

Lecture Notes
in Business Information Processing 95

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Remco Dijkman
Jörg Hofstetter
Jana Koehler (Eds.)

Business Process
Model and Notation

Third International Workshop, BPMN 2011
Lucerne, Switzerland, November 21-22, 2011
Proceedings

13

Volume Editors

Remco Dijkman
Eindhoven University of Technology
School of Industrial Engineering
P.O. Box 513
5600 MB Eindhoven
The Netherlands
E-mail: r.m.dijkman@tue.nl

Jörg Hofstetter
Lucerne University of Applied Sciences and Arts
Engineering & Architecture
Technikumstrasse 21
6048 Horw
Switzerland
E-mail: joerg.hofstetter@hslu.ch

Jana Koehler
Lucerne University of Applied Sciences and Arts
Engineering & Architecture
Technikumstrasse 21
6048 Horw
Switzerland
E-mail: jana.koehler@hslu.ch

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-25159-7 e-ISBN 978-3-642-25160-3
DOI 10.1007/978-3-642-25160-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011939858

ACM Computing Classification (1998): J.1, H.3.5, H.4, D.2

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Business Process Model and Notation (BPMN) has seen a huge uptake in
both academia and industry over the past years. It is seen by many as the de
facto standard for business process modeling and has become very popular with
business analysts, tool vendors and end users. As of version 2.0, the BPMN
contains a comprehensive set of concepts and notational elements, as well as an
execution semantics, an interchange format and a mapping to the Business Pro-
cess Execution Language (BPEL). This enables it to be used for many different
purposes, such as business process modeling and the development of tools for
workflow enactment or simulation.

The BPMN 2011 workshop was the third workshop in the BPMN workshop
series and was held in Lucerne, Switzerland, at the University of Applied Sciences
and Arts. The workshop lasted two days and consisted of both a scientific and a
practitioner event. These proceedings contain the papers that were presented at
the workshop. They contain eight full research papers that were selected from
20 submissions. In addition, the proceedings contain ten short papers; five of
these were submitted as short papers and five were submitted as full papers
and accepted as short papers after reviewing. The workshop had a thorough
reviewing process, during which each paper was reviewed by three Program
Committee members.

We would like to use this opportunity to thank everyone involved in making
the workshop a success. We would like to thank the authors who submitted
their valuable work to the workshop. Clearly, the workshop would not have been
possible without them. We would also like to thank the developers of EasyChair,
whose system was a great help in the preparation of the proceedings. Finally,
we would like to thank the people who were involved in the organization of
the workshop: the Program Committee members, the additional reviewers and
the local Organizing Committee members. We appreciate all your continued
involvement and support.

September 2011 Remco Dijkman
Jörg Hofstetter

Jana Koehler

Organization

Program Committee

Thomas Allweyer FH Kaiserslautern, Germany
Gero Decker Signavio, Germany
Remco Dijkman Eindhoven University of Technology,

The Netherlands
Marlon Dumas University of Tartu, Estonia
Philip Effinger University of Tübingen, Germany
Florian Evéquoz HES-SO Valais, Switzerland
Dirk Fahland Eindhoven University of Technology,

The Netherlands
Jakob Freund Camunda Services GmbH, Germany
Andreas Gadatsch Hochschule Bonn-Rhein-Sieg, Germany
Denis Gagné Trisotech Inc., Canada
Felix Garcia University of Castilla-La Mancha, Spain
Luciano Garćıa-Bañuelos University of Tartu, Estonia
Thomas Hettel Queensland University of Technology, Australia
Knut Hinkelmann Fachhochschule Nordwestschweiz, Switzerland
Jörg Hofstetter Hochschule Luzern, Switzerland
Hans-Peter Hutter Zürcher Hochschule für Angewandte

Wissenschaften, Switzerland
Marta Indulska The University of Queensland, Australia
Oliver Kopp University of Stuttgart, Germany
Agnes Koschmider Karlsruher Institute of Technology, Germany
Frank Michael Kraft AdaPro GmbH, Germany
Jana Köhler Hochschule Luzern, Switzerland
Ralf Laue University of Leipzig, Germany
Niels Lohmann Universität Rostock, Germany
Alexander Luebbe Hasso Plattner Institute, Germany
Jan Mendling Humboldt-Universität zu Berlin, Germany
Bela Mutschler University of Applied Sciences

Ravensburg-Weingarten, Germany
Markus Nüttgens Universität Hamburg, Germany
Andreas Oberweis Universität Karlsruhe, Germany
Chun Ouyang Queensland University of Technology, Australia
Susanne Patig University of Bern, Switzerland
Karsten Ploesser SAP Research, Australia
Frank Puhlmann Inubit AG, Germany
Jan Recker Queensland University of Technology, Australia
Manfred Reichert University of Ulm, Germany

VIII Organization

Hajo A. Reijers Eindhoven University of Technology,
The Netherlands

Stefanie Rinderle-Ma University of Vienna, Austria
Stefan Stöckler FH St. Gallen, Switzerland
Lucinéia Heloisa Thom Federal University of Rio Grande do Sul, Brazil
Barbara Thönssen Fachhochschule Nordwestschweiz, Switzerland
Hagen Voelzer IBM Research, Switzerland
Konrad Walser Berner Fachhochschule, Switzerland
Barbara Weber University of Innsbruck, Austria
Matthias Weidlich Hasso Plattner Institute, Germany
Mathias Weske University of Potsdam, Germany
Stephen White IBM, USA
Karsten Wolf Universität Rostock, Germany
Peter Wong Fredhopper B.V., The Netherlands

Additional Reviewers

Kabicher, Sonja
Kriglstein, Simone
Leopold, Henrik
Müller-Wickop, Niels
Schultz, Martin
Unger, Tobias
Van Lessen, Tammo

Organizing Committee

Florian Evéquoz
Knut Hinkelmann
Hans-Peter Hutter
Sandro Pedrazzini
Stefan Stöckler
Barbara Thönssen
Konrad Walser

Table of Contents

Full Papers

Towards a BPMN 2.0 Ontology . 1
Christine Natschläger

On the Expressiveness of BPMN for Modeling Wireless Sensor
Networks Applications . 16

Alexandru Caracaş and Thorsten Kramp

Faster Or-Join Enactment for BPMN 2.0 . 31
Beat Gfeller, Hagen Völzer, and Gunnar Wilmsmann

Towards Understanding Process Modeling – The Case of the BPM
Academic Initiative . 44

Matthias Kunze, Alexander Luebbe, Matthias Weidlich, and
Mathias Weske

Extending BPMN 2.0: Method and Tool Support . 59
Luis Jesús Ramón Stroppi, Omar Chiotti, and Pablo David Villarreal

BPMN for REST . 74
Cesare Pautasso

A Notation for Supporting Social Business Process Modeling 88
Marco Brambilla, Piero Fraternali, and Carmen Vaca

Evaluating Choreographies in BPMN 2.0 Using an Extended Quality
Framework . 103

Mario Cortes-Cornax, Sophie Dupuy-Chessa, Dominique Rieu, and
Marlon Dumas

Short Papers

A Lightweight Approach for Designing Enterprise Architectures Using
BPMN: An Application in Hospitals . 118

Oscar Barros, Ricardo Seguel, and Alejandro Quezada

Implementing the Semantics of BPMN through Model-Driven Web
Application Generation . 124

Marco Brambilla and Piero Fraternali

Layout Patterns with BPMN Semantics . 130
Philip Effinger

X Table of Contents

Integration of BPM and BRM . 136
Jörg Hohwiller, Diethelm Schlegel, Gunter Grieser, and
Yvette Hoekstra

Extending the BPMN Syntax for Requirements Management 142
Sascha Goldner and Alf Papproth

Integrating Business Process Models and Business Logic: BPMN and
The Decision Model . 148

Jürgen Pitschke

Building a Business Graph System and Network Integration Model
Based on BPMN . 154

Daniel Ritter, Jörg Ackermann, Ankur Bhatt, and
Frank Oliver Hoffmann

Requirements Engineering for SOA Services with
BPMN 2.0 – From Analysis to Specification . 160

Gregor Scheithauer and Björn Hardegen

Introducing Entity-Based Concepts to Business Process Modeling 166
Klaus Sperner, Sonja Meyer, and Carsten Magerkurth

On the Capabilities of BPMN for Workflow Activity Patterns
Representation . 172

Lucinéia Heloisa Thom, Ivanna M. Lazarte, Cirano Iochpe,
Luz-Maria Priego, Christine Verdier, Omar Chiotti, and
Pablo David Villarreal

Author Index . 179

Towards a BPMN 2.0 Ontology

Christine Natschläger

Software Competence Center Hagenberg GmbH, Austria
christine.natschlaeger@scch.at

www.scch.at

Abstract. The Business Process Model and Notation (BPMN) is a
widely used standard for business process modelling and maintained by
the Object Management Group (OMG). However, the BPMN 2.0 specifi-
cation is quite comprehensive and spans more than 500 pages. The defini-
tion of an element is distributed across different sections and sometimes
conflicting. In addition, the structure of the elements and their relation-
ships are described within the metamodel, however, further syntactical
rules are defined within the natural text. Therefore, this paper defines
an ontology that formally represents the BPMN specification. This on-
tology is called the BPMN 2.0 Ontology and can be used as a knowledge
base. The description of an element is combined within the corresponding
class and further explanations are provided in annotations. This allows
a much faster understanding of BPMN. In addition, the ontology is used
as a syntax checker to validate concrete BPMN models.

Keywords: BPMN, Ontology, Knowledge Base, Syntax Checker.

1 Introduction

The Business Process Model and Notation (BPMN) is a standard maintained by
the Object Management Group (OMG) and is aimed at business analysts and
technical developers. BPMN provides a graphical notation that is widely used
for process modelling; however, the specification is comprehensive and partially
conflicting. Therefore, this paper presents an ontology that provides a formal
definition of BPMN and can be used as a knowledge base. The ontology is based
on the final release of BPMN 2.0 (see [1]), which was published in January 2011.

An ontology is a formal representation of knowledge and consists of statements
that define concepts, relationships, and constraints. It is analogous to an object-
oriented class diagram and forms an information domain model [2]. According
to [3], an ontology allows a shared common understanding, the reuse of domain
knowledge and the analysis of domain knowledge. An ontology is, therefore,
suited to represent the BPMN metamodel.

The remainder of this paper is structured as follows: Section 2 describes the
problems with the BPMN specification and the goals of the BPMN 2.0 On-
tology. Related work with focus on formal specifications of BPMN and other
BPMN ontologies is studied in section 3. In section 4, the BPMN 2.0 Ontology
is presented in detail and section 5 evaluates the ontology using reasoners and
syntax checking. Finally, the conclusion sums up the main results in section 6.

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.scch.at

2 C. Natschläger

Notational Remark: Throughout this paper, all BPMN elements and relation-
ships are named according to the BPMN metamodel and the BPMN 2.0 Ontology
(e.g., SubProcess instead of Sub-Process) and have an italic font.

How to obtain the ontology: The BPMN 2.0 Ontology is available under the
creative commons licence (CC BY-NC-SA 3.0) (http://creativecommons.org/
licenses/by-nc-sa/3.0). To receive the ontology please contact the author.

2 Problems and Goals

The BPMN 2.0 specification is comprehensive and spans more than 500 pages.
The definitions of elements are distributed across various sections (e.g., Start-
Events are described several times within the overview, in chapters Process,
Choreography and BPMN Execution Semantics as well as in sections describing
other elements that can include StartEvents). Furthermore, the BPMN meta-
model describes the structure of the elements and their relationships, however,
further syntactical rules are defined within the natural text of the BPMN spec-
ification, for example:

“A Start Event MUST NOT be a target for Sequence Flows; it MUST
NOT have incoming Sequence Flows.” [1, p. 245]

In addition, the BPMN specification is sometimes contradictory and confusing.
For example, in the metamodel the Transaction element specifies two attributes
protocol and method both of type string [1, p. 176], but in the corresponding
description only method is mentioned and defined to be of type Transaction-
Method [1, p. 180].

All these issues not only make the understanding of BPMN difficult and time-
consuming, but also hamper the development of syntax checkers. The main goals
of the BPMN 2.0 Ontology are, therefore, as follows:

– Knowledge Base: The primary goal of the ontology is to provide a knowledge
base that can be used to familiarize oneself with BPMN. The syntactical
rules are combined within the corresponding element and every restriction
provides the full text of the BPMN specification in an annotation.

– Syntax Checker: The ontology can be used as a syntax checker to validate
concrete BPMN models as described in section 5.2.

– Contradiction Identification: When defining the ontology, several contradic-
tions, for example between the BPMN class diagram and the XML schema,
were identified. Up to now, more than 30 issues were reported to the OMG.

3 Related Work

The following two subsections present formal specifications of BPMN as well as
other BPMN ontologies.

http://creativecommons.org/licenses/by-nc-sa/3.0
http://creativecommons.org/licenses/by-nc-sa/3.0

Towards a BPMN 2.0 Ontology 3

3.1 Formal Specifications of BPMN

First of all, the BPMN 2.0 specification [1] provides a metamodel for BPMN
elements as a UML class diagram and in the form of an XML schema. BPMN
2.0 is the first release to provide such a formal definition.

According to [4], the static analysis of BPMN models is complicated by the
complexity of the language. The lack of formal semantics of BPMN hinders the
development of tool support for checking the correctness of BPMN models from
a semantic perspective. Therefore, this publication provides a formal semantics
of BPMN defined in terms of a mapping to Petri Nets.

According to [5], the specification of BPMN does not include formal semantics.
Hence, this paper describes the abstract syntax for a subset of BPMN using Z
schemas and the behavioural semantics in CSP. Such semantics allow developers
to formally analyse and compare BPMN diagrams.

In addition, an approach that defines the syntax of a visual language by a
graph grammar has been applied to business process models by [7].

A further approach defines the dynamic semantics of the core process mod-
elling concepts of BPMN in terms of Abstract State Machines (ASMs) [6]. This
model can be used to test reference implementations.

3.2 BPMN Ontologies

Two other BPMN ontologies have been published and are described below.
The first BPMN ontology is called the sBPMN ontology and specifies a se-

mantically enhanced BPMN [8]. The ontology is developed within the SUPER
project1 and based on the final release of BPMN 1.0. The classes correspond to
the elements of BPMN and are divided in categories like Flow Objects, Connect-
ing Objects, Swimlanes, Artifacts and Processes. The whole ontology consists of
95 classes and about 50 axioms.

The second BPMN ontology is based on BPMN 1.1 and presented in [9].
Again, the specification is based on the BPMN elements resulting in 95 classes,
108 object properties, 70 data properties and 439 class axioms. The elements
are divided into two categories representing Supporting Elements and Graphical
Elements, the latter category is further refined in Flow Object, Connecting Ob-
ject, Swimlane and Artifact. In subsequent publications, for example [10], this
ontology is called BPMNO. According to [9], the ontology does not contain a
description of all properties documented in the BPMN specification, since some
describe the execution behaviour of the process and others cannot be defined
based on the well-known limitations in the expressiveness of OWL (e.g., default
values). BPMNO is also not intended to model the dynamic behaviour of dia-
grams (how the flow proceeds within a process) [10]. These limitations also apply
to the BPMN 2.0 Ontology provided in this paper. BPMNO has been adapted
to BPMN 1.2 by Michael zur Muehlen et al. as described in [11].

Both ontologies, sBPMN and BPMNO, are based on former releases of BPMN
and classes are mainly defined for concrete BPMN elements. The BPMN 2.0
1 SUPER project: www.ip-super.org

4 C. Natschläger

Ontology, however, is based on the BPMN metamodel leading to a different and
more extensive structure which better reflects the BPMN specification.

4 BPMN 2.0 Ontology

This section presents the BPMN 2.0 Ontology, which is based on the BPMN 2.0
specification (final release in January 2011) and developed using the Web On-
tology Language (OWL) and the open source ontology editor Protégé (see [13]).
The BPMN 2.0 Ontology is divided in two sub-ontologies; the first is called
bpmn20base and presented in section 4.1. This ontology only contains the specifi-
cations taken from the BPMN metamodel including all class diagrams, the tables
specifying the attributes and model associations as well as the XML schemas.
The second sub-ontology is called bpmn20 and presented in section 4.2. This on-
tology is derived from the first ontology and provides an extension. The bpmn20
ontology contains almost all further syntactical requirements taken from the nat-
ural text of the BPMN specification. It may refine inherited restrictions but does
not change them. Furthermore, it contains some new classes (e.g., subclasses of
SubProcess), which are justified in section 4.2. Together, the two ontologies build
the BPMN 2.0 Ontology, which is presented in section 4.3. Finally, some remarks
are provided in section 4.4.

4.1 BPMN 2.0 Base Ontology (bpmn20base)

The bpmn20base ontology is based on the specification of the BPMN metamodel
including all class diagrams, the tables specifying the attributes and model as-
sociations as well as the XML schemas. Every BPMN element is inserted as a
class; the full hierarchy is shown in Fig. 5. Some elements are shown twice, since
multiple-inheritance is used in the BPMN metamodel and, therefore, also in the
ontology (e.g., SubProcess is derived from Activity and FlowElementsContainer
(cf. [1, p. 176])). The definition of the hierarchy has been complicated, since
some inheritances are not explicitly described in the BPMN class diagram. The
superclasses are sometimes only mentioned in the natural text of the specifica-
tion, within the XML schema or in the case of InteractionNode the superclass is
not described at all (assumed to be derived from BaseElement). Nevertheless, a
hierarchy that corresponds to the BPMN metamodel could have been defined.

Different subclasses are specified to be disjoint to avoid that individuals can
be an instance of several classes (e.g., ExclusiveGateway is disjoint from Event-
BasedGateway, ComplexGateway, InclusiveGateway and ParallelGateway). Fur-
thermore, the BPMN metamodel specifies the package of a class. However, this

Fig. 1. Annotations of Class SubProcess Fig. 2. Properties of Class SubProcess

Towards a BPMN 2.0 Ontology 5

information is not inherited and subclasses may be contained in a different pack-
age. Therefore, this information cannot be stored within a restriction; instead
an annotation is used as shown in Fig. 1.

After describing classes in general, relationships are defined to restrict the
classes and specify the details. An ontology supports two types of relationships:

1. Object Property (see Fig. 6): Describes the relationship between two
individuals.

2. Data Property (see Fig. 7): Describes the relationship between individuals
and data values.

The properties of the class SubProcess are shown in Fig. 2. The object property
artifacts defines a relationship between individuals of the class SubProcess and
individuals of the class Artifact. In addition, the data property triggeredByEvent
defines a relationship between individuals of the class SubProcess with boolean
data values (cf. [1, p. 176]).

Every restriction further defines the cardinality of allowed relationships. In
the bpmn20base ontology the following cardinalities are used:

– Exactly x : Exactly the value x
– Min x : Cardinality [x..n]
– Max x : Cardinality [0..x]

In several cases the cardinality is strengthened in subclasses (e.g., the minimum
boundary is increased or the maximum boundary is decreased). A cardinality of
type [x..y] is not used within the bpmn20base ontology, but would require two
restrictions.

The BPMN specification further defines instance attributes for some BPMN
elements (e.g., Process has an instance attribute state (cf. [1, p. 149])). In an
ontology it is difficult to distinguish attributes and instance attributes since the
same object and data properties are used to define the relationship. Therefore,
an annotation property named instanceAttribute has been created and is set to
yes for every instance attribute as shown in Fig. 3.

Fig. 3. Annotations of Instance Attribute state

6 C. Natschläger

The BPMN specification also provides for default values (e.g., the instance at-
tribute state has the default value None). These default values are not definable
within a monotonic OWL. Therefore, in the bpmn20base ontology default values
are specified by an annotation property defaultValue as shown in Fig. 3. An al-
ternative approach for non-monotonic reasoning based on Reiter’s default logic
is provided in [12] and supports default property values as well as an unspecified
version of the closed world assumption.

The fourth and last annotation property is called bpmnSpecification and in-
cludes for every attribute and relationship the corresponding definition from the
BPMN specification (see Fig. 3). In the bpmn20base ontology the text is taken
from the description/usage column of the corresponding attributes and model
associations table. In the bpmn20 ontology further syntactical requirements are
specified and the text for the annotation is taken from the natural text of the
BPMN specification. In both cases, this annotation property is very important
since it supports the usage of the BPMN 2.0 Ontology as a knowledge base.
While the descriptions of a BPMN element are spread across the BPMN spec-
ification, the descriptions in the ontology are combined within one class and
further explanations are provided in the annotation. This allows for a much
faster understanding of the BPMM element.

4.2 Extended BPMN 2.0 Ontology (bpmn20)

The bpmn20 ontology is derived from the bpmn20base ontology and provides
an extension to it. It contains further syntactical requirements taken from the
natural text of the BPMN specification. Therefore, the bpmn20 ontology adds
new or refines existing classes and restrictions but does not alter or remove them.
The overall goal is that the BPMN 2.0 Ontology serves as a knowledge base for
almost all syntactical rules of the BPMN specification.

Additional Classes: The following additional classes have been inserted in the
bpmn20 ontology based on the natural text of the BPMN specification:

– Collapsed/Expanded classes (detailed description follows),
– Subclasses of SequenceFlow : SequenceFlowConditional, SequenceFlowDefault

and SequenceFlowNormal,
– PublicProcess and PrivateProcess (with further subclasses),
– EmbeddedSubProcess and EventSubProcess as subclasses of SubProcess (de-

tailed description follows),
– AbstractTask as subclass of Task,
– Subclasses of Gateway specifying the direction,
– ExclusiveEventBasedGateway and ParallelEventBasedGateway as subclasses

of EventBasedGateway,
– Several subclasses of Event representing the markers with further subclasses

for expressing interrupting/non-interrupting Events,

Towards a BPMN 2.0 Ontology 7

– Subclasses of StartEvent : StartEventEventSubProcess (StartEvent of an
EventSubProcess) and StartEventNotEventSubProcess (StartEvent not of an
EventSubProcess),

– EventMarkerEnumeration, TransactionResultEnumeration and MarkerEnu-
meration as further enumerations.

Collapsed/Expanded Classes: Three BPMN elements can be collapsed or ex-
panded, namely SubProcess, SubChoreography and SubConversation. The col-
lapsed view shows a CollapsedMarker, whereas the expanded view shows the
details but no CollapsedMarker. The two subclasses are defined to be disjoint
from each other, but are not disjoint from any further subclasses (e.g., a concrete
SubProcess can be simultaneously collapsed and a Transaction).

For example, the class CollapsedSubProcess has two necessary conditions:

base:SubProcess
hasMarker exactly 1 CollapsedMarker

The first restriction defines that the class CollapsedSubProcess is a subclass
of SubProcess. The second restriction specifies that it must have exactly one
CollapsedMarker. This restriction differs from that of an expanded class, since
expanded classes have no CollapsedMarker. The two restrictions together are
defined to be sufficient. Since both classes specify necessary and sufficient con-
ditions, they are called Defined Classes.

Further classes (CallActivity, CallChoreography and CallConversation) are
sometimes also shown with a CollapsedMarker. However, these classes call other
elements and only display the markers of the called element. If they call, for
example, a GlobalTask, then collapsing or expanding is not possible at all.

SubProcess: Considering the subclasses of SubProcess, the BPMN metamodel
only refers to two subclasses (AdHocSubProcess and Transaction) (cf. [1, p. 176]),
whereas the natural text mentions five different types (EmbeddedSubProcess, CallAc-
tivity, EventSubProcess, Transaction and AdHocSubProcess) (cf. [1, 173-183]).The
CallActivity corresponds to the Reusable SubProcess in BPMN 1.2 and is now de-
rived from Activity and, therefore, a sibling of SubProcess. However, the question
remains, why EmbeddedSubProcess and EventSubProcess have not been defined
as subclasses in the BPMN metamodel and whether they should be or not.

First of all, class SubProcess defines the following restriction (cf. [1, p. 176]):

base:triggeredByEvent exactly 1 xsd:boolean

The data property triggeredByEvent serves as a flag. If set to true, the SubProcess
is an EventSubProcess else it is a “normal” SubProcess (EmbeddedSubProcess).

The data property triggeredByEvent of SubProcess is inherited by the sub-
classes Transactions and AdHocSubProcesses ; however, no restriction specifies
that it must be false within a subclass. Therefore, the following combinations
are possible:

1. AdHocSubProcess and EmbeddedSubProcess (triggeredByEvent : false)
2. Transaction and EmbeddedSubProcess (triggeredByEvent : false)

8 C. Natschläger

3. AdHocSubProcess and EventSubProcess (triggeredByEvent : true)
4. Transaction and EventSubProcess (triggeredByEvent : true)

Since the EmbeddedSubProcess represents the “normal” SubProcess, the first two
cases can be reduced to AdHocSubProcess and Transaction. However, the last two
cases are problematic. A combination of AdHocSubProcess and EventSubProcess
conflicts with the BPMN specification, since an AdHocSubProcess may be part
of the normal flow (cf. [1, p. 153]) whereas an EventSubProcess is not allowed to
have incoming and outgoing SequenceFlows (cf. [1, p. 176f]). Moreover, an Ad-
HocSubProcess is not allowed to have a StartEvent (cf. [1, p. 182]), whereas every
EventSubProcess must have exactly one StartEvent (cf. [1, p. 177]). Therefore,
the combination AdHocSubProcess and EventSubProcess should be forbidden. In
addition, the combination of Transaction and EventSubProcess is contradictory
as well. Again the integration in the normal flow and the number of StartEvents
are conflicting. Furthermore, only a Transaction is allowed to have a Bound-
aryEvent with a Cancel marker (cf. [1, p. 255]).

Therefore, the author suggests that triggeredByEvent must be false for Trans-
actions and AdHocSubProcesses. In addition, the question remains whether
EmbeddedSubProcess and EventSubProcess should be subclasses of SubProcess.
Several reasons militate in favour of this suggestion:
– Explicit/Implicit Classes: In the BPMN metamodel only two classes are

explicit whereas the others are implicit. However, the natural text of the
BPMN specification explicitly describes all SubProcess types on the same
level and as distinct elements. Therefore, all classes should be explicit.

– Disjoint: The four classes can be defined to be disjoint. This explicitly forbids
combinations of different types.

– Inherited Restrictions: Since restrictions are inherited, only Transaction and
AdHocSubProcess (but not EmbeddedSubProcess or EventSubProcess) can re-
fine a restriction. According to the BPMN specification, only a Transaction
is allowed to have a BoundaryEvent with a Cancel marker (cf. [1, p. 255]).
The structure of the metamodel allows to specify that an AdHocSubProcess
must not have a BoundaryEvent with a Cancel marker, whereas a Transac-
tion is allowed to have such a BoundaryEvent. However, it is not possible to
specify that an EmbeddedSubProcess or an EventSubProcess must not have
such a BoundaryEvent, since both classes are described within the class Sub-
Process. If Cancel markers are forbidden in the superclass, then Transaction
inherits this restriction and cannot have a Cancel marker itself.

– Further Restrictions: If explicit subclasses are used, further restrictions that
only apply to EventSubProcess or EmbeddedSubProcess can be easily spec-
ified. For example, an EmbeddedSubProcess is only allowed to have Start-
Events with marker None (cf. [1, p. 241f]), whereas an EventSubProcess
must not have a None marker (cf. [1, p. 177]). If the two elements are ex-
pressed within one class and only distinguished by a data property, then the
restrictions require implications and are more complex.

Based on these arguments, the author defines EventSubProcess and Embedded-
SubProcess as subclasses of SubProcess and suggests an adaptation of the BPMN
metamodel.

Towards a BPMN 2.0 Ontology 9

Fig. 4. MessageFlow Restrictions

Additional Restrictions: Besides the additional classes, more than 300 fur-
ther restrictions have been specified for existing classes in the bpmn20 ontology
according to the natural text of the BPMN specification. The restrictions of the
class MessageFlow are shown in Fig. 4. Note that the restrictions defined in the
bpmn20 ontology have a bold font.

4.3 BPMN 2.0 Ontology (bpmn20base and bpmn20)

Together, the bpmn20base and bpmn20 ontologies form the BPMN 2.0 Ontology.
The hierarchy of the BPMN 2.0 Ontology with about 260 classes is divided into
two columns and shown in Fig. 5. Some classes are not expanded due to space lim-
itations. Note that the classes and properties defined in the bpmn20base ontology
are shown with the “base:” prefix, whereas those defined in the bpmn20 ontol-
ogy have no prefix. Classes that have been created or extended in the bpmn20
ontology have a bold font.

Furthermore, Fig. 6 shows an extract of the 178 object properties and Fig. 7
an extract of the 59 data properties. In addition to the predefined annotation
properties, four further properties (bpmnSpecification, defaultValue, instanceAt-
tribute and package) are defined in the bpmn20base ontology and shown in Fig. 8.

4.4 Further Remarks

After introducing the ontologies, some remarks are presented in this section.

Distinct Names and Keywords: In the BPMN metamodel relationships with the
same name are used several times between different classes. However, the names
of object and data properties in an ontology must be distinct. Therefore, object
and data properties with the same name are reused in different restrictions and
the domain and range of the property is extended to cover all classes. Also reused
in different enumerations are classes representing values like None and Both.
In addition, the class and property names “Import”, “value” and “language”
are keywords in the ontology and the Pellet reasoner (see section 5.1) defines

10 C. Natschläger

Fig. 5. Class Hierarchy of BPMN 2.0 Ontology

Towards a BPMN 2.0 Ontology 11

Fig. 6. Object Properties Fig. 7. Data Properties Fig. 8. Annotation Properties

some further keywords. To distinguish these names from the keywords, a dot is
appended (e.g., “Import.”).

Association and Composition: The BPMN metamodel distinguishes between
different types of relationships: associations and compositions. This distinction
is not expressed in the ontology, although in most cases the different types also
affect the cardinality (e.g., compositions tend to have a cardinality of 1 or 0..1
on the source side while associations often have a cardinality of * on both sides).
An approach to express part-of relations in ontologies is provided in [14].

Implication: Some syntactical requirements include an implication (e.g., if a
SequenceFlow originates from a StartEvent, then the conditionExpression must
be set to None [1, p. 245]). OWL only provides constructs for intersection (and),
union (or) and complement (not), however, an implication (A → B) can be
expressed with union and complement: ¬A ∨ B. This alternative representation
is used several times within the ontology.

Open Syntactical Restrictions: Almost all syntactical rules are specified in the
ontology. The only exceptions are syntactical rules with open questions or rules
that depend on other elements in a complex way. For example, for the require-
ment “The Initiator of a Choreography Activity MUST have been involved ...
in the previous Choreography Activity.” [1, p. 336] it is not sufficient to deter-
mine the source of the incoming SequenceFlow, since Gateways and Events can
be defined in between. Instead a new object property previousChoreographyAc-
tivity can be defined; however, the value of the property cannot be determined
automatically. Nevertheless, most rules that depend on other elements can be
specified as, e.g., the rule “Target elements in an Event Gateway configuration
MUST NOT have any additional incoming Sequence Flows ...” [1, p. 298]. This
rule can be expressed with the following restriction for an EventBasedGateway:

12 C. Natschläger

base:outgoing only (base:targetRef only
(base:incoming exactly 1 base:SequenceFlow)))

Contradictions in the BPMN Specification: During the definition of the BPMN
2.0 Ontology several contradictions in the BPMN specification were identified.
Up to now, more than 30 issues were reported to the OMG. Some examples are
given below:

– According to the class diagram, InteractionNode has four subclasses: Par-
ticipant, ConversationNode, Task and Event (cf. [1, p. 122]). However, the
natural text mentions the subclass Activity instead of Task (cf. [1, p. 123])
and the connection rules of MessageFlow allow to connect to a SubProcess
(cf. [1, p. 44]) (a subclass of Activity).

– According to the class diagram, StandardLoopCharacteristics defines a re-
lationship to Expression called loopMaximum (cf. [1, p. 189]). However, in
the corresponding attribute description, loopMaximum is defined to be an
attribut of type integer (cf. [1, p. 191]).

– According to the class diagram, Collaboration references exactly 1 Conver-
sationAssociation, but in the corresponding description of the model asso-
ciations, the relationship is defined to have a cardinality of [0..n] (cf. [1,
p. 109f]).

5 Evaluation

The consistency and correctness of the ontologies is evaluated based on two
different methods. First, several different reasoners have been used to validate
the bpmn20base and the bpmn20 ontologies and are described in section 5.1. In
addition, concrete BPMN models are checked against the ontology and presented
in section 5.2. Considering the open questions and contradictions, proving the
completeness of the ontologies is currently not possible. However, the author
has revised the whole BPMN specification several times to ensure an almost
complete BPMN 2.0 Ontology.

5.1 Reasoner

A reasoner is also known as a classifier and used for consistency checking as well
as to compute the inferred class hierarchy. A class in an ontology is classified
as consistent if it can have instances, otherwise it is inconsistent. The following
three reasoners have been used to classify the BPMN 2.0 Ontology:

– FaCT++ is an OWL-DL reasoner that is available under the GNU Public
License (GPL) and implemented using C++ [15].

– Pellet is an open source OWL 2 reasoner that is based on Java [16]. Pellet
also supports some forms of closed world reasoning, which is required for one
of the examples described in section 5.2.

Towards a BPMN 2.0 Ontology 13

– HermiT 1.2.4 is an OWL 2 reasoner that is compatible with Java. HermiT
is released under the GNU Lesser General Public License (LGPL) and pre-
installed in Protégé [17].

The ontology is classified to be correct by all three reasoners.

5.2 Syntax Checking

In addition to validation through reasoners, the BPMN 2.0 Ontology is used as
a syntax checker and concrete BPMN models are checked against the ontology.
Therefore, new ontologies are created for every example and derived from the
bpmn20 ontology. The three examples show a correct, incorrect and incomplete
model. More complex examples are checked similarly, but the definition of the
model requires more effort. Thus, the syntax checker will be extended with a
graphical tool as described in section 6. A major advantage of the ontology is
the possibility to draw conclusions as shown in the first example. If it can be
concluded that an element of type A must in fact be an element of subtype B,
then this conclusion allows to check whether the element fulfills the restrictions
defined by the subtype.

Example 1: The first example consists of one StartEvent, one EndEvent, two
SequenceFlows and one Task as shown in Fig. 9. Instances of the same class (e.g.,
the SequenceFlows) are defined to represent different individuals. For all elements
the data property id is defined, the Activities further specify a name and the
isInterrupting property of the Events is set to true. Considering object proper-
ties, all SequenceFlows specify the sourceRef and targetRef, and the Activities
define the incoming and outgoing SequenceFlows. The model is then classified
to be correct. Note that based on the open world assumption it is not necessary
to specify all mandatory properties (e.g., the class Activity defines some further
mandatory properties like isForCompensation or startQuantity that have not
been defined for this example).

Afterwards the example is adapted and the data property isInterrupting of
StartEvent is set to false. Since only EventSubProcesses are allowed to have
non-interrupting StartEvents (cf. [1, p. 242ff]), the reasoner automatically con-
cludes that the StartEvent must be of type StartEventEventSubProcess as shown
in Fig. 12. However, if we specify that the StartEvent is of type StartEvent-
NotEventSubProcess, then an inconsistency is reported by all reasoners.

Example 2: The second example comprises an EventSubProcess as shown in
Fig. 10. The EventSubProcess specifies the data properties id, name and trig-
geredByEvent with the last property set to true. In addition, the incoming and

Fig. 9. Example 1 Fig. 10. Example 2 Fig. 11. Example 3

14 C. Natschläger

Fig. 12. Inferred Individuals Fig. 13. Class owl:Thing Fig. 14. Negative Assertions

outgoing SequenceFlows are specified. The BPMN model is incorrect, since an
EventSubProcess is not allowed to have incoming or outgoing SequenceFlows
(cf. [1, p. 176f]). The ontology is classified to be inconsistent by all reasoners.

Example 3: In the third example, a Gateway is inserted between the two
SequenceFlows as shown in Fig. 11. This model is incomplete, since the Gateway
has only one incoming and one outgoing SequenceFlow, but is required to have
at least two incoming or at least two outgoing SequenceFlows (cf. [1, p. 290]):

(base:incoming min 2 base:SequenceFlow)
or (base:outgoing min 2 base:SequenceFlow)

In a first step, the inconsistency cannot be detected based on the open world
assumption, since the Gateway might have further unspecified incoming or out-
going SequenceFlows. This problem is solvable by closed world reasoning as de-
scribed for the Pellet reasoner in [16]. The class owl:Thing must be equivalent to
the enumeration of all known individuals as shown in Fig. 13 and it is necessary
to define negative assertions for things that are definitely not true as shown in
Fig. 14. Afterwards, the ontology is classified to be inconsistent by all reasoners.

6 Conclusion

This paper described the development of two ontologies that formally represent
the BPMN 2.0 specification. The bpmn20base ontology is based on the BPMN
metamodel and the bpmn20 ontology contains further syntactical requirements
taken from the natural text of the BPMN specification. Together, the two ontolo-
gies form the BPMN 2.0 Ontology. This ontology can be used as a knowledge
base, since the descriptions are combined within the corresponding class and
further explanations are provided in annotations. This allows a much faster un-
derstanding of BPMN. In addition, the ontology can be used as a syntax checker.
Finally, three different reasoners prove the consistency of the ontology.

Further Issues: The next goal is to automatically generate the basic structure
of the bpmn20base ontology from the XML schema of the BPMN specification
once the XML schema corresponds with the UML class diagram. In addition,
syntax checking currently requires the manual definition of concrete models, so
only simple models have been defined up to now. Thus, another goal is to extend

Towards a BPMN 2.0 Ontology 15

the syntax checker with a graphical tool (e.g., BPMN Modeler for Eclipse [18]),
and to automatically check the model against the ontology. For this purpose,
the Jena Semantic Web framework can be used as suggested in [2].

Acknowledgement. The project Vertical Model Integration is supported within
the program “Regionale Wettbewerbsfähigkeit OÖ 2007-2013” by the European
Fund for Regional Development as well as the State of Upper Austria.

References

1. Business Process Model and Notation (BPMN) 2.0, www.omg.org/spec/BPMN/2.0
2. Hebeler, J., Fisher, M., Blace, R., Perez-Lopez, A.: Semantic Web Programming.

Wiley Publishing (2009)
3. Noy, N., McGuinness, D.: Ontology Development 101: A Guide to Creating Your

First Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-
01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880 (2001)

4. Dijkman, R., Dumas, M., Ouyang, C.: Formal semantics and automated analysis
of BPMN process models. Technical Report (2007)

5. Wong, P.Y.H., Gibbons, J.: A Process Semantics for BPMN. In: Liu, S., Araki, K.
(eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008)

6. Börger, E., Sörensen, O.: BPMN Core Modeling Concepts: Inheritance-Based Ex-
ecution Semantics. In: Handbook of Conceptual Modelling. Springer, Heidelberg
(2010)

7. Mazanek, S., Minas, M.: Business Process Models as a Showcase for Syntax-Based
Assistance in Diagram Editors. In: Schürr, A., Selic, B. (eds.) MODELS 2009.
LNCS, vol. 5795, pp. 322–336. Springer, Heidelberg (2009)

8. Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically
enhanced Business Process Modelling Notation. In: Work. on Semantic Business
Process and Product Lifecycle Management, SBPM (2007)

9. Ghidini, C., Rospocher, M., Serafini, L.: A formalisation of BPMN in Descrip-
tion Logics. Published as: Technical Report TR 2008-06-004, FBK-irst (2008),
https://dkm.fbk.eu/images/3/35/-3631-_BPMNOntology.pdf

10. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.: Rea-
soning on Semantically Annotated Processes. In: Bouguettaya, A., Krueger, I.,
Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 132–146. Springer, Heidel-
berg (2008)

11. Zur Muehlen, M., et al.: BPM Research Forums - Process Modeling,
www.bpm-research.com/forum/index.php?showtopic=502 (visited February
2011)

12. Kolovski, V., Parsia, B., Katz, Y.: Implementing OWL Defaults. In: Workshop on
OWL: Experiences and Directions (2006)

13. Protégé, http://protege.stanford.edu (visited February 2011)
14. Aitken, J.S., Webber, B.L., Bard, J.B.L.: Part-of Relations in Anatomy Ontolo-

gies: A Proposal for RDFS and OWL Formalisations. In: Pacific Symposium on
Biocomputing (2004)

15. FaCT++, http://owl.man.ac.uk/factplusplus (visited February 2011)
16. Pellet, http://clarkparsia.com/pellet (visited February 2011)
17. HermiT 1.2.4, http://hermit-reasoner.com (visited February 2011)
18. BPMN Modeler, www.eclipse.org/bpmn (visited February 2011)

www.omg.org/spec/BPMN/2.0
https://dkm.fbk.eu/images/3/35/-3631-_BPMNOntology.pdf
www.bpm-research.com/forum/index.php?showtopic=502
http://protege.stanford.edu
http://owl.man.ac.uk/factplusplus
http://clarkparsia.com/pellet
http://hermit-reasoner.com
www.eclipse.org/bpmn

On the Expressiveness of BPMN for Modeling

Wireless Sensor Networks Applications

Alexandru Caracaş and Thorsten Kramp

IBM Zurich Research Laboratory
(xan,thk)@zurich.ibm.com

Abstract. Business processes describe the transformations which add
economic value to products and services. Wireless sensor networks (WSN)
are a pervasive means for business processes to interact in real time with
the environment. In this paper, we analyze the business process model
and notation (BPMN) standard with respect to its expressiveness for
capturing the reactive, communication, and heterogeneous aspects of
such WSN applications. Our analysis is based on a representative set
of WSN applications for which we found the BPMN language adequate
in capturing high-level specifications.

Keywords: modeling style, reactive patterns, embedded business pro-
cesses, wireless sensor networks.

1 Introduction

Business processes add economic value to both companies and their respective
customers in a dynamic and global economy. Such processes specify the sequence
of activities, events, and interactions between humans, information technology
systems and the physical environment in order to fulfill a specific business goal.
Over the last two decades, several languages have evolved which allow to describe
business processes using graphical models. The business process model and no-
tation (BPMN)[1] is emerging as the de-facto standard with an ever increasing
number of practitioners.

In parallel to the developments in the business process space, the performance
of information technology system increased following Moore’s law. As such, em-
bedded devices are continuously miniaturized to the point where they become
ubiquitous. Consequently, the technology offered by wireless sensor networks
(WSN) allows business processes to be embedded even deeper into the physical
environment. Examples include safety processes for storing hazardous materials
[2], securing shipping and handling of containers to comply with government reg-
ulations [3], parcel delivery of perishable goods [4], automating hospital processes
[5], precision farming [6], as well as irrigation [7] and water management [8]. In
this way, business processes can better monitor and interact in real-time with
the entities they control, thus decreasing operational costs and improving re-
sponsiveness.

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 16–30, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Expressiveness of BPMN for Modeling WSN Applications 17

To reduce investments costs and energy consumption [9], WSNs rely on the
low end spectrum of embedded devices. In previous work [10] we have shown
that executable WSN applications can be automatically generated from a re-
fined business processes model specification. Business domain experts provide
the relevant business logic which is aligned to the corresponding implementa-
tion. Reusable building blocks which efficiently implement low-level functional-
ity are provided by application developers. Thus, organizations can use WSN
technology to adapt faster to a dynamic competition and can meet quicker the
demands of a diverse customer base. The business-relevant behavior of remote
sensors and actuators becomes visible in models and is fully aligned with the
corresponding implementation. Furthermore, graphical models foster communi-
cation among the different business participants and technology implementers
using the same lingua franca.

In this paper, we focus on a modeling style using the BPMN language to
capture the different aspects of WSN applications with sufficient details to allow
code generation. To reach a larger audience and adhere to the standard speci-
fication, we explicitly avoid changing the syntax or execution semantics of the
BPMN language.

This paper is organized as follows. In Chapter 2, we discuss several approaches
which aim to align business process with WSN applications. Next, we describe
the characteristics of WSN applications in Chapter 3. Subsequently, in Chap-
ter 4, we describe a pattern-based modeling style which captures the behavioral
aspects of typical WSN applications. In Chapter 5, we discuss the usage of
BPMN symbols and particular aspects of models in our application domain.
The analysis is based on a set of representative models for WSN applications.

2 Related Work

Integrating and aligning WSN with business processes in enterprise applications
is not an entirely new idea. Existing approaches [11,12,13] focus on the SOA
paradigm and advocate exposing WSN devices as a Web Service natively or
through gateways. The Web Services 4 Devices Profile (WS4DP) aims to pro-
vide and efficient implementation for all aspects of the Web Services standard
including communication based on XML and SOAP and support for service dis-
covery. In general, Web Services still imposes a significant overhead for resource-
constrained devices. Consequently, [14] addresses the resource constraints of
WSN by compressing the verbose SOAP/XML format used by Web Services
and introducing a lean transport protocol (LTP).

In [14], BPEL is used to graphically specify the execution of a process con-
trolled on the server side which invokes the exposed Web Service provided by
the WSN devices. The same approach is taken by the GWELS [15] environ-
ment which uses BPEL running on back-end servers to orchestrate the execu-
tion of workflows distributed in a WSN. Other approaches borrow the SOA
concepts and introduce an object-oriented programming of WSN applications
which allows dynamic service discovery and composition as well as using external

18 A. Caracaş and T. Kramp

Web Services through custom gateways to augment the capabilities of a WSN.
The Web Services standard and respective approaches are fully complementary
to our work which does not impose a restriction on communication.

Even though the existing approaches allow WSN devices to natively expose
their functionality as a standard Web Service, the implementation behind the
service is not fully aligned with the business process models. Changes in business
requirements imply changes to the implementation of the corresponding service
provided by the device. Business process models do not execute directly in the
network but on back-end servers.

All presented approaches are not concerned with energy consumption nor
execution efficiency. These aspects are critical for WSN application which have
to rely on a limited set of batteries for long periods of operation. In addition,
the existing approaches lack the support of an open-industry standard graphical
notation which hinders the interchange and reuse of business process models.

3 Characteristics of WSN Applications

Wireless sensor and actuator networks are a particular instance of distributed
applications. Such applications are reactive by nature and require real-time
synchronization using a shared medium for wireless communication. Moreover,
applications potentially consist of a large number of heterogeneous nodes, com-
monly referred as motes [16,17,23].

