
Nitro: Hardware-Based System Call Tracing for

Virtual Machines

Jonas Pfoh, Christian Schneider, and Claudia Eckert

Technische Universität München, Munich, Germany
{pfoh,schneidc,eckertc}@in.tum.de

Abstract. Virtual machine introspection (VMI) describes the method
of monitoring and analyzing the state of a virtual machine from the hy-
pervisor level. This lends itself well to security applications, though the
hardware virtualization support from Intel and AMD was not designed
with VMI in mind. This results in many challenges for developers of
hardware-supported VMI systems. This paper describes the design and
implementation of our prototype framework, Nitro, for system call trac-
ing and monitoring. Since Nitro is a purely VMI-based system, it remains
isolated from attacks originating within the guest operating system and
is not directly visible from within the guest. Nitro is extremely flexible as
it supports all three system call mechanisms provided by the Intel x86
architecture and has been proven to work in Windows, Linux, 32-bit,
and 64-bit environments. The high performance of our system allows for
real-time capturing and dissemination of data without hindering usabil-
ity. This is supported by extensive testing with various guest operating
systems. In addition, Nitro is resistant to circumvention attempts due to
a construction called hardware rooting. Finally, Nitro surpasses similar
systems in both performance and functionality.

1 Introduction

Virtual machine introspection (VMI) lends itself very well to security applica-
tions [5]. This is, in part, due to the fact that security mechanisms running
within the hypervisor are isolated from attacks that occur within a virtual ma-
chine (VM) and that the hypervisor maintains a complete and untainted view
of a VM’s system state.

In order to leverage the full potential that VMI provides, identifying and
isolating the relevant guest operating system (OS) state information becomes
crucial. This process requires some semantic knowledge about the guest and is
referred to as the semantic gap issue [3]. Bridging this semantic gap has been
classified into three fundamental view generation patterns [12]. One of these
patterns relies on knowledge of the hardware architecture to derive semantic
information about the guest OS. Making use of the hardware architecture allows
one to construct mechanisms that are resistant to evasion attempts through a
method called hardware rooting [13]. This makes hardware-based information
extraction particularly interesting for security approaches that are intended to
detect malicious activity within a monitored VM.

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 96–112, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Nitro: Hardware-Based System Call Tracing for Virtual Machines 97

One promising way of detecting such malicious activity is to monitor system
calls. System calls facilitate communication between the kernel and user space
within an OS and are interesting from a security perspective. System call traces
may be used to classify the actions of a process as benign or malicious with
machine learning approaches [9,6,14]. In addition, prevalent sandboxing envi-
ronments, such as CWSandbox [7], Anubis [2], or the Norman Sandbox product
line, incorporate system call or API monitoring to create their reports. Finally,
particular system calls of interest are monitored in live forensic applications,
such as those found in honeypot environments.

In this paper, we describe the implementation of our prototype VMI frame-
work, Nitro, for hardware-based system call tracing and monitoring. Due to the
properties of VMI, it is isolated from malicious activities within the VM and re-
mains hidden from the guest OS. To our knowledge, Nitro is the first VMI-based
system that supports all three system call mechanisms provided by the Intel x86
architecture and has been proven to work for Windows, Linux, 32-bit, and 64-bit
guests. Moreover, this framework is flexible enough to feasibly support almost
any OS built upon the x86 architecture. Capturing and disseminating data is
done in real-time without hindering usability of the guest, as our performance
tests show. Finally, Nitro is resistant to attempts at evasion due to hardware
anchors. We will discuss the foundations of this approach, its implementation,
and its properties throughout this work.

The remainder of this paper is organized as follows: We start by presenting
some related work in Section 2. We go on to introduce the requirements for
desirable properties of a VMI system in Section 3. The implementation of Nitro is
detailed in Section 4, followed by a discussion of how it meets the aforementioned
requirements in Section 5. In Section 6, we explain our performance evaluation
and present the results, which we compare to a similar system called Ether [4]
in Section 7. Finally, we draw our conclusions in Section 8.

2 Related Work

At the time of this writing, to our knowledge, there are three other systems that
make use of virtualization extensions to implement systems that are capable of
producing system call traces for security applications. The first system, Lares
[11], was the pioneer in this area introducing a mechanism for creating arbitrary
hooks within a Windows guest OS. Lares was developed on the Xen hypervisor
and required drivers to be installed within the Windows guest to facilitate hook-
ing. Since our system does not require any guest OS support at all, it achieves a
much higher level of portability and robustness, as we will show. Thus, a detailed
comparison between Lares and Nitro would not be very meaningful and is not
provided in this paper.

In addition to Lares, the Ether system [4] provides the capability to produce
system call traces. This system is also built upon the Xen hypervisor and takes
a similar approach to that of Nitro. For a detailed comparison, please refer to
Section 7.

98 J. Pfoh, C. Schneider, and C. Eckert

Finally, HyperSleuth [10] also provides the ability to trace system calls, though
the authors indicate that the “approach we use to trace system calls is thus
inspired by Ether”. For this reason we forgo a detailed comparison and direct
the readers attention to our comparison between Nitro and Ether.

3 Properties

In Section 1 we outline the key properties of Nitro. These properties, a de-
scription, and the requirements to achieve each property are discussed within
this section in a general manner. How exactly Nitro meets these requirements
follows later in Section 5.

