguists. How to penalise
small differences in the produced wordnets? Should we calculate precision on
the level of relation instances, as e.g., [20], or on the level of relation subgraphs?
Which relation should be taken into consideration? Before we will present our
own approach to evaluating wordnet expansion methods, first, we will make a
brief overview of the approaches to this problems as presented in literature.

2.1 Approaches

There are four possible ways of evaluating a language tool: analytical method,
manual assessment, comparison with a golden standard and evaluation by appli-
cation. Analytical examination is hardly conceivable, as the wordnet structure
is related to the human language system and hardly any wordnet properties can
be formalized except such trivial ones like the lack of cycles in the hypernymy
relation. The second option – manual assessment – seems to be the most nat-
ural one, and was used in many approaches, e.g. [4,16]. For instances, in [16],
evaluators assessed manually 100 samples selected randomly from the first n up
to 20000 automatically added hypernymic links. They were asked: “is X a Y ?”,
where 〈X,Y 〉 was an added link. It is not clear in [16] whether only direct hy-
ponym/hypernyms counted as positive. Moreover only the best hit for a word,
according to the algorithm, was evaluated. Human judgement is the obvious pri-
mary source of knowledge to compare with, however, the manual method can
pose several problems: a wordnet is mostly large – only a sample can be as-
sessed; a sample must be drawn from a structure – how to cut off; to distinguish
between close (direct) and distant (indirect) relation links (e.g. hypernymic) is
very difficult for the evaluator; mostly word pairs are evaluated – guidelines for
the evaluation of substructures are much more difficult to be formulated.

The third type – comparison with a golden standard is the most often used one
due to the availability of large wordnets, e.g. [18,10,12,20]. For instance, precision
measured on the level of extracted relation instances (word pairs) in comparison
to the instances encoded in the wordnet was measured in [20]. However, the
shape of the extracted structure was only indirectly evaluated in this approach.
Distribution of the distances of the suggested attachment sites in relation to the
original ones was reported in [18]. In [10,12] several types of measures were used,
depending on the distance and type of the relation links. Also, some measures
took into account all suggestions generated not only the best ones.

The last possibility – evaluation by application, which is often used, e.g.,
for assessing measures of semantic relatedness, is very rarely applied to word-
net expansion methods. In [10,12] automated wordnet expansion was used as
a supporting tool in wordnet construction by linguists. Linguist decisions were
recorded and later compared with the automatic suggestion. The indirect appli-
cation was the change in the efficiency of the wordnet building process. Thus it

Evaluation Method for Automated Wordnet Expansion 297

was a little step beyond the comparison-based approach, but into the direction
of the evaluation of the practical value of the proposed methods.

2.2 Requirements

The main objective of the evaluation of semi-automatic wordnet expansion meth-
od is to answer the question: “How useful this algorithm is in practice?”. Wordnet
reconstruction seems to be close to this task. The basic idea is straightforward:
first some word w is removed from the wordnet; next the expansion algorithm
is expected to re-attach the word w. The closer the proposed attachment to its
original position is the better. However, several constraints must be fulfilled in
order to make the method useful in practice:

– Distance weighting — suggested attachments should be useful for a linguist
working on extension of a wordnet, so, first, it should be related by one of the
wordnet relations, but also attachments closer to the most appropriate point
are trivially better then distant ones. For example, when for Walker hound
algorithm proposes a mammal then it is not very useful in semi-automatic
wordnet expansion as the hypernymic path between both synsets is long.5 A
hypernymic path is not the only option for measuring the linguist perceived
distance in the wordnet. Distance perception measured along paths including
links of different relations should be further investigated.

– An algorithm that identifies multiple word senses is better then an algorithm
that finds only one sense of a given word.

– The evaluation methodology should be independent from any single wordnet
expansion algorithm.

– The evaluation should focus on the lower parts of the hypernymy hierarchy
of a wordnet. For evaluation focused on wordnet expansion, not construction
from scratch, this approach seems appropriate. It provides similar settings for
the use of the expansion algorithms during evaluation as in future use, i.e.,
some network structure is present. Moreover, it is hardly possible to create
automatically the entire wordnet structure from scratch, cf [12]. On the other
hand, automated wordnet construction seems to be a different problem that
requires different evaluation setting. This requirement has a side effect of
making the evaluation harder for wordnet expansion algorithms as lower
parts of hypernymy hierarchy tends to have more specialized words, which
are usually less frequent in corpora.

– Evaluation results should be interpreted easily and intuitively. Thus, we
favour measures like precision and recall known from the information re-
trieval. Specifically, we want to avoid the need of setting of thresholds in
evaluation phase. This is contrast to approach used in, e.g., [9], where set-
ting of a wrong threshold could result in accepting very broad attachment
areas, see [3].

5 In WordNet 3.0 the path is as follows: Walker hound → fox hound → hound →
hunting dog → dog → canine → carnivore → placental → mammal. This assignment
would be correct according to methodology used by Snow et al [16] as they ask
evaluators a following question "is X a Y ?".

298 B. Broda et al.

– The evaluation should be performed for words of different frequency in the
corpus. Construction of an algorithm that would cope with infrequent words
in a robust manner is very hard. Alas, this is the necessity as our experience
with wordnet construction shows. The Zipfian nature of words distribution is
very evident in this problem, i.e., there is relatively small amount of frequent
words which are included in a wordnet during the initial phase. The remain-
ing words are infrequent in general language, but nevertheless, important
from the linguistic point of view.

– Even if evaluation focuses on lower parts of the hypernymy hierarchy it
should also refer to other relations. For example, paw is a part6 of canine in
WordNet 3.0, but the path in hypernymy/hyponymy graph is 19 edges long.
However, traversal through different relations should be carefully restricted
as it could lead to traveling to semantically unrelated synsets in just a few
steps — and that kind of attachment proposals are not very useful for linguist
working on semi-automatic extension of a wordnet.

2.3 Methodology

It is hard to find works in literature treating the evaluation of wordnet expan-
sion algorithm as a problem independent from any particular method. Mostly,
evaluation methods are proposed for a specific expansion algorithm and specific
experimental setting.

Our main assumption is that every evaluation is performed on the same lexico-
semantic network. All other data may be adjusted accordingly to the expansion
method being tested and the data available at the time of the testing. The
evaluation method proposed by us consists of the following steps:

1. Draw a sample of the words from the lexico-semantic network.
2. Split words into two disjoint sets. Namely, a set of frequent and a set of

infrequent words. Frequencies of words can be collected from any corpus at
hand. However they can be strongly biased by the size of the corpus and its
content. Comparison between different algorithms should be performed on
corpora from the same domain. In this work we focus on the general language
because the primary role of a wordnet is to describe general language.

3. For each word set:
(a) Take a subset S of the sample set. The best option would be if card(S)

was 1 but due to the possible limitations on computation time larger
values may be used in practice.

(b) Remove words in S from the lexico-semantic network, but not network
nodes. Lacking nodes (e.g., synsets in a wordnet) can significantly alter
the structure of a network. Note, that via tuning of depth parameter P
(Sec. 4.1) one can evaluate only leaves of the semantic network.

(c) Run the tested algorithm.
(d) Evaluate suggestions.

6 Part holonymy relation.

Evaluation Method for Automated Wordnet Expansion 299

Point 3d should be described in more details. The tested algorithm returns
attachment suggestions for words in S. One word can be associated with zero or
more suggestions (attachment points). The suggestions are next compared with
the original structure of the lexico-semantic network. One should measure the
distance from the suggested attachment points to the original positions of the
tested words in the network. We set maximal distance max_d = 6 at which
suggestion is considered to be informative for linguists. To be precise the path
can include up to max_d− 1 hyper/hyponymy links and one additional link of
the other type.

The suggested max_d value has been derived from the analysis of the linguist
work and was confirmed in discussions with lexicographers. It represents the
number of transitions between the suggested attachment and an appropriate
place for the word. It was observed that longer distance gives the linguist no real
clue and the suggestion at such distance is usually ignored. Aggregated results
for all words should be considered in the perspective of the distance histograms.
We propose three evaluation strategies:

1. For a given word, only the attachment of the closest path to one of the word’s
original positions in the network is taken into account.

2. Only the position of the highest scored attachment (with the strongest sup-
port from the algorithm) for a given word is considered.

3. All suggestions generated by the algorithm word are counted in relation to
their distance.

Concerning strategy 1, the closest path gives insight into usefulness of a given
expansion algorithm for a linguist. The question answered here is whether the
algorithm presents any informative suggestion for a linguist. Attachments lo-
cated to far deliver too little information and requires too much manual work
to be corrected. We call it Closest in further experiments. Strategy 2 shows how
correlated are the best propositions with human decisions. We call it Strongest
in further experiments.

The algorithm is not only useful when it returns one or few good propositions
for a given word, but also the ability to abstain from making wrong sugges-
tions has very important practical meaning. A naive algorithm can return every
node as an attachment suggestion. Strategy 3, probably the most natural one,
henceforth called All, gives us insight into this aspect.

In addition to All and a standard Recall defined as the ratio of words with
at least one suggestion to the testing sample size, the second type of recall,
called Sense Recall has been introduced. Sense Recall is defined as a ratio of the
different attachment suggestions for one word to all known senses of that word.
It measures how good a given algorithm is at finding different senses of a word.

3 Semi-automatic Wordnet Expansion

Among different approaches to automated wordnet expansion those that allow
for combining several knowledge sources seem to create the most interesting

300 B. Broda et al.

perspectives. As Metric-based Framework [20] is limited to the taxonomy ex-
traction, we will pay more attention to WordnetWeaver system and its AAA
[10,12], as well, as Probabilistic Wordnet Expansion (PWE) of [16]. However, as
the implementation of the latter is not available, its thorough re-implementation
will be discussed in the next section.

3.1 Snow’s Algorithm Revisited

Snow et al. proposed an algorithm, called here Probabilistic Wordnet Expansion
(PWE) for taxonomy induction based on a formal probabilistic model [16].

PWE is based on the probabilistic model of the taxonomy structure. This
probability is expressed in terms of taxonomic relations, i.e., pairs of objects
(lemmas or word senses in the case of a wordnet) present in the taxonomy. The
probability of a relation instance is based on heterogeneous sources of evidence.
For WordNet expansion Snow et al. consider two types of relations: (transitive)
hypernymy and (m,n)-cousinhood. The second one is a generalization of the co-
hyponymy relation. Namely, (m,n)-cousinhood occurs between two word senses
i and j if their least common subsumer7 is exactly m links from i and n links
from j in the WordNet graph.

The presence of one hypernymy or (m,n)-cousinhood relations imply set of
other relations. For example, a direct hypernym of one word sense implies all
other indirect hypernyms, because the hypernymy is transitive. Thus, in order to
add a new word to the taxonomy, the whole taxonomy must be (locally) searched
for an attachment place that maximises probabilities of all the implied relations.

Snow et al. use two sources of evidences based on logistic regression to de-
termine probability of a relation (hypernymy or (m,n)-cousinhood) linking two
words. The hypernymy classifier was build on the basis of patterns extracted from
corpora with the help of generalized syntactic dependency paths from MiniPar
parser [8]. The (m,n)-cousinhood classifier is build in a two-step process on the
basis of Harris’ distributional hypothesis [6]. First, the clusters are formed us-
ing a measure of semantic relatedness between words. Second, the classifier is
trained with only one feature — a cosine similarity between a word and a cluster
centroid. For both classifiers the training data is derived from WordNet [5].

For the need of evaluation we have reimplemented PWE for Polish. Alas,
there are a few differences between our implementation and the original PWE
implementation [16,15]. They arise either from the lack of certain NLP tools
for Polish or unclear description of the original algorithm. More specifically, a
parser which is comparable to MiniPar is not available for Polish, so instead of
implementing a hypernymy classifier based on MiniPar we followed the approach
for classification of lexico-semantic relation proposed in [11], which expresses
good results for Polish. The difference between work presented in [11] and here
is in the use of logistic regression in a similar way to [16] for classification.

7 Snow et al. define the least common subsumer as “a synset that is an ancestor in the
hypernym hierarchy of both i and j which has no child that is also an ancestor of
both i and j.”, cf [16].

Evaluation Method for Automated Wordnet Expansion 301

Another significant difference was introduced in the implementation of the
(m,n)-cousinhood classifier. Snow et al. cite the work of Ravichandran et al. [14]
in the context of clustering. Ravichandran et al. are primarily concerned with
speeding up computations of the cosine between feature vectors. The evaluation
in [14] is done for computing similarity lists, not for clustering8. There are a few
possible ways in which the step of the (m,n)-cousinhood classification could be
performed:
1. Clustering by Committee (CBC) algorithm was used, which was cited in [14],
2. other clustering algorithm was used,
3. the output of the similarity function was used directly.

The use of cluster centroids, explicitly referred to in [16,15], is a strong evidence
that one of the first two variants was applied in the original PWE implementa-
tion. For similarity lists the centroid is not typically defined.9 On the other hand,
in [15] only similarity function is used for an experiment with coordinate-term
classification. We experimented with all the approaches, i.e., we tested improved
CBC algorithm [3], several classical clustering algorithms (hierarchical, flat and
graph-based) and the usage of a measure of semantic relatedness without re-
ferring to “cluster centroid” notion. The preliminary experiments showed that
the best results are achieved with the last possibility, i.e., the direct use of the
measure of semantic relatedness. Thus, in the further experiments we will use
only this variant.

3.2 Algorithm of Activation-Area Attachment

AAA introduces a notion of a semantic fit between two lemmas10. The semantic
fit is calculated on the basis of several knowledge sources and the linear combi-
nation of their support. The sources are represented as sets of lemma pairs and
are extracted by several methods of different types: a measure of semantic re-
latedness (only pairs of the highest values of the relatedness are included in the
set), hand-written lexico-syntactic patterns, automatically extracted patterns
and a classifier recognising pairs representing instances of one of the wordnet
lexico-semantic relations, cf [12]. We assume that a weight is assigned to each
knowledge source. Weight values can be defined in any way, however in the case
of the experiments presented here the weight values equal to the precision of
the sets evaluated manually by linguists on the basis of representative samples
drawn from the sets.

AAA works in two phases. During the first phase semantic fit between an
input lemma x and each synset Y is computed. The semantic fit between a
lemma and a synset is calculated on the basis of:
8 For examples: “We randomly choose 100 nouns and calculate the top N elements

closest to each noun in the similarity” [14].
9 One can calculate a centroid for a similarity list, but this seems to be incorrect and

very ad hoc approach.
10 A lemma is a pre-selected basic morphological form representing the whole set of

words or multi-word expressions that differ only with respect to values of grammat-
ical categories (like case or gender) but express the same lexical meaning.

302 B. Broda et al.

– the lemma-to-lemma fit between a given lemma and all lemmas included in
the synset,

– as well as, the fit calculated for the synsets in the neighbourhood.

The neighbourhood is defined as encompassing synsets located up to a maxi-
mal distance where the distance is calculated as the length of the path consisting
of the relation links. The following relations were taken into account during the
experiments: hypernymy, hyponymy, part, portion, place, collection’s element,
material, taxonomic element, type, antonymy, conversion, feminine counterpart,
diminutive, young of, expressiveness, conversion, relatedness, troponymy, fuzzy-
nymy, synonymy, aspectuality and causation.

Lemma-to-synset fit values are transformed into strong fit according to the
weighted voting scheme (higher sum of accumulated ‘votes’ is required for larger,
lower for smaller synsets) and weak fit following non-linear filtering with param-
eters set experimentally. In the later phase synsets that fit the input lemma are
grouped into activation areas describing the input lemma senses.

During the second phase, on the basis of the strong and weak fit between x
and synsets, connected subgraphs of the hypernymic wordnet structure, called
activation areas, are identified. Each activation area includes only synsets for
which semantic fit to x is above some threshold and is assigned its semantic fit
value to x which is defined as the maximum of the semantic fit values between
x and synsets of the area. The weak fit helps to avoid too fragmented and small
activation areas, but it depends on the predefined threshold.

4 Methodology Applied

In this section the proposed methodology is applied to compare two state-of-the-
art wordnet expansion algorithms, i.e., AAA [10] and PWE [16].

4.1 Input Data

When evaluating an implementation of a single algorithm one has to prepare
both input data for an evaluation framework and for the implementation. This
separation comes out of the fact that the evaluation framework is independent
from the implementation. Only basic data, i.e., a wordnet and lists of words to
be added, are shared between the two.

Input data for the evaluation framework consists of:

– a lexico-semantic network (e.g., a wordnet),
– a test set of words selected from the network.
– corpus frequency of the selected words.

The frequency of words is required for dividing words in two groups, i.e., low and
high frequency words. This data can be derived from some available corpus. The
words for testing are selected in a straightforward procedure. Let W denotes a
list of words that are at least P links away from the root of the lexico-semantic

Evaluation Method for Automated Wordnet Expansion 303

network. The W should be split into two disjoint sets according to the frequency
of word occurrences. Namely, words with frequencies higher then some threshold
L form the set of high frequency words (Wm) and words with frequencies lower
then the threshold form the set of low frequency words (Wl). Usually, card(Wm)

and card(Wn) are large, thus we need to select a representative sample of the
words from those sets in order to speed up computation, cf. [7]. We will denote
those samples for Wl and Wm as Wlsampled

and Wmsampled
respectively.

Parameter P represents level of abstraction. We assume that the majority of
new lemmas are added at the bottom or in the middle of the network, because
top or root senses are rare in the language use. The top-level hierarchy of a
lexico-semantic network is usually far too abstract to be properly added in an
automatic way. Value of L is usually set heuristically, as it is strongly dependent
on the algorithm used and resources available.

Input data for the implementation of an algorithm must be synchronized with
the data for the evaluation framework. It must be gathered from the same corpus
and if a lexico-semantic network is used by the algorithm, it has to be the same
as the network provided for the evaluation framework.

4.2 Evaluation Framework’s Data

The methodology is language independent assuming that a corpus and a lexico-
semantic network is available for that language. We decided to test our evaluation
methodology for Polish as this presents unique opportunity for experiments.
A large Polish wordnet – plWordNet [12] – is not yet finished and is being
actively built with the support of automatic methods. For the evaluation we
used plWordnet in the version 1.2 which consists of 47 402 lexical units (senses)
and 34 919 synsets. A frequency list was extracted from the following corpora:
the IPI PAN Corpus (254 million tokens) [13], the corpus of the electronic edition
of Rzeczpospolita (a Polish daily, 113 million) [17], the corpus of documents from
Polish Wikipedia (171 million), and a corpus of large electronic text documents
in Polish collected from the Internet (500 million). We use words that appear at
least 50 times in a corpus, because we noticed that PWE fails for less frequent
words. L was set to 200 and P equaled 4. In table 1 we can see size of Wl, Wm,
Wlsampled

and Wmsampled
. The first row represents all words from the wordnet

when P threshold is applied. Our experiments were conducted only for nouns.
Synonymy, hypernymy and meronymy were considered during the evaluation.

4.3 Results and Their Comparison

The experiments provided us better insights into the performance of both tested
algorithms. First, both were compared with respect to the number of word senses
(attachments) discovered for lemmas being added. AAA has better Sense Recall
than PWE (see Tab. 2 and 3). Second, we can see how the frequency of test
lemmas influences the algorithm performance. Comparison between Tab. 2 and
Tab. 3 clearly indicates that both algorithms suffer when faced with rare lemmas.
The only exception is for PWE when all propositions are considered. In this case

304 B. Broda et al.

Table 1. Sizes of selected words

frequency all sample
19172 —

> 50 12842 1034
> 200 9473 1000
< 200 ∩ > 50 3369 870

PWE performs a little better for infrequent then for frequent lemmas, but the
difference is not significant. This might be related to the fact that recall for PWE
is much lower for infrequent then for frequent lemmas (82% vs 94%). Still, the
precision for both Wlsampled

and Wmsampled
is better for AAA then for PWE.

For both algorithms most correct suggestions are no further away than 3 from
the original synset. However, in the case of AAA perfect hits (distance 0) and
near perfect hits (distance 1) occurred almost twice as often as for PWE.

Table 2. Results for infrequent lemmas (Wlsampled
set). AAA recall for all propositions

is 99%, the algorithm found on average 72% of all known senses for attached lemmas
and returned 4299 propositions for all lemmas. PWE recall for all propositions is 82%,
the algorithm found on average 58% of all known senses for attached lemmas and
returned 3555 propositions for all lemmas.

AAA PWE
Dist. Closest [%] Strongest [%] All [%] Closest [%] Strongest [%] All [%]
0 9.0 2.4 1.9 2.8 1.0 0.6
1 35.9 20.5 10.1 28.3 16.2 7.1
2 17.6 20.3 23.8 18.0 11.8 10.2
3 6.9 12.0 12.7 12.7 11.4 11.0
4 4.9 5.1 8.0 9.1 11.3 11.6
5 6.0 6.0 6.1 6.5 9.0 9.7
6 0.8 0.6 0.6 2.1 1.5 1.2
Total 81.0 66.8 63.2 79.5 62.2 51.3

Splitting all the lemmas into two sets was meant to simulate two common
situations. More frequent words (Wm) are usually attached at the early stage
of wordnet construction. In that case, both algorithms worked rather well, even
though only AAA achieved overall precision higher than 70% and precision of
the closest path over 90%. However, infrequent words (Wl) are added to the
wordnet when it reaches certain level of maturity. At such time the majority of
new lemmas are infrequent in any corpora. Thus, it is important to gracefully
handle rare occurring lemmas. In such an environment AAA were able to produce
higher number of correct suggestions. Interestingly, almost half of the correct
suggestions where very close to the appropriate attachment points for AAA.

Evaluation Method for Automated Wordnet Expansion 305

Table 3. Results for frequent lemmas (Wmsampled). AAA recall for all the propositions
is 99%, the algorithm found on average 66% of all known senses for attached lemmas
and returned 4949 propositions for all lemmas. PWE recall for all propositions is 94%,
the algorithm found on average 52% of all known senses for attached lemmas and
returned 4695 propositions for all lemmas.

AAA PWE
Dist. Closest [%] Strongest [%] All [%] Closest [%] Strongest [%] All [%]
0 15.6 4.3 3.4 3.6 1.0 0.7
1 49.2 29.9 15.2 27.7 16.3 7.0
2 12.7 22.3 29.2 14.0 11.3 9.9
3 5.0 9.6 13.6 12.6 10.6 10.5
4 4.2 6.4 8.0 10.5 10.2 10.9
5 4.0 5.4 5.8 10.2 9.6 10.9
6 0.4 0.9 0.5 1.2 1.0 1.2
Total 91.1 78.8 75.7 79.8 60.0 51.1

5 Conclusions

We proposed a new evaluation method that can be applied to a class of al-
gorithms that expand wordnets in an automatic way. The method can be ap-
plied to any lexico-semantic network which has a similar structure to Prince-
ton WordNet [5]. The proposed methodology is based on experience collected
during several years of plWordNet expansion performed by a team of lexicogra-
phers supported by the application of WordnetWeaver – a semi-automatic word-
net expansion system. Source code for the evaluation framework is available at
http://nlp.pwr.wroc.pl/expeval.

Application of the proposed methodology in testing algorithms enables a
straightforward comparison of the approaches without the need of their reimple-
mentation (if the systems are available). Only a few assumptions must be met,
i.e., the genre of text used for training the expansion algorithm should be similar
and the sample of words should be drawn in a proper way.

The methodology was applied to two state-of-the-art algorithms called Al-
gorithm of Activation-area Attachment (AAA) implemented within Wordnet-
Weaver system [10,12], and Probabilistic WordNet Expansion (PWE) [16,15].
Within the evaluation framework AAA performs better then PWE for both
frequent and infrequent lemmas using all quality assessment indices. Namely,
precision of AAA is higher, AAA returns more propositions for test lemmas and
the number of senses found is larger for AAA then for PWE.

This paper focus on Polish language, but the evaluation methodology can be
applied to any language. In future work we plan to perform similar study also
for other languages. Preliminary results for English are encouraging and support
conclusions drawn in this paper.

http://nlp.pwr.wroc.pl/expeval

306 B. Broda et al.

References

1. Alfonseca, E., Manandhar, S.: Extending a lexical ontology by a combination of
distributional semantics signatures. In: Gómez-Pérez, A., Benjamins, V.R. (eds.)
EKAW 2002. LNCS (LNAI), vol. 2473, pp. 1–7. Springer, Heidelberg (2002)

2. BNC: The British National Corpus, version 2 (BNC World), distributed by Oxford
University Computing Services on behalf of the BNC Consortium (2001)

3. Broda, B., Piasecki, M., Szpakowicz, S.: Extraction of polish noun senses from large
corpora by means of clustering. Control and Cybernetics 31(2), 401–420 (2010)

4. Caraballo, S.A.: Automatic construction of a hypernym-labeled noun hierarchy
from text. In: Proceedings of ACL 1999, Baltimore, MD, pp. 120–126 (1999)

5. Fellbaum, C. (ed.): WordNet — An Electronic Lexical Database. The MIT Press
(1998)

6. Harris, Z.S.: Mathematical Structures of Language. Interscience Publishers, New
York (1968)

7. Israel, G.: Determining sample size. Tech. rep., University of Florida (1992)
8. Lin, D.: Principle-based parsing without overgeneration. In: Proc. ACL 1993,

Columbus, Ohio (1993)
9. Pantel, P.: Clustering by committee. Ph.D. thesis, Edmonton, Alta., Canada

(2003), adviser-Dekang Lin
10. Piasecki, M., Broda, B., Głąbska, M., Marcińczuk, M., Szpakowicz, S.: Semi-

automatic expansion of polish wordnet based on activation-area attachment. In:
Recent Advances in Intelligent Information Systems, pp. 247–260. EXIT (2009)

11. Piasecki, M., Szpakowicz, S., Marcińczuk, M., Broda, B.: Classification-based fil-
tering of semantic relatedness in hypernymy extraction. In: Nordström, B., Ranta,
A. (eds.) GoTAL 2008. LNCS (LNAI), vol. 5221, pp. 393–404. Springer, Heidelberg
(2008)

12. Piasecki, M., Szpakowicz, S., Broda, B.: A Wordnet from the Ground Up. Oficyna
Wydawnicza Politechniki Wrocławskiej, Wrocław (2009)

13. Przepiórkowski, A.: The IPI PAN Corpus: Preliminary version. Institute of Com-
puter Science PAS (2004)

14. Ravichandran, D., Pantel, P., Hovy, E.: Randomized algorithms and nlp: using
locality sensitive hash function for high speed noun clustering. In: Proc. of the
43rd Annual Meeting on ACL, pp. 622–629 (2005)

15. Snow, R.: Semantic Taxonomy Induction. Ph.D. thesis (2009)
16. Snow, R., Jurafsky, D., Ng, A.Y.: Semantic taxonomy induction from heterogenous

evidence. In: COLING 2006 (2006)
17. Weiss, D.: Korpus Rzeczpospolitej, corpus from the online edtion of Rzeczy-

pospolita (2008), http://www.cs.put.poznan.pl/dweiss/rzeczpospolita
18. Widdows, D.: Unsupervised methods for developing taxonomies by combining syn-

tactic and statistical information. In: Proc. HLT of North American Chapter of
the ACL (2003)

19. Witschel, H.F.: Using decision trees and text mining techniques for extending tax-
onomies. In: Proc. of Learning and Extending Lexical Ontologies by Using Machine
Learning Methods, Workshop at ICML 2005 (2005)

20. Yang, H., Callan, J.: A metric-based framework for automatic taxonomy induction.
In: Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of
the AFNLP, pp. 271–279. ACL (2009)

http://www.cs.put.poznan.pl/dweiss/rzeczpospolita

Mining Class Association Rules
for Word Sense Disambiguation

Łukasz Kobyliński

Institute of Computer Science, Polish Academy of Sciences,
ul. Ordona 21, 01-237 Warszawa, Poland

lkobylinski@ipipan.waw.pl

Abstract. In this paper we propose an approach to the task of Word
Sense Disambiguation problem that uses Class Association Rules to cre-
ate an effective and human-understandable rule-based classifier. We pre-
sent the accuracy of classification of selected polysemous words on an
evaluation corpus using the proposed method and compare it to other
known approaches. We discuss the advantages and weaknesses of a clas-
sifier based on association rules and present ideas for future work on the
idea.

1 Introduction

The task of Word Sense Disambiguation (WSD) consists of correlating a given
instance of a polysemous word, used in a particular context (sentence, para-
graph, etc.), with one of known senses of this word. It is a problem we face every
day communicating, as every natural language seems to contain some lexical
ambiguity as its characteristic feature. Typical examples of English language
words that may convey multiple senses are “bank” (having a meaning related to
geographical feature or a financial institution) and “pen” (a place or an instru-
ment for writing). It is thus necessary to resolve such ambiguities each time they
appear in spoken or written text to be able to comprehend the text as a whole.

Automatic WSD is an important problem, for which an accurate solution
would greatly simplify implementations of other tasks related to computational
linguistics, such as machine translation. Whether it can be solved completely is
an open question, having in mind that even humans vary in their decisions about
the sense of a particular word in context. From a computational point of view
this problem translates to the problem of classification: assigning one of known
senses (classes) to each of the polysemous words appearing in a text fragment
(instances).

The aim of our contribution is twofold: to present the results of a supervised
learning approach to the task of WSD, evaluated on a Polish language corpus
constrained to one specific domain and to propose a novel method of word sense
classification, based on mining Class Association Rules (CARs). The motiva-
tion for the latter approach is creating a classifier that may be understood and
modified by a human, which is not possible using the classical best-performing
machine learning methods (neural networks, Bayes approaches, SVM, etc.).

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 307–317, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

308 Ł. Kobyliński

In the following chapters we first briefly describe work done previously in the
field of Word Sense Disambiguation (Chapter 2). Next, we discuss the corpus
used to assess the accuracy of the proposed method, which was created by man-
ually annotating Polish language texts (Chapter 3). In Chapter 4 we describe
the approach used to represent the context of disambiguated words in the form
of a feature vector. In Chapter 5 we present the idea of using Class Association
Rules in the task of WSD for classifying word senses. Finally, we show the results
of experiments conducted using the proposed method and compared with other,
known approaches (Chapter 6) and conclude with a summary of the contribution
and ideas for future work (Chapter 7).

2 Word Sense Disambiguation

The idea of performing WSD automatically seems to have emerged in the late
1940s, when also the work on machine translation began. Many approaches have
been proposed since then, including AI-based methods (as a part of larger sys-
tems intended for full language understanding), knowledge-based methods (using
such language resources as thesauri and machine-readable dictionaries to com-
pare the context of a particular word with definitions of each of the senses)
and corpus-based methods (learning on the samples provided by an annotated
text corpus) [8]. The Lesk’s algorithm [10] is a particularly notable approach
to WSD, which prompted evolution of knowledge-based methods and to which
corpus-based methods are compared still today. In this algorithm, a list of words
from each sense definition from the dictionary is created. Disambiguation is ac-
complished by selecting the sense, for which the overlap between the word list
and the words in disambiguated context is the largest.

