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Abstract. In 2007, Stange proposed a novel method for computing the
Tate pairing on an elliptic curve over a finite field. This method is based
on elliptic nets, which are maps from Z

n to a ring and satisfy a certain
recurrence relation. In the present paper, we explicitly give formulae
based on elliptic nets for computing the following variants of the Tate
pairing: the Ate, Atei, R-Ate, and optimal pairings. We also discuss their
efficiency by using some experimental results.
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1 Introduction

Recently, pairing-based cryptography have been one of the most attractive re-
search topics in public-key cryptography since the proposals of some useful
cryptographic schemes, such as the identity-based key agreement, the tripartite
Diffie–Hellman key exchange, and the identity-based encryption schemes [3], [9],
[15]. With respect to the efficient implementation of pairing-based cryptographic
schemes, the computation of pairings, such as the Weil and Tate pairings, is the
bottleneck. Currently, the most suitable pairing for the efficient implementation
of pairing-based cryptographic schemes is the Tate pairing. Therefore, many al-
gorithms for the efficient computation of the Tate pairing and some of its variants
have been proposed, including the ηT [1], Duursma–Lee [6], Ate [8], Atei [20],
R-Ate [10], and optimal [21] pairings.

A standard algorithm for computing pairings is Miller’s algorithm [11], [12].
A generic implementation of Miller’s algorithm uses a classical double-and-add
line-and-tangent method. Therefore, the time required using Miller’s algorithm is
linear with respect to the size of some input parameter r, as well as depending on
the Hamming weight of r. Most improvements of pairing computation attempt
to shorten the number of iterations of a loop in the algorithm, the so-called
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Miller loop. In fact, the Ate, Atei, R-Ate, and optimal pairings are truncated
loop variants of the Tate pairing.

In 2007, Stange [18] defined elliptic nets and proposed an alternative method
for the Tate pairing computation based on elliptic nets. Elliptic nets are a gener-
alization of elliptic divisibility sequences, which are certain non-linear recurrence
sequences related to elliptic functions. In 1948, Ward [22] first studied the arith-
metic properties of elliptic divisibility sequences. As in the case of Miller’s algo-
rithm, a generic implementation of elliptic net algorithms proposed by Stange
uses the double-and-add method, and so, as in the case of Miller’s algorithm,
the time required using the algorithm is linear with respect to the size of r.
Both Miller’s and elliptic net algorithms include two internal steps, referred to
as Double and DoubleAdd [18]. In Miller’s algorithm, the cost of DoubleAdd is
about twice that of Double. In contrast, in the elliptic net algorithm, these two
steps require almost the same amount of time. In particular, the running time
is independent of the Hamming weight of r.

Because the efficiency of the algorithm is comparable to that of Miller’s algo-
rithm, by using further improvements and optimizations, we expect the elliptic
net algorithm to be an efficient alternative to Miller’s algorithm. Therefore, from
both theoretical and practical points of view, it is important to investigate explicit
formulae for computing some variants of the Tate pairing, based on elliptic nets.

In the present paper, we explicitly give formulae based on elliptic nets for
computing the following variants of the Tate pairing: the Ate, Atei, R-Ate, and
optimal pairings.

These pairings are defined as “point-evaluation” pairings, although the Tate
pairing is originally ”divisor-evaluation” pairing. These point-evaluation pair-
ings are defined using normalized functions (see Section 2). Hence, we need to
formulate a normalization of elliptic nets. In the present paper, we give a normal-
ization of elliptic nets and then the formulae of the above-listed point-evaluation
pairings. We also discuss their efficiency by using some experimental results.

The remainder of this paper is organized as follows. Section 2 gives a brief
mathematical description of pairings and elliptic nets. Section 3 contains our
main results concerning pairings described by elliptic nets. In Section 4, we will
show our experimental results. We draw conclusions in Section 5.

2 Mathematical Preliminaries

2.1 Pairings

Let E be an elliptic curve over a finite field Fq with q elements. The set of Fq-
rational points of E is denoted as E(Fq). Let E(Fq)[r] denote the subgroup of
r-torsion points in E(Fq). We write O for the point at infinity on E. Consider
a large prime r such that r | #E(Fq) and denote the embedding degree by k,
which is the smallest positive integer such that r divides qk − 1. Let πq be the
Frobenius endomorphism πq : E → E : (x, y) �→ (xq, yq). We denote the trace of
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Frobenius by t, i.e., #E(Fq) = q + 1 − t. Finally, let μr(⊂ F
×
qk) be the group of

r-th roots of unity.