Guest OS Portability. Guest OS portability refers to a property that allows
the same VMI mechanism to work for various guest OSs without major changes.
Ideally, a guest OS portable VMI mechanism would work on any guest OS with
no change, however we tolerate some minor configuration changes to the VMI
mechanism, as long as the basic mechanics of that approach is shared among all
guests.

In order to achieve guest OS portability, the underlying VMI mechanism may
not rely on knowledge of the guest OS itself, but rather on knowledge of the
virtual hardware specifications. For example, Jones et al. make use of the CR3
register in order to track processes [8]. How this register is to be used within
the memory management unit (MMU) is specified by the x86 architecture, and
all OSs running on this hardware and using the MMU must conform to these
specifications. Thus, this basic method can be used to track processes in various
guest OSs without change as long as the OSs support virtual memory.

Evasion-Resistance. An evasion-resistant mechanism is a mechanism which
is impossible for an attacker to circumvent when correctly implemented and
deployed in an ideal system. We define a correctly implemented mechanism as a
mechanism that perfectly enforces the policy that it was designed to enforce with
no flaws or errors. In the same manner, we define an ideal system as a system
that perfectly implements its design and contains no flaws or errors. Since we
know that these ideal properties are impractical, it may be possible to circumvent
the mechanism if and only if such a flaw is found and exploited by a malicious
entity. This is why we refer to this property as “evasion-resistant” rather than
“evasion-proof”. We begin this discussion by describing how a mechanism may
be rooted in hardware.

In order to interpret the low-level binary state information of a virtual ma-
chine, the hypervisor must incorporate knowledge of the hardware architecture
or the guest OS to bridge the semantic gap. As Pfoh et al. argue [12], an approach
that relies on guest OS knowledge alone might be circumvented by attacks that
change the guest OS architecture itself. For example, the manner in which the
guest OS uses a particular data-structure may be manipulated by a malicious
entity. This stems from the fact that this knowledge of the guest OS is in no way

Nitro: Hardware-Based System Call Tracing for Virtual Machines 99

bound to the running OS kernel. The fact that such attacks against VMI mech-
anisms have been successfully implemented recently [1] shows, that this threat
is not of pure theoretical nature.

If, in contrast, the VMI mechanism bases its knowledge on information about
the virtual hardware architecture, these attacks cannot be applied. The guest
OS and all software running on it, including any malware, must play by the
rules of the virtual hardware. An attacker has no means of changing these rules.
Thus, this knowledge of the hardware specifications is bound to the hardware
architecture. For example, if the hardware architecture specifies that a control
register holds the address of a data-structure, there is nothing a malicious entity
can do to circumvent this as the hardware will expect this to be the case in order
to run correctly.

This argument can be expanded further to also cover other parts of state
information as follows: If we can start at a feature of the virtual hardware spec-
ification (e. g., a register) and, from there, follow references in memory, thus
building a chain to a critical data-structure, a malicious entity cannot modify
that data-structure unnoticed. Figure 1 depicts such a chain. We will therefore
refer to a portion of state information as being rooted in hardware if such a chain
can be built [13].

Having introduced hardware rooting, we now describe the two requirements
for an evasion-resistant VMI mechanism. First, the monitored or protected por-
tions of the VM’s state must be rooted in the virtual hardware, as described
above. Second, each involved piece of VM state along the described reference
chain must be protected such that it cannot be manipulated in violation of pol-
icy or that any change to such a piece of VM state is ignored by the guest OS.
If both of these requirements are met the mechanism is evasion-resistant.

4 Implementation

This section describes the steps we took in implementing our prototype. Nitro
is based upon the Linux Kernel Virtual Machine (KVM). KVM is split into two
portions, namely a user application that is built upon QEMU and a set of Linux
kernel modules.

The user application portion of KVM provides the QEMU monitor which is
a shell-like interface to the hypervisor. It provides general control over the VM.
For example, it is possible to pause and resume the VM as well as to read out
CPU registers using the monitor. We modified KVM by adding new commands
to the monitor to control Nitro’s features. That is, all Nitro commands are input
via this monitor.

These commands are then sent to the kernel module portion of KVM through
an I/O control interface. The majority of Nitro is implemented in these kernel
modules. Finally, the output is realized by making use of the proc filesystem.
That is, Nitro creates a node in the proc filesystem and obtaining its output is
as simple as reading from a file.

100 J. Pfoh, C. Schneider, and C. Eckert

Fig. 1. The relationship between the Interrupt
Descriptor Table Register (IDTR), the Inter-
rupt Descriptor Table (IDT), and the system
call dispatcher shows that the system call dis-
patcher is rooted in the IDTR through a chain
that includes the IDT

Fig. 2. Control flow of a system
call that traps to the hypervisor

4.1 VMI Mechanisms for Trapping System Calls

In some cases the virtualization extensions provided by hardware manufacturers
support trapping the specific event one is interested in, which makes the effort
straightforward. However, it is often the case, especially for security mechanisms,
that the hardware extensions do not support trapping the desired event. In these
instances, we must indirectly induce a trap to the hypervisor. Finding these
indirect methods for trapping desired events is often a challenge.