3.1 Reactive Behavior

Wireless sensor applications follow a reactive paradigm and for an efficient exe-
cution they rely on event-based run-time environments such as TinyOS[16] or the
IBM Mote Runner[17]. This behavior stems from the fact that wireless communi-
cation and sensor operations take a considerable amount of time. Consequently,
actively polling for the result of actions is not efficient because energy is spent
while the system is blocked from executing further operations. In such cases, a
more efficient implementation uses operations with an asynchronous interface
which will first trigger the action to be performed. If the system has no further
actions to execute, a scheduler then decides to turn off certain parts of the system
to save power, including the micro-controller (MCU) which is put into an ap-
propriate sleep mode. When the action completes, the system is asynchronously
notified about the result using an event which is placed into an event queue. The
scheduler monitors this event queue and passes the top event to the application
for processing. In this way, multiple operations, such as radio communication
and sensing, execute virtually in parallel and the run-time system can efficiently
manage the scarce computational and energy resources.

In general, an operation with an asynchronous interface can signal three dis-
tinct states. The common scenario is the normal completion of the operation,
preferably with one or more return values. In addition, applications have to be
prepared to deal with exception cases which deviate from the normal execution

On the Expressiveness of BPMN for Modeling WSN Applications 19

path. Such cases represent an exception completion of operations, preferably
with the reason for the failure so that the application can react accordingly. For
example, in WSNs, a hardware malfunction can occur while reading a sensor
because the respective sensor board was detached. Consequently, the sampling
operation fails, which means the respective activity is terminated with an ex-
ception. Lastly, a significant state may occur while the asynchronous operation
continues execution. As an example consider an application which continuously
tracks beacon messages in a TDMA1 communication protocol. In this case an
event notifies the application that a beacon was received, which represents a
significant point for time synchronization. In contrast to the previous cases, the
operation which tracks beacons remains active and can send further notifications
to the application.

3.2 Heterogeneous

The hardware capabilities define the role a mote can take in a WSN. In terms of
hardware, there is a large choice available for MCUs, radio chips, power supplies,
and highly specialized sensors and actuators. For example, a constantly powered
gateway node can serve as the entry point into the WSN, forwarding and possibly
translating messages to backend servers from the WSN and vice-versa. Other
motes which are equipped with a more powerful MCU and a larger battery
supply can serve as relay points for network traffic. Finally the cheaper and
resource-constrained devices operating on batteries represent the leaf nodes in
the WSN which sample, process and forward sensor information to the gateway.

Programmers typically use a platform API to develop WSN applications. This
API represents the interface between applications and the operating system (OS)
as well as additional utility libraries which are part of the portfolio of a particular
development environment. Whether certain interfaces are available for a plat-
form API depends on the particular hardware. For example, in terms of wireless
communication the radio chip defines what physical layer protocols are available.
Moreover, the platform API may add common abstractions and, where needed,
even the functionality which is not implemented directly in hardware.2

3.3 Communication

In general, communication has two main aspects: i) the protocol used to exchange
messages using a certain format, and the ii) unique addresses which distinguish
between different entities such that messages are delivered to the required des-
tination. Furthermore, the physical topology of a WSN defines how the motes
are distributed in the environment. The topology can be fixed or can change
dynamically based on environmental and mobility conditions of sensor nodes.

1 Time Division Multiple Access (TDMA) is a channel access method for shared
medium networks.

2 The slotted Carrier Sense Multiple Access (CSMA) for the IEEE 802.15.4 MAC
protocol, for example, is not implemented in hardware by most modern radio chips.

20 A. Caracaş and T. Kramp

The literature provides a vast collection of custom WSN communication pro-
tocols [18] as well as different standards concerned with the different commu-
nication layers of the OSI reference architecture in a WSN. Standard examples
include IEEE 802.15.4 [19] for the physical and data link layers, 6LoWPAN [20]
for the network layer, and various application profiles for ZigBee [21].

For address resolution, communication participants must have unique ad-
dresses. Typically, in a WSN, each mote has a globally unique 64-bit address
or extended unique identifier (EUI) encoded in the hardware at manufacturing.
This EUI is akin to the MAC address used by network interface cards in standard
IP networks.

3.4 Real-Time

Communication protocols and sensing in a WSN must be minutely scheduled
for efficiency reasons and to meet the sampling requirements of the application.
Thus, the notion of an accurate real-time is essential for the correct and efficient
functionality of such a network. For example, when using a TDMA protocol for
communication all devices must wake-up and receive a beacon in a synchronized
manner, then perform useful work in their allocated time slot, and forward their
local results towards the gateway nodes, possibly via peer or relay nodes.

Each mote in a network can have two views over the passing of time: a global
view and a local view. Global time is based on the universal time, e.g. UTC
from GPS and linked to different calendars. Local time starts when the mote
is powered up and can in general be derived from the global time. However,
for typical WSN applications, it suffices for individual sensor nodes to keep
track of an accurate local time and occasionally synchronize with a peer which
has an accurate view of the global time. In this case, motes require a common
understanding of time intervals.

4 BPMN Modeling Style for WSN

In this section, we focus on how the previously described aspects of WSN appli-
cations can be modeled using the existing set of features provided by the BPMN
language. Because BPMN allows to express the same behavior in different ways,
a certain modeling style is required to describe precise models. Such refined and
precise models are necessary and ease the task of generating executable and
efficient code [10] for WSN applications.

4.1 Reactive-Behavior

We first consider the events which signal the normal completion of an asyn-
chronous operation. The BPMN language per-se does not distinguish between
asynchronous and synchronous activities. As such, there is no special annota-
tion which can be used for the asynchronous tasks which are common in the
WSN domain. However, the BPMN language allows the definition of additional

On the Expressiveness of BPMN for Modeling WSN Applications 21

(a) (b)

Fig. 1. (a) Normal completion of an asynchronous operation. (b) Starting an asyn-
chronous operation in parallel to allow for immediate execution of further tasks. As
an example of visual distinction the asynchronous activities are marked with the
cog-wheels annotation.

task annotations. Such an extension would help the visual distinction between
synchronous and asynchronous tasks.

Because the normal completion of an asynchronous operation is unique, we
model this implicitly using sequence flows as shown in Figure 1(a). A typical
case in WSN applications is to start a new operation as soon as an asynchronous
activity was triggered. In this case, a parallel split gateway is required which is
shown in Figure 1(b). If the gateway is omitted the model remains valid but the
Sample light intensity activity will only be executed after the asynchronous
operation completes.

The exception completion of an asyncchronous operation can be captured us-
ing interrupting border events as shown in Figure 2(a). For conditions which
occur internal to the operation, the BPMN escalation event type is appropriate
as it can only be thrown from within the respective task. Other types of events
which notify about exception condition are timeouts, messages, signals, and can-
cellations. The main difference is that the latter are triggered by factors external
to the task. For critical exceptions which are triggered by the execution of the
operation, we employ the BPMN error event symbol.

Some exception completions can affect the entire system, thus they not only
signal the interruption of a particular task but of the entire enclosing process.
A typical example is a system critical error such as a memory access violation.
These exceptions can be modeled using event sub-processes with a start event
with an interrupting semantic as shown in Figure 2(b). If this situation occurs,
then the handler catches the event and the enclosing process is terminated.

For describing the occurrence of a significant state during the execution of the
process, the BPMN language provides several possibilities using non-interrupting
events. The first approach, shown in Figure 3(a), explicitly uses the task Track
beacon messages to mark the start of an asynchronous operation. At a later
point the operation will throw an event beacon received which is handled by
the event sub-process handle beacons which toggles an LED for visual feed-
back. The event does not terminate the enclosing process because the applica-
tion should continue tracking beacons. This type of modeling is the closest to
a typical event-based program. However, such a modeling style might be hard

22 A. Caracaş and T. Kramp

(a) (b)

Fig. 2. Different ways of handling the exception completion of a task with an asyn-
chronous interface

to manage and understand without a visual aid as it grows in complexity with
the number of events. As an aid, the model editor could highlight possible throw
events when corresponding catch events are selected and vice-versa.

Another approach of modeling the occurrence significant states is by using
non-interrupting border events attached to tasks. Figure 3(b) is semantically
equivalent with the previous example. In contrast to the border events in Fig-
ure 2(a), the event beacon received is non-interrupting. The advantage of using
this style is that tasks with an asynchronous interface and corresponding events
are visually linked and the start and end of such activities is explicit. As long as
the Track beacon messages task is active it can potentially generate multiple
events which are processed potentially in parallel. As there can be potentially
multiple tokens arriving to the Toggle yellow LED task, this case can be consid-
ered a lack of synchronization in the model [22]. However, for WSN applications
such a model represents a valid behavior. Synchronous tasks are implicitly serial-
ized as there is only one execution unit, whereas for asynchronous tasks multiple
instances will be instantiated according to the standard.

A modeling variation which uses several implicit assumptions is shown in
Figure 3(c). This model assumes that tracking of beacons should be started au-
tomatically as soon as the enclosing task is active. The second assumption is
that the events tracking completed and beacon received can only be trig-
gered by this activity. The main difference to the previous two variants is that
in this case the events can occur as soon as the enclosing process in active,
whereas in the previous variants, the corresponding events can only occur once
task Track beacon messages is active. The advantage of this approach is that
it provides a good visual separation for event handlers. Moreover, if the tracking
beacons activity never completes the top event handler can be omitted, which
results in a visually compact representation. The disadvantage is that this mod-
eling style uses implicit assumptions which must be understood by the modeler.
Moreover, the control flow inside the event handlers cannot be merged with
control flow outside the respective event sub-processes. For frequently used and
common WSN activities such as watchdog timers this solution is well suited.
When control flow clarity is more important than visual compactness, the two
previous styles represent more general solutions.

On the Expressiveness of BPMN for Modeling WSN Applications 23

(a) (b) (c)

Fig. 3. Different ways of modeling significant states for an asynchronous interface

In practice, the semantic of events generated by an asynchronous operations
is defined in the documentation for the respective platform API. Alone from the
corresponding function signature or even provided with the source code, it is not
possible to infer whether an event signals normal or exceptional completion of
an activity. Moreover, it is not possible to distinguish whether the event simply
notifies about a significant state while the operation continues its activity. In
absence of source-code annotations for the asynchronous operations provided by
the platform, translating an API to BPMN symbols is thus semi-automatic. With
appropriate API annotations, this translation can be fully automated, and for
each API function the corresponding BPMN task with the appropriate border
events can be generated. These annotations can be provided by developers at
the same time as writing the documentation.

4.2 Communication

A network configuration describes how many sensor nodes are part of the network
and what is their behavior type. Whereas, the network topology describes the
logical connectivity. We describe both aspects in a single BPMN conversation
diagram by representing groups of nodes using the parallel multi-instance pools.
In this case, the groups of nodes are defined based on common behavior.

Figure 4 shows a network configuration with three types of entities in a
static star topology. There is a only one instance for both the entities Truck
and Gateway, whereas there are multiple instances of type Parcel running in
parallel. The latter form a group with logical connections only to the Truck
entity. The cardinality for a certain entity type can be set using the BPMN
participantMultiplicity property for the respective pools. If the network
topology is dynamic the same notation can be used. In this case, the diagram
will represent a snapshot of the network configuration and topology at a specific
point in time.

In a simulation environment, the network configuration might also include
parameters which characterize a real environment such as packet error rate,
sensor noise, clock drift, the physical position in a given coordinate system, or

24 A. Caracaş and T. Kramp

Fig. 4. Network configuration overview and fixed star topology

Fig. 5. Addressing a unique mote, groups of motes, or broadcast

the node failure probability. These parameters can be specified by using the
extension mechanisms provided by BPMN. In our case, these extensions do not
modify the execution semantics nor syntax of the BPMN language, they are
simply aids in defining a detailed network configuration.

In a BPMN process, communication is modeled explicitly with sender and
receiver bound to the start and end of message flows, respectively. Thus, as
a general address resolution principle, entities are identified by their name. In
Figure 5, we distinguish between the different cases for addressing a single node
and a group of nodes.

In the case where the entity name describes a single instance entity the map-
ping to an EUI address is straight forward as shown by the Request message
addressed to the Gateway. In case the entity represents multiple instances, the
message is delivered to all entities in the respective group.3 This case is modeled
by the Info message which is addressed to all instances of type Parcel.

Furthermore, WSN applications heavily use broadcast messages which are
received by all direct neighbors of the sender with access to the physical medium.
For this purpose, we define a special pool name for which we use the * wild
card symbol. Thus the message Discover is addressed to all one-hop physical
neighbors, irrespective of their type. Depending on their physical location, both
the Gateway and possibly all nodes of type Parcel will receive the message.

Often WSN protocols require addressing a particular node in a group. Such
a selection can be specified in several ways. For example using the group name
and an index (Parcel[1]) or by using the unique address of a mote.4 Often for
protocol specifications the address for the communication partner is not known
and can change dynamically according to changes in the network topology during

3 This functionality must be provided by the corresponding communication protocol.
4 A unique 64-bit address (e.g., 02-00-00-00-A1-B2-C3-D4) or the short 16-bit address

according to the IEEE 802.15.4 specification.

On the Expressiveness of BPMN for Modeling WSN Applications 25

(a) (b) (c)

(d) (e) (f)

Fig. 6. Different possibilities of modeling the reception of a single message (a,b,c) or
possibly multiple messages (e,f,g) with a timeout deadline. The Receive once and
Receive multiple building blocks are provided by the respective platform API.

the process execution. To enable such dynamic specifications, the value of a
BPMN data item can be used to specify all of the above addressing modes.

The communication protocol can be specified using the category property of
the BPMN message envelope. This property can refer to an existing standard
WSN protocol such as ZigBee or 6LoWPAN, or a well established communication
protocol such as UDP, TCP/IP for wired communication or simply the raw frame
format of the IEEE 802.15.4 wireless links. The choice of protocols is limited by
the available implementations for the specified platform API as defined in the
enclosing pool. The building blocks for sending and receiving messages using
a specific communication protocols will thus appear as send and receive tasks
when refining the respective pool. To visually distinguish such communication
tasks from other activities in the model, we use the corresponding messaging
annotations as depicted in Figure 6.

The communication protocol specified in the message envelope must match
the end points which are bound to both the sender and the receiver pools or
respective tasks. The model is inconsistent in case of a mismatch. As a default
case, that is, when no protocol is specified by the message envelope nor the
respective send and receive tasks or events, communication is mapped to the
physical layer protocol. For of a typical WSN network, messages without a spec-
ified protocol are implicitly mapped to the raw IEEE 802.15.4 frame format.
Furthermore, the header of the message is automatically initialized based on

26 A. Caracaş and T. Kramp

(a) (b)

Fig. 7. Example time specifications which give an overview over real-time behavior

the address resolution scheme described above and according to the specified
protocol.5

Modeling communication is thus flexible and exchanging the communication
protocol only involves adapting the message envelopes and exchanging the re-
spective communication tasks. As this approach is not dependent on a particular
communication protocol, other standards can be easily supported (e.g., Web Ser-
vices) provided a corresponding and sufficiently efficient implementation exists
for the respective execution platform.

The second function of a BPMN message envelope is a container for the
data payload which is transferred between entities. The data structure for the
payload can be specified directly in the BPMN model or by using a reference to
an existing, typically more complex, model from an object repository. The data
models in the repository can be defined using other modeling tools such as the
UML class diagrams. For faster prototyping of applications, the data structure
can be directly defined in the BPMN model itself by using the ItemDefinition
property which allows to specify the name, data type, and optionally a value.

To transfer the payload the corresponding data structure must be serialized by
the sending activity and de-serialized by the corresponding receive activity. Using
association flows on the sender side data objects are pushed into the send activity.
On the receiver side the data objects are extracted from the corresponding receive
activity. We use the name of the data objects for binding to the correct items in
the payload.

4.3 Real-Time

The behavior of WSN application is often tightly synchronized. Consequently, a
modeling languages must have the ability to specify time, both global and local.
In BPMN this is possible using timer events. For this purpose the mutually
exclusive properties timeDate, timeCycle, timeDuration allow to specify the
values for timer events from the perspective of a global time. The ISO-8601
representation format is used for both recurring and non-recurring time-intervals.

5 When using the raw IEEE 802.15.4 format, we define for each group of sensors a
personal area network identifier (PANID) based on the hash of the group name.
Messages which are addressed to all nodes in a group will use the BEACON frame
type, the PANID of the group, and a broadcast short destination address 0xFFFF.

On the Expressiveness of BPMN for Modeling WSN Applications 27

Fig. 8. The top-level process describing the behavior of a child node in a TDMA
protocol which continuously tracks beacons from its respective parent

For WSNs, we focus on the local time as viewed by a sensor node as this per-
spective is sufficient to specify a mote’s behavior. We assume that the platform
API provides means to query the current local time. The translations to and
from a global time or calendar dates can be provided as utility functions by the
platform API.

To make timers descriptive, we suggest using the name of the timer events
to specify time predicates using the syntax PREPOSITION TIME [UNIT]. In the
frame reference of the mote, we allow both relative and absolute time specifi-
cations. The preposition at is used for precise moments in time, whereas the
preposition in defines time spans starting from the moment a sequence flow to-
ken reaches the timer event. The time value can be either a constant number
or the name of a data item as shown in Figure 7. The time units match the
intervals relevant for a mote’s behavior, namely s, ms, and µs.

4.4 Heterogeneous

To bind a certain entity in a model to a particular WSN platform the properties
of BPMN pool can be used, in particular the processCategory. Based on this
selection the corresponding model editor can display only the BPMN tasks which
are available for the corresponding platform API. An alternative is to specify
the platform API only when models are compiled to executable applications.

However, for portable business process models which allow migration to im-
proved hardware platforms this approach should be avoided. Instead, the exe-
cution platform should be generic and flexible enough to allow for execution of
the same application model independent of the actual hardware platform. This
criterion is fulfilled for example by using a portable virtual machine [17] which
abstracts from the underlying hardware and implements a core platform API.

5 Evaluation

To evaluate our BPMN-based model-driven methodology, we integrated the re-
quired compiler and debugging tools into the widely used Oryx model editor [10].

28 A. Caracaş and T. Kramp

We evaluated the expressiveness of the approach by modeling several WSN ap-
plication archetypes [23] including different communication protocols. Figure 8
shows a model which deals with the communication aspect of the applications
we modeled. In addition we quantified the performance of the code generation
with respect to energy consumption and resource usage for such applications.
Our transformation generates Java and C# code which executes on the Mote
Runner [17] WSN platform. Our evaluation results on several case studies show
that the generated code is only 1% less energy efficient than hand-written equiv-
alents. However, overall memory usage is strongly affected by optimizations. On
average generated code requires 10% more RAM and 44% more flash when us-
ing compiler optimizations. Without optimizations, the RAM overhead is 50%,
whereas the flash space is three fold. Nevertheless, we could show that the gen-
erated applications fit on standard motes.

One interesting aspect for the BPMN models in our application domain is
that there is no end event on the top most process level. This is because a WSN
application is a long-running, continuous process. For our application set we
found no scenario where the compensation event was required. Moreover, our
models do not use the BPMN signal event type as this represents an out of band
communication mechanism6 which bypasses wireless links.

With respect to the different gateways provided by BPMN, we used all types7

for control flow and synchronization. In particular the event-based, exclusive, and
parallel gateways are used frequently, whereas the OR gateway is used rarely.
In general, our models use parallel gateways to allow synchronous activities to
execute while asynchronous operation are being started. For our scenarios, the
number of gateways decreases for models with a higher abstraction level.

Due to the reactive nature of our models, we make extensive use of the different
types of events provided by BPMN. In particular the escalation, timer, and
message events are the most frequent components in our models. In addition we
used the error event for critical failures.

Our applications typically maintain different states such as sensor values and
intermediate results. Hence, we employ a considerable number of data items
for volatile variables, and data stores for persistent variables. For passing data
inputs and output to and from sub-process, messages, and events, we mainly
use data associations. However, when models increase in complexity the data
associations may clutter the diagram. Thus for trivial parameters we use the
data input and output sets for the corresponding task.

An important BPMN feature which helped us model functionality which could
be reused across different WSN application is the encapsulation mechanism pro-
vided by sub-processes. For our application domain the same encapsulation of
pools would prove a useful mechanism for building a group hierarchy.

However, there are also limitations to the modeling approach described in
this paper with respect to conventional programming languages. One such limi-
tation is that it is not possible to change the binding between an event and an

6 The signal event propagates both across sub-process hierarchies and pool boundaries.
7 We exclude the complex gateway which has no execution semantic.

On the Expressiveness of BPMN for Modeling WSN Applications 29

asynchronous operation once the latter has been started. Even though this is
possible with conventional programming languages, such a style is prone to er-
rors which might be difficult to trace. Moreover, from our practical experiences,
computationally intensive tasks such as averaging and filtering are created faster
using conventional methods. These tasks should then be encapsulated and pro-
vided as building blocks which can be reused in models. Another aspect which is
better controlled by conventional programming methods are low-level operations
and optimizations for an efficient and compact implementation. However, we ar-
gue that the benefit of modeling and the graphical overview of the application
structure out weights such limitations for certain application scenarios.

6 Conclusion

In this paper, we report on our experiences of using BPMN as a modeling lan-
guage for the WSN domain. We describe a modeling style which captures the
reactive behavior of WSN applications. Consequently, the most frequent BPMN
symbols in our models are events and corresponding event sub-processes. More-
over, we describe patterns for specifying precise communication as well as the
real-time behavior of such applications. Subsequently, such models are used for
generating efficient executable code.

For our set of WSN archetype applications we deem the BPMN language
expressive enough to specify behavior at both higher and lower levels of abstrac-
tion. However, for lower level tasks, which require efficient and compact imple-
mentations, traditional software development methods are superior. This low
level functionality can be encapsulated in tasks which are provided as reusable
building blocks for modeling.

References

1. OMG: Business Process Model and Notation (BPMN) 2.0, bpmn.org
2. Spieß, P., et al.: Integrating sensor networks with business processes. In: Real-World

Sensor Networks Workshop at ACM MobiSys. ACM (2006)
3. Schäfer, S.: Secure trade lane: A sensor network solution for more predictable and

more secure container shipments. In: Companion to the Sym. on Object-Oriented
Programming Systems, Languages, and Applications, pp. 839–845. ACM (2006)

4. Ilic, A., et al.: Using sensor information to reduce the carbon footprint of perishable
goods. IEEE Pervasive Computing 8, 22–29 (2009)

5. Krishnamurthy, S., et al.: Distributed interactions with wireless sensors using
TinySIP for hospital automation. In: Proc. of the Int. Conf. on Pervasive Com-
puting and Communications, pp. 269–275. IEEE (2008)

6. Bencini, L., et al.: Agricultural monitoring based on wireless sensor network tech-
nology: Real long life deployments for physiology and pathogens control. In: Proc.
of the Int. Conf. on Sensor Technologies and Applications, pp. 372–377. IEEE
(2009)

7. McCulloch, J., et al.: Wireless sensor network deployment for water use efficiency
in irrigation. In: Proc. of Real-world Wireless Sensor Networks, pp. 46–50. ACM
(2008)

bpmn.org

30 A. Caracaş and T. Kramp

8. O’Flynn, B., et al.: Smartcoast: A wireless sensor network for water quality mon-
itoring. In: Proc. of the Conf. on Local Computer Networks, pp. 815–816. IEEE
(2007)

9. Reinhardt, A., Steinmetz, R.: Exploiting platform heterogeneity in wireless sensor
networks for cooperative data processing. In: Proc. of the GI/ITG KuVS Fachge-
spräch “Drahtlose Sensornetze” (August 2009)

10. Caracaş, A., et al.: Compiling business process models for sensor networks. In: Int.
Conf. on Distributed Computing in Sensor Systems. IEEE (2011)

11. Karnouskos, S., et al.: Towards the real-time enterprise: Service-based integration
of heterogeneous SOA-ready industrial devices with enterprise applications. In:
Proc. of the Sym. on Information Control Problems in Manufacturing (2009)

12. Spieß, P., et al.: SOA-based integration of the internet of things in enterprise ser-
vices. In: Proc. of the Int. Conf. on Web Services, pp. 968–975. IEEE (2009)

13. Marin-Perianu, M., et al.: Implementing business rules on sensor nodes. In: Emerg-
ing Technologies and Factory Automation, pp. 292–299. IEEE (2006)

14. Glombitza, N., et al.: Integrating wireless sensor networks into web service-based
business processes. In: Proc. of the Int. Workshop on Middleware Tools, Services
and Run-Time Support for Sensor Networks, pp. 25–30. ACM (2009)

15. Glombitza, N., et al.: Using graphical process modeling for realizing SOA pro-
gramming paradigms in sensor networks. In: Proc. of the Int. Conf. on Wireless
On-Demand Network Systems and Services, pp. 57–64. IEEE (2009)

16. Hill, J., et al.: System architecture directions for networked sensors. ACM
SIGPLAN Not. 35(11), 93–104 (2000)

17. Caracaş, A., et al.: Mote Runner: A multi-language virtual machine for small em-
bedded devices. In: Proc. of the Int. Conf. on Sensor Technologies and Applications,
pp. 117–125. IEEE (2009)

18. Bachir, A., et al.: MAC essentials for wireless sensor networks. IEEE Communica-
tions Surveys and Tutorials 12(2) (2010)

19. IEEE: Wireless medium access control (MAC) and physical layer (PHY) specifica-
tions for low rate wireless personal area networks (LR-WPANs) (2006)

20. Shelby, Z., Carsten, B.: 6LoWPAN: The Wireless Embedded Internet. Wiley (2009)
21. ZigBee: Standards Overview, zigbee.org
22. Favre, C., Völzer, H.: Symbolic Execution of Acyclic Workflow Graphs. In: Hull,

R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 260–275. Springer,
Heidelberg (2010)

23. Bai, L.S., et al.: Archetype-based design: Sensor network programming for ap-
plication experts, not just programming experts. In: Proc. of the Int. Conf. on
Information Processing in Sensor Networks, pp. 85–96. IEEE (2009)

zigbee.org

Faster Or-Join Enactment for BPMN 2.0

Beat Gfeller1, Hagen Völzer1, and Gunnar Wilmsmann2

1 IBM Research – Zurich, Switzerland
2 IBM Software Group, Böblingen, Germany

Abstract. We propose an eÆcient algorithm that enacts the control-flow of
BPMN, in particular the inclusive Or-join gateway. The original algorithm for
enacting Or-joins in BPMN 2.0 needs, upon each token move in the diagram, lin-
ear time in the number of edges of the diagram to find out whether a given Or-join
is enabled, whereas our proposal essentially needs only constant time to do so.

1 Introduction

To enact BPMN diagrams, one needs to implement an algorithm that determines, for
each execution state of the diagram, the set of flow nodes, e.g. tasks, gateways and
events, that are enabled in the given state. This is straightforward for flow nodes with a
local semantics, i.e., if the enabledness of the flow node depends only on the state of its
adjacent edges.

However, the converging inclusive gateway, also known as Or-join, has a non-local
semantics and its enabledness may depend on the state of the edges of the entire di-
agram. A simple algorithm [8] for enacting the standardized semantics of the Or-join
[4] searches the entire diagram for tokens upon each state change and therefore needs
linear time to update the enabledness of an Or-join upon each state change. No faster
algorithm was published so far.

In this paper, we propose an algorithm that essentially needs only constant time to
decide whether an Or-join is enabled in a given state. More precisely, it needs constant
time to update this information for most state changes and it can take up to linear time
for some special state changes. This can be captured more precisely by analyzing the
e�ort for a so-called execution round with respect to an Or-join. For such a round, the
total e�ort reduces from quadratic time to linear time.

The new algorithm achieves the speedup by keeping track, in a dedicated data struc-
ture, of the token that may still reach the Or-join in the future and therefore may influ-
ence its enabledness.

The paper is structured as follows: In Section 2, we formally define the problem
of enacting Or-joins, and describe the known approach to solve it. In Section 3, we
describe our new approach to solve the problem more eÆciently. Section 4 contains
further optimizations which can be used to enhance our algorithm for typical instances.
In Section 5, we give a detailed analysis of our approach and show its advantages over
the straightforward one, before concluding the paper in Section 6.

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 31–43, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

32 B. Gfeller, H. Völzer, and G. Wilmsmann

2 Problem Definition

In this section, we describe and formalize the problem of Or-join enactment. We start
with the preliminary definitions of workflow graphs and their semantics, including the
Or-join semantics from BPMN 2.0 [4,8].

Workflow graphs. A workflow graph is a directed graph that describes the basic control
flow of a BPMN diagram. For the purposes of this paper, it suÆces to consider only
gateways and tasks as control flow elements.

A workflow graph G � (V� E� �) consists of a set V of nodes, a set E � V � V of
directed edges, and a partial mapping � : V � �And�Xor�Or� such that

1. �(x) is defined if and only if x has more than one incoming edge or more than one
outgoing edge,

2. there is exactly one source and at least one sink,
3. the source has exactly one outgoing edge and each sink has exactly one incoming

edge, and
4. every node is on some path from the source to some sink.

The source is also called the start node, a sink is called an end node, and �(x) is called
the logic of x. If the logic is And, Or or Xor, we call x a gateway; if x has no logic and x
is no start or end node, we call x a task. We use BPMN to depict workflow graphs, i.e.,
gateways are drawn as diamonds, where the symbol “�” inside stands for And, a circle
stands for Or, whereas no decoration stands for Xor. Tasks are drawn as rectangles, start
and end nodes as circles. A gateway that has more than one incoming edge and only one
outgoing edge is also called a join, a gateway with more than one outgoing but only one
incoming edge is also called a split. We may assume for simplicity of the presentation
that every gateway is either a split or a join. Moreover, we may omit the depiction of
tasks in example graphs, except for the start and end nodes. The reader may imagine
task on each edge that is shown. We say that an edge e is incident to a node v if e is
incoming to v or outgoing from v.

The semantics of a workflow graph is, similarly to Petri nets, defined as a token
game. The state of a workflow graph is represented by tokens on the edges of the graph.
Let G � (V� E� �) be a workflow graph. A state of G is a mapping s : E � �, which
assigns a natural number to each edge. When s(e) � k, we say that edge e carries k
tokens in state s. The initial state of G is the state where there is no token present on
any edge of the workflow graph. The initial state must be followed by a state where
there is exactly one token on the unique outgoing edge of the start node and no token

anywhere else. We write s
v
� s� when s changes to s� by executing node v. When a

token reaches a sink, it may be consumed in the next state transition. The execution of
a workflow graph is terminated when no edge carries any tokens anymore.

The state of a workflow graph changes by executing an enabled gateway, where the
enabledness of a gateway is defined as follows: An And-join is enabled if (and only if)
there is a token on each of its incoming edges. An Xor-gateway (join or split) is enabled
i� there is a token on at least one of its inputs. An Or-split is enabled i� there is a token
on its input edge.

The rest semantics of the various nodes is also defined in the standard way, as fol-
lows. An And-gateway removes one token from each of its ingoing edges and adds one

Faster Or-Join Enactment for BPMN 2.0 33

token to each of its outgoing edges. An Xor-gateway nondeterministically chooses one
of its incoming edges on which there is at least one token, removes one token from
that edge, then nondeterministically chooses one of its outgoing edges, and adds one
token to that outgoing edge. As usual, we abstract from the data that controls the flow
in Xor-gateways, hence the nondeterministic choice.

Figure 1 shows a workflow graph which we will use as a running example throughout
the paper.

Fig. 1. An example workflow graph

Or-join semantics. Note that for both And-gateways, Xor-gateways and Or-splits, it is
easy to determine whether they are enabled in a given state. In contrast, the enabledness
of an Inclusive Or-Join, called simply Or-join in the following, is more complex. It is
defined in BPMN 2.0 [4] as follows (cf. also [8]):

Definition 1. An Or-join A is enabled in state s if

1. there is an incoming edge e of A such that s(e) � 1 and
2. for each edge e� of the graph with s(e�) � 1, we have: If there is a path from e� to

some incoming edge e of A with s(e) � 0 that does not visit A, then there is a path
from e� to some incoming edge e of A with s(e) � 0 that does not visit A.

Let A be an Or-join. An inhibiting path to A is a path from a token to an empty incoming
edge of A such that the path does not visit A. Furthermore, an anti-inhibiting path to
A is a path from a token to a non-empty incoming edge of A such that the path does
not visit A. An Or-join A has to wait only for those tokens that have an inhibiting path
but no anti-inhibiting path to A. Therefore, an Or-join A is enabled i� it has at least one
token on an incoming edge, and there is no token which has an inhibiting path leading
to A but no anti-inhibiting path leading to A. Or-join A in Fig. 1 is not enabled in the
state shown as it has to wait for the token on the edge from B to C. Once that token has
moved to the edge from C to A, A is enabled.

When an Or-gateway executes, it consumes a token from each incoming edge that
carries a token and produces a token for each edge of a nonempty subset of its outgoing
edges. That subset is chosen nondeterministically, again abstracting from data-based
decisions. For a detailed motivation of this Or-join semantics we refer the reader to [8].

34 B. Gfeller, H. Völzer, and G. Wilmsmann

Or-join enactment. The problem of Or-join enactment is to compute the enabledness
of a given Or-join in a given state. A simple algorithm to enact Or-joins is described in
[8], from which the following description is taken.

If an Or-join A has at least one token on an incoming edge, we have to determine
whether there are any inhibiting and anti-inhibiting paths to A. The algorithm consists
of two parts. First we mark all edges of the graph that contribute to anti-inhibiting
paths. Those can be determined by backward reachability search starting from the non-
empty1 incoming edges of A. We mark all those edges in red. We stop exploration when
we reach A itself in order not to mark the empty incoming edges of A. The second
part of the algorithm marks all edges in green that are not red already and that are
backward-reachable from any empty incoming edge of A. Again, we stop exploration
when we reach A itself in order not to mark any non-empty incoming edge of A. This
part computes the inhibiting paths. The Or-join A is then enabled if and only if there is
no token on some green edge. The Pseudo-code in Algorithm 1 describes this algorithm
in more detail.

IsEnabled(Workflow graph G, State s, Or-join A)
��� :� �e � e is an incoming edge of A such that s(e) � 0�
while there exist edges e � (v1� v2) � ��� and e� � (v3� v4) � ��� such that v4 � v1 � A do

��� :� ��� ��e��

����� :� �e � e is an incoming edge of A such that s(e) � 0�
while there exist an edge e � (v1� v2) � ����� and e� � (v3� v4) � (����� � ���) such that
v4 � v1 � A do

����� :� ����� ��e��

return ����� ��e � s(e) � 0� � �.
Algorithm 1. Returns true i� Or-join A is enabled in state s

It is not diÆcult to see that this algorithm can be implemented to run in linear time
in the size of the workflow graph, i.e., in O(m � n) time in the worst case. For a small
example such as the one in Figure 1, this e�ort might be acceptable. However, for larger
examples, a linear cost per token movement might be too much, since the total execution
time for a process might become quadratic: See for example the workflow graph shown
in Figure 2, which is discussed in Section 5.

To facilitate a faster Or-join enactment, we can implement a data structure that keeps
track of certain aspects of the evolving state in an execution to provide a more explicit
representation of Or-join enabledness. Note that any process execution engine needs
to track each individual token in the workflow graph. Therefore, we assume that the
algorithm for computing the enabledness of an Or-join obtains all token movements as
its input. More precisely, we formalize the problem as follows.

Definition 2. Any data structure which solves the enactment problem for a given Or-
join gateway A provides the following operations:

– Init(G,A): Given a workflow graph G and an Or-join A, initialize the data structure
to represent the initial state of the workflow graph.

1 An edge is non-empty if it contains at least one token.

Faster Or-Join Enactment for BPMN 2.0 35

– Update(L): Given some change of the currently represented state which result from
a node’s execution, update the data structure to represent the new state. The change
is specified as a set L � �(e� d)� (e�� d�)� � � �� of updates for the number of tokens on
some edges, where each update (e� d) is a pair consisting of an edge e and the
increase (resp. decrease) d in the number of tokens it carries (d may be negative to
represent a decrease).

– Query(): Answers whether the Or-join A is enabled in the represented state.

Note that we define the Update(L) method somewhat more general than required,
since the execution of any gateway only changes the tokens on its incident edges. The
solution we will introduce later works also for the more general updates we defined
here.

3 Faster Or-Join Enactment

In this section, we describe a technique to check Or-join enabledness in a faster way
than with the known technique described above.

The basic idea behind our approach of computing the enabledness of an Or-join A
is to use various counters to keep track of all the relevant tokens that are present in the
current state. Each counter keeps track of the number of tokens present in certain parts
of the process. The counters are defined by labels on the edges, which are defined as
follows.

Consider an Or-join A, with input edges a1� a2� � � � � ak. We label each edge of the
graph by the set of input edges (inputs for short) of A that can be reached from this edge
without first going through A. We keep a counter for every distinct label that appears
on some edge e. Note that several edges may have the same label: in this case, they all
refer to one common counter. We call this counter the associated counter of the edge e.

In our example in Figure 1, the enumeration of the inputs of Or-join A is given
implicitly by their labels. The associated counter of the edge (S �C) has the label �a1�

because a1 is the only input of A that can be reached without visiting A before.
Each counter CS , representing a subset S of A’s inputs, stores the number of tokens

in the current state for which for each of the inputs in S , there is a path to an input of A
which does not contain A. In the situation shown in Figure 1, the value of the counter
associated with edge (S �C) is 1, since there is a token on the edge (B�C) which has the
same label.

Note that the number of counters required for an Or-join is bounded by the number
of edges in the process model.

In addition, each counter can be marked as ignored (details follow below). Moreover,
to quickly decide whether the Or-join is enabled, we keep a variable q which stores the
number of counters that are currently non-zero and non-ignored.

In the following, we describe how this counter-based data structure is used to ef-
ficiently perform the operations Init(G), Update(L) and Query(). In addition, our ap-
proach requires a preprocessing step, in which the edges of the workflow graph are
labelled as described above. Since this step only needs to be performed once for each
workflow graph, we separate it from the Init(G) operation, and describe it as an oper-
ation named Preprocess(G). The operations are described in words as well as in pseu-
docode. We use our running example, shown in Figure 1, to illustrate the method.

36 B. Gfeller, H. Völzer, and G. Wilmsmann

Preprocess(G). As a preprocessing step, we need to compute the label of each edge
of the workflow graph G. This is done with a simple process: For each input edge ai

of Or-join A, we mark all edges that can be reached by going backwards starting from
ai. In the example, from input edge a1 (which is the edge (C� A) from gateway C to
Or-join A), we can reach the edges (S �C), (B�C), (D� B) and (A� D). From input edge
a2 � (B� A), we can reach the edges (D� B) and (A� D). After performing this process for
each input edge of A, we have obtained the labels of all edges of the workflow graph.

Init(G). By going once through all edges, we obtain the set of counters that will be
needed (we need a counter for each label that actually occurs in the workflow graph)2.
In our example, the sets that occur are �a1�� �a2�, and �a1� a2�, hence it requires three
di�erent counters for the Or-join A. All counters are initialized to 0. Initially, no counter
is marked as ignored, and q � 0.

Input: Workflow graph G � (V� E� �), an Or-join A of G, i.e., A � V and �(A) � Or.

Output: A label for each edge of G.

for edge e � E do
e�label � “”

for input edge ai of Or-join A do
for edge e � E reachable from ai by going backwards do

Add ai to e�label.
Algorithm 2. Preprocess(G)

Update(L). To update the counters, we simply go through each of the entries (ei� di)
in the list L � (e� d)� (e�� d�)� � � �, and update the counter associated with ei (increasing
it by di). In addition, if a token arrives at an input of the Or-join A, all counters which
contain this input (in their representative set) are marked to be ignored, until the Or-join
executes. If some of these newly ignored counters are non-zero, we update the value of
q correspondingly.

Note: If the Update describes a state change in which the Or-join A itself is ex-
ecuted, all counters become non-ignored again, and the value of q must be updated
correspondingly.

Query(). By definition, an Or-join is enabled if a token has arrived at one or more of
its inputs, and there is no other token for which it must wait. The latter condition can
be checked by looking at the counters: A counter CS , representing a subset S of A’s
inputs, can be ignored if one of the inputs in S is already active (because they represent
tokens for which the join must not wait). The Or-join is enabled as soon as all of its
non-ignored counters are 0.

Hence, the answer of Query() follows directly from the value of q: The Or-join is
enabled if q � 0 and if there is a token at (at least) one of its input edges.

2 We assume that the operation counters�find(e�label), which finds the associated counter of a
given label, can be implemented in constant time, for example using hashing.

Faster Or-Join Enactment for BPMN 2.0 37

Input: Workflow graph G � (V� E� �), an Or-join A of G, i.e., A � V and �(A) � Or.

Output: The (initialized) data structure DS .

if Preprocess(G) has not been run yet then
Preprocess(G)

counters :� ��

for edge e � E do
counter � counters� f ind(e�label)
if counter � null then

c � newCounter()
c�value :� 0
c�label :� e�label
c�ignored :� f alse
counters�add(c)
e�label�counter :� c

else
e�label�counter :� counter

DS �Or join :� A
DS �nonignoredCounters :� counters
DS �ignoredCounters :� ��

DS �q :� 0
DS �someT okenArrived :� f alse
return DS

Algorithm 3. Init(G)

In our running example (Figure 1), we see that three di�erent counters are used for
A: �a1� and �a2� and �a1� a2�. In the state shown in the figure, (with two present tokens),
the counter for �a1� is 1, the counter for �a2� is also 1, and the counter for �a1� a2� is 0.

The Or-join A is not yet enabled in this state, because the counter for �a1� is not zero.
Once the token before gateway C moves past the gateway, the counter �a1� becomes
ignored (because now input a1 has a token), and the Or-join A is enabled.

Pseudocode of the presented algorithms are given in Algorithms 2–5.

3.1 Correctness of Our New Approach

To argue that our algorithms correctly computes the enabledness of the monitored Or-
join, we already presented the intuition behind the counters and their relationship with
inhibiting and anti-inhibiting paths. We add here one final correctness argument, which
is the following invariant:

Invariant 1. After executing Init(G) or Update(L), the value of DS �q is equal to the
number of non-ignored counters whose value is non-zero.

Proof. After executing Init(G), the invariant clearly holds because there is only one
token in the process, and all counters are non-ignored. The value of q needs to change
in the following cases:

38 B. Gfeller, H. Völzer, and G. Wilmsmann

Input: Workflow graph G � (V� E� �), the data structure DS
Output: None.
for (e� d) in L do

if e�label�counter�value � 0 and d � 0 and not e�label�counter�ignored then
DS �q :� DS �q � 1

e�label�counter�value :� e�label�counter�value � d
if d � �1 and e � (u� DS �Or join) then

DS �someT okenArrived :� true
for c in DS �nonignoredCounters do

if c.label.contains(e) then
c�ignored :� true
Move c from DS �nonignoredCounters to DS �ignoredCounters.
if c�value � 0 then

DS �q :� DS �q � 1
if d � �1 and e � (DS �Or join� v) then

DS �someT okenArrived :� f alse
for c in DS �ignoredCounters do

if c�value � 0 then
DS �q :� DS �q � 1
c�ignored :� f alse
Move c from DS �ignoredCounters to DS �nonignoredCounters.

Algorithm 4. Update(L)

Input: the data structure DS
Output: true if the Or-join DS �q is enabled, f alse otherwise.
return DS �q � 0 and DS �someT okenArrived

Algorithm 5. Query()

– a non-ignored counter becomes zero
– a non-ignored counter becomes non-zero
– an ignored non-zero counter becomes non-ignored
– a non-ignored non-zero counter becomes ignored

It is easy to verify that Update(L) changes the value of q correctly in each of these
cases. ��

Due to the invariant, the value DS �q will, at any given time, correctly indicate whether
the Or-join is enabled or not, because its value is updated correctly after each state
update with Update(L).

3.2 Analysis

In this section, we briefly state the asymptotic running time of each of the operations in
our approach, in terms of the following parameters:

– n: the number of nodes in the workflow graph.
– m: the number of edges in the workflow graph.
– �: the in-degree of Or-join A.

Faster Or-Join Enactment for BPMN 2.0 39

The running times are as follows (immediately clear from the previous descrip-
tion�pseudocode):

– Preprocess(G): O(m 	 �).
– Init(G): O(m).
– Update(L): O(
L
 � � � m).
– Query(): O(1).

The above running times are worst case for an individual execution of a graph node.
However, these are rather pessimistic, in the sense that the actual execution cost of a
typical state change would be much lower. Therefore, in Section 5 we analyze the cost
per token move amortized over a so-called round, which is defined as the sequence of
states from one execution of the monitored Or-join A to its next execution. This analysis
is more precise and allows us to more clearly state the advantages of our approach in
comparison with the previous approach.

4 Optimizations

In this section, we suggest and discuss a few optimizations for our proposed algorithm.
While these do not decrease the worst case cost of our approach, we expect them to
reduce costs in instances typically occurring in practice.

4.1 Delayed Token Monitoring

Since a process can have many possible execution traces, the Or-join A which is being
monitored for enabledness may not be executed at all in some of these traces. For this
scenario, the following optimization is useful: Instead of labelling the workflow graph
initially and then updating the counters for A after every token move, no action is taken
until some token arrives at an input of A. When this happens, we run a generalized
initialization routine, which is given in pseudocode in Algorithm 6.

From then on, Update(L) is executed after every state change. Since the invariant for
q holds after executing this initialization routine, this optimized approach still correctly
maintains the value of q.

4.2 Fragment-Based Optimization

In this section, we describe an optimization based on the notion of a process fragment.
A process fragment is a subgraph of the workflow graph that has a single entry and a
single exit. We assume here that entry and exit are edges (cf. [7]), but the approach can
be generalized to entry and exit being nodes (cf. [6,5]). A decomposition of a workflow
graph into fragments can be computed with well-known parsing techniques [7,6,5].

This optimization requires that the workflow graph does not have a lack of synchro-
nization, which is defined as follows. A state exhibits a lack of synchronization if there
is an edge that carries more than one token in s.

For any fragment in the workflow graph which has exactly one incoming edge and
one outgoing edge, and which does not contain the Or-join A, the counters for A need

40 B. Gfeller, H. Völzer, and G. Wilmsmann

Input: Workflow graph G � (V� E� �), an Or-join A of G, i.e., A � V and �(A) � Or.