Weil Pairing. The Weil pairing er(·, ·) is defined by

er(·, ·) : E(Fqk)[r] × E(Fqk )[r] → μr,

(P,Q) �→ er(P,Q) := fr,P (DQ)/fr,Q(DP ),

whereDP is a divisor equivalent to (P )−(O) and fs,P is a rational function on E
such that div(fs,P ) = rDP . Similarly, div(fs,Q) = rDQ, where DQ is equivalent
to (Q) − (O). We assume that DP and DQ are chosen with disjoint supports.

Note that the Weil pairing does not depend on the choice of DP and DQ.
Furthermore, the Weil pairing is bilinear and non-degenerate.

Tate Pairing. Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk). Choose a point R ∈ E(Fqk)
such that the support of div(fr,P ) = r(P ) − r(O) and DQ := (Q+R)− (R) are
disjoint. Then, the Tate pairing is defined by

〈·, ·〉r : E(Fqk)[r] × E(Fqk)/rE(Fqk ) → F
×
qk/(F×

qk)r ,

(P,Q) �→ 〈P,Q〉r := fr,P (DQ) mod (F×
qk)r .

It has been shown that 〈P,Q〉r is bilinear and non-degenerate.
For cryptography applications, it is convenient to define pairings whose out-

puts are unique values rather than equivalence classes. Thus, herein, we consider
the reduced Tate pairing defined by

τr : E(Fqk)[r] × E(Fqk)/rE(Fqk ) → μr,

τr(P,Q) = 〈P,Q〉(qk−1)/r
r .

We call the operation z �→ z(qk−1)/r final exponentiation.
The Weil Tate pairings satisfy that

er(P,Q) =
〈P,Q〉r
〈Q,P 〉r up to r-th powers. (1)

Thus, if the cost of final exponentiation is sufficiently small, the cost of computing
the Tate pairing is almost half of that of computing the Weil pairing. Because
of this, the Tate pairing is widely used in cryptography and there are numerous
improved versions, such as the Ate pairing.

As mentioned in Section 1, a classical and currently standard algorithm for
computing pairings is Miller’s algorithm [11], [12]. One of the efficiency bench-
marks of pairing computation is based on the Miller loop. The length of the
Miller loop is log2(r) in the case of the Tate pairing 〈·, ·〉r . Most improvements
of pairing computation attempt to shorten the Miller loop.
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Barreto et al. [2] pointed out that τr(P,Q) can be computed by τr(P,Q) =
fr,P (Q)(q

k−1)/r if P ∈ E(Fq)[r] and k > 1.

For cryptographic applications, it is usually assumed that points P and Q are
respectively elements in the following groups:

G1 = E(Fq)[r] = E(Fqk)[r] ∩ Ker(πq − 1),
G2 = E(Fqk)[r] ∩ Ker(πq − q)

Hereafter, we assume that P ∈ G1 and Q ∈ G2.
We give a brief review of the following variants of the Tate pairing: the Ate

[8], Atei [20], R-Ate [10], and optimal [21] pairings. These pairings are defined on
G2×G1 and G1×G2. In the present paper, we consider the case of G2×G1. See
the appropriate papers cited above for the case of G1 × G2. We use normalized
functions to define the above pairings on G2 ×G1; therefore, we will first define
this normalization as follows.

Normalization of Rational Functions. For s ∈ Z, we define fs,Q as the
rational function satisfying the equation div(fs,Q) = s(Q) − (sQ) − (s − 1)(O).
This function fs,Q is determined uniquely up to multiplication by a constant.
Uniqueness is obtained by normalization. We will denote the normalized form of
fs,R by fnorm

s,R and refer to the latter as the normalized function.
Let uO be a uniformizer of E on O. We may choose as this uniformizer uO =

−x
y . Then the normalized function fnorm

s,R is defined by

fnorm
s,R = fs,R/c, where c = (us−1

O fs,R)(O). (2)

From now on, we may assume that all rational functions on elliptic curves are
normalized.

Ate Pairing. The Ate pairing, proposed by Hess et al. [8], is a generalization
of the ηT pairing [1]. The Ate pairing can be applied to not only supersingular
but also ordinary elliptic curves.