As it turns out, trapping to the hypervisor on the event of a system call
is not supported on the popular Intel IA-32 (i. e., x86) and Intel 64 (formerly
EM64T) architectures. In this case, we must find a way to indirectly cause the
trap as discussed above. We do this by forcing system interrupts (e. g., page
faults, general protection faults, etc) for which trapping is supported by the
Intel Virtualization Extensions (VT-x). Hence, we have effectively created a
mechanism for trapping system calls even though the hardware extensions do
not natively support this. The resulting control flow is depicted in Figure 2. Since
the three system call mechanisms are quite different in their nature, a unique
trapping mechanism must be designed for each. These trapping mechanisms and
their implementations are described below.

Interrupt-Based System Calls. System calls may be implemented as a user-
defined interrupt. The x86 architecture handles interrupts through an Interrupt
Descriptor Table (IDT). This IDT may have as many as 256 entries, each of
which is 8 bytes long. The exact size of the IDT is stored in the IDTR along
with the address at which the IDT resides in system memory. When an interrupt
occurs, the hardware consults the IDT via the IDTR to determine the location
for the appropriate handler and continues execution there as shown in Figure 1.

Nitro: Hardware-Based System Call Tracing for Virtual Machines 101

Intel’s VT-x extensions allow one to trap system interrupts (interrupts 0 to
31) to the hypervisor, but they do not provide a mechanism for trapping user
interrupts (interrupt 32 and above) which may be used for system calls.1 This
means that we must design a way to cause this user interrupt to generate a
system interrupt.

We can achieve this by virtualizing the IDT, that is, we copy out the guest’s
IDT into the hypervisor. We must then manipulate the IDTR and trap all write
accesses to it, thus disallowing any further manipulation. As the IDT size value
stored in the IDTR is added to the base address to get the offset of the last
valid byte of the IDT, we can set this size to 32 · 8 − 1 = 255. This leaves all
system interrupts unaffected, however all attempts at invoking a user interrupt
(i. e., interrupts greater than 31) will result in a general protection fault as the
bounds of the IDT will have been exceeded. The advantage of this approach is
that the IDT remains unaffected in memory, but is effectively ignored for user
interrupts.

The next step is to trap all general protection faults to the hypervisor, which
the virtualization extensions support natively. However, we must still determine
the difference between general protection faults that we generated and those that
occur naturally2. This can be done by inspecting the current instruction and
determining whether or not it is the int instruction and whether the interrupt
number is greater than 31.

If we identify the exception as being natural, we inject this exception into
the guest and allow it to continue. However, if we recognize the exception to be
caused by a user interrupt, we look at the interrupt number to determine whether
we have trapped a system call. If this is the case, we collect data according to
the rules specified for Nitro’s data collection engine (see Section 4.3). In either
case, the int instruction must be emulated using the IDT that we copied out of
the guest and hand control back to the guest OS.

SYSCALL-Based System Calls. System calls may also be implemented us-
ing the SYSCALL instruction and its analogue counterpart SYSRET. Both of these
rely on a set of MSRs, namely STAR MSR, CSTAR MSR, and LSTAR MSR.
Exactly which of these registers is used depends on whether the guest OS is
running in legacy, long, or compatibility mode. Additionally, this mechanism
can effectively be turned on and off by setting and unsetting the SCE flag in
the Extended Feature Enable Register (EFER). Making use of either SYSCALL
or SYSRET with the SCE flag not set results in an invalid opcode exception.

Forcing this mechanism to cause a system interrupt is then a matter of unset-
ting the SCE flag and setting the hypervisor to trap all invalid opcode exceptions,
which is natively supported by the virtualization extensions. Once control has
passed to the hypervisor, we must once again differentiate between natural ex-
ceptions and those caused by our introspection. This is achieved by looking at
the violating instruction and if this instruction is not either SYSCALL or SYSRET,
1 In contrast, AMD’s SVM virtualization extensions do provide a mechanism for trap-

ping user interrupts.
2 We refer to exceptions that are not caused by our changes as natural exceptions.

102 J. Pfoh, C. Schneider, and C. Eckert

we inject an invalid opcode exception into the guest OS and return control to
it. However, if the violating instruction is, in fact, SYSCALL, Nitro collects the
desired information, emulates this instruction, and returns control back to the
guest OS.

In addition to emulating the SYSCALL instruction, Nitro must be capable of
handling exceptions caused by the SYSRET instruction and emulating this in-
struction as well. This is due to the fact that the changes made to the EFER
affect the SYSRET instruction in the same manner that they affect the SYSCALL
instruction. Thus, use of the SYSRET instruction will also cause an invalid opcode
exception and must be handled accordingly. In doing so, Nitro is also able to
collect the return value of the invoked system call if the application requires this
information.

SYSENTER-Based System Calls. Similar to SYSCALL and SYSRET, the SYS-
ENTER and SYSEXIT pair of instructions also rely on a set of MSRs, namely SYS-
ENTER CS MSR, SYSENTER ESP MSR, and SYSENTER EIP MSR. The
values in each of these MSRs are copied into specific system registers upon a
call to SYSENTER. Specifically and most interesting for the development of Ni-
tro, the value of the SYSENTER CS MSR is copied into the CS register when
SYSENTER is executed and an attempt to load the CS register with a null value
results in a general protection exception. Hence, causing a system interrupt is a
matter of saving the current value of the SYSENTER CS MSR register in the
hypervisor and loading it with a null value. This will cause each SYSENTER oper-
ation to attempt to load a null value into the CS register, thus causing a system
interrupt that the hypervisor can trap.

