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Preface

The 6th International Workshop on Security (IWSEC 2011) was held at the
Institute of Industrial Science, the University of Tokyo, Japan, during November
8–10, 2011. The workshop was co-organized by ISEC in ESS of the IEICE (The
Technical Group on Information Security in the Engineering Sciences Society
of the Institute of Electronics, Information and Communication Engineers) and
CSEC of the IPSJ (The Special Interest Group on Computer Security of the
Information Processing Society of Japan).

This year, the workshop received 45 submissions, of which 14 were accepted
for presentation. Each submission was anonymously reviewed by at least three
reviewers, and these proceedings contain the revised versions of the accepted
papers. In addition to the presentations of the papers, the workshop also fea-
tured a poster session and two invited talks. The invited talks were given by
Mitsuru Matsui on “Linear Cryptanalysis: History and Open Problems” and by
Takashi Shinzaki on “Palm Vein Authentication Technology and Its Application
Systems.”

The best paper award was given to “REASSURE: A Self-contained Mecha-
nism for Healing Software Using Rescue Points” by Georgios Portokalidis and
Angelos D. Keromytis, and the best student paper award was given to “Identity-
Based Deterministic Signature Scheme without Forking-Lemma” by S. Sharmila
Deva Selvi, S. Sree Vivek, and C. Pandu Rangan.

A number of people contributed to the success of IWSEC 2011. We would
like to thank the authors for submitting their papers to the workshop. The se-
lection of the papers was a challenging and delicate task, and we are deeply
grateful to the members of the Program Committee and the external review-
ers for their in-depth reviews and detailed discussions. We are also grateful to
Thomas Baignères and Matthieu Finiasz for developing iChair, which was used
for the paper submission, reviews, and discussions, and to Andrei Voronkov for
developing EasyChair, which was used to prepare these proceedings.

Last but not least, we would like to thank the General Co-chairs, Kanta
Matsuura and Naoya Torii, for leading the Local Organizing Committee, and we
would also like to thank the members of the Local Organizing Committee for
their efforts to ensure the smooth running of the workshop.

August 2011 Tetsu Iwata
Masakatsu Nishigaki
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A New Soft Decision Tracing Algorithm

for Binary Fingerprinting Codes

Minoru Kuribayashi

Graduate School of Engineering, Kobe University
1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501 Japan

kminoru@kobe-u.ac.jp

Abstract. The performance of fingerprinting codes has been studied
under the well-known marking assumption. In a realistic environment,
however, a pirated copy will be distorted by an additional attack. Under
the assumption that the distortion is modeled as AWGN, a soft decision
method for a tracing algorithm has been proposed and the traceability
has been experimentally evaluated. However, the previous soft decision
method works directly with a received signal without considering the
communication theory. In this study, we calculate the likelihood of re-
ceived signal considering a posterior probability, and propose a soft deci-
sion tracing algorithm considering the characteristic of Gaussian channel.
For the estimation of channel, we employ the expectation-maximization
algorithm by giving constraints under the possible collusion strategies.
We also propose an equalizer to give a proper weighting parameter for
calculating a correlation score.

1 Introduction

Digital fingerprinting [14] is used to trace illegal users, where a unique ID known
as a digital fingerprint is embedded into a content before distribution. When a
suspicious copy is found, the owner can identify illegal users by extracting the
fingerprint. Since each user purchases a content involving his own fingerprint,
the fingerprinted copy slightly differs with each other. Therefore, a coalition of
users will combine their differently marked copies of the same content for the
purpose of removing/changing the original fingerprint. To counter this threat,
coding theory has produced a number of collusion resistant codes under the
well-known principle referred to as the marking assumption.

Tardos [13] has proposed a probabilistic fingerprinting code which has a length
of theoretically minimal order with respect to the number of colluders. Theo-
retical analysis about the Tardos code yields more efficient probabilistic finger-
printing codes improving the traceability, code length, and so on. Among the
variants of the Tardos code, Nuida et al. [10] studied the parameters to generate
the codewords of the Tardos code which are expressed by continuous distribu-
tion, and presented a discrete version in an attempt to reduce the code length
and the required memory amount without degrading the traceability.

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 1–15, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 M. Kuribayashi

It is reported in [2] that a correlation sum calculated in a tracing algorithm
is expected to be Gaussian distribution based on the Central Limit Theorem
(CLT). Using the Gaussian approximation, the code length is further shortened
under a given false-positive probability. The results are supported and further
analyzed by Furon et al. [3], and the validity is experimentally evaluated in [8].
In [12], it is shown that the tails of the distribution follow a power law which
depends on the collusion strategy. Independent of the strategy, the right tail falls
off faster than the left tail.

