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Preface

The LASER summer school, organized by the ETH Chair of Software Engi-
neering, brings together the concepts and practice of software engineering. It
is intended for professionals from industry (engineers and managers) as well as
university researchers, including PhD students. Each year, the LASER school
focuses on an important software engineering topic. Since its inception in 2004,
the LASER school has featured the following topics and lecturers:

– 2010—Empirical Software Engineering:
Victor Basili, Barry Boehm, Natalia Juristo, Tim Menzies, Bertrand Meyer,
and Walter F. Tichy

– 2009—Software Testing: The Practice and the Science:
Alberto Avritzer, Michel Cukier, Yuri Gurevich, Mark Harman, Bertrand
Meyer, Tom Ostrand, Mauro Pezzè, and Elaine Weyuker

– 2008—Concurrency and Correctness:
Tryggve Fossum, Maurice Herlihy, Bertrand Meyer, Robin Milner, Peter
O’Hearn, and Daniel A. Reed

– 2007—Applied Software Verification:
Thomas Ball, Gérard Berry, C.A.R Hoare, Bertrand Meyer, Peter Müller,
and Natarajan Shankar

– 2006—Practical Programming Processes :
Ralph-Johan Back, Miguel de Icaza, Erik Meijer, Bertrand Meyer, Mary
Poppendieck, and Andreas Zeller

– 2005—Software Engineering for Concurrent and Real-Time Systems:
Laura K. Dillon, Bertrand Meyer, Jayadev Misra, Amir Pnueli, Wolfgang
Pree, and Joseph Sifakis

– 2004—Practical Techniques of Software Quality:
Jean-Raymond Abrial, Ernie Cohen, Erich Gamma, Bertrand Meyer, Carroll
Morgan, and Pamela Zave

This book contains selected lecture notes from the LASER summer schools
2008–2010, which focused on Concurrency and Correctness in 2008, Software
Testing: The Practice and the Science in 2009, and Empirical Software Engi-
neering, in 2010. This volume contains contributions by Mark Harman, Phil
Mcminn, Shin Yoo, and Jerffeson Souza on search-based software engineering;
by Mauro Pezzè, Pietro Braione and Giovanni Denaro on the integration of soft-
ware testing and formal analysis; by Yi Wei, Manuel Oriol, and Bertrand Meyer
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on an empirical study of random testing; by Natalia Juristo and Omar S. Gómez
on replication of software engineering experiments; and by Benjamin Morandi,
Sebastian Nanz and Bertrand Meyer on a formal reference for SCOOP.

We would like to thank the lecture’s and their co-authors for contributing
to this volume. We thank Christian Estler, Julian Tschannen, Marco Piccioni,
and Nazareno Aguirre for their feedback on drafts of the papers. We are grateful
to Claudia Günthart, Julian Tschannen, and the members of the ETH Chair of
Software Engineering for assisting with the organization of the LASER summer
school.

July 2011 Bertrand Meyer
Martin Nordio
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Search Based Software Engineering:

Techniques, Taxonomy, Tutorial

Mark Harman1, Phil McMinn2, Jerffeson Teixeira de Souza3, and Shin Yoo1

1 University College London, UK
2 University of Sheffield, UK

3 State University of Ceará, Brazil

Abstract. The aim of Search Based Software Engineering (SBSE)
research is to move software engineering problems from human-based
search to machine-based search, using a variety of techniques from the
metaheuristic search, operations research and evolutionary computation
paradigms. The idea is to exploit humans’ creativity and machines’ tenac-
ity and reliability, rather than requiring humans to perform the more
tedious, error prone and thereby costly aspects of the engineering pro-
cess. SBSE can also provide insights and decision support. This tutorial
will present the reader with a step-by-step guide to the application of
SBSE techniques to Software Engineering. It assumes neither previous
knowledge nor experience with Search Based Optimisation. The inten-
tion is that the tutorial will cover sufficient material to allow the reader
to become productive in successfully applying search based optimisation
to a chosen Software Engineering problem of interest.

1 Introduction

Search Based Software Engineering (SBSE) is the name given to a body of work
in which Search Based Optimisation is applied to Software Engineering. This
approach to Software Engineering has proved to be very successful and generic.
It has been a subfield of software engineering for ten years [45], the past five of
which have been characterised by an explosion of interest and activity [48]. New
application areas within Software Engineering continue to emerge and a body
of empirical evidence has now accrued that demonstrates that the search based
approach is definitely here to stay.

SBSE seeks to reformulate Software Engineering problems as ‘search prob-
lems’ [45, 48]. This is not to be confused with textual or hypertextual searching.
Rather, for Search Based Software Engineering, a search problem is one in which
optimal or near optimal solutions are sought in a search space of candidate solu-
tions, guided by a fitness function that distinguishes between better and worse
solutions. The term SBSE was coined by Harman and Jones [45] in 2001, which
was the first paper to advocate Search Based Optimisation as a general approach
to Software Engineering, though there were other authors who had previously
applied search based optimisation to aspects of Software Engineering.

B. Meyer and M. Nordio (Eds.): LASER Summer School 2008-2010, LNCS 7007, pp. 1–59, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Harman et al.

SBSE has been applied to many fields within the general area of Software
Engineering, some of which are already sufficiently mature to warrant their own
surveys. For example, there are surveys and overviews, covering SBSE for re-
quirements [111], design [78] and testing [3, 4, 65], as well as general surveys of
the whole field of SBSE [21, 36, 48].

This paper does not seek to duplicate these surveys, though some material
is repeated from them (with permission), where it is relevant and appropriate.
Rather, this paper aims to provide those unfamiliar with SBSE with a tutorial
and practical guide. The aim is that, having read this paper, the reader will
be able to begin to develop SBSE solutions to a chosen software engineering
problem and will be able to collect and analyse the results of the application of
SBSE algorithms.

By the end of the paper, the reader (who is not assumed to have any prior
knowledge of SBSE) should be in a position to prepare their own paper on
SBSE. The tutorial concludes with a simple step-by-step guide to developing the
necessary formulation, implementation, experimentation and results required for
the first SBSE paper. The paper is primarily aimed at those who have yet to
tackle this first step in publishing results on SBSE. For those who have already
published on SBSE, many sections can easily be skipped, though it is hoped that
the sections on advanced topics, case studies and the SBSE taxonomy (Sections 7,
8 and 9) will prove useful, even for seasoned Search Based Software Engineers.

The paper contains extensive pointers to the literature and aims to be suf-
ficiently comprehensive, complete and self-contained that the reader should be
able to move from a position of no prior knowledge of SBSE to one in which he or
she is able to start to get practical results with SBSE and to consider preparing
a paper for publication on these results.

The field of SBSE continues to grow rapidly. Many exciting new results and
challenges regularly appear. It is hoped that this tutorial will allow many more
Software Engineering researchers to explore and experiment with SBSE. We
hope to see this work submitted to (and to appear in) the growing number of
conferences, workshops and special issue on SBSE as well as the general software
engineering literature.

The rest of the paper is organised as follows. Section 2 briefly motivates the
paper by setting out some of the characteristics of SBSE that have made it well-
suited to a great many Software Engineering problems, making it very widely
studied. Sections 3 and 4 describe the most commonly used algorithms in SBSE
and the two key ingredients of representation and fitness function. Section 5
presents a simple worked example of the application of SBSE principles in Soft-
ware Engineering, using Regression Testing as an exemplar. Section 6 presents
an overview of techniques commonly used to understand, analyse and interpret
results from SBSE. Section 7 describes some of the more advanced techniques
that can be used in SBSE to go beyond the simple world of single objectives for
which we seek only to find an optimal result. Section 8 presents four case studies
of previous work in SBSE, giving examples of the kinds of results obtained. These
cover a variety of topics and involve very different software engineering activities,
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illustrating how generic and widely applicable SBSE is to a wide range of soft-
ware engineering problem domains. Section 9 presents a taxonomy of problems
so far investigated in SBSE research, mapping these onto the optimisation prob-
lems that have been formulated to address these problems. Section 10 describes
the next steps a researcher should consider in order to conduct (and submit
for publication) their first work on SBSE. Finally, Section 11 presents potential
limitations of SBSE techniques and ways to overcome them.

2 Why SBSE?

As pointed out by Harman, Mansouri and Zhang [48] Software Engineering ques-
tions are often phrased in a language that simply cries out for an optimisation-
based solution. For example, a Software Engineer may well find themselves asking
questions like these [48]:

1. What is the smallest set of test cases that cover all branches in this program?
2. What is the best way to structure the architecture of this system?
3. What is the set of requirements that balances software development cost and

customer satisfaction?
4. What is the best allocation of resources to this software development project?
5. What is the best sequence of refactoring steps to apply to this system?

All of these questions and many more like them, can (and have been) addressed
by work on SBSE [48]. In this section we briefly review some of the motivations
for SBSE to give a feeling for why it is that this approach to Software Engineering
has generated so much interest and activity.

1. Generality
As the many SBSE surveys reveal, SBSE is very widely applicable. As ex-
plained in Section 3, we can make progress with an instance of SBSE with
only two definitions: a representation of the problem and a fitness function
that captures the objective or objectives to be optimised. Of course, there
are few Software Engineering problems for which there will be no representa-
tion, and the readily available representations are often ready to use ‘out of
the box’ for SBSE. Think of a Software Engineering problem. If you have no
way to represent it then you cannot get started with any approach, so prob-
lem representation is a common starting point for any solution approach,
not merely for SBSE. It is also likely that there is a suitable fitness function
with which one could start experimentation since many software engineering
metrics are readily exploitable as fitness functions [42].

2. Robustness
SBSE’s optimisation algorithms are robust. Often the solutions required need
only to lie within some specified tolerance. Those starting out with SBSE can
easily become immersed in ‘parameter tuning’ to get the most performance
from their SBSE approach. However, one observation that almost all those
who experiment will find, is that the results obtained are often robust to
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the choice of these parameters. That is, while it is true that a great deal
of progress and improvement can be made through tuning, one may well
find that all reasonable parameter choices comfortably outperform a purely
random search. Therefore, if one is the first to use a search based approach,
almost any reasonable (non extreme) choice of parameters may well support
progress from the current ‘state of the art’.

3. Scalability Through Parallelism
Search based optimisation techniques are often referred to as being ‘embar-
rassingly parallel’ because of their potential for scalability through parallel
execution of fitness computations. Several SBSE authors have demonstrated
that this parallelism can be exploited in SBSE work to obtain scalability
through distributed computation [12, 62, 69]. Recent work has also shown
how General Purpose Graphical Processing devices (GPGPUs) can be used
to achieve scale up factors of up to 20 compared to single CPU-based com-
putation [110].

4. Re-unification
SBSE can also create linkages and relationships between areas in Software
Engineering that would otherwise appear to be completely unrelated. For
instance, the problems of Requirements Engineering and Regression Testing
would appear to be entirely unrelated topics; they have their own conferences
and journals and researchers in one field seldom exchange ideas with those
from the other.

However, using SBSE, a clear relationship can be seen between these two
problem domains [48]. That is, as optimisation problems they are remark-
ably similar as Figure 1 illustrates: Both involve selection and prioritisation
problems that share a similar structure as search problems.

5. Direct Fitness Computation
In engineering disciplines such as mechanical, chemical, electrical and elec-
tronic engineering, search based optimisation has been applied for many
years. However, it has been argued that it is with Software Engineering,
more than any other engineering discipline, that search based optimisation
has the highest application potential [39]. This argument is based on the
nature of software as a unique and very special engineering ‘material’, for
which even the word ‘engineering material’ is a slight misnomer. After all,
software is the only engineering material that can only be sensed by the
mind and not through any of the five senses of sight, sounds, smell, taste
and touch.

In traditional engineering optimisation, the artefact to be optimised is
often simulated precisely because it is of physical material, so building mock
ups for fitness computation would be prohibitively slow and expensive. By
contrast, software has no physical existence; it is purely a ‘virtual engineering
material’. As a result, the application of search based optimisation can often
be completely direct; the search is performed directly on the engineering
material itself, not a simulation of a model of the real material (as with
traditional engineering optimisations).
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Fig. 1. Requirements Selection and Regression Testing: two different areas of Software
Engineering that are Re-unified by SBSE (This example is taken from the recent survey
[48]). The task of selecting requirements is closely related to the problem of selecting
test cases for regression testing. We want test cases to cover code in order to achieve high
fitness, whereas we want requirements to cover customer expectations. Furthermore,
both regression test cases and requirements need to be prioritised. We seek to order
requirements ensure that, should development be interrupted, then maximum benefit
will have been achieved for the customer at the least cost. We seek to order test cases to
ensure that, should testing be stopped, then maximum achievement of test objectives
is achieved with minimum test effort.

3 Defining a Representation and Fitness Function

SBSE starts with only two key ingredients [36, 45]:

1. The choice of the representation of the problem.
2. The definition of the fitness function.

This simplicity makes SBSE attractive. With just these two simple ingredients
the budding Search Based Software Engineer can implement search based opti-
misation algorithms and get results.

Typically, a software engineer will have a suitable representation for their
problem. Many problems in software engineering also have software metrics as-
sociated with them that naturally form good initial candidates for fitness func-
tions [42]. It may well be that a would-be Search Based Software Engineer will
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have to hand, already, an implementation of some metric of interest. With a very
little effort this can be turned into a fitness function and so the ‘learning curve’
and infrastructural investment required to get started with SBSE is among the
lowest of any approach one is likely to encounter.

4 Commonly Used Algorithms

Random search is the simplest form of search algorithm that appears frequently
in the software engineering literature. However, it does not utilise a fitness func-
tion, and is thus unguided, often failing to find globally optimal solutions (Figure
2). Higher quality solutions may be found with the aid of a fitness function, which
supplies heuristic information regarding the areas of the search space which may
yield better solutions and those which seem to be unfruitful to explore further.
The simplest form of search algorithm using fitness information in the form of
a fitness function is Hill Climbing. Hill Climbing selects a point from the search
space at random. It then examines candidate solutions that are in the ‘neighbour-
hood’ of the original; i.e. solutions in the search space that are similar but differ
in some aspect, or are close or some ordinal scale. If a neighbouring candidate
solution is found of improved fitness, the search ‘moves’ to that new solution.
It then explores the neighbourhood of that new candidate solution for better
solutions, and so on, until the neighbourhood of the current candidate solution
offers no further improvement. Such a solution is said to be locally optimal, and
may not represent globally optimal solutions (as in Figure 3a), and so the search
is often restarted in order to find even better solutions (as in Figure 3b). Hill
Climbing may be restarted as many times as computing resources allow.

Pseudo-code for Hill Climbing can be seen in Figure 4. As can be seen, not
only must the fitness function and the ‘neighbourhood’ be defined, but also the
type of ‘ascent strategy’. Types of ascent strategy include ‘steepest ascent’, where
all neighbours are evaluated, with the ascending move made to the neighbour
offering the greatest improvement in fitness. A ‘random’ or ‘first’ ascent strategy,
on the other hand, involves the evaluation of neighbouring candidate solutions at
random, and the first neighbour to offer an improvement selected for the move.

Space of all possible solutions

portion of 
search space 

containing globally 
optimal solutions

randomly-generated
solutions

Fig. 2. Random search may fail to find optimal solutions occupying a small proportion
of the overall search space (adapted from McMinn [66])
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Space of all possible solutions

(a) A climb to a local optimum

Fi
tn

es
s

Space of all possible solutions

(b) A restart resulting in a climb to the global optimum

Fig. 3. Hill Climbing seeks to improve a single solution, initially selected at random,
by iteratively exploring its neighbourhood (adapted from McMinn [66])

Select a starting solution s ∈ S
Repeat

Select s′ ∈ N(s) such that fit(s′) > fit(s) according to ascent strategy
s← s′

Until fit(s) ≥ fit(s′), ∀s′ ∈ N(s)

Fig. 4. High level description of a hill climbing algorithm, for a problem with solution
space S; neighbourhood structure N ; and fit, the fitness function to be maximised
(adapted from McMinn [65])

Simulated Annealing (Figure 5), first proposed by Kirkpatrick et al. [56], is
similar to Hill Climbing in that it too attempts to improve one solution. How-
ever, Simulated Annealing attempts to escape local optima without the need
to continually restart the search. It does this by temporarily accepting candi-
date solutions of poorer fitness, depending on the value of a variable known
as the temperature. Initially the temperature is high, and free movement is al-
lowed through the search space, with poorer neighbouring solutions representing
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Space of all possible solutions

Fig. 5. Simulated Annealing also seeks to improve a single solution, but moves may be
made to points in the search space of poorer fitness (adapted from McMinn [66])

potential moves along with better neighbouring solutions. As the search pro-
gresses, however, the temperature reduces, making moves to poorer solutions
more and more unlikely. Eventually, freezing point is reached, and from this point
on the search behaves identically to Hill Climbing. Pseudo-code for the Simulated
Annealing algorithm can be seen in Figure 6. The probability of acceptance p of
an inferior solution is calculated as p = e−

δ
t , where δ is the difference in fitness

value between the current solution and the neighbouring inferior solution being
considered, and t is the current value of the temperature control parameter.

Select a starting solution s ∈ S
Select an initial temperature t > 0
Repeat

it← 0
Repeat

Select s′ ∈ N(s) at random
Δe← fit(s)− fit(s′)
If Δe < 0

s← s′

Else
Generate random number r, 0 ≤ r < 1
If r < e−

δ
t Then s← s′

End If
it← it + 1

Until it = num solns
Decrease t according to cooling schedule

Until Stopping Condition Reached

Fig. 6. High level description of a simulated annealing algorithm, for a problem with
solution space S; neighbourhood structure N ; num solns, the number of solutions to
consider at each temperature level t; and fit, the fitness function to be maximised
(adapted from McMinn [65])
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‘Simulated Annealing’ is named so because it was inspired by the physical
process of annealing; the cooling of a material in a heat bath. When a solid
material is heated past its melting point and then cooled back into its solid
state, the structural properties of the final material will vary depending on the
rate of cooling.

Hill Climbing and Simulated Annealing are said to be local searches, because
they operate with reference to one candidate solution at any one time, choosing
‘moves’ based on the neighbourhood of that candidate solution. Genetic Algo-
rithms, on the other hand, are said to be global searches, sampling many points
in the search space at once (Figure 7), offering more robustness to local optima.
The set of candidate solutions currently under consideration is referred to as the
current population, with each successive population considered referred to as a
generation. Genetic Algorithms are inspired by Darwinian Evolution, in keeping
with this analogy, each candidate solution is represented as a vector of compo-
nents referred to as individuals or chromosomes. Typically, a Genetic Algorithm
uses a binary representation, i.e. candidate solutions are encoded as strings of 1s
and 0s; yet more natural representations to the problem may also be used, for
example a list of floating point values.

The main loop of a Genetic Algorithm can be seen in Figure 8. The first
generation is made up of randomly selected chromosomes, although the popu-
lation may also be ‘seeded’ with selected individuals representing some domain
information about the problem, which may increase the chances of the search
converging on a set of highly-fit candidate solutions. Each individual in the pop-
ulation is then evaluated for fitness.

On the basis of fitness evaluation, certain individuals are selected to go for-
ward to the following stages of crossover, mutation and reinsertion into the next
generation. Usually selection is biased towards the fitter individuals, however the
possibility of selecting weak solutions is not removed so that the search does not
converge early on a set of locally optimal solutions. The very first Genetic Al-
gorithm, proposed by Holland1, used ‘fitness-proportionate’ selection, where the
expected number of times an individual is selected for reproduction is propor-
tionate to the individual’s fitness in comparison with the rest of the population.
However, fitness-proportionate selection has been criticised because highly-fit in-
dividuals appearing early in the progression of the search tend to dominate the
selection process, leading the search to converge prematurely on one sub-area of
the search space. Linear ranking [100] and tournament selection [23] have been
proposed to circumvent these problems, involving algorithms where individuals
are selected using relative rather than absolute fitness comparisons.

In the crossover stage, elements of each individual are recombined to form
two offspring individuals. Different choices of crossover operator are available,
including ‘one-point’ crossover, which splices two parents at a randomly-chosen
position in the string to form two offspring. For example, two strings ‘111’ and
‘000’ may be spliced at position 2 to form two children ‘100’ and ‘011’. Other

1 This was introduced by Holland [54], though Turing had also briefly mentioned the
idea of evolution as a computational metaphor [94].
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Fi
tn

es
s

Space of all possible solutions

Fig. 7. Genetic Algorithms are global searches, taking account of several points in the
search space at once (adapted from McMinn [66])

Randomly generate or seed initial population P
Repeat

Evaluate fitness of each individual in P
Select parents from P according to selection mechanism
Recombine parents to form new offspring
Construct new population P ′ from parents and offspring
Mutate P ′

P ← P ′

Until Stopping Condition Reached

Fig. 8. High level description of a Genetic Algorithm, adapted from McMinn [65]

operators may recombine using multiple crossover points, while ‘uniform’ crossover
treats every position as a potential crossover point.

Subsequently, elements of the newly-created chromosomes are mutated at ran-
dom, with the aim of diversifying the search into new areas of the search space.
For GAs operating on binary representation, mutation usually involves randomly
flipping bits of the chromosome. Finally, the next generation of the population
is chosen in the ‘reinsertion’ phase, and the new individuals are evaluated for
fitness. The GA continues in this loop until it finds a solution known to be glob-
ally optimal, or the resources allocated to it (typically a time limit or a certain
budget of fitness evaluations) are exhausted. Whitley’s tutorial papers [101, 102]
offer a further excellent introductory material for getting starting with Genetic
Algorithms in Search Based Software Engineering.

5 Getting the First Result: A Simple Example for
Regression Testing

This section presents an application of a search-based approach to the Test
Case Prioritisation (TCP) in regression testing, illustrating the steps that are
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necessary to obtain the first set of results. This makes concrete the concepts of
representation, fitness function and search based algorithm (and their operators)
introduced in the previous sections. First, let us clarify what we mean by TCP.

Regression testing is a testing activity that is performed to gain confidence
that the recent modifications to the System Under Test (SUT), e.g. bug patches
or new features, did not interfere with existing functionalities [108]. The simplest
way to ensure this is to execute all available tests; this is often called retest-all
method. However, as the software evolves, the test suite grows too, eventually
making it prohibitively expensive to adopt the retest-all approach. Many tech-
niques have been developed to deal with the cost of regression testing.

Test Case Prioritisation represents a group of techniques that particularly deal
with the permutations of tests in regression test suites [28, 108]. The assumption
behind these techniques is that, because of the limited resources, it may not be
possible to execute the entire regression test suite. The intuition behind Test
Case Prioritisation techniques is that more important tests should be executed
earlier. In the context of regression testing, the ‘important’ tests are the ones
that detect regression faults. That is, the aim of Test Case Prioritisation is to
maximise earlier fault detection rate. More formally, it is defined as follows:

Definition 1. Test Case Prioritisation Problem

Given: A test suite, T , the set of permutations of T , PT , and a function from
PT to real numbers, f : PT → R.

Problem: To find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT )(T ′′ �= T ′)[f(T ′) ≥
f(T ′′)].

Ideally, the function f should be a mapping from tests to their fault detection
capability. However, whether a test detects some faults or not is only known after
its execution. In practice, a function f that is a surrogate to the fault detection
capability of tests is used. Structural coverage is one of the most popular choices:
the permutation of tests that achieves structural coverage as early as possible is
thought to maximise the chance of early fault detection.

5.1 Representation

At its core, TCP as a search problem is an optimisation in a permutation space
similar to the Travelling Salesman Problem (TSP), for which many advanced
representation schemes have been developed. Here we will focus on the most
basic form of representation. The set of all possible candidate solutions is the set
of all possible permutations of tests in the regression test suite. If the regression
test suite contains n tests, the representation takes the form of a vector with n
elements. For example, Figure 9 shows one possible candidate solution for TCP
with size n, i.e. with a regression test suite that contains 6 tests, {t0, . . . , t5}.

Depending on the choice of the search algorithm, the next step is either to
define the neighbouring solutions of a given solution (local search) or to define
the genetic operators (genetic algorithm).
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t1 t3 t0 t2 t5 t4

Fig. 9. One possible candidate solution for TCP with a regression test suite with 6
tests, {t0, . . . , t5}

Neighbouring Solutions. Unless the characteristics of the search landscape is
known, it is recommended that the neighbouring solutions of a given solution for
a local search algorithm is generated by making the smallest possible changes to
the given solution. This allows the human engineer to observe and understand
the features of the search landscape.

It is also important to define the neighbouring solutions in a way that produces
a manageable number of neighbours. For example, if the set of neighbouring
solutions for TCP of size n is defined as the set of all permutations that can be
generated by swapping two tests, there would be n(n−1) neighbouring solutions.
However, if we only consider swapping adjacent tests, there would be n−1. If the
fitness evaluation is expensive, i.e. takes non-trivial time, controlling the size of
the neighbourhood may affect the efficiency of the search algorithm significantly.

Genetic Operators. The following is a set of simple genetic operators that
can be defined over permutation-based representations.

– Selection: Selection operators tend to be relatively independent of the
choice of representation. It is more closely related to the design of the fit-
ness function. One widely used approach that is also recommended as the
first step is n-way tournament selection. First, randomly sample n solutions
from the population. Out of this sample, pick the fittest individual solution.
Repeat once again to select a pair of solutions for reproduction.

– Crossover: Unlike selection operators, crossover operators are directly linked
to the structure of the representation of solutions. Here, we use the crossover
operator following Antoniol et al. [6] to generate, from parent solutions p1

and p2, the offspring solutions o1 and o2:

1. Pick a random number k (1 ≤ k ≤ n)
2. The first k elements of p1 become the first k elements of o1.
3. The last n − k elements of o1 are the sequence of n − k elements that

remain when the k elements selected from p1 are taken from p2, as illus-
trated in Figure 10.

4. o2 is generated similarly, composed of the first n− k elements of p2 and
the remaining k elements of p1.

– Mutation: Similarly to defining the neighbouring solutions for local search
algorithms, it is recommended that, initially, mutation operators are defined
to introduce relatively small changes to individual solutions. For example,
we can swap the position of two randomly selected tests.
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Fig. 10. Illustration of crossover operator for permutation-based representations fol-
lowing Antoniol et al.

5.2 Fitness Function

The recommended first step to design the fitness function is to look for an
existing metric that measures the quality we are optimising for. If one exists,
it often provides not only a quick and easy way to evaluate the search-based
approach to the problem but also a channel to compare the results to other
existing techniques.

The metric that is widely used to evaluate the effectiveness of TCP techniques
is Average Percentage of Faults Detected (APFD) [28]. Higher APFD values
mean that faults are detected earlier in testing. Suppose that, as the testing
progresses, we plot the percentage of detected faults against the number of tests
executed so far: intuitively, APFD would be the area behind the plot.

However, calculation of APFD requires the knowledge of which tests detected
which faults. As explained in Section 5, the use of this knowledge defies the
purpose of the prioritisation because fault detection information is not available
until all tests are executed. This forces us to turn to the widely used surro-
gate, structural coverage. For example, Average Percentage of Blocks Covered
(APBC) is calculated in a similar way to APFD but, instead of percentage of
detected faults, percentage of blocks covered so far is used. In regression testing
scenarios, the coverage information of tests are often available from the previous
iteration of testing. While the recent modification that we are testing against
might have made the existing coverage information imprecise, it is often good
enough to provide guidance for prioritisation, especially when regression testing
is performed reasonably frequently.

5.3 Putting It All Together

The representation of solutions and the fitness function are the only problem-
specific components in the overall architecture of SBSE approach in Figure 11.
It is recommended that these problem specific components are clearly separated
from the search algorithm itself: the separation not only makes it easier to reuse
the search algorithms (that are problem independent) but also helps testing and
debugging of the overall approach (repeatedly used implementations of search
algorithms can provide higher assurance).
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Search Algorithm

Fig. 11. Overall Architecture of SBSE Approach

6 Understanding Your Results

6.1 Fair Comparison

Due to the stochastic nature of optimisation algorithms, searches must be re-
peated several times in order to mitigate against the effects of random variation.
In the literature, experiments are typically repeated 30-50 times.

When comparing two algorithms, the best fitness values obtained by the
searches concerned are an obvious indicator to how well the optimisation pro-
cess performed. However, in order to ensure a fair comparison, it is important to
establish the amount of effort expended by each search algorithm, to find those
solutions. This effort is commonly measured by logging the number of fitness
evaluations that were performed. For example, it could be that an algorithm
found a solution with a better fitness value, but did so because it was afforded
a higher number of trials in which to obtain it. Or, there could be trade-offs,
for example search A may find a solution of good fitness early in the search,
but fail to improve it, yet search B can find solutions of slightly better fitness,
but requiring many more fitness evaluations in which to discover it. When a cer-
tain level of fitness is obtained by more than one search algorithm, the average
number of fitness evaluations over the different runs of the experiments by each
algorithm is used to measure the cost of the algorithm in obtaining that fitness,
or to put it another way, its relative efficiency.

For some types of problem, e.g. test data generation, there is a specific goal
that must be attained by the search; for example the discovery of test data
to execute a particular branch. In such cases, merely ‘good’ solutions of high
fitness are not enough - a solution with a certain very high fitness value must be
obtained, or the goal of the search will not be attained. In such cases, best fitness
is no longer as an important measure as the success rate, a percentage reflecting
the number of times the goal of the search was achieved over the repetitions of
the experiment. The success rate gives an idea of how effective the search was
at achieving its aim.

6.2 Elementary Statistical Analysis

The last section introduced some descriptive statistics for use in Search Based
Software Engineering experiments, but also inferential statistics may be applied
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to discern whether one set of experiments are significantly different in some
aspect from another.

Suppose there are two approaches to address a problem in SBSE, each of
which involves the application of some search based algorithm to a set of problem
instances. We collect results for the application of both algorithms, A and B,
and we notice that, over a series of runs of our experiment, Algorithm A tends
to perform better than Algorithm B. The performance we have in mind, may
take many forms. It may be that Algorithm A is faster than B, or that after a
certain number of fitness evaluations it has achieved a higher fitness value, or
a higher average fitness. Alternatively, there may be some other measurement
that we can make about which we notice a difference in performance that we
believe is worth reporting.

In such cases, SBSE researchers tend to rely on inferential statistics as a means
of addressing the inherently stochastic nature of search based algorithms. That
is, we may notice that the mean fitness achieved by Algorithm A is higher than
that of Algorithm B after 10 executions of each, but how can we be sure that this
is not merely an observation arrived at by chance? It is to answer precisely these
kinds of question that statistical hypothesis testing is used in the experimental
sciences, and SBSE is no exception.

A complete explanation of the issues and techniques that can be used in ap-
plying inferential statistics in SBSE is beyond the scope of this tutorial. However,
there has been a recent paper on the topic of statistical testing of randomised
algorithms by Arcuri and Briand [8], which provides more detail. In this section
we provide an overview of some of the key points of concern.

The typical scenario with which we are concerned is one in which we want to
explore the likelihood that our experiments found that Algorithm A outperforms
Algorithm B purely by chance. Usually we wish to be in a position to make a
claim that we have evidence that suggests that Algorithm A is better than
Algorithm B. For example, as a sanity check, we may wish to show that our
SBSE technique comfortably outperforms a random search. But what do we
mean by ‘comfortably outperforms’?

In order to investigate this kind of question we set a threshold on the degree
of chance that we find acceptable. Typically, in the experimental sciences, this
level is chosen to be either 1% or 5%. That is, we will have either a less than 1
in 100 or a less than 5 in 100 chance of believing that Algorithm A outperforms
Algorithm B based on a set of executions when in fact it does not. This is the
chance of making a so-called ‘Type I’ error. It would lead to us concluding that
some Algorithm A was better than Algorithm B when, in fact, it was not.

If we choose a threshold for error of 5% then we have a 95% confidence level in
our conclusion based on our sample of the population of all possible executions
of the algorithm. That is, we are ‘95% sure that we can claim that Algorithm A
really is better than Algorithm B’. Unpacking this claim a little, what we find
is that there is a population involved. This is the population of all possible runs
of the algorithm in question. For each run we may get different behaviour due
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to the stochastic nature of the algorithm and so we are not in a position to say
exactly what the value obtained will be. Rather, we can give a range of values.

However, it is almost always impractical to perform all possible runs and so
we have to sample. Our ‘95% confidence claim’ is that we are 95% confident that
the evidence provided by our sample allows us to infer a conclusion about the
algorithm’s performance on the whole population. This is why this branch of
statistics is referred to as ‘inferential statistics’; we infer properties of a whole
population based on a sample.

Unfortunately a great deal of ‘ritualistic’ behaviour has grown up around the
experimental sciences, in part, resulting for an inadequate understanding of the
underlying statistics. One aspect of this ritual is found in the choice of a suitable
confidence level. If we are comparing some new SBSE approach to the state of
the art, then we are asking a question as to whether the new approach is worthy
of consideration. In such a situation we may be happy with a 1 in 10 chance of
a Type I error (and could set the confidence level, accordingly, to be 90%). The
consequences of considering a move from the status quo may not be so great.

However, if we are considering whether to use a potently fatal drug on a
patient who may otherwise survive we might want a much higher confidence
that the drug would, indeed, improve the health of the patent over the status
quo (no treatment). For this reason it is important to think about what level of
confidence is suitable for the problem in hand.

The statistical test we perform will result in a p-value. The p-value is the
chance that a Type I error has occurred. That is, we notice that a sample of
runs produces a higher mean result for a measurement of interest for Algorithm
A than for Algorithm B. We wish to reject the so-called ‘null hypothesis’; the
hypothesis that the population of all executions of Algorithm A is no different to
that of Algorithm B. To do this we perform an inferential statistical test. If all
the assumptions of the test are met and the sample of runs we have is unbiased
then the p-value we obtain indicates the chance that the populations of runs of
Algorithm A and Algorithm B are identical given the evidence we have from
the sample. For instance a p-value equal to or lower than 0.05 indicates that
we have satisfied the traditional (and somewhat ritualistic) 95% confidence level
test. More precisely, the chance of committing a Type I error is p.

This raises the question of how large a sample we should choose. The sample
size is related to the statistical power of our experiment. If we have too small a
sample then we may obtain high p-values and incorrectly conclude that there is
no significant difference between the two algorithms we are considering. This is
a so-called Type II error; we incorrectly accept the null hypothesis when it is,
in fact, false. In our case it would mean that we would incorrectly believe Algo-
rithm A to be no better than Algorithm B. More precisely, we would conclude,
correctly, that we have no evidence to claim that Algorithm A is significantly
better than Algorithm B at the chosen conference level. However, had we chosen
a larger sample, we may have had just such evidence. In general, all else being
equal, the larger the sample we choose the less likely we are to commit a Type
II error. This is why researchers prefer larger sample sizes where this is feasible.



Search Based Software Engineering: Techniques, Taxonomy, Tutorial 17

There is another element of ritual for which some weariness is appropriate:
the choice of a suitable statistical test. One of the most commonalty performed
tests in work on search based algorithms in general (though not necessarily SBSE
in particular) is the well-known t test. Almost all statistical packages support
it and it is often available at the touch of a button. Unfortunately, the t test
makes assumptions about the distribution of the data. These assumptions may
not be borne out in practice thereby increasing the chance of a Type I error. In
some senses a type I error is worse than a Type II error, because it may lead to
the publication of false claims, whereas a Type I error will most likely lead to
researcher disappointment at the lack of evidence to support publishable results.

To address this potential problem with parametric inferential statistics SBSE
researchers often use nonparametric statistical tests. Non-parametric tests make
fewer assumptions about thedistributionof thedata.As such, these tests areweaker
(they have less power) and may lead to the false acceptance of the null hypothesis
for the same sample size (a Type II error), when used in place of a more powerful
parametric test that is able to reject the null hypothesis. However, since the para-
metric tests make assumptions about the distribution, should these assumptions
prove to be false, then the rejection of the null hypothesis by a parametric test may
be an artefact of the false assumptions; a form of Type I error.

It is important to remember that all inferential statistical techniques are
founded on probability theory. To the traditional computer scientist, particularly
those raised on an intellectual diet consisting exclusively of formal methods and
discrete mathematics, this reliance on probability may be as unsettling as quan-
tum mechanics was to the traditional world of physics. However, as engineers,
the reliance on a confidence level is little more than an acceptance of a certain
‘tolerance’ and is quite natural and acceptable.

This appreciation of the probability-theoretic foundations of inferential statis-
tics rather than a merely ritualistic application of ‘prescribed tests’ is important
if the researcher is to avoid mistakes. For example, armed with a non parametric
test and a confidence internal of 95% the researcher may embark on a misguided
‘fishing expedition’ to find a variant of Algorithm A that outperforms Algorithm
B. Suppose 5 independent variants of Algorithm A are experimented with and,
on each occasion, a comparison is made with Algorithm B using an inferential
statistical test. If variant 3 produces a p-value of 0.05, while the others do not
it would be a mistake to conclude that at the 95% confidence level Algorithm A
(variant 3) is better than Algorithm B.

Rather, we would have to find that Algorithm A variant 3 had a p-value
lower than 0.05/5; by repeating the same test 5 times, we raise the confidence
required for each test from 0.05 to 0.01 to retain the same overall confidence.
This is known as a ‘Bonferroni correction’. To see why it is necessary, suppose
we have 20 variants of Algorithms A. What would be the expected likelihood
that one of these would, by chance, have a p-value equal or lower than 0.05 in a
world where none of the variants is, in fact, any different from Algorithm B? If
we repeat a statistical test sufficiently many times without a correction to the
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confidence level, then we are increasingly likely to commit a Type I error. This
situation is amusingly captured by an xkcd cartoon [73].

Sometimes, we find ourselves comparing, not vales of measurements, but the
success rates of searches. Comparison of success rates using inferential statis-
tics requires a categorical approach, since a search goal is either fulfilled or not.
For this Fisher’s Exact test is a useful statistical measure. This is another non-
parametric test. For investigative of correlations, researchers use Spearman and
Pearson correlation analysis. These tests can be useful to explore the degree to
which increases in one factor are correlated to another, but it is important to
understand that correlations does not, of course, entail causality.

7 More Advanced Techniques

Much has been achieved in SBSE using only a single fitness function, a sim-
ple representation of the problem and a simple search technique (such as hill
climbing). It is recommended that, as a first exploration of SBSE, the first ex-
periments should concern a single fitness function, a simple representation and
a simple search technique. However, once results have been obtained and the
approach is believed to have potential, for example, it is found to outperform
random search, then it is natural to turn one’s attention to more advanced tech-
niques and problem characterisations.

This section considers four exciting ways in which the initial set of results
can be developed, using more advanced techniques that may better model the
real world scenario and may also help to extend the range and type of results
obtained and the applicability of the overall SBSE approach for the Software
Engineering problem in hand.

7.1 Multiple Objectives

Though excellent results can be obtained with a single objective, many real world
Software Engineering problems are multiple objective problems. The objectives
that have to be optimised are often in competition with one another and may be
contradictory; we may find ourselves trying to balance the different optimisation
objectives of several different goals.

One approach to handle such scenarios is the use of Pareto optimal SBSE,
in which several optimisation objectives are combined, but without needing to
decide which take precedence over the others. This approach is described in more
detail elsewhere [48] and was first proposed as the ‘best’ way to handle multiple
objectives for all SBSE problems by Harman in 2007 [36]. Since then, there has
been a rapid uptake of Pareto optimal SBSE to requirements [27, 31, 84, 90, 113],
planning [5, 98], design [17, 88, 95], coding [9, 99], testing [33, 35, 47, 76, 90, 96,
107], and refactoring [52].

Suppose a problem is to be solved that has n fitness functions, f1, . . . , fn

that take some vector of parameters x. Pareto optimality combines a set of
measurements, fi, into a single ordinal scale metric, F , as follows:
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F (x1) > F (x2)
⇔

∀i.fi(x1) ≥ fi(x2) ∧ ∃i.fi(x1) > fi(x2)

Under Pareto optimality, one solution is better than another if it is better ac-
cording to at least one of the individual fitness functions and no worse according
to all of the others. Under the Pareto interpretation of combined fitness, no
overall fitness improvement occurs no matter how much almost all of the fitness
functions improve, should they do so at the slightest expense of any one of their
number. The use of Pareto optimality is an alternative to simply aggregating
fitness using a weighted sum of the n fitness functions.

When searching for solutions to a problem using Pareto optimality, the search
yields a set of solutions that are non–dominated. That is, each member of the
non-dominated set is no worse than any of the others in the set, but also cannot
be said to be better. Any set of non–dominated solutions forms a Pareto front.

Consider Figure 12, which depicts the computation of Pareto optimality for
two imaginary fitness functions (Objective 1 and Objective 2). The longer the
search algorithm is run the better the approximation becomes to the real Pareto
front. In the figure, points S1, S2 and S3 lie on the Pareto front, while S4 and
S5 are dominated.

Pareto optimality has many advantages. Should a single solution be required,
then coefficients can be re-introduced in order to distinguish among the non–
dominated set at the current Pareto front. However, by refusing to conflate
the individual fitness functions into a single aggregate, the search may consider
solutions that may be overlooked by search guided by aggregate fitness. The
approximation of the Pareto front is also a useful analysis tool in itself. For
example, it may contain ‘knee points’, where a small change in one fitness is
accompanied by a large change in another. These knee points denote interesting
parts of the solution space that warrant closer investigation.

Fig. 12. Pareto Optimality and Pareto Fronts (taken from the survey by Harman
et al. [48])
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7.2 Co Evolution

In Co–Evolutionary Computation, two or more populations of solutions evolve
simultaneously with the fitness of each depending upon the current population
of the other. Adamopoulos et al. [2] were the first to suggest the application of
co-evolution to an SBSE problem, using it to evolve sets of mutants and sets of
test cases, where the test cases act as predators and the mutants as their prey.
Arcuri and Yao [10] use co-evolution to evolve programs and their test data from
specifications using co-evolution.

Arcuri and Yao [11] also developed a co-evolutionary model of bug fixing, in
which one population essentially seeks out patches that are able to pass test
cases, while test cases can be produced from an oracle in an attempt to find the
shortcomings of a current population of proposed patches. In this way the patch
is the prey, while the test cases, once again, act as predators. The approach
assumes the existence of a specification to act the oracle.

Many aspects of Software Engineering problems lend themselves to a co-
evolutionary model of optimisation because software systems are complex and
rich in potential populations that could be productively co-evolved (using both
competitive and co-operative co-evolution). For example: components, agents,
stakeholder behaviour models, designs, cognitive models, requirements, test cases,
use cases and management plans are all important aspects of software systems
for which optimisation is an important concern. Though all of these may not
occur in the same system, they are all the subject of change. If a suitable fitness
function be found, the SBSE can be used to co-evolve solutions.

Where two such populations are already being evolved in isolation using SBSE,
but participate in the same overall software system, it would seem a logical ‘next
step’, to seek to evolve these populations together; the fitness of one is likely to
have an impact on the fitness of another, so evolution in isolation may not be
capable of locating the best solutions.

7.3 SBSE as Decision Support

SBSE has been most widely used to find solutions to complex and demanding
software engineering problems, such as sets of test data that meet test adequacy
goals or sequences of transformations that refactor a program or modularisation
boundaries that best balance the trade off between cohesion and coupling. How-
ever, in many other situations it is not the actual solutions found that are the
most interesting nor the most important aspects of SBSE.

Rather, the value of the approach lies in the insight that is gained through the
analysis inherent in the automated search process and the way in which its results
capture properties of the structure of software engineering solutions. SBSE can
be applied to situations in which the human will decide on the solution to be
adopted, but the search process can provide insight to help guide the decision
maker.

This insight agenda, in which SBSE is used to gain insights and to provide
decision support to the software engineering decision maker has found natural
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resonance and applicability when used in the early aspects of the software engi-
neering lifecycle, where the decisions made can have far–reaching implications.

For instance, addressing the need for negotiation and mediation in require-
ments engineering decision making, Finkelstein et al. [31] explored the use of
different notions of fairness to explore the space of requirements assignments
that can be said to be fair according to multiple definitions of ‘fairness’. Saliu
and Ruhe [84] used a Pareto optimal approach to explore the balance of con-
cerns between requirements at different levels of abstraction, while Zhang et al,
showed how SBSE could be used to explore the tradeoff among the different
stakeholders in requirements assignment problems [112].

Many of the values used to define a problem for optimisation come from esti-
mates. This is particularly the case in the early stages of the software engineering
lifecycle, where the values available necessarily come from the estimates made by
decision makers. In these situations it is not optimal solutions that the decision
maker requires, so much as guidance on which of the estimates are most likely
to affect the solutions. Ren et al. [46] used this observation to define an SBSE
approach to requirements sensitivity analysis, in which the gaol is to identify
the requirements and budgets for which the managers’ estimates of requirement
cost and value have most impact. For these sensitive requirements and budgets,
more care is required. In this way SBSE has been used as a way to provide sen-
sitivity analysis, rather than necessarily providing a proposed set of requirement
assignments.

Similarly, in project planning, the manager bases his or her decisions on esti-
mates of work package duration and these estimates are notoriously unreliable.
Antoniol et al. [5] used this observation to explore the trade off between the
completion time of a software project plan and the risk over overruns due to
misestimation. This was a Pareto efficient, bi–objective approach, in which the
two objectives were the completion time and the risk (measured in terms of over-
run due to misestimation). Using their approach, Antoniol et al., demonstrated
that a decision maker could identify safe budgets for which completion times
could be more assured.

Though most of the work on decision support through SBSE has been con-
ducted at the early stages of the lifecycle, there are still opportunities for using
SBSE to gain insight at later stages in the lifecycle. For example, White et al.
[99] used a bi-objective Pareto optimal approach to explore the trade off between
power consumption and functionality, demonstrating that it was possible to find
knee points on the Pareto front for which a small loss of functionality could
result in a high degree of improved power efficiency.

As can be seen from these examples, SBSE is not merely a research programme
in which one seeks to ‘solve’ software engineering problems; it is a rich source of
insight and decision support. This is a research agenda for SBSE that Harman
has developed through a series of keynotes and invited papers, suggesting SBSE
as a source of additional insight and an approach to decision support for pre-
dictive modelling [38], cognitive aspects of program understanding [37], multiple
objective regression testing [40] and program transformation and refactoring [41].
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7.4 Augmenting with Other Non SBSE Techniques

Often it is beneficial to augment search algorithms with other techniques, such
as clustering or static analysis of source code. There is no hard rules for augmen-
tation: different non-SBSE techniques can be considered appropriate depending
on the context and challenge that are unique to the given software engineering
problem. This section illustrates how some widely used non-SBSE techniques
can help the SBSE approach.

Clustering. Clustering is a process that partitions objects into different subsets
so that objects in each group share common properties. The clustering criterion
determines which properties are used to measure the commonality. It is often
an effective way to reduce the size of the problem and, therefore, the size of the
search space: objects in the same cluster can be replaced by a single represen-
tative object from the cluster, resulting in reduced problem size. It has been
successfully applied when the human is in the loop [109].

Static Analysis. For search-based test data generation approaches, it is com-
mon that the fitness evaluation involves the program source code. Various static
analysis techniques can improve the effectiveness and the efficiency of code-
related SBSE techniques. Program slicing has been successfully used to reduce
the search space for automated test data generation [43]. Program transfor-
mation techniques have been applied so that search-based test data generation
techniques can cope with flag variables [15].

Hybridisation. While hybridising different search algorithms are certainly pos-
sible, hybridisation with non-SBSE techniques can also be beneficial. Greedy
approximation has been used to inject solutions into MOEA so that MOEA can
reach the region close to the true Pareto front much faster [107]. Some of more
sophisticated forms of hybridisation use non-SBSE techniques as part of fitness
evaluation [105].

8 Case Studies

This section introduces four case studies to provide the reader with a range of
examples of SBSE application in software engineering. The case studies are cho-
sen to represent a wide range of topics, illustrating the way in which SBSE is
highly applicable to Software Engineering problem; with just a suitable represen-
tation, fitness function and a choice of algorithm it is possible to apply SBSE to
the full spectrum of SBSE activities and problems and to obtain interesting and
potentially valuable results. The case studies cover early lifecycle activities such
as effort estimation and requirements assignment through test case generation
to regression testing, exemplifying the breadth of applications to which SBSE
has already been put.
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8.1 Case Study: Multi-objective Test Suite Minimisation

Let us consider another class of regression testing techniques that is different
from Test Case Prioritisation studied in Section 5: test suite minimisation. Pri-
oritisation techniques aim to generate an ideal test execution order; minimisation
techniques aim to reduce the size of the regression test suite when the regression
test suite of an existing software system grows to such an extent that it may no
longer be feasible to execute the entire test suite [80]. In order to reduce the size
of the test suite, any redundant test cases in the test suite need to be identified
and removed.

Regression Testing requires optimisation because of the problem posed by
large data sets. That is, organisations with good testing policies quickly accrue
large pools of test data. For example, one of the regression test suites studied
in this paper is also used for a smoke-test by IBM for one of its middleware
products and takes over 4 hours if executed in its entirety. However, a typical
smoke-test can be allocated only 1 hour maximum, forcing the engineer either
to select a set of test cases from the available pool or to prioritise the order in
which the test cases are considered.

The cost of this selection or prioritisation may not be amortised if the engineer
wants to apply the process with every iteration in order to reflect the most
recent test history or to use the whole test suite more evenly. However, without
optimisation, the engineer will simply run out of time to complete the task. As a
result, the engineer may have failed to execute the most optimal set of test cases
when time runs out, reducing fault detection capabilities and thereby harming
the effectiveness of the smoke test.

One widely accepted criterion for redundancy is defined in relation to the
coverage achieved by test cases [16, 20, 53, 74, 81]. If the test coverage achieved
by test case t1 is a subset of the test coverage achieved by test case t2, it can
be said that the execution of t1 is redundant as long as t2 is also executed. The
aim of test suite minimisation is to obtain the smallest subset of test cases that
are not redundant with respect to a set of test requirements. More formally, test
suite minimisation problem can be defined as follows [108]:

Definition 2. Test Suite Minimisation Problem

Given: A test suite of n tests, T , a set of m test goals {r1, . . . , rm}, that must
be satisfied to provide the desired ‘adequate’ testing of the program, and subsets
of T , Tis, one associated with each of the ris such that any one of the test cases
tj belonging to Ti can be used to achieve requirement ri.

Problem: Find a representative set, T ′, of test cases from T that satisfies
all ris.

The testing criterion is satisfied when every test-case requirement in {r1, . . . , rm}
is satisfied. A test-case requirement, ri, is satisfied by any test case, tj , that
belongs to Ti, a subset of T . Therefore, the representative set of test cases is the
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hitting set of Tis. Furthermore, in order to maximise the effect of minimisation,
T ′ should be the minimal hitting set of Tis. The minimal hitting-set problem
is an NP-complete problem as is the dual problem of the minimal set cover
problem [34].

The NP-hardness of the problem encouraged the use of heuristics and
meta-heuristics. The greedy approach [74] as well as other heuristics for min-
imal hitting set and set cover problem [20, 53] have been applied to test suite
minimisation but these approaches were not cost-cognisant and only dealt with a
single objective (test coverage). With the single-objective problem formulation,
the solution to the test suite minimisation problem is one subset of test cases
that maximises the test coverage with minimum redundancy.

Later, the problem was reformulated as a multi-objective optimisation prob-
lem [106]. Since the greedy algorithm does not cope with multiple objectives very
well, Multi-Objective Evolutionary Algorithms (MOEAs) have been applied to
the multi-objective formulation of the test suite minimisation [63, 106]. The
case study presents the multi-objective formulation of test suite minimisation
introduced by Yoo and Harman [106].

Representation. Test suite minimisation is at its core a set-cover problem; the
main decision is whether to include a specific test into the minimised subset or
not. Therefore, we use the binary string representation. For a test suite with n
tests, {t1, . . . , tn}, the representation is a binary string of length n: the i-th digit
is 1 if ti is to be included in the subset and 0 otherwise. Binary tournament
selection, single-point crossover and single bit-flip mutation genetic operators
were used for MOEAs.

Fitness Function. Three different objectives were considered: structural cov-
erage, fault history coverage and execution cost. Structural coverage of a given
candidate solution is simply the structural coverage achieved collectively by all
the tests that are selected by the candidate solution (i.e. their corresponding bits
are set to 1). This information is often available from the previous iteration of
regression testing. This objective is to be maximised.

Fault history coverage is included to compliment structural coverage metric
because achieving coverage may not always increase fault detection capability.
We collect all known previous faults and calculate fault coverage for each can-
didate solution by counting how many of the previous faults could have been
detected by the candidate solution. The underlying assumption is that a test
that has detected faults in the past may have a higher chance of detecting faults
in the new version. This objective is to be maximised.

The final objective is execution cost. Without considering the cost, the sim-
plest way to maximise the other two objectives is to select the entire test suite.
By trying to optimise for the cost, it is possible to obtain the trade-off between
structural/fault history coverage and the cost of achieving them. The execution
cost of each test is measured using a widely-used profiling tool called valgrind.
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Algorithm. A well known MOEA by Deb et al. [24], NSGA-II, was used for the
case study. Pareto optimality is used in the process of selecting individuals. This
leads to the problem of selecting one individual out of a non-dominated pair.
NSGA-II uses the concept of crowding distance to make this decision; crowding
distance measures how far away an individual is from the rest of the population.
NSGA-II tries to achieve a wider Pareto frontier by selecting individuals that are
far from the others. NSGA-II is based on elitism; it performs the non-dominated
sorting in each generation in order to preserve the individuals on the current
Pareto frontier into the next generation.

