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Abstract. The performance of fingerprinting codes has been studied
under the well-known marking assumption. In a realistic environment,
however, a pirated copy will be distorted by an additional attack. Under
the assumption that the distortion is modeled as AWGN, a soft decision
method for a tracing algorithm has been proposed and the traceability
has been experimentally evaluated. However, the previous soft decision
method works directly with a received signal without considering the
communication theory. In this study, we calculate the likelihood of re-
ceived signal considering a posterior probability, and propose a soft deci-
sion tracing algorithm considering the characteristic of Gaussian channel.
For the estimation of channel, we employ the expectation-maximization
algorithm by giving constraints under the possible collusion strategies.
We also propose an equalizer to give a proper weighting parameter for
calculating a correlation score.

1 Introduction

Digital fingerprinting [14] is used to trace illegal users, where a unique ID known
as a digital fingerprint is embedded into a content before distribution. When a
suspicious copy is found, the owner can identify illegal users by extracting the
fingerprint. Since each user purchases a content involving his own fingerprint,
the fingerprinted copy slightly differs with each other. Therefore, a coalition of
users will combine their differently marked copies of the same content for the
purpose of removing/changing the original fingerprint. To counter this threat,
coding theory has produced a number of collusion resistant codes under the
well-known principle referred to as the marking assumption.

Tardos [13] has proposed a probabilistic fingerprinting code which has a length
of theoretically minimal order with respect to the number of colluders. Theo-
retical analysis about the Tardos code yields more efficient probabilistic finger-
printing codes improving the traceability, code length, and so on. Among the
variants of the Tardos code, Nuida et al. [10] studied the parameters to generate
the codewords of the Tardos code which are expressed by continuous distribu-
tion, and presented a discrete version in an attempt to reduce the code length
and the required memory amount without degrading the traceability.
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It is reported in [2] that a correlation sum calculated in a tracing algorithm
is expected to be Gaussian distribution based on the Central Limit Theorem
(CLT). Using the Gaussian approximation, the code length is further shortened
under a given false-positive probability. The results are supported and further
analyzed by Furon et al. [3], and the validity is experimentally evaluated in [8].
In [12], it is shown that the tails of the distribution follow a power law which
depends on the collusion strategy. Independent of the strategy, the right tail falls
off faster than the left tail.

Recently, the relaxation of the marking assumption has been employed in the
analysis of the Tardos code and its variants [5],[6],[7],[9]. In [7], a pirated copy is
produced by collusion attack and it is further distorted by additive white Gaus-
sian noise (AWGN). Considering the distortion, two kinds of tracing algorithms
are proposed; one rounds each element of codeword into binary digit before cal-
culating a correlation score, and the other directly calculates the score from the
distorted codeword. The former is called a hard decision method, and the latter,
a soft decision method. In [6], it is reported that the probability of false-positive
for the Tardos code is considerably increased in the amount of noise while that
for the Nuida code is not sensitive against the noise. However, the soft decision
method does not utilize the analog signals to maximize the performance of a de-
tector. It merely calculates a correlation score directly from the received signal
without the consideration of a posterior probability.

In this paper, we propose a soft decision tracing algorithm considering a pos-
terior probability of codeword extracted from a pirated copy. We assume that
a codeword is produced by a certain collusion strategy based on the marking
assumption and is distorted by additive white Gaussian noise. Depending on the
collusion strategy, the probability that an i-th bit becomes 1 is slightly/greatly
changed from the original probability, namely 0.5. In order to estimate the
probability as well as the variance of the Gaussian noise, the Expectation-
Maximzation(EM) algorithm is used in this paper. Generally, the EM algorithm
is not assured to find a global optimum whose estimated values are well-matched
with actual ones. By giving some constraints on the parameters estimated by the
EM algorithm, we improve the accuracy to find the global optimum. Using the
estimated parameters, we calculate a new correlation sum based on the posterior
probability. If the sum exceeds a specific threshold, the corresponding candidate
is judged guilty. Based on the CLT, the variance of the sum is derived from a
Monte Carlo simulator and the threshold for judgment is calculated by a given
false-positive probability. The validity of the threshold is also evaluated by the
rare event simulation method proposed in [5]. We further study the bias in the
calculation of the correlation score, and propose an equalizer to cancel the bias
by giving a weight on each score.