Output: The (initialized) data structure DS .

if Preprocess(G) has not been run yet then
Preprocess(G)

counters :� ��

for edge e � E do
counter � counters� f ind(e�label)
if counter � null then

c � newCounter()
c�value :� 0
c�label :� e�label
c�ignored :� f alse
counters�add(c)
e�label�counter :� c

else
e�label�counter :� counter

e�label�counter�value :� e�label�counter�value� number of tokens on edge e
DS �Or join :� A
DS �nonignoredCounters :� counters
DS �ignoredCounters :� ��

DS �someT okenArrived :� f alse
for input edge ai of Or-join A which has at least one token do

DS �someT okenArrived :� true
for edge e � E reachable from ai by going backwards from one input edge ai of Or-join A
having at least one token do

e�label�counter�ignored :� true
DS �q :� 0
for edge e � E do

if (not e�label�counter�ignored) and e�label�counter�value � 0 then
DS �q :� DS �q � 1

return DS
Algorithm 6. OptimizedInit(G)

not be updated for token movements within this fragment. This works because in a
sound process, any token which enters such a fragment will eventually result in exactly
one token which exits the fragment (even if within the fragment, the token flow is split
and later merged again). Therefore, the incoming edge and the outgoing edge of the
fragment, as well as all edges within the fragment, have the same label. As a result,
if we keep the counter corresponding to this label constant, its value will be correct
as soon as the token leaves the fragment, and will never be too high while there are
tokens within the fragment (it can be too low, however, if there is concurrency within
the fragment).

Faster Or-Join Enactment for BPMN 2.0 41

4.3 Omitting Labels for Full Sets

The counter corresponding to the set of all inputs of Or-join A can be omitted in the
labelling process during Init(G), since it will always either have value 0 or be marked
as ignored (because as soon as a token arrives at any of A’s inputs, the counter will be
ignored). Likewise counters corresponding to the empty set can be omitted as well.

5 Analysis and Comparison with Previous Approach

The previous approach, described in Section 2 and in [8], did not use any counters
to aid deciding the enabledness of a given Or-join. As a consequence, for deciding
enabledness of an Or-join, it was necessary to traverse the graph to search for tokens
for which the Or-join needs to wait. This approach requires �(n � m) time in the worst
case.

In the following, we compare our new approach with the previous one and explain
its main advantages. To that end, we use a generic example, shown in Figure 2, whose
size depends on the parameter x. Note that we focus here on the costs of monitoring one
Or-join A. If there are several Or-joins in the workflow graph, the costs of our approach
(as well as those of the previous one) grow linearly with the number of Or-joins. In
the end of this section, we will actually take into account also the costs of monitoring
the second Or-join D present in the example shown in Figure 2. We assume in the fol-
lowing that our new approach is used with the delayed token monitoring optimization
described in Section 4.1. Furthermore, we analyze an execution where neither a dead-
lock nor a lack of synchronization occurs. In the course of this execution, the Or-join A
may be executed either not at all, once, or several times. We analyze the cost per node
execution amortized over a so-called round, which is defined as the sequence of states
from one execution of the monitored Or-join A to its next execution. More formally, the
first round of an execution starts when the first token enters the workflow graph. The
first round ends when the Or-join A is executed for the first time, or when the process
terminates. Whenever the Or-join A is executed (i.e., it fires and produces a token on its
outgoing edge), the current round ends, and a new round starts.

The preprocessing step, which is only executed once (before execution of the process
is started), takes O(m�) time. The costs of our approach for one round, consisting of a
sequence of k state changes, can be bounded as follows:

Fig. 2. A second example workflow graph

42 B. Gfeller, H. Völzer, and G. Wilmsmann

– OptimizedInit(G): During one round, this is executed at most once. Its run time is
O(m).

– Update(L): This operation is executed k times during one round, say, with argu-
ments L1� L2� � � � � Lk. Its run time is bounded by O(

�k
i�1
Li
 � m). Note that the

total cost of marking counters as ignored during all Update operations of a round
is bounded by m (and not k 	 m as it may seem) because each counter that becomes
ignored during a round cannot become non-ignored again in the same round.

– Query(): This operation is executed k times during one round, which costs O(k)
time in total.

Hence, the run time of our approach for one round is O(
�k

i�1
Li
�m). In comparison, the
previous approach, described in Section 2, requires O(

�k
i�1
Li
�mk) time for one round.

For rounds with more than a few token movements, our approach is therefore significantly
faster. Note that any approach will require at least �(

�k
i�1
Li
) time, because this is the

number of token movements that occur, and any approach clearly needs to keep track of
the current position of all tokens. The distinguishing factor of the run time of di�erent
approaches is therefore how much additional time beyond this lower bound is required.

We compare the our new approach with the previous one for two di�erent scenarios:

– An execution with only one round: In this case, our approach requires O(�m �
�k

i�1
Li
) time, whereas the previous approach requires O(mk �
�k

i�1
Li
) time. Our
approach is hence better if k � �(�).

– An execution with l rounds: Let � :�
�l

j�1
�k j

i�1
L
j
i
 be the sum of all
L j

i
 for
all rounds. In this case, our approach requires O((� � l)m � �) time, whereas the
previous approach requires O(lkm ��) time.

In a typical workflow graph, we expect the indegree of any Or-join to be essentially
constant. Thus, apart from the cost � which is required to track the tokens (which
is necessary in any process execution approach), the cost of our approach per round
is essentially linear in the size of the process. The cost of the previous approach is
quadratic per round if the length k of a round is similar to the number of m of edges.

To see an example where the improvement can be clearly seen, consider the workflow
graph shown in Figure 2, and assume that the execution proceeds as follows: The initial
token travels from S through B to C, where one token is created and travels to F1. From
there, it continues to F2� F3� � � � � Fx, where it exits through A� D�G� E. Thus, at any time,
there is exactly one token present in the workflow graph. Note that this workflow graph
has two Or-joins.

In the following, we analyze the costs of both approaches in the given scenario.
After each token move, the naive approach will traverse the edges (Fx� A)� (Fx�1� Fx)�
(Fx�2� Fx�1)� � � � until it reaches the edge which currently carries the token. The costs of
this approach are thus quadratic in x, since for �(x) many steps, the number of traversed
edges is �(x). 3 The total costs are thus �(x2).

Instead, our new approach has costs O(m � x) � O(x) for each of the two Or-joins,
which is still O(x) in total. Thus, in our proposed solution the total e�ort reduces from
quadratic time to linear time.

3 We ignore the costs for the Or-join D here, which cause even some additional costs.

Faster Or-Join Enactment for BPMN 2.0 43

6 Conclusion

We have presented a new approach for computing the enabledness of an Or-join during
the execution of a business process modelled with BPMN 2.0. Since the Or-join seman-
tics are defined in a non-local manner, a naive approach may require quadratic execution
costs, as shown in an example given in the paper. In contrast, our new approach requires
only linear e�ort in the size of the workflow graph for the same example. We believe
that our solution is essentially optimal for tracking the enabledness of a single Or-join
in a process. However, there is still potential for improvement in workflow graphs with
several Or-joins: Both the naive and our new approach have costs which grow linearly
with the number of Or-joins present. Instead of performing a separate computation for
each Or-join, it might be possible to reduce execution costs by having a join computa-
tion for all the Or-joins present in the process. We leave the exploration of such further
optimizations for future work.

We are not aware of any other proposal to execute the BPMN 2.0 Or-join semantics
[4]. However, Christiansen et. al [2] consider the same problem for an older version
of the Or-join semantics. They propose two algorithms for enactment, one incremental
and one distributed. A complexity analysis is not given. Also Dumas et. al [3] use a
dynamically updated data structure to speed up an execution algorithm for an Or-join
semantics, from quadratic time to linear time. The Or-join semantics they use is di�erent
to the ones mentioned above.

References

1. Bravetti, M., Bultan, T. (eds.): WS-FM 2010. LNCS, vol. 6551. Springer, Heidelberg (2011)
2. Christiansen, D.R., Carbone, M., Hildebrandt, T.: Formal semantics and implementation of

bpmn 2.0 inclusive gateways. In: Bravetti, Bultan (eds.) [1], pp. 146–160
3. Dumas, M., Grosskopf, A., Hettel, T., Wynn, M.T.: Semantics of Standard Process Models

with OR-Joins. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp.
41–58. Springer, Heidelberg (2007)

4. OMG. Business process model and notation (BPMN) version 2.0, OMG document number
dtc�2010-05-03. Technical report (2010)

5. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the
refined process structure tree. In: Bravetti, Bultan (eds.) [1], pp. 25–41

6. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl.
Eng. 68(9), 793–818 (2009)

7. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis
for Business Process Models through SESE Decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

8. Völzer, H.: A New Semantics for the Inclusive Converging Gateway in Safe Processes. In:
Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 294–309. Springer,
Heidelberg (2010)

Towards Understanding Process Modeling –

The Case of the BPM Academic Initiative

Matthias Kunze, Alexander Luebbe, Matthias Weidlich, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

{matthias.kunze,alexander.luebbe,
matthias.weidlich,mathias.weske}@hpi.uni-potsdam.de

Abstract. Business process models are typically graphs that communi-
cate knowledge about the work performed in organizations. Collections
of these models are gathered to analyze and improve the way an organi-
zation operates. From a research perspective, these collections tell about
modeling styles, the relevance of modeling constructs, and common for-
mal modeling mistakes.

With this paper, we outline a research agenda for investigating the act
of process modeling using models of the BPM Academic Initiative. This
collection comprises 1903 models, the majority captured in BPMN. The
models were created by students from various universities as part of their
process modeling education. As such, the collection is particularly suited
to investigate modeling practice since it is probably unique in terms of
modeling heterogeneity. As a first step, we characterize EPC and BPMN
models of the collection using established process model metrics. Further,
we investigate the usage of language constructs for these models. Our
findings largely confirm the results obtained in prior, smaller studies on
modeling in a professional context.

1 Introduction

Business process modeling is at the heart of modern organizations. Process mod-
els capture how work is performed in an organization and how business goals are
achieved. Large organizations manage literally thousands of process models in
process repositories [25]. These models form a knowledge base that is protected
since it can be seen as a competitive advantage of an organization. However, ana-
lyzing model collections can yield valuable insights for language development and
education. Modeling guidelines [21] and best practices for activity labeling [20]
have been proposed based on investigations of process model collections.

For instance, deriving the most common set of constructs used in a process
modeling language can help to distinguish important from unimportant concepts
for process model education. Understanding different modeling styles, their ad-
vantages and pitfalls, can be used to propose best practices for modelers. Com-
mon errors found in process model repositories can be used for education or for

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 44–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards Understanding Process Modeling 45

developing more easily comprehensible process modeling languages. Existing re-
search on process model collections has tried to answer these questions partially.
However, findings are often limited because the used collections stem from ho-
mogeneous groups of modelers. Conclusions drawn have not been validated for a
broader public and more research is needed to confirm or revoke existing findings.

In this paper, we outline a research agenda to evaluate a large collection
of process models from the BPM Academic Initiative (BPMAI1) [13]—a joint
venture of academic and industrial partners that aims at providing a mature
process modeling platform for researchers and lecturers free of charge. Besides
a comprehensive collection of lecture exercises, Signavio2, industry partner of
the BPMAI, offers a set of tools to design and manage business process models
online. The modeling languages offered by the BPMAI include, but are not
limited to, BPMN [24], EPCs [10,26], and Petri Nets. The BPMAI is used by
more than 4500 people from around 450 universities as part of their curriculum.
Our investigations are based on anonymized models of a snapshot of the BPMAI
collection from early 2011. It comprises 1903 models created by students, of
which a majority of 1210 models was created using a BPMN 2.0 compliant
shape set; 135 models are EPCs. Note that, due to the applied anonymization,
personal and demographic data such as the level of graduation or the study
discipline could not be related to the individual models.

The BPMAI collection is particularly suited to investigate modeling practice.
In contrast to process model collections that have been around, e.g., the often
cited SAP reference model [2], it shows a high heterogeneity along various dimen-
sions. The models have been created by modelers that originate from universities
all over the world. Modelers have different educational backgrounds, e.g., in busi-
ness administration or computer science, capture processes in different natural
and modeling languages, and represent operations from different business do-
mains. Hence, empirical insights that are grounded on the BPMAI collection
can be assumed to have a high external validity. Results on modeling styles, the
relevance of modeling constructs, and common formal modeling mistakes derived
from this collection are likely to be independent of any specific context in which
process modeling is conducted. This kind of conclusions can hardly be drawn
using homogeneous model collections created within a narrow context.

As a first step of a research agenda for the analysis of modeling practice
using the BPMAI collection, this paper focuses on characterizing the collection
and investigating the language usage for BPMN and EPC models. First, we
derive descriptive statistics for the process models using an established set of
process model metrics. This provides us with insights on the characteristics of
the BPMAI collection. Second, we take up research on the relevance of modeling
constructs. We contribute an analysis of the language usage for BPMN models
and EPCs. For BPMN, our findings largely confirm the results of prior studies on
professional modeling obtained with rather small sets of process models. Further,

1 http://bpt.hpi.uni-potsdam.de/BPMAcademicInitiative
2 http://www.signavio.com

http://bpt.hpi.uni-potsdam.de/BPMAcademicInitiative
http://www.signavio.com

46 M. Kunze et al.

we present a comparison of language usage for BPMN and EPC, an aspect that
has not been addressed in prior work.

The remainder of this paper is structured as follows. In Section 2, we review
related research on process model collections. Then, we characterize the models
of the BPMAI collection with process model metrics in Section 3. Section 4 is
devoted to the analysis of language usage. We outline further research questions
that relate to the BPMAI collection in Section 5, before we conclude in Section 6.

2 Related Work on Process Model Collections

The SAP reference model [2] is probably the most commonly used model col-
lection in research. Published by SAP in 1997, it contains 604 process diagrams
of the reference processes implemented in the SAP R/3 system during the mid
nineties. These models have been used, e.g., for formal error analysis [18], for pro-
cess model metrics development [17], extraction of reusable action patterns [27],
and label analysis [16]. Approaches towards meaningful process similarity mea-
sures leveraged the reference model in conjunction with human assessment for
similarity that has been captured in experiments [5,4,11]. Also data structures
and algorithms for efficient search in large process model repositories [9,12,30]
needed to resort to this collection, as virtually no other available collection con-
tains as many models.

In short, these models became the reference for empirical research on model
collections in the last ten years. But this set is not sufficient for research ques-
tions on modeling practice. First and foremost, it is limited to 604 models that
represent one community of practice. The models have been created by a rather
small group of modelers that have a similar background and capture only the
processes of a single system. Moreover, the SAP reference model is based on
EPCs [10,26] and cannot provide answers to research questions towards other
process modeling languages, in particular the Business Process Model and No-
tation (BPMN) [24].

Existing research on BPMN as a modeling language is limited. The most
comprehensive evaluation was performed on a set of 120 models collected from
consultants and the web [22]. The focus of this evaluation was on language
usage and findings indicated that only a small subset of the BPMN modeling
language is used in practice. At that time, it was a significant contribution to the
ongoing OMG discussions on a BPMN Core Set. However, the findings resulted
from a small collection that was assembled manually by the researchers. The
evaluation is limited to the data given, mainly pictures of process models. The
authors themselves note that clustering within the set was not possible due to the
limited size. To draw conclusions with a high external validity, therefore, requires
a large, heterogeneous model collection. In [8], the authors replicated one metric
from [22], the syntax complexity graph, based on 166 BPMN models from an
online modeling community3. The results indicated a quite similar complexity
of syntax in both model collections. Unfortunately, further investigation was not
3 http://bpmn-community.org

http://bpmn-community.org

Towards Understanding Process Modeling 47

presented. In Section 4, we use evaluation mechanisms of [22] to investigate and
compare the language usage in the BPMAI collection.

In summary, existing work on modeling practice either relied on a rather
homogeneous model collection, e.g., the SAP reference model, or used only a
small set of process models. In this paper, we build upon prior work towards
language usage and apply it to a set of 1345 BPMN and EPC models from the
BPMAI collection.

3 Analysis with Process Model Metrics

In this section, we explore the models of the BPMAI collection with an existing
set of process model metrics. As such, we derive descriptive statistics to charac-
terize the collection. We first recall the metrics used in our analysis in Section 3.1.
Then, Section 3.2 presents the obtained results.

3.1 A Set of Process Model Metrics

In essence, a process model is a graph that consists of nodes and edges. The
former represent activities and the latter are used to encode a temporal and
logical order of their execution [29]. Depending on the applied process definition
language, nodes may also represent means to define control flow routing that goes
beyond simple sequencing of activities, i.e., gateways in BPMN and connectors
in EPCs. We refer to these nodes as routing nodes.

Against this background, it is not surprising that there have been various
efforts to adapt generic structural metrics that are defined for graphs for the use
case of process models, e.g., [15,23,1]. Such efforts are particularly inspired by
metrics in software engineering or network analysis. Metrics that have their roots
in these domains are conceptually close since they are also applied to graphs that
define control flow dependencies. See [19] for a discussion of this relation.

For our analysis, we rely on process model metrics that focus on comprehensi-
bility. The process models of the BPMAI collection have been created by students
as part of modeling exercises, so that process documentation and communication
can be seen as the primary drivers for model creation. Hence, comprehensibility
is the major quality criterion for these models. Although we do not assess compre-
hensibility explicitly, we leverage single metrics for a descriptive characterization
of the collection. To this end, we employ the process model metrics presented by
Mendling [19]. They integrate many of the aforementioned metrics and provide
a multi-dimensional framework for the analysis of single process models. The
metrics have been evaluated, again, using the SAP reference model [2] for their
ability to predict EPC modeling errors. Nevertheless, the metrics are more uni-
versal because they provide a generic characterization of a process model. We
focus on the metrics that cover size, density, routing diversity, cyclicity, and con-
currency of a process model. For these metrics, we shortly recall their definitions
found in [19]. Note that, albeit commonly referred to as metrics, these measures
may not be metrics in the mathematical sense.

48 M. Kunze et al.

Size. First and foremost, size of a process model may be assessed using the
number of nodes (NN). This metric does not differentiate between types of
nodes, i.e., activities or routing nodes. In addition, we compute the diameter
(Diam), which is the longest path between any pair of nodes of a process
model.

Density. Metrics for density relate the number of nodes and the number of
edges of a process model to each other. In particular, we compute the num-
ber of edges divided by the (theoretical) maximum number of edges that
may be observed for the number of given nodes (Dens). Closely related is
the coefficient of connectivity (CNC), which is the ratio of edges and nodes.
Focusing on the relation of edges and routing nodes, we determine the aver-
age and maximum degree of routing (AvgDR and MaxDR), which capture
the average and maximum number of nodes that a routing node is connected
to.

Routing Diversity. To take the diversity of routing nodes into account, we
compute the routing heterogeneity (RH) as the entropy over the observed
types of routing nodes. In BPMN, activity nodes disclose implicit routing
semantics, referred to as uncontrolled flow [24]. Therefore, BPMN activities
have to be treated as exclusive routing nodes for incoming edges, and as
concurrent routing nodes for outgoing edges.

Cyclicity. Since cyclic structures influence the comprehensibility of a process
model, we also consider cyclicity. It is measured by the ratio of nodes that
are part of a control flow cycle to all nodes of the process model (CYC).

Concurrency. Comprehensibility is further influenced by the level of concur-
rency. It is assessed by the token split (TS), which is the sum of the outgoing
edges of routing nodes that may create concurrent behavior, i.e., AND or
inclusive OR semantics, minus one.

3.2 Evaluation of the BPMAI Collection

Using the metrics introduced in the previous section, we investigated all BPMN
and EPC models of the BPMAI collection. We implemented the metrics as part
of a Java library that also comprises utility classes to access the models of the
BPMAI collection4. An overview of the obtained results is presented in Table 1.
For each of the metrics, the table depicts the average and the maximal value over
all BPMN models or EPCs. To further characterize the obtained values, we also
list the median along with the upper and lower quartile. Those indicate which
values have been obtained for the 25th percentile (Lower Q), the 50th percentile
(Median), or the 75th percentile (Upper Q), respectively. In the following, we
discuss the results along the aforementioned dimensions of measurement.

It is worth mentioning that whenever we refer to nodes in the context of a met-
ric, we mean a control flow node, i.e., an activity, event, or routing node. In many
process model specifications, edges are captured as a pair of connected nodes.
4 See http://code.google.com/p/bpmai/

http://code.google.com/p/bpmai/

Towards Understanding Process Modeling 49

Fig. 1. Share of process models relative to their size, in terms of the number of nodes.

Table 1. Metrics for the BPMN and EPC models of the BPMAI collection

Size Density Rout. Div. Cyclicity Concurrency
NN Diam Dens CNC AvgDR MaxDR RH CYC TS

Results for the BPMN models:
Avg 15.6 6.52 0.09 0.79 1.15 1.84 0.17 0.03 0.65
Max 156.0 69.0 0.5 1.6 6.0 11.0 0.9 0.75 28.0
Upper Q 19.0 9.0 0.13 1.0 1.4 2.0 0.39 0.0 1.0
Median 11.0 5.0 0.07 0.88 1.23 2.0 0.0 0.0 0.0
Lower Q 7.0 2.0 0.03 0.67 1.0 1.0 0.0 0.0 0.0

Results for the EPC models:
Avg 19.88 10.84 0.07 0.85 0.9 0.96 0.06 0.03 0.47
Max 123.0 50.0 0.5 1.15 4.0 4.0 1.0 0.57 5.0
Upper Q 27.0 16.25 0.09 1.03 2.0 2.0 0.0 0.0 1.0
Median 15.5 9.0 0.05 0.95 0.0 0.0 0.0 0.0 0.0
Lower Q 8.75 3.0 0.03 0.8 0.0 0.0 0.0 0.0 0.0

However, in the BPMAI modeling tool, cf. Section 1, edges are components of
their own and do not need to be connected to nodes. Thus, we only considered
those edges that are connecting nodes with both their ends for computing the
metrics.

Size. The average size of the models in the BPMAI collection is around 16
nodes (BPMN) and 20 nodes (EPC), respectively. We consider this to be
remarkable because we have not applied any filtering to the collection. Our
collection includes all models created within a certain timeframe, not only
those that are intended to be published. Consequently, we assume the col-
lection to include several model stubs that have not been completed by the
modeler. Against this background, the observed sizes hint at a considerable
complexity of the models with large models comprising more than hundred
nodes. Further, the EPCs contain more nodes on average, which may be ex-
plained by the bipartite structure of EPC graphs that requires an alternating
order of EPC functions and EPC events. This observation is underpinned
by the values for the quartiles. 25% of the EPCs have more than 27 nodes

50 M. Kunze et al.

compared to 19 nodes for BPMN. The differences in model size between both
languages are also illustrated in Fig. 1. It shows that EPCs show a larger
variety in their size compared to the BPMN models.

Our assessment of size in terms of the model diameter indicates that we
observe longer paths in EPCs compared to BPMN models. For half of the
BPMN models, the longest path comprises at most five edges compared to
nine edges for EPCs. This difference, nearly twice the value, is larger than
what can be expected from the difference in node size between both modeling
languages. Finally, the relation between observed node sizes and diameters
allows concluding on the complexity of the model structure. A model that is
completely sequential shows a diameter that is the number of nodes minus
one. As such, our results indicate that the models are not of such a trivial
structure.

Density. Since process models are rarely complete graphs (in which each pair
of nodes is directly connected), the observed values for the Dens metric are
rather small. Here, the maximal values of 0.5 are obtained for minimal models
that comprise two nodes that are connected by one edge. With the metrics
that leverage all nodes and edges, i.e., Dens and CNC, we obtain similar
results for BPMN models and EPCs. Still, there are differences once density
is assessed with a focus on routing nodes. The implementation of control flow
routing is notably more elaborated for BPMN models compared to EPCs,
as more than half of all BPMN models expose a maximum routing degree
of greater or equal to 2, whereas this holds only for 25% of EPCs. Note
that, values in the Average row for AvgDR and MaxDR of Table 1 result
from computing the average over all models, including those that do not
comprise any routing at all and thus have a MaxDR of 1. Here, the average
maximum routing degree of all BPMN models are twice as high as for EPCs.
Further, we observe that a routing node in BPMN models is connected to a
maximum of 11 nodes, whereas the maximum number of adjacent nodes is
four for routing nodes in EPCs. This indicates that the EPCs do not show
nodes that fan out a high number of branches, as it can be observed, e.g., in
the EPCs of the SAP reference model.

Routing Diversity. A routing heterogeneity of zero indicates that only one
type of routing node is used, a value of one means that all types introduced
by the language are used in a model. Our results indicate that BPMN models,
on average, rely on a larger share of the possible types of routing nodes. This
is remarkable since BPMN defines a lot more different types of routing nodes,
i.e., types of gateways or tasks with multiple incoming or outgoing control
flow edges. Even though there is an EPC that comprises all kinds of routing
nodes, at least 75% of the EPCs comprise only a single type of routing node
(connector) or no routing nodes at all.

Cyclicity. The models of the BPMAI turn out to be mostly acyclic. There are
178 BPMN models and 18 EPCs that show a control flow cycle. Apparently,
this leads to very low values obtained for the cyclicity metric, which assesses
the ratio of nodes that are part of a control flow cycle to all nodes. However,

Towards Understanding Process Modeling 51

there are notable exceptions, such as a BPMN model for which 75% of the
nodes are part of a cycle (see Table 1). Note that this metric considers
only control flow cycles but neglects high-level constructs, e.g., BPMN loop
markers, to express repetitive behavior.

Concurrency. The level of concurrency observed in the model collection is
rather low, too. There are 355 BPMN models and 41 EPCs that may show
concurrent behavior. Again, we observe models with exceptional behavior.
For instance, there is a BPMN model with a token split of 28. Note that
such a high token split does not mean that there may be 28 concurrent
branches. It may also be caused by several routing nodes, each creating a
small number of concurrent branches which are synchronized before further
concurrent branches are spawned. Comparing BPMN models and EPCs, we
observe that EPCs in the BPMAI collection show less concurrency.

4 Analysis of Language Usage

In their joint paper, zur Muehlen and Recker [22] approached the question “How
much language is enough?” and evaluated quantitatively, which of the modeling
constructs provided by BPMN [24] are used regularly. We applied their investi-
gations to the BPMAI model collection. In contrast to [22], our evaluation in-
vestigates EPCs [10,26] and the more recent version BPMN 2.0 [24]. Again, we
implemented the analysis as part of the Java library mentioned in Section 3.2.

4.1 Usage of Process Model Constructs

Process modeling languages usually offer a large set of constructs, each with a
unique meaning. While we addressed control flow concepts in Section 3, here
we consider the complete spectrum of constructs, BPMN and EPC offer to the
modeler, e.g., data, resources, and events. In order to identify, which process
model constructs have been used most, we simply counted, for each construct
provided by the process modeling language, in how many models it is contained.
To further characterize the usage of a modeling language, we also elaborated
on the general heterogeneity of process models, i.e., whether process modelers
employ the full expressiveness of a language or rather resort to a small share for
their models.

In line with [22], we found the BPMN constructs Task, Sequence Flow, Start
and End Event to be the most prominent constructs. However, the major share
of BPMN models we evaluated also contains Pools, Lanes, and (Databased)
Exclusive Gateways, cf. Fig. 2(a). Pools and lanes occur with the same frequency,
because, in the BPMAI modeling tool, a pool always contains at least one lane.

A similar usage frequency for corresponding constructs to the above can be ob-
served for EPCs, i.e., Function, Control Flow, and Events occur most frequently,
along with the XOR Connector in more than 50% of the models, cf. Fig. 2(b).
A Relation is an edge that is supposed to combine a Function or Event with

52 M. Kunze et al.

(a) (b)

Fig. 2. Usage Frequency of Modeling Constructs from BPMN (a) and EPC (b). (Only
constructs with a frequency above 5% are listed.)

an Organization, Position, Data, or System construct. However, as these con-
structs expose a significantly lower frequency of occurrence, we discovered that
the Relation edge has been used falsely in spite of a control flow edge.

The above observation indicates that most process models are very simply, i.e.,
consist of Tasks and Sequence Flows; EPCs contain almost equally many Events
as Functions, as the modeling tool requires Functions and Events to alternate.
In practice, we see many of these models that represent business processes in a
coarse grain, where tasks describe phases, rather than individual activities. It is
also worth noticing that the Parallel Gateway (BPMN) and the AND Connector
(EPC) have been used in less than 40% of all models, which suggests that most
of the models describe sequential behavior.

In BPMN, we find Message Flow and Message Start Event at high positions,
which indicates that modelers actually use the capability of BPMN process dia-
grams to describe interacting processes of different parties. This concept is not
available in EPCs.

To assess the heterogeneity of process models, we examined the number of
unique process modeling constructs, i.e., the types of model elements, that have
been used in the models of our collection. For BPMN, we differentiate 63 unique
modeling constructs, whereas we did not distinguish Interrupting from Non-
Interrupting Events, different types of Data Objects, nor different task types,
e.g., Human Task, Service Task. For EPC, we distinguished 14 constructs. These
numbers are constituted by the modeling tool, cf. Section 1, that has invariably
been used to create the models. Fig. 3 shows an overview of the heterogeneity
distribution with regard to the number of used modeling constructs.

Towards Understanding Process Modeling 53

Fig. 3. Frequency of unique constructs per model: BPMN models expose a higher
diversity than EPCs

On average, a BPMN model used 8.46 different modeling constructs, com-
pared to 5.97 unique constructs used in EPC models. The most heterogeneous
BPMN model used 27 different constructs, compared to 11 in EPCs. For both
modeling languages, 75% of all models employed more than 5 distinct constructs.
Nevertheless, BPMN models show a considerable higher diversity than EPCs, cf.
Fig. 3.

A set of 20 unique constructs of BPMN has been used in less than 10% of all
models, but only one has never been used, which is the Event Subprocess. For
EPCs there is no single construct that has never been used, and only up to 5 of
the 14 unique constructs have been used in less than 10% of all models.

The observations above showed that certain, basic modeling constructs are
more prominent than others, which holds true for BPMN and EPC. Also, we
discovered that the majority of process models exposes a rather low diversity
compared to the expressiveness of the modeling language. This approves the
existence of a rather compact vocabulary of modeling constructs used for process
modeling.

4.2 Vocabulary of Process Models

In this section, we illustrate subsets of the respective modeling language that
are shared among most process models and elaborate on differences of these
vocabulary sets between EPC and BPMN.

Thus, we iteratively built sets of the most prominent process model constructs,
cf. Fig. 2, and counted those models, which contain the particular set of con-
structs. Starting from the very core of the constructs used together in the most
models, we extended this set stepwise by constructs that would exclude the
fewest models. The results are visualized in Fig. 4.

Obviously, the most compact subsets comprise the most prominent modeling
constructs. The very core of both modeling languages, BPMN and EPC, is simply
made of activities and edges between them, i.e., Tasks and Sequence Flow arcs in
BPMN, and Functions, Events, and Control Flow arcs for EPCs, respectively. As
mentioned earlier, EPCs require a bipartite structure, which yields the combined
usage of Functions and Events.

54 M. Kunze et al.

89%

54% 35%

25%

58% 58%

11%

13%BPMN

(a)

95%43%

70%

38%

30%

EPC

10%

(b)

Fig. 4. Frequency of Used Vocabulary for BPMN (a) and EPC (b) Diagrams

Direct extensions of the core set of BPMN, cf. Fig. 4(a), include Pools and
Lanes on the one hand, and Blank Start Events and Blank End Events on the
other hand; almost immediately follows the cluster of Tasks, Sequence Flow
and Exclusive Gateways—more than half of all models share either of these
subsets. Zur Muehlen and Recker [22] recognized the same aspect and attributed
it to the two main application areas for BPMN: The usage of Pools and Lanes
without advanced control flow constructs is prevalent to express organizational
partitioning of a process according to roles and their responsibilities, whereas
routing constructs are used separately for a detailed specification of the control
flow of a process.

For EPC models, cf. Fig. 4(b), we see a much higher ratio of models that con-
sist of basic control flow and XOR Connectors (70%) than in BPMN, where only
54% of the models share the basic subset with Databased Exclusive Gateways.
This is due to the fact that BPMN allows to model choreographies, while EPCs
do not.

For both modeling languages, the Parallel Gateway and AND Connector, re-
spectively, follow way behind: Less than half of the models of the above clusters
share constructs for parallel routing. The Inclusive Gateway and OR Connector
of BPMN and EPC play only a minor role, with 5% in BPMN and 13% in EPCs,
respectively.

5 Further Research Agenda

In this paper, we examined aspects of process models and investigated usage
of process modeling languages, whereas conclusions and recommendations for
practitioners shall be addressed in future work. Accordingly, we plan to direct
further research towards communities of practice and model evolution. In this
section, we outline a set of research challenges, for which the model collection
might be leveraged. The topics are interrelated and can benefit from each other.

Towards Understanding Process Modeling 55

Assessing process similarity measures. Many models in the collection have
been created based on a limited set of exercises. Thus, we can expect multi-
ple models to represent the same scenario. The BPMAI model collection is
unique in this respect and leads to many interesting opportunities. One of
them is to review process model similarity measures, cf. [6,4,11], e.g., whether
they are able to recover process models sprung from the same scenario.

Identify communities of practice. Based on identification mechanisms, such
as similarity measures or the metrics discussed above, we can identify groups
of people with similar modeling styles or language sets. A community of prac-
tice might result from the education in a university. We might as well be able
to identify different communities even within a university. Finally, it might
be that a community of practice is established by certain modeling patterns
that result from cognitive thinking styles. We can also link that information
to people, who have edited the model.

Process model evolution. Based on the versions of each model in the reposi-
tory, it is possible to trace the process of model creation and get more insights
into the act of process modeling. This can also be linked to the number of
people that have contributed to the models. On average, models in the BP-
MAI collection have 4.27 revisions and 20% have 6 or more revisions. One
particular BPMN process model even exposed 80 revisions.

Analyze interacting models. The ability to depict processes interacting with
other processes is a feature of BPMN but not feasible in EPCs. There exists
research on the theoretical aspect of interacting processes, cf. [3]. The BP-
MAI model collection enables empirical research on the way people use this
ability and identify typical mistakes that might result from it. In our snap-
shot of the BPMAI models, 479 BPMN models contain the Message Flow
construct and 458 models consist of more than one Pool, which indicates a
reasonably large basis for empirical analysis.

Link modeling errors to process metrics. Analogous to Mendling’s [18]
evaluation of process model metrics against common EPC modeling errors,
this can be done for BPMN and other process modeling languages as well.
As a result, one can obtain a weighted set of metrics that predict whether a
model might have an error. Comparing this list to the findings by Mendling
might result in the identification of a core set of model metrics that are rele-
vant to avoid modeling mistakes. We have to stress, though, that all models
where created with a professional tool which excludes many syntactic mis-
takes by design.

Obtain complex models for understandability tests. Ongoing research
on process model understandability [14] and complexity metrics [7] can lever-
age the models in this sample set. Typically, the models used in those tests
have been designed by the researchers because they need to fulfill very spe-
cific properties. With the large sample set given and the strong diversity in
the collection, it should be possible to identify and reuse models from this
collection for empirical research, enabling a higher external validity for the
experiments.

56 M. Kunze et al.

Linguistic Analysis. One of the major challenges for recent research topics
in BPM, e.g., to compute the similarity of business processes [6,4,11] or
to manage consistency between processes [28], is the alignment of process
models, i.e., the identification of corresponding nodes in two or more business
processes. The main obstacle is the heterogeneity of used terms in process
model inscriptions, to which many solutions, based on syntactic, semantic,
and linguistic approaches, have been proposed. The BPMAI models show
over 25 natural languages, English and German being the most commonly
used. This offers a source to train algorithms towards aligning process models,
as well as to evaluate other means of process modeling, e.g., the usage of a
limited vocabulary for labeling.

This list of research opportunities is not a closed set. We hope to collect more
ideas as part of the discussion that is triggered with this paper. We do not claim
to tackle all aspects in our future research. Instead we want to inspire researchers
to leverage the potential given in such a model collection.

6 Conclusion

In this paper, we laid the foundations for research on modeling practice using
a particularly suited model collection, the BPMAI collection. This collection
allows for investigating modeling practice in a unique setting. The models show
a high heterogeneity with respect to the educational backgrounds of the modelers,
the used natural and modeling languages, and the considered business domains.
Hence, empirical insights that are derived using the BPMAI collection can be
assumed to have a high external validity.

While the process models are well suited for many use cases towards under-
standing process models, they are limited by few aspects. All models have been
created by academics, i.e., mostly by students as part of course assignments.
While this leads to a high heterogeneity with regards to modeling practice, us-
age of process model constructs, and terminology, the models may expose certain
characteristics, e.g., modeling style, that is attributed to their lecturers. Also, ev-
ery model was created with the same tool, the Signavio process model editor,
which is aware of syntax rules of modeling language specifications, and thus
prevents many modeling mistakes. Consequences of this are, e.g., the bipartite
occurrence of Functions and Events in EPCs and the co-occurrence of Pools and
Lanes in BPMN.

This paper first presented a characterization of the BPMN models and EPCs
of the collection, a set of 1345 models, using several established process model
metrics. In this data set, BPMN models expose a higher diversity than EPCs in
terms of construct heterogeneity, i.e., the number of unique modeling constructs.
This is due to the greater and more detailed expressiveness of the BPMN lan-
guage compared to EPCs, which is also leveraged in process models. At the
same time, the overall heterogeneity of process models is rather low among both
modeling languages, which suggests that most models are kept concise.

Towards Understanding Process Modeling 57

The investigation of language usage in these models showed results in line
with [22]. Most modelers resort to a rather limited set of vocabulary, with sim-
ple activity sequences at the very core. Remarkably, the vocabulary subsets of
BPMN and EPC are fairly similar. It suggests a true core set of relevant modeling
concepts.

We concluded our work with an outline of a research agenda that uses the
models of the BPMAI collection. These include more topics towards understand-
ing process modeling, for example, through model evolution, communities of
practice, assessing modeling mistakes, but also towards other opportunities that
rely on a heterogeneous model collection, e.g., similarity and linguistic analysis
of process models.

Acknowledgements. We are grateful to Signavio, in particular Gero Decker,
for providing access to a snapshot of anonymized models from the BPM Aca-
demic Initiative. We also thank Katrin Honauer and Philipp Berger who sup-
ported us in the implementation of the experiments.

References

1. Cardoso, J.: Business Process Control-Flow Complexity: Metric, Evaluation, and
Validation. Int. J. Web Service Res. 5(2), 49–76 (2008)

2. Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the
Business Process Reference Model. Prentice-Hall, Inc., Upper Saddle River (1997)

3. Decker, G.: Design and Analysis of Process Choreographies. PhD thesis, Hasso
Plattner Institut an der Universität Potsdam (2009)

4. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity
of Business Process Models: Metrics and Evaluation. Information Systems 36(2),
498–516 (2011)

5. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph Matching Algorithms for
Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg
(2009)

6. Dumas, M., Garćıa-Bañuelos, L., Dijkman, R.M.: Similarity Search of Business
Process Models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)

7. Figl, K., Laue, R.: Cognitive Complexity in Business Process Modeling. In: Moura-
tidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 452–466. Springer,
Heidelberg (2011)

8. Grosskopf, A., Brunnert, J., Wehrmeyer, S., Weske, M.: BPMNCommunity.org: A
Forum for Process Modeling Practitioners – A Data Repository for Empirical BPM
Research. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP,
vol. 43, pp. 525–528. Springer, Heidelberg (2010)

9. Jin, T., Wang, J., Wu, N., La Rosa, M., ter Hofstede, A.H.M.: Efficient and Ac-
curate Retrieval of Business Process Models through Indexing - (Short Paper). In:
Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp.
402–409. Springer, Heidelberg (2010)

10. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der
Grundlage Ereignisgesteuerter Prozessketten (EPK) (1992)

58 M. Kunze et al.

11. Kunze, M., Weidlich, M., Weske, M.: Behavioral Similarity – A Proper Metric. In:
Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp.
166–181. Springer, Heidelberg (2011)

12. Kunze, M., Weske, M.: Metric Trees for Efficient Similarity Search in Large Process
Model Repositories. In: zur Muehlen, M., Su, J. (eds.) BPM Workshops. LNBIP,
vol. 66, pp. 535–546. Springer, Heidelberg (2011)

13. Kunze, M., Weske, M.: Signavio-Oryx Academic Initiative. In: BPM 2010 Demon-
stration Track. CEUR, vol. 615 (2010)

14. Laue, R., Gadatsch, A.: Measuring the Understandability of Business Process Mod-
els – Are We Asking the Right Questions. In: BPD 2010 (2010)

15. Lee, G.S., Yoon, J.-M.: An Empirical Study on the Complexity Metrics of Petri
Nets. Microelectronics and Reliability 32(3), 323–329 (1992)

16. Leopold, H., Mendling, J., Reijers, H.A.: On the Automatic Labeling of Process
Models. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp.
512–520. Springer, Heidelberg (2011)

17. Mendling, J.: Testing Density as a Complexity Metric for EPCs. In: German EPC
Workshop on Density of Process Models (2006)

18. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis (2007)

19. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008)

20. Mendling, J., Reijers, H.A., Recker, J.: Activity Labeling in Process Modeling:
Empirical Insights and Recommendations. Inf. Syst. 35(4), 467–482 (2010)

21. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven Process Modeling Guide-
lines (7PMG). Information & Software Technology 52(2), 127–136 (2010)

22. zur Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and Prac-
tical Use of the Business Process Modeling Notation. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)

23. Nissen, M.E.: Valuing it Through Virtual Process Measurement. In: ICIS, pp. 309–
323 (1994)

24. Object Management Group. Business Process Model and Notation (BPMN) Spec-
ification, Version 2.0

25. Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process
Management Journal 12(2), 249–254 (2006)

26. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling Using Event-driven Pro-
cess Chains (2005)

27. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action Patterns in Business
Process Models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009)

28. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement based
on Behavioural Profiles of Process Models. IEEE TSE 37(3), 410–429 (2011)

29. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

30. Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with
Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T.S., Herrero, P.
(eds.) OTM 2010. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010)

Extending BPMN 2.0: Method and Tool Support

Luis Jesús Ramón Stroppi1, Omar Chiotti2, and Pablo David Villarreal1

1 CIDISI, National Technological University Santa Fe Faculty, Lavaise 610,
S3004EWB, Santa Fe, Argentina

{lstroppi,pvillarr}@frsf.utn.edu.ar
2 INGAR-CONICET, Avellaneda 3657, S3002GJC, Santa Fe, Argentina

chiotti@santafe-conicet.gov.ar

Abstract. There are two major pitfalls in the development of extensions
to the BPMN 2.0 metamodel. First, there is a lack of methodological
guides considering the extensibility approach supported by the exten-
sion mechanism of the language. Second, BPMN does not provide any
graphical notation for the representation of extensions. This work pro-
poses a method based on Model-Driven Architecture for the development
of extensions to the BPMN 2.0 metamodel. It enables the conceptual
modeling of extensions by using UML, their graphical representation in
terms of the BPMN extension mechanism, and their transformation into
XML Schema documents that can be processed by BPMN tools. A tool
supporting the proposed method is also presented.

Keywords: BPMN, Extension Mechanism, Method, Model-Driven
Architecture.

1 Introduction

Business Process Model and Notation (BPMN) [1] is a broadly accepted language
providing a metamodel and a notation to define and visualize business process
models. BPMN 2.0 also provides an extension mechanism that allows attaching
additional attributes and elements to its original elements.

Extension mechanisms allow representing domain-specific concepts in general
purpose modeling languages. They can also be used to add information needed
to transform models into platform-specific models or code [2]. A well-known
example of these mechanisms is UML Profiles [3,4] that enables the approach of
extension by specialization. Unlike this, BPMN enables the approach of extension
by addition which consists of attaching new domain-specific elements to the
predefined elements of the language [5].

There are two major pitfalls in the development of extensions to the BPMN
2.0 metamodel. First, there is a lack of methodological guides supporting the cre-
ation of BPMN extensions considering the extensibility approach provided by
the language. Second, the BPMN specification [1] does not provide any graphical
notation for the representation of extensions. It includes a sample extension rep-
resented with XML Schema. XML Schema allows defining extensions that can
be processed by BPMN tools. However, it does not provide an effective way for

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 59–73, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

60 L.J.R. Stroppi, O. Chiotti, and P.D. Villarreal

visualizing the structure of extensions and exposes designers to low level imple-
mentation issues [6]. This fact hinders conceptualizing and validating extensions,
especially when working with non-technical people like domain experts.

The goal of this work is to propose a method based on Model-Driven
Architecture (MDA) for the development of extensions to the BPMN 2.0 meta-
model enabling their conceptualization by using UML, their graphical represen-
tation in terms of the BPMN extension mechanism, and their transformation
into XML Schema documents that can be processed by BPMN tools. This work
also presents a tool supporting the proposed method.

This work is structured as follows. Section 2 describes the BPMN extension
mechanism. Section 3 presents the proposed method for the development of
BPMN extensions. Section 4 presents the tool developed to support the method.
Section 5 discusses related work. Finally, section 6 presents the conclusions.

2 The BPMN Extension Mechanism

The BPMN metamodel [1] can be extended by adding new attributes and el-
ements to its predefined elements. This is supported by an extension mecha-
nism consisting of four elements. ExtensionDefinition groups new attributes to
be added to original BPMN elements under a new concept name. Extension-
AttributeDefinition represents an attribute defined for an ExtensionDefinition
element. ExtensionAttributeValue stores the value assigned to an extension at-
tribute of a BPMN element. Extension binds/imports an ExtensionDefinition
element to a BPMN model Definition.

The BPMN 2 metamodel [1] was specified using the Meta Object Facility
(MOF). Thus, it is possible to position it within the layer architecture of OMG
[3] (see Figure 1). The Core package of the UML Infrastructure defines the mod-
eling constructs used to create metamodels. The Profiles package defines mecha-
nisms to customize metamodels defined using the Core package concepts. MOF
provides the mechanisms for creating instances of the Core package metaclasses.

Both the BPMN and UML metamodels have been specified using MOF. Notice
that a profile could be applied to customize the BPMN metamodel. However,
this would force the tools to exchange process models by using XMI while BPMN
defines its own extension mechanism and interchange format.

The BPMN extension mechanism is part of the BPMN metamodel. It supports
the approach of extension by addition. It allows defining groups of attributes and

Fig. 1. Position of BPMN within the OMG layer architecture

Extending BPMN 2.0: Method and Tool Support 61

elements which are attached to the standard BPMN elements. BPMN models
using extensions keep interchangeable as the structure of the original elements
is not modified. The new attributes specified in a BPMN ExtensionDefinition
element and bound to a model definition by an Extension element can be used by
any element within that model being an instance of a subclass of BaseElement.
This is because the BPMN extension mechanism does not provide any way to
specify what element of the language is being extended. That would require
defining the extension mechanism at a higher level of abstraction than the BPMN
elements to be extended, as it is the case of Profiles.