The widely used single-objective approximation for set cover problem is greedy
algorithm. The only way to deal with the chosen three objectives is to take the
weighted sum of each coverage metric per time, i.e.:

Results. Figure 13 shows the results for the three objective test suite minimi-
sation for a test suite of a program called space, which is taken from Software
Infrastructure Repository (SIR). The 3D plots display the solutions produced
by the weighted-sum additional greedy algorithm (depicted by + symbols con-
nected with a line), and the reference Pareto front (depicted by × symbols).
The reference Pareto front contains all non-dominated solutions from the com-
bined results of weighted-sum greedy approach and NSGA-II approach. While
the weighted-sum greedy approach produces solutions that are not dominated,
it can be seen that NSGA-II produces a much richer set of solutions that explore
wider area of the trade-off surface.

Fig. 13. A plot of 3-dimensional Pareto-front from multi-objective test suite minimisa-
tion for program space from European Space Agency, taken from Yoo and Harman [106]

8.2 Case Study: Requirements Analysis

Selecting a set of software requirements for the release of the next version of a
software system is a demanding decision procedure. The problem of choosing the
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optimal set of requirements to include in the next release of a software system
has become known as the Next Release Problem (NRP) [13, 113] and the activity
of planning for requirement inclusion and exclusion has become known as release
planning [82, 84].

The NRP deals with the selecting a subset of requirements based on their
desirability (e.g. the expected revenue) while subject to constraints such as a
limited budget [13]. The original formulation of NRP by Bagnall et al. [13]
considered maximising the customer satisfaction (by inclusion of their demanded
requirements in the next version) while not exceeding the company’s budget.

More formally, let C = {c1, . . . , cm} be the set of m customers whose re-
quirements are to be considered for the next release. The set of n possible
software requirements is denoted by R = {r1, . . . , rn}. It is assumed that all
requirements are independent, i.e. no requirement depends on others2. Finally,
let cost = [cost1, . . . , costn] be the cost vector for the requirements in R: costi
is the associate cost to fulfil the requirement ri.

We also assume that each customer has a degree of importance for the com-
pany. The set of relative weights associated with each customer cj(1 ≤ j ≤ m) is
denoted by W = {w1, . . . , wm}, where wj ∈ [0, 1] and

∑m
j=1 wj = 1. Finally, it is

assumed that all requirements are not equally important for a given customer.
The level of satisfaction for a given customer depends on the requirements that
are satisfied in the next release of the software. Each customer cj(1 ≤ j ≤ m)
assigns a value to requirement ri(1 ≤ i ≤ n) denoted by value(ri, cj) where
value(ri, cj) > 0 if customer cj gets the requirement ri and 0 otherwise.

Based on above, the overall score, or importance of a given requirement ri(1 ≤
i ≤ n), can be calculated as scorei =

∑m
j=1 wj · value(ri, cj). The score of a given

requirement is represented as its overall value to the organisation.
The aim of the Multi-Objective NRP (MONRP) is to investigate the trade-off

between the score and cost of requirements. Let score = [score1, . . . , scoren] be
the score vector calculated as above. Let x = [x1, . . . , xn] ∈ {0, 1}n a solution
vector, i.e. a binary string identifying a subset of R. Then MONRP is defined
as follows:

Definition 3. Given: The cost vector, cost = [cost1, . . . , costn] and the score
vector (calculated from the customer weights and customer-assigned value of re-
quirements) score = [score1, . . . , scoren].

Problem: Maximise
∑n

i=1 scorei · xi while minimising
∑n

i=1 costi · xi.

Representation. Similar to the test suite minimisation problem in Section 8.1,
the candidate solution for NRP should denote whether each requirement will
be selected, i.e. implemented in the next release. For a set of n requirements,
{r1, . . . , rn}, a candidate solution can be represented with a binary string of
length n: the i-th digit is 1 if ri is to be included in the subset and 0 otherwise.
2 Bagnall et al. [13] describe a method to remove dependences in this context by

computing the transitive closure of the dependency graph and regarding each re-
quirement and all its prerequisites as a new single requirement.
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Fitness Function. The cost and profit function can be directly used as fitness
functions for each objectives for MOEAs: cost should be minimised while profit
should be maximised.

Algorithm. The case study compares three different evolutionary algorithms
to random search: NSGA-II, Pareto-GA and a single-objective GA. Pareto-GA
is a variation of a generic single-objective GA that uses Pareto-optimality only
for the selection process. The single-objective GA is used to deal with the multi-
objective formulation of NRP by adopting different sets of weights with the
weighted-sum approach. When using weighted-sum approach for two objective
functions, f1 and f2, the overall fitness F of a candidate solution x is calculated
as follows:

F (x) = w · f1(x) + (1− w) · f2(x)

Depending on the value of the weight, w, the optimisation will target different
regions on the Pareto front. The case study considered 9 different weight values
ranging from 0.1 to 0.9 with step size of 0.1 to achieve wider Pareto fronts.

Results. Figure 14 shows results for an artificial instance of NRP with 40 re-
quirements and 15 customers. Random search produces normally distributed
solutions, whereas the weighted-sum, single-objective GA tends to produce so-
lutions at the extremes of the Pareto front. Pareto-GA does produce some so-
lutions that dominate most of the randomly generated solutions, but it is clear
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that the Pareto front is dominantly produced by NSGA-II. Solutions generated
by NSGA-II form the widest Pareto front that represents the trade-off between
the cost and the expected profit (score).

8.3 Case Study: Structural Test Data Generation

Since the costs of manual software testing are extremely high, the software en-
gineering community has devoted a lot of attention to researching methods of
automating the process. The problem of generating structural test data, i.e. test
data that attempts to execute all of a program’s paths, program statements or
true and false decisions, is one area that has attracted a lot of interest, particu-
larly with respect to branch coverage; motivated by the prevalence of its variants
in software testing standards.

To motivate the use of Search Based Software Engineering in this context, the
program of Figure 15 will be studied, with the aim of generating a test suite that
covers each of its individual branches. It is a program for evaluating a Chemical
Abstracts Service (CAS) registry number assigned to chemicals. Each number
is a string of digits separated by hyphens, with the final digit serving as a check
digit. The routine takes a pointer to the first character of the string, processes
it, and returns zero if the number is valid. An error code is returned in the case
the number is not valid.

Definition. Let I = (i1, i2, ...ilen) be a vector of the input variables of a program
under test, p. The domain Din of the input variable in is the set of all values that
in can hold, 1 ≤ n ≤ len; len = |I|. The input domain of p is a cross product of
the domains of each of the individual input variables: D = Di1 ×Di2 ...×Dilen

.
An input i to the function under test is a specific element of the function’s input
domain, that is, i ∈ D.

Given a target structure t in p, the problem is to find an input vector I ∈ D
such that t is executed.

Representation. Defining a representation for structural test data generation
simply involves a method of encoding the input vector to a program. This is
straightforward for program units such as functions involving primitive types
such as integers, reals or characters, as the input vector can be manipulated
directly by the search algorithm or trivially encoded into a binary format. How-
ever, programs involving arrays or dynamic data structures require more careful
handling. In order to avoid a multi-length encoding, the size and shape of the
data structure may need to be fixed. However research has been undertaken to
remove this restriction [60]. For the CAS check routine, the representation is a
sequence of integer values in the range 0-255, fixed to a length of 15. In this
case, the whole range of the char type is used. For primitive types with large
domains, however, the tester may wish to restrict the domains to sensible limits
or a legal range of values.
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(1) int cas_check(char* cas) {

(2) int count = 0, checksum = 0, checkdigit = 0, pos;

(3)
(4) for (pos=strlen(cas)-1; pos >= 0; pos--) {

(5) int digit = cas[pos] - ’0’;

(6)
(7) if (digit >= 0 && digit <= 9) {

(8) if (count == 0)

(9) checkdigit = digit;

(10) if (count > 0)

(11) checksum += count * digit;

(12)
(13) count ++;

(14) }

(15) }

(16)
(17) if (count >= 4)

(18) if (count <= 10)

(19) if (checksum % 10 == checkdigit)

(20) return 0;

(21) else return 1;

(22) else return 2;

(23) else return 3;

(24) }

Fig. 15. C routine for validating CAS registry numbers of chemical substances (e.g.
‘7732-18-5’, the CAS number of water), taken from McMinn [66]

Fitness Function. In this case study, each branch is taken as the focus of
a separate test data search, using the fitness function defined by Wegener et
al. [97]. Fitness is computed according to the function fit(t, i)→ R, that takes a
structural target t and individual input i, and returns a real number that scores
how ‘close’ the input was to executing the required branch. This assessment
is based on a) the path taken by the input, and b) the values of variables in
predicates at critical points along the path.

The path taken by the input is assessed and used to derive the value of a met-
ric known as the ‘approach level’. The approach level is essentially a count of the
target’s control dependencies that were not executed by the path. For structured
programs, the approach level reflects the number of unpenetrated levels of nest-
ing levels surrounding the target. Suppose, for example, a string is required for the
execution of the true branch from line 19, i.e. where the string corresponds to a
valid registrynumber. Adiagramcharting the computation of fitness canbe seen in
Figure 16. The approach level will be 2 if no invalid characters are found in the
string, but there are too few digits in the string to form a valid CAS number, and
the false branch is taken at line 17. If instead the string has toomany digits, the true
branch is taken at node 17, but the target is then missed because the false branch
was taken at node 18, and the approach level is 1. When the checksum calculation
is reached at line 19, the approach level is zero.
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if (count >= 4)

if (count <= 10)

if (checksum % 10 
== checkdigit)

TARGET

TRUE

approach level = 2
branch distance = 4 - count + K

FALSE

approach level = 1
branch distance = count - 10 + K

        approach level = 0
branch distance =|(checksum % 10) - checkdigit| + K

FALSE TRUE

FALSE TRUE

Fig. 16. Fitness function computation for execution of the true branch from line 19 of
the CAS registry number check program of Figure 15, taken from McMinn [66]

When execution of a test case diverges from the target branch, the second
component, the branch distance, expresses how close an input came to satisfying
the condition of the predicate at which control flow for the test case went ‘wrong’;
that is, how close the input was to descending to the next approach level. For
example, suppose execution takes the false branch at node 17 in Figure 15, but
the true branch needs to be executed. Here, the branch distance is computed
using the formula 4−count+K, where K is a constant added when the undesired,
alternate branch is taken. The closer count is being greater than 4, the ‘closer’
the desired true branch is to being taken. A different branch distance formula
is applied depending on the type of relational predicate. In the case of y >= x,
and the >= relational operator, the formula is x− y +K. For a full list of branch
distance formulae for different relational predicate types, see Tracey et al. [93].

The complete fitness value is computed by normalising the branch distance
and adding it to the approach level:

fit(t, i) = approach level(t, i) + normalise(branch distance(t, i))

Since the maximum branch distance is generally not known, the standard ap-
proach to normalisation cannot be applied [7]; instead the following formula is
used:

normalise(d) = 1− 1.001−d
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Algorithm. A popular Genetic Algorithm for Search Based Structural Test
Data Generation is that of Wegener et al. [97], which we will refer to as the
‘Wegener GA’ hereinafter. The GA uses a population size of 300 individuals,
divided across 6 subpopulations, initially made up of 50 individuals each. It uses
a linear ranking method [100] as part of the selection phase. Linear ranking sorts
the population into fitness order as assigns new ranked fitness values such that
the best individual is awarded a ranked fitness of Z, the median individual a
value of 1 and the worst individual a value of Z − 2. The Wegener GA uses a
value of Z = 1.7. Stochastic universal sampling [14] is then used as a selection
method, whereby individuals are selected with a probability proportionate to its
ranked fitness value. The selection method therefore favours fitter individuals,
but the use of ranked fitness values rather than direct values helps prevent
super-fit individuals from being selected as many times as they would have been
normally, which may go on to dominate the next generation and cause the search
to converge prematurely.

The Wegener GA uses a special type of mutation that is well-suited for test
data generation problems involving real values. The mutation operator is de-
rived from the Breeder GA [71]. Mutation is applied with a probability pm of
1/len, where len is the length of the input vector. The mutation operator ap-
plies a different mutation step size, 10−pop, depending on the subpopulation
pop, 1 ≤ pop ≤ 6. A mutation range r is defined for each input parameter by the
product of pop and the domain size of the parameter. The ‘mutated’ value of an
input parameter can thus be computed as v′ = v± r · δ. Addition or subtraction
is chosen with an equal probability. The value of δ is defined to be

∑15
y=0 αy ·2−y,

where each αy is 1 with a probability of 1/16 else 0. If a mutated value is outside
the allowed bounds of a variable, its value is set to either the minimum or max-
imum value for that variable. Discrete recombination [71] is used as a crossover
operator. Discrete recombination is similar to uniform crossover. However with
uniform crossover, genes (input values) are guaranteed to appear in one of the
offspring. With discrete recombination offspring individuals receive ‘genes’ (i.e.
input variable values) from either parent with an equal probability. Thus a par-
ticular gene may be copied into both children, one of the children or neither
child.

The Wegener GA, uses an elitist reinsertion strategy, with the top 10% of
a current generation retained and used in the next, with the remaining 90%
discarded and replaced by the best offspring.

Finally the Wegener GA incorporates competition and migration between each
of its subpopulations. A progress value, prog, is computed for each population
at the end of a generation. This value is obtained using the formula 0.9 · prog +
0.1 · rank. The average fitness rank for a population is obtained by linearly
ranking its individuals as well as the populations amongst themselves (again
with Z = 1.7). After every 4 generations, the populations are ranked according
to their progress value and a new slice of the overall population is computed
for each, with weaker subpopulations transferring individuals to stronger ones.
However, no subpopulation can lose its last 5 individuals, preventing it from
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dying out. Finally, a general migration of individuals takes place after every 20th

generation, where subpopulations randomly exchange 10% of their individuals
with one another.

Results. Results with the CAS check example can be found in Table 1. The
search for test data was repeated 50 times with both the GA outlined in the
last section and random search. Random search simply constructs an input by
constructing a string where each of the 15 characters is selected at random. Both
algorithms were given a budget of 100,000 inputs to generate and execute the
program with, in order to find test data for a particular branch. Each branch
is denoted as LT|F, where L is the line number of the branch, while T and F
denote which of the true or false branches is being referred to.

The performance of the GA is compared with random search. In the table,
the average number of test data evaluations (fitness function evaluations for the
GA) is reported, unless the branch was not covered over the 50 runs with a
100% success rate, in which case the success rate is reported instead. As can be
seen from the table, random search is very effective, covering all the branches
of the example except 1 (branch 18F). The GA, on the other hand, achieves
100% coverage. Statistical tests were also performed, as outlined in Section 6.2.
For the majority of branches, there was no statistical difference in performance
between the two searches. However, for 18F and 19T, the GA was significantly

Table 1. Results with the CAS registry number checking program of Figure 15. The
average number of test data evaluations over 50 runs is reported for the branch and
algorithm if the success rate of finding test data to execute the branch was 100%,
else the success rate is reported instead. A figure appears in bold for the GA if its
performance was significantly better than random search.

Branch Search
Random Genetic Algorithm

4T 1 1
4F 1 1
7T 2 2
7F 1 1
8T 2 2
8F 8 8
10T 8 8
10F 2 2
17T 465 329
17F 1 1
18T 465 329
18F 0% 3,230
19T 4,270 802
19F 519 363
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better. Random search never covered 18F, and requires 5 times as much effort
(test data evaluations) in order to cover 19T.

8.4 Case Study: Cost Estimation for Project Planning

Software effort estimation is an important activity performed in the planning
phase of a software project. Its importance can be easily realised by the fact that
the effort estimation will drive the planning of basically all remaining activities in
the software development. Given such significance, many approaches have been
proposed in the attempt to find effective techniques for software estimation.
Nevertheless, as a result of the high complexity of this activity, the search for
efficient and effective estimation models is still underway. An interesting example
on the application of a search based approach - genetic programming, in this case
- to tackle the software estimation problem can be found in [25].

In this application, the software estimation problem is modeled as a search
problem, considering as search space the set of cost predictive functions which
will have their predictive capability evaluated based on some particular measure.
A search algorithm would then seek functions which maximise this evaluation
measure.

Therefore, the Software Cost Estimation problem can be defined, as in [25],
as follows:

Definition 4. Software Cost Estimation Problem

Given: Well-formed equations, which can be used to produce cost predictions.

Problem: Find the equation with best predictive capability, calculated by mea-
sures such as mean squared error or correlation coefficient.

Representation. For this problem, solutions are represented as trees, express-
ing well-formed equations. In each tree, terminal nodes represent constants or
variables, and each non-terminal node stores a simple function, from a pre-
determined set of available functions that can be used in the composition of
an equation. The available functions proposed in the original paper were: plus,
minus, multiplication, division, square, square root, natural logarithm and ex-
ponential.

Fitness Function. As pointed out by Dolado [25], classical measures used to
evaluate the fitting of equations to some data can be use as fitness functions
for this software estimation problem. In the paper, the following measures were
considered: mean squared error, which quantifies the error of the considered
function being used as estimator, and the correlation coefficient, which measures
the variation between the predicted and the actual values.

Algorithm. Genetic programming (GP), as a variation of the well-known ge-
netic algorithm (GA), can be used to manipulate complex individuals, expressed
by data structures representing trees, source codes, design projects, or any other
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structure. Similarly to GA, GP performs genetic operations such as selection,
crossover and mutation to evolve its populations to seek for more adapted solu-
tions. Dolado [25] employs genetic programming to find a function for software
cost estimation.

In that application, as previously described, the candidate functions are de-
scribed by trees, representing well-formed equations. Given that representation,
the usual evolutionary process is performed. Initially, an initial population P ,
with N individuals (equations) is generated. While a terminate condition in not
met, new populations are produced iteratively. First, the members of the cur-
rent population are evaluated using the fitness function. Next, individuals are
selected as input to the genetic operators, including crossover and mutation,
which create new individuals that will form the new population.

Results. The proposed search based approach was evaluated over twelve datasets
and compared to standard regression analysis. To evaluate the candidate func-
tions, the mean magnitude of relative error (MMRE) and the prediction at level
l (PRED(l)) were used. As reported, the proposed Genetic Programming strat-
egy performed better, considering the PRED(0.25) measure, in eleven out of the
twelve cases, but with a slight worse value of the MMRE in some cases.

Even though, from the predictive point of view, both methods did not show
considerably satisfactory results, authors pointed out that since GP allows the
exploration of a large space of candidate cost functions, this method can provide
confidence in the limits of prediction. Additionally, results showed that linear
models, regardless of the approach employed, obtained the best predictions in
general.

Other authors have also reported interesting applications of search based ap-
proaches in software estimation [18, 26, 58].

9 A Taxonomy of Optimisation Problems and Their
Mapping to Software Engineering

The Search Based Software Engineering (SBSE) research field has grown rapidly.
From its formal definition to this date, a huge number of software engineering
problems have been mathematically formulated as optimisation problems and
tackled with a considerable variety of search techniques. This growth has taken
place in several directions, but more concentrated in a few particular areas. As
this natural development occurs, and the number of SBSE problems increases,
also grows the necessity of strategies that would help structuring the field. This
section introduces a taxonomy, of Search Based Software Engineering problems
and instantiates it with the four examples described in the case studies of this
the paper.

Our goal in introducing the taxonomy is four fold:

i. to allow researchers to understand the relationship among problems and
hypothesise about these relationships.
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ii. to highlight to future research directions by identifying unexplored opportu-
nities.

iii. to allow the development of automated search tools to enable effective and
efficient search of SBSE problems in any particular repository.

iv. to facilitate re-use, especially regarding approximation algorithms and the-
oretical bounds.

The proposed taxonomy of Search Based Software Engineering problems will
involve Perspectives, Dimensions and Characteristics.

The two Perspectives, SOFTWARE ENGINEERING and OPTIMISATION,
will reflect the different points of view under which a particular SBSE problem
can be analysed. The Dimensions, as in other taxonomies, will represent, for
each Perspective, the SBSE problem features. Finally, for each Dimension, the
Characteristics will correspond to the possible feature values under which a par-
ticular SBSE problem can be identified. For all Dimensions, the Characteristics
are collectively exhaustive. However, only the Dimensions “Objective Space Di-
mensionality”, “Instance Space Characterisation”, “Constrained” and “Problem
Linearity” are mutually exclusive, for all others, more than one Characteristic
may be selected for a particular SBSE problem.

In Tables 2 and 3, the proposed taxonomy of Search Based Software Engi-
neering problems is presented.

For the SOFTWARE ENGINEERING Perspective (Table 2), four Dimen-
sions are identified: “Software Development Stage(s)”, “Software Development
Model(s)”, “Main Subject Descriptor(s)” and “Main Implicit Subject
Descriptor(s)”.

1. The “Software Development Stage(s)” positions the problem under one,
or more, stages in the software engineering process. The Characteristics avail-
able for this Dimension are representative of the standard software develop-
ment process.

2. Next, the “Software Development Model(s)” identifies a particular set
of development models in which the problem occurs.

3. The Dimension named “Main Subject Descriptor(s)” describes the soft-
ware engineering subject addressed by the problem. The Characteristics
present in this Dimension were obtained from the 1998 version of the ACM
Computing Classification System [1]. More specifically, the possible values
for this feature are those defined as a “Subject Descriptor” under the level
D.2 (SOFTWARE ENGINEERING), in the third level of the classification
structure, with values, and corresponding subjects, ranging from D.2.0 (Gen-
eral) to D.2.13 (Reusable Software) and D.2.m (Miscellaneous).

4. Finally, the “Main Implicit Subject Descriptor(s)” Dimension details
the previous subject descriptor(s), by allowing the selection of the more spe-
cific subject descriptors present in the fourth level of the ACM Computing
Classification System [1], once again under the level D.2 (SOFTWARE EN-
GINEERING).
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Table 2. Taxonomy of Search Based Software Engineering Problems - SOFTWARE
ENGINEERING Perspective

A. SOFTWARE ENGINEERING Perspective

1. Software Development Stage(s)
(a) Software Planning
(b) Requirement Engineering
(c) Software Design
(d) Implementation/Coding
(e) Integration
(f) Testing/Validation
(g) Deployment
(h) Maintenance

2. Software Development Model(s)
(a) Waterfall Model
(b) Spiral Model
(c) Iterative and Incremental Development
(d) Agile Development

3. Main Subject Descriptor(s)
(a) Subject Descriptors under SOFTWARE ENGINEERING (D.2), in the

1998 ACM Computing Classification System.
4. Main Implicit Subject Descriptor(s)

(a) Implicit Subject Descriptors under SOFTWARE ENGINEERING
(D.2), in the 1998 ACM Computing Classification System.

For the OPTIMISATION Perspective, other six Dimensions are defined.

1. The “Objective Space Dimensionality” is descriptive of the number of
objective functions present in the formulation.

2. “The Instance Space Characterisation” Dimension evaluates the prob-
lem variables as continuous or discrete.

3. Next, “Constrained” accounts for the presence of restrictions.
4. “Problem Linearity” indicates, for both objective and restriction func-

tions, their linearity.
5. The following Dimension, “Base NPO Problem Type(s)”, attempts to

extract the problem category, using the classification proposed by Garey and
Johnson [34] and employed in the Compendium of NP Optimisation Prob-
lems [22]. The general types present in the Compendium are: Graph The-
ory, Network Design, Sets and Partitions, Storage and Retrieval, Sequencing
and Scheduling, Mathematical Programming, Algebra and Number Theory,
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Games and Puzzles, Logic, Automata and Language Theory, Program Op-
timisation and Miscellaneous.

6. Finally, “Base NPO Problem” tries to relate the considered SBSE prob-
lem with a generally defined NP optimisation problem, in a way one could
employ the known results, including approximation algorithms and theo-
retical bounds, previously available in the literature regarding that general
problem. For that purpose, once again, the “Compendium of NP Optimisa-
tion Problems” will be used.

At this point, it is worth mentioning that the “Compendium of NP Optimisation
Problems” presents a considerable variety of optimisation problems in the most
different categories, however, it lacks a formal definition of a basic optimisation
problem, under which several known problems could be classified. To tackle this
absence, the definition of a BASIC OPTIMISATION PROBLEM, which
would fall under the MISCELLANEOUS type, defined with the same basic
ingredients employed in the Compendium, is presented below.

BASIC OPTIMISATION PROBLEM

Instance: Finite or infinite set U , for each u ∈ U a fitness value f(u) ∈ Z+.
Solution: An element, u′ ∈ U .
Measure: Fitness value of u, i.e., f(u).

9.1 Classification Examples

Inorder to illustrate the representationofSearchBasedSoftwareEngineeringprob-
lems under the proposed taxonomy, it is presented, next, the classification of SBSE
problems discussed in section 8: The Regression Test Case Selection problem (Ta-
ble 4), the Next Release problem (Table 5), the Structural Test Case Generation
problem (Table 6) and the Software Cost Estimation problem (Table 7).

The Multi-Objective Regression Test Case Selection problem [106] extends pre-
viouslypublishedmono-objective formulations.Thepaper discusses twovariations,
one which considers two objectives (code coverage and execution time), used here,
and the other covering three objectives (code coverage, execution time and fault de-
tection). Consider, for this problem, the special case where a set of test cases which
covers 100% of the code is sought. In addition, consider that all test cases have the
same execution time. In that case, the Test Case Selection Problem problem can
be seen as a application of the MINIMUM SET COVER problem.

MINIMUM SET COVER

Instance: Collection C of subsets of a finite set S.
Solution: A set cover for S, i.e., a subset C′ ⊆ C such that every element in S

belongs to at least one member of C′.
Measure: Cardinality of the set cover, i.e., |C′|.

S will represent the set of all statements in the source code. Collection C will
contain the test cases that can be selected. Each test case covers a number of
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Table 3. Taxonomy of Search Based Software Engineering Problems -
OPTIMISATION Perspective

A. OPTIMISATION Perspective

1. Objective Space Dimensionality
(a) Mono-objective
(b) Multi-objective

2. Instance Space Characterisation
(a) Discrete
(b) Continuous

3. Constrained
(a) Yes
(b) No

4. Problem Linearity
(a) Linear
(b) Nonlinear

5. Base NPO Problem Type(s)
(a) Problem Categories as defined in the Compendium of NP Optimisation

Problems
6. Base NPO Problem(s)

(a) Problems as defined in the Compendium of NP Optimisation Problems

statements in the source code, which means that each test case can be represen-
tative of a subset of S. Thus, the solutions are set covers for S, that is, a subset
of test cases, C′ ⊆ C, such that all statements in S are covered, meaning that
each statement is covered by, at least, one of the members of C′. The solution
sought is the one with the lowest cardinality, which will have lowest execution
time, since all test cases have the same execution time.

For the other dimensions in the OPTIMISATION perspective (Table 4), the
Multi-Objective Test Case Selection Problem can be classified as Multi-objective,
having a Discrete instance space, Unconstrained and Linear. Over the SOFT-
WARE ENGINEERING perspective, the problem falls under the Testing/
Validation development stage and is not particular to any specific development
model. Furthermore, it has as main subject descriptor the choice “D.2.5 Testing
and Debugging”, and “Testing Tools” as implicit subject descriptor.

The Next Release Problem (NRP), in its original formulation as a constrained
mono-objective optimisation problem [13], involves determining a set of cus-
tomers which will have their selected requirements delivered in the next software
release. This selection prioritises customers with higher importance to the com-
pany (maximise

∑n
i=1 wi), and must respect a pre-determined budget (subject

to
∑n

i=1 ci ≤ B).
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Table 4. Typification of the Regression Test Case Selection under the Proposed
Taxonomy

A. SOFTWARE ENGINEERING Perspective
1. Software Development Stage(s)

Testing/Validation
2. Software Development Model(s)

Waterfall Model
Spiral Model
Iterative and Incremental Development
Agile Development

3. Main Subject Descriptor(s)
D.2.5 Testing and Debugging

4. Main Implicit Subject Descriptor(s)
Testing Tools

B. OPTIMISATION Perspective
1. Objective Space Dimensionality

Multi-objective
2. Instance Space Characterisation

Discrete
3. Constrained

No
4. Problem Linearity

Linear
5. Base NPO Problem Type(s)

SETS AND PARTITIONS
6. Base NPO Problem(s)

MINIMUM SET COVER

In typifying this problem under the proposed taxonomy, it is easy to see that,
regarding the SOFTWARE ENGINEERING perspective (Table 5), the NRP is
positioned under the Requirement Engineering software development stage, oc-
curring specially in the Iterative and Incremental and Agile Development Models.
In addition, the Next Release Problem addresses the subject “D.2.1 Require-
ments/Specifications”, present in the ACM Computing Classification System.
Under the OPTIMISATION perspective, as stated above, it is a mono-objective
problem, since it aims to solely maximise the importance of the customers which
will have their requirements delivered. It has a discrete instance space and should
be classified as a constrained problem, since considers a pre-defined budged as
restriction. Since both objective and restriction functions are linear, the overall
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Table 5. Typification of the Next Release Problem under the Proposed Taxonomy

A. SOFTWARE ENGINEERING Perspective
1. Software Development Stage(s)

Requirement Engineering
2. Software Development Model(s)

Iterative and Incremental Development
Agile Development

3. Main Subject Descriptor(s)
D.2.1 Requirements/Specification

4. Main Implicit Subject Descriptor(s)

B. OPTIMISATION Perspective
1. Objective Space Dimensionality

Mono-objective
2. Instance Space Characterisation

Discrete
3. Constrained

Yes
4. Problem Linearity

Linear
5. Base NPO Problem Type(s)

MATHEMATICAL PROGRAMMING
6. Base NPO Problem(s)

MAXIMUM KNAPSACK

problem can be considered linear as well. Finally, it involves the solution of a
MATHEMATICAL PROGRAMMING problem, as defined in the “Compendium
of NP Optimisation Problems”. In fact, the Next Release Problem can be seen
as a specialisation of the MAXIMUM KNAPSACK Problem, as discussed next.

Consider the mathematical definition of the MAXIMUM KNAPSACK
problem, as presented in [22]:

MAXIMUM KNAPSACK

Instance: Finite set U , for each u ∈ U a size s(u) ∈ Z+ and a value v(u) ∈ Z+,
a positive integer B ∈ Z+.

Solution: A subset U ′ ⊆ U such that
∑

u∈U ′ s(u) ≤ B.
Measure: Total weight of the chosen elements, i.e.,

∑
u∈U ′ v(u).

As defined in Instance, the set U can represent the customers which may have
their requirements delivered in the next software release. Each customer, u ∈ U ,
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has an importance, represented here by v(u), which expresses the function wi in
the NRP definition. The goal is to maximise the sum of the importance of the
selected customers. However, only solutions respecting the problem restriction
can be considered. In the definition of the MAXIMUM KNAPSACK problem,
each element u ∈ U has a size, s(u) ∈ Z+, which will limit the amount of
elements that can be selected. In the Next Release problem, the function s(u) will
represent the overall cost of implementing all requirements desired by customer
u, that is, s(u) = ci.

For the Structural Test Data Generation problem, the classification under the
proposed taxonomy, as shown in Table 6, considering the SOFTWARE ENGI-
NEERING perspective, would place this problem under the Testing/Validation

Table 6. Typification of the Structural Test Data Generation Problem under the
Proposed Taxonomy

A. SOFTWARE ENGINEERING Perspective
1. Software Development Stage(s)

Testing/Validation
2. Software Development Model(s)

Waterfall Model
Spiral Model
Iterative and Incremental Development
Agile Development

3. Main Subject Descriptor(s)
D.2.5 Testing and Debugging

4. Main Implicit Subject Descriptor(s)
Testing Tools

B. OPTIMISATION Perspective
1. Objective Space Dimensionality

Mono-objective
2. Instance Space Characterisation

Continuous
3. Constrained

No
4. Problem Linearity

Linear
5. Base NPO Problem Type(s)

MISCELLANEOUS
6. Base NPO Problem(s)

BASIC OPTIMISATION PROBLEM
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development stage. Regarding development models, this test data generation
issue arises in all models covered by the taxonomy. “D.2.5 Testing and Debug-
ging” would be the main subject descriptor of such problem and “Testing Tools”
would work as implicit descriptor.

Considering now the OPTIMISATION perspective, this problem could be
characterised as mono-objective, since it composes two measures (approach level
and branch distance) in a single evaluation function. Additionally, it works with
a usually continuous instance space formed of input vectors. It is also an un-
constrained and linear problem. Finally, the Structural Test Data Generation
problem can be seen as a simple instantiation of the BASIC OPTIMISATION
PROBLEM described earlier, where, given a target structure t in p, the problem
involves simply searching for an input vector i ∈ D, representing elements in
the instance space U , with minimum value given by evaluation function fit(t, i),
representing f(u) in the description of the BASIC OPTIMISATION PROBLEM.

Finally, the Software Cost Estimation problem is associated with the Software
Planning development phase and all development models (Table 7). The most
adequate mains and implicit subject descriptors would be “D.2.9 Management”
and “Cost Estimation”, respectively.

Similarly to the Test Data Generation problem, this problem is an instantia-
tion of the BASIC OPTIMISATION PROBLEM. In this case, the problem seeks
solutions represented by well-formed functions, forming the instance set U , look-
ing for a solution with minimum value given by function f(u), associated with
measures such as minimum squared error or correlation coefficient. Additionally,
the problem should be classified as mono-objective, continuous, unconstrained
and nonlinear.

10 Next Steps: Getting Started

This section is primarily aimed at those who have not used SBSE before, but
who have a software engineering application in mind for which they wish to ap-
ply SBSE. Throughout this section the emphasis is unashamedly on obtaining
the first set of results as quickly as possible; SBSE is attractive partly because it
has a shallow learning curve that enables beginner to quickly become productive.
There is an excitement that comes with the way in which one can quickly as-
semble a system that suggests potentially well optimised solutions to a problem
that the experimenter had not previously considered.

By minimising the time from initial conception to first results, we seek to
maximise this excitement. Of course subsequent additional work and analysis
will be required to convert these initial findings into a sufficiently thorough
empirical study for publication. The goal of the section is to take the reader
from having no previous work on SBSE to the point of being ready to submit
their first paper on SBSE in seven simple steps. The first four of these steps are
sufficient to gain the first results (and hopefully also the excitement that comes
with the surprises and insights that many authors have experienced through
using SBSE for the first time).
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Table 7. Typification of the Software Cost Estimation Problem under the Proposed
Taxonomy

A. SOFTWARE ENGINEERING Perspective
1. Software Development Stage(s)

Software Planning
2. Software Development Model(s)

Waterfall Model
Spiral Model
Iterative and Incremental Development
Agile Development

3. Main Subject Descriptor(s)
D.2.9 Management

4. Main Implicit Subject Descriptor(s)
Cost Estimation

B. OPTIMISATION Perspective
1. Objective Space Dimensionality

Mono-objective
2. Instance Space Characterisation

Continuous
3. Constrained

No
4. Problem Linearity

Nonlinear
5. Base NPO Problem Type(s)

MISCELLANEOUS
6. Base NPO Problem(s)

BASIC OPTIMISATION PROBLEM

Step 1: The first step is to choose a representation of the problem and a fitness
function (see Section 3). The representation is important because it must be one
that can be readily understood; after all, you may find that you are examining
a great many candidate solutions that your algorithms will produce.

One should, of course, seek a representation that is suitable for optimisation.
A great deal has been written on this topic. For the first exploration of a new
SBSE application the primary concern is to ensure that a small change to your
representation represents a small change to the real world problem that your
representation denotes. This means that a small change in the representation
(which will be reflected by a move in a hill climb or a mutation in a genetic
algorithm) will cause the search to move from one solution to a ‘near neighbour’
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solution in the solution space. There are many other considerations when it
comes to representation, but for a first approach, this should be sufficient to
contend with.

Perhaps for the first experiments, the most important thing is to get some
results. These can always be treated as a baseline, against which you measure
the progress of subsequent improvements, so ‘getting it a bit wrong’ with the
initial choices need not be a wasted effort; it may provide a way to assess the
improvements brought to the problem by subsequent development.

Step 2: Once there is a way to represent candidate solutions, the next step is to
chose a fitness function. There may be many candidate fitness functions. Choose
the simplest to understand and the easiest to implement to start off with. Once
again, this may provide a baseline against which to judge subsequent choices.
Ideally, the fitness function should also be one that your implementation will
be able to compute inexpensively, since there will be a need for many fitness
evaluations, regardless of the search technique adopted.

Step 3: In order to ensure that all is working, implement a simple random
search. That is, use a random number generator to construct an entirely arbitrary
set of candidate solutions by sampling over the representation at random. This
allows you to check that the fitness function is working correctly and that it
can be computed efficiently. One can also examine the spread of results and
see whether any of the randomly found solutions is any good at solving the
problem. Despite its simplicity, random search is simple and fast and many
researchers have found that it is capable of finding useful solutions for some
Software Engineering applications (for instance, in testing, where it has been
very widely studied [55, 79]).

Step 4: Having conducted steps 1-3 we are in a position to conduct the first
application of a search based technique. It is best to start with hill climbing. This
algorithm is exceptionally easy to implement (as can be seen from Section 4). It
has the advantage that is is fast and conceptually easy to understand. It can also
be used to understand the structure of the search space. For instance, one can
collect a set of results from multiple restart hill climbing and examine the peaks
reached. If all peaks found are identical then hill climbing may have located a
large ‘basin of attraction’ in the search space. If all peaks are of very different
heights (that is, they have different fitness values) then the search space is likely
to be multimodal. If many hill climbs make no progress then the search space
contains many plateaux (which will be a problem for almost any search based
optimisation technique).

It is possible that simply using hill climbing, the results will be acceptable.
If this is the first time that SBSE has been applied to the Software Engineering
problem in hand, then the results may already be at the level at which publi-
cation would be possible. If the peaks are all acceptable but different then the
approach already solves the problem well and can give many diverse solutions.

This was found to be the case in several software engineering applications. For
instance, in software modularisation [68], the hill climbing approach produced
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exceptionally good results for determining the module boundaries of source code
that remained unsurpassed by more sophisticated algorithms from 1998 [64] until
2011 [77]. Furthermore, the multi objective genetic algorithm that found better
solutions only managed to do so at a cost of two orders of magnitude more fitness
evaluations [77].

Korel [59] was one of the first authors to apply a search based optimisation
approach to a software engineering problem. He used a hill climbing approach
for software test input generation. Though this problem has been very widely
studied, this hill climbing approach still proved to be an attractive approach
17 years later, when it was studied and (favourably) compared empirically and
theoretically to a more sophisticated genetic algorithm [49], suggesting that a
hybrid that combined both hill climbing (local search) and genetic algorithms
(global search) was the best approach for test data generation [50].

Hill climbing can also be used to help to understand the nature of the solu-
tions found. For example, through multiple hill climbs, we can find the set of
common building blocks that are found in all good solutions. This can help to
understand the problem and also may be a way to make subsequent techniques
more effective. This approach to locating building blocks using multiple runs
of a hill climber was applied by Mahdavi et al. [62], who used a distributed
cluster of machines to perform multiple hill climbs in parallel for the software
modularisation problem. The results were the building blocks of ‘good modules’
(those which were cohesive and exhibited low coupling) for a particular architec-
ture of dependencies. Mahdavi et al. also showed that the initial identification
of building blocks could improve the performance of the subsequent search.

For all these reasons, faced with a large number of possible algorithms with
which to start, it seems sensible to adopt hill climbing as the first optimisation
algorithm. If the results are promising then within a very short space of time, the
novice SBSE researcher will have migrated from finishing reading this tutorial
to starting to write their own first SBSE paper; perhaps in as little as a matter
of days.

Step 5: The natural next step is to try some different search based algorithms.
A good place to start is those described in Section 4 since these have been
commonly applied and so there will be a wealth of previous results with which to
compare. Following this, the SBSE researcher is already going beyond what can
be covered in a single tutorial such as this and is thus referred to the literature
on search based optimisation. A good overview of search techniques can be found
in the text book by Burke and Kendall [19].

Step 6: Having implemented several SBSE algorithms and obtained results, the
next step is to analyse these results. In this paper we have set out some of the
common statistical techniques used to analyse SBSE work in Section 6. Nat-
urally, this can only provide an overview of some commonly used approaches,
but it should be sufficient to address some of the most obvious initial ques-
tions; those to which a referee would naturally expect answers. Using these tech-
niques the results can be developed to become the basis for an experimental or
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empirical study, by selecting some non trivial real world examples to which the
new SBSE approach can be applied. The most natural questions to address are
those of efficiency and effectiveness. That is, the study should, at least, answer
the questions: how good are the solutions you find and how much computational
(and/or human) effort is required to obtain them?

Step 7: One of the attractive aspects of SBSE is the way it re-unites different
areas of software engineering, as explained in Section 2. A good paper on SBSE
will contain a thorough account of the related work and this may help to achieve
this re-unification goal, drawing together apparently unrelated areas of software
engineering. In so doing, SBSE work can play a vital role in the development
of the wider field of Software Engineering itself, providing a more solid search-
based understanding of the underlying optimisation problems that are found in
each application area.

Using SBSE, we seek to apply search algorithms to software engineering prob-
lems so there are two natural sources of related work for any paper on SBSE;
the previous work that tries to solve the same (or similar) Software Engineering
problem(s) and the previous work that uses a similar search based approach. You
may find that two apparently quite different software engineering problems have
been attacked using the same (or similar) search based formulation (perhaps
representation is shared or a similar fitness can be used).

An SBSE paper can be considerably enhanced by exploring these links, since
such connections mean that the paper can have an impact on at least two soft-
ware engineering domains, rather than merely the one for which the results are
presented. Hopefully, in developing a related work section, the taxonomy in Sec-
tion 9 will be helpful. The many surveys on SBSE are also a source of valuable
summary information concerning potentially related techniques and application
areas.

Step 8: At this point, the researcher has sufficient information and results to
consider writing a paper. Naturally, there will be a choice about where to send
the paper that can only be made by the author(s). There is also the question
of how to set the problem formulation, research questions and results into as
format that will appeal to (firstly) referees and (ultimately) readers.

There are many excellent papers that give guidance on how to write good
software engineering papers, such as that by Mary Shaw [86]. Those papers that
present results on SBSE generally (though not exclusively) fall in the category
of empirical software engineering papers, for which the systematic review of Ali
et al. [4] sets out useful guidelines relevant to SBSE.

11 SBSE Limitations and Techniques for Overcoming
Them

In this final section we review some of the problems and issues that can arise
when using SBSE and some simple techniques for overcoming them. Many of
these issues are common to all approaches to optimisation based on algorithms
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guided by fitness and many of the solution approaches could be described as
the application of ‘common sense’ (though some may be slightly surprising or
counter-intuitive). Where possible, we provide pointers to the SBSE literature,
indicating where the proposed solution approaches have already been explored
in the specific context of Software Engineering problem domains.

11.1 My Ideal Fitness Function Is Too Computationally Expensive

The most natural fitness function for a problem may turn out to be compu-
tationally expensive and this may mean that the whole search process takes a
long time. In most applications of SBSE, it is the computation of fitness that
occupies the largest part of the overall computational cost of the SBSE imple-
mentation. As such, it makes sense to consider techniques for controlling and
reducing this cost, where it is manageable. This issue, therefore, can be consid-
ered to be the problem of ‘how can we compute fitness faster?’. We consider
three approaches: use a cheaper surrogate, parallelise and imbue the search with
domain knowledge.

Find a cheaper surrogate: Often, a computationally demanding fitness func-
tion can be reserved for evaluating the final result or for occasional fitness com-
putation, while a surrogate (or surrogates) is/are used for most of the fitness
evaluations used to guide the search. Even if the surrogate fitness function is
not a perfect guide, it can be computationally cheaper overall, to use a less
accurate fitness function (that still provides some guidance for the majority of
fitness computations). This approach has been used very little in Software En-
gineering, partly because many of the fitness functions used in SBSE tend to
be computationally inexpensive (they often come from works on metrics [42],
which are pre-designed to be computationally practical). Even when the metrics
used as fitness functions do prove to be computationally expensive, it is typi-
cally hard to find surrogates. However, as SBSE increasingly finds applications
in new software engineering areas there may also be a wider choice of available
metrics and it may turn out that the most suitable metrics are also those that
are more computationally expensive. We can therefore expect that there will be
a greater reliance on surrogate fitness computations in future work on SBSE.
To minimise the negative impact of using a surrogate that only captures part of
the true fitness or which includes noise, it may be advantageous to use multiple
surrogate fitness computations (as discussed later on in this section).

Parallelise: SBSE algorithms are known as ‘embarrassingly parallel’ [32] be-
cause of their potential for scalability through parallel execution of fitness com-
putations [72]. Recent work has shown how this parallelism can be exploited on
General Purpose Graphical Processing devices (GPGPUs) [110] with scale ups
in overall computation time up to a factor of 20. Because of the inherent paral-
lelism of SBSE algorithms and the wide availability of cheap multicore devices
we can expect a great deal more scalability research in future work on SBSE. In
the era of multicore computing, SBSE is well placed to make significant strides
forward in simple effective and scalable parallel solutions.
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Use domain knowledge: Domain Knowledge can be used to guide the search to
fruitful areas of the landscape, without actually determining the precise solution.
For example, in selection and prioritisation problems, we may know that the
solution we seek must include certain items (for selection these can be hard wired
onto the solution) or we may know that a certain relative placement of some
individuals in an ordering is highly likely. This can happen often as the result of
human considerations concerned with management and business properties. For
instance, in selecting and prioritising requirements, it is not always possible to
take account of all the socio-political issues that may determine the ideal solution
set. The manager may simply say something like ‘whatever the solution you
adopt, we must include these five requirements, because the CEO deems them
essential for our business strategy, going forward’. This can be an advantage
for search, because it simultaneously and effortlessly adapts the solution to the
business needs while reducing the size of the search space. Wherever possible,
domain knowledge should be incorporated into the SBSE approach.

11.2 My Fitness Function Is Too Vague and Poorly Understood to
Make It Something I Can Compute

It is a popular misconception that SBSE must use a fitness function that is
both precise and accurate. It is true that this is advantageous and valuable (if
possible), but neither is essential. In software measurement, we seek metrics that
meet the ‘representation condition’ [87], which states that the ordering imposed
by the metric on the individuals it measures should respect the ‘true ordering’
of these individuals in the real world.

It is a natural condition to require of a metric, M ; if M(a) > M(b) then we
should reasonably expect that the real world entity a is truly ‘better’ than b in
some sense and vice versa. However this requirement is not essential for SBSE.
If a fitness function merely tends to give the right answer, then it may well be
a useful, if inefficient, fitness function candidate. That is, if the probability is
greater than 0.5 that a pairwise fitness comparison on two individuals a and b
with metric M will produce the correct outcome, then may potentially be used
in SBSE should it prove to have compensatory properties; our search will be
guided to some extent, though it may make many wrong moves.

However, if a metric is simply not defined for some part of the candidate
solutions space or can only be defined by subjective assessment for all or part
of the solution space, then we need a way to handle this. There are two natural
approaches to this problem: use a human or use multiple fitness functions.

Involve Human Judgement: Fitness functions do not need to be calculated
entirely automatically. If they can be fully automated, then this is advantageous,
because one of the overall advantages of SBSE is the way it provides a generic
approach to the problem of Automating Software Engineering [36]. However,
it has been argued [37] that some Software Engineering tasks, such as those
associated with comprehension activity are inherently subjective and require a
human input to the fitness computation. This is easily accommodated in SBSE,
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since may algorithms allow for ‘human-in-the-loop fitness computation. Such
subjective, human-guided, fitness has been used in interactive evolutionary al-
gorithms for SBSE applied to design-oriented problems [89] and Requirements
Engineering [92].

Use Multiple Fitness Functions: It is not necessary to use only the ‘best’
fitness function to guide the search. If the best fitness function is still only the
best at capturing part of the search space there is nothing to prevent the use of
other fitness functions that capture different, perhaps smaller, parts of the solu-
tion space. Fitness functions can be combined in a number of ways to provide an
‘agglomerated’ fitness function. Both weighting and Pareto optimal approaches
have been widely studied in the SBSE literature [36]. However, using several
fitness functions, each of which applies to different parts of the solutions space
has not been explored in the literature. Given the complicated and heterogenous
nature of many Software Engineering problems, this approach is under-explored
and should receive more attention. In future work on SBSE, we may seek to
bundle patchworks of different fitness functions to solve a single problem, de-
ploying different fitness functions at different times, for different stake holders,
or for different parts of the solutions space.

11.3 My Search Space Is Too Difficult for Search to Work Well

The performance of a search based optimisation algorithms depends crucially
on the search landscape that a fitness function creates when used to guide the
search for a specific problem. If a particular search algorithm performs poorly
on a search space then there are two obvious solutions that immediately present
themselves; do something to modify the way fitness is computed or choose a
different algorithm (one that is better suited to the landscape). In order to take
either course of action, it is important to undertake research into the properties
of the search landscape in order to understand which is the best algorithm to
apply. There has been much work on analysis and characterisation of SBSE
landscapes and fitness functions, but more is required in order to provide a more
complete understanding of the properties to which SBSE is applied.

Analyse Different Fitness Functions: Different characterisations of fitness
can achieve very different results. This has been demonstrated empirically, in
SBSE problems, where the choice of fitness can have different robustness to
noise in the data [51]. The initial choice of fitness function may lead to a search
landscape contains too many plateaux, or other features that make search hard
(needle in a haystack, multimodal features, deceptive basins of attraction etc.).
In these situations, it makes sense to analyse the effect of different fitness func-
tions; each will characterise the problems differently and may have very different
behaviours, even if all agree on the local or global optima.

Use Multiple Fitness Functions: Even if your search problem is inherently
single objective in nature, it may make sense to consider experimenting with
multi objective approaches. It has been shown in previous work on SBSE for
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module clustering [77] that better results can be obtained for using a multi ob-
jective optimisation on a single objective problem. This happens because the
other objectives may help the search to find routes to the global optima in
the single objective space. Therefore, searching for solutions that satisfy multi-
ple objectives may, perhaps counter-intuitively, help to solve a single objective
problem. If you find that one of your fitness characterisation has an unattrac-
tive search landscape, yet it provides useful guidance in some cases, you might
consider incorporating additional fitness functions.

Use Secondary Fitness: For problems in which there are too many plateaux,
you may consider the use of a secondary fitness function, to be used to distin-
guish candidate solutions that lie on a plateaux according to the primary fitness
function. This has been used in the SBSE problem of search based transforma-
tion. In transformation, the goal is to find a new version of the program that is
better (according to some metric) by searching the space of transformations of
the original program (or the transformations sequences that can be applied to
it). This is a very well studied area of SBSE [21, 29, 30, 52, 75, 85], dating back to
the work of Ryan and Williams [83, 104] on auto-parallelisation transformations.

One of the problems for this SBSE problem, is that there are many trans-
formations the application of which fails to affect the primary fitness function.
For example, suppose we seek to shrink the size of a program by either remov-
ing redundant computation or by slicing [44]. In this situation, there are many
transformations that will not reduce the size of the program to which they are
applied. All such transformations will lie on a plateau of fitness with regard to
their effect on code reduction for some specific program. However, we can dis-
tinguish among such transformations. Those that are not applicable are worse
than those that are applicable. Those that are applicable, but have no effect at
all are worse than those that alter the code without reducing its size. In the
early stages of the search those transformations that have a larger effect on the
syntax may also be preferred. This suggests a secondary fitness that can be used
to guide a search to the edges of a plateaux in the search space induced by the
primary fitness function. This has been employed to improve the performance of
search based slicing [30].

Landscape Analysis: In the more general optimisation literature, the issue
of landscape analysis and algorithmic characterisation is well studied [103]. For
example, there has been work on the analysis of plateaux in search landscapes
[91]. There has also been much work on SBSE landscape analysis and algorithm
characterisation. Early work in this area for the project estimate feature selection
[57] and modularisation [67] has been championed in the SBSE literature [36]
as exemplary of the kinds of analyse that can be achieved, empirically, using
a simple (but effective) multiple restart simple hill climbing approach. There
has also been recent theoretical analysis of SBSE algorithm performance [61]
and theoretical and empirical analyses of search based testing for structural test
data generation [7, 49, 50].
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Choose the Right Algorithm for the Search Space: Choosing the right
algorithm for the problem is as fundamental to search as choosing the right tool
for the job is in any engineering endeavour. The field of optimisation is well
known for its many versions of the ‘no free lunch theorem’ [102]. There is plenty
of evidence [3, 48, 78] to indicate that SBSE problems are as wide and varied
as those found in the general optimisation literature. It is, therefore, foolhardy
to believe that one search based optimisation technique will be superior for all
possible problems that one might encounter.

The most popular algorithms (by far) that have been used hitherto in SBSE
work are variations on the theme of population-based evolutionary algorithm
[48]. This is not the result of evidence that evolutionary algorithms are superior
to other algorithms. Quite the contrary in fact: There is evidence to suggest
that, for some problems, such as structure test data generation (a very widely
studied problem), simpler local search algorithms may be better [49], and that
some form of hybridisation that seeks to achieve the best of both local and global
search [50] may be the best performing approach so far known.