The experimental results reveal the following properties. 1: When the EM
algorithm fails to estimate the conditions of Gaussian channel, the performance
of the proposed method without the equalizer is degraded with the increase of
SNR. 2: The proposed method with the equalizer outperforms the method with-
out it. Especially for the cryptographic collusion strategy [3], we get a drastic
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improvement from the conventional methods. 3. The total false-positive proba-
bility is almost stable against the changes of SNR, and is slightly affected by a
collusion strategy if the threshold is designed under the Gaussian assumption.

2 Preliminaries

In this section, probabilistic fingerprinting codes are reviewed, and the related
works are briefly introduced.

2.1 Probabilistic Fingerprinting Code

Tardos [13] has proposed a probabilistic c-secure code which has a length of
theoretically minimal order with respect to the number of colluders. The binary
codewords of length L are arranged as an N × L matrix X, where N is the
number of users and each element Xj,i ∈ {0, 1} in the matrix is the i-th element
of j-th user’s codeword. The element Xj,i is generated from an independently and
identically distributed random number with a probability pi such that Pr[Xj,i =
1] = pi and Pr[Xj,i = 0] = 1 − pi. This probability pi referred to as the bias
distribution follows a certain continuous distribution represented by f(p):

f(p) =
1

π
√

p(1 − p)
. (1)

Assuming that the number of colluders is at most c, the minimum length L
for a constant and tiny error probability is theoretically derived. The maximum
allowed probability of accusing a fixed innocent user is denoted by ε1, and the
total false positive probability by η = 1− (1− ε1)N−c ≈ Nε1. The false negative
probability denoted by ε2 is coupled to ε1 according to ε2 = ε

c/4
1 .

Nuida et al. [10] proposed a specific discrete distribution introduced by a
discrete variant [11] of Tardos code that can be tuned for a given number c
of colluders. The bias distribution is called “Gauss-Legendre distribution” due
to the deep relation to Gauss-Legendre quadrature in numerical approximation
theory (see [10] for detail). Except for the bias distribution, the Nuida code
employs the same encoding mechanism as the Tardos code.

Let L be a code length of a fingerprinting code. Suppose that c̃(≤ c) malicious
users out of N users are colluded, and they produce a pirated codeword y =
(y1, . . . , yL), yi ∈ {0, 1}. A tracing algorithm first calculates a score S

(j)
i for i-th

bit of j-th user using a real-valued function Uj,i, and then sums them up as the
total score S(j) =

∑L
i=0 S

(j)
i of j-th user.

S(j) =
L∑

i=1

S
(j)
i =

L∑

i=1

yiUj,i, (2)

where

Uj,i =

⎧
⎨

⎩

√
1−pi

pi
(Xj,i = 1)

−
√

pi

1−pi
(Xj,i = 0).

(3)
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Because the above correlation sum adds the score S
(j)
i only when yi = 1, half

of the elements in a pirated codeword is discarded. Considering the symme-
try, S̆korić et al. [2] proposed a symmetric version of the correlation score by
substituting ŷi = 2yi − 1 ∈ {−1, 1} for yi in Eq.(2).

For the Tardos code, if the sum S(j) exceeds a threshold Z, the j-th user
is determined as guilty. Such a tracing algorithm is called “catch-many” type
explained in [14]. By decoupling ε1 from ε2, the tracing algorithm can detect
more colluders under a constant ε1 and L. For the Nuida code [10], its original
tracing algorithm outputs only one guilty user whose score becomes maximum,
which type is called “catch-one”. Due to the similarity with the Tardos code, the
catch-many tracing algorithm of the Tardos code can be applied to the Nuida
code. The report in [6] stated that the performance of the Nuida code is better
than that of the Tardos code when the catch-many tracing algorithm is used.
Under a same code length and a same number of colluders, it is experimentally
measured that the correlation sum of the Nuida code is higher than that of the
Tardos code. It is remarkable that the false-positive probability of the Nuida code
is stable no matter how many colluders get involved in to generate a pirated copy
and no matter how much amount of noise is added to the copy if a threshold
is calculated under the Gaussian approximation for the correlation score. In
this paper, the validity of the previous tracing algorithms is discussed from the
Nuida code point of view, which does not limit the use of proposed method for
the Tardos code.

