A Lightweight Service Registry
for Unstable Ad-Hoc Networks

Paulo Riccal, Kostas Stathis®, and Nick Peach?

! Royal Holloway, University of London, UK
2 PB Partnership, UK
{paulo.ricca,kostas.stathis}@cs.rhul.ac.uk,
nick.peach@pbpartnership.com

Abstract. We present a distributed systems framework for sharing
knowledge and capabilities in ad-hoc networks of devices where net-
work bandwidth, network connectivity and device computing power are
severely limited. We develop a distributed registry to store knowledge of
device capabilities and their invocation, implement it and show how it
can be deployed in a set of network nodes to exemplify its usefulness.
The ideas are exemplified with an ambient intelligence scenario known
as autonomous road trains.

Keywords: distributed service registry, unstable ad-hoc networks.

1 Introduction

Ambient Intelligence (Aml) is a vision of the future where people interact with
networks of computing devices, often in the form of everyday objects within a
physical environment, to better carry out their everyday activities [I]. According
to how objects or their capabilities are used, networks of devices enable user
applications that may acquire environment knowledge via sensors, intelligently
process this acquired knowledge and share it with other devices, and possibly
change the environment’s state using actuators.

In many Aml applications persistent connectivity, software homogeneity and
unlimited computational power of devices cannot be taken for granted. As a
result, how to share knowledge and capabilities between devices within an appli-
cation is an important consideration. More specifically, a centralized approach
is less tolerant and averse to scaling [3], while a simple custom and ad-hoc so-
lution is not always reusable in similar applications, especially when application
devices are heterogenous and their connectivity is both unreliable and dynami-
cally formed.

We develop a distributed registry to store knowledge of device capabilities and
their invocation, implement it and show how it can be deployed in a set of net-
work nodes to exemplify its usefulness. Our contribution lies in the integration of
selective distributed systems technologies combined with peer-to-peer techniques
and a service-oriented approach targeted to low-powered devices. We allow nodes
to register themselves or others to receive notifications when data that is applied

D. Keyson et al. (Eds.): AmI 2011, LNCS 7040, pp. 136-[[4Q, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Service Registry Architecture for Unstable Networks 137

to certain filters is created, modified or removed, inside the registry (making it
easy to construct simple reactive applications as well). In addition, we support
data independently of its description languages to better accommodate hetero-
geneous systems. The end result mixes the usefulness of a directory service, the
flexibility of a distributed database and the ease of use of a data-driven query
and storage mechanism, into a very lightweight peer-to-peer platform which is
suitable for Aml environments.

2 Scenario

As shown in Fig. [I we consider the operation of an Autonomous Road Train
(ART), a changing set of vehicles driving in a platoon formation under au-
tonomous control in order to reduce fuel consumption, improve safety and in-
crease driver convenience in motorways (for more information on ARTS see [2]).
When a vehicle enters a motorway where ART’s are allowed, it should try to
discover ARTs (step 1) through SR’s and query them (step 2) in order to find
out which of them would be the most useful for the vehicle’s trip e.g. in terms of
direction and speed. The queried SRs return data related to the state of an ART
The state schema describes data relative to an ART, such as location, speed,
direction, train size and position on the train sequence (slot). After choosing
an ART to join, the vehicle’s decision mechanism registers the synchronization
and triggering mechanism (step 3) for the piece of data received by the ART
(making it part of the data replication and triggering loop). Next, the car’s de-
cision module fills the ART data inserting a reference to itself on an empty slot
and changing this slot’s state (step 4). The synchronization mechanism ensures
that all the cars in the ART are informed of this change. The vehicle can now
position itself in the ART. When the vehicle reaches its destination, it changes
its internal state to leave the ART (step 5), informing others of its intentions,
so that the other vehicles can distance themselves (step 6) so that the car can
exit the ART (step 7).