Once the hypervisor has trapped a general protection exception, differenti-
ating between natural and forced exceptions is once more a matter of checking
the current instruction at the time of the exception. If we come across a natural
exception, as with the previous system call mechanisms, we inject the exception
into the guest OS and allow it to continue. In the case that we come across
general protection exception and the current instruction is SYSENTER, we collect
the relevant data, emulate the instruction using the saved value of the SYSEN-
TER CS MSR, and return control to the guest OS.

As with the SYSCALL/SYSRET-based system call mechanism, the change that
we make to the guest in order to induce a system interrupt also affects the
SYSEXIT instruction. Consequently, we must also emulate this instruction and
with that, get a chance to easily extract the return value of the system call
invoked.

4.2 Process Identification

It is always important to be able to determine which process produced a system
call. This requires that we collect information which is unique to a process each
time a system call is interrupted. Nitro collects the value of the CR3 register
along with the value of the first valid entry in the corresponding top-level page
directory. This allows us to identify a process due to the fact that the value in

Nitro: Hardware-Based System Call Tracing for Virtual Machines 103

the CR3 register (i. e., the address of the top-level page directory) is unique for
a single process. In order to handle the case in which a newly created process
receives a top-level page directory which is located at the same location of a
previously destroyed process’s top-level page directory, we also consider the first
valid entry in the corresponding top-level page directory in order to create a
truly unique identifier.

4.3 Collection of System Call Data

In our experience, different applications for system call traces depend on varying
amounts of information. In some cases a simple sequence of system call numbers
without arguments may suffice, while other scenarios may require detailed infor-
mation including register values, stack-based arguments, and return values from
a small subset of system calls. As we cannot foresee every guest OS type and
possible application of system call tracing, Nitro does not deliver a fixed set of
data per system call. Instead, it allows the user to define flexible rules to control
the data collection during system call tracing in a fine-grained manner.

For example, the user can specify where exactly the guest OS stores the system
call number (generally in the EAX register). Nitro can then extract this system
call number along with a process identifier as described in Section 4.2. This
information is often enough for certain machine learning techniques used for
detection of malware or malicious behavior in processes [9,6].

In other instances, system call arguments or even dereferenced memory vari-
ables pointed to by arguments are crucial. To meet these requirements, Nitro’s
rules are expressive enough to account for both stack-based as well as register-
based argument passing in addition to printing register values directly or deref-
erencing them. The syntax of such a rule takes the following format:

add scmon rule CONDITION REG CONDITION VAL ACTION REG OFFSET ACTION,

where CONDITION REG contains the name of the register that should be tested to
determine whether information should be collected, CONDITION VAL contains the
value the CONDITION REG should contain in order for further information to be
collected, ACTION REG contains the name of the register that contains the base
value we are interested in, OFFSET contains the offset (positive or negative) from
the ACTION REG for the data we are interested in when collecting dereferenced
values, and ACTION defines whether the ACTION REG should be dereferenced as
well as the format the output should take. This may result in printing or derefer-
encing the data as hexadecimal, integer, unsigned integer, or string. We provide
a description of the rules in Backus-Naur Form in Appendix A. As an example,
it is easy to specify a rule that dereferences and outputs the string being written
every time a user process makes use of the write system call within a Linux
guest. This rule would look as follows:

add scmon rule rax 4 rcx 0 derefstr

104 J. Pfoh, C. Schneider, and C. Eckert

This rules-based method of requesting information makes Nitro very flexible
and contributes to its OS agnostic nature.

Keeping the design goals for Nitro in mind, we collect only information whose
location and format is defined by the hardware specifications or for which a rule
is specified. However, the flexible design of Nitro allows an easy incorporation of
guest OS specific knowledge in order to collect additional information about the
calling process. We have successfully combined Nitro with other projects within
our research group to include information such as process and user IDs into the
output. However, we keep these projects separate in order to keep Nitro as simple
and flexible as possible. This allows Nitro to be applicable in a greater range of
applications. When combined with a memory analysis tool we call InSight, we
are able to produce output as shown in Figure 3. This provides additional guest
OS specific information, such as the type of descriptor being written to, while
allowing Nitro to remain applicable of a wide range of guest OSs.

Jun 20 17:58:20: sys_write : unsigned int fd, const char

__user *buf , size_t count

fd: unsigned int: 0x3 → (socket) → [...]: (SOCK_STREAM)

flags: ()

buf: const char __user *: 0x7FFF702FF320 →
buffer content hex (of size 107):

47 45 54 20 2f 20 48 54 54 50 2f 31 2e 30 da 55 73 65

72 2d 41 67 65 6e 74 3a 20 57 67 65 74 2f 31 2e 31 32

20 28 6c 69 6e 75 78 2d 67 6e 75 29 da 41 63 63 65 70

74 3a 20 2a 2f 2a da 48 6f 73 74 3a 20 67 6f 6f 67 6c

65 2e 64 65 da 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 4b

65 65 70 2d 41 6c 69 76 65 da da

buffer content string:

GET / HTTP /1.0

User -Agent: Wget /1.12 (linux -gnu)

Accept: */*

Host: google.de

Connection : Keep -Alive

count: size_t: 0x6B

Fig. 3. Output of Nitro when combined with a memory analysis tool

5 Discussion and Evaluation

In most VMI-based mechanisms, performance overhead becomes a concern. For
this reason, it is important to keep unnecessary traps to the hypervisor at an
absolute minimum. In all the mechanisms described in Section 4, we make use
of a system interrupt to facilitate the trap to the hypervisor due to the fact that
system calls are not natively trappable.

