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Abstract. The automatic recognition of human activities such as cook-
ing, showering and sleeping allows many potential applications in the
area of ambient intelligence. In this paper we show that using a hier-
archical structure to model the activities from sensor data can be very
beneficial for the recognition performance of the model. We present a
two-layer hierarchical model in which activities consist of a sequence
of actions. During training, sensor data is automatically clustered into
clusters of actions that best fit to the data, so that sensor data only has
to be labeled with activities, not actions. Our proposed model is evalu-
ated on three real world datasets and compared to two non-hierarchical
temporal probabilistic models. The hierarchical model outperforms the
non-hierarchical models in all datasets and does so significantly in two
of the three datasets.
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1 Introduction

The automatic recognition of human activities such as cooking, showering and
sleeping allows many potential applications in the area of ambient intelligence
[10]. In recent years, temporal probabilistic models have been shown to give
a good performance in recognizing activities from sensor data [3,9]. However,
many of these models assume a direct correlation between activities and the
sensor data. Because activities contain a rich hierarchical structure, modeling
this hierarchy explicitly might be beneficial for the recognition performance of
the model.

In this paper, we use a hierarchy in which we assume that each activity consists
of a number of actions. For example, the activity cooking might consist of an
action ‘cutting vegetables and meats’ and an action ‘frying them in a pan’. We
present a two-layer hierarchical model for activity recognition in which the top
layer of the model corresponds to activities and the bottom layer corresponds
to actions. Although it is possible to train such a model using data which is
annotated with labels of both activities and actions, in this paper, we train
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the model using only labels for the activities. There are two advantages to this
approach: 1) Annotating the data becomes significantly less involved when only
the activities have to be annotated, 2) We do not force any structure upon the
model with respect to the actions, but rather let the model find this structure in
the data automatically. The automatic allocation of structure can be considered
as a clustering task. The clusters found in the data do not necessarily have to
be meaningful clusters that correspond to actual actions that are intuitive to
humans. We therefore distinguish between the term ‘action clusters’ to refer to
the actions found through clustering and ‘actions’ to refer to the actions intuitive
to humans. We evaluate our approach by comparing the recognition performance
of our hierarchical model to the recognition performance of two non-hierarchical
temporal probabilistic models and we do so using three real world datasets.

The remainder of this paper is organized as follows. In Section 2, we compare
our approach to related work. Section 3 provides the details of our hierarchical
model and its learning and inference algorithms. Section 4 presents the experi-
ments and results and in Section 5 we discuss these results. Finally, in Section
6, we sum up the conclusions.

2 Related Work

In previous work hierarchical models have mainly been applied to video data to
recognize activities such as entering and leaving a store [6]. Nguyen et al. com-
pare the performance of a learned hierarchical hidden Markov model (HHMM),
a hand-coded HHMM and a conventional hidden Markov model (HMM), the
learned HHMM gives the best performance [8]. Duong et al. compare the per-
formance of the HHMM and the hidden semi-Markov model (HSMM). In their
work, the HHMM gives very poor performance in the recognition task which,
according to the authors, is caused by a poorly estimated transition matrix.
They do not explain why the hierarchical model is unable to learn the transition
matrix, while the semi-Markov model is able to learn this matrix accurately [2].
In work by Luhr et al., hierarchical models consisting of several layers are hand
crafted by closely inspecting the sequence of actions performed by the subject.
Their results show that these models perform well in recognizing several cooking
related activities [5].

Overall these works confirm the potential of using hierarchical models for
activity recognition, however, none of these works involve the recognition of ac-
tivities from a wireless sensor network data. Our paper contributes by providing
experimental results on several real world datasets, consisting of several weeks
of data and involving a large number of activities. We provide a systematic com-
parison between our HHMM and the HMM and HSMM, showing that the use
of a hierarchy results in an increase in performance. Furthermore, we compare
two ways of modeling observations in a hierarchical model and show which ap-
proach is most effective in modeling activities. Finally, our work demonstrates
that the automatic clustering of actions leads to accurate activity recognition
with a limited need for annotation.
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Fig. 1. The graphical representation of a two-layer HHMM. Shaded nodes represent
observable variables, the white nodes represent hidden states. The dashed line is an
optional dependency relation; we can choose to model the observation probability as
p(xt | yt, zt) or as p(xt | zt).

3 Hierarchical Hidden Markov Model

We assume a house in which we perform activity recognition is equipped with
a sensor network of binary sensors. The data obtained from the sensors is dis-
cretized into T timeslices of length Δt. A single feature value is denoted as xi

t,
indicating the value of feature i at timeslice t, with xi

t ∈ {0, 1}. In a house with N
installed sensors, we define a binary observation vector xt = (x1

t , x
2
t , . . . , x

N
t )T .