Let T = t−1. We choose integers N and L such that N = gcd(T k −1, qk −1)
and T k − 1 = LN . We assume that r2 does not divide qk − 1. Then the Ate
pairing is defined by fT,Q(P )(Q ∈ G2 and P ∈ G1). We denote by α(Q,P ) the
reduced Ate pairing: α(Q,P ) := fT,Q(P )(q

k−1)/r. The length of the Miller loop
for computing the Ate pairing fT,Q(P ) is log2 |T |.
Atei Pairing. The Atei pairing was proposed by Zhao et al. [20]. Let Ti := qi

(mod r) for i = 1, 2, · · · , k − 1. For each i, we define the following quantities
similarly to those for the Ate pairing: ai is the smallest positive integer such
that T ai

i ≡ 1 (mod r), Ni := gcd(T ai

i − 1, qk − 1), and Li is the positive integer
such that T ai

i − 1 = LiNi.
The Atei pairing on G2 × G1 is defined by fTi,Q(P )(Q ∈ G2 and P ∈ G1).

Analogous to the case for Ate pairing, we denote by αi(Q,P ) the reduced Atei
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pairing: αi(Q,P ) := fTi,Q(P )(q
k−1)/r. The length of the Miller loop for comput-

ing fTi,Q(P ) is log2(Ti).
If Tn := min{Ti : i = 1, 2, · · · , k − 1, 0 ≤ Ti ≤ r − 1}, then fTn,Q(P ) can be

computed faster than the Ate pairing fT,Q(P ).

R-Ate Pairing. The R-Ate pairing was proposed by Lee et al. [10] Let A,B, a, b
be integers such that A = aB + b. We define the R-Ate pairing to be

RA,B(Q,P ) := fa,[B]Q(P ) · fb,Q(P ) ·G[aB]Q,[b]Q(P ),

where GP1,P2 is a rational function on E such that div(GP1,P2) = (P1) + (P2)−
(P3) − (O) (P3 = P1 + P2).

Lee et al. showed that RA,B(Q,P ) is bilinear and non-degenerate under some
conditions (see Theorem III.2 of [10]). Furthermore, they also gave the following
examples in which RA,B(Q,P ) is bilinear and non-degenerate: (A,B) = (qi, r),
(A,B) = (q, T1) where q > T1, (A,B) = (Ti, Tj), and (A,B) = (r, Tj). See
Corollary III.3. in [10].

Optimal Pairing. Optimal pairing was proposed by Vercauteren [21]. Optimal
pairing can be computed in log2 r/φ(k) + ε(k) Miller loop iterations (φ(k) is the
Euler function of k and ε(k) ≤ log2 k).

Theorem 1 ([21] Theorem 1). Let λ be an integer such that r|λ and r2 � λ.
We express λ as λ =

∑l
i=0 ciq

i. Then

a[c0,c1,··· ,cl] : G2 × G1 → μr

(Q,P ) �→
( l∏

i=0

f qi

ci,Q
(P ) ·

l−1∏

i=0

l[si+1]Q,[ciqi]Q(P )
v[si]Q(P )

) qk−1
r

(where si =
∑l

j=i cjq
j) defines a bilinear map. Furthermore, if

λ

r
kqk−1 �≡ qk − 1

r

l∑

i=0

iciq
i−1 (mod r),

a[c0,c1,··· ,cl](Q,P ) is non-degenerate.

Note that we may consider l = φ(k) − 1 because r | Φk(q), where Φk(X) is the
k-th cyclotomic polynomial. The pairing a[c0,c1,··· ,cl](Q,P ) is called the optimal
pairing because it can be computed very efficiently if c0, c1, · · · , cl can be chosen
very small.

2.2 Elliptic Nets

In 2007, Stange [18] defined elliptic nets as maps from Z
n to a ring and they

satisfy a certain recurrence relation associated with elliptic curves. In general, an
elliptic net W is a map from a finitely generated abelian group A to an integral
domain R such that
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W (p+ q + s)W (p− q)W (r + s)W (r)
+ W (q + r + s)W (q − r)W (p+ s)W (p)
+ W (r + p+ s)W (r − p)W (q + s)W (q) = 0

for p, q, r, s ∈ A. Elliptic divisibility sequences arise from an elliptic curve defined
over the rational numbers and a rational point of that curve. These sequences
are strongly related to elliptic functions and the division polynomials of an ellip-
tic curve. For cryptographic applications, the division polynomials of an elliptic
curve are the main tools of Schoof’s algorithm [16]. As we will see later, the
division polynomials of an elliptic curve also play an important role in the com-
putation of elliptic net-based pairings.

