
Evaluation of AAL Platforms According

to Architecture-Based Quality Attributes

Pablo Oliveira Antonino1, Daniel Schneider1,
Cristian Hofmann2, and Elisa Yumi Nakagawa3

1 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{pablo.antonino,daniel.schneider}@iese.fraunhofer.de

2 Fraunhofer IGD, Fraunhoferstr. 5, 64283 Darmstadt, Germany
cristian.hofmann@igd.fraunhofer.de

3 Dept. of Computer Systems, University of São Paulo, São Carlos, SP, Brazil
elisa@icmc.usp.br

Abstract. In the Ambient Assisted Living (AAL) domain, specific sys-
tems have been developed and applied to enable people with specific
needs, such as elderly or disabled people, to live longer independently in
their familiar residential environments. In order to support the develop-
ment of such systems, a range of AAL platforms have been developed
in recent years. However, there are considerable differences among these
AAL platforms, particularly with respect to the treatment of important
non-functional properties. This makes the selection of a suitable platform
for a given AAL project very difficult. In order to support developers in
this difficult task, we present an evaluation of relevant AAL platforms
based on a selection of quality attributes that are important for AAL
systems.

Keywords: Ambient Assisted Living, AAL Platform, System Architec-
ture, Quality Attribute, AAL Platform Evaluation.

1 Introduction

Driven by demographical and societal changes in most industrialized countries,
the development of Ambient Assisted Living (AAL) systems has emerged as
a very promising application domain of Ambient Intelligence (AmI) systems.
The main focus of AAL systems is to enable people with specific needs, e.g.
elderly or disabled people, to live longer independently in their familiar residen-
tial environments [1]. From a technical perspective, an essential characteristic
of AAL systems is their capability to react adaptively to dynamic changes in
device/service availability, resource availability, system environment, or user re-
quirements. Moreover, it is very important for the acceptance of such systems
that they are able to assure both,functional and non-functional properties at any
time. In order to tackle these challenges, it is indispensable to develop suitable
AAL platforms that explicitly address openness, interoperability, adaptivity, and

D. Keyson et al. (Eds.): AmI 2011, LNCS 7040, pp. 264–274, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Evaluation of AAL Platforms According to Architectural... 265

quality assurance. Recognizing these challenges, efforts have been aligned in na-
tional and European research projects in order to drive research into this direc-
tion [1,2]. As a result, a range of AAL platforms such as UniversAAL [13], OASIS
[8], and OpenAAL [9] have been developed. However, each of these platforms
has different foci and, correspondingly, different characteristics. In particular,
there are considerable differences with respect to the treatment of relevant non-
functional properties, such as security, maintainability, and safety. This obviously
makes the selection of an adequate platform for a given AAL project very diffi-
cult. Even though the importance of non-functional properties has been widely
discussed in the AAL research community (for instance, at the MonAMI project
workshop in Passau, Germany [10]), there is no comprehensive survey on AAL
platforms and their support of important non-functional properties.

Therefore, the main objective of this paper is to provide an evaluation of the
currently most widely established and well-known AAL platforms with respect
to their support of non-functional properties. To this end, we first identify and
describe a set of relevant quality attributes for the context of AAL systems. Then
we evaluate given AAL platforms by means of a qualitative analysis technique,
describing to which degree the different quality attributes are fulfilled by each
platform. The results are compiled into an evaluation of the platforms that
should provide support for developers of AAL projects when faced with selecting
an appropriate platform.

The remainder of this paper is organized as follows: In Section 2, we briefly dis-
cuss suitable quality attributes for our evaluation and provide a short overview
of the selected attributes. Subsequently, we present the considered AAL plat-
forms and their evaluation in Section 3. In Section 4, we conclude this paper
with a discussion of our results, lessons learned, and limitations of this work.