2.2 Attack Model

Under the marking assumption, colluders can select an arbitrary bit for such
elements that a bit embedded into the segments of their copies is different. Based
on an attack strategy, various collusion strategies under the marking assumption
could be selected by colluders. Among them, there are 5 major types:

– majority(maj): If the sum of i-th bit exceeds c̃/2, yi = 1; otherwise, yi = 0.
– minority(min): If the sum of i-th bit exceeds c̃/2, yi = 0; otherwise, yi = 1.
– random(ran): yi ∈R {0, 1}
– all-0: yi = 0
– all-1: yi = 1

In [5], the collusion attack is described by the parameter vector: θ = (θ0, · · · , θc̃)
with θρ = Pry[1|Φ = ρ], where the random variable Φ ∈ {0, · · · , c̃} denotes
the number of symbol “1” in the colluders’ copies at a given index. Further-
more, the Worst Case Attack(WCA) is defined as the collusion attack minimiz-
ing the rate of the code, or equivalently, the asymptotic positive error exponent.
For example, when c̃ = 5, the parameter vector of WCA is given by
θ� = (0, 0.594, 0.000, 1.00, 0.406, 1).

On the other hand, the attack strategies are not limited to the above types
in a realistic situation such that a codeword is binary and each bit is embedded
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into one of segments of a digital content without overlapping using a robust
watermarking scheme. It is reasonable to assume that each bit is embedded
into a segment using an antipodal signal: X̂j,i = 2Xj,i − 1, namely it is binary
phase shift keying(BPSK) modulation. In this case, colluders can apply the other
attack strategy at the detectable positions. Since each bit of codeword of ŷ
is one of {−1, 1} after the BPSK modulation, it is possible for colluders to
alter the signal amplitude of each element from the signal processing point of
view. One simple example is averaging attack that ŷi =

∑
X̂j,i/c, we call this

attack “average(ave)”. Considering the removal of fingerprint signal, a worst case
may be ŷi = 0. At the detectable position, it is sufficient to average only two
segments whose X̂j,i are different with each other, which attack is denoted by
“average2(ave2)”.

Even if a robust watermarking method is used to embed the binary fingerprint-
ing code into digital contents, it must be degraded by attacks. For convenience,
the distortion is modeled as AWGN in this study. So, we assume that a pirated
copy is produced by one of the above collusion strategies and is further distorted
by the Gaussian noise.

2.3 Conventional Tracing Algorithm

Assuming that the pirated codeword ŷ is transmitted over AWGN channel. Then,
the codeword extracted from a pirated copy is represented by analog value:

y′ = ŷ + e = (ŷ1 + e1, . . . , ŷL + eL), (4)

because of the addition of noise e that follows N(0, σ2
e). If a tracing algorithm

strictly follows the definition, each extracted symbol of the pirated codeword
should be rounded into a bit {−1, 1} when the symmetric version of the tracing
algorithm is used. Because of the rounding operation, this procedure is called
a hard decision (HD) method in [7] and [6]. On the other hand, it is possible
to directly calculate the correlation sum S(j) from the distorted pirated code-
word y′, which procedure is called a soft decision (SD) method. A soft decoding
method is very beneficial in error correcting code, so it is worthy to try for fin-
gerprinting. However, in the SD method, the likelihood of the received signal
is not considered to maximize the traceability. It is strongly required for the
soft decision method to calculate the correlation score based on the information
theoretic analysis.