Stange introduced the concept of elliptic nets associated with elliptic curves
and described Tate pairing by using elliptic nets. In this section, we briefly review
elliptic nets. See [18] for detail.

First, we consider a function, denoted by Ψ , associated with elliptic curves
over C by using an elliptic σ-function. We define an elliptic netW (in C) using Ψ .
Next, we construct a function associated with Ψ , denoted by Ω, that is defined
in finite fields by applying a reduction theorem (see Theorem 3 in [18]). Thus,
we are able to consider W in finite fields and construct the Tate pairing in finite
fields.

To describe the Tate pairing fr,P (DQ) by using elliptic nets, Stange showed a

formula for a function fr,P with div(fP ) = r(P )−r(O) as fr,P =
Ω1,0,0,(−S, P,Q)
Ω1,r,0(−S, P,Q)

,

where Ω1,v2,v3(−S, P,Q)(vi ∈ Z) is a function in S and the divisor of
Ω1,v2,v3(−S, P,Q) on a variable S is ([v2]P + [v3]Q) − v2(P ) − v3(Q) − (1 −
v2 − v3)(O). Then a formula for fr,P (DQ), where DQ is a divisor equivalent to
(−S)− (−S −Q), as a function in variable S is computed. The following result
is obtained by setting S = P the formula of fr,P (DQ).

Theorem 2 ([18]). Let E be an elliptic curve over a finite field K. For P ∈
E(K)[r], Q ∈ E(K),

fr,P (DQ) =
WP,Q(r + 1, 1)WP,Q(1, 0)
WP,Q(r + 1, 0)WP,Q(1, 1)

, (3)

where WP,Q(r + 1, i) = Ω1,r,i(−S, P,Q)|S=P .

Remark 1. By using the above theorem and the equation (1), we can easily
obtain the Weil pairing formula using elliptic nets as the following. For P,Q ∈
E(Fqk)[r],

er(P,Q) =
WP,Q(r + 1, 1)WQ,P (r + 1, 0)
WP,Q(r + 1, 0)WQ,P (r + 1, 1)

up to r-th powers.

Here, we assume that an elliptic curve E has a Weierstrass equation of the
form Y 2 = X3 + AX + B. Let ψn(x, y) denote the n-th division polynomial of
an elliptic curve. For simplicity, we write WP,Q(i, j) = W (i, j). Initial values of
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elliptic nets W (i, 0) and W (i, 1) are obtained by the following definition (see
[18]): if P = (x1, y1) and Q = (x2, y2), then

W (1, 0) = 1,
W (2, 0) = 2y1,

W (3, 0) = 3x3
1 + 6Ax2

1 + 12Bx1 −A2,

W (4, 0) = 4y1(x6
1 + 5Ax4

1 + 20Bx3
1 − 5A2x2

1 − 4ABx1 − 8B2 −A3),
W (0, 1) = W (1, 1) = 1,

W (2, 1) = 2x1 + x2 − (
y2 − y1
x2 − x1

)2,

W (−1, 1) = x1 − x2,

W (2,−1) = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2.

Elliptic nets W (i, 0) and W (j, 1) can be computed by the following recursive
formulae.

Proposition 1 ([18])

W (2i − 1, 0) = W (i + 1, 0)W (i − 1, 0)3 − W (i − 2, 0)W (i, 0)3,

W (2i, 0) =
W (i, 0)W (i + 2, 0)W (i − 1, 0)2 − W (i, 0)W (i − 2, 0)W (i + 1, 0)2

W (2, 0)
,

W (2i − 1, 1) =
W (i + 1, 1)W (i − 1, 1)W (i − 1, 0)2 − W (i, 0)W (i − 2, 0)W (i, 1)2

W (1, 1)
,

W (2i, 1) = W (i − 1, 1)W (i + 1, 1)W (k, 0)2 − W (i − 1, 0)W (i + 1, 0)W (i, 1)2,

W (2i + 1, 1) =
W (i − 1, 1)W (i + 1, 1)W (i + 1, 0)2 − W (i, 0)W (i + 2, 0)W (i, 1)2

W (−1, 1)
,

W (2i + 2, 1) =
W (i + 1, 0)W (i + 3, 0)W (i, 1)2 − W (i − 1, 1)W (i + 1, 1)W (i + 2, 0)2

W (2,−1)
.