Recently, the relaxation of the marking assumption has been employed in the
analysis of the Tardos code and its variants [5],[6],[7],[9]. In [7], a pirated copy is
produced by collusion attack and it is further distorted by additive white Gaus-
sian noise (AWGN). Considering the distortion, two kinds of tracing algorithms
are proposed; one rounds each element of codeword into binary digit before cal-
culating a correlation score, and the other directly calculates the score from the
distorted codeword. The former is called a hard decision method, and the latter,
a soft decision method. In [6], it is reported that the probability of false-positive
for the Tardos code is considerably increased in the amount of noise while that
for the Nuida code is not sensitive against the noise. However, the soft decision
method does not utilize the analog signals to maximize the performance of a de-
tector. It merely calculates a correlation score directly from the received signal
without the consideration of a posterior probability.

In this paper, we propose a soft decision tracing algorithm considering a pos-
terior probability of codeword extracted from a pirated copy. We assume that
a codeword is produced by a certain collusion strategy based on the marking
assumption and is distorted by additive white Gaussian noise. Depending on the
collusion strategy, the probability that an i-th bit becomes 1 is slightly/greatly
changed from the original probability, namely 0.5. In order to estimate the
probability as well as the variance of the Gaussian noise, the Expectation-
Maximzation(EM) algorithm is used in this paper. Generally, the EM algorithm
is not assured to find a global optimum whose estimated values are well-matched
with actual ones. By giving some constraints on the parameters estimated by the
EM algorithm, we improve the accuracy to find the global optimum. Using the
estimated parameters, we calculate a new correlation sum based on the posterior
probability. If the sum exceeds a specific threshold, the corresponding candidate
is judged guilty. Based on the CLT, the variance of the sum is derived from a
Monte Carlo simulator and the threshold for judgment is calculated by a given
false-positive probability. The validity of the threshold is also evaluated by the
rare event simulation method proposed in [5]. We further study the bias in the
calculation of the correlation score, and propose an equalizer to cancel the bias
by giving a weight on each score.

The experimental results reveal the following properties. 1: When the EM
algorithm fails to estimate the conditions of Gaussian channel, the performance
of the proposed method without the equalizer is degraded with the increase of
SNR. 2: The proposed method with the equalizer outperforms the method with-
out it. Especially for the cryptographic collusion strategy [3], we get a drastic
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improvement from the conventional methods. 3. The total false-positive proba-
bility is almost stable against the changes of SNR, and is slightly affected by a
collusion strategy if the threshold is designed under the Gaussian assumption.

2 Preliminaries

In this section, probabilistic fingerprinting codes are reviewed, and the related
works are briefly introduced.

2.1 Probabilistic Fingerprinting Code

Tardos [13] has proposed a probabilistic c-secure code which has a length of
theoretically minimal order with respect to the number of colluders. The binary
codewords of length L are arranged as an N × L matrix X, where N is the
number of users and each element Xj,i ∈ {0, 1} in the matrix is the i-th element
of j-th user’s codeword. The element Xj,i is generated from an independently and
identically distributed random number with a probability pi such that Pr[Xj,i =
1] = pi and Pr[Xj,i = 0] = 1 − pi. This probability pi referred to as the bias
distribution follows a certain continuous distribution represented by f(p):

f(p) =
1

π
√

p(1− p)
. (1)

Assuming that the number of colluders is at most c, the minimum length L
for a constant and tiny error probability is theoretically derived. The maximum
allowed probability of accusing a fixed innocent user is denoted by ε1, and the
total false positive probability by η = 1− (1− ε1)N−c ≈ Nε1. The false negative
probability denoted by ε2 is coupled to ε1 according to ε2 = ε

c/4
1 .

Nuida et al. [10] proposed a specific discrete distribution introduced by a
discrete variant [11] of Tardos code that can be tuned for a given number c
of colluders. The bias distribution is called “Gauss-Legendre distribution” due
to the deep relation to Gauss-Legendre quadrature in numerical approximation
theory (see [10] for detail). Except for the bias distribution, the Nuida code
employs the same encoding mechanism as the Tardos code.