11.4 The Final Fitness I Obtained Is Simply Too Poor: The
Solutions Are Just not Good Enough

Usually, even with a relatively ‘out of the box’ choice of fitness function and
search based optimisation technique, the results obtained will be better than
those obtained using a purely random search. However, you may still feel that
the results are not as good as you would like, or, if you have as specific threshold
fitness value in mind, you may find that your algorithm fails to achieve this
threshold, even when you allow it considerable computation resources. In this
situation, you should not give up and assume that ‘SBSE does not work’ (it is just
possible that it may not, but it is certainly too soon to be sure!). It may be that
your algorithm is performing poorly because of some of the parameter choices
or because it is the wrong algorithm for this particular problem. Even should
all else fail, you may be able to extract useful information from the suboptimal
results you have obtained.

Avoid Premature Convergence: Premature convergence on a local optima
often turns out to underlie the observation that an SBSE algorithm fails to pro-
duce ‘good enough’ results. This can happen because, for example, too much
elitism has been incorporated into an evolutionary approach, or because some
domain knowledge has been injected in a way that strongly biases solutions to-
wards only one part of the search space. In general, it may be helpful to think
of your search process as a compromise between exploration and exploitation (a
common distinction in the more general optimisation literature). If you fail to
explore sufficiently, then premature convergence will result. If you fail to exploit
sufficiently, then you may have a broad spread of solutions across the search
space, none of which is of particularly high quality. It is a good overarching
principle to seek to favour exploration in the earlier stages of the search pro-
cess and exploitation subsequently. This principle is captured, elegantly, by the
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cooling parameter of simulated annealing, though there are ways to incorporat-
ing similar ideas into almost all search algorithms.

Try Other Search Algorithms: As noted above, the reasons for poor perfor-
mance could simply be that the wrong search algorithm is used for the search
space in hand. If the fitness landscape resembles one enormous hill (or lots of
hills of equal fitness) then hill climbing is clearly an attractive candidate. For
landscapes with so-called ‘royal road’ properties [70], an evolutionary algorithm
will be favourable. These distinctions are starting to be explored in the SBSE
literature [49]. It is always advisable to explore with several search based algo-
rithms in any SBSE work, to include (as a sanity check) random search, together
with at least one local and one global search technique, simply to get a sense for
the variabilities involved. Of course, comparing these will require some thought
and careful planning, as explained in Section 6.

Look for Building Blocks: It is unlikely, but suppose you discover that you
cannot get the higher quality results you seek after trying several fitness functions
and many different algorithms. What then? Well, in this situation, you will have
a large set of results, albeit a set of sub optimal results. There is a great deal of
value that can be obtained from such a set of results. You can use them to under-
stand the structure of the search space.Thismayhelpful to explainwhyyour results
turn out the way they do. Furthermore, you can search for building blocks in the
solutions, that can help you to identify partial solutions or fragments of good so-
lutions that can help to identify better solutions. Such building blocks may lead
a human to a ‘eureka’ moment, when they gain insight into the structure of some
essential or sufficient ingredient of a good solution. They can also be used to con-
strain subsequent search based approaches, that may then prove more successful.
This two-stage search approach has been shown to be effective in SBSE work; it
has been used to identify the building blocks of good software modularisations for
a subsequent search over a constrained (and therefore much smaller) landscape in
which the building blocks are now fixed [62].

12 Conclusion

We hope that this tutorial paper has been a useful guide to the development of
the reader’s (perhaps first) SBSE paper. We look forward to reading and learning
from your work on SBSE.
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78. Räihä, O.: A survey on search–based software design. Computer Science Re-
view 4(4), 203–249 (2010)

79. Reid, S.C.: An empirical analysis of equivalence partitioning, boundary value
analysis and random testing. In: 4th International Software Metrics Symposium.
IEEE Computer Society Press, Los Alamitos (1997)

80. Rothermel, G., Harrold, M., Ronne, J., Hong, C.: Empirical studies of test suite
reduction. Software Testing, Verification, and Reliability 4(2), 219–249 (2002)

81. Rothermel, G., Harrold, M.J., Ostrin, J., Hong, C.: An empirical study of the
effects of minimization on the fault detection capabilities of test suites. In: Pro-
ceedings of International Conference on Software Maintenance (ICSM 1998),
Bethesda, Maryland, USA, pp. 34–43. IEEE Computer Society Press (Novem-
ber 1998)

82. Ruhe, G., Greer, D.: Quantitative Studies in Software Release Planning under
Risk and Resource Constraints. In: Proceedings of the International Symposium
on Empirical Software Engineering (ISESE 2003), Rome, Italy, September 29 -
October 4, pp. 262–270. IEEE (2003)

http://xkcd.com/882/


58 M. Harman et al.

83. Ryan, C.: Automatic re-engineering of software using genetic programming.
Kluwer Academic Publishers (2000)

84. Saliu, M.O., Ruhe, G.: Bi-objective release planning for evolving software systems.
In: Crnkovic, I., Bertolino, A. (eds.) Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE) 2007, pp. 105–
114. ACM (September 2007)

85. Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings
for improving the class structure of object-oriented systems. In: Genetic and Evo-
lutionary Computation Conference (GECCO 2006), Seattle, Washington, USA,
July 8-12, vol. 2, pp. 1909–1916. ACM Press (2006)

86. Shaw, M.: Writing good software engineering research papers: minitutorial. In:
Proceedings of the 25th International Conference on Software Engineering (ICSE
2003), Piscataway, NJ, May 3-10, pp. 726–737. IEEE Computer Society (2003)

87. Shepperd, M.J.: Foundations of software measurement. Prentice Hall (1995)
88. Simons, C.L., Parmee, I.C.: Agent-based Support for Interactive Search in Con-

ceptual Software Engineering Design. In: Keijzer, M. (ed.) Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation (GECCO 2008),
Atlanta, GA, USA, July 12-16, pp. 1785–1786. ACM (2008)

89. Simons, C.L., Parmee, I.C., Gwynllyw, R.: Interactive, evolutionary search in
upstream object-oriented class design. IEEE Transactions on Software Engineer-
ing 36(6), 798–816 (2010)

90. de Souza, J.T., Maia, C.L., de Freitas, F.G., Coutinho, D.P.: The human competi-
tiveness of search based software engineering. In: Proceedings of 2nd International
Symposium on Search based Software Engineering (SSBSE 2010), Benevento,
Italy, pp. 143–152. IEEE Computer Society Press (2010)

91. Sutton, A.M., Howe, A.E., Whitley, L.D.: Estimating Bounds on Expected
Plateau Size in MAXSAT Problems. In: Stützle, T., Birattari, M., Hoos, H.H.
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Abstract. Experimentation has played a major role in scientific
advancement. Replication is one of the essentials of the experimental
methods. In replications, experiments are repeated aiming to check their
results. Successful replication increases the validity and reliability of the
outcomes observed in an experiment.

There is debate about the best way of running replications of Soft-
ware Engineering (SE) experiments. Some of the questions that have
cropped up in this debate are, “Should replicators reuse the baseline ex-
periment materials? Which is the adequate sort of communication among
experimenters and replicators if any? What elements of the experimental
structure can be changed and still be considered a replication instead of
a new experiment?”. A deeper understanding of the concept of replica-
tion should help to clarify these issues as well as increase and improve
replications in SE experimental practices.

In this chapter, we study the concept of replication in order to gain
insight. The chapter starts with an introduction to the importance of
replication and the state of replication in ESE. Then we discuss replica-
tion from both the statistical and scientific viewpoint. Based on a review
of the diverse types of replication used in other scientific disciplines, we
identify the different types of replication that are feasible to be run in
our discipline. Finally, we present the different purposes that replication
can serve in Experimental Software Engineering (ESE).

Keywords: Experimental Replicaction, Types of Replication, Experi-
mental Software Engineering, Empirical Software Engineering.

1 Introduction

Experimentation should be an indispensable part of SE research. As Tichy says
[1], “Experimentation can help build a reliable base of knowledge and thus re-
duce uncertainty about which theories, methods, and tools are adequate”. Basili
[2] claims that “Experimental SE is necessary, common wisdom, intuition, spec-
ulation, and proofs of concepts are not reliable sources of credible knowledge”.
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Voices in favour of experimentalism as a way of research about software de-
velopment have recently grown stronger. DeMarco [3] claims that “The actual
software construction isn’t necessarily experimental, but its conception is. And
this is where our focus ought to be. It’s where our focus always ought to have
been”. Meyer [4, 5] has also joined the line of researchers to point to the impor-
tance of experimentation in SE.

A key component of experimentation is replication. To consolidate a body of
knowledge built upon experimental results, they have to be extensively verified.
This verification is carried out by replicating an experiment to check if its results
can be reproducible. If the same results are reproduced in different replications,
we can infer that such results are regularities existing in the piece of reality under
study. Experimenters acquainted with such regularities can find out mechanisms
regulating the observed results or, at least, predict their behaviour.

Most of the events observed through experiments in SE nowadays are isolated.
In other words, most SE experiments results have not been reproduced. So there
is no way to distinguish the following three situations: the results were produced
by chance (the event occurred accidentally); the results are artifactual (the event
only occurs in the experiment not in the reality under study), or the results really
do conform to a regularity of the piece of reality being examined.

A replication has some elements in common with its baseline experiment.
When we start to examine a phenomenon experimentally, most aspects are un-
known. Even the tiniest change in a replication can lead to inexplicable differ-
ences in the results. In immature experimental disciplines, which experimental
conditions should be controlled can be found out by starting off with replications
closely following the baseline experiment [6]. In the case of well-known phenom-
ena, the experimental conditions that influence the results can be controlled,
and artifactual results are identified by running less similar replications. For ex-
ample, using different experimental protocols to verify the results correspond to
experiment-independent events.

The immaturity of ESE has been an obstacle to replication. As the mech-
anisms regulating software development and the key experimental conditions
for its investigation are yet unknown, even the slightest change in the replica-
tion leads to inexplicable differences in the results. However, context differences
oblige experimenters to adapt the experiment. These changes can lead to sizeable
differences in the replication results that prevent the outcomes of the baseline
experiment from being corroborated. In several attempts at combining the re-
sults of ESE replications, Hayes [7], Miller [8–10], Hannay et al. [11], Jørgensen
[12], Pickard et al. [13], Shull et al. [14] and Juristo et al. [15] reported that the
differences between results were so large that they found it impossible to draw
any consequences from the results comparison.

ESE stereotype of replication is an experiment that is repeated independently
by other researchers at different sites to the baseline experiment. But some of the
replications in ESE do not conform to this stereotype: either they are jointly run,
or replicators researchers reuse some of the materials employed in the baseline
experiment or they are run at the same site [16–25]. How replications should be
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run has moved a debate in ESE. There are researchers that recommend reusing
some of the baseline experiment materials to run replications [2, 26] with the
aim of assuring that the replications are similar and results can be compared.
There are researches who advise the use of different protocols and materials to
those employed in the baseline experiment [10, 27] with the aim of preserving
the principle of independence and preventing error propagation in replications
that use the same materials. Others suggest using alternative ways of verifying
the experimental results [28] with the aim of understanding the problems that
replication have had to date in SE experiments. This debate can probably be
put down to the fact that replication has still not satisfactorily tailored to ESE.

In this chapter we study the concept of replication with the aim of getting
a better understanding of its use in ESE. This chapter is organized as follows.
Section 2 describes the statistical perspective of replication. Section 3 discusses
replication in science. Section 4 reviews different types of replication accepted
in different experimental disciplines. Section 5 discusses the differences between
the concepts of replication and reproduction. Section 6 describes adequate varia-
tions in replication. Section 7 discusses some types of replications in SE. Section
8 presents the purposes that a replication can serves. Section 9 presents the
conclusions. Finally, Annex A lists and describes replication typologies found in
other disciplines.

2 Statistical Perspective of Replication

Sample size is an essential element in a controlled experiment. An adequate sam-
ple size increases the possibilities of the effect observed in the sample occurring
in the real population. The accuracy level of the results grows in proportion to
the sample size.

One of the commonly used coefficients for representing effect size observed in
an experiment is Cohen’s d [29]. This coefficient is used to measure the differences
between the treatments studied in the experiment. The effect size indicates how
much better one treatment is compared to another. This coefficient is usually used
with one-digit accuracy. For example [29], d=0.2 represents a small effect, d=0.5
indicates a medium effect or d=0.8 is a large effect. The sample size required to
satisfy a one-digit accuracy level can be calculated from (1): the function in (1) is
derived from (2) and (3), where the differences in the confidence intervals (left and
right) are equal at the specified accuracy level, in this case 0.1.

N =
2 + d2

2(0.0255102)2
(1)

2× 1.96× deviation(d) = 0.1 (2)

deviation(d) =

√
n1 + n2
n1n2

+
d2

2(n1 + n1)
(3)
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For effect sizes d=0.2, d=0.5 and d=0.8, a sample size of N =1,567, N =1,729
and N =2,028 is required, respectively. Fig. 1 shows the graph of the resulting
function in (1).
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N

Fig. 1. Sample (N ) necessary for a particular effect size (d) with one-digit accuracy

To be able to estimate effect sizes with one-digit accuracy, we need to repeat
the same experiment to increase the sample size and reach the required level
showed in Fig. 1. In the set of controlled SE experiments examined by Dyb̊a
et al. [30], the average sample size of the samples used in these experiments is
N =55 (55 observations per experiment).

For an average sample size of 50 observations, the same study would have
to be repeated 31 times to satisfy the sample size required for an effect size of
d=0.2; the same study would have to be repeated 34 and 40 times, respectively,
to get an effect size of d=0.5 and d=0.8. Consequently, experiment repetitions
have to be equal. For increasing sample size the replications have to measure
the independent and dependent variables in exactly the same manner, using
exactly the same experimental protocol, and they should all sample the same
populations [31].

Since experimental conditions are hard to control in ESE, one option worth
considering to satisfy the statistical requirement of identical repetitions is run-
ning internal replications (at the same site and by the same experimenters) of
SE experiments. Through internal repetitions, the sample comes closer to the
interval of observations [1,537; 2,305] required to be confident that the observed
effect (from 0, none; to 11, very large) occurs not only in the sample used in the
experiment but also in the real population.
1 Note that effect size over 1 is possible. In fact Kampenes et al. [32] show that 32%

of the experiments published in SE have an effect size greater than 1. The bigger
the effect size the bigger the sample.



64 N. Juristo and O.S. Gómez

The results of a single execution of an experiment is threatened by type I
error2. Having more (internal) replications of the same experiment considerably
reduces this type of error. For example, if an experimenter establishes the sig-
nificance level α of an experiment at 0.05, which represents a 1:20 probability
of obtaining a chance result, the likelihood of again obtaining an accidental re-
sult drops to 1:400 (p = 0.05 × 0.05 = 0.0025) if the experiment is identically
internally repeated again.

The sample size of experiments run in SE is not large enough to accurately
estimate the effect size under study. Therefore, identical replications are required
to be able to estimate the effect size with any accuracy. However, identical repli-
cations are virtually impossible when they are carried out in other sites [25].

3 Replication in Science

In science, replication refers to the repetition of a previously run experiment.
Some definitions of replication in science are:

1. “Replication refers to a conscious and systematic repeat of an original study”
[33].

2. “Replication is traditionally defined as the duplication of a previously pub-
lished empirical study” [34].

3. “Replication is a methodological tool based on a repetition procedure that is
involved in establishing a fact, truth or piece of knowledge” [35].

4. “Replication – the performance of another study statistically confirming the
same hypothesis” [36].

5. “Replication is the repetition of the basic experiment. That is, replication
involves repeating an experiment under identical conditions, rather than
repeating measurements on the same experimental unit” [37].

6. “The deliberate repetition of research procedures in a second investigation
for the purpose of determining if earlier results can be repeated” [38].

7. “Is the process of going back, or re-searching an observation, investigation,
or experimentation to compare findings” [39].

The value of replication has been widely recognized in a number of scientific
disciplines. Popper [40] claimed that “We do not take even our own observations
quite seriously, or accept them as scientific observations, until we have repeated
and tested them. Only by such repetitions can we convince ourselves that we
are not dealing with a mere isolated ‘coincidence’, but with events which, on
account of their regularity and reproducibility, are in principle inter-subjectively
testable”. Hempel [41] realized the importance of reckoning with more than one

2 Type I error occurs when the null hypothesis is rejected while it is true, i.e. when
there is believed to be a significant difference between the treatments that the ex-
periment compares and there is, in actual fact, no such difference.
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study to increase the robustness of the gathered evidence. Campbell and Stanley
[42] claim that “The experiments we do today, if successful, will need replication
and cross-validation at other times under other conditions before they can be-
come an established part of science, before they can be theoretically interpreted
with confidence”. Other widely accepted claims about replication are that it “is
the Supreme Court of the scientific system” [43], it is considered the cornerstone
of science [36], “it is the crucial test whereby theories and experiments in science
are judged” [44], and “it is at the heart of (any) experimental science” [35].

From a scientific viewpoint, not having sufficient replications of an experiment
can lead to the acceptance of results that are not robust enough. Fahs et al. [45]
gave a good example of this problem in an article concerning the retinopathy
of prematurity (ROP). Nurses working in neonatal intensive care units (NICUs)
tend to place premature babies in incubators or try to somehow protect their
eyes from the light, as this practice is believed to reduce the rate of ROP. This
practice apparently dates back to a study by Glass et al. [46], concluding that
ROP was possibly caused by the bright lighting in NICUs. Years later, however,
Ackerman et al. [47] replicated this study and provided evidence contrary to the
results published by Glass et al. [46]. Later another two replications of this study
were run [48, 49] and corroborated the results reported by Ackerman et al. [47],
i.e. NICU lighting is not a factor causing ROP.

Replications of experiments have proven the need to be careful about accept-
ing evidence that has not been subject to strict checks. The evidence provided
by a single study or experiment can be weak. Several replications have to be
run to strengthen the evidence. In the field of SE, many of the empirical studies
published have low statistical power [30]. Failure to replicate these experiments
can lead to the belief that there is no significant effect when there probably is.

Even though replication is an important experimental mechanism, we have to
be aware of its limits. It is not possible to completely verify a theory based on a
finite series of observations. For example, someone observing three black crows
at different times cannot conclude that all crows are black. To do this, s/he
would have to observe all the crows of all times. Replication is closely related to
induction3, which has been used since ancient times as a way of inferring general
rules from repeated past regular observations (instances) [43]. As Restivo [50]
says, “replication is the experimental equivalent of induction; what is regularly
reproducible is generalizable” or, as Collins [51] argues “experimental replication
is the experimental equivalent of inductive inference”.

Induction has a catch [40, 52–55] or logical defect, as the general conclusion
is reached without individually evaluating all the cases. The problem of proving
something inductively is that the gathered knowledge cannot be fully verified.
Using probabilistic approaches [56–60], however, we can be somewhat confident
about a conclusion reached based on a finite number of observations, that is,
a hypothesis can be verified with some level of confidence based on a set of
replications.

3 Also known as inductive reasoning or inductive logic.
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4 Replication Types in Other Disciplines

With the aim of discovering how to run a replication, we examined several types
of replication used in other disciplines. We identified the different types of repli-
cation after running GoogleR©, Google scholarR©, ScienceDirectR© and JSTORR©

searches with different keywords (types of replications, types of experimental
replications, typology of replications, replication types, replication typologies, repli-
cation types and classification of replications).

After running the searches on the four search engines and examining all the
results returned, we located an initial set of 10 replication typologies [31, 35, 61–
68]. This initial set of typologies served as a source for locating more replication
types. Following the references in this initial set, we were able to locate an-
other 8 [33, 69–75]. This way, we ended up with 18 replication typologies shown
in Annex A. Altogether the typologies contain a total of 79 replication types.
These typologies belong to the fields of social science (61%), business (33%) and
philosophy (6%). Table 1 lists the typologies grouped by field.

Table 1. Typologies grouped by discipline

Area
Number of
Typologies

References

(Social Science)
Psychology 5 Lykken [69]; Hendrick [70];

Hunter [31]; Schmidt [35]; Kan-
towitz et al. [65]

Sociology 3 Finifter [71]; La Sorte [33]; Bahr
et al. [62]

Economics 1 Mittelstaedt and Zorn [67]
Human Communication 1 Kelly et al. [72]
Human Development 1 Van IJzendoorn [63]

(Business)
Marketing 3 Leone and Schultz [73]; Easley

et al. [61]; Monroe [74]
Accounting 1 Lindsay and Ehrenberg [68]
Management 1 Tsang and Kwan [66]
Forecasting 1 Evanschitzky and Armstrong

[64]

(Philosophy)
Philosophy of Science 1 Radder [75]

TOTAL 18

Lykken’s [69] is the most often cited typology, followed by Hendrick’s [70].
Lykken’s [69], Hendrick’s [70] and Bahr et al.’s [62] typologies have been ref-
erenced not only within their disciplines, but also in some business areas. We
have counted citations where the author somehow uses the typology rather than
referring to other questions that the above articles address.



Replication of Software Engineering Experiments 67

In most typologies, the authors give the replication types an original name.
They tend, therefore, to use their own terms to refer to a replication type. There
are some exceptions, like Kelly et al. [72], who use the same terms as are applied
in Lykken’s [69] typology. In the identified typologies, we also find that there is
no intra- or inter-disciplinary standardization for naming replication types.

The identified typologies were found to have two purposes: 1) some authors
developed the typology to classify existing sets of replications; 2) other authors
generated the typology for no particular purpose. Within this purpose, some
authors illustrate the replication types using a number of existing replications,
whereas others develop the typology and use examples to describe the replication
types. Table 2 shows the possible usage of typologies.

Table 2. Typologies usage

Typologies generated for understanding replication types

Typologies generated
to classify existing
sets of replications

With examples of
real replications

With imaginary
examples

Bahr et al. [62] Lindsay and Ehrenberg [68] Hendrick [70]

Kelly et al. [72] Tsang and Kwan [66] Monroe [74]

Leone and Schultz [73] Kantowitz et al. [65] Radder [75]

Evanschitzky and
Armstrong [64]

Lykken [69] Easley et al. [61]

Hendrick [70] Hunter [31]

La Sorte [33] Schmidt [35]

Van IJzendoorn [63] Finifter [71]

Mittelstaedt and Zorn [67]

Examining the typologies, we found that experiment results were not always
verified by running the experiment over again. Neither did the replication always
repeat the experimental protocol of the baseline experiment. We have identified
three major groups of methods for verifying findings:

1. Follow the same experimental protocol used in the baseline experiment.
The degree of similarity between the replication and the baseline experiment
vary. For verification purpose some of the elements of the baseline experi-
ment can be changed or modified in the replication. For example, Tsang and
Kwan [66] use the term empirical generalization when the study is repeated
on different populations. Monroe [74] uses the term independent replication
when the study is repeated by different researchers.

This type of replication is used for different purposes. According to Lykken
[69], for example, the purpose of operational replication is to check that
the experimental recipe produces the same results with another researcher.
Tsang and Kwan’s [66] empirical generalization purpose is to test the extent
to which the study results are generalizable to other populations.
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Most researchers use the term replication accompanied by an adjective to
refer to this method of verification, e.g. real replication, strict replication, close
replication. The adjective denotes the degree of change made to the structure
of the experiment. Table 3 shows the replication types in this category.

Table 3. Using the same experimental protocol

Term Author(s)

Close Replication Lindsay and Ehrenberg [68]
Conceptual Replication Hunter [31]; Monroe [74]
Demonstrated Replication Monroe [74]
Differentiated Replication Lindsay and Ehrenberg [68]
Direct Replication Schmidt [35]; Kantowitz et al. [65]
Empirical Generalization Tsang and Kwan [66]
Exact Replicarion Van IJzendoorn [63]; Tsang and Kwan [66]
Experimental Replication Leone and Schultz [73]
Generalization and Extension Tsang and Kwan [66]
Independent Replication La Sorte [33]; Monroe [74]
Instrumental Replication Kelly et al. [72]
Literal Replication Lykken [69]; Kelly et al. [72]
Nonexperimental Replication Leone and Schultz [73]
Nonindependend Replication Monroe [74]
Operational Replication Lykken [69]; Kelly et al. [72]
Partial Replication Hendrick [70]; Monroe [74]
Real Replications Evanschitzky and Armstrong [64]
Reproducibility of an experiment un-
der a fixed theoretical interpretation

Radder [75]

Reproducibility of the material reali-
zation of an experiment

Radder [75]

Retest Replication La Sorte [33]
Scientific Replication Hunter [31]
Sequential Replication Monroe [74]
Statistical Replication Hunter [31]
Strict Replication Hendrick [70]; Monroe [74]
Systematic Replication Kantowitz et al. [65]; Finifter [71]
Types 0, I, II Easley et al. [61]
Types A..H Bahr et al. [62]
Varied Replication Van IJzendoorn [63]
Virtual Replication Finifter [71]

2. Use a different experimental protocol to the baseline experiment. In
this type of verification, the only thing the replication has in common with
the baseline experiment is that they are both based on the same theoretical
structure, i.e. they share the same constructs. This verification is used to
corroborate previously observed findings through a different path. Hendrick
[70], Schmidt [35] and Kantowitz et al. [65] call this type of verification
conceptual replication, whereas Finifter [71] names it systematic replication.
Radder [75], describes it as the reproducibility of the result of an experiment.
Table 4 shows the replication types that adhere to this kind of verification.
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Table 4. Using a different experimental protocol

Replication Type Author(s)

Conceptual Extension Tsang and Kwan [66]
Conceptual Replication Hendrick [70]; Schmidt [35]; Kantowitz et al. [65]
Constructive Replication Lykken [69]; Kelly et al. [72]
Corroboration Leone and Schultz [73]
Differentiated Replication Lindsay and Ehrenberg [68]
Generalization and Extension Tsang and Kwan [66]
Reproducibility of the result of
an experiment

Radder [75]

Systematic Replication Finifter [71]
Theoretical Replication La Sorte [33]
Type III Easley et al. [61]
Types I..P Bahr et al. [62]

3. Use existing data sets from a previous experiment to reanalyse the data
employing either the same analysis procedures or others. This modus
operandi is useful for verifying whether errors were made during the data
analysis stage or whether the outcomes are affected by any particular data
analysis technique. Some replication types reanalyse the statistical models
instead of the existing study data. Different names are used for this type of
verification. For example, La Sorte [33] calls it internal replication; Finifter
[71] terms it pseudoreplication, and Tsang and Kwan [66] describe it as check-
ing of analysis and reanalysis of data. Table 5 shows the replication types
we identified that fall into this category.

Table 5. Reanalyzing existing data

Replication Type Author(s)

Checking of Analysis Tsang and Kwan [66]
Complete Secondary Analysis Van IJzendoorn [63]
Data Re-analyses Evanschitzky and Armstrong [64]
Internal Replication La Sorte [33]
Pseudoreplication Finifter [71]
Reanalysis of Data Tsang and Kwan [66]
Restricted Secondary Analysis Van IJzendoorn [63]
Types I, II Mittelstaedt and Zorn [67]

If we want one term to identify each of the three forms of verification, we would
surely refer to the third one as re-analysis, because the descriptions clearly allude
to this term. However, the naming of the other two forms causes some confusion.
Do both forms adhere to the concept of replication, or does each one introduce
a different concept? The authors of some of the articles that we consulted to
identify the typologies use the terms replication and reproduction indistinctly.
This led us to examine whether these two concepts are equivalent or different.
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5 Replication vs. Reproduction

According to the typologies we found, most researchers use the term replication to
refer to the repetition of an experiment, although some use the term reproduction
or reproducibility to describe this repetition. So it seems that many researchers
consider the two terms to be synonyms. Likewise, Wikipedia uses these terms in-
distinctly and defines reproducibility as “one of the main principles of the scientific
method, and refers to the ability of a test or experiment to be accurately repro-
duced, or replicated, by someone else working independently” [76].

Some researchers, however, do make a distinction between the two terms.
Cartwright [77], for example, suggests that replicability “doing the same exper-
iment again” should be distinguished from reproducibility “doing a new experi-
ment”. For Cartwright [77] the replication of an experiment refers to repeating
a new experiment very closely following the experimental protocol used in the
previous experiment, whereas reproduction refers re-examining a previously ob-
served result using a different experimental protocol to what was employed in
the previous experiment.

According to Cartwright [77], replication does not guarantee that the observed
result represents the reality under observation. The result can be artifactual,
i.e. a product of the materials or the instruments used in the experiment. To
guarantee that the result is consistent with the reality under observation, we have
to undertake a reproduction using different experimental protocols to ensure that
the observed result is independent of the procedure, materials or instruments
used in the experiments that arrived at the result.

When the results are repeatable using the same experimental protocol, the
experimenters can be confident that they have observed some sort of phenomenon
that is stable enough to be observed more than once. But, as it was observed
using the same experimental protocol, there could be a very close relationship
between the protocol and the phenomenon. As Radder put it [78], “[this result]
does not imply any agreement about what the phenomenon is. Some interpreters
may even argue that the phenomenon is an artifact, because, though it is stable,
it is not to be attributed to the object under study but to certain features of
the apparatus”, where the term apparatus refers to the instruments, materials
or procedures used, i.e. the experimental protocol. Cartwright [77] claims that
“reproducibility, then, is a guard against errors in our instruments” in such a
situation. According to Cartwright [77], though, reproduction is not absolutely
necessary, as the better designed the instruments (apparatus) are, the less likely
it is to have to use reproducibility.

Reproduction can be seen as a sort of triangulation, where the experimenters
use different experimental protocols in an attempt to validate or corroborate
the findings of the previous experiment [79]. According to Park [80], “These
triangulation strategies can be used to support a conceptual finding, but they
are not replications of any degree”.
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In this respect, the concept of replication given by Cartwright [77] would fit the
first form of verification described in the previous section, whereas the concept
of reproduction adheres to the second form of verification that we identified in
the replication typologies.

6 Variation among Replications

Based on the different replication types that we have found, replications appear
to fall into three groups:

1. Replications that vary little or not at all with respect to the baseline exper-
iment.

2. Replications that do vary but still follow the same experimental protocol as
the baseline experiment.

3. Replications that use different experimental protocol to check the baseline
experimental results i.e. reproductions.

Tables 6 and 7 list the replication types that fall into these first two groups. The
third group corresponds with the second type of verification presented in section
4 (Use a different experimental protocol to the baseline experiment).

Table 6. Replications with few or no variations that adhere to the baseline experiment

Replication Type Author(s)

Close Replication Lindsay and Ehrenberg [68]
Direct Replication Schmidt [35]; Kantowitz et al. [65]
Exact Replication Van IJzendoorn [63]; Tsang and Kwan [66]
Experimental Replication Leone and Schultz [73]
Literal Replication Lykken [69]; Kelly et al. [72]
Real Replications Evanschitzky and Armstrong [64]
Reproducibility of the material reali-
zation of an experiment

Radder [75]

Sequential Replication Monroe [74]
Statistical Replication Hunter [31]
Strict Replication Hendrick [70]; Monroe [74]
Type 0 Easley et al. [61]
Types A..D Bahr et al. [62]
Type I Easley et al. [61]

Based on the descriptions of the replications, it appears that a replication can
have different levels of similarity to the baseline experiment. In other words, the
elements of the experiment structure do not necessarily have to be the same in
the replication. Table 8 shows some experimental elements that, according to
the typologies we have found, do not necessarily have to be the same in each
replication. Note that the type (or aim) of the replication differs depending on
this change.
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Table 7. Replications with variations that adhere to the same experimental protocol

Replication Type Author(s)

Conceptual Replication Hunter [31]; Monroe [74]
Demonstrated Replication Monroe [74]
Differentiated Replication Lindsay and Ehrenberg [68]
Direct Replication Schmidt [35]
Empirical Generalization Tsang and Kwan [66]
Generalization and Extension Tsang and Kwan [66]
Independent Replication La Sorte [33]; Monroe [74]
Instrumental Replication Kelly et al. [72]
Nonexperimental Replication Leone and Schultz [73]
Nonindependent Replication Monroe [74]
Operational Replication Lykken [69]; Kelly et al. [72]
Partial Replication Hendrick [70]; Monroe [74]
Reproducibility of an experiment un-
der a fixed theoretical interpretation

Radder [75]

Retest Replication La Sorte [33]
Scientific Replication Hunter [31]
Sequential Replication Monroe [74]
Systematic Replication Kantowitz et al. [65]; Finifter [71]
Types E..H Bahr et al. [62]
Type II Easley et al. [61]
Varied Replication Van IJzendoorn [63]
Virtual Replication Finifter [71]

Table 8. Some identified elements that can vary in the replication

Variable element Replication Type Author(s)

Measurement
instruments

Differentiated Replication Lindsay and Ehrenberg [68]

Measures Operational Replication Kelly et al. [72]

Method Conceptual Replication Schmidt [35]

Place Types B,F,J,N,D,H,L,P Bahr et al. [62]

Populations Empirical Generalization Tsang and Kwan [66]

Research Design Retest Replication La Sorte [33]

Researcher Independent Replication Monroe [74]

Sample Virtual Replication Finifter [71]

Although the overall objective of a replication is to check an experimental
result, we find that different replication types have specific aims or purposes.
For example, according to Lykken [69], the purpose of operational replication
is to check that the experimental recipe outputs the same results with another
researcher. However, Finifter’s systematic replication [71] aims to output new
findings using different methods to the baseline experiment.
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Each specific aim of a replication type denotes an aspect of the experiment
that needs to be verified. The more experimental aspects or elements are verified,
the greater the confidence that the observed effect is not artifactual. An effect
observed in an experiment may not be observed at sites other than where it was
replicated, by other researchers, using other materials or methods or under other
conditions. Different replication types should be run to check that the different
experiment elements do not bias the observed findings and that the experiment
results are real.

Consequently, there are several degrees of similarity between a replication
and the baseline experiment. The changes serve different replication purposes.
Although the general purpose of a replication is to check a previously observed
finding, each replication type has special goals depending on what specific ele-
ment of the experiment is to be checked.

7 Types of Replications in SE

We did not find any specific research aiming to build a typology or classification
of replications in the field of ESE. We did locate, however, three works in our
discipline that classified replications as part of the research conducted.

The first piece of research is a master’s thesis [81] that set out to study the use
of replication of controlled experiments in ESE. Almqvist [81] surveys 44 articles
describing 51 controlled experiments and 31 replications. He runs a systematic
review as a method for identifying relevant articles. In Chapter 4 of the thesis,
Almqvist [81] defines several categories for organizing the identified experiments.
In one of the categories, he develops a classification for categorizing the identi-
fied replications. Almqvist takes the replication types described by Lindsay and
Ehrenberg [68] as a reference and adds internal and external replication. On this
basis, he defines the following four types of replications:

1. Similar-external replications.
2. Improved-internal replications.
3. Similar-internal replications.
4. Differentiated-external replications.

The second classification is found in an article by Basili et al. [2], presenting
a framework for organizing sets of related studies. This article describes the
different aspects of the framework being one of these aspects a classification of
replications composed of three major categories, where two of these categories
define several types of replications. Basili et al. [2] illustrate the classification
with examples of different replications that they have run. The classification is
composed of a total of six replication types:

1. Strict replications.
2. Replications that vary the manner in wich the experiment is run.
3. Replications that vary variables intrinsic to the object of study.
4. Replications that vary variables instrinsic to the focus of the evaluation.
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5. Replications that vary context variables in the environment in wich the so-
lution is evaluated.

6. Replications that extend the theory.

The third classification is found in a research conducted by Krein and Knut-
son [82]. The paper presents a framework for organizing research methods in
SE. Krein and Knutson [82] define a replication taxonomy with four types of
replications:

1. Strict replication. Which is meant to replicate a prior study as precisely as
possible.

2. Differentiated replication. Which intentionally alters aspects of the prior
study in order to test the limits of that study’s conclusions.

3. Dependent replication. Which is a study that is specifically designed with
reference to one or more previous studies, and is, therefore, intended to be
a replication study.

4. Independent replication. Which addresses the same questions and/or hy-
potheses of a previous study, but is conducted without knowledge of, or
deference to, that prior study either because the researchers are unaware of
the prior work, or because they want to avoid bias.

Other ESE works mention replication types but do not refer to any classification.
For example, Brooks et al. [83] and Mendonça et al. [84] mention differences
between internal and external replication. Shull et al. [26] discuss some types
of replications (exact, independent, dependent and conceptual replications) to
describe the role that they play in ESE. Finally, Lung et al. [85] mention two
types of replication (literal and theoretical replication) to explain the type of
replication that they ran, and Mandić et al. [86] discuss two types of replications,
namely, exact or partial replications, and replications designed to improve the
goal of the original experiment.

8 Purposes of Replication in ESE

The elements of an experiment to be replicated vary depending on the purpose
of the replication. We have identified five elements that can vary in a replication:

1. Experimenters. The experimenters in a replication can be the same peo-
ple as participated in the baseline experiment, different experimenters or a
mixture of both, though some cooperation between the baseline experiment
researchers and the replicators.

2. Site. The replication can be run at the same site as the baseline experiment
or at another place.

3. Experimental Protocol. This term refers to the experimental design, instru-
ments, materials, experimental objects, forms and procedures used to run an
experiment. The experimental protocol is how these elements are set up for
use by the experimenter to observe the effects of the treatments. Different
elements of the protocol can be changed in a replication.
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4. Construct Operationalizations. Operationalizations describe the act of trans-
lating a construct into its manifestation. In a controlled experiment we have
cause and effect operationalizations. The cause operationalizations repre-
sent the primary treatments to be evaluated in the experiment (independent
variables) whereas the effect operationalizations represent the response vari-
ables (dependent variables) used to measure the effects of the treatments.
Both types of operationalization contain elements that can be varied in a
replication.

5. Population Properties. In SE experiments there are at least two populations
that are worth generalizing: the subjects and the experimental objects with
which subjects work or interact during the experiment. The generalization
takes place when the replication changes the properties of the subject or the
experimental objects.

Based on the elements that may vary in a replication, we identify the following
purposes of a replication in ESE:

1. Control for Sampling Error. If the basic elements of the baseline experiment
structure are kept unchanged, the purpose of the replication is to verify that
the results output by that experiment are not chance outcomes. This function
is useful for verifying that the effect identified in the baseline experiment is
not due to a Type-I error.

2. Control for Experimenters. If different experimenters run the replication,
then it aims is to verify that the experimenters do not influence the results.

3. Control for Site. If the replication is run at another site, then it aims is to
verify that the results are independent of the site where the experiment is
run.

4. Control for Artifactual Results. If the experimental protocol is changed, the
purpose of the replication is to verify that the observed results are not arti-
factual, that is, they reflect reality and are not a product of the experimental
protocol setup.

5. Determine Limits for Operationalizations. If the operationalizations are
changed a replication aims to determine the range of variation of the primary
treatments (independent variables) and the measures (dependent variables)
used to gauge the effects of the treatments.

6. Determine Limits in the Population Properties. If the population properties
are changed, the purpose of the replication is to determine the types of
experimental subject or objects to which the results of the replication hold.

9 Conclusions

Replication plays an important role in scientific progress where facts are at least
as important as ideas [31]. Experiments have to be replicated to identify ev-
idences. If we want to build up a SE body of knowledge based on empirical
evidence, different types of replications have to be run. In this chapter we have
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studied the concept of replication as it is used in other scientific disciplines with
the aim of getting a better understanding of this mechanism.

Although we identified several replication typologies, replication types are not
standardised at either the intra or interdisciplinary level. Some authors use the
same replication name, although they each define the replication differently. Also
authors use different replication names to refer to equivalent replications types.

Several of the different replication types that we have found describe changes
of the structure of the experiment to be replicated. That is, replication can
have different levels of similarity to the baseline experiment. The changes to the
experiment in a replication are linked with the verification purposes. Although
the aim of a replication is to verify the experimental outcomes, a replication has
specific purposes depending on which elements in the experiment are varied.

All different replication purposes have to be reached and satisfied in order
for an experiment result to be considered verified. A systematic approach where
different types of replications are planified can help experimenters to advance
step by step in the verification path.

Discovering new conditions influencing the results of the experiments (and
thus software development) is an important co-lateral effect of replications. With
a better understanding of these conditions, we will be able to assemble the small
segments learnt in systematically varied replications to put together a piece of
knowledge.
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30. Dyb̊a, T., Kampenes, V., Sjøberg, D.: A Systematic Review of Statistical Power
in Software Engineering Experiments. Information and Software Technology 48(8),
745–755 (2006)

31. Hunter, J.: The Desperate Need for Replications. Journal of Consumer Re-
search 28(1), 149–158 (2001)

32. Kampenes, V., Dyb̊a, T., Hannay, J., Sjøberg, D.: A Systematic Review of Ef-
fect Size in Software Engineering Experiments. Information and Software Technol-
ogy 49(11-12), 1073–1086 (2007)

33. La Sorte, M.A.: Replication as a Verification Technique in Survey Research: A
Paradigm. The Sociological Quarterly 13(2), 218–227 (1972)

34. Singh, K., Ang, S.H., Leong, S.M.: Increasing Replication for Knowledge Accumu-
lation in Strategy Research. Journal of Management 29(4), 533–549 (2003)

35. Schmidt, S.: Shall We Really Do It Again? The Powerful Concept of Replication
Is Neglected in the Social Sciences. Review of General Psychology 13(2), 90–100
(2009)

36. Moonesinghe, R., Khoury, M.J., Janssens, A.C.: Most Published Research Findings
Are False – But a Little Replication Goes a Long Way. PLoS Med. 4(2), 218–221
(2007)

37. Pfleeger, S.L.: Experimental Design and Analysis in Software Engineering: Part 2:
how to set up and experiment. SIGSOFT Softw. Eng. Notes 20(1), 22–26 (1995)

38. Polit, D.F., Hungler, B.P.: Nursing Research: Principles and Methods, p. 816. Lip-
pincott Williams & Wilkins (1998)

39. Berthon, P., Pitt, L., Ewing, M., Carr, C.L.: Potential Research Space in MIS: A
Framework for Envisioning and Evaluating Research Replication, Extension, and
Generation. Info. Sys. Research 13, 416–427 (2002)

40. Popper, K.: The Logic of Scientific Discovery. Hutchinson & Co. (1959)
41. Hempel, C.G.: Philosophy of Natural Science. Prentice-Hall (1962)
42. Campbell, D.T., Stanley, J.C.: Experimental and Quasi-Experimental Designs for

Research. Houghton Mifflin Company (June 1963)
43. Collins, H.M.: Changing Order: Replication and Induction in Scientific Practice.

Sage Publications (1985)
44. Broad, W., Wade, N.: Betrayers Of The Truth, Fraud and Deceit in the Halls of

Science. Simon & Schuster, Inc. (1982)
45. Fahs, P.S., Morgan, L.L., Kalman, M.: A Call for Replication. Journal of Nursing

Scholarship 35(1), 67–72 (2003)
46. Glass, P., Avery, G.B., Subramanian, K.N.S., Keys, M.P., Sostek, A.M., Friendly,

D.S.: Effect of Bright Light in the Hospital Nursery on the Incidence of Retinopathy
of Prematurity. New England Journal of Medicine 313(7), 401–404 (1985)

47. Ackerman, B., Sherwonit, E., Williams, J.: Reduced Incidental Light Exposure:
Effect on the Development of Retinopathy of Prematurity in Low Birth Weight
Infants. Pediatrics 83(6), 958–962 (1989)

48. Reynolds, J.D., Hardy, R.J., Kennedy, K.A., Spencer, R., van Heuven, W., Fielder,
A.R.: Lack of Efficacy of Light Reduction in Preventing Retinopathy of Prematu-
rity. New England Journal of Medicine 338(22), 1572–1576 (1998)

49. Seiberth, V., Linderkamp, O., Knorz, M.C., Liesenhoff, H.: A Controlled Clinical
Trial of Light and Retinopathy of Prematurity. Am. J. Ophthalmol. 118(4), 492–
495 (1994)

50. Restivo, S.: Science, Technology, and Society: An Encyclopedia, p. 728. Oxford
University Press (May 2005)

51. Collins, H.: The Experimenter’s Regress as Philosophical Sociology. Studies in
History and Philosophy of Science Part A 33, 149–156(8) (2002)



Replication of Software Engineering Experiments 79

52. Hume, D.: An Enquiry Concerning Human Understanding (1749)
53. Hempel, C.G.: Studies in the Logic of Confirmation (I.). Mind 54(213), 1–26 (1945)
54. Good, I.: The White Shoe Is A Red Herring. British Journal for the Philosophy of

Science 17(4), 322 (1967)
55. Goodman, N.: Fact, Fiction, and Forecast. Harvard University Press (1955)
56. Bayes, T.: An Essay towards solving a Problem in the Doctrine of Chances. Philo-

sophical Transactions of the Royal Society of London (1763)
57. Fisher, R.A.: The Design of Experiments. Oliver & Boyd (1935)
58. Neyman, J.: First Course in Probability and Statistics. Henry Holt (1950)
59. Rivadula, A.: Inducción, Deducción y Decisión en las Teoŕıas Estad́ısticas de la
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A Descriptions of the Replications Typologies

A.1 Bahr et al. [62]

Types A..P. This classification categorizes replications according to four di-
chotomic properties (equal or different) of a replication. These properties are:
time, place, subjects and methods. Based on combinations of these properties,
Bahr et al. define 16 replication types.

A.2 Easley et al. [61]

Type 0 (Precise Duplication). This replication is defined as a precise duplication
of a prior study. Therefore, Type 0 (precise duplication) studies are those studies
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in which every nuance of the experimental setting is precisely reproduced; as
such, the cause-effect relationship is finite. The ability to conduct a Type 0
replication is limited to experimenters in only some of the natural sciences. As
others have stated, it is an impossibility to conduct a Type 0 replication in a
social science context because uncontrolled extraneous factors have the potential
to interact with the various components in an experimental setting. For example,
human subjects cannot be precisely duplicated. A social scientist is limited only
to matching subjects as closely as possible.

Type I (Duplication). A type I replication is a faithful duplication of a prior
study and, as such, is considered the “purest” form of replication research in the
social sciences. It should be mentioned at this point that a Type I replication is
the one most closely associated with the term “replication” in the minds of most
researches. More over, this is also the type of replication research most criticized
for not being creative. This is somewhat ironic, given the apparent receptivity
of reviewers to cross-cultural research that, in many cases, is usually the study
of the generalizability of findings from a single country or culture to others and,
thus, is simply a Type I replication.

Type II (Similar). A type II replication is a close replication is a close replication
of a prior study, and a Type III replication is a deliberate modification of a prior
study. Type II replications are the most common form of replication research
in marketing settings and are useful in testing phenomena in multiple contexts.
If effects are shown in a variety of testing contexts, the case for the findings is
strengthened. This has been called the process of triangulation.

Type III (Modification). This replication is a deliberate modification of a prior
study. In a Type III replication, the threat of extraneous factors inherent to the
nature of human subjects, unless explicitly accounted for in theory testing, is
not a factor of concern with regard to replicability.

A.3 Evanschitzky and Armstrong [64]

Real Replications. This replication is a duplication of a previously published
empirical study that is concerned with assessing whether similar findings can
be obtained upon repeating the study. This definition covers what are variously
referred to as “exact”, “straight” or “direct” replications. Such works duplicate
as closely as possible the research design used in the original study by employ-
ing the same variable definitions, settings, measurement instruments, analytical
techniques, and so on.

Model Comparisons. This replication is an application of a previously published
statistical analysis that is concerned with assessing whether a superior goodness-
of-fit can be obtained, comparing the original statistical model with at least one
other statistical model.
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Data Re-analyses. This replication can be defined as an application of previously
published data that is concerned with assessing whether similar findings can be
obtained using a different methodology with the same data or a sub-sample of
the data.

A.4 Finifter [71]

Virtual Replication. The intention is to repeat an original study not identically
but “for all practical purposes” to see whether its results hold up against chance
and artifact. Virtual replications are also frequently conducted to find out how
dependent a result is on the specific research conditions and procedures used in
an original study. To answer this question, one or more of the initial method-
ological conditions is intentionally altered. For example, a survey or experiment
might be repeated except for a change in measuring devices, in the samples used,
or in research personnel. If the initial result reappears despite changes, faith in
the original finding mounts.

Systematic Replication. The emphasis in systematic replication is not on repro-
ducing either the methods or the substance of a previous study. Instead, the
objective is to produce new findings (using whatever methods) which are ex-
pected by logical implication to follow from the original study being replicated.
When such an implication is actually confirmed by systematic replication, con-
fidence is enhanced not only in the initial finding that prompted the replication
but also both in the derived finding and in whatever theoretical superstructure
was used to generate the confirmed inference.

Pseudoreplication. It can be defined according to three main operational vari-
ations: the repetition of a study on certain subsets of an available total body
of real data; the repetition of areal data study on artificial data sets which are
intended to simulate the real data; and the repeated generation of completely
artificial data sets according to an experimental prescription.

A.5 Hendrick [70]

Strict Replication. An exact, or strict, replication is one in which independent
variables (treatments) are duplicated as exactly as possible. That is, the physical
procedures are reinstituted as closely as possible. It is implicitly assumed that
contextual variables are either the same as in the original experiment, or are
irrelevant.

Partial Replication. A partial replication is some change (deletion or addition) in
part of the procedural variables, while other parts are duplicated as in the orig-
inal experiment. Usually some aspect of the procedures is considered “unessen-
tial”, or some small addition is made to expedite data collection.

Conceptual Replication. A conceptual replication is an attempt to convey the
same crucial structure of information in the independent variables to subjects,
but by a radical transformation of the procedural variables. In addition, specific
task variables are often necessarily changed as well.
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A.6 Hunter [31]

Statistical Replication. For statistical replications as perfectly replicated studies:

1. All studies measure the independent variable in exactly the same way.
2. All studies measure the dependent variable in exactly the same way.
3. All studies use exactly the same procedure.
4. All studies draw samples from the same population.

Scientific Replication. For scientific replications for simple causal studies:

1. All studies measure the same independent variable X.
2. All studies measure the same dependent variable Y.
3. All studies use essentially the same procedure.
4. All studies should sample from populations that are equivalent in terms

of the study question and hence the study outcome. The difference is that
statistical replications assume that the word “same” means identical, while
scientists interpret the word “same” to mean equivalent.

Conceptual Replication. This replication verifies one of the hypotheses that were
not tested in the original study. The researcher of the original study defines con-
trol groups to test the most obvious alternative hypotheses against administrative
details that are thought to be irrelevant. Any treatment, intervention or manipu-
lation is a set of administrative procedures, which are mostly intrinsic to the active
ingredient of the treatment. These replications examine whether the administra-
tive procedures influence the treatments as reflected in the dependent variable.

A.7 Van IJzendoorn [63]

Complete Secondary Analysis. It is a kind of replication in which all parame-
ters except the researcher and the method of data analysis are kept constant.
Secondary analysis also is one of the most inexpensive and efficient types of
replication, because it is based on existing data sets. One of the main barriers
to secondary replication is, however, the accessibility of the original data sets.
The complete secondary analysis may include recoding of the original raw data.
In this replication, there are two phases of processing the raw data involved: the
coding and analyzing of the data.

Restricted Secondary Analysis. In this type, the coding system is not changed but
only the methods of analyzing the data, to see whether the original results survive
statistical criticism or the application of refined methods of statistical analysis.

Exact Replication. A replication will be called “exact” if it is essentially similar
to the original study. This replication is applied to (dis)confirm the doubts, and
to check the assumptions of the varied replications. Many scientists feel that exact
replications may be carried out, but usually are irrelevant for scientific progress.

Varied Replication. Replications should be carried out in which new data un-
der different conditions are being collected. From the start, the original study
will be “trusted” so much that rather significant variations in the design will be
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applied. Larger variations may lead to more interesting discoveries in addition
to the original study, but they will be followed by smaller variations if more
global replications fail to produce new “facts”. If even modest variations fail to
reproduce the results, a more or less exact replication is needed.

A.8 Kantowitz et al. [65]

Direct Replication. This is the attempt to repeat the experiment as closely as is
practical, with as few changes as possible in the original method.

Systematic Replication. The experimenter attempts to vary factors believed to
be irrelevant to the experimental outcome. If the phenomenon is not illusory,
it will survive these changes. If the effect disappears, then the researcher has
discovered important boundary conditions on the phenomenon being studied.

Conceptual Replication. One attempts to replicate a phenomenon, but in a way
radically different from the original experiment.

A.9 Kelly et al. [72]

Literal Replication. The earlier findings may be reexamined using the same ma-
nipulations (independent variables, experimental procedures, etc.) and measures
(dependent variables, methods of data analysis, etc.).

Operational Replication. If the experimenter wishes to vary criterion measures,
the experiment would be termed an operational replication. In this instance,
the dependent variable would represent a different operationalization of the con-
struct; the essential conceptual meaning would remain unchanged.

Instrumental Replication. This replication is carried out when the dependent
measures are replicated and the experimental manipulations are varied. Varia-
tions in the implementation of experimental procedures which do not go beyond
the originally established relationship would be included in this category.

Constructive Replication. A constructive replication attempt may be identified
when both manipulations and measures are varied. This replication involves the
attempt to achieve equivalent results using an entirely original methods recipe.

A.10 La Sorte [33]

Retest Replication. In its general form retest replication is a repeat of an original
study with few if any significant changes in the research design. The retest has
two major purposes: 1) it acts as a reliability check of the original study, and
2) inconsistencies and errors in procedure and analysis can be uncovered in the
repeat. Although the retest increases one’s confidence that the findings are not
artifactual, it does not eliminate the possibility of error in process, especially
when the same investigator conducts both studies.