Note that W (i, 0) = WP,Q(i, 0) is equal to ψi(x1, y1) because WP,Q(i, 0) =
ψi(x1, y1) for i = 1, 2, 3, 4 and the recursive formulae for computing W (2i−1, 0)
and W (2i−1, 0) are the same as the recursive formulae for division polynomials.
Therefore, if E is defined over K and P ∈ E(K), WP,Q(i, 0) ∈ K for all i and
they are killed by final exponentiation.

See [18] for algorithms for computing elliptic nets.

3 The Main Results

In this section, we describe variants of the Tate pairing, the Ate, Atei, R-Ate,
and optimal pairings by using elliptic nets.

As seen in Section 2, these pairings are point-evaluation pairings and are
defined by using normalized functions. Therefore, we need to formulate a nor-
malization of elliptic nets in order to describe the formulae of the above-listed
point-evaluation pairings.
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3.1 Normalization of Elliptic Nets

First, we present the following lemma, which can be proved by using a straight
forward calculation.

Lemma 1. Let ℘(z;Λ) := 1
z2 +

∑
ω∈Λ\{0}(

1
(z−ω)2

− 1
ω2 ) be the Weierstrass ℘

function and σ(z;Λ) := z
∏

ω∈Λ\{0}(1 − z
ω )ez/ω+(1/2)(z/ω)2 be the Weierstrass σ

function on C; then (
℘(z;Λ)

℘′(z;Λ)σ(z;Λ)

)

(0) = −1
2
.

Next, we show the following equation corresponding to equation (2) in Section
2.1.

Proposition 2. Let Λ ∈ C be a lattice corresponding to the elliptic curve E.
Fix w ∈ C \ {0}. For s ∈ Z,

(−℘(z;Λ)/℘′(z;Λ))1−s
Ψs,1(w, z)|z=0 = 2s−1Ψs,0(w, z) .

Proof. The proposition follows from Lemma 1 and the following fact:

Ψs,1(w, z) =
σ(sw + z)

σ(w)s2−sσ(w + z)sσ(z)1−s
.

The uniformizer uO = −x
y corresponds to − ℘(z)

℘′(z) . Thus, we have the following
proposition, which gives the normalization of elliptic nets.

Proposition 3. W̃P,Q(s, 1) denotes the normalization (by −x
y ) for the elliptic

net WP,Q(s, 1). For s ∈ Z, assume [s]P �= O. Then

W̃P,Q(s, 1) =
WP,Q(s, 1)

2s−1WP,Q(s, 0)
.

For practical uses of pairings, we can assume k > 1. In this case, 2(qk−1)/r = 1,
and so we have

W̃P,Q(s, 1)
qk−1

r =
(WP,Q(s, 1)
WP,Q(s, 0)

) qk−1
r

.

3.2 Elliptic Net-Based Pairings

We explain the key lemma which connects various pairings with elliptic nets. We
use W̃P,S(s, 1) to denote the normalization for WP,S(s, 1), where WP,S(s, 1) is
a function in S and P is a fixed point on E.

Lemma 2. For s ∈ Z, we assume that the point Q is neither a zero nor a pole
of fs,P . Then

fs,P (Q) = W̃−P,Q(s, 1)
−1
.
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Proof. Let W−P,S(s, 1) = Ωs,1(−P, S) be a rational function in variable S.
Similar to in [18], the divisor of W−P,S(s, 1) in S is

divS(Ωs,1(−P, S)) = ([−s](−P )) − s(P ) − (1 − s)(O)
= −{s(P ) − ([s]P ) − (s− 1)(O)}
= −divS(fs,P ) .

Hence, fs,P = W̃−P,S(s, 1)
−1

from the uniqueness of the normalized function.
Finally, we obtain the desired result by taking S = Q.

The following theorem derives formulae for elliptic net-based pairings.

Theorem 3. If the following function on P and Q,

A(P, Q) =
l1∏

i=0

fαi

ti,P
(Q)

l2∏

j=0

G
βj

[uj ]P,[vj]P
(Q),

is bilinear, then

A(P, Q) =
l1∏

i=0

W̃αi

P,Q(ti, 1)
l2∏

j=0

G
−βj

[−uj ]P,[−vj]P
(Q) .

