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Abstract. Since the discovery of identity based cryptography, a num-
ber of identity based signature schemes were reported in the literature.
Although, a lot of identity based signature schemes were proposed, the
only identity based deterministic signature scheme was given by Javier
Herranz. This signature scheme uses Schnorr signature scheme for gen-
erating the private key of the users and uses BLS short signature scheme
for generating users signature. The security of this scheme was proved in
the random oracle model using forking lemma. In this paper, we intro-
duce a new identity based deterministic signature scheme and prove the
security of the scheme in the random oracle model, without the aid of
forking lemma. Hence, our scheme offers tighter security reduction to the
underlying hard problem than the existing identity based deterministic
signature scheme.

Keywords: Identity Based Cryptography, Deterministic, Signature,
Tight Security, Random Oracle Model, Provable Security, Without
Forking-Lemma.

1 Introduction

The concept of using the identity of an entity for deriving the public key is
known as Identity Based Cryptography (IBC). This technique was introduced
by Adi Shamir in his seminal paper [15] in 1984. This paved way for eliminat-
ing the use of certificates for authenticating the public keys of a user (in PKI
based system). In identity based system, a trusted authority called Private Key
Generator (PKG) generates the private key for the users. The PKG possesses
a master public key and master private key and uses the master private key to
generate the private key of the users registered with the system. The private key
of the user is the signature on the identity of the user (as message) generated
by the PKG with the master private key. The user makes use of his/her private
key to generate a signature on a message.
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Thus the complete description of an identity based signature scheme can be
conveniently split as the description of the signature scheme employed by the
PKG to create private keys for the users and description of signature generation
algorithm executed by a user on a message. The signature schemes used in these
two parts may resemble some well known signature schemes or customized sig-
nature scheme or they may be deterministic or probabilistic. For example, the
identity based signature scheme by Cha and Cheon [5] may be viewed as BLS [4]
+ a customized scheme, where the BLS signature scheme is used by the PKG to
generate private keys of users and users themselves use the customized scheme
to produce signed documents. For this scheme, the private key generation is de-
terministic while the signature generation process is probabilistic. As another ex-
ample, the scheme by Galindo et al. [6] uses Schnorr signature for private key
generation (by PKG) and again a Schnorr signature scheme [14] for the signature
generation (by a user). For this scheme, the private key generation as well as sig-
nature generation is probabilistic. The scheme by Javier Herranz [9] uses Schnorr
signature for private key generation (by PKG) and BLS signature scheme for the
signature generation (by a user). Thus in this scheme, the private key genera-
tion is probabilistic and the signature generation is deterministic. Table-1 gives
a summary of properties of existing identity based signature schemes.

Table 1. Properties of ID-Based Signatures
P - Probabilistic Signature, D - Deterministic Signature, Custom - Custom designed

signing algorithm

Scheme Private Signing Type of Pairing
Key Algorithm Scheme Computation

Key Sign Sign Verify

Cha-Cheon [5] BLS Custom D P No Yes

Sakai [13] BLS Custom D P No Yes

Barreto [1] [16] Custom D P No Yes

Galindo [6] Schnorr Schnorr P P No No

Javier [9] Schnorr BLS P D No Yes

Ours BasicSign custom P D No Yes

Tightness of Security Reduction: In the computational model, proof of se-
curity for a signature follows if there does not exist a polynomial time algorithm
with the following ability:

The reduction algorithm makes use of a polynomial time algorithm that forges
a signature, to construct a polynomial time algorithm that solves the compu-
tational hard problem. If there is no polynomial time algorithm for solving the
computational hard problem then the existence of such reduction implies that the
signature scheme is not breakable in polynomial time.
This security argument is asymptotic. In CDH based signature schemes, forg-
ing signatures is infeasible in prime order groups where the size of the security
parameter is above some threshold value. For practice, we should exactly know
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Table 2. Tightness Comparison with the Existing Scheme

T - Tight, NT - Not Tight (uses forking-lemma), P - Probabilistic Signature, D -
Deterministic Signature, † - The eight fold increase is due to loose reduction through

forking lemma, We consider Elliptic Curve CDH is hard in 320 bits.

Scheme Tightness Implication on size of |p| Size of one Type
Key Sign Key Size Sign Size group element

Javier [9] NT NT 8*320=2560† 8*320=2560† 2560 D

Ours T T 320 320 320 D

what should be the constraint on security parameter to impose a sufficient in-
feasible computational bound on the adversary.

Bellare and Rogaway [3] gave the method for exact security analysis that fo-
cuses on the computational efficiency of the reduction algorithm. This allows one
to quantify the relation between the difficulty of forging a signature and hard-
ness of the underlying hard problem. The relative hardness of forging the signa-
ture to that of breaking the computational assumption can be loose, close or tight
as pointed out by Micali and Reyzin [10]. In [7], Goh et al. showed that the ap-
plication of forking lemma [12], for proving security of Fiat-Shamir based signa-
tures makes it inefficient by imposing an increase in the length of the modulus p.
In any discrete-log based system of a prime field Zp, breaking the discrete-log in
the index-calculus method works in O(exp( 3

√|p|)). Thus, a factor α increase in
the security parameter implies a α3 increase in the size of the modulus p. This
is why, the reduction with forking lemma for Schnorr signature scheme implies
that the scheme is secure only with a field modulus 8000 bits, if we consider that
discrete-log problem is hard for 1000 bit modulus. In Table-2, we do not con-
sider the schemes reported in [5,13,1,6] because they are all probabilistic signature
schemes. We consider the scheme in [9] for comparing with our scheme.