3 Proposed Tracing Algorithm

The proposed tracing algorithm first estimates the amount of noise involved
in a pirated copy and then measures the likelihood of each symbol of pirated
copy. Using the likelihood, the correlation score is calculated and guilty users
are identified with a constant false probability ε1.
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3.1 Channel Estimation

The accurate estimation of the Gaussian channel can maximize the performance
of tracing algorithm. The estimator proposed in [7] does not make use of all the
available samples, but only half samples in average. In addition, it only estimates
the variance σ2

e of Gaussian noise. In this paper, we estimate the probability
distribution function that is regarded as a Gaussian mixture model.

If a collusion strategy is based on the marking assumption, each symbol of
a pirated codeword is ŷi ∈ {−1, 1}. Here, the probability Pr[ŷi = 1] is not
always equal to Pr[ŷi = −1]. So, the probability distribution function pdf(y′

i) is
represented by

pdf(y′
i) = aN(y′

i; 1, σ2
e) + (1 − a)N(y′

i;−1, σ2
e), (5)

where a ≥ 0 and

N(y′
i; μ, σ2) =

1√
2πσ2

exp
(
− (y′

i − μ)2

2σ2

)
. (6)

Under the relaxed version of the marking assumption, the value of ŷi is not
limited to these two symbols. Hence, the probability distribution function can
be a mixture of several Gaussian components, and in general, it is denoted by

pdf(y′
i) =

m∑

k=1

akN(y′
i; μk, σ2

k), (7)

where m is the number of Gaussian components, and
∑m

k=1 ak = 1 and ak ≥ 0.
Thanks to the EM algorithm [1], we can derive unknown parameters ak,

μk, and σ2
k from y′ and pdf(y′

i). The EM algorithm is a well-established maxi-
mum likelihood algorithm for fitting a mixture model to a set of training data.
The algorithm is an iterative method which alternates between performing an
expectation(E)-step and a maximization(M)-step. The E-step computes the ex-
pectation of the log-likelihood evaluated from the current estimate for the la-
tent variables, and the M-step computes parameters maximizing the expected
log-likelihood found on the E-step. Because it is very popular to estimate the
parameters of Gaussian mixture model using the EM algorithm, we only de-
scribe the procedure to estimate the unknown parameters in this paper (see [1]
for detail).

Let Θ be a vector of unknown parameters ak, μk, and σ2
k. The log-likelihood

function L(y′, Θ) with respect to y′ is represented by

L(y′, Θ) = log Pr[y′, Θ] =
L∑

i=1

log
( m∑

k=1

akN(y′
i; μk, σ2

k)
)

. (8)

The goal is to maximize the posterior probability of the parameters Θ from y′

in the presense of hidden parameters ξ. The EM algorithm seeks to find the
maximum likelihood estimate of L(y′, Θ) by iteratively applying the following
two steps:
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– E-step: Calculate the conditional distribution of ξk,i under the current esti-
mate of the parameters Θ(t):

ξk,i =
akN(y′

i; μk, σ2
k)

m∑

h=1

ahN(y′
i; μh, σ2

h)

(9)

– M-step: Calculate the estimated parameters Θ(t+1) that maximize the ex-
pected value of L(y′, Θ(t+1)) using ξ:

ak =
1
N

L∑

i=1

ξk,i, (10)

μk =

L∑

i=1

ξk,iy
′
i

L∑

i=1

ξk,i

, (11)

and

σ2
k =

L∑

i=1

ξk,i(y′
i − μk)2

L∑

i=1

ξk,i

. (12)

The above E-step and M-step are iteratively performed until |L(y′, Θ(t+1)) −
L(y′, Θ(t))| < TL for an appropriately designed threshold TL. The EM algorithm
is known to converge in finite iterations for an arbitrary TL.

An important property of the EM algorithm is that it is not guaranteed to
converge to the global optimum. Instead, it stops at some local optimums, which
can be much worse than the global optimum. In our model, the following con-
straints on the above parameters improve the accuracy of the performance. At
least, we have two values ŷi = ±1 under the our attack model, and hence, we fix

μ1 = 1, (13)
μ2 = −1. (14)

All variances σ2
k are equal because ŷi is distorted only by Gaussian noise.