For our implementation, we looked at the individual system call mechanisms
and determined all system interrupts that each system call mechanism could

Nitro: Hardware-Based System Call Tracing for Virtual Machines 105

be made to produce and how to induce them. We then inspected all feasible
solutions and considered them in terms of their impact on performance. For
example, all three system call mechanisms can be made to produce a page-fault,
however we passed on this for two reasons. First, page faults occur often (relative
to other system interrupts) in regular system activity. This means that each
page fault would result in a costly trap to the hypervisor to distinguish between
forced and “natural” page faults, most of which would be natural. Second, this
would essentially nullify any performance improvement that comes from using
Extended Page Tables or Nested Page Tables.3 In general, we strove for a system
interrupt that occurs infrequently during normal operation and one whose use
would not counteract performance enhancements in other parts of the system.
This is how we came to the implementation and made our system viable for live
collection.

Revisited: Guest OS Portability. Nitro is guest OS portable due to the
fact that all three mechanisms described in Section 4 make sole use of hardware
knowledge. This allows the mechanisms to work for any guest OS that is com-
patible with the x86 or the Intel 64 architecture. The IDTR and IDT as well as
all the involved MSRs and their uses are specified by the hardware architecture
and must be used in the way specified. That is, any guest OS must use these
hardware mechanisms according to the specifications regardless of the guest OS.4

One potential hindrance for guest OS portability is the fact that how infor-
mation is passed between kernel and user space is left to the OS designer. For
example, some OSs are designed such that system call arguments are passed
in registers, while others pass arguments on the stack. Nitro addresses this by
providing the flexible set of rules described in Section 4.3. That is, the user can
control which data is collected by specifying rules at run-time. This allows Nitro
to be used across all guest OSs by simply changing the rule-set.

Revisited: Evasion-Resistance. We make the reasonable assumption that
the hypervisor itself is secure. In addition, any components that reside within
the hypervisor are safe from attacks originating from within a guest OS due to
the hypervisor’s isolation property.

While we have the aforementioned assumption with regard to the hypervisor
itself, this alone is not enough. This is due to the fact that our VMI mechanisms
make changes to the state of the guest VM. These state changes are clearly not
protected by the isolation property as they take place within the guest OS itself.
A malicious entity might simply revert the changes we made to the system state
to circumvent our security mechanisms. For this reason we took special care to
make sure that Nitro is evasion-resistant.

As stated in Section 3, evasion-resistance requires that the VMI mechanism
is rooted in hardware and that each involved piece of VM state is protected
3 These are hardware extensions implemented by Intel and AMD, respectively, to

counter the performance degradation caused by using shadow page tables.
4 Technically, an OS could also implement system calls entirely in software, but would

then lack the privilege level feature of the CPU, leading to an insecure OS kernel.

106 J. Pfoh, C. Schneider, and C. Eckert

against manipulation. Since the VMI mechanisms for the fast system call mech-
anisms and the interrupt-based mechanism differ slightly in this regard, they are
discussed separately in the following.

In order to achieve an evasion-resistant VMI mechanism for fast system calls,
it is rooted in either the SYSENTER CS MSR (SYSENTER-based) or the EFER
(SYSCALL-based) as discussed in Section 3. In addition, the VMI mechanism may
protect each of these registers from manipulation, which is directly supported
by the virtualization extensions provided. This is enough to achieve evasion-
resistance because Nitro’s manipulation of the system call mechanisms are con-
strained to these registers. That is, due to the changes we made to the system,
all fast system calls are trapped to the hypervisor and there is no way for a mali-
cious entity to circumvent this without making changes to exactly those parts of
the system that Nitro protects. Hence, this approach is both rooted in hardware
and protects all involved pieces of VM state, resulting in an evasion-resistant
mechanism.

Making the interrupt-based system call traps evasion-resistant is similar to
the method described for fast system calls with one additional step. The mech-
anism is rooted in the IDTR and this register is protected against malicious
manipulation by the hypervisor. In addition, a shadow copy of the original IDT
is created within the hypervisor at boot time. This already is enough to achieve
evasion-resistance as the changes to the guest OS are limited to this register. In
addition, only the shadow IDT is referred to for each user interrupt. That is, any
changes to the IDT within the guest OS do not affect the ability to trap user
interrupts. In order to hinder this, a malicious entity would have to manipulate
the IDTR directly or the shadow IDT within the hypervisor, both of which are
protected with the help of the virtualization extensions.

6 Performance Testing

In this section, we present our general performance testing results for all guest
OSs tested, which include: Windows XP SP2 (32-bit), Ubuntu Linux 9.04 Server
(32-bit), and Ubuntu Linux 9.04 Server (64-bit). The tests were performed on
an Intel Core 2 Duo processor at 2.4 GHz with 2 GB of RAM. We used a Debian
Lenny (5.0.6 64-bit) host system for all tests. Finally, we used KVM 0.12.4 to
act as the hypervisor.