Application: Aggregation of several signatures is an important computation
done on several signatures in order to optimize communication, computation
and storage costs. Depending on the size of the aggregated output, we refer a
particular aggregation scheme as Naive, Partial or Full aggregation. By using the
identity based signature scheme by Herranz [9] partial aggregation is possible.
His scheme allows a more compact aggregation where the length of the resulting
aggregate signature will not depend on the number of signed messages, but on the
number of signers. This improvement, is considered to be a major improvement
in [9] because in situations where devices have to store many signatures coming
from a small set of users, the size of the aggregate signature gets compact.
This is because, the key generation is probabilistic and the randomness used
to compute the key can be stored by the verifier and since the signature is
deterministic, there is no randomness to be propagated with the signature and
hence the aggregate signature is more compact than the aggregate signatures
generated by probabilistic identity based signature schemes.

Our Contribution: Our first contribution is a novel probabilistic PKI based
signature scheme (and this is of independent interest) described in section 4.
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PKG uses this to generate the private keys for users. The next section (section
5) contains the details of an identity based deterministic signature scheme, and
again this scheme is different from all the existing ones. Our scheme does not
use pairing in the generation process. Of course, in the verification process, we
employ pairing computations. The significant advantage of our scheme is that
it allows a tight reduction to the GDH problem. For all the schemes that are
available so far, the reduction is not tight. However, we show a tight reduction
of the security of our scheme to the GDH problem. Ours is the first and only
system with this property. Due to this property both the key size and signature
size are substantially smaller than the best previously known schemes. Since
our identity based signature scheme offers tight reduction to the GDH problem,
it can be used to generate more compact aggregate signatures using smaller
security parameter values.

2 Preliminaries

Bilinear Pairing: Let G1 be an additive cyclic group generated by P , with
prime order q, and G2 be a multiplicative cyclic group of the same order q. A
bilinear pairing is a map ê : G1 × G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈ G1,

• ê(P + Q, R) = ê(P, R)ê(Q, R)
• ê(P, Q + R) = ê(P, Q)ê(P, R)
• ê(aP, bQ) = ê(P, Q)ab [Where a, b ∈R Zp]

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) �= IG2 , where
IG2 is the identity element of G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for
all P, Q ∈ G1.

Computational Assumptions: In this section, we review the computational
assumptions related to bilinear maps that are relevant to the protocol we discuss.

Definition 1. Computation Diffie-Hellman Problem (CDHP): Given (P, aP, bP )
∈ G

3
1 for unknown a, b ∈ Zp, the CDH problem in G1 is to compute abP . The

advantage of any probabilistic polynomial time algorithm A in solving the CDH
problem in G1 is defined as:

AdvCDH
A = Pr [A(P, aP, bP ) = abP | a, b ∈ Zp]

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Definition 2. Decisional Diffie-Hellman Problem (DDHP): Given (P, aP, bP, Q)
∈ G

4 for unknown a, b ∈ Zp, the DDH problem in G is to check whether Q
?= abP .

The advantage of any probabilistic polynomial time algorithm A in solving the
DDH problem in G1 is defined as:

AdvCDH
A = |Pr [A(P, aP, bP, Q) = 1] − Pr [A(P, aP, bP, abP ) = 1] | a, b ∈ Zp|
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The DDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvDDH

A is negligibly small. Here G is a multiplicative group

Definition 3. Gap Diffie-Hellman Problem (GDHP) [11][5]: We call G a GDH
group if DDHP can be solved in polynomial time but no probabilistic algorithm
can solve CDHP with non-negligible advantage within polynomial time.

3 Identity Based Signature Scheme

In this section, we describe the generic frame work for an identity based signature
scheme. The frame work of an identity based deterministic signature scheme
consists of the algorithms described below, namely Setup, Extract, Sign and
Verify. An identity based signature scheme is deterministic if the signature on
a message by the same user is always the same.

3.1 Definition

– Setup: The private key generator (PKG) provides the security parameter κ
as the input to this algorithm, generates the system parameters params and
the master private key msk. PKG publishes params and keeps msk secret.

– Extract: The user provides his identity ID to the PKG. The PKG runs this
algorithm with identity ID, params and msk as the input and obtains the
private key D. The private key D is sent to user through a secure channel.

– Sign: For generating a signature on a message m, the user provides his
identity ID, his private key D, params and the message m as input. This
algorithm generates a valid signature σ on message m by the user.

– Verify: This algorithm on input a signature σ on message m by the user
with identity ID, params, checks whether σ is a valid signature on message
m by ID. If true it outputs “V alid”, else it outputs “Invalid”.