Let L be a code length of a fingerprinting code. Suppose that c̃(≤ c) malicious
users out of N users are colluded, and they produce a pirated codeword y =
(y1, . . . , yL), yi ∈ {0, 1}. A tracing algorithm first calculates a score S

(j)
i for i-th

bit of j-th user using a real-valued function Uj,i, and then sums them up as the
total score S(j) =

∑L
i=0 S

(j)
i of j-th user.

S(j) =
L∑

i=1

S
(j)
i =

L∑
i=1

yiUj,i, (2)

where

Uj,i =

⎧⎨⎩
√

1−pi

pi
(Xj,i = 1)

−
√

pi

1−pi
(Xj,i = 0).

(3)
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Because the above correlation sum adds the score S
(j)
i only when yi = 1, half

of the elements in a pirated codeword is discarded. Considering the symme-
try, S̆korić et al. [2] proposed a symmetric version of the correlation score by
substituting ŷi = 2yi − 1 ∈ {−1, 1} for yi in Eq.(2).

For the Tardos code, if the sum S(j) exceeds a threshold Z, the j-th user
is determined as guilty. Such a tracing algorithm is called “catch-many” type
explained in [14]. By decoupling ε1 from ε2, the tracing algorithm can detect
more colluders under a constant ε1 and L. For the Nuida code [10], its original
tracing algorithm outputs only one guilty user whose score becomes maximum,
which type is called “catch-one”. Due to the similarity with the Tardos code, the
catch-many tracing algorithm of the Tardos code can be applied to the Nuida
code. The report in [6] stated that the performance of the Nuida code is better
than that of the Tardos code when the catch-many tracing algorithm is used.
Under a same code length and a same number of colluders, it is experimentally
measured that the correlation sum of the Nuida code is higher than that of the
Tardos code. It is remarkable that the false-positive probability of the Nuida code
is stable no matter how many colluders get involved in to generate a pirated copy
and no matter how much amount of noise is added to the copy if a threshold
is calculated under the Gaussian approximation for the correlation score. In
this paper, the validity of the previous tracing algorithms is discussed from the
Nuida code point of view, which does not limit the use of proposed method for
the Tardos code.

2.2 Attack Model

Under the marking assumption, colluders can select an arbitrary bit for such
elements that a bit embedded into the segments of their copies is different. Based
on an attack strategy, various collusion strategies under the marking assumption
could be selected by colluders. Among them, there are 5 major types:

– majority(maj): If the sum of i-th bit exceeds c̃/2, yi = 1; otherwise, yi = 0.
– minority(min): If the sum of i-th bit exceeds c̃/2, yi = 0; otherwise, yi = 1.
– random(ran): yi ∈R {0, 1}
– all-0: yi = 0
– all-1: yi = 1

In [5], the collusion attack is described by the parameter vector: θ = (θ0, · · · , θc̃)
with θρ = Pry[1|Φ = ρ], where the random variable Φ ∈ {0, · · · , c̃} denotes
the number of symbol “1” in the colluders’ copies at a given index. Further-
more, the Worst Case Attack(WCA) is defined as the collusion attack minimiz-
ing the rate of the code, or equivalently, the asymptotic positive error exponent.
For example, when c̃ = 5, the parameter vector of WCA is given by
θ� = (0, 0.594, 0.000, 1.00, 0.406, 1).

On the other hand, the attack strategies are not limited to the above types
in a realistic situation such that a codeword is binary and each bit is embedded
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into one of segments of a digital content without overlapping using a robust
watermarking scheme. It is reasonable to assume that each bit is embedded
into a segment using an antipodal signal: X̂j,i = 2Xj,i − 1, namely it is binary
phase shift keying(BPSK) modulation. In this case, colluders can apply the other
attack strategy at the detectable positions. Since each bit of codeword of ŷ
is one of {−1, 1} after the BPSK modulation, it is possible for colluders to
alter the signal amplitude of each element from the signal processing point of
view. One simple example is averaging attack that ŷi =

∑
X̂j,i/c, we call this

attack “average(ave)”. Considering the removal of fingerprint signal, a worst case
may be ŷi = 0. At the detectable position, it is sufficient to average only two
segments whose X̂j,i are different with each other, which attack is denoted by
“average2(ave2)”.

Even if a robust watermarking method is used to embed the binary fingerprint-
ing code into digital contents, it must be degraded by attacks. For convenience,
the distortion is modeled as AWGN in this study. So, we assume that a pirated
copy is produced by one of the above collusion strategies and is further distorted
by the Gaussian noise.