Internal Replication. The differences between the retest and internal replica-
tion are mainly procedural. Instead of seeking confirmation of an original study,
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the internal replication is built into the original study design. So the data, part
of which are used for the replication, are gathered simultaneously by the same
investigator using a common set of research operations. One finds variations
in the procedures for selecting the samples. Two of these procedures are: 1)
drawing two or more independent samples, and 2) taking a single sample and
later dividing it into subsamples for purposes of analysis and comparison. The
internal replication provides an additional data supply which acts to cross-check
the reliability of the observed relationships. Thus it is methodologically superior
to the single study where the hypothesis is tested only once by one body of data.

Independent Replication. Independent replication is the basic procedure for ver-
ifying an empirical generalization. It does this by introducing significant modifi-
cations into the original research design in order to answer questions about the
empirical generalization that go beyond those of reliability and confirmation. The
essential modifications include independent samples drawn from related or dif-
ferent universes by different investigators. These replications differ in design and
purpose. They can, however, be broadly categorized into three problem areas.
First, is the empirical generalization valid? Second, does further investigation
extend it to other social situations or subgroups outside the scope of the origi-
nal study? Or, third, is the empirical generalization limited by the conditions of
particular social situations or specific subgroups?

Theoretical Replication. It involves the inductive process of examining the fea-
sibility of fitting empirical findings into a general theoretical framework. These
replications seek to verify theoretical generalizations. In these replications, em-
pirical variables, which have concrete anchoring points are abstracted and con-
ceptualized to a higher theoretical plane, it is necessary to sample a variety of
groups using different indicators of the same concepts.

A.11 Leone and Schultz [73]

Experimental Replication. The same experiment is conduced more than once,
although there can be (especially with social systems) no perfect replications. It
involves the same method and the same situation.

Nonexperimental Replication. The same method is applied to different situations.

Corroboration. It involves different method and same situation, or different
method and different situation.

A.12 Lindsay and Ehrenberg [68]

Close Replication. This replicationattempts to keepalmost all theknowconditions
of the study much the same or at least very similar (for example, the population or
populations in question, the sampling procedure, the measuring techniques, the
background conditions, and the methods of analysis). A close replication is par-
ticularly suitable early in a program of research to establish quickly and relatively
easily and cheaply whether a new result can be repeated at all.
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Differentiated Replication. It involves deliberate, or at least known, variations in
fairly major aspects of the conditions of the study. The aim is to extend the range
of conditions under which the result still holds. Exploring a result with deliber-
ate variations in the conditions of observation is the essence of generalization.
According to the authors, there are three reasons for running a differentiated
replication:

1. Use different methods (different measuring instruments, analysis procedures,
experimental setups, and/or investigators) to reach the same result (trian-
gulation),

2. Extended the scope of the results,
3. Define the conditions under which the generalization no longer holds.

A.13 Lykken [69]

Literal Replication. This involves exact duplication of the first investigator’s sam-
pling procedure, experimental conditions, measuring techniques, and methods of
analysis.

Operational Replication. One strives to duplicate exactly just the sampling and
experimental procedures given in the first author’s report. The purpose of op-
erational replication is to test whether the investigator’s “experimental recipe”
the conditions and procedures he considered salient enough to be listed in the
“Methods” section of his report will in other hands produce the results that he
obtained.

Constructive Replication. One deliberately avoids imitation of the first author’s
methods. To obtain an ideal constructive replication, one would provide a com-
petent investigator with nothing more than a clear statement of the empirical
“fact” which the first author would claim to have established.

A.14 Mittelstaedt and Zorn [67]

Type I. The replicating researcher uses the same data sources, models, proxy
variables and statistical methods as the original researcher.

Type II. The replicating researcher uses the same data sources, but employs
different models, proxy variables and/or statistical methods.

Type III. The replicating researcher uses the same models, proxy variables and
statistical methods, but applies them to different data than those used by the
original researcher.

Type IV. In this replication, different models, proxy variables and statistical
methods are applied to different data.
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A.15 Monroe [74]

Simultaneous Replication. Does the same researcher in the same study investigate
consumer reactions to more than one product, or to more than one advertise-
ment?

Sequential Replication. Does the researcher or another researcher repeat the
study using the same or different stimuli at another point in time?

Nonindependent Replication. The replication is conducted by the same researcher.

Independent Replication. The replication is conducted by different researcher.

Assumed Replication. For example, a researcher using both males and females
simultaneously in a study and finding no gender covariate effect assumes repli-
cation across gender.

Demonstrated Replication. What is preferable is separate gender conditions
wherein the effect has or has not been obtained separately for males an females,
that is, demonstrated.

Strict Replication. The replication is a faithful reproduction of the original study.

Partial Replication. The replication is a faithful reproduction of some aspects of
the original study.

Conceptual Replication. The replication uses a similar conceptual structure but
incorporates changes in procedures and independent variables.

A.16 Radder [75]

Reproducibility of the material realization of an experiment. In this type of repro-
duction, the replicator correctly performs all the experimental actions following
instructions given by the experimenter who ran the previous experiment. This
reproduction is based on a division of labour, where other previously instructed
people can run the replication without being acquainted with the theory under-
lying the experiment. As in this reproduction it is possible to follow the same
procedure to verify the outcome without detailed knowledge of the theory, there
may be differences in the theoretical interpretations of the experiment.

Reproducibility of an experiment under a fixed theoretical interpretation. This
reproduction implies that the conditions of the previous experiment can be in-
tentionally altered in the replications, provided that the variations are irrelevant
to the theoretical interpretation of the experiment.

Reproducibility of the results of an experiment. This type of reproduction refers
to when it is possible to achieve the same result as a previous experiment using
different methods. This category excludes a reproduction of the same material
operationalization.
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A.17 Schmidt [35]

Direct Replication. This involves repeating the procedure of a previous experi-
ment. In this replication, the context variables, the dependent variable or subject
selection are open to modification.

Conceptual Replication. This is the use of different methods to retest the hy-
pothesis or result of a previous experiment.

A.18 Tsang and Kwan [66]

Checking of Analysis. In this type of replication, the researcher employs exactly
the same procedures used in a past study to analyze the latter’s data set. Its
purpose is to check whether investigators of the original study have committed
any errors in the process of analyzing the data.

Reanalysis of Data. Unlike the checking of analysis, in this type of replication,
the researcher uses different procedures to reanalyze the data of a previous study.
The aim is to assess whether and how the results are affected by problems of
definition, as well as by the particular techniques of analysis. Quite often the
replication involves using more powerful statistical thecniques that were not
available when the original study was conducted.

Exact Replication. This is the case where a previous study is repeated on the
same population by using basically the same procedures. The objective is to keep
the contingent conditions as similar as possible to those of the previous study.
The researcher usually uses a different sample of the subjects. The main purpose
is to assess whether the findings of a past study are reproducible.

Conceptual Extension. A conceptual extension involves employing procedures
different from those of the original study and drawing a sample from the same
population. The differences may lie in the way of measuring constructs, struc-
turing the relationships among constructs, analyzing data, and so forth. In spite
of these differences, the replication is based on the same theory as the original
study. The findings may lead to a revision of the theory.

Empirical Generalization. In this replication, a previous study is repeated on
different populations. The researcher runs an empirical generalization to test
the extent to which the study results can be generalized to other populations. It
follows the original experimental procedures as closely as possible.

Generalization and Extension. The researcher employs different research proce-
dures and draws a sample from a different population of subjects. The more impre-
cise the replication, the greater the benefit to the external validity of the original
finding, if its results support the finding. However, if the result fail to support the
original finding, it is difficult to tell whether that lack of support stems from the
instability of the finding or from the imprecision of the replication.
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Abstract. Operational semantics is a flexible but rigorous means to describe
the meaning of programming languages. Small semantics are often preferred,
for example to facilitate model checking. However, omitting too many details in
a semantics limits results to a core language only, leaving a wide gap towards
real implementations. In this paper we present a comprehensive semantics of
the concurrent programming model SCOOP (Simple Concurrent Object-Oriented
Programming). The semantics has been found detailed enough to guide an imple-
mentation of the SCOOP compiler and runtime system, and to detect and correct a
variety of errors and ambiguities in the original informal specification and proto-
type implementation. In our formal specification, we use abstract data types with
preconditions and axioms to describe the state, and introduce a number of special
operations to model the runtime system with our inference rules. This approach
makes our large formal specification manageable, providing a first step towards
reference documents for specifying concurrent object-oriented languages based
on operational semantics.

1 Introduction

Concurrent programming has become an important part of mainstream software devel-
opment, caused by the widespread use of multicore processors. The notorious difficulty
of writing concurrent programs correctly has on the other hand spawned work into novel
language abstractions to express concurrency and synchronization. One such language
is SCOOP [21,25], an object-oriented programming model for concurrency based on
the idea of contracts.

The main idea of SCOOP is to simplify the writing of correct concurrent programs
for developers, who can use familiar concepts from object-oriented programming but
are protected by the model from common concurrency errors such as data races. This
is achieved by a runtime system that automatically takes care of operations such as
obtaining and releasing of necessary locks, without the need for explicit program state-
ments. While being based on conceptually simple ideas, the semantics of the language
concepts and runtime system turns out to be very complex.

The question is therefore how the semantics can be properly documented. The initial
version of SCOOP has been defined in [21], where all the main concepts are outlined
but implementation aspects are neglected for the most part. A first prototype implemen-
tation was then introduced in [25], where the semantics was described only informally,
with the exception of a formalization of the type system. In this paper we provide a full
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formalization of the operational behavior of SCOOP, specified by a structural opera-
tional semantics. The main contributions of the paper are:

– A formal specification of SCOOP that treats all important language elements.
– Clarification and correction of the informal specification in [25].

This work does not provide a formal completeness and soundness proof with respect
to an axiomatic semantics. Sec. 6 discusses this possibility as part of future work. This
work focuses on a formal reference for a concurrent programming language. We argue
that this formal reference reflects and corrects the informal description by following a
systematic approach.

This article is a condensed version of our technical report [24] on the same subject.
This paper is structured as follows. The remainder of this introduction gives a brief
overview of the main ideas of the SCOOP model to provide a basic intuition for the main
part of the paper. Sec. 2 gives an overview of related work. Sec. 3 gives an overview
of the considered language. The two following chapters contain the main parts of the
formalization: Sec. 4 describes the state formalization and Sec. 5 the formalization of
computations. Sec. 6 concludes and discusses future applications of the formalization.

1.1 An Informal Overview of SCOOP

The starting idea of SCOOP is that every object is associated for its lifetime with a
processor, called its handler. A processor is an autonomous thread of control capable
of executing actions (features) on objects. A processor can be a hardware CPU, but
it can also be implemented in software, for example as a process or as a thread; any
mechanism that can execute instructions sequentially is suitable as a processor.

A reference variable belonging to a processor (for example, a field of an object han-
dled by that processor) can point to an object with the same handler, or to an object on
another processor. In the second case the reference is said to be separate. The semantics
of a call x.f depends on this distinction: if x is not separate (as always in sequential pro-
gramming), the call is synchronous; if x is separate, meaning that it points to an object
handled by a different processor, that processor will execute the call asynchronously.
This possibility of asynchronous calls is the main source of concurrent execution.

The producer-consumer problem serves as a simple illustration of these ideas. A root
class defines the entities producer and consumer. The keyword separate specifies that
these entities may be handled by a processor different from the current one. A creation
instruction on a separate entity such as producer and consumer will create an object on
another processor; by default the instruction also creates that processor.

producer: separate PRODUCER
−− The producer.

consumer: separate CONSUMER
−− The consumer.
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Both the producer and the consumer access an unbounded buffer:

buffer: separate BUFFER [INTEGER]
−− The data structure for exchanging objects between the producer and the

consumer.

Both the producer and the consumer need to access the buffer, in calls such as buffer.put
(x) and buffer.item. The basic SCOOP rule to ensure mutual exclusion and guarantee

the absence of data races is that any target that is declared as separate, such as buffer,
must be an argument of an enclosing routine, which in turn guarantees that this routine
has exclusive access to the corresponding separate object for the duration of its execu-
tion. The SCOOP scheduler locks the processors handling all objects corresponding to
these controlled arguments. This rule prevents any data races on the group of controlled
objects. For example, in a call consume (buffer), the buffer is controlled; the call gets
exclusive access to its handler.

Condition synchronization relies on preconditions (after the require keyword) to
express wait conditions. Any precondition of the form x.some condition will make the
execution of the routine wait until the condition is true. For example, the precondition
of the consume routine ensures that the routine will wait until the buffer is not empty.

consume (buffer: separate BUFFER [INTEGER])
−− Consume an item from the buffer.

require
not (buffer.count = 0)

local
consumed item: INTEGER

do
consumed item := buffer.item

end

During a feature call, the consumer processor could pass its locks to the buffer processor
if it has a lock that the buffer processor requires. This mechanism is known as lock
passing. In such a case, the consumer processor would have to wait for the passed locks
to return. For the feature call buffer.item, the buffer processor does not require any
locks from the consumer processor. Hence, the consumer processor does not have to
wait due to lock passing. However, the runtime system ensures that the result of the call
buffer.item is properly assigned to the entity consumed item using a mechanism called
wait by necessity: while the consumer processor usually does not have to wait for an
asynchronous call to finish, it will do so if it needs the result of this call.

As the buffer is unbounded, the corresponding producer routine does not need a wait
condition; mutual exclusion will be ensured as before:

produce (buffer: separate BUFFER [INTEGER])
−− Produce an item and put it into the buffer.
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local
produced item: INTEGER

do
produced item := new item
buffer.put (produced item)

end

The asynchronous nature of separate calls such as buffer.put (x) implies a distinction
between the notion of feature call and feature application. In sequential programming,
executing a call means executing the corresponding feature immediately. With asyn-
chronous calls, the client processor logs the call with the supplier processor (feature
call) and moves on. Only at some later time will the supplier processor actually execute
the body (feature application).

The main part of the paper defines formally the implementation that gives rise to the
behavior outlined above. It also introduces advanced concepts and additional language
elements, which cannot be covered in a brief overview, and shows how these give rise
to a complexity which can only be dealt with satisfactorily with a formal specification.

2 Related Work

The discussion is divided into work on SCOOP and work on other languages.

2.1 Approaches for SCOOP

In his dissertation, Nienaltowski [25] worked out the details of an implementation of
SCOOP as suggested by Meyer [21], and provided a prototype implementation. The
language semantics is described informally only, with the exception of the type system
which is defined using an inference system. The informal description and the prototype
contain various ambiguities and omissions, which we are able to clarify.

Torshizi et al. [33] have defined and implemented JSCOOP, a version of the SCOOP
model for the Java language. Only the most important language elements are consid-
ered, and no attempt at formalization is made. In contrast, our specification and imple-
mentation [31] on top of Eiffel considers all language elements. We believe that our
specification could help to extend JSCOOP to a full treatment of the language concepts.

Brooke, Paige and Jacob [5] have used CSP [13] to give a semantics to SCOOP as
described by Meyer [21]. Their initial hope was to use tools for analyzing CSP speci-
fications, such as FDR, to automatically check for deadlock in SCOOP programs, but
found the size of the specification prohibitive. A benefit of their approach is that CSP
provides the machinery needed to express concurrency and synchronization, leading to
a relatively concise model. Our goal is to provide formal descriptions close to an actual
implementation, and therefore prefer to design an own operational semantics, rather
than going through the indirection of another process algebra.

Structural operational semantics, introduced by Plotkin [29], is a flavor of operational
semantics that has been used with great success to define various concurrent systems.
Our specification uses this style of semantics as well. To model SCOOP we also make
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use of established modeling concepts from process algebra, such as the notion of chan-
nels, which is present in most calculi such as CSP [13] or the π-calculus [23]. We use
the theory of abstract data types (ADT) [18] to model the elements of a program text
and to model the state of a SCOOP program.

Ostroff et al. [28] describe a structural operational semantics for SCOOP in the re-
fined version by Nienaltowski [25]. This operational semantics inspired our work, and
we have attempted to stay close to their modeling ideas where possible, so that [28]
can be viewed as a reduced version of the semantics we describe in this paper. While
[28] covers some of the most significant aspects of SCOOP, it falls short of describ-
ing a number of other critical language concepts: in their reduced model, a query rou-
tine handled by some processor p must not make calls to a processor other than p;
lock passing, expanded objects and the import mechanism, once routines, evaluation of
(asynchronous) postconditions and invariants, and explicit processor tags are not con-
sidered. We clarify these aspects in this paper. Furthermore, [28] have pursued the goal
to check temporal logic properties of SCOOP programs using their semantics and the
SPIN model checker, but were limited to small programs by state space explosion. We
have the different goal of providing a reference document for SCOOP, and thus don’t
have to sacrifice coverage of the language for keeping the specification small.

2.2 Approaches for Other Concurrent Programming Languages

Axum [22] is a concurrent programming language based on the actor model. In Axum,
actors are called agents. An agent is an isolated runtime component that executes in par-
allel with other agents. The agents communicate with each other by sending messages
through channels. Each channel has input ports, output ports, and a protocol. The ports
are queues of messages. The protocol is a state machine that defines how the channel
behaves. Schemas define the structure of messages. Besides message passing, Axum
also provides domains – shared state between groups of actors. Erlang [10] and Scala
[27] are further examples of actor-based programming languages.

Cω [3] is an extension of C# that integrates elements of the Join Calculus [11].
Cω allows computations to be spawned off into different threads using asynchronous
methods: while for synchronous methods the caller must wait until a routine completes,
asynchronous methods return immediately while their body is scheduled for execution
in another thread. Cω supports so-called chords, which associate the body of a routine
with more than one method; the body is executed only if all methods have been called.

Another language is Cilk [4], which extends C with concurrency concepts. A method
marked with the cilk keyword can be asynchronously spawned with the spawn keyword.
The sync keyword requires the current method to wait for all previously spawned tasks
to complete. An inlet function within a parent method receives the result of a spawned
child method; the inlet functions of a parent method are guaranteed to execute atom-
ically. Within an inlet function, the abort keyword tells the scheduler that any other
child method spawned by the parent method can be aborted. Cilk also implements a
work stealing mechanism to achieve high performance by dividing method executions
efficiently among processors.

Ada [14] defines tasks – units that can run in parallel. A task is declared within a
procedure; it consists of a specification and an implementation. The task is activated
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when the procedure starts executing. The task specification can define a number of en-
try points with parameters; an entry point specifies an action the task can synchronize
on. An accept statement within the task body indicates the point where the rendezvous
can take place. Another task calls the entry point to take part in the rendezvous. With
a select statement, one can wait for multiple entry points; alternatives may be guarded
with boolean expressions. Ada defines protected objects – a monitor-like construct with
guards instead of conditional variables. A protected object is declared within a proce-
dure; it has a specification and an implementation.

The occam programming language [32] builds on the CSP process algebra [13]. A
parallel construct defines a number of processes that execute concurrently; the parallel
construct terminates when all spawned processes terminated. Processes communicate
with each other through named channels. The alternation construct defines a number of
processes, where only one of them gets executed; a guard defines when a process can
be executed.

X10 [7], Fortress [2], and Chapel [15] are based on the Partitioned Global Ad-
dress Space (PGAS) model. PGAS uses a global shared memory. It defines portions
on the global shared memory and associates them to specific processors to improve
performance and scalability. X10 provides important abstractions such as places, asyn-
chronous methods, future invocations, and barriers. However, it places a considerable
burden on programmers. Fortress offers implicit parallelization of loops and operations
on data structures. Chapel provides a higher-level multithreaded parallel programming
model with abstractions for data parallelism, task parallelism, and nested parallelism.

Linda [12] is a coordination language to connect concurrent components; the com-
ponents can be written in different programming languages. The coordination is based
on a tuple space, which holds data tuples that can be stored and retrieved by the pro-
cesses. Pattern matching is used to read and remove tuples; the operations block until a
matching tuple is found. The eval construct creates a new process to evaluate an expres-
sion; the new process writes the evaluation result into the tuple space. Implementations
of Linda can be found in several programming languages such as Java and C.

For the related languages mentioned above, we are not aware of rigorous behav-
ioral specifications, with the exception of Cω and occam, which use the Join Calculus
respectively CSP as the underlying model. For multi-threaded Java however, such for-
malizations have been attempted.

Ábrahám, de Boer, de Roever, and Steffen [1] present an operational semantics for a
subset of multi-threaded Java. They focus on the most important multi-threaded aspects,
i.e., dynamic thread creation, thread termination, and re-entrant monitors. The seman-
tics consists of two components: the semantics for isolated objects and the semantics
for interacting objects. The authors want to use the semantics to develop a proof sys-
tem that is based on an existing proof-system for isolated objects. A configuration is a
set of instance configurations. An instance configuration contains the attribute values
of one object. It also contains the local environment and the expression of each thread
that is concurrently executing within the object. In modeling the state of a program,
our semantics strictly separates the actions to be executed from the data. This makes
it easier to derive implementations from the semantics because an implementation is
likely to keep the program text and data separate. Ábrahám et al. use transition labels to
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synchronize inference rules. The labels allow an external observer to follow the tran-
sitions. Our semantics is a pure reduction semantics without labels because we do not
require observable transitions.

Cenciarelli, Knapp, Reus, and Wirsing [6] also describe an operational semantics for
a larger subset of multi-threaded Java. They cover a larger number of multi-threaded
aspects than [1]. In particular they formalize Java’s notification mechanism and the
working memory. A configuration consists of a function that maps each thread to its
expression and its local environments. The configuration also has a container with the
objects and the static typing information. Lastly, the configuration consists of an event
space. The event space is a partially ordered set of events that have been executed by the
threads. The ordering reflects the order in which the events took place. An event space
serves two purposes. First, it contains certain aspects of the state. For example, the lock
and unlock actions tell us which thread owns which lock. Second, it records the history.
A number of constraints state when an event space is valid. Hence, the event space
indicates which further actions can take place. The authors use two different validity
constraints for both Java’s non-prescient semantics and its prescient semantics. Using
this, they show that any prescient execution of a properly synchronized program can be
simulated by a non-prescient execution. Compared to our semantics, there is no clean
division between program text and the state and there is no clean division between the
state and the typing information.

Lochbihler [19] suggest a different operational semantics for a large subset of
multi-threaded Java. Just like [6], he covers the notification mechanism, but he does
not formalize the working memory. He defines an instantiating semantics based on an
extension of Jinja [17]. Jinja is an operational semantics for a subset of single-threaded
Java. The instantiating semantics is used for the sequential case. Lochbihler defines a
generic formal framework to lift the instantiating semantics to the concurrent case. The
configuration of the instantiating semantics consists of the expression, a container with
the objects, and the local environments. The state of the framework semantics consists
of the lock status, the thread information with the thread’s expression along with the
thread’s local environments, a container with the objects, and the wait sets. Lochbihler
formalizes the notion of deadlocks, where deadlocks are either based on locks or on
wait sets. He then proves that every program that satisfies certain criteria either pro-
duces a final value, throws an exception, or deadlocks. He also shows that every such
program preserves type safety.

3 Language Overview

SCOOP is a programming language based on Eiffel, an object-oriented programming
language, defined in the Eiffel ECMA standard [9]. SCOOP’s concurrency model can
be applied to other programming languages as well. For this reason, this work does not
focus on SCOOP, but on its concurrency model. This section defines a subset of SCOOP,
reduced to the parts that are relevant for the concurrency model. It presents the syntax
of the subset and a list of simplifications. It then discusses the program representation
that this formalization assumes.
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3.1 Syntax

The following EBNF grammar defines the set of all considered programs:

program = class declaration* root procedure declaration ;
root procedure declaration = {class name}.routine name ;
class declaration =

[”expanded”] ”class” class name
”inherit” class name
[”create” routine name {”,” routine name}]
”feature” [”{” class name {”,” class name} ”}”] {feature declaration}
[”invariant” expression]

”end” ;

feature declaration = routine declaration | attribute declaration ;
routine declaration =

routine name [”(” entity declaration {”,” entity declaration} ”)”] [”:” type]
[”require” expression]
[”local” entity declaration {entity declaration}]
(”do” | ”once”)

instruction {”;” instruction}
[”ensure” expression]
”end” ;

attribute declaration = entity declaration ;
entity declaration = entity name ”:” type ;

instruction =
entity name ”:=” expression |
expression ”.” feature name [”(” expression {”,” expression} ”)”] |
”create” entity name ”.” routine name [”(” expression {, expression} ”)”] |
”if” expression ”then” instruction {”;” instruction} ”else” instruction {”;”

instruction} ”end” |
”until” expression ”loop” instruction {”;” instruction} ”end” ;

expression =
literal |
entity name |
expression ”.” feature name [”(” expression {, expression} ”)”] ;

literal = boolean literal | integer literal | character literal | void literal ;
boolean literal = ”True” | ”False” ;
integer literal = [”−”](”0” | . . . | ”9”) {”0” | . . . | ”9”} ;
character literal = ” ’ ” ”a” | . . . | ”z” | ”A” | . . . | ”Z” | ”0” | . . . | ”9” ” ’ ” ;
void literal = ”Void” ;

type =
[detachable tag]
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[”separate”] [explicit processor specification]
class name [actual generics] ;

detachable tag =
”attached” | ”detachable” ;

explicit processor specification =
qualified explicit processor specification |
unqualified explicit processor specification ;

qualified explicit processor specification =
”<” entity name ”.” ”handler” ”>” ;

unqualified explicit processor specification =
”<” entity name ”>” ;

class name = name ;
feature name = routine name | entity name ;
routine name = name ;
entity name = name | ”Result” | ”Current” ;
name = (”a” | . . . | ”z” | ”A” | . . . | ”Z”) {”a” | . . . | ”z” | ”A” | . . . | ”Z”};

A class consists of a number of features. A feature is either a routine – a sequence of
instructions – or an attribute – a data storage. If a routine returns a result, then it is
called a function; otherwise, it is called a procedure. If a routine is marked as a once
routine (once keyword), then the routine gets executed only once in a given context.
Functions and attributes are also called queries; routines are also called commands. A
routine can define a precondition (require keyword) and a postcondition (ensure key-
word). The enclosing class can define an invariant (invariant keyword). Each feature
can be exported to a list of classes, so that only these classes can use the feature. A
number of procedures are dedicated creation procedures. These procedures can be used
in creation expression (create keyword) to create new objects. A class can be marked as
an expanded class (expanded keyword). Objects of expanded classes get copied when
they get passed around; objects of non-expanded classes get aliased.

Formally, a type t is a triple (d, p,c). The component d is the detachable tag, p is
the processor tag, and c is the class type. The detachable tag d captures detachability.
An entity of attached type (attached keyword), i.e., d = !, is statically guaranteed to
store a value, i.e., to be non-void. An entity of detachable type (detachable keyword),
i.e., d = ?, can be void. As discussed later, the detachable tag is also used for the selec-
tive locking mechanism to prevent a request queue from being locked. The processor
tag p captures the locality of objects accessed by an entity of the type t. The processor
tag p can be separate (separate keyword without explicit processor specification), i.e.,
p = . The object attached to the entity of the type t is potentially handled by a differ-
ent processor than the current processor. The processor tag p can be explicit (separate
keyword with explicit processor specification), i.e., p = α . The object attached to the
entity of the type t is handled by the processor specified by α . The processor tag p can
be non-separate (no separate keyword), i.e. p = •. The object attached to the entity of
the type t is handled by the current processor. The processor tag p can denote no pro-
cessor, i.e., p =⊥. It is used in the type of the void reference. The explicit processor tag
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either has an unqualified or a qualified specification. An unqualified explicit processor
specification, i.e., < p >, is based on a processor attribute p. The processor attribute
p must have the type (!,•,PROCESSOR) and it must be declared in the same class as
the explicit processor specification or in one of the ancestors. The processor denoted
by this explicit processor specification is the processor stored in p. A qualified explicit
processor specification, i.e., < e.handler >, relies on an entity e occurring in the same
class as the explicit processor specification or in one of the ancestors. The entity e must
be a non-writable entity of attached type and the type of e must not have a qualified
explicit processor tag. The processor denoted by this explicit processor specification is
the same processor as the one of the object referenced by e. Explicit processor tags sup-
port precise reasoning about object locality. Entities declared with the same processor
tag represent objects handled by the same processor. The absence of both the keywords
is treated as if there was an attached keyword.

3.2 Simplifications

This work makes the following simplifications:

– It does not consider unqualified feature calls. It expects all feature calls to be in the
qualified form. This includes accesses to attributes of the current object in expres-
sions.

– It does not consider infix feature calls. It expects all feature calls in the non-infix
form. For example, an expression x > y must be transformed into the equivalent
form x.is greater(y).

– It simplifies the automatic initialization of entities. All entities, except for the cur-
rent object entity, are initialized with the void reference.

– It neglects exception handling. The exception handling mechanism for SCOOP is
still under development.

– It does not consider garbage collection because garbage collection is not refined in
the SCOOP model.

– It does not consider agents. From this work’s point of view, agents are normal
objects.

3.3 Intermediate Representation

For the purpose of the formalization, this work assumes that a program is given in
an enriched intermediate representation, where the syntactical elements are replaced
with instances of abstract data types. In particular, it assumes ADTs for class types,
features, expressions, and instructions. Fig. 1 summarizes these ADTs. The instances
of CLASS TYPE are all possible class types, i.e., the types directly defined by all
non-generic classes and all possible generic derivations of all possible generic classes.
Sec. 4.1 discusses how to get these instances. The ADT CLASS TYPE defines a name
query name. Each class type can either be a reference class type or an expanded class
type. The queries is ref and is exp provide this information. Each class type defines a
number of features. These features can be divided into attributes, functions, and proce-
dures. An attribute of an object stores a value. A function performs a computation and
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+name : NAME
+formals : TUPLE
+is_once : BOOLEAN
+pre_exists : BOOLEAN
+pre : EXPRESSION
+post_exists : BOOLEAN
+post : EXPRESSION
+locals : TUPLE
+body : TUPLE
+is_exported : BOOLEAN
+class_type : CLASS_TYPE

FEATURE

ROUTINE

FUNCTION PROCEDURE ATTRIBUTE

+name : NAME
+context_feature : FEATURE

ENTITY

+feature_by_name(in name : NAME) : FEATURE

+name : NAME
+is_ref : BOOLEAN
+is_exp : BOOLEAN
+attributes : TUPLE
+functions : TUPLE
+procedures : TUPLE
+inv_exists : BOOLEAN
+inv : EXPRESSION

CLASS_TYPE

INSTRUCTION

ASSIGNMENT

IF_INSTRUCTION LOOP_INSTRUCTION

CREATION_INSTRUCTIONCOMMAND_CALL

EXPRESSION

QUERY_CALL

+obj : OBJECT

LITERAL

Fig. 1. ADTs for the intermediate representation

returns the result. This computation must not modify the state. A procedure performs a
computation that modifies the state. Functions and procedures are also known as rou-
tines. For each of these categories, CLASS TYPE defines a query that returns a tuple
of features. The query attributes returns a tuple of attributes, the query functions returns
a tuple of functions, and the query procedures returns a tuple of procedures. If the name
of a feature is known, then the query feature by name can be used to get the feature
with that name. Each class type can have an invariant. The query inv exists indicates
whether such an invariant exists. In case an invariant exists, it can be accessed with the
query inv as an expression. One of the instances of CLASS TYPE is BOOLEAN. This
class type is expanded and it has an attribute with name item. The value of this attribute
is the represented boolean value, i.e., an instance of BOOLEAN.

In this formalization, a feature is an instance of FEATURE. The name of the feature
can be retrieved with the query name and the formal arguments are given by the query
formals that returns a tuple with the formal arguments as entities. Whether or not the
feature is a once feature can be determined using the query is once. The queries pre and
post return an expression for the precondition respectively the postcondition, provided
that the queries pre exists and post exists indicate that the assertions exist. Next, there
is the query locals that gives the locals of the feature as entities. The query body returns
the body of the feature as a tuple of instructions. Each feature is either exported or not.
A non-exported feature is only available in calls on the current object within the class
that declared the feature. An exported feature can be called by other clients as well. The
query exported returns whether a feature is exported or not. Lastly, each feature has a
link to the class it belongs to. This is given by the query class type. This can be used for
example to retrieve the invariant that must be preserved by a feature. For each feature
category, there is an ADT that inherits from the FEATURE ADT.

Expressions can either be entities, literals, or query calls. Every expression is an in-
stance of EXPRESSION. For each form of expression, there is one ADT that inherits
from the EXPRESSION ADT. For entities there is an ADT with a query name that
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returns the name of an entity. A query context feature links an entity to the feature in
which the entity is declared. A literal is a character sequence that represents a con-
stant value. As such, literals count as manifest expressions - programming constructs
whose values can be deduced by the compiler statically. Literals are instances of an
ADT LITERAL. This ADT has instances for booleans, integers, characters, and the
void literal. Each literal except the void literal can be translated into an object with the
query obj. This object matches the literal in both type and value. The following notation
describes instances of EXPRESSION:

e � w | b | e. f (e, . . . ,e)

Here, w is an element of LITERAL, b is an instance of ENTITY, and f is an instance
of FEATURE. For instructions, there is an ADT INSTRUCTION and an ADT for
each kind of instruction. The following notation describes such instances:

h �
b :=e |
e. f (e, . . . ,e) |
create b. f (e, . . . ,e) |
if e then [s{;s}∗] else [s{;s}∗] end |
until e loop [s{;s}∗] end

Here, s stands either for an instance of INSTRUCTION or an operation. Instructions
are actions that occur in the intermediate representation (user syntax). Operations are
actions that do not explicitly occur in the intermediate representation (run-time syntax).

This work builds on an existing type system formalization. It assumes the existence
of a typing environment that can be queried for type information.

4 State Formalization

This section provides a formalization of the state of a SCOOP program. This is neces-
sary to describe the effect of SCOOP constructs on the state. The discussion starts with
the general approach and continues with the description of the state.

4.1 General Approach

This work considers the state of a SCOOP program to be a data structure that can be
created, modified, and queried through features. For the specification of the state, this
work uses Liskov’s ADT theory [18]. The discussion begins with a justification and the
consequences of this choice. The discussion finishes with an explanation on how to get
types for elements in the intermediate representation.

Abstract data types. Meyer’s work on a three-level approach to the description of
data structure [20] defines three levels on which a data structure can be described: func-
tional, constructive, and physical. The functional specification is an algebraic approach
that uses an implicit characterization of the data structure. The constructive specifica-
tion provides a means to construct instances of the data structure. The instances con-
structed like this are mathematical entities. A physical description describes the layout
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of instances in memory. The constructive specification can be derived from the func-
tional specification and the physical description can be derived from the constructive
description.

This work models the state as an ADT instance, on the functional level in the hier-
archy described above. This has several reasons. First of all, ADT theory allows us to
describe the state on an abstract level without dealing with aspects of the implemen-
tation. The constructive and the physical level can be derived from the ADTs on the
functional level. Second, ADT theory allows us to modularize the state. Different con-
cerns of the state can be modeled as individual ADTs, while a single ADT can be used
to consolidate the individual ADTs. This improves understandability and maintainabil-
ity of the state description. Lastly, ADT theory is well established and suitable for the
task at hand.

An ADT t consists of queries, commands, and constructors. A query of t provides
information about an instance of t. The query takes as a first argument the target of
type t, which is the instance to be queried. Next to the target, the query can take further
arguments with types t1, . . . ,tn. Finally, the query returns a result of a type tn+1. The
declaration of this query is written as query : t → t1→ . . .→ tn→ tn+1. For flexibility
reasons, this work uses the curried form (as in Haskell) instead of the equivalent Carte-
sian form query : t× t1× . . .× tn→ tn+1. A command of t returns an updated instance
according to the command’s semantics. The declaration of a command looks much like
the one of a query. However, the result of the command is an instance of t. To simplify
the discussions, the following terminology is used: an update of an ADT instance is
the act of calling a command on the instance; the updated instance is the result of the
command. A constructor of t creates a new instance of t. In contrast to queries and com-
mands, a constructor does not take the target as the first argument because its purpose
is to create a new instance.

To describe an instance of an ADT, one can build an expression that starts with
a constructor call. This expression can then be used as the first actual argument of a
command call. The resulting expression can then be used as the first actual argument of
the next command. This leads to a nested expression, in which the first feature call is in
the root of the expression and the last feature call is on the outside of the expression. The
instance described in such a way can then be queried. We find this functional notation
hard to read. Therefore we use an equivalent object-oriented notation in which the first
feature call is on the left and the last feature call is on the right. The main idea is not to
write targets as arguments, but to write a target in front of the feature name and to use
a dot to separate the two parts from each other. This leads to the following translation
between the functional notation and the object-oriented notation:

– The query expression query(e0,e1, . . . ,en) written in functional notation is equiva-
lent to the expression e0.query(e1, . . . ,en) written in object-oriented notation.

– The command expression command(e0,e1, . . . ,en) written in functional notation
is equivalent to the expression e0.command(e1, . . . ,en) written in object-oriented
notation.

– The creation expression constructor(e1, . . . ,en) for an instance of an ADT t written
in functional notation is equivalent to the expression new t.constructor(e1, . . . ,en)
written in object-oriented notation.
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The identity of an ADT instance is given by its query values. Hence, the following holds
for all ADTs t: new t.constructor(e1, . . . ,en) = new t.constructor(e1, . . . ,en).

Example 1 (Functional notation versus object-oriented notation). The expression in
functional notation is empty(pop(push(new STACK[PROC].make,p))) can be written
in object-oriented notation as new STACK[PROC].make.push(p).pop.is empty.

Each feature can have a precondition that must be satisfied before the feature gets called.
A precondition is expressed as a number of assertions on the target and the arguments.
A feature with a precondition is a partial feature. A partial feature is a feature whose
domain is restricted. Such a partial feature is indicated with a crossed arrow � after
the type of each formal argument that got restricted by the feature’s precondition. Non-
restricted formal arguments are indicated with a normal arrow→. The effect of an ADT
command is described in a number of axioms. This work deviates from the practice of
bundling all axioms for a specific ADT. Instead, all the axioms for a specific feature
occur in the feature’s declaration. Note that this work does not aspire a sufficiently
complete ADT because this would lead to rule explosion. An ADT is sufficiently com-
plete if its axioms make it possible to reduce any query expression to a form that does
not involve an instance of the ADT. This requires that the axioms describe the effect of
each command on each query. This work follows the practice to describe the effect of
each command of an ADT on all the queries of the ADT that have been changed by the
command. Unmentioned queries are unchanged.

Example 2 (Command declaration). The following declaration shows a command to
set the value of an attribute f of an object o to the value v. The value can either be
a reference or a processor. The command takes the object as the target and returns an
updated object whose attribute value is set.

set att val : OBJ→ FEATURE � REF∪PROC→OBJ
o.set att val( f ,v) require

o.class type.attributes.has( f )
axioms

o.set att val( f ,v).att val( f ) = v

The command states in its precondition that the class type of the target object o must
have an attribute f . This is expressed as an assertion after the require keyword. The part
in front of the require keyword gives names to the target and the arguments. Note that
the precondition makes the command partial. The updated object has the value of its
attribute f set to v. This is stated as an axiom after the ensure keyword.

So far the discussion covered queries, commands, and constructors for ADTs. This work
extends the ADT theory with the notion of auxiliary features. Auxiliary features are
convenience features that are not essential for the definition of the ADT, but nevertheless
useful.

The remainder of this work declares various ADTs to model the state of a SCOOP
program. Unless it would create confusion, it uses the same name for an instance of
an ADT and the corresponding domain element. For example, the instance of the ADT
OBJ is called an object.
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Identifier management. This formalization models objects, references, and proces-
sors. All of these domain elements have an identity. These identities are automatically
managed by the runtime system. The work by Khoshafian and Copeland [16] on differ-
ent levels of object identity provides good reasons for this decision. They introduce a
scale that starts with identities given by the value, goes on with user-supplied identities,
and ends with built-in identities. Built-in identities have the advantage that the iden-
tities are preserved in case of modifications. According to this hierarchy, our domain
elements have a built-in identity. One straightforward way to reflect this, is to model
each domain element as an instance of an ADT. However, this direct approach does not
properly capture the identities of the domain elements because the identity of an ADT
instance is not built-in, but based on the query values. This section describes a way to
introduce built-in identities for ADT instances.

To model domain elements with built-in identities, one can define an ADT with an
identifier query. A number of ADT instances represent a single domain element over
time. Each of the ADT instances has the same value for the identifier query. A modi-
fication of the domain element can then be modeled as a new ADT instance where the
value of the identity query is preserved and all other queries modulo the modification
are preserved.

For this to work, the formalization ensures that no two ADT instances that model
different domain elements have the same identity. This is ensured with a fresh identifier
for each ADT instance that models a new domain element. For this purpose, the univer-
sal stateful query new id returns a fresh identifier. The formalization then preserves the
identifier in every modification.

Typing environment. Nienaltowski [25] presents a formalization of the SCOOP type
system for a core of SCOOP called SCOOPC. The type system formalization is part
of the base for this work. The typing environment Γ contains the class hierarchy of a
SCOOP program along with all the type definitions of all features and entities. Type
rules allow us to derive conclusions.

The notation Γ � e : t denotes that expression e is of type t. Based on this derivation,
the function type of (Γ ,e) denotes the type of expression e in the typing environment
Γ . The type rules can be used to check whether an expression is controlled or not. In a
SCOOP program, each processor p that wants to apply a feature f must make sure that
all the processors (q1, . . . ,qn) of all attached actual arguments of f are exclusively avail-
able on behalf of processor p. This guarantees exclusive access on all objects handled
by processors {p,q1, . . . ,qn}. Note that processor p is in this set too because p can ex-
clusively access its objects during a feature execution. For safety, the type system only
allows feature calls in f on expressions, where the type system can derive that the value
of the expression is a reference to an object and this object is handled by one of the
processors {p,q1, . . . ,qn}. Such an expression is called controlled. Whether or not an
expression is controlled can be determined through the context in which the expression
appears and the type of the expression. The context can either be the enclosing class, in
case of expressions in invariants, or it can be the enclosing feature, in case of all other
expressions. To be more precise, an expression e of type t = (d, p,c) is controlled if and
only if t is attached, i.e., d = !, and t satisfies at least one of the following conditions:
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– The expression e is non-separate, i.e., p = •.
– The expression e appears in a routine f that has an attached formal argument w

with the same handler as e, i.e., p = w.handler.

The second condition is satisfied if and only if at least one of the following conditions
is true:

– The expression e appears as an attached formal argument of f .
– The expression e has a qualified explicit processor specification w.handler and w is

an attached formal argument of f .
– The expression e has an unqualified explicit processor specification p, and some at-

tached formal argument of f has p as its unqualified explicit processor
specification.

The notation Γ � controlled(t) denotes that an expression e of type t is controlled. To
establish the derivation Γ � controlled(t) one has to find an attached formal argument
w in the enclosing routine such that the types suggest that w and e are handled by the
same processor or one has the establish that the type t is non-separate. One can therefore
be sure that whenever an expression e is controlled, either a matching formal argument
exists or its type is non-separate. For the first case, the formal argument is the controlling
entity for e. For the second case, the current entity is the controlling entity. Although
not present in Nienaltowski’s formalization of the type system, this work introduces
a new derivation Γ � y = controlling entity(e) that returns the controlling entity y for
an expression e as an instance of ENTITY. This notion is essential to determine the
handler of any controlled expression without evaluating the expression. One can simply
determine the controlling entity and then determine the handler of the controlling entity.

4.2 Components of the State

The state is divided into three parts: the regions, the heap, and the store. The main pur-
pose of the heap is to keep track of objects and to maintain the mapping of references to
objects. It also maintains the once status of once routines, i.e., whether a once routine
is fresh on a processor. The regions manage the association between objects and pro-
cessors. Objects that are handled by the same processor form a region. The regions are
also concerned with locking. The store is a map of names to references. It maps names
of formal argument, names of local variables, the name of the current object entity, and
the name of the result entity to references. A state ADT models the state with one query
for each of the three parts.

regions : STATE→ REG

heap : STATE→HEAP

store : STATE→ STORE

The next few sections introduce ADTs for each of the parts. A later section presents the
state ADT.
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4.3 Heap ADT

The heap keeps track of the objects and the references associated to them. It also keeps
track of the status of once routines. This section first defines an ADT for objects and
references. Then it introduces an ADT for the heap.

Objects and references. There are two kinds of class types in the SCOOP type sys-
tem: reference class types and expanded class types. The main difference lies in the
semantics of using an instance of the types as the source of an attachment, such as as-
signment or argument passing. If an object of reference class type is the source of an
attachment, then the reference to the object gets copied over to the destination of the
attachment. The object is then accessible both through the source of the attachment as
well as through the destination of the attachment. If an object of expanded class type is
the source of an attachment, then a copy of the object gets attached to the destination of
the attachment. The details can be found in Sec. 7.4 of the Eiffel ECMA standard [9].

This formalization takes a unified view on objects and references that is compatible
with the semantics described in the Eiffel ECMA standard. It does not consider objects
of expanded class type as sub-objects in other objects or in an environment. Instead it
locates expanded objects on the heap, just like objects of reference class type. For each
object there is exactly one reference. Assigning references to objects of expanded type
has one major advantage for the formalization. If an ADT instance x that models an
object gets updated, then one gets a new ADT instance y. If one would model expanded
objects as sub-objects stored in other objects or in environments, then such an update
might trigger a cascade of ADT instance updates: each ADT instance that has x as
a query value would have to be updated with y, and so on. A consequent usage of
references avoids this issue. To do the update, one simply alters the reference to x so
that it points to y from now on.

The ADT REF models references with an identity query id and a constructor make.
The constructor uses the query new id to create a fresh identifier for the newly created
reference. The void reference void is an instance of this ADT.

The ADT OBJ models objects. Each object has a query id for its identifier, a query
class type for its class type, and a query att val for its attribute values. An object can
only have attribute values for attributes that are defined in its class type.

The attribute values of an object can be modified with the command set att val.
Only the attribute values for attributes that are defined in the class type can be modified.
The result is an updated object where the attribute value of f is set to v. Note that the
value can either be a reference or a processor. Processor values are necessary to support
processor attributes.

set att val : OBJ→ FEATURE � REF∪PROC→OBJ
o.set att val( f ,v) require

o.class type.attributes.has( f )
axioms

o.set att val( f ,v).att val( f ) = v

The constructor make can be used to create a new object. It creates a new object with
the given class type. The new object has a new identifier that is given by the query
new id. The constructor initializes all the attribute values of the new object with the
void reference.
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make : CLASS TYPE→OBJ
axioms

make(c).id = new id
make(c).class type = c
∀i ∈ {1, . . . ,n} : make(c).att val(ai) = void
where

{a1, . . . ,an}
de f
= c.attributes

An object can also be copied with the auxiliary query copy. This is important for ex-
panded objects with copy semantics. The copied object has the same class type and the
same attribute values as the original object, but it has a new identity. The new identity
comes from the call to the constructor make.

copy : OBJ→OBJ
axioms

o.copy = make(o.class type)
.set att val(a1,o.att val(a1))
. . . .
.set att val(an,o.att val(an))

where

n
de f
= o.class type.attributes.count

{a1, . . . ,an}
de f
= o.class type.attributes

Mapping from references to objects. The ADT HEAP makes use of OBJ and REF
to model the mapping from references to objects. For this purpose, it declares the query
objs to store all the objects on the heap and it declares the query refs to get all the
references to these objects. The reference void is not part of the reference set. The
query ref obj defines the actual mapping. For each reference in refs an object in objs
gets returned. The ADT also declares the query last added obj to keep track of the last
object that has been added to the heap. It uses this query to define the effect of adding
an object to the heap.

objs : HEAP→ SET[OBJ]

refs : HEAP→ SET[REF]

ref obj : HEAP→ REF � OBJ
h.ref obj(r) require

h.refs.has(r)

last added obj : HEAP→OBJ
h.last added obj require
¬h.objs.is empty

A number of commands are responsible for adding objects and for altering the mapping of
references to objects. The command add obj takes an object o and adds it to the heap. The
result of the command is a new heap with the object o and a new reference that points
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to o. The newly added object is indicated in the query last added obj. Note that this
command does not create a new object. It simply adds an object that has been provided
as an argument. The command requires that the object is not yet part of the heap.

add obj : HEAP→OBJ � HEAP
h.add obj(o) require
∀u ∈ h.objs : u.id �= o.id
∀a ∈ o.class type.attributes :

o.att val(a) ∈ REF→ (o.att val(a) = void∨h.refs.has(o.att val(a)))
axioms

h.add obj(o).objs = h.objs∪{o}
h.add obj(o).refs = h.refs∪{r}
h.add obj(o).ref obj(r) = o
h.add obj(o).last added obj = o
where

r
de f
= new REF.make

If an object that is already part of the heap gets updated, then it is necessary to update
the mapping from the reference to the object on the heap. This can be done with the
command update ref that takes a reference r and an updated object o and returns a
heap where the reference r points to o. The command requires that r is a valid reference
and that o is an updated version of the original object. Because the remaining part of
the state only deals with references rather than objects directly, a reference update does
not require an update of these parts.

update ref : HEAP→ REF � OBJ � HEAP
h.update ref (r,o) require

h.refs.has(r)
o.id = h.ref obj(r).id
∀a ∈ o.class type.attributes :

o.att val(a) ∈ REF→ (o.att val(a) = void∨h.refs.has(o.att val(a)))
axioms

h.update ref (r,o).objs.has(o)
o �= h.ref obj(r)→¬h.update ref (r,o).objs.has(h.ref obj(r))
h.update ref (r,o).ref obj(r) = o
h.last added obj = h.ref obj(r)→ h.update ref (r,o).last added obj = o

So far HEAP covers the mapping from references to objects. Occasionally it is neces-
sary to have the inverse mapping. The commands add obj and update ref ensure that
there is exactly one reference for each object on the heap. Thus it is possible to define
the inverse query ref as an auxiliary query.

ref : HEAP→OBJ � REF
h.ref (o) require

h.objs.has(o)
axioms

h.ref obj(h.ref (o)) = o

Once routines. A once routine can either be a once function or a once procedure. A
once routine gets executed at most once in a certain context. If a once routine has been
executed in the context, then it is called non-fresh in the context. Otherwise it is called
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fresh in the context. The context is either the set of all processors in the system or a
single processor. The heap remembers which once routines are fresh. For this purpose,
HEAP declares the queries is fresh and once result. For any processor p and any once
routine f , the query is fresh states whether f is fresh on p or not. For a once function f
that is not fresh on a processor p, the query once result returns the result of f on p.

Two commands change the once status of a fresh once routine to non-fresh. One ver-
sion works for once functions and the other one for once procedures. Both commands
take the once routine f and the processor p. The version for once functions also takes
a once result r. The two commands implement the semantics for once routines: a once
routine has either a once per system or a once per processor semantics. Once functions
declared as separate with or without an explicit processor specification have the once
per system semantics. In this case, the command set once func not fresh defines f as
non-fresh on all processors. Once functions with a non-separate result type have the
once per processor semantics. In this case, the command set once func not fresh sets f
as non-fresh on p with the once result r. Once procedures have the once per processor
semantics. In this case, the command set once proc not fresh sets f as non-fresh on p.

set once func not fresh : HEAP→ PROC→ FEATURE � REF � HEAP
h.set once func not fresh(p, f ,r) require

f ∈ FUNCTION∧ f .is once
r �= void→ h.refs.has(r)

axioms
(∃d,c : Γ � f : (d,•,c))→
¬h.set once func not fresh(p, f ,r).is fresh(p, f )∧
h.set once func not fresh(p, f ,r).once result(p, f ) = r

(∃d,c : Γ � f : (d, p,c)∧ p �= •)→∀q ∈ PROC :
¬h.set once func not fresh(p, f ,r).is fresh(q, f )∧
h.set once func not fresh(p, f ,r).once result(q, f ) = r

set once proc not fresh : HEAP→ PROC→ FEATURE � HEAP
h.set once proc not fresh(p, f ) require

f ∈ PROCEDURE∧ f .is once
axioms
¬h.set once proc not fresh(p, f ).is fresh(p, f )

Creation. A new heap can be created with the constructor make. A new heap has no
objects and no references. All once routines are marked as fresh on all processors.

make : HEAP
axioms

make.objs.is empty
make.refs.is empty
∀p ∈ PROC, f ∈ FEATURE : f .is once→ make.is fresh(p, f )

4.4 Regions ADT

The heap is partitioned into disjoint regions, and each region is assigned to exactly one
processor. This concept relates to the concept of a ken in Schmidt’s work [30]. The
processor of a region is the handler of all the objects in the region. Regions are also
used to maintain locks. The following discussion first describes an ADT for processor
and then describes an ADT for regions.
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Processors. A processor is an autonomous thread of control capable of executing fea-
tures on objects. Each processor is responsible for a set of objects. As such a processor
is called the handler of its associated objects. Each object is assigned to exactly one pro-
cessor that is the authority of feature executions on this object. If a processor q wants
to call a feature on an object handled by a different processor p, then q needs to send
a feature request to processor p. This is where the request queue of processor p comes
into place. The request queue keeps track of features to be executed on behalf of other
processors. Processor q can add a request to this queue and processor p will execute the
request as soon as it executed all previous requests in the request queue. Processor p
uses its call stack to execute the feature request at the beginning of the request queue.
The call stack is responsible for the order of feature executions on the same processor.
In a situation of a non-separate call, the call stack ensures that the calling feature exe-
cution resumes once the called feature execution terminated. The interaction between
the call stack and the request queue is best described with the following loop through
which each processor goes:

1. Idle wait. If both the call stack and the request queue are empty, then wait for new
requests to be enqueued.

2. Request scheduling. If the call stack is empty but the request queue is not empty,
then dequeue an item and push it onto the call stack.