Proof. Using Lemma 2 and the bilinearity of A(P, Q),

A(P, Q) = A(−P, Q)−1

=
l1∏

i=0

f−αi

ti,−P (Q)
l2∏

j=0

G
−βj

[−uj ]P,[−vj ]P
(Q)

=
l1∏

i=0

W̃αi

P,Q(ti, 1)
l2∏

j=0

G
−βj

[−uj ]P,[−vj]P
(Q) .

�
We consider the case of the optimal pairing. In this case, we need to compute
scalar multiplications [ciqi]Q(i = 0, 1, · · · , l) using elliptic nets.

Note that Q := (xQ, yQ) satisfies [ciqi]Q = [qi]([ci]Q) = πi
q([ci]Q) because

Q ∈ E(Fqk)[r] ∩ Ker(πq − q).
Furthermore, as seen in Section 2 of [18], WQ,P (n, 0) = ψn(xQ, yQ). Thus, we

are able to express [n]Q in terms of elliptic nets by using the following famous
multiplication formula:

[n](x, y) =
(

x− ψn−1ψn+1

ψ2
n

(x, y),
ψ2

n−1ψn+2 − ψ2
n+1ψn−2

4yψ3
n

(x, y)
)

.

Hence, we obtain [ciqi]Q = πi
q([ci]Q) = (xqi

[ci]Q
, yqi

[ci]Q
), where

xqi

[ci]Q
=

(

xQ − WQ,P (ci − 1, 0)WQ,P (ci + 1, 0)

WQ,P (ci, 0)2

)qi

,

yqi

[ci]Q
=

(
WQ,P (ci − 1, 0)2WQ,P (ci + 2, 0) − WQ,P (ci + 1, 0)2WQ,P (ci − 2, 0)

2WQ,P (2, 0)WQ,P (ci, 0)3

)qi
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To summarize, we show formulae of cryptographic pairings:

Theorem 4. Let E be an elliptic curve over a finite field Fq and πq : (x, y) �→
(xq, yq) the q-Frobenius endomorphism on E. We assume that the embedding
degree k > 1. Let r be a large prime number with r|#E(Fq) and (r, q) = 1, and
also T ≡ q (mod r) and Ti ≡ qi (mod r). Let λ =

∑l
i=0 ciq

i be such that r|λ
and r2 � λ. We define si =

∑l
j=i cjq

j.
Then, we have the following.

Tate Pairing: For P ∈ E(Fqk)[r] and Q ∈ E(Fqk),

τr(P,Q) = fr,P (Q)
qk−1

r = W̃P,Q(r + 1, 1)
qk−1

r .

Variants of the Tate Pairing: For P ∈ G1 = E(Fqk)[r] ∩ Ker(πq − 1) and
Q ∈ G2 = E(Fqk )[r] ∩ Ker(πq − q),

– Ate

α(Q,P ) = fT,Q(P )
qk−1

r = W̃Q,P (T, 1)
qk−1

r ;

– Atei

αi(Q,P ) = fTi,Q(P )
qk−1

r = W̃Q,P (Ti, 1)
qk−1

r ;

– R-Ate

RA,B(Q,P )
qk−1

r =
{

fa,[B]Q(P ) · fb,Q(P ) · G[aB]Q,[b]Q(P )
} qk−1

r

=
{

W̃[B]Q,P (a, 1) · W̃Q,P (b, 1) · G[−aB]Q,[−b]Q
−1(P )

} qk−1
r

,

where A = aB + b;

– optimal

a[c0,c1,...,cl](Q, P ) =
{ l∏

i=0

fci,Q(P )qi ·
l−1∏

i=0

G[si+1]Q,[ciqi]Q(P )
} qk−1

r

=
{ l∏

i=0

W̃Q,P (ci, 1)
qi ·

l−1∏

i=0

G[−si+1]Q,[−ciqi]Q
−1(P )

} qk−1
r

.

For Tate pairings, we have the following stronger result.

Theorem 5. Let E be an elliptic curve over a finite field Fq. We assume that
the embedding degree k > 1. Let r be a large prime number with r|#E(Fq) and
(r, q) = 1. Then, for P ∈ E(Fq)[r] and Q ∈ E(Fqk),

τr(P,Q) = fr,P (Q)
qk−1

r = WP,Q(r, 1)
qk−1

r . (4)
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Proof. Note that Tate pairing fr,P (Q) is uniquely defined over (mod (F×
qk)r)

even though fr,P is not normalized since P ∈ E(Fq)[r]. Then, just as in the
proof of the Lemma 2,

fr,P (Q) ≡W−P,Q(r, 1)−1 mod (F×
qk)r .