3.2 Security Model for Existential Unforgeability

An IBDS scheme is secure against existential forgery under adaptive chosen
identity and message attack, if no probabilistic polynomial time algorithm F
has non-negligible advantage in the following game.

– Setup phase: The challenger C runs the setup algorithm and generates the
system public parameters params and the master secret key msk. Now, C
gives params to the forger F and keeps msk secret.

– Training phase: After the setup is done, F starts interacting with C by
querying the various oracles provided by C in the following way:

• KeyGen oracle: When F makes a query with an identity ID as input,
C outputs D, the private key of ID to F , provided C knows the private
key for the queried identity.

• Signing oracle: When F makes a signing query with identity ID and
message m, C outputs a valid signature σ on m by ID.
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– Forgery phase: F identifies an identity, message pair (IDT , m∗), where

• F has not queried the KeyGen query on IDT and
• F has not asked the signature for the pair (IDT , m∗).

F outputs a signature σ, with IDT as signer, and on message m∗. F wins
the game if σ is a valid signature.

AdvIBDS
F = {Pr[F(V erify(σ) = valid)}

3.3 Existing Identity Based Signatures

Here, we review the most important identity based signature schemes.

Table 3. Brief Survey of existing schemes

MSK - Master Private Key, MPK - Master Public Key, Ĥ, H̄ - Cryptographic hash
functions

Scheme Master key Private Key Signature

Cha-Cheon [5] MSK = s DA = sQA ∈ G1 r ∈R Z
∗
q

MPK = sP QA = Ĥ(IDA) ∈ G1 U = rQA ∈ G1, h = H̄(m, U) ∈ Z
∗
q

V = (r + h)DA ∈ G1, σ = 〈U, V 〉
Sakai [13] MSK = s DA = sQA ∈ G1 r ∈R Z

∗
q

MPK = sP QA = Ĥ(IDA) ∈ G1 U = rP ∈ G1, H = H̄(m, U) ∈ G1

V = rH + DA ∈ G1, σ = 〈U,V 〉
Barreto [1] MSK = s DA = 1

s+qA
P ∈ G1 r ∈R Z

∗
q

MPK = sP qA = Ĥ(IDA) U = rP ∈ G1, h = H̄(m, U) ∈ Z
∗
q

V = (r + h)DA ∈ G1, σ = 〈U, V 〉
Galindo [6] MSK = s xA ∈R Z

∗
q , XA = xAP r ∈R Z

∗
q

MPK = sP dA = xA + sqA ∈ Z
∗
q XA, U = rP, h = H̄(m,U) ∈ Z

∗
q

qA = Ĥ(IDA, XA) V = rh̄ + dA ∈ G1, σ = 〈XA, U, V 〉
Javier [9] MSK = s xA ∈R Z

∗
q , XA = xAP XA

MPK = sP dA = xA + sqA ∈ Z
∗
q U = dAH̄(m) ∈ G1

qA = Ĥ(IDA, XA) σ = 〈XA, U〉

4 Basic Signature Scheme (BasicSign)

We now construct a fully secure public key signature scheme in the random oracle
model under the GDH assumption and without using forking lemma. This is a
PKI based signature scheme and this will be used by the PKG to generate the
private key for the users of our identity based system.

Scheme: Let G1, G2 be cyclic prime order groups of order p, where G1 is an
additive group and G2 be a multiplicative group. Let P ∈R G1 be the generator
of G1, ê : G1×G1 → G2 be a bilinear map and H1(.), H2(.) be two cryptographic
hash functions defined by,

H1: {0, 1}lm → G1 and H2: {0, 1}lm × G1 → Zp
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– User KeyGen: Let UA be a user with public key PKA = 〈P1, P2〉 =
〈s1P, s2P 〉, where s1, s2 are random elements from Zp. Here, the private
key of user UA is SKA = 〈s1, s2〉.

– Sign: To generate the signature on message m, the user UA executes this
algorithm:

• Pick r randomly from Zp.
• Compute Ym = rP2

• Compute Xm = rH1(m, Ym).
• Find qm = H2(m, Xm).
• Compute dm = qms1 + rs2 mod p.
• Output the signature σ = 〈Xm, dm〉

Important Note: The value Ym is not sent along with the signature because
it can be computed from the second component of σ as follows and the hash
value qm is computable by any one on knowing m and Xm:

Ym= dmP − qmP1 = qmP1 + rP2 − qmP1 = rP2

The tuple 〈P2, H1(m, Ym), Ym, Xm〉 = 〈P2, H1(m, Ym), rP2, rH1(m, Ym)〉
is a DH tuple. We verify if 〈P2, H1(m, Ym), Ym, Xm〉 is a DH tuple by test-
ing ê(Xm, P2)

?= ê(H1(m, Ym), Ym). This suggests the following verification
algorithm.

– Verify

• On receiving σ = 〈Xm, dm〉, compute qm = H2(m, Xm) and Ym = dmP−
qmP1.

• Check if ê(Xm, P2)
?= ê(H1(m, Ym), Ym).