If the “average” or “average2” attack is performed, the number of Gaussian
components is at most m = 3; otherwise, m = 2 for collusion strategies under
the marking assumption. When m = 3, the EM algorithm must estimate the
following five parameters: a1, a2, a3, μ3 and σ2

e(= σ2
1 = σ2

2 = σ2
3). On the

other hand, among these five parameters, a3 and μ3 are omitted when m = 2.
Hence, the accuracy of the estimation at m = 2 is much better because the
number of unknown parameters is reduced. Thus, the accurate estimation of m
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will further improve the performance of EM algorithm when the number m is
properly estimated.

For the estimation of m, we need to find the collusion strategy selected for
producing a pirated copy. In [4], the EM algorithm is applied for the estima-
tion of the collusion strategy. However, the experimental results indicate that
the accuracy of the estimation is getting worse for more colluders and/or more
harmful process. In our case, even if we wrongly estimate m = 3, the estimated
parameters are not always bad. For example, when a3 = 0 or μ3 = 0 in the case
m = 3, the other parameters will be coincident with the case m = 2. So, we
roughly determine m as follows:

m =
{

2 if λ(y′) ≥ L/2
3 otherwise, (15)

where λ(y′) is the number of elements satisfying |y′
i| ≥ 1.

3.2 Correlation Score

Suppose that we transmit over a Gaussian channel with input ŷ and output y′.
Now, the probability distribution function is given by Eq.(5). Here, we start with
the case m = 2. Then,

Pr[ŷi = 1|y′
i] =

a1N(y′
i; μ1, σ

2
e)

a1N(y′
i; μ1, σ2

e) + a2N(y′
i; μ2, σ2

e)
, (16)

and

Pr[ŷi = −1|y′
i] =

a2N(y′
i; μ2, σ

2
e)

a1N(y′
i; μ1, σ2

e) + a2N(y′
i; μ2, σ2

e)
. (17)

In a noiseless case, we get y′
i = ŷi, and the correlation score S

(j)
i is calculated by

Eq.(2). Considering the above probabilities in a noisy case, Eq.(2) is rewritten
by

S
(j)
i = 1 · Pr[ŷi = 1|y′

i]Uj,i + (−1) · Pr[ŷi = −1|y′
i]Uj,i, (18)

=
a1N(y′

i; μ1, σ
2
e) − a2N(y′

i; μ2, σ
2
e)

a1N(y′
i; μ1, σ2

e) + a2N(y′
i; μ2, σ2

e)
Uj,i. (19)

Next, we generalize the above discussion. Now, we get the following probabilities:

Pr[ŷi = 1|y′
i] =

a1N(y′
i; μ1, σ

2
e)

m∑

k=1

akN(y′
i; μk, σ2

e)

, (20)

and

Pr[ŷi = −1|y′
i] =

a2N(y′
i; μ2, σ

2
e)

m∑

k=1

akN(y′
i; μk, σ2

e)

. (21)
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Therefore, the correlation score S
(j)
i is generally represented by

S
(j)
i =

a1N(y′
i; μ1, σ

2
e) − a2N(y′

i; μ2, σ
2
e)

m∑

k=1

akN(y′
i; μk, σ2

e)

Uj,i. (22)

3.3 Threshold

A simple approach to estimate the false-positive probability is to perform the
Monte Carlo simulation. Indeed, it is not easy in general because of the heavy
computational costs for estimating a tiny probability. Furon et al. proposed an
efficient method estimating the probability of rare events [5]. The method can
estimate the false-positive probability ε1 for a given threshold Z, which means
that the method calculates the map ε1 = F (Z). Once the relations are obtained,
it is sufficient to store them as a reference table. In other word, this method
must be iteratively performed to obtain an objective threshold for a given ε1.