Recently, machine learning methods have been used extensively for the task
of WSD and these may be further divided into supervised, semi-supervised and
unsupervised approaches. Supervised learning methods require a text corpus,
annotated with information about the correct sense of each or some of the ap-
pearing words. Sense annotation consists of associating a sense label (taken from
a sense dictionary) with each instance of a polysemous word in the running text.
Methods of this type are first trained on a learning corpus, manually annotated
by linguists and then evaluated on another corpus, by automatically assigning
annotations for ambiguous words. As reported by [18] these methods usually
achieve the best results, compared with semi- and unsupervised approaches. Ex-
amples of algorithms used include Naive Bayes, kNN and SVM.

Semi-supervised methods usually require only a small “bootstrap sample” of
annotations and large corpus of unannotated data. For example in [12] an ap-
proach is presented, where co-training and self-training paradigms are used for
WSD, attempting to increase the small amount of available training data and
tag new, previously unlabeled samples from a dataset.

Finally, unsupervised methods, which use external knowledge sources, such
as WordNet or Wikipedia and unsupervised learning approaches, can be used in
situations where very little or no training data in the form of annotated corpus

Mining Class Association Rules for Word Sense Disambiguation 309

is available. In [2] the authors present a graph-based approach, where WordNet
is used as a lexical knowledge base containing hierarchical information about
relationships between ambiguous words and other elements of the language.

In the context of Polish language there is very little work done in the field
of automatic WSD. One of the first results of WSD for Polish language texts
has been presented in [6], where supervised learning methods have been trained
and evaluated on a small corpus of 1500 annotated examples, taken from a
dictionary of 13 polysemous words. Some experimental results have also been
presented in [13], where the classifier comparison environment used also in this
contribution has been introduced.

Rule based approaches have been already used in the task of WSD and promis-
ing results of experiments have been reported. For example, the performance of
several rule-based classifiers (J48, PART, decision table) has been compared
in [15]. The authors show that rule-based methods may achieve better results
than purely statistical approaches, such as Naive Bayes. The idea of mining asso-
ciation rules in a corpus annotated with word senses has been presented in [16],
but for finding correlations between annotations done by different linguists and
not for sense classification itself.

3 Evaluation Corpus

We have created a sense-annotated corpus of Polish language texts from the do-
main of economy. The evaluation corpus has been composed of resources coming
from: 1 million subcorpus of the National Corpus of Polish [19], with morphosyn-
tactic annotation and a collection of stock market reports in Polish, collected
from the Internet. Details of the corpus may be found in Table 1.

Table 1. Statistics of the evaluation corpus

Corpus Number of segments Number of annotated segments

Subcorpus of NCP 87 816 3 821
Stock market reports 282 366 18 719

Overall 370 182 22 540

We have automatically selected a subcorpus from the National Corpus of Pol-
ish by choosing the fragments, which had the greatest number of occurrences
of words related to the domain of economy. The words have been collected by
hand-picking 5100 multi-word economy-related dictionary entries, names of in-
stitutions and agencies, as well as stock names from the Warsaw Stock Exchange.
While the resources from NCP subcorpus have already been human-annotated
morphosyntactically, the market reports have been not. Therefore, we have used
the TaKIPI tagger [17] to add the annotation automatically.

310 Ł. Kobyliński

To enable the task of annotating the corpus with sense tags, we have created a
dictionary of polysemous lexemes. We have gathered 52 polysemous words from
the domain of economy (in Polish) and associated them with a list of possible
senses. For each word the senses have been grouped into a few broader senses,
to lower the granularity of the dictionary. The experience with word sense dis-
ambiguation seems to tell us [1] that most automated methods fail with high
granularity of senses and it is not needed in real applications. For example, for
the word “rynek” the dictionaries offer no less than 14 different definitions. We
have combined these 14 senses into 5 broader senses, which are more intuitive,
easier to grasp by human annotators and should result in better classification ac-
curacy using automated methods. The dictionary has been created by a linguist
and edited using a simple web-based application, to enable easy synchronization
of the definitions between the linguists during the annotation phase. Table 2
presents the words included in the resulting dictionary and Figure 1 shows the
histogram of the number of senses per each lexeme. There is an average of 3.62
senses per lexeme in the dictionary.

Table 2. Lexemes in the sense dictionary

idx lexeme idx lexeme idx lexeme idx lexeme

1 agent[n] 14 koszt[n] 27 punkt[n] 40 ubezpieczenie[n]
2 akcja[n] 15 linia[n] 28 rachunek[n] 41 udział[n]
3 baza[n] 16 ochrona[n] 29 rynek[n] 42 umowa[n]
4 cena[n] 17 opcja[n] 30 rząd[n] 43 unia[n]
5 dochód[n] 18 pieniądz[n] 31 sąd[n] 44 wartość[n]
6 efekt[n] 19 podatek[n] 32 siła[n] 45 warunek[n]
7 firma[n] 20 podstawa[n] 33 spółka[n] 46 zasada[n]
8 fundusz[n] 21 polityka[n] 34 stan[n] 47 zmiana[n]
9 gospodarka[n] 22 pomoc[n] 35 stopa[n] 48 zysk[n]
10 granica[n] 23 postępowanie[n] 36 stopień[n] 49 czarny[a]
11 inwestycja[n] 24 praca[n] 37 system[n] 50 specjalny[a]
12 jednostka[n] 25 prawo[n] 38 środek[n] 51 wolny[a]
13 kontrola[n] 26 projekt[n] 39 świadczenie[n] 52 złoty[a]

Fig. 1. Histogram of the number of senses per each lexeme in the dictionary. Numbers
on the horizontal axis reflect the index of a lexeme from Table 2.

Mining Class Association Rules for Word Sense Disambiguation 311

Semantic annotation of the final corpus has been performed by an average
number of four linguists. Fragments of the texts (usually paragraphs) have been
selected at random from the corpus and assigned to the annotators. Each frag-
ment has been assigned to any of two annotators at the same time. One of the
linguists had been assigned the role of a “super-annotator”, who has the final de-
cision about a particular annotation in case of a disagreement of two annotators
working on a fragment. He or she also had a general overview of the work al-
ready done and may have reviewed the statistics of individual annotators’ work.
The annotation has been performed using a multi-user, web-based application
developed for that purpose. The resulting distribution of instances of each of the
senses in the annotated corpus is presented on Figure 2.

Fig. 2. Percentage of occurrences of each of the senses (per lexeme from the dictionary)
in the evaluation corpus. Sense occurrences are sorted in descending order and shades of
gray indicate particular senses of the lexemes (e.g. bottom bar – black – most frequent
sense of a particular lexeme, dark gray – second most frequent, and so on).

It may be noted that some words from the dictionary were not found in the
corpus at all (and have been ignored in the evaluation), while the distribution of
senses of other words turned out to be highly skewed towards one or two most
frequent meanings. This type of distribution is an example of Zipf’s Law, which
states that frequency of an object is inversely proportional to its rank in the
frequency table.

4 Feature Representation

As we are treating the WSD task as a classification problem, we have to be able
to represent the textual data (disambiguated words in context) in the form of a
fixed-length feature vector. We have chosen to modify for our needs and use the
feature generators implemented in the WSD Development Environment [13].

312 Ł. Kobyliński

Thematic Feature Generator (TFG) Existence of a word in a window around
the disambiguated lexeme with window size: 5–25 and lemmatization: on/off.

Structural Feature Generator 1 (SFG1) Existence of a word on a particular
position in a small window relative to the disambiguated lexeme with window
size: 1–5 and lemmatization: on/off.

Structural Feature Generator 2 (SFG2) Existence of part-of-speech on a par-
ticular position in a small window relative to the disambiguated lexeme with
window size: 1–5 and tagset: full or simplified.

Keyword Feature Generator (KFG) Grammatical form of the disambiguated lex-
eme with tagset: full or simplified.

Examples of feature vectors created by the generators described above are pre-
sented on Figure 3.

TFG
płacić cena złotówka moralność kilogram przetwarzać

1 0 1 0 1 1

SFG1
obniżyć-2 obniżyć-1 siebie-1 surowiec+1 praca+1

1 0 1 1 0

SFG2 praet-2 subst-1 adj-1 subst+1
1 0 0 1

KFG subst sg pl dat acc
1 0 1 0 1

Fig. 3. Examples of feature vectors

5 Class Association Rules

Association rule mining has been proposed in [3], originally as a method for mar-
ket basket analysis. This knowledge representation method focuses on showing
frequent co-occurrences of attribute values in data. During the last two decades
the work on association rules has bloomed, as the technique proved to efficiently
provide interesting insights into very large collections of data. Some interesting
applications of association rules to real-world problems include: mining medi-
cal data to predict heart diseases ([14]), text document categorization ([5]) and
image classification ([9]).

Definition. Let’s assume the database D contains data described by binary
attributes I = {I1, I2, . . . , Im}. We call the set I the itemspace. Database D is a
set of transactions, D = {T1, T2, . . . , Tn} and each transaction T is a set of items
(an itemset) from the itemspace, T ⊆ I. Association rules have the form of an
implication over two itemsets, X and Y , where X,Y ∈ I and X ∩ Y = ∅:

R : X → Y (1)

Mining Class Association Rules for Word Sense Disambiguation 313

Itemset X is called the rule’s body, while itemset Y is called the rule’s head.
A rule of the form shown above indicates, that the occurrence of items in the
set X often implicates the occurrence of items in the set Y . The strength of this
implication may be measured by two basic parameters: support and confidence.
The support of a set of items A is determined by the number of transactions in
D, which contain A:

supp(A) = |DA| (2)

A relative support value, calculated in relation to the size of the database, may
also be used:

suppr(A) =
|DA|
|D| (3)

The relative support of a rule is defined as the support of its body and head,
which is the union of itemsets X and Y , divided by the size of the database:

suppr(X → Y) =
supp(X ∪ Y)

|D| =
|DX∪Y |
|D| (4)

The confidence of a rule is a conditional probability that a transaction containing
the rule’s body also contains its head.

conf(X → Y) =
supp(X ∪ Y)

suppX
=

|DX∪Y |
|DX | (5)

We say that an itemset A is frequent in database D, when its support in D is
greater than a certain threshold, called minimum support, supp(A) > minSup.
Similarly, we say that a rule R is strong in database D if its support and confi-
dence are greater than minimum rule support and confidence, supp(X → Y) >
minSup and conf(X → Y) > minConf .

Use in classification. Association rules used for classification, frequently re-
ferred to as Class Association Rules (CARs), are rules constrained to have
a class label in its head. Having I = {I1, I2, . . . , Im} (the set of items) and
C = {c1, c2, . . . , ck} (the set of class labels), X ⊂ I, c ∈ C, CAR is rule of the
following form:

CAR : X → c (6)

The first method of building a classifier based on a set of mined association rules,
named CBA, has been introduced in [11]. The process is divided into two parts:
rule generation (CBA-RG) and building the classifier (CBA-CB). During the
rule generation step frequent itemsets (having support greater than a specified
minsup value) are being found in the data, using the Apriori algorithm [4] to
avoid searching the entire feature space. Apriori principle tells us that no superset
of an infrequent itemset can be frequent. The difference in the approach to
finding general frequent itemsets for building association rules and the CBA-RG
algorithm consists in considering also the category label as an item in the formed
itemsets. Next, rules are created from the itemsets, which have a confidence
higher than a set minimum value minconf.

314 Ł. Kobyliński

In the second step of the process the generated rules are sorted according to
a precedence relation. This relation is defined as follows:

ri ≺ rj ⇔ [conf(ri) > conf(rj)] ∨ (7)
[conf(ri) = conf(rj) ∧ sup(ri) > sup(rj)] ∨
[conf(ri) = conf(rj) ∧ sup(ri) = sup(rj) ∧
ri generated earlier than rj]

Next, for each of the rules in the sorted order all matching examples from the
training set are found and number of correct classifications is noted. Rules, which
classify at least one example correctly are added to the final classifier and the
matching examples are removed from memory. This step is iterated until no data
is available in the current memory.

6 Experimental Results

We have adapted the framework described in [13] to carry out a series of clas-
sification experiments using a selection of supervised learning methods and text
feature representation approaches. Specifically, we have added the ability to use
a CARs-based classifier to be able to compare its effectiveness against other
well-known methods.

Each experiment has been conducted using the ten-fold cross-validation meth-
odology to be able to use the evaluation corpus as a source for both training and
testing data. At first, we have calculated the Most Frequent Sense (MFS) min-
imum classification accuracy baseline to be able to relate the achieved results
to the characteristics of the available corpus. We have also noted the Inter-
Annotator Agreement (ITA) value, which reflects the percentage of annotations,
for which two annotators provided the same sense labels and no conflict resolu-
tion was necessary. This value is frequently described as a good candidate for
an upper bound of classification accuracy, as we cannot expect that the system
trained on annotated data will perform better than human linguists, who pro-
vided the annotation. Abovementioned statistics are presented in Table 3 and
for each of the lexemes from the dictionary on Figure 4.

We have performed experiments of classification of the entire evaluation cor-
pus using both the classical NaiveBayes approach (which proved to perform best
among others we have tried: J48, SVM, RandomForest) and the method based on
mining Class Association Rules. Classifiers have been built individually for each of
the disambiguated words and in each case an attribute selection method has been
employed to limit the size of feature vectors to less than 400 attributes. The accu-
racy of classification using the NaiveBayesmethod has been presented on Figure 5.

Figure 6 shows the results of classification using the CARs method. As may be
seen from the overall accuracy results, shown in Table 3, the rule-based method
is slightly less accurate, than the NaiveBayes approach. However, the classifier
built using the CBA algorithm may be interpreted by a human expert and a
potentially interesting knowledge can be extracted from it, which is not the case
for the NaiveBayes method.

Mining Class Association Rules for Word Sense Disambiguation 315

Table 3. Most Frequent Sense classification baseline, Inter-Annotator Agreement and
classification accuracy for individual corpora

corpus MFS (%) ITA (%) NaiveBayes (%) CARs (%)

NCP subcorpus 77.65 91.97 87.67 84.14
market reports 94.31 96.82 98.86 97.26

overall 91.06 95.99 96.87 94.28

Fig. 4. Most Frequent Sense for each of the disambiguated words and Inter-Annotator
Agreement for the entire corpus

Fig. 5. Accuracy (%) of classification using the NaiveBayes method. Bottom bar
(black): MFS baseline, top bar (gray): improvement over MFS.

As an example, below we present a rule generated by the CBA algorithm.
Left-hand-side of the rule consists of attributes generated by particular fea-
ture generators. Here, the KFG generator provided an attribute pl_KFG (equal
to 0), which indicates that the disambiguated word has a singular form. Simi-
larly, noun-1_SFG2=1 noun+1_SFG2=0 attributes indicate that a noun should
appear one place before the disambiguated word and no noun one place after
the disambiguated word, for the rule to hold. If the rule holds, the selected sense
is praca.2.

pl_KFG=0 pos+1_SFG2=0 noun-1_SFG2=1 noun+1_SFG2=0 →
→ SENSE=praca.2 [conf:0.93]

316 Ł. Kobyliński

Fig. 6. Accuracy (%) of classification using the CARs method. Bottom bar (black):
MFS baseline, top bar (gray): improvement over MFS.

7 Conclusions and Future Work

In this paper we have presented an application of Class Association Rules to the
problem of Word Sense Disambiguation of Polish language texts from the domain
of economy. We have created a hand-annotated corpus of economy-related tex-
tual resources, containing ambiguous lexemes, and used it to train a CARs-based
classifier, using the CBA algorithm. Using the standard ten-fold cross-validation
methodology we have evaluated the accuracy of the proposed approach and
compared it with a well-known NaiveBayes algorithm. Achieved results, while
showing the rule-based method to be less accurate than a purely statistical ap-
proach are encouraging, because for the cost of slightly lower accuracy we get
a classifier that is understandable by human experts and may potentially be
manually edited and enhanced.

It remains for future work to test the effectiveness and accuracy of other
algorithms for building CARs-based classifiers and also increasing the number
of features used to represent the disambiguated word in context.

References

1. Agirre, E., Edmonds, P. (eds.): Word Sense Disambiguation: Algorithms and Ap-
plications. Springer, Heidelberg (2006)

2. Agirre, E., Soroa, A.: Personalizing pagerank for word sense disambiguation. In:
Proceedings of the 12th Conference of the European Chapter of the Association
for Computational Linguistics, EACL 2009 (2009)

3. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets
of items in large databases. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, Washington, D.C., USA, pp. 207–216 (May
1993), citeseer.csail.mit.edu/agrawal93mining.html

citeseer.csail.mit.edu/agrawal93mining.html

Mining Class Association Rules for Word Sense Disambiguation 317

4. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ings of 20th Interntaional Conference on Very Large Data Bases, Santiago, Chile,
pp. 487–499 (September 1994), citeseer.csail.mit.edu/agrawal94fast.html

5. Antonie, M.L., Zaïane, O.R.: Text document categorization by term associa-
tion. In: Proceedings of the 2002 IEEE International Conference on Data Min-
ing, ICDM 2002, pp. 19–26. IEEE Computer Society, Washington, DC (2002),
http://portal.acm.org/citation.cfm?id=844380.844745

6. Baś, D., Broda, B., Piasecki, M.: Towards word sense disambiguation of Polish.
In: Proceedings of the International Multiconference on Computer Science and
Information Technology, pp. 73–78 (2008)

7. Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S.,
Rosner, M., Tapias, D. (eds.): Proceedings of the Seventh International Conference
on Language Resources and Evaluation, LREC 2010. ELRA, European Language
Resources Association (ELRA), Valletta, Malta (May 2010)

8. Ide, N., Véronis, J.: Word sense disambiguation: The state of the art. Computa-
tional Linguistics 24(1), 1–40 (1998)

9. Kobyliński, Ł., Walczak, K.: Class association rules with occurrence count in image
classification. TASK Quarterly 11(1–2), 35–45 (2007)

10. Lesk, M.: Automated sense disambiguation using machine-readable dictionaries:
How to tell a pine cone from an ice cream cone. In: Proceedings of the 1986 SIGDOC
Conference, Toronto, Canada (June 1986)

11. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In:
Proceedings of the Fourth International Conference on Knowledge Discovery and
Data Mining, New York, USA, August 27-31, pp. 80–86 (1998)

12. Mihalcea, R.: Co-training and self-training for word sense disambiguation. In:
CoNLL 2004, Poznań, Poland (November 2004)

13. Młodzki, R., Przepiórkowski, A.: The WSD development environment. In: Vetulani,
Z. (ed.) LTC 2009. LNCS, vol. 6562, pp. 224–233. Springer, Heidelberg (2011)

14. Ordonez, C., Omiecinski, E., Braal, L.d., Santana, C.A., Ezquerra, N., Taboada,
J.A., Cooke, D., Krawczynska, E., Garcia, E.V.: Mining constrained association
rules to predict heart disease. In: Proceedings of the 2001 IEEE International Con-
ference on Data Mining, ICDM 2001, pp. 433–440. IEEE Computer Society, Wash-
ington, DC (2001), http://portal.acm.org/citation.cfm?id=645496.658043

15. Paliouras, G., Karkaletsis, V., Androutsopoulos, I., Spyropoulos, C.D.: Learning
rules for large-vocabulary word sense disambiguation: a comparison of various clas-
sifiers. In: Christodoulakis, D.N. (ed.) NLP 2000. LNCS (LNAI), vol. 1835, pp.
383–394. Springer, Heidelberg (2000)

16. Passonneau, R.J., Salleb-Aoussi, A., Bhardwaj, V., Ide, N.: Word sense annotation
of polysemous words by multiple annotators. In: Calzolari, N., et al. [7]

17. Piasecki, M.: Polish tagger TaKIPI: Rule based construction and optimisation.
Task Quarterly 11(1–2), 151–167 (2007)

18. Pradhan, S., Loper, E., Dligach, D., Palmer, M.: Semeval-2007 task-17: English
lexical sample srl and all words. In: Proceedings of SemEval 2007 (2007)

19. Przepiórkowski, A., Górski, R.L., Łaziński, M., Pęzik, P.: Recent developments in
the National Corpus of Polish. In: Calzolari, N., et al. [7]

citeseer.csail.mit.edu/agrawal94fast.html
http://portal.acm.org/citation.cfm?id=844380.844745
http://portal.acm.org/citation.cfm?id=645496.658043

An Ontology-Based Method
for an Efficient Acquisition of Relation Extraction

Training and Testing Examples

Aleksander Pohl

Computational Linguistics Department,
Jagiellonian University, Cracow, Poland

aleksander.pohl@uj.edu.pl

Abstract. In this paper, we describe an ontology-based method of se-
lection of test examples for relation extraction, as well as a method of
their validation apt to be carried out by ordinary language-speakers. The
results will be used to validate performance of various relation extrac-
tion algorithms. In performed tests we utilize the ResearchCyc ontology
and demonstrate the method’s performance in gathering examples from
Polish texts.

Keywords: relation extraction, Polish, ontology, Cyc, corpus.

1 Introduction

The task of collecting test and training examples for relation extraction algo-
rithms might be divided into two phases: the selection of the examples, then
their annotation. In the first phase, the set of examples is built (usually) as a
proper subset of some large corpus. In the second phase, that set is annotated
with some meta-data.

There are several approaches to example selection problem: first of all, a
proper subset of some larger, general-purpose corpus is selected without con-
straints; there might also exist an easily available special corpus, containing
examples, the structure of which would indicate a number of semantic relations
– such a database would be used directly as a source of the examples and finally,
the corpus might be build specifically for a given relation.

The first approach usually takes place when the selection of the relation ex-
amples is integrated with other annotation tasks, such as named entity identi-
fication. E.g. in the National Corpus of Polish, it might be done parallel to the
annotation of named entities (NEs) which are identified for its million-segment
sub-corpus [16]1. This style of work is also promoted in the GATE application
[3], where the gold-standard examples are directly selected from the whole corpus
(cf. http://gate.ac.uk/2mins.html).

1 However, this is not done, at least it is not mention in the article.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 318–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Ontology-Based Method for an Efficient Acquisition 319

The second approach is popular in the context of semi-structured knowledge-
sources like electronic dictionaries and encyclopedias, Wikipedia being the out-
standing example. Characteristic structure of the entry or links between the
entries are utilized and the examples are selected as results of pattern matching
or more sophisticated methods (cf. [9], [18]).

The last approach seems to be particularly popular in the context of relation
extraction. Seed patterns or seed examples are used to gather the examples for
a particular relation and then these examples are verified by human judges or
used directly as input for the statistic-based algorithms (cf. [2], [10], [7]). This
allows for more focused examples acquisition and gives more certainty that the
test examples would reflect the real world performance of the algorithm.

The second phase of the example collection namely the annotation (or veri-
fication) of the examples, depends on the method of their selection. The most
traditional approach promoted in GATE assumes that the occurrences of rela-
tions are annotated as any other linguistic phenomenon. This is not very effi-
cient, both in terms of the time required and the diversity of examples. Also,
this method requires the annotator is trained well enough, to identify properly
the occurring relation.

In the case of the second and the third approach, the training examples are
automatically annotated as the patterns and seed examples are defined for par-
ticular relations and their arguments correspond directly to the arguments in the
selected examples. However, the testing examples are usually verified by trained
linguists, by asking if a given relation is present or not in a given example.

In this paper we describe alternative methods of both selecting the examples
and annotating, i.e. verifying them. The primary idea is to use already available
knowledge sources containing rich semantic knowledge, in order to select diversi-
fied relation examples. The second idea is to modify the verification task in such
a way that even untrained language users would be able to accomplish it. We
also present a tool, which is built according to the methodology and preliminary
results of the method’s performance. The direct results of the work will be used
to assess various types of relation extraction algorithms and as a consequence
this assumes maximization of the algorithm’s coverage. The modified version
of the algorithm will be used to gather training examples for hybrid relation
extraction algorithms.

2 Related Work

There is a lot of research concentrating on the relation extraction both in the
Natural Language Processing community and the Semantic Web community,
still the compound potential of both these fields has not been fully utilized. We
see our effort as a step in this direction.

Comparing it to the already available tools of which GATE [3] is definitely
the most popular and robust, we have to state that its capabilities are in fact
without competition in NLP. However, there are several issues connected with
its application to the methodology described: the use of Poliqarp [14] server and

320 A. Pohl

the IPI PAN corpus [15], which would have to be integrated with the GATE
infrastructure; the fact that GATE is designed according to the traditional in-
formation extraction pipeline2, with a lot of attention put to the task of manual
text annotation; the fact that the ontology we use – ResearchCyc – is so rich
that it would be much impractical to use GATE user interface to select the on-
tology concepts to annotate the expressions and the fact that, although there is
a web-based version of GATE, it is not yet available3. All these problems, the
availability of our own NLP platform (developed for the Cyc translation task
[13]) and our long-distant plans decided that we didn’t use GATE.

Comparing our effort with other information extraction research we have to
make the following observations. There is a lot of research concentrating on the
acquisition of knowledge from Wikipedia. DBpedia [1] and YAGO [17] are efforts
aiming at extracting structured knowledge from Wikipedia. DBpedia contains
the knowledge extracted mostly from the Wikipedia infoboxes, while YAGO
extends this approach, by building on the top of Princeton WordNet [4]. Both
these efforts are restricted in the context of relation extraction by the type of
relations found in the infoboxes and by their structure. PORE [18] seems to be
an interesting alternative, since the relations are extracted from semi-structured
Wikipedia contents (the articles’ contents with their markup). Although PORE
is limited to the contents of the encyclopaedia due to its size this allows for
extracting various types of relations. PORE seems to be a very efficient method
and we plan to investigate the combination of this algorithm with our idea.

There is also a lot of research related to relation extraction for Polish. First of
all, semantic relations in the Polish WordNet [11] are determined semi-automati-
cally. The authors developed an algorithm called Estratto which is a modification
of Espresso [10] “developed mainly to cope with the significant differences be-
tween English and Polish” [11]. This algorithm was applied to extract instances
of hypernymy in the semi-automatic extension of the Polish WordNet. We find
our work complementary in the sense that our algorithm might be used to gen-
erate an initial set of seed examples which is then fed by the Estratto algorithm
maintaining the semantic constraints defined in the ontology. We plan to test
such a setting in the near future.

The second important project is the Polish National Corpus (PNC). As an
important part of the research a 1-million segment corpus containing annotations
of named entities is constructed [16]. Although the paper does not mention
relation annotation and the tasks are different in nature, NE identification is
related to the proposed method. Namely, the examples selected from the corpus
might be identified via NEs and also the annotated corpus will be definitely
used in information extraction experiments. But the important differences are:
the scope of the annotation – limited to the 1-million sub-corpus in the case of
PNC, while defined specifically for the relation in our case and the details level
– covering syntactic structures and additional features in the case of PNC, while
limited to identifications of the relations’ arguments in our case.

2 http://gate.ac.uk/2mins.html
3 http://gate.ac.uk/teamware/

An Ontology-Based Method for an Efficient Acquisition 321

3 Methodology

3.1 Goals

The goal of this research is to provide a method and an application for an
acquisition and verification of semantic relation examples for Polish. The samples
collected with this tool will be primarily used for a verification and comparison
of various relation-extraction algorithms. If the example set is large enough,
they will be used as an input for statistics-based and hybrid relation-extraction
algorithms for Polish.

3.2 Idea

The key feature of this method is to use the already available resources, contain-
ing rich semantic knowledge, such as ontologies. These serve as:

1. source of seed examples
2. source of hierarchical (hyponymy/hypernymy) relations
3. source of relation’s arguments’ constraints

The seed examples are used to select pairs of concepts maintaining a given re-
lation. The hierarchical relations are used to extend the set of seed examples
by substituting one of the concepts by its hyponyms. The argument constraints,
with the disjointness relations found in some ontologies are used to further extend
the set of relations by replacing some specified argument with the argument’s
constraint.

E.g. assume4 that there is the anatomicalParts relation in the ontology, with
the following arguments’ constraints: Organism-Whole and OrganismPart and
the following instance: (anatomicalParts Fish Fin). The “Fish-Fin” words’
pair is a seed example and is used to find examples of the relation in a corpus.
The Fish concept might be further substituted with Trout, Salmon, Hake (via
hyponymy relation), giving us “Trout-Fin”, “Salmon-Fin”, “Hake-Fin” and similar
words’ pairs. This concept might be also replaced with Organism-Whole concept
and all of its hyponyms (such as Dolphine, Person, etc.) capturing words’ pairs
not present in the ontology (such as “Dolphine-Fin”), but yielding larger number
of false positives. And it might be also replaced with any semantically related
concept (e.g. a co-hyponyms) not disjoint with Fish, which is not its speciali-
sation. In the case of biological taxa this will not bring fruitful combinations.
But if we consider a different relation – e.g. worksAtFacility indicating that
given type of person normally works at given type of facility, for the pair Chef
and RestaurantSpacewe could try different combinations, such as Manager and
RestaurantSpace, since Chef is related to and is not disjoint with Manager. This
might give better results than the previous option, if the arguments’ constraints
are too general.

The other important feature of the method is to provide the person which is
responsible for judging if a given example is a valid example of a given relation,
4 This example is taken from the ResearchCyc ontology.

322 A. Pohl

with the most natural description of the problem. Instead of asking whether a
given relation is present in the example, the user is presented with the example
and with a rephrasing of the content, as if the relation was present in it. E.g. for
the text “The *dog* wagged his *tail*” the description is shown as “The *tail* is
an organism part of the *dog*”. Although such a rephrasing seems to be trivial
for English, it is not for an inflected language like Polish. Thus, the system has to
correctly inflect the words in question, properly adjusting their numbers, cases
and genders. For this task we use the Polish Inflectional Database [12].

3.3 Tools

The ontology we use in our application is ResearchCyc (a research version of the
Cyc ontology [8]) – it contains hundreds of thousands of concepts and millions
of assertions, covering hierarchical relations, disjointness relations and other se-
mantic relations, such as the above mentioned anatomicalParts relation. This
is the largest known ontology available for research.

It has to be stressed that the ResearchCyc ontology in its original version
has only the English lexicon, that is the mapping between concepts and their
natural-language counterparts. However, as a result of our earlier research we
built a tool for mapping Cyc concepts to Polish expressions, which is integrated
with the Polish Inflectional Database. The tool allows not only for selecting
the Polish expression which best describes given concept, but also for selecting
the semantic category or categories, extracted from the Polish Wikipedia, that
corresponds to the concept. This allows for providing rich semantic characteristic
for all the Wikipedia articles, which are instances of the category. Although only
a fraction of the Cyc concepts was mapped to Polish expressions and Polish
semantic categories, more than 200 thousands of Wikipedia articles is covered in
the mapping. What is more – the tool allows for “pay-as-you-go” strategy, which
means that it is easy to extend the mapping for a group of concepts which are
important for the current research.