If the above check holds accept the signature as “V alid” else return “Invalid”.

4.1 Security

We prove the security of the signature scheme against existential forgery under
adaptive chosen-message attacks in the random oracle model. The following the-
orem shows that the BasicSign scheme is secure and the security of the scheme
follows from the GDH assumption in (G1, G2).

Theorem 1. Suppose (G1, G2) be a (τ, t′, ε
′
)-GDH group pair of order p. Then

the BasicSign signature scheme on (G1, G2) is (t, qSign, qH1 , qH2 , ε)-secure against
existential forgery under adaptive chosen-message attack in the random oracle
model, for all t and ε, that satisfies

ε ≤ ε
′
and t ≥ t′ − (qH1 + qH2 + qSign + O(1))

Proof: Let us assume, F is a forger algorithm that (t, qSign, qH1 , qH2 , ε)-breaks
the BasicSign signature scheme on (G1, G2). We show how to construct a t′-time
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algorithm C that solves GDH on (G1, G2) with probability at least ε
′
. Showing

this will contradict the fact that (G1, G2) is a (t′, ε
′
)-GDH group pair.

Let P be the generator of G1. Algorithm C is provided with the challenge instance
(P, aP, bP ) ∈ G1. The goal of C is to output abP ∈ G1. Algorithm C simulates
the challenger and interacts with F in the following way:

– Setup: Challenger C starts by giving F the common reference string (P , G1,
G2) and the public key (P1 = aP, P2 = s2P ), where s2 is chosen at random
from Zp. The private key corresponding to the public keys (P1 = aP, P2 =
s2P ) are (a, s2). Note that, C does not know one of the private keys namely
a.

– Training Phase: During this phase F has access to the following oracles:

• H1 Queries: Forger F is allowed to query the H1 oracle at any time. To
handle these queries C maintains a list which is defines as 〈m, Ym, h, Hm〉
and we refer this list as L1 − list. Initially, this list is empty and will
be updated as explained below. When F queries the oracle H1 with
(m ∈ {0, 1}lm , Ym ∈ G1) as input, C responds as follows:

∗ If (m, Y ) already exists as a tuple of the form 〈m, Ym, h, Hm〉 in
L1 − List, then C responds with H1(m, Ym) = Hm ∈ G1.

∗ Otherwise, C picks a random h ∈ Zp and sets Hm = hbP .
∗ C stores the tuple 〈m, Ym, h, Hm〉 in L1 − List and responds with

H1(m, Ym) = Hm ∈ G1.

• H2 Queries: F can query this oracle at any time and C maintains a list
of tuples 〈m, Xm, qm〉. This list is called L2 − list. When F issues a
query for (m, Xm) to the H2 oracle, F responds in the following way:

∗ If (m, Xm) already appears in L2−list as a tuple 〈m, Xm, qm〉, then
C responds with H2(m, Xm) = qm ∈ Zp.

∗ Otherwise, C randomly picks a qm ∈ Zp, stores the tuple 〈m, Xm, qm〉
in L1 − list and responds with H2(m, Xm) = qm ∈ Zp.

• Signature Queries: When a signature query is issued by F for message
m, C responds as follows:

∗ C randomly picks dm, qm, h ∈ Zp.
∗ Then, C sets Hm = hP , Ym = dmP − qmP1 ∈ G1 and Xm =(

h

s2

)
Ym ∈ G1.

∗ If a tuple of the form 〈m, Xm, qm〉 appears in the list L1 − list or a
tuple 〈m, Ym, h, Hm〉 appears in the list L2 − list, then repeat the
process by picking new set of random values dm, qm, h ∈ Zp.

∗ C stores the tuple 〈m, Xm, qm〉 in L1 − list and 〈m, Ym, h, Hm〉 in
L2 − list.

∗ C gives the signature σ = 〈Xm, dm〉 to F .

Correctness: The simulated signature is valid and passes the verification
test ê(Xm, Y ) ?= ê(H1(m, Ym), Ym). The correctness is shown below:
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LHS = ê(Xm, Y ) = ê(( h
s2

)Ym, Y ) = ê(( h
s2

)Ym, s2P )
= ê(hYm, P ) = ê(Ym, hP ) = ê(Ym, H1(m, Ym)) = RHS

– Forgery: On getting sufficient training, algorithm F produces a message-
signature pair (m∗, σ∗ =〈X∗

m, d∗m〉) such that σ∗ is not the output generated
by sign oracle for message m∗ and σ∗ is valid. Now, C may compute the
solution to the hard problem as given below.

• C computes q∗m = H2(m∗, X∗
m) and δ =

1
q∗m

(
d∗m(bP ) − s2

h∗X∗
m

)
.

• According to the signature definition X∗ = r∗H∗
m = r∗h∗bP , Y ∗

m =
r∗P2 and d∗m = q∗ma + r∗s2, by the definition of H2.

• Therefore, δ =
1

q∗m

(
(q∗ma + r∗s2)bP − s2

h∗ r∗h∗bP
)

= abP .