The activity at timeslice t, is denoted with yt ∈ {1, . . . , Q} for Q possible
states. We use an HHMM to form a mapping between a sequence of observations
x1:T = {x1, x2, . . . , xT } and a sequence of activities y1:T = {y1, y2, . . . , yT } for
a total of T timeslices.

In this section, we discuss the details of a two-layer hierarchical model for
activity recognition and explain the inference and learning algorithms.

3.1 Model Definition

We consider a two-layer hierarchical model for activity recognition. The top
layer state variables yt represent the activities and the bottom layer variables
zt represent the action clusters (Fig. 1). Each activity consists of a sequence of
action clusters and the temporal ordering of the action clusters in a sequence
can vary between different executions of an activity. Of particular interest to us
is the last action cluster that is performed at the end of an activity, because this
action cluster signifies the end of a sequence and announces the start of a new
sequence of action clusters. We therefore introduce a third variable, the finished
state variable ft, which is used as a binary indicator to indicate the bottom layer
has finished its sequence.
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We further explain the details of this model by going over all the factors of
the joint probability distribution of hidden states and observations given by:

p(y1:T , z1:T , f1:T ,x1:T ) =
T∏

t=1

p(xt | yt, zt)p(yt | yt−1, ft−1)

p(zt | zt−1, yt, ft−1)p(ft | zt, yt)

where we have defined p(y1 | y0, f0) = p(y1) and p(z1 | z0, y1, f0) = p(z1 |
y1) for the sake of notational simplicity. The entire model consists of a set of
parameters θ = {π0, π1:Q, A0, A1:Q, B, φ}. The initial state parameters π and
transition parameters A exist for both the top layer and bottom layer states.
To distinguish between these two types of parameters, we include a 0 in the
subscript to indicate that a parameter is of the top layer and an index of 1 to Q
for each of the bottom layer parameters. The distributions of the bottom layer
states depend on which top layer state the model is in and so there is a separate
set of bottom layer state parameters for each possible top layer state, with Q
being the number of top layer states. For example, if the model at one point is
in the top state yt = k, then the transition parameter Ak is used for the bottom
layer state transitions. We now provide a detailed explanation of each of the
factors that make up the joint probability and how they are parameterized.

At the first timeslice, the initial state distribution of the top layer states is
represented by a multinomial distribution which is parameterized as p(y1 = j) =
π0(j). This top layer state generates a bottom layer state, also represented by a
multinomial distribution and parameterized as p(z1 = j | y1 = k) = πk(j).

The factor p(zt = j | zt−1 = i, yt = k, ft−1 = f) represents the transition
probabilities of the bottom layer state variable. These transitions allow us to
incorporate the probability of a particular temporal order of action clusters with
respect to a given activity. A transition into a new state zt, depends on the
previous bottom layer variable zt−1, the current top layer state variable yt and
the finished state variable ft−1. Two distributions make up this factor, depending
on the value of the finished state variable ft−1. Either a new sequence of bottom
layer states starts (ft−1 = 1), or a transition within an existing sequence takes
place (ft−1 = 0).

These two cases can be compactly formulated as:

p(zt = j | zt−1 = i, yt = k, ft−1 = f) =

{
Ak(i, j) if f = 0
πk(j) if f = 1

(1)

Transitions of the top layer state variables are represented by the factor p(yt =
j | yt−1 = i, ft−1 = f). Depending on the finished state variable ft−1, the model
either transitions into a new state (ft−1 = 1) or remains in the same state
(ft−1 = 0). These two cases can be compactly formulated as:

p(yt = j | yt−1 = i, ft−1 = f) =

{
δ(i, j) if f = 0
A0(i, j) if f = 1

(2)
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where δ(i, j) is the Kronecker delta function, giving 1 if i = j and 0 otherwise.
The probability of a bottom layer state sequence finishing is represented by

the factor p(ft = f | yt = j, zt = l). This factor depends on both the bottom layer
state zt and the top layer state yt. Even though the variable ft indicates whether
zt is a finishing state, it is important that the distribution is also conditioned
on the top layer state yt. This is because the probability of a particular action
cluster being the last action cluster for that activity can differ among activities.
The factor is represented using a binomial distribution, parameterized as p(ft =
f | yt = j, zt = l) = φf (j, l).