These tests were performed by running benchmarks on the guest OSs once
with Nitro disabled, then once with Nitro enabled and comparing these results.
While the results themselves are of interest, we focus primarily on the amount
of degradation observed because the degradation is a strong indicator for the
overhead incurred by our system call tracing.

Throughout these tests, we made sure to test each mechanism. That is, we
present tests that measure the performance of our mechanism for SYSENTER-
based, SYSCALL-based, and interrupt-based system calls. It is important to note
that the mechanism implemented at the time of this testing for the interrupt-
based system calls function by redirecting the interrupt to a new gate descriptor

Nitro: Hardware-Based System Call Tracing for Virtual Machines 107

Table 1. Windows XP SP2 (32-bit) performance comparison between KVM/Nitro
(SYSENTER-based) and Xen/Ether

Xen/Ether KVM/Nitro (SYSENTER)

Benchmark
Tracing
disabled

Tracing
enabled

Degra-
dation

Tracing
disabled

Tracing
enabled

Degra-
dation

HTML Render [pg/s] 3.277 0.598 81.74% 2.826 2.034 28.04%
File Decryption [MB/s] 65.561 64.561 1.53% 64.697 64.654 0.07%
HDD [MB/s] 45.198 7.215 84.04% 46.545 9.726 79.10%
Text Edit [pg/s] 89.066 17.246 80.64% 84.743 40.032 52.76%
Image Decompression [MPix/s] 33.856 32.951 2.67% 33.364 33.103 0.78%
File Compression [MB/s] 2.737 2.677 2.19% 2.744 2.741 0.10%
File Encryption [MB/s] 15.821 15.515 1.94% 15.853 15.826 0.17%
Virus Scan [MB/s] 333.988 85.307 74.46% 314.118 155.718 50.43%
Mem. Latency [MemAcc/s] 6.735 3.580 46.84% 6.231 3.782 39.30%
PerformanceTest [score] 586.500 383.020 34.69% 628.700 540.260 14.07%

within the IDT, rather than emulating the int instruction. The following sub-
sections present our results. All scores and times presented are a mean over three
scores or runs.

Windows XP. In testing a Windows XP guest OS we made use of two com-
mercial benchmarking products, namely PCMark05 from Futuremark and Per-
formanceTest from PassMark.5 These tools perform various CPU, memory, disk
drive, and graphics tests. Each make heavy use of system calls as is evidenced
by the output of Nitro. PCMark05 returns a value for each performed test, while
PassMark outputs a single combined score.

The standard deviation of all tests were negligible, except for the ‘HDD’ and
‘Virus Scan’ tests where we observed standard deviations of 6.3 and 61.0, re-
spectively. We hypothesize that this is due to the fact that these are both disk
I/O intensive tests. In any case, we present these results for the sake of com-
pleteness, however, due to their high deviation from the mean, we do not draw
any conclusions from these values.

For these tests we were able to modify the virtual hardware such that the
guest OS determined that the SYSENTER and SYSEXIT instructions were not
available and thus resorted to the interrupt-based mechanism for system calls.
This allowed us to test the performance of both SYSENTER-based (Table 1) and
interrupt-based (Table 2) system call mechanisms.

It is interesting to note that across both sets of tests the degradation varies
greatly from benchmark to benchmark, however the benchmarks with the low-
est degradation (< 10%) all perform some sort of compression, decompression,
encryption, or decryption. Such functions are highly arithmetic and perform

5 Available from http://www.futuremark.com/products/pcmark05/ and
http://www.passmark.com/products/pt.htm, respectively.

http://www.futuremark.com/products/pcmark05/
http://www.passmark.com/products/pt.htm

108 J. Pfoh, C. Schneider, and C. Eckert

Table 2. Windows XP SP2 (32-bit) performance results with interrupt-based system
calls on KVM/Nitro

KVM/Nitro (interrupt)

Benchmark Tracing disabled Tracing enabled Degradation

HTML Render [pg/s] 3.05 2.28 25.12%
File Decryption [MB/s] 65.87 65.57 0.45%
HDD [MB/s] 46.06 9.13 80.17%
Text Edit [pg/s] 83.61 56.44 32.49%
Image Decomp. [MPix/s] 33.75 32.24 4.46%
File Compression [MB/s] 2.81 2.64 6.07%
File Encryption [MB/s] 16.10 15.23 5.42%
Virus Scan [MB/s] 325.34 102.63 68.45%
Mem. Latency [MemAcc/s] 6.23 4.67 25.00%
PerformanceTest [score] 623.16 557.66 10.51%

Table 3. Ubuntu Linux 9.04 Server performance results on KVM/Nitro

Apache Compile Results

Linux Guest OS Tracing disabled Tracing enabled Degradation

32-bit Interrupt-based 168.989s 195.254s 15.54%
32-bit SYSENTER-based 167.916s 212.492s 26.55%
64-bit SYSCALL-based 179.166s 232.640s 29.85%

relatively few system calls since these arithmetic operations do not require OS
support. We believe that this is the reason for the variation in degradation across
the benchmarks. While the PCMark05 tests (the first nine benchmarks in Tables
1 and 2) are great for identifying to which degree an operation is affected by
overhead in the system call mechanism, we feel that the results delivered by Per-
formanceTest give a better overall impression of the performance degradation in
the guest OS as a whole.