In [7], an easy method to obtain a threshold for a given ε1 has been proposed.
The method is based on the CLT. At first, it calculates the variance of the
correlation sum S(j̃) such that an j̃-th codeword is randomly generated one and
is not assigned to any user in a fingerprinting system. For a sufficient number of
j̃, the variance σ2

S of S(j̃) is calculated by
∑

(S(j̃) −E[S(j̃)])2, where E[x] is the
expectation of x. Because of the Gaussian approximation based on the CLT, the
threshold Z for a given ε1 can be calculated as follows:

Z =
√

2σ2
S · erfc−1

(
2ε1

)
. (23)

The disadvantage of this method is the uncertainty-based approximation because
there is an argument about the validity of CLT applying for the estimation of ε1.

Our main interest in this paper is to evaluate the traceability of the pro-
posed detector compared with the conventional one. So, we roughly calculate
the threshold Z by Eq.(23) for a given ε1, and then, derive F (Z) as the actual
false-positive probability.

4 Equalization of Probability

Because of the symmetry of the bias distribution f(p), it is expected to be
Pr[ŷi = 1] = Pr[ŷi = −1] unless the colluders do not know the actual values Xj,i

of their codewords. However, when they happen to get the values contained in
segments, they can perform more active collusion strategies such as “all-0” and
“all-1”. Such a scenario is defined in [3] as the cryptographic colluders. Then,
Pr[ŷi = 1] is not always equal to Pr[ŷi = −1]. Under this condition, we reconsider
the optimality of the proposed detector.

If the parameters a1 and a2 are accurately estimated by the EM algorithm,

Pr[ŷi = 1] = a1, (24)
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and
Pr[ŷi = −1] = a2. (25)

Because of the imbalance between Pr[ŷi = 1] and Pr[ŷi = −1], it occurs the bias
between the first term Pr[ŷi = 1|y′

i]Uj,i and the second term Pr[ŷi = −1|y′
i]Uj,i

in Eq.(22). In order to equalize the bias of these probabilities, the correlation
score S

(j)
i is modified as follows:

S
(j)
i = 1 · Pr[ŷi = 1|y′

i]
Pr[ŷi = 1]

Uj,i + (−1)
Pr[ŷi = −1|y′

i]
Pr[ŷi = −1]

Uj,i,

=
N(y′

i; μ1, σ
2
e) − N(y′

i; μ2, σ
2
e)

m∑

k=1

akN(y′
i; μk, σ2

e)

Uj,i. (26)

This modification also changes the distribution of the correlation sum Sj , and
hence, the corresponding threshold must be accommodated. Thanks to the
method in Sect.3.3, it is easy to derive the threshold Z under the above conver-
sion of S

(j)
i .

5 Experimental Results

For the comparison of the performance of proposed methods, the number of de-
tected colluders and the false-positive probability are evaluated for the Nuida
code under the following conditions. The length is L = 5000, the number of
users is N = 104 and the false-positive probability is ε1 = 10−8. Under this
condition, the total false-positive probability η is approximated to be 10−4.
In our attack model, a pirated codeword is produced by collusion attack us-
ing randomly selected 105 combinations of c̃ = 8 colluders and it is distorted
by additive white Gaussian noise. The performance of the tracing algorithms
is evaluated by changing SNR. Using a threshold Z calculated by Eq.(23), η
is evaluated by F (Z) as well as the Monte Carlo simulation. We denote the
detector proposed in Sect.3 and Sect.4 by “method I” and “method II”, respec-
tively. The threshold for the EM algorithm is set to be TL = 0.01. In order to
reduce the computational costs required for each trial of a Monte Carlo simu-
lation, the number of iterations for the EM algorithm is limited to be 100 at
most.