2 Quality Attributes as Evaluation Criteria

As a basis for the platform evaluation, we first had to identify an appropriate
(i.e., small enough to be described in this paper yet meaningful) set of quality
attributes for the AAL domain. A general starting point was provided by es-
tablished standards for software quality such as ISO/IEC 9126, ISO/IEC 14598,
and the new ISO/IEC 25000 SQuaRE. From these comprehensive sets of quality
attributes we extracted a subset that was well suited for assessing the considered
AAL platforms from a quality assurance perspective (cf. Table 1). As the main
categories (or, according to the wording used in the standards, as the top-level
quality characteristics) to be considered, we mostly adopted those proposed in
the ISO/IEC 9126 and ISO/IEC 25000 SQuaRE standards. However, we made
some slight changes owing to our task of evaluating AAL platforms. In correspon-
dence with the standards, we considered maintainability and efficiency because
both play important roles in AAL systems and depend on the platform. As for
the former, it is common for AAL systems to be continuously maintained over
their life-time as the needs of the assisted person usually change. Efficiency is
important because AAL systems consist of heterogeneous distributed devices,



266 P.O. Antonino et al.

which might only have scarce resources. In contrast to the standards, we further
chose to include safety and security as top categories in addition to reliability.
This is because we believe that AAL systems need to be particularly trustwor-
thy, with trustworthiness being a composite of different quality characteristics
including (but not necessarily limited to) safety, reliability, and security [3,12].
Safety takes up a special position when compared to the other quality attributes
considered, because it is always a system property. Thus, we considered the gen-
eral eligibility of the platforms for safety-critical applications. More precisely,
we evaluated if there are weak points within the platforms (i.e., single points
of failure) or if the platforms offer mechanisms that are directed at or can be
utilized for safety measures. As for security, we mainly focused on the protec-
tion of sensible information, hence considering confidentiality as a main quality
characteristic. We consequently evaluated if there are suitable security mecha-
nisms in place in the platforms. Also in contrast to the standards, we did not
consider usability and portability. Usability is not a property of a platform but
rather of the applications that run on a platform. The same argument is true
for portability, which is mostly a characteristic of (application) software to be
deployed in different contexts such as different platforms.

3 Overview and Evaluation of AAL Platforms

Due to the large number of existing platforms, we do not aim to provide a com-
plete overview in this paper. We consider the following set of more consolidated
and well-known AAL platforms: Alhambra [5], Hydra [6], OASIS [8], OpenAAL
[9], PERSONA [11], and UniversAAL [13]. It is important to point out that these
platforms are based on OSGi1. However, this was not a criterion in the selection
process; we only realized this during the analysis. In the following, we first give
a short overview of the platforms considered. Then we describe the method ap-
plied to gather the required platform-specific information. Finally, we describe
the evaluation results and provide a table that shows the platforms based on the
set of quality attributes identified in Section 2.

3.1 Overview of Evaluated AAL Platforms

Alhambra: This platform provides a comprehensive architecture for accessing
and integrating heterogeneous devices, providing interoperability with
different communication protocols, and using a uniform functional interface.
Alhambra is a service platform for developing modular, service-oriented,
hardware-independent applications. In this perspective, Alhambra provides mod-
ularization, enabling an exchange of applications.

Hydra: Hydra is a service-oriented platform built for operating in environments
with limited resources, such as energy, memory, and computational processing.
It is a peer-to-peer based system that offers, among others, mechanisms for
allowing service discovery and for ensuring high interoperability.
1 OSGi has been considered one of the most appropriate frameworks to be used as a

basis for the development of AAL platforms - http://www.osgi.org/



Evaluation of AAL Platforms According to Architectural... 267

Table 1. Quality Attribute Framework for the AAL Domain

Quality At-
tribute

Description

RELIABILITY
Recoverability Recoverability can generally be defined as the ability of the system to recover if a failure

does occur. In our evaluation we assessed if and how good recoverability is supported by
mechanisms of the respective platforms.

SECURITY
Encryption Mech-
anism

Encryption Mechanisms are essential for providing end-to-end message security in Web
Services based environments. The use of digital certificates can simplify access control for
elderly and demented persons (as they do not need to remember usernames and pass-
words).

User Roles & Se-
curity Profile Def-
inition

The interface to core management services (i.e., user management, access management,
role management, and token management) should be defined for the developer.