The BPMN specification provides two representations of its elements. The
first one is a MOF metamodel describing the language concepts. The second
one is a set of XML Schema documents specifying the interchange format for
BPMN models. As MOF has its own interchange format called XML Metadata
Interchange (XMI), OMG also provides a set of XSL transformations aimed
to convert BPMN models into either the XML Schema or XMI interchange
formats. However, in the particular case of the extension mechanism, the MOF
and XML Schema representations of BPMN are not equivalent (see Figure 2).
Moreover, the aforementioned XSL transformations does not allow converting
BPMN extension definitions from one interchange format to the other properly.

The XML Schema representation of BPMN does not include the Extension-
Definition, ExtensionAttributeDefinition and ExtensionAttributeValue elements
defined in the MOF representation. When using the XML Schema representa-
tion, the structure of the extensions is represented in separate XML Schema
documents which are imported by BPMN model definitions. Figure 3 illustrates
the way a BPMN extension is defined using the XML Schema representation
and how it is applicated to a BPMN model. The labels link the elements of the
documents to the concepts of the MOF representation of BPMN.

Figure 3a shows an XML Schema document defining a BPMN extension. The
ExtensionDefinition MOF element matches with an <xsd:group> element. The

Fig. 2. MOF and XML Schema Representations of the BPMN Extension Mechanism

62 L.J.R. Stroppi, O. Chiotti, and P.D. Villarreal

ExtensionAttributeDefinition element corresponds with <xsd:element> elements
nested within the <xsd:group> element. Figure 3b shows an XML document
describing a BPMN model applying the defined extension. The ExtensionAt-
tributeValue element of the MOF representation of BPMN matches with the
elements nested within the <extensionElements> element. The MOF represen-
tation of BPMN does not provide any element to define the structure of the types
of attribute specified by ExtensionAttributeDefinition elements. These types are
described in XML Schema by using <xsd:simpleType> or <xsd:complexType>
elements. The XML Schema representation of BPMN allows the use of these
externally defined types as it specifies that <extensionElements> can contain
any element, even defined in other namespace.

Fig. 3. An Example of a BPMN Extension and its Application in a BPMN Model

Extending BPMN 2.0: Method and Tool Support 63

3 MDA-Based Method for the Development of BPMN
Extensions

This section presents an MDA-based method for the development of extensions
to the BPMN metamodel. It enables defining the conceptual model of an exten-
sion, its graphical representation in terms of the BPMN extension mechanism
and its transformation into an XML Schema document that can be processed
by compliant BPMN tools. The method consists of the steps listed below.

1. Definition of a Conceptual Domain Model of the Extension by using UML.
2. Definition of a BPMN plus Extensions (BPMN+X) model describing an

extension in terms of the BPMN extension mechanism.
3. Transformation of the BPMN+X model into an XML Schema Extension

Definition Model.
4. Transformation of the XML Schema Extension Definition Model into an

XML Schema Extension Definition Document.

This method adopts the approach taken in works providing methodological
guides for the development of UML Profiles [5,7,8]. They separate the definition
of the conceptual domain model of the extension from its representation through
the mechanism provided by the language being extended, as it is specified in the
first and second steps of the method.

3.1 Definition of a Conceptual Domain Model of the Extension by
Using UML

The first step of the method consists of defining a Conceptual Domain Model of
the Extension (CDME) describing the concepts of the domain to be represented
in extended BPMN models and their relationships with the concepts of the
BPMN metamodel. The CDME is specified in a UML class model, disregarding
any restriction imposed by the BPMN Extension Mechanism.

The concepts of a CDME are preliminarily characterized as BPMN Concepts
or as Extension Concepts. The BPMN Concepts are those that match with some
concept of the BPMN metamodel. The Extension Concepts are those defined in
the domain of the extension.

As an example, consider an extension to the UserTask BPMN element. It is
a kind of Task representing a step of a process where a human resource perform
some work with the aid of a software application. The aim of the extension is to
provide a work distribution strategy that is complementary to the ResourceRole
assignment provided by BPMN. This strategy enables the specification of more
details about the way the work of a task can be distributed to human resources
involved in a process. The extension defines three new properties for the User-
Task element. The first one is distributionAgent that indicates whether the work
of the task is distributed by the system or by the administrator of the process.
The second one is distributionTrigger that allows specifying an event causing
the start of the work distribution procedure. The last one is taskPrivileges that

64 L.J.R. Stroppi, O. Chiotti, and P.D. Villarreal

enables the specification of the set of privileges granted to the resources in or-
der to complete the work of the task. Figure 4 shows three alternative CDMEs
that can be the result of a first attempt of conceptualizing the above exten-
sion. The differences between them and the way they can be represented as a
BPMN extension are studied in the following section. In the example, the BPMN
Concepts (shown in gray) are Task, UserTask and BoundaryEvent; while the
Extension Concepts (shown in white) are DistributionStrategy, TaskWithDistri-
butionStrategy, AgentType and TaskPrivilege.

Fig. 4. Alternative Conceptual Domain Models of an Extension

3.2 Definition of a BPMN Plus Extensions Model

The second step is accomplished by developing a BPMN+X model based on the
CDME resulting of the first step. BPMN+X is a language developed in this work
as a UML profile. Thus, it can be supported by existing UML tools. Another
benefit of defining BPMN+X as a profile is that its learning curve will be more
effective as UML is a popular modeling language. The semantics and the abstract
syntax of the BPMN+X elements are based on the specification of the BPMN
extension mechanism [1]. Figure 5 shows the stereotypes of the BPMN+X profile
and the UML metaclasses that it specializes.

ExtensionModel is the topmost container of all the elements defining a BPMN
extension. BPMNElement allows representing an original element of the BPMN
metamodel. BPMNEnum and ExtensionEnum enable representing sets of liter-
als defined in the BPMN metamodel and in the extension model, respectively.
ExtensionElement allows representing a new element in the extension model

Fig. 5. BPMN+X UML Profile for BPMN extension models

Extending BPMN 2.0: Method and Tool Support 65

which is not defined in the BPMN metamodel. ExtensionDefinition allows spec-
ifying a named group of attributes which are jointly added to the original BPMN
elements. ExtensionDefinition has the same meaning than the ExtensionDefini-
tion element of the BPMN metamodel. The semantics defined by the Exten-
sionAttributeDefinition element of the BPMN metamodel is captured by the
Property metaclass of the UML metamodel. Thus, ExtensionAttributeDefini-
tion is represented in BPMN+X models by UML properties, either owned by
the ExtensionDefinition elements or navigable from them through associations.
The properties of ExtensionDefinition and ExtensionElement elements can be
typed as a BPMNElement, ExtensionElement, BPMNEnum, ExtensionEnum or
UML primitive type. Finally, ExtensionRelationship specifies a conceptual link
between a BPMNElement and an ExtensionDefinition element aimed to extend
it. The BPMN extension mechanism cannot express the BPMN element to be
extended by an extension definition. Thus, the definition of an ExtensionRela-
tionship does not produce any effect in the resulting BPMN extension. Exten-
sionRelationship is provided to help conceptualizing extensions since extensions
are generally defined to customize certain elements of the BPMN metamodel.

Figure 6 shows a set of OCL constraints specified as part of the BPMN+X
profile. These constraints ensure that the extensions defined by using BPMN+X
are aligned with the BPMN specification. The details about each of the con-
straints have been omitted for reasons of sapce.

The rest of this section describes a procedure to define a BPMN+X model
based on a CDME. It provides a set of rules which help finding a suitable way
to represent CDME concepts as BPMN+X elements. The procedure is robust

Fig. 6. OCL Constraints of the BPMN+X UML Profile

66 L.J.R. Stroppi, O. Chiotti, and P.D. Villarreal

as it allows producing a unique BPMN+X model from distinct CDMEs rep-
resenting an extension by applying different rules. This is shown by obtaining
the BPMN+X model of Figure 7 from the different CDMEs of Figure 4. The
procedure has two stages. The first one consists of creating and populating the
BPMN+X model with elements representing the BPMN Concepts of the CDME.
The second one consists of applying rules to derive BPMN+X elements repre-
senting Extension Concepts. The rules are based on analysis of the properties and
generalization relationships of the CDME classes. The procedure is as follows.

In the first stage, create an ExtensionModel named as the CDME and popu-
late it with one BPMNElement and one BPMNEnum for each class and enumer-
ation of the CDME, respectively characterized as BPMN Concept. Then, add an
ExtensionEnum for each enumeration characterized as Extension Concept.

In the second stage, apply the rules for representing the Extension Concepts
in the BPMN+X model. Let c be a class of the CDME, and let p be a property
of type t that is either an attribute of c or that is navigable from c through
an association to t. The representation of c, p, and t in the BPMN+X model
depends on whether c is characterized as a BPMN Concept or as an Extension
Concept ; whether p is an original or a new property of c; and whether t is
a BPMN Concept, an Extension Concept, or a Data Type. A property p of a
BPMN Concept c is considered as original when there is a property matching p
for the class matching c in the BPMN metamodel. Else, p is considered as a new
property. Finally, t is a Data Type when it is a primitive type or an enumeration.
Table 1 summarizes the rules for the representation of a CDME property p in a
BPMN+X model, based on these parameters. The representation of c and t is
then inferred founded on the representation of p.

Rule 1 applies when p is an original property of a BPMN Concept. If t is
a Data Type (rule 1a), p is represented as an attribute of the BPMNElement
matching c in the BPMN+X model. Else, if t is a BPMN Concept (rule 1b),
p is represented as an association navigable from the BPMNElement matching
c to the BPMNElement matching t in the BPMN+X model. These situations
are illustrated in the BPMN+X model of Figure 7 by the representation of the
implementation and renderings properties defined in the CDMEs of Figure 4.

Rule 2 is valid when p is a new property of a BPMN Concept. In this case,
p specifies an ExtensionAttributeDefinition that BPMN+X allows defining as
a property of an ExtensionDefinition element. Thus, an ExtensionDefinition

Fig. 7. Example of a BPMN+X model

Extending BPMN 2.0: Method and Tool Support 67

element related with the BPMNElement matching c by an ExtensionRelation-
ship has first to be created with a meaningful name. After that, if t is a Data
Type (rule 2a), p is specified as an attribute of the created ExtensionDefini-
tion element. If t is a BPMN Concept (rule 2b), p is specified as an association
navigable from the created ExtensionDefinition element to the BPMNElement
matching t in the BPMN+X model. Rule 2c is suitable when t is a concrete
Extension Concept in the sense that t defines a new kind of element to be in-
stantiated in an extended BPMN model. In such case, t is an ExtensionElement
and p is an ExtensionAttributeDefinition represented as an association navigable
from the created ExtensionDefinition to the ExtensionElement matching t in the
BPMN+X model. Rules 2a, 2b and 2c, are illustrated in the BPMN+X model of
Figure 7 by the representation of the distributionAgent, distributionTrigger and
taskPrivileges properties, respectively defined in the CDME of Figure 4a.

Rule 3 is applicable when p is a new property of a BPMN Concept and t is
an abstract Extension Concept aimed to group a set of properties to be added
to c. In such case, t is represented as an ExtensionDefinition element and p is
denoted as an ExtensionRelationship from the BPMNElement matching c to
the ExtensionDefinition matching t. This is illustrated in the BPMN+X model
of Figure 7 by the representation of the distributionStrategy property defined in
the CDME of Figure 4b.

Rule 4 is applied when p is a property of an Extension Concept. A prerequisite
for the application of rule 4 is the previous classification of c as an Extension-
Definition or as an ExtensionElement. This is done by applying rules 2c, 3 or
4c to the properties typed as c, and by applying rules 7 or 8 to generalization
relationships involving c. If t is a Data Type (rule 4a), p is specified as an at-
tribute of the element matching c. Else, if t is a BPMN Concept (rule 4b), p is
denoted as an association navigable from the element matching c to the element
matching t. Instead, if t is an Extension Concept (rule 4c), t is specified by an
ExtensionElement and p by an association navigable from the element matching
c to the element matching t. This is illustrated in Figure 7 by the representation
of the distributionAgent, name and granted (rule 4a), distributionTrigger (rule
4b) and taskPrivileges (rule 4c) properties defined in Figures 4b and 4c.

In addition to the analysis of properties, it is also necessary to analyze the
generalization relationships between the concepts of a CDME. Let g be a gener-
alization relationship from a class c to a super class s. The representation of g,
c and s in a BPMN+X model depends on the characterization of c and s and
on whether g is original or new. Table 2 summarizes the rules for representing g
in a BPMN+X model based on these parameters. The representation of c and s
is then inferred based on the representation of g.

Rule 5 is valid when g is an original generalization relationship from a BPMN
Concept c to another BPMN Concept s. In this case, g is represented as a gener-
alization relationship from the BPMNElement matching c to the BPMNElement
matching s in the BPMN+X model. This is illustrated in the BPMN+X model of
Figure 7 by the representation of the generalization relationship from UserTask
to Task defined in all CDMEs of Figure 4.

68 L.J.R. Stroppi, O. Chiotti, and P.D. Villarreal

Table 1. Rules to represent a CDME class property in a BPMN+X model

Class(c) Property(p) Type(t) Representation of p

1a BPMN Concept Original Data Type BPMNElement Property
1b BPMN Concept Original BPMN Concept BPMNElement Property
2a BPMN Concept New Data Type ExtensionAttributeDefinition
2b BPMN Concept New BPMN Concept ExtensionAttributeDefinition
2c BPMN Concept New Extension Concept ExtensionAttributeDefinition
3 BPMN Concept New Extension Concept ExtensionRelationship
4a Extension Concept New Data Type ExtensionElement Property /

ExtensionAttributeDefinition
4b Extension Concept New BPMN Concept ExtensionElement Property /

ExtensionAttributeDefinition
4c Extension Concept New Extension Concept ExtensionElement Property /

ExtensionAttributeDefinition

Rule 6 applies when g is a new generalization relationship from a BPMN
Concept to another BPMN Concept. At this stage, g is considered to be invalid
so it is not represented in the BPMN+X model as it is not supported by the
BPMN extension mechanism.

Rule 7 is applicable when g is a generalization relationship between a BPMN
Concept and an Extension Concept. The BPMN extension mechanism enables
the approach of extension by addition. It only enables attaching domain-specific
elements to the original BPMN elements. It does not allow representing a new
taxonomic relationship between a more specific BPMN Concept and a more
general Extension Concept (rule 7a) or vice versa (rule 7b). Hence, g would
have to be considered as invalid. However, as a best-effort solution, the Exten-
sion Concept can be represented as an ExtensionDefinition element and g as an
ExtensionRelationship from the BPMNElement matching the BPMN Concept
to the created ExtensionDefinition element. In this way, the additional prop-
erties defined by the Extension Concept can be added to the BPMN Concept.
The representation of the generalization relationship from TaskWithDistribu-
tionStrategy to UserTask defined in Figure 4c as the ExtensionRelationship from
UserTask to DistributionStrategy of Figure 7 illustrates rule 7b.

The use of other mechanisms like Profiles or MOF would have to be considered
to extend BPMN when rule 7 is not suitable or the rule 6 applies.

Finally, rule 8 is valid when g is a generalization relationship from an Exten-
sion Concept c to another Extension Concept s. A prerequisite for the applica-
tion of rule 8 is the previous classification of s as an ExtensionDefinition or as
an ExtensionElement. This is done by applying rules 2c, 3 or 4c to the prop-
erties typed as s, and by applying rules 7 or 8 to generalization relationships
involving s. Then, c is represented as an ExtensionElement element (rule 8a) or
as an ExtensionDefinition element (rule 8b) depending on whether s is an Ex-
tensinElement or an ExtensionDefinition, respectively and g is represented as a
generalization relationship from the element matching c to the element matching
s in the BPMN+X model.

Extending BPMN 2.0: Method and Tool Support 69

Table 2. Rules to represent a CDME generalization relationship in a BPMN+X model

Class(c) Generalization(g) Super Class(s) Representation of g

5 BPMN Concept Original BPMN Concept BPMNElement
Generalization

6 BPMN Concept New BPMN Concept Invalid
7a BPMN Concept New Extension Concept ExtensionRelationship
7b Extension Concept New BPMN Concept ExtensionRelationship
8a Extension Concept New Extension Concept ExtensionElement

Generalization
8b Extension Concept New Extension Concept ExtensionDefinition

Generalization

3.3 Transformation of the BPMN+X Model into an XML Schema
Extension Definition Model

The third step consists of transforming the BPMN+X model into an XML
Schema Extension Definition Model that is an instance of a MOF metamodel
representing the concepts of the XML Schema specification [9]. Figure 8 illus-
trates the transformation rules.

An ExtensionModel element is transformed into a Schema element. An Ex-
tensionDefinition element is transformed into a ModelGroupDefinition element.
An ExtensionElement element is transformed into a ComplexTypeDefinition el-
ement. An ExtensionEnum element is transformed into a SimpleTypeDefinition
element. BPMNElement and BPMNEnum elements are not transformed into
any kind of XML Schema element. This is because the generated Schema im-
ports the BPMN specification so the BPMN elements can be referenced by the
other elements defined in the ExtensionModel.

Figure 9 shows the result of applying the transformation to the BPMN+X
model shown in Figure 7. It consists of a Schema containing a GroupDefinition
called DistributionStrategy that has three element declarations. The first one is
distributionAgent that is typed tDistributionAgent as it was generated from an

Fig. 8. BPMN+X to XML Schema Extension Definition Model transformation

70 L.J.R. Stroppi, O. Chiotti, and P.D. Villarreal

Fig. 9. Example of an XML Schema Extension Definition Model

attribute. The second one is distributionTrigger that is typed QName because
it was generated from a reference association. The last one is taskPrivileges
that is typed tTaskPrivilege as it was generated from a composite association.
The tTaskPrivilege ComplexTypeDefinition element represents the TaskPrivilege
ExtensionElement element of Figure 7. The tAgentType SimpleTypeDefinition
element represents the AgentType ExtensionEnum.

3.4 Transformation of the XML Schema Extension Definition
Model into an XML Schema Document

The last step of the method consists of generating an XML Schema document
representing the elements of the XML Schema Extension Definition Model re-
sulting of the third step. This document is produced by means of a straight-
forward model-to-code transformation producing one element in the resulting
document per each element in the input model. The Schema elements are trans-
formed into <xsd:schema> elements. The GroupDefinition elements are trans-
lated into <xsd:group> elements. The ComplexTypeDefinition elements result
in <xsd:complexTypeDefinition> elements. Finally, SimpleTypeDefinition ele-
ments are converted into <xsd:simpleTypeDefinition> elements. The result of
this step is called XML Schema Extension Definition Document (see Figure 10).

An XML Schema Extension Definition Document is imported by one or more
XML BPMN Model Definition Documents, which are XML documents describing
BPMN models. An XML BPMN Model Definition Document is an instance
of the XML Schema BPMN Metamodel Definition Document, which specifies
the XML Schema representation of BPMN. An XML BPMN Model Definition
Document must define one Extension element to bind each of the imported
extension definitions to the elements of the model being defined.

Figure 3a shows an XML Schema Extension Definition Document resulting of
applying the described transformation to the XML Schema Extension Definition

Fig. 10. Structure of the resulting documents

Extending BPMN 2.0: Method and Tool Support 71

Model shown in Figure 9. Figure 3b shows an XML BPMN Model Definition
Document importing the XML Schema Extension Definition Document.

4 Tool Support

The method described in the above section is supported by a tool developed on the
Eclipse platform. The tool is available at http://code.google.com/p/bpmnx/. It
has the structure shown in Figure 11.

The first step of the proposed method can be accomplished by creating UML
models with the Eclipse UML2 and UML2 Tools plugins. The second step is
supported by the BPMN+X plugin developed on the UML2 plugin which al-
lows creating and validating BPMN+X models based on the conceptual domain
model resulting of the first step. The third step of the method is supported
by a model-to-model transformation developed by using the QVT plugin. This
transformation takes a BPMN+X model and returns an XML Schema Exten-
sion Definition Model that is an instance of an Ecore representation of XML
Schema [9]. The last step is supported by a model-to-code transformation de-
veloped using the JET plugin. It produces one XML Schema element in the
resulting XML Schema Extension Definition Document for each element in the
input XML Schema Extension Definition Model.

Fig. 11. Structure of the developed tool

5 Related Work

To date, there is a lack of works providing systematic approaches for the devel-
opment of extensions to the BPMN 2.0 metamodel. However, there are previous
works providing approaches to extend UML by developing UML Profiles. Fuentes
et al [7] propose an approach consisting of five steps which starts with the def-
inition of conceptual models of the profile to be developed. Selic [5] provides
a similar step based approach starting with the construction of a conceptual
model. That work also provides a checklist for the revision of profiles in order
to ensure they do not contradict any restriction imposed by the extension mech-
anism. Lagarde et al [8] identify a set of patterns which can be identified in
conceptual models of extensions to UML and how they can be traduced in terms
of the UML Profile extension mechanism. The method proposed in the present
work considers some of the practices recommended in these articles.

http://code.google.com/p/bpmnx/

72 L.J.R. Stroppi, O. Chiotti, and P.D. Villarreal

In a previous work [10], we proposed a BPMN extension to support the re-
source perspective of business process models. Its conceptual model was defined
with UML and stereotypes were used to match its elements with the elements of
the BPMN extension mechanism. Another work by Saeedi et al [11], proposed an
extension for representing quality requirements. It was also defined with UML
and the extension concepts were linked to the BPMN concepts by composite
associations. A third work by Schleicher et al [12] proposed a BPMN exten-
sion to specify compliance requirements. It also defined the conceptual model of
the extension with UML, but specified an extension definition as a subclass of
the BPMN ExtensionDefinition element. The differences between the aforemen-
tioned works unveil the need for a unified method for the conceptual modeling of
extensions and their representation in terms of the BPMN extension mechanism.

6 Conclusions

This work presented an MDA-based method and a tool supporting the develop-
ment of extensions to the BPMN 2.0 metamodel. The method takes into account
the BPMN extension mechanism. It guides the development of extensions from
their representation in conceptual models to their codification as XML Schema
documents. The method encourages starting from a UML conceptual domain
model of the extension (CDME) and provides guidelines to derive a BPMN ex-
tension model (BPMN+X) representing it. The remaining steps of the method
can be performed automatically with the aid of the provided tool.

This work also proposed the BPMN+X profile. It enables defining BPMN
extensions graphically. It is better suited for use by people than XML Schema
as it avoids them having to deal with implementations issues. It includes OCL
constraints to validate the extensions against the BPMN extension mechanism.

A procedure was also defined for creating a BPMN+X model from a CDME.
It includes a set of rules to create BPMN+X elements from the concepts of the
CDME by analyzing its properties and generalization relationships.

The resulting BPMN+X model can be automatically transformed into an
XML Schema document that can be processed by BPMN tools. This is done in
two steps. First, it is transformed into an XML Schema Extension Definition
Model. Second, the XML Schema Extension Definition Model is transformed
into an XML Schema Extension Definition Document. These transformations
guarantee the generated document can be used by compliant BPMN tools and
avoid introducing errors by the manual definition of this document.

A tool based on the Eclipse platform implementing and supporting the method
was also presented. It makes use of different plugins provided by that platform
such as UML2, UML2 Tools, QVT and JET. Thus, it was demonstrated that
the method can be implemented by using currently available tools.

The use of ontologies to conceptualize extensions and define CDMEs, as well
as the development of approaches for extending the BPMN notation to depict
instances of extensions in BPMN diagrams are considered as future work.

Extending BPMN 2.0: Method and Tool Support 73

References

1. OMG: Business Process Model and Notation (BPMN), V.2.0 (2011),
http://www.omg.org/spec/BPMN/2.0

2. OMG: MDA Guide Version 1.0.1 (2003),
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

3. OMG: Unified Modeling Language (UML) Infrastructure, V.2.2 (February 2009),
http://www.omg.org/spec/UML/2.2/Infrastructure

4. OMG: Unified Modeling Language (UML) Superstructure, V.2.2 (February 2009),
http://www.omg.org/spec/UML/2.2/Superstructure

5. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML.
In: ISORC 2007: Proceedings of the 10th IEEE International Symposium on Ob-
ject and Component-Oriented Real-Time Distributed Computing, pp. 2–9. IEEE
Computer Society, Los Alamitos (2007)

6. Routledge, N., Bird, L., Goodchild, A.: UML and XML schema. Aust. Comput.
Sci. Commun. 24(2), 157–166 (2002)

7. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An Introduction to UML Profiles.
UPGRADE, European Journal for the Informatics Professional 5(2), 5–13 (2004)

8. Lagarde, F., Espinoza, H., Terrier, F., Gérard, S.: Improving UML Profile Design
Practices by Leveraging Conceptual Domain Models. In: International Conference
on Automated Software Engineering (ASE) (November 2007)

9. WRC: XML Schema Part 1: Structures Second Edition (October 2004),
http://www.w3.org/TR/xmlschema-1/

10. Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: A BPMN 2.0 Extension to Define the
Resource Perspective of Business Process Models. In: CIbSE 2011: Proceedings of
the XIV Iberoamerican Conference on Software Engineering (April 2011)

11. Saeedi, K., Zhao, L., Falcone Sampaio, P.R.: Extending BPMN for Supporting
Customer-Facing Service Quality Requirements. In: Proceedings of the 2010 IEEE
International Conference on Web Services, pp. 616–623. IEEE Computer Society,
Washington, DC, USA (2010)

12. Schleicher, D., Leymann, F., Schumm, D., Weidmann, M.: Compliance scopes:
Extending the bpmn 2.0 meta model to specify compliance requirements. In: 2010
IEEE International Conference on Service-Oriented Computing and Applications
(SOCA), pp. 1–8 (December 2010)

http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/spec/UML/2.2/Infrastructure
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.w3.org/TR/xmlschema-1/

BPMN for REST

Cesare Pautasso

Faculty of Informatics
University of Lugano (USI)

via Buffi 13, CH-6900 Lugano, Switzerland
http://www.pautasso.info/

c.pautasso@ieee.org

Abstract. The Representational State Transfer (REST) architectural
style has seen substantial growth and adoption for the design of modern
Resource-Oriented Architectures. However, the impact of fundamental
constraints such as stateful resources, stateless interactions, and the uni-
form interface have had only limited uptake and impact in the Business
Process Modeling (BPM) community in general, and in the standardiza-
tion activities revolving around the BPMN notation. In this paper we
propose a simple and minimal extension of the BPMN 2.0 notation to
provide first-class support for the concept of resource. We show several
examples of how the extended notation can be used to externalize the
state of a process as a resource, as well as to describe process-driven
composition of resources.

1 Introduction

Whereas the BPMN notation has been originally developed for modeling com-
plex message-based interactions between process-backed services [3], in the last
few years a novel abstraction has emerged (the resource [5]) which changes some
of the assumptions and gives new constraints for the design of service oriented
architectures [21]. Since business process modeling is one of the foundations for
service reuse and composition [9], it becomes important to study how model-
ing techniques and notations developed for message-based service choreography
and orchestration can also be applied to resource-based (or RESTful [16]) Web
services.

In this paper, we take a look at the general problem of how to combine
Business Process Modeling (BPM) with the REpresentational State Transfer
(REST [5]) architectural style within the specific context of the BPMN nota-
tion [11]. The goal is to study how well the basic modeling concepts and con-
structs of the BPMN notation fit with the resource abstraction and to propose
a lightweight, minimalistic and simple extension to fill the current gap between
BPMN and REST. The proposed extension aims at reusing the existing graphi-
cal elements of BPMN as much as possible in order to avoid to further increase
its visual complexity [10]. With it, it becomes possible to model so-called REST-
ful business processes, which can be both used to orchestrate and compose a set

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 74–87, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

BPMN for REST 75

of distributed and independent resources, as well as to give a high level represen-
tation of the behaviour of stateful resources [12]. Whereas some BPMN engines1

are starting to feature experimental support for REST, with an HTTP-based
API to deploy, manage and execute processes, current solutions are still exper-
imental and incomplete. Thanks to our approach, modelers can use BPMN for
REST to give an explicit representation of the resources involved in the business
process at design-time and precisely control which process elements should be
published through a RESTful Web service API at run-time.

The rest of this paper is organized as follows. In Section 2 we give some back-
ground on REST and discuss why BPMN as-is should be extended to natively
support RESTful Web services. In Section 3 we give an informal definition of
the proposed extensions to the BPMN, while in Section 4 we show how these
extensions can be used to model three non-trivial RESTful business processes.
Related work is cited in Section 5, before we draw some conclusions in Section
6 and outline some future work in Section 7.

2 Background and Motivation

The REST architectural style [4] was introduced to give a principled design of
the architecture of the World Wide Web and to explain its quality attributes
(loose coupling, scalability, resilience to long-term change, intrinsic interoper-
ability). Whereas most of these quality attributes are also shared by service-
oriented architectures, it is under debate whether the corresponding message-
based, publish-subcribe technologies are fully capable of enabling them [18].
In the past few years, REST (or more precisely its underlying HTTP proto-
col [1,19]) was rediscovered and proposed as an alternative way to approach the
design of such service-oriented architectures, which – according to some – could
be renamed as resource-oriented architectures [16].

More in detail, a RESTful Web service publishes to its clients a number of
resources, which are globally addressable by means of URIs. Clients employ a
stateless communication protocol to access the uniform interface associated with
each resource. The uniform interface defines a standard and common set of verbs
(or methods) which can be performed on a resource. Resources are dynamically
discovered by means of decentralized referral and can have multiple representa-
tions, which can be negotiated by clients. These three basic constraints (resource
identification, uniform interface and multiple representations) are usually visu-
alized as the “REST triangle”, which we use (Figure 1) as an inspiration for the
resource icon used in the BPMN for REST extension.

Due to the emphasis placed on the reliable transfer of state between clients and
resources, RESTful services significantly differs from the basic service abstrac-
tion supported by WS-* [6,20]. For example, the WS-Resource Framework [7])
provides an additional layer of complexity by extending the SOAP protocol to
build stateful services. While it borrows the notion of resources from REST, it

1 http://www.activiti.org/userguide/index.html#N12156

http://www.activiti.org/userguide/index.html#N12156

76 C. Pautasso

R

Verbs

(Fixed, Uniform Interface)

Representations

(Multiple, Negotiable)

Resources

(Multiple, Globally Addressable)

Fig. 1. The REST triangle and the Resource symbol

fails to provide a simple solution for the corresponding notions of uniform inter-
face and global addressability of resources. Thus, it is still remains a challenge
to completely wrap the resource abstraction within a traditional service-based
interface [15,14]. As a consequence, there is some mismatch between the REST
architectural style (originally developed for the design of distributed and de-
centralized hypermedia systems) and SOA technologies (such as BPEL/BPMN)
addressing the needs for describing distributed systems built out of the integra-
tion and reuse of interoperable services.

In this paper we are concerned with one particular mismatch, which concerns
the reuse of services by means of process-based composition, orchestration and
choreography. This was originally achieved with the BPEL standard [13] and
today with the latest version of the BPMN standard. These languages and the
corresponding notations make a strong assumption about the set of composition
techniques [2] that are available to compose services. For example, the languages
provide specific constructs for message-based interaction (e.g., send/receive mes-
sage icons which can be associated with tasks and events, as well as message-flow
edges which literally visualize the communication between different processes).
Whereas it is possible to attempt to mimick the synchronous client/server in-
teractions of the HTTP protocol using the same elements of the notation (Fig-
ure 2 a) — after all SOAP originally proposed as a transport-independent enve-
lope format that can wrap arbitrary content in XML so that it can be sent in
terms of messages over any kind of transport protocol [17] — we believe that a
more abstract and expressive notation is needed to represent at a higher level
of abstraction the semantics of such interactions (Figure 2 b). Following the
spirit of BPMN, the challenge consists of hiding such low-level communication
details of the HTTP protocol, which are the concern of technical people. On the
contrary, the goal is to let the business process modeler focus on capturing the
more fundamental RESTful interactions at a higher level of abstraction without
having to specify them as exchanges of HTTP request/response messages.

In particular, it should be possible to use a BPMN model to answer the
following modeling questions:

BPMN for REST 77

TaskTask R

GET

(a) BPMN 2.0 (b) BPMN for REST

Fig. 2. Modeling a task which performs a read-only GET request on a resource using
BPMN (a) and BPMN for REST (b)

– Which are the resources that a process depends upon for a successful execu-
tion?

– Which are the resources that are affected by the execution of a process?
– Can we reason about the behavior of stateful resources using a process

model?
– Which are the tasks of a process that have been made accessible to clients

as a resource?
– Which are the possible requests that can be sent to a resource whose behavior

is specified by a process?

The goal of this paper is to start a discussion on a possible minimal extension
to BPMN to be able to answer these and other similar questions. We will use
several examples in Section 4 to show that there is indeed a benefit of directly
and natively including in a BPMN model information suitable to answer these
modeling questions.

3 Notation

The BPMN for REST extension augments a small number of BPMN stencils with
the resource icon (Figure 3 a). The goal is to keep the extension as minimal and
lightweight as possible in order to avoid adding too many new graphical symbols
to an already complex notation. In order to avoid confusing the resource icon
shape with the existing signal shape, which also uses a triangle, the orientation

RR Task

R

(a) (b) (c) (d)

Fig. 3. The resource icon (a) applied to tasks published as a resource (b) and the
new resource request event (c) which should be distinguished from the standard signal
event (d)

78 C. Pautasso

Task A

Task C

Task B

Task D

R

R

R

R

PUT

DELETE

GET

POST

Fig. 4. Interaction with external resources

of the triangle used for the resource icon has been reversed (compare Figure 3 c
vs. d).

In this section we describe the notation for modeling the interaction between
processes and external resources (i.e., resource orchestration). Additionally, we
also show two different ways for processes to publish resources and handle re-
quests directed to their resources.

3.1 Modeling External Resources

Resources whose lifecycle is independent of a specific processe instance (e.g., a
remote RESTful Web service API) are represented using the data store symbol
refined with the resource icon (Figure 4). The intention is to depict an external
place where processes can read or write persistent data, with the additional
constraint that this place is a resource: the data store is addressed with a unique
identifier (a URI which is not shown in the diagram, but kept as a property
attribute of the shape) and it is accessed using the uniform interface (which
is more expressive than basic read/write operations as in the current BPMN
standard).

To specify the kind of interactions of tasks with such external resources we
suggest to use the message flow edges (since the intention is to model information
flowing across organizational boundaries) and to annotate the edges with the
actual verb to be invoked on the resource’s uniform interface. This way a precise
model of the interaction can be visualized. In particular, the direction of the

BPMN for REST 79

Task A Task

R

R

(a) Process published as a resource (b) Task published as a resource

BA C

R

(c) Sub-process published as a resource

Fig. 5. Publishing processes, tasks and sub-processes as resources

message flow edge reflects the information flow associated with the method2.
GET requests fetch information from the resource into the task consuming it;
PUT requests are symmetric since they allow tasks to update the state of a
resource, thus the information flows from the task into the external resource;
POST requests enable bi-directional information flow (thus the double message
flow edges). DELETE requests do not model any message flow, thus the edge
head shape has been slightly modified to visualize the “destructive” effect on
the resource targeted by the request.

3.2 Publishing Process Elements as Resources

Publishing process elements as resources entails defining a mapping between the
resource abstraction and some BPMN constructs so that modelers can declara-
tively specify which process elements should be published as a resource. To do
so, we propose to visually tag with the resource icon the processes, tasks, or
sub-processes which should correspond to a resource (Figure 5). The lifecycle of
such resource, as opposed to an external resource, will be implicitly entangled
with the lifecycle of the process instance.

2 Whereas in the notation examples used throughout the paper we chose to include
specific HTTP methods, the notation would work in a similar way for resources
having methods defined as part of a different, non-HTTP-based uniform interface.

80 C. Pautasso

More specifically, processes published as a resource get their own URI (e.g.,
/{process}) and follow a predefined behavior when handling requests through
the resource uniform interface. Processes which are not published as a resource
use an implementation-specific mechanism for their execution, which may or not
involve the use of a RESTful Web service interface. The /{process} resource
acts as a “resource factory” [1] as it allows clients to initiate the execution of
new process instances by sending POST requests to it. Following the POST-
REDIRECT-GET pattern3, the client will receive an identifier of the newly
started process instance (e.g., (POST /{process}; 302 Redirect, Location:
/{process}/{instance})) and the execution of the process will continue in the
background. The clients may then use such identifier to safely retrieve (with
GET /{process}/{instance}) the result of the process once it completes its
execution. Process instances may still be created using the other mechanisms
(message events, receive tasks, event-based gateways) foreseen by BPMN. Also in
this case process instances get their own URI, which however has to be discovered
by clients through a channel which should be independent of the instantiation
mechanism (e.g., by asking the process engine to enumerate the URIs associated
with the process instances of a certain user).

At any time, clients can also use the process instance resource identifier to
retrieve a global view over a running process instance by GETting its repre-
sentation, which – depending on the chosen media type – may contain links to
the individual tasks which have been published as a resource. A client may be
interested in only listing all active tasks of a process instance, as opposed to
retrieving links to all tasks and then having to poll each task to determine its
state. By default task URIs can be automatically generated by concatenating the
process instance resource idenfier with the name of the task BPMN element (i.e.,
(/{process}/{instance}/{task}). It may be possible to override such default
naming convention with a manually defined URI associated with the task. As
shown in [8], a more complex URI template would be necessary to distinguish
multi-instance tasks (in case those are published as resources). Concerning tasks
which are found within loops, the URI would point to the most recent state of
the loop, i.e., so that clients can bookmark and retrieve a representation of the
state associated with the task most recent iteration.

Once a task URI has been retrieved, a client may perform a GET request
on it to read task-specific information (e.g., its state, its input/output param-
eter values). Clients may also perform a PUT request to change the state of
a task (i.e., to indicate that its execution has completed) and set the value of
its output parameters. Clients are not allowed either to POST or DELETE in-
dividual task resources. Once all tasks have completed their execution, their
final state remains associated with the corresponding resources until a DELETE
/{process}/{instance} request is performed. Only then, all information asso-
ciated with all tasks of a process instance is removed.

3 This could also be implemented using the 201 Created status code, which however is
not yet fully supported by Web browsers, which will not continue the navigation to
the URI found in the Location header unless the 302 Redirect code is used instead.

BPMN for REST 81

As shown in Figure 5 (c), it is also possible to associate resources with subpro-
cesses. The idea is that these resources become visible to clients only during the
execution of the sub-process. Once the execution leaves the sub-process block,
then the resources are not longer visible. Clients may perform GET requests on
the corresponding identifier (/{process}/{instance}/{sub-process}) to re-
trieve the state of the resource associated with the sub-process. PUT requests can
also be allowed so that information from clients can flow into the sub-process and
affect the behaviour of the tasks found within. In general, POST and DELETE
are not allowed. In fact, DELETE requests could be used to allow clients to trig-
ger the cancellation of the sub-process block (assuming that the corresponding
cancellation handlers have been attached to the sub-process block).

Whereas the details of how to map processes/tasks to resources can be fur-
ther refined, the main goal is to abstract the complexity of the interactions here
described and very simply depict the difference between private tasks of the pro-
cess model from tasks that become accessible from clients through a predefined
RESTful Web service interface.

onPOSTonGET onDEL

R

POST

GET DELETE

Fig. 6. Handling different request methods (e.g., GET, POST, DELETE) with the
resource request event. Methods which are not explicitly modeled (e.g., PUT) will
result in a 205 method not allowed response status code.

3.3 Modeling Internal Resources: The Resource Request Event

For a more detailed and fine-grained model of how processes can be used to
specify what happens inside resources, we propose to introduce a new kind of
top-level event (Figure 6). This event is triggered whenever a client performs a
request on the corresponding resource. The event can discriminate the different
verbs associated with the request so that different tasks of the process can be
activated depending on whether a GET or a POST request was received by the
resource. Graphically, we associate the verbs with the control flow edges outgoing
from the event. For simplicity and consistency the resource request event reuses
the same resource icon as before.

The execution semantics of the resource request event is analogous to existing
BPMN events. A process may accept a request sent to a resource even if the
execution path triggered by previous requests has not yet completed. Multiple

82 C. Pautasso

execution of the tasks associated with the resource request event can be serialized
for POST, PUT, DELETE requests, while read-only safe GET requests may be
executed concurrently for optimization purposes. It is important that the tasks
associated with the request handling paths of a request event conform to the
safety and idempotency properties of the corresponding methods.

4 Examples

4.1 Local Search Mashup

The local search mashup process models how information from an external
RESTful API can be processed in order to be visualized on a map widget. The
process contains three tasks: 1) retrieve the search results with a GET request
on an external resource representing, e.g., the Google Search API; 2) process the
results (Geocode) so that they can be converted to a format which is suitable
for plotting them on a map; 3) generate an HTML page with the map and the
results.

The two versions of the process shown in Figure 7 differ in terms of how
they model how the result of the process is made available to its clients. Version
(a) makes explicit use of an external resource to store (with a PUT request)
the results of the mashup. The lifecycle of the resource is completely decou-
pled from the one of the process using it to store its results, meaning that the

Google

Search

Google

Search

Map Map

Geocode

Local Search Mashup Local Search Mashup

Geocode

R

R R

PUT

GET GET

R /mashup

(a) Result published to external resource (b) Process published as a resource

Fig. 7. Local Search Mashup example

BPMN for REST 83

BPMN engine can use its own mechanism to start the process and manage
its state. Once the state of the process instance is cleaned up, the external re-
source carrying its results is still available. Conversely, in Version (b) the mashup
process model is published as a resource. Therefore clients can retrieve (GET
/mashup/{instance}) at any time its execution state, as this is associated with
the corresponding process instance resource. Once the execution reaches the fi-
nal Map task, the state of the process resource will also include the output of
this task, which thus can be retrieved by clients (even if the task is not explicitly
published as a resource). Once clients DELETE the process instance resource,
the output of the mashup will no longer be available.

4.2 Loan Approval

We use the classical loan approval process to illustrate how a business process
model can make use of the proposed notation to publish some of its tasks as
a resource and to interact with external resources. The process as a whole is
published as a resource, which is identified by the /loan URI. Two of its tasks
(called choose and approve, marked with the resource symbol in Figure 8) are
published as resources. The other tasks are not visible from clients but carry
out important back-end activities, such as checking the validity of incoming loan
applications, contacting different banks for the latest rates as well as confirming
the loan, if an offer has been chosen by the customer and approved by manage-
ment. Both the retrieval and the confirmation tasks are backed up by an external
resource which belongs to the Bank Web Services swimlane.

The notation helps to distinguish that the first interaction (getting the cur-
rent rate) is a single read-only GET request, while the final confirmation is an
idempotent PUT request. The notation could be further refined to indicate that

Check

L
o
a
n

A
p
p
ro

v
a
l

Customer Loan Application Client

Manager Loan Application Client

/loan

/loan/X/choose /loan/X/approve

Bank Web Services

GetRate Choose Approve Confirm

R

R

R R

R

GET PUT

Fig. 8. The Loan approval process example

84 C. Pautasso

the confirmation URI was dynamically discovered by the loan approval process,
as it could have been provided by the Bank Web Service as a hyperlink found
in the response to the GET rate request.

The interaction between the choose and approve tasks with the correspond-
ing clients happens through several request-response rounds as described in the
semantics of the “task published as a resource” extension. The pair of edges
going from the task to the swimlane representing the client abstract an arbi-
trary number of requests to the task resource (i.e., GET the current state of
the task, or PUT the task in another state) which can happen during the entire
lifecycle of the whole process. Such interactions may be allowed or disallowed
depending on the current state of the tasks (e.g., once a task has been PUT into
a completed state, further state changes will be restricted). This should explain
why the shape of the edges is different than the “message flow” edges chosen to
represent a single request-response interaction with an external resource.

4.3 RESTBucks

The RESTBucks example is adapted from [19]. It was one of the original case
studies advocating the practical usage of REST and hypermedia to guide clients
in discovering and following complex distributed workflows. As shown in Fig-
ure 9, the BPMN for REST extensions are also suitable to visualize the interac-
tion between a customer and the RESTBucks order management process.

Clients can download a menu (with GET), choose a flavour of coffee (local
decision task) and follow a hyperlink to place an order with a POST request
to the RESTBucks process, which has been published as a resource. The newly
started process instance collects the order request and uses it to compute a price,
which is passed to the payment task. The customer can retrieve the price to be
paid with a GET request on the payment task, since this has been published
as a resource. The response also contains the form to be filled out with the
payment details, which can then be submitted with a PUT request also to the
same Payment task. Once the PUT request reaches the payment task, its exe-
cution completes and the payment information can be validated. If the payment
validation is successful, a receipt is produced and stored in the corresponding
resource. The client can track the status of the order by GETting the corre-
sponding process instance resource at any time, eventually this status will also
contain a link to the receipt resource, which can also be retrieved by the client.
Since it is modeled as an external resource, the payment resource will remain
available even if the process instance is deleted.

The model of the RESTBucks process also includes the ability to handle
updates to the order once it has been created. These can be submitted by clients
using a PUT request on the order process instance resource. Such requests will
trigger the recalculation of the price by making use of the new resource request
event. However, once the payment is received, it is no longer possible to change
the order, as modeled with the event sub-process handling the PUT request
(which will exit as soon as the Payment task completes).

BPMN for REST 85

CalcPrice

CalcPrice

Read

Menu

Choose

Coffee

Place

Order

Get

Price

Pay

Get

Receipt

Drink

Coffee

Receipt

Payment

Check

Payment

RESTBucks

Customer

R

R

R
R

GET

GET

PUT

GET

POST

PUT

R

PUT

Fig. 9. The RESTBucks order management process example

5 Related Work

This paper shares a similar motivation with our previous work on the BPEL
for REST [14] extensions. The concept of using the BPEL language to control
the state of resources was first proposed in R-BPEL [12]. The idea of a RESTful
Web service API to access the state of workflow instances has been also described
in [22], where similar predefined interaction patterns to instantiate new processes
where described. A similar idea has been followed in the implementation of the
HTTP API of the Activiti BPMN engine.

86 C. Pautasso

6 Conclusion

This paper informally sketches the graphical syntax and extended semantics
of an proposal for applying the BPMN notation to model RESTful business
processes. The goal is to give a precise, expressive yet simple representation of
processes which interact with external resources (such as RESTful Web services
APIs), and to specify with various degrees of refinement which elements of a
process model (tasks, sub-processes or even entire processes) can be published
as a resource. Whereas the extensions have a minimal impact on the complexity
of the visual syntax of the standard notation, they can already be useful to
express several non-trivial RESTful business process model examples.

7 Future Work

Further research is needed to refine the extension to support more dynamic as-
pects of RESTful business processes, which include features such as: late binding
of tasks to dynamically discovered resource identifiers, content-type negotiation
and generalized support for hypermedia protocol design. More in detail, we are
working on defining the specific meta-model elements associated with the pro-
posed notational elements and have started to look into the problem of how to
verify that tasks associated with request events can satisfy the safety and idem-
potency properties of the corresponding methods. We particularly welcome the
feedback from the community concerning the specific advantages or disadvan-
tages of using the proposed notation extension in order to set up a more detailed
usability and usefulness analysis.