3. Request processing. If there is an item on the call stack, then pop the item from the
call stack and process it. If the item is a feature request, then apply the feature. If
the item is an operation, then execute the operation.

For each processor there is a request queue lock and a call stack lock. A lock on the
request queue grants permission to add a feature request to the end of the request queue.
A lock on the call stack grants permission to add a feature request to the top of the call
stack. Before processor q can add a request to p’s request queue, it must have a lock
on this request queue. Otherwise another processor could intervene. Once processor q
is done with the request queue of processor p it can add an unlock operation to the end
of the request queue. This makes sure that the request queue lock of p will be released
after all the previous feature requests have been executed. Similarly, processor p must
have a lock on its call stack to add features to its call stack. Initially, each processor has
a lock on its own call stack and its request queue is not locked.

Processor q could also make a synchronous call to p. However q might be in posses-
sion of some locks that are necessary for the execution of the resulting feature request
on p. In such a situation, q is waiting for the synchronous call to terminate and p is wait-
ing for locks to be available. According to the conditions given by Coffman et al. [8] a
deadlock occurred. This can be avoided if q temporarily passes its locks to the p. This
allows p to finish the execution and hence q can continue.

Clarification 1 (Request queue locks and call stack locks). The notion of request queue
locks and call stack locks was not present in Nienaltowski’s [25] definition of SCOOP.
He defines one lock for each processor. A lock on a processor means exclusive access to
the whole processor. This lock model is not sufficient to describe SCOOP. In particular,
this lock model creates a contradiction with respect to separate callbacks. A separate
callback is a feature call in which processor q made a direct or indirect call to processor
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p and now p is calling back processor q. The separate callback is only possible if p has
a lock on q. However, p does not necessarily have this lock because the lock might be
in possession of the processor that locked q in the first place. Request queue locks and
call stack locks allow us to clarify the situation. Thus we propose a new lock model
with request queue locks and call stack locks.

The lock model used in Nienaltowski’s work [25] is an abstraction of the new lock
model. The abstraction works under the assumption that no processor passes its locks.
Under this assumption each processor keeps its call stack lock. In this abstraction, the
request queue lock on a processor p is called the lock on p. As long as the call stack
lock on a processor p is in possession of p, a request queue lock on p in possession of a
processor q means that processor p will be executing new feature requests in the request
queue exclusively on behalf of q. This means that a request queue lock grants exclusive
access to all the objects handled by p. Transferring this insight to the abstraction, a lock
on processor p denotes exclusive access to the objects handled by p. �

The formalization defines the ADT PROC for processors. A processor has an identifier
stored in the query id.

The constructor make returns a new processor with a fresh identifier. The fresh iden-
tifier is defined through the query new id.

make : PROC
axioms

make.id = new id

The ADT PROC is very simple. It neither takes care of the mapping from processors
to the handled objects nor does it take care of the locks. These aspects are taken care of
by the ADT for regions.

Mapping of processors to objects and locking. This section introduces the ADT REG
for regions. This ADT declares a query procs that keeps track of all the processors in the
system. The query handled objs defines a set of handled objects for each processor in
procs. Finally, the query last added proc denotes the last processor that has been added
to procs.

procs : REG→ SET[PROC]

handled objs : REG→ PROC � SET[OBJ]
k.handled objs(p) require

k.procs.has(p)

last added proc : REG � PROC
k.last added proc require
¬k.procs.is empty

Next to the queries that are concerned with the mapping from processors to objects,
there are a number of queries that deal with locking. The feature rq locked states
whether the request queue of a processor in procs is locked or not. Similarly, the feature
cs locked states whether the call stack is locked.
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The remaining queries specify the owners of the locks. For this, the formalization
distinguishes between obtained and retrieved locks. Obtained locks are locks that got
acquired by a processor. Retrieved locks are locks that got passed from another processor.

The query obtained rq locks returns a stack of obtained processor sets for a proces-
sor. A stack of sets models the way processors acquire locks: they go through a nested
series of feature applications and each feature application requires a set of locks before
the feature can be executed. For each feature application the executing processor adds
a new set on top of its stack. As soon as the feature application finished, the processor
removes the top set from its stack. The query obtained cs lock returns the acquired call
stack lock of a processor. Initially each processor starts with a lock on its own call stack
and this call stack lock never changes. Thus this query is only declared for reasons of
completeness. If a processor appears in a set of request queue locks, then the processor
denotes its request queue lock. If a processor appears in a set of call stack locks, then
the processor denotes its call stack lock.

A processor can pass its locks to another processor. There are several queries to
formalize this aspect. The features retrieved rq locks and retrieved cs locks return the
retrieved locks of a processor. Both of these queries return a stack of sets. The stack
keeps track of the set of retrieved locks for each feature application. These two stacks
grow and shrink in parallel to the stack obtained rq locks. Once a processor passed its
locks, it cannot use them anymore until the locks are revoked. The query locks passed
returns whether a processor passed some or all of its locks or not.

The following discussion first goes through the list of commands that add processors
and commands that change the association of processors to objects. It then proceeds
with the commands that handle locks. The command add proc updates the regions with
a new processor. Note that the processor must have been created beforehand. The ax-
ioms state that the new processor will be included in procs and that it will be stored in
last added proc. The axioms also state how the new processor is initialized. The new
processor’s request queue is unlocked and its call stack is locked. Apart from the initial
lock on the call stack there are no obtained or retrieved locks and hence the processor
did not pass its locks.

add proc : REG→ PROC � REG
k.add proc(p) require
¬k.procs.has(p)

axioms
k.add proc(p).procs.has(p)
k.add proc(p).last added proc = p
k.add proc(p).handled objs(p).is empty
¬k.add proc(p).rq locked(p)
k.add proc(p).cs locked(p)
k.add proc(p).obtained rq locks(p).is empty
k.add proc(p).obtained cs lock(p) = p
k.add proc(p).retrieved rq locks(p).is empty
k.add proc(p).retrieved cs locks(p).is empty
¬k.add proc(p).locks passed(p)

The command add obj takes a processor p in procs and an object o that is not handled
by a processor in procs yet. It returns the updated regions in which o is handled by p.
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add obj : REG→ PROC � OBJ � REG
k.add obj(p,o) require

k.procs.has(p)
∀q ∈ k.procs,u ∈ k.handled objs(q) : u.id �= o.id

axioms
k.add obj(p,o).handled objs(p).has(o)

In the opposite direction, the command remove obj removes an object that is handled
by a processor in procs from the regions.

remove obj : REG→OBJ � REG
k.remove obj(o) require
∃p ∈ k.procs : k.handled objs(p).has(o)

axioms
¬∃p∈ k.procs : k.remove obj(o).handled objs(p).has(o)

The following part discusses the commands that deal with the locking aspects of the
regions. The command lock rqs locks the request queues of a set of processors q on
behalf of a processor p. None of these request queues must be locked beforehand.

lock rqs : REG→ PROC � SET[PROC] � REG
k.lock rqs(p, l) require

k.procs.has(p)
∀x ∈ l : k.procs.has(x)
∀x ∈ l : ¬k.rq locked(x)

axioms
k.lock rqs(p, l).obtained rq locks(p) = k.obtained rq locks(p).push(l)
∀x ∈ l : k.lock rqs(p, l).rq locked(x)

At some point, processor p will not require the obtained request queue locks anymore
because p made sure to enqueue all necessary features requests. Processor p uses the
command pop obtained rq locks to remove his claims on the obtained request queue
locks. This requires that processor p is in possession of these locks, i.e., that p did not
pass its locks.

pop obtained rq locks : REG→ PROC � REG
k.pop obtained rq locks(p) require

k.procs.has(p)
¬k.obtained rq locks(p).is empty
¬k.locks passed(p)

axioms
k.pop obtained rq locks(p).obtained rq locks(p) = k.obtained rq locks(p).pop

Removing the locks from p’s obtained request queue locks stack does not mean that
these request queues are unlocked. It just means that the request queue locks are not
claimed by p anymore and therefore p will not enqueue further feature requests on
the respective processors. The request queues remain locked until they get unlocked
with a call to the command unlock rq. This happens after the processors whose request
queues got locked by p finished all the requested feature applications. The precondition
of the command states that a request queue can only be unlocked if it is not claimed
by any other processor. This precondition guarantees that the request queue can only
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be unlocked when it is not used as an obtained or retrieved lock by any other processor
anymore. Note that there is no unlock command for call stack locks because the call
stack never gets unlocked.

unlock rq : REG→ PROC � REG
k.unlock rq(p) require

k.procs.has(p)
k.rq locked(p)
∀q ∈ k : ¬k.obtained rq locks(q).flat.has(p)

axioms
¬k.unlock rq(p).rq locked(p)

The request queues remain locked until explicitly unlocked with a call to unlock rq.
Between the call to pop obtained rq locks and the call to unlock rq, the owner of these
locks is undefined. In some situations this is not satisfactory. A different solution must
be found if another processor wants to claim the locks until they are unlocked. The
command delegate obtained rq locks serves this purpose. It takes a processor p and
a number of processors l and makes p the owner of the request queue locks of all
processors in l by adding these locks to the obtained request queue locks stack of p.
This can only work if there is no current owner and the request queues are indeed
locked.

delegate obtained rq locks : REG→ PROC � SET[PROC] � REG
k.delegate obtained rq locks(p, l) require

k.procs.has(p)
∀x ∈ l : k.procs.has(x)
∀x ∈ l : ¬∃y ∈ k.procs : k.obtained rq locks(y).flat.has(x)
∀x ∈ l : k.rq locked(x)

axioms
k.delegate obtained rq locks(p, l).obtained rq locks(p) = k.obtained rq locks(p).push(l)

Delegation is different from lock passing: delegation is the permanent transfer of own-
ership and lock passing is the temporary transfer of the right to use the locks. The
following discussion looks at the commands to pass and revoke locks. The command
pass locks takes a processor p and a processor q as well as a set of request queue locks
lr along with a set of call stack locks lc. The result is an updated instance of REG in
which lr and lc have been passed from p to q. As a precondition for this task, processor
p must be in possession of all these locks. This means that all the locks in lr and lc must
be obtained or retrieved locks of p and the locks must not be passed. The updated result
must reflect that some or all of p’s locks have been passed. However, because the two
sets of locks can potentially be empty, p’s locks must only be marked as passed if at
least one of the two sets of locks is non-empty. Lastly, the command must take care of
one special case of the lock passing operation. If a processor q different from processor
p passed its locks in a previous lock passing operation and now the command passes
these locks back to q, then the command has to mark the locks of processor q as not
passed. This case is important to handle separate callbacks.
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pass locks : REG→ PROC � PROC � TUPLE[SET[PROC],SET[PROC]] � REG
k.pass locks(p,q,(lr, lc)) require

k.procs.has(p)∧ k.procs.has(q)
∀x ∈ lr : k.procs.has(x)∧∀x ∈ lc : k.procs.has(x)
∀x ∈ lr : k.obtained rq locks(p).flat.has(x)∨ k.retrieved rq locks(p).flat.has(x)
∀x ∈ lc : x = k.obtained cs lock(p)∨ k.retrieved cs locks(p).flat.has(x)
¬k.locks passed(p)

axioms

k.pass locks(p,q,(lr , lc)).locks passed(p) =
{

true if¬lr.is empty∨¬lc.is empty
false otherwise

k.pass locks(p,q,(lr , lc)).retrieved rq locks(q) = k.retrieved rq locks(q).push(lr)
k.pass locks(p,q,(lr , lc)).retrieved cs locks(q) = k.retrieved cs locks(q).push(lc)⎛
⎜⎜⎜⎜⎜⎜⎝

p �= q∧
k.locks passed(q)∧
k.obtained rq locks(q).flat ⊆ lr∧
k.retrieved rq locks(q).flat ⊆ lr∧
k.obtained cs lock(q) ∈ lc∧
k.retrieved cs locks(q).flat ⊆ lc

⎞
⎟⎟⎟⎟⎟⎟⎠
→¬k.pass locks(p,q,(lr, lc)).locks passed(q)

The command revoke locks takes a processor p and a processor q. It reverses the effect
of a lock passing operation from a processor p to q and returns an updated instance of
REG. This is only allowed if processor p passed locks to q in a preceding lock passing
operation. Note that the lock passing operation from p to q potentially marked the locks
of q as not passed. Revoking the locks from q to p requires the reverse action. If p has
retrieved locks in common with the locks of q, even after the retrieved locks from p
have been removed from q, then q’s locks must be marked as passed because they are
now in possession of p.

revoke locks : REG→ PROC � PROC � REG
k.revoke locks(p,q) require

k.procs.has(p)∧ k.procs.has(q)
¬k.retrieved rq locks(q).is empty∧¬k.retrieved cs locks(q).is empty
k.retrieved rq locks(q).top⊆ k.obtained rq locks(p).flat∪ k.retrieved rq locks(p).flat
k.retrieved cs locks(q).top⊆ {k.obtained cs lock(p)}∪ k.retrieved cs locks(p).flat
k.retrieved rq locks(q).top∪ k.retrieved cs locks(q).top �= {}→ k.locks passed(p)
¬k.locks passed(q)

axioms
¬k.revoke locks(p,q).locks passed(p)
k.revoke locks(p,q).retrieved rq locks(q) = k.retrieved rq locks(q).pop
k.revoke locks(p,q).retrieved cs locks(q) = k.retrieved cs locks(q).pop⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p �= q∧⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃x ∈ k.retrieved rq locks(p).flat : (
k.obtained rq locks(q).flat.has(x)∨
k.retrieved rq locks(q).pop.flat.has(x)

)∨
∃x ∈ k.retrieved cs locks(p).flat : (

x = k.obtained cs lock(q)∨
k.retrieved cs locks(q).pop.flat.has(x)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→ k.revoke locks(p,q).locks passed(q)
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These commands wrap up the mapping of processors to objects and the locking aspects.
The discussion continues with a number of auxiliary queries to simplify access to the
presented queries. The command add obj makes sure that a processor is assigned to
each object that gets added. This mapping is available through the query handled objs.
Thus it is possible to define an auxiliary query handler that is inverse to the query
handled objs.

handler : REG→OBJ � PROC
k.handler(o) require
∃p ∈ k.procs : k.handled objs(p).has(o)

axioms
k.handled objs(k.handler(o)).has(o)

There are four different categories of locks that each processor can have. For both the
request queue locks and the call stack locks, there are queries for obtained and retrieved
locks. In some situations it is easier to just work with request queue locks and call stack
locks without splitting them into obtained and retrieved locks. The auxiliary queries
rq locks and cs locks serve this purpose. The auxiliary query rq locks returns a set that
contains all the obtained and the retrieved request queue locks of a processor p. Simi-
larly, the auxiliary query cs locks returns all the call stack locks of a processor p.

rq locks : REG→ PROC � SET[PROC]
k.rq locks(p) require

k.procs.has(p)
axioms

k.rq locks(p) = k.obtained rq locks(p).flat∪ k.retrieved rq locks(p).flat

cs locks : REG→ PROC � SET[PROC]
k.cs locks(p) require

k.procs.has(p)
axioms

k.cs locks(p) = {k.obtained cs lock(p)}∪ k.retrieved cs locks(p).flat

Creation. The constructor make creates a new instance of REG. The new instance has
no processors.

make : REG
axioms

make.procs.is empty

4.5 Store ADT

Each processor in the system has a call stack to execute features. Every time a proces-
sor executes a feature, a new call stack frame gets created on top of the call stack. The
new call stack frame stores the values of formal arguments, local variables, the current
object entity, and the result entity for the current feature execution. The call stack is
also responsible for the order of feature executions on the same processor. This formal-
ization separates the two concerns of the call stack. The store only models the values in
each stack frame. A store has a stack of environments for each processor, where each
environment maps names to values. This section first presents an ADT for environments
and then presents an ADT for the store.
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Environments. The ADT ENV has a query names that stores all the defined names.
The query val can then be used to get the value for each such name.

names : ENV→ SET[NAME]

val : ENV→ NAME � REF∪PROC
e.val(n) require

e.names.has(n)

The command update takes a name and a value and returns an updated environment.
Note that it does not matter whether the name is already defined in the environment or
not. In any case, the name will be defined in the updated environment and the name will
be mapped to the value. The value can either be a reference or a processor. Environments
with processor values are not strictly needed to describe SCOOP, however they make it
possible to have a unified view on attribute values and environment values.

update : ENV→ NAME→ REF∪PROC→ ENV
axioms

e.update(n,v).names = e.names∪{n}
e.update(n,v).val(n) = v

The constructor make returns an empty environment.

make : ENV
axioms

make.names.is empty

Mapping from processors to environments. The ADT STORE has a single query
envs that stores a stack of environments for each processor.

envs : STORE→ PROC→ STACK[ENV]

The command push env pushes a given environment on top a processor’s stack of envi-
ronments. The command pop env pops the top environment from a non-empty stack of
environments.

push env : STORE→ PROC→ ENV→ STORE
axioms

s.push env(p,e).envs(p) = s.envs(p).push(e)

pop env : STORE→ PROC � STORE
s.pop env(p) require
¬s.envs(p).is empty

axioms
s.pop env(p).envs(p) = s.envs(p).pop

The constructor make creates an empty store.

make : STORE
axioms
∀p ∈ PROC : make.envs(p).is empty
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4.6 State ADT

The ADT STATE models the state with three queries to retrieve the different parts of
the ADT.

regions : STATE→ REG

heap : STATE→HEAP

store : STATE→ STORE

The command set sets the regions, the heap, and the store at the same time. A precondi-
tion specifies consistency criteria between the parts of the state. The first precondition
clause states that a processor can handle an object if and only if the object is on the heap.
The second precondition clause states that if the heap declares a feature as non-fresh
on a processor p, then the regions must know about this processor. The third precon-
dition clause requires that all processors stored in attribute values are known by the
regions. Note that HEAP already requires that the references stored in attribute values
are known. The forth precondition clause states that each non-empty environment in the
store must belong to a processor that is known by the regions. The fifth precondition
clause states that each value in the store must either be a known reference or a known
processor.

set : STATE→ REG � HEAP � STORE � STATE
σ .set(k,h,s) require
∃p ∈ k.procs,∃o ∈OBJ : k.handled objs(p).has(o)↔ h.objs.has(o)
∃p ∈ PROC, f ∈ FEATURE : ¬h.is fresh(p, f )→ k.procs.has(p)
∀o ∈ h.objs,a ∈ o.class type.attributes : o.att val(a) ∈ PROC→ k.procs.has(o.att val(a))
∀p ∈ PROC,e ∈ s.envs(p) : ¬e.names.is empty→ k.procs.has(p)
∀p ∈ k.procs,e ∈ s.envs(p),x ∈ e.names :

(e.val(x) ∈REF→ e.val(x) = void∨h.refs.has(e.val(x)))∧
(e.val(x) ∈ PROC→ k.procs.has(e.val(x)))

axioms
σ .set(k,h,s).regions = k
σ .set(k,h,s).heap = h
σ .set(k,h,s).store = s

Creation. To create a state, one has to create the three parts of the state. This is done
with the constructor make.

make : STATE
axioms

make.regions = new REG.make
make.heap = new HEAP.make
make.store = new STORE.make

Facade. It is too cumbersome to work with STATE as it is. For example, the following
expression defines a new state σ ′ in which a new processor has been added to the state

σ : σ ′ de f
= σ .set(σ .regions.add proc(new PROC.make),σ .heap,σ .store). This expres-

sion is too long for this simple task, especially if the expression is used multiple times.
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It would be easier to have an auxiliary command that does this job for us. The facade
is an abstraction with auxiliary features that provide easy access to the state functional-
ity. The facade is divided into different aspects. The following discussion dedicates one
section to each aspect. It starts with the mapping of processors to objects and the map-
ping of references to objects. It continues with a section on how to set values, followed
by a section on how to get values. It concludes with a section on locking.

Mapping of processors to objects and mapping of references to objects. The re-
gions and the heap manage the references, the objects, the processors, and the mapping
between them. The facade unifies all related features in one aspect. This section first
defines a number of auxiliary queries for the mapping of processors to objects. Next,
it defines auxiliary queries for the mapping of references to objects. It then defines
auxiliary commands that work on both aspects.

The two auxiliary queries procs and last added proc give access to all the processors
and the last added processor.

The auxiliary query handler gives the handler of an object referenced by r. The
auxiliary query uses the heap to get the referenced object and then gives this object
to the regions to get the handler. In contrast to the corresponding auxiliary query in
REG, the version here takes a reference instead of an object. The version in REG deals
directly with objects rather than references because it does not know about the heap
and thus the mapping from references to objects is not available. The facade, however,
has access to both the regions and the heap and thus it can use the preferred way of
identifying objects: references.

The auxiliary query new proc is a shorthand for processor creation. The auxiliary
query last added obj returns the object that has been added last to the heap. The auxil-
iary query ref obj returns the object that is associated to a given reference. In the other
direction, the auxiliary query ref returns the reference to a given object. The auxiliary
query new obj is a shorthand for object creation; it returns a new object with a given
class type.

The discussion continues with the auxiliary commands that modify the mapping of
processors to objects and the mapping of references to objects. Before an object can
be added to the set of handled objects of a processor, the processor must exist. If the
processor does not exist yet, the command add proc can be used to update a state with
a new processor.

add proc : STATE→ PROC � STATE
σ .add proc(p) require
¬σ .regions.procs.has(p)

axioms
σ .add proc(p) = σ .set(σ .regions.add proc(p),σ .heap,σ .store)

The auxiliary command add obj can then be used to add an object to the processor and
the heap. The auxiliary command takes a processor p and an object o and it returns a
state in which object o is part of the heap and handled by processor p.
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add obj : STATE→ PROC � OBJ � STATE
σ .add obj(p,o) require

σ .regions.procs.has(p)
∀u ∈ σ .heap.objs : u.id �= o.id
∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF→ o.att val(a) = void∨σ .heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC→ σ .regions.procs.has(o.att val(a)))

axioms
σ .add obj(p,o) = σ .set(σ .regions.add obj(p,o),σ .heap.add obj(o),σ .store)

The auxiliary command update ref updates a reference with an updated object. It takes
a reference r on the heap and an object o and it returns a state in which o replaced the
object u referenced by r on the heap and in the regions. Note that o must indeed be
an updated version of the object referenced by r. The auxiliary command first removes
u from the set of handled objects and then adds o to the set of handled objects of u’s
handler. Then it updates the heap with the command update ref , which is declared in
HEAP.

update ref : STATE→ REF � OBJ � STATE
σ .update ref (r,o) require

σ .heap.refs.has(r)
o.id = σ .heap.ref obj(r).id
∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF→ o.att val(a) = void∨σ .heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC→ σ .regions.procs.has(o.att val(a)))

axioms
σ .update ref (r,o) = σ .set(k,h,s)
where

u
de f
= σ .heap.ref obj(r)

k
de f
= σ .regions.remove obj(u).add obj(σ .regions.handler(u),o)

h
de f
= σ .heap.update ref (r,o)

s
de f
= σ .store

Setting values. This section takes a look at how to set values. To start, it looks at a pre-
requisite for this task: the deep import operation. Setting values includes setting values
of formal arguments, values of local variables, the value of the current object entity, the
value of the result entity, and attribute values of the current object. All of these values
can be written and read without a feature call. This section concludes with auxiliary
commands to set the status of once routines. The SCOOP validity rules exclude other
types of value setting operations.

Deep Import Operation. Expanded objects have a copy semantics: if an object o of
expanded class type is the source of an attachment, then a copy u gets attached to the
destination of the attachment. However, a shallow copy is not sufficient if o’s handler p
is different from u’s handler q. If o has an attached non-separate entity, then u now has a
non-separate entity to which a separate object is attached. This would result in a traitor
– a non-separate entity that points to a separate object. The SCOOP model, as defined
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by Nienaltowski [25], introduces the import operation to solve this issue. Applied to
o the import operation creates a copied object structure that mirrors the original object
structure in a way that o and all the objects reachable from o through non-separate
references are replaced with copied objects that are handled by q. This data structure
then gets attached to the destination of the attachment. The import operation computes
the non-separate version of an object structure.

Clarification 2 (Deep import operation). The import operation potentially results in a
copied object structure that contains both copied and original objects. This can be an
issue in case one of the copied objects has an invariant over the identities of objects, as
shown in example 3.

Example 3 (Invariant violation as a result of the import operation). Imagine two ob-
jects x and y handled by one processor and another object z handled by another pro-
cessor. Object x has a separate entity a that points to z and a non-separate entity b that
points to y. Object z has a separate entity c that points to y. Object x has an invariant
with a query a.c = b. An import operation on x executed by a third processor will result
in two new objects x′ and y′ on the third processor. The reference a of object x′ will
point to the original z. The reference b of object x′ will point to the new object y′. This
situation is illustrated in Fig. 2. Now object x′ is inconsistent, because a.c and b identify
different objects, namely y and y′.

a : separate Z
b : Y

x : X

y : Y

c : separate Y

z : Z
a : separate Z
b : Y

x' : X

y' : Y

Fig. 2. Invariant violation as a result of the import operation

The deep import operation is a variant of the import operation that does not mix the
copied and the original objects. �

Instead of copying only the objects that are reachable through non-separate references,
the deep import operation makes a full copy of the object structure. The deep importing
processor handles all the copies of the objects that are non-separate with respect to
the object to be imported. Each other separate object is handled by the processor of
the respective original object. The deep import operation does not show the issue with
invariants. The drawback of the deep import operation is that more objects must be
copied. Nevertheless, we use the deep import operation in our formalization because we
cannot tolerate violated invariants. Once routines complicate the deep import operation
a bit. Consider a processor p that wants to deep import an object o handled by a different
processor q. For each non-separate once function f of each copied object the following
must be done: if a non-separate once function f is fresh on p and non-fresh on q, then f
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must be marked as non-fresh on p and the value of f on q must be used as the value of
f on p. If a once procedure f is fresh on p and non-fresh on q, then f must be marked
as non-fresh on p. In all other cases, nothing must be done.

The auxiliary command deep import implements the deep import operation. The
command takes an importing processor p and a reference r to be imported. The com-
mand returns a state in which the copied object structure exists on the heap and the
objects are associated to the respective processors. The copied object structure is acces-
sible through the auxiliary query last imported ref .

deep import : STATE→ PROC � REF � STATE
σ .deep import(p,r) require

σ .regions.procs.has(p)
σ .heap.refs.has(r)

axioms
σ .deep import(p,r) = σ ′
σ .deep import(p,r).last imported ref = r′

where

w
de f
= new MAP[REF,REF].make

(r′,w′,σ ′) de f
= deep import rec with map(p,σ .handler(r),r,w,σ)

The auxiliary command deep import is based on deep import rec with map. This aux-
iliary function takes a tuple containing an importing processor p, a processor q that
handles the root of the object structure to be imported, a reference r to be deep im-
ported, and a state σ to be modified. Note that the object referenced by r is not nec-
essarily handled by q because this object might be on a different processor than the
handler of the root of the object structure to be deep imported. The function returns
another tuple with a reference r′′ to the copied object structure and an updated state
σ ′′. The auxiliary function deep import rec with map works hand in hand with the
auxiliary function deep import rec without map. They have the same signature and to-
gether they recursively traverse the object structure and make a deep copy of it. The
functions must ensure that no object gets copied twice. For this purpose the functions
take as an additional argument a map w that maps references to objects in the input
data structure to references in the copied data structure. A mapping from one refer-
ence x to another reference y means that the object referenced by y is the copy of the
object referenced by x. An updated map is returned as part of the result tuple. The
auxiliary command deep import starts the recursion with an empty map. The auxiliary
function deep import rec with map uses the map to determine whether the object ref-
erenced by r has already been copied. In such a case, the result of the function comes
from the map. Otherwise the auxiliary function deep import rec with map returns the
result of the auxiliary function deep import rec without map. The auxiliary function
deep import rec without map creates a copy of the object referenced by r and handles
once routines. Finally, it returns a new reference r′, an updated map w′ in which r is
mapped to r′, and an updated state σ ′.
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deep import rec with map(p,q,r,w,σ) = (r′′,w′′,σ ′′)
where

(r′,w′,σ ′) de f
= deep import rec without map(p,q,r,w,σ)

r′′
de f
=

{
w.val(r) if w.keys.has(r)
r′ if¬w.keys.has(r)

w′′
de f
=

{
w if w.keys.has(r)
w′ if¬w.keys.has(r)

σ ′′ de f
=

{
σ if w.keys.has(r)
σ ′ if¬w.keys.has(r)

The auxiliary function deep import rec without map is divided into several steps: a
copy step, an attribute values update step, a clients update step, a once status update
step, and a result generation step. Each of the steps has several definitions associated
to it and each set of definitions depends on the definitions of the previous step. The
following discussion goes through each of these steps in more details.

The copy step includes the definitions of o, o′0, σ ′0 and w′0. The definition o is the
object referenced by r, and the definition o′0 makes a copy of o. In the next step, the
function defines an updated state σ ′0 that includes the copy o′0. There are two cases to be
differentiated at this point. If o is handled by q, then o′0 must be handled by p. Otherwise
o′0 must be handled by the handler of o. The definition w′0 is the updated map.

The attribute values update step recursively uses deep import rec with map to im-
port all the non-void reference attribute values of o using the updated map. This leads
to an updated object with the deep imported values. This step includes the definition of
{a1, . . . ,an}, as well as the definitions of {r′1, . . . ,r′n}, {w′1, . . . ,w′n}, {σ ′1, . . . ,σ ′n}, and
{o′1, . . . ,o′n}. The set {a1, . . . ,an} contains each attributes of o whose value is a non-
void reference. The function defines (r′i,w

′
i,σ ′i ) for i = 1 . . .n as a sequence of tuples.

Each of the tuples is responsible for a single recursive deep import operation for one
of the attributes in {a1, . . . ,an}. Each such operation results in an updated map and an
updated state that must be used in the next deep import operation. The result of this is
an updated map w′n, and updated state σ ′n, and references r1, . . . ,rn to deep imported
data structures. Finally, the function defines a sequence of updated objects {o′1, . . . ,o′n}
that ends with the updated object o′n. The updated object has the values of the attributes
{a1, . . . ,an} set to the deep imported data structures referenced by r1, . . . ,rn.

Until now, the function has an updated state σ ′n that contains the initial copy o′0. In
the client update step, the function updates σ ′n such that the reference to o′0 points to
the updated object o′n. This is done in the clients update step. This step includes the
definition σ ′x. Note that σ ′n is derived from the state σ ′0, which includes the object o′0.

In a next step, the function takes care of the once routines of the imported object. For
this, it defines a new state σ ′y based on the state σ ′x. It defines { f1, . . . , fw} as the set of all
non-separate once functions of o that are fresh on the processor σ ′x.handler(σ ′x.ref (o′n)),
which handles the copied object, but non-fresh on the processor σ ′x.handler(r), which
handles the object referenced by r. Note that the two processor can be the same, in
which case the set { f1, . . . , fw} is empty. Similarly, it defines the set { fw+1, . . . , fm} for
once procedures. For each once routine defined in this way, it updates the state σ ′x such
that the once status is taken over to the handler of the copied object. These definitions
deal with the case where a once routine is fresh on the handler of the copied object, but
non-fresh on the handler of the object referenced by r. Note that the remaining cases
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are implicitly taken care of because no change to the state is necessary. The result is the
state σ ′y.

The last step defines the result of the function, based on the definitions of the preced-
ing steps. The result generation step defines the resulting reference r′ to the imported
object o′n, the resulting map w′, and the resulting state σ ′.

deep import rec without map(p,q,r,w,σ) = (r′,w′,σ ′)
where

o
de f
= σ .ref obj(r)

o′0
de f
= o.copy

σ ′0
de f
=

{
σ .add obj(p,o′0) if σ .handler(r) = q
σ .add obj(σ .handler(r),o′0) otherwise

w′0
de f
= w.add(r,σ ′0.ref (o′0))

{a1, . . . ,an}
de f
= {a | o.att val(a) ∈REF∧o.att val(a) �= void}

∀i ∈ {1, . . . ,n} : (r′i,w
′
i,σ ′i )

de f
= deep import rec with map(p,q,o.att val(ai),w′i−1,σ

′
i−1)

∀i ∈ {1, . . . ,n} : o′i
de f
= o′i−1.set att val(ai,r

′
i)

σ ′x
de f
= σ ′n.update ref (σ ′n.ref (o′0),o

′
n)

σ ′y
de f
= σ ′x
.set once func not fresh(σ ′x.handler(σ ′x.ref (o′n)), f1,σ ′x.once result(σ ′x.handler(r), f1))
. . . .
.set once func not fresh(σ ′x.handler(σ ′x.ref (o′n)), fw,σ ′x.once result(σ ′x.handler(r), fw))
.set once proc not fresh(σ ′x.handler(σ ′x.ref (o′n)), fw+1)
. . . .
.set once proc not fresh(σ ′x.handler(σ ′x.ref (o′n)), fm)

where

{ f1, . . . , fw}
de f
=
{x ∈ o.class type.functions | x.is once∧∃c,d : Γ � x : (d,•,c)∧

σ ′x.is fresh(σ ′x.handler(σ ′x.ref (o′n)),x)∧
¬σ ′x.is fresh(σ ′x.handler(r),x)}

{ fw+1, . . . , fm}
de f
=
{x ∈ o.class type.procedures | x.is once∧

σ ′x.is fresh(σ ′x.handler(σ ′x.ref (o′n)),x)∧
¬σ ′x.is fresh(σ ′x.handler(r),x)}

r′
de f
= σ ′y.ref (o′n)

w′
de f
= w′n

σ ′ de f
= σ ′y

Setting values of formal arguments and the value of the current object entity. The deep
import operation is used in two ways. It is used when an expanded object handled by
one processor gets used as an actual argument for a formal argument on another pro-
cessor. The deep import operation also gets used when an expanded object handled by
one processor gets returned to another processor. This section focuses on the argument
passing aspect.

The auxiliary command push env with feature defines a state in which a processor
p receives a new environment. The new environment is initialized for the execution of
the feature f with target reference r0 and actual argument references (r1, . . . ,rn). Actual
arguments of expanded type must either be copied or they must be deep imported.
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push env with feature : STATE→ PROC � FEATURE→ REF→ TUPLE � STATE
σ .push env with feature(p, f ,r0,(r1, . . . ,rn)) require

σ .regions.procs.has(p)
f .formals.count = n
∀i ∈ {0, . . . ,n} : ri �= void→ σ .heap.refs.has(ri)

axioms
σ .push env with feature(p, f ,r0,(r1, . . . ,rn)) =

σ ′n.set(σ ′n.regions,σ ′n.heap,σ ′n.store.push env(p,e))
where

σ ′0
de f
= σ

∀i ∈ {1, . . . ,n} : (σ ′i ,r
′
i)

de f
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if∃d,q,c : Γ � f .formals(i) : (d,q,c)∧ c.is exp∧ ri �= void∧σ ′i−1.handler(ri) �= p
(σx,σx.last imported ref )
where

σx
de f
= σ ′i−1.deep import(p,ri)

if∃d,q,c : Γ � f .formals(i) : (d,q,c)∧ c.is exp∧ ri �= void∧σ ′i−1.handler(ri) = p
(σx,σx.last added obj)
where

σx
de f
= σ ′i−1.add obj(p,σ ′i−1.heap.ref obj(ri).copy)

otherwise
(σ ′i−1,ri)

w
de f
= new ENV.make
.update( f .formals(1).name,r′1) . . . .update( f .formals(n).name,r′n)
.update( f .locals(1).name,void) . . . .update( f .locals( f .locals.count).name,void)
.update(Current,r0)

e
de f
=

{
w if f ∈ PROCEDURE
w.update(Result,void) if f ∈ FUNCTION

In a first step, the auxiliary command defines an updated state, in which p gets a new
initialized environment e. The updated state is based on an intermediate state σ ′n, which
gets defined in a cascade of state updates with the goal of either copying or deep im-
porting the actual arguments of expanded type. The cascade starts with the definition of
a starting state σ ′0. For each formal argument, the cascade defines a tuple (σ ′i ,r′i) with an
updated state and a reference. If the corresponding actual argument is of reference class
type, nothing needs to be done. If the actual argument is of expanded class type and the
referenced object is not handled by p, then p must deep import the object structure. This
results in an updated state and a new reference to the deep imported object structure.
If the actual argument is of expanded class type and the referenced object is handled
by p, then the expanded object must be copied. This results in an updated state and a
new reference to the copy. The resulting state σ ′n contains all the deep imported and
copied objects. The resulting references r′1, . . . ,r

′
n will be used for values of the formal

argument names.
In a next step, the command defines the environment w as a new environment that

gets updated to map formal argument names, local variable names, the current entity
name, and the result entity name to the respective values. The names of the formal
arguments get mapped to the references r′1, . . . ,r

′
n. Names of local variables are mapped

to the void reference. The current entity name is mapped to the target reference.



A Formal Reference for SCOOP 125

The environment w is the final environment e in which the result name gets mapped
to the void reference. This environment and the updated state σ ′n define the result of the
command. The auxiliary command push env pushes e onto p’s stack of environments.
The auxiliary command push env takes a processor p and an environment e. It returns
a state in which e is pushed on top of p’s environment stack.

The effect of a call to push env with feature or a call to push env can be undone with
a call to the auxiliary command pop env. This auxiliary command takes a processor p
and removes the top environment from p’s stack of environments.

Setting values of local variables and the value of the result entity. The values of local
variables and the value of the result entity are maintained in the store. The auxiliary
command set env val sets a value v for the name n in processor p’s top environment.
For this, it defines an updated environment e in which n is set to v. It then defines
an updated store s by first removing the top environment and then adding the updated
environment e. The updated store is then used to define an updated state. The updated
state becomes the result of the auxiliary command.

Setting attribute values of the current object. The auxiliary command set att val takes
an object o, a name n, and a value v. It returns an updated state in which the attribute
with name n of object o is set to the value v. In a first step, the auxiliary command
defines an updated object with a call to set att val. This updated object is then used to
update the existing reference to o in the state.

Setting values of local variables, the value of the result entity, and attribute values of
the current object in a unified way. The auxiliary command set val attaches a value v
to an entity with name n. The entity can either be a local variable or the result entity in
the top environment of p. It can also be an attribute of the current object on p. In either
case, the update affects an entity on p.

The definition of the resulting state is based on the auxiliary definitions o, σ ′, and
v′. The definition o defines the current object, as defined by the top environment of
processor p. The precondition makes sure that there is always such an environment on
p where the current object is defined. If v is a reference and the referenced object is an
object of reference class type, then v can be attached directly to the entity with name n.
If the object is an expanded object handled by processor p, then the referenced object
must first be copied. Expanded objects handled by a processor different than p must be
deep imported. However, this is done right when the object gets returned from another
processor to p. The definitions σ ′ and v′ define a state and a value that are potentially
updated according to these rules.

The state σ ′ must be updated with the value v′. The update can either affect the
current object on p or it can affect the top environment of p. Attribute names of the
current object, local variable names, and formal argument names are distinct. Therefore
it is safe to first check whether the current object o has an attribute with name n, in
which case the current object gets updated with a v′. If the current object does not have
such an attribute, then it is safe to assume that the top environment contains an entity
with name n, in which case the top environment gets updated.
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set val : STATE→ PROC � NAME � REF∪PROC � STATE
σ .set val(p,n,v) require

σ .regions.procs.has(p)
¬σ .store.envs(p).is empty∧σ .store.envs(p).top.names.has(Current)
v ∈ REF∧ v �= void→ σ .heap.refs.has(v)
v ∈ PROC→ σ .regions.procs.has(v)

axioms

σ .set val(p,n,v) =

⎧⎪⎨
⎪⎩

if∃a ∈ o.class type.attributes : a.name = n
σ ′.set att val(o,n,v′)

otherwise
σ ′.set env val(p,n,v′)

where

o
de f
= σ .heap.ref obj(σ .store.envs(p).top.val(Current))

(σ ′,v′) de f
=⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

if v ∈ REF∧ v �= void∧σ .heap.ref obj(v).class type.is exp∧σ .handler(v) = p
(σx,σx.last added obj)
where

σx
de f
= σ .add obj(p,σ .heap.ref obj(v).copy)

otherwise
(σ ,v)

Setting values of once functions. Values can also be stored in the status of once func-
tions. A once function can be fresh or non-fresh. If the once function is non-fresh on a
processor p, then there is a once result for the once function on p. A once function is set
as non-fresh during the execution of the once function. The following discussion takes
a look at how a processor can set the status of once routines in general, i.e., it considers
both once functions and once procedures.

The auxiliary command set once func not fresh takes a processor p, a once function
f , and a value r. It returns an updated state in which f is set as non-fresh with the once
result r. If f is declared as non-separate, then f is set as non-fresh on p with the once
result r. If f is declared as separate with or without an explicit processor specification,
then f is set as non-fresh on all processors.

The auxiliary command set once proc not fresh does the same for once procedures.
It takes a processor p and a once procedure f and it returns a state in which f is set as
non-fresh on p.

Getting values. This section takes a look at how a processor can read a value that got
written with one of the mechanisms from Sec. 4.6.

Getting values of formal arguments, the value of the current object entity, values of
local variables, and the value of the result entity. The auxiliary query envs takes a
processor p and returns the stack of environments for p. The auxiliary query env val
is more specialized. It takes a processor p and a name n and it returns the value stored
under n in the top environment of p.

Getting attribute values of the current object. The auxiliary query att val takes an
object o and a name n and returns the attribute value for the attribute with name n of
object o.
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Getting values of formal arguments, the value of the current object entity, values of local
variables, the value of the result entity, and attribute values of the current object in a uni-
fied way. The auxiliary queries env val and att val define a new auxiliary query val that
deals both with values in the top environment as well as with values stored in attributes
of the current object. The auxiliary query val takes a processor p and a name n and it
returns the value of n in p’s current feature execution context. This context consists of
the top environment and its reference to the current object. The auxiliary query requires
that the execution context of processor p is setup properly, i.e., there is a top environment
with a reference to the current object. The precondition also states that either the top en-
vironment has the name n registered or the current object has an attribute with name n.
In any valid SCOOP program, any environment variable has a name that is distinct from
the attribute names of the current object. This allows us to define the result of the auxil-
iary query in a simple way. If the name exists in the top environment, then the result is
the value given by env val. Otherwise the name must be the name of an attribute of the
current object, in which case the result is given by att val.

val : STATE→ PROC � NAME � REF∪PROC
σ .val(p,n) require

σ .regions.procs.has(p)
¬σ .store.envs(p).is empty
e.names.has(Current)
e.names.has(n)∨∃a ∈ o.class type.attributes : a.name = n
where

e
de f
= σ .store.envs(p).top

o
de f
= σ .heap.ref obj(e.val(Current))

axioms

σ .val(p,n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if e.names.has(n)
σ .env val(p,n)

where

e
de f
= σ .store.envs(p).top

if∃a ∈ o.class type.attributes : a.name = n
σ .att val(o,n)

where

e
de f
= σ .store.envs(p).top

o
de f
= σ .heap.ref obj(e.val(Current))

Getting values of once functions. The auxiliary query is fresh takes a processor p and
a once routine f . It returns whether f is fresh on p or not.

For non-fresh once functions, the auxiliary query once result returns the once result
of f on p.

Locking. This section explores the aspect of the facade that deals with locking. The
auxiliary query rq locked states whether a processor p’s request queue is locked or
not. There are no auxiliary queries to distinguish between obtained and retrieved locks.
Instead, the auxiliary queries rq locks and cs locks return the set of all request queue
locks, respectively the set of all call stack locks of a processor p. These locks are only



128 B. Morandi, S. Nanz, and B. Meyer

usable if they are not passed. This information can be retrieved with a call to the auxil-
iary query locks passed.

The facade provides auxiliary commands for locking request queues, removing ob-
tained request queue locks, unlocking request queues, delegating obtained request queue
locks, passing locks, and revoking locks.

5 Formalization of Execution

This section formalizes the execution of a SCOOP program. It explains the general
approach, defines the starting point of the execution, and explains the rules that drive the
execution. The rules are divided into rules for mechanisms and rules for code elements.

5.1 General Approach

The formalization is based on structural operational semantics [29], combined with
parts of the terminology from Ostroff et al. [28]. The idea behind a structural operational
semantics is to define the behavior of a program in terms of its parts, i.e., the syntactical
elements of the program. Such a semantics is intuitive because it talks directly about
elements in the code. It is a very powerful semantics because it allows us to apply
structural induction as a proof technique.

Computations. A computation models the execution of a SCOOP program. It is a
sequence of configurations, where each non-initial configuration is derived from a pre-
vious configuration through a transition. Each configuration defines a state and a list
of statements for each processor. Each transition is described by an inference rule that
maps one configuration to another. The transition from one configuration to the next
models an atomic step of one processor. The concurrent execution of a SCOOP pro-
gram is modeled by the interleaved transitions taken by different processors.

Example 4 (Modeling of parallel execution). Suppose there are two processors p and
q. Processor p executes the following sequence of statements: sp,1;sp,2. In parallel, pro-
cessor q executes the following sequence of statements: sq,1. This execution is mod-
eled by any of the following simplified computations: sp,1;sp,2;sq,1 or sp,1;sq,1;sp,2 or
sq,1;sp,1;sp,2.

Configurations. A configuration models a snapshot in the execution of a SCOOP pro-
gram. A configuration consists of a state and a set of processors, each with a queue
of statements. The state is an instance of STATE. A schedule models the processors
and the associated queues, called action queues. Each processor must execute the state-
ments in its action queue in a FIFO order. The beginning of the action queue contains
the statements for the features that are being executed at the moment. The order of these
statements models the way the call stack orders feature executions. The tail of the action
queue is the request queue of the processor. A call stack lock is the right to add a feature
request to the beginning of the action queue and a request queue lock is the right to add
a feature request to the end of the action queue. The notation for a configuration with
processors p1, . . . , pn, respective action queues s1, . . . ,sn, and state σ is:

〈p1 :: s1 | . . . | pn :: sn,σ〉
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The processor separator | is commutative and associative, i.e., p1 :: s1 | p2 :: s2 = p2 ::
s2 | p1 :: s1 and p1 :: s1 | (p2 :: s2 | p3 :: s3) = (p1 :: s1 | p2 :: s2) | p3 :: s3. Within an
action queue, ; separates statements. The configuration is well-defined if and only if
¬∃i, j ∈ {1, . . . ,n} : pi = p j.

Statements. A statement is an element of the action queue. A statement is either an
instruction or an operation. An instruction is user syntax, i.e. an action that occurs
explicitly in the SCOOP program. An operation is run-time syntax, i.e. an action that
does not explicitly occur in a SCOOP program. For example, locking of request queues
is not an action that is explicit in a SCOOP program. Instead, locking is based on the
formal argument list. It is done implicitly before a feature gets executed.

Transitions. A transition takes a system in a start configuration and leaves it in a
result configuration. The following shows the general form of a transition definition

that declares a start configuration 〈P,σ〉 with schedule P
de f
= p1 :: s1 | . . . | pn :: sn and a

result configuration 〈P′,σ ′〉 with schedule P′
de f
= p′1 :: s′1 | . . . | p′m :: s′m:

Γ � 〈P,σ〉 → 〈P′,σ ′〉

The typing environment Γ can be used in the transition definition to access static infor-
mation about the SCOOP program.

Inference rules. An inference rule describes the circumstances under which a transi-
tion can be used. The inference rule has a premise and a conclusion. The conclusion is
the transition and the premise describes the circumstances under which the transition
can be used. The premise consists of a number of transitions and a side condition. The
premise is satisfied if all transitions in the premise can be taken and if the side condition
is true. In this formalization, most of the rules have no transition in the premise. The
following simplified inference rule template takes this into account:

Simplified Inference Rule Template

condition
new stateσ ′ definition
fresh channels definitions

Γ � 〈P,σ〉 → 〈P′,σ ′〉

The side condition has three parts. The first part defines a condition that is based on
the typing environment and the start configuration. The second part is the new state
definition that defines the state of the result configuration. This new state is based on the
state in the start configuration. The last part consists of the fresh channels definitions.
Auxiliary definitions can be used in the condition, the new state definition, and the
fresh channels definitions. The side condition can mention features of STATE. The
preconditions of these features serve as additional conditions in the side condition.

The following inference rule generalizes transitions by adding processors both to the
start configuration and to the result configuration. These additional processors run in
parallel but do not take any actions during the generalized transition.
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Parallelism

Γ � 〈P,σ〉 → 〈P′,σ ′〉

Γ � 〈P | Q,σ〉 → 〈P′ | Q,σ ′〉

Scheduling. Before a processor can execute a feature it must acquire locks and it must
wait until the wait condition is satisfied. A locking request encapsulates these two re-
quirements; it consists of the requested locks and the wait condition. At every moment,
multiple processors can have conflicting locking requests. The scheduler is the arbiter
for these conflicts. The scheduler takes locking requests and stores them in a queue. It
then approves locking requests according to a certain scheduling algorithm.

The model permits a number of possible scheduling algorithms. The algorithms dif-
fer in their level of fairness and their performance. This formalization does not focus on
a particular scheduling algorithm. Instead, it uses the conditions of the inference rules
to express locking requests. If more than one processor satisfies the conditions, then any
of these processors can proceed.

5.2 Initial Configuration

The initial configuration is defined by the SCOOP program. Each SCOOP program
defines a root class type c and a root procedure f . The root procedure is a creation
procedure of the root class type that has no formal arguments and no precondition.

In the beginning, the runtime generates a bootstrap processor p and root processor
q with a root object of the root class type. The request queue of the root processor is
locked on behalf of the bootstrap processor. This defines our initial state σ :

σx
de f
= new STATE.make

σy
de f
= σx.add proc(σx.new proc)

p
de f
= σy.last added proc

σz
de f
= σy.add proc(σy.new proc)

q
de f
= σz.last added proc

σw
de f
= σz.add obj(q,σz.new obj(c))

r
de f
= σw.ref (σw.last added obj)

σ de f
= σw.lock rqs(p,{q})

The bootstrap processor first asks the root processor to execute the root procedure on
the root object and then asks the root processor to unlock its request queue as soon
as it finished the execution. The bootstrap processor can do this because it has the re-
quest queue lock on the root processor. Finally, the bootstrap processor removes the
request queue lock from its stack of obtained request queue locks. This is shown in the
following initial configuration:
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〈
p :: call(r, f ,(),());

issue(q,unlock);
pop obtained rq locks |

q ::
,

σ
〉
The statements call, issue, unlock, and pop obtained rq locks are operations. In
a nutshell, the call(r, f ,(),()) operation asks the handler of the target r to make a call
to the feature f on target r. The unlock operation unlocks the request queue of the pro-
cessor that executes the operation. The issue(q,unlock) operation adds the unlock
operation to q’s action queue. The pop obtained rq locks operation removes the top
element from the stack of obtained request queue locks.

5.3 Mechanisms

Mechanisms are the machinery for the execution of code elements. This section studies
these mechanisms.

Issuing mechanism. With the issuing mechanism, a processor p can add statements to
the action queue of a processor q. It uses the issue operation to get a result configura-
tion in which a processor’s action queue is extended with the new statements. There are
two main cases: p adds the statements to its own action queue, i.e., p = q, or p adds the
statements to the action queue of a different processor, i.e., p �= q. The first case is the
non-separate case and the second one is the separate case.

For the non-separate case p puts the statements to the beginning of q’s action queue,
which is the same as putting the statements on top of the call stack. This requires that p
is in possession of its own call stack lock.

Issue Operation – Non-Separate

q = p
¬σ .locks passed(p)
σ .cs locks(p).has(q)

Γ � 〈p :: issue(q,sw);sp,σ〉 → 〈p :: sw;sp,σ〉
For the separate case there is a difference between a normal and a callback case. In the
normal case, p adds the statements to the end of q’s action queue. This case requires
that p is in possession of q’s request queue lock. To distinguish the normal case from
the callback case, this case also requires that q does not have a lock on p.

Issue Operation – Separate

q �= p
¬σ .locks passed(p)
σ .rq locks(p).has(q)
¬(σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))

Γ � 〈p :: issue(q,sw);sp | q :: sq,σ〉 → 〈p :: sp | q :: sq;sw,σ〉
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The callback case occurs if q has a lock on p. In this situation, p could issue a statement
sw on q and then wait for q to complete. On the other side, processor q could already be
waiting for p to complete. Processor q would be waiting for p to finish and p would be
waiting for q to finish. However, since sw would be at the end of q’s action queue and q
would be waiting there cannot be any progress. This type of deadlock can be prevented
by adding sw not to the of q’s action queue but to the beginning. This will make sure
that q can execute the statement right away and hence p can continue. This in return
will enable q to continue. As a prerequisite, p must possess q’s call stack lock.