MAINTAINABILITY
Changeability Changeability is a property that allows software engineers to easily perform a change in the

system design. In the case of the AAL platforms, we especially considered their facilities
to maintain them after deployment.

Installability Installability is the capability of a software product to be installed in a specified envi-
ronment. For AAL platforms, we considered the presence of installation mechanisms that
allow both people with and without technical knowledge to effectively add new services
and devices to the system, as well as mechanisms for assuring that external dependencies
will be automatically downloaded to assure proper (re)installation of the system.

EFFICIENCY
Adequacy for
Small Devices

Given the heterogeneous nature of AAL systems, it is important for a corresponding plat-
form to soundly incorporate devices ranging from sensor nodes to PCs. This can be par-
ticularly difficult for devices like sensor nodes, as resource scarcity might require special
concepts in order to integrate them into a platform.

Resource Con-
sumption

Here we considered the general resource efficiency of the platform (e.g memory, CPU).

Communication
Overhead

AAL systems usually rely on numerous distributed devices and platforms are required to
realize their communication in an efficient way.

SAFETY
Presence of Single
Point of Failure

A single point of failure corresponds to a system component that, if it fails, will compromise
the proper functioning of the system.

Safety Pattern
Usage

Safety patterns are measures applied to the system architecture that will assure that
the system will always be in a safe state. Examples of safety patterns are Homoge-
neous/Heterogeneous Redundancy, Watch Dog, and Triple Modular Redundancy.

OASIS: OASIS is an ontology-driven, open reference architecture and platform
that facilitates interoperability, seamless connectivity, and sharing of content be-
tween different services. Based on a service-oriented approach, it is open, modu-
lar, and standard-based. It includes a set of tools for content/services connection
and management, for user interface creation and adaptation, and for service per-
sonalization and integration.

OpenAAL: The main goal is to enable an easy implementation and integration
of flexible, context-aware, and personalized services. The OpenAAL middleware
is a framework that supports integration and communication between AAL ser-
vices. Furthermore, it provides generic platform services such as context man-
agement, workflow specifications of system behavior, and semantically enabled
discovery of services. Both the framework and the platform services operate and
communicate by means of a shared ontology.

PERSONA: The PERSONA project aims at developing a scalable, open-
standard technological platform for building a range of AAL services. The rele-
vant technical solutions include a middleware, a set of general-purpose
components (forming the PERSONA platform), and a set of AAL services.



268 P.O. Antonino et al.

The middleware comprises a set of OSGi bundles organized in three logical
layers: The Abstract Connection Layer handles the peer-to-peer connectivity
between middleware instances, the Sodapop Layer realizes the peer and listener
interfaces, and the PERSONA-specific Layer implements different busses, which
are employed to enable the interaction between users and the general-purpose
components.

UniversAAL: UniversAAL is based on a service-oriented architecture that
reuses many components of PERSONA. The platform includes three main parts:
(i) a runtime-support environment that provides core services for the execution
of AAL services, (ii) a development support that provides documentation, tools,
and development resources, and (iii) community support, including training and
an online store, a one-stop shop for AAL services and applications.

3.2 Methodology for Collecting Information

Considering the characteristics of our work, we decided to conduct a survey
in order to evaluate the AAL platforms. The conduction of surveys is an em-
pirical strategy for a retrospective investigation about a topic of interest [14].
According to Wohlin et al. [14], a survey is a descriptive (to determine the dis-
tribution of attributes and characteristic), explanatory (to understand decisions
that are made), and explorative (a preliminary study for a deeper future inves-
tigation) strategy. In particular, we adopted the interview technique, which is
a qualitative analysis technique [7] widely used to conduct surveys [14] and is,
in particular, sufficient to evaluate the selected quality attributes of software
system architectures [4]. More precisely, we decided to conduct semi-structured
interviews, guided by a script, but with interesting issues explored in more depth.
The interviews were individually held more than one time so that bias could be
minimized.