Acknowledgements. The authors would like to thank the anonymous review-
ers for their positive and constructive feedback. This work is partially supported
by the S-CUBE network of excellence (EU-FP7-215483) and by the Swiss Na-
tional Science Foundation with the CLAVOS - Continuous Lifelong Analysis and
Verification of Open Services project (Grant Nr. 200020 135051).

References

1. Allamaraju, S.: RESTful Web Services Cookbook. O’Reilly & Associates, Se-
bastopol (2010)

2. Assmann, U.: Invasive Software Composition. Springer, Heidelberg (2003)
3. Barros, A.P., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:

van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine, California (2000)

5. Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture.
ACM Transactions on Internet Technology 2(2), 115–150 (2002)

6. Foster, I., Parastatidis, S., Watson, P., McKeown, M.: How Do I Model State? Let
Me Count the Ways. Communications of the ACM 51(9), 34–41 (2008)

BPMN for REST 87

7. Humphrey, M., Wasson, G.S., Jackson, K.R., Boverhof, J., Rodriguez, M., Gawor,
J., Bester, J., Lang, S., Foster, I.T., Meder, S., Pickles, S., McKeown, M.: State
and events for Web services: a comparison of five WS-resource framework and
WS-notification implementations. In: Proceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing (HPDC-14), pp. 3–13
(2005)

8. Lessen, T.V., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Manage-
ment Framework for WS-BPEL. In: Proc. of the Sixth European Conference on
Web Services (ECOWS 2008), pp. 187–196 (2008),
http://dl.acm.org/citation.cfm?id=1488724.1488774

9. Leymann, F., Roller, D., Schmidt, M.T.: Web services and business process man-
agement. IBM Systems Journal 41(2), 198–211 (2002)

10. zur Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and
Practical Use of the Business Process Modeling Notation. In: Bellahsène, Z.,
Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Hei-
delberg (2008), http://dx.doi.org/10.1007/978-3-540-69534-9_35

11. OMG: BPMN: Business Process Modeling Notation 2.0. Object Management
Group (2010)

12. Overdick, H.: Towards Resource-Oriented BPEL. In: Proc. of the 2nd ECOWS
Workshop on Emerging Web Services Technology (WEWST 2007) (November
2007)

13. Pasley, J.: How BPEL and SOA Are Changing Web Services Development. IEEE
Internet Computing 9(3), 60–67 (2005)

14. Pautasso, C.: RESTful Web Service Composition with BPEL for REST. Data &
Knowledge Engineering 68(9), 851–866 (2009)

15. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. ”Big”
Web Services: Making the Right Architectural Decision. In: Huai, J., Chen, R.,
Hon, H.W., Liu, Y., Ma, W.Y., Tomkins, A., Zhang, X. (eds.) 17th International
World Wide Web Conference, pp. 805–814. ACM Press, Beijing (2008)

16. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly & Associates, Sebastopol
(2007)

17. Vinoski, S.: RPC and REST: Dilemma, Disruption, and Displacement. IEEE In-
ternet Computing 12(5), 92–95 (2008)

18. Vinoski, S.: Serendipitous Reuse. IEEE Internet Computing 12(1), 84–87 (2008)
19. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and

Systems Architecture. O’Reilly & Associates, Sebastopol (2010)
20. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services

Platform Architecture. Prentice Hall (March 2005)
21. Wilde, E., Pautasso, C. (eds.): REST: From Research to Practice. Springer, Hei-

delberg (2011)
22. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing Web Services Chore-

ography Standards — The Case of REST vs. SOAP. Decision Support Sys-
tems 40(1), 9–29 (2005)

http://dl.acm.org/citation.cfm?id=1488724.1488774
http://dx.doi.org/10.1007/978-3-540-69534-9_35

A Notation for Supporting Social Business

Process Modeling

Marco Brambilla, Piero Fraternali, and Carmen Vaca

Politecnico di Milano, Piazza L. da Vinci 32, Milano, Italy
name.surname@polimi.it

Abstract. Social networking is more and more considered as crucial
for helping organizations harness the value of informal relationships and
weak ties, without compromising the consolidated business practices em-
bedded in conventional BPM solutions. However, no appropriate nota-
tion has been devised for specifying social aspects within business process
models. In this paper we propose a first attempt towards the extension of
business process notations with social features. In particular, we devise
an extension of the BPMN notation for capturing social requirements.
Such extension does not alter the semantics of the language: it includes
a set of new event types and task types, together with some annotation
for the pool/lane levels. This notation enables the description of social
behaviours within BPMN diagrams. To demonstrate the applicability of
the notation, we implement it within the WebRatio BPM editor and
we provide a code generation framework that automatically produces a
process enactment Web application connected with mainstream social
platforms.

Keywords: BPM, BPMN, Social Software, Social Network, Enterprise
2.0, Code Generation.

1 Introduction and Motivation

The growing interest towards social interactions within the enterprise is leading
to a new discipline called Social BPM, which fuses BPM with social software.
Its aim is to enhance the enterprise performance by means of a controlled par-
ticipation of external stakeholders to process design and execution [5,10,15].

The motivation of the social extension to BPM is to improve the organization
efficiency. Depending on the context and on the kind of processes, this can be
obtained by:

– Exploiting weak ties between people and implicit enterprise know-how to
improve activity execution and disseminating of knowledge. This could also
entail fostering mutual support among users.

– Increasing transparency and participation to the decision procedures, so as
to raise awareness of the processes and acceptance of the outcomes. This
also increases the possibility of collecting feedbacks that may contribute to
the process improvement.

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 88–102, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Notation for Supporting Social Business Process Modeling 89

– Involving (informal) communities in activity execution, thus assigning the
execution to a broader set of performers or to find most appropriate contrib-
utor within a group.

In classical BPM, processes are defined centrally by the organization and de-
ployed for execution by internal performers, i.e., actors formally entitled to exe-
cute the activities and directly produce the advancement of a process case. This
closed-world approach can be opened with social features at different levels of
control [2]: Participatory Design opens the process design to multiple actors, in-
cluding end users; the resulting process is then executed in the traditional way;
Participatory enactment shifts socialization from design to execution, allowing
limited user communities to gain visibility and limited participation to the pro-
cess; and Social enactment opens the process execution to open communities of
actors dynamically signed-up to the process.

The coverage of these aspects imposes new requirements to business process
notations and design tools, which are well suited for classical business process
model descriptions, but fall short when dealing with social aspects describing
informal interactions among people. This poses a linguistic problem (how to
express socialization in the process model) and a procedural problem (how to
design the process model so that it fulfills the socialization goals). BPMN 2.0
native extension mechanism can be exploited to provide a quite natural answer
to the former issue: the main concepts of the language can be stereotyped to
convey their social extension.

In this paper we propose a first attempt towards extending the Business Pro-
cess Modeling Notation (BPMN) with new items that enable the coverage of the
social aspects. In particular, the contribution of the paper include:

– An extension of BPMN enabling the specification of social roles, activities,
events, and process flows. Such extension does not alter the semantics of the
language but provides some stereotypes that make explicit the role of user
communities within the processes.

– A gallery of design patterns representing archetypal solutions to recurrent
process socialization problems (social process patterns).

– A technical framework for generating Social BPM applications from the
BPMN specifications covering also the social aspects, implemented in a com-
mercial tool suite called WebRatio BPM [1].

The paper is organized as follows: Section 2 discusses the aspects that need to
be socialized in BPM; Section 3 describes the proposed extensions to the BPMN
language; Section 4 shows some examples; Section 5 presents some social BPM
design patterns; Section 6 describes the technical framework for social process
modeling and application generation; Section 7 discusses the related work; and
Section 8 concludes.

2 Dimension of Socialization

The introduction of social features in business processes requires some modifi-
cations in the notation and in the design practices from various perspectives.

90 M. Brambilla, P. Fraternali, and C. Vaca

The main perspectives that are affected are: the actor categorization, the level
of visibility of the process status, and the level of user participation.

2.1 Actor Categorization

The participants to a business process can be categorized based on the level
of formality at which they engage in the process. Three broad categories can
be recognized: 1) internal performers belong to the organization(s) owning the
process, are formally registered before process deployment and directly affect
case and activity advancement; 2) internal observers belong to the organiza-
tion(s) owning the process, are formally registered before process deployment
but cannot directly affect case and activity advancement; however, they can be
notified of selected aspects of a case (e.g., events, artifacts, activity status) and
may produce events and artifacts that indirectly affect case and activity ad-
vancement; 3) external observers do not belong to the organization(s) owning
the process and may not be formally registered a priori; they can login into
the process through third party identification services (e.g., through accounts at
public social networks or standard open accounts); they can perform the same
tasks as the internal observers and influence case advancement only indirectly.
A summary of these three categories is provided in Figure 1.

2.2 Visibility of the Process Status

The interaction with cases and activity instances can occur at different levels
of control: an actor can interact via the explicit publication and manipulation
of the case and activity status (direct access); via the right of publication and
manipulation of a restricted set of case- and activity-related parameters (view
access); or in an implicit and indirect way, via the publication and manipulation
of objects or other derived information (artifact-mediated access). When the
access to process status is indirect, the influence on activity advancement can
still take place, via the mediation of a human task executed by an internal
performer or a decision gateway testing some condition formally expressed in
the process model

2.3 Level of Social Participation

The interaction of external social actors with a business process can produce
different impacts on case advancement; external users can: be informed about
the progress of a case or an activity; create comments used for (offline) process
evaluation; create events that trigger the state transition of activities; create
data objects or modify parameter values that alter the status of activities or the
control flow of the case.

3 Social BPMN Extensions

Process design benefits from visual languages that convey the process structure
and constraints in an clear way, immediately communicable also to non-technical

A Notation for Supporting Social Business Process Modeling 91

Icon

Directly affect case and
activity advancement

Role type

Internal
performer

Description

Internal
Observer

External
Observer

May produce events and artifacts
that indirectly affect case and
activity advancement

Can be informed and
participate through social
network platforms

Formal roles in the BPM
definition, specified at
design time

User Provenance

Communities of users
known at design time
(e.g., members of the
organization)

Communities of users not
known a priori, dynamically
registered in the process

Fig. 1. BPMN lanes and pools stereotyped to denote social actors

stakeholders. Social process design should preserve the intuitiveness and expres-
sivity of state-of-the-practice visual languages and possibly be based on standard
notations. To this end, social extensions of business processes can be conveyed
using the BPMN standard1 as a linguistic base. BPMN 2.0 incorporates a native
extension mechanism that makes the language well suited for the adaptation to
special process requirements, like those arising in Social BPM. By enriching the
existing BPMN concepts with a social meaning, it is possible to achieve a vi-
sual language that is both familiar to BPMN practitioners and possess enough
expressive power to convey social behaviours.

3.1 Notation for Community Lane and Actor Categorization

The main extension that is needed for the notation is the concept of Community
Pool, which is defined as the pool devoted to social activities: it may represent
a public social networks or an enterprise social network. It grants the possibil-
ity of assigning work to users different from internal performers, i.e., to inter-
nal or external observers. Community pools shall be annotated with the user
icons representing the category of users involved in the social tasks. Figure 1
shows the notations we allow for community pools: social users are denoted by a
stereotype icon adorning the BPMN pool, so to distinguish internal performers
(corresponding to the standard semantics of BPMN pools) and the pools formed
by the social communities of internal and external observers, according to the
description provided in Section 2.1.

3.2 Notation for Socialization of Activities and Decisions

We propose three design practices to increase the efficiency of social interactions
design. The corresponding notation is summarized in Figure 2.

First of all, we propose to allow the hierarchical definition of user roles. Ac-
cordingly, a role may comprise several sub-roles. The super-role is assigned to

1 http://www.bpmn.org/

92 M. Brambilla, P. Fraternali, and C. Vaca

Choices performed by
users or automatically

Gateways can be annotated with
the user or automatic symbol, as
one can for tasks

Requirement BPMN notation Comment

User roles can be defined as a
hierarchy

Activities performed
by the community

A sub-process delegated to a
community is marked as ad hoc
to denote the non-structured
nature of interactions

Avoid duplication of
lanes and tasks

Fig. 2. Extended notation to efficiently represent social activities

one lane, while the sub-roles to others. However, sub-roles can perform both the
tasks in their own lane and tasks in the lane of the super-role. This is meant to
avoid duplication of activities across lanes. This is a general requirement and we
think it should be considered in general for BPMN, but it gets particularly criti-
cal in social applications where multiple roles may perform social tasks; to avoid
specifying activities repeatedly in every lane, a parent role factoring out the ac-
tivities common to multiple sub-roles can be used, which makes the specification
of social behavior more compact.

Secondly, we introduce the concept of user gateways to express human choices.
The specification of human-executed choices in BPMN is an open issue currently
under discussion in the BP analyst community. Social applications corroborate
the need of a better way to explicitly model human decisions, which can be
achieved simply by distinguishing user gateways, which entail a user’s decision;
and automat-ic/service gateways, which entail a decision taken according to a
rule (this is the standard semantics for BPMN gateways) or performed by a
service.

Finally, the BPMN concept of ad hoc task is proposed as an effective solution
for describing social activities, which are inherently unstructured. This highlights
the flexible and sometimes uncontrollable nature of the interactions when dealing
with the social execution of tasks.

Notice that the other issues discussed in Section 2 (i.e., visibility of process
status and level of social participation) do not require a specific notation because
they can be inferred from the BPMN diagram by looking at the flow, task, and
event definitions.

3.3 Notation for Social Tasks

While most social interaction may be described with standard message flows
within the community pool or between the community and the enterprise pool,
a simplified notation may be convenient in several cases. Social tasks special-
ize the BPMN task concept to denote a process action with a social semantics:
they are denoted by an icon that suggest the social meaning of the task, as
exemplified by the annotations reported in figure 3. These annotations are a

A Notation for Supporting Social Business Process Modeling 93

Task type Description

Data flow to a single user in

a community pool

Dynamic enrolment to a task
in the process caseInvitation

to activity

Commenting

Voting

Login to
join

Invitation
to join a
network

Search for
actor’s

information

Social
posting

Social
broadcast

Data flow to a

community pool

Comment the activity

Voting (y/n) on an activity, either
within a social network platform
or directly in the BPM system

Login using a
social profile

Invitation between
community users

Lookup query to the community
to search for an actor with
specific profile attributes

Annotation
icon

Fig. 3. BPMN tasks stereotyped to denote social activities

shortcut for social activities: they respectively express the broadcasting of mes-
sages/contents from a task to the entire social network (or a subset thereof),
the posting of messages/contents to one member of the network, the invitation
of people from the social network to perform a specific task, the invitation to
comment or vote on a task or on its outcomes, the login of users in the BPM
system using credentials from a social network, and the search for user’s skills or
reputation within a social network (e.g., for checking recommendations before
assigning tasks to users). The control of social tasks is based on the standard
BPMN control flows, either within a social pool or between a social and a normal
pool.

94 M. Brambilla, P. Fraternali, and C. Vaca

Community-generated
events

(Generic) events raised by
the community

Requirement BPMN notation Comment

An event is raised when a
user dynamically enrolls to
the process case

Event: New social
relationship link

An event is raised when a
user establishes a social
relationship with another user

Event: Invitation
acceptance/rejection

An event is raised when a
user accepts/rejects an
invitation

Event: New user
engaged in the social

community

Fig. 4. BPMN event types supporting social interactions

3.4 Notation for Social Events

As shown in Figure 4, specialized event types can be used to denote case ad-
vancement triggered by social interactions. A generic social event concept rep-
resents any kind of occurrence within the social network; this can be specialized
to express more detailed event types like: the addition of a new user to the
community, the establishment of a new social relationships, the notification of
acceptance/rejection of a social request (e.g., for friendship, invitation to groups
or applications), and so on. Once again, these represent only stereotypes of the
classical BPMN event concept, whose semantics is not changed.

4 Usage Examples

To demonstrate the use of social tools to support common tasks on a process
execution, we report here three different examples of Social BPM applications
designed with our notation.

4.1 Scheduling a Meeting

The first example focuses on the social scheduling of a meeting. Imagine a sce-
nario in which the director of a public government office needs to look for stake-
holders in an specific area and define a time to meet all of them. It is necessary
to socialize the process in such a way that everyone is able to select the dates
when he/she will be available. The director logs in into the application by using
one of his social network credentials (e.g., LinkedIn credentials). Then, he can
search for professionals in some industry area among his contacts. The search
activity is supported by the social platform he is connected to, so he can use a
great amount of social data without leaving the application and loosing context.
Using the results of the query, the director selects the people to whom invitations
will be sent to setup the meeting date.

A Notation for Supporting Social Business Process Modeling 95

P
ub
lic
go
ve
rn
m
en
to
ffi
ce

D
ire
ct
or Publish

final date

Collect
feedback
on

availability

Invite people to
participate to
poll for meeting
scheduling

Close
poll

on skills

Search people
among contacts

S
O
C
IA
L
N
E
TW

O
R
K

Respond
to poll

Sign
in

Login

Fig. 5. The socialized Meeting coordination process

Once the professionals to be invited are selected, a poll is created and the
people are invited to mark their preferences among a predefined list of dates.
The Director introduces the information needed to automatically generate a
poll within a free online application (e.g., the popular Doodle platform) and
the system generates a message sent to all of the social (LinkedIn) inbox of all
participants. The message contains all the details to participate in the poll. This
activity is represented as a message to a social pool where actors are enrolled
dynamically and are able to create input in the process without being previously
registered in the system. The process finishes when the Director chooses the final
date for the meeting and publishes it.

The implemented prototype of this application is available online at:
http://www.bpm4people.org/demo.

4.2 Thesis Approval

The second example reports a process model to approve proposals of undergrad-
uate students’ theses within a university. The actors involved in the process are:
the student submitting the proposal, the Vice-Dean and the Professors (evalu-
ators). To avoid students making errors in the presentation of the documents,
the university defines a social support to the process, allowing students to get
support and advice from their colleagues.

The student login into the application using his social network credentials
(e.g., Facebook), and publishes his thesis proposal inviting his peers to comment.
Once his “friends” on the social networking site send their suggestions, he can fix
the proposal accordingly and he can ask for approval to the academic authority,
i.e. the Vice-Dean. The Vice-Dean selects teachers to evaluate the proposal based
on the topic and field. Teachers are able to ask colleagues to rate the document

96 M. Brambilla, P. Fraternali, and C. Vaca

A
ca
de
m
ic
de
pa
rtm
en
t

S
tu
de
nt Request

official
approval

Invite
people
comment

Publish thesis proposalLogin

Read
proposal

Comment

Invite a
friend

+

V
ic
e-
D
ea
n

Choose professors
to review proposal

P
ro
fe
ss
or

Read the proposal

Ranking

Ask social
feedback

Collect and
consider
ratings

Give
evaluation

S
oc
ia
ln
et
w
or
k

Professor

Take final
decision

Student

Reviewers’ list

Fig. 6. The socialized Thesis approval process

and consider this feedback when submitting the final evaluation. Finally, the
evaluations are sent to the Vice-Dean, who takes the final decision.

Figure 6 shows the process described including the interaction with the social
pool. Students who make comments on the thesis are considered External Ob-
servers because they are registered users of the chosen social network platform;
they could even be students from other universities or professionals working in
the industry. The pool for the Professors is labeled using the Internal Observer
icon because the system allows sending invitations to rate the proposal only to
the internal social network of professors of the current university.

4.3 Social BPM in a B2C Scenario

Let’s consider now a B2C scenario, in which a multinational company that sells
consumer electronics products (PCs, small appliances, mobile devices) wants to
setup some social process within its web portal, for launching a new product line
and testing the social marketing potentials. In particular, the company wishes to
support the sales of collateral services (e.g., guarantee extensions and premium

A Notation for Supporting Social Business Process Modeling 97

M
ar
C
om

D
iv
is
io
n

Start
campaign

S
oc
ia
lN
et
w
or
k

IT
E
m
pl
oy
ee

Establish
campaign
goals

M
ar
ke
tin
g
M
an
ag
er

Provide
comments

Campaign report

Invite a
friend

Sugg++

Invitations++

Collect feedback

C
us
to
m
er

Analyze
results

Enough user
activity

Campaign
duration

Read Company’s
posting

Suggest a
serviceComment

Send
Rewards
to user

+

Fig. 7. The Social Campaign Management process

technical support) by letting customers enroll in the company portal through an
existing social network account (e.g., Twitter, Facebook or others) and asking
them to authorize the company to post on their wall and/or to become friend.
Periodically, the company launches new promotions, by posting announcements
to registered customers. Customers can take active part in the campaign by
proactively inviting friends to join the company’s portal, by suggesting the ser-
vices, voting on the promotions, and so on. The number of successful invitations
and induced sales of a user is tracked and a bonus program grants discounts
when certain objectives are met. The campaign closes after a predetermined
period of time and a post-campaign report is produced with performance data
(new enrolled customers, online purchases in the period, and so on).

Figure 7 shows the Social Campaign Management process. The process actors
comprise world-wide managers, country managers and employees of the Market-
ing and Communication (MarCom) department. The process implies an explicit
interaction between the company’s MarCom personnel and the observer users
clustered in a social pool. The process initiates when the company’s marketing
manager decides that a new campaign has to be launched; a marketing employee
prepares the campaign content and broadcasts the event (together with the con-
tent) to the social pool with an explicit message flow; as a consequence, each user
that previously accepted to receive campaign announcements will get a message
in her favorite social network applications.

Then, the process continues within the social pool. A social network mem-
ber may comment back to the company, suggest the service/product to his own
friends, or invite new friends to the company network or social group. As a result,
new actors can enroll to the company’s portal and dynamically become part of
the social pool. Each action from a social pool actor is notified to the company,

98 M. Brambilla, P. Fraternali, and C. Vaca

which in turn registers the events for the whole duration of the campaign. If the
user reaches the agreed objectives, a task is activated to notify the reward from
the company to the user in the community pool, by means of an individual com-
munication in the user’s preferred social network(s). The campaign terminates
at the end of a designated time interval; after the temporal event, the marketing
manager can analyze the final report on the campaign results.

Notice that the social community pool is marked as external observer and
includes a parallel ad hoc task to describe the social action, possibly repeated
for every message sent out. Message flows are also shown explicitly to describe
the message sources and contents. On the other hand, the “send rewards to user”
activity is specified using the task stereotype notation, because the task behavior
is standard and the message follows can be deduced from the short notation and
from rest of the process diagram.

5 Social Design Patterns

Social pools, actor categories, social tasks and events are the linguistic building
blocks for expressing the design of social features within BPMN models. In line
with the software engineering and the business process modeling practices, we
also tried to identify the most common social scenarios in BPM and we defined
the corresponding design patterns, i.e., archetypal or best practice solutions to
recurrent scenarios where cooperative tasks are executed using social software.

Notice that the patterns we identify are application-level patterns. As such,
they may exploit control-flow level patterns (e.g., the ones defined by van der
Aalst et al. [17]) in their definition, but do not aim at substituting or comple-
menting them.

This section illustrates an initial gallery of design patterns, collected from
an ongoing experience of analysis with process owners in companies and public
administrations. In this first proposal, every pattern is described by a statement
of the problem it addresses and a short description explaining the supported
social interaction. The current list of patterns comprises the following ones:

– Dynamic enrollment: the aim is to support the involvement of people
external to the process. Platforms like enterprise and public social networks2

are exploited for dynamically adding new actors to social activities.
– Poll: the aim is to collect input from a community of users cooperating to a

social decision. An internal performer publishes to a social platform a ques-
tion (e.g., an open or closed list of options to choose from). Internal/external
observers receive an invitation to participate in the poll and contribute with
their choices.

– People/skills search: this pattern focuses on finding the right competen-
cies for performing an activity. A social community is exploited to find people
with required expertise, considering the trade-off between level of expertise

2 Example of enterprise social network are Yammer and Jive; of public ones are Face-
book, LinkedIn and Twitter.

A Notation for Supporting Social Business Process Modeling 99

Invitation for
enrolment

Do a social taskSign in

Collect social content
S
oc
ia
l

N
et
w
or
k

R
eg
is
te
re
d

ac
to
r

Fig. 8. Dynamic enrolment pattern

and social distance. The process usually consists in publishing a call for
people, to which internal/external observers respond.

– Social publication: this aims at making a process artifact visible to social
actors, e.g., by posting a document to a social platform [8]. Artifacts contain
limited views of the process status or of the associated content, which is
shared with the community.

– Social sourcing: the purpose is delegating an activity to one or more social
actors. Internal performers publish the description of the work and share a
resource link to start contributions. Internal/external observers contribute
to the execution of an activity, e.g., by co-authoring or enriching socially
produced documents [15], e.g., through tagging [6,14].

– Advancement notification: this pattern aims at informing social actors
about process advancement, for instance by using micro-blogging platforms
[13] to keep the users updated, thus increasing transparency and involvement.

– Feebdack: this pattern focuses on acquiring qualitative/quantitative feed-
back from social actors by asking internal/external observers to rate some
content or to insert comments into the social platform.

As an example of pattern, Figure 8 shows the BPMN representation of the
dynamic enrollment pattern, implementing an open invitation to users using
the annotation icons to denote social activities. Internal performers generate an
invitation by sending a message to a social pool, and internal/external observers
sign up and start contribute to some social task.

6 Implementation Experience

To validate the viability and usability of our notation, we have implemented it
within WebRatio [1], a Model-Driven Web application development tool allowing
one to edit BPMN models and automatically transform them into running JEE
applications. The code generation exploits an intermediate platform-independent
application model, expressed in the WebML language [3], so that application de-
velopers can fine-tune the Web application for enacting the process, by enriching
the skeleton application model produced automatically from the BPMN process
diagram.

100 M. Brambilla, P. Fraternali, and C. Vaca

Design Deployment architecture Running application

Third-party
Social
Networking
Platforms

Standard Java
Web application

Visual identityLayout

g p y g pp
es

s
M

od
el

B
P

M
N

)

f. u
ti

o
n

Business layer

Service
layer

Presentation layer

Data
layer

Integration
layer

yy

od
el

 P

ro
ce

 (

B

2C

 t

ra
n

sf

p
.

 e
xe

c

MtoM transf.

Apache

A
pp

lic
at

io
n

m
o

(W
eb

M
L)

M
2

A
p

p

A

Fig. 9. Overview of the implementation of the approach within WebRatio

A set of new WebML components and transformation rules have been imple-
mented to realize the social BPM patterns and connect the resulting enactment
application to the social networking platforms needed for social behavior.

In our extended version, a rapid prototyping function applies directly to
the social process model and lets a business analyst or a stakeholder: 1) im-
personate any actor of the process, at all the levels of social interaction; 2)
start/suspend/resume/terminate the process activities; 3) create and inspect
project artifacts and parameters, according to the process specification; 4) im-
personate external user roles and play social actions.

The prototype can be refined at the Web application modeling level by edit-
ing WebML models and then re-executing the model transformations, until the
resulting application meets the requirements for deployment.

Figure 9 provides an overview of the implementation framework. At design
time, the analyst creates the Social BPMN process models. Then, the auto-
matic transformation from BPMN to WebML generates a Web application model
for process enactment. In particular, social BPMN tasks are transformed into
WebML application-level patterns, which make use of components for connect-
ing to the social software. Process deployment exploits the transformation from
WebML to the Java code, which is already implemented in WebRatio [1] and
has been extended to support the social BPM patterns.

7 Related Work

Social BPM goals and impact have been deeply investigated in a variety of
business sectors. For instance, people tagging has been applied to BluePages,
the corporate directory at IBM, to improve information quality on people and
skills ; similarly, [14] proposes an approach for building competence ontologies
in a collaborative way for a repository of people’s skills.

Previous works on tools for social BPM focus on supporting the process mod-
eling phase [4,11,16] and the execution phase [9,12,15,16]. For example, [8,11]
discuss how social modeling tools allow multiple designers to register the design

A Notation for Supporting Social Business Process Modeling 101

interactions so to produce recommendations for future projects. In the execution
phase instead, the goal is to make information available to the users affected by
the process even if these users were not identified at the definition stage [15].

The social BPM problem at large has been recently tackled by the recent book
[7] published by WfMC, gathering several contributions by BPM practitioners
from the field.

In the process deployment field, social and business process integration is
emerging also in the industry, as several vendors are proposing integrated social
BPM suites. Among them, Appian, IBM BlueWorks Live, Oracle BPM Suite
11g, Software AG AlignSpace, Intalio and a few others.

The approach illustrated in this paper focuses on socializing process execu-
tion, and is the first attempt at devising an extended notation for expressing
social process models. With respect to existing design and deployment tools, the
architecture and toolsuite illustrated in Section 6 apply for the first time the
pattern-driven development paradigm to the life-cycle of social BPM solutions.

As already mentioned, the patterns we study are at the application level and
do not compete with control-flow level patterns (e.g., the ones defined by van
der Aalst et al. [17]).

8 Conclusions

This paper proposed an extension to the BPMN notation to tackle the domain of
social BPM solutions. The core idea is to extend the BPMNvisual language for pro-
cess design with primitives expressing social interactions, thus providing a domain-
specific set of annotations to the BPMN elements. We also provided a first set of
application-level design patterns that provide a systematic way of turning the typ-
ical socialization requirements into the model of a social process, which blends cen-
tralized process execution with controlled interactions with social users.

Our implementation experience consists in extending a BPM design tool suite
called WebRatio, equipped with code generators and a runtime architecture, to
cope with the social BPM requirements.

Ongoing work is focusing on the collection of a large gallery of social design
patterns, on the implementation of tighter integration between the BPM plat-
forms and the social services, and on the experimentation of the methodology
and of the technical approach in real-world scenarios in the enterprise and public
administration.

Acknowledgements. This work is partially funded by the BPM4People project
within the EU Capacities program of the 7th FP. Further information on the
project can be found at: http://www.bpm4people.org.

References

1. Brambilla, M., Butti, S., Fraternali, P.: Webratio BPM: A Tool for Designing and
Deploying Business Processes on the Web. In: Benatallah, B., Casati, F., Kappel,
G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 415–429. Springer, Heidelberg
(2010)

102 M. Brambilla, P. Fraternali, and C. Vaca

2. Brambilla, M., Fraternali, P., Vaca, C.: A model-driven approach to social BPM
applications. In: Social BPM Handbook, pp. 95–112. Future Strategies - WfMC
(2011)

3. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc. (2002)

4. Dengler, F., Koschmider, A., Oberweis, A., Zhang, H.: Social Software for Coordi-
nation of Collaborative Process Activities. In: zur Muehlen, M., Su, J. (eds.) BPM
2010 Workshops. LNBIP, vol. 66, pp. 396–407. Springer, Heidelberg (2011)

5. Erol, S., Granitzer, M., Happ, S., Jantunen, S., Jennings, B., Johannesson, P.,
Koschmider, A., Nurcan, S., Rossi, D., Schmidt, R.: Combining BPM and social
software: contradiction or chance? J. Softw. Maint. Evol. 22, 449–476 (2010)

6. Farrell, S., Lau, T., Nusser, S., Wilcox, E., Muller, M.: Socially augmenting em-
ployee profiles with people-tagging. In: Proceedings of the 20th Annual ACM Sym-
posium on User Interface Software and Technology, pp. 91–100 (2007)

7. Fischer, L. (ed.): Social BPM. Work, Planning and Collaboration Under the Impact
of Social Technology. Future Strategies - WfMC (2011)

8. Holtzblatt, L., Tierney, M.L.: Measuring the effectiveness of social media on an
innovation process. In: Proceedings of the 2011 Annual Conference Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA 2011, pp. 697–712.
ACM (2011)

9. Huiming, Q., Sun, J., Jamjoom, H.T.: SCOOP: Automated social recommendation
in enterprise process management. In: IEEE SCC, vol. 1, pp. 101–108 (2008)

10. Johannesson, P., Andersson, B., Wohed, P.: Business Process Management with
Social Software Systems-A New Paradigm for Work Organisation. In: Ardagna,
D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 659–
665. Springer, Heidelberg (2009)

11. Koschmider, A., Song, M., Reijers, H.A.: Social Software for Modeling Business
Processes. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops.
LNBIP, vol. 17, pp. 666–677. Springer, Heidelberg (2009)

12. Neumann, G., Erol, S.: From a Social Wiki to a Social Workflow System. In:
Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17,
pp. 698–708. Springer, Heidelberg (2009)

13. Riemer, K., Richter, A.: Tweet inside: Microblogging in a corporate context. In:
Proceedings 23rd Bled eConference, eTrust, BLED 2010, paper 41 (2010)

14. Schmidt, A., Braun, S.: People tagging & ontology maturing: Towards collabora-
tive competence management. In: 8th International Conference on the Design of
Cooperative Systems (COOP 2008), Carry-le-Rouet (2008)

15. Schmidt, R., Dengler, F., Kieninger, A.: Co-creation of Value in IT Service Pro-
cesses Using Semantic MediaWiki. In: Rinderle-Ma, S., Sadiq, S., Leymann, F.
(eds.) BPM 2009 Workshops. LNBIP, vol. 43, pp. 255–265. Springer, Heidelberg
(2010)

16. Silva, A.R., Meziani, R., Magalhães, R., Martinho, D., Aguiar, A., Flores, N.:
AGILIPO: Embedding Social Software Features into Business Process Tools. In:
Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009 Workshops. LNBIP,
vol. 43, pp. 219–230. Springer, Heidelberg (2010)

17. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros,
A.P.: Workflow patterns. Distributed and Parallel Databases 14, 5–51 (2003),
doi:10.1023/A:1022883727209

Evaluating Choreographies in BPMN 2.0 Using

an Extended Quality Framework

Mario Cortes-Cornax1, Sophie Dupuy-Chessa1,
Dominique Rieu1, and Marlon Dumas2

1 University of Grenoble, CNRS, LIG
{Mario.Cortes-Cornax,Sophie.Dupuy,Dominique.Rieu}@imag.fr,

http://sigma.imag.fr/
2 University of Tartu, Estonia

marlon.dumas@ut.ee

Abstract. The notion of choreography has emerged over the past years
as a foundational concept for capturing and managing collaborative
business processes. This concept has been adopted as a first-class ci-
tizen in the latest version of the Business Process Modeling Notation
(BPMN 2.0). However, it remains an open question whether or not
BPMN 2.0 is actually appropriate for capturing choreographies. In this
paper, we shed light into this question by extending an existing language
evaluation framework in order to cover the specificities of choreographies,
and applying the extended evaluation framework to BPMN 2.0. Among
others, the evaluation identifies a number of issues in BPMN 2.0 that
affect the perceptual discriminability of certain choreography modelling
constructs. These deficiencies could potentially affect the comprehensi-
bility of models and lead to confusion, particularly among novice users.
Recommendations for addressing these deficiencies are put forward.

Keywords: Choreography, Quality Framework, BPMN 2.0.

1 Introduction

A choreography is a global representation of the interactions between multiple
organizations or organizational units involved in a common business process [1].
Choreographies provide analysts with a basis for understanding, analyzing and
optimizing cross-organizational business processes .

Choreographymodeling has not achieved standardizationdespite W3C’s efforts
within the context of the Web Service Choreography Description Language pro-
posal (WS-CDL [2]). Various research projects [3,4,5,6,7] have proposed different
languages for choreography modeling. More recently, the notion of choreography
diagramhasbeen incorporated into the latest versionof theBusinessProcessModel
and Notation (BPMN version 2.0 [8]). The goal of this paper is to evaluate the ad-
equacy of the constructs for choreography modeling introduced in BPMN 2.0. The
catalogue of identified requirements might be a starting point for further (empiri-
cal) evaluation on choreographies. Also, it represents a clear overview on possible
criteria for evaluating a choreography’s quality.

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 103–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://sigma.imag.fr/

104 M. Cortes-Cornax et al.

There have been several previous evaluations of BPMN. Wohed et al. [9] eva-
luated BPMN (v.1.1) in terms of the workflow patterns [10]. Recker et al. [11]
have evaluated BPMN (also v.1.1) in terms of the Bunge-Wand-Weber ontology.
This latter analysis highlighted a certain level of construct redundancy and over-
load. Meanwhile, Wahl & Sindre [12] conducted an evaluation of BPMN using
a Semiotic Quality Framework [13] – the same framework we use (with some
extensions) as the basis of our evaluation. Like Recker et al., Wahl & Sindre’s
conclusions put into evidence some construct overload in BPMN that could po-
tentially have a negative effect on comprehensibility. These previous evaluations
focused on earlier versions of BPMN, which did not include the choreography
subset. Hence, our evaluation complements the above ones.

This paper is structured as follows. After an overview of the choreography
subset of BPMN 2.0 (Section 2), we introduce the language quality framework
upon which we base our evaluation (Section 3). This framework is very general
and can be adapted/extended to fit the requirements of specific domains. Accor-
dingly, we identify and analyze a set of requirements for choreography modeling,
leading to an extended language quality framework tailored to the evaluation
of choreography modeling languages (Section 4). Next, Section 5 summarizes
the results of the analysis of BPMN 2.0 choreography subset using the extended
quality framework. Finally, Section 6 puts the results into a broader perspective.

2 Choreographies in BPMN 2.0

A choreography in BPMN 2.0 formalizes the way business participants coor-
dinate their interactions. In a choreography, the focus is not on the work per-
formed internally by each participant, but rather on the exchange of information
(e.g. messages) between participants. Another way to look at choreography in
BPMN 2.0 is to view it as a type of business contract between two or more
organizations.

In previous versions of BPMN the only way to represent choreographies was
via collaboration diagrams. This new version allows modelers describing both
choreography and collaboration approaches together or individually. Actually,
a global view of interactions is represented in addition to the participants’
view given by collaborations which enriches the expressiveness of the language.
Figure 1 illustrates how choreographies are represented in BPMN 2.0. This figure
captures a manufacturing process inspired by one of the examples in the BPMN
specification [8]. In this choreography diagram, interactions between participants
are explicitly represented by means of choreography tasks. The fact of explicit
interactions’ sequencing, avoids possible misunderstandings and deadlock errors
when capturing choreographies in collaboration diagrams [14].

In each interaction we might find at least two participants. One of them (the
white band) is the initiating participant of the interaction (the one who sends the
initiating message) while the shaded one is the receiver. The latter could respond
with a response message (the shaded message). For example, in the first inte-
raction, the Customer participant sends an Order Request to the Manufacturer

Evaluating Choreographies in BPMN 2.0 105

Fig. 1. The manufacturing process represented in a choreography diagram

participant. When the Manufacturer contacts the Supplier to procure missing
parts, a request-response interaction takes place. The control flow arrows and
gateways determine the sequencing of the choreography elements. For further
details on BPMN choreography diagrams, the reader is referred to the “Choreo-
graphy” chapter of the BPMN standard specification [8].

3 The Language Quality Framework

We choose to base our evaluation of BPMN 2.0 on a semiotic quality framework
proposed by Kogstie [13] which allow us to assess a broad spectrum of characte-
ristics of a language. Accordingly, in this paper we extend this semiotic quality
framework with the aim of framing it in the specific context of choreographies.

Krogstie’s framework for language quality is based on a number of characte-
ristics that depend on the technical actors (i.e. tools), stakeholders and modelers
such as “Comprehensibility Appropriateness”. We do not consider “Externaliza-
bility Appropriateness” and “Participant Language Knowledge Appropriateness”
of Krogstie’s framework as these characteristics only make sense when evaluating
a language relative to a given set of stakeholders. We evaluate some aspects of
the “Domain Appropriateness” based on criteria found in the literature. Below,
we summarize the areas of Krogstie’s framework employed in our evaluation:

Domain Appropriateness (D). This area relates to the quality of the lan-
guage semantics. The key underpinning idea is that the conceptual basis of
the language must be powerful enough to express anything in the domain
but no more.

Comprehensibility Appropriateness (C). This area relates the language to
the social actor interpretation. It considers the concepts of the language and
the notation.

106 M. Cortes-Cornax et al.

Technical Actor Interpretation Appropriateness (T). This area relates
the language to the tool. The syntax and the semantics of the language must
be formal enough so that tools can automate some treatments on models.

In the following section, we refine these three areas based on a set of requirements
for choreography modeling.

4 Choreography Modeling Requirements

Our starting point to evaluate the appropriateness of BPMN 2.0 for choreogra-
phy modeling has been to identify a set of requirements. We surveyed several
previous research works [15,6,16,7,17]. One of the most detailed prior evalua-
tions of choreography definition languages is based on the Service Interaction
Patterns [18], but these patterns only cover one perspective of the requirements
for choreography definition languages. Accordingly, in this paper we complement
this patterns-based evaluation framework with other perspectives paying special
attention to graphical notation, since the graphical notation is a key ingredient
of BPMN.

To organize and categorize the identified choreography modeling require-
ments, we extend the Language Quality Framework, previously described in
Section 3, placing the requirements in the different dimensions of the framework
(Fig. 2). The following sections detail each dimension adapted to choreographies.

Fig. 2. The requirements axis extending the language quality framework

4.1 Domain Appropriateness Requirements (D)

The following requirements are mainly extracted from the service interaction
patterns [18] and from the choreography requirements identified by Decker et
al. in [6]. These requirements are summarized below and they are extended in
Section 5.1:

D1. Participant Specification. A choreography language should support the
representation of more than one participant (service) and more than one
instance of the same participant.

Evaluating Choreographies in BPMN 2.0 107

D2. Service Communication. A choreography language should support the
representation of communication between participants as there is no central
coordinator in choreographies.

D3. Time Constraints. A choreography language should allow participants
to agree upon how long a given message is being waited for and during what
period a participant is expected to transmit a message.

D4. Exception Handling (Fault Paths). Messages may not be sent on time
or may represent faults. Thus, modelers should be able to define paths in a
choreography that handle such negative scenarios.

4.2 Comprehensibility Appropriateness Requirements (C)

We consider three “Comprehensibility Appropriateness” requirements. The first
one establishes that the meta-model of a choreography modeling language should
allow modelers to gradually comprehend and design choreographies (C1. Meta-
model Quality). The second requirement deals with readability and simplic-
ity [19] (C2. Model Quality). Finally the third requirement, namely C3.
Notation Quality, establishes that the concrete syntax of a choreography mo-
deling language should be cognitively effective (optimized for human commu-
nication and problem solving [20]), which can be achieved by abiding to the
Principles of Graphical Notations [20]. These requirements are summarized be-
low and are extended in Section 5.2:

C1. Meta-model Quality. A choreography language must allow modelers to
gradually comprehend and design choreographies.

C2. Model Quality. A language must guide modelers to produce appropriate
models.

C3. Notation Quality. The language must be cognitively effective.

4.3 Technical Appropriateness Requirements (T)

We consider five important points when analyzing the technical level of cho-
reographies. Firstly, we find the necessity to formalize both syntax and seman-
tics [15] (T1. Formalism). Accordingly, a choreography diagram should have a
precise semantics, which can be specified for example by means of a mapping to
a formal notation (e.g., colored petri nets or pi-calculus).

Secondly, in line with previous work [6,7], we adopt the requirement that
choreographies should be independent from specific communication technology
(e.g. independent from physical endpoints definitions) (T2. Flexibility).

Thirdly, adequate alignment between choreographies and process execution is
necessary in order to bridge the “Business-IT gap” [21] and to avoid inconsisten-
cies between process modeling and execution [16] (T3. Integration with Process
Execution). This can be achieved by aligning (though not necessarily mapping)
the choreography language to an executable process definition language such as
the Business Process Execution Language (BPEL) [22] (cf. the approach taken in
BPEL4Chor [6]) or by aligning choreographies with executable BPMN models.

108 M. Cortes-Cornax et al.

The possibility to exchange models between tools is another important re-
quirement [15,23] (T4. Portability). Accordingly, a choreography language should
define an interchange format covering both the language itself as well as graph-
ical data attached to the model elements.

Finally, previous work [17] has highlighted the usefulness of monitoring in
the context of choreographies (T5. Monitoring). Thus, a choreography language
should be defined in a way that choreography monitoring is possible.

These requirements are summarized below and are extended in Section 5.3:

T1. Formalism. Precise/formal definition or mapping into a well-established
formalism.

T2. Flexibility. Decoupling from Web Services Extension point to plug in di-
fferent technical configurations might be supported.

T3. Integration with Process Execution. Alignment with executable
processes.

T4. Portability. Model interchange support.
T5. Monitoring. Introduction of monitoring mechanisms.

5 Evaluation of BPMN 2.0 for Choreographies

In this section, we evaluate the choreography proposal presented in BPMN 2.0.
We use the language quality framework described in Section 3 extended with
the requirements identified in Section 4. We go through the scenario on Fig. 1
to illustrate some of the evaluation points.

5.1 Domain Appropriateness Evaluation

In this section we analyze the domain requirements’ support in BPMN 2.0.

D1. Participant Specification. We consider two specific requirements in this
section:

D1.1 Multi-lateral Interactions. More than two participants (services) can
be involved in choreography.

D1.2 Service Sets. Several participants (services) of the same type might be
involved in a choreography.

As Fig. 1 illustrates, more than two participants can be involved in the cho-
reography model (D1.1. Multi lateral interactions). In the example of Fig. 1,
participants are the Customer, the Manufacturer, the Supplier and the Bidder.
BPMN 2.0 also supports multi-instance participants (D1.2 Service sets). The ex-
ample shows that several instances of the participant Bidder might be involved
in the choreography. BPMN 2.0 allows defining how many participants of one
type will be involved (ParticipantMultiplicity). However, this multiplicity is only
supported in an implementation level, but not represented graphically.

Evaluating Choreographies in BPMN 2.0 109

D2. Service Communication. When analyzing the service communication
requirements, we identify the following three cases:

D2.1 Selection of Services and Reference Passing. Selection (of a
service) can be done in design, deployment or execution time. A reference
of a selected participant(service) may be passed to another participant as
there is no central coordinator in choreography.

D2.2 Service Correlation. Possibility to distinguish different conversations
as well as relating an incoming message to the previously sent or received
must be supported.

D2.3 Message Multiplicity. Possibility to define the number of messages
sent from one (or more) participant(s) to other(s).

One potential deficiency in BPMN relates to the absence of a notion of channel
as in WS-CDL (D2.1 Selection of Services and Reference Passing). A channel is a
reference that allows one participant to communicate with one other participant.
Importantly, channels can be created by one participant and passed to other
participants, thereby enabling dynamic message destinations [2]. For example,
in Fig. 1 a Customer could create a channel to exchange delivery information. In
this scenario, the Customer sends the channel to the Manufacturer who forwards
it to the Supplier. The Supplier then sends delivery information directly to the
Customer using the channel originally created by the Customer. Potentially,
the customer could communicate with multiple suppliers and give a separate
response channel to each of them.