The last resource important for achieving the goal is a corpus of source texts.
Regarding Polish, to this respect there are no many options:

1. The free IPI PAN corpus containing 250 millions of tagged segments
2. The Polish National Corpus
3. Internet + search engine

In this research we have chosen the first option, since it is the simplest and
the cheapest one. The corpus is available free for research and is distributed
with a corpus server, allowing for querying it not only by key-words, but also
via lemmas and their tags. The Polish National Corpus [16] is a better option
without doubt (it uses the same corpus server, by the way), but it is not yet
finished and the access to it is restricted.

The last option is also tempting – there is a lot of research concentrating on
the usage of search engines in NLP. There are also some problems connected
with this approach. The first is the fact that this method is no longer free – e.g.

An Ontology-Based Method for an Efficient Acquisition 323

if you wish to use the Google API for searching, you have to pay for it5. Using
the search engine directly violates the terms of use of the service. There is also
the copyright problem – the examples found in the Internet would have to be
stored in the original form locally and such a long-term storage is normally not
allowed by the creators of the content.

The sites with free content, such as Wikipedia, are the special case of the last
option. They seem to be a good alternative for manually built corpora (especially
in terms of diversity of the content). Although we didn’t use Wikipedia’s text
content as a corpus in this research, we plan to carry out such experiments in
the near future.

3.4 Algorithm

Generally the algorithm is divided into several steps. These are: relation selec-
tion, concepts mapping, data transformation, examples selection and examples
verification. The first three steps have to be performed in order to prepare the
data for the work which is done in the last two steps. Even though they seem
to be fairly simple, there are many practical problems, which have to be solved
first.

Relation selection. The selection of relations is not as trivial as it seems, since
there are about 20 thousands of predicates in Cyc. Many of them are used only
to express relations between individuals, which are not as useful in our setting,
since Cyc individuals (corresponding mostly to proper names) are not mapped to
Polish expressions. On the other hand many of the predicates are used to express
meta-knowledge and the corresponding relations are hard to extract from texts.
However, there are two types of predicates in Cyc, which are well suited for this
task:

1. type predicates – designed to relate concepts, e.g. symmetricPhysicalPart-
Types, which allows for stating that Crab has symmetric Arms. This means
that any (ordinary) instance of Crab has symmetric instances of Arms. Most
of these predicates might be found in the FirstOrderCollectionPredicate
collection or more general SetOrCollectionPredicate.

2. instance predicates – designed to relate instances of concepts, e.g. proper-
GeographicalSubRegions, which allows for stating that UnitedStatesOf-
America has Alabama-State as its proper geographical sub-region.

The first type of predicates might be used directly as a source of seed examples.
On the other hand, due to the lack of mapping of individuals, the second type
is harder to use. But many of these predicates have accompanying assertions in
the form of relationAllExists and similar, which allow for stating the same
facts as the predicates of the first type (e.g. that a country might be divide into
first order administrative divisions, of which states are their specialisations).

5 http://code.google.com/intl/pl-PL/apis/customsearch/v1/overview.html

324 A. Pohl

These constraints substantially reduce the number of predicates to consider as
a source of seed examples, but still there are many predicates occurring in typical
relation extraction experiments, e.g. agentTypePerformsWorkOfType (meaning
that instances of an agent type typically perform instances of an activity type as
part of their jobs or commercial activity), agentTypeUsesArtifactType (mean-
ing that instances of an agent type frequently or typically use instances of an
artifact type), physicalPartTypes (meaning that every instance of some object
type has at least one instance of the related type as a physical part), etc.

Concepts mapping. When the relation is selected, we have to check if all (or
most) of the concepts appearing in its assertions are mapped to Polish expres-
sions. Then we should provide the mappings for the missing concepts. It is also
reasonable to look up and down through the hierarchy to map other related
concepts in order to extend the concepts’ coverage. This step is performed with
the help of the application described in [13].

E.g. if there is an assertion in Cyc, that the country divides into first order
administrative divisions, its specialisations (like US states) should be mapped to
Polish expressions. It is also reasonable to create a new specialisation – voivod-
ship – which has a corresponding semantic category in Polish Wikipedia that
covers all the voivodships in Poland6.

Data transformation. To limit the overhead in communication between the
examples selection system, the ResearchCyc ontology and the database contain-
ing the Polish translations, the data is exported from these resources. A data
model (depicted on figure 1 in UML notation) is defined in order to unify the
models used in these resources.

There are two main classes: Concept and Relation in the model. The Concept
captures both Cyc concepts and Wikipedia articles, forming a consistent con-
cepts hierarchy, allowing for access to its direct parents, all its ancestors (gen-
eralisations), its direct children (specialisations or instances) and its disjoints
(concepts it is disjoint with).

Every Concept is related to one or more Spellings – that is natural language
expressions of the concept (e.g. “Stany Zjednoczone Ameryki Północnej” (United
States of America) and “USA” for UnitedStatesOfAmerica). Each Spelling
consists of one or more Segments (e.g. “Stany”, “Zjednoczone”, “Ameryki” and
“Północnej” for the “Stany Zjednoczone Ameryki Północnej” spelling), each of
which points to a corresponding Lexeme (e.g. “Ameryki” → AMERYKA) and
have associated tags, indicating how the lexeme is inflected. Every Lexeme is
linked with all its Word_forms and also have direct connections with all the
Concepts it is a part of and Relations used to relate it to other lexemes. The
lemma property indicates its lemma, while frequency indicates its frequency in
the corpus.
6 The Wikipedia article about voivodship mentions that the proper translation of the

original term województwo is not voivodship but rather province. As a contrary, the
article is linked to the Polish article województwo, while the English province is linked
to Polish prowincja.

An Ontology-Based Method for an Efficient Acquisition 325

The Relation class captures both the Cyc relations and their instances (i.e.
assertions). Each instance is connected with its relation via meta relation as-
sociation, while each relation is connected with its instances via instances asso-
ciation. In the case of the former, the association with Arguments points to the
concepts which are the arguments of the assertion and in the case of the latter,
it points to the arguments’ constraints. Every Concept is also directly connected
with all the relations it is a part of.

Fig. 1. Data model described in UML notation used in the algorithm

Examples selection. When the data is exported from the knowledge sources,
it is used to select the text examples (algorithm 1). In general the algorithm
iterates over the relation’s instances (i.e. assertions) trying to generate as many
as possible queries for each of the arguments (or concepts related to it) of the
instance. The results of the query are then checked for the presence of the other
argument (or concepts related to it) and are inserted into the return value ac-
cordingly.

SelectConcept function is used to allow for application of the different
scenarios described in the section 3.2. Depending on the configuration it selects
the argument itself, one of its direct children (specialisations) or the relation’s
argument’s constraint. Then each of the spellings of the selected concept is used
to query the corpus. If the spelling has one segment (i.e. is a single-word expres-
sion), the lemma of the lexeme linked with this segment is used as the query7.

7 The notation used to query the Poliqarp server is described in [14]. Here
[base=lemma] means that the corpus will be searched for all the occurrences of
lexemes with given lemma.

326 A. Pohl

Algorithm 1. SelectExamples(relation)

examples ← NewArray()
corpus ← GetCorpus()
for each instance in relation.instances do

for each argument in instance.arguments do
concept ← SelectConcept(argument)
for each spelling in concept.spellings do

if spelling has only one segment then
segment ← spelling.segments[0]
candidates ← Query(corpus,"[base="+segment.lexeme.lemma+"]")

else
candidates ← NewArray()
for each permutation in Permutations(spelling.segments) do

if Invalid(permutation) then
next permutation

else
query ←"[base="+permutation[0].lexeme.lemma+"]"+

"[]{0,Spaces}[base="+permutation[1].lexeme.lemma+"]"
new_candidates ← Query(query)
Append(candidates, new_candidates)

end if
end for

end if
end for
for each candidate in candidates do

if OtherArgumentIn(argument, candidate) then
Insert(examples, candidate)

end if
end for

end for
end for
return examples

An Ontology-Based Method for an Efficient Acquisition 327

If there are many segments in the spelling, each valid 2-element permutation
of the segments is used to query the corpus. The validity of the permutation is
checked by the Invalid function and might consider features such as the presence
of the syntactic head of the spelling, open syntactic category membership of the
segments and similar. Although such a method is naive, it is motivated by the free
word order in Polish and the assumption of maximizing the coverage of the al-
gorithm. E.g. for “Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
w Warszawie” (Jarosław Dąbrowski Military University of Technology in War-
saw) we are able to generate pairs such as “wojskowa – Warszawa” (military
– Warsaw) allowing for selecting examples such as “On studiuje w Warszawie
na wojskowej.” (He studies in Warsowa on a military [university].), which will
not be captured by any other, more sophisticated method. It is also partially
enforced by the corpus server, which preserves the order of the segments in the
results – generation of longer sequences would cause an unacceptable number of
queries and unacceptable running time. Spaces is a parameter of the algorithm
and indicates the number of other segments between the segments taken from
the permutation.

When the candidates are selected, they are tested for the occurrence of the
other argument via call to OtherArgumentIn. Depending on the experiment
configuration this might be one of:

1. direct occurrence of one of the spellings of the concept
2. occurrence of one of the spellings of children (specialisations or instances) of

the concept
3. occurrence of one of the spellings of children of the other argument’s con-

straint

The occurrence of a spelling in the example might be tested in various ways,
especially if the spelling contains more than one segment. The researcher might
define various constraints, such as the text distance between the selected argu-
ment and the other argument, the number or percentage of segments that have
to occur, the presence of the syntactic head, etc.

The candidates which contain the other argument (or the concept related to
it) are then recorded in the form of a corpus query and the result index since,
according to the corpus license, the textual data should not be exported from it.

Verification. The last step of the algorithm is the manual verification of the
gathered examples. As it was stated in the “Goals” section, the verification is
done indirectly, i.e. the user is not asked if the text example and the highlighted
segments are related via the relation in question, but there is a natural language
rephrasing of the example, as if the relation was present. What is more, since the
selected expressions might be ambiguous (e.g. “A *tree* has a *branch*...”, where
tree might be an organism or a mathematical construction), there are accom-
panying statements, indicating the semantic category or hypernym of concept
in question. For instance, assuming that an excerpt “jako uderzenie *płetwy*
rekina w morzu” (as the blow of shark’s fin in a sea) was found in the corpus,
the following description is produced:

328 A. Pohl

1. Płetwa jest częścią ciała rekina. (The fin is a body part of the shark.)
2. Rekin jest drapieżnikiem. (The shark is a predator.)
3. Płetwa jest członkiem. (The fin is an appendage.)

The user is asked if the description corresponds to the excerpt. There are the
following answers to the question:

1. yes
2. no
3. don’t know
4. the description has a syntax error
5. the description doesn’t make sense
6. the first argument doesn’t fit
7. the second argument doesn’t fit
8. both arguments don’t fit
9. the usage of words in the example is metaphoric

By default only the first three answers are presented to the user and the others
are displayed, when the user clicks the “other options” button. This is due to
an assumption that most of the examples should follow the simple yes/no/don’t
know scheme and other answers indicate an error in the application (besides the
last option) rather than a problematic example. In such cases the “don’t know”
option seems to be better.

4 Applications

Each step of the algorithm has an accompanying application, but we will describe
only the application used for verifying the examples, since the others are out of
scope of this paper.

The application allows for importing the data in JSON8 format and organizes
the examples into examples groups. These groups might be investigated and
assigned to users. A regular user sees only the examples, which were assigned to
him/her (fig. 2). The first field (Tekst) shows the original excerpt found in the
corpus. The user might see the broader context by clicking the szerszy kontekst
button. The second field (Opis) is the rephrasing of the relation identified in
the text. The correspondence between the arguments in the text and in the
description is established via font color. The third filed (Czy opis odpowiada
tekstowi?) is the question: “Does the description correspond to the text?” and
allows for selecting one of the answers described in section 3.4.

5 Results

Several preliminary tests were conducted in order to validate the general assump-
tions presented in this paper. As an example the anatomicalParts relation was
8 JavaScript Object Notation is a lightweight data-interchange format.
http://www.json.org/

An Ontology-Based Method for an Efficient Acquisition 329

Fig. 2. An individual example

selected, which is an instance relation (cf. 3.4), with 84 relationAllExists
assertions. Most of the concepts appearing in the assertions were mapped to
Polish expressions, as well as their specialisations. Many of these concepts were
also mapped to semantic categories extracted from Polish Wikipedia. As a re-
sult, 16560 of Polish expressions were incorporated into the structure of the
ResearchCyc concept hierarchy.

Then three different experiment configurations were tested with the Spaces
parameter set to 3:

1. root-root where we queried the corpus for one of the arguments of the asser-
tion, and the other has to appear in the example directly; this configuration
gave 916 examples, of which 586 were unique

2. root-any child where we queried the corpus for one of the arguments of
the assertion, while the other concept was recognized as the other argument
or any of its children (i.e. any direct or indirect specialisation or instance);
this configuration gave 3488 examples, of which 3102 were unique

3. child-any child where we queried the corpus for up to 10 direct, random
children of one of the arguments of the assertion, while the other concept was
recognized as the other argument or one of its children; this configuration
gave 2274 examples, of which 2164 were unique

The same configurations were tested with the Spaces parameter set to 1 and
5. The results were the same for the first and the second configuration. In the
third case the number of results was different (2259 and 2152 with Spaces = 1
and 1871, 1968 and 2300 with Spaces = 5), due to the fact that each time 10
random children of the concept were selected. For this limited setting it means
that the parameter didn’t have much impact on the number of examples.

821 examples9 of the root-any child configuration were reviewed by an in-
dependent user with some linguistic training (not the author of this paper). The
user recognized 323 of them as valid examples of the relation, 99 as invalid
and 399 as problematic. Almost half (188) of the problematic examples were
marked as having invalid semantics. It turned out that these examples had in-
complete description, due to the fact that the lemma recognized in the IPI PAN
corpus was ambiguous in the Polish Inflectional Database and some of the words
9 The samle size was determined following the method described in [6] aiming for 95%

confidence level and 3% error level.

330 A. Pohl

in the description were missing. This means that we should put more atten-
tion to accommodate these resources. Another large group of examples (166)
was marked as containing metaphoric usage. In fact, these examples could be
treated as special kind of invalid examples. As a result more than a half (323 out
of 588 valid+invalid) of the non-problematic examples were marked as valid.

It also turned out that, although the user interface encouraged the user to use
the first three answers (yes/no/don’t know), he preferred to give more detailed
one, which caused several misunderstandings. First of all, the user marked several
valid examples as metaphoric (as he understood the surname of a person not
indicating the person itself), several invalid examples as having syntax error (an
ambiguous concept was recognized erroneously by the system and it provided
correctly inflected form for the wrong concept, but the user recognized it as
incorrectly inflected form of the right concept) and the last but not the least –
several descriptions like “Shoulder is an animal anatomical part” raised question
if it is good for describing people’s shoulders.

All in all, the verification of the 821 examples took 5 hours. Assuming that
the problems with the examples with invalid descriptions were resolved and per-
formance of one person might be used to estimate the performance of others, it
should be possible to collect more than one thousand of threefold cross-validated
positive examples for one relation within 40 hours. This seems to be both time-
efficient and enough for a verification of a relation-extraction algorithm (cf. [5]).

6 Conclusions

The method presented in this paper augments the already known methods for
the collection of relation extraction training and testing examples by utilizing
ResearchCyc as a rich semantic knowledge source. The raw numbers obtained
for a specific relation indicate that this method might multiply the number of
examples several times compared to the simple method based on seed exam-
ples. It gives good results counted in thousands of positive examples, even for
moderately sized, unbalanced corpora and a quite specific relation.

However, the novel method of examples verification has to be refined, since some
of the results obtained were not foreseen by the author. The number of answers
might be reduced, since some of them were not used by the user and some of them
were wrongly understood. Also the message produced by the system should be
rethought to provide the most natural description of the extracted information.

As a final remark we state that the general assumption, that the ontology is
a good source of knowledge for selecting relation extraction examples (even for
languages different than English) was proved.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DB-
pedia: A nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mi-
zoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

An Ontology-Based Method for an Efficient Acquisition 331

2. Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P.,
Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183.
Springer, Heidelberg (1999)

3. Cunningham, D., Maynard, D., Bontcheva, D., Tablan, M.: GATE: A framework
and graphical development environment for robust NLP tools and applications. In:
Proceedings of the 40th Anniversary Meeting of the Association for Computational
Linguistics, ACL 2002 (2002)

4. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
5. Hendrickx, I., Kim, S., Kozareva, Z., Nakov, P., Séaghdha, D., Padó, S., Pennac-

chiotti, M., Romano, L., Szpakowicz, S.: Semeval-2010 task 8: Multi-way classi-
fication of semantic relations between pairs of nominals. In: Proceedings of the
5th International Workshop on Semantic Evaluation, pp. 33–38. Association for
Computational Linguistics (2010)

6. Israel, G.: Determining sample size. University of Florida Cooperative Extension
Service, Institute of Food and Agriculture Sciences, EDIS (1992)

7. Jurafsky, D., Martin, J., Kehler, A.: Speech and language processing: An introduc-
tion to natural language processing, computational linguistics, and speech recog-
nition, 2nd edn. Prentice Hall (2009)

8. Lenat, D.B.: CYC: A large-scale investment in knowledge infrastructure. Commu-
nications of the ACM 38(11), 33–38 (1995)

9. Markowitz, J., Ahlswede, T., Evens, M.: Semantically significant patterns in dic-
tionary definitions. In: Proceedings of the 24th Annual Meeting on Association for
Computational Linguistics, pp. 112–119. Association for Computational Linguis-
tics (1986)

10. Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automat-
ically harvesting semantic relations. In: Proceedings of Conference on Computa-
tional Linguistics/ Association for Computational Linguistics, Sydney, Australia,
pp. 113–120 (2006)

11. Piasecki, M., Szpakowicz, S., Broda, B.: A Wordnet from the Ground Up. Oficyna
Wydawnicza Politechniki Wrocławskiej (2009)

12. Pisarek, P.: Słownik fleksyjny. In: Słowniki komputerowe i Automatyczna Ek-
strakcja Informacji z Tekstu, pp. 37–68. Uczelniane Wydawnictwo Naukowo-
Dydaktyczne AGH (2009)

13. Pohl, A.: The Semi-automatic Construction of the Polish Cyc Lexicon. Investiga-
tiones Linguisticae 21 (2010)

14. Przepiórkowski, A.: Korpus IPI PAN. Wersja wstępna. Instytut Podstaw Infor-
matyki PAN (2004)

15. Przepiórkowski, A.: The potential of the IPI PAN corpus. Poznań Studies in Con-
temporary Linguistics 41, 31–48 (2006)

16. Savary, A., Waszczuk, J., Przepiórkowski, A.: Towards the Annotation of Named
Entities in the National Corpus of Polish. In: Proceedings of the Seventh Interna-
tional Conference on Language Resources and Evaluation, LREC 2010 (2010)

17. Suchanek, F., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of the 16th International Conference on World Wide Web, pp. 697–
706. ACM (2007)

18. Wang, G., Yu, Y., Zhu, H.: PORE: Positive-only relation extraction from wikipedia
text. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B.,
Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux,
P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 580–594. Springer,
Heidelberg (2007)

Rich Set of Features for Proper Name
Recognition in Polish Texts

Michał Marcińczuk, Michał Stanek, Maciej Piasecki, and Adam Musiał

Wrocław University of Technology, Wrocław, Poland

Abstract. In this paper we analyse the importance of data generali-
sation and usage of local context in the problem of the Proper Name
recognition. We present an extended set of features that provide gen-
eralised description of the data and encode linguistic information. To
utilize the rich set of features we applied Conditional Random Fields
(CRF) — a modern approach for sequence labelling. We present results
of the evaluation on a single domain following the cross-validation scheme
and cross-domain evaluation based on training and testing on different
corpora. We show that the extended set of features improves the final re-
sults for CRF and also this approach outperforms Hidden Markov Models
(HMM). On the single domain CRF obtained 92.53% of F-measure for
5 categories of proper names, and 67.72% and 72.62% of F-measure for
other two corpora in cross-domain evaluation.

Keywords: Named Entity Recognition, Proper Name Recognition Ma-
chine Learning, Hidden Markov Model, Conditional Random Fields, Clas-
sifier Ensamble, Polish.

1 Introduction

Proper name (PN) is a natural language expression that denotes one unique
entity, its denotation does not depend on the linguistic and extra-linguistic con-
text, at least to the extent of one possible‘ world [8], and, the most important,
its denotation does not depend on its descriptive content (sense), if it has any.
The basic difference between PN and a definite (referential) noun phrase is that
the latter picks out one entity from the context on the basis of the identifica-
tion information it conveys, but not the former. Thus, PNs are important links
between language expressions and the interpretation contexts in which they are
anchored by them.

Robust recognition of PNs in running text is essential in many tasks from
the field of natural language processing, i.e. information extraction [14], text
anonymization [5] or machine translation [6]. There are several linguistic mark-
ers that encode PNs, e.g. the use of big letters in text, however, the proper
recognition of PNs is only a little bit easier due to them, and the problem is
still unsolved. PNs are one of the main subclasses of named entities [10], thus in
literature this task is also identified as Named Entity Recognition (NER).

The task of NER is well explored for many languages, especially for English.
The top systems recognise names of people, locations and organizations with

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 332–344, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Rich Set of Features for Proper Name Recognition in Polish Texts 333

performance up to 94% of F-measure (MUC-7) and 97% of F-measure in MUC-6
[3] for cross-validation on a single domain on two corpora of news-wire articles.
For Polish there is no common evaluation corpus, thus direct comparison of
different approaches is not possible. In our previous work with machine learning
methods [11] we obtained 89.67% of F-measure for 5 categories of names in a
single-domain evaluation and up to 74.62% for cross-domain evaluation. With
rule-based approaches tested on different corpora, [18] achieved ca. 87% and
57% for F-measure for persons and locations respectively. In turn, for the same
categories, [1] obtained 72% and 65% of F-measure.

Statistical recognition of NEs in Polish is more difficult then in English mainly
because of two factors: (1) weakly constrained word order, and (2) rich inflection.
(1) causes that the same information can be encoded by many different sequences
built from the same set of words. In turn (2) increases the number of unique
symbols that can be observed in the text. Together these two factors cause that
the number of proper word sequences corresponding to one multi-word NE is
relatively high. A complex model is required to cope with this diversity. The
level of diversity can be reduced by introducing a kind of generalisation over raw
text, i.e. levels of lexical, grammatical or semantic information.

The analysis of the results obtained with HMM shows, cf [11], that in many
cases HMM makes wrong decisions because the important premises appear in
the close but right context — which is not available for HMM in the moment
of making a decision. This problem also seems to be more serious for languages
with less constrained word order than in English, and can be noted as the third
one (3) to the above list. The sample errors are:

– “siedziba w Nowym Sadzie w Republice Serbi” (‘office in Nowy Sad in
Republic of Serbia’) — HMM recognised Republice Serbi as a country name,
but not Nowym Sadzie as city name. However a more sophisticated model
could recognise that Nowym Sadzie is a city name from the left and right
context taken together;

– “Elektroproizvodnja-ZPUE D.O.O.” (‘D.O.O.’ is an abbreviation for Lim-
ited liability company in Serbian) — HMM recognised Elektroproizvodnja as
a road name while D.O.O. in the right context indicate a company name;

– “w Republice Federalnej Niemiec i Rzeczypospolitej Polskiej” (‘in Federal
Republic of Germany and Republic of Poland’) — HMM recognised Rzeczy-
pospolitej Polskiej as country name, but not Republice Federalnej Niemiec.

CRF is a modern machine learning approach applied successfully to labelling se-
quence data in many Natural Language Processing tasks, e.g., in shallow parsing
[22], NER [20], etc. The results obtained for NER with CRF models outperform
generative models like HMM because CRF can utilise additional context fea-
tures — encoding observations – in a non-linear manner. This can help to solve
the problems (1) and (2). CRF is able to analyse a much broader context than
HMM based methods, utilise features encoding both preceding and following
observations — this can help to solve problem (3).

334 M. Marcińczuk et al.

In this paper we investigate the best-practices for applying CRF models to
PN recognition in Polish texts and our goal was to improve NER with respect
to the three problems identified earlier. We aim at establishing a new set of
features and their influence on NER recognition process. We ignore the problem
of learning algorithms and normalization factors in CRF models assuming the
application of the commonly used parameters for the English [16], and the state
of the art stochastic gradiend descent learning method [23].

In the rest of the paper we will define a NER task limited to five categories of
PNs which we consider here. Next, we will describe a rich set of features intended
to be a basis for a generalised text description and for CRF application, as a
CRF-based model that can make advantage of a rich set of features. Finally, we
will describe the evaluation: a single-domain evaluation on the corpus of stock
exchange reports and a cross-domain evaluation on another two corpora.

2 Task Definition

Our main objective of research is to develop a general method for NER in Polish
texts. Due to the limited resources for Polish suitable for this task, that are
still under intensive development (e.g. [11,21]), we have limited our scope to
selected categories of PNs, i.e. first names, surnames, names of countries, cities
and roads. The list of categories to be recognised will be extended in the future.

We aim at processing non-literary texts (newspaper articles, reports, bro-
chures, etc.). Thus, the space of possible PNs is reduced and some orthographic
constrains on PNs can be applied.

We consider the following PN types:

1. first name — (or given name) is a part of a personal name that differentiates
members of the same family. We annotate separately forenames and middle
names as first name. Nicknames, logins, pseudonyms (unless they have the
form of a regular personal name) are not considered as first name.

2. surname — is a part of a personal name and is shared by members of
the same family. We separately annotate family name and maiden name, if
present. If family name and maiden name are joined with a hyphen, they are
also separately annotated. Nicknames, logins, pseudonyms, names of non-
humans are not considered as surname.

3. country name — official and short country names. Definite descriptions
of countries (e.g. kraj kwitnącej wiśni ‘Land of the Rising Sun’) are not
considered as country name,

4. city name — names of cities, villages, towns, etc.
5. road name — names of roads, streets, avenues, boulevards, highways, etc.

Names are annotated without preceding key words like ulica (‘street’) or ul.
(‘st.’) unless they are a part of the official name (e.g. Al. Jerozolimskie) —
according to [7] the key words written from lower case letter are not a part
of the road proper name.

Rich Set of Features for Proper Name Recognition in Polish Texts 335

3 Resources

3.1 Corpora

Three corpora were used during experiments: a corpus of stock exchange reports
(CSER), a corpus of police reports (CPR) and a corpus of economic news (CEN).
The corpora have been described in details in [11].

The corpus of CSER has been revised to correct errors found during the
previous experiments. Numbers of annotation in the previous and contemporary
versions of CSER are given in Table 1. The other two corpora (CEN and CPR)
remain unchanged (also described in Table 1).

Table 1. Number of annotations in CSER, Revised CSER, CPR and CEN

Revised
CSER CSER CPR CEN

first name 686 688 333 1097

surname 689 691 411 1517

city name 1827 1849 191 657

country name 414 484 27 1695

road name 395 395 42 31

3.2 Gazetteers of Proper Names

We have prepared 5 gazetteers for every PN category. The gazetteers comprise
dictionaries collected by Piskorski [17] and PNs gathered from different Internet
sources (detailed list of sources is presented in [11]). The gazetteers consists of:
22 435 person first names, 371 380 person surnames, 1 867 country names, 77 873
city names and 40 859 road names. 95% of all proper names are Polish PNs. 96%
of all Polish PNs are in morphological base forms.

3.3 Gazetteers of Key Words

On the basis of the manual analysis of the NER rules proposed for Polish in [17]
we have defined 5 sets of key words. The key words might indicate the presence
of a proper name and its category in the given context. The sets of key words
are:

– country_prefix — a list of common words that can occur in a country
name, e.g. republika (‘republic’) in Republika Czeska (‘Czech Republic’),
federacja (‘federation’) in Federacja Rosyjska (‘Russian Federation’). This
list is be useful for country names that are not present in the dictionaries
(especially their official names and inflected forms). The list consists of 17
entries.

336 M. Marcińczuk et al.

– person_prefix — a list of positions and titles (full and short forms) that
can precede person name. The list contains 1774 words collected manually
and extracted from plWordNet.

– person_suffix — a list of words that might appear directly after person
name. The list contains abbreviations of religious order, e.g. “Francis Xavier
SJ”. The list consists of 112 entries.

– person_noun — a list of expressions that can refer to people, e.g. profession
names. The list consists of 6339 entries that were described as nouns denoting
people in plWordNet.

– road_prefix — a list of words (full and short forms) that can precede road
name, e.g. ulica (‘street’), ul. (‘st.’). The list contains 14 entries.

4 Conditional Random Fields

Conditional Random Fields (CRF) are undirected graphical models trained to
maximize a conditional probability Pr(y|x) [9]. CRF is commonly applied to
problems of labelling sequence data such as NER [13], NP chunking [22], POS
tagging [9].

In the case of NER the Markov Field in CRF is a chain, y is a linear sequence
of labels from a fixed set, and x is a sequence of words and their corresponding
features. The label set contains 2∗n+1 symbols which represents the entity types,
where n is the number of entity categories (i.e. first name, surname, etc.). For
every PN category A the set of labels contains: B-A— represents the beginning;
I-A — intermediate; and one additional label O — out of entity labels.

CRF have to estimate a labelling Y from the observation sequence X . This is
done through learning process in which parameters of CRF are tuned to maxi-
mize the likelihood of a (x, y) pairs given as training data.

Currently, in the sequence labelling tasks CRF outperforms other learning
methods [4] such as classical probabilistic automata [15], Hidden Markov Mod-
els [2] and Maximum Entropy Markov Models [12]. CRF can achieve high per-
formance in sequence labelling task because it can make use of many features
by analysing them in non sequential manner that makes CRF one of the best
method which can overcome label bias problem [9].

5 Features

5.1 List of Features and Their Motivation

We have defined a set of 34 features which are used to form a description of a
word occurrence in the sequence. The features are:

1. Ortographic features:
– orth — a word itself, in the form in which it is used in the text,
– base — a morphological base form of a word,

Rich Set of Features for Proper Name Recognition in Polish Texts 337

– n prefixes — n first characters of the encountered word form, where
n ⊂ {1, 2, 3, 4}. If the word is shorter than n, the missing characters are
replaced with ’_’.

– n suffixes — n last characters of the encountered word, where n ⊂
{1, 2, 3, 4}. If the word is shorter than n, the missing characters are re-
placed with ’_’. We use prefixes to fill the gap of missing inflected forms
of proper names in the gazetteers.

– pattern — encode pattern of characters in the word:
• ALL_UPPER — all characters are upper case letters, for example

“NASA”,
• ALL_LOWER — all characters are lower case letters, for example

“rabbit”
• DIGITS — all character are digits, for example “102”,
• SYMBOLS — all characters are non alphanumeric, for example “-

_-”’,
• UPPER_INIT — the first character is upper case letter, rest are

lower case letters, for example “Andrzej”,
• UPPER_CAMEL_CASE — the first character is upper case letter,

word contains letters only and has at least one more upper case
letter, for example “CamelCase”,
• LOWER_CAMEL_CASE — the first character is lower case letter,

word contains letters only and has at least one upper case letter, for
example “pascalCase”,
• MIXED — a sequence of letters, digits and/or symbols, for example

“H1M1”.
In the future work, the list of patterns will be extended with new entries
dedicated to other expressions (for example name of a web page, e-mail
address, etc.).