3.3 Result Evaluation

For each AAL platform, the quality attributes were discussed and analyzed. Ta-
ble 2 summarizes the results of our analysis. In order to indicate if a platform
addresses a specific attribute, we adopted these abbreviations: (i) HA (Highly
Addressed), if the attribute is explicitly supported; (ii) A (Addressed), if the
attribute is supported; (iii) PA (Partially Addressed), if the attribute is implic-
itly supported or limited to single features; (iv) NA (Not Addressed), if an at-
tribute is insufficiently supported or is not addressed; and (v) INA (Information
Not Available), if information about that attribute is not available. Bellow, we
present more details about the platforms with regard to each quality attribute.

Recoverability: Since all platforms are based on the OSGi framework, on the
level of single bundles, they are all protected by the recoverability mechanism
provided by the hosting OSGi runtime environment. Besides the common pro-
tection, we identified that: (i) Hydra has a specific component for detecting



Evaluation of AAL Platforms According to Architectural... 269

Table 2. Evaluation of the AAL Platforms

A
lh
am

br
a

H
yd
ra

O
A
SI
S

O
pe
nA

A
L

P
E
R
SO

N
A

U
ni
ve
rs
A
A
L

RELIABILITY
Recoverability NA A NA NA HA HA

SECURITY
Encryption Mechanism NA A A NA A HA
User Roles & Security Profile Definition A A PA PA A HA

MAINTAINABILITY
Changeability PA PA PA A HA HA
Installability NA A A NA HA HA

EFFICIENCY
Adequacy for Small Devices HA HA HA NA A HA
Resource Consumption A NA NA INA HA HA
Communication Overhead A NA NA A HA HA

SAFETY
Presence of Single Point of Failure NA NA NA INA NA HA
Safety Pattern Usage NA A NA NA NA A

failures in the system; (ii) PERSONA and UniversAAL address recoverabil-
ity also at the hardware level; and (iii) Alhambra, OASIS, and OpenAAL
do not provide additional mechanisms for recovery when failures occur.

Encryption mechanism: We observed that: (i) Hydra has an encryption mech-
anism addressed by the Trust Manager component; (ii) OASIS has an encryption
mechanism in the Trust and Security Framework; (iii) PERSONA has an en-
cryption mechanism where the necessary authorization for enabling a middleware
instance (representing a PERSONA-aware node) to take part in a certain AAL
Space requires manual installation of the AAL Space shared key on that node. The
presence of such an encryption mechanism additionally ensures end-to-end secu-
rity and integrity of messages exchanged among the middleware instances; (iv)
UniversAAL’s encryption mechanism extends Persona’s with additional pub-
lic & private key pairs for communication beyond a single AAL Space (e.g., with
another AAL Space or with Web services outside the AAL Space); and (v) Al-
hambra and OpenAAL do not offer any encryption mechanism.

User roles & security profile definition: We observed that: (i) Alhambra
offers mechanisms for defining user roles and profiles; (ii) Hydra has a policy
framework where user roles and security profiles can be defined. Overall confi-
dentiality is assured by asymmetric encryption as mentioned before, combined
with this policy framework; (iii) OASIS’s approach to linking user roles and se-
curity profiles can lead to user role conflicts (two roles with conflicting properties
can be associated with the same user profile). Moreover, there is no mechanism
to prevent user information (which should be strictly confidential) to be seen
and manipulated by other users, which implies notable confidentiality issues;
(iv) OpenAAL offers a possibility to define user profiles for different users that
might also contain security information. However, such security-related profiles
are currently not available; (v) PERSONA’s approach with respect to user



270 P.O. Antonino et al.

roles and security profile definition is basically structured as an extensive ontol-
ogy of different classes of users with the appropriate profile models and a profiling
component for accessing profile data. PERSONA offers mechanisms for user and
component authentication which, in addition to the two security points above,
contribute to confidentiality; and (vi) UniversAAL’s approach was extended
from PERSONA by adding policy-based security mechanisms integrated into
matchmaking between offers and requests. With this extension, the confidential-
ity of UniversAAL is improved from PERSONA’s solution, since the policy-based
extension provides generalized mechanisms that might even eliminate the need
for application-level access control.