The concepts of Correlation Key and Participant References in BPMN 2.0
address this need to some extent. However, these concepts constitute one par-
ticular way of implementing a channel, based on the idea that every message
contains an explicit identifier. In practice, this is not the only mechanism for im-
plementing channels. For example, Uniform Resource Locators (URLs) are often
used to represent communication channels between web services, especially in
RESTful services [24]. URLs allow one to encode both the participant reference,
and the correlation key together. When using URLs, the separation between
correlation key and participant reference is irrelevant. The concept of channel
abstracts away from such details, while the concepts of correlation keys and par-
ticipant keys do not provide this level of abstraction. A possible way to address
this deficiency in BPMN might be to replace participant references/correlation
keys with a single concept of channel. In this extension, interactions in a BPMN
choreography diagram would have channels attached to them in order to cap-
ture channel creation, passing and use. Additionally, channel details could be
captured using textual annotations, following the principle of Dual Coding [20].

BPMN 2.0 uses the mechanism of Correlation Key to link messages with
process instances (D2.2 Service Correlation). Correlation can be applied to Me-
ssage Flows in collaboration and choreography. A conversation represents a set
of Message Flows grouped together based on a concept and/or a correlation
key. It is however not clearly specified in the standard how this correlation is
graphically represented. Semantically, several correlation keys could be related

110 M. Cortes-Cornax et al.

to a choreography but not explicit representation is considered. Nevertheless,
Function-Based correlation patterns (e.g., property-based correlation) described
in [25] could be explicitly represented in choreography diagrams so as to render
clearer possible labeling or special treatment to group of messages.

Now, if we look at communication between services, we should take into ac-
count several scenarios listed below (D2.3 Message Multiplicity).

1. A participant X sends one message to a participant of type Y.
2. A participant X sends multiple messages to a participant of type Y.
3. A participant X sends one message to multiple participants of type Y.
4. A participant X sends multiple messages to each participant of type Y.

Other scenarios might also be possible by reversing the direction of the message
flow. BPMN 2.0 does not distinguish between these cases. This distinction is
important to strictly define choreographies and avoid inconsistencies when par-
ticipant processes are implemented. The point here is that BPMN captures the
concept of Participant Multiplicity, but it does not capture the concept of Me-
ssage Multiplicity. Perhaps the concept of Message Flow should be extended so
that the message multiplicity and the concept of participant multiplicity can be
made visible in the message flows. This may be more appropriate than having a
concept of ParticipantMultiplicity attached to the participants.

In addition to the above, the lack of visual representation of the notion Service
Correlation affects our assessment of Service Communication support. In this
respect, we propose to recover the concept of Channel used in WS-CDL for
reference passing and to assign a graphical notation to it.

D3. Time Constraints and D4. Exception Handling. BPMN 2.0 allows
the definition of time constraints (D3. Time Constraints) as well as the definition
of fault paths or exception handling (D4. Exception Handling (Fault Paths)).
Choreography diagrams maintain this aspect from classical process diagrams.

Table 1. Domain requirements in BPMN 2.0 (for choreographies)

Level Requirement Refinement Support

Domain

D1. Participant
Specification

D1.1 Multi-lateral Interactions 2

D1.2 Service Sets 2
4 (4)

D2. Service
Communication

D2.1 Selection of Services and Refer-
ence Passing

1

D2.2 Service Correlation 1
D2.3 Message Multiplicity 0

2(6)
D3. Time Constraints 2(2)
D4. Exception Handling 2(2)

Evaluating Choreographies in BPMN 2.0 111

Synthesis. Table 1 summarizes the support of domain requirements in
BPMN 2.0 for choreographies. In similar evaluations, a three-valued scale [–, +/–
, +] is used to indicate whether a requirement has no direct support, no complete
support, or full support respectively. We choose a similar but numerical scale [0,
1, 2] to have a better overview of the requirements that have sub-requirements.
The sum of the sub-requirements’s score is presented with the possible maximum
score in parenthesis (e.g., 2 (6) means that two out of six of the possible score is
achieved). We wish to underscore however that in this evaluation, the numeric
score is not the main purpose, but rather a by-product. The main purpose of the
evaluation is to identify limitations and areas for improvement in the language.

5.2 Comprehensibility Appropriateness Evaluation

We analyze here the comprehensibility requirements’ support in BPMN 2.0.

C1. Meta-model Quality Three important points are considered when ana-
lyzing meta-model quality. They are listed below:

C1.1. Abstraction Levels. Different levels of abstraction might be presented.
This gradual presentation would improve comprehensibility and understand-
ing of the meta-model.

C1.2. Views-Perspectives. Different perspectives are identified and shown in
different diagrams (e.g., structural and behavioral views).

C1.3. Presentation. Meta-model’s diagrams (e.g., UML class diagrams) must
be cognitive effective tools.

BPMN 2.0 does not specify different dialects or levels of abstractions when defi-
ning choreographies [23](C1.1. Abstraction Levels). Propositions as the 3-leveled
models presented by Silver in [23] should be present in the standard to help in
the construction of choreographies.

The presentation of different perspectives should also be a main concern when
defining choreographies (C1.2. Views-Perspectives). In [26,27,6] the authors con-
tend that different perspectives when modeling are required. In the standard,
the use of different diagrams (e.g., choreography and collaboration) is called
perspectives but this concept is not clearly explained. The new conversation di-
agram could be exploited when defining choreographies. Figure 3 shows how it
represents the manufacturing process of the example. The conversation diagram
could be considered as the structural view as it models relationships between
participants and the choreography diagram the behavioral view (models inter-
actions between participants). Currently, it is not required for choreography
conformance [8] but we suggest it.

When analyzing the meta-model, several style guidelines described in [19,23]
as well as the WS-CDL critics taken from [15] are taken into account. In the
standard, numerous complex and not effective meta-models are found (C1.3.
Presentation). For example, choreography meta-model has 18 elements and 25

112 M. Cortes-Cornax et al.

Fig. 3. The manufacturing process represented in a conversation diagram

relationships. It is not easy to understand the choreography concept just regar-
ding the meta-model despite it should be one of its goals. Symmetry, exhaustive
multiplicity definition and avoiding cross lines seems to be prior issues in the
standard’s meta-model style. However, the use of color, coherent sized elements,
placing subclasses below super classes or the fact of avoiding redundant infor-
mation could simplify meta-model’s comprehension and make them much more
effective [28,19,20].

C2. Model Quality. We identify two main points when looking at model
quality. We focused on the capacity of the language to produce good models
and to avoid producing bad ones. The model quality can be induced by the
language. Here, we consider a very simple vision of model quality which is limited
to the readability (C2.1. Readability) , the simplicity (C2.2. Simplicity) and the
guidance (C2.3. Guidance) encouraged by the language.

C2.1. Readability. Readability facilitates diagram comprehension (crossing
lines, sized symbols, use of color, symmetric, ...).

C2.2. Simplicity. Simplicity must be encouraged as an effective cognitive
method (show indispensable, reorganization, diagram size, ...).

C2.3. Guidance. Guidance should be given in order to encourage useful
models.

Readability (C2.1. Readability) and simplicity (C2.2. Simplicity) will depend
mostly on the modeler’s skills as well as the tools. The standard provides mecha-
nisms as Sub-process or Link events to deal with these requirements [8]. However,
the standard lacks of guidelines to produce good models (C2.3. Guidance). All
diagrams can be combined and fulfilled at different level of details. Very complex
as well as too simple diagrams can be produced. This flexibility and the lack of
orientation could be disturbing factors for modelers specially novices.

C3. Notation Quality. In [29], the authors analyze the cognitive effectiveness
of the BPMN 2.0 visual notation through a set of Principles of Notations. They
focus on BPMN business process diagrams but several of their observations are
also applicable to BPMN choreographies. The Principles of Notations considered
in this prior work are:

Evaluating Choreographies in BPMN 2.0 113

C3.1 Semiotic Clarity. One-to-one correspondence between symbols and
concepts.

C3.2 Perceptual Discriminability. The easy and accuracy with which diffe-
rent symbols are clearly distinguishable from each other.

C3.3 Semantic Transparency. Visual representation whose appearance sug-
gests their meaning.

C3.4 Cognitive Integration. Inclusion of explicit mechanisms to support in-
tegration of information from different diagrams.

C3.5 Visual Expressiveness. Use the full range and capacities of visual vari-
ables (shape, texture, brightness, size, color and orientation).

C3.6 Dual Coding. Use text to complement graphics. Textual encoding is
most effective when it is used in a supporting role.

C3.7 Graphical Economy. The number of different graphical symbols has to
be cognitively manageable.

C3.8 Cognitive Fit Expert-Novice Difference. Take into account
difference between practitioners and novices.

C3.9 Complexity Management. Include explicit mechanisms for dealing
with complexity.

One of the major problems detected in [29] is the lack of a scientific background in
notation design. This problem applies to the choreography subset of BPMN 2.0.
In particular, there is not always one-to-one correspondence between symbols
and concepts (C3.1 Semiotic Clarity). For example, the service correlation or
the participant’s multiplicity are just declared in an implementation level. In
other cases such as for instance, timer event, this requirement is fulfilled. The
perceptual discriminability can also be criticized. The difference between call-
choreographies and sub-choreographies by its line width its an example of this
lack (C3.2 Perceptual Discriminability). The concept of message flow in BPMN
is perhaps overloaded. Specifically, if one participant creates an instance of an-
other participant (“instantiation”), it will use a message flow. But also, if one
participant wants to send a message to an existing instance of another partici-
pant, it will also use a message flow. This lack of perceptual discrimination in
BPMN 2.0 might lead to comprehensibility issues.

In some cases the notation is intuitive, e.g. envelopes are used for symbolizing
message events and clocks are used for symbolizing timer events. In other cases,
especially those regarding the minimal differences between the process activities
and choreography activities, less transparency is achieved (C3.3 Semantic Trans-
parency). It is not always intuitive the integration between the different BPMN
diagrams, in particular between collaboration and choreography diagrams. In
choreography diagrams, the sending participant band is shaded in white and the
receiving participant band is shaded in gray. In collaboration diagrams the send-
ing event is marked with a black envelope, whereas the receiving event is marked
with a white envelope. Thus, gray corresponds to white and white corresponds
to black. It is not always evident how to match send tasks in collaborations to
response messages in choreography tasks (C3.4 Cognitive Integration).

Visual expressiveness will depend on implementors as the standard suggests
flexibility in this aspect (C3.5 Visual Expressiveness). Dual coding is supported

114 M. Cortes-Cornax et al.

and recommended and will also depend on modelers and implementations (C3.6
Dual Coding). The number of graphical symbols is cognitively manageable as the
use of event and gateway symbols is considerably reduced w.r.t. process diagrams
(C3.7 Graphical Economy). Due to the simplicity of choreography notation, there
is arguably no need for multiple dialects as proposed by Moody [20](C3.8 Cog-
nitive Fit). Instead, we propose to adopt conversation diagrams to complement
choreographies. Finally BPMN 2.0 allows one to declare sub-choreographies that
can be expanded or hidden (C3.9 Complexity management).

Table 2. Comprehensibility requirements in BPMN 2.0 (for choreographies)

Level Requirement Refinement Support

Comprehensibility
C1. Meta-model
Quality

C1.1 Abstraction Levels 0

C1.2 Views-Perspectives 1
C1.3 Presentation 1

2 (6)

C2. Model Quality
C2.1 Readability 2
C2.2 Simplicity 2
C2.3 Guidance 0

4 (6)

C3. Notation Quality
C3.1 Semiotic Clarity 1
C3.2 Perceptual Discriminability 1
C3.3 Semantic Transparency 1
C3.4 Cognitive Integration 1
C3.5 Visual Expressiveness 2
C3.6 Dual Coding 2
C3.7 Graphical Economy 2
C3.8 Cognitive Fit 1
C3.9 Complexity Management 2

13 (18)

Synthesis. Table 2 resumes the support of comprehensibility requirements in
BPMN 2.0. Regarding to this level, the major lack is detected in the Meta-model
Quality. This point is clearly improvable introducing abstraction levels and di-
fferent viewpoints when presenting choreography concepts. The meta-model pre-
sentation can also be improved, simplifying diagrams and eliminating superfluous
terms. However, model quality and graphical notation are remarkable strengths
in BPMN 2.0 for choreographies. When looking to notation we criticized the
choice of keeping the rounded rectangle form to represent choreography activi-
ties as well as the use of term Activity when referring to an interaction.

5.3 Technical Actor Interpretation Appropriateness Evaluation

We consider BPMN 2.0 for choreographies well integrated with process exe-
cution due to its good alignment to process orchestrations (BPMN’s process
diagrams) and consequently to BPEL (T3. Integration with Process Execution).

Evaluating Choreographies in BPMN 2.0 115

This fact will depend on the accuracy of choreography models to achieve a good
integration with final execution process. BPEL is based on process algebra for-
malism (pi-calculus). Therefore, choreographies in BPMN 2.0 can be considered
to have a well-established formalism (T1. Formalism). A more detailed analysis
of BPMN 2.0 execution semantics is found in [30]. Other related works are also
surveyed in the latter article.

Choreography diagrams are decoupled from technical configurations (T2. Flex-
ibility). As depicted in [31], BPMN is considered as an implementation indepen-
dent language. In addition, it permits WSDL easily plug in which allows a simple
transition to web service technology. Portability will strongly depend on vendors
(T4. Portability). In [32] Silver states: “It seems that vendors, in particular the
ones that drove the standard, do not really care about this most fundamental
user expectation of any standard”. Nevertheless, BPMN 2.0 standard specifies
the meta-model and schema for BPMN 2.0 Diagram Interchange (BPMN DI)
[8]. Monitoring is out of the scope of the standard but they envisage however a
monitoring extension (T5. Monitoring).

Synthesis. Table 3 resumes the support for technical requirements in BPMN 2.0.
We observe that these requirements are much better supported than both do-
mains’ and participants’ requirements which are similarly supported. It is clear,
as remarked Silver in [32] that the OMG has done a big effort in the technical
aspects in this new version. We hope that implementations take into account all
these improvements presented in the standard.

Table 3. Technical requirements in BPMN 2.0 (for choreographies)

Level Requirement Refinement Support

Technical

T1. Formalism 2(2)
T2. Flexibility 2(2)
T3. Integration 2(2)
T4. Portability 2(2)
T5. Monitoring 1(2)

6 Discussion and Conclusions

We have evaluated the appropriateness of the new BPMN’s diagram to capture
choreographies. Before it, we could represent them using collaboration diagrams,
but this new representation depicts interactions in a truly global view. BPMN 2.0
also permits the combination of both collaboration and choreography diagrams
so alignment between both representations could be achieved. We conclude that
it is a good choreography language but there are still some limitations described
in the previous section. As a new representation, extensions might be surely
introduced as the ones suggested in the different evaluation points in Section 5.

The limited size of the paper did not permit a more exhaustive evaluation of
BPMN 2.0 choreography diagrams. However, we have analyzed some important

116 M. Cortes-Cornax et al.

axes in a more detailed way than other evaluation works’ based on the Semiotic
Quality Framework.

A limitation of our work is the lack of empirical validation of our suggestions
with real BPMN users. We consider experimentations with service and business
specialist to validate and to complete our requirements proposal. We should also
work about defining more measurable scales to validate the evaluation. These
measures will also be useful to compare with other choreography proposals.

We considered to review and improve the choreography requirements so they
could be used as source of inspiration and reference to evaluate choreography
languages, as well as to better understand this currently emerging concept. How-
ever, we hope that this work will help designers in understanding the potential
of BPMN 2.0 for choreographies.

References

1. Peltz, C.: Web services orchestration and choreography. Computer, 46–52 (2003)
2. W3C: Web services choreography description language version 1.0 (ws-cdl) - w3c

candidate recommendation (2005)
3. Ross-Talbot, S., Brown, G., Honda, K., Yoshida, N., Carbone, M.: Pi4soa tech-

nologies fundation, http://sourceforge.net/apps/trac/pi4soa/wiki
4. Decker, G., Kirov, M., Zaha, J., Dumas, M.: Maestro for Lets Dance: An Environ-

ment for Modeling Service Interactions. BPM Demo Session, p. 32 (2006)
5. Nitzsche, J., Van Lessen, T., Leymann, F.: Extending bpellight for expressing

multi-partner message exchange patterns. In: 12th International IEEE Enterprise
Distributed Object Computing Conference, pp. 245–254. IEEE (2008)

6. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: from specifi-
cation to execution. Data & Knowledge Engineering 68(10), 946–972 (2009)

7. Barker, A., Walton, C., Robertson, D.: Choreographing Web Services. IEEE Trans-
actions on Services Computing 2(2), 152–166 (2009)

8. OMG: Business process model and notation (bpmn 2.0) (2011),
http://www.omg.org/spec/BPMN/2.0/

9. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell,
N.: On the Suitability of BPMN for Business Process Modelling. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176.
Springer, Heidelberg (2006)

10. van der Aalst, W., Ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

11. Recker, J., Indulska, M., Rosemann, M., Green, P.: Do process modelling techniques
get better? A comparative ontological analysis of BPMN. In: Proceedings of the
16th Australasian Conference on Information Systems, Sydney, Australia. Citeseer
(2005)

12. Wahl, T., Sindre, G.: An analytical evaluation of BPMN using a semiotic quality
framework. Advanced Topics in Database Research 5 (2006)

13. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge
for action: a revised quality framework. European Journal of Information Sys-
tems 15(1), 91–102 (2006)

14. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf.
Syst. 36, 292–312 (2011)

http://sourceforge.net/apps/trac/pi4soa/wiki
http://www.omg.org/spec/BPMN/2.0/

Evaluating Choreographies in BPMN 2.0 117

15. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreo-
graphy description language. BPTrends Newsletter 3 (2005)

16. Ross-Talbot, S., Brown, G., Honda, K., Yoshida, N., Carbone, M.: Soa best prac-
tices: Building a soa using process governance. JBoss (2009)

17. Wetzstein, B., Karastoyanova, D., Kopp, O., Leymann, F., Zwink, D.:
Cross-organizational process monitoring based on service choreographies. In: Pro-
ceedings of the 2010 ACM Symposium on Applied Computing, pp. 2485–2490.
ACM (2010)

18. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

19. Ambler, S.: The elements of UML 2.0 style. Cambridge Univ. Pr. (2005)
20. Moody, D.: The Physics of Notations: Toward a Scientific Basis for Constructing

Visual Notations in Software Engineering. IEEE Transactions on Software Engi-
neering, 756–779 (2009)

21. Weidlich, M., Barros, A., Mendling, J., Weske, M.: Vertical Alignment of Process
Models–How Can We Get There? In: Halpin, T., Krogstie, J., Nurcan, S., Proper,
E., Schmidt, R., Soffer, P., Ukor, R. (eds.) Enterprise, Business-Process and Infor-
mation Systems Modeling. LNBIP, vol. 29, pp. 71–84. Springer, Heidelberg (2009)

22. OASIS: Web services business process execution language v2.0 (ws-bpel 2.0) (2007)
23. Silver, B.: BPMN Method and Style: A levels-based methodology for BPM process

modeling and improvement using BPMN 2.0. Cody-Cassidy Press, US (2009)
24. Fielding, R.: Architectural styles and the design of network-based software archi-

tectures. PhD thesis, Citeseer (2000)
25. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-

Oriented Architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 245–259. Springer, Heidelberg (2007)

26. Dijkman, R., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
International Journal of Cooperative Information Systems 13, 337–368 (2004)

27. Barros, A., Decker, G., Dumas, M.: Multi-staged and multi-viewpoint service cho-
reography modelling. Technical report (2006)

28. Evitts, P.: A UML pattern language. New Riders Publishing, Thousand Oaks
(2000)

29. Genon, N., Heymans, P., Amyot, D.: Analysing the Cognitive Effectiveness of the
BPMN 2.0 Visual Notation. In: Malloy, B., Staab, S., van den Brand, M. (eds.)
SLE 2010. LNCS, vol. 6563, pp. 377–396. Springer, Heidelberg (2011)

30. Dijkman, R., Van Gorp, P.: BPMN 2.0 Execution Semantics Formalized as Graph
Rewrite Rules. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN 2010.
LNBIP, vol. 67, pp. 16–30. Springer, Heidelberg (2010)

31. Decker, G., Kopp, O., Barros, A.: An introduction to service choreographies. In-
formation Technology 50(2), 122–127 (2008)

32. Silver, B.: Bpmn model interchange: Update (2011),
http://www.brsilver.com/2011/02/26/bpmn-model-interchange-update/

http://www.brsilver.com/2011/02/26/bpmn-model-interchange-update/

A Lightweight Approach for Designing

Enterprise Architectures Using BPMN:
An Application in Hospitals

Oscar Barros1, Ricardo Seguel2, and Alejandro Quezada1

1 University of Chile, Santiago, Chile
obarros@dii.uchile.cl

2 Eindhoven University of Technology, The Netherlands
r.e.seguel@tue.nl

Abstract. An Enterprise Architecture (EA) comprises different models
at different levels of abstraction. Since existing EA design approaches,
e.g. MDA, use UML for modeling, the design of the architecture becomes
complex and time consuming. In this paper, we present an integrated and
lightweight design approach for EA that uses a generic architecture and
patterns, expressed in BPMN. The approach facilitates the modeling be-
tween the different levels. This has been applied in real cases in hospitals
and other domains, demonstrating its feasibility and usability, reducing
complexity and time for modeling.

Keywords: Enterprise Architecture, Process Architecture, Business
Process Management, Process Pattern, BPMN.

1 Introduction

Companies using EA as a management method have found that different repre-
sentations of processes are needed according to the level of detail that managers
want to know. Based on the reported experience of many companies [12,18] and
our own experience with hundreds of redesign projects through the collaboration
with industry [3,4], the following levels of detail can be identified:

I. Process Architecture, which is a high-level representation for communicat-
ing to executives

II. Business Design based on the process representation of value chains for its
presentation to process managers and business executives.

III. Process Logic that is a detailed representation of the process models for
simulation and implementation for communicating to process specialists.

IV. IT Process Support that is the representation of the system supporting the
execution of the processes for process and IT specialists.

Different modeling schemes and tools can be used for each of these levels for
process analysis and design. For example, for Level I, we can use simple diagrams
as the one that are part of the first level of SCOR [7] or eTOM [9]. Next, for Level

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 118–123, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Lightweight Design of EA with BPMN 119

II we can draw informal Porter Value Chain diagrams [15] or more formal IDEF0
models [8]. Then, for Level III, we can use BPMN [19] or EPC [16] for more
detailed models. For Level IV, depending on the type of implementation, we can
use alternatives such as UML, Workflow diagrams or BPMN for implementing
the supporting software application into a process-aware information system.
Therefore, differences and inconsistencies appear as the models are designed
by using different modeling languages at the different levels. In this paper, we
propose an integrative approach in which all the models are designed with BPMN
and the process models are implemented in a BPMN-based system. We use a
real case that is being developed in a hospital to exemplify our ideas..

Existing frameworks for designing Enterprise Architecture [14] use a similar
approach to the one we propose. MDA [13] is based on UML for modeling the
complete architecture, from business requirements to software architecture for
implementing the supporting system. Since UML is not broadly used at the
business level, the modeling becomes complex for non UML experts and hard to
communicate to business executives. An analysis of a complex architecture, using
MDA in combination with the Zachman Framework [20] has been developed
for investigating this gap and defining a mapping between them with a three-
dimension approach [17]. TOGAF is a comprehensive framework for designing an
EA, based on a iterative life-cycle which architecture modeling method (ADM)
uses the Archimate language [12]. Although TOGAF does not force the use of
Archimate, other modeling language can be used such as UML or even combining
ADM with MDA [5]. In practice, TOGAF is generic and it can be used for any
company in any industry. Since TOGAF does not have any design pattern [6] for
developing an architecture in a given domain, this process becomes complex and
slow. In previous research [1,3,4], we have developed patterns for designing an
Enterprise Architecture and processes in different industries such as healthcare.
By using the patterns, the design process becomes faster than just using a generic
framework as TOGAF or MDA. In this paper, we present an EA design approach,
which uses BPMN to model designs based on our patterns at the four levels
in an integrative way. We concentrate on the Process Architecture, but other
architectures such as the application, data and technical architectures are present
in design levels Levels III and IV defined above. The remainder of this paper
is as follows. Section 2 explains the solving approach of the problem. Section 3
describes the approach for designing an EA with BPMN in a hospital. Finally,
Section 4 describes the conclusions and future work.

2 Problem Solving Approach

In this paper, we propose a scheme that uses BPMN as a unique technique for
designing and modeling all the four levels (I-IV) defined above. For this, we
take the best of the different methods in which we have experience: Business
Process Patterns (BPP) [1,3] that are in line with the purpose of SCOR [7]
or eTOM [9] but valid for different industries; BPMN modeling language, and
process-aware information systems for implementing BPMN models. The key
ideas of our approach are:

120 O. Barros, R. Seguel, and A. Quezada

1. In order to drive modeling at all levels of detail, predefined general process
patterns are used. The patterns, which are based on what we call macropro-
cesses, provide templates or general structures of activities and flows about
how a process should be performed. Each macroprocess is itself, a layered
normative structure of processes. A macroprocess gives, in several levels of
detail, the processes, sub processes and activities plus the relationships that
should be executed in order to produce a desired result.

2. Using these patterns, ad-hoc for different industries, the design or re-design
process is accelerated.

3. We adopt a simple information flow representation and hierarchical decom-
position of activities for gradually giving details of the process for Levels I
and II, using some of the simplest BPMN constructs to represent levels I
and II, for flow type models.

4. We keep consistency and traceability with hierarchical decomposition: all
the elements of any level should be details of an element at a higher level.

Other authors such as Freund and Rücker[10] have proposed the use of BPMN
for process modeling; they only concentrate on Levels III and IV of our ap-
proach. They do not consider the process architecture design of Level I by using
frameworks as SCOR [7] or eTOM [9], nor the business design of Level II by
using Porter Value Chain or IDEF0 diagrams. Therefore, their approach lacks
the strategic and business alignment for designing processes. According to the
design guidelines of Hevner et al. [11], we propose an approach that produces
an artifact that can be used by practitioners to provide solutions in a given do-
main. Our design domain is stated above and goes from strategy based process
architectures to information systems that support such processes. This problem
is very relevant since most organizations deal with process and information sys-
tem design on a piecemeal basis, without considering the integration that we
propose.

3 Designing the EA with BPMN

We now explain how each level defined above is modeled for the case of a hospital.
For the sake of space, we give a more details in [2].

3.1 Process Architecture Modeling (Level I)

We base the modeling of this level on general process architecture patterns re-
ported on our previous research [1,3,4]. The patterns are based on the thesis that
the architecture of any enterprise can be modeled by means of four general Busi-
ness Process Patterns, which we call macroprocesses. In Figure 1, we show the
resulting architecture for the domain of hospitals we are working with. From the
architecture we select the macroprocess that is to be designed in detail, which
is Service Lines to Patients , since the business goal in this case is to improve
the service to patients and make a better use of resources and it is considered
that it can be done by designing this macroprocess. Such services lines or value
chains are then detailed, by hierarchical decomposition.

Lightweight Design of EA with BPMN 121

Fig. 1. Process Architecture for Hospitals (Level I)

3.2 Business Design Using Patterns (Level II)

The basic rule that we apply for designing in this level is to take the structure of
processes provided by the architecture of the previous level and design each of
its components by using the process pattern corresponding to the value chain.
This provides a set of sub processes that are necessary to execute. Then, the
component are specialized to the particular case; i.e. to establish how every
sub process of the pattern is currently executed, if at all, and then evaluating
technically and economically the feasibility of performing it according to what
the pattern prescribes.

3.3 Process Logic Design (Level III)

The basic rule is that each of the sub processes designed in the previous level
should be detailed in terms of who is responsible for each activity of the sub
process, the business logic that will be executed by people or the information
system and the workflow that establishes the relationships among activities. This
should be consistent with the previous level in that all the functionality that a
sub process provides at such level and the relationships it supports must be
provided by the design. For our running example, we detail the BPMN model
for the sub process Attendance Control shown in Figure 2. This tries to solve
one important problem currently observed at a given hospital, which is that

122 O. Barros, R. Seguel, and A. Quezada

Fig. 2. BPMN diagram for Attendance Control (Level III)

20% of medical visits fail because of patient absenteeism. We aim to improve
the performance of medical booking service to reduce the waiting list of patients.
This is done by introducing a logic that detect patients that are likely not to
attend and calling them to check them up. This generates the possibility of
assigning liberated medical hours to patients in a waiting list that otherwise will
not get attention.

3.4 IT Process Support (Level IV)

We illustrate this level with the case in which we want to automatically generate
the supporting system for the processes models in BPMN. The BonitaSoft system
is used to demonstrate the easy implementation of the processes from the models
designed in Level III.

4 Conclusions

All the steps performed from Level I to Level IV have taken just 4 weeks for im-
plementing the processes in the prototype for our running example. This means
that in this period we have designed the architecture of the hospital, developed
the redesign of the critical processes, implemented the redesigned processes in
the supporting system and communicated all the changes to the different stake-
holders at every level (I-IV). Compared to other EA design approaches as Zach-
man [20], MDA [13] and TOGAF [12] that take long and become complex due
to the generic guidelines, our approach accelerates the design process of the EA
by using process patterns and BPMN as the only modeling language. So, our ap-
proach represents an integrated and lightweight design process for an Enterprise
Architecture. Although this is preliminary result and need much more success
cases, we have shown in a real case that indeed our approach is less complex,
much easier to use and faster than existing approaches.

Lightweight Design of EA with BPMN 123

References

1. Barros, O., Julio, C.: Enterprise and process architecture patterns. Business Pro-
cess Management Journal 17(4), 598–618 (2011)

2. Barros, O., Seguel, R., Quezada, A.: A lightweight approach for designing enterprise
architectures using BPMN: an application in hospitals (long version). University
of Chile (2011)

3. Barros, O.: Business process patterns and frameworks: Reusing knowledge in pro-
cess innovation. Business Process Management Journal (January 2007)

4. Barros, O.: Business processes architecture and design. BPTrends (May 2007)
5. Blevins, T.J., Spencer, J., Waskiewicz, F.: TOGAF ADM and MDA - Revision 1.1.

The Open Group (2004)
6. Buckl, S., Ernst, A.M., Matthes, F., Ramacher, R., Schweda, C.M.: Using enterprise

architecture management patterns to complement TOGAF. In: IEEE International
Conference on Enterprise Distributed Object Computing (2009)

7. Supply Chain Council. SCOR: Supply-Chain Operations Reference model; version
9.0 (2008)

8. Feldmann, C.G.: The practical guide to business process reengineering using
IDEF0. Dorset House Publishing Co., Inc., New York (1998)

9. TM Forum. eTOM: enhanced Telecom Operations Map; release 8.0 (2008)
10. Freund, J., Rücker, B.: Praxishandbuch BPMN 2.0. Hanser Fachbuchverlag (2010)
11. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Quarterly 28(1), 75–105 (2004)
12. Lankhorst, M.: Enterprise Architecture at Work: Modelling, Communication and

Analysis, 2nd edn. Springer, Heidelberg (2009)
13. Mellor, S.J.: MDA distilled: principles of model-driven architecture. Addison-

Wesley, USA (2004)
14. Minoli, D.: Enterprise architecture A to Z: frameworks, business process modeling,

SOA, and infrastructure technology. CRC Press (2008)
15. Porter, M.E.: What is strategy? Harvard Business Review (1996)
16. Scheer, A.-W.: ARIS – Business Process Frameworks. Springer, Germany (1999)
17. Seguel, R., Grefen, P., Eshuis, R.: Design of complex architectures using a three

dimension approach: the crosswork case. BETA WP309, Eindhoven University of
Technology, The Netherlands (2010)

18. van’t Wout, J., Waage, M., Hartman, H., Stahlecker, M., Hofman, A.: The Inte-
grated Architecture Framework Explained: Why, What, How. Springer, Heidelberg
(2010)

19. White, S.A., Miers, D.: BPMN Modeling and Reference Guide: Understanding and
Using BPMN. Future Strategies, Inc., FL (2008)

20. Zachman, J.: The Zachman framework for enterprise architecture. In: Zachman
International (2002)

Implementing the Semantics of BPMN through

Model-Driven Web Application Generation

Marco Brambilla and Piero Fraternali

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{marco.brambilla,piero.fraternali}@polimi.it

Abstract. We describe a pragmatic approach based on Model Driven
Engineering (MDE) principles for implmenting the execution semantics
of BPMN. The approach is based on a two-step model transformation
that transforms BPMN models into Web application models specified
according to the WebML notation and then into running Web applica-
tions. Thanks to the proposed chain of model transformations it is also
possible to fine tune the final application in several ways by refining the
intermediate WebML application models.

1 Introduction

Turning a business process model into the specification, design and implemen-
tation of a software solution for process enactment is a non trivial task: the
semantics of the adopted business process modeling notation is not always well
defined, the specified processes can be a mix on new functionality to be devel-
oped and interactions with pre-existing systems and the user’s activities must be
supported through effective and usable interfaces, possibly compliant with the
visual identity and interaction style of other corporate applications. Further-
more, the business requirements embodied in the process models, as well as the
technical context in which the underlying applications are deployed, are subject
to evolution. This may cause severe alignment problems when trying to keep the
business process and the application in sync.

In this short paper we propose a pragmatical yet very precise implementa-
tion of the execution semantics of BPMN through a model transformation and
code generation approach. We show how the gap between process modeling and
application development can be alleviated by increasing the degree of automa-
tion in the design, implementation and maintenance of applications derived from
process models.

The automation framework we propose supports the automatic translation
of BPMN process models into running applications. Aside, we note that the
approach is flexible enough to incorporate different architectural and interaction
requirements, and can be applied also to application evolution and maintenance.

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 124–129, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Implementing the Semantics of BPMN 125

Design
BPMN
model

Generate
WebML
model

Refine
WebML
model

Generate
running

application

Execute
Web

application
Manual Auto

pp
AutoManual

pp
Manual

Fig. 1. Overview of the approach: the manually developed BPMN model is transformed
into the WebML application model, which in turn can be manually refined. Finally,
the running application is automatically generated and then executed.

2 Challenges and Contributions

The BPM community recognizes the conceptual distance between the process
model and the the running application: the former dictates roles, activities and
business constraints at a very abstract level, irrespective of how these are sup-
ported by computing tools; the latter embodies very low-level details, where
business, architecture, and interaction aspects are blended together and hard to
customize and evolve separately. As an example, the same user’s activity spec-
ified in the process model could be enacted in a variety of ways: by means of a
wizard, by form editing, by using a legacy application interface.

In the scientific community, several works have addressed the binding of
BPM and Model Driven Development of Web applications: PML [6], YAWL
[5], OOHDM [8], WSDM [9] and a few others. Our previous work [3] established
the theoretical basis of the implementation described in here; with respect to
that early idea, now the BP model and the application model are treated as
orthogonal and independent models, which can evolve and interact in parallel
throughout the entire application development lifecycle.

Based on these premises, our original contributions are: (i) a model-driven
approach to the definition of the execution semantics of BPMN; (ii) a practi-
cal approach to business process-based software application development, which
leverages the integrated use of two orthogonal models (BP and application mod-
els); (iii) a generative framework for producing the executable code from the
process and application model, and a one-click, zero-coding generation of a run-
ning prototype on an enterprise class standard architecture; (iv) the implemen-
tation of the model editor and transformations in a commercial tool suite called
WebRatio [1], which supports all the steps of the proposed approach.

The proposed approach and the associated toolsuite have been validated on
some large-scale industrial applications in various fields (finance, utilities, mar-
keting, and public administration) [2].

3 Model Driven Engineering Applied to Process Models

Our approach applies Model Driven Engineering (MDE) principles and organizes
the specifications of process-oriented applications at three levels:

126 M. Brambilla and P. Fraternali

1. the business model (specified with BPMN [7]);
2. the structure, behavior and user interaction of the software application (ex-

pressed in WebML [4]);
3. the executable application running code.

Given that the WebML execution semantics has been already defined in the past,
and a full-fledged code generation approach has been in place for several years
now, the challenge becomes to define an appropriate mapping between BPMN
models and WebML models.

In this way, the application execution can be enabled through two consecutive
transformations: the Process Model to Application Model transformation, and the
Application Model to Running Code transformation. Figure 1 shows an overview
of the approach, highlighting the phases that need human intervention (tagged
as “manual”) and the completely automated ones (tagged as “auto”).

The introduction of the application modeling layer increases the complexity
of the conceptual architecture, but brings fundamental advantages: there is one
place (the application model), where it is possible to reason about the distinct
aspects of the application separately; the BPM to Application transformation
can be supplied with transformation rules capable of producing alternative ways
of encoding an activity, by using different patterns; automatically generated
application models can be fine tuned, to introduce usability patterns, without
breaking the application compliance to the process model; application evolu-
tion can be performed independently of the technical platform, by updating the
application model and then regenerating the application code.

4 Model Transformations

The core of our contribution stands in the transformation from BPMN mod-
els to WebML models. WebML is a visual language for designing data- and
service-centric Web applications, that allows specifying the conceptual model
of applications built on top of a data schema and composed of one or more
hypertexts used to publish or manipulate data.

In our approach the process state is encoded as instances of a specific data
model and the execution, including the checks of the constraints imposed by the
business process, is defined as a set of application rules upon the data.

Hence, starting from a BPMN specification, the automatic transformation
produces the logical representation of the process metadata and a WebML Ap-
plication Model, comprising a Data Model dictating the application-specific con-
cepts and a collection of hypertext models, including the primitives for the user
interaction and Web service orchestrations.

4.1 Process Data Model Generation

The transformation from BPMN to the process data model consists of an en-
coding of the BPMN concepts in a relational database structure: the BPMN

Implementing the Semantics of BPMN 127

(a) (b)

(c)

Fig. 2. The WebRatio BPMN editor interface (a); the automatically generated pro-
totype Web interface (b); the WebML application model of a generic task module
comprising data object retrieval from the workflow, input forms for the users, and data
object update before completion of the task (c).

precedence constraints and gateways are transformed into instances of a rela-
tional representation. At runtime, the BPMN constraints, stored in the Process
Metadata Schema, are exploited by the components of the Application Model
for enacting the precedences among human-executed tasks and executing the
service invocations.

4.2 Application Model Generation

The transformation from BPMN to WebML considers the type of the gateways
and of the tasks, as well as the information on the control and data flows. The
generated application models consist of a coarse set of user interfaces and pro-
totype business operations.

Process control is encapsulated thanks to the automatically generated process
data model: the computation of the next enabled activities given the current state
of the workflow is delegated to a specific WebML component, which factors out
the process control logic. It exploits the information stored in the process data
model to determine the current process status and the enabled state transitions.

128 M. Brambilla and P. Fraternali

The basic transformation rules from BPMN to WebML include the generation
of:

– of on site view (i.e., the WebML concept describing the comprehensive vision
of the application by a user, once logged in) for every lane;

– of one WebML module containing the user interface model for submitting
or visualizing data (in case of manual tasks);

– of one WebML module containing a generic business logic operation, to be
subsequently specified (in case of automatic tasks);

– of one process branching control unit for every gateway. Basic gateways con-
ditions based on single-valued guard conditions are supported automatically,
while more complex behaviour need manual refinement at the WebML mod-
eling level.

Every module includes the retrieval of the relevant workflow data objects and
their update, as shown in Figure 2(c).

The tool also automatically generates the WebML model for managing the
tasklist, for checking the process execution status, and the interface for a basic
Business Activity Monitoring (BAM) dashboard.

5 Tool Implementation

The proposed generative framework has been implemented as an extension of
WebRatio, a Model-Driven Web application development tool allowing one to
edit WebML models and automatically transform them into a running applica-
tions for JEE and Service Oriented Architectures. For supporting BPM design,
the following extensions have been devised. The model editing GUI has been
extended with a new BPMN editor. The code generator has been extended with
the transformation from BP model to application model; furthermore, the JEE
code generation has been augmented to produce the relational instance of the
Process Metadata and the Java code of novel WebML components. Moreover, a
one-click publishing function has been added to the BPMN editor, thus allowing
the immediate generation of a rapid prototype of the BPMN process. This func-
tionality invokes in sequence the two transformations from BPMN to WebML
and from WebML to JEE, yielding a dynamic, multi-actor application with a
default look & feel. The generator creates a few exemplary users for each BPMN
actor, which allows the analyst to impersonate each role in the process. Figure 2
shows the BPMN editor (a), the generated application interface (b), and a piece
of WebML model (c).

6 Conclusion

We presented a pragmatic, Model-driven approach for the implementation of
BPMN process models. Thanks to the associated tool suite, visual model design

Implementing the Semantics of BPMN 129

and model transformations allow designers to produce both as early prototypes
and final applications without coding.

The approach does not cover the entire expressive power of BPMN: we support
manual and automatic activities and the basic process design patterns; and the
basic gateways (AND, XOR, Event), events and roles. Furthermore, we do not
support choreography and conversation models. Future work aims at increasing
the coverage of the BPMN model in the transformations to WebML.

References

1. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web ap-
plications design and development with webml and webratio 5.0. In: TOOLS Con-
ference (46), pp. 392–411 (2008)

2. Brambilla, M., Butti, S., Fraternali, P., Borrelli, S. In: BPM 2010 - Industrial Ex-
periences Track (2010)

3. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web
Applications. ACM TOSEM 15(4), 360–409 (2006)

4. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, USA (2002)

5. Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.): Mod-
ern Business Process Automation, YAWL and its Support Environment. Springer,
Heidelberg (2010)

6. Noll, J., Scacchi, W.: Specifying process-oriented hypertext for organizational com-
puting. J. Netw. Comput. Appl. 24(1), 39–61 (2001)

7. OMG, BPMI. BPMN 1.2. Technical report (2009), http://www.bpmn.org/
8. Schmid, H.A., Rossi, G.: Modeling and designing processes in e-commerce applica-

tions. IEEE Internet Computing 8(1), 19–27 (2004)
9. De Troyer, O., Casteleyn, S.: Modeling complex processes for web applications using

wsdm. In: Ws. on Web Oriented Software Technology (IWWOST), Oviedo, pp. 1–12
(2003)

http://www.bpmn.org/

Layout Patterns with BPMN Semantics

Philip Effinger

Wilhelm-Schickard-Institut für Informatik,
Eberhards Karls Universität Tübingen, Germany

philip.effinger@uni-tuebingen.de

Abstract. BPMN is a notation language that provides visual elements
for modeling business processes. The resulting BPMN diagrams that rep-
resent BPMN models follow rules concerning their layout for creating
a common understanding among all BPMN designers. A subset of the
rules is determined by the BPMN standard. Other rules evolved when
the BPMN community gained experience in the usage of its notation lan-
guage. From a layout algorithmic perspective, the rules are formalized as
so-called aesthetics. Until today, aesthetics for BPMN are mostly limited
to the underlying graph structure of a BPMN process model diagram.

In this work, we present new layout patterns that can be applied
in layout applications of BPMN and its modeling tools. The new layout
patterns support BPMN semantics and address layout issues that are not
covered by aesthetics so far. The patterns can be combined to achieve
positive effects on multiple a) layout issues and b) BPMN semantics at
a time. We also give detailed algorithmic descriptions for our patterns.

1 Motivation

For many users of BPMN (> 50%, according to a survey among experts1),
the main purpose of BPMN is Process Description. The description of a pro-
cess employs the graphical notation of BPMN. As BPMN specifies graphical
representations for its elements, these given representations quickly allow simple
diagramming in modeling tools when developing a model.

Our focus in this work is on the support of a user when graphically developing
a process model. We aim to provide features in tools that can create a layout for a
given process diagram. The layout of a diagram should be created automatically
(by a single mouse-click) and it is expected to appeal to the user. The layout
methods are based on graph-drawing algorithms.

In previous work, we presented a survey on user requirements towards BPMN
diagrams and specific layout properties of BPMN models [1]. From the survey,
we can derive important expectations and criteria for layout, so-called aesthetics.
Also, there exist approaches for layout support in BPMN ([2,3]). The existing
layout approaches are based on the structure of a BPMN diagram. The structure
is considered to be a graph with nodes (BPMN elements) and edges connecting

1 http://bpex.blogspot.com/2011/05/bpmn-usage-survey-results.html

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 130–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://bpex.blogspot.com/2011/05/bpmn-usage-survey-results.html

BPMN Layout Patterns 131

the nodes (in BPMN: sequence flow, conditional flow, default flow). However, the
graph structure does not consider the types of the nodes (BPMN semantics).

In this work, we present patterns that are designed to overcome the gap
between graph structure and semantics of BPMN diagrams when creating a
layout. The patterns aim to a) reduce cluttering in diagrams (primarily around
gateways), b) highlight the logical structure of a BPMN diagram (induced by
gateways) and c) accentuate the process flow.

2 Layout Patterns

The new layout patterns aim to reduce the lack of BPMN semantics in existing
BPMN layout approaches [2,3]. Inspecting the list of standard layout aesthetics
of [1], it is easy to observe that BPMN semantics in terms of element types are
not taken into account in any of the aesthetics. The lack of support for BPMN
element types is a gap between the graph structure and BPMN semantics. By
introducing new layout patterns in the next section, we try to take a first step
to overcome this syntax-semantics gap in BPMN layout. The patterns should
be considered as a starting point for BPMN semantics in layout approaches and
cannot be considered to be complete. For instance, one pattern might, on the one
hand, enlarge the area size of the diagram and insert a new crossing between two
flows, but on the other hand, three bends are removed and the length of a flow is
reduced. This shows the tradeoff between an aesthetically optimal solution and
consideration of semantics.

2.1 Geometric Pattern (GeoP)

Description: The Geometric Pattern (GeoP) aims at reducing visual clutter-
ing. Cluttering describes the occurrence of many elements in a small amount
of the diagram area (high element-density). For instance, around gateways with
multiple connected elements, the cluttering is higher than the cluttering around
a start event with a single outgoing sequence flow. Therefore, reducing the visual
cluttering demands a reduction of density.

As a pre-processing step, we will show how the density of a BPMN diagram
is determined. Density values can be visualized as depicted in Figure 1a). The
calculation defines densities diametrically opposed to the flow in the model for
each swimlane. The density values are derived by performing a sweep-line algo-
rithm [4] call for each swimlane individually. In a single sweep, an event handler
changes the density counter depending on incoming events. In our case, events
are left/right geometric sides of boxes representing BPMN elements.