Two possible observation models. In the graphical representation of our
hierarchical model, shown in Figure 1, there is a dashed line between the top
layer state variables yt and the observation variables xt. This line represents
an optional dependency relationship, because we wish to experiment with two
types of observation models. If we do take the dependence relation into account,
our observation model is represented by the factor p(xt | yt, zt). In this model,
each combination of top and bottom state values gets its own set of parame-
ters. Alternatively, if we do not include the dependence relation, our observation
model is represented by the factor p(xt | zt). In this case, the observation model
is independent of the top layer state variable. Note that in the transition prob-
abilities of the bottom layer state variable described above, there still exists a
dependency on the top layer state, regardless of which observation model is used.
The same holds for the finished state probability distribution.

Observations are modeled as independent Bernoulli distributions, with each
sensor corresponding to one Bernoulli distributions. In case of model 1 the ob-
servation probability factorizes as p(xt | yt, zt) =

∏N
n=1 p(xn | yt, zt), with

p(xn | yt = j, zt = k) = μxn

jkn(1 − μjkn)(1−xn). For model 2 we get p(xt |
zt) =

∏N
n=1 p(xn | zt) with p(xn | zt = k) = μxn

kn(1 − μkn)(1−xn), where N is the
number of sensors used. Model 1 requires Q times more parameters than Model
2, because of the additional dependency on the top layer states, with Q being
the number of top layer state values. The observation parameters are collectively
represented by a variable B = {μjkn} for Model 1 and B = {μkn} for Model 2.

3.2 Inference and Learning Using a Flattened Implementation

Inference in our proposed HHMM can be done by using the Viterbi algorithm for
HMMs [7]. We can flatten our HHMM to a HMM by creating a HMM state for
every possible combination of states in the HHMM. Because our model structure
is not fully connected some parameters will be shared between states, this means
the same set of parameters is used for different states. The use of a flattened
implementation allows us to perform inference in linear time.

Parameters are learned iteratively using the Expectation Maximization (EM)
algorithm [1]. The E-step consists of using the forward-backward algorithm to
calculate the probability distribution p(y1:T , z1:T , f1:T | x1:T , θ) given a set of
parameters θ. From this distribution, we can calculate the expectation and rees-
timate the parameters in the M-step. Because no labels are available for the
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action clusters, we start with a set of randomly initialized parameters. The pro-
cedure of calculating the forward-backward probabilities and reestimating the
parameters is repeated until the parameter values converge, indicating a local
maximum has been reached.

4 Experiments

Our experiments are aimed at answering three questions: 1) What number of ac-
tion clusters is needed for modeling activities? 2) Which observation model gives
the best performance? 3) How does the performance of our hierarchical model
compare to the performance of the HMM and the HSMM, two commonly used
models for activity recognition? Our first experiment compares the performance
of the hierarchical model using Observation Model 1 to the performance of the
HMM and the HSMM. The second experiment makes the same comparison, but
uses Observation Model 2. In both experiments, results are given for various
number of action clusters. In the remainder of this section we present the details
of our experimental setup, we describe the experiments and their results and
finally discuss the outcomes.

4.1 Experimental Setup

We used three publicly available datasets and Matlab code used in previous
work for the HMM and HSMM [3]. A summary of the relevant details for each
dataset can be found in Table 1. The datasets were recorded using wireless sensor
networks consisting of simple binary sensors such as reed switches to measure
whether doors and cupboards are open or closed; pressure mats to measure
sitting on a couch or lying in bed; mercury contacts to detect the movement
of objects (e.g. drawers); passive infrared (PIR) to detect motion in a specific
area; float sensors to measure the toilet being flushed. The observed sensor data
is ambiguous with respect to which activity is taking place. For example, the
sensors can observe that the refrigerator is opened, but cannot observed which
item is taken from the refrigerator. This makes the recognition task especially
challenging.

The datasets include annotation of activities, but do not include annotation
of actions. Since we do not have any ground truth for the actions and because we
are only interested in using action clusters for modeling purposes, our evaluation
is based solely on the inferred activities. We used the F-measure metric for
evaluation, which is a combination of the average precision and recall per activity.
This metric considers the recognition of each activity as equally important and
provides a reliable way for evaluating activity recognition methods [3].

Data obtained from the sensors is discretized in timeslices of length Δt =
60 seconds and transformed to the changepoint representation, which has been
shown to consistently gives a good performance in activity recognition [3]. We
split our data into a test and training set using a ‘leave one day out’ cross
validation. In this approach, one full day of sensor readings is used for testing
and the remaining days are used for training, we cycle over all the days in the
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Table 1. Information about the datasets used in the experiments

House A House B House C

Activities 10 14 16
Sensors 14 23 21
Days of data 25 days 13 days 18 days

dataset and present the average performance over all test days. In the case of the
HHMM, we repeat the experiment five times and present the average over those
five runs. This is done because the EM algorithm requires a random initialization
of the parameters.