2. Binary orthographic features — 8 binary features, the feature is 1 if the
condition is met, 0 otherwise. The conditions are: 1) (word) starts with an
upper case letter, 2) starts with a lower case letter, 3) starts with a symbol,
4) starts with a digit, 5) contains upper case letter, 6) contains a lower case
letter, 7) contains a symbol and 8) contains digit. The features are based on
filtering rules described in [11], e.g., first names and surnames starts from
upper case and does not contain symbols. To some extent these features du-
plicate the pattern feature. However, the binary features encode information
on the level of single characters, while the aim of the pattern feature is to
encode a repeatable sequence of characters.

3. Wordnet-base features — are used to generalise the text description and
reduce the observation diversity. The are two types of these features:

– synonym — word’s synonym, first in the alphabetical order from all
word synonyms in Polish Wordnet. The sense of the word is not disam-
biguated,

– hypernym n — a hypernym of the word in the distance of n, where
n ⊂ {1, 2, 3}

338 M. Marcińczuk et al.

4. Morphological features — are based on NER grammars that utilize morpho-
logical information [17]. The features are:

– ctag — complete tag with morphological information generated by Ta-
KIPI,

– part of speech, case, gender, number — enumeration types accord-
ing to tagset described in [19].

5. Gazetteer-based features — one feature for every gazetteer. If a sequence of
words is found in a gazetteer the first word in the sequence is set as B and
the other as I. If word is not a part of any dictionary entry it is set to O.
There are 5 features for every proper name category (see. Section 3.2) and
other 5 for every list of key words (see Section 3.3).

A complete set of features for an example sentence is presented in Fig. 1 and 2.

5.2 Templates for CRF

We have prepared and tested CRF with the following set of feature templates:

– only orth features of the current, previous and next token — in order to
compare with HMM and CRF based on a richer set of features,

– all features for the near context (previous, current and next token) — to
check to what extent CRF can learn from the local information,

– all features for the wide context (3 preceding, current and 3 following tokens)
— to check to what extent CRF can be improved with wider context.

6 Evaluation

6.1 Single-Domain Evaluation

In the single-domain evaluation we followed 10-fold cross-validation on the re-
vised CSER. Due to changes introduced in CSER we had to repeat the baseline
experiments and the results are presented in Table 2. We have used the best
configurations reported in [11]. 10-fold HMM is a cross-validation on all folds
for HMM with re-scoring using heuristics and gazetteers and HMM+post is a
cross-validation on folds 6–10 for HMM with re-scoring and rule-based post-
processing. As can be observed in Table 2 the correction of errors improved
slightly the evaluation results.

The single-domain evaluation of CRF was performed on the revised CSER.
In the first configuration — orth feature only — CRF obtained 81.13% of F-
measure what was worse by ca 8% than HMM using the same feature. However,
the precision of CRF was significantly better than HMM by ca 6%. CRF learned
discriminative observations very well but with the loss in the generality. With
the extended set of features (see Section 5.1) CRF obtained better level of gen-
eralisation with only small loss in precision (ca 2%) and the final performance
was better than HMM, i.e. 90.75% of F-measure. The best results were obtained
for the wide context, i.e. 92.53% of F-measure with high precision 95.20% —
this confirms the observation, that the discriminative information appears in a
wide context (3).

Rich Set of Features for Proper Name Recognition in Polish Texts 339

n token translation label

1. Pan Mr O
2. Marek Marek B-PERSON_FIRST_NAM
3. Groszek Groszek B-PERSON_LAST_NAM
4. - - O
5. Prezes chairman (of) O
6. Zarządu board (of) O
7. BRE BRE O
8. Leasing Leasing O

(a) A sample sentence divided into tokens with assigned IOB labels

n token orth base pattern p1 p2 p3 p4 s1 s2 s3 s4

1. Pan Pan pan UPPER_INIT P Pa Pan Pan_ n an Pan _Pan
2. Marek Marek marek UPPER_INIT M Mi Mie Miec w aw ław sław
3. Groszek Groszek groszek UPPER_INIT G Gr Gro Gros k ek zek szek
4. - - - SYMBOLS - -_ -__ -___ - _- __- ___-
5. Prezes Prezes prezes UPPER_INIT P Pr Pre Prez s es zes ezes
6. Zarządu Zarządu zarząd UPPER_INIT Z Za Zar Zarz u du ądu ządu
7. BRE BRE bre ALL_UPPER B BR BRE BRE_ E RE BRE _BRE
8. Leasing Leasing leasing UPPER_INIT L Le Lea Leas g ng ing sing

(b) Ortographic features: orth, base, pattern, prefixes (p) and suffixes (s)

n token synonym hypernym 1 hypernym 2 hypernym 3

1. Pan mężczyzna dorosły człowiek_ze_względu_ człowiek
_na_wiek

male adult person in specified age human

2. Marek marek marek marek marek

3. Groszek groszek kwiat roślina_ozdobna roślina
green peas flower decoration plant plant

4. - - - - -

5. Prezes przewodniczący głowa człowiek_ze_względu_ człowiek
_na_pełnioną_funkcję

chairman head person holding a position human

6. Zarządu centrala władza grupa_ludzi zbiór
head office authority group of people set

7. BRE bre bre bre bre

8. Leasing leasing transakcja_handlowa transakcja transakcja
trade deal deal

(c) Wordnet-based features: synonym and hypernyms

Fig. 1. Feature set for a sample sentence — part 1 (columns in grey have been added
for the sake of readability)

340 M. Marcińczuk et al.

n token ctag pos case number gender

1. Pan subst:sg:nom:m1 subst nom sg m1
2. Marek subst:sg:nom:m1 subst nom sg m1
3. Groszek subst:sg:nom:m3 subst nom sg m3
4. - interp interp null null null
5. Prezes subst:sg:nom:m1 subst nom sg m1
6. Zarządu subst:sg:gen:m3 subst gen sg m3
7. BRE subst:sg:gen:n subst gen sg n
8. Leasing subst:sg:nom:m3 subst nom sg m3

(d) Morphological features: ctag, part of speech (pos), case, number and gender

n token b1 b2 b3 b4 b5 b6 b7 b8 n1 n2 n3 n4 n5 k1 k2 k3 k4 k5

1. Pan 1 0 0 0 1 1 0 0 O B O O O O O O B O
2. Marek 1 0 0 0 1 1 0 0 B B O B O O O O O O
3. Groszek 1 0 0 0 1 1 0 0 O B O O O O O O O O
4. - 0 0 1 0 0 0 1 0 O O O O O O O O O O
5. Prezes 1 0 0 0 1 1 0 0 O B O O O O B O B O
6. Zarządu 1 0 0 0 1 1 0 0 O O O O O O O O O O
7. BRE 1 0 0 0 1 0 0 0 O O O O O O O O O O
8. Leasing 1 0 0 0 1 1 0 0 O O O O O O O O O O

(e) Binary orthographic features (b; in the same order as listed in Section 5.1), and
gazetteer-based features: proper names (n; in the same order as listed in Section 3.2)
and keywords (k; in the same order as listed in Section 3.3)

Fig. 2. Feature set for a sample sentence — part 2 (columns in grey have been added
for the sake of readability)

Rich Set of Features for Proper Name Recognition in Polish Texts 341

Table 2. Base line evaluation on CSER

CSER Revised CSER

10-fold HMM HMM + post 10-fold HMM HMM + post

Precision 83.55% 85.28% 88.69% 89.84%

Recall 89.70% 88.56% 90.68% 89.66%

F1 86.52% 86.88% 89.67% 89.75%

Table 3. Results of cross evaluation of CRF on CSER dataset

road surname first name country city Total

Orth feature for current, previous and next token + Filtering

Precision 97.76% 97.22% 98.61% 92.59% 95.46% 96.06%
Recall 71.58% 57.85% 61.03% 64.94% 79.57% 70.21%

F1 82.65% 72.54% 75.40% 76.34% 86.79% 81.13%

full set of features for current token+ Filtering Rule

Precision 93.33% 95.78% 94.67% 81.22% 92.53% 92.07%
Recall 84.15% 87.60% 81.38% 86.15% 95.14% 89.47%

F1 88.51% 91.51% 87.52% 83.61% 93.82% 90.75%

Wide contextual features + Filtering Rule

Precision 96.67% 97.85% 96.89% 89.67% 94.74% 95.20%
Recall 95.08% 87.88% 80.23% 82.68% 95.35% 90.00%

F1 95.87% 92.60% 87.77% 86.04% 95.04% 92.53%

6.2 Cross-Domain Evaluation

In order to analyse the ability of CRF models to generalise in the context of NER
we evaluated them on cross-domain corpora. In the cross-domain evaluation we
trained the CRF model using feature templates that produced the best results
for the cross-validation on CSER. CRF model trained on CSER was next used
to annotate CEN and CPR. Due to changes in the training corpus (CSER) we
repeated the experiments from [11] using the best HMM configuration. The new
baseline is presented in Table 4.

Table 4. Base line evaluation on CSER

CPR CEN

Precision 67.49% 54.83%

Recall 84.36% 76.95%

F1 74.99% 64.03%

342 M. Marcińczuk et al.

Results of the cross-domain evaluation for the first corpus (CPR) are presented
in Table 5. CRF obtained 67.71% of F-measure what is less by 7.27% than HMM.
However, CRF obtained significantly better precision than HMM, i.e. 92.88%
but much lower recall. Application of the wider context resulted in precision
improvement (by ca 2%) but also with recall reduction (by ca 4%) — the wider
context tend to over-train the model.

Table 5. Cross-domain evaluation on CPR

road surname first name country city Total

All features for current, next and previous token

Precision 100.00% 93.06% 93.89% 100.00% 89.05% 92.88%
Recall 50.00% 48.91% 50.75% 81.48% 63.87% 53.29%

F1 66.67% 64.11% 65.89% 89.80% 74.39% 67.72%

All features for wide context

Precision 100.00% 92.82% 94.08% 100.00% 95.69% 94.48%
Recall 54.76% 44.04% 47.75% 81.48% 58.12% 49.40%

F1 70.77% 59.74% 63.35% 89.80% 72.31% 64.88%

In the second experiment we tested the model on the other corpora, namely
CEN. The results are presented in Table 6. In this case overall F-measure was
increased by 8.32%. On CEN dataset as well as on CPR dataset, CRF achieved
very high overall precision. The worst results for CRF were achieved for the
recognition of person names. The wider context improves precision for the cost
of recall.

Table 6. Cross-domain evaluation on CEN

road surname first name country city Total

All features for current, next and previous token

Precision 71.43% 93.06% 96.57% 91.19% 79.91% 91.15%
Recall 16.13% 51.29% 58.98% 70.86% 55.71% 59.98%

F1 26.32% 66.13% 73.23% 79.75% 65.65% 72.35%

All features for wide context

Precision 62.50% 94.42% 97.05% 90.31% 80.87% 91.41%
Recall 16.13% 49.11% 57.06% 68.73% 50.84% 57.53%

F1 25.64% 64.61% 71.87% 78.06% 62.43% 70.62%

7 Summary

In the paper we presented some limitations of HMM in the task of Named Entity
Recognition, i.e. a problem with encoding providing data generalised description

Rich Set of Features for Proper Name Recognition in Polish Texts 343

of text data in terms of linguistic information and modelling contextual informa-
tion from two-side context. To overcome these two limitations we applied CRF
— a modern method for sequence labelling. We introduced a rich set of features:
based on linguistic observation and applied to reduce the observation diversity.

In the single-domain cross-validation CRF outperformed HMM. CRF ob-
tained 92.53% of F-measure, while HMM only 89.75%. On the cross-domain
evaluation we have trained the model on CSER and evaluated on CPR and
CEN. On both corpora we observed the same effect, the precision increased but
also the recall decreased. In case of CEN the final results was improved from
64.09% to 72.35%, but for CPR was decreased by 7.27%. Cross-domain evalua-
tion has shown that CRF models are capable to fit very good to the data in the
training dataset. Unfortunately, CRF did not obtain high recall. The solution
to this problem would be to extend currently used gazeetters, introduce another
more generic features both for the tokens as well as for the context in which
they are located. Another solution could be a combination of multiple classifiers
trained on different domains.

References

1. Abramowicz, W., Filipowska, W., Piskorski, J., Węcel, K., Wieloch, K.: Linguistic
Suite for Polish Cadastral System. In: Proceedings of the LREC 2006, Genoa, Italy,
pp. 53–58 (2006) ISBN 2-9517408-2-4

2. Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: a High-Performance
Learning Name-finder. In: Proceedings of Conference on Applied Natural Language
Processing (1997)

3. Chinchor, N.A.: Overview of MUC-7/MET-2. In: Proceedings of the 7th Message
Understanding Conference (1998)

4. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: ACL, pp. 363–370 (2005)

5. Graliński, F., Jassem, K., Marcińczuk, M.: An Environment for Named Entity
Recognition and Translation. In: Márquez, L., Somers, H. (eds.) Proceedings of
the 13th Annual Conference of the European Association for Machine Translation,
Barcelona, Spain, pp. 88–95 (2009)

6. Graliński, F., Jassem, K., Marcińczuk, M., Wawrzyniak, P.: Named Entity Recog-
nition in Machine Anonymization. In: Kłopotek, M.A., Przepiorkowski, A., Wierz-
choń, A.T., Trojanowski, K. (eds.) Recent Advances in Intelligent Information
Systems, pp. 247–260. Academic Publishing House Exit ((2009)

7. Karpowicz, T.: Kultura języka polskiego. Wymowa, ortografia, interpunkcja (2009)
8. Kripke, S.: Naming and Necessity (1972)
9. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Proba-

bilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings of the
Eighteenth International Conference on Machine Learning, ICML 2001, pp. 282–
289. Morgan Kaufmann Publishers Inc., San Francisco (2001) ISBN 1-55860-778-1

10. LDC: ACE (Automatic Content Extraction) English Annotation Guidelines for
Entities (Version 6.6), Technical report, Linguistic Data Consortium (2008)

11. Marcińczuk, M., Piasecki, M.: Statistical Proper Name Recognition in Polish Eco-
nomic Texts. Control and Cybernetics (to appear in, 2011)

344 M. Marcińczuk et al.

12. McCallum, A., Freitag, D., Pereira, F.C.N.: Maximum Entropy Markov Models
for Information Extraction and Segmentation. In: Proceedings of the Seventeenth
International Conference on Machine Learning, ICML 2000, pp. 591–598. Morgan
Kaufmann Publishers Inc., San Francisco (2000) ISBN 1-55860-707-2

13. McCallum, A., Li, W.: Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In: Proceedings of the
Seventh Conference on Natural Language Learning at HLT-NAACL 2003, CONLL
2003, vol. 4, pp. 188–191. Association for Computational Linguistics, Stroudsburg
(2003)

14. Mykowiecka, A., Kupść, A., Marciniak, M., Piskorski, J.: Resources for Information
Extraction from Polish texts. In: Proceedings of the 3rd Language & Technology
Conference: Human Language Technologies as a Challenge for Computer Science
and Linguistics (LTC 2007), Poznań, Poland, October 5-7 (2007)

15. Paz, A.: Introduction to probabilistic automata (Computer science and applied
mathematics). Academic Press, Inc., Orlando (1971) ISBN 0125476507

16. Peng, F., McCallum, A.: Accurate Information Extraction from Research Papers
Using Conditional Random Fields. In: HLT-NAACL, pp. 329–336 (2004)

17. Piskorski, J.: Extraction of Polish named entities. In: Proceedings of the Fourth In-
ternational Conference on Language Resources and Evaluation, LREC 2004 (ELR
2004), pp. 313–316. Association for Computational Linguistics, Prague (2004)

18. Piskorski, J.: Named-Entity Recognition for Polish with SProUT. In: Bolc, L.,
Michalewicz, Z., Nishida, T. (eds.) IMTCI 2004. LNCS (LNAI), vol. 3490, pp.
122–133. Springer, Heidelberg (2005) ISBN 3-540-29035-4

19. Przepiórkowski, A.: The IPI PAN Corpus: Preliminary version, Institute of Com-
puter Science. Polish Academy of Sciences, Warsaw (2004)

20. Rosenfeld, B., Fresko, M., Feldman, R.: A systematic comparison of feature-rich
probabilistic classifiers for NER tasks. In: Jorge, A.M., Torgo, L., Brazdil, P.B.,
Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 217–227.
Springer, Heidelberg (2005) ISBN 978-3-540-29244-9

21. Savary, A., Waszczuk, J., Przepiórkowski, A.: Towards the Annotation of Named
Entities in the National Corpus of Polish. In: LREC 2010 Proceedings (2010)

22. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proceedings
of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology, NAACL 2003, vol. 1,
pp. 134–141. Association for Computational Linguistics, Stroudsburg (2003)

23. Vishwanathan, S.V.N., Schraudolph, N.N., Schmidt, M.W., Murphy, K.P.: Accel-
erated training of conditional random fields with stochastic gradient methods. In:
Proceedings of the 23rd International Conference on Machine Learning, ICML
2006, pp. 969–976. ACM, New York (2006) ISBN 1-59593-383-2

Similarity-Based Method
of Detecting Diathesis Alternations

in Semantic Valence Dictionary of Polish Verbs

Elżbieta Hajnicz

Institute of Computer Science, Polish Academy of Sciences

Abstract. In order to create semantic valence dictionary, in which
semantically related syntactic verb schemata are connected, the infor-
mation of diathesis alternations of verbs is needed. In this paper, first
experiments concerning a method of automatic detection of alternation
base on similarity between semantically interpreted (by means of selec-
tional preferences) verb frames are presented.

1 Introduction

The primary task of our research is to create a semantic valence dictionary in
an automatic way. To accomplish this goal, the syntactic valence dictionary of
Polish verbs is supplemented with semantic information, provided by wordnet’s
semantic categories [4] or synsets [6] of nouns. In our present work we focus
on arguments being nominal phrases NPs and prepositional-nominal phrases
PrepNPs, whose semantic heads are nouns. We discuss the case of 25 predefined
semantic categories of nouns.
In the current phase of work we have in our disposal an automatically created

semantic valence dictionary (cf. section 3). It is a list of semantic verb frames,
in which each argument is supplied with a semantic category. Each semantic
frame can be viewed as an interpretation of the syntactic schema1 it represents.
However, no information is provided whether two schemata are used to express
the same meaning, i.e., whether they are involved in a diathesis alternation.
In this paper a method to detect diathesis alternations is proposed. It is based

on similarity between entries of semantic valence dictionary. In section 2 works
on alternation detection are discussed, in section 3 valence dictionaries used for
alternation detection are presented. Section 4 contains purely syntactic classifi-
cation of alternations, section 5 describes the method used to detect alternation,
whereas section 6 presents conducted experiments.

2 Related Works

There exist several works concerning automatic detection of diathesis alter-
nation, mainly for English. Lapata [11] analyses verbs having double object
1 We use the term syntactic schema instead of very popular syntactic frame in order
to distinguish it from the term semantic frame.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 345–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

346 E. Hajnicz

schemata and direct object plus prepositional phrase schemata. She identifies
erroneous text realisations of three syntactic patterns extracted from a corpus
using several linguistic heuristics. If a verb has both V NP1 NP2 and V NP1
to NP2 schemata afterwards, it is accepted as participating in dative alterna-
tion, whereas if a verb has both V NP1 NP2 and V NP1 for NP2 schemata, it is
accepted as participating in dative alternation.
An alternation-based method of classifying verbs is proposed in [20, 17, 9, 10].

The authors take into account various features, like distribution of verbs between
patterns, a level of consistency between arguments, animacy of arguments etc.
The classification is performed using unsupervised hierarchical algorithm from
SPlus 5.0 and supervised decision tree C5.0 and C4.5 algorithms for the whole
set of features and its subsets.
Resnik [19] detects argument deletion alternation under the assumption that

verbs participating in it have strong selectional preference for particular senses
for deleted argument, and occurrences of corresponding (i.e., strongly preferred)
anaphoric antecedents are rare in comparison with other verbs.
Gildea [3] clusters verbs under the assumption that occurrences of a noun on

the particular syntactic slot of a verb are conditionally independent from unob-
served variables representing a cluster and a semantic role. He trains the model
using EM algorithm. The alternation takes place if the same role is attached
to the similar set of nouns on different syntactic slots of the verb in the same
cluster.
McCarthy [15, 16] presents a method of detecting alternations by means of

optimal tree cuts in WordNet hypernymy hierarchy. A tree cut is a set of synsets
not related by hypernymy. Tree cuts optimally representing selectional prefer-
ences between a verb, a schema and a syntactic slot were found using minimum
description length principle (MDL) [1, 13, 14]. McCarthy applies MDL to detect
alternations between corresponding syntactic slots of two schemata as well. She
also compares probability distributions of synsets for the slots by means of Eu-
clidean, rectilinear and cosines measures and α-skew divergence. For this sake
she uses estimations of conditional probabilities p̂(c|v, r) obtained while finding
optimal tree cuts, where c denotes a synset. Since the comparison has to be
performed on the same set of synsets, a “union” tree cut was found, in which
each hypernym from one cut substituted all its hyponyms from the other cut.

3 Valence Dictionary

A syntactic valence dictionary D is a set of entries representing schemata for
every verb considered. Formally, D is a set of pairs 〈v, g〉, where v ∈ V is a verb
and g = 〈r1, . . . , rn〉 ∈ G is a syntactic schema, with ri ∈ R being its arguments.
The dictionary for 32 verbs chosen for experiment was prepared on the basis of
Świdziński’s [22] dictionary. Verbs were chosen manually in a way to maximise
the variability of their syntactic frames (in particular, diathesis alternations)
on one hand and the polysemy within a single frame on the other. Their fre-
quency was the important criterion for this choice as well. Arguments are nomi-

Detecting Diathesis Alternations in Semantic Valence Dictionary 347

Table 1. Predefined set of general semantic categories in Polish WordNet

name acr name acr name acr name acr

act ac communication cm motive mt quantity qn
animal an event ev person pn relation rl
artifact ar feeling fl phenomenon ph shape sh
attribute at food fd plant pl state st
body bd group gr possession ps substance sb
cognition cg location lc process pr time tm

nal phrases (np:〈case〉), prepositional-nominal phrases (prepnp:〈prep〉:〈case〉), wh-
clauses (sentp:wh) etc., and sie is a reflexive marker.
A semantic valence dictionary was obtained by supplementing the syntactic

valence dictionary with selectional preferences. Here, we consider the simple case
of the fix set of 25 semantic categories, which were assigned to nouns at the be-
ginning of the preparation of the Polish WordNet [18], which was modelled on
the Princeton WordNet and wordnets constructed in the EuroWordNet project.
The list of categories can be found in Table 1 together with acronyms used in
examples. The process of collecting a semantic valence dictionary for semantic
categories was described in [5]. An exemplary subset of the set of frames con-
nected with the schema np:acc np:nom of the verb kończyć (to finish) is shown
on the left side of Figure 1.
Dictionaries existing for other languages, like VerbNet [2] for English or Ver-

baLex [8] for Czech, consider one most strongly preferred sense per argument.
Such resources without frequency cannot be applied for our goal. In contrast,
Vallex [23] contains frequencies of schemata, but tectogrammatic functors are
kinds of semantic roles, not semantic preferences.
Formally, a semantic dictionary D is a set of tuples 〈〈v, g, f〉,mf 〉, where

〈v, g〉 ∈ D is a schema of a verb, f ∈ Fg is one of its semantic frames and
mf is the frequency of 〈v, g, f〉. A frame f = 〈a1, . . . , ak〉 is a list of arguments
ai = 〈ri, ci〉, among which NPs and PrepNPs are semantically interpreted, i.e.,
supplied with semantic categories ci.2

4 Classification of Alternations

For Polish, there exists no comprehensive classification of diathesis alternations
and verbs participating in them, as [12] serves for English. The analysis of ac-
cusative verbs was conducted in [21].
Our goal is to consider all potential alternations regardless of the fact whether

they were already classified or not. Because of that we decided to start with
very coarse purely syntactic classification of potential alternations, describing
only how the alternation relate arguments in two schemata gA

= 〈rA
1 , . . . , r

A
nA〉,

gB
= 〈rB

1 , . . . , r
B
nB 〉 involved in it.

2 For uniformity, we can say that semantic interpretation of other arguments is empty.

348 E. Hajnicz

The alternations can be divided in two ways. The first concerns the occurrence
of alternating arguments in both schemata:

– alternations preserving the number of arguments in both schemata,
– alternations in which one of alternating arguments is absent in one schema.

The second is characteristic for Slavic languages and concerns the voice of an
utterance:

– alternations preserving the voice of an utterance,
– alternations changing the voice of an utterance from active to reflexive.3

According to this partition, we distinguish the following eight types of alterna-
tions.

A. Alternations preserving the number of arguments and voice
1. Simple alternation occurs for schemata gA

= 〈r1, . . . , rA
k , . . . , rn〉 and

gB
= 〈r1, . . . , rB

k , . . . , rn〉, where rA
k �= rB

k . Alternating k-th arguments
differ syntactically, but they are semantically consistent, as in dative
alternation, see (1).
(1) Chłopak posłał książkę koledze. (A boy sent his friend a book.)
Chłopak posłał książkę do kolegi. (A boy sent a book to his friend.)

2. Cross alternation occurs for schemata gA
= 〈r1, . . . , rA

k , . . . , rl, . . . , rn〉
and gB

= 〈r1, . . . , rB
k , . . . , rl, . . . , rn〉, where rA

k �= rB
k . The schemata

differ syntactically only in k-th argument as well, but rl ∈ gA is seman-
tically consistent with rB

k , whereas rl ∈ gB is semantically consistent
with rA

k , as in locative alternation, see (2).
(2) Rolnik załadował wóz sianem. (The farmer loaded the wagon with hay.)
Rolnik załadował siano na wóz. (The farmer loaded hay onto the wagon.)

B. Alternations changing the number of arguments and preserving voice
3. Argument deletion alternation occurs for gA

= 〈r1, . . . , rk, . . . , rn〉 and
gB

= 〈r1, . . . , rk−1, rk+1, . . . , rn〉, which differ only in presence or absence
of k-th argument, see (3).
(3) Matka pozmywła naczynia. (Mother washed dishes.)
Matka pozmywła. (Mother washed.)

4. Argument shift alternation occurs for gA
= 〈r1, . . . , rk, . . . , rl, . . . , rn〉

and gB
= 〈r1, . . . , rk−1, rk+1, . . . , rl, . . . , rn〉, which syntactically differ

in presence of k-th argument, but rk is semantically consistent with
rl ∈ gB, so rl ∈ gA is semantically absent in gB, as in an unreflexive case
of causative alternation, see (4).
(4) Jeździec pognał konia przez las. (The rider rode a horse across a forest.)
Koń pognał przez las. (A horse rode across a forest.)

C. Alternations preserving the number of arguments and changing voice

3 We do not consider passive alternation because of the regularity of passivisation.
Moreover, there are not separate passive schemata in D.

Detecting Diathesis Alternations in Semantic Valence Dictionary 349

5. Reflexive simple alternation occurs for gA
= 〈r1, . . . , rA

k , . . . , rn〉 and
gB

= 〈r1, . . . , rB
k , . . . , rn, sie〉, where rA

k �= rB
k . Alternating k-th argu-

ments differ syntactically, but they are semantically consistent. Addi-
tionally, reflexive marker się is present in schema gB (and absent in gA),
see (5).
(5) Chłopak kocha dziewczynę / się w dziewczynie. (A boy loves a girl.)

6. Cross reflexive alternation occurs for gA
= 〈r1, . . . , rA

k , . . . , rl, . . . , rn〉
and gB

= 〈r1, . . . , rB
k , . . . , rl, . . . , rn, sie〉, where rA

k �= rB
k , and constraints

on rk and rl are similar to cross alternation. Additionally, reflexive
marker się is present only in schema gB, cf. (5).
(6) Córka niepokoi matkę. (A daughter worries (her) mother.)
Matka niepokoi się o córkę. (A mother worries about (her) daughter.)

D. Alternations changing the number of arguments and voice
7. Reflexive deletion alternation occurs for gA

= 〈r1, . . . , rA
k , . . . , rn〉 and

gB
= 〈r1, . . . , rk−1, rk+1, . . . , rn, sie〉, in which k-th argument is replaced

with sie, as in reflexive (7) and reciprocal (8) alternations.
(7) Żołnierz obronił towarzysza/się przed atakiem.
(A soldier defend his comrade/himself from the attack.)

(8) Chłopak spotkał dziewczynę / się z dziewczyną. (A boy met a girl.)
Chłopak z dziewczyną spotkali się.
Chłopak i dziewczyna spotkali się. (A boy and a girl met.)

8. Reflexive shift alternation occurs for gA
= 〈r1, . . . , rA

k , . . . , rl, . . . , rn〉 and
gB

= 〈r1, . . . , rk−1, rk+1, . . . , rl, . . . , rn, sie〉, and constraints on rk and rl
are analogous to argument shift alternation, as in causative alternation,
cf. (9).
(9) Kelner stłukł szklanki. (A waiter broke glasses.)
Szklanki stłukły się. (Glasses broke.)

The arguments not involved in an alternation have to be semantically consistent
in both schemata.
Formally, the set of alternations A = {〈a, gA, gB, rA, rB , r〉}, where a is the

alternation type, gA, gB is a pair of alternating schemata, whereas rA, rB, r are
arguments involved in the alternation, rA, r ∈ gA, rB , r ∈ gB. According to
alternation type, some arguments are empty.

5 The Method of Detecting Alternations

Potentially, all pairs of schemata satisfying one of constrains 1.–8. can partici-
pate in the corresponding alternation. The method of detecting which schemata
actually participate in the particular alternation presented in this paper is an
adaptation of solution proposed in [15, 16], concerning comparison of probability
distributions imposed by tree cut models. In our case, we compare estimations
of probability distributions formed by semantic frames, as in (1). The main dif-
ference is that McCarthy considers only arguments involved in an alternations,
whereas we compare whole schemata. A minor difference is that we use a fixed

350 E. Hajnicz

set of semantic categories instead of tree cuts. Thus, for schemata gA, gB poten-
tially involved in alternation a we have corresponding distributions p̂A

v,g, p̂
B
v,g in

our disposal, which are normalised frequencies of D, namely

p̂v,g(f) = p̂(f |g, v) =
mf∑

〈v,g,f ′〉∈D

mf ′
.(10)

5.1 Preparing Frames to Comparison

The problem is that we are able to compare different distributions (frame sets) of
the same schema, whereas alternating schemata differ from each other. However,
an alternation itself brings information how to transform the frame set of schema
gA to uniform it with gB. We implement this by means of two procedures: Com-
pact, which deletes one argument and aggregates frames with consistent other
arguments, and Match, which only changes the syntactic type of an argument.