After the detection of dense areas, we insert temporary edges (marking edges)
in the center of each dense area. The edges mark these areas for the algorithm. The
pre-processing step ends with the edges’ insertion orthogonally to the swimlane
orientation, see Figure 1b). The algorithm of the pattern then aims at resolving
the introduced overlaps by moving (sifting) nodes affected by marking edges.

Algorithm: Our algorithm for GeoP is related to the Sifting Algorithm (SA)
[5,6]. In general, SA tries to move one element at a time along an ordering of

132 P. Effinger

�

�

�

�

�

�

(a) Density visualization

�

�

�

�

�

(b) GeoP-Sifting

Fig. 1. (a) Visualization of densities (red = high, green = low). (b) Schematic view of
the algorithm for the GeoP. Red arrows depict the direction of possible sifting moves.

other elements until a goal function reaches a (local) minimum. In our case, we
move all elements sequentially that are overlapped by a temporary marking edge.
An element can be moved in parallel to its swimlane. Therefore, other than in
the general SA, we have two orderings that an element can be moved along, see
Figure 1b). Thus, we have more freedom and move an element in either direction
until the overlap with the marking edge is prevented. This spreads the original
density center and the cluttering is reduced.

To reduce cluttering in several dense areas, the algorithm allows to insert
multiple temporary edges that are processed sequentially.

2.2 Gateway Pattern (GaP)

Description: The Gateway Pattern (GaP) aims at highlighting the logical struc-
ture of a BPMN process model. The logic structure is defined by the combina-
tion of gateways.Gateways determine the process flow based on logical expressions
that are evaluated when a gateway is passed. Evaluations of gateways may cause
split/joins of process flow(s). Since BPMN is not a block-structured notation lan-
guage, buta graph-basednotation language [7], theunderlying logic structure is not
trivial. In [8], the challenges of ’unraveling’ (transforming) a non well-structured
process model to a well-structured model are described. In general, if a process
model is not well-structured, determination of corresponding pairs of opening split
and closing joins is not unique. We call such a pair ’GaP-pair’.

If we can find such a GaP-pair that encloses a block structure, GaP is implying
that no element of this block is placed ’before’ the opening split gateway (with
respect to the process model flow orientation) or ’after’ the closing join gateway.
Thus, the goal of GaP is to highlight the semantic block structure by a visual
block structure that is surround by the GaP-pair.

In most process models, we cannot find well-structured parts when analysing
the gateways. Therefore, we apply a method that allows the construction of
blocks that do not require well-structured processes. The details of this algorithm
are described in the following.

Algorithm: For our approach, we use the concept of a path in a graph: A path
is a sequence of consecutive edges in a graph and the length of the path is the
number of edges traversed. Since we also want to handle non-well-structured

BPMN Layout Patterns 133

models, we define a GaP-pair as follows: A split-gateway G1 and a join-gateway
G2 form a GaP-pair, if, for all possible paths starting at G1, the size of the
subset of paths arriving at G2 is maximal among all gateways. In other words,
we count the number of paths arriving at any gateway, where G1 is the root
node in the path; then, for G2, the counter reaches its maximum and G1 and
G2 form a GaP-pair.

Counting paths is executed using a variant of depth-first-search (DFS) [9]:
we start a DFS-run from every split-gateway (or other gateways that perform
process flow split, e.g. complex gateways). Since DFS is able to handle cycles
(by storing visited nodes) and we employ our path counting method, we are able
to find GaP-pairs in non-well-structured models.

If, for a split-gateway G1, there are two join-gateways G2a and G2b with the
same path counter, the minimum distance between G1 and either G2a or G2b
is taken as criteria for determining the GaP-pair.

After finding GaP-Pairs, we insert surrounding temporary edges (skeleton
edges), analogously to the GeoP, orthogonally to the flow orientation. Skeleton
edges are inserted into the swimlane(s) of the gateways forming the GaP-pairs,
see Figure 2. For every pair, one skeleton edge is introduced before the split-
gateway and a second skeleton edge after the join-gateway. The skeleton edges
delimit the surrounding box representing the block that is formed by the GaP-
pair. When performing a layout (for instance with the approach presented in [3]),
the skeleton edges prevent nodes to be moved to the outside of the block.

�

�

�

�

� � �

Fig. 2. Insertion points of skeleton edges in GaP

2.3 Start-End-Pattern (SEP)

Description: The Start-End-Pattern (SEP) formalizes the compliance of plac-
ing start- and end-events considering aesthetics FLOW [1]. These elements should
be placed such that they follow the orientation of the process flow (or ’reading’
direction of the user). When SEP is activated, it ensures that a start-event is
moved to the ’beginning’ (left side) of its assigned swimlane, and an end-events
is set to the ’end’ (right side) its swimlane. Performing SEP might affect lengths
of edges: edges connected to moved events might increase severely in length. In
order to possibly reduce the increase of edge length or prevent bends, we support
two variants of SEP:

1. Dynamic: Events affected by SEP are set to the left/right border of the
swimlanes but may move in parallel to the swimlane orientation in order to
reduce unnecessary long edges or prevent bends, see Figure 3a).

134 P. Effinger

2. Locking: All (start/end) events of a swimlane are aligned in the begin-
ning/end of the swimlane, see Figure 3b). The events are locked in a box
surrounded by skeleton edges that guarantee that they do not move to the
outer side of the box when performing a new layout.

The second variant is more appropriate for process models that have highly
parallel process flow and, thus, several starting/terminating events.

Algorithm: As mentioned in the two variants, we employ for SEP the idea
of skeleton edges that was also used in GaP. The skeleton edges ensure the
structure of the locking box and keep the nodes aligned in the beginning/end of
the swimlanes. The alignment of the event node of one swimlane is done such
that overlapping of nodes is prevented and the size of an element is kept.

�

�

�

�

(a) SEP dynamic

�
�

�

�

� �

(b) SEP locking

Fig. 3. (a) Start- and End-events are allowed to optimize their position, e.g. see the
node MESSAGE START EVENT that moved in order to prevent a bend in a flow. (b)
Start- and End-events are kept static in boxes built by skeleton edges.

3 Related Work

Patterns in (business) processes are a common method to express abstract sim-
ilarities in process models, e.g., action patterns are used to formalize semantic
analysis of BPMN process models in [10] or for organization in large business
process model repositories [11]. The term ’layout patterns’ is used in [12] for
expressing layout constraints that represent conditions for layout algorithms.

For model decomposition that was performed in Section 2 when analysing the
graph for GaP-pairs, a preferred decomposition for process models is often using
SPQR-trees for a subsequent analysis of the structure or application of rules for
abstraction [13].

4 Conclusion

In this work, we introduce new layout patterns for BPMN diagrams. The layout
patterns allow to include BPMN semantics in layout algorithms for BPMN pro-
cess models. The layout patterns take into account common rules of BPMN dia-
grams, so-called aesthetics. The patterns address the following issues in BPMN
diagrams: a) Cluttering of nodes in diagrams, b) Perceiving the logical structure
of a BPMN diagram (induced by gateways) and c) Accentuate the process flow
at start events and process’ termination in end events.

BPMN Layout Patterns 135

The presented set of layout patterns is not to be considered complete but consti-
tutes a starting point for rising interest in BPMNsemantics in layout approaches in
future (commercial) applications. At the moment, we are conducting an empirical
evaluation with an available set ofmore than 750 processmodels [14]. Furthermore,
it will be an interesting task for the future to conduct a user study in order to re-
ceive feedback on the human aesthetics’ perspective on the drawbacks/benefits of
the presented patterns. Also, statements from users might lead to additional pat-
terns that incorporate more BPMN semantics in layouts.

References

1. Effinger, P., Jogsch, N., Seiz, S.: On a Study of Layout Aesthetics for Business
Process Models Using BPMN. In: Mendling, J., Weidlich, M., Weske, M. (eds.)
BPMN 2010. LNBIP, vol. 67, pp. 31–45. Springer, Heidelberg (2010)

2. Kitzmann, I., König, C., Lübke, D., Singer, L.: A Simple Algorithm for Automatic
Layout of BPMN Processes. In: CEC, pp. 391–398 (2009)

3. Effinger, P., Siebenhaller, M., Kaufmann, M.: An Interactive Layout Tool for
BPMN. In: IEEE Internat. Conference on E-Commerce Technology, vol. 1, pp.
399–406 (2009)

4. Bentley, J.L., Ottmann, T.: Algorithms for reporting and counting geometric in-
tersections. IEEE Trans. Computers 28(9), 643–647 (1979)

5. Matuszewski, C., Schönfeld, R., Molitor, P.: Using Sifting for k -Layer Straightline
Crossing Minimization. In: Kratochv́ıl, J. (ed.) GD 1999. LNCS, vol. 1731, pp.
217–224. Springer, Heidelberg (1999)

6. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proceedings of the IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD 1993), pp. 42–47 (1993)

7. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The difference between graph-based
and block-structured business process modelling languages. Enterprise Modelling
and Information Systems Architectures 4(1), 3–13 (2009)

8. Dumas, M., Garćıa-Bañuelos, L., Polyvyanyy, A.: Unraveling Unstructured Process
Models. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN 2010. LNBIP,
vol. 67, pp. 1–7. Springer, Heidelberg (2010)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press (September 2001)

10. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action Patterns in Business
Process Models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave
2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009)

11. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action pat-
terns in process model repositories. In: BPM Workshops, pp. 251–263 (2010)

12. Maier, S., Minas, M.: Interactive diagram layout. In: Proceedings of the 28th In-
ternat. Conference on Human factors in Computing systems, CHI EA 2010, pp.
4111–4116. ACM, NY (2010)

13. Polyvyanyy, A., Smirnov, S., Weske, M.: The Triconnected Abstraction of Process
Models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS,
vol. 5701, pp. 229–244. Springer, Heidelberg (2009)

14. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous Soundness Checking of Industrial Business Process Models. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 278–293. Springer, Heidelberg (2009)

Integration of BPM and BRM

Jörg Hohwiller1, Diethelm Schlegel1, Gunter Grieser2, and Yvette Hoekstra3

1 Capgemini, CSD Research, Berliner Str. 76, 63065 Offenbach, Germany
2 Capgemini, GB CSD MRDT, Berliner Str. 76, 63065 Offenbach, Germany

3 Capgemini, Public Sector, Papendorpseweg 100, 3528 BJ Utrecht, Netherlands

Abstract. The Business process modelling notation (BPMN) is used
for modelling and automating business processes. The resulting process
models contain all details that define the process flows from the high
level scope up to technological aspects. Often, the readability decreases
due to complex flow decisions and computations. While the models could
be simplified from the business perspective they must be precise enough
when they are executed later on. This paper proposes to use business
rule management (BRM) in addition to business process management
(BPM) to overcome these drawbacks. It shows best practices for a proper
integration of BPM and BRM with regard to modelling and a seamless
system integration.

Keywords: BRM, BPM, BPMN, integration, business process, rule.

1 Introduction and Motivation

In this paper, we want to focus on modelling and execution of business processes
using the Business process modelling notation (BPMN). Thereby, modelling is
more business-oriented and primarily focuses on the visualization and notation
of processes for the purpose of documentation and transparency. On the other
hand, for the execution of processes a more technical view on processes is required
with focus on syntax and semantics.

The use of BPMN for both aspects improves efficiency and flexibility because
there is no longer the need for two separated models that must be kept in sync.
Fortunately, most of the BPM products on the market catch up with BPMN in
some way. However, the definition of technical details is not part of the standard.
For instance, the format to express the actual decision behind a gateway is not
specified. Decisions and expressions are just textual labels of the gateway and
its outgoing sequence flows [1, page 290].

From a business perspective, the use of business rules helps to simplify com-
plex decisions and computations. Rules describe business knowledge in a formal-
ized way that can be automated. E.g., to grant a mortgage a rule is required
which is checking the conditions. Nevertheless, there is no common understand-
ing how to structure and integrate the several process and rule models.

Without well-defined prescriptive guidelines, it is difficult to reuse models
even in the same project. This not only involves technical aspects. It is rather a

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 136–141, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Integration of BPM and BRM 137

question of whether the models can be understood when they are exchanged. As
an example, business rules can be expressed by all means using BPMN process
elements. By doing so, the process becomes overwhelmed with too much details
(see figure 1). This is obviously bad design and it is hard to maintain.

Fig. 1. Business Rule as Cascading Gateways

In summary, the notation for business rules must be specified together with
a mechanism for connecting processes. BPMN defines some elements for the
association of rules, e.g. business rule activities. But as a matter of fact, spe-
cialized notation elements are only rarely applied as shown by a survey with
respect to BPMN artefact usage ([2]). Moreover, the consistency between rules
and processes must be ensured by an appropriate method.

2 Related Work

The Semantics of Business Vocabulary and Business Rules (SBVR) is specified
in [3] and deals with the fundamental base of business rules. It contains defini-
tions for rule related terms and a method starting with business processes. The
representation is based on the so-called Concept Diagram Graphic Notation that
refers to the RuleSpeak language [4] as a formal notation. Hereby, the business
rule manifesto [5] describes the preferred approach. SBVR regards BRM more
or less separated from BPM as it uses processes as input. Another methodology
for BRM is defined by the BRS Proteus Methodology [6].

The OMG initiated a Request for Proposal called Decision Model and No-
tation (DMN) that standardizes the underlying meta-model as well as an in-
terchange format based on SBVR for the business aspects and Production Rule
Representation (PRR) [7] for IT related information.

The need for the integration of rules and processes is outlined in [8]. In this
context, [9] introduces a framework to identify potential inconsistencies between
BPMN and SBVR models and [10] proposes the integration of SBVR, DMN

138 J. Hohwiller et al.

and BPMN 2.0 to get a seamless integration. While it is a technical and concep-
tual base it is rather theoretically and must first be proved by practical use. In
addition, it provides no method for the integrated design of processes and rules.

3 Best Practices

This section contains best practices for BRM and the integration with BPMN
that are based on the experience from projects at Capgemini. Hereby, the method
for the transformation of business knowledge to executable processes and rules
is separated into four phases as shown in figure 2. This phases have been de-
veloped empirically by performing customer projects over several years. Ideally,
the phases should be finished by some kind of review before continuing to ensure
the soundness of the intermediate results.

Fig. 2. Best Practices Method

3.1 Gather Knowledge

The first phase is to gather business knowledge concerning project goals and
objectives. Typical sources are policies, operational guidelines, and domain ex-
perts. Based on this explicit or implicit input, business analysts design high level
process landscapes and document business rule summaries.

Since processes and rules share the same data basis the development of an ini-
tial underlying data model has proved to be crucial. We distinguish process local
data and persisted business data getting modified by service calls and residing in
individual enterprise applications. Rules should be stateless and not affect these
data. Changes are realized by invoking business services in the process.

Business rules outlined in this phase and refined in subsequently are linked
to policies and guidelines to ensure that the automated decision process can be
traced back up to the policies. This may be important to justify process decisions
later on and helps for easy rule and process adaptations and maintenance.

Integration of BPM and BRM 139

3.2 Structure Knowledge

The second phase is to organize and structure knowledge. This includes creation
of a logical rule model as well as process maps and first process models. However
such process models only model the default flow as the ideal business case (aka
happy path). The most critical challenge concerning structuring business knowl-
edge is to decide what knowledge should be modelled as processes and what
knowledge as rules (golden section). It has proven as good practice to design
rules whenever the knowledge tends to change often, the computation is more
complex, and no user interaction is needed (see [11]).

We recommend to treat business processes and rules as layers, where processes
are on top and more corsair while rules are below and more fine grained. This
is illustrated for reaction rule sets in figure 3. The same applies for tasks and
services as proposed by [12] for the connection of BPM and SOA.

Process Data

Rule Set 1 Rule Set 2 Rule Set 3

Business Data

Fig. 3. Interaction between Process and Rule Models

Usually, rules are organized in so called rule sets, i.e. groups of rules for a
particular business need. As an advantage of such groups, knowledge is struc-
tured logically and organizationally. This might be orthogonal to the original
rules since one rule may belong to different rule sets as well as rule sets can be
reused at different places. Also, complex computations are abstracted because
computations within rule sets can be seen as a single steps.

Business rule sets are categorized depending on their usage scenarios. This
is helpful for structuring applications, assigning correct responsibilities, and im-
proving understandability. [13] proposes four different types of rule sets.

1. Integrity rule sets ensure data consistency. Ideally, they are assertions that
must always be satisfied and are therefore checked permanently. It can be
modelled in BPMN by using an boundary conditional event and associating
an action that gets executed if this integrity rule set is violated. Alternatively,
validation rule sets can be part of the data model.

2. Derivation rule sets deduce new knowledge from existing one by using in-
ference mechanisms or mathematical calculations. Ideally, they are assigned
to the data model. They can also be used in BPMN business rule tasks.

140 J. Hohwiller et al.

3. Reaction rule sets describe the controls of operation and the logistics. In
general, the purpose is to decide on the order of the process steps to fulfil a
process. In this paper, we want to reduce their scope to decisions. Though
not fully compliant with BPMN, some tools allow to associate business rule
sets directly with gateways. Otherwise, gateway conditions must be based
on the results of preceding business rule actions that make the association
more explicit and even allow to specify required input parameters.

4. Deontic rule sets connect the organization model to the activities in a pro-
cess. These are authorization rules or rules about the allocation of human
tasks. Usually, these rule sets should be assigned to BPMN process lanes.

The flavour of the visualization itself is not that important. However, in one
context (project or IT-landscape) you should decide for one form and then stick
with it in order to prevent confusion.

3.3 Formalize Models

During the third phase the logical rule model is formalized into a business rules
representation making use of a business vocabulary. There are several methods
and standards of notation like SBVR [3]. Concerning processes, initial models
are detailed and completed to cover the real life of the business (e.g. including
manual proceedings as exception handling if automated processing failed). When
supported by the BPM tool, integrated modelling of rules and processes has been
very advantageous in our projects.

Furthermore, it is important to choose the right form to express business rules.
Decision tables are easily understandable notations (see [14]). Business rules are
visualized as tables where the conditions (usually attributes) and results are de-
picted as columns and each rule (conditions and conclusion) is expressed by a
row. Besides tables, there are also decision trees and numerous other notations
to represent business rules. Hopefully, DMN ([10,15]) will bring along some stan-
dardized language or notation for business rules in the future.

3.4 Implement Models

Finally, the rules and processes have to be implemented to be fully executable.
This includes integration of processes, rules, external services, and legacy appli-
cations as well as adding technical aspects such as transactions or compensations.

From the execution point of view the business process engine (BPE) and
business rule engine (BRE) need to be integrated. If separate products are used,
they are mostly loosely coupled, e.g. by invoking business rule sets as web-
service. However, integrity and derivation rule sets then have to be actively
invoked repetitively where ever needed in the process. On heavy use of these
types of rule sets a deeper integration is suggested for reasons of maintenance
and performance. From experience, it is better to choose BPM tools that provide
both BRE and BPE. Often, they additionally allow deeper model integration of
processes and rules. Finally, deontic rule sets can typically only be integrated if
supported by the BPE.

Integration of BPM and BRM 141

4 Conclusion and Further Work

This paper introduced BPM and BRM that are both promising approaches to
gain efficiency and flexibility. They should be combined as they complement
each other. The provided best practices explain how to realize it properly. They
also address general aspects for doing efficient BRM. Furthermore, the integra-
tion of according products has been addressed as a critical factor. It should be
considered by enterprises when choosing BPM products.

While BPMN is quite established as a standard, its product support still has
to be improved. In the area of BRM, standards like SBVR have high attention
and also DMN looks promising. However a central standard remains to be seen.
As future work it is desired to do more research on how BPMN models can be
extended and connected with BRM standards in order to be exchangeable and
executable in a more vendor neutral way.

References

1. Object Management Group: Business Process Model and Notation (BPMN)
Version 2.0. (2011)

2. zur Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and
Practical Use of the Business Process Modeling Notation. In: Bellahsène, Z.,
Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Hei-
delberg (2008)

3. Object Management Group: Semantics of Business Vocabulary and Business Rules
(SBVR), v1.0 (2008)

4. Business Rule Solutions, LLC: RuleSpeak
5. The Business Rules Group: The Business Rules Manifesto
6. Business Rule Solutions, LLC: The BRS Proteus Methodology
7. Object Management Group: Documents associated with Production Rule Repre-

sentation (PRR) Version 1.0 (2009)
8. Recker, J., Indulska, M., Rosemann, M., Green, P.: How Good is BPMN Really?

Insights from Theory and Practice (2006)
9. Cheng, R., Sadiq, S., Indulska, M.: Framework for business process and rule inte-

gration: A case of bpmn and sbvr (June 2011)
10. Linehan, M.H., de Sainte Marie, C.: The Relationship of Decision Model and No-

tation (DMN) to SBVR and BPMN. Business Rules Journal 12 (June 2011)
11. Muehlen, M.Z., Indulska, M., Kittel, K.: Towards integrated modeling of business

processes and business rules (2008)
12. Behara, D.G.K.: BPM and SOA: A Strategic Alliance. BPTrends (May 2006)
13. Wagner, G.: How to design a general rule markup language? In: Proceedings zum

Workshop on XML Technologien für das Semantic Web - XSW 2002, GI, pp. 19–37
(2002)

14. Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds.) ECML
1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995) 10.1007/3 − 540−
59286 − 557

15. Object Management Group: Decision Model and Notation (2011)

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 142–147, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Extending the BPMN Syntax for Requirements
Management

Sascha Goldner1 and Alf Papproth2

1 Cassidian, Landshuter Straße 26, 85716 Unterschleißheim Germany
Sascha.Goldner@cassidian.com

2 Fraunhofer Application Centre for Logistics System Planning and Information Systems ALI
Konrad-Wachsmann-Allee 1, 03046 Cottbus, Germany

Alf.Papproth@ali.fraunhofer.de

Abstract. Regulations and laws are a very determining factor in every business
domain. Therefore it is absolutely necessary to consider these legal constraints
already in the early design phase of business processes in order to create
process descriptions which are legally valid. The business process modeling no-
tation (BPMN) has become the method of choice when it comes to business
process modeling. We extended the syntax by specific artifacts in order to ex-
plicitly represent legal constraints directly in the BPMN models. Legal con-
straints can be considered as necessary requirements for business processes.
Therefore it is important to track whether all requirements respectively legal
constraints have been represented within the process models. As a consequence
we extended our BPMN editor by an export functionality to be able to transfer
the legal constraints as requirements into a requirements management tool.

Keywords: BPMN, regulation, legal constraints, requirements management.

1 Introduction

One of the critical infrastructures of modern society is air transport, with airports
being both its operational bases and potential targets of terrorist attacks. Past and
recent security incidents at international airports show that new and innovative me-
thodologies are needed in order to improve airport security. This task is often just
tackled by the implementation of new technology without assessing the effectiveness
of the security measures as a whole. Besides security technologies, business
processes, business rules and regulations also have to be considered. Especially regu-
lations, i.e. laws, organizational guidelines, etc., are one of the most important and
influencing factors in the security domain. They define the overall scope and frame-
work the operational processes can be implemented in. As a consequence, these legal
constraints already have to be taken into consideration when designing the business
processes, respectively when creating the business process models. Thus, the need
arises to explicitly visualize regulations within business process models.

Within our approach we use BPMN for defining the process models. To integrate
the regulations into the process models we extended the BPMN syntax by new

 Extending the BPMN Syntax for Requirements Management 143

artifacts that enable us to define different types of legal constraints. Beyond that we
also extended the BPMN editor in order to parameterize the new artifacts. These
attributes contain for example the complete reference to legal text as well as the text
itself. Thereby we are able to indicate for all tasks, subprocesses and processes the
relevant legal conditions.

The next goal in our work was to evaluate whether all relevant regulations have
been represented within our process models. To achieve this, all regulations are con-
sidered as requirements in the sense of requirement engineering. Finally to keep track
whether all regulations respectively requirements have been implemented within the
process models, we use a COTS requirements tracking tool and all of the advantages
that come along with that. The necessary interface between the BPMN editor and the
requirements tracking tool has been implemented so that an automatic transfer of the
requirements into the tracking tool is possible.

As for the editor we use the web-based BPMN editor ORXY from the Hasso-
Plattner-Institute. For the requirements tracking we apply the requirements manage-
ment component of the Erudine Behavior Engine from Erudine.

2 Visualization of Regulations within BPMN

The ORYX editor offers support for extensions which are integrated via a plug-in
mechanism. Two different types of extensions can be applied: a stencil set extension
or a functional plug-in. Stencil set extensions allow only an enhancement of the nota-
tion whereas the functional plug-ins can be used to extended the overall functionality
of the whole editor. In the following we introduce our first plug-in that extends the
BPMN syntax by new artifacts in order to illustrate legal constraints within BPMN
process models.

2.1 Extending the BPMN Syntax in ORYX

The BPMN elements that are supported by the ORYX editor are described in a so
called stencil set. In order to extend the graphical notation a stencil set extension has
to be implemented. Therefore the following tasks have to be performed.

First, a JSON (JavaScript Object Notation) file has to be created. The file contains
a formal specification of the new elements, their properties and the rules that deter-
mine how they can be connected to other BPMN elements.

Second, a SVG (Scalable Vector Graphic) file has to be created which contains a
description of the graphical representation of each new element.

Third, a PNG (Portable Network Graphics) file is needed as icon for the visual re-
presentation of the new element in the editor.

2.2 The Extensions

In our case we extended the BPMN syntax by two new artifacts: Regulation and
Regulation Group.

144 S. Goldner and A. Papproth

Regulation. The Regulation artifact has the role of documenting business process
models with a single law or regulation. This artifact can be linked to following BPMN
elements: abstract task, manual task, gateway, sequence flow, message flow, start
event, end event.

The new artifact Regulation comes with five properties specific to a regulation:
LawName, LawText, Article, Paragraph and Organization. The properties offer the
possibility to document following information:

- LawName: the name of the law that applies;

- LawText: by making use of this attribute, the user can directly store the law texts that
apply to the BPMN element, respectively the business process.

- Article: the article number of the regulation

- Paragraph: the paragraph number of the regulation

- Organization: the name of the organization that must prove the fulfillment of the
law modeled by the regulation object

Regulation Group. The Regulation Group artifact can be applied when more than
one regulation or law applies and has to be documented, e.g. national and European
law. This artifact can be linked to the same BPMN elements which have been stated
for the artifact Regulation. The Regulation Group comes with three properties
specific to a group of regulations: LawNames, LawTexts and Organizations.

- LawNames: this attribute specifies the names of the relevant laws. Their article and
paragraph numbers are already stated in the law names. Different laws are separated
by a semicolon.

- LawTexts: the specific law texts

- Organizations: this attribute specifies the names of the stakeholders responsible for
fulfilling the documented laws.

Fig. 1. The shapes of the Regulation and Regulation Group artifact

In Fig. 2 and Fig. 3 we can see an example how the new artifacts have been placed
in the ORYX editor canvas. The property pane is shown on the right side of the
screen.

 Extending the BPMN Syntax for Requirements Management 145

Fig. 2. The Regulation artifact within the ORYX editor

Fig. 3. The Regulation Group artifact within the ORYX editor

3 Requirements Export Plug-In

The following section describes the development of a new plug-in for ORYX that
supports the export of the defined regulations within a BPMN process model. The
regulations are saved to a CSV-file (Comma-Separated Values-file) that can be im-
ported by the requirements manager of the Erudine Behavior Engine (EBE). We use
the requirements manager to keep track which legal constraints have already been
covered in the business process models and which still have to be done.

The functionality of the ORYX editor is once again extended, this time by a func-
tional plug-in. In order to implement a plug-in two tasks have to be performed. First
the plug-in itself has to be developed in JavaScript (JS), and second, the plug-in has to
be added in the configuration file of the ORYX editor. Each plug-in has access to an
interface allowing communication with the editor. The interface to the editor’s core
complies with the façade pattern which is a software engineering design pattern. For
offering the export functionality for the regulations, we implemented a façade method

146 S. Goldner and A. Papproth

containing two parameters: a link to the facade interface and configuration parame-
ters. Fig. 4 shows the ORYX editor with a detail of a business process. The regula-
tions that apply to the task “Baggage Handling” are depicted by a Regulation Group.
Further the Erudine Requirements Manager is shown containing the exported regula-
tions from the process model.

Fig. 4. Transfer of regulations within the ORYX editor into the Erudine Requirements Manager

4 Conclusion

Legal constraints are a main influencing factor in the security domain. Therefore it is
absolutely necessary to make these constrains explicit in operational guidelines which
include business process models. Therefore we implemented new BPMN artifacts
within the ORYX editor to explicitly visualize theses legal constraints. Further, to
have an overview of the modeled regulations within the process models, we imple-
mented an export functionality that allows us to keep track of them using a require-
ments management tool.

Later this year we will release the DIN SPEC 91285 which combines a graphical
process description with a formal process description in order to get a holistic process
definition.

 Extending the BPMN Syntax for Requirements Management 147

Acknowledgments. Part of the presented work has been achieved during the project
SiVe (Verbesserung der Sicherheit von Verkehrsinfrastructuren) which is co-funded
by the German Federal Ministry of Education and Research (BMBF) as part of the
Ministry’s Hightech Strategy and Security Research Programme.

References

1. The ORYX Project, http://bpt.hpi.uni-potsdam.de/ORYX/WebHome
2. Erudine, http://www.erudine.com/
3. Freund, J., Rücker, B., Henninger, T.: Praxishandbuch BPMN. Carl Hanser Verlag,

München (2010)

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 148–153, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Integrating Business Process Models and Business Logic:
BPMN and The Decision Model

Jürgen Pitschke

BCS-Dr. Juergen Pitschke, Bautzner Str. 79, 01099 Dresden
jpitschke@enterprise-design.eu

Abstract. Multiple views on an enterprise are needed to model and design
business processes systematically. The flow of a process is often the primary
model developed. The explicit presentation of the business logic and their use in
the business process is another essential artifact.

The article discusses the connection between business process modeling
with BPMN and the presentation of business logic with “The Decision Model”
framework. The framework includes a visual notation, presentation of rule sets,
normal forms, presentation principles and the connection to the process model.

Keywords: BPMN, Decision Model, Business Process, Business Logic,
Business Rule, OMG.

1 Why Do We Need an Explicit Presentation for Business Logic?

Business Process Models are central part of an enterprise model. To describe a
business process different views are needed – the process flow, communication
between process participants, the definition of the concepts used, systems supporting
the process and others (see [3]).

The Object Management Group (OMG) published a big number of standards for
model presentation. The most popular are “Unified Modeling Language (UML)” and
„Business Process Model and Notation (BPMN)”. Other standards as “Business
Motivation Model (BMM)” are not widely recognized and used. An uncritical use of
the standards often ignores that none of the standards is intend to describe all views
on an enterprise. We have to decide which standards we want to use for the content
needed in our project to be successful. BPMN is for example focused on the
presentation of the process flows. Other aspects are not in the focus.

One important aspect is the description of Business Rules and Business Logic used
in a Business Process. This was already part of the IDEF0-standard [6]. IDEF0
defined “guidelines” as part of the description of a business activity.

We need an explicit presentation for the Business Logic separated from the process
model because both are independent concepts. At the same time Business Logic
changes more frequently as the business process. Without an explicit representation of
Business Logic reuse and structure for such a model is out of reach. Our models
become unstable and not maintainable.

Figure 1 shows a snippet from a bad process model. It contains an embedded
decision tree.

 Integrating Business Process Models and Business Logic 149

Fig. 1. Snippet of a process model with embedded decision tree

We want to extract the business logic from the process model to make it available
for analysis, reuse and maintenance. A significantly reduced process model is the
result. The presentation of the logic with a text annotation as shown in figure 2 is not
really practicable.

Fig. 2. Reduced process model without the decision tree

2 Modeling Business Logic – Intro to “The Decision Model”
Framework

The OMG standard “Semantics of Business Vocabulary and Rules (SBVR)” [5]
introduces concepts for the presentation of a business vocabulary and business rules.
The standard addresses the presentation of business rules from a business perspective
using natural language. In practice the approach has two shortcomings.

SBVR doesn’t include any mean to structure large sets of business rules. Managing
single rules causes high efforts e.g. in the integration with a business process.

Second: SBVR doesn’t address the transformation of business rules into IT
systems or Business Rule Engines. This results in high efforts during implementation.

150 J. Pitschke

Both issues are addressed by “The Decision Model”, which is described in [1]. The
Decision Model is not an OMG standard. The procedure to create a standard for a
“Decision Model Notation (DMN)” was started by the OMG in March 2011.

2.1 Presentation of Business Logic with “The Decision Model” Framework

What is meant by “Business Logic”? In [1] von Halle and Goldberg define Business
Logic as “… a set of business rules represented as atomic elements of conditions
leading to a conclusion”1

The definition contains already all benefits of this approach:

- We don’t deal with business rules on a general level. We don’t analyze single
business rules. We analyze and manage group of operational business rules
leading to a defined conclusion.

- This includes a structure of our rule model: Which rules are needed together to
make a decision?

- The decision to be made is the link to the business process model. Which
activities include decisions and need a refinement in a decision model?

A Business Decision is modeled using an octagon titled with the name of the decision.

Fig. 3. Symbol for a Business Decision

The TDM element “Rule Family” is used to model the set of rules needed for a
certain decision.

The name of the rule family should show the name of the fact type of the decision.
Our example “Acceptance of Incident” is the name of the rule family. We decide if
we accept the incident or not.

The rule family is connected to the Business Decision using the Business Decision
Connector (see figure 4).

We need different fact types to come to the conclusion. Fact Types needed for the
decision representing a rule family (or a sub decision) themselves are shown above
the dashed line in the rule family element. Fact Types shown below the dashed line
are not further derived but represent facts we know at runtime. A Decision Model
Tree with leaves containing only Fact Types below the line result when creating a
complete and normalized decision model.

1 See [1], Page 6.

 Integrating Business Process Models and Business Logic 151

Fig. 4. Example of a Decision Model

Each Rule Family Element owns a “Rule Family Table”. This table shows the set
of business rules in a two dimensional structure. The columns represent fact types. A
single cell represents a fact. One column is the conclusion fact type; the other
columns are condition fact types. Each row represents a rule or more precise: The
manifestation of condition fact types leading to a conclusion fact. Table 1 shows a
rule family table.

The Decision Model is declarative: The order of rows and columns doesn’t matter.
One column – often the last column – is representing the Conclusion Fact Type.

The same is true for the presentation of the rule families in the Decision Model.
The tree doesn’t show an order in which the rule families have to be evaluated.
Evaluation can be done top-down or bottom-up or even starting in the middle.

The Framework defines not only the presentation of decision models. It also
defines normal forms and principles for the construction of rule family tables and
decision models. This creates a precision which allows an easy transformation of such
models into an IT implementation e.g. using a rule engine. The principles are not in
the scope of the OMG standardization but are highly important for the practical use.

The relation to the Business Process Model is obvious. We identify Tasks
representing business decisions. Such a task is connected with the corresponding
decision model Von Halle/Goldberg suggest the introduction of a new task type
“Decision Task” into the BPMN standard.

152 J. Pitschke

Table 1. Example for a Rule Family Table

 Condition Fact Types Conclusion Fact Type
Rule
Pattern

Customer Status Status of
Maintenance
Contract of the
Customer

Incident covered by the
Maintenance Contract

Acceptance of the
Incident

1 Is Platin Is Accepted
1 Is Gold Is Accepted
2 Not in {Platin;

Gold}
Is Active Is Covered Is Accepted

3 Not in {Platin;
Gold}

is Inactive Is Not Accepted

4 Not in {Platin;
Gold}

 Is Not covered Is Not Accepted

3 Applying “The Decision Model”

The approach can be applied in a pragmatic way. In a first step we analyze the task
level of our business process model and identify the “Decision Tasks” meaning tasks
containing a decision. In this context a decision can be a calculation, a selection, a
check or similar activities. We apply textual analysis and search for “Decision
Words” as “determine”, “validate”, “calculate”, “asses”, “select”, “choose”.

In the next step we have to define and analyze the needed rule families. This is
usually done top-down. It should be said again that the Decision Model is declarative
and no order of the application of the rule families and rules is implied. The normal
forms and principles described in [1] ensure that the resulting model is non-redundant,
maintainable and reusable.

We show both models explicitly and create the logical connection between Task and
related Decision Model as shown in figure 5. This is mainly a tool question. Our modeling
tool needs to support logical connections between model elements and other models.

Fig. 5. Logical link between a "Decision Task" and a Decision Model

 Integrating Business Process Models and Business Logic 153

References

1. von Halle, B., Goldberg, L.: The Decision Model - A Business Logic Framework Linking
Business and Technology. Auerbach Publications (2010)

2. Taylor, J., Raden, N.: Smart (Enough) Systems. Pearson Education, Inc., Boston (2007)
3. Pitschke, J.: Unternehmensmodellierung für die Praxis, Band 1: Eine Einführung in die

Darstellung von Unternehmensmodellen, 3. Auflage, Book on Demand (2011)
4. BPMN. Business Process Model and Notation (BPMN), Version 2.0, OMG Document

Number: formal/2011-01-03. Object Management Group (2011)
5. SBVR. Semantics of Business Vocabulary and Business Rules (SBVR), v1.0, OMG

Document Number: formal/2008-01-02. Object Management Group (2008)
6. IDEF0. Integration Definition for Function Modeling (IDEF0). Department of Commerce,

National Institute of Standards and Technology, Computer Systems Laboratory (1993)

Building a Business Graph System and Network

Integration Model Based on BPMN

Daniel Ritter, Jörg Ackermann, Ankur Bhatt, and Frank Oliver Hoffmann

SAP AG, Technology Development – Process and Network Integration,
Dietmar-Hopp-Allee 16, 69190 Walldorf, Germany

{daniel.ritter,joerg.ackermann,ankur.bhatt,frank.oliver.hoffmann}@sap.com

http://www.sap.com

Abstract. Business Network Management (BNM) provides companies
with techniques for managing their trading partner networks by making
technical integration, business and social aspects visible within a net-
work view and set them into context to each other. This allows various
personas, from the business specialist to the technical integration expert,
to monitor, enrich and setup business processes by collaborating on the
different contexts. In this paper, we propose a BNM concept, which fea-
tures inter-connected business and technical perspectives showing the
company network. The Business Process Modeling Notation (BPMN) is
a well-established standard for describing business process semantics and
particularly aims for understandability by technical and business stake-
holders. Hence we apply BPMN to BNM, for which we use BPMN as
graphical notation on UI and as basis for our Network Integration Model
(NIM) by extending a subset of BPMN (mainly conversation diagram)
to cover both business and technical integration aspects. We present a
novel approach on applying BPMN to our domain and reports on our
experiences with it.

Keywords: BPMN 2.0, Business Network, Network centric-BPMN,
Network Integration Model.

1 Introduction

Nowadays enterprises are part of value chains consisting of business processes
with intra and inter enterprise stakeholders. To remain competetive, enterprises
need visibility into their business network and ideally into the relevant parts
of partner and customer networks and their processes. However, currently the
visibility often ends at the borders of systems or enterprises. Business Network
Management (BNM) helps to overcome this situation and allows companies to
get insight into their technical, social and business relations. For instance, Fig.
1 shows participants in a sample business network.

Our project evaluates a BNM approach on how to develop a model covering
the required entities and perspecitves of a business network. In this paper, we
describe the use of BPMN version 2.0 [4] for a Network Integration Model (NIM)

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 154–159, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.sap.com

Business Graph System and Network Integration Model Based on BPMN 155

and introduce specializations needed for the specific domain. The network ap-
proach leads to a multi-relational graph model which challenges BPMN in areas
of nodes and edges, semantic links, and management of large amounts of data.
NIM covers these areas and proposes new entities relevant for networks.

Section 2 describes the design principles and section 3 explains basic entities
for modeling business networks using BPMN 2.0. In section 4 we summarize our
experiences with BPMN and section 5 concludes and outlines future work.

2 Design Principles

In our approach, the model for business network serves as visual representation
and standardized exchange format for real-world entities like applications and se-
mantically relate the context end-to-end, e.g. from process to system. For that, a
human and computer readable notation is required. This notation shall be a well-
established standard which covers the requirements for definining entities, their
relationships and properties representing the business network. A ”one-model”
approach shall be followed, to allow views on business and technical aspects, and
enable all personas to work with the same model. The semantic model for the
business network shall be kept simple without loosing expressiveness.

Alternatives considered were notations like the Service Component Architec-
ture (SCA) [5], which focus on the technical communication e.g. within SOA,
and business related approaches like supply chains or value networks [7]. How-
ever, they miss real-world business and social artifacts like contact person or
business partner, thus contradicting the ”one-model” requirement.

BPMN is a standard for defining, visualizing and exchanging business pro-
cedures within (A2A) and across (B2B) enterprises and is widely used within
disciplines related to BNM like BPM. We decided to base NIM on BPMN, since
it best meets our requirements. Similar to our domain other authors used and
extended BPMN for their domains, as e.g. H. D. Kim [1] for B2B in BPM or V.
Torres et al [6] for extensions to BPMN 1.1 in public administration.

3 Network Integration Model

3.1 Basic Business Network Entities

The business network as represented with NIM is defined as subset of BPMN
2.0 by mapping it onto the basic entities of the network. The Network itself is
represented by a BPMN conversation diagram, as a special type of collabora-
tion diagram, and defines a superset of the computed network and all manual
extensions. BPMN Pools, referred to as Participants, and BPMN Conversations
within the ConversationDiagram represent the process, document and control
flow between business partners, applications and systems. For instance, Fig. 1
shows a NIM representation of an outbound delivery process of an enterprise [2].
NIM differentiates between a business perspective (Fig. 1a) and a (technical) in-
tegration perspective (Fig. 1b) to show the same network with different focus and

156 D. Ritter et al.

for different personas. The central logistics department (HQ Logistics) interacts
via application system HQP with the distribution centers (DC Hamburg/ DC
Berlin) that use application system WMP. They both work with external trans-
port agencies (Carrier 1/ Carrier 2) that communicate via interface standards
FRADOK/ IFTMIN. Since participants of external carriers are typically not
known, they are annotated with the employed interface standards. At the end
the finance department (HQ Finance) generates an invoice via application sys-
tem HQP. The interaction between business partners, applications and systems
is depicted as top-level connections, e.g. between HQ Logistics and DC Hamburg
in Fig. 1 (a), and it can expand to BPMN Conversations and Sub-Conversations,
e.g. OutboundDeliveryProc. and GoodMovementProc. in Fig. 1 (b).

(a) Business Perspective (b) (Technical) Integration
Perspective

Fig. 1. Sample NIM representation of a business network in BPMN 2.0

Nodes and edges are the basic entities of a network. The BPMN partici-
pant represents a node denoting a real-world entity, which communicates with
other participants. A participant has two specializations: BusinessParticipant
and CommunicationParticipant. BusinessParticipants, e.g. HQ Logistics, repre-
sent organizational units within the enterprise and external business partners
while CommunicationParticipants, e.g. HQP, have an IT perspective like sys-
tem landscape, middleware configuration. To relate the two perspectives, a Par-
ticipantLink is derived from the BPMN ParticipantAssociation (not shown).
For example, HQ Logistics is related to HQP by a ParticipantLink of type ”is-
implemented-by”. ParticipantLinks are not visualized, but are realized implicitly
between business and technical network perspectives.

A Top-Level Connection is an extension to BPMN to visually represent the
interaction/ edges between participants and group their Conversations, Sub-
Conversations and MessageFlows. The Conversation links two or more partici-
pants and aggregates the MessageFlows. The MessageFlow represents the flow of
messages between separate participants and is specialized as BusinessFlow for
business documents and as CommunicationFlow for technical messages. Con-
versation and MessageFlow can be grouped by SubConversation. This notion is

Business Graph System and Network Integration Model Based on BPMN 157

based on the specification of BPMN 2.0 [4], where B2B is supported by pools,
i.e. participants as black box, and message flows, which has also been suggested
by M. Owen et al [3].

3.2 Relationship of Basic Business Network Entities

The Network entity is used as entry point for visualizing and operating on the
network. BPMN Conversation and SubConversation are the aggregation enti-
ties for inter-participant communication while MessageFlow represents a single
message exchange (see Figure 1(b)).

A Conversation can be visually expanded to MessageFlows in BPMN 2.0.
NIM adds MediationFlow as a specialization and proposes a new graphical no-
tation (see figure 2(a)). This flow indicates that middleware capabilities are used
while communicating the message. An alternative visualization in flow notation,
depicted in figure 2(b), shows the equivalent mediated flow in standard BPMN.
For point to point connections without mediation a specialized MessageFlow is
used, called P2PMessageFlow. In case of asynchronous request/ confirmation

(a) MessageFlow and MediationFlow (b) Alternative notation

Fig. 2. Network with P2PMessageFlow and MediationFlow

communication pattern, two MessageFlows are added, one for each direction,
while in synchronous communication only one is used.

The technical entities discussed actually implement business related process-
ing and communication, hence even if the business perspective may differ from
the technical landscape, it may follow its structure. For instance, a particular
business flow might consist of multiple technical flows of different types. A Busi-
nessParticipant defines an organizational entity, receiving and sending messages
via BusinessFlow. The BusinessParticpant and the BusinessFlow represent the
business perspective of the network. For example, the business document Out-
boundDeliveryRequest is sent from HQ Logistics to DC Hamburg represented by
a corresponding business flow. This is mirrored on the (technical) integration
perspective by an XML message exchanged between HQP and WMP. Business-
Participants are semantically linked to CommunicationParticipants via Partici-
pantLinks.

BPMN Messages are used to transfer data. They can be mapped to syn-
chronous service calls, e.g. in a SOA domain, an event or any kind of asyn-
chronous messages used for A2A/ B2B processes. For that NIM leverages the

158 D. Ritter et al.

BPMN 2.0 service extension point package to describe service interface (struc-
ture), operation (method) and endpoint (binding) configuration. This allows an
integration of SCA artifacts [5] into NIM. A Participant can be associated to a
ServiceInterface directly or via ServiceOperation, which is linked to the message
and describes the action executed on the data. The ServiceBinding defines a
configuration used for the message exchange.

4 Experiences with BPMN in the Domain of BNM

As outlined in section 2, the decision for BPMN was based on the expectation
to benefit from using a widely adopted standard, i.e. faster design of model,
lower learning curve, a standardized exchange format, etc. BPMN with BNM
extensions allows to link between network integration and business process per-
spective. Participants can be expanded to show activities and assign them to
flows. This combines the domain with BPM, to e.g. start from the business
network and drill-in to the activity level.