Issue Operation – Separate Callback

q �= p
¬σ .locks passed(p)
σ .cs locks(p).has(q)
σ .rq locks(q).has(p)∨σ .cs locks(q).has(p)

Γ � 〈p :: issue(q,sw);sp | q :: sq,σ〉 → 〈p :: sp | q :: sw;sq,σ〉

Delegated execution mechanism. This section discusses how a processor q can del-
egate the execution of statements to a different processor p. This mechanism is useful
for the evaluation of asynchronous postconditions. Processor q must make sure that the
statements make sense in the context of processor p. The names that occur in these
statements must be defined in the top environment of p and p must have the necessary
locks to execute the statements. Statements that fulfill the following conditions can be
delegated:

– All names that occur in the statements are defined in q’s top environment.
– Their execution only requires the top set of q’s stack of obtained request queue

locks.

These conditions exclude statements that involve non-separate calls or separate call-
backs because such calls require a call stack lock. If these conditions are met, q can
transfer its top environment and the top of its obtained request queue locks to p. Given
this context, p can then execute the delegated statements instead of q.

The execute delegated(sw,x,{q1, . . . ,qm}) operation sets up a new context on
p with an environment x and obtained request queue locks {q1, . . . ,qm}. To set up
the new context, the operation uses a combination of the commands push env and
delegate obtained rq locks. The command delegate obtained rq locks requires that the
request queue locks {q1, . . . ,qm} are not in possession of another processor anymore. It
also requires that the request queues of {q1, . . . ,qm} are locked. Once the context is set
up, processor p executes the statements sw and then gets rid of the context, using the
leave delegated operation.

To delegate the execution of the statements sw, processor q must make sure that its
top environment x is set up correctly and it must make sure that the top set of its obtained
request queue locks contains all locks {q1, . . . ,qm} that are necessary for the execution
of sw. Processor q must then issue a execute delegated(sw,x,{q1, . . . ,qm}) operation
to processor p. Processor q must then remove {q1, . . . ,qm} from its stack of obtained
request queue locks so that the delegate obtained rq locks operation can take place.
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Execute Delegated Operation

∀x ∈ {q1, . . . ,qm} : ¬∃y ∈ σ .procs : σ .rq locks(y).has(x)
∀x ∈ {q1, . . . ,qm} : σ .rq locked(x)

σ ′ de f
= σ .push env(p,x).delegate obtained rq locks(p,{q1, . . . ,qm})
Γ �〈p :: execute delegated(sw,x,{q1, . . . ,qm});sp,σ〉 →
〈p :: sw;leave delegated;sp,σ ′〉

Leave Delegated Execution Operation

¬σ .envs(p).is empty
¬σ .obtained rq locks(p).is empty

σ ′ de f
= σ .pop env(p).pop obtained rq locks(p)

Γ � 〈p :: leave delegated;sp,σ〉 → 〈p :: sp,σ ′〉

Notification mechanism. Processors can notify each other. A notification can option-
ally include a value. The formalization uses channels to describe such communication.
Channels are described in Milner’s π-calculus [23]. In the π-calculus, the expression
c(x).P denotes a process that is waiting for a notification sent on a channel c. Once the
notification has been received, the value of the notification is bound to the variable x
and the process continues with the expression P. The notification comes from a process
that executes cy.Q to emit the value y on the channel c before executing Q.

The formalization reuses the channel idea in two flavors: once as a notification mech-
anism with a value and once as a notification mechanism without a value. A proces-
sor sends a notification with a value r over a channel a as it executes the operation
result(a,r). Similarly, the process sends a notification without a value over a channel
a by executing the operation notify(a). For both cases, any processor can wait for a
notification by executing the operation wait(a). In case a notification on a channel a
carries a value, the value can be accessed with a.data. This way of accessing the value
of a channel is different from the way it is done in the π-calculus. In the π-calculus,
each value is bound to a variable. This formalization does not define a new variable for
the value. Instead, it uses a.data to identify the value of a channel a.

A number of inference rules describe the interaction between a processor that sent
a notification over a channel and a processor that is waiting for a notification over the
same channel. Two main cases can be distinguished: either a processor sends a noti-
fication to itself or it sends a notification to a different processor. The first case is the
non-separate case and the latter case is the separate case. In each of these two main
cases, the channel carries a notification with or without a value. For each of these sub
cases, there is one inference rule.

In the non-separate case, one processor has a result(a,r) operation or a notify(a)
operation at the beginning of its action queue and a wait(a) operation on the same
channel later in the action queue. In this case, the wait(a) operation can be removed
along with the result(a,r) operation, respectively the notify(a) operation. If the
channel carries a value, then the value must be installed on the processor, by substituting
all occurrences of a.data with the posted value in all the statements sp after the wait(a)
operation.



134 B. Morandi, S. Nanz, and B. Meyer

Wait and Result Operation – Non-Separate

Γ � 〈p :: result(a,r);sw;wait(a);sp,σ〉 → 〈p :: sw;sp[r/a.data],σ〉
Wait and Notify Operation – Non-Separate

Γ � 〈p :: notify(a);sw;wait(a);sp,σ〉 → 〈p :: sw;sp,σ〉

In the separate case, one processor has a result(a,r) or a notify(a) operation at the
beginning of its action queue and a different processor has a wait(a) somewhere in
its action queue. In this situation, the wait(a), result(a,r), and notify(a) can be
removed from the action queues. In case the notification has a value, the value can be
installed in the statements sp, after the wait(a) operation.

Wait and Result Operation – Separate

Γ � 〈p :: sw;wait(a);sp | q :: result(a,r);sq,σ〉 → 〈p :: sw;sp[r/a.data] | q :: sq,σ〉
Wait and Notify Operation – Separate

Γ � 〈p :: sw;wait(a);sp | q :: notify(a);sq,σ〉 → 〈p :: sw;sp | q :: sq,σ〉

The operations presented here must be used so that each wait operation can be resolved
with exactly one result or notify operation. To define this condition more precisely,
we define that one statement s1 weakly precedes a statement s2 if and only if s1 occurs
earlier than s2 in the same action queue or s1 and s2 occur in different action queues.
One statement s1 strongly precedes a statement s1 if and only if s1 occurs earlier than
s2 in the same action queue. With these definitions, the condition says:

– For each wait(a) operation there must be either exactly one result(a,r) or ex-
actly one notify(a) operation.

– For each result(a,r) or notify(a) operation there must be exactly one wait(a)
operation.

– Each result(a,r) or notify(a) operation weakly precedes the wait(a) operation.

Expression evaluation mechanism. An expression can either be a literal, an entity, or a
query call. The query call can contain actual arguments that are expressions themselves.
This section discusses the general mechanism to evaluate expressions. It focuses on the
general approach and defers the evaluation of particular expressions to later sections.

The operation eval(a,e) takes a channel a and an expression e. Each eval(a,e)
operation determines the value r of the expression e and then sends a notification with
value r on channel a. This means that each eval(a,e) operation creates a result(a,r)
operation in the action queue. It is therefore important to follow each eval(a,e) opera-
tion with exactly one wait(a) to receive the notification with the value.
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Locking and unlocking mechanism. A processor p that wants to execute a feature
must first obtain the request queue locks of a number of processors {q1, . . . ,qn}. For
this, p adds {q1, . . . ,qn} on top of its obtained request queue locks stack. Only then can
p issue statements to these processors. The lock({q1, . . . ,qn}) operation serves this
purpose. The operation requires that none of the request queues is already locked.

Lock Operation

¬∃qi ∈ {q1, . . . ,qm} : σ .rq locked(qi)

σ ′ de f
= σ .lock rqs(p,{q1, . . . ,qm})

Γ � 〈p :: lock({q1, . . . ,qm});sp,σ〉 → 〈p :: sp,σ ′〉

Once p is done with the execution of the feature, it asks {q1, . . . ,qn} to unlock their
request queues once they are done with the issued statements. For this purpose, the
unlock operation unlocks the request queue. Processor p issues the unlock opera-
tion to processors {q1, . . . ,qn}. This operation requires that the request queue is indeed
locked and that no processor possesses the request queue lock.

Unlock Operation

σ .rq locked(p)
∀q ∈ σ .procs : ¬σ .rq locks(q).has(p)

σ ′ de f
= σ .unlock rq(p)

Γ � 〈p :: unlock;sp,σ〉 → 〈p :: sp,σ ′〉

After p issued the unlock operations, it can remove {q1, . . . ,qn} from its stack of ob-
tained request queue locks using the pop obtained rq locks operation. This ensures
that the unlock operations can proceed.

Pop Obtained Request Queue Locks

σ ′ de f
= σ .pop obtained rq locks(p)

Γ � 〈p :: pop obtained rq locks;sp,σ〉 → 〈p :: sp,σ ′〉

Brooke, Paige, and Jacob [5] noticed that unlock operations are not optimal. In essence,
it could be possible to unlock the request queue of a processor qi directly after p issued
all statements. The request queue lock is important to guarantee exclusive access on
qi’s request queue. However, as soon as p issued all statements on qi, this lock is no
longer needed. Unlocking the request queue right away could improve the performance
in some situations because qi’s request queue could be locked again earlier and hence
another processor that is waiting for this lock could proceed earlier.

Write and read mechanism. A processor p can use the write(x,v) operation to set a
value v of an entity with name x. This operation uses the set val command. Hence, p can
both set attribute values of its current object and values of entities in its top environment.

Write Value Operation

σ ′ de f
= σ .set val(p,x,v)

Γ � 〈p :: write(x,v);sp,σ〉 → 〈p :: sp,σ ′〉
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Similarly, processor p can execute the read(x,a) operation to read a value of an entity
with name x and send the value over channel a. The read operation does not present
its result in a result operation because, unlike an eval operation, a read operation
always produces a result for the surrounding action queue. It is easier to do the substi-
tution of the channel access directly. A later section introduces the eval operation for
entity expressions. This variant of the eval operation makes use of the read operation
and presents the result in a result operation.

Read Value Operation

Γ � 〈p :: read(x,a);sp,σ〉 → 〈p :: sp[σ .val(p,x)/a.data],σ〉

Finally, there is the set not fresh operation in a variant for once functions and in
a variant for once procedures. This operation sets the once status of a once routine.
The variant set not fresh( f ,r) sets the once status of a once function f to non-fresh
with value r. If f is of separate type, then the once function becomes non-fresh on all
processors in the system. If f has a non-separate type, then f becomes non-fresh only
on processor p. The variant set not fresh( f ) sets the once status of a once procedure
f to non-fresh on processor p.

Set Once Routine Not Fresh Operation – Function

f ∈ FUNCTION∧ f .is once

σ ′ de f
= σ .set once func not fresh(p, f ,r)

Γ � 〈p :: set not fresh( f ,r);sp,σ〉 → 〈p :: sp,σ ′〉

Set Once Routine Not Fresh Operation – Procedure

f ∈ FUNCTION∧ f .is once

σ ′ de f
= σ .set once proc not fresh(p, f )

Γ � 〈p :: set not fresh( f );sp,σ〉 → 〈p :: sp,σ ′〉

Flow control mechanism. In addition to flow control instructions in the user code,
there are flow control operations, which implement flow control in the inference rules.
This way, fewer inference rules are required because multiple variants can be handled
in one inference rule.

The provided x then st else s f end operation takes the condition x as an argument.
The operation either executes st if x indicates that the condition is true or s f if x indicates
that the condition is false. For each possibility there is one inference rule. The condition
x can either be an instance of BOOLEAN or it can be a reference that points to an object
of class type BOOLEAN. To decide which branch to take, the operation must evaluate
x. If x is an instance of BOOLEAN, then it can determine which instance x is, i.e., true
or false. If x is a reference, then it must get the referenced object and see which boolean
value it represents. For this purpose, it evaluates the attribute item of the referenced
object.
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If Operation – True

y
de f
=

⎧⎨
⎩

x if x ∈ BOOLEAN
σ .att val(σ .ref obj(x), item) if x ∈ REF∧σ .ref obj(x).class type = BOOLEAN
false otherwise

y = true

Γ � 〈p :: provided x then st else s f end;sp,σ〉 → 〈p :: st ;sp,σ〉

If Operation – False

y
de f
=

⎧⎨
⎩

x if x ∈ BOOLEAN
σ .att val(σ .ref obj(x), item) if x ∈ REF∧σ .ref obj(x).class type = BOOLEAN
true otherwise

y = false

Γ � 〈p :: provided x then st else s f end;sp,σ〉 → 〈p :: s f ;sp,σ〉

The provided x then st else s f end operation has two branches. Sometimes it is
necessary to only have one branch. The nop operation can be executed without an effect.
It can be used in the conditional operation to define an empty branch. The nop operation
can also be used to indicate that an action queue is empty.

No Operation

Γ � 〈p :: nop;sp,σ〉 → 〈p :: sp,σ〉
5.4 Code Elements

This section explains the semantics of code elements: entity expressions, literal expres-
sions, feature calls, feature applications, creation instructions, flow control instructions,
and assignment instructions.

Entity expressions. A variant of the eval(a,e) operation evaluates entity expressions.
The operation uses the read operation to send a notification with the value of the entity
over a new channel a′. It then uses the value of this channel to define the result of the
eval operation.

Entity Expression

e ∈ ENTITY
a′ is f resh

Γ � 〈p :: eval(a,e);sp,σ〉 → 〈p :: read(e.name,a′);result(a,a′.data);sp,σ〉

Literal expressions. Another variant of the eval(a,e) operation evaluates literal ex-
pressions. To evaluate a non-void literal expression, the operation creates a new object
of the literal class type so that the new object represents the literal value. For this pur-
pose, it uses the query obj of LITERAL. Since the type of every literal is non-separate,
it creates the new object on the processor that evaluates the literal expression. The ref-
erence r to the new object is the result of the evaluation. To evaluate a void literal, the
operation takes the void reference.
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Literal Expression

e ∈ LITERAL

σ ′ de f
=

{
σ if e = Void
σ .add obj(p,e.obj) otherwise

r
de f
=

{
void if e = Void
σ ′.ref (σ ′.last added obj) otherwise

Γ � 〈p :: eval(a,e);sp,σ〉 → 〈p :: result(a,r);sp,σ ′〉

Feature calls. A feature call can occur in two ways. First, a feature call can be a call to
a command in a command instruction. Second, a feature call can be a call to a query in
an expression. This section studies both variants. A processor p that executes a feature
call e0. f (e1, . . . ,en) goes through the following steps:

1. Target evaluation. Evaluate the target expression e0 and let q denote the handler of
the target.

2. Argument passing. Evaluate the actual arguments expressions (e1, . . . ,en).
3. Lock passing. Determine which locks to pass to q.

– Take all request queue locks and call stack locks if a controlled actual argument
gets attached to an attached formal argument of reference type.

– Take all request queue locks and call stack locks if the feature call is a separate
callback, i.e., q has a lock on p.

– Otherwise, take no locks.
4. Feature request.

– Ask q to apply f to the target immediately and wait until the execution termi-
nates if any of the following conditions holds:
• The feature call is non-separate, i.e., p = q.
• The feature call is a separate callback, i.e., q has a lock on p.

– Otherwise, ask q to apply f to the target after the previous feature requests.
5. Wait by necessity. If f is a query, then wait for the result.
6. Lock revocation. If lock passing happened, then wait for the locks to come back.

A command instruction is a statement in the action queue. A query is an expression on
the right hand side of an assignment, a condition in a flow control instruction, or an
actual argument in a feature call. Whenever a query occurs in one of these constructs,
the inference rule of the construct encloses the query in an eval operation. To handle
feature calls, there is an inference rule for command instructions and a variant of the
eval operation for query calls.

In each case, the statement first evaluates the target expression and all actual argument
expressions. For each of these expressions ei, it uses one eval(aei ,ei) operation and a
corresponding wait(aei) operation with a fresh channel aei . Each of the channel values
gets used in the subsequent call operation. With this, the statement handled the target
evaluation and the argument passing step. It defers the attachment of the actual arguments
to the formal arguments to the point where the called feature gets applied. The reason for
this is simple: at this point the context for the feature application does not exist yet.

The call operation takes care of the remaining steps. The operation exists in two vari-
ants, one for command instructions and one for queries. The variant for queries takes a
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channel a′ and uses it for the result of the query. Since a call to a command does not pro-
duce a result, such a channel is not required for command instructions. Bothcallvariants
take the reference to the target ae0, the feature f to be called, the references to the actual ar-
guments (ae1 .data, . . . ,aen .data), and the actual argument expressions (e1, . . . ,en)). The
actual argument expressions are used to check whether there is a controlled actual argu-
ment. This information determines whether the locks should be passed.

Command Instruction

∀i ∈ {0, . . . ,n} : aei is f resh

Γ �〈p :: e0. f (e1, . . . ,en);sp,σ〉 →
〈p :: eval(ae0 ,e0);eval(ae1 ,e1); . . . ;eval(aen ,en);

wait(ae0);wait(ae1); . . . ;wait(aen);
call(ae0 .data, f ,(ae1 .data, . . . ,aen .data),(e1, . . . ,en));
sp,σ〉

Query Expression

∀i ∈ {0, . . . ,n} : aei is f resh
a′ is f resh

Γ �〈p :: eval(a,e0. f (e1, . . . ,en));sp,σ〉 →
〈p :: eval(ae0 ,e0);eval(ae1 ,e1); . . . ;eval(aen ,en);

wait(ae0);wait(ae1); . . . ;wait(aen);
call(a′,ae0 .data, f ,(ae1 .data, . . . ,aen .data),(e1, . . . ,en));
result(a,a′.data);
sp,σ〉

Both variants of the call operation take the reference to the target ro, the feature f to
be called, the references to the actual arguments (r1, . . . ,rn), and the actual argument
expressions (e1, . . . ,en). The variant for queries takes an additional channel a to be used
for the result of the query. In a first step, the operation must evaluate the handler q of the
target. The handler is used in an issue operation to issue a feature request on the re-
sponsible processor. The feature request comes in the form of an apply operation. The
apply operation takes a channel a for the communication between p and q, the target
reference r0, the called feature f , the references to the actual arguments (r1, . . . ,rn), the
caller processor p, and the passed locks l.

Clarification 3 (Lock passing). Processor p passes all its request queue locks and all its
call stack locks either if there is a controlled actual argument that will get attached to an
attached formal argument of reference type or if the feature call is a separate callback.
An attached formal argument of reference type means that the request queue lock or
the call stack lock on the actual argument’s handler is required during the application
of f . A controlled actual argument means that p has a request queue lock or a call stack
lock on the handler of the actual argument. In short, p has a lock that is required by
q and thus p has to pass the locks. A separate callback occurs if q has a lock on p. In
this situation, p can issue a statement to q and then wait for q to complete. However,
processor q could already be waiting for p to complete. To handle this case, the issue
operation in the call operation triggers an immediate execution by adding the apply
to the beginning of q’s action queue. The issue operation requires that p has the call
stack lock of q. To enable q to perform an immediate execution, p has to give back q’s
call stack lock.
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In both cases, p has to wait for the locks to come back. Thus it does not hurt to pass
all the locks in both cases. In contrast to Nienaltowski’s [25] description of SCOOP, p
only passes the locks that it really has. In particular, p does not pass its own request
queue lock in situations where p does not possess this lock, such as when the processor
that called p possesses p’s request queue lock. �

In the cases where the operation passes the locks, l is (σ .rq locks(p),σ .cs locks(p)).
In all other cases there is no lock passing and thus l = ({},{}). The operation just
determines which locks to pass. The actual lock passing action will be executed by q.
Similarly, the actual lock revocation action will be executed by q.

For command calls, lock passing is the only reason to wait. In this case, the operation
creates a fresh channel a to wait for a notification from q. The notification arrives when
q is ready to return the locks. For query calls, the operation has to wait for the result.
The operation uses the given channel a to wait for the result. This has the advantage that
once the result arrives, it will be substituted after the call operation, i.e. in the result
operation of the eval operation.

Call Operation – Command

q
de f
= σ .handler(r0)

l
de f
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if
q �= p∧∃i ∈ {1, . . . ,n} : Γ � ei : t ∧ controlled(t)∧Γ � f .formals(i) : (!,g,c)∧ c.is ref

then
(σ .rq locks(p),σ .cs locks(p))

if
q �= p∧ (σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))

then
(σ .rq locks(p),σ .cs locks(p))

otherwise
({},{})

a is f resh

Γ �〈p :: call(r0, f ,(r1, . . . ,rn),(e1, . . . ,en));sp,σ〉 →
〈p :: issue(q,apply(a,r0, f ,(r1, . . . ,rn), p, l));

provided l �= ({},{}) then wait(a) else nop end;
sp,σ〉

Call Operation – Query

q
de f
= σ .handler(r0)

l
de f
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if
q �= p∧∃i ∈ {1, . . . ,n} : Γ � ei : t ∧ controlled(t)∧Γ � f .formals(i) : (!,g,c)∧ c.is ref

then
(σ .rq locks(p),σ .cs locks(p))

if
q �= p∧ (σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))

then
(σ .rq locks(p),σ .cs locks(p))

otherwise
({},{})

Γ �〈p :: call(a,r0, f ,(r1, . . . ,rn),(e1, . . . ,en));sp,σ〉 →
〈p :: issue(q,apply(a,r0, f ,(r1, . . . ,rn), p, l));wait(a);sp,σ〉
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Feature applications. A feature call by a client processor q results in a feature request
for a supplier processor p. A feature application is the serving of the feature request.
This section discusses how p applies a feature f on a target referenced by r0. Processor
p takes the following steps:

1. Once status update. If f is a once routine, then set its status to non-fresh.
2. Lock passing. Pass the locks from q to p.
3. Argument passing. Bind the actual arguments to the formal arguments. Arguments

of expanded type that are handled by a different processor than p must be deep
imported by p.

4. Synchronization. Involve the scheduler to wait until the following synchronization
conditions are satisfied atomically:

– Processor p owns the request queue lock of each processor q such that:

• Processor q handles an actual argument of f and the corresponding formal
argument has an attached reference type.
• Processor p and processor q are different.
• Processor p does not have q’s request queue lock.
• Processor q does not have p’s request queue lock.

– The precondition of f holds.

5. Execution.

– If f is a non-once routine or a fresh once routine, then run its body.
– If f is a non-fresh procedure, then do nothing. If f is a non-fresh function, then

take its once value as the result.
– If f is an attribute, then evaluate it.

6. Postcondition evaluation. Evaluate the postcondition if any of the following condi-
tions is satisfied:

– A feature call in the postcondition requires a lock that was not obtained in the
synchronization step.

– The evaluation of the postcondition involves lock passing.

Otherwise ask any processor whose request queue lock was obtained in the syn-
chronization step to evaluate the postcondition.

7. Lock releasing. Ask each processor whose request queue has been locked in the
synchronization step to unlock its request queue after it is done with the feature
requests issued by p.

8. Invariant evaluation. If f is a routine, then evaluate the invariant.
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9. Result returning. If f is a query, then return the result to q. If the result is of ex-
panded type and p �= q, then the result must be deep imported by q.

10. Lock revocation. Return the passed locks from p to q.

Each feature application starts with an operation apply(a,r0, f ,(r1, . . . ,rn),q, l) in the
action queue of processor p. The channel a is used to communicate with the client
processor q. If the called feature f is a procedure and the caller processor q passed
some locks, then a is used to signal that the locks returned. If f is query, then a is
used to return the value. The reference r0 points to the target of the call. The references
(r1, . . . ,rn) point to the actual arguments. The tuple l contains the locks to be passed
from q to p.

If one takes a look at the execution step, one can differentiate three cases:

– The feature f is a non-once routine or a fresh once routine.
– The feature f is a non-fresh once routine.
– The feature f is an attribute.

For each of these cases, there is one inference rule. Each inference rule covers one
variant of the apply operation. The discussion continues with the most involved case:
the feature f is a non-once routine or a fresh once routine.

The condition of the inference rule states that each processor can only apply a feature
on one of its own objects. The condition also states the p must not have passed its locks.
This part of the condition is always given because p waits whenever it passes its locks.
In a first step, the operation defines an updated state σ ′ to set f ’s once status to non-
fresh, in case f is a once routine. The operation does this before deep importing the
actual arguments to avoid the following contradiction.

Clarification 4 (When to change the status of a fresh once routine). Assume f is either
a once procedure or a non-separate once routine. The feature f was fresh at the begin-
ning of the apply operation. Assume that the caller passed an expanded actual argu-
ment that is handled by a processor g �= p. Therefore p has to deep import the actual
argument. Assume furthermore that the class type of the actual argument has the once
routine f and that f is non-fresh on g. If the operation would deep import before setting
f as non-fresh on p, then the deep import operation would take over the once status of
f from processor g to processor p. But then the apply operation on p would not make
much sense anymore because f would now be non-fresh on p. If the operation sets f as
non-fresh at the beginning of the apply operation, then the deep import operation does
not take over the once status from g because f is already non-fresh on p. �

The operation defines an updated state σ ′′ in which the locks are passed from q to p and
in which there is a new environment with the actual arguments (r1, . . . ,rn). The call to
the push env with feature feature takes care of copying and deep importing actual ar-
guments of expanded type. The caller processor q can also pass an empty tuple ({},{})
which simply means that q did not pass any locks.
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Application Operation – Non-Once Routine or Fresh Once Routine

f ∈ROUTINE∧ f .is once→ σ .is fresh(p, f )
σ .handler(r0) = p
¬σ .locks passed(p)

σ ′ de f
=

⎧⎨
⎩

σ .set once func not fresh(p, f ,void) if f ∈ FUNCTION∧ f .is once
σ .set once proc not fresh(p, f ) if f ∈ PROCEDURE∧ f .is once
σ otherwise

σ ′′ de f
= σ ′.pass locks(q, p, l).push env with feature(p, f ,r0,(r1, . . . ,rn))

grequired locks
de f
= {p}∪

{x ∈ PROC | ∃i ∈ {1, . . . ,n},g,c : Γ � f .formals(i) : (!,g,c)∧ c.is ref ∧ x = σ ′′.handler(ri)}
grequired cs locks

de f
=

{x ∈ grequired locks | x = p∨ (x �= p∧ (σ ′′.rq locks(x).has(p)∨σ ′′.cs locks(x).has(p)))}
grequired rq locks

de f
= grequired locks \grequired cs locks

gmissing rq locks
de f
= {x ∈ grequired rq locks | ¬σ ′′.rq locks(p).has(x)}

∀x ∈ grequired cs locks : σ ′′.cs locks(p).has(x)
ainv is f resh∧a′ is f resh

Γ �〈p :: apply(a,r0, f ,(r1, . . . ,rn),q, l);sp,σ〉 →
〈p :: check pre and lock rqs(gmissing rq locks, f );

provided f ∈ FUNCTION∧ f .is once then
f .body

[result :=y;read(Result,ar);set not fresh( f ,ar.data) where ar is f resh/
result :=y]

[create result.y;read(Result,ar);set not fresh( f ,ar .data) where ar is f resh/
create result.y]

else
f .body

end;
check post and unlock rqs(gmissing rq locks, f );
provided f .class type.inv exists∧ f .exported then

eval(ainv, f .class type.inv);wait(ainv)
else

nop
end;
provided f ∈ FUNCTION then

read(Result,a′);return(a,a′.data,q)
else

return(a,q)
end;
sp,σ ′′〉

In the next step, the operation synchronizes. For each target expressions in the body
of f , the operation can get the controlling entity. Each of these controlling entities is
mapped to an object and each of these objects is handled by a processor. For each
of these processors the operation must either get a request queue lock or a call stack
lock. There are three types of calls: non-separate calls, separate calls, and separate call-
back. Non-separate calls and separate callbacks require a call stack lock. Separate calls
require a request queue lock. This leads to two sets of required locks: one set with
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required request queue locks and another set with required call stack locks. The set of
required call stack locks is composed of p that will lead to a non-separate call and all the
processors that will lead to separate callbacks. The set of required request queue locks
is composed of the processors that will lead to separate calls. The operation defines two
sets for these two categories: grequired cs locks and grequired rq locks.

Each processor initially has its own call stack lock as its obtained call stack lock.
This call stack never gets unlocked. This means that other call stack locks cannot be
obtained; they must be retrieved through lock passing. The condition of the inference
rule expresses this: ∀x ∈ grequired cs locks : σ ′′.cs locks(p).has(x). The operation can be
assured that p did not pass its own call stack lock because otherwise p would be waiting.
The remaining required call stack locks are the ones for the processors that will lead to
separate callbacks. Note that the lock passing conditions are not sufficient to guarantee
that the call stack locks for separate callbacks are always available.

As for the request queue locks, the operation calculates gmissing rq locks as the required
request queue locks minus the already owned request queue locks. The already owned
request queue locks are the previously obtained request queue locks and the retrieved
request queue locks. In the synchronization step, the operation must obtain the differ-
ence. If this is not possible because some of the missing request queue locks are not
available, then the operation must wait. The check pre and lock rqs operation takes
care of this; it takes gmissing rq locks and the feature f . Once the execution succeeds, p
has the request queue locks of gmissing rq locks and the precondition of f holds.

The apply operation can be assured that each processor g, whose obtained request
queue lock the operation got in the synchronization step, must be in possession of its
call stack lock. If g was not in possession of its call stack lock, it must have passed
its locks. This means that g is executing a feature call and still waiting for the locks to
return. In order to execute the feature call, there must have been a lock on g’s request
queue lock so that its action queue can contain the feature call. The request queue must
still be locked because g is still executing the feature call. Hence, it would not have been
possible to obtain g’s request queue lock. The only exception is the bootstrap processor.
However this processor only plays a role in the system setup and it never passes its own
call stack lock.

Once the operation got all the required locks, it can execute the body. For once func-
tions it must update the once status whenever it writes to the result entity as part of
an assignment instruction or as part of a creation instruction. For this purpose it adds
a read operation and a set not fresh operation after each assignment instruction or
creation instruction. For each assignment instruction or creation instruction it has to use
a fresh channel.

After the execution of the body, the operation has to evaluate the postcondition and it
has to make sure that the locked request queues get unlocked at the right time. These two
steps are performed by another operation check post and unlock rqs that takes the
missing request queue locks gmissing rq locks and the feature f . This operation evaluates
the postcondition either synchronously or asynchronously. After the evaluation of the
postcondition, the operation enqueues an unlock operation to each request queue in
gmissing rq locks.
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SCOOP relies on the Eiffel invariant mechanism. This mechanism is described in
Sec. 7.5 and Sec. 8.9.16 of the Eiffel ECMA standard [9]. On one hand, Sec. 7.5 de-
scribes the semantics of invariants: invariants must be satisfied after the execution of
every exported routine and after the execution of every creation procedure. On the other
hand, Sec. 8.9.16 describes the runtime monitoring of invariants: invariants get evalu-
ated on both start and termination of a qualified call to a routine and after every call to
a creation procedure. We had to decide whether to rely on the semantics of invariants
or on the runtime monitoring of invariants. We decided to rely on the semantics of in-
variants for two reasons. First, the runtime invariant monitoring mechanism is only one
possible implementation of the invariant semantics. Second, the runtime invariant mon-
itoring mechanism relies on the notion of unqualified calls. However, for simplicity this
work assumes feature calls to be in the canonical qualified form. The apply operation
reflects this decision: the operation evaluates the invariant whenever f is exported. Note
that the invariant can only contain non-separate target expressions. Hence, each call in
the invariant will only require p’s call stack lock.

Finally, the operation has to return the locks and it has to return the result if f is a
function. The return operation takes care of this. It comes in a variant for queries and
in a variant for commands. Both variants take the channel a and the caller processor q
in order to communicate with q. The variant for queries additionally takes the value to
be returned to q.

Before explaining the variants of the apply operation for non-fresh once routines
and attributes, the discussion continues with the operations that have not been discussed
in details so far, namely check pre and lock rqs, check post and unlock rqs,
and return.

Check Precondition and Lock Request Queues Operation

a is f resh

Γ �〈p :: check pre and lock rqs({q1, . . . ,qm}, f );sp,σ〉 →
〈p :: lock({q1, . . . ,qm});

provided f .pre exists then
eval(a, f .pre);
wait(a)

else
nop

end;
provided ¬ f .pre exists∨a.data then

nop
else

issue(q1,unlock);
. . .
issue(qm,unlock);
pop obtained rq locks;
check pre and lock rqs({q1, . . . ,qm}, f )

end;
sp,σ〉

The check pre and lock rqs({q1, . . . ,qm}, f ) operation, executed by processor p,
takes a processor set {q1, . . . ,qm} whose request queues must be locked on behalf of p
and it takes a feature f whose precondition must be satisfied. The operation treats the
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precondition as a wait condition. It goes through a number of iterations. Each iteration
obtains the request queue locks and then evaluates the precondition. If the precondition
is satisfied, then the check pre and lock rqs operation finishes. Otherwise it unlocks
the request queues and then starts a new iteration. If the check pre and lock rqs
operation finishes, p can be assured that it obtained all the request queue locks and the
precondition holds.

Check Postcondition and Unlock Request Queues Operation

q
de f
= {q1, . . . ,qm}

p /∈ q

targets(e)
de f
=

{
{e0}∪

⋃
i=0...n targets(ei) if e = e0.w(e1, . . . ,en)

{} otherwise

args(e)
de f
=

{ ⋃
i=1...n {(ei,w, i)}∪args(ei) if e = e0.w(e1, . . . ,en)
{} otherwise

g0
de f
∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if
q �= {}∧
∀x ∈ targets( f .post) : (Γ � σ .handler(σ .val(p,controlling entity(x).name)) ∈ q)∧
¬∃(x,y,z) ∈ args( f .post),t,h,c :

(Γ � x : t ∧ controlled(t)∧ y.formals(z) : (!,h,c)∧ c.is ref )
then

q
otherwise
{p}

{g1, . . . ,g j}
de f
= q\g0

a is f resh

Γ �〈p :: check post and unlock rqs({q1, . . . ,qm}, f );sp,σ〉 →
〈p :: provided f .post exists∧g0 �= p then

issue(
g0,
execute delegated(

eval(a, f .post);wait(a);
issue(g1,unlock); . . . ;issue(g j,unlock)

,
σ .envs(p).top,{q1, . . . ,qm}

);
unlock

);
pop obtained rq locks

else

provided f .post exists then
eval(a, f .post);wait(a)

else
nop

end;
issue(q1,unlock); . . . ;issue(qm,unlock);
pop obtained rq locks

end;
sp,σ〉
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The check post and unlock rqs operation also takes a processor set {q1, . . . ,qm}
and a feature f . The processor set is the same as for the check pre and lock rqs op-
eration, i.e., the set of processors whose request queues got locked in the synchroniza-
tion step. The operation first determines whether the postcondition should be evaluated
synchronously or asynchronously. Then the operation starts the evaluation. Finally, the
operation enqueues an unlock operation to each request queue in {q1, . . . ,qm}.

Clarification 5 (Asynchronous postcondition evaluation). The postcondition can be
evaluated asynchronously if every feature call in the postcondition only requires a re-
quest queue lock that was obtained in the synchronization step and if the postcondition
does not involve lock passing. If the postcondition has a feature call that requires a lock
different from the obtained request queue locks, then p cannot delegate its obtained
request queue lock and then continue because the required lock would be required in
another feature execution context as well. Hence the postcondition must be evaluated
synchronously in this case. If the postcondition involves lock passing, then one of p’s
lock might be necessary for the evaluation of the postcondition. Hence, p must pass
its locks and cannot proceed until the postcondition is evaluated and the passed locks
returned. Once again, the postcondition must be evaluated synchronously. In Nienal-
towski’s description of SCOOP [25] a postcondition can be evaluated asynchronously
if the current processor is not involved in the postcondition evaluation. This rule permits
configurations in which the evaluating processor does not have the necessary locks for
the evaluation. �

If the postcondition can be evaluated asynchronously, then the operation can take one of
the processors in {q1, . . . ,qm}. This set does not contain processor p because processor
p never obtains its own request queue lock. Each processor in this set is exclusively
available in the current execution context and can thus be used to evaluate the postcon-
dition asynchronously. The check post and unlock rqs operation defines g0 to be
the evaluating processor according to the rule just presented. It also defines {g1, . . . ,g j}
to be the set {q1, . . . ,qm} minus the request queue lock of g0. If p is the evaluating
processor, then this set is the same as {q1, . . . ,qm}. As a result of these definitions, the
postcondition can be evaluated asynchronously if g0 �= p. Otherwise, the postcondition
must be evaluated synchronously.

In the synchronous case, processor p evaluates the postcondition, enqueues unlock
operations to each request queue in {q1, . . . ,qm}, and then removes the corresponding
locks from its stack of obtained request queue locks. The unlock operations will not
proceed until the locks have been removed from p’s stack of obtained request queue
locks. In the asynchronous case, processor p must delegate the postcondition evalua-
tion to processor g0. For this purpose, p enqueues an execute delegated operation
to g0. The workload involves the postcondition evaluation along with the subsequent
issuing of unlock operations to all processor in {g1, . . . ,g j}. Processor g0 unlocks its
own request queue after the delegated execution. The evaluation of the postcondition
on g0 requires the environment that defines the values of the entities in the postcondi-
tion. Furthermore, the evaluation requires the request queue locks {q1, . . . ,qm}. These
locks are sufficient because the postcondition only gets evaluated asynchronously if the
evaluation only requires these locks. To satisfy these two requirements, p gives its top
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environment and {q1, . . . ,qm} to g0. After g0 performed the delegated execution, it can
unlock its own request queue. In the meantime, processor p removes {q1, . . . ,qm} from
its obtained request queue locks to enable g0 to proceed with the delegated execution.

The return operation comes in two variants: one for queries and one for commands.

Return Operation – Query

(σ ′,r′) de f
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if r �= void∧σ .ref obj(r).class type.is exp∧σ .handler(r) �= q
(σx,σx.last imported ref )
where

σx
de f
= σ .deep import(q,r)

otherwise
(σ ,r)

σ ′′ de f
= σ ′.pop env(p).revoke locks(q, p)

Γ � 〈p :: return(a,r,q);sp,σ〉 → 〈p :: result(a,r′);sp,σ ′′〉
Return Operation – Command

σ ′ de f
= σ .pop env(p).revoke locks(q, p)

Γ �〈p :: return(a,q);sp,σ〉 →
〈p :: provided σ .locks passed(q) then notify(a) else nop end;sp,σ ′〉

The variant for queries returns the result and the locks. The variant for commands only
returns the locks. Both variants take a channel a and the caller processor q. For queries,
the channel is used to return the result. For this purpose, the operation takes a reference
r that points to the result. Processor q is waiting for this result on channel a. This can be
seen in the call operation, which issues an apply operation and a subsequent wait(a)
operation. The apply operation calls the return operation with the same channel a.
To return the result to q, processor p executes a result on a. The value to be returned
is not always r directly. If r points to an object of expanded class type and q �= p, then
q must deep import the object. In all other cases, q can take r as the return value. An
explanation why the deep import operation is necessary can be found in Sec. 4.6. For
commands, the channel is used to signal to q that the locks have been returned in case
q passed its locks. This can be determined by looking at the state: σ .locks passed(q).
In both variants of the return operation, p removes the passed locks from the stacks
of retrieved locks. In case q did not pass any locks, the removed entries might be the
empty set. Processor p also removes its top environment because this environment is no
longer needed. In case of an asynchronous postcondition evaluation, this environment
temporarily gets delegated to the evaluating processor.

Until now, the discussion left out the non-fresh once routines and the attributes.
Non-fresh once functions already have a result. The apply operation just needs to get
this result from the state and return it. For non-fresh once procedures it does not even
have to do this. The only obligation is the evaluation of the invariant. The evaluation
of the invariant requires the call stack lock of p. This lock is given if the condition
¬σ .locks passed(p) holds. For attributes, note that an instance of ATTRIBUTE is also
an instance of EXPRESSION. Hence, the operation evaluates the attribute expression
and returns the result of the evaluation. The invariant does not have to be evaluated in
this case.
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Application Operation – Non-Fresh Once Routine

f ∈ROUTINE∧ f .is once∧¬σ .is fresh(p, f )
σ .handler(r0) = p
¬σ .locks passed(p)

σ ′ de f
= σ .pass locks(q, p, l).push env with feature(p, f ,r0,(r1, . . . ,rn))

a is f resh

Γ �〈p :: apply(a,r0, f ,(r1, . . . ,rn),q, l);sp,σ〉 →
〈p :: provided f .class type.inv exists∧ f .exported then

eval(a, f .class type.inv);wait(a)
else

nop
end;
provided f ∈ FUNCTION then

return(a,σ ′.once result(p, f ),q)
else

return(a,q)
end;
sp,σ ′〉

Application Operation – Attribute

f ∈ATTRIBUTE
σ .handler(r0) = p
¬σ .locks passed(p)

σ ′ de f
= σ .pass locks(q, p, l).push env with feature(p, f ,r0,())

a′ is f resh

Γ �〈p :: apply(a,r0, f ,(),q, l);sp,σ〉 →
〈p :: eval(a′, f );

wait(a′);
return(a,a′.data,q);
sp,σ ′〉

Creation instructions. A creation instruction has the form create b. f (e1, . . . ,en) where
b is the target entity, f is the creation procedure, and e1, . . . ,en are the actual arguments.
Assume that b is of type (d,g,c). A processor p that executes this instruction takes the
following steps:

1. Processor q creation.
– If b is separate, i.e., g =, then create a new processor.
– If b has an explicit processor specification, i.e., g = α , then
• take the processor denoted by α if it already exists.
• create a new processor if the processor denoted by α does not exist yet.

– If b is non-separate, i.e., g = •, then take p.
2. Locking. Lock the request queue of q if the following conditions hold:

– Processor p and processor q are different.
– Processor p does not have q’s request queue lock.
– Processor q does not have p’s request queue lock.
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3. Object creation. Ask q to create a new instance with class type c using the creation
procedure f . Attach the newly created object to b.

4. Invariant evaluation. If f is not exported, then ask q to evaluate the invariant.
5. Lock releasing. If q’s request queue has been locked in the locking step, then ask q

to unlock its request queue after it is done with the feature request.

There are four cases in the processor creation step:

– The entity b has a separate type.
– The entity b has an explicit processor specification and the denoted processor al-

ready exists.
– The entity b has an explicit processor specification and the denoted processor does

not yet exist.
– The entity b has a non-separate type.

For each of these cases, there is one inference rule. The discussion starts with the variant
where b has a separate type. In this case, the instruction defines q as a new processor
and o as a new object of class type c. The reference r points to this object. First the
instruction acquires a request queue lock on the new processor q so that it can issue
statements on q. Next, it writes the value r into the entity b. To make a call to the
creation procedure, it executes a command instruction. Once this is done, it checks
whether there is an invariant to evaluate. If f is exported, then the invariant will be
evaluated as part of f ’s feature application. In this case the instruction does nothing.
However, if f is not exported, then it must issue the invariant evaluation to q. After this
step, it can issue an unlock operation to q and remove the request queue lock from p’s
obtained request queue locks.

Create Instruction – Top

(d,h,c)
de f
= type of (Γ ,b)

h =
q

de f
= σ .new proc

o
de f
= σ .new obj(c)

σ ′ de f
= σ .add proc(q).add obj(q,o)

r
de f
= σ ′.ref (o)

a is f resh

Γ �〈p :: create b. f (e1, . . . ,en);sp,σ〉 →
〈p :: lock({q});

write(b.name,r);
b. f (e1, . . . ,en);
provided ¬ f .class type.inv exists∨ f .exported then

nop
else

issue(q,eval(a, f .class type.inv);wait(a))
end;
issue(q,unlock);
pop obtained rq locks;
sp | q :: nop,σ ′〉
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The following discussion looks at the two variants for the cases where b has an ex-
plicit processor specification. There are two forms of explicit processor specifications:
unqualified and qualified. An unqualified explicit processor specification, i.e., < x >, is
based on a processor attribute x with an attached type. The processor denoted by this ex-
plicit processor specification is the processor stored in x. A qualified explicit processor
specification, i.e., < y.handler >, is based on a non-writable entity y of attached type.
The processor denoted by this explicit processor specification is the same processor as
the one handling the object referenced by y. A qualified explicit processor specification
always denotes an existing processor because this specification is based on an attached
entity. This means that there is already an object attached to this entity and thus its
handler must exist. This insight helps to write the conditions for the two inference rule
variants.

Create Instruction – Existing Explicit Processor

(d,h,c)
de f
= type of (Γ ,b)

h =< x > ∨h =< y.handler >

q
de f
=

{
σ .val(p,x) if t = (d,< x >,c)
σ .handler(σ .val(p,y)) if t = (d,< y.handler >,c)

σ .procs.has(q)

grequired cs locks
de f
=

{
{q} if q �= p∧ (σ .rq locks(q).has(p)∨σ .cs locks(q).has(p))
{} otherwise

∀x ∈ grequired cs locks : ¬σ .locks passed(p)∧σ .cs locks(p).has(x)

o
de f
= σ .new obj(c)

σ ′ de f
= σ .add obj(q,o)

r
de f
= σ ′.ref (o)

a is f resh

Γ �〈p :: create b. f (e1, . . . ,en);sp,σ〉 →
〈p :: provided q �= p∧¬σ ′.rq locks(p).has(q)∧¬σ ′.rq locks(q).has(p) then

lock({q})
else

nop
end;
write(b.name,r);
b. f (e1, . . . ,en);
provided ¬ f .class type.inv exists∨ f .exported then

nop
else

issue(q,eval(a, f .class type.inv);wait(a))
end;
provided q �= p∧¬σ ′.rq locks(p).has(q)∧¬σ ′.rq locks(q).has(p) then

issue(q,unlock);
pop obtained rq locks

else
nop

end;
sp,σ ′〉

The variant that handles existing processors states that the specified processor must
exist. To check this, one must consider both the qualified and the unqualified possibility.
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For the qualified option, one can simply lookup the value of the attribute x. For the
unqualified option, one first looks up the value of the entity y and then determines
the handler of the referenced object. In either case, the result q is either the denoted
processor or the void value. One then checks whether q is in the set of processors of our
system. The overall idea of this inference rule is the same as in the case where b has
a separate type. The difference is in the processor creation, locking, and lock releasing
steps. Instead of creating a new processor, the instruction takes the existing processor
q. If q = p, then the call to the creation procedure will be a non-separate call. In this
case, the instruction requires p’s call stack lock. This lock is given because otherwise p
would be waiting. If p �= q and q has a lock on p, then the call to the creation procedure
will be a separate callback. In this case, the instruction requires q’s call stack lock. This
is expressed in the condition with the help of the set grequired cs locks. If p �= q and q
does not have p’s request queue lock, then the call to the creation procedure will be a
separate call. In this case, the instruction must obtain q’s request queue lock, provided it
does not already have this lock. Only when it obtained q’s request queue lock, does the
instruction have to issue an unlock operation and remove q from p’s stack of obtained
request queue locks.

Create Instruction – Non-Existing Explicit Processor

(d,h,c)
de f
= type of (Γ ,b)

h =< x >
¬σ .procs.has(σ .val(p,x))

q
de f
= σ .new proc

o
de f
= σ .new obj(c)

σ ′ de f
= σ .add proc(q).add obj(q,o)

r
de f
= σ ′.ref (o)

a is f resh

Γ �〈p :: create b. f (e1, . . . ,en);sp,σ〉 →
〈p :: write(x.name,q);

lock({q});
write(b.name,r);
b. f (e1, . . . ,en);
provided ¬ f .class type.inv exists∨ f .exported then

nop
else

issue(q,eval(a, f .class type.inv);wait(a))
end;
issue(q,unlock);
pop obtained rq locks;
sp | q :: nop,σ ′〉

For the variant that handles non-existing processors, one has to verify that the specified
processor does not exist. To do so, one considers only unqualified processor specifica-
tions. In this case, the instruction creates a new processor q with a new object o and
reference r. The steps in this variant are similar to those in the variant where b has a
separate type. However, the instruction has to set the value of the processor attribute x
to the newly created processor. This ensures that the denoted processor will be found to
exist in the future.
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Lastly, there is a variant for the case where b has a non-separate type. In this case,
the instruction creates the object on p. Processor creation, locking, and lock releasing
is not necessary. The required call stack lock on p is given because otherwise p would
be waiting.

Create Instruction – Non-Separate

(d,h,c)
de f
= type of (Γ ,b)

h = •
o

de f
= σ .new obj(c)

σ ′ de f
= σ .add obj(p,o)

r
de f
= σ ′.ref (o)

a is f resh

Γ �〈p :: create b. f (e1, . . . ,en);sp,σ〉 →
〈p :: write(b.name,r);

b. f (e1, . . . ,en);
provided ¬ f .class type.inv exists∨ f .exported then

nop
else

eval(a, f .class type.inv);wait(a)
end;
sp,σ ′〉

Flow control instructions. The if e then st else s f end instruction executes st if the
expression e evaluates to true. Otherwise the instruction executes s f . There is one in-
ference rule for this instruction. In a first step, the instruction evaluates the expression
e using a fresh channel a and then waits for a notification on a. In a second step, it
uses the provided operation to either execute st or s f , depending on the value of the
expression.

If Instruction

a is f resh

Γ �〈p :: if e then st else s f end;sp,σ〉 →
〈p :: eval(a,e);

wait(a);
provided a.data then

st
else

s f
end;
sp,σ〉

The until e loop sl end instruction executes a sequence of sl instructions until the
expression e evaluates to true. If e is true initially, then sl never gets executed. There
is one inference rule for this instruction. First, the instruction evaluates e using a fresh
channel a. Then it waits for a notification on a. Next, it uses the provided operation
to check whether e evaluates to true or false. If e is true, then it is done. Otherwise, it
executes sl followed by another until e loop st end operation.



154 B. Morandi, S. Nanz, and B. Meyer

Loop Instruction

a is f resh

Γ �〈p :: until e loop sl end;sp,σ〉 →
〈p :: eval(a,e);

wait(a);
provided a.data then

nop
else

sl ;until e loop sl end
end;
sp,σ〉

Assignment instructions. An assignment instruction b :=e assigns the value of the
expression e to the entity b. The instruction first evaluates the expression e and then
waits for a notification on a fresh channel a. Once it gets this notification, it uses the
write operation to set the value to the entity b.

Assignment

a is f resh

Γ � 〈p :: b :=e;sp,σ〉 → 〈p :: eval(a,e);wait(a);write(b.name,a.data);sp,σ〉

5.5 Termination

The system terminates when it reaches a configuration where all action queues are
empty, i.e., when there is no more work to do.

6 Conclusion

In this paper we have presented a formal specification of the SCOOP model, based
on operational semantics. We have demonstrated that this level of rigor is necessary if
the specification is to be used as a guideline for an implementation. In particular, we
were able to clarify a number of omissions and ambiguities in the available informal
specification, which had gone undetected in other formalizations:

– Are processor locks fine-grained enough? We require request queue locks and call
stack locks.

– Which locks must be passed? Which locks can be passed? We pass all the locks we
actually have. We pass these locks both for normal lock passing and for separate
callbacks.

– How do we move object structures from one processor to another processor without
violating the invariant? The deep import operation must be used.

– When do we set the status of a fresh once routine to non-fresh? The status of the
once routine must be set to non-fresh before deep importing.

– When can a postcondition be evaluated asynchronously? The postcondition can be
evaluated asynchronously if every feature call in the postcondition only requires a
lock that was obtained in the synchronization step and if the postcondition does not
involve lock passing.
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Because of the complexity of the SCOOP model, our resulting specification is large,
the management of which is a challenge for a fully formal development. To address
this problem, we used abstract data types and a notation with an object-oriented fla-
vor, which made the specification more readable and more easily extendable, without
sacrificing any of the rigors of operational semantics. Furthermore, we introduced a
distinction between two kinds of statements, namely instructions (user syntax) and op-
erations (run-time syntax). This made it possible to treat within one inference system
both the actual language elements and the implementation details of the runtime system,
and to distinguish clearly between them.

The main application of this work is to guide the implementation of the SCOOP
model. This has led to a successful implementation of SCOOP on top of the Eif-
fel language, which supersedes the previous prototype implementation and is publicly
available [31]. The SCOOP model can however be implemented on top of any object-
oriented language (support for contracts, as offered by Java or Spec#, is beneficial), and
our work also facilitates such future implementation efforts. In the case of Java, first
steps towards such an implementation have been taken [33], which could certainly be
supported by our work.

A number of other applications of our semantics can be envisioned. First, the seman-
tics can be used to prove correct various properties of the model which have so far only
been postulated, such as absence of object-level data races and type safety (absence of
traitors). In light of the complexity of the full model, these properties are no longer
obvious. For example, as processor locks serve as an abstraction only, it must be shown
that locks are not misused in situations such as separate callbacks, which involve call
stack locks. Second, our operational semantics can also be used to prove correct an ax-
iomatic semantics for the SCOOP model, which is planned for future work. In the case
of sequential Eiffel, a similar development is documented in [26]. Third, we feel our
semantics is detailed enough that its rules can directly be implemented as an interpreter
for SCOOP programs. Such an interpreter could serve as a true reference implementa-
tion, which could in turn be used for conformance checking of real implementations.
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Abstract. The software industry favors dynamic testing over static
analysis of software, because traditional static software analysis tech-
niques do not adequately balance automation, precision and scalability.
Recently several researchers have combined static and dynamic tech-
niques to overcome these problems. Undergoing efforts include concolic
execution, testing-based correctness prove, execution driven abstract in-
terpretation and dynamic invariant generation.

This paper summarizes the state of the art about combining dynamic
testing and static analysis, and designs a roadmap towards a modern
approach to software V&V that enhances dynamic testing with static
analysis techniques. In particular, this paper surveys the most promising
approaches to combine dynamic testing and static program analysis. It
classifies the techniques against a framework of combination patterns,
to facilitate the identification of commonalities and complementarities
between the techniques. It quantifies analytically the gain that stems
from the most important combination patterns. It provides a roadmap
for future research.