Changeability: In general, because of the good modularity offered by OSGi, it
is not difficult to perform changes in systems that are based on or use these plat-
forms. Besides that, we identified that: (i) Alhambra, Hydra, and OASIS do
not offer any additional mechanism for improving changeability; (ii) OpenAAL
has a clear and quite simple architecture for a very specific set of applications
that allow several extension possibilities. Additionally, OpenAAL’s architecture
exploits semantic technologies, which enhance changeability even further. On
the other hand, documentation of these possibilities is rather sparse; (iii) PER-
SONA offers mechanisms for replacing components on the fly. The distributed
implementation of the PERSONA middleware provides dynamic plug-and-play
of hardware and software artifacts. Actually, the PERSONA middleware can
be regarded as Communication Middleware. i.e., it is distributed on nodes that
are PERSONA-aware. The distribution is hidden by the middleware, so that
any building block is regarded in the same manner on the platform level; and
(iv) UniversAAL’s changeability mechanisms are basically the same as PER-
SONA’s, with improvements on the modularity of the PERSONA middleware
as a result of enhancing the distribution function.

Installability: The main points are: (i) Alhambra and OpenAAL have no
special mechanism for supporting installability. Service installations are done via
simple copy and paste of bundles ; (ii) Hydra offers a wizard for guiding the
user through the installation process; (iii) OASIS does not offer barriers for
installing new devices and services in the existing systems. However, it is im-
portant to know the ontology of what the service is about to conduct a smooth
installation; (iv) PERSONA’s approach regarding installability is based on
dynamic dependencies checking. The installation of dependencies and other ex-
ternal components is facilitated by reusable and predefined OSGi configuration
files that allow communication with external repositories where the newest ver-
sions of software artifacts are located; and (v) UniversAAL’s approach was
improved from PERSONA. In particular, improvements were made to tools for
the creation of an initial dataset as well as for facilitating the download and
installation of applications from online stores, along with personalization tools.

Adequacy for small devices: With regard to this attribute, we observed that:
(i) Alhambra can be easily integrated with small devices and sensor nodes
in existing systems, since there are well-defined interfaces that allow smart



Evaluation of AAL Platforms According to Architectural... 271

integration of such elements; (ii) Hydra was explicitly designed to interoperate
with small devices and sensor nodes. It has a hybrid approach for supporting
the following scenarios: If the small device contains a Hydra implementation, it
communicates directly via service invocation. If the small device does not have
a Hydra implementation on it, communication is done via a proxy called Hy-
dra Proxy; (iii) OASIS’s adequacy for small devices is also addressed using a
proxy based approach consisting of the integration of two OSGi implementa-
tions: the one on which the whole system is structured and the other one that
is dedicated to supporting integration of small devices; (iv) for PERSONA,
a design pattern was specified in order to allow the integration of small device
and sensor nodes. Based on this specification, PERSONA provides concrete im-
plementation for well-known home automation standards such as KNX as well
as the home automation and health profiles of ZigBee; (v) UniversAAL’s ad-
equacy regarding the support of small devices and sensor nodes was improved
from PERSONA by offering additional support for the IEEE-11073 standard,
automatic generation of code for new device wrappers, and commissioning tools.
This means that for each class of protocols (known to the system), UniversAAL
offers the possibility to generate “virtual representations” compliant with the
internal data/device model. In PERSONA, these internal representations had
to be manually generated; and (vi) OpenAAL does not address this attribute.

Resource consumption: All of the analyzed platforms require a minimum
resource for running OSGi, the Java Virtual Machine (JVM), and a database
which, in general, is a lightweight one. In more detail, we observed that: (i)
Alhambra has well-structured resource consumption management modules for
ensuring that unnecessary resources will not be consumed. In general, resource
consumption is very low; (ii) Hydra: Besides the resources needed for OSGi,
JVM, and database, the Network Manager of Hydra consumes a considerable
amount of physical memory; (iii) OpenAAL resource consumption was never
evaluated in detail by the OpenAAL team. Nevertheless, the platform designers
assume that the core parts are small enough to consume very few resources. The
biggest resource consumers are memory and processor task; (iv) PERSONA
and UniversAAL require 4MB of space and Java 1.3 running. It is important
to point out that around 2MB are for OSGi. In order to achieve an optimal
load balance, platform components can be distributed without restriction to the
different available nodes in the AAL Space. Runtime measurements on memory
and CPU consumption have not been performed so far; and (v) OASIS does
not offer any management for resource consumption.