Ubuntu Linux. For testing all Linux guest OSs we created a script that makes
use of the ‘time’ command in Linux. Using this utility we measured the compile
time of the Apache web server 2.2.16. The time utility makes use of the hardware
clock and we verified beforehand that the hardware clock within the VM is
consistent with the host system’s hardware clock. We used this as a benchmark
as it is resource intensive enough to show performance degradation and makes
extensive use of system calls as is evidenced by the output of Nitro.

Presented in Table 3 are the test results when performed on a Ubuntu Linux
9.04 Server (32-bit) guest OS. As with our testing for the Windows XP SP2 guest,
we manipulated the virtual hardware in order to be able to report results for
interrupt-based and SYSENTER-based system call mechanisms. Considering these

Nitro: Hardware-Based System Call Tracing for Virtual Machines 109

results, we notice that the interrupt-based guest OS incurs less degradation than
the SYSENTER-based guest. This is due to the fact that the mechanism in place
for trapping the SYSENTER instruction requires emulating that instruction, while
the mechanism in place for trapping the int instruction does not.

The testing process we used for a 64-bit Linux guest OS is identical to the
processes we used for the 32-bit Linux guest with the obvious exception that
we use Ubuntu Linux 9.04 Server (64-bit). One noteworthy difference between
the 32-bit and 64-bit version of this operating system is that the 64-bit version
makes use of the SYSCALL-based system call mechanism, making this the only
test case that makes use of this instruction. These results are also presented
in Table 3. Comparing the degradation of this guest to its 32-bit counterpart
reveals that this OS incurred the most degradation among the Linux guests.

7 Comparison

We chose to compare our system to the Ether system [4] because Ether is the
only other system to our knowledge (aside from HyperSleuth [10], which bases
its system call tracing on Ether’s approach) that supports some forms of system
call tracing using VMI without having to install drivers or modules in the guest
OS. Both in function and performance, Nitro surpasses Ether with regard to
system call tracing and monitoring. In this section we discuss these differences
in further detail.

Functional Differences. The largest functional difference between Ether and
Nitro is the hypervisor that they are built upon. Ether builds upon the Xen
hypervisor, while Nitro builds upon KVM. Nitro and Ether’s system call tracing
mechanism are similar in respect to the output they provide, though Ether’s
output is guest OS specific. That is, the output is Windows specific. Despite
this, we tried Ether on further guest OSs in order to determine whether the
underlying mechanism may be used for other guest OSs.

We tested both systems for functionality on Windows XP SP2 (32-bit), Ubuntu
Linux 9.04 Server (32-bit), and Ubuntu Linux 9.04 Server (64-bit). Nitro proved
functional on all tested platforms, while Ether proved 100% functional only on
Windows XP SP2. While we expected Ether to be functional on Ubuntu Linux
9.04 Server (32-bit) because this OS uses the same system call mechanism as
Windows XP SP2, the guest OS became very unstable and was not usable from
a user’s perspective when system call tracing was enabled. Finally, Ether was
unable to provide any system call information for Ubuntu Linux 9.04 Server (64-
bit) although the guest OS continued to run without issue. We believe that this
is due to the fact that Ether fails to consider the SYSCALL/SYSRET mechanism
for system calls completely. We see this as a major detractor as this limits the
number of guest OSs for which system call tracing or monitoring will work.

Performance Comparison. We performed all presented tests on the same
hardware and host OS as described in Section 6. In addition, we used the same
Windows XP SP2 (32-bit) image for all tests to ensure the consistency of the

110 J. Pfoh, C. Schneider, and C. Eckert

Fig. 4. Performance degradation of Xen/Ether and KVM/Nitro when tracing a Win-
dows XP SP2 guest OS (ref. Table 1)

guest OS. Finally, for Ether we used the recommended Xen 3.1.0 as hypervisor.
It is also important to note that we chose the specific benchmarks out of the
PCMark05 suite due to the fact that these are the same benchmarks that Ether’s
authors used when testing their system originally. We felt it was important to
include the same set of tests in the interest of equity.

Nitro and Ether are based on two different hypervisors, namely KVM and
Xen. As our intentions were not to compare the performance between KVM and
Xen but to compare the efficiency of the different implementations for system
call tracing, we look at the relative performance degradation between the un-
modified version of KVM and Nitro and compare this to the relative performance
degradation between the unmodified version of Xen and Ether. This way we can
measure the performance overhead incurred by each VMI implementation and
do a fair comparison of Nitro and Ether.

As Ether only worked correctly for a Windows XP SP2 guest OS, we were
only able to compare the performance of Ether and Nitro on this guest. These
results are presented in Table 1 and Figure 4. Again, we do not draw any con-
clusions from the ‘HDD’ and ‘Virus Scan’ results due to their high observed
standard deviation (this high standard deviation was observed for Xen/Ether as
well as KVM/Nitro), however the results are present in Table 1 for the curious
reader. Despite this, we see that Nitro outperforms Ether both on the absolute
scores and the amount of degradation in all tests performed. In the benchmarks
that focus on arithmetic operations (i. e., use relatively fewer system calls), for
example compression and encryption tests, Nitro outperforms Ether only nomi-
nally. However in the case of HTML rendering, text editing, and memory latency,
Ether’s degradation is between 5 and 54 percentage points greater than that of
Nitro. As mentioned in Section 6, while the PCMark05 benchmarks nicely reveal
which specific operations incur the greatest degradation, the PerformanceTest
benchmark is a better indicator of the overall degradation of the system. We see

Nitro: Hardware-Based System Call Tracing for Virtual Machines 111

that with this benchmark Ether’s degradation is over 20 percentage points more
than that of Nitro.