This completes the description of algorithm C. Now, we have to show that C
solves the GDH problem on (G1, G2) with probability at least ε

′
. Note that,

in this simulation there is almost no aborting scenario for training phase and
forgery phase. Hence C solving the GDH problem happens almost with the same
advantage of F .

The hard problem is solved after qH1 queries to the H1 oracle, qH2 queries to
the H2 oracle and qSign sign oracle queries and getting the forged signature. The
challenger has to spend O(1) computation to extract the solution to GDH prob-
lem from the forgery generated by the adversary. Therefore the total time t taken
for solving the hard problem is given by t ≤ t′ + (qH1 + qH2 + qSign + O(1)). �

5 Identity Based Deterministic Signature Scheme
(Det-IBS)

Inspired by the impact of tightness of security reduction for a signature scheme,
we present the first identity based deterministic signature scheme with tight secu-
rity reduction to GDH problem. The only identity based deterministic signature
by Herranz [9], employs Schnorr signature scheme for generating the private key
of the user and uses BLS short signature scheme for producing signature on the
message by the user. This system was shown to be secure under GDH problem
on (G1, G2). The reduction given for the scheme in [9] use forking lemma and
hence considered to be loose. We present a signature that works on GDH group
pair (G1, G2). We prove the security of the scheme in the random oracle model
and show how it leads to a tight reduction. The scheme uses BasicSign signa-
ture scheme for generating the private key of users and BLS short signature for
generating the signature on message.

Scheme: Let (G1, G2) be a (t, ε)-GDH group pair with same prime order p and
ê be a bilinear map defined by G1 ×G1 → G2. The signature scheme comprises
of setup, extract, sign and verify algorithms. The scheme makes use of three
cryptographic hash functions H1 : {0, 1}l1 × G1 → G1, H2 : {0, 1}l1 × G1 →
Zp and H3 : {0, 1}lm+1 × {0, 1}l1 → G1, where l1 is the size of the identity
string and lm is the size of the message.
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– Det-IBS.Setup: PKG picks at random s1, s2 ∈ Zp, and P ∈ G1, sets
P1 = s1P ∈ G1, and P2 = s2P ∈ G1. The master public key is (P1, P2).
The master private key is (s1, s2).

– Det-IBS.Extract: Given the master private (s1, s2), and the user identity
IDA ∈ {0, 1}l1, perform the following:

• Pick rA ∈R Zp.
• Compute YA = rAP2 ∈ G1.
• Find HA = H1(IDA, YA) and set XA = rAHA ∈ G1.
• Compute dA = s1qA + s2rA mod p, where qA = H2(IDA, XA).
• The private key is DA = 〈dA, XA, YA〉.

Note: However, in our identity based deterministic signature scheme, we
provide YA explicitly along with the private key How ever YA is computable
by the user with identity IDA on knowing dA and XA.

– Det-IBS.Sign: Given a message m, user identity IDA ∈ {0, 1}l1 and the
user private key DA = 〈dA ∈ Zp, XA ∈ G1, YA ∈ G1〉, choose λ ∈R

{0, 1}, compute Hm = H3(m‖λ, IDA) and V = dAHm. The signature is
σ = 〈V, λ , XA , YA〉 ∈ G

3
1 × {0, 1}.

Note: λ can be generated using a pseudo-random function with the identity
IDA, message m and the private key of the user as input. This helps to
preserve the determinism because each time a message is signed by a user,
the bit λ is going to be the same. (Goh et al. [8]).

– Det-IBS.Verify:Given an identity IDA ∈ {0, 1}l1, a messagem ∈ {0, 1}lm ,
and a signature σ = 〈V ∈ G1, λ ∈ {0, 1}, XA ∈ G1, YA ∈ G1〉, compute
qA = H2(IDA, XA), HA = H1(IDA, YA), and Hm = H3(m‖λ, IDA) and
check,

ê(V, P ) ?= ê(Hm, qAP1 + YA) —–(1)
ê(XA, P2) = ê(HA, YA) —–(2)

If both the check passes, output “V alid”; if not, output “Invalid”

Theorem 2. The signature scheme Det-IBS is consistent

Proof: We need to show that, for all private key tuples , and for all messages,
any signature generated by the signing algorithm verifies as a valid signature
under the respective user identity. Indeed, we have for equation (1)

LHS = ê(V, P ) = ê(dAHm, P ) = ê((qAs1 + rAs2 )Hm, P )
= ê(Hm, (qAs1 + rAs2 )P ) = ê(Hm, qAP1 + rAP2)
= ê(Hm, qAP1 + YA) = RHS

and also, for equation (2)

LHS = ê(XA, P2) = ê(rAHA, P2) = ê(HA, rAP2) = ê(HA, YA) = RHS.
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5.1 Security

We prove the security of the identity based deterministic signature scheme
against existential forgery under adaptive chosen-message attacks in the ran-
dom oracle model. The following theorem shows that the Det-IBS scheme is
secure and the security of the scheme follows from GDH assumption on the
groups (G1, G2).