Communication overhead: Regarding this attribute, we observed that: (i)
in Alhambra, on the Bus communication level, a Queue mechanism is used.
The overhead depends on the size of the Queue. On the Service level, the OSGi
mechanism takes care of this aspect and, in general, has very low overhead. For
communication with external devices, there is a specific dedicated communi-
cation protocol for avoiding high communication overhead; (ii) in Hydra, the
main cause of communication overhead is the Network Manager, which is based



272 P.O. Antonino et al.

on JXTA; (iii) in OASIS, an the service level there is an overhead caused by a
proxy-based approach to orchestrating the services. Another overhead is caused
by the hybrid approach used in the data model: The most important information
of the user profile is replicated in the central server and in the local node; (iv)
in OpenAAL, communication is highly dependent on the OSGi communication
framework, which results in little communication overhead; and (v) PERSONA
and UniversAAL have a dedicated mechanism for dealing with communication
overhead that is realized in two ways: Persona communicates through 4 busses.
For 2 busses, n-1 (n = number of nodes) messages are broadcasted ONCE when
a node throws a new event. The rest of the procedure is executed locally at each
node. For the other two busses, communication is centralized, that are always
optimized with respect to overhead). They introduce a “Coordinator”, so that
CONSTANTLY 0, 2, or 4 messages, in the worst case, are received. With other
approaches, usually 2n messages are received.

Presence of single point of failure: We observed that: (i) in Alhambra, the
Residential Gateway is a single point of failure for the whole platform; (ii) in
Hydra, all communication is done via the Network Manager, which communi-
cates via a single server called Super Node that, in turn, becomes a single point
of failure; (iii) in OASIS, a single point of failure is the service registration com-
ponent; if this component fails, service calls or registration will not be possible;
(iv) PERSONA’s basic architecture and the distributed implementation of the
middleware were explicitly designed to avoid single points of failure. Neverthe-
less, there are few mandatory platform components on top of the middleware
that make the hosting node a critical one. The failure of such a node leads to the
loss of certain functionalities. For instance, if the node hosting the PERSONA
Dialog Manager fails, explicit interactions with the user will not work anymore;
(v) in UniversAAL, there is no single point of failures; and (vi) regarding
OpenAAL, no information is available.

Use of safety patterns: Regarding this attribute, (i) Hydra presents Redun-
dancy as a safety pattern, through the use of different services with the same
goal; (ii) for UniversAAL, explicit mechanisms are under development to sup-
port redundant installation of critical components; and (iii) the other platforms
do not use any safety patterns.

Summarizing our analysis, we observed that the AAL platforms considered
in this work are relevant and present different advantages in various contexts
of use. Considering the analyzed set of quality attributes, the results point out
that none of them fully addresses the quality attributes; however, overall, Uni-
versAAL presented the best evaluation. Considering other quality attributes, the
analysis might have a completely different result. With respect to our quality
attribute set, it is important to point out that the use of safety patterns, in
general, has not been taken in consideration, even knowing that their use could
avoid failures leading to serious injuries to the assisted persons. It is worth high-
lighting that this type of analysis is not trivial, since it involves a huge amount
of information from different sources and, beyond that, information analysis



Evaluation of AAL Platforms According to Architectural... 273

and summarization require considerable efforts and are time consuming. Thus,
the performed evaluation per se demonstrates the necessity of a well-structured
evaluation approach.

4 Conclusions

Selecting an adequate AAL platform is essential for the success of AAL projects.
The main contribution of this paper is to present an evaluation of well-known
AAL platforms, based on quality attributes analyzed on the architectural level
and providing information that could provide guidance in the selection of the
appropriate platform for a new AAL project. As future work, we intend to con-
solidate our analysis by performing scenario-based evaluations, also involving
other AAL platforms and aiming at contributing to the effective development of
AAL projects.