2.3 Conventional Tracing Algorithm

Assuming that the pirated codeword ŷ is transmitted over AWGN channel. Then,
the codeword extracted from a pirated copy is represented by analog value:

y′ = ŷ + e = (ŷ1 + e1, . . . , ŷL + eL), (4)

because of the addition of noise e that follows N(0, σ2
e). If a tracing algorithm

strictly follows the definition, each extracted symbol of the pirated codeword
should be rounded into a bit {−1, 1} when the symmetric version of the tracing
algorithm is used. Because of the rounding operation, this procedure is called
a hard decision (HD) method in [7] and [6]. On the other hand, it is possible
to directly calculate the correlation sum S(j) from the distorted pirated code-
word y′, which procedure is called a soft decision (SD) method. A soft decoding
method is very beneficial in error correcting code, so it is worthy to try for fin-
gerprinting. However, in the SD method, the likelihood of the received signal
is not considered to maximize the traceability. It is strongly required for the
soft decision method to calculate the correlation score based on the information
theoretic analysis.

3 Proposed Tracing Algorithm

The proposed tracing algorithm first estimates the amount of noise involved
in a pirated copy and then measures the likelihood of each symbol of pirated
copy. Using the likelihood, the correlation score is calculated and guilty users
are identified with a constant false probability ε1.
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3.1 Channel Estimation

The accurate estimation of the Gaussian channel can maximize the performance
of tracing algorithm. The estimator proposed in [7] does not make use of all the
available samples, but only half samples in average. In addition, it only estimates
the variance σ2

e of Gaussian noise. In this paper, we estimate the probability
distribution function that is regarded as a Gaussian mixture model.

If a collusion strategy is based on the marking assumption, each symbol of
a pirated codeword is ŷi ∈ {−1, 1}. Here, the probability Pr[ŷi = 1] is not
always equal to Pr[ŷi = −1]. So, the probability distribution function pdf(y′

i) is
represented by

pdf(y′
i) = aN(y′

i; 1, σ2
e) + (1− a)N(y′

i;−1, σ2
e), (5)

where a ≥ 0 and

N(y′
i; μ, σ2) =

1√
2πσ2

exp
(
− (y′

i − μ)2

2σ2

)
. (6)

Under the relaxed version of the marking assumption, the value of ŷi is not
limited to these two symbols. Hence, the probability distribution function can
be a mixture of several Gaussian components, and in general, it is denoted by

pdf(y′
i) =

m∑
k=1

akN(y′
i; μk, σ2

k), (7)

where m is the number of Gaussian components, and
∑m

k=1 ak = 1 and ak ≥ 0.
Thanks to the EM algorithm [1], we can derive unknown parameters ak,

μk, and σ2
k from y′ and pdf(y′

i). The EM algorithm is a well-established maxi-
mum likelihood algorithm for fitting a mixture model to a set of training data.
The algorithm is an iterative method which alternates between performing an
expectation(E)-step and a maximization(M)-step. The E-step computes the ex-
pectation of the log-likelihood evaluated from the current estimate for the la-
tent variables, and the M-step computes parameters maximizing the expected
log-likelihood found on the E-step. Because it is very popular to estimate the
parameters of Gaussian mixture model using the EM algorithm, we only de-
scribe the procedure to estimate the unknown parameters in this paper (see [1]
for detail).

Let Θ be a vector of unknown parameters ak, μk, and σ2
k. The log-likelihood

function L(y′, Θ) with respect to y′ is represented by

L(y′, Θ) = log Pr[y′, Θ] =
L∑

i=1

log
( m∑

k=1

akN(y′
i; μk, σ2

k)
)

. (8)

The goal is to maximize the posterior probability of the parameters Θ from y′

in the presense of hidden parameters ξ. The EM algorithm seeks to find the
maximum likelihood estimate of L(y′, Θ) by iteratively applying the following
two steps:
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– E-step: Calculate the conditional distribution of ξk,i under the current esti-
mate of the parameters Θ(t):

ξk,i =
akN(y′

i; μk, σ2
k)

m∑
h=1

ahN(y′
i; μh, σ2

h)

(9)

– M-step: Calculate the estimated parameters Θ(t+1) that maximize the ex-
pected value of L(y′, Θ(t+1)) using ξ:

ak =
1
N

L∑
i=1

ξk,i, (10)

μk =

L∑
i=1

ξk,iy
′
i

L∑
i=1

ξk,i

, (11)

and

σ2
k =

L∑
i=1

ξk,i(y′
i − μk)2

L∑
i=1

ξk,i

. (12)

The above E-step and M-step are iteratively performed until |L(y′, Θ(t+1)) −
L(y′, Θ(t))| < TL for an appropriately designed threshold TL. The EM algorithm
is known to converge in finite iterations for an arbitrary TL.