4.2 Experiment 1: Observation Model 1

In this experiment, we use Observation Model 1 (p(xt | yt, zt)). We compare
the performance of our HHMM to the performance of the HMM and HSMM.
Furthermore, we experiment with various number of action clusters. The average
F-measure performance over five runs for various number of action clusters is
given in Figure 2 for all three houses.

We see that the performance of the HHMM is equal to the HMM when a single
action cluster per activity is used. Using a single action cluster for each activity
is equivalent to using an HMM and therefore results in the same performance.

(a) House A (b) House B

(c) House C

Fig. 2. Experiment 1: Plot of the F-measure performance of the HMM, HSMM and
HHMM using Observation Model 1. The number of action clusters signifies the number
of state values that are used for the bottom layer state variable of the HHMM.
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Generally the best performance for the HHMM is obtained when using two
or three action clusters, the performance decreases as more action clusters are
considered. To determine the significance of our results we used a one-tail student
t-test with matching paired days. The increase in F-measure performance of
the HHMM, taken over an average of five runs, compared to the F-measure
performance of the HMM and the HSMM is significant for houses A and C, at
a confidence interval of 95%.

4.3 Experiment 2: Observation Model 2

In experiment 2 Observation Model 2 (p(xt | zt)) is used. The experimental
setup is similar to experiment 1 and the average F-measure performance over
five runs for various number of action clusters is given in Figure 3 for all three
houses.

We see that in Houses A and B, the HHMM does not manage to perform
better than the HMM or the HSMM. In House C, we see a slight improvement in
performance over the HMM and the HSMM, when 15 action clusters are used,
but this increase in not significant. Overall, the best performance is obtained
when using 10 or 15 action clusters. Using more or less action clusters than that
quickly results in a significant decrease in performance.

(a) House A (b) House B

(c) House C

Fig. 3. Experiment 2: Plot of the F-measure performance of the HMM, HSMM and
HHMM using Observation Model 2. The number of action clusters signifies the number
of state values that are used for the bottom layer state variable of the HHMM.
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5 Discussion

The results from our experiments show that observation model 1 (separate set of
actions) gives significantly better performance than Observation Model 2 (shared
set of actions). Observation model 1 includes a dependency on the activity, which
means action clusters are allocated separately for each activity. In observation
model 2 action clusters are found independent of the activities, as a result the
clusters found might not be ideal for distinguishing activities, which results in a
lower performance.

The use of two or three action clusters gives the best performance, when using
a separate set of action clusters for each activity. Too few action clusters does not
provide the model with enough expressive power, while too many action clusters
results in too many parameters for which there is too little data to estimate
them accurately.

Our proposed HHMM significantly outperformed the HMM and the HSMM in
two of the three houses. This increase in performance is mainly due to differences
in the observation model and the modeling of transition probabilities of the
bottom layer state variable. The inclusion of action clusters allows the model to
divide activities into separate stages, based on the actions that are performed.
By modeling the transition probabilities between consecutive action clusters, we
are able to calculate the probability of a particular temporal ordering of action
clusters within an activity.

The presented results assume recognition is performed in an offline fashion
on a daily basis. Such an approach is useful in applications such as long term
health monitoring in which the activity behavior of a patient is studied over
long periods of time (several months). Recognition can also be done in an online
fashion, which means the recognized activity can be made available in realtime.
Using online recognition will result in a decrease in performance, since only
the sensor data up to the point of recognition can be used during inference.
A comparison of online and offline recognition in the case of the HMM can be
found in one of our previous works [4].

6 Conclusion

We presented a two layer hierarchical hidden Markov model for activity recog-
nition in which one of the layers corresponds to action clusters and one layer
corresponds to the activities. Two observation models were proposed and exper-
iments on three real world datasets revealed that using a separate set of action
clusters for each activity works best. Using a shared set of action clusters does
not necessarily result in meaningful clusters and therefore using that observation
model gives a significantly lower performance.

Our proposed hierarchical model outperforms the HMM and the HSMM in all
datasets and does so significantly in two of the three datasets, with an increase
of 7 percentage points in F-measure performance for both datasets. The gain in
performance shows that our proposed hierarchy allows a more accurate modeling
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of the activities recorded in the datasets. This is primarily caused by the ability
of the model to take into account the temporal order of both activities and action
clusters.
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