(11) procedure Compact (g, r)
let g = 〈r1, . . . , rk = r, . . . , rn〉;
let g′ = 〈r1, . . . , rk−1, rk+1, . . . , rn〉;
for each f ′

= 〈a1, . . . , ak−1, ak+1, . . . , ak〉 do
p̂v,g′(f ′

) =

⋃
f=〈a1,...,ak,...,ak〉

p̂v,g(f);

od;
return (〈g′, p̂v,g′〉).

(12) procedure Match (g, rA, rB)
let g = 〈r1, . . . , rk = rA, . . . , rn〉;
let g′ = 〈r1, . . . , rk = rB , . . . , rn〉;
for each f = 〈a1, . . . , ak = 〈rA, c〉, . . . , ak〉 do
f ′ := 〈a1, . . . , ak = 〈rB , c〉, . . . , ak〉;
p̂v,g′(f ′

) = p̂v,g(f);
od;
return (〈g′, p̂v,g′〉).

Using this two procedures, we can unify pairs of schemata involved in any
alternation by modifying schema gA. Procedure Compact is applied to the syn-
tactically deleted argument rA for argument deletion and r for shift alternations.
The procedureMatch changes the argument rA to rB for simple alternation and
rA to r for shift alternation. As for cross alternation, first argument r is changed
to rB and next rA is changed to r by means of the procedure Match. The same
procedures are applied to the reflexive counterparts of the above alternations.
We illustrate the procedure on example of reflexive shift (causative) alter-

nation and schemata of verb kończyć. First, all pairs of schemata satisfying the

Detecting Diathesis Alternations in Semantic Valence Dictionary 351

acc: ac; nom: at 0.002
acc: ac; nom: ac 0.004
acc: ac; nom: gr 0.049
acc: ac; nom: qn 0.006
acc: ac; nom: pn 0.303
acc: ac; nom: cm 0.002
acc: ac; nom: ar 0.004
acc: ac; nom: ev 0.015

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
acc: ac 0.386 =⇒ nom: ac 0.386

acc: cm; nom: gr 0.002
acc: cm; nom: pn 0.085

}
acc: cm 0.087 =⇒ nom: cm 0.087

acc: ps; nom: pn 0.002
acc: ps; nom: ev 0.002

}
acc: ps 0.004 =⇒ nom: ps 0.004

acc: ev; nom: gr 0.011
acc: ev; nom: qn 0.002
acc: ev; nom: pn 0.143
acc: ev; nom: st 0.002
acc: ev; nom: ar 0.009
acc: ev; nom: ev 0.013

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
acc: ac 0.179 =⇒ nom: ac 0.179

Fig. 1. The process of transformation of schema np:acc np:nom of verb kończyć for
reflexive shift alternation

constraint 8. are chosen, which in particular concerns pairs 〈np:acc np:nom,
np:nom sie〉 and 〈np:nom prepnp:z:inst, np:nom sie〉. In Figure 1 the pro-
cess of transformation of frames of schema np:acc np:nom into schema np:nom4

to match requirements of reflexive shift alternation. For simplicity, we write
only a case for NPs (acc) and a preposition followed by a case for PPs (na acc).
This makes no confusion, as only these arguments are semantically interpreted.
Nevertheless, schemata which differ in other arguments are not considered as
candidates for alternations.

5.2 The Algorithm

From among the measures considered by McCarthy, we use in our experiments
the Euclidean DE , rectilinear L1 and cosines cos measures. Applied to probabil-
ity distributions p̂A

v,g, p̂
B
v,g of uniform schemata g

A′
= gB

= g of verb v:

DE(p̂A
v,g, p̂

B
v,g) =

√∑
f

(p̂A
v,g(f) − p̂B

v,g(f))2,(13)

L1(p̂
A
v,g, p̂

B
v,g) =

∑
f

|p̂A
v,g(f) − p̂B

v,g(f)|,(14)

4 At this level, schema np:nom cannot be distinguish from np:nom sie, as sie is not
semantically interpreted.

352 E. Hajnicz

cos(p̂A
v,g, p̂

B
v,g) =

∑
f

p̂A
v,g(f) · p̂B

v,g(f)

√∑
f

(p̂A
v,g(f))2

√∑
f

(p̂B
v,g(f))2

.(15)

The first two measures are distance measures, whereas the third one is a sim-
ilarity measure. Both DE(p̂, p̂) = 0 and L1(p̂, p̂) = 0 and they increase while
the difference between the distributions increases. Moreover, L1(p̂

A, p̂B
) ∈ [0, 2],

DE(p̂A, p̂B
) ∈ [0,

√
2] On the other hand, cos(p̂, p̂) = 1 and it decreases while the

difference between the distributions increases, and cos(p̂A, p̂B
) ∈ [0, 1]. In order

to normalise the measures, we transform the first two in the following way:

D̃E(p̂A, p̂B
) ≡ 1 −DE(p̂A, p̂B

)/
√

2,(16)

L̃1(p̂
A, p̂B

) ≡ 1 − L1(p̂
A, p̂B

)/2.(17)

After this modification, we deal with three similarity measures (denoted uni-
formly as μ) satisfying the conditions:

– μ(p̂A, p̂B
) ∈ [0, 1];

– μ(p̂A, p̂B
) = μ(p̂B , p̂A

),
– μ(p̂A, p̂B

) = 1 iff p̂A
= p̂B.

This means that all the measures obtain minimal value 0 for maximally different
distributions. For cos and L̃1 this means that only one of them can obtain positive
value for any frame f .5 For D̃E this means that there exists fA, fB such that
p̂A

v,g(f
A
) = 1 and p̂B

v,g(f
B

) = 1. Therefore, D̃E shows maximal difference much
more rarely than two other measures.
All three measures increase while the similarity between the distributions

increases, and obtain maximal value 1, when they are identical.
The main idea of the algorithm consists in computing the similarity measure

μ between distributions representing a candidate pair of schemata. If μ exceeds
a particular threshold η, then we assume that the particular alternation between
them occurs.

6 Experiments

The experiments were performed using semantic valence dictionaryD containing
341 schemata of 32 verbs. However, since it was created completely automatically
[4, 5], D is quite noisy. In order to reduce this noise, we used a small dictionary
D

H
containing 37 schemata of 5 verbs, which was prepared manually as a gold

standard for evaluation of of D [5, 7]. Since it does not contain frequencies, it
was supplied with frequencies of corresponding frames from D. Frames absent

5 Geometrically, this is orthogonality of vectors.

Detecting Diathesis Alternations in Semantic Valence Dictionary 353

Fig. 2. Rectilinear measure L1 computed for every 10th percentile for dictionary D

in D were considered rare and hence they obtain an artificially small frequency
0.2. After this procedure both dictionaries were normalised to obtain estimations
of probability distribution.
The method described in the previous section depends on the value of the

threshold η. McCarthy [16] considered equal number of verbs participating in
each alternation and not participating ones. Therefore, she considered the thresh-
olds equal to the median or the mean of the values of similarity measure com-
puted for all candidate verbs. However, this assumption is evidently artificial.
McCarthy claims that she made it because she only wanted to test whether her
method works.6 In contrast, we decided to find the threshold experimentally. For
this sake, we sort candidate pairs of schemata for each alternation accordingly
to increasing μ, and we compute the value of μ for every 10th percentile. The
value of μ for rectilinear measure L1 computed for the dictionaryD is presented
in Figure 2. The results are evaluated, and k-th percentile with the greatest F-
measure7 for a particular alternation is assumed the optimal percentile for this
alternation. The F-measure for rectilinear measure L1 and the dictionary D is
presented in Figure 3.
For a baseline, candidate pairs of schemata for each alternation were randomly

ordered, and k/10 of them were selected accordingly to the obtained order.
On the other hand, the random k was selected. Both these procedures were
performed 3 times, and the results of their evaluation were averaged.
6 Personal communication.
7 F-measure was computed with neutral, default parameter value 0.5.

354 E. Hajnicz

(a) the dictionary D

(b) the dictionary DH

Fig. 3. F-measure for all percentiles of rectilinear measure L1

Detecting Diathesis Alternations in Semantic Valence Dictionary 355

For the sake of evaluation, the repository of alternating verb schemata was
manually prepared. Alternations, in which verb rozpocząć (to begin) participates,
are presented in (18). Arguments participating in the alternation that are seman-
tically consistent in both schemata are displayed as np:nom, and semantically
dropped are displayed as ��:���.

(18) reflexive shift alternation
np:acc np:inst ��:��� np:inst np:nom sie
np:acc ��:��� np:nom sie
np:acc ��:��� prepnp:od:gen np:nom prepnp:od:gen sie
simple alternation
np:acc np:inst np:nom np:acc np:nom prepnp:od:gen
np:inst np:nom sie np:nom prepnp:od:gen sie
deletion alternation
np:acc ��:���� np:nom np:acc np:nom
np:acc np:nom ��	���:�
:�	� np:acc np:nom
��:���� np:nom sie np:nom sie
np:nom ��	���:
�
:�	� sie np:nom sie
np:nom ��	���:�
:�	� sie np:nom sie
reflexive cross alternation
np:nom prepnp:dla:gen sie np:acc np:nom

The results of evaluation for the best percentiles for rectilinear, Euclidean
and cosine measures, respectively, can be found in Table 2 and 3 for the au-
tomatically and manually created dictionaries. Average means average results
for all alternations (including ones without true positives). Cumulative means
treating the set of alternating pairs of schemata as a whole in spite of the type
of an alternation. In parentheses, the evaluation for the baseline algorithm is
presented.
The results obtained for the algorithm using similarity measures are substan-

tially better than the baseline. The smallest differences concern deletion alter-
nation, as it holds for most corresponding pairs of schemata (so it is unlikely to
select a wrong pair).
The superiority of applying algorithm to hand dictionary DH in comparison

with D is striking, in spite of the small size of DH . This shows the influence of
data noise on the performance of the algorithm. D is redeemed only by fairly
good recall, which makes possible to use such noisy data in semi-automatic
alternation detection.

7 Conclusions and Future Work

In this paper, a method of detecting diathesis alternations is presented. It is
based on semantic similarity between two syntactic schemata of a verb. Thus, the
participation of particular verb schemata in an alternation is actually considered.
Alternations are classified much more coarsely than in other works (usually, the

356 E. Hajnicz

Table 2. Evaluation of detecting alternation for automatically created dictionary D

alternation percentile precision recall F-measure

deletion 10/10/10 77.8/79.1/77.8 91.9/93.4/91.9 84.3/85.6/84.3
(–) (77.5) (66.5) (70.9)

simple 50/50/60 29.7/27.9/31.9 78.5/73.8/67.7 43.3/42.6/43.3
(–) (14.4) (56.1) (21.6)

refl. cross 90/50/90 54.5/20.0/45.5 53.3/73.3/33.3 46.2/31.4/38.5
(–) (13.3) (47.4) (18.6)

refl. deletion 70/40/60 64.3/33.3/61.1 69.2/69.2/84.6 66.7/45.0/71.0
(–) (26.9) (45.5) (29.6)

refl. shift 50/50/50 47.7/51.3/45.5 95.5/90.9/90.9 59.2/66.7/60.6
(–) (33.5) (50.2) (39.5)

refl. simple 70/80/70 25.0/31.8/25.0 80.0/70.0/80.0 38.1/43.8/38.1
(–) (8.3) (45.6) (13.8)

average –/–/– 43.4/33.4/42.4 80.8/83.2/80.5 56.5/47.4/55.6
(–) (25.7) (58.8) (34.8)

cumulative –/–/– 52.4/49.6/54.3 86.0/87.3/84.4 65.1/63.3/66.1
(–) (42.5) (61.2) (35.5)

Table 3. Evaluation of detecting alternation for manually created dictionary DH

alternation percentile precision recall F-measure

deletion 10/10/10 88.9/83.3/88.9 100.0/93.8/100.0 94.1/88.2/94.1
(–) (82.8) (67.4) (73.5)

simple 90/90/70 100.0/100.0/33.3 50.0/50.0/50.0 66.7/66.7/40.0
(–) (23.1) (66.7) (32.0)

refl. cross. 90/90/90 100.0/100.0/100.0 100.0/100.0/100.0 100.0/100.0/100.0
(–) (0.0) (0.0) (0.0)

refl. deletion 50/90/50 66.7/100.0/66.7 100.0/50.0/100.0 80.0/66.7/80.0
(–) (60.0) (77.8) (52.9)

refl. shift 60/60/50 60.0/75.0/50.0 100.0/100.0/100.0 75.0/85.7/66.7
(–) (28.2) (63.0) (37.7)

average –/–/– 59.4/65.5/62.7 92.9/84.8/92.9 72.4/73.9/74.9
(–) (27.7) (67.8) (39.1)

cumulative –/–/– 75.0/78.6/68.6 92.3/84.6/92.3 82.8/81.5/78.7
(–) (30.9) (65.0) (41.8)

set of schemata and their arguments under considerations is fixed), which makes
the task harder. However, the set of verbs for experiments is too small for more
fine-grained differentiation of alternations.
Taking the above into account, the obtained results are promising, especially

for manually filtered dictionaryDH . The main objection is that evaluation was
performed on the same set of data as optimal percentiles were computed, which
may lead to overestimation of the evaluation results. In order to obtain reliable

Detecting Diathesis Alternations in Semantic Valence Dictionary 357

results of evaluation, cross validation is needed. Unfortunately, corresponding
experiments have given poor results, only slightly better from random. DH is
evidently too small to be divided into parts (to be ordered and subdivided),
whereas D is probably too noisy.
The algorithm was performed for each type of alternation separately under the

assumption that the similarity level between pairs of schemata for a particular
type of alternation would be uniform. However, the similarity level depends on
the number of NPs/PrepNPs in schemata as well (as this influences the number
of frames per schema), and it is possible that this dependence is stronger than
the dependence on the type of alternation. We plan to perform the algorithm for
pairs of schemata classified w.r.t. their length (in the case of deletion and shift
alternations, the length of a shorter schema is considered).
Experiments on a larger on one hand and less noisy on the other hand set of

verbs are indispensable to obtain more cross-validation results.

Acknowledgements. This research is supported by the POIG.01.01.02-14-013/
09 project which is co-financed by the European Union under the European
Regional Development Fund.

References

[1] Abe, N., Li, H.: Learning word association norms using cut pair models. In: Pro-
ceedings of the 13th International Conference on Machine Learning (ICML 1996),
Bari, Italy, pp. 3–11 (1996)

[2] Dang, H.T., Kipper, K., Palmer, M., Rosenzweig, J.: Investigating regular sense
extensions based on intersective Levin classes. In: Proceedings of the 36th Annual
Meeting of the Association for Computational Linguistics and 17th International
Conference on Computational Linguistics COLING-ACL 1998, Montreal, Canada,
pp. 293–299 (1998)

[3] Gildea, D.J.: Probabilistic model of verb-argument structure. In: Proceedings of
the 6th Conference on Natural Language Learning (CoNNL 2002), Taipei, Taiwan,
pp. 308–314 (2002)

[4] Hajnicz, E.: Semantic annotation of verb arguments in shallow parsed Polish
sentences by means of EM selection algorithm. In: Marciniak, M., Mykowiecka,
A. (eds.) Aspects of Natural Language Processing. LNCS, vol. 5070, pp. 211–240.
Springer, Heidelberg (2009)

[5] Hajnicz, E.: Problems with pruning in automatic creation of semantic valence
dictionary for Polish. In: Matoušek, V., Mautner, P. (eds.) TSD 2009. LNCS,
vol. 5729, pp. 131–138. Springer, Heidelberg (2009)

[6] Hajnicz, E.: Generalizing the EM-based semantic category annotation of NP/PP
heads to wordnet synsets. In: Vetulani, Z. (ed.) Proceedings of the 4th Language
& Technology Conference, Poznań, Poland, pp. 432–436 (2009)

[7] Hajnicz, E.: Aggregating entries of semantic valence dictionary of Polish verbs.
In: Bertinetto, P.M., Korhonen, A., Lenci, A., Melinger, A., Schulte im Walde,
S., Villavicencio, A. (eds.) Proceedings of the Interdisciplinary Workshop on the
Identification and Representation of Verb Features (Verb 2010), Pisa, Italy, Scuola
Normale Superiore and Università di Pisa, pp. 49–54 (2010)

358 E. Hajnicz

[8] Hlaváčková, D., Horák, A.: VerbaLex — new comprehensive lexicon of verb va-
lences for Czech. In: Proceedings of the Third International Seminar on Computer
Treatment of Slavic and East European Languages, Bratislava, Slovakia, pp. 107–
115 (2006)

[9] Joanis, E., Stevenson, S.: A general feature space for automatic verb classification.
In: Proceedings of the 10th Conference of the European Chapter of the Association
for Computational Linguistics (EACL 2003), Budapest, Hungary, pp. 163–170
(2003)

[10] Joanis, E., Stevenson, S., James, D.: A general feature space for automatic verb
classification. Natural Language Engineering 14(3), 337–367 (2008)

[11] Lapata, M.: Acquiring lexical generalizations from corpora: a case study for
diathesis alternations. In: Proceedings of the 37th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL 1999), College Park, MA, pp. 397–404
(1999)

[12] Levin, B.: English verb classes and alternation: a preliminary investigation. Uni-
versity of Chicago Press, Chicago (1993)

[13] Li, H., Abe, N.: Generalizing case frames using a thesaurus and the MDL principle.
In: Proceedings of the Recent Advances in Natural Language Processing (RANLP
1995), Borovets, Bulgaria, pp. 239–248 (1995)

[14] Li, H., Abe, N.: Generalizing case frames using a thesaurus and the MDL principle.
Computational Linguistics 24(2), 217–244 (1998)

[15] McCarthy, D.: Using semantic preferences to identify verbal participation in role
switching alternations. In: Proceedings of the 1st Meeting of the North American
Chapter of the Association for Computational Linguistics (NAACL 2000), Seattle,
WA, pp. 256–263 (2000)

[16] McCarthy, D.: Lexical Acquisition at the Syntax-Semantics Interface: Diathesis
Alternations, Subcategorization Frames and Selectional Preferences. PhD thesis,
University of Sussex (2001)

[17] Merlo, P., Stevenson, S.: Automatic verb classification based on statistical distri-
butions of argument structure. Computational Linguistics 27(3), 373–408 (2001)

[18] Piasecki, M., Szpakowicz, S., Broda, B.: A Wordnet from the Ground Up. Oficyna
Wydawnicza Politechniki Wrocławskiej, Wrocław (2009)

[19] Resnik, P.: Selection and Information: A Class-Based Approach to Lexical Rela-
tionships. PhD thesis, University of Pennsylvania, Philadelphia, PA (December
1993)

[20] Stevenson, S., Merlo, P.: Automatic verb classification using distributions of gram-
matical features. In: Proceedings of the 9th Conference of the European Chapter
of the Association for Computational Linguistics (EACL 1999), Bergen, Norway,
pp. 45–52 (1999)

[21] Szupryczyńska, M.: Syntaktyczna klasyfikacja czasowników przybiernikowych.
Państwowe Wydawnictwo Naukowe, Poznań, Poland (1973)

[22] Świdziński, M.: Syntactic Dictionary of Polish Verbs. Uniwersytet Warszawski /
Universiteit van Amsterdam (1994)

[23] Žabokrtský, Z., Lopatková, M.: Valency information in VALLEX 2.0: Logical
structure of the lexicon. The Prague Bulletin of Mathematical Linguistics 87,
41–60 (2007)

Combining Polish Morphosyntactic Taggers

Tomasz Śniatowski and Maciej Piasecki

Institute of Informatics
Wrocław University of Technology

Wybrzeże Wyspiańskiego 27,
Wrocław, Poland

{157693@student,maciej.piasecki@}.pwr.wroc.pl

Abstract. This paper describes work on the construction of a morpho-
syntactic tagger for Polish as an ensemble of the best performing Polish
taggers: TaKIPI and Pantera. The tagger set was extended with RFTag-
ger trained on the Polish corpus. Several methods of ensemble construc-
tion were tested with the best result, in terms of the tagging error reduc-
tion, achieved with simple, unweighted voting among the three taggers.
Two evaluation metrics were used, namely: weak and strong accuracy.
The ensemble-based tagger presented a significant increase in both eval-
uation metrics, achieving nearly 94% weak correctness. This represents
a one percentage point increase over the best individual tagger tested,
or an error rate reduction of over 15%.

1 Background

1.1 Morpho-syntactic Tagging

Morpho-syntactic tagging, or part-of-speech (POS) tagging, is one of the initial
steps in automated text processing. It is concerned with assigning labels (tags)
to words or, more generally, tokens. The notion of a ‘token’ is not always clear
(Grefenstette and Tapanainen, 1994; Habert et al., 1998), The tags assigned to
tokens correspond in a way to traditional linguistic parts of speech, but are not
strictly equivalent, and might express additional morpho-syntactic information.
In the latter case the tag might be referred to as a morpho-syntactic description
(MSD) tag (although the name POS tag is sometimes used anyway). The set of
all possible tags is called the tagset, its size ranges from several dozen to hundreds
or even several thousand of different tags. The tagset depends primarily on the
language processed, the formalism used to describe it, and the level of details.

Many important further steps of automated text analysis—such as word sense
disambiguation, shallow or deep parsing, named entity recognition—all can bene-
fit to a large extent from the tags assigned previously by a tagger. Errors during
tagging can adversely affect the results of the later steps (Hajič et al., 2001).
Usually the higher the complexity of the linguistic task at hand, the more high-
quality tagging is required.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 359–369, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

360 T. Śniatowski and M. Piasecki

1.2 Tagger Evaluation

Taggers are generally evaluated on accuracy, i.e. the percentage of tokens that
are tagged correctly. There is a problem with imperfect or inherently ambiguous
data, where there is more than one correct tag for a particular token (and a
tagger might return more than one tag for a token). In this case the notion of
accuracy requires adjustments, two simple measures can be used instead: weak
correctness and strong correctness (Acedański and Przepiórkowski, 2010). Weak
correctness (WC) considers a tagging correct if any of the tags returned by the
tagger is appropriate in comparison with the manually annotated text. Strong
correctness (SC), on the other hand, only counts a token as correctly tagged if
the set of expected tags and the set of returned tags for it are equal. It follows
that SC ≤WC. In the case in which there is only one valid tag for each token,
and taggers always return one tag, WC and SC are equal and equivalent to
accuracy.

Several other measures have been proposed, for example information retrieval
based precision and recall by Van Halteren (1999), or complex, adjustable mea-
sures by Acedański and Przepiórkowski (2010) that allow evaluating taggers with
a specific purpose in mind. That said,WC and SC seem better known and better
suited for Polish tagger comparison, especially as recently the results of contem-
porary Polish taggers are presented in terms of these two measures.

1.3 Tagging Polish

POS tagging of Polish presents several challenges. The language is highly inflec-
tive with a free word order, which makes it difficult to use simple statistics-based
methods operating on a narrow context (Sharoff, 2004). The English Penn Tree-
bank tagset consists of 36 tags (Marcus et al., 1993), whereas the widespread
Polish IPIC tagset spans 4179 theoretically possible tags (Przepiórkowski, 2005;
Przepiórkowski and Woliński, 2003). The Polish tagset is positional, that is,
apart from a general part of speech label, tags contain information about several
grammatical attributes such as case, gender or number. The notion of part of
speech is present in the first attribute of a tag, called the grammatical or flexemic
class; each other attribute has a set of possible values, such as singular and plural
for the number attribute (not all attributes are used in every part of speech). It
should be noted, however, that a large number of attribute value combinations
are impossible, and only 1054 different tags actually appear in the corpus we
use for testing. This is on par with tagsets of other inflected languages such as
Czech (Hajič et al., 2001).

The large number of possible tags is usually drastically reduced for known
words by morphological analysis, which plays an important major role in tagging
Polish. This processing step is well developed in the case of Polish and there are
several available morphological analysers such as Morfeusz (Woliński, 2006) or
the Morfologik (Miłkowski, 2010) dictionary. Unknown words pose a challenge,
with morphology guessers such as Odgadywacz (Piasecki and Radziszewski,
2008) being useful.

Combining Polish Morphosyntactic Taggers 361

1.4 Taggers of Polish

POS tagging is generally considered a nearly-solved problem for e.g. the English
language, with accuracy exceeding 97% (Toutanova et al., 2003), and research
focus has been shifted towards more advanced tasks such as sentence structure
parsing or semantic analysis. For Polish, general-purpose taggers (often designed
with English primarily in mind) present mild performance, not adequate for
many applications. Usually at least some changes are needed in order to achieve
reasonable results, but even though such adjustments are made, the accuracy of
the contemporary Polish taggers is much below a typical result for English and
even for Czech, e.g. Hajič et al. (2001).

Best published values (Acedański and Gołuchowski, 2009; Piasecki, 2007) for
weak correctness lie in the range of about 93%, with strong correctness of about
90%. Moreover, looking at the evolution of the results published over the past
several years one can come to a conclusion that progress has been somewhat slow.
Scattered (unpublished) reports and our experience with TaKIPI tagger show
that in real-world applications the perceived tagging accuracy is lower than what
could be expected from the published results. One possible explanation is that
there appears to be a sort of saturation in relation to the available training data,
i.e. the manually disambiguated part of the The IPI PAN Corpus (henceforth
MIPIC) and the limited accuracy of its manual disambiguation (Przepiórkowski,
2004).

A few Polish taggers of performance close to practical applications were
proposed in literature, e.g. Dębowski (2004); Piasecki and Gaweł (2005),
however, only two of them, and only recently, have been made publicly
available. Fortunately, the contemporary trends in the language technology
seem to favour openness in the area. TaKIPI (Piasecki, 2007) and Pantera
(Acedański and Gołuchowski, 2009) are two state-of-the-art, readily and freely
available taggers, designed specifically for Polish. Both these taggers can be used
as provided, or trained by the user.

TaKIPI combines a limited number of hand-written tagging rules with a sim-
ple statistical classifier and a large number of decision tree based classifiers. The
decision based classifiers utilise hand-written lexico-morphosyntactic constraints
as a source of information, cf. Piasecki (2007). The TaKIPI architecture follows
the general multi-classifier scheme: hand-written rules are applied first as a filter,
followed by a statistical classifier that sets initial probability values for tags. The
main work is then done by decision tree based classifiers organised in a sequence
of three layers of disambiguation (each layer refers to different tag parts).

Pantera uses a variant of the Brill algorithm modified for the use with complex
tagsets. For both these taggers weak correctness of 92% to 93% or slightly above
93% is reported and both are available under the terms of the GPL license.

In addition to the taggers dedicated to Polish, we have also selected a
German tagger, based on Hidden Markov Models and adapted for positional
tagsets, RFTagger (Schmid and Laws, 2008). RFTagger has been successfully
trained and run on Polish linguistic data, with minor adjustments. Our ini-
tial tests showed that its weak correctness is about 89%, thus RFTagger is

362 T. Śniatowski and M. Piasecki

well behind the other two, but on a similar level to other Polish taggers,
e.g. Piasecki and Gaweł (2005). As RFTagger has not been dedicated to Pol-
ish, the result can be considered promising.

2 Combining Taggers

Combining classifiers is a well known Artificial Intelligence method for improving
the overall classification result that has been also successfully applied for various
tasks in Natural Language Processing, e.g. (Henderson and Brill, 1999). As for
the specific problem of POS tagging, several methods have been proposed, rang-
ing from simple voting among different taggers (Van Halteren et al., 2001), to
employing machine-learning methods such as boosting or bagging (Kuba et al.,
2005).

A multi-classifier approach to tagging is far from a novel idea—indeed, TaKIPI
itself is a multi-classifier tagger. However, a higher-level approach (where com-
plete, different taggers are ensembled) has been researched for languages such
as English (Brill and Wu, 1998), Swedish (Sjöbergh, 2003) or Italian (Søgaard,
2009), but, to the best of our knowledge, has not yet been successfully attempted
for Polish on the basis of the contemporary taggers dedicated to Polish. A possi-
ble explanation could be the low number of Polish taggers that perform reason-
ably well and, even more importantly, are easily obtainable for experimentation.
The recent development of the Pantera tagger, as well as the mildly successful
test of RFTagger on Polish data open this new avenue for improving tagging
accuracy for Polish.

A major prerequisite for successful tagger combination, and in fact any sort of
classifier ensemble, is that the individual classifiers must be different in the sense
of making different errors, preferably for different types of decisions. One way of
attaining this feature is by choosing classifiers that operate on varied principles,
with the hope that different algorithms will behave differently enough during
classification. This is the case we are facing with the tested taggers of the Polish
language: TaKIPI is decision-tree-based with some linguistic rules; Pantera is
a strictly rule-based transformation tagger; RFTagger is an improved trigram
HMM tagger.

2.1 Voting

Simple unweighted voting is often considered as an initial attempt to combine
taggers. In this approach the taggers vote on each word, and the tag with the
majority of votes is selected as the output of the combined tagger. A similarly
plain tie resolution system is used, with a fall-back on one of the taggers, normally
the one which performs best on its own.

Interestingly enough, simple voting can offer surprising and significant im-
provement over the best individual tagger, as long as the assumption about
the varied types of errors of individual taggers holds. Even more interesting is
the fact that more sophisticated combination methods can often offer little im-
provement over simple voting (Brill and Wu, 1998), especially when compared

Combining Polish Morphosyntactic Taggers 363

to the accuracy increase already achieved. In particular, weighted voting based
on a tagger’s confidence of the classification can reduce the overall accuracy, as
discussed by Sjöbergh (2003).

2.2 Second-Level Classifier

Another approach is to choose a tagger on the basis of certain criteria – such as
text type (Borin, 2000), some sort of word type, or contextual information about
the word to be tagged. Alternatively, a second level classifier can be constructed
for this purpose. Features such as the full tags returned by all the taggers in
the ensemble for the word and N words surrounding it can be fed to this clas-
sifier in an attempt to train it for tagger selecting (or tag selecting) on top of
the standalone taggers. The aim is to achieve results exceeding those of simple
voting by selecting an outvoted tagger in some circumstances. Experiments by
Brill and Wu (1998) suggest that choosing between taggers performs better than
choosing between tags, even though such a method is in a way limited and will
never tag correctly if all of the used taggers tag incorrectly.

3 Experiments

3.1 Training Data and Methodology

A version of MPIC (Przepiórkowski, 2004), which has been slightly corrected
for the development of TaKIPI (Piasecki, 2007), was used. It consists of 884,273
tokens. Around 2.5% of tokens in the corpus have more than one correct tag
assigned, making it impossible to use simple accuracy as a performance mea-
sure. Instead, the two already introduced measures of weak and strong cor-
rectness were applied. Both the training and testing data were fully tokenised
and morphologically analysed beforehand; this was motivated by the intention
to test taggers alone without having to account for e.g. different tokenisation
behaviours.

Experiments were performed using repeated random sub-sampling cross-
validation. The taggers were trained on 9/10 of the data and then evaluated
on the remaining 1/10. Ten randomly split training-testing data sets were pre-
pared, and each experiment was run on each of these training-testing data splits.
The results reported are always the average of ten runs, and unless otherwise
noted, were consistent across folds (the standard deviation was low).