An important property of the EM algorithm is that it is not guaranteed to
converge to the global optimum. Instead, it stops at some local optimums, which
can be much worse than the global optimum. In our model, the following con-
straints on the above parameters improve the accuracy of the performance. At
least, we have two values ŷi = ±1 under the our attack model, and hence, we fix

μ1 = 1, (13)
μ2 = −1. (14)

All variances σ2
k are equal because ŷi is distorted only by Gaussian noise.

If the “average” or “average2” attack is performed, the number of Gaussian
components is at most m = 3; otherwise, m = 2 for collusion strategies under
the marking assumption. When m = 3, the EM algorithm must estimate the
following five parameters: a1, a2, a3, μ3 and σ2

e(= σ2
1 = σ2

2 = σ2
3). On the

other hand, among these five parameters, a3 and μ3 are omitted when m = 2.
Hence, the accuracy of the estimation at m = 2 is much better because the
number of unknown parameters is reduced. Thus, the accurate estimation of m
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will further improve the performance of EM algorithm when the number m is
properly estimated.

For the estimation of m, we need to find the collusion strategy selected for
producing a pirated copy. In [4], the EM algorithm is applied for the estima-
tion of the collusion strategy. However, the experimental results indicate that
the accuracy of the estimation is getting worse for more colluders and/or more
harmful process. In our case, even if we wrongly estimate m = 3, the estimated
parameters are not always bad. For example, when a3 = 0 or μ3 = 0 in the case
m = 3, the other parameters will be coincident with the case m = 2. So, we
roughly determine m as follows:

m =
{

2 if λ(y′) ≥ L/2
3 otherwise, (15)

where λ(y′) is the number of elements satisfying |y′
i| ≥ 1.

3.2 Correlation Score

Suppose that we transmit over a Gaussian channel with input ŷ and output y′.
Now, the probability distribution function is given by Eq.(5). Here, we start with
the case m = 2. Then,

Pr[ŷi = 1|y′
i] =

a1N(y′
i; μ1, σ

2
e)

a1N(y′
i; μ1, σ2

e) + a2N(y′
i; μ2, σ2

e)
, (16)

and

Pr[ŷi = −1|y′
i] =

a2N(y′
i; μ2, σ

2
e)

a1N(y′
i; μ1, σ2

e) + a2N(y′
i; μ2, σ2

e)
. (17)

In a noiseless case, we get y′
i = ŷi, and the correlation score S

(j)
i is calculated by

Eq.(2). Considering the above probabilities in a noisy case, Eq.(2) is rewritten
by

S
(j)
i = 1 · Pr[ŷi = 1|y′

i]Uj,i + (−1) · Pr[ŷi = −1|y′
i]Uj,i, (18)

=
a1N(y′

i; μ1, σ
2
e)− a2N(y′

i; μ2, σ
2
e)

a1N(y′
i; μ1, σ2

e) + a2N(y′
i; μ2, σ2

e)
Uj,i. (19)

Next, we generalize the above discussion. Now, we get the following probabilities:

Pr[ŷi = 1|y′
i] =

a1N(y′
i; μ1, σ

2
e)

m∑
k=1

akN(y′
i; μk, σ2

e)

, (20)

and

Pr[ŷi = −1|y′
i] =

a2N(y′
i; μ2, σ

2
e)

m∑
k=1

akN(y′
i; μk, σ2

e)

. (21)
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Therefore, the correlation score S
(j)
i is generally represented by

S
(j)
i =

a1N(y′
i; μ1, σ

2
e)− a2N(y′

i; μ2, σ
2
e)

m∑
k=1

akN(y′
i; μk, σ2

e)

Uj,i. (22)

3.3 Threshold

A simple approach to estimate the false-positive probability is to perform the
Monte Carlo simulation. Indeed, it is not easy in general because of the heavy
computational costs for estimating a tiny probability. Furon et al. proposed an
efficient method estimating the probability of rare events [5]. The method can
estimate the false-positive probability ε1 for a given threshold Z, which means
that the method calculates the map ε1 = F (Z). Once the relations are obtained,
it is sufficient to store them as a reference table. In other word, this method
must be iteratively performed to obtain an objective threshold for a given ε1.