We adopted new BPMN 2.0 concepts, e.g. conversation diagram, and extended
them, since the technical integration perspective is not within the BPMN scope.
The proposed extensions contain new model and visual elements. Future work
on BPMN may consider re-fining terminology, e.g. naming of conversation vs.
sub-conversation, and adding new views. Shortcomings of BPMN for our domain
are subsequently discussed.

Customer landscapes and business processes are typically quite large and com-
plex and may contain hundreds or even thousands of participants. A support for
structuring such a network is necessary to a) group related participants graph-
ically and show them within a joint boundary (cf. BPMN groups), which al-
lows structuring the network based on organization or geographic location and
b) combine multiple participants to a compound participant, where only the
compound is visible originally and the included participants are only visible
after explicit drill-in. This is useful to show e.g. an external business partner
as a compound on top-level and hide information about the included systems.
BPMN support for such structuring is limited. For instance, BPMN groups are
only specified for flow elements but not participants and a concept of nesting as
e.g. for BPMN Lanes is missing.

Technical message flows in NIM are characterized by their sending and receiv-
ing interfaces and carry technical information like transport protocol, message
format, etc. Since that is out of scope in BPMN, we extended BPMN for these
aspects with new model entities and visual representation.

When visually expanding a (Sub-)Conversation, the BPMN specification pro-
poses to replace the contained elements. However, in that way the context is
lost, which becomes critical in case of many (Sub-)Conversations.

To simplify the network visualization, all flows and conversations between
two participants are displayed as one line and details become only available
after drill-in. For that, we introduce the new concept of Top-Level Connection.
A BPMN conform solution uses a SubConversation, however contradicting its
specified semantics.

Business Graph System and Network Integration Model Based on BPMN 159

As encouraged by the BPMN specification, we proposed to use the same
notation for business and technical view to bridge the gap between business and
technical user. However, using the same shapes for in both views, even when
visualized separately, was not accepted in customer design sessions. Therefore
we currently experiment with different shapes for business related participants
while keeping BPMN notation and shapes otherwise.

5 Discussion and Future Work

In this paper, we presented a novel approach to use BPMN in a network domain,
namely the Business Network Management. We showed how a network model
can be derived from BPMN and outlined in which areas we see challenges. Fu-
ture work will be conducted for NIM especially in the areas of grouping, the
representation of business data, social aspects and further network extensions.

Acknowledgments. We thank Ivana Trickovic for support on BPMN 2.0,
Volker Stiehl for proof reading as well as Gunther Rothermel for sponsorship.

References

1. Kim, H.D.: BPMN-Based Modeling of B2B Business Processes from the Neutral
Perspective of UMM/ BPSS. In: IEEE Internaltional Conference on E-Business
Engineering, pp. 417–422. IEEE Computer Society, Los Alamitos (2008)

2. Outbound Delivery Processing,
http://help.sap.com/saphelp_crm40/helpdata

/en/63/e48939728dd04abac5b86aa66002c2/content.htm

3. Owen, M., Stuecka, R.: BPMN und die Modellierung von Geschäftsprozessen.
Whitepaper, Telelogic (2006)

4. Specification of Business Process Modeling Notation version 2.0 (BPMN 2.0),
http://www.omg.org/spec/BPMN/2.0/PDF

5. Service Component Architecture (SCA),
http://www.osoa.org/display/Main/Service+Component+Architecture+Home

6. Torres, V., Giner, P., Bonet, B., Pelechano, V.: Adapting BPMN to Public Admin-
istration. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN 2010. LNBIP,
vol. 67, pp. 114–120. Springer, Heidelberg (2010)

7. Ritter, D., Bhatt, A.: Modeling Approach for Business Networks with an Integra-
tion and Business Perspective. In: De Troyer, O. (ed.) ER 2011 Workshops. LNCS,
vol. 6999, pp. 343–344. Springer, Heidelberg (2011)

http://help.sap.com/saphelp_crm40/helpdata
/en/63/e48939728dd04abac5b86aa66002c2/content.htm
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.osoa.org/display/Main/Service+Component+Architecture+Home

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 160–165, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Requirements Engineering for SOA Services
with BPMN 2.0 – From Analysis to Specification

Gregor Scheithauer1 and Björn Hardegen2

1 OPITZ CONSULTING GmbH,
Weltenburger Str. 4, 81677 Munich

scheithauer@acm.org
2 MID GmbH, Kressengarten Str. 10, 90402 Nuremberg

b.hardegen@mid.de

Abstract. This paper presents experiences in requirements engineering analysis,
service identification, and service specification that were gained during a service
development project in a public government organization. These experiences
resulted in a method comprising techniques relying on a combination of BPMN
2.0 and UML. This method shows that using a combination of these notations and
model generation of IT artifacts leads to fewer documents for different
stakeholders, alignment of service specifications to original requirements, and
semantic unambiguousness for service specifications.

Keywords: BPMN 2.0, Requirements Engineering, Service Specification.

1 Introduction

Requirements engineering is a mature discipline of the software development process
that includes eliciting and analyzing needs and demands from stakeholders, and their
transformation into requirements that need to be met by resulting software products.
The software development process that targets service-orientation [1] touches
requirements engineering in terms of analyzing business processes and business
objects, service identification, service specification, and the development of test
cases. This holds the following challenges: (1) limiting documentation efforts for
different stakeholders (analysis, specification, and implementation), (2) ensuring a
business requirements-driven approach (top-down), (3) guaranteeing traceability
between business requirements and service specification, and (4) assuring semantic
unambiguousness of specification for developers so as to reduce degree of freedom
and ambiguity of implementation details.

In order to address these challenges, the method that this paper introduces takes the
following approaches. To limit diverse documentation needs, requirements analysis and
specification follow a model-based style, that being a combination of UML [2] and
BPMN 2.0 [3]. Furthermore, this method targets a stringent top-down refinement of
business requirements into service specification to limit unnecessary technical
implementations. In order to address semantic unambiguousness for developers, service
specifications distinguish between external and internal service behavior (choreography
vs. orchestration) as well as generation of IT artifacts from service specification

 Requirements Engineering for SOA Services with BPMN 2.0 161

(contract first) [4], e.g. WSDL and XSD. The method was applied in a project with a
German public government organization that employs over 120,000 people in over 750
subsidiaries in Germany. 2,000 employees within the IT department are responsible for
planning, realization, running and maintaining of software. In line with the
organization’s IT strategy for 2015, a program was initiated for a company-wide
introduction of SOA that touches on technical as well as organizational aspects. The
main objectives included a rollout of novel software frameworks for software
development, a reduction of single-purpose silo applications and an overall faster and
more flexible software provision process. The following sections present the overall
method (cf. Fig. 1) that is initially introduced in section 2. Section 3 then goes on to
explain how service specification was conducted with BPMN 2.0 [3] and section 4
concludes with some findings of the method’s application.

2 Project Method Overview

The method for the requirements analysis for SOA services can be divided into four
logical but not necessarily consecutive high level steps. Those steps, which are shown
in Fig. 1, are: requirements analysis, service identification, service specification and
definition of business driven test cases.

Fig. 1. Project Method Overview

The scope of the project is defined within the requirements analysis using UML use
cases [2]. Each use case stands for a business scenario that creates business value.
Therefore the internal and external participants or actors have to be identified to
describe who has to be involved to achieve an identified business scenario.
Subsequently, the business scenario is specified using BPMN 2.0 whereas a use case is
represented by a BPMN collaboration and an actor is represented by a BPMN
participant. The processes of the different participants communicate with messages. In
order to do so, data objects are defined within the processes providing the information to
fill the messages. The structures of the data, both internally and process externally used,
have to be specified within the requirements analysis. The previously mentioned
modeling artifacts of the requirements analysis are a valuable input for the service
identification and specification, which are described in detail in the following sections.

162 G. Scheithauer and B. Hardegen

In the aforementioned project, service identification targeted at a top-down approach in
order to derive coarse-grained SOA services from business requirements. Techniques
for service identification include (1) business objectives and key performance
indicators, (2) functional domain decomposition, (3) system analysis, and (4) process-
orientation [1]. In the project itself, the process-oriented technique was applied as the
organization in question already follows a process-driven approach regarding
requirements engineering. The process-oriented technique ascribes to identify service
candidates on the basis of business processes, objects, and messages. For the business
process shown in Fig. 2, capabilities are grouped into three services: Customer
Information Service, Accounting Service, and Notification Service.

The identified services then need to be specified. This is further described in
section 3. Furthermore, it is also important to define business driven test cases for the
identified and specified services which are derived from the requirements and have to
cover the service usage scenarios. After service realization these test cases can then
verify the correct behavior of each service operation. This means that test cases
require proper implementation using test frameworks and tools. In the project, the
automated test cases are integrated into the build management so that their specified
behavior was guaranteed after each deployment of the service.

3 Service Specification

Following the service identification, service specification targets a formal basis for
realization. Service specification does not substitute a service architecture. Instead,
service specification is aimed towards further-refining business requirements as well
as establishing a result document for service implementation.

In terms of the aforesaid project, service specification includes seven steps that
were performed using a combination of BPMN and UML. This combination provided
an appropriate and common basis for analysis and specification. The starting point of
service specification itself is one or more business processes. This is why the notation
allowed a top-down approach and perfect traceability between analysis and
specification.

The first step ascribes identifying the choreography of a service. The basis for this
step is a BPMN collaboration diagram, including a business process along with
identified service candidates (cf. Fig 2). For each task that should be performed by IT,
messages need to be identified between a task and a service operation. Following this,
the message sequence of the choreography needs to be recognized. Different message
exchange patterns apply, e.g. Request-Response pattern. Task related business objects
may contribute to message identification. Fig. 2 displays identified messages that are
exchanged between process tasks and acknowledged services. For example, the
process task determine customer details exchanges two messages with the service
Customer Information Service. This step concludes the service choreography.

Two scenarios are possible following the choreography specification. The first
scenario is that a service matching the choreography specification is available in
organizations’ service portfolios. If this is the case, the available service description
needs to be imported into the modeling tool and integrated into the BPMN

 Requirements Engineering for SOA Services with BPMN 2.0 163

Fig. 2. Example BPMN Collaboration. While the participants Customer and Rental Company
represent the business process, the participants Customer Information Service, Accounting
Service, and Notification Service denote identified services, along with identified messages.

collaboration diagram. The second scenario is that no matching service exists within
the organization. If so, the third step includes structuring identified messages. While
business objects were aligned during process analysis and refer to a normalized set of
business entities, messages represent a set of attribute bundles with a de-normalized
character that are exchanged between participants. As an example, customer ID needs
to be provided to determine the customer’s information. While it is possible to send
an empty instance of the business object customer record (except for the customer ID
attribute), it is advisable to use a message instead of a business object for reasons of
service interface understandability and semantic unambiguousness.

Following the message structure definition step, the external specification is
completed. This part of the specification is now the basis for defining the internal
service behavior. The behavior depicts a (technical) way of achieving the external
specification [4]. This may include an orchestration of other SOA services or an
integration of enterprise applications, including CRM or ERP systems. In either case,
it is highly recommended to include service architects and those responsible for
enterprise applications. The internal specification is a result document that is
appropriate for service developers.

In the project, a BPMN process diagram was used in order to depict services’
internal behavior. The diagram represented an orchestration of existing SOA services,
including a service for accessing information about customers as well as a system for
managing tasks. For example, the lower section of Fig. 2 that shows the Customer
Information Service participant’s process getCustomerDetailsByID represents an
orchestration of two systems for accessing customer records.

Following services’ behavior specification, step five continues with describing
conditions which need to be valid prior to and after invoking of a service capability.
These pre and post-conditions elevate the semantic unambiguousness for service

164 G. Scheithauer and B. Hardegen

developers as well as potential consumers of a service. While a possible pre-condition
for the service capability getCustomerDetailsByID could be Customer with a valid ID
must exist, customer record provided could be a valid post-condition.

In addition to message identification and structure definition, step six involves
naming possible service faults for each service capability. In the project, faults were
distinguished between functional and technical faults. Functional faults refer to
possible situations that do not comply with business requirements or are contrary to
specified service (external or internal) behavior. Technical faults denote technical
situations, e.g. hardware malfunctions or server infrastructure issues. In the project,
functional faults were derived from aforementioned pre-conditions. For example, it is
possible to reuse the pre-condition Customer with a valid ID must exit as the fault
unknown customer.

The final step of service specification comprises the generation of IT artifacts from
a service specification. This step relates to the objective to elevate semantic
unambiguousness of the specification. With the external service specification
including service capabilities, messages and their structure definition, it is possible to
generate abstract Web Services Description Language (WSDL) documents along with
corresponding XML Schema Definition (XSD) files. While abstract WSDL
documents describe web service functionality in terms of their capabilities, XSD files
define necessary message and data type formats. With the internal service
specification, it is possible to generate abstract Business Process Execution Language
(BPEL) files for orchestrating web services. Along with the service specification
itself, these documents are input for the development process. In the aforementioned
project, WSDL and XSD files were generated from the service specification. The
generation process relies on the modeling tool as well as OpenArchitecture model-to-
text transformation scripts.

4 Conclusion

The previous sections have shown how to use two notations in order to analyze
requirements as well as identify and specify SOA services. Both notations merely
cover aspects of the requirements analysis for SOA services. That is why both
notations were combined in order to utilize the best points from each notation. While
BPMN 2.0 focuses on the process and interaction description (dynamic aspects), there
are no notation elements defined i.e. for the specification of data structures (static
aspects). UML, on the other hand, includes static and dynamic aspects but lacks the
comprehensibility of BPMN 2.0 when it comes to the modeling of dynamic aspects.
UML offers different options to describe interactions. While the UML activity
diagram is appropriate to describe a sequence of steps, sequence diagrams stress the
message exchange between participants. The BPMN 2.0 collaboration combines the
advantages of activity and sequence diagrams, while maintaining the readability for
business departments. The model is a beneficial artifact for communicating what was
understood during the requirements analysis phase. This leads to semantic errors or
oversights being found and corrected in an early phase of the process; this in turn
helped to avoid confusion and extra effort during service development.

 Requirements Engineering for SOA Services with BPMN 2.0 165

An advantage of a model based approach is the possibility of generating
documentation based on templates. These templates consist of information only
relevant to the respective stakeholders of the project. While the initial configuration of
templates may take some time, providing these audience specific documentation
during the project is effortless.

Instead of modeling interactions, processes, messages and data structures only for
the purpose of documenting development results, it is possible to leverage the model
for different aspects of the service development lifecycle by refining the model during
the design and specification process. Due to the fact that the specification arises from
the requirements model, traceability to the original business requirements is ensured.
The resulting service specification is characterized by semantic unambiguousness for
developers, which reduced the degree of freedom and ambiguity of implementation
details. One key success factor to accomplish this goal was the contract first approach
which allows internal and external service behaviors to be separated. The model
driven approach and the usage of UML and BPMN 2.0 go hand in hand with the meta
models of both notations. Combined with a proper tool chain, the generation of IT
artifacts from the service specification model enforces this contract first approach at
the transition from service design to service implementation. For instance, the service
interfaces with their defined service operations and message parameters are used in
the project to generate a web service description (WSDL) with corresponding
message schema definition (XSD) and message structure definition (XSD).

Furthermore, the business driven test cases that are derived from the business
requirements and executed after the deployment of new service implementation
helped to verify the correct internal service behavior and ensure that the service still
meets the business requirements of the service consumers. The project’s success
originates from the previously mentioned aspects. It also demonstrates that a model
based approach is also applicable and beneficial to small projects and is not reserved
for projects with many project collaborators.

References

[1] Arsanjani, A., Ghosh, S., Allam, A., Abdo, T.: SOMA: A Method for developing Service-
oriented Solutions. IBM System Journal 47 (2008)

[2] OMG. Unified Modeling Language, Superstructure Specification (2010)
[3] OMG. Business Process Model and Notation (BPMN), version 2.0 (2011)
[4] Quartel, D.A.C., Steen, M.W.A., Pokraev, S., van Sinderen, M.: COSMO: A conceptual

Framework for Service Modelling and Refinement. Information Systems Frontiers 9, 2–3
(2007)

Introducing Entity-Based Concepts to Business

Process Modeling

Klaus Sperner, Sonja Meyer, and Carsten Magerkurth

SAP Research Switzerland
Kreuzplatz 20, 8008 Zürich, Switzerland

{klaus.sperner,sonj.meyer,carsten.magerkurth}@sap.com

Abstract. The so-called Internet of Things (IoT) that comprises inter-
connected physical devices such as sensor networks and its technologies
like Radio Frequency Identification (RFID) is increasingly adopted in
many industries and thus becomes highly relevant for process modeling
and execution. As BPMN 2.0 does not yet consider the idiosyncrasies
of real-world entities we suggest new modeling concepts for a physical
entity as well as a sensing task and an actuation task to make BPMN
IoT-aware.

Keywords: Internet of Things, IoT, Business Process Modeling, BPMN.

1 Introduction

Today, the gap between the sensors and actuators in the Internet of Things
and the business systems at the higher layers of the enterprise world is still a
reality. A unified reference architecture is therefore a key prerequisite for realizing
interoperability within the IoT world and especially for integration with business
processes, so that applications can be realized that are both IoT-aware and
meet the requirements of enterprise systems. Currently, the IoT domain is being
standardized based on a unified IoT domain model [4] that is discussed in the
next section. We apply core concepts from the IoT domain model to the Business
Process Model and Notation (BPMN) 2.0 [2]. As BPMN focuses on activities
and the implicated flow of process steps while the IoT domain model stresses
the relationship between entities and other constructs for which well defined
processes might or might not exist, a mapping and integration problem between
both domains becomes apparent.

In the remainder of this paper we will use the following typographical con-
ventions: Concepts from the IoT domain model are typeset in sans serif, and
concepts from the BPMN metamodel are typeset in constant width.

2 A Domain Model for the Internet of Things

Based on [1] and [3] a first version of the domain model for the Internet of Things
has been developed in [4]. As this model is an extensive conceptual representation

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 166–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Introducing Entity-Based Concepts to Business Process Modeling 167

of the IoT domain, it serves as a basic fundament for the presented research work.
In this section we shortly explain its core concepts, please confer Fig. 6 in [4].

As the term Internet of Things suggests, the thing is the most important
concept in the domain model; it is called Physical Entity. The main purpose of
the domain model is to show, in which way any kind of User can interact with a
Physical Entity, so the association interacts with between the User and the Physical
Entity is the key concept of the model.

To represent a Physical Entity in the digital world, a Virtual Entity is associated
to it. While a Physical Entity exists only once, there can be multiple Virtual
Entities representing it. Every combination of a Virtual Entity and its Physical
Entity forms one Augmented Entity.

In order to make the Physical Entity accessible from the digital world some
hardware, a so-called Device, is attached to the Physical Entity. To distinguish
between Devices which observe a Physical Entity and Devices which control a
Physical Entity, three subclasses of Device are introduced in the domain model:
A Sensor can be attached to a Physical Entity to monitor it, an Actuator can be
attached to a Physical Entity to act on it, and a Tag can be attached to a Physical
Entity to identify it.

To close the gap between the Device and the digital world, it hosts several
software components in its memory, which are called Resources. Depending on the
type of the Device, such a Resource has information about the Physical Entity, or
it can act on the Physical Entity. Virtual Entities can be associated with Resources
via the Device and the Physical Entity.

As the Resources hosted on the Devices are expected to have different inter-
faces, Services are introduced as an abstraction concept; they access the Re-
sources. These Services provide well-defined interfaces to the Users for invoking
them. Since the Virtual Entities are associated with the Resources, they can be
associated with the Services, which access these Resources, as well.

Summing up, the interaction of the User with the Physical Entity can be detailed
as follows: The User invokes a Service, which accesses a Resource, which is hosted
on a Device, which either monitors the Physical Entity or acts on the Physical
Entity.

3 Mapping between IoT Concepts and BPMN Concepts

To bring the IoT domain and business process modeling together, we analyse,
how the concepts from the domain model can be modeled in BPMN, and if the
chosen BPMN concepts are adequate to reflect the specificities of the Internet of
Things. Table 1 summarizes the proposed mapping of IoT and BPMN concepts.

A Physical Entity can be modeled as a TextAnnotation to an Activity.
Since the concept of a Physical Entity is not defined in BPMN, we use the
TextAnnotation as the general BPMN concept for attaching further details
to a modeling element. The usage of a TextAnnotation for the modeling of a
Physical Entity is not sufficient, and leads to multiple problems: As specified in
[2] a TextAnnotation only provides additional information for the reader of a

168 K. Sperner, S. Meyer, and C. Magerkurth

Table 1. Mapping of IoT concepts to current BPMN concepts and their sufficiency for
modeling of IoT aware processes

IoT concept BPMN concept Sufficiency for Modeling

Physical Entity TextAnnotation not sufficient
Virtual Entity DataObject sufficient

Augmented Entity — not needed in BPMN
Sensor Participant sufficient

monitoring ServiceTask not sufficient
Actuator Participant sufficient
acting ServiceTask not sufficient
Tag — not needed in BPMN

Resource — not needed in BPMN
Service ServiceTask not sufficient
User Participant, Event sufficient

diagram, but does not affect the flow of the process. Accordingly, the specifica-
tion of a dedicated Physical Entity in the model would not be obeyed during the
execution of the process. Second, a TextAnnotation can be attached to only one
object in the collaboration diagram, but one Physical Entity could for instance
be monitored by multiple Sensors. Third, there is no definition of a lifecycle for a
TextAnnotation, but a Physical Entity naturally persists between several process
executions.

The Virtual Entities relating to the Physical Entities can be modeled as collec-
tion DataObjects in a BPMN collaboration diagram, because this is the concept
for modeling data, which BPMN provides. As the concept of a Virtual Entity is
not only specific to the IoT domain, but a general concept in informatics, this
approach of modeling is considered to be sufficient, and fully serves our purposes.

As the Augmented Entity in the IoT domain model is only an abstract con-
cept to combine a Virtual Entity and a Physical Entity, there is no corresponding
concept in BPMN. Since such an abstract concept would not add any benefit
for the practical modeling of business processes, the Augmented Entitiy is not
needed in BPMN.

Sensors and Actuators can sufficiently be modeled as Participants in a col-
laboration diagram, because this concept is defined in BPMN to represent a
PartnerEntity, which executes a process. If multiple instances of Sensors or
Actuators are involved, the corresponding pools can be decorated with multi-
instance markers.

As a Sensor is described in the domain model to monitor a Physical Entity
and an Actuator is said to act on a Physical Entity, these monitoring and actua-
tion associations can be expressed with ServiceTasks in a BPMN diagram. In
BPMN Tasks are the central concept of execution during the process flow, so
this modeling is appropriate. The particular Task can implicitly be identified as
a Task for monitoring or actuation through the Participant executing it, the
Physical Entity, which is represented in the attached TextAnnotation, and the
name of the Task, which states the means of monitoring or actuation. So far it
can not be explicitly marked as a specific Task for monitoring or actuation.

Introducing Entity-Based Concepts to Business Process Modeling 169

Even though the concept of attaching Tags to Physical Entities to make them
identifiable is one of the most widely adopted applications of Internet of Things
technologies, it is a low-level technology, and an introduction to BPMN is not
needed. If the process of this identification is of particular interest, the Tag can
be considered as a Physical Entity, which is monitored by a Sensor.

The Resources introduced in the domain model are the software components
running on the Devices. Since BPMN collaboration diagrams focus on
Participants executing Tasks, introducing the Resource to BPMN is not
reasonable.

In the domain model the Services provide a consistent interface for the Re-
sources, which are hosted by Sensors and Actuators. In BPMN these Services
can be modeled as ServiceTasks, which are executed by the Participants,
which represent Sensors and Actuators. As described above, the Physical En-
tities, on which these ServiceTasks operate, are referenced in the attached
TextAnnotations. Although the modeling of the Services via ServiceTasks
seems appropriate, it is not sufficient: In a collaboration diagram it is impossible
to distinguish, if the Service performs a sensing or an actuating interaction with
the Physical Entity.

For the User in the domain model, who invokes the Service, the different BPMN
concepts for the invocation of Tasks can be considered. This could be a Message
from another Participant or an Event. As there are many concepts for the in-
vocation of Tasks in BPMN, no new concept for the User needs to be introduced.

The result of our analysis is summarized in Table 1: The Physical Entity and the
monitoring and actuating Services can not be represented sufficiently in BPMN.

4 New Modeling Concepts

4.1 Modeling of Physical Entities

To facilitate the modeling of Physical Entities we propose a new BPMN element
PhysicalObject, which is subclassed from FlowElement in the BPMN meta-
model. In contrast to the DataObject the PhysicalObject is not subclassed
from ItemAwareElement, because these are designed to store items, but a Phys-
ical Entity is an item itself. Accordingly, the BPMN elements DataState and
ItemDefinition are not needed for the PhysicalObject. To enable the modeler
to refer to the same Physical Entity in multiple places of a diagram, we introduce
a PhysicalObjectReference analogous to the DataObjectReference.

We propose the illustration of a brick shown in Fig. 1 as stencil for the
PhysicalObject to make this new concept usable in a BPMN collaboration

Fig. 1. Stencils for a single PhysicalObject (left) and a collection of PhysicalObjects
(right)

170 K. Sperner, S. Meyer, and C. Magerkurth

diagram. As it is possible that not only one instance of a PhysicalObject is
used in a process, the stencil can be decorated with a multiple instance marker,
like it is defined in [2] for DataObjects. The name of the PhysicalObject will
be placed above the base line of the stencil.

As PhysicalObjects are obviosly physical, their lifecycle is not limited to the
lifecycle of the modeled process; they persist between process instantiations. This
differentiates them from DataObjects, which are defined in [2] to not persist
between process instantiations, but is similar to DataStores, which are also
persistent according to [2].

4.2 Modeling of monitors and acts on Associations

To empower the modeler to express that a Task reflects a monitors or an acts on
relationship between the Participant and the Physical Entity represented in the
TextAnnotation, we introduce dedicated SensingTasks and ActuatingTasks
as new subclasses of the Task class.

Since a Sensor produces data about a Physical Entity by monitoring it, the
SensingTask must output this data and provide it for the remainder of the pro-
cess. Hence, we can derive the following constraint for the SensingTask: The
InputOutputSpecification, which is associated with the Activity superclass
of the SensingTask, must reference at least one DataOutput, which must also
be referenced by at least one OutputSet of the InputOutputSpecification.
Because an Actuator needs an actuating value, an analogous constraint ap-
plies to the ActuationTask: The InputOutputSpecification associated to the
ActuationTask must reference at least one DataInput, which must also be ref-
erenced by at least one InputSet.

Fig. 2. Stencils for an ActuationTask (left) and a SensingTask (right)

For the new Tasks we propose the icons shown in Fig. 2 to decorate the
stencil for the Task with: The ActuationTask is decorated with an illustration
of a robot arm and the SensingTask is depicted with a gauge.

4.3 Connecting PhysicalObjects with ActuationTasks and
SensingTasks

Analogous to the DataAssociation defined in [2], we define a new abstract class
PhysicalAssociation, derived from BaseElement, and two concrete subclasses

Introducing Entity-Based Concepts to Business Process Modeling 171

ActuationAssociationand SensingAssociation.The former is a directed con-
nection from an ActuationTaskto the PhysicalObject, on which the represented
Actuator acts on; it can be considered as a flow of physical interaction. The latter
is directed from a PhysicalObject to a SensingTask; this can be considered as
a flow of physical information from a Physical Entity to a Sensor.

To depict such associations in a BPMN diagram, we propose to reuse the
same stencil as it is defined for a DataAssociation (cf. Fig. 10.65 in [2]).

5 Conclusions and Outlook

With this paper we have demonstrated first concrete steps towards bringing
together the Internet of Things and Business Process Management. We have
come up with first suggestions for augmentations to the BPMN 2.0 standard to
reflect the most important aspects of the IoT domain model.

Our future work will deal with the further elaboration of the concepts pre-
sented in this paper including serializations of the new modeling concepts in
the BPMN CMOF and the BPMN XML Schema and the serializations of the
diagram elements in the BPMNDI XML Schema.

Acknowledgments. The authors would like to thankfully acknowledge the
support for this work provided by the European Commission within the FP7
project IoT-A, contract number 257521. In this context we thank Stephan Haller,
Alessandro Serbanati, Martin Bauer, Ralf Kernchen, Joachim Walewski, and
Alessandro Bassi for their work on the Internet of Things domain model, and
all other contributors to the model.

References

1. Haller, S.: The Things in the Internet of Things: Poster at the Internet of Things
2010 (2010),
http://iot-a.eu/public/news/resources/TheThingsintheInternetofThings

SH.pdf (accessed June 30, 2011)
2. Object Management Group (OMG), Business Process Model and Notation (BPMN)

Version 2.0 (2011), http://www.omg.org/spec/BPMN/2.0/ (accessed June 30, 2011)
3. Serbanati, A., Madaglia, C.M., Ceipidor, U.B.: Building Blocks of the Internet of

Things: State of the Art and Beyond. In: Turcu, C. (ed.) RFID/Book 3. InTech,
Rijeka (in press, 2011)

4. Walewski, J.W. et al.: Project Deliverable D1.2 - Initial Architectural Reference
Model for IoT (2011),
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/

D1%202 Initial architectural reference model for IoT.pdf/at download/file

(accessed June 30, 2011)

http://iot-a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf
http://iot-a.eu/public/news/resources/TheThingsintheInternetofThings_SH.pdf
http://www.omg.org/spec/BPMN/2.0/
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/D1%202_Initial_architectural_reference_model_for_IoT.pdf/at_download/file
http://www.iot-a.eu/public/public-documents/project-deliverables/1/1/D1%202_Initial_architectural_reference_model_for_IoT.pdf/at_download/file

On the Capabilities of BPMN for Workflow Activity
Patterns Representation

Lucinéia Heloisa Thom1,2, Ivanna M. Lazarte3, Cirano Iochpe2,
Luz-Maria Priego2, Christine Verdier2, Omar Chiotti4, and Pablo David Villarreal3

1 Departamento de Informática, Universidade Federal do Rio Grande do Sul, 15064,
91501-970, Porto Alegre, Brazil

2 LIG, UMR 5217, SIGMA team, Joseph Fourier University, Grenoble, France
3 CIDISI, National Technological University Santa Fé Faculty, Lavaisse 610, S3004EWB,

Santa Fé, Argentina
4 INGAR-CONICET, Avellaneda 3657, S3002GJC, Santa Fé, Argentina

Abstract. This paper provides a complete version of the Workflow Activity Pat-
terns (WAP) in the Business Process Modeling Notation (BPMN) as well as an
extended evaluation of the capabilities of BPMN and their strengths and weak-
nesses when being utilizing for representing WAPs. When implementing the ac-
tivity patterns in existing Business Process Modeling tools, it is fundamental to
represent them in BPMN. This representation may facilitate the adoption of the
WAPs by BPMN tools as well as the use of the WAPs in process design.

Keywords: Workflow activity patterns, BPMN, process design.

1 Introduction

Process models can be assembled out of a set of recurrent business functions (e.g.,
task execution request, approval) of which each has a specific semantics. In an ear-
lier work we related such business functions to a set of well-defined workflow activity
patterns (WAPs): request for activity execution with/without answer, approval, notifi-
cation, decision-making, and information request [1]. This pattern set is closer to the
vocabulary and abstraction level at which business processes are usually described by
domain experts. This fosters pattern reuse when modeling business processes and there-
fore contributes to more standardized and better comparable business process models.
Generally, multiple WAPs can be composed in a process model using workflow patterns
like Sequence, AND-Split, AND-Join or XOR-Split [5].

In order to facilitate the adoption of the WAPs by BPMN design tools as well as
their use in new approaches it is fundamental to represent them in BPMN. If we have
the patterns in BPMN and the tool supports BPEL output from BPMN diagrams, we
already have BPEL output implemented for the pattern designed processes.

The remainder of this paper presents the WAPs in BPMN and a discussion on the
strengths and weaknesses of BPMN when being utilizing for representing them.

R. Dijkman, J. Hofstetter, and J. Koehler (Eds.): BPMN 2011, LNBIP 95, pp. 172–177, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On the Capabilities of BPMN for Workflow Activity Patterns Representation 173

2 Representing Workflow Activity Patterns in BPMN

A WAP refers to the description of a recurrent business function as it can be frequently
found in business processes [1]. We had developed an empirical study, in which we
analyzed more than 200 real-world process models in order to confirm the existence
of the seven WAPs [2]. The study showed that the analyzed process models can be
designed based on the investigated patterns; i.e., the set of identified WAPs is necessary
as well as sufficient to design the 200 process models, at least at a certain level of
granularity.

2.1 WAP1: Approval Pattern

An approval shall be done by a single role or by multiple roles either concurrently or
iteratively (see Fig. 1).

– Single approval: a requestor sends an approval request to exactly one reviewer.
This reviewer performs the revision either resulting in approval or rejection.

– Iterative approval: based on a list of reviewers (BPMN collection data object)
a requestor sends an approval request for the first reviewer from the list. This re-
viewer performs the approval resulting either in approval or rejection. If approved
the next reviewer from the list will receive a request for approval, and so on; if one
reviewer rejects, all previous approvals (in case they exist) will be cancelled and the
overall approval procedure will be aborted. At the end, a final decision - approval
or rejection - is made concerning the object under revision.

– Concurrent approval: given a list of reviewers a requestor sends an approval
request to all reviewers simultaneously. After all reviewers have performed their
approvals the final decision is made. To represent the parallelism we used the col-
lection data object and the multi-instance marker for parallel instances.

2.2 WAP2: Question-Answer

Major design choice regarding the question-answer pattern is whether the question will
be send to one or multiple roles and actors, respectively (see Fig. 2).

– Single-Question-Answer: Based on a question description an organizational role
with expertise in the respective domain is chosen to answer the question. The sender
waits until the response arrives and then continues process execution.

– Multi-Question-Answer: Based on a question description multiple organizational
roles with expertise in the respective domain are chosen to answer the question.
The sender waits until all responses arrive and then continues process execution.

2.3 WAP3: Unidirectional Performative

Major design choice is whether the activity execution request shall be sent to one or
multiple actors (see Fig. 3).

174 L.H. Thom et al.

Fig. 1. Approval Pattern Variants

Fig. 2. Question-answer Pattern Variants

– Single-Request: A requestor sends an activity execution request to a receiver and
continues process execution without waiting for response.

– Multi-Response: A requestor sends an activity execution request to multiple re-
ceivers simultaneously and continues process execution afterwards, i.e., without
waiting for any response.

2.4 WAP4: Bi-Directional Performative

Major design choice is whether the activity execution request is sent to one or multiple
actors (see Fig. 4).

– Single-Request-Response: A requestor sends an activity execution request to one
receiver. He waits with continuation of his part of the process until the receiver
notifies him about the performance of the requested activity.

– Multi-Request-Response: A sender sends an activity execution request to mul-
tiple receivers simultaneously and continues execution only after having received
respective notifications from all performers (cf. Fig. 4).

On the Capabilities of BPMN for Workflow Activity Patterns Representation 175

Fig. 3. Unidirectional Performative Pattern Variants

Fig. 4. Bi-directional Performative Pattern Variants

2.5 WAP5: Notification

Major design choice is whether the notification is to be sent to one or multiple actors
(see Fig. 5).

– Single-Notification: A sender sends a notification to a single receiver.
– Multi-Notification: A sender sends a notification to multiple receivers simultane-

ously.

Fig. 5. Notification Pattern Variants

2.6 WAP6: Informative Request

Major design choice is whether the information request is sent to one or multiple actors
(see Fig. 6).

– Single-Information Request: A sender sends an information request to a receiver
and does not continue process execution before having received the requested in-
formation.

– Multi-Information Request: A sender sends an information request to multiple
receivers simultaneously and does not continue process execution before having
received responses from all receivers.

176 L.H. Thom et al.

Fig. 6. Informative Pattern Variants

2.7 WAP7: Decision

Major design choice is whether the final decision is based on the results of one single
activity or a set of activities.

– Single-Decision: Based on the execution result of an activity one or several suc-
ceeding branches are executed.

– Multi-Decision: An activity execution request is sent to multiple performers. Based
on the results of the activities one or several succeeding branches are executed.

Fig. 7. Decision Pattern Variants

3 Discussion and Conclusions

Basic advantages of the representation of the WAPs in BPMN are: (a) BPMN is becom-
ing a well-known standard notation for business process modeling. When comparing
with UML 2.0 some aspects look clearer like the message exchange between process
participants. Having the patterns in BPMN makes possible to perform experiments to
compare process design with and without the support of WAPs; (b) BPMN showed
suitable for modeling most of the WAPs. We observed that some structures (e.g., par-
ticipants related to a multiple instance activity) can be represented in different ways in
BPMN. We believe that not always the proposed WAPs will be directly identified.

We have experienced that the use of WAPs for designing integration business pro-
cess models brings several advantages: automate and facilitate the design of process
models, reduce process modeling time and cost, improve process model quality, and
enable the reuse of the process knowledge captured in them to generate the public and
private activities [3]. Also, the use of WAPs ensures the interoperability in the message

On the Capabilities of BPMN for Workflow Activity Patterns Representation 177

exchange between integration business processes by providing synchronization among
the sending and receiving tasks generated in the processes. As drawbacks we can men-
tion that the WAPs do not express how to generate the business document to be sent in
each business message.

The WAPs in BPMN are very important for designing process models executed in
virtual organizations [4]. The WAPs showed to be very effective for representing sin-
gle/multi participants either requesting the execution of activities or being notified about
executed activities. In addition they help to add more semantics and details for the ac-
tivities description.

As future work we are going to use the WAPs in BPMN for designing processes from
different application domains and organizations. Our goal is to verify how effective the
patterns are for process design when comparing with the same design using only BPMN
elements.

Acknowledgements. We are very grateful for the SticAmSud and PNPD Program from
the Brazilian Coordination for the Improvement of Graduated Students (CAPES).

References

1. Thom, L.H., Reichert, M., Iochpe, C.: Activity patterns in process-aware information systems:
basic concepts and empirical evidence. IJBPIM 4(2), 93–110 (2009)

2. Thom, L.H., Reichert, M., Iochpe, C.: On the Support of Workflow Activity Patterns in Process
Modeling Tools: Purpose and Requirements. In: 3rd WBPM, Brazil (2009)

3. Lazarte, I.M., Villarreal, P.D., Chiotti, O., Thom, L.H., Iochpe, C.: An MDA-Based Method
for Designing Integration Process Models in B2B Collaborations. In: 13 ICEIS, China (2011)

4. Priego-Roche, L.M., Rieu, D., Front, A.: A 360 vision for virtual organizations characteriza-
tion and modelling: Two intentional level aspects. In: Software Services for e-Business and
e-Society, pp. 427–442 (2009)

5. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow Control-Flow
Patterns: A Revised View. BPM Center Report BPM-06-22, BPMcenter.org (2006)

Author Index

Ackermann, Jörg 154

Barros, Oscar 118
Bhatt, Ankur 154
Brambilla, Marco 88, 124

Caracaş, Alexandru 16
Chiotti, Omar 59, 172
Cortes-Cornax, Mario 103

Dumas, Marlon 103
Dupuy-Chessa, Sophie 103

Effinger, Philip 130

Fraternali, Piero 88, 124

Gfeller, Beat 31
Goldner, Sascha 142
Grieser, Gunter 136

Hardegen, Björn 160
Hoekstra, Yvette 136
Hoffmann, Frank Oliver 154
Hohwiller, Jörg 136

Iochpe, Cirano 172

Kramp, Thorsten 16
Kunze, Matthias 44

Lazarte, Ivanna M. 172
Luebbe, Alexander 44

Magerkurth, Carsten 166
Meyer, Sonja 166

Natschläger, Christine 1

Papproth, Alf 142
Pautasso, Cesare 74
Pitschke, Jürgen 148
Priego, Luz-Maria 172

Quezada, Alejandro 118

Rieu, Dominique 103
Ritter, Daniel 154

Scheithauer, Gregor 160
Schlegel, Diethelm 136
Seguel, Ricardo 118
Sperner, Klaus 166
Stroppi, Luis Jesús Ramón 59

Thom, Lucinéia Heloisa 172

Vaca, Carmen 88
Verdier, Christine 172
Villarreal, Pablo David 59, 172
Völzer, Hagen 31

Weidlich, Matthias 44
Weske, Mathias 44
Wilmsmann, Gunnar 31

	Title
	Preface
	Organization
	Table of Contents
	Full Papers
	Towards a BPMN 2.0 Ontology
	Introduction
	Problems and Goals
	Related Work
	Formal Specifications of BPMN
	BPMN Ontologies

	BPMN 2.0 Ontology
	BPMN 2.0 Base Ontology (bpmn20base)
	Extended BPMN 2.0 Ontology (bpmn20)
	BPMN 2.0 Ontology (bpmn20base and bpmn20)
	Further Remarks

	Evaluation
	Reasoner
	Syntax Checking

	Conclusion
	References

	On the Expressiveness of BPMN for Modeling Wireless Sensor Networks Applications
	Introduction
	Related Work
	Characteristics of WSN Applications
	Reactive Behavior
	Heterogeneous
	Communication
	Real-Time

	BPMN Modeling Style for WSN
	Reactive-Behavior
	Communication
	Real-Time
	Heterogeneous

	Evaluation
	Conclusion
	References

	Faster Or-Join Enactment for BPMN 2.0
	Introduction
	Problem Definition
	Faster Or-Join Enactment
	Correctness of Our New Approach
	Analysis

	Optimizations
	Delayed Token Monitoring
	Fragment-Based Optimization
	Omitting Labels for Full Sets

	Analysis and Comparison with Previous Approach
	Conclusion
	References

	Towards Understanding Process Modeling – The Case of the BPM Academic Initiative
	Introduction
	Related Work on Process Model Collections
	Analysis with Process Model Metrics
	A Set of Process Model Metrics
	Evaluation of the BPMAI Collection

	Analysis of Language Usage
	Usage of Process Model Constructs
	Vocabulary of Process Models

	Further Research Agenda
	Conclusion
	References

	Extending BPMN 2.0: Method and Tool Support
	Introduction
	The BPMN Extension Mechanism
	MDA-Based Method for the Development of BPMN Extensions
	Definition of a Conceptual Domain Model of the Extension by Using UML
	Definition of a BPMN Plus Extensions Model
	Transformation of the BPMN+X Model into an XML Schema Extension Definition Model
	Transformation of the XML Schema Extension Definition Model into an XML Schema Document

	Tool Support
	Related Work
	Conclusions
	References

	BPMN for REST
	Introduction
	Background and Motivation
	Notation
	Modeling External Resources
	Publishing Process Elements as Resources
	Modeling Internal Resources: The Resource Request Event

	Examples
	Local Search Mashup
	Loan Approval
	RESTBucks

	Related Work
	Conclusion
	Future Work
	References

	A Notation for Supporting Social Business Process Modeling
	Introduction and Motivation
	Dimension of Socialization
	Actor Categorization
	Visibility of the Process Status
	Level of Social Participation

	Social BPMN Extensions
	Notation for Community Lane and Actor Categorization
	Notation for Socialization of Activities and Decisions
	Notation for Social Tasks
	Notation for Social Events

	Usage Examples
	Scheduling a Meeting
	Thesis Approval
	Social BPM in a B2C Scenario

	Social Design Patterns
	Implementation Experience
	Related Work
	Conclusions
	References

	Evaluating Choreographies in BPMN 2.0 Using an Extended Quality Framework
	Introduction
	Choreographies in BPMN 2.0
	The Language Quality Framework
	Choreography Modeling Requirements
	Domain Appropriateness Requirements (D)
	Comprehensibility Appropriateness Requirements (C)
	Technical Appropriateness Requirements (T)

	Evaluation of BPMN 2.0 for Choreographies
	Domain Appropriateness Evaluation
	Comprehensibility Appropriateness Evaluation
	Technical Actor Interpretation Appropriateness Evaluation

	Discussion and Conclusions
	References

	Short Papers
	A Lightweight Approach for Designing Enterprise Architectures Using BPMN: An Application in Hospitals
	Introduction
	Problem Solving Approach
	Designing the EA with BPMN
	Process Architecture Modeling (Level I)
	Business Design Using Patterns (Level II)
	Process Logic Design (Level III)
	IT Process Support (Level IV)

	Conclusions
	References

	Implementing the Semantics of BPMN through Model-Driven Web Application Generation
	Introduction
	Challenges and Contributions
	Model Driven Engineering Applied to Process Models
	Model Transformations
	Process Data Model Generation
	Application Model Generation

	Tool Implementation
	Conclusion
	References

	Layout Patterns with BPMN Semantics
	Motivation
	Layout Patterns
	Geometric Pattern (GeoP)
	Gateway Pattern (GaP)
	Start-End-Pattern (SEP)

	Related Work
	Conclusion
	References

	Integration of BPM and BRM
	Introduction and Motivation
	Related Work
	Best Practices
	Gather Knowledge
	Structure Knowledge
	Formalize Models
	Implement Models

	Conclusion and Further Work
	References

	Extending the BPMN Syntax for Requirements Management
	Introduction
	Visualization of Regulations within BPMN
	Extending the BPMN Syntax in ORYX
	The Extensions

	Requirements Export Plug-In
	Conclusion
	References

	Integrating Business Process Models and Business Logic: BPMN and The Decision Model
	Why Do We Need an Explicit Presentation for Business Logic?
	Modeling Business Logic – Intro to “Th e Decision Model” Framework
	Presentation of Business Logic with “The Decision Model” Framework

	Applying “The Decision Model”
	References

	Building a Business Graph System and Network Integration Model Based on BPMN
	Introduction
	Design Principles
	Network Integration Model
	Basic Business Network Entities
	Relationship of Basic Business Network Entities

	Experiences with BPMN in the Domain of BNM
	Discussion and Future Work
	References

	Requirements Engineering for SOA Services with BPMN 2.0 – From Analysis to Specification
	Introduction
	Project Method Overview
	Service Specification
	Conclusion
	References

	Introducing Entity-Based Concepts to Business Process Modeling
	Introduction
	A Domain Model for the Internet of Things
	Mapping between IoT Concepts and BPMN Concepts
	New Modeling Concepts
	Modeling of Physical Entities
	Modeling of monitors and acts on Associations
	Connecting PhysicalObjects with ActuationTasks and SensingTasks

	Conclusions and Outlook
	References

	On the Capabilities of BPMN for Workflow Activity Patterns Representation
	Introduction
	Representing Workflow Activity Patterns in BPMN
	WAP1: Approval Pattern
	WAP2: Question-Answer
	WAP3: Unidirectional Performative
	WAP4: Bi-Directional Performative
	WAP5: Notification
	WAP6: Informative Request
	WAP7: Decision

	Discussion and Conclusions
	References

	Author Index