The number of detectable colluders under the “majority” attack is plotted
in Fig.1. It is observed that both of the proposed methods approach to that of
SD method in the decrease of SNR, and that the method II outperforms the
other methods. The reason why the traceability of method I is dropping with
the increase of SNR comes from the wrong estimation of parameters in the
EM algorithm. Such a wrong estimation is occurred in the case that the esti-
mator judges m = 3 when in fact m = 2. By intensively measuring the estimated
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values, we found that μ3 is very close to one of μ1 and μ2 in many cases. It
means that the EM algorithm finds only two distribution in spite of the wrong
judgment of m = 3. In case μ3 ≈ 1(= μ1), we see Pr[ŷi = 1] = a1 + a3, but it is
judged Pr[ŷi = 1] = a1 by mistake in the proposed method I, which affects on the
probability Pr[ŷi = 1|y′

i]. As the result, the score S
(j)
i given by Eq.(22) is affected

by the miscalculation in the method I. By contrast, the score S
(j)
i in Eq.(26) in

the method II is stable for the miscalculation. Assuming an ideal case that the
EM algorithm can estimate the parameters with no error, the performance of
the proposed methods is evaluated under a same condition. For the comparison,
we plot the results of ideal case by solid lines and the actual values by dotted
lines in Fig.2. We can see that the traceability of method I is very close to, but is
slightly lower than that of method II in an ideal case. For further comparison, we
check the performance in the ideal case under the other collusion attacks for 103

trials of Monte Carlo simulation, which results are described in Fig.3. Notice that
the results of method II under “all-0” and “all-1” collusion strategies are much
higher than that of method I. It comes from the effect of equalization explained
in Sect.4. From this result, we can say that colluders can not get any benefit
from the information of symbols embedded in a copy. Under the “WCA”, we also
evaluate the performance for 105 trials of Monte Carlo simulation, which results
are plotted in Fig.4. The results are almost equal to those of the “majority”
attack.

Even if the score of innocent users can be approximated by a Gaussian dis-
tribution, the probability of false-positive cannot be simply expressed by Gauss
error function. The total false-positive probabilities under the “majority” attack
and “WCA” are plotted in Fig.5. In these figures, the solid and dotted lines are
the results derived from the experiment and F (Z), respectively. Although the
experimental results are slightly dispersed because the number of Monte Carlo
simulation is only 105, they are almost equal to F (Z) and are less than a given
probability η = 10−4. It means that the Gaussian approximation based on the
CLT for calculating the threshold Z is not bad under this condition.

In order to numerically compare the performance against collusion strate-
gies, the number of detected colluders and the total false-positive probability
are summarized in Table 1 and Table 2, respectively. As a whole, it is observed
that the traceability of the method II is better than that of the method I, and
the method II outperforms the conventional methods. It is remarkable that the
total false-positive probability of “minority” attack is the worst one among 8
collusion strategies under this experimental condition. Since our scope in this
paper is not to evaluate the validity of Gaussian assumption, but to calculate a
proper correlation score S

(j)
i under the noisy environment, the design of appro-

priate threshold Z is not deeply discussed and we merely employ the Gaussian
assumption to calculate Z for a given ε1 for its simplicity. Indeed, the use of
rare event simulator F (Z) can be a better method for designing the threshold
though it requires an iterative search for obtaining an objective threshold for a
given ε1.
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Fig. 1. Comparison of the traceability
under the majority attack for L = 5000,
c̃ = 8, and ε1 = 10−8
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ideal case under the majority attack for
L = 5000, c̃ = 8, and ε1 = 10−8
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under various collusion strategies for L =
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Table 1. Number of detected colluders for 8 collusion strategies when L = 5000 and
c̃ = 8

SNR detector collusion strategy
[dB] maj min ran all-0 all-1 ave ave2 WCA

HD 0.037 0.042 0.040 0.040 0.039 0.038 0.040 0.039
−4 SD 0.109 0.123 0.117 0.118 0.116 0.187 0.243 0.113

method I 0.120 0.132 0.137 0.001 0.001 0.179 0.202 0.134
method II 0.132 0.145 0.137 0.262 0.260 0.179 0.202 0.135