Acknowledgements. This work is supported by the OptimAAL and ProAs-
sist4Life projects, and by the Brazilian funding agencies FAPESP and CNPq. We
would also like to thank Saied Tazari from Fraunhofer IGD, Peter Wolf from FZI
Karlsruhe, Marius Ofgen from TU Kaiserslautern, Mario Schmidt from Fraun-
hofer IESE, Lohrasb Jalali and Patrick Lukat from Fraunhofer IMS and Marc
Jentsch from Fraunhofer FIT for serving as interview partners. We would also
like to thank Sonnhild Namingha from Fraunhofer IESE for linguistic support.

References

1. AAL Joint Programme: Ambient Assisted Living (AAL) joint programme, World
Wide Web (2011), http://www.aal-europe.eu/ (acessed May 16, 2011)

2. AAL Open Association: AAl Open Association - AALOA, World Wide Web (2011),
http://www.aaloa.org/ (acessed May 16, 2011)

3. Aviz̆ienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. on Dependable and Secure Com-
puting 1(1), 11–33 (2004)

4. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architecture. The SEI
Series in Software Engineering, Boston, MA (2002)

5. Dimitrov, T.: Design and Implementation of a Home Automation Service Gateway
based on OSGi. Master’s thesis, University of Duisburg-Essen, Düsseldorf, Germany
(December 2005)

6. Hydra Project: Hydra open source middleware, World Wide Web (2011), http://
www.hydramiddleware.eu/ (acessed May 17/2011)

7. Miles, M.B., Huberman, M.: Qualitative Data Analysis: An Expanded Sourcebook,
2nd edn. Sage Publications (1994)

8. OASIS Project: OASIS: quality of life for the elderly, World Wide Web (2011),
http://www.oasis-project.eu/ (acessed May 11, 2011)

9. OpenAAL: OpenAAL: The open source middleware for ambient-assisted living,
World Wide Web (2011), http://openaal.org/ (acessed May 16, 2011)

http://www.aal-europe.eu/
http://www.aaloa.org/
http://www.hydramiddleware.eu/
http://www.hydramiddleware.eu/
http://www.oasis-project.eu/
http://openaal.org/


274 P.O. Antonino et al.

10. Passau Workshop on ICT & Ageing: Announcing the European Initia-
tive for an AAL Platform: Which Features Should Be In AAL Platforms,
World Wide Web (2010), http://www.hi.se/Global/monami/05PanelWhichFea

turesShouldBeInAALlPlatforms.pdf (acessed May 13, 2011)
11. PERSONA Project: PERceptive Spaces prOmoting iNdependent Aging, World

Wide Web (2011), http://www.aal-persona.org/ (acessed May 13, 2011)
12. Schneider, D., Becker, M., Trapp, M.: Approaching runtime trust assurance in open

adaptive systems. In: SEAMS 2011 at ICSE 2011, Hawaii, USA (2011)
13. UniversAAL Project: The UniversAAL Reference Architecture, World Wide Web

(2011), http://www.universaal.org/images/stories/deliverables/D1.3-B.pdf

(access in March 25, 2011)
14. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:

Experimentation in Software Engineering. Kluwer Academic Publishers (2000)

http://www.hi.se/Global/monami/05PanelWhichFeaturesShouldBeInAALlPlatforms.pdf
http://www.hi.se/Global/monami/05PanelWhichFeaturesShouldBeInAALlPlatforms.pdf
http://www.aal-persona.org/
http://www.universaal.org/images/stories/deliverables/D1.3-B.pdf

	Evaluation of AAL Platforms According to Architecture-Based Quality Attributes
	Introduction
	Quality Attributes as Evaluation Criteria
	Overview and Evaluation of AAL Platforms
	Overview of Evaluated AAL Platforms
	Methodology for Collecting Information
	Result Evaluation

	Conclusions
	References