Theorem 3. Let (G1, G2) be a (τ1, t1, ε1) GDH group pair of order p then the iden-
tity based deterministic signature scheme on (G1, G2) is (t2, qs, qH1 , qH2 , qH3 , ε2)
- secure against existential forgery under an adaptive chosen message attack in
random oracle model, for all t2 and ε2 satisfying:

ε2 ≥ 2qH1ε1 and t2 ≤ t1 − (qH1 + qH2 + qH3 + 2qs + O(1))

Here, qH is the total number of identities generated.

Proof: Consider F to be a forger that is assumed to (t2, qs, qH1 , qH2 , qH3 , ε2)
- break the signature scheme. We show how to construct an algorithm C that
solves GDHP on (G1, G2) with probability at least ε1. This will contradict the
fact that (G1, G2) is a GDH group pair.
For doing this, let us assume P be the generator of G1 and (P, aP, bP ) ∈ G

3
1

be the GDH problem instance given to C. The goal of C is to find abP ∈ G1. C
simulates the challenger and interacts with F as defined in the EUF-CMA game.
The game is viewed as given below:

– Setup: C starts interaction with F by providing P ∈ G1, P1 = aP ∈ G1 and
P2 = s2P , where s2 ∈R Zp. Here, the master private key a is not known to C.
C also chooses 1 ≤ T ≤ qH randomly and sets the T th unique identity queried
to the H1 hash oracle as the target identity. Without loss of generality, we
assume IDT to be the target identity (not known to F and C at the start of
the game.)

– Training Phase: C interacts with F in the following manner:
H1 Oracle: F queries to this oracle with inputs 〈IDi, Yj〉. C maintains the
list LH1 , consisting of tuples of the form 〈IDi, Yj , Hj , x̂j〉 and responds to
F ’s queries in the following way:

• If the tuple 〈IDi, Yj , Hj , x̂j〉 is already available in the LH1 list, retrieve
and return Hj .

• If i �= T , choose x̂j ∈R Zp and set Hj = x̂jP ∈ G1. Store the tuple
〈IDi, Yj , Hj , x̂j〉 to LH1 and return Hj .

• If i = T , choose x̂j ∈R Zp and set Hj = x̂j(bP ). Store the tuple
〈IDi, Yj , Hj , x̂j〉 to LH1 and return Hj to F .

H2 Oracle: To respond to the queries by F , C maintains the list LH2 , con-
sisting of tuples of the form 〈IDi ∈ {0, 1}l1, Xj ∈ G1, qj ∈ Zp〉. The list is
initially empty. When F queries with (IDi, Xj), C responds as follows:
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• If the tuple 〈IDi, Xj, qj〉 already exists in LH2 list, retrieve and return
qj corresponding to (IDi, Xj) to F .

• Else, pick qj ∈R Zp store (IDi, Xj , qj) in LH2 list and return qj to F .

H3 Oracle: The input to this oracle are mj‖λ, IDi, where λ ∈ {0, 1}. To
respond to the queries by F , C maintains the list LH3 , consisting of tuples
of the form 〈mj , λ, IDi, Hj,λ, yj,λ, 	〉. Here 	 is either ‘⊥’ or ‘�’, where ‘⊥’
represents Hj,λ = yj,λP and ‘�’ represents Hj,λ = yj,λbP . C respond to F
in the following way:

• If the tuple 〈mj , λ, IDi, Hj,λ, yj,λ, 	〉 is already there in the list LH3 ,
retrieve and respond with the corresponding Hj,λ.

• Else,

∗ Pick yj,0, yj,1 ∈R Zp.
∗ Flip a coin c ∈ {0, 1}.
∗ Set Hj,c = yj,cbP and store the tuple 〈mj , c, IDi, Hj,c, yj,c,�〉 in list

LH3 .
∗ Set Hj,c = yj,cP and store the tuple 〈mj , c, IDi, Hj,c, yj,c,⊥〉 in list

LH3 .
∗ If c = λ, return Hj,c else, return Hj,c.

Note that Hj,λ is uniform in G1 and is independent of F ’s current view as
required.

Extract Oracle: To respond to this query, C maintains the LE list, consisting
of tuples of the form 〈IDi, di, Xi, Yi〉. When F makes a query with IDi as
input, C checks whether i = T , if so aborts. Otherwise, C performs the
following:

• If the tuple corresponding to IDi is available in list LE , then retrieve
and return (di, Xi, Yi) as the private key corresponding to IDi to F .

• Otherwise, C performs the following:

∗ Pick di, yi ∈R Zp.
∗ Set Xi = dix̂i

s2
P − qix̂i

s2
P1 = (di − aqi) 1

s2
Hi; where Hi = x̂iP .

∗ Compute Yi = diP − qiP1 = (di − aqi)P .
∗ Store the tuple 〈IDi, Xi, qi〉 in LH2 list, the tuple 〈IDi, Yi, Hi, x̂i〉 in

LH1 list and the tuple 〈IDi, di, Xi, Yi〉 to LE list.
∗ Output (di, Xi, Yi) as the private key.

Without loss of generality, we assume that any identity is queried only once
to this oracle.