1 Introduction

The complexity and ubiquity of current software systems increases the already
high costs of deployed software bugs. This happens in many application do-
mains that span from mass-diffused software, like operating and embedded sys-
tems, to software systems that manage huge investments and human lives, like
e-commerce systems and flight controllers. Current design and development tech-
niques do not adequately match the strict integrity requirements of these sys-
tems, regardless of the effort allocated to detect and remove faults from software
before deployment.

The leading software industry privileges dynamic testing over program anal-
ysis techniques for locating failures and removing faults, because testing scales
better, is effective in exposing many failures with a limited initial effort, and
samples only actual executions, thus avoiding false positives. On the downside,
the efficacy of testing is limited by the fact that testing is based on the observa-
tion of a finite, underapproximating sample of the possible program behaviours,
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and thus cannot reason on the whole execution space. A relevant consequence
is the weak relationship between testing effort and software quality, which im-
plies that planning what to test, how to test it and when to stop testing is
still mostly a matter of human judgement and simple heuristics. In practice, as
testing effort grows, eliciting erroneous behaviours by means of new test cases
becomes increasingy harder. Finally, testing steers software behaviour by acting
on inputs. This implies that errors that are not triggered by some input, like
synchronization errors in concurrent software, do not typically surface during
testing.

On the other side, static analysis techniques rely on mathematical models of
program behaviour and infer properties from them, thus complementing testing.
While testing cannot reason on the whole execution space, static analysis is po-
tentially able to detect the absence of specific categories of errors from software
systems. This is because the models used in software analysis overapproximate
the possible behaviours of a program, and can deduce invariant software proper-
ties holding on all the executions. This also means that the faults detected with
a static analysis may be spurious, and must be confirmed on the actual program.
Also, current static analysis techniques do not adequately meet automation, pre-
cision and scalability requirements. This derives from the fact that no single ab-
straction suits all the combinations of verification problems and target systems.
Current analysis techniques suffer from one or more of the following problems:
do not scale well to industry-size software systems, miss relevant bugs, flood
the user by spurious error warnings, require on-line manual assistance. Con-
sequently, static analysis techniques find scarce industrial applications mostly
limited to special-purpose applications.

Recent research focused on combining static and dynamic analysis techniques
to benefit from the advantages and reduce the problems. Combined approaches
test and analyze the same program, and share the information produced by one
technique to improve the results of the other. Testing provides exact informa-
tion about feasible behaviours, thus it can be used as a cost-effective way to
build precise models. Analysis provides hints about the regions of the program
state space that may contain faults, thus it can be used to steer testing towards
faulty regions for distinguishing actual from spurious faults. Together, testing
and analysis may yield fully automated, sound verification procedures more pre-
cise, scalable and automatic than either testing or analysis alone.

Triggered by encouraging preliminary results, research on combining static
and dynamic techniques has proliferated in the literature of the last ten years.
Most of the literature presents specific combinations of static and dynamic tech-
niques without providing a general framework. The absence of a deep under-
standing of the general advantages of combining different kinds of techniques
hinders the ability of exploiting new interaction patterns within the context of
combination of different techniques. Many questions remain unanswered: What
are the structural features of the basic analysis and testing techniques avail-
able in literature? How do these features impact on the precision, convergence
and performance of the techniques? When two techniques may interplay? Which
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information should they share to interplay? How does this interplay improve
precision, convergence or performance? How can we design a combination be-
tween techniques in a way that yields a predictable advantage? How can we
discover new combination patterns? Giving an answer to some of these ques-
tions can highlight the commonalities among different combined techniques and
can provide the foundations for new tools for designing better testing, analysis
and verification techniques.

This paper moves a first step in the direction of answering some of the above
questions. We propose a vocabulary of concepts which, in our vision, allow to
motivate, understand and evaluate the interactions between static and dynamic
techniques. These concepts are grounded on a definition of technique as a way
to explore the reachable state space of a program, and will characterize differ-
ent techniques in terms of how they restrict the ideal but infeasible exhaustive
exploration to make exploration feasible. The framework allows us to motivate
and explain a number of combination patterns between techniques emerging
from current literature. We assess the advantage of these combination patterns
informally, and we propose some preliminary ideas about a more quantitative
assessment. All these concepts are grounded on current research by considering
some state-of-the-research static/dynamic tools as case studies and guides for
identifying the combination patterns.

The paper is organized as follows. Section 2 defines the category of programs,
analysis problems and techniques that are considered in the rest of the paper.
Section 3 introduces and classifies basic state space exploration techniques, on
which combined approaches are based, with a special attention to testing, sym-
bolic execution and predicate abstraction. Section 4 introduces the concept of
synergies between techniques, as the way techniques exchange information about
the program state space, identifies a set of synergies that recur across three repre-
sentative combined techniques from literature, and discusses their aims in terms
of improved performance or completeness. Section 5 considers the problem of
assessing in a more quantitative way how combined techniques improve over
purely static or dynamic ones, and calculates the performance gain that derives
form a specific synergy pattern, by isolating its effect in two combined techniques
among those surveyed in Section 4. Finally, Section 6 draws some conclusions
and outlines an agenda for future research.

2 Preliminaries: Programs, Properties and Analysis

This section sets the scope of the paper and introduces some preliminary defi-
nitions that will be used in the next sections: What do we consider as software
programs, which category of correctness problems are we dealing with, what is
a technique for analyzing the program correctness.

2.1 Programs

We consider software systems written in an imperative programming language.
An imperative program transforms an initial program state into a final one.
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A program state is a mapping from a finite set of program variables X def=
{x0, . . . , xn} to a set of values V. We write S def= X → V for the set of pro-
gram states over X, v for a generic value in V, and s for a generic program state
in S. Our only assumption on V is that it contains the boolean values true and
false (in the examples V contains also the set of the natural numbers).

The programming language we consider is a simplified variant of Dijkstra’s
language of the guarded commands [10] in the style of Chandy and Misra’s
UNITY [6]. Henceforth, P indicates the set of the possible programs, and p a
generic program in P. A program is a set of guarded assignments g(x0, . . . , xn) �→
x0, . . . , xn := f(x0, . . . , xn) , where f and g (the guard) are expressions over
program variables. We write E for the set of the possible expressions. If we
abstract from the notation, a guarded assignment can be considered as the pair
of the expressions (f, g). Therefore, p is a subset of E2 (p ⊆ E2) and P is the
powerset of (E2) (P def= P(E2)). We make no assumptions on E.

A program executes by selecting a statement among all the statements whose
guards evaluates to true in the current state, and executing its assignment. This
process is repeated until all the guards evaluate to false (possibly diverging). We
formally define this by assuming the existence of suitable evaluation functions
�f� and �g� , yielding the values assumed by f and g in a state. We abstract
from the concrete evaluation procedures. We only assume that the evaluation
of f in a state yields another state, and the evaluation of g in a state yields
either true or false—formally, �f� : S→ S and �g� : S → {true, false} . When
�g�s = true we say that (f, g) is enabled by s. We now define the single-step
operational semantics of a program p, �p� ⊆ S× p× S , as follows:

(s, (f, g), s′) ∈ �p� iff �g�s = true and s′ = �f�s .

We write s
(f,g)−−−→ s′ instead of (s, (f, g), s′) ∈ �p� , and s

p−→ s′ to mean that

s
(f,g)−−−→ s′ for some (f, g) ∈ p (we also drop the p subscript when the program

that we are considering is evident from the context). The one-step operational
semantics of a program defines a labelled transition system whose states are
program states, whose labels are statements, and whose labelled transitions con-
nect states with the effects of the guarded commands on them. The reflective

and transitive closure of the semantic function,
(

p−→
)∗

, associates each state s

with all its successors in an arbitrary number of states. These states are said to
be the reachable state space of p starting from s.

The programming language we are considering differs from most mainstream
imperative programming languages in that it does not have control flow state-
ments such as conditionals, loops and sequencing. This is not a limit because
control flow can be encoded explicitly by introducing a program variable l which
stores the current location in the program. Figure 1 exemplifies how a C program
is translated to an equivalent one in the guarded command language.
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while (x != 0) {

if (x % 2 == 0) {

x = x - 2;

} else {

x = 3 * x + 1;

}

}

l = 1 ∧ x �= 0 �→ l := 2
[ ] l = 1 ∧ x = 0 �→ l := 8
[ ] l = 2 ∧ x mod 2 = 0 �→ l := 3
[ ] l = 2 ∧ x mod 2 �= 0 �→ l := 5
[ ] l = 3 �→ x := x − 2, l := 7
[ ] l = 5 �→ x := 3x + 1, l := 7
[ ] l = 7 �→ l := 1

Fig. 1. A C program (left) and the equivalent program in the guarded command lan-
guage (right)

2.2 Detecting Errors in Programs

Automatic program verification aims to determine properties valid for all or some
of the possible executions of a program. In this paper we consider a specific
instance of the automatic verification problem, which aims to determine the
specific class of reachability properties. A reachability problem can be stated as
follows: Given a program p, a set I ⊆ S of initial states and a set O ⊆ S of
correct states, determine whether or not the reachable state space of p is entirely
contained in the set of correct states. In formal terms, we want to determine
whether there exist s ∈ I and s′ /∈ O such that s

(
p−→

)∗
s′ . The complement of

O is the set of the failure states.
(Un)reachability properties are a kind of safety properties. Safety properties

state that during any possible program computation “something bad” never
happens. More formally, a computation violates a safety property if there is
a finite prefix (“something bad”) which is not shared with at least one other
computation that does not violate it. In the case of reachability this happens
whenever a computation hits a failure state. In this case we say that the program
under analysis is incorrect w.r.t. the property, and correct otherwise.

A (verification) technique is a procedure that takes as input a program p
and two specifications of the sets I and O, and tries to decide whether an error
state is reachable from a state in I. Being reachability undecidable in the gen-
eral case, a verification technique does not produce a conclusive answer on all
combinations of its inputs. To account for this we consider as possible answers
one of CORRECT, INCORRECT, INCONCLUSIVE, meaning that p is correct, incorrect
w.r.t. the reachability problem, and that the technique has failed in deciding
about correctness, respectively. Some techniques are partial, i.e., they diverge
on some possible inputs. Additionally, we assume that a technique is always
sound with respect to both CORRECT and INCORRECT—i.e., whenever a technique
returns CORRECT (respectively, INCORRECT), the program is indeed correct (re-
spectively, incorrect). This is equivalent to assuming that there is no discrepancy
between the true program semantics and the semantics assumed by the technique
when it reasons about the program—an assumption that often does not hold in
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practice, but that allows us to abstract away from issues that are not relevant
to our tractation.

We now introduce some terminology about the relevant properties of verifi-
cation techniques. We say that a technique is complete w.r.t. correct (incorrect)
programs if, whenever a program is correct (incorrect) w.r.t. an arbitrary reacha-
bility problem, the technique answers CORRECT (INCORRECT). From the undecid-
ability of the reachability problem follows that every verification technique has
some degree of incompleteness either w.r.t. correctness or incorrectness. In the
worst case a technique may be void w.r.t. correct (incorrect) programs i.e., fails
in producing any CORRECT (INCORRECT) answer. We will say that a technique is
more complete than another one whenever the former converges to a conclusive
answer on more inputs than the latter (we may refine the statement by saying
that the technique is more complete w.r.t. correctness, incorrectness or both).

When a technique does not produce a conclusive answer, i.e. either CORRECT or
INCORRECT, it may either converge to INCONCLUSIVE or fail to converge. The two
situations are not, of course, equivalent in practice since a diverging computa-
tion cannot be in general distinguished by a human from a very long converging
computation. We say that a technique converges more than another one when-
ever the former converges (albeit not necessarily to a conclusive answer) on more
inputs than the latter. Finally, we say that a technique is more precise than an-
other one whenever the former is more complete and converges more than the
latter.

3 Exploring the Space of Program Executions

This section introduces and classifies the basic analysis and testing techniques
that are used and combined to prove software properties. Here we propose a tax-
onomy that helps us comparing the various approaches with respect to complete-
ness and convergence. This, in turns, motivates the combination patterns arising
between basic techniques, which is investigated in the next section. We propose
the taxonomy focusing on three categories of basic explorative techniques that
are commonly exploited in combinations of static and dynamic approaches: test-
ing, symbolic execution, and predicate abstraction.

3.1 Full Exhaustive State Space Exploration

A state se is reachable from some initial state s0 if there exists at least one finite
sequence of computation steps s0

p−→ s1
p−→ . . .

p−→ se . Thus, an intuitively simple
way to investigate a set of reachable states is to look for such finite computations.
On the above rationale, techniques based on state space exploration unroll the
reachable program state space at increasing (but finite) depth, through real or
simulated program execution. The process is iterated until either an error state is
found, in which case the program is rejected, or all the reachable program states
have been explored, in which case the program is accepted. Testing, explicit-state
or symbolic model checking, and symbolic execution are different declinations of
this paradigms.
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Explore(p,I,O):

-- p is a program , a set of statements (f, g)
-- I is the set of initial states

-- O is the set of safe states

S := I
loop:

if S �⊆ O return INCORRECT

S′ := Post(p, S)
if S′ ⊆ S return CORRECT

S := S′ ∪ S

Fig. 2. Full exhaustive state space exploration

Figure 2 drafts the skeleton of the approach to full exhaustive state space
exploration, which can be considered either the ideal exhaustive testing (if the
program is deterministic) or explicit-state model checking (if the program is non-
deterministic)1. The procedure relies on the definition of the post-states trans-
former Post : P× P(S)→ P(S) that is defined as:

Post(p, S) def=
⋃
s∈S

{s′ ∈ S | s p−→ s′} for S ⊆ S.

Intuitively, Post(p, S) contains all and only the successors of some state in S, ac-
cording to

p−→ . The reachable state space of p starting fron I is
⋃

k≥0 Postk(p, I) ,

where Post0(p, I) def= I and Postk+1(p, I) def= Post(p, Postk(p, I)) . This can be seen
as the least fixpoint of the function2 f(S) def= Post(p, S) ∪ I : P(S)→ P(S) . The
procedure calculates this fixpoint by iterating through a loop which, at the n-th
iteration, calculates into the variable S the underapproximation of the reachable
state space

⋃
0≤k<n Postk(p, I) and performs two termination checks. The loop is

structured as follows:

Check for failure: if S contains a failure state, the procedure stops and returns
INCORRECT;

Compute successors: the successors of S are calculated and stored in S′;
Check for success: if all the successors are already in S, then the whole state

space has been explored without finding a failure state: The procedure stops
and returns CORRECT;

Update the computation state: The successors are added to S, yielding
⋃

0≤k<n+1

Postk(p, I) .

1 A program is deterministic whenever |Post(p, {s})| ≤ 1 .
2 The fact is easily proved by taking into account that Post preserves union, i.e.,

Post(p, S ∪ S′) = Post(p, S) ∪ Post(p, S′) .
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The procedure converges on all the incorrect programs, and on the correct pro-
grams with finite-depth reachable state space3. This asymmetry is a bit an-
noying, since most interesting programs have not a finite-depth reachable state
space, and is a hallmark of dynamic techniques such as testing.

3.2 Reducing the Exploration Scope

Even if we assume convergence (when the state space is finite), the fully exhaus-
tive state space exploration is impractical, as the typical size of a program state
space quickly explodes also for relatively simple programs. Many techniques work
around the state-explosion problem by discarding some of the information dis-
covered during the exploration according to one of the following three strategies:

depth-bounded exploration, which consists in observing only finite compu-
tations and prefixes of computations, up to some predefined length.

width-bounded exploration, which consists in analyzing a subset of the states
discovered at a given exploration step.

non-monotonic exploration, which consists in forgetting the states discov-
ered at previous iterations, and retaining only the states at the current ex-
ploration depth.

Figure 3 presents the pseudocode for reduced state space exploration techniques.
In the figure, we write (−)⊆ : P(S) → P(S) to indicate a nontrivial reductive
function, i.e., having the properties:

S⊆ ⊆ S, S �= ∅ implies S⊆ �= ∅ .

Informally, S⊆ returns a nonempty subset of S (unless S is empty).
Depth-bounded exploration always converges, which can be considered a prac-

tical advantage by itself. On the other hand, whenever an error state does not
exist within the depth bound, an INCONCLUSIVE answer is mandatory to preserve
soundness. In other words, depth-bounded exploration is void w.r.t. correct pro-
grams with a reachable state space deeper than the bound. As an example, all
the programs with a finite reachable state space (for instance, finite state au-
tomata) fall in this class whenever the state space has size greater than the depth
bound.

Width-bounded exploration is hardly comparable with full exhaustive one.
Under some assumptions, it may even be more precise than the latter w.r.t.
some classes of programs. This happens when we assume that an optimal oracle
performs sampling by discarding as many correct diverging computations as
possible, and by retaining (when it exists) at least one incorrect computation.
In this case, width-bounded exploration converges better than full exhaustive
exploration w.r.t. some classes of correct programs with finite computations, and
produces a conclusive answer on all the inputs where it converges. At the opposite
3 A program’s reachable state space has finite depth n (from I) when it is⋃

0≤k<n Postk(p, I) .
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ExploreDepthBounded(p,I,O,maxDepth ):

-- maxDepth > 0 is an integer , the maximum depth of the exploration

S := I
depth := 0

loop:

if S �⊆ O return INCORRECT

if depth ≥ maxDepth return INCONCLUSIVE else depth := depth + 1

S′ := Post(p, S)
if S′ ⊆ S return CORRECT

S := S′ ∪ S

ExploreWidthBounded(p,I,O,maxWidth ):

-- maxWidth > 0 is an integer , the maximum width of the exploration

(−)⊆ := some reductive function s.t. |S⊆| = min(maxWidth , S)
S := I⊆
exact := (S = I)
loop:

if S �⊆ O return INCORRECT

S′ := Post(p, S)⊆
exact := exact ∧ (S′ = Post(p, S))
if S′ ⊆ S:

if exact return CORRECT else return INCONCLUSIVE

S := S′ ∪ S

ExploreNonmonotone(p,I,O):

S := I
loop:

if S �⊆ O return INCORRECT

S′ := Post(p, S)
if S′ ⊆ S return CORRECT

S := S′ − S

Fig. 3. Reduced state space exploration

end of the spectrum, an adverse oracle may discard computations leading to error
states and retain diverging correct computations. In this case, width-bounded
exploration converges less well and is less precise than full exhaustive exploration.
We choose not to make any assumption on how sampling selects states, which
reflects practical situations where no a priori knowledge exists about either the
program’s reachable state space, or sampling. Consistently, the procedure in
Figure 3 produces an INCONCLUSIVE answer whenever the sampling misses some
states. This yields a procedure which is always less precise (but may converge
better) than full exhaustive exploration. Width bounds allow to limit the size
of S′ but not the size of S, for which either depth bounds or nonmonotony are
necessary.

Non-monotonic exploration focuses on minimizing the memory occupation of
a possibly exhaustive search, rather than limiting the scope of the exploration.
The rationale is that if the the reachability space of a program is large, a same
state will unlikely be visited twice. On this rationale, non-monotonic explo-
ration trades the cost in time of exploring some states more than once, against
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memory occupation. This is done by storing only the states at depth n which are
not also at depth n−1. The space saving is paid in terms of precision, since miss-
ing the memory of visited states reduces convergence. Indeed, a non-monotonic
exploration diverges on correct programs (even finite-state ones) with at least
an infinite computation with cycle length greater than 1. As an example, the C
program while (1) { x := x + 1; } diverges this way.

ExploreTesting (p,I,O):

S := choose S s.t. S ⊆ I and S is finite

exact := (S = I)
loop:

if S �⊆ O return INCORRECT

S′ :=
⋃

s∈S choose s′ s.t. s′ ∈ Post(p, {s})
exact := exact ∧ (S′ = Post(p, S))
if S′ ⊆ S:

if exact return CORRECT else return INCONCLUSIVE

S := S′ − S

Fig. 4. State space exploration by means of testing

Figure 4 summarizes how testing explores the state space. Testing starts from
a finite set of initial states (test cases), and for each of them at each step chooses
exactly one successor to explore. These can be seen as a both non-monotonic and
width-bounded exploration (bound = 1). Testing does not bound the depth of
execution, and thus may diverge. An interesting observation is that, differently
from purely non-monotonic and purely width-bounded explorations, testing may
converge with inconclusive answers. This can happen because, when sampling
discards a state, this is lost because of non-monotony.

3.3 Exploring via Auxiliary Spaces

The approaches summarized in the former section deal with the state explosion
problem by limiting the set of examined states, thus producing partial results.
Another class of approaches handles infinity directly either in width by intension-
ality or in depth by abstraction. These approaches exploit the idea of recasting
the exploration in an auxiliary space, with better properties than the original
program state space.

Intensionality. Full exhaustive search strategies assume an extensional (explicit-
state) representation of sets of program states. Representing a set as the enu-
meration of its members requires the same storage size of the set that must be
represented. Consequently, the implementations of explicit-state approaches do
not scale with the size of the analyzed program, and cannot analyze exhaustively
programs with infinitely many reachable states. Intensional (symbolic-state) ap-
proaches deal with the state explosion problem by describing sets of states that
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share common features with sentences in a formal language, or equivalent for-
malisms like ordered binary decision diagrams [4]. As an example, the formula
x > 0 describes intensionally the infinite set of all and only the states which
assign a positive value to the variable x. Intensional representations have com-
plementary properties with respect to extensional ones, stemming from the fact
that the size of a symbolic formula is loosely correlated with the size of the set
it represents. Symbolic-state techniques can represent very large, and even infi-
nite, sets of states with a short formula, but sometimes may use large formulas to
represent small, or even empty, sets of states. Moreover, the same set of states
may have many, even infinite, different symbolic representations that may be
hard to compare. Indeed, the most relevant decision problems (equivalence and
inclusion) become computationally hard, or even undecidable, for most symbolic
languages.

Abstraction. Abstraction limits the fully exhaustive exploration of the state
space of a program by partitioning the space of the possibly infinite program
states into a (possibly finite) number of subsets, and by analyzing only a finite
number of representative behaviours for each set. As an example, let us consider
the program from Figure 1, which for the reader’s comfort has been reported on
the left side of Figure 5. If we relax all the statements’ guards by dropping all
the clauses on x, and at the same time we remove all the assignments to x, we
obtain the finite-state program reported on the right side of Figure 5. There is a
precise relationship between the possible behaviours of the two programs, which
allows e.g. to conclude that the program on the left side of Figure 5 will never
set l to 9 because the program on the right, its control abstraction, does not.
In a sense which will be made explicit later in this section, each behaviour of
the abstract program provides information on an infinite subset of the possible
behaviours of the original program (the abstract program overapproximates the
concrete one).

Abstraction techniques trade convergence against completeness, and this trade-
off typically is on the incorrect side. This reflects the original aim of abstraction-
based exploration techniques, i.e., proving programs correct. Classic abstract
exploration always converges, and is void w.r.t. incorrect programs, while testing
may not converge and is void w.r.t. correct programs. The degree of complete-
ness of abstract exploration w.r.t. correct programs strongly depends on how the

l = 1 ∧ x �= 0 �→ l := 2
[ ] l = 1 ∧ x = 0 �→ l := 8
[ ] l = 2 ∧ x mod 2 = 0 �→ l := 3
[ ] l = 2 ∧ x mod 2 �= 0 �→ l := 5
[ ] l = 3 �→ x := x − 2, l := 7
[ ] l = 5 �→ x := 3x + 1, l := 7
[ ] l = 7 �→ l := 1

l = 1 �→ l := 2
[ ] l = 1 �→ l := 8
[ ] l = 2 �→ l := 3
[ ] l = 2 �→ l := 5
[ ] l = 3 �→ l := 7
[ ] l = 5 �→ l := 7
[ ] l = 7 �→ l := 1

Fig. 5. The guarded command program from Figure 1 (left) and its control abstraction
(right)



On the Integration of Software Testing and Formal Analysis 169

program is abstracted. In the previous example, the control abstraction does not
allow to decide whether the program may reach a state with x < 0.

Unifying the concepts. Intensionality and abstraction are different and inde-
pendent concepts that can be unified by means of abstract interpretation [9].
Abstract interpretation is a general theory that defines how a correct fixpoint
calculation on a lattice approximates a fixpoint calculation on a different lattice.

To unify intensionality and abstraction, we start by considering, for a pro-
gram p and a set of initial states I, the function f(S) def= Post(p, S) ∪ I , which
is a continuous function over the complete powerset lattice of program states.
The least fixpoint of f(S) represents the set of the reachable state space of the
program. It exists and is equal to

⋃
k≥0 Postk(p, I) . The fully exhaustive reach-

ability procedure is therefore sound, in that it calculates this fixpoint whenever
the iterative procedure converges.

We now consider a structure A composed by a different complete lattice TA,
whose elements are interpreted as sets of states, together with a “translation”
of Post into TA. More precisely,

A = (T , �−�, PostA) ,

where

– T = (T,,⊥,�,�) is a complete join-semilattice,
– �−� : T → P(S) is monotone and preserves bottom and top (�� = S ,

�⊥� = ∅),
– PostA : P×T→ T is monotone and has the property:

Post(p, �IA�) ⊆ �PostA(p, IA)� .

Intuitively, �−� assigns a meaning (a set of program states) to every element of
T, and PostA overapproximates Post over T.

The algorithm described in Figure 6 implements the algorithm for full exhaus-
tive exploration from Figure 2 on T , and calculates a safe overapproximation of
S into SA that upon convergence is a safe overapproximation of the reachable
state space. Indeed, it can be easily proved that4, whenever IA overapproximates
I (i.e., I ⊆ �IA�), it is:

⋃
0≤k<n

Postk(p, I) ⊆ �
⊔

0≤k<n

PostkA(p, IA)�

and: ⋃
k≥0

Postk(p, I) ⊆ �
⊔
k≥0

PostkA(p, IA)� .

4 We must take into account that monotony of �−� implies that
⋃

SA∈T �SA� ⊆
�
⊔

SA∈T SA� , for all T ⊆ T .
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Note that the abstract state space exploration procedure requires to initialize
SA by an arbitrary over-approximation I. In some cases, a monotonic map exists
�−�− : P(S)→ T that, applied to a set of concrete states, produce an abstract
over-approximation of it:

S ⊆ ��S�−� .

One would also expect that �−�−, when applied to a set of concrete states which
is perfectly described by an abstract value SA, returns such value. We will be
less demanding, and be content when �−�− returns an underapproximation of
SA:

��SA��− � SA .

Any pair of monotonic maps enjoying the above properties forms what is com-
monly known as a Galois connection, of which �−�− is said to be the abstraction
and �−� the concretization maps respectively. A Galois connection satisfies many
properties, among which:

– �−�− completely preserves joins, i.e.,
⊔

S∈T �S�− = �
⋃

S∈T S�− , for all T ⊆
P(S) ,

– �S�− is the smallest abstract value which covers S ,
– �SA� is the greatest set of states which can be soundly approximated by SA .

The last property is simply a restatement of the fact that �SA� is the meaning,
or extension, of SA .

Recasting the fixpoint computation into a simpler lattice T can solve the
infinity issues. The reachable state space is, in the general case, uncomputable,
but when T has finite height, the procedure always converges. When this happens
because the abstract invariance termination check succeeds, the procedure finds a
safe program invariant in T that contains the reachable state space, and answers
CORRECT. When the abstract reachability termination check succeeds, nothing
can be said about program correctness, unless A is exact (i.e., all of �PostA�,
�IA�, and �OA� are equal to their concrete counterparts). Correspondingly, the
procedure returns either INCONCLUSIVE or INCORRECT.

Example: Symbolic execution. All the symbolic analyses can be formalized by
means of abstract interpretation as illustrated above. As an example, we discuss
symbolic execution, a well known technique introduced in the seventies [15].

While an ordinary program execution computes program states over concrete
initial values (integers in our example language), symbolic execution summarizes
infinite sets of such computations by computing program states over symbolic
initial values. Symbolic execution produces symbolic states. A symbolic state
maps the program variables to symbolic expressions that describe the current
values of the variables as functions of their initial values. In our example guarded
command language, a symbolic computation step fires simultaneously all the
guarded assignments over an initial symbolic state and cumulates the resulting
symbolic states. Firing a guarded assignment over a symbolic state updates the
mapping of program variables to symbolic expressions to reflect the effect of the
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ExploreAbstract (p,I,O,A):

-- A
def
= (T , �−�, PostA)

SA := some IA from T s.t. I ⊆ �IA�
OA := some OA from T s.t. �OA� ⊆ O
exact := (�SA� = I) ∧ (�OA� = O)

loop:

if SA �
 OA:

if exact return INCORRECT else return INCONCLUSIVE

S′
A := PostA(p, SA)

exact := exact ∧ (�S′
A� = Post(p, �SA�))

if S′
A 
 SA return CORRECT

SA := S′
A � SA

Fig. 6. Abstract state space exploration

assignment. It also computes a path condition associated to each symbolic state.
The path condition is a predicate that is computed as the logical “and” of all the
guards in the sequence of assignments used to produce the state, and represents
the assumption on the initial values of the variable for the state to exist. When
a symbolic state has a contradictory path condition, it is discarded.

We can formalize symbolic execution by defining symbolic states as members
of the set Ssy

def= (X→ E)×E , whose elements are mappings of variables X to
expressions E joint with a path condition E. For example, the symbolic state
({x �→ 2 x+ 4}, x > 0) represents a set of concrete states where the value of x is
twice plus four its initial value, which in turn was an arbitrary positive integer.
The initial symbolic state is a pair (id, init), where id is the identity map on
variables (i.e., maps each variable to itself) and init is an expression having I
as extension, where the extension of an expression e ∈ E is the set 〈e〉 of all and
only the states where the expression evaluates to true:

〈e〉 def= {s ∈ S | �e� s = true} ,

and 〈init〉 = I.
To define the meaning of sets of symbolic states, we first introduce an auxiliary

translation function:

�(σ, γ)� def= ∃X0 . γ[X0/X] ∧ X = σ[X0/X] .

The translation essentially states the existence of an initial (program) state that
satisfies the guard of a symbolic state, and is transformed by the associated
symbolic map into the final (program) state. As an example,

�({x �→ 2 x + 4}, x > 0)� = ∃x0 . x0 > 0 ∧ x = 2 x0 + 4 .

We can now define the meaning of a set of symbolic states as the function
�−� : P(Ssy)→ P(S) defined as follows:

�Ssy�
def=

⋃
ssy∈Ssy

〈�ssy�〉 ,
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where the extension of a formula φ is, again, the set 〈φ〉 of all and only the states
which satisfy it:

〈φ〉 def= {s ∈ S | s |= φ} .

Finally, we define the symbolic post-state transformer by first introducing, for
all (σ, γ), (σ′, γ′) ∈ Ssy , a symbolic state transition relation:

(σ, γ)
(f,g)−−−→ (σ′, γ′) iff σ′ = �f�σ, γ′ = γ ∧ �g�σ and γ′ is satisfiable.

As usual we write (σ, γ)
p−→ (σ′, γ′) to signify that (σ, γ)

(f,g)−−−→ (σ′, γ′) for some
(f, g) ∈ p . The semantic functions �f� : (X → E) → (X → E) and �g� : (X →
E)→ E are defined as plain syntactic substitutions of all the program variables
x with the corresponding expressions σ(x) into f and g:

�f�σ
def= f [σ(X)/X] , �g�σ

def= g[σ(X)/X] .

Now we can define the symbolic post-state transformer Postsy : P × P(Ssy) →
P(Ssy) as:

Postsy(p, T ) def=
⋃

(σ,γ)∈T

{(σ′, γ′) ∈ Ssy | (σ, γ)
p−→ (σ′, γ′)} .

Figure 7 shows an algorithm that explores the state space via symbolic execution.
We define �Ssy� def=

∨
ssy∈Ssy

�ssy� for finite sets Ssy. Both Ssy and S′
sy are always

finite because Ssy is initially finite, and Postsy creates at most one symbolic
state per program statement. The algorithm translates sets of symbolic states
to first-order sentences (although more convenient translations may be exploited
in practice), and assumes the availability of an oracle that can decide over the
validity of the first-order sentences. With these assumptions the encoding is
exact, symbolic reachability is as precise as a fully exhaustive exploration, and
thus diverges on the same class of programs.

ExploreSymbolicExecution(p,I,O):

Ssy := {(id, init)} for some init ∈ E s.t. 〈init〉 = I
ok := some ok ∈ E s.t. 〈ok〉 = O
loop:

if �Ssy� =⇒ ok is not valid:

return INCORRECT

S′
sy := Postsy(p, Ssy)

if �S′
sy� =⇒ �Ssy� is valid:

return CORRECT

Ssy := S′
sy ∪ Ssy

Fig. 7. State space exploration by means of symbolic execution
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In general, the symbolic exploration of a program may diverge differently
from a fully exhaustive exploration, since a symbolic computation aggregates a
possibly infinite set of concrete states that may behave differently with respect to
divergence. As an example, the C program while (x > 0) { x = x− 1; } produces
the infinite symbolic computation ({x �→ x}, true)

p−→ ({x �→ x − 1}, x > 0)
p−→

({x �→ x− 2}, x > 1)
p−→ . . . that represents the set of all the computations from

states with x > 0, none of which is infinite5.
In practice, symbolic execution must rely on incomplete theorem provers for

deciding over logical statements. The actual precision of symbolic execution is
strongly affected by these “hard points”:

Check for failure: decide whether a symbolic state contains an error state;
Compute the successors: decide whether a path condition is satisfiable;
Check for success: decide whether a set of symbolic states is subsumed by

another set of symbolic states.

The problem of checking reachability is sometimes tackled by encoding error
states within the control flow (error states are all and only the states at a given
location). In these cases, error states are identified by simply observing the cur-
rent locations of the symbolic states, and the problem is therefore collapsed with
that of computing the symbolic successors. The problem of computing the sym-
bolic successors requires a decision procedure for checking the satisfiability of
the path conditions. Path conditions are typically existential quantifications of
conjunctions of atomic clauses, and thus the problem is less hard than full first-
order logic satisfiability checking. The problem of efficiently detecting symbolic
invariance (i.e., checking symbolic equivalence of states) is hard and has not been
solved satisfactorily yet. Most approaches do not detect invariance at all.

Example: Predicate abstractions. Predicate abstractions exploit finite sets of
predicates to interpret the state space of a program abstractly. The abstract
lattice is the boolean lattice built over the set of predicates, which has finite
height.

Let H
def= {h0, . . . hm−1} ⊆ E a set of predicates with finite size m. We de-

fine the lattice of predicate abstraction over H as the powerset lattice over the
powerset of the possible predicates, P(P(H)) . The abstract lattice elements
are usually interpreted as sets of abstract states, in analogy with the concrete
powerset lattice of (concrete) program states. The meaning of an abstract state
σ ∈ P(H) is the set of all and only the concrete states which verify the predicates
in σ, and falsify all the other predicates. We formalize this interpretation by a
translation function �−� defined as follows:

�σ� def= (
∧
h∈σ

h) ∧ (
∧
h/∈σ

¬h), �Σ� def=
∨

σ∈Σ

�σ� .

5 While this shows that symbolic execution loses information about program termina-
tion, such imprecision is irrelevant in the context of this paper, where we consider
only reachability properties.
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The meaning of a lattice element Σ ∈ P(P(H)) is, quite simply, the extension
of its translation, �Σ�

def= 〈�Σ�〉 , where we define the extension of a formula φ
analogously to our previous definition of extension of an expression:

〈φ〉 def= {s ∈ S | s |= φ} .

As an example, let us consider H
def= {h0, h1, h2} and Σ

def= {{h0, h1}, {h0, h2}} .
Then, the meaning of Σ is the extension of �Σ� = (h0∧h1∧¬h2)∨(h0∧¬h1∧h2) .
A lattice elements can alternatively be seen as a set of bitvectors, where each
position corresponds to a predicate in H , and the corresponding bit indicates
the predicate truth value. As an example, the above defined Σ can be considered
as the bitvector set {110, 101}.

ExplorePredicateAbstraction(p,I,O,H):

SH := some Σ ∈ P(P(H)) s.t. I ⊆ {s ∈ S | s |= �Σ�}
OH := some Σ ∈ P(P(H)) s.t. {s ∈ S | s |= �Σ�} ⊆ O
loop:

if SH �⊆ OH return INCONCLUSIVE

S′
H := PostH(p, SH)

if S′
H ⊆ SH return CORRECT

SH := S′
H ∪ SH

Fig. 8. State space exploration by means of predicate abstraction

Figure 8 shows the state space exploration via predicate abstraction. The
lattice of predicate abstraction being finite, the procedure always converges.
Lattice operations are very simple to implement, for instance by means of ordered
binary decision diagrams. The critical part of the procedure is the construction
of PostH . Indeed, an optimal PostH exists, namely, the existential abstraction
Post∃H :

Post∃H(p, Σ) def=
⋃

σ∈Σ

{σ′ ∈ P(H) |σ p−→ σ′} ,

where
σ

p−→ σ′ iff Post(p, �σ�) ∩ �σ′� �= ∅ .

In other words, σ
p−→ σ′ iff exist s ∈ �σ�, s′ ∈ �σ′� such that s

p−→ s′ . The
existential abstraction is not computable in the general case, but any sound
PostH must contain it (i.e., Post∃H(p, Σ) ⊆ PostH(p, Σ)) yielding a sound, albeit
less precise, analysis. If we assume the availability of an oracle that can decide the
underlying predicate logic, we can build the existential abstraction, for instance
through symbolic execution:

σ
p−→ σ′ iff �Postsy(p, {(id, �σ�)})� ∧ �σ′� �≡ false .

For the sake of simplicity we define the strongest postcondition predicate trans-
former sp(p, φ) as:
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sp(p, φ) def= �Postsy(p, {(id, φ)})� .

Intuitively, sp(p, φ) is the strongest predicate satisfied by the post-states of the
extension of φ—i.e., the predicate whose extension is precisely the set of such
post-states. Its dual is the weakest liberal precondition predicate transformer
wlp(p, φ) that yields the weakest predicate satisfied by the states whose post-
states satisfy φ.

PostPredicateAbstraction(p,H,Σ):

result := ∅
for all σ ∈ Σ:

for all σ′ ∈ P(H):
if a theorem prover is able to prove that

sp(p, �σ�) =⇒ ¬�σ′� is valid (or, equivalently ,

that �σ� =⇒ wlp(p,¬�σ′�) is valid):

skip

else:

result := result ∪ {σ′}
return result

Fig. 9. Computing the abstract post-state transformer for predicate abstraction

The properties summarized above allow us to devise an algorithm to compute
the abstract post-state transformer (see a draft in Figure 9). Soundness is ensured
by considering all abstract states feasible unless the theorem prover proves the
contrary. The precision of the resulting abstract post-state transformer depends
on the precision of the theorem prover. The hard step of the procedure is deciding
the validity of a formula with shape sp(p, φ0) =⇒ φ1 , a problem that can be
proved equivalent to the (typically easier) problem of deciding the validity of the
formula φ0 =⇒ wlp(p, φ1).

3.4 Classification of Basic Techniques

The categories introduced in this section allow us to classify practical state
space exploration techniques usually indicated by terms like “model checking”,
“testing”, etc. Table 1 summarizes the taxonomy that we briefly comment below.

Testing. As discussed above, testing is a non-monotonic and width-bounded
state space exploration, but there exist variants where the exploration is also
depth-bounded. The ideal “exhaustive testing” that consists of executing the
program for all the possible inputs is still a non-monotonic and width-bounded
state space exploration, with no width bound on S at iteration 0 (i.e., initially
S:=I). A fully exhaustive exploration is still more precise than exhaustive test-
ing, coinciding with the latter when the program is deterministic and I is finite
(when I is not finite, exhaustive testing is infeasible).
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Table 1. Features of the basic techniques

Technique Symbolic Abstract Depth
bounded

Width
bounded

non Mono-
tonic

Testing No No No− Yes Yes
Exhaustive testing No No No− No Yes
Symbolic execution Yes No Yes− Yes− Yes−

Abstract reachability Yes Yes No No No
Model checking Both No No No No−

Bounded model checking Yes No Yes No No

Legend:
Yes/No: Yes/No by definition, Yes−/No−: Yes/No in most cases, Both: Either ways

Symbolic execution. State space exploration via practical symbolic execution
approaches is typically non-monotonic (conveniently since detection of symbolic
loops is hard, and sets of symbolic states are usually represented in an extensional
fashion), depth-bounded (to avoid divergence) and in some cases width-bounded
(to reduce the exploration scope).

Abstract reachability. State space exploration via predicate abstraction is both
symbolic and abstract. The techniques take advantage of the finite size of the ab-
stract state space and the loss in precision by abstraction to explore the abstract
state space in full and monotonically.

Model checking. Model checking is a family of techniques that validate a system
against a specification of some program property, typically expressed in temporal
logic, and produce a counterexample computation if the system violates the
property. From the reachability viewpoint, a model checking procedure explores
the program state space fully and exhaustively, either symbolically or explicitly,
and is typically width-unbounded, depth-unbounded and monotonic. Bounded
model checking is a form of depth-bounded symbolic exploration for finite-state
systems. It starts from a specification of the system Post in propositional logic,
“unrolls” it up to some finite depth, joins it with clauses establishing that the
first state is initial and the last state is an error state, and uses a SAT solver
to decide the satisfiability of the resulting formula. In the positive case, a SAT
solver may produce a satisfying assignment, which can be interpreted as a finite
computation leading to an error state.

4 Combining Techniques by Synergies

Testing and formal analysis techniques trade the precision of state space ex-
ploration against tractability and speed by means of different approximation
strategies that we discussed in the previous section. Approximation criteria typ-
ically yield poor results except for very narrow classes of inputs. For this reason,
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best practice suggests to uses various techniques based on different approxima-
tion criteria, to compensate the respective deficiencies. Some recent research
work shows that combining different techniques by sharing information about
the state space can increase the benefits of heterogeneity. This section reviews
some of the most popular approaches that combine techniques by sharing in-
formation about the state space, highlights the patterns that characterize the
information sharing, and pinpoints the relative advantages. In this way, we draft
a framework of the synergies between state exploration techniques as they are
enacted by modern combined approaches.

4.1 A Note on “Static” and “Dynamic” Techniques

While this paper focuses mostly on the interplay between static and dynamic
techniques, we do not explicitly characterized what makes a technique “static”
or “dynamic”, but we rely on the intuition that dynamic techniques refer to
direct program execution, while static techniques refer to reasoning over models
of program behaviour. We will assume that dynamic techniques are extensional,
concrete, nonmonotonic, width-bounded, and possibly depth-bounded. Testing,
the paradigmatic dynamic technique, has all these features, while the presence
of width bound rules out techniques as the explicit-state exploration performed
by the VeriSoft software model checker [11]. We assume that static techniques
are either symbolic or abstract, but we will not assume them to be monotonic,
width- or depth-unbounded.

4.2 Synergies between Techniques

Throughout this paper we consider synergies between state space exploration
techniques. Synergies arise when different state space exploration techniques
share or exchange information about the program state space. Sharing informa-
tion is necessary, but not sufficient for igniting mutual synergies. For example, we
do not consider synergetic two techniques A and B, if B simply uses information
about the program state space produced by A. A synergy must also explain how
such knowledge is integrated into the state space exploration performed by B,
and how such integration contributes to improve the exploration chore of either
A, or B, or both.

Synergies between techniques can improve the trade-off between precision,
tractability and speed on the target of the analysis, often yielding combined
techniques with better convergence and efficiency than their single components.
This happens because synergies may:

– Improve the knowledge of the program state space by fusing the knowledge
coming from different techniques.

– Accelerate the exploration of the program state space by delegating differ-
ent regions of the state space to the technique which may explore it more
efficiently;



178 P. Braione, G. Denaro, and M. Pezzè

Now we discuss more in detail how synergies may cope with the main sources
of inefficiency and incompleteness for static and dynamic techniques. The dis-
cussion is informal, and is better substantiated later in this section through the
analysis of a number of examples from recent literature.

Trading off over- and under-approximation. As highlighted in Section 3, prac-
tical techniques reason on the program state space by approximation, in the
forms of either over-approximation, which is void w.r.t. incorrect programs, or
under-approximation, which is void w.r.t. correct programs. Modern techniques
rely at the same time on both over- and under-approximating exploration of
the state space. The combination of the two forms of approximation can im-
prove the exploration of the state space when each one guides the other. Under-
approximating techniques can benefit from techniques that reason on the state
space at a coarser grain, since they provide hints for accelerating the finer explo-
ration towards regions of the state space more likely to contain an error state.
Dually, when a concrete analysis proves that a region is free from erroneous be-
haviours, the over-approximated exploration can progress beyond this infeasible
region, thus improving completeness.

Improving performance of symbolic reasoning. Static techniques are based on
symbolic reasoning that underlies their expressiveness, but reduces performance
and completeness. For example, symbolic execution requires deciding whether a
symbolic post-state has an empty extension, in which case the symbolic state
is pruned. Failing in pruning infeasible symbolic states may lead to unnecessary
exploration and false alarms. Exploration based on predicate abstraction requires
deciding whether an abstract states is unreachable from any of the abstract
states that we could not prove unreachable. The cost of not proving that an
abstract state is unreachable is a degradation of the precision of the model,
which may at worst become unusable. Both procedures require to decide whether
some symbolic formulas are satisfiable, a problem undecidable for most logical
languages, and computationally hard for all the others. The consequence is that
symbolic reasoning is a source of either incompleteness, or performance loss, or
both.

A simple way of reducing the amount of invocations of a decision procedure is
by exploiting concrete states. A concrete state implicitly proves satisfiable all the
formulas that evaluate true in it (together with the negation of all the formulas
that evaluate to false). Therefore the concrete states generated by a dynamic
technique can be used to prove satisfiable the formulas arising from a static one.
This approach is potentially useful since dynamic techniques are very efficient
generators of concrete states, albeit with bias towards depth rather than width
of exploration. Even when a state does not satisfy a formula of interest, it may
satisfy some of its subformulas. Some techniques exploit this fact either to reduce
the complexity of a formula by weakening/strengthening it (whenever a weaker
or stronger formula than the original one is acceptable), or to build a candidate
solution of a complex formula from the solution of one of its subformulas.
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A small catalog of synergies. Here we introduce a simple catalog of the synergies
we detected by surveying the recent literature. We will use the taxonomy in the
next section to characterize the different examples.

– Feeding of reachable states (FRS): A technique soundly feeds a translation
of some of its reachable states into a coarser one. This is usually done to
reduce the exploration chore of the coarser technique by providing it with
information about the program state space that has already been computed,
albeit at a different granularity (in which case the latter can delegate search
on the uncovered abstract states to a finer technique by frontier abduction,
FA);

– Frontier abduction (FA): A technique feeds part of its frontier6 into a finer
technique, to delegate to the latter technique the exploration of the abduced
frontier slice. The advantage may stem either because the finer technique is
more efficient than the coarser one in exploring the frontier (in which case the
results are afterwards ported to the coarser technique by FRS), or because
the coarser technique may continue the analysis when the finer technique is
stuck by invariance in an inconclusive way;

– Refinement by unreachable region (RUR): Whenever an abstract region R
is proved unreachable from a region Q by a more precise technique, the
abstraction of the coarser technique can be refined by superimposing to
it any set of predicates sufficient for showing the region unreachable (for
instance, a predicate whose extension is precisely Q).

– Constraining by region (CR): A technique constrains a finer one to analyze
an abstract region it has detected. This is usually done when an abstract
technique is stuck by reachability in an inconclusive way, and allows to deter-
mine feasible behaviours within the abstract region. It is typically followed
by either FA (for efficiently searching within the region when some feasible
behaviour exists) or RUR (when the region is unfeasible);

– Formula construction by satisfiability (FCS): Whenever a symbolic technique
must build a satisfiable formula from a set of clauses, it can exploit the
existence of a concrete state which satisfies some of them to build it, or some
relaxation of it. This has at least two applications: building a short formula
from a long one (useful while performing refinement), and building a formula
that can be solved automatically from a formula that cannot (useful while
performing frontier abduction).

4.3 Detecting Synergies in Combined Techniques: A Brief Survey

Here we survey popular approaches that combine different testing, static analysis
and formal verification techniques, with the goal of exemplifying the different
possible synergies.
6 With the word frontier we indicate a region of the state space which a technique has

discovered, but of which has not yet calculated the successors. This loose definition
is consistent with the many uses of the word in the related literature.
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Directed testing. Directed testing aims to exercise all executable control-flow
paths of a program under test systematically and automatically [12,16,17].7 In
directed testing, a controller supervises the generation of test cases to ensure
that new test cases exercise control-flow paths not-yet-executed.

Directed testing uses a technique called dynamic symbolic execution, or con-
colic execution8 that combines concrete execution of test cases with symbolic
execution along the same execution paths. It starts with a set of randomly gen-
erated test inputs, and iterates through concolic execution and test input genera-
tion. While executing test cases, concolic execution produces the path conditions
that represent the executed paths. The controller exploits these path conditions
to generate new test cases that execute unexplored paths. It first identifies a
branching point that contains a not-yet-executed branch in the executed paths
(if none, the analysis terminates since all executable paths have been explored).
Then, it considers all the clauses in a path condition up to that branching point,
and negates the last clause to obtain a path condition that correspond to a not-
yet-executed branch. Finally, it solves the identified path condition to generate
a new test input (if none, the branch is infeasible, and the controller tries to
identify another candidate not-yet-executed branch).

1 ExploreConcolic (p,I,O):

2 S := I⊆ ; Ssy := {(id, init)} for some init ∈ E s.t. 〈init〉 = I
3 loop:

4 if S �⊆ O return INCORRECT

5 S′ := Post(p, S)⊆
6 if S′ ⊆ S:
7 φ := �Ssy� ; φ′ := sp(p, φ)
8 if φ′ =⇒ φ return CORRECT

9 S′ := 〈φ′ ∧ ¬φ〉⊆
10 S′

sy := Postco(p, Ssy, S′)
11 S := S′ − S ; Ssy := S′

sy ∪ Ssy

Fig. 10. Concolic execution

Figure 10 illustrates the concolic execution approach underlying directed test-
ing approaches, recast on the reachability problem. The presentation abstracts
from details like the order of the visit of the concrete state space, to focus on
the main characteristics of the approach, thus accounting for all the features
invariant across the different implementations available in literature.

The approach in Figure 10 maintains a set of reachable concrete states, S ,
and a set of reachable symbolic states, Ssy . The set of concrete states is updated
by either concrete execution or test input generation, the set of symbolic states

7 In practice, this goal often implies exercising as many paths as possible up to some
predefined testing budget, since the number of control-flow paths is infinite for most
programs.

8 Concolic = concrete + symbolic.
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is always updated by feeding reachable states from S . The set S is initialized
with a set of initial states that represent random test input (line 2), and S′ is a
selection of a nontrivial subset of Post(p, S) (line 5). If such a subset does not
exist (S′ ⊆ S ), the approach generates new test inputs from Ssy by frontier
abduction (lines 7–9).

The approach adds new reachable symbolic states with a Postco operator that
is defined by means of a new symbolic state transition relation that requires
successors to be supported by some set of concrete states S′ :

(σ, γ)
(f,g)−−−→
S′

(σ′, γ′) iff σ′ = �f�σ, γ′ = γ ∧ �g�σ and

�γ′� s′ = true for some s′ ∈ S′ .

As we can see, the new symbolic state transition relation requires the target
path condition be satisfied by a concrete state in S′ (thus simplifying the com-
putation). The corresponding Postco operator can be easily defined as follows:

Postco(p, T, S′) def=
⋃

(σ,γ)∈T

{(σ′, γ′) ∈ Ssy | (σ, γ)
p−→
S′

(σ′, γ′)} ,

and can be interpreted as an abstraction operator �−�−Ssy
from the concrete to the

symbolic state space that selects the smallest set of symbolic states that are sup-
ported by a corresponding concrete one. By defining �S′�−Ssy

def= Postco(p, Ssy, S′) ,
the FRS (feeding of reachable states) nature of concolic execution is captured
by the sequence of operations:

S′
sy := �S′�−Ssy

; Ssy := S′
sy ∪ Ssy .

The loop in Figure 10 (lines 3–11) first computes the successors of the reachable
symbolic states Ssy by exploiting the symbolic post-state transformer (line 7).
This is the computationally most expensive step of the whole procedure, but it
is inevitable to overcome the fact that testing is width-bounded. Then, it builds
the frontier as a predicate satisfied by all the concrete post-states of �Ssy� that
are not in �Ssy� , selects some concrete frontier states, and abduces them to form
the set of concrete post-states S′ (line 9). This last step ensures progress, since
it forces the execution of a sequence of statements different from the sequences
executed until then. The procedure is based on the assumption that a firing
sequence that produces an error state, produce only error states. Under this
assumption, we can stop exploring symbolic states as soon as we find a non-
erroneous concrete state in their extensions. The FA (frontier abduction) nature
of concolic execution is captured by the sequence of statements:

S′ := 〈φ′ ∧ ¬φ〉⊆ ; S := S′ − S .

Directed testing and classic symbolic execution share the goal of increasing code
coverage, but direct testing is more effective, because while classic symbolic
execution needs to prove the feasibility of each branch along the explored paths,
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directed testing discovers most branches by testing, and thus can safely assume
feasibility. As discussed in Section 5, directed testing can improve the efficiency
up to 50% over classic symbolic execution, needing up to 50% less calls to an
external solver than classic symbolic execution.