v

(B

CARA ART
step 1 -discovery ¢+—0——1——3
action / data change o step2-query o0—m0 3
explicitcall o—— step 3-trigger/synchsetup & - = = = =|- = = = = »
implicit synch o - - + step 4 - join (state change) © -----[---=-- +
step 5 - leaving (statechange) o©----=|-=-=-=-- +
step 6 - prepare for car A leaving D e R o
step 7 - left (statechange) o -----|----- +

Fig. 1. Cars as Road Train Nodes (RTNs) with Service Registries (SRs)

138 P. Ricca, K. Stathis, and N. Peach

3 Service Registry Prototype

One of the requirements within an ART is how to coordinate heterogenous nodes
that are dynamically added to, removed from or moved about the network. Tra-
ditional co-ordination mechanisms are often achieved using a central controller
that has been made robust against failure. However, using a remote radio data
link to a distant central point is inherently dangerous, due to data link dropouts,
therefore local connections within the ART are essential with peer-to-peer com-
puting principles replacing the central controller system.

The Service Registry that we propose is a module of a larger end-to-end sys-
tem prototype which aims at creating a highly decentralized, structured and
flexible approach to orchestrate behaviour in the form of workflows. The ob-
jective is to create a visual designer tool and a run-time node to connect and
coordinate low-powered and heterogenous devices on unreliable networks similar
to the one discussed in [5]. In this context, the Service Registry is designed to be
a custom lightweight and modular directory service structure composed of four
main components depicted in Fig. 2l The Interface allows applications/devices
to interact with the Service Registry. The Registry stores, searches and modifies
schemas and data entities. The Query Interpreter processes requests (described
on one particular protocol and data format) communicated via the Interface and
interacts with the Registry accordingly. The Trigger Manager registers the interest
of external components in registry events related to specific data, and notifies
them accordingly when these take place. The Synchronizer performs synchro-
nization between different service registries and, finally, the External Interface
represents the Interface module of a neighbour registry.

To develop the registry we have chosen Rest [8] as a lightweight mechanism for
remote and embedded local communication, Json [7] for data type and schema
representation. Data is stored in a database-driven registry supported by Apache
Derby, a lightweight database management system based storing and querying
module. Each schema creates one main database table and one secondary table
for each complex (objects or arrays) schema field, recursively for there may be
other complex fields inside these, when it is registered. Below is an example of
schema, Json data, internal database data and triggers used in the ART scenario.

SR TriggerManager
RegisterListener :
o : > Registry
::slstellrfsser RegisterSchema
movelreger GetSchema
External DeleteSchema
interface Interface Query GetEntries
ReceiveBytes € = = r == ReceiveBytes =3 |nterpreter €% AddEntry
SendBytes SEUCETIES ReceiveProtocol ModifyEntries
N RegisterTrigger
Synchronizer RemoveTrigger
le—»{ RegisterSynchronizer (g3
RemoveSynchronizer
— b / < /)

Fig. 2. Overview Implementation Architecture of the Service Registry with the de-
scription of each module’s basic methods

A Service Registry Architecture for Unstable Networks 139

ARTState Json schema:

{type:"object", properties:{slot:{type:"number"}, carId:{type:"string"},
state:{type:"string"}, acks:{type:"array", items: {type:"string"}}}}

ARTState Json data:
{slot:0, carId:"Car A", state:"Occupied", acks:["Car A", "Car B"],
slot:1, carId:"Car B, state:"Occupied", acks:["Car B", "Car A"]}

ARTState internal data:
database table ARTSTATE:

ID; SLOT; CARID; STATE; ACKS
32; 0; "Car A"; "Occupied", 51
33; 1; "Car B"; "Occupied", 52

database table COMPLEX_ARTSTATE_ACKS:

ID; ACKS
51; "Car A"
51; "Car B"
52; "Car B"
52; "Car A"
Trigger:

ID; GRABBERID; SCHEMA; EVENTTYPE; FILTERFIELD; FILTERVALUE
80; "Car A"; "ARTState"; MODIFY; STATE; "Occupied"

We use an implementation of the observer pattern to implement triggersﬂ.
For the above example, when the ARTState schema is registered, the registry
stores the schema and creates two tables: ARTSTATE and COMPLEX ART-
STATE ACKS as the acknowledgements represented in a complex array. The
Registry checks the data against the schema and adds the appropriate fields to
the two tables created before. The trigger described above states that the entity
identified by “Car A" should be notified when data related to the “"ARTState”
schema is modified, and the "STATE" field contains the string “Occupied”. In
this way, triggers allow the decision-making module of nodes to be notified of
changes on the network. In our ART scenario triggers allow a car letting other
cars know of its intentions to leave the ART, so that they can act accordingly,
leaving enough space for it to leave securely.