3.2 Comparison of the Taggers Used

Three taggers were used: TaKIPI, Pantera and RFTagger. The manual disam-
biguation between the grammatical classes of nouns (subst tag in the IPIC
tagset) and gerunds (ger) expresses a significant number of errors in MIPIC.
That is why TaKIPI is not trained for this distinction in its default mode of use.
However, in order to achieve a behaviour that is compatible with the other two

364 T. Śniatowski and M. Piasecki

taggers used, TaKIPI has been trained and used in a mode in which the internal
merge of subst and ger was switched off.

It should also be noted that TaKIPI returns more than one output tag for
around 0.3% of all tokens, while both RFTagger and Pantera always output one
tag. All taggers were trained on the same modified version of MIPIC with the
recommended parameter values as provided by the respective authors along with
the taggers.

Several papers contain results for Pantera and TaKIPI, but since RFTagger
has not been yet tested on Polish, and in order to provide a clear baseline for
improvement, we have decided to first test all the taggers individually on our
data. Table 1 presents the results, with TaKIPI and Pantera being very close, and
significantly ahead of RFTagger. It should be noted that RFTagger was unable to
use the morphological analysis information contained in the test corpora, which
might account for some of the difference.

The difference between TaKIPI and Pantera is very slight. According to weak
correctness there is no statistically significant difference (with a significance
level of 0.05), and there is a statistically significant, but still small, advantage
of Pantera in strong correctness. The result is different from that reported by
e.g. Acedański and Przepiórkowski (2010), and might be caused by the corpus
choice, tagset details, undisclosed assumptions or differences in test methodol-
ogy, or plain bugs in the software—several implementation issues in both Pantera
and TaKIPI were found in the course of performing the experiments described
in this paper.

Table 1. Accuracy (Weak and Strong Correctness) of the tested taggers

Tagger WC SC
RFTagger 89.76% 87.43%
TaKIPI 92.93% 90.04%
Pantera 92.98% 90.33%

3.3 Tagger Complementarity

Brill and Wu (1998) proposed a measure of complementarity comp(A,B) to eval-
uate how pairs of taggers relate in terms of errors made. Complementarity of
tagger A and tagger B measures how often, when tagger A provides a wrong tag
for a word, tagger B tags the word correctly. High values of tagger complemen-
tarity indicate that the two taggers err in different situations, thus indicating
good candidates for combining. Conversely, low value of complementarity sug-
gests that the two taggers are similar and there is likely little to be gained from
combining them; comp(A,A) is always zero.

Results of the complementarity analysis (on weak correctness) are presented
in Table 2. The values are high across all tagger pairs, indicating that there is
a good chance that a combined tagger will achieve results better than the best
individual tagger.

Combining Polish Morphosyntactic Taggers 365

Table 2. Tagger complementarity, comp(A,B) indicates how often tagger B is correct
in cases where A tags incorrectly (measured on weak correctness)

�
��B
A RFTagger TaKIPI Pantera

RFTagger 0% 43.2% 42.2%
TaKIPI 62.7% 0% 40.9%
Pantera 62.5% 41.5% 0%

3.4 Oracle Accuracy

Another useful concept for measuring possible gain from tagger combination is
the theoretical oracle which can, in all circumstances, choose the best tagger
from a group of taggers. Essentially, the oracle tagger tags incorrectly only if
no tagger produces a valid tag for a word. Accuracy of the oracle is the upper
bound for accuracy of several tagger combination methods (all of those in which
the algorithm chooses a tagger from the group).

In the case of the three taggers under test the calculated oracle accuracy is
97.10% weak correctness and 94.68% strong correctness, far higher than any of
the individual taggers, again showing promise in a tagger combination.

3.5 Simple Voting

A simple voting tagger was constructed first. For each word it collects tags
assigned by the three tested taggers, and outputs tags that were chosen by more
than one tagger. In case of a tie (no shared tag chosen by the taggers), the voting
system always falls back to the tagging decision of an initially specified tagger.
The usual method (Brill and Wu, 1998) is to fall back on the best individual
tagger, however we have decided to verify that assumption by testing all three
possible choices of the voting tagger thrice, i.e. with each individual tagger as
the fall-back one.

Table 3. Accuracy (weak and strong correctness) of all the tested voting tagger variants
(parentheses indicate which tagger’s output is used in case of a tie: P - Pantera, T -
TaKIPI, R - RFTagger)

Tagger WC SC
Voting (P) 93.98% 91.28%
Voting (T) 93.93% 91.26%
Voting (R) 93.80% 91.12%

Table 3 presents the accuracy of the voting tagger variants, with the per-
formance of the best voting tagger (all the other tested taggers and the oracle
are shown once again for comparison in Table 5). There is a clear and statisti-
cally significant increase (with a significance level of 0.05; the P-value was below

366 T. Śniatowski and M. Piasecki

0.001) in both weak and strong correctness when compared to the best individual
tagger. In weak correctness the increase is close to one percentage point. When,
instead of correctness, the number of errors is considered, there is a drop from
around 7% to 6%—a decrease of roughly 14%.

The hypothesis that the fall-back tagger should be the best individual tag-
ger seems confirmed in our experiments, however the differences are very slight
(although statistically significant), especially when TaKIPI is considered instead
of Pantera. It should be noted that a tie occurs only in 1.7% of decisions on
average. It appears in general that there is not much to be gained from compar-
ing different fall-back variants in voting, with the heuristic of choosing the best
individual tagger performing best.

3.6 Ambiguity Class-Based Tagger Selection

Another approach we have investigated involved deciding which tagger to use
based on the ambiguity class of the analysed word. Given how the tagset for
Polish is positional, we define the ambiguity class as the set of possible tags
a word can be assigned (based on the morphological analysis), but using only
a subset of all the attributes. For example, using the number attribute and
assuming the grammatical class is already known, we would end up with four
classes of words: those that can be either plural or singular, those that are known
to be plural, those that are known to be singular, and those that do not have a
number attribute. We will be denoting ambiguity classes by listing the possible
values within curly braces, for example {sg,pl} for the class of words that can
be either singular or plural.

Hypothesising that such a split would uncover differences in behaviour be-
tween the taggers, we used the grammatical class (POS) attribute to identify
ambiguity classes, so words were split into groups according to their possible
POS. There are a bit over a hundred such classes in the corpus we used, with
over a half of them rare (below 500 tokens). We analysed the accuracy of the
three taggers on different classes, and considered a tagger that would choose the
best result for each ambiguity class, expecting to see a result comparable with
that of the voting tagger. A sample of the analysis data, including the perfor-
mance of the voting tagger, is shown in Table 4 (the data in its entirety is far
too spacious to be included here). Note that the values in the table do not mea-
sure just the ability to choose the correct POS for tokens within a class—should
that be the case, we would expect near-100% correctness for tokens where the
grammatical class is known unambiguously (such as the {subst} class) after
morphological analysis (for taggers capable of using that information).

The initial hypothesis that taggers would not behave uniformly across POS
ambiguity classes was confirmed. For example for words that are ambiguous
between an adjective and a numeral (the {adj,num} class), the weakest tagger,
RFTagger, offers a score increase of 5% over the otherwise best tagger, Pantera.
This already allows an accuracy increase in a top-level tagger choosing an
underlying tagger based on the ambiguity class. However, we were somewhat

Combining Polish Morphosyntactic Taggers 367

surprised to see that the voting tagger produces even better results for most
of the ambiguity classes, and especially for the more common ones, such as the
{subst} class (words known to be a noun). This class is the largest in our corpus,
measuring roughly 190,000 instances, or 21% of the entire corpus. Within this
class, the voting tagger achieves a weak correctness advantage of 1.2 percentage
point over TaKIPI and Pantera.

We followed with an off-line analysis of the theoretical performance of a tagger
that would choose between the three standalone taggers based on the ambigu-
ity class of each tagged word. The total weak correctness of such a tagger was
calculated as 93.26%, with strong correctness of 90.67%. While both these num-
bers are higher than those of the best individual tagger, the result is far lower
than the one obtained by simple voting. This is further compounded by the fact
that in order for the comparison to be fully valid, the ambiguity class analysis
would have to be performed on the test corpora and then the choose-best tagger
would have to be tested on a held-out portion. The proper result would have to
be lower than the figures mentioned earlier, which should be treated as upper
bounds for such a method.

Additionally, we investigated whether it is reasonable to resolve voting ties
using ambiguity class information. We created a tie resolution mechanism that
chose the best-performing tagger for the ambiguity class of the tied token. This
approach failed to provide any statistically significant difference in the results
obtained, despite again being favoured by using tagger performance information
on the entire corpus including the test portion.

Table 4. Sample of tagger weak correctness (on full tags) split across ambiguity classes
based on the morphologically possible grammatical class

Amb. class Count % of corpus TaKIPI Pantera RFTagger Voting
{subst} 190k 21.5% 92.3% 92.3% 88.9% 93.5%
{adj} 89k 10% 86.0% 85.2% 78.4% 87.5%
{prep,qub} 15k 1.7% 93.5% 95.1% 93.0% 95.6%
{fin,subst} 5k 0.6% 89.9% 86.7% 91.9% 92.2%
{adj,num} 0.3k 0.03% 68.5% 70.8% 74.3% 74.2%

Table 5. Accuracy of all the tested taggers, the voting tagger, the POS-ambiguity
class based tagger and the oracle

Tagger WC SC
RFTagger 89.76% 87.43%
TaKIPI 92.93% 90.04%
Pantera 92.98% 90.33%
Voting 93.98% 91.28%

POS amb. class 93.26% 90.67%
Oracle 97.10% 94.68%

368 T. Śniatowski and M. Piasecki

4 Conclusion

By combining two readily-available Polish taggers with a different tagger capable
of working with Polish data, we have been able to achieve a significant increase
in standard evaluation measures. The gain of roughly one percentage point of
both weak and strong correctness corresponds to a 10–15% reduction in the
number of errors made. The upper bound for a tagger-choosing algorithm lies
even higher, indicating that a more complex method could yield even better
results. The considered approach of selection based on the POS ambiguity class,
however, failed to improve upon the simple voting tagger.

Further research should be directed at both employing more different taggers
in the ensemble and investigating other approaches at combining the taggers. For
instance, more ambiguity classes can be chosen and tested, possibly together with
other word features fed to a classifier. It should also be investigated whether
manual rules for choosing a tagger or amending the final output can have a
significant impact on the evaluation metrics. We also plan to publish the source
code for the voting tagger at http://nlp.pwr.wroc.pl/votar.

With regards to using different taggers, it would be useful to replace RFTag-
ger, for two reasons. First, as shown in comparison with Pantera and Takipi,
RFTagger performs below par for Polish; a better third tagger might yield even
better overall results. More important from the practical point of view is the fact
that RFTagger is not license-compatible with the other two taggers described,
thus it is difficult to distribute and freely use a complete voting tagger program.

Acknowledgements. The work was co-funded by the European Union Inno-
vative Economy Programme project NEKST, No POIG.01.01.02-14-013/09.

References

Acedański, S., Gołuchowski, K.: A Morphosyntactic Rule-Based Brill Tagger for Polish.
In: Proceedings of Intelligent Information Systems, pp. 67–76 (2009)

Acedański, S., Przepiórkowski, A.: Towards the Adequate Evaluation of Morphosyn-
tactic Taggers. In: Proceedings of COLING 2010 (2010)

Borin, L.: Something borrowed, something blue: Rule-based combination of POS tag-
gers. In: Proceedings of the Second International Conference on Language Resources
and Evaluation, pp. 21–26 (2000)

Brill, E., Wu, J.: Classifier combination for improved lexical disambiguation. In: Pro-
ceedings of COLING 1998, vol. 1, pp. 191–195. Association for Computational Lin-
guistics (1998)

Dębowski, Ł.: Trigram morphosyntactic tagger for Polish. In: Proceedings of the Inter-
national IIS: IIPWM 2004 Conference, pp. 409–413 (2004)

Grefenstette, G., Tapanainen, P.: What is a word, what is a sentence? Problems of
tokenization. In: Proceedings of COMPLEX 1994, Budapest (1994)

Habert, B., Adda, G., Adda-Decker, M., de Mareuil, P.B., Ferrari, S., Ferret, O., Il-
louz, G., Paroubek, P.: Towards Tokenization Evaluation. In: Proceedings of 1st
International Conference on Language Resources and Evaluation, vol. 1 (1998)

http://nlp.pwr.wroc.pl/votar

Combining Polish Morphosyntactic Taggers 369

Hajič, J., Krbec, P., Květoň, P., Oliva, K., Petkevič, V.: Serial combination of rules
and statistics: A case study in Czech tagging. In: Proceedings of the 39th Annual
Meeting on Association for Computational Linguistics, pp. 268–275. Association for
Computational Linguistics (2001)

Henderson, J., Brill, E.: Exploiting diversity in natural language processing: Combining
parsers. In: Proceedings of the Fourth Conference on Empirical Methods in Natural
Language Processing, pp. 187–194 (1999)

Kuba, A., Felföldi, L., Kocsor, A.: POS tagger combinations on Hungarian text. In:
Dale, R., Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005. LNCS (LNAI),
vol. 3651, pp. 191–196. Springer, Heidelberg (2005)

Marcus, M., Marcinkiewicz, M., Santorini, B.: Building a large annotated corpus of
English: The Penn Treebank. Computational linguistics 19(2), 313–330 (1993)

Miłkowski, M.: Developing an open-source, rule-based proofreading tool. Software:
Practice and Experience 40, 543–566 (2010)

Piasecki, M.: Polish Tagger TaKIPI: Rule Based Construction and Optimisation. Task
Quarterly 11(1–2), 151–167 (2007)

Piasecki, M., Gaweł, B.: A rule-based tagger for Polish based on Genetic Algorithm.
In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Proceedings of IIPWM
2005. Advances in Soft Computing. Springer, Heidelberg (2005)

Piasecki, M., Radziszewski, A.: Morphological Prediction for Polish by a Statistical A
Tergo Index. Systems Science 34(4), 7–17 (2008)

Przepiórkowski, A.: The IPI PAN Corpus: Preliminary version. Institute of Computer
Science, Polish Academy of Sciences, Warsaw (2004)

Przepiórkowski, A.: The IPI PAN corpus in numbers. In: Proceedings of the 2nd Lan-
guage & Technology Conference, Poznan, Poland (2005)

Przepiórkowski, A., Woliński, M.: A flexemic tagset for Polish. In: Proceedings of Mor-
phological Processing of Slavic Languages, EACL 2003 (2003)

Schmid, H., Laws, F.: Estimation of conditional probabilities with decision trees and
an application to fine-grained POS tagging. In: Proceedings of COLING 2008, vol. 1,
pp. 777–784. Association for Computational Linguistics (2008)

Sharoff, S.: What is at stake: a case study of Russian expressions starting with a
preposition. In: Proceedings of the Workshop on Multiword Expressions: Integrating
Processing, pp. 17–23. Association for Computational Linguistics (2004)

Sjöbergh, J.: Combining POS-taggers for improved accuracy on Swedish text. In: Pro-
ceedings of NoDaLiDa 2003 (2003)

Søgaard, A.: Ensemble-based POS tagging of Italian. In: IAAI-EVALITA, Reggio
Emilia, Italy (2009)

Toutanova, K., Klein, D., Manning, C., Singer, Y.: Feature-rich part-of-speech tag-
ging with a cyclic dependency network. In: Proceedings of the 2003 Conference of
the North American Chapter of the Association for Computational Linguistics on
Human Language Technology, vol. 1, pp. 173–180. Association for Computational
Linguistics (2003)

Van Halteren, H.: Performance of taggers. Syntactic Wordclass Tagging 9, 81–94 (1999)
Van Halteren, H., Daelemans, W., Zavrel, J.: Improving accuracy in word class tagging

through the combination of machine learning systems, vol. 27, pp. 199–229. MIT
Press (2001)

Woliński, M.: Morfeusz — a practical tool for the morphological analysis of Polish.
In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds.) Proceedings of IIPWM
2006, Ustroń, Poland, pp. 511–520. Springer, Berlin (2006)

Towards the Lemmatisation
of Polish Nominal Syntactic Groups

Using a Shallow Grammar�

Łukasz Degórski

Institute of Computer Science
Polish Academy of Sciences

ul. Ordona 21, 01-237 Warszawa, Poland

Abstract. While morphological analysers and taggers usually assign
lemmata to wordforms, those tools focus on single words. For some tasks
a tool that lemmatises (and thus normalises) whole phrases would be
more appropriate. The paper presents, discusses and evaluates a set
of tools to lemmatise nominal groups, based on a shallow grammar
for Polish. The tools reach an overall success rate of over 58%, and almost
83% on the nominal groups that are correctly recognised by the gram-
mar. The approach should be portable to other languages, especially
those morphologically rich.

Keywords: lemmatisation, partial syntactic parsing, syntactic groups,
nominal groups.

1 Motivation

The task of finding lemmata of word forms is particularly important for mor-
phologically rich languages, such as Polish. This is mostly dealt with by morpho-
logical analysers and taggers, as lemmatisation is an inherent, while not trivial,
subtask (or side effect) of tagging. Nonetheless, all those tools focus on single
words, while for some tasks, such as indexing, computing statistical measures
like TF-IDF, and machine learning, a tool that lemmatises whole phrases would
be useful to generate intuitively correct normalised forms.

A lemmatising engine was also directly needed for the CMS designed to man-
age and publish multilingual content, currently in development in the Applied
Technology for Language-Aided CMS project (ATLAS; www.atlasproject.eu).

Note that in a synthetic, free word order language a lemma of the whole phrase
is rarely a simple concatenation of lemmata of the components. For Polish, that
may happen for instance for simple groups matching the pattern Adj+Noun or
Noun+Adj if the adjective is masculine (krwiożerczego potwora ‘bloodthirsty +
� The work reported here was carried out within the Applied Technology

for Language-Aided CMS project co-funded by the European Commission
under the Information and Communications Technologies (ICT) Policy Support
Programme (Grant Agreement No 250467).

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 370–378, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.atlasproject.eu

Towards the Lemmatisation of Polish Nominal Syntactic Groups 371

M+Gen monster + M+Gen’), for coordinations (prezentacje i analizy ‘presen-
tations + Nom/Acc and analyses + Nom/Acc’ and also – by chance – for some
forms unrecognised by the tagger. However, the simple concatenation will never
work if the group contains, for instance, any non-masculine adjective/pronoun,
or a nominal subgroup in genitive case:
celem badania ‘aim+Inst+Sg research+Gen+Sg’
should be lemmatised to
cel badania ‘aim+Nom+Sg research+Gen+Sg ’
while the simple concatenation renders
cel badanie ‘aim+Nom+Sg research+Nom+Sg’.

The ongoing work in the National Corpus of Polish (NKJP1; www.nkjp.pl; see
[7]) made it possible to deal with the task using a shallow grammar. An exten-
sive grammar has been prepared for the Corpus, designed for the identification
of various kinds of syntactic groups (among those – nominal) using the Spejd
shallow processing tool (nlp.ipipan.waw.pl/Spejd/; [2]). The grammar has
been handcrafted iteratively, using samples from a 1-million-word manually an-
notated subcorpus of the NKJP (see [3] for details).

Combining the lemmatisation task with shallow parsing has one great advan-
tage - shallow parsing gives us structure, used as a base to write lemmatisation
rules (or rather: schemata, as these are not rules in the sense of the grammar).
The schemata are written separately for each rule of the grammar, and operate
on the strings and structure matched by that rule.

2 Related Work

Previously a similar task was attempted for Czech (Pala et al., [5]) for the law
domain. The paper does not get into details on the method used and achieved
results. There were also some attempts for Mongolian [4], but it seems that
Khaltar and Fujii focused more on lemmatising single words and on loanwords
in the Mongolian language.

Other phrase lemmatisation-related research focuses mostly on named entities
(for instance, Piskorski et al., [6]), which is a different task involving different
methodology.

3 Implementation – The Processing Chain

In our approach, the lemmatisation process can be divided into four main steps:
tagging, shallow parsing, generating additional needed wordforms and final post-
processing.

Note that the input needs not to be a simple list of nominal groups – it can
be any Polish text. Identifying the groups in a running text is a part of the task
of the shallow grammar.
1 In Polish: Narodowy Korpus Języka Polskiego.

www.nkjp.pl
nlp.ipipan.waw.pl/Spejd/

372 Ł. Degórski

3.1 Tagging

The input (text file) needs to be morphologically annotated before Spejd gram-
mars can be applied. For this task we used a Brill-based tagger called Pantera.
The tagger outputs information in TEI P5-conformant format used in NKJP. See
http://code.google.com/p/pantera/tagger and [1] for more information.

3.2 Shallow Parsing

The main part of the lemmatisation process is applying the shallow grammar.
The NKJP grammar mentioned before has been augmented with lemmatisation
schemata for nominal groups, as well as for some adjectival groups, so that it is
able not only to extract those groups, but also to assign them proper lemmata.

To do this in the Spejd formalism, we add a fourth parameter2 to the group()
operator in every relevant rule, as in the simple example below. The lemma
of the whole group is constructed by smart concatenation of lemmata and or-
thographic forms of the constituents. The constituents, in turn, may also be
syntactic groups – in which case their lemmata are results of similar operations
performed at the earlier stages of parsing. Lemmata of single syntactic words
(such as both nouns in the example below) are provided by the original NKJP
grammar, based on the results of the tagging phase.

Rule "NGk: Noun i Noun (koordynacja)"

Match: [pos~"Noun"]
[base~"i|oraz|ani|lub|albo|bądź|czy|a także"
&& pos~"Conj"]

[pos~"Noun"];
Eval: unify(case,1,3);

Original NKJP grammar just marks the group
group(NGk,1,1);
We added the 4th parameter for lemmatisation

group(NGk,1,1,1.base " " 2.orth " " 3.base);

This particular rule recognises syntactic groups, consisting of two nouns with
a conjunction in between. Both nouns must be unifiable for case. The lemma
(called base in the Spejd formalism) of the conjunction must match one of
the forms enumerated in the list, in addition to having a proper POS tag.

The lemma of this group is a concatenation of the lemma of the first noun,
orthographic (unchanged) form of the conjunction and the lemma of the second
noun.

Let’s have a look at something more advanced:
2 Only a new, prototype reimplementation of Spejd, still in development and not

yet publicly available, supports syntactic groups lemmatisation and accepts this
parameter.

http://code.google.com/p/pantera/tagger

Towards the Lemmatisation of Polish Nominal Syntactic Groups 373

Rule "NGg: Noun + n-Noun w gen"

Match: ([pos~"Noun" && case!~"gen"]
| [type="NGa|NGk" && synh=[case!~gen]])

([pos~"Noun" && case~"gen"]
| [type="NGa|NGk" && synh=[case~gen]]
| [type="NGk" && semh=[case~gen]]

)+;
Original NKJP grammar
#Eval: group(NGg,1,1);
Added 4th parameter for lemmatisation
Eval: group(NGg,1,1,1.base " " 2.orth);

This rule recognises syntactic groups that

– begin with a single non-genitive noun, or a syntactic group of type NGa
or NGk, whose syntactic head’s case is not genitive

– followed by one or more of the following: noun in genitive; nominal group
of type NGa or NGk whose syntactic head is a genitive; nominal group of type
NGk whose semantic head is a genitive

An example of a group matching this rule is Instytut Podstaw Informatyki Pol-
skiej Akademii Nauk – ‘Institute (of) Computer Science (of the) Polish Academy
(of) Sciences’. The lemma of such a group is the concatenation of the lemma
of the first (non-genitival) part with the orthographic form of the remaining
genitival part.

More information about the NKJP syntactic grammar and examples can be
found in [8].

3.3 Generating Forms

The tools we use (Pantera + Spejd) assign as lemma the nominative masculine
singular positive form for adjectives and the nominative singular form for nouns.
Perfectly simple in case of single words, it becomes more complicated in lemma-
tising multi-word expressions, such as nominal groups. For example,
zielonej żabie ‘green+F+Dat+Sg frog+Dat+Sg ’
on a word-by-word basis would be lemmatised to
zielony żaba ‘green+M+Nom+Sg frog+Nom+Sg ’3,
while we expect zielona żaba ‘green+F+Nom+Sg frog+Nom+Sg’ here.

For this reason we cannot always simply use the Spejd .base operator as in
the example above. For adjectival groups, we protect the original gender infor-
mation (extracted using the .gender operator) by returning a temporary string
3 In fact, the gender system in the tagset is more complicated, with multiple flavours

of the masculine tag; however, for the sake of clarity of the examples, it is simplified
to M,F,N here.

374 Ł. Degórski

like ADJ(zielony,F) instead of just zielony. In such cases, the appropriate line
in the grammar may look like this:

group(NGa,2,2,"ADJ(" 1.base "," 1.gender ") " 2.base);

and render a “half-lemmatised” string like ADJ(zielony,f) żaba. These strings
need to be converted later to proper forms. This is done using Morfeusz mor-
phological analyser’s (http://sgjp.pl/morfeusz/) wordform generation mode.

This implied deeper changes in the original NKJP grammar, as a lot of rules
catch participles (imperfect and perfect) together with adjectives, whereas at
the form generation level we need to treat them differently. Thus, some rules
had to be multiplicated with various combinations of ADJ, PPAS and PACT.

3.4 Postprocessing

The final postprocessing deals with remaining simple problems that can be cor-
rected on pure text level:

– all output is converted to lowercase for consistency, as some capital letters
disappear during lemmatisation

– for some specific words two different forms (short and long, e.g. me and
moje) are generated by Morfeusz; the short forms are removed using a regular
expression

Technically this phase takes place together with form generation, in one Perl
script. The script calls Morfeusz generator for each “half-lemmatised” string and
processes its output.

4 Evaluation

For evaluation we used a subset of all nominal syntactic groups marked manually
in the 1-million-word balanced subcorpus of the NKJP. From amongst almost
70000 we randomly chose a few hundred, and those have been manually lem-
matised by a linguist. The linguist was instructed to skip groups that contain
foreign names (Latin plant names, for instance) and names of people, unless they
constituted only a small part of a longer phrase. After that we also removed a few
groups for which the proper lemmatisation seemed very unclear, as we cannot
expect the program to properly guess forms that even the linguists are not sure
about.

In the end, 336 annotated phrases were left. They were divided into a devel-
opment set of 112 and an evaluation set of 224. The development set was used
to make final amendments to the shallow grammar, lemmatisation rules and
postprocessing scripts. The program was then run with the final grammar and
scripts on the unseen evaluation set.

The results were checked and divided into four categories:

1. program produced exactly the same result as the linguist (126)

http://sgjp.pl/morfeusz/

Towards the Lemmatisation of Polish Nominal Syntactic Groups 375

2. grammar correctly recognised the group, but the produced lemma was dif-
ferent than the linguist’s, and it was obviously incorrect (14)

3. grammar correctly recognised the group, but the produced lemma was dif-
ferent than the linguist’s, however it was not obviously incorrect (18)

4. grammar incorrectly recognised the group, not giving a chance for proper
lemmatisation of this group (66)

In case of any doubts, lemmata were classified to the third category. This cate-
gory was later reviewed by another linguist, who marked 5 items as correct and
13 as indeed incorrect.

Thus, the evaluation results are as shown in Table 1.

Table 1. Results of the evaluation

Correct 131 58.5%
Group correctly recognised, bad lemma 27 12.0%
Group incorrectly recognised 66 29.5%
Total 224

As a baseline we used a trivial algorithm that assigns the concatenation of lem-
mata of the constituents (single wordforms) as the lemma of the whole group. On
the evaluation set it assigned 60 lemmata correctly (26.8%). It is worth noting that
among those correctly lemmatised there were only 3 groups longer than 3 words.

The way of counting the success rate presented above may however be con-
sidered unfair to the algorithm, as it counts as an error not only wrong lem-
matisation, but also wrong extraction of the nominal group (and that is, in
fact, an error of the underlying grammar, not the lemmatisation patterns). It
might be interesting to see how both the algorithm and the baseline performed
on the subset of the evaluation set – those groups that have been correctly recog-
nised by the grammar. In other words: to discard the 66 incorrectly recognised
groups and look at the remaining 158 only. Table 2 shows these results.

Table 2. Comparison with baseline – with and without incorrectly recognised groups

All groups in the Groups correctly
eval set recognised

Number of groups 224 158
Correctly lemmatised by our alg. 131 58.5% 131 82.9%
Correctly lemmatised by baseline 60 26.8% 43 27.2%

5 Errors and Potential Improvements

As can be seen in the previous section, there is plenty room for improvement,
but most of it is at the level of the group recognising grammar itself, and not
at the lemma generation level, as the success rate on correctly recognised groups
reaches almost 83%.

376 Ł. Degórski

5.1 Group Recognition

Among those 66 incorrectly recognised items, there are two basic types of error:

– catching only a part of the phrase as a nominal group
– catching a part of, or even the whole phrase, as two separate groups

It is worth noting that in many cases what has been marked as a group (a part
or two separate parts of the input) is lemmatised correctly. In other words,
the program correctly assigns lemmata to proper nominal groups being subsets
of the provided input.

To solve this problem, we would have to use a completely different approach
that takes into account the assumption that the whole input is a group and
tries to match it top-down, while Spejd works bottom-up and makes no use here
of the information that it is given a list of nominal syntactic groups (as opposed
to free text).

In fact, using as input the manually extracted syntactic groups instead of
whole sentences can make the results worse: the phrase zielonej żabie by itself
is not lemmatised correctly, as it is not even recognised as a nominal group.
However, it will be correctly marked and lemmatised in the sentence Opowiedział
historię zielonej żabie ‘He told a story to a green frog’.

Some errors, especially of the first type, can be corrected by adding specific
rules to the grammar, such as a rule for dates, for ages (40–letni ‘40-year-old’,
for groups with particular words (zwłaszcza ‘especially’, tylko ‘only’) etc. This
is clearly a room for easy, however laborious, improvement.

5.2 Lemmatisation

Taking a more detailed look into the 27 correctly assigned groups for which
the generated lemma is incorrect, we recognise the following sources of errors:

1. correct lemmatisation would require semantic information and/or knowl-
edge that the shallow grammar does not have, as in życia osobistego proroka
‘personal life of the prophet’ that has been lemmatised as if it was ‘life
of a personal prophet’, an intepretation that is formally correct, but very
unlikely

2. plurale tantum nouns are treated as normal nouns (arguably a special case
of the above): prawa człowieka ‘human rights’, uczucia religijne ‘religious
feelings’, while retaining the plural form in the lemma is expected

3. participles caught by general (not participle-specific) rules are, according
to the conventions used in Pantera, lemmatised to infinitives; in most cases
this is wrong

4. part of the lemma is lost due to incorrect dealing with lower-level groups
in the grammar (cascading)

The last one is a technical issue that can be corrected, albeit with a lot of work.
The third can also be corrected in the grammar, but it involves deep changes

Towards the Lemmatisation of Polish Nominal Syntactic Groups 377

in it. The first two are rather impossible to deal with in shallow grammar ap-
proach, unless we list every particular phrase like prawa człowieka separately.
However, we should mention here the disagreements between the annotators,
mostly regarding the way parts of the nominal group should (or not) be brought
to singular form: should polipy nosa i zatok ‘nasal and sinus polyps’ be lemma-
tised to ‘polip nosa i zatoki polyp (of the) nose and sinus)’ or rather polip nosa
i zatok ‘polyp (of the) nose and sinuses’?