Dynamic abstract interpretation. The dynamic abstract interpretation approach
proposed by Yorsh, Ball and Sagiv in 2006 and that we will refer to as the
Yorsh-Ball-Sagiv procedure is based on a combination of dynamic and static
analysis claimed to be more efficient than the traditional approach of statically
calculating the abstract transformer [18]. In a nutshell, the Yorsh-Ball-Sagiv
procedure aims to compute the most-precise abstract property with respect to
an abstraction, without explicitly computing the corresponding most-precise ab-
stract transformer. The Yorsh-Ball-Sagiv procedure is parametric with re-
spect to the categories of abstractions. Here we describe the Yorsh-Ball-Sagiv
procedure by assuming a predicate abstraction with predicates in H .

The Yorsh-Ball-Sagiv procedure alternates program execution and the-
orem proving. Whenever the program is executed for some (possibly random)
input, all traversed concrete states s are abstracted to the corresponding abstract
ones via a suitable abstraction map �−�−H :

βH(s) def= {{h ∈ H | s |= h}}, �S�H
def=

⋃
s∈S

βH(s) .

�−�−H can be easily computed when S is finite (which is always the case with
testing) by evaluating all the predicates in H against all the concrete states in
S . The Yorsh-Ball-Sagiv procedure cumulates the abstract states incremen-
tally cumulated throughout concrete execution, to build the currently reached
abstract region. At any point of the analysis, for example when the execution
terminates or does not produce new abstract states, the current set of abstract
states can be checked for invariance, to understand whether it covers the reach-
able state space of the program under analysis. This check is done by querying a
theorem prover on whether any post-state of any concrete state in the computed
abstract region is still in the same region. If this is the case, the procedure can
terminate since it has computed an invariant for the program that covers its
reachable state space. Otherwise, there is at least one concrete state that can be
found by a suitable solver such that (1) it is not in the computed the abstract
region, and (2) it is a successor of some state in the computed abstract region.
Concrete execution of the program starting from such state feeds back a new
iteration of the analysis, possibly discovering new reachable abstract states.

Figure 11 illustrates the Yorsh-Ball-Sagiv procedure for an arbitrary ab-
straction A by referring to the reachability problem. The structure of the pro-
cedure shares the structure of concolic execution (Figure 10), reflecting the fact
that the two procedures work similarly. They compute a set of reachable states
with concrete execution, use the concrete states to build a set of abstract states,
and when the concrete execution is stuck because of inconclusive invariance,
they exploit frontier abduction to feed concrete execution of fresh states. Like
concolic execution, the Yorsh-Ball-Sagiv procedure has the nature of both
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ExploreBallYorshSagiv (p,I,O,A):

S := I⊆ ; SA := �S�−A
loop:

if S �⊆ O return INCONCLUSIVE

S′ := Post(p, S)⊆
if S′ ⊆ S:

φ := �SA� ; φ′ := sp(p, φ)
if φ′ =⇒ φ return CORRECT

S′ := 〈φ′ ∧ ¬φ〉⊆
S′

A := �S′�−A
S := S′ − S ; SA := S′

A � SA

Fig. 11. Yorsh-Ball-Sagiv procedure

a feeding of reachable states (FRS) and a frontier abduction (FA) approach, as
illustrated by the formulas:

S′
A := �S′�−A ; SA := S′

A � SA ,

and:
S′ := 〈φ′ ∧ ¬φ〉⊆ ; S := S′ − S .

The frontier is built by symbolically analyzing the abstract region SA , which
(trivially) constrains symbolic execution by the statement:

φ := �SA� ; φ′ := sp(p, φ) .

In general, the Yorsh-Ball-Sagiv procedure converges when the height of the
lattice of abstract program properties is finite, as in the case of predicate ab-
straction. When the height of the lattice is finite and the procedure is adequately
supported by a theorem prover and a solver, the Yorsh-Ball-Sagiv procedure
computes an abstract property that covers as many states as the most-precise
(i.e., existential) abstract interpreter.

The readers should notice that the concrete states computed by checking
invariance are not necessarily reachable program states, and this is in line with
the over-approximation of the most-precise abstract interpreter. The more the
abstract states discovered by concrete execution, the more the Yorsh-Ball-
Sagiv procedure is efficient with respect to a completely static approach like
the predicate abstraction approach illustrated in Figures 8 and 9. The Yorsh-
Ball-Sagiv procedure improves on speed, while maintaining the same precision.
We discuss this point in detail in Section 5.

We conclude with a final remark that apply to both the Yorsh-Ball-Sagiv
procedure and concolic execution: The invariance check and frontier abduction
consider, essentially, the same predicates. Both problems are tantamount to de-
ciding whether the predicate φ′ ∧ ¬φ has at least a solution. When we can find
a solution, it is an abduced frontier, since it ensures progress towards a yet
uncovered abstract state, that can be added to SA.
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Static/dynamic verification. The static/dynamic verification approach Dash re-
cently introduced by Beckman et al. computes the reachability of (faulty) state-
ments of programs [3]. Given a program p and a target statement in p, Dash
searches for either a test case that executes the target statement, or a proof
that such statement is unreachable in p. Dash searches for a test case that
executes the target statement by exploring program paths increasingly closer
to it, by means of directed testing. It tries to prove that the target statement
is unreachable by progressively refining a finite abstract model that conserva-
tively overapproximates all transitions between the program statements, until
the model eventually contains no abstract trace that includes the target state-
ment. The two searches interplay as Dash stores the abstract states supported
by the concrete states generated by testing, and uses such information to direct
and coordinate test case generation and model refinement.

Dash initially assumes an abstract model equivalent to the static control flow
graph of the program, and generates a random test case. Then Dash iterates
through the following steps until either the target statement becomes unreach-
able in the current abstract model, or it is executed by a test case. Dash identifies
a frontier transition within the abstract model, i.e. a transition that belongs to
some abstract trace that goes from the program entry to the target statement9,
and connects the last abstract state σ1 covered by at least a test case t, to the
first abstract state σ2 not covered by any test case. Next, it executes t concol-
ically up to state σ1 , augments the obtained path condition with the clause to
cross the frontier to σ2 , and checks for its satisfiability with an automatic solver.
A solution, when found by the solver, is a new test case that covers σ2 , thus
progressing in the search for a feasible path towards the target statement. If
the solver does not find a solution, Dash eliminates the infeasible abstract trace
from the model by conservatively refining σ1 along the frontier transition.

Figure 12 illustrates how Dash refines the model (Figure 12 (b)), given a
frontier transition from an abstract state σ1 covered by a concrete state s to
a state σ2 (Figure 12 (a)). From the definition of frontier it follows that σ1

is supported by a concrete state s generated by a test t , σ2 is not supported
by any concrete state, and no state reaching σ1 along t can reach σ2 . Dash
splits σ1 into two new states annotated with refinement predicates r and its
negation respectively10. The predicate r is satisfied by all the concrete states
that may have a post-state in σ2, thus ¬r is satisfied by all the concrete states
that have no post-states in σ2 (including s)11. Consequently, σ2 may be reachable
from the region with extension r∧ �σ1� , but not from the region with extension
¬r∧�σ1� . This sets the frontier one step backwards, and the problem of proving
9 Such a transition is guaranteed to exist, until the termination conditions are not

met.
10 Note that, if a frontier state σ2 includes a refinement predicate, Dash can generate

a test case that satisfy it. For this reason, concolic execution adds the refinement
predicate of σ2 to the current path condition.

11 When the program is deterministic, every concrete state that supports σ1 must sat-
isfy ¬r : otherwise, its only possible successor would support σ2 thatis not supported
by the definition of frontier.
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Fig. 12. Refining an infeasible transition (Abstract states are annotated with the pred-
icates signifying their extensions)

the reachability of σ2 is reduced to the problem of proving the reachability of
r∧�σ1� . When σ2 is unreachable, subsequent iterations of Dash may propagate
the frontier back beyond the entry state of the model. In such case, Dash safely
concludes that such a frontier is infeasible and safely removes the frontier edge
from the model without splitting the source node.

Figure 13 illustrates the Dash approach by considering predicate abstraction
as the framework for abstraction refinement. The abstraction captures the sets
of initial and error states, by including two predicates init and ok with extension
I and O respectively. Similarly to concolic execution and to the Yorsh-Ball-
Sagiv procedure, Dash starts from a set of random test cases, executes them,
and collects the corresponding reachable symbolic and abstract states exploiting
the feeding of reachable states (FRS) synergy (lines 7 and 20 in Figure 21). If
testing reveals an error state, Dash terminates signaling INCORRECT (line 6).
Otherwise, Dash explores exhaustively the abstract space (lines 9–11) starting
from the region discovered through the FRS synergy. This exploration builds
either a safe invariant in SH or an abstract region that contains an error state.
In the first case Dash concludes with CORRECT (line 11), in the latter case,
Dash progresses (lines 12–19), since neither testing nor abstract verification
have produced a conclusive answer yet.

In Dash, test case generation and refinement exploit SH to guarantee that the
analysis progresses towards the final goal. Test case generation progresses the
search towards a reachable error state by generating a test case that traverses
at least an abstract state in SH (not necessarily the abstract error state) that
has not been already traversed by some state in S . Such constraint is expressed
by a predicate φnew that is conjoined to the symbolic post-states to be explored
(line 15, left part). φnew is defined in line 14 as any predicate which is nontrivial
(whenever possible) and stronger than the whole uncovered abstract region. We
introduce at the purpose a strengthening function (−)⇒, enjoying the same
properties as sampling:
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1 ExploreDASH (p,I,O):

2 H := {init, ok} ; OH := {{init, ok}, {ok}}
3 S := I⊆ ; Ssy := {(id, init)} ; SH := �S�−H
4 where init, ok ∈ E s.t. 〈init〉 = I, 〈ok〉 = O
5 loop:

6 if S �⊆ O return INCORRECT

7 S′ := Post(p, S)⊆ ; S′
H := �S′�−H

8 if S′ ⊆ S:
9 if SH 
 OH :

10 S′
H := PostH(p, SH)

11 if S′
H 
 SH return CORRECT

12 else:

13 φ := �Ssy� ; φ′ := sp(p, φ)

14 φnew := (�SH� ∧ ¬ ��S�−H�)⇒
15 S′ := 〈φ′ ∧ φnew〉⊆ ; S′

H := �S′�−H
16 if S′ = ∅:
17 r :=¬wlp(p,¬φnew) ; H := H ∪ {r}
18 OH := {σ ∈ P(H) | ok ∈ σ}
19 SH := �S�−H
20 S′

sy := Postco(p, Ssy, S′)
21 S := S′ ∪ S ; Ssy := S′

sy � Ssy ; SH := S′
H � SH

Fig. 13. Dash

φ⇒ =⇒ φ, φ �≡ false implies φ⇒ �≡ false .

Strengthening reflects the previous informal description of Dash, where only a
single abstract error trace, rather than the whole frontier, is considered for test
case generation. The region φ′∧φnew is abduced to concrete execution (line 15).
If abduction does not progress the analysis, then no successor of a state in Ssy can
support the abstract states in φnew . Dash exploits this information to refine the
model by adding a refinement predicate, i.e., the weakest precondition of ¬φnew ,
to H (line 17). The refinement predicate is satisfied by all (and only) the states
with no successors in φnew . Figure 13 does not highlight the fact that Dash
calculates PostH∪{r} syntactically, i.e., without invoking a theorem prover. More
precisely, it splits the abstract states along r, it replicates PostH∪{r} on all the
split states, and then it cancels all the transitions from the abstract states where
r is false, to abstract states where φnew is true. While this is an especially limited
form of refinement, it has the advantage of being computationally inexpensive,
and is sufficient to ensure that test case generation will not retry to support
these abstract states along the same frontier.

In Dash any discovered symbolic state is always supported by at least one con-
crete state (as in concolic execution), and any discovered abstract states may be
supported or not (but during testing surely is) by a concrete state. In formulas:

�S�−Ssy
= Ssy, �S�−H � SH ,
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and �S�−H = SH at all iterations which execute line 7. When Dash cannot
generate a test case that supports a non yet supported abstract state, the model
is refined by removing the unfeasible abstract transitions, thus ensuring progress
of either abstract state space exploration or test case generation in the following
steps.

Dash is based on several synergies: FRS (feeding of reachable states) from
testing to symbolic exploration:

S′
sy := �S′�−Ssy

; Ssy := S′
sy ∪ Ssy ,

and from testing to abstract exploration:

S′
H := �S′�−H ; SH := S′

H � SH ,

CR (constraining by region) from abstract exploration and testing to symbolic
exploration:

φnew := (�SH� ∧ ¬ ��S�−H�)⇒ ,

FA (frontier abduction) to testing:

S′ := 〈φ′ ∧ φnew〉⊆ ; S := S′ ∪ S ,

and RUR (refinement by unreachable region) from symbolic exploration to ab-
stract exploration:

r := ¬wlp(p,¬φnew) ; H := H ∪ {r} ; OH := �O�op,− ; SH := �S�−H .

5 Quantifying the Advantage of Synergies

Section 4 defined synergies between techniques, proposed a simple taxonomy of
synergies, and discussed the different synergies by means fo three state-of-art
approaches. A taxonomy is a key step towards comparing different approaches
both qualitatively and quantitatively. To quantifying the advantage of combined
techniques, we must put special care in isolating the effects of a specific compo-
nent among the others, in identifying techniques that do not leverage the synergy
to compare against, and in choosing appropriate metrics.

This section reports our preliminary insight about quantifying the perfor-
mance gain that the joint use of frontier abdution and feeding of reachable states
(FA+FRS) may introduce into an abstract exploration, with respect to tech-
niques that perform the abstract exploration statically. The value of FA+FRS
can be paramount because the satisfiability checks (required by abstract static
analyses to guarantee soundness and avoid false-positive results) is the most
expensive step, since the SAT problem is NP complete in the general case [8].
Many papers that discuss and experiment with static analyses, report that the
time complexity of the algorithms is dominated by the calls to the automatic
solver [14]. Combined techniques guarantee the satisfiability of the abstract
traces by construction, and thus eliminate such performance costs.
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This section shows that, thanks to FA+FRS, combined exploration techniques
require less calls to constrain solvers than equivalent static techniques, and tries
to analytically quantify the difference. Similar quantifications can be provided for
the other synergies indicated in Section 4, thus leading to a complete comparison
of different approaches.

5.1 Directed Testing

Here we try to analytically quantify the benefit of FA+FRS when exploited for
directed testing, as in Dart and Cute [12,16], and we compare the results with
purely static global symbolic execution, as in Java PathFinder and Save [1,7].

To isolate the effects of FA+FRS and avoid the influences of the mutual effects
of different optimizations we draw (with no loss of generality) on the following
assumptions:

– We assume an ideal sound and complete prover and a fully deterministic
program;

– We assume that any other optimization that may derive from synergies other
than FA and FRS is switched off12;

– We assume that the considered pure-static and static-dynamic analysis pro-
cedures explore the program paths in exactly the same order.

To be more precise, we refer to the following versions of the concolic and symbolic
exploration procedures presented in the previous sections:

Concolic exploration

1. Let M be an initially empty symbolic execution model of the program state
space, (the tree of all the static program paths with all branches along them
tagged as potentially feasible);

2. Concretely execute the program on an input and update M by tagging all
the branches on the path as feasible;

3. Identify a path to a potentially feasible and not-yet executed branch b, with
all predecessors tagged as feasible; stop if no such branch exists;

4. Symbolically execute the program along the path to the branch b identified
at step 3, and solve the path condition to a satisfying assignment; If the
solver fails (returns unsatisfiable), annotate b as infeasible along the path,
and iterate from step 3; Otherwise, iterate from step 2 by considering the
returned satisfying assignment as a new input.

Static symbolic exploration

1. Let M be a, initially empty, symbolic execution model of the program state
space, as for concolic exploration step 1;

12 For example, common concolic analyses use the values from concrete states
to simplify (approximate) the symbolic formulas of the corresponding symbolic
states [12,16]. We deliberately ignore this and other similar optimizations.
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2. Symbolically execute in-depth the program along a path in M , by checking
for each branching point the satisfiability of a branch (say b1) out of the
two possible branches b1 and b2; If b1 is satisfiable, proceed the execution
through b1, else proceed through b2; Update M by tagging all the feasible
and unfeasible branches on the path;

3. Identify a path to a never executed, potentially feasible branch b, with all
predecessors tagged as feasible, in the same order as for concolic exploration;
stop if no such branch exists;

4. Decide whether the path condition along the path to b identified at step 3
is satisfiable; If it is not, annotate b as infeasible along the path, otherwise,
annotate b as feasible along the path. Iterate from step 3.

To compare the two classes of approaches, we assume that both symbolic and
concolic explorations select program paths and branches in the same order
(steps 2–3 in both cases referring to the descriptions above). The path explo-
ration order of concolic execution depends on the test cases generated by a solver
as solutions of a satisfiability problem. Since the solver may pick different solu-
tions, the exploration order may vary if we repeat multiple times the analysis of
the same program. The exploration order of static symbolic exploration depends
on the analyzer that may freely decide which branch to explore first. However,
for all directed testing explorations of a program, there exists a global symbolic
execution that explores the program paths in the same order. By assuming the
same exploration order for the two approaches, we aim to eliminate the effect of
the exploration order on performance.

We quantify the performance of the different approaches as the number of calls
to the theorem prover. Since all branching points of the class of deterministic pro-
grams that we consider lead to either one or two feasible paths, a pure symbolic
execution calls the prover as most twice for each branching point. When both
branches are feasible (two-way branching point), two calls are necessary—one
call to confirm the feasibility of each branch. When one of the branches is infea-
sible (one-way branching point), pure symbolic execution calls the solver either
once or twice, depending on whether or not the infeasible branch is discovered
first, and thus the feasibility of the other path can be directly inferred without
the need of the second theorem prover call. We conservatively assume that both
cases can happen with 50% probability, independently on the evaluation order of
branches. The concolic approach, on the other hand, calls the prover only once
for each branching point, since the feasibility of one of the branches derives from
the fact that has been covered by the concrete execution, and is thus a benefit
of the FRS synergy.

Under the above assumptions, we can compute both the average number
of calls to the solver during static symbolic execution (SolverCallsStatic) and
during concolic execution (SolverCallsConcolic), and the relative gain G that
derives from FA+FRS. Let B1way and B2way be the number of one- and two-
way branching points analyzed so far, respectively, we have:
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SolverCallsStatic =
B1way

2
+ 2

B1way

2
+ 2B2way ,

SolverCallsConcolic = B1way + B2way ,

and consequently:

G = SolverCallsStatic − SolverCallsConcolic =
B1way

2
+ B2way .

We can then conclude that the gain is always positive, and depends on the
number of one- and two-way branching points of the program. The structure of
the program state space strongly affects the yield of FA+FRS—the “narrower”
the program state space is, the more symbolic states a test case is able to discover
on average, and thus the less must be discovered by invoking the solver.

5.2 Dynamic Abstract Interpretation

Here we try to quantify the benefit of FA+FRS as exploited in Yorsh-Ball-
Sagiv [18], and compare it with purely static abstract interpretation used to
build a (possibly optimal) abstract trasformer, as done for example by Slam [2].
As in the former case, we assume an ideal sound and complete prover, a fully
deterministic program, the presence of no synergies other than FA+FRS, and
the same order of exploration of the abstract program states.

To be more precise, we refer to the following versions of the static/dynamic
and static procedures presented in the previous sections:

Static/dynamic abstract exploration
1. Let SA be a set of abstract states initialized to a possibly empty set of the

initial abstract states;
2. Concretely execute the program with an input, and extend SA with the

abstract states supported by the concrete states reached during the concrete
execution;

3. Solve the constraints associated to the abstract states up to a satisfying
assignment sp(p, �SA�) ∧ ¬ �SA� ; If the solver fails (returns unsatisfiable),
stop; Otherwise, iterate from step 2 by considering the returned satisfying
assignment as a new input.

Static abstract exploration
1. Let SA be a set of abstract states initialized to a possibly empty set of the

initial abstract states;
2. Solve the constraints associated to the abstract states up to a satisfying as-

signment sp(p, �SA�) ∧ ¬ �SA� ; If solver fails (returns unsatisfiable), stop;
Otherwise add the abstract state supported by the returned satisfying as-
signment to SA, and iterate this step.

As above, we assume that the static/dynamic and the static abstract approaches
explore abstract state in the same order. Under these assumptions, the static ap-
proach calls the solver once at each step to compute each abstract state except
for the initial ones, and once at the end to verify the transitive closure. Thus, if
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the final abstraction contains N abstract states out of which I are initial states
that do not result in a call to the solver, the static approach calls the solver
N − I +1 times. The static/dynamic approach calls the solver once for each new
state, and once at the end to discover abstract invariance. It does not call the
solver for the 0 ≤ C < N − I reachable abstract states discovered by concrete
execution, thus resulting in a total of N − I − C + 1 calls. In summary:

SolverCallsStatic = N − I + 1 ,

SolverCallsS/D = N − I − C + 1 ,

and consequently:

G = SolverCallsStatic − SolverCallsS/D = C .

The gain of the static/dynamic procedure over the purely static one is the num-
ber of abstract states discovered by concrete execution. This again depends on
the shape of the abstract state space: Narrow structures enable discovering more
abstract states with a single test case, thus yielding higher gains.

6 Conclusions and Future Work

This paper discusses the synergies between static and dynamic approaches and
proposes a way of quantifying the gain that derives from the synergy of the dif-
ferent approaches, exemplifying it on some popular proposals. The paper makes
some simplifying assumptions that have a limited impact on the generality of
the results presented in this paper. In this concluding section, we discuss the
main assumptions to indicate possible directions for future work.

Different kinds of safety properties. This paper focuses on reachability properties
of programs. Reachability has the desirable feature of being both simple concep-
tually and relevant in practice, and is an important kind of safety property. Safety
properties express the fact that “something bad will not happen”, and their viola-
tion can be detected by observing a finite prefix of infinite violating computations.
A wide range of safety properties are customarily considered in software engineer-
ing, for instance assertions and code contracts (preconditions, postconditions, in-
variants). Focusing on reachability alone may appear somehow reductive. From a
purely theoretical viewpoint, every safety property can be expressed as an equiva-
lent reachability one over an instrumented version of the program under analysis.
As an example, assertions can be encoded as guarded assignments that set a flag
when the assertion is violated. In practice, there exists specialized approaches that
detect violations of a safety specification expressed in a specification language, like
JML [5]. These methods can be studied orthogonally to the state space exploration
techniques which are the main topic of this paper.

Liveness properties. We do not consider liveness properties either. Liveness prop-
erties state that every program computation eventually does “something useful”.
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Termination is the prototypical liveness property. Differently from safety proper-
ties, observing a finite prefix of a program computation does not give any infor-
mation about whether the computation violates or not a liveness property—the
computation must be considered as a whole. For this reason, the techniques for
verifying liveness properties differ from the ones for safety properties. Another
consequence of this fact is that liveness analysis does not substantially benefit
from testing, which is bound to inspecting finite prefixes of program executions.
To the best of our knowledge, all the techniques in literature for deciding liveness
properties of software are purely static.

Concurrency. From the viewpoint of safety properties, concurrent systems are
essentially equivalent to nondeterministic ones. The guarded command language
admits bounded nondeterminism, the kind of nondeterminism of concurrent sys-
tems that have a finite number of threads. In this paper we do not assume
determinism, unless in few parts where the assumption is explicitly stated. In
practice, concurrency and nondeterminism usually means that the runtime sup-
port of the language (the scheduler) can choose the next state among a set of
possible successors. This hinders the effectiveness of testing, which acts only
through program inputs, in steering the behaviour of programs towards errors.
This issues is tackled by combined approaches either by controlling the schedul-
ing or by backtracking. In the first case, the analysis uses some additional inputs
to control the scheduler, in the second case, the analysis stores unvisited states
to analyze them later. Both approaches can be seen as implementations of the
combination techniques discussed in this paper.

Procedures, encapsulation, polymorphism, dynamic dispatch. The simple pro-
gramming language that we consider does not offer any constructs for structuring
large-scale programs, such as procedural abstraction, information hiding, type
inheritance, dynamic dispatching, etc. While these constructs are always present
in real software, most of the combined approaches available in literature are es-
sentially interprocedural. The main reason is that interprocedural static analysis
is a notoriously hard problem (testing, on the other hand, is easily performed
both in an intraprocedural and interprocedural fashion). Some recent efforts are
available in literature, which exploit the static/dynamic combination to improve
interprocedural static analysis, and may deserve future attention [13].
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Abstract. Most approaches to testing use branch coverage to decide on the qual-
ity of a given test suite. The intuition is that covering branches relates directly to
uncovering faults. The empirical study reported here applied random testing to
14 Eiffel classes for a total of 2520 hours and recorded the number of uncovered
faults and the branch coverage over time. For the tested classes, (1) random test-
ing reaches 93% branch coverage (2) it exercises almost the same set of branches
every time, (3) it detects different faults from execution to execution, (4) during
the first 10 minutes of testing, while branch coverage increases rapidly, there is a
strong correlation between branch coverage and the number of uncovered faults,
(5) over 50% of the faults are detected at a time where branch coverage hardly
changes, and the correlation between branch coverage and the number of uncov-
ered faults is weak.

These results provide evidence that branch coverage is not a good stopping
criterion for random testing. They also show that branch coverage is not a good
indicator for the effectiveness of a test suite.

Keywords: random testing, branch coverage, experimental evaluation.

1 Introduction

Various studies[11,4] show that random testing is an effective way of detecting faults.
Random testing is also attractive because it is easy to implement and widely applicable.
For example, when insufficient information is available to perform systematic testing,
random testing is more practical than any alternative [10]. Many practitioners think
that, to evaluate the effectiveness of a strategy, branch coverage –the percentage of
branches of the program that the test suite exercises – is the criterion of choice. It is
a weaker indicator of test suite quality than other coverage criteria such as predicate
coverage or path coverage [15]. Branch coverage is widely used because of its ease of
implementation and its low overhead on the execution of the program [18] under test. As
an example the European Cooperation for Space Standardization (ECSS) gives 100%
branch coverage as one of the measures to assure the quality of a critical software [6].1

Many practitioners and researchers dismiss random testing because it only achieves
low branch coverage. We used AutoTest [4], an automatic, random-based testing tool

1 Section 6.2.3.2.
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for Eiffel, to gain insights on three questions: (1) the actual branch coverage achieved
by testing Eiffel classes with AutoTest, (2) whether the achieved branch coverage corre-
lates with the number of bugs found in the code, (3) whether branch coverage is a good
stopping criterion for random testing. Despite the popularity of both random testing and
branch coverage, there is little data available on the topic.

We tested 14 Eiffel classes using our fully automated random testing tool AutoTest
for 2520 hours. AutoTest tested each class in 30 runs with each run 6 hour long. For
each run, we recorded the exercised branches and faults detected over time. The main
results are:

– Random testing reaches 93% branch coverage on average.
– Different test runs with different seeds for the pseudo-random number generator of

the same class exercise almost the same branches, but detect different faults.
– At the beginning of the testing session, branch coverage and faults both increase

dramatically and are strongly correlated.
– 90% of all the exercised branches are exercised in the first 10 minutes. After 10

minutes, the branch coverage level increases slowly. After 30 minutes, branch cov-
erage further increases by only 4%.

– Over 50% of faults are detected after 30 minutes.
– There is a weak correlation between number of faults found and coverage over the

2520 hours of testing.

The main implication of these results is that branch coverage is an inadequate stopping
criterion for random testing. As AutoTest conveniently builds test suites randomly as
it tests the code, the branch coverage achieved at any point in time corresponds to the
branch coverage of the test suite built since the beginning of the testing session. Be-
cause there is a strong correlation between faults uncovered and branch coverage when
coverage increases, higher branch coverage implies uncovering more faults. However,
half of the faults can be further discovered with hardly any increase in coverage. This
confirms that branch coverage by itself is not in general a good indicator of the quality
of a test suite.

A package is available online2 containing the source code of the AutoTest tool and
instructions to reproduce the experiment.

Section 2 describes the design of our experiment. Section 3 presents our results. We
discuss the results in Section 4 and the threats to validity in Section 5. We present related
work in Section 6 and conclude in Section 7.

2 Experiment Design

The experiment on which we base our results consists in running automated random
testing sessions of Eiffel classes. We first describe contract-based unit testing for object-
oriented (O–O) programs, then introduce AutoTest, and present the classes under test,
the testing time and the computing infrastructure.

2 http://se.inf.ethz.ch/people/wei/download/branch_coverage.zip

http://se.inf.ethz.ch/people/wei/download/branch_coverage.zip


196 Y. Wei, B. Meyer, and M. Oriol

2.1 Contract-Based Unit Testing for O–O Programs

In O–O programs, a unit test can be assimilated to a routine (method) call on an instance
using previously created instances as arguments. Test engineers write unit tests and
check that the result of calls are equal to pre-calculated values. In a Hoare-triple style
this means that a unit test can be modelled as (v, o, o1,... are variables, inito,inito1 ...
expressions that return instances, m the routine called, and v0 a value):

{}o := inito; o1 := inito1; ...; v := o.m(o1, ..., on){v = v0}

In a contract-enabled environment, routines are equipped with contracts from the start:

{Pre}o.m(o1, ..., on){Post}

Unit tests can rely on contracts to check the validity of the call. It then consists only of
writing the code to initialize instances that would satisfy the precondition of the routine:

{}o := inito; o1 := inito1; ...{Pre}

In this article we use contract-based automated random testing. In such an approach the
testing infrastructure automatically takes care of this last part. In practice, it generates
the sequence of instructions at random and proceeds with the call.

When making a call, if the generated instances do not satisfy the precondition of the
routine, the result of the call is ignored and not counted as a test. After the precondition
is checked, any contract violation or any exception triggered in the actual call then
corresponds to a failure in the program.

As the random testing tool is not able to avoid executing similar test cases, it might
uncover the same failure multiple times. Thus, it maps failures to faults by defining a
fault as a unique triple:

< m, line number of the failure, type of exception >

When tests are executed, branch coverage is calculated in a straightforward manner
as:

Branch Coverage =
Number of exercised branches

Number of branches

2.2 The AutoTest Tool

This section presents a general view of how AutoTest works. More detailed explanations
on AutoTest are available in previous publications [4].

AutoTest is a tool implementing a random testing strategy for Eiffel and is integrated
to EiffelStudio 6.3 [2]. Given a set of classes and a time frame, AutoTest tries to test all
their public routines in the time frame.
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To generate test cases for routines in specified classes, AutoTest repeatedly performs
the following three steps:

Select routine. AutoTest maintains the number of times that each routine has been
tested, then it randomly selects one of the least tested routines as the next routine under
test, thus trying to test routines in a fair way.

Prepare objects. To prepare objects needed for calling the selected routine, AutoTest
distinguishes two cases: basic types and reference types.

For each basic type such as INTEGER, DOUBLE and BOOLEAN, AutoTest main-
tains a predefined value set. For example, for INTEGER, the predefined value set is
0, +/ − 1, +/ − 2, +/ − 10, +/ − 100, maximum and minimum integers. It then
chooses at random either to pick a predefined value or to generate it at random.

AutoTest also maintains an object pool with instances created for all types. When
selecting a value of a reference type, it either tries to create a new instance of a con-
forming type by calling a constructor at random or it retrieves a conforming value from
the object pool. This allows AutoTest to use old objects that may have had many rou-
tines called on them, resulting in states that would otherwise be unreachable.

Invoke routine under test. Eventually, the routine under test is called with the selected
target object and arguments. The result of the execution, possible exceptions and its
branch coverage information is recorded for later use.

2.3 Experiment Setup

Class selection. We chose the classes under test from the library EiffelBase [1] version
5.6. EiffelBase is production code that provides basic data structures and IO function-
alities. It is used in almost every Eiffel program. The quality of its contracts should
therefore be better than average Eiffel libraries. This is an important point because we
assume the contracts to be correct. In order to increase the representativeness of the test
subjects, we tried to pick classes with various code structure and intended semantics.
Table 1 shows the main metrics for the chosen classes. Note that the branches shown in

Table 1. Metrics for tested classes

Class LOC Routines Contract assertions Faults Branches Branch Coverage
ACTIVE LIST 2433 157 261 16 222 92%
ARRAY 1263 92 131 23 118 98%
ARRAYED LIST 2251 148 255 22 219 94%
ARRAYED SET 2603 161 297 20 189 96%
ARRAYED STACK 2362 152 264 10 113 96%
BINARY SEARCH TREE 2019 137 143 42 296 83%
BINARY SEARCH TREE SET 1367 89 119 10 123 92%
BINARY TREE 1546 114 127 47 240 85%
FIXED LIST 1924 133 204 23 146 90%
HASH TABLE 1824 137 177 22 177 95%
HEAP PRIORITY QUEUE 1536 103 146 10 133 96%
LINKED CIRCULAR 1928 136 184 37 190 92%
LINKED LIST 1953 115 180 12 238 92%
PART SORTED TWO WAY LIST 2293 129 205 34 248 94%
Average 1950 129 192 23 189 93%
Total 27302 1803 2693 328 2652 93%
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Table 1 is the number of testable branches, obtained by subtracting dead branches from
the total number of branches in the corresponding class.

Test runs. We tested each class in 30 runs with different seeds with each run 6 hour
long. This supposedly made the test runs long enough so that branch coverage level
reaches a plateau. But we found out that even after 16 hours, random testing is still
capable of exercising some new branches with a very low probability. We chose 6 hour
runs because the branch coverage level already increases very slowly after that, and
because 6 hours corresponds to an overnight testing session.

Computing infrastructure. We conducted the experiment on 9 PCs with Pentium 4 at
3.2GHz, 1GB of RAM, running Linux Red Hat Enterprise 4. The version of AutoTest
used in the experiment is modified to include instrumentation for monitoring the branch
coverage. AutoTest was the only CPU intensive program running during testing.

3 Results

This section presents results that answer five main questions:

1. Is the level of the branch coverage achieved by random testing predictable?
2. Is the branch coverage exercised by random testing similar from one test run to

another?
3. Is the number of faults discovered by random testing predictable?
4. Are the faults uncovered by different test runs similar?
5. Is there a correlation between the level of coverage and the number of faults

uncovered?

3.1 Predictability of Coverage Level

Because AutoTest might not be able to test all branches of a class due to its random
nature, it is unlikely that testing sessions achieve total coverage, or even just constant
results over all tested classes. As an example, it might be extremely difficult to sat-
isfy a complex precondition guarding a routine with such a random approach. Another
example is that the visibility of a routine might not let AutoTest test it freely.

This intuition is confirmed by the results presented in Figure 1 which shows the
median of the branch coverage level for each class over time. The branch coverage
level ranges from 0 to 1. As a first result, we can see that the branch coverage of some
classes reaches a plateau at less than 0.85 while most of them have a plateau at or above
0.9. The thick curve in Figure 1 is the median of medians of the branch coverage level
of all the classes. Over all 14 classes, the branch coverage level achieved after 6 hours
of testing ranges from 0.82 to 0.98. On average, the branch coverage level is 0.93, with
a standard deviation of 0.04, corresponding to 4.67% of the median.

While the maximum coverage is variable from one class to another, the actual evolu-
tion of branch coverage compared to the maximum coverage achieved through random
testing is similar: 93% of all exercised branches are exercised in the first 10 minutes,
96% in 30 minutes, and 97% in the first hour. Section 4 contains an analysis of branches
not exercised.
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Fig. 1. Medians of the branch coverage level for each class over time and their median

In short, the branch coverage level achieved by random testing depends on the struc-
ture of the class under test and increases very fast in the first 10 minutes of testing and
then very slowly afterwards.

3.2 Similarity of Coverage

Another important question is whether different test runs for the same class exercise
different branches. Since we are more interested in branches difficult to exercise, the
more specific question is: Do different test runs for the same class leave the same set
of branches not visited? To answer this question, we need to measure the difference
between the sets of branches not visited in two test runs for the same class. We use an
array per testing run, containing a flag for each branch indicating whether it was visited.

To measure the difference between two sets of non-visited branches, it is appropriate
to use the Hamming distance [12]: the number of positions, in two strings of equal
lengths, where symbols differ. For example, the Hamming distance between 1011101
and 1001001 is 2 since the values differ at two positions, 3 and 5.

For the purposes of this study, a branch is said to be “difficult to exercise” if and only
if it has not been exercised at least once through the 30 runs for that class.

The difficult branch coverage vector of a test run for a class with n difficult branches
is a vector of n elements, where the i-th element is a flag for the i-th difficult branch in
that class, with one of the following value: 0, indicating that the corresponding branch
has not been exercised in that test run, or 1, indicating that the corresponding branch
has been exercised in that test run.

The difficult branch coverage distance DBC between two vectors u and v of the a
class with Nb difficult branches is the Hamming distance between them:
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DBC =
Nb∑
i=1

ui ⊕ vi

where ui and vi are the values at the i-th position of u and v respectively, and ⊕ is
exclusive or. DBC is in the range between 0 and Nb. The larger the distance, the more
different branches are covered by these two runs.

The difficult branch coverage similarity is defined as:

Nb −DBC

Nb

The intention of the similarity is that the smaller the branch coverage distance, the
higher the similarity and the similarity should range between 0 and 1. The similarity
among k > 2 vectors is calculated as the median of the similarity values between each
two vectors: there are k(k−1)

2 pairs of k vectors, for each pair, a similarity value is

calculated, and the overall similarity is the median of those k(k−1)
2 values.
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Fig. 2. The branch coverage similarity for each class over time; their median

Figure 2 shows the difficult branch coverage similarity for each class over time. The
thick curve is the median of the difficult branch coverage similarity over all classes.
Figure 2 reveals that the similarity of difficult branch coverage is already 1 only after
a few minutes of testing, Figure 3 shows the standard deviation of the branch cover-
age similarity for each class. It reveals that the standard deviation of difficult branch
coverage similarity is almost 0.

The high median of similarity means that in general, the set of branches from a
class that are difficult to exercise are very similar from test run to test run (for the
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Fig. 3. Standard deviation of the branch coverage similarity for each class over time; their median

same class), the small standard deviation means that this phenomenon was constantly
observed through all the runs.

The consequence drawn from Figure 2 and Figure 3 is that if a branch is not exercised
by a test run, it is unlikely that it will be exercised by other runs for the same class.
In other words, applying random testing with different seeds to the same class does
not improve branch coverage for that class. Branches not exercised in one run are not
visited in subsequent runs.

3.3 Predictability of Number of Faults

The question of predictability of the number of faults found by random testing was
already addressed in a previous study [5]. The new results confirm that study and extend
it to longer testing sessions (6-hour sessions rather than 90-minute ones), they are also
using the most recent version of AutoTest which benefits from significant performance
improvements. The median of the number of faults detected for each class over time is
plotted in Figure 4. Note that all the faults found are real faults in a widely used Eiffel
library. This also shows that our testing tool is effective at finding faults. Figure 4 shows
that 54% of the faults are detected in the first 10 minutes, 70% in 30 minutes, and 78%
in 1 hour. About 22% of the faults are detected after 1 hour. This means that after 30
minutes of testing, 70% of the faults have been detected even though only 4% additional
branches have been exercised.

Different classes contain different numbers of faults. To compare fault detection
across different classes, we use the normalized number of faults, obtained by divid-
ing the number of faults detected by each test run by the total number of faults found
in all test runs for that particular class. The number of normalized faults for a particular
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Fig. 4. Medians of the number of faults detected in each class over time
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Fig. 5. Medians of the normalized number of faults detected for each class over time; their median

test run represents the percentage of faults found in that test run against all faults that
we know in the class. The medians of the number of the normalized faults detected over
time for each class are shown in Figure 5. The thick curve is the median of the medians
of the number of normalized faults detected over time for all classes.
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For most of the classes, the median does not reach 1. This indicates different runs
detect different faults (since median 1 would mean that every run finds the same faults).

3.4 Similarity of Faults

As in the case of the branch coverage level, we are interested in the similarity of detected
faults for the same class among test runs. The detected faults are similar when different
test runs find the same faults. Definitions of distances, similarity and fault detection
vector, similar to those of section 3.2, are appropriate.

The fault detection vector of a class in a particular test run is a vector of n elements,
with n being the total number of faults detected for that class over all runs. Because we
do not know the actual number of faults in a class, we can only use the total number of
faults found by AutoTest. Each vector element is 1 if the corresponding fault has been
detected and 0 otherwise.

Given two fault detection vectors r and s for the same class, in which the total num-
ber of found faults is Nf , the fault detection distance Df between r and s is defined
as

Df =
Nf∑
i=1

ri ⊕ si

where ri and si is the value at the i-th position of r and s respectively. Df is in the
range between 0.. Nf .

The fault detection similarity between them is then defined as:

Nf − Df

Nf

The fault detection similarity ranges from 0 to 1. The larger the similarity, the more
faults are detected in both test runs or in neither. Fault detection similarity among more
than two vectors is calculated similarly to branch coverage similarity.

Figure 6 shows the similarity of detected faults in different test runs for each class.
The median of the fault detection similarity for all classes (the thick curve) ranges from
0.84 to 0.90. The figure indicates that most of the faults can be detected in every test run,
but (because the median does not reach 1.0 ) in order to get as many faults as possible,
multiple test runs for that class are necessary. Figure 7 shows the standard deviation of
the fault detection similarity for each class. The median (the thick curve) ranges from
0.07 to 0.05, corresponding to 8% to 5% of the median for all classes.

This implies that most faults are discovered by most testing runs, but several runs
produce better results. The choice of seed has a stronger impact on fault detection than
on branch coverage.

3.5 Correlation between Branch Coverage and Number of Faults

Here we take a closer look at the correlation between branch coverage and the number
of detected faults. Although higher coverage does uncover more faults overall, it is
clearly not sufficient an indicator.
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To study the correlation between branch coverage level and fault detection ability,
Figure 8 superimposes the median of the branch coverage level and the median of the
normalized number of faults for the tested classes. In the first few minutes of testing,
when the branch coverage level increases quickly, faults are also found quickly. After
a while, the increase of branch coverage slows down. The speed of fault detection also
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decreases, although less dramatically. After 30 minutes, the branch coverage level only
increases slightly, but many faults are detected in that period.

We also calculated the correlation between branch coverage and normalized num-
ber of faults. It varies much from class to class, 0.3 to 0.97 and there seems to be no
common pattern among the tested classes as shown in Figure 9.

The implications of these results are twofold: (1) when coverage increases, faults
discovered increase as well, (2) when coverage stagnates, faults are still found. Thus in-
creasing the branch coverage clearly increases the number of faults found. It is however
clearly not sufficient to have a high value of the branch coverage to assess the quality
of a testing session.

The next section further elaborates on these findings as well as their limitations.

4 Discussion

The results of the previous section provide material for answering three questions:

– Is branch coverage a good stopping criterion for random testing?
– Is it a good measure of testing effectiveness?
– What are the unexercised branches?

4.1 Branch Coverage as Stopping Criterion for Random Testing

Since in general, random testing cannot achieve 100% branch coverage in finite time,
total branch coverage is not a feasible stopping criterion. In practice, the percentage
of code coverage is often used as an adequacy criterion: the higher the percentage,
the more adequate the testing [19]; and testing can be stopped if the generated test
suite reached a certain level of adequacy. In our experiments, after 1 hour, the branch
coverage level hardly increases, so it will be unpractical to extend the testing time until
reaching full coverage. Instead, the only reasonable way to use branch coverage would
be to evaluate the expectation of finding new faults. As shown in the previous section,
the number of faults evolves closely with the coverage only in the first few minutes of
testing. On testing sessions longer than 10 minutes, the correlation degrades. In fact,
about 50% of the faults are found in a period where the branch coverage level hardly
increases any more. This means that branch coverage is not a good predictor for the
number of faults remaining to be found.

The correlation greatly varies from class to class. For some classes such as BI-
NARY SEARCH TREE, the correlation coefficient is 0.98 and the correlation is al-
most linear, but for others such as ARRAYED STACK the correlation is weak (0.3),
especially with longer testing sessions. This variation on the class under test reduces
the precision if branch coverage is used as a stopping criterion.

Random testing also detects different faults in different test runs while it exercises
almost the same branches. This confirms that multiple restarts drastically improves the
number of faults found [5]: to find as many faults as possible, a class should be random-
tested multiple times with different seeds, even if the same branches are exercised every
time.

Our conclusion is that branch coverage alone cannot be used as a stopping criterion
for random testing.
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4.2 Branch Coverage as Measure of Testing Effectiveness

To assess branch coverage as a measure of testing effectiveness, one must understand
that running random testing longer is the same as adding new test cases into a test suite.
The reason is that testing for a longer time means that more routine calls are executed on
the class under test. Each routine call is actually the last line of a test case that contains
all previous calls participating to the state of data used in the call (see [14] for a detailed
explanation of test case construction and simplification). To push the analogy further,
testing a class in different runs is the same as providing different test suites for that
class.

Our experiments test production code in which the existing number of faults is un-
known. They do not seed faults in the code but merely tested the discrepancy between
the contracts and the code. As a result, it is not possible to use the ratio of detected
faults against the total number of faults to measure the effectiveness of testing. Instead,
we assess testing effectiveness through two parameters: the number of faults detected
and the speed at which those faults are detected.

Two results show that different faults can be detected at the same level of branch
coverage: (1) in a test run, new faults were detected in a period where branch cover-
age hardly changes; (2) in different test runs for the same class, different faults were
detected while almost the same branches were exercised. In other words, different test
suites satisfying the same branch coverage criterion may detect different faults.

These two observations indicate that test adequacy in terms of branch coverage level
is highly predictable, not only in how many branches are covered, but also in what
the covered branches are. Applying random testing to a class always yields the same
level of branch coverage adequacy. Also, for all the tested classes, the branch coverage
adequacy level stabilizes after some time (1 hour in our case).

Although we do not know how many faults remain in tested classes, it was aston-
ishing to discover that over 50% of found faults only appear in the period when branch
coverage stagnates.

These results provide evidence of the lack of reliability [8] of branch coverage crite-
rion achieved by random testing. Reliability requires that a test criterion always produce
consistent results. In the experiments reported here, this goal requires that two test runs
achieving the same branch coverage of a class should deliver similar numbers of faults.
But the results show that the number of faults found in different test runs will differ
from each other by at least 50%.

What about the speed of fault detection? In the first few minutes of random test-
ing, branch coverage increases quickly, and the number of faults increases accordingly,
with a strong correlation. This means that branch coverage is good in measuring test-
ing effectiveness in the first few minutes. But after a while, the branch coverage level
hardly increases, the fault detection speed also slows down but less dramatically than
the branch coverage level. In fact, many faults are detected in the period where the
branch coverage hardly changes. This means in the later period, branch coverage is not
a good measure for testing effectiveness.

In general, to detect as many faults as possible, branch coverage is necessary but not
sufficient.
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4.3 Branches Not Exercised

We analyzed the 179 branches in all 14 classes that were not exercised in our ex-
periments. Among these branches, there are 116 distinct branches, and 63 duplicated
branches because they appear in inherited routines. Table 2 shows the reasons why cer-
tain branches were not exercised and the percentage of branches not exercised that fall
into that each reason. In Table 2 the categories are as follows:

Table 2. Branches not exercised

Reason % of branches
Branch condition not satisfied 45.6%
Linear constraint not satisfied 12.9%
Call site not exercised 13.7%
Unsatisfiable branches 13.7%
Crash before branch 8.6%
Implementation limitation 2.5%
Concurrent context needed 1.7%

Branch condition not satisfied: branch not exercised because its branch condition is
not met. This is the most common case.

Linear constraint not satisfied: in the branch condition there is a linear constraint,
and they were not satisfied by the random strategy. This is actually a special case of
branch condition, but important on its own because a random strategy usually has great
difficulty satisfying these constraints.

Call site not exercised: no calls of a routine containing the branch were executed.

Unsatisfiable branch: the branch depends on conditions that can never be satisfied.

Fault before branch: there was always a fault found before exercised.

Implementation limitation: branch not exercised because of a limitation of AutoTest.

Concurrent context needed: the branch is only exercisable when tested in a concurrent
context. But our experiments were conducted in a sequential setting.

Table 2 shows that 58.5% of the branches not exercised fall into the first two reasons
(Branch condition not satisfied, linear constraint not satisfied).

A follow-up question would be how to satisfy these branch conditions. A common
solution to satisfy branch conditions is to use symbolic execution to collect path condi-
tions and propagate them up to the routine entry. Symbolic executors however induce a
large overhead in the general case.

We analyzed branches falling into the first two categories to see how often a symbolic
executor would help: in 32.3% of cases, we need a symbolic executor to propagate path
conditions, for the remaining 67.7%, it is only needed to concatenate all dominating
path conditions and select inputs at the routine entry – a linear constraint solver is
needed when there is linear constraint in the concatenated path condition. Even if in
some cases it is not possible to solve the constraints, it seems useful to investigate
further this lead.
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For Faults before branch, the faults should either be fixed first or avoided while
testing. For the Implementation limitation and Concurrent context needed categories,
we need to further improve AutoTest.

5 Threats to Validity

Four observations may raise questions about the result.

Representativeness of chosen classes. Despite being chosen from the widely used Eif-
fel library EiffelBase and varying in terms of various code metrics and intended seman-
tics, the chosen classes may not be fully representative of general O–O programs.

3 Representativeness of AutoTest’s variant of random testing. We tried to keep the
algorithm of AutoTest as general as possible, but other implementations of random
testing may produce different results.

Branch coverage below 100%. We do not know whether the correlation between
branch coverage and number of faults still holds when all branches are exercised. We
consider this very likely, since if we considered the application trimmed of all the
branches that were not visited, we would then achieve 100% branch coverage in most
cases.

Size of test suite. A recent formal analysis [3] of random testing showed that the num-
ber of tests made has a great influence on the results found with random testing. It might
be possible that while our study relies on many more tests than previous ones, we did
not execute enough tests. We consider this unlikely because of the high similarity of the
faults found in the present experiments.

6 Related Work

Intuitively, random testing cannot compete in terms of effectiveness with systematic
testing because it is less likely that randomly selected inputs will be interesting enough
to reveal faults in the program under test. Some studies [17,16] have shown that random
testing is as effective as some systematic methods such as partition testing. Our results
also showed that random testing is effective: in the experiment, random testing detected
328 faults in 14 classes in EiffelBase library while in the past 3 years, only 28 faults
were reported by users.

Ciupa et al. [5] investigated the predictability of random testing and showed that in
terms of the number of faults detected over time, random testing is predictable. Figure 5
and Figure 6 confirm those results.

Many studies compare branch coverage for assessing the effectiveness of test strate-
gies. With other criteria in. Frankl et al. [7] compared the branch coverage criterion
with the all-uses criterion and concluded that for their programs, all-uses adequate test
sets performs better than branch adequate test sets, and branch adequate test sets do not
perform significantly better than null-adequate test sets, which are test sets containing
randomly selected test cases without any adequacy requirement. The present study fo-
cuses more on the branch coverage level achieved by random testing in a certain amount
of time and the number of faults found in that period.
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Hutchins et al. [13] also compared the effectiveness of the branch coverage criterion
and the all-uses criterion. They found that for both criteria, test sets achieving coverage
levels over 90% showed significantly better fault detection than randomly selected test
sets of the same size. This means that a lot of faults could be detected when the cov-
erage level approaches 100%. They also concluded that in terms of effectiveness, there
is no winner between branch coverage and all-uses criterion. Our results on the corre-
lation between the branch coverage level and the number of detected faults also shows
a similar pattern: many faults are detected at higher coverage levels, in our experiment,
however, the branch coverage level did not reach 100%, while in their study, manually
written test sets guaranteed total branch coverage. Also, in their study, programs under
test were seeded with faults, while in our experiment, programs were tested as they are.

Gupta et al. [9] compared the effectiveness (the ability to detect faults) and effi-
ciency (the average cost for detecting a fault) of three code coverage criteria: predicate
coverage, branch coverage and block coverage. They found that predicate coverage is
the most effective but the least efficient, block coverage is the least effective but most
efficient, while branch coverage is between predicate coverage and block coverage in
terms of both effectiveness and efficiency. Their results suggest that branch coverage
is the best among those three criteria for getting better results with moderate testing
efforts.

7 Conclusions and Future Work

This article has shown that the branch coverage level achieved by random testing varies
depending on the structure of the program under test but was very high on the classes
we tested (93% on average). Most of the branches exercised by random testing are
exercised very quickly (in the first 10 minutes of testing) regardless of the class under
test. For the same class, branches exercised in different test runs are almost the same.
Different test runs on the same class detect roughly 10% different faults.

Our results also confirm that branch coverage in general is not a good indicator of
the quality of a test suite. In the experiments, more than 50% of the faults are uncovered
while coverage is at a plateau. Although many studies showed the weakness of branch
coverage, there is little evidence showing that random testing finds new faults while the
branch coverage stagnates.

Our results indicate that branch coverage is not a good stopping criterion for ran-
dom testing. One should test a program in multiple test runs to find as many faults as
possible even though by doing so the branch coverage level will not be increased in
general. Also, one should not stop random testing, even if the branch coverage level
stops increasing or only increases very slowly.

For the continuation of this work, we are investigating how to reach even higher
branch coverage (100% or very close), and how to devise a good stopping criterion for
random testing.
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