Signature Oracle: Let (mj , IDi) be the message identity pair for which F
request the signature. C performs the following:

• If there are no entries corresponding to mj‖0, IDi and mj‖1, IDi in the
list LH3 , then query the H3 oracle with input mj‖0, IDi.

• Retrieve the entries corresponding to mj‖0, IDi and mj‖1, IDi in list
LH3 . Let the two tuples retrieved be 〈mj , λ, IDi, Hj,λ, yj,λ,⊥〉 and 〈mj , λ,
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IDi, Hj,λ, yj,λ,�〉 (Note that according to the definition of the H3 or-
acle, one of the entries will have ⊥ and the other one will have � as
the last entry in the tuple.). Pick the entry corresponding to ⊥, here
〈mj , λ, IDi, Hj,λ, yj,λ,⊥〉 is the required tuple.

• If i �= T , then perform the following:

∗ Set Hj = Hj,λ

∗ Set V = diHj . (Note that C knows the private key di corresponding
to IDi)

• If i = T , then perform the following:

∗ Set yj = yj,λ

∗ Set V = yj(qT P1 + xT P2). (Notice that V = yj(qT P1 + xT P2) =
(qT s1 + xT s2)yjP = dT yjP = dT Hj .)

• Return σ = 〈V, Xi, Yi, λ〉 as the signature on the message mj .

– Forgery: Eventually, after getting enough training, F produces a forgery
m∗, IDS , σ∗ = (V, XS , YS , λ). C aborts if any of the following is true:

• S �= T (i.e., IDS is not the target identity set by the challenger).
• The last field of the tuple corresponding to m∗‖λ, IDS in list LH3 is ⊥

(i.e., 〈m∗, λ, IDS , Hj,λ, yj,λ,⊥〉 ∈ LH3).
• σ∗ corresponding to m∗ is invalid. (Since it is a deterministic signature,

m∗ should not be queried to the sign oracle with IDS as the signer.)

Otherwise, C does the following:

• Find qS = H2(IDT , XS), HS = H1(IDT , YS).
• Retrieve x̂S corresponding to 〈IDT , YS , HS , x̂S〉 in the list LH1 .
• Compute Δ = [q−1

S y−1
S (V − s2ySx̂−1

S XS)] = abP .

Note that C can solve the GDH problem instance irrespective of XS and YS ,
that is XS = XT or XS �= XT and YS = YT or YS �= YT

Lemma 1. Let 〈m∗, λ, IDS , Hj,λ, yj,λ,�〉 be the tuple in the list LH3 corre-
sponding to m∗‖λ, IDS and yS = yj,λ. If (IDT , σ∗) is a valid forgery on m∗ then
q−1
S y−1

S (V −s2yS x̂−1
S XS) = abP with P1 = aP , P2 = s2P , H1(IDT , YS) = x̂SbP

and Hm∗ = H3(m∗, IDT ) = ySbP .

Proof: The proof is straight forward and is given below:

LHS= q−1
S y−1

S (V − s2yS x̂−1
S XS)

= q−1
S y−1

S (dSHm∗ − s2yS x̂−1
S XS)

= q−1
S y−1

S ((xSs2 + aqS)Hm∗ − s2yS x̂−1
S xS x̂SbP )

= q−1
S y−1

S (xSs2ySbP + aqSySbP − s2ySxSbP )
= q−1

S y−1
S (qSySabP ) = abP = RHS

�
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This completes the description of the game between C and F . Now, we show how
C solves the GDH instance (P, aP, bP ) with probability at least ε1. For showing
this we have to analyze the probability related to the following events:

– E1 : C does not abort as a result of Extract query
– E2 : F generates a valid message - signature forgery (m∗, σ∗) for IDS = IDT .
– E3 : This event occurs for m∗‖λ, IDS such that the last field of the tuple cor-

responding to m∗‖λ, IDS in list LH3 is � (i.e., 〈m∗, λ, IDS , Hj,λ, yj,λ,�〉 ∈
LH3).

Let qH1 and qE denote the number or queries made to the H1 and Extract
oracles. The probability of the above events to occur is discussed below:

– Probability of C aborting during an extract query is 1
qH1

. There are totally
qE extract queries. Thus the probability that C does not abort in any of the
extract queries is 1 − qE

qH1
(i.e., Pr[E1] =

(
1 − qE

qH1

)
)

– There are totally qH1 − qE identities are the eligible entities for being a
valid IDS and thus IDS = IDT happens with probability 1

qH1−qE
(i.e.,

Pr[E2] = 1
qH1−qE

)

– Assuming E2 has happened, the probability that the message m∗‖λ be-
ing a fruitful instance (i.e., 〈m∗, λ, IDS , Hj,λ, yj,λ,�〉 ∈ LH3) is 1

2(qH1−qE)

(i.e.,Pr[E3|E2] = 1
2(qH1−qE) ). Note that every message corresponding to IDS

carries the hard problem instance bP with probability 1
2 .

Now, the probability of C solving the GDH is ε1 ≤ ε2

(
1

2(qH1−qE)

)(
1 − qE

qH1

)
=

ε2

(
1

2qH1

)
.