We hypothesize that Ether’s greater degradation is primarily due to the fact
that Ether forces a page fault interrupt to perform system call tracing. This adds
additional overhead to a part of the hypervisor which is already responsible
for incurring a large performance overhead. Additionally, this design decision
effectively counteracts any benefits one might have from using Ether with a
hypervisor which makes use of Extended Page Tables.

8 Conclusion

We have shown that Nitro is a powerful and flexible tool for system call tracing
and monitoring. It supports all three system call mechanisms provided by Intel’s
x86 architecture for both 32-bit and 64-bit environments. In fact, we have suc-
cessfully collected system call traces with Nitro for Windows, Linux, 32-bit, and
64-bit guests and we are confident that it will perform equally well for a variety
of additional guest OSs. Further, the proven performance of our implementa-
tion allows the collection and dissemination of data in real-time. Finally, all of
the VMI mechanisms presented have been shown to be evasion-resistant. That
is, these mechanisms cannot be manipulated in a way which allows a malicious
entity to circumvent system call tracing or monitoring. Its flexible and secure
nature allows Nitro to be used effectively in a variety of applications, such as
machine learning approaches to malware detection, honeypot monitoring, as well
as sandboxing environments.

As Nitro builds upon KVM which is licensed under the GPLv2, we release the
source code of our system under the same license. The source code is available
at http://code.google.com/p/nitro-kvm/. We hope that this tool is useful
for the community and will help to further security research.

Acknowledgements. The authors would like to thank Cornelius Diekmann for
his contribution to this work by combining Nitro with other tools to help show
its potential.

References

1. Bahram, S., Jiang, X., Wang, Z., Grace, M., Li, J., Xu, D.: DKSM: Subverting
virtual machine introspection for fun and profit. In: Proc. of 29th IEEE Int. Symp.
on Reliable Distributed Systems (SRDS 2010), New Delhi, India (October 2010)

2. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A tool for analyzing malware. In:
15th European Inst. for Computer Antivirus Research (EICAR 2006) Conf., Ham-
burg, Germany (April 2006)

3. Chen, P.M., Noble, B.D.: When virtual is better than real. In: Proc. of the 8th
Workshop on Hot Topics in Op. Sys., p. 133. IEEE, Washington, DC, USA (2001)

4. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proc. of the 15th ACM Conf. on Computer and
Communications Security, pp. 51–62. ACM, New York (2008)

http://code.google.com/p/nitro-kvm/

112 J. Pfoh, C. Schneider, and C. Eckert

5. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proc. of Network and Distributed Systems Security
Symp., pp. 191–206 (2003)

6. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. Journal of Computer Security 6(3), 151–180 (1998)

7. Holz, T., Freiling, F., Willems, C.: Toward automated dynamic malware analysis
using CWSandbox. IEEE Security & Privacy 5(2), 32–39 (2007)

8. Jones, S.T., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: VMM-based hidden pro-
cess detection and identification using Lycosid. In: Proc. of the 4th Int. conf. on
Virtual Execution Environments, pp. 91–100. ACM, New York (2008)

9. Kosoresow, A.P., Hofmeyr, S.A.: Intrusion detection via system call traces. IEEE
Softw. 14(5), 35–42 (1997)

10. Martignoni, L., Fattori, A., Paleari, R., Cavallaro, L.: Live and trustworthy forensic
analysis of commodity production systems. In: Jha, S., Sommer, R., Kreibich, C.
(eds.) RAID 2010. LNCS, vol. 6307, pp. 297–316. Springer, Heidelberg (2010)

11. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An architecture for secure
active monitoring using virtualization. In: Proc. of 2008 IEEE Symp. on Security
and Privacy, pp. 233–247. IEEE, Washington, DC, USA (2008)

12. Pfoh, J., Schneider, C., Eckert, C.: A formal model for virtual machine introspec-
tion. In: Proc. of the 2nd ACM Workshop on Virtual Machine Security. ACM, New
York (2009)

13. Pfoh, J., Schneider, C., Eckert, C.: Exploiting the x86 architecture to derive virtual
machine state information. In: Proc. of the 4th Int. Conf. on Emerging Security
Information, Systems and Technologies. IEEE, Venice (2010)

14. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. Tech. Rep. 18-2009, Berlin Inst. of Technology (2009)

A Nitro Output Rules Definition

We present the flexibility of our rules by expressing them in Backus-Naur Form.
rule ::= add scmon rule <condition> <location> <action>

condition ::= <register> <value>
location ::= <register> <offset>
register ::= rax | rbx | rcx | rdx | rsp | rbp | rsi | rdi

value ::= [0,4294967295]
offset ::= [-2147483648,2147483647]

action ::= hex | int | uint | derefhex | derefint | derefuint | derefstr

	Nitro: Hardware-Based System Call Tracing for Virtual Machines
	Introduction
	Related Work
	Properties
	Implementation
	VMI Mechanisms for Trapping System Calls
	Process Identification
	Collection of System Call Data

	Discussion and Evaluation
	Performance Testing
	Comparison
	Conclusion
	References