4 Conclusions, Related and Future Work

We have presented a distributed systems framework for sharing knowledge and
capabilities in ad-hoc networks of devices where network bandwidth, network
connectivity and device computing power are severely limited. We have devel-
oped a distributed registry to store knowledge of device capabilities and their
invocation, implement it and show how it can be deployed in a set of network
nodes to exemplify its usefulness. We believe that such a registry is a sweet spot

! http://www.research.ibm.com/designpatterns/example.htm

140 P. Ricca, K. Stathis, and N. Peach

for Aml, Internet of Things and any heterogenous distributed systems which
may lack a stable network connection.

Directory Services offer a good way of storing, querying and sharing bits
of structured information but they lack the lightweightness that is needed for
Ambient Intelligence environments as in our case study. Lightweight Database
Management Systems such as SQLLite, HyperSQL or Apache Derby provide
the previously referred lightweightness required but used alone, they lack some
useful features such as device notification of data update, smart synchronization
between devices, data-format independence and allowing clients to use their own
data formats on the registry. Data-Driven querying solutions such as OrientX [4],
XPath or JsonPath allow clients to keep using their current data-formats but
lack all the flexibility of directory services or common database management sys-
tems. The ad-UDDI [6] project suggest an active and distributed service registry
which optimizes and extends the usage of UDDI mainly for service discovery. Al-
though this solution offers an interesting and proven approach for active service
discovery, it does not cover the issue of working on unstable networks, and as
it’s primarily focused on service description, it does not offer a generic solution
for sharing information in such scenarios.

As part of our future work we plan to complete the synchronization mechanism
provided, introduce a security layer, provide a global (ldalﬂ—like) syntax for
interacting with the registry and offer an accurate method for measuring results
and comparing to other solutions.

References

1. Aarts, E., Harwig, R., Schuurmans, M.: Ambient Intelligence. In: The Invisible Fu-
ture: The Seamless Integration of Technology into Everyday Life. McGraw-Hill Pro-
fessional (2001)

2. Bergenhem, C., Huang, Q., Benmimoun, A., Robinson, T.: Challenges of Platooning
on Public Motorways. In: 17th World Congress on Intelligent Transport Systems,
Busan, Korea (2010)

3. Cai, M., Frank, M.: A Scalable Distributed RDF Repository based on A Structured
Peer-to-Peer Network. In: WWW 2004 (2004)

4. Meng, X., et al.: OrientX: A Schema-based Native XML Database System. In: Pro-
ceedings of the VLDB, pp. 1057-1060 (2003)

5. Peach, N.: Decentralized operating procedures for orchestrating data and behavior
across distributed military systems and assets. In: Interoperability II. SPIE 8047,
80470B, Orlando (2011)

6. Du, Z., Huai, J., Liu, Y.: Ad-UDDI: An Active and Distributed Service Registry.
In: Bussler, C., Shan, M.-C. (eds.) TES 2005. LNCS, vol. 3811, pp. 58-71. Springer,
Heidelberg (2006)

7. Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). Internet informational RFC 4627 (2006)

8. Fielding, R.: Architectural Styles and the Design of Network-based Software Archi-
tectures. PhD thesis, University of California, Irvine, Irvine, California (2000)

% http://www.openldap.org/

	A Lightweight Service Registry for Unstable Ad-Hoc Networks

	Introduction
	Scenario
	Service Registry Prototype
	Conclusions, Related and Future Work
	References