In [7], an easy method to obtain a threshold for a given ε1 has been proposed.
The method is based on the CLT. At first, it calculates the variance of the
correlation sum S(j̃) such that an j̃-th codeword is randomly generated one and
is not assigned to any user in a fingerprinting system. For a sufficient number of
j̃, the variance σ2

S of S(j̃) is calculated by
∑

(S(j̃) −E[S(j̃)])2, where E[x] is the
expectation of x. Because of the Gaussian approximation based on the CLT, the
threshold Z for a given ε1 can be calculated as follows:

Z =
√

2σ2
S · erfc−1

(
2ε1
)
. (23)

The disadvantage of this method is the uncertainty-based approximation because
there is an argument about the validity of CLT applying for the estimation of ε1.

Our main interest in this paper is to evaluate the traceability of the pro-
posed detector compared with the conventional one. So, we roughly calculate
the threshold Z by Eq.(23) for a given ε1, and then, derive F (Z) as the actual
false-positive probability.

4 Equalization of Probability

Because of the symmetry of the bias distribution f(p), it is expected to be
Pr[ŷi = 1] = Pr[ŷi = −1] unless the colluders do not know the actual values Xj,i

of their codewords. However, when they happen to get the values contained in
segments, they can perform more active collusion strategies such as “all-0” and
“all-1”. Such a scenario is defined in [3] as the cryptographic colluders. Then,
Pr[ŷi = 1] is not always equal to Pr[ŷi = −1]. Under this condition, we reconsider
the optimality of the proposed detector.

If the parameters a1 and a2 are accurately estimated by the EM algorithm,

Pr[ŷi = 1] = a1, (24)
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and
Pr[ŷi = −1] = a2. (25)

Because of the imbalance between Pr[ŷi = 1] and Pr[ŷi = −1], it occurs the bias
between the first term Pr[ŷi = 1|y′

i]Uj,i and the second term Pr[ŷi = −1|y′
i]Uj,i

in Eq.(22). In order to equalize the bias of these probabilities, the correlation
score S

(j)
i is modified as follows:

S
(j)
i = 1 · Pr[ŷi = 1|y′

i]
Pr[ŷi = 1]

Uj,i + (−1)
Pr[ŷi = −1|y′

i]
Pr[ŷi = −1]

Uj,i,

=
N(y′

i; μ1, σ
2
e)−N(y′

i; μ2, σ
2
e)

m∑
k=1

akN(y′
i; μk, σ2

e)

Uj,i. (26)

This modification also changes the distribution of the correlation sum Sj , and
hence, the corresponding threshold must be accommodated. Thanks to the
method in Sect.3.3, it is easy to derive the threshold Z under the above conver-
sion of S

(j)
i .

5 Experimental Results

For the comparison of the performance of proposed methods, the number of de-
tected colluders and the false-positive probability are evaluated for the Nuida
code under the following conditions. The length is L = 5000, the number of
users is N = 104 and the false-positive probability is ε1 = 10−8. Under this
condition, the total false-positive probability η is approximated to be 10−4.
In our attack model, a pirated codeword is produced by collusion attack us-
ing randomly selected 105 combinations of c̃ = 8 colluders and it is distorted
by additive white Gaussian noise. The performance of the tracing algorithms
is evaluated by changing SNR. Using a threshold Z calculated by Eq.(23), η
is evaluated by F (Z) as well as the Monte Carlo simulation. We denote the
detector proposed in Sect.3 and Sect.4 by “method I” and “method II”, respec-
tively. The threshold for the EM algorithm is set to be TL = 0.01. In order to
reduce the computational costs required for each trial of a Monte Carlo simu-
lation, the number of iterations for the EM algorithm is limited to be 100 at
most.

The number of detectable colluders under the “majority” attack is plotted
in Fig.1. It is observed that both of the proposed methods approach to that of
SD method in the decrease of SNR, and that the method II outperforms the
other methods. The reason why the traceability of method I is dropping with
the increase of SNR comes from the wrong estimation of parameters in the
EM algorithm. Such a wrong estimation is occurred in the case that the esti-
mator judges m = 3 when in fact m = 2. By intensively measuring the estimated
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values, we found that μ3 is very close to one of μ1 and μ2 in many cases. It
means that the EM algorithm finds only two distribution in spite of the wrong
judgment of m = 3. In case μ3 ≈ 1(= μ1), we see Pr