Therefore, from the bilinearity of τr(P,Q) = fr,P (Q)
qk−1

r ,

τr(P,Q) = τr(−P,Q)−1 = WP,Q(r, 1)
qk−1

r .

Remark 2. The differences between (3) in Theorem 2 (see p.7) and (4) are
explained as follows. In [18], Stange gave a general formula of the Tate pairing
with a parameter S by using the divisor DQ. We obtain (3) by putting S = P .
On the other hand, we need to compute only WP,Q(r, 1) because we evaluate
the function fP at the point Q. We can verify WP,Q(r, 1) ≡ WP,Q(r + 1, 1)
(mod (F×

qk )
r
) because fr,P (Q) = fr+1,P (Q) if [r]P = O. (Here we note that

fr,P , fr+1,P are normalized.) Since we assume that P is an Fq rational point on
E, we can compute the Tate pairing 〈P,Q〉r by evaluating fr,P at Q. Thus, the
equation (4) is a special case of (3). However, (4) is sufficient and efficient for
cryptographic use.

4 Implementation

In this section, we will show some experimental results for implementations of
various pairings using elliptic nets.

The computer specifications are the following: CPU, a 2 GHz AMD Opteron
246; memory, 4 GB; and hard disk, 160 GB. Magma [23] was used as the software
for writing the program.

We used the following elliptic curves for our experiments.

1 y2 = x3 + 4 [4]

k = 12,

q = 23498017525968473690296083113864677063688317873484513641020158425447

(224 bit),

r = 1706481765729006378056715834692510094310238833 (151 bit),

T = Tn = 203247593908.
2 y2 = x3 + 3 [5]

k = 12,

q = 1461501624496790265145448589920785493717258890819 (160 bit),

r = 1461501624496790265145447380994971188499300027613 (160 bit),

T = Tn = 1208925814305217958863206.
3 y2 = x3+2x+255754413175205946479962785093275958147811775836074868254475\

5542022504589304559812663114754842137 [13]

k = 10,

q = 269165611404982298837667591457479542280678545574962718143297\
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96276308782360965160815950571330669569 (324 bit),

r = 118497265990650143638940886913063255688422174813106568961 (187 bit),

T = −12131133023075412575000611486055266851595610191692815,

Tn = 104334294221056.

The Tables 1 and 2 show the experimental results of our implementations. The
column “EN” indicates a computation using elliptic nets. The column “Miller”
indicates a computation using Miller’s algorithm. Note that we did not use built-
in functions in Magma (such as “ReducedTatePairing”) but rewrote Miller’s
algorithm by using the Magma language.

The column “R-Ate (i)” corresponds to the index i in Corollary 3.3 of [10].
Note that showing values in some cells parenthetically indicates that those values
correspond to values in other cells. For example, the calculation of the Atei

pairing is sometimes equivalent to that of the Ate pairing.
Our experimental results show that pairing computations using elliptic nets is

comparable to those using Miller algorithm in terms of efficiency. However, our
implementations were not optimized, and so we need to study these algorithms
in detail and optimize their implementations of various pairings.

Table 1. Experimental Results for Tate, Ate, and Atei Pairings

Tate Ate Atei

curve EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s]

1 0.19 0.26 0.22 0.19 (0.22) (0.19)
2 0.13 0.21 0.24 0.21 (0.24) (0.21)
3 0.21 0.31 0.39 0.37 0.23 0.22

Table 2. Experimental Results for R-Ate and Optimal Pairings

R-Ate (2) R-Ate (3) R-Ate (4) Optimal

curve EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s]

1 0.65 0.51 0.38 0.31 0.39 0.32 0.98 0.76
2 0.34 0.27 0.33 0.27 0.34 0.26 0.74 0.56
3 0.73 0.67 0.36 0.34 0.40 0.38 1.07 0.94

5 Conclusion

In this paper, we explicitly gave a normalization of elliptic nets and gave for-
mulae based on elliptic nets for computing some variants of the Tate pairing:
the Ate, Atei, R-Ate, and optimal pairings. We also discussed their efficiency
by using some experimental results. Further improvement and optimization of
these elliptic net-based algorithms are expected in future work.
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