HD 0.860 0.881 0.874 0.878 0.865 0.864 0.872 0.868
0 SD 1.125 1.132 1.132 1.157 1.140 2.779 4.058 1.128

method I 1.532 1.545 1.579 0.172 0.165 2.586 3.872 1.574
method II 1.596 1.608 1.579 6.079 6.069 2.780 4.060 1.574

HD 4.270 4.242 4.257 4.268 4.241 4.258 4.250 4.255
4 SD 3.425 3.391 3.410 3.471 3.440 7.240 7.969 3.413

method I 4.109 4.107 4.547 5.418 5.394 7.132 7.984 4.562
method II 4.822 4.817 4.768 8.000 8.000 7.138 7.985 4.762

HD 6.144 6.131 6.143 6.148 6.131 6.139 6.135 6.137
8 SD 5.097 5.078 5.098 5.160 5.127 7.972 8.000 5.097

method I 5.604 5.531 6.041 7.016 7.006 7.547 8.000 6.054
method II 6.228 6.232 6.183 8.000 8.000 7.966 8.000 6.174

Table 2. False-positive probability η[×10−4] experimentally derived for 8 collusion
strategies when L = 5000 and c̃ = 8, where the values in parenthesis are F (Z)

SNR detector collusion strategy
[dB] maj min ran all-0 all-1 ave ave2 WCA

method I 0.8 1.5 0.3 0.7 0.9 0.1 0.3 1.4
−4 (0.432) (1.183) (0.734) (0.227) (0.233) (0.504) (0.720) (0.620)

method II 0.6 1.3 0.3 0.4 0.3 0.1 0.3 1.4
(0.432) (1.183) (0.734) (0.227) (0.233) (0.504) (0.720) (0.620)

method I 0.4 0.8 0.4 0.7 1.4 0.2 0.3 1.0
0 (0.411) (1.202) (0.693) (0.073) (0.077) (0.252) (0.347) (0.628)

method II 0.4 1.0 0.5 0.1 0.0 0.2 0.3 1.0
(0.403) (1.202) (0.693) (0.073) (0.077) (0.252) (0.347) (0.628)

method I 0.1 1.6 0.6 0.6 1.2 0.2 0.1 0.9
4 (0.414) (1.215) (0.716) (0.039) (0.038) (0.245) (0.148) (0.636)

method II 0.1 1.2 1.0 0.0 0.3 0.1 0.1 0.9
(0.414) (1.212) (7.416) (0.038) (0.038) (0.245) (0.148) (0.636)

method I 0.3 1.2 0.7 0.1 1.0 0.0 0.0 0.5
8 (0.431) (1.221) (0.699) (0.029) (0.032) (0.035) (0.079) (0.644)

method II 0.4 1.1 0.7 0.0 0.2 0.0 0.0 0.6
(0.431) (1.221) (0.699) (0.029) (0.032) (0.035) (0.079) (0.644)
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6 Conclusion

In this paper, we proposed a soft decision tracing algorithm to catch more col-
luder even if a pirated codeword is distorted by Gaussian noise. We first estimate
the parameters of Gaussian channel using the EM algorithm by giving some con-
strains. Then, the correlation score is calculated using the posterior probability of
each symbol of received codeword. Considering the bias between the probability
of symbols, we give a weight on the posterior probability. The experimental re-
sults show that the proposed method without the weighting requires an accurate
estimation of the number of Gaussian mixture model to get a best performance,
and the method with the weighting is not so sensitive for such an estimation.
For the specific collusion strategies such as “all-0” and “all-1”, it is confirmed
from our experiment that the weighting effectively enhances the performance of
tracing algorithm.

Although the proposed method is specified for AWGN channel, it can be ex-
tended for further complicated attack channels by tuning the EM algorithm. For
example, if additive colored Gaussian noise is injected to a pirated codeword, we
must estimate the mean values μ1 and μ2, while they are fixed under the AWGN
channel. Furthermore, when the distribution of additive noise is modeled by a
certain distribution such as Laplace and Rayleigh distributions, it is sufficient to
replace the Gaussian term N(y′

i; μ, σ2) appeared in this paper with the modeled
one.
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