Important Remark: The generic method given by Bellare et al. [2] to construct
an identity based signature scheme is to use certificate for the public key PK
and the identity ID of the user, and then use the certificate and the private
key SK corresponding to the public key PK for signing the message. Using this
approach, to construct a deterministic identity based signature we require two
invocations of BLS signature [4]. The first application of BLS signature is by
the PKG to sign ID and PK, and the second BLS signature is by the user to
sign the message m using SK. Let the scheme described above be denoted as Γ .
While proving the security of the scheme Γ , the advantage of C in solving the
GDH problem is given as ε2 ≤ ε1

1
q2

H1
, where ε1 is the advantage of the forger

in breaking the signature scheme Γ . This bound can be further improved with
the help of Goh et al.’s [8] technique which leads to a boost in the advantage,
which is ε2 ≤ ε1

1
2qH1

. Thus the security bounds for the scheme Γ and for our
new scheme are equivalent, our scheme achieves this bound without certificates.
Also, the size of the signature generated are the same. The signature size of both
the schemes will be G

3 + |ID|.



Identity-Based Deterministic Signature Scheme without Forking-Lemma 93

6 Application to Efficient Signature Aggregation

The aggregate signatures generated using our identity based deterministic signa-
ture scheme produces an aggregate signature similar to the aggregate signatures
described in [9]. The size of the aggregate signature depends on the number
of distinct signers and not the number of messages signed. The scheme in [9]
uses multiple forking-lemma and hence the size of the security parameter should
be increased to achieve sufficient security. Since our scheme does not require
forking-lemma in the reduction, the security parameter need not be blown-up as
in [9] and as a result we have signature schemes with small size. The details of
our aggregate signature scheme follows:
The Setup, Extract, Sign algorithm are the same as Det-IBS.Setup, Det-IBS. Ex-
tract and Det-IBS.Sign algorithms. The algorithms aggregate sign and aggregate
verify are explained below:

– Det-IBS.AggSign: Given n signatures σ1 = 〈V1, X1, Y1〉, . . . , σn = 〈Vn, Xn,
Yn〉 on n messages m1, . . . , mn by users with identities ID1, . . . , IDt, where
t < n and a list L which provides the details about which message is signed
by whom, the aggregate signature σAgg is computed as follows:

• Computes VAgg =
n∑

i=1

Vi and sets σAgg = 〈VAgg , X1, . . . , Xt, Y1, . . . , Yt〉
– Det-IBS.AggVerify: Given an aggregate signature σAgg on n messages

m1, . . . , mn by users with identities ID1, . . . , IDt, where t < n and a list L,
σAgg is verified as follows:
Perform the following checks:

ê(VAgg, P ) ?=
n∏

i=1

(ê(H3(mi, IDi), qiP1 + Yi)) —–(3)

ê(
t∑

j=1

Xj , P2) =
t∏

j=1

ê(H1(IDj , Yj), Yj) —–(4)

If the checks in (3) and (4) pass, output “V alid”; if not, output “Invalid”

Note that in the first verification, if a signer has signed more than one message
(This will be documented in the list L), the corresponding Yi and identity IDi

will be reused along with the corresponding message mi. The second verification
needs to be done only for t values as the number of distinct signers is only t.
If a single signer, say UA with identity IDA signs more than one message, our
aggregate signature scheme can be used to generate very efficient aggregate sig-
natures with only three group elements namely, VAgg , XA and YA. This optimizes
the storage and communication complexity of signatures generated and commu-
nicated by a single user. This cannot be achieved by any of the probabilistic
identity based aggregate signature schemes.

We argue the proof of security of the aggregate signature scheme informally.
Consider the forger sends an aggregate signature (with one of the signatures that
is aggregated as a signature by the target identity and the sign oracle was not
queried by the adversary with the corresponding message with the target identity



94 S.S.D. Selvi, S.S. Vivek, and C.P. Rangan

as the signer), as the forgery in the EUF-CMA (Existential Unforgeability) game.
The challenger can remove all other signatures except the one corresponding
to the target identity from the aggregate signature by generating them using
the values the challenger has obtained from the random oracle lists. Now, the
resulting signature is a valid individual signature by the target identity on the
target message and that will be a forgery to the basic identity based signature
scheme. This is a contradiction since the basic identity based signature scheme
is EUF-CMA secure the aggregate signature is also secure.

7 Conclusion

In this paper, we have designed an identity based deterministic signature scheme
that has tight reduction to GDH problem. Our scheme is completely different
from all the existing schemes. The PKG uses a novel PKI based signature scheme
to generate the private keys for users and the PKI based signature scheme itself
is of independent interest. We have also proposed a novel scheme for the users
to generate signed documents. Both the schemes allow tight reductions and
this results in substantially smaller keys and signatures than the ones of the
only other identity based deterministic signature scheme by Javier Herranz [9].
Improving the tightness by avoiding the abort scenario during the extract phase
in the deterministic identity based signature scheme is considered to be an open
challenge and an interesting direction to proceed.
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