6 Conclusions and Future Work

The first attempts to apply a shallow grammar to the task of lemmatising nomi-
nal syntactic groups give promising results, especially taking into account the fact
that the task itself is not easy to define – even in the relatively small evaluation
set we used, there is no undisputable “golden” lemma for many of the syntactic
groups.

Although the grammar is obviously language-dependent, the whole approach
is not. We know about a Spejd grammar being prepared now to extract syn-
tactic groups from Modern Greek texts. That grammar can be augmented with
lemmatisation patterns in the future.

An important conclusion, concerning at least Polish and the NKJP grammar,
is that for the best results some parts of it should be rewritten with lemmati-
sation in mind (the grammar described in this paper was just quickly adapted
to the task). Rewriting should be consulted with the authors of the original
grammar.

Doing so, we may avoid some compromises, especially in dealing with ad-
jectival phrases of various types (adjectives and participles) that form parts
of the noun phrases.

More specific patterns (such as dates) should be added to deal with special
cases.

Finally, the case of the lemmatised strings should be retained. This will
be done by replicating the case pattern (regarding initial characters of words)
to the lemmatised string.

References

1. Acedański, S.: A morphosyntactic brill tagger for inflectional languages. In: Loftsson,
H., Rögnvaldsson, E., Helgadóttir, S. (eds.) IceTAL 2010. LNCS, vol. 6233, pp. 3–14.
Springer, Heidelberg (2010)

2. Buczyński, A., Przepiórkowski, A.: Spejd: A Shallow Processing and Morphologi-
cal Disambiguation Tool. In: Vetulani, Z., Uszkoreit, H. (eds.) LTC 2007. LNCS,
vol. 5603, pp. 131–141. Springer, Heidelberg (2009)

3. Głowińska, K., Przepiórkowski, A.: The Design of Syntactic Annotation Levels in the
National Corpus of Polish. In: Proceedings of the Seventh International Conference
on Language Resources and Evaluation, LREC 2010 (2010)

378 Ł. Degórski

4. Khaltar, B.-O., Fujii, A.: A lemmatization method for Mongolian and its application
to indexing for information retrieval. Information Processing and Management: an
International Journal 45(4), 438–451 (2009)

5. Pala, K., Rychlý, P., Šmerk, P.: Automatic Identification of Legal Terms in Czech
Law Texts. In: Francesconi, E., Montemagni, S., Peters, W., Tiscornia, D. (eds.) Se-
mantic Processing of Legal Texts. LNCS, vol. 6036, pp. 83–94. Springer, Heidelberg
(2010)

6. Piskorski, J., Sydow, M., Kupść, A.: Lemmatization of Polish person names. In: ACL
2007 Proceedings of the Workshop on Balto-Slavonic Natural Language Processing:
Information Extraction and Enabling Technologies. Association for Computational
Linguistics Stroudsburg, PA (2007)

7. Przepiórkowski, A., Górski, R.L., Łaziński, M., Pęzik, P.: Recent Developments in
the National Corpus of Polish. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani,
J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) Proceedings of the Seventh
Conference on International Language Resources and Evaluation (2010)

8. Waszczuk, J., Głowińska, K., Savary, A., Przepiórkowski, A.: Tools and Methodolo-
gies for Annotating Syntax and Named Entities in the National Corpus of Polish.
In: Proceedings of Computational Linguistics - Applications (CLA 2010), Workshop
at IMCSIT 2010, Wisła, Poland, October 18-20 (2010)

SyMGiza++: Symmetrized Word Alignment

Models for Statistical Machine Translation

Marcin Junczys-Dowmunt and Arkadiusz Sza�l

Faculty of Mathematics and Computer Science
Adam Mickiewicz University

ul. Umultowska 87, 61-614 Poznań, Poland
{junczys,arekszal}@amu.edu.pl

Abstract. SyMGiza++ — a tool that computes symmetric word align-
ment models with the capability to take advantage of multi-processor
systems — is presented. A series of fairly simple modifications to the
original IBM/Giza++ word alignment models allows to update the sym-
metrized models between chosen iterations of the original training al-
gorithms. We achieve a relative alignment quality improvement of more
than 17% compared to Giza++ and MGiza++ on the standard Cana-
dian Hansards task, while maintaining the speed improvements provided
by the capability of parallel computations of MGiza++.

Furthermore, the alignment models are evaluated in the context of
phrase-based statistical machine translation, where a consistent improve-
ment measured in BLEU scores can be observed when SyMGiza++ is
used instead of Giza++ or MGiza++.

1 Introduction

Word alignment is a key component of the training procedure for statistical

machine translation systems. The classic tool used for this task is Giza++ [1]

which is an implementation of the so-called IBM Models 1-5 [2], the HMM model

by [3] and its extension by [1], and Model 6 [1].

All these models are asymmetric, i.e. for a chosen translation direction, they

allow for many-to-one alignments, but not for one-to-many alignments. Training

two models in opposite directions and symmetrizing the resulting word align-

ments is commonly employed to improve alignment quality and to allow for

more natural alignments. The two alignment models are trained fully indepen-

dently from each other. Symmetrization is then performed as a post-processing

step. Previous work [4,5] has shown that the introduction of symmetry during

training results in better alignment quality than post-training symmetrization.

The approaches from [4,5] as well as our method still require the computation

of two directed models which use common information during the training. Em-

ploying a multi-processor system for the parallel computation of theses models is

a natural choice. However, Giza++ was designed to be single-process and single-

thread. MGiza++ [6] is an extension of Giza++ which allows to start multiple

threads on a single computer.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 379–390, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

380 M. Junczys-Dowmunt and A. Sza�l

We therefore choose to extend MGiza++ with the capability to symmetrize

word alignments models to tackle both problems in one stroke. The resulting

tool SyMGiza++ is described in this work.
1

The paper will be organized as

follows: Section 2 provides a short overview of Giza++ and MGiza++ and the

above mentioned methods of symmetrized alignment model training. In Sec. 3

we give a formal description of our modifications introduced into the classical

word alignment models implemented in Giza++ and MGiza++. The evaluation

methodology and results are provided in Sec. 4. Section 4 is divided into two

parts: in the first part we give results for alignment quality alone, the second

part deals with the influence of the improved alignment method on machine

translation results. Finally, conclusions are presented in Sec. 5.

2 Previous Work

2.1 Giza++ and MGiza++

Giza++ implements maximum likelihood estimators for several statistical align-

ment models, including Model 1 through 5 described by [2], a HMM alignment

model by [3] and Model 6 from [1]. The EM [7] algorithm is employed for the

estimation of the parameters of the models. During the EM algorithm two steps

are applied in each iteration: in the first step, the E-step, the previously com-

puted model or a model with initial values is applied to the data. The expected

counts for specific parameters are collected using the probabilities of this model.

In the second step, the M-step, these expected counts are taken as fact and used

to estimate the probabilities of the next model. A correct implementation of the

E-step requires to sum over all possible alignments for one sentence pair. This

can be done efficiently for Model 1 and 2, and using the Baum-Welch algorithm

also for the HMM alignment model [1].

For Models 3 through 6, a complete enumeration of alignments cannot be

accomplished in a reasonable time. This can be approximated by using only

a subset of highly scored alignments. In [2] it has been suggested to use only

the alignment with the maximum probability, the so-called Viterbi alignment.

Another approach resorts to the generation of a set of high probability alignments

obtained by making small changes to the Viterbi alignment. [8] proposed to use

the neighbour alignments of the Viterbi alignment.

MGiza++ [6] is a multi-threaded word alignment tool that utilizes multiple

threads to speed up the time-consuming word alignment process. The imple-

mentation of the word alignment models is based on Giza++ and shares large

portions of source code with Giza++. The main differences rely on multiple

thread management and the synchronization of the counts collection process.

Similarly, our tool in turn incorporates large portions of the MGiza++ source

code extending MGiza++’s capabilities of using multiple processors with the

ability to compute symmetrized word alignment models in a multiprocessor en-

vironment. Since the multiprocessing aspect is mainly a feature of the original

1 SyMGiza++ is available at http://psi.amu.edu.pl/en/index.php?title=Downloads

http://psi.amu.edu.pl/en/index.php?title=Downloads

SyMGiza++: Symmetrized Word Alignment Models 381

MGiza++, we will not discuss it in this paper and refer the reader to the original

paper on MGiza++ [6].

2.2 Symmetrized Word Alignment Models

The posterior symmetrization of word alignments has been introduced by [1].

This method does not compute symmetrized word alignment models during the

training procedure, but uses heuristic combination methods after the training.

We described it in more detail in Sec. 3.5. The best results of [1] for the Hansards

task are 9.4% AER (using Model 4 in the last training iterations) and 8.7% AER

(using the more sophisticated Model 6).

[4] improve the IBM alignment models, as well as the Hidden-Markov align-

ment model using a symmetric lexicon model. Similarly as in our approach,

symmetrization takes both translation directions (from source to target and from

target to source) into account. In addition to the symmetrization, a smoothed

lexicon model is used. The performance of the models is evaluated for Canadian

Hansards task, where they achieve an improvement of more than 30% relative

to unidirectional training with Giza++ (7.5% AER).

In [9], the symmetrization is performed after training IBM and HMM align-

ment models in both directions. Using these models, local costs of aligning a

source word and a target word in each sentence pair are estimated and graph

algorithms are used to determine the symmetric alignment with minimal to-

tal costs. The automatic alignments created in this way are evaluated on the

German–English Verbmobil task and the French–English Canadian Hansards

task (6.6% AER).

Another unsupervised approach to symmetric word alignment is presented

by [5] where “two simple asymmetric models are trained jointly to maximize a

combination of data likelihood and agreement between the models”. The authors

restrict their experiments to IBM Models 1 and 2 and a new jointly trained

HMM alignment model. They report an AER of 4.9% — a 29% reduction over

symmetrized IBM model 4 predictions — for the Canadian Hansards task.

3 SyMGiza++ — Symmetrized MGiza++

In this section we will describe our modifications to the well known alignment

models from [2] and [1].

We do not introduce changes to the main parameter estimation procedure.

Instead, we modify the counting phase of each model to adopt information pro-

vided by both directed models simultaneously. The parameter combination step

is executed in the main thread. In the following subsections, the formal aspects

of the parameter combination will be outlined separately for each model. The

notation has been adopted from [2] and we refer the reader to this work for

details on the original models that will not be repeated in this paper.

382 M. Junczys-Dowmunt and A. Sza�l

French-English parallel corpus

Model 1 (fr-en) Model 1 (en-fr)

Combine t parameters for Model 1

HMM Model (fr-en) HMM Model (en-fr)

Combine t, a parameters for HMM Model

Model 3 (fr-en) Model 3 (en-fr)

Combine t, a parameters for Model 2

Model 4 (fr-en) Model 4 (en-fr)

Combine t, a parameters for Model 2 Symmetrize alignments

Final alignment

Fig. 1. General training scheme for SyMGiza++

3.1 Model 1

Model 1 is the first of the IBM models described extensively by [2] which have

been implemented accurately in Giza++ and MGiza++.

In order to distinguish between the parameters of the two simultaneously

computed alignment models we will use α and β as subscripts for the parameters

of the first and second model respectively. For our English-French training corpus

we compute the following two models:

Prα(f |e) =
ε(m|l)

(l + 1)m

∑
a

m∏
j=1

tα(fj |eaj) (1)

Prβ(e|f) =
ε(l|m)

(m+ 1)l

∑
b

l∏
i=1

tβ(ei|fbi) (2)

SyMGiza++: Symmetrized Word Alignment Models 383

where l and m are the lengths of the French sentence f and the English sentence

e respectively, a and b are the directed alignments between the sentences and

tα and tβ the directed translation probabilities between the French and English

words f and e. Due to the simplicity of this model, it is straightforward to

introduce our changes in the counting method used during the E-step of the

EM-algorithm. The only parameters of Model 1 are the translation probabilities

tα and tβ which are estimated by:

tα(f |e) =

∑S
s=1 c(f |e; f (s), e(s)

)∑
f ′
∑S

s=1 c(f
′|e; f (s), e(s))

, (3)

where S is the number of sentences in the parallel training corpus. c(f |e; f , e)

is the expected count of times the words f and e form translations in the given

sentences f and e, in the inverted model c(e|f ; e, f) is used.

In the original model, the expected counts c(f |e; f , e) are calculated from the

t values of the preceding iteration with the help of the following two formulas:

c(f |e; f , e) =

∑
a

Prα(a|f , e)

∑
i,j

δ(f, fj)δ(e, ei), (4)

and

Prα(a|f , e) =

∏m
j=1 tα(fj |eaj)∑

a

∏m
j=1 tα(fj |eaj)

, (5)

where δ is the Kronecker function
2
. Equations (3) and (4) are common for all

models discussed in this section. Our modifications are restricted to (5) which is

replaced by

Prα(a|f , e) =

∏m
j=1 t̄(fj , eaj)∑

a

∏m
j=1 t̄(fj , eaj)

=

∏m
j=1

(
tα(fj |eaj) + tβ(eaj |fj)

)
∑

a

∏m
j=1

(
tα(fj |eaj) + tβ(eaj |fj)

)
(6)

Here we see the only difference between the standard Model 1 and our sym-

metrized version. By taking into account the translation probabilities from the

previous iteration of both directed models we inform each model about the es-

timates of its counterparts. The following intuition applies: a French word is

a good translation of an English word, if the English word is a good transla-

tion of the French word as well. This cannot be easily captured in the directed

models without breaking up its sound probabilistic interpretation, as it happens

here. However, since we modify only the way expected counts are obtained, the

requirement imposed by [2] that ∑
f

t(f |e) = 1

2 δ(i, j) =

{
1 if i = j
0 otherwise

.

384 M. Junczys-Dowmunt and A. Sza�l

still applies. Our modifications do not interfere with the EM procedure. The

parameters for the inverted model are obtained analogously.

It should be noted that in most cases — despite the symmetry of the sum

tα(f |e)+ tβ(e|f) occurring in both counts — c(f |e; f , e) and c(e|f ; e, f) will have

different values for the same words and sentences. This is due to the differences

in the alignment direction. Therefore tα(f |e) �= tβ(e|f) in the general case.

3.2 Model 2

Although it is common practice to replace Model 2 during the training procedure

with the HMM Model described in the next subsection, we need to modify its

counting procedure as well. Model 2 is used to score a subset of alignments

during the training procedure of the more sophisticated Models 3 and 4 which

— in contrast to the lower models — cannot efficiently enumerate all possible

alignments.

Model 2 introduces a second type of free parameters: the alignment proba-
bilities a. These a parameters capture the probability that given the lengths of

both sentences, a French word at position j is aligned with an English word at

position aj . The complete model is given by [2] as:

Prα(f |e) = ε(m|l)
∑
a

m∏
j=1

(
tα(fj |eaj)aα(aj |j,m, l)

)
(7)

The general scheme described in (3) and (4) for the estimation of t values is

the same for Model 2 as for Model 1. The alignment probabilities are estimated

similarly:

aα(i|j,m, l) =

∑S
s=1 c(i|j,m, l; f (s), e(s)

)∑
i′
∑S

s=1 c(i
′|j,m, l; f (s), e(s))

, (8)

c(i|j,m, l; f , e) =

∑
a

Prα(a|f , e)δ(i, aj). (9)

Again, we only modify Pr(a|f , e) in (4) and (9) to obtain our symmetrized

version of the alignment models:

Prα(a|f , e) =

∏m
i=1

(
t̄(fj , eaj)ā(aj , j,m, l)

)
∑

a

∏m
j=1

(
t̄(fj , eaj)ā(aj , j,m, l)

) (10)

where t̄(f, e) is defined as before for Model 1 and ā(i, j,m, l) = aα(i|j,m, l) +

aβ(j|i, l,m). The effect of information sharing between the two inverted models

Prα and Prβ is even increased for Model 2 since translation and alignment

probabilities interact during the estimation of both types of parameters for the

next iteration.

SyMGiza++: Symmetrized Word Alignment Models 385

3.3 HMM Model

The HMM Alignment Model has been introduced by [3] and is used in the

Giza++ family of alignment tools as a replacement for the less effective Model 2.

The HMM alignment model is given by the following formula which at first looks

very similar to (7):

Pα(f |e) = ε(m|l)
∑
a

m∏
j=1

(
tα(fj |eaj)aα(aj |aj−1, l)

)
(11)

The alignment probabilities from Model 2, however, are replaced by a different

type of alignment probabilities. Here the probability of alignment aj for position

j has a dependence on the previous alignment aj−1 which turns the alignment

model into a first order Markov model. The counts for the new a parameter are

defined as follows:

aα(i|i′, l) =

∑S
s=1 c(i|i′, l; f (s), e(s)

)∑
i′′
∑S

s=1 c(i
′′|i′, l; f (s), e(s))

, (12)

c(i|i′, l; f , e) =

∑
a

Prα(a|f , e)

∑
j

δ(i′, aj−1)δ(i, aj) (13)

The definition of the t parameter and corresponding counts remains the same as

for Model 1 and 2. Like before we only have to modify the definition of Pr(a|f , e):

Prα(a|f , e) =

∏m
j=1 tα(fj |eaj)aα(aj |aj−1, l)∑

a

∏m
j=1 tα(fj |eaj)aα(aj |aj−1, l)

(14)

is replaced by

Prα(a|f , e) =

∏m
i=1

(
t̄(fj , eaj)aα(aj |aj−1, l)

)
∑

a

∏m
j=1

(
t̄(fj , eaj)aα(aj |aj−1, l)

) . (15)

t̄ is defined as before for Model 1 and Model 2.

Here, the alignment probabilities a remain unchanged. For Model 2 we are

able to find the symmetrically calculated a parameters just by swapping source

and target values. Doing the same for the Markov model would change the

interpretation of the alignment probabilities. We would require neighbouring

source language words to be aligned only with neighbouring target language

words which is too strong an assumption. Nevertheless, their values are still

influenced by both models due to the appearance of t̄ in the re-estimation.

3.4 Models 3 and 4

We already mentioned that the parameters specific for Models 3 and 4 are calcu-

lated from fractional counts collected over a subset of alignments that have been

386 M. Junczys-Dowmunt and A. Sza�l

identified with the help of the Viterbi alignments calculated by Model 2. There-

fore it is not necessary to revise the parameter estimation formulas for Models 3

and 4, instead we simply adopt the previous changes made for Model 2. This in-

fluences the parameters of Models 3 and 4 indirectly by choosing better informed

Viterbi alignments during each iteration.

3.5 Final Symmetrization

Although the two directed models influence each other between each iteration,

the two final alignments produced at the end of the training procedure differ

due the restrictions imposed by the models. Alignments are directed and since

alignments are functions, there are no one-to-many or many-to-many alignments

for the respective directions. There are, however, many-to-one alignments. [1]

have proposed a method for the symmetrization of word alignments, which they

call refined symmetrization and which is reported to have a positive effect on

alignment quality.

They first map each directed alignment into a set of alignment points and

create a new alignment as the intersection of these two sets. Next, alignment

points (i, j) from the union of the two sets are added to the newly created

alignment if they occur in the first alignment or in the second alignment and

if neither fj nor ei has an alignment in the new alignment, or if both of the

following conditions hold:

– The alignment (i, j) has a horizontal neighbour(i−1, j), (i+1, j) or a vertical

neighbour (i, j − 1), (i, j + 1) that is already in the new alignment.

– Adding (i, j) to the new alignment does not created alignments with both

horizontal and vertical neighbours.

This method is applied as the final step of our computation and will also be ap-

plied to the directed alignments created by Giza++ and MGiza++, our baseline

systems. Final symmetrization methods are included in SyMGiza++ and can

be applied without the need for external programs. Apart from the mentioned

refined method it is also possible to use multiple variants of grow-diag featured

in the Moses training procedure.

4 Evaluation

4.1 Word Alignment Quality

Evaluating word alignment quality, we compare three systems on the same train-

ing and test data: Giza++, MGiza++, and SyMGiza++. For the Giza++ and

MGiza++ we run both directed models separately and in parallel and recom-

bine the resulting final alignments with the refined method described in 3.5. We

experimented with different training schemes and found the following to work

best for Giza++ and MGiza++: 5×Model 1, 5×HMM Model, 3×Model 3 and

3×Model 4. This is consistent with the findings of [1] for the same training data

and test set.

SyMGiza++: Symmetrized Word Alignment Models 387

Table 1. Results for the HLT/NAACL 2003 test set

Alignment Method Prec [%] Rec [%] AER [%]

Giza++ en-fr 91.19 92.20 8.39
Giza++ fr-en 91.82 87.96 9.79
Giza++ refined 93.24 92.59 7.02

MGiza++ en-fr 91.19 92.22 8.40
MGiza++ fr-en 91.84 87.96 9.78
MGiza++ refined 93.25 92.60 7.01

SyMGiza++ 94.34 94.08 5.76

The training scheme for SyMGIZA++ has been determined as 5 × Model 1,

5 × HMM Model, 5 × Model 3 and 5 × Model 4. The models are symmetrized

between model transitions. Using this training scheme for Giza++ or MGiza++

causes a small decline in alignment quality.

The standard metric Alignment Error Rate (AER) proposed by [1] is used to

evaluate the quality of the introduced input word alignments. AER is calculated

as follows:

Precision =
|A ∩ P |
|A| Recall =

|A ∩ S|
|S|

AER = 1 − |A ∩ S| + |A ∩ P |
|A| + |S|

(16)

where P is the set of possible alignment points in the reference alignment, S
is the set of sure alignments in the reference alignment (S ⊂ P), and A is the

evaluated word alignment.

In order to obtain results that can be easily compared with the work sum-

marized in 2.2, we evaluated our system on the Canadian Hansards task made

available during the HLT-NAACL 2003 workshop on “Building and Using Par-

allel Texts: Data Driven Machine Translation and Beyond” [10]. The training

data comprises 1.1M sentences from the Canadian Hansards proceedings and a

separate test set of 447 manually word-aligned sentences provided by [1].

Our results are summarized in Table 1. It is not surprising that there are no

significant differences between Giza++ and MGiza++ when AER is considered.

SyMGiza++ achieves the best AER results with a relative improvement of more

than 17% compared to Giza++ and MGiza++.

In Sec. 2.2 we gave the results for a number of other symmetrization ap-

proaches. Although we use the same test set our results are not yet fully compa-

rable to the results of other works. We tried but failed to reproduce the results

from [5] where the authors reported an AER of 4.9% for the Hansards Tasks.

We used the BerkeleyAligner which is based on the algorithms described by [5].

The results reported by [5] for their baseline alignments produced with Giza++,

on the other hand, are more or less identical to our results. This requires further

investigation.

388 M. Junczys-Dowmunt and A. Sza�l

Table 2. BLEU scores for WMT08 data and test sets

(a) Europarl (test2008)

fr-en en-fr es-en en-es de-en en-de es-de de-es

MGiza++ 0.3189 0.2944 0.3241 0.3184 0.2656 0.1982 0.1996 0.2706
SyMGiza++ 0.3193 0.3000 0.3231 0.3172 0.2657 0.1993 0.2014 0.2741

(b) News Commentary (nc-test2008)

fr-en en-fr es-en en-es de-en

MGiza++ 0.2565 0.2339 0.3367 0.3220 0.2305
SyMGiza++ 0.2630 0.2359 0.3380 0.3234 0.2381

en-de es-de de-es cz-en en-cz

MGiza++ 0.1531 0.1233 0.1775 0.2281 0.1285
SyMGiza++ 0.1575 0.1234 0.1822 0.2369 0.1329

(c) Hunglish (newstest2008)

hu-en en-hu

MGiza++ 0.0587 0.0449
SyMGiza++ 0.0632 0.0458

4.2 Machine Translation Results

We agree with [11] that the evaluation of alignment quality on its own may not be

very meaningful. It should be considered good practice to include an evaluation

of statistical machine translation models produced from the seemingly improved

word alignment. In this section, such an evaluation is presented.

For our baseline systems, we configured Moses [12] as described by the ACL

2008 Third Workshop on Statistical Machine Translation (WMT-08) – Shared

Translation Task guidelines. The data sets provided for the WMT-08 Shared

Task
3

were used as training, tuning, and test data. Furthermore, training, tun-

ing, and evaluation were performed in compliance with these guidelines. Several

baseline systems were created to account for different language pairs, training

corpora and translation directions. All baseline systems make use of MGiza++

to produce the word alignment models which serve as input to the bilingual

phrase extraction phase of the Moses training process.

For our systems, we modified the training process only by replacing MGiza++

with SyMGiza++, no other parameters or steps were altered. Thus the grow-
diag post-alignment symmetrization method is used and not the refined method

introduced previously. We refer to the translation systems by the name of the

alignment tool used. Thus the baselines are simply denoted by MGiza++, the

systems created from the jointly trained alignment models by SyMGiza++.

The BLEU scores for all systems and language pairs have been compiled into

Table 2. We split the results according to three different training corpora used.

Bold figures mark results that are statistically significantly better than their

counterpart. Significance has been calculated as proposed by [13].

3 Available at http://www.statmt.org/wmt08/

http://www.statmt.org/wmt08/

SyMGiza++: Symmetrized Word Alignment Models 389

In the case of statistically significant BLEU results (bold figures, 10 test cases

out of 20), the translation quality of SyMGiza++ exceeds the results for the

MGiza++ system. This effect seems to be more visible for small training corpora

like the news commentary parallel corpus which comprises about 70,000 sentence

pairs. The Europarl parallel corpus and the English-Hungarian corpus feature

both more than one million sentence pairs. The very low BLEU scores for the

English-Hungarian language pair result from the use of an out-of-domain test

set provided with the WMT-08 data. The test set has been compiled from a

news source while the training data consists of various legal texts and other

data scraped from the internet.

5 Conclusions

We have presented SyMGiza++, a tool that computes symmetric word align-

ment models with the capability to take advantage of multi-processor systems.

Our fairly simple modification to the well-known IBM Models implemented in

Giza++ and MGiza++ achieves quite impressive improvements for AER on the

standard Canadian Hansards task. Our symmetrized models outperform post-

training symmetrization methods.

Improvements in translation quality — though less significant than in terms

of pure AER — are also visible when SyMGiza++ is used as a drop-in replace-

ment for Giza++ or MGiza++ in the training procedure of the phrase-based

statistical machine translation system Moses. Translation quality improved on a

statistically significant level for 10 out of 20 directions tested for three different

training corpora and test sets provided for WMT-08. The results for the remain-

ing test cases should be interpreted to be the same as the baseline, since they

are not statistically significant.

It can be safely concluded that SyMGiza++ can be used anywhere instead

of Giza++ or MGiza++ and in most cases will yield better results for word-

alignment oriented tasks. For statistical machine translation, it seems to be a

safe bet to use SyMGiza++ instead of Giza++ or MGiza++. There is a good

chance that choosing SyMGiza++ will result in improved translation quality. In

the worst case translation quality should not decrease.

References

1. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment models.
Computational Linguistics 29(1), 19–51 (2003)

2. Brown, P.F., Pietra, V.J.D., Pietra, S.A.D., Mercer, R.L.: The mathematics of
statistical machine translation: Parameter estimation. Computational Linguis-
tics 19(2), 263–311 (1993)

3. Vogel, S., Ney, H., Tillmann, C.: Hmm-based word alignment in statistical trans-
lation. In: Proceedings of ACL, pp. 836–841 (1996)

4. Zens, R., Matusov, E., Ney, H.: Improved word alignment using a symmetric lexicon
model. In: Proceedings of ACL-COLING, p. 36 (2004)

390 M. Junczys-Dowmunt and A. Sza�l

5. Liang, P., Taskar, B., Klein, D.: Alignment by agreement. In: Proceedings of
ACL-COLING, pp. 104–111 (2006)

6. Gao, Q., Vogel, S.: Parallel implementations of word alignment tool. In: Proceed-
ings of SETQA-NLP, pp. 49–57 (2008)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistcial Society, Series B 39(1),
1–38 (1977)

8. Al-Onaizan, Y., Curin, J., Jahr, M., Knight, K., Lafferty, J., Melamed, I., Och,
F., Purdy, D., Smith, N., Yarowsky, D.: Statistical machine translation. Technical
report, JHU workshop (1999)

9. Matusov, E., Zens, R., Ney, H.: Symmetric word alignments for statistical machine
translation. In: Proceedings of ACL-COLING, pp. 219–225 (2004)

10. Mihalcea, R., Pedersen, T.: An evaluation exercise for word alignment. In: Pro-
ceedings of HLT-NAACL, pp. 1–10 (2003)

11. Fraser, A., Marcu, D.: Measuring word alignment quality for statistical machine
translation. Computational Linguistics 33, 239–303 (2007)

12. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N.,
Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A.,
Herbst, E.: Moses: Open source toolkit for statistical machine translation. In: ACL
(2007)

13. Koehn, P.: Statistical significance tests for machine translation evaluation. In:
EMNLP, pp. 388–395 (2004)

How Opinion Annotations and Ontologies Become
Objective?

Aleksander Wawer1 and Krzysztof Sakwerda2

1 Institute of Computer Science, Polish Academy of Science
ul. Ordona 21, 01-237 Warszawa, Poland

����������������	
2 Institute of Computer Science, University of Wroclaw

ul. Joliot-Curie 15, 50-383 Wroclaw, Poland

��
��
�������	����

Abstract. We describe the methodology and the process of annotations of a
corpus of reviews along with experiments on inter-annotator agreement. Our
approach goes beyond “flat” sets of attributes and relies on more complex graph-
alike ontologies to annotate the data. We propose and test an algorithm of auto-
mated induction of an ontology and compare the results with “manually”
created ontologies and annotations. We conclude with a discussion of differences
between the two approaches and annotator influence.

Keywords: opinion annotations, ontologies, ontology integration, inter annota-
tor agreement.

1 Introduction and Existing Work

Many existing works, such as [3,5,4,6] deal with automated mining of product features
(also referred to as attributes). This special type of opinion mining is concerned with
various aspects of products under review rather than aggregated evaluations. Instead
of asking: is the product review as a whole positive or negative, the approach here is
more fine-grained, as it considers each feature or aspect separately. Popular methods
of automated feature recognition typically involve part of speech patterns, frequency
filtering and various sorts of supervised and semi-supervised classification.

Application of automated methods and computing their precision and recall demands
resources: reliably annotated corpora of texts. At the moment no Polish resource meets
these requirements1.

Another motivation for our efforts is that none of existing works on recognizing at-
tributes from text corpora that we are aware of has been preceded by an extensive inter-
rater agreement study using attribute ontologies rather than simple sets of attributes. The
intention of this work was to design and create such a reference resource for Polish.

1 Customer review aggregators like for example �������������
������	 are of little use.
Although the site provides placeholders for describing positive and negative attributes, there is
no guarrantee that the features are ever mentioned in a review.

P. Bouvry et al. (Eds.): SIIS 2011, LNCS 7053, pp. 391–400, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cokupic.pl

392 A. Wawer and K. Sakwerda

Our use of the notion “ontology” only partially follows popular definitions like
Sowa’s [7]. We also apply it to describe organization of knowledge in a domain, mod-
eled as a graph of linked concepts. However, in our case concepts are narrowed to
product features only and associated with sets of fragments of texts where the attributes
are mentioned.

2 Background

The general orientation of this work is inspired by the following two approaches to
methodology and semantics. We discuss them briefly below, providing references to
relevant parts of our work.

Grounded Theory [2,8]. In its essence, it can be described as developing a set of
categories2 from the data, rather than the other way around, analyzing the data through
existing categories. In our case we read a corpus of reviews and “discover” or identify
categories, product attributes in our case, as found in texts, and describe their interrela-
tionships on a graph. The opposing approach is to create an ontology of attributes using
expert knowledge and only then read and annotate texts.

The use of such a method seems to be justified by the nature of reviews that base
solely on experiences with the object under review and rarely require any expert knowl-
edge. Crafting a set of categories by experts and analyzing the reviews through these
concepts may end up with omissions of numerous categories actually present in the
data, perhaps even frequently mentioned.

Meaning as Use [10]. According to it, meaning is defined as patterns of usage. The
main application of this idea was identification of similarly annotated categories despite
their potentially different labels and descriptions. For example, annotator A may have
referred to a category as aesthetics, annotator B as outlook and both may actually mean
the same, which becomes apparent only after examination of both sets of annotations.

3 Annotation

3.1 Software

To annotatate the reviews we used Atlas.TI3, a well-known tool for qualitative analysis
of textual data. Main features that render Atlas.TI attractive are its ability to create
and edit graph-alike ontologies, capability of annotating fragments of texts using any
ontology node4, and finally, handling overlapping and embedded annotations.

3.2 Types of Annotated Text Fragments

Fragments of text, at least one word long but in many cases longer, could be annotated
as:

2 Originally, also a theory or a set of explanations.
3 �������������	��������
4 By this statement we mean that a node – an attribute is assigned to a set of annotated fragments.

http://www.atlasti.com

How Opinion Annotations and Ontologies Become Objective? 393

– Attribute - marked a.
– Root Attribute - marked with ! - the most abstract attribute at the top of attribute

hierarchy.
– Attribute Value - marked wa.
– Implicit - marked as .im when attribute name or value is not mentioned directly.
– Polarity - marked as +,-,0 indicates positive, negative and neutral attribute values.

Naming convention was as follows: Attribute or Attribute Value mark, potentially
Implicit, followed by a slash, name (a graph node label), in case of attribute values fol-
lowed by another slash and polarity mark. In short:

[Attribute|Attribute Value] / name [/ Polarity]?.

For example: wa/outlook/+ refers to positive value of attribute outlook. Let us il-
lustrate it by providing examples from perfume domain, originally spelled. Fragments
which denote attribute values are marked with square brackets and attributes with angle
brackets.

Let us start with a somewhat simplistic piece with attribute values expressed by ad-
jectives and attribute as a noun:

������� ����	
��
�
���
 ������
���
��� ��
�
���

������ ��������
���
�� ������
�
��� ���
��
����

However, attributes can be also expressed simultaneously with attribute values (or in an
evaluative way):

�	
�
������ �� �������

�
�
 ��� ���
��
 �	
����

� ��
��
����� ��
�
� ��
���
��� ���
��
�����
����

In the above example, the same text fragment denotes an attribute (a/effect on others)
and is given positive evaluation (wa/effect on others/+).

3.3 Relations

We defined four possible types of relations between attributes, represented as ontology
nodes (relation symbols in parentheses):

– is associated with (==). The most general relation which does not specify exact
semantics which links both nodes.

– is part of ([]). The well-known relation of meronymy. For example, attribute bottle
may be linked using this type of relation with attribute container5 .

– is property of (∗}). This relation says that one attribute is a feature that describes
a higher level attribute, for example durability may be a property of fragrance.

– is type of (##). This describes an attribute as a type of another, higher level at-
tribute. For example, attribute special occasion is a type of purpose.

We encouraged annotators to suggest new types of relations that seem the most ap-
propriate but it quickly became apparent that the list of four types mentioned above is
sufficient.

5 While bottle can be seen as a type of a container, this specific example is adapted from “per-
fume” domain, where perfume’s container consists of a cartoon package and a bottle.

394 A. Wawer and K. Sakwerda

3.4 Annotation Cycle

In the first phase annotators read texts, create their own ontologies and then annotate
– mark appropriate fragments and assign them to appropriate ontology nodes. We thus
obtain four different ontologies and four different sets of annotated reviews. At the
end of this phase annotators meet and create one, common, final ontology, a result of
discussions and collective agreement over which attribute means what exactly, the most
appropriate graph structure, attribute names (node labels) and relations. An example
final ontology with English label translations is presented on Fig 1. As mentioned before
attribute names follow the naming convention of a/name. The meaning of numbers in
brackets, as in {A-B}, is as follows: A denotes how many annotated text fragments are
assigned to a given attribute (a graph node), B represents degree of a node: number of
attributes linked using any relation type.

Fig. 1. Ontology graph in final form

Having created such an ontology texts are annotated again, but this time using the
same set of attributes. This again results in four sets of annotated texts. Finally, an-
notators meet for the second time and produce one, final corpus of annotated reviews.
For this purpose a special web application has been deployed, which visualizes anno-
tation differences, allows to navigate, edit and select one of many possibly conflicting
attributes for a fragment of text.

Decisions which attribute out of several possible ones is the most “correct” as well
as selection of the correct span for each text fragment were collective. Annotators had
an opportunity to convince one another and argue over the rationale of every selection.

How Opinion Annotations and Ontologies Become Objective? 395

The problem is similar to modeling common knowledge of multiple experts as
described by [1], who proposed a method of solving conflicts between the expertise
models of different experts. The models are represented as graphs of linked concepts
using John Sowa’s conceptual graph formalism [7]. The main difference that makes this
method not applicable in our context is the definition of concepts and association with
sets of annotations.

3.5 Annotator Instructions

The general principles governing annotation were as follows:

– As much context-free as possible: annotated fragment alone should be sufficient to
understand its meaning.

– As little redundant as possible: no extra words should be added into annotated frag-
ments.

In addition to this, annotators had two distinct sets of instructions on different levels.
The first set of general instructions covered understanding of what attributes and re-

lations are, as in sections 3.2 and 3.3. Definitions provided initially have quickly proven
not exhaustive enough to cover all possible cases so we expanded them with a new set
of instructions added subsequently6. The second set of specific instructions contained
explanations and definitions of attributes associated with a given ontology.

3.6 Dataset Description

Using this method we produced two sets of annotated reviews along with respective
ontologies. Each set of reviews (for each domain or product type) has about 16 pages of
A4 length. The second domain (woman’s underwear) turned to be less wordy than the
first (perfume) but ultimately the number of annotated fragments was not very differ-
ent. In both cases, annotations turned out to be very dense, which is hardly surprising
given the goal of product reviews. Table 1 presents numbers of annotated text fragments
for both domains, for common final annotation referred to as ALL and each annotator
separately.

4 Common Automated Ontology

Experiments on reviews of two product types confirmed not only existence of relation-
ships between attributes, but also adequacy of hierarchical, graph based approach to
attribute structure description. We believe that the resource created according to the de-
scribed procedure provides the highest possible quality of annotations, attribute labels
and ontology graphs.

6 Perhaps the most notable example of such a rule is: do not annotate attribute values for at-
tributes involving product users. This rule came out as an arbitrary settlement after a hot dis-
cussion of whether “fragrance for stylish people” tells something positive, neutral or maybe
even negative about a perfume. An annotator can either try to guess writer’s evaluation of
“stylish people” or use her own experiences and judgements regarding the mentioned group.

396 A. Wawer and K. Sakwerda

Table 1. Numbers of words and annotated text fragments

Domain 1 Domain 2

ALL 305 343
martas 277 273
magdab 204 283
tomaszz 310 292
annal 234 293

words 4232 2446

In the next part of this paper we focus on automated generation of a common ontol-
ogy using annotated fragments of texts of four annotators as well as their ontologies.
The intention is to compare automatically created ontologies to all human made anno-
tations and ontologies, also the final ones (final in the sense of being a final product of
each coding cycle). We hypothesize that the proposed method of building a geometri-
cally central ontology graph and corresponding annotations is less prone to factors like
personality influences or work organization and in this sense is more objective.

4.1 Ontology Comparisons

We begin by proposing a method of comparing two ontologies. Then we describe an
algorithm of automated induction of a “central” ontology. By this we mean an ontol-
ogy equivalent to the final product of annotation cycle as in section 3.4, but created
automatically.

4.2 Ontology Similarity

Given any two ontologies from the same domain (referring to the same product type) we
would like to tell how similar they are. One can ask when any two ontologies are similar
and what does that mean? In the most intuitive formulation, two ontologies are similar
if they have similar structure and corresponding attributes cover similar text fragments.

Comparing tokens. Most tokens carry associated base word forms and sets of mor-
phosyntactic tags (such as person, case, degree, gender etc). To compare any two tokens
we compare corresponding tags and count weighted mean number of equal ones. It is
clear that lexical aspect should have precedence over morphosyntactics, therefore orto-
graphic and base form identity have higher weights assigned.

Comparing text fragments. To compare two lists of tokens we used a greedy al-
gorithm. Each token from the first text fragment is compared with each token in the
second one. When the best match for a token is found, and of course each token can
be only used once, we compute their weighted average similarity as described above.
The method disregards word order and enables comparisons of slightly permuted token
sequences.

How Opinion Annotations and Ontologies Become Objective? 397

Comparing attributes. To compare two sets of text fragments, related to two at-
tributes, we apply the same greedy approach: for each text fragment of the first attribute
we find its best match in the second one and use both to compute similarity. The mea-
sure may not be optimal but has two advantages: allows to compare sets of different
length and is guarranteed to use all text fragments of a shorter set. We apply it only for
pairs of attributes where the F similarity exceeds a provided threshold value.

We selected F-measure as the most appropriate following the discussion in [9]. The
other popular measure of agreement, Cohen’s Kappa seems more suitable for prob-
lems with the same set of objects, such as word sense tagging, for example. Comparing
similarity of two sets of annotated text fragments requires evaluating the intersection
between both sets. Precision and recall between sets A and B are in this case inter-
changeable which reduces F to mean value of recall(A ‖B) and recall(B ‖A).

Comparing ontologies. In the most naive approach, ontologies are comparable by
comparisons of all attributes according to the procedure described above. This ap-
proach however disregards ontology graph structure. Our algorithm, proposed below,
takes graph structure into account by limiting comparisons to sets neighbours.

Algorithm

– Input:
1. two ontologies O1 and O2

2. F–matrix of similarity between all attributes from both ontologies
– Procedure description

1. convert ontologies to neigbour lists
2. create a priority queue of vertices from two ontologies, with vertex outdegree

as a priority
3. while queue is not empty and there are unmarked attributes in each ontology:

(a) take the first attribute a from queue and find Sa
n – set of (at most n) attributes

most similar to a (none of them must be used) in the second ontology
(using weighted mean of attributes comparison method discussed above
and F measure).

(b) for each b ∈ Sa
n compare sets of neighbours of a and b and choose the

best match ba for a (using weighted average of attributes and neighbour
similarity)

(c) mark attributes a and ba as used
4. compute average of of best matches

5 Automatic Generation of Common Ontology

Given O – set of ontologies, we would like to generate one ontology being the closest
to each oi ∈ O and thus being the “geometric center” of O . We can achieve this goal by
looking at similar (in the sense of F–measure) sets of attributes and generate vertices for
such groups. After generating verices we connect them with edges. Below we describe
the procedure in detail.

398 A. Wawer and K. Sakwerda

Algorithm

– Input:
1. set of ontologies O
2. F–matrix of similarity between all attributes from both ontologies

– Procedure description
1. construct set family {Ai}. Each set Ai contains attributes, and each two mem-

bers ai
n and ai

m of Ai are similar: F(ai
n, ai

m) > k, where k is a parameter treshold
value7.

2. for each A ∈ {Ai} choose its representative a as an attribute having highest
average similarity value to other members of A and thus being geometric centre
of the set (here we use only the measure of attributes similarity, described in
4.2)

3. each representative selected in the previous step will become a vertex of the
new, generated ontology8

4. for each pair of veritces (ai,a j) an edge (relation) between them is set iff all of
the following conditions hold:
(a) there exists some attributes vo

i ∈ /Ai and vo
j ∈ /A j such that vo

i and vo
j be-

longs to the set of vertices of the same ontology o.
(b) there is an edge between vo

i and vo
j in o.

(c) average number of attributes for which (a) and (b) hods in all ontologies is
higher than a treshold value l

6 Results and Discussion

Distances between ontologies computed using the described algorithm, mapped into
euclidean two-dimensional space, are presented on Fig. 2. ALL refers to common, final
ontology and associated annotations created manually, COMMON-AUTO to automat-
ically obtained ontology.

Compared to the first set of annotations and ontologies, distances between ontologies
in the second, chronologically later sets of annotations and ontologies, are smaller about
one third. In other words, annotations and ontologies were much more alike.

Initial examination of distances between points proves that all ontologies in Domain
2 were much more alike. This is explained by the fact that annotators went through a
number of “difficult” cases and the number of rules mentioned in section 3.5 has been
expanded. This is also apparent by F–measure matrixes which were not disclosed here.

Our assumptions that the designed algorithm should result in a geometrically central
ontology have been found true. In fact, the automated ontology COMMON-AUTO is
more central than than the manual ontology ALL in case of Domain 2. In Domain 1
however, ALL is very different not only from COMMON-AUTO (which is still the
most central) but from all individual ontologies and annotations. This can be explained

7 As similarity measure F is given as matrix construction of such set family is not difficult.
8 The only exception is when an attribute appears already in some sets of {Ai} and thus can not

be selected as a representative. In such case the first most similar to the rest which has not yet
been “demoted” is selected.

How Opinion Annotations and Ontologies Become Objective? 399

−1.5 −0.5 0.5 1.0 1.5

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Domain 1

Coordinate 1

C
oo

rd
in

at
e

2

magdab
ann

COMMON_AUTO

ALL

martastomaszss

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Domain 2

Coordinate 1
C

oo
rd

in
at

e
2

magdab

annal

COMMON_AUTO
ALL
martas

tomasz

Fig. 2. Distances between ontologies and annotations

by several factors. When creating ALL for Domain 1, annotators confronted each other
for the first time and the results resembled a work in its own rather than just “average”
solution of all indivitual annotations.

The annotator that had the most influence on the manual ontology ALL for Domain
2 was the person that also held the responsibility to schedule meetings and organize
annotator work, which probably also resulted in larger influence on the ALL. In the
case of Domain 1, ALL is similarly distanced from any other ontology.

7 Future Work

The study described in this paper provides background for fully automated product at-
tribute extraction: the corpus is necessary for subsequent developments and evaluations
of algorithmic approaches. Further work will be continued in two directions. First, by
efforts to identify fragments of texts referring to attributes. This problem, especially in
case of certain abstract and difficult attributes, is far from trivial. Second, by supervised
and semi-supervised experiments on assigning those fragments to appropriate attributes.
Preliminary work on the latter using varius similarity measurements and multiple kernel
learning method has already proven successful.

Acknowledgements. This research is supported by the POIG.01.01.02-14-013/09
project which is co-financed by the European Union under the European Regional De-
velopment Fund.

References

1. Dieng, R.: Comparison of conceptual graphs for modelling knowledge of multiple experts.
In: Michalewicz, M., Raś, Z.W. (eds.) ISMIS 1996. LNCS, vol. 1079, pp. 78–87. Springer,
Heidelberg (1996)

400 A. Wawer and K. Sakwerda

2. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Publishing Company (1967)

3. Hu, M., Liu, B.: Mining opinion features in customer reviews. In: Proceedings of the 19th
National Conference on Artifical Intelligence, AAAI 2004, pp. 755–760. AAAI Press (2004)

4. Hu, M., Liu, B.: Opinion feature extraction using class sequential rules. In: Proceedings
of AAAI 2006 Spring Symposia on Computational Approaches to Analyzing Weblogs,
AAAI-CAAW 2006 (2006)

5. Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews. In: Pro-
ceedings of the Conference on Human Language Technology and Empirical Methods in
Natural Language Processing, HLT 2005, pp. 339–346. Association for Computational Lin-
guistics, Stroudsburg (2005)

6. Riloff, E., Patwardhan, S., Wiebe, J.: Feature subsumption for opinion analysis. In: Proceed-
ings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp.
440–448. Association for Computational Linguistics, Sydney (2006),
�������������	�����
�������	�����������������

7. Sowa, J.F.: Conceptual graphs for a database interface. IBM Journal of Research and Devel-
opment 20(4), 336–357 (1976)

8. Strauss, A.L., Corbin, J.: Basics of Qualitative Research. Sage Publications (1990)
9. Wilson, T.A.: Fine-grained Subjectivity and Sentiment Analysis: Recognizing the Intensity,

Polarity, and Attitudes of Private States. Ph.D. thesis, University of Pittsburgh (2008)
10. Wittgenstein, L.: Philosophical Investigations. Blackwell (1967)

http://www.aclweb.org/anthology/W/W06/W06-1652

Author Index

Bednarczyk, Marek A. 190
Bernard, Nicolas 68
Bertholon, Benôıt 85
Borkowski, Piotr 265
Bouvry, Pascal 33, 85, 204
Broda, Bartosz 293

Chojnacki, Szymon 240
Ciesielski, Krzysztof 251, 265
Cudek, Pawe�l 217
Czajkowski, Marcin 154
Czyżewski, Andrzej 45

Danoy, Grégoire 204
Degórski, �Lukasz 370

Ellwart, Damian 45

Frey, Gerhard 1

Grześ, Marek 154

Hajnicz, Elżbieta 345

Junczys-Dowmunt, Marcin 379

Kaczyński, Piotr 180
Kani, Ernst 1
K�lopotek, Mieczys�law A. 240, 265
Kobyliński, �Lukasz 307
Kordy, Barbara 103
Kretowski, Marek 154
Kubera, Elżbieta 226
Kurc, Roman 293
Kursa, Miron B. 226

Leprévost, Franck 68

Marcińczuk, Micha�l 332
Mielniczuk, Jan 128
Musia�l, Adam 332

Nivre, Joakim 20

Paja, Wies�law 217
Piasecki, Maciej 293, 332, 359
Pinel, Frédéric 204
Plewczynski, Dariusz 142
Pohl, Aleksander 318
Poniszewska-Maranda, Aneta 54
Pouly, Marc 103
Priemuth-Schmid, Deike 117
Puźniakowski, Tadeusz 190

Raciborski, Miko�laj 180
Ramocki, Rados�law 293
Rudnicki, Rados�law 226
Rudnicki, Witold R. 226

Sakwerda, Krzysztof 391
Schweitzer, Patrick 103
Seredynski, Marcin 33
Śniatowski, Tomasz 359
Stańczyk, Urszula 168
Stanek, Micha�l 332
Sydow, Marcin 251
Sza�l, Arkadiusz 379
Szczuko, Piotr 45

Teisseyre, Pawe�l 128
Trojanowski, Krzysztof 180, 265

Varrette, Sébastien 85

Wajda, Jakub 251
Wawer, Aleksander 391
Wieczorkowska, Alicja A. 226
Woliński, Marcin 279
Wróblewska, Alina 279
Wrzesień, Mariusz 217
Wysocki, Kamil 265

	Title page

	Preface
	Conference Organization
	Table of Contents
	Invited Papers
	Correspondences on Hyperelliptic Curves and Applications to the Discrete Logarithm

	Introduction
	Discrete Logarithms
	Index-Calculus

	Discrete Logarithms in Divisor Class Groups
	Isogenies and Correspondences
	Hurwitz Spaces Attached to Hyperelliptic Curves in Odd Characteristic
	The Case of Algebraically Closed Ground Field
	Rationality
	The Hyperelliptic Case
	The Trigonal Construction
	Rationality Questions over Finite Fields
	Computational Aspects

	Curves of Genus 3
	The Construction of Trigonal Subcovers
	Application to Discrete Logarithms

	The Case of Characteristic 2
	References

	Bare-Bones Dependency Parsing
	Introduction
	Parsing Problem
	Dependency Graphs
	Parsing
	Evaluation

	Parsing Techniques
	Chart Parsing Techniques
	Parsing as Constraint Satisfaction
	Transition-Based Parsing
	Hybrid Methods

	Comparative Evaluation
	Conclusion
	References

	Security and Trust
	Solving Soft Security Problem in MANETs Using an Evolutionary Approach

	Introduction
	Related Work
	System Model
	Data Collection and Modes of a Trust System
	Reciprocity-Based Response Mechanism
	Types of Nodes

	Evaluation Model and Computer Simulation Procedure
	Numerical Results
	Conclusion
	References

	Camera Sabotage Detection for Surveillance Systems
	Introduction
	Camera Dysfunction Detection

	Obstruction Detection

	Displacement Detection

	Defocus Detection

	Experiments
	Conclusions
	References

	Implementation of Access Control Model for Distributed Information Systems Using Usage Control

	Introduction
	Access Control to Secure Information Systems
	Related Work on Access Control Policies
	Access Control Policies and Their Models

	Access Control Model for Distributed Information Systems
	Proposition of New Implementation of Access Control Model
	Formal Definition for Implementation of Role-Based Usage Control Model
	Access Control Elements Using iRBUC Model - Case Study

	Conclusions
	References

	Beyond TOR: The TrueNyms Protocol
	Introduction
	Description of Onion-Routing and Its Weaknesses
	From Encryption to Onion-Routing
	Brief Description of Onion-Routing
	Performance Issues
	Classification of Security Issues

	The TrueNyms Protocol and Its Approach to Traffic Analysis
	Traffic Shaping
	What Happens When a Packet Is Lost?
	Issues with Dummy Packets
	Handling Reliability: Our Unreliable Model

	Implementing TrueNyms: Addressing Performance Issues
	Test Network
	Performance

	Conclusions
	References

	A Signature Scheme for Distributed Executions Based on Control Flow Analysis

	Introduction
	Related Work
	Static Methods
	Dynamic Methods

	Proposed Framework for a Checkable Signature of Execution Flow
	Control Flow Analysis and Fault Model
	General Overview
	Offline Execution Fingerprint by Source Code Analysis
	Online Signature Verification

	Implementation
	Experimental Validation
	Conclusions and Future Work
	References

	Computational Aspects of Attack–Defense Trees
	Introduction
	Preliminaries
	Attack–Defense Trees
	Attack–Defense Terms
	Propositional Semantics for ADTerms
	Boolean Functions

	Transformation of ADTerms to ATerms
	Expressiveness of Propositional ADTerms
	From Propositional ADTerms to Propositional ATerms

	Generalizations
	Consequences
	Open Problems
	Conclusion
	References

	Attacks on Simplified Versions of K2
	Introduction
	Description of K2 and K2
	Differential Chosen IV Attack with Key Recovery
	Distinguishing Attack
	Conclusions
	References

	Data Mining and Machine Learning
	Model Selection in Logistic Regression Using p-Values and Greedy Search

	Introduction
	Logistic Regression Model and Model Selection Criteria
	Logistic Regression Model
	Model Selection Criteria
	 Model Selection Criteria Based on a Restricted Search

	Consistency Properties of Introduced Criteria
	Numerical Experiments
	References

	Landau Theory of Meta-learning
	Introduction
	Ensemble Learning
	Landau Theory
	Meta-learning
	Concluding Remarks
	References

	Multi-Test Decision Trees for Gene Expression Data Analysis

	Introduction
	Background and Motivation
	Related Work

	Multi-Test Decision Trees
	Learning Multi-Test Splits
	Multi-Test Size and Prediction

	Experimental Results
	Setup
	Multi-Test Decision Tree Results
	Comparison of MTDTs to Other Classifiers

	Conclusion and Future Directions
	References

	Rule-Based Approach to Computational Stylistics
	Introduction
	DRSA Methodology
	Aims of Computational Stylistics
	Experimental Setup
	Results and Discussion
	Conclusions
	References

	Differential Evolution for High Scale Dynamic Optimization

	Introduction
	The Algorithm
	Plan of Experiments
	Benchmarks
	The Measures
	The Tests

	The Results
	Conclusions
	References

	Towards an OpenCL Implementation of Genetic Algorithms on GPUs

	About the OpenCL Standard
	The Classical Genetic Algorithm
	An OpenCL Implementation of GA for OneMax
	OpenCL Solution
	Initialization of Population
	Counting Fitness
	Counting Fitness of the Entire Population and the Best Specimen
	Selection Algorithms
	New Generation
	Sequential Solution

	Results
	Roulette Rule versus Tournament Selection on GPU
	CPU Versus GPU
	Different OpenCL Implementations on the Same Hardware

	Conclusions
	References

	Evolutionary Algorithm Parameter Tuning with Sensitivity Analysis

	Introduction
	Related Work
	Sensitivity Analysis
	Desirable Sensitivity Analysis Properties
	Selected Method
	Application of Sensitivity Analysis

	Example Application
	Problem Description
	Parallel Asynchronous Cellular GA

	Experimental Setup
	Results
	Conclusion
	References

	Image Recognition System for Diagnosis Support of Melanoma Skin Lesion

	Introduction
	Melanocytic Skin Lesion Image Classification
	Structure and Operation of the System
	Preprocessing Module
	Evaluation of Asymmetry Feature
	Evaluation of Border Feature
	Evaluation of Color Feature
	Evaluation of Diversity of Structure

	Initial Results and Conclusions
	References

	Playing in Unison in the Random Forest
	Introduction
	Feature Set
	Audio Data
	Random Forests
	Training of RF in Our Experiments

	Experiments and Results
	Summary and Conclusions
	References

	Scale Invariant Bipartite Graph Generative Model

	Introduction
	Related Work
	Observations
	BibSonomy Dataset
	CiteULike Dataset
	Movies Database
	Degree Distributions

	Proposed Model
	Generative Procedure
	Asymptotic Properties

	Experiments
	Conclusion
	References

	Introducing Diversity to Log-Based Query Suggestions to Deal with Underspecified User Queries

	Introduction
	Log-Based Query-Suggestion Algorithms
	Dataset
	Algorithm Based on Time Succession
	Suffix-Based Algorithm

	Diversification of Suggestions
	Query Similarity Measure Based on Edit-Distance
	Semantic-Based Query-Similarity Measure
	Experimental Results

	Conclusions and Further Work
	References

	Wikipedia-Based Document Categorization
	Introduction
	Related Work
	Taxonomy-Based W Pages Similarity Measures
	Preparing and Cleansing W Graphs
	Similarity Measures of W Categories and Pages

	Document Mapping to Semantically Related W Pages
	W-Based Disambiguation
	Case with Some Unambiguous Terms

	W-Based Document Categorization
	Experimental Results
	Benchmark Dataset
	Categorization Efficiency Measures
	Methods, Results and Discussion

	Conclusions
	References

	Natural Language Processing
	Preliminary Experiments in Polish Dependency Parsing

	Introduction
	Training Data for Our Experiments
	A Constituency Treebank of Polish
	Conversion of Constituency Trees into Dependency Trees

	Dependency Parsers
	MaltParser – Transition-Based Dependency Parser
	MSTParser – Graph-Based Dependency Parser

	Experiments
	MaltParser
	MSTParser

	Data, Evaluation and Results
	Data
	Evaluation of the Polish MaltParser
	Evaluation of the Polish MSTParser
	Comparative Error Analysis

	Conclusions and Future Work
	References

	Evaluation Method for Automated Wordnet Expansion

	Introduction
	Evaluation Methods for AutomatedWordnet Expansion
	Approaches
	Requirements
	Methodology

	Semi-automatic Wordnet Expansion
	Snow’s Algorithm Revisited
	Algorithm of Activation-Area Attachment

	Methodology Applied
	Input Data
	Evaluation Framework’s Data
	Results and Their Comparison

	Conclusions
	References

	Mining Class Association Rules for Word Sense Disambiguation

	Introduction
	Word Sense Disambiguation
	Evaluation Corpus
	Feature Representation
	Class Association Rules
	Experimental Results
	Conclusions and Future Work
	References

	An Ontology-Based Method for an Efficient Acquisition of Relation Extraction Training and Testing Examples

	Introduction
	Related Work
	Methodology
	Goals
	Idea
	Tools
	Algorithm

	Applications
	Results
	Conclusions
	References

	Rich Set of Features for Proper Name Recognition in Polish Texts

	Introduction
	Task Definition
	Resources
	Corpora
	Gazetteers of Proper Names
	Gazetteers of Key Words

	Conditional Random Fields
	Features
	List of Features and Their Motivation
	Templates for CRF

	Evaluation
	Single-Domain Evaluation
	Cross-Domain Evaluation

	Summary
	References

	Similarity-Based Method of Detecting Diathesis Alternations in Semantic Valence Dictionary of Polish Verbs

	Introduction
	Related Works
	Valence Dictionary
	Classification of Alternations
	The Method of Detecting Alternations
	Preparing Frames to Comparison
	The Algorithm

	Experiments
	Conclusions and Future Work
	References

	Combining Polish Morphosyntactic Taggers
	Background
	Morpho-syntactic Tagging
	Tagger Evaluation
	Tagging Polish
	Taggers of Polish

	Combining Taggers
	Voting
	Second-Level Classifier

	Experiments
	Training Data and Methodology
	Comparison of the Taggers Used
	Tagger Complementarity
	Oracle Accuracy
	Simple Voting
	Ambiguity Class-Based Tagger Selection

	Conclusion
	References

	Towards the Lemmatisation of Polish Nominal Syntactic Groups Using a Shallow Grammar

	Motivation
	Related Work
	Implementation – The Processing Chain
	Tagging
	Shallow Parsing
	Generating Forms
	Postprocessing

	Evaluation
	Errors and Potential Improvements
	Group Recognition
	Lemmatisation

	Conclusions and Future Work
	References

	SyMGiza++: Symmetrized Word Alignment Models for Statistical Machine Translation

	Introduction
	Previous Work
	Giza++ and MGiza++
	Symmetrized Word Alignment Models

	SyMGiza++ — Symmetrized MGiza++
	Model 1
	Model 2
	HMM Model
	Models 3 and 4
	Final Symmetrization

	Evaluation
	Word Alignment Quality
	Machine Translation Results

	Conclusions
	References

	How Opinion Annotations and Ontologies Become Objective?

	Introduction and Existing Work
	Background
	Annotation
	Software
	Types of Annotated Text Fragments
	Relations
	Annotation Cycle
	Annotator Instructions
	Dataset Description

	Common Automated Ontology
	Ontology Comparisons
	Ontology Similarity

	Automatic Generation of Common Ontology
	Results and Discussion
	Future Work
	References

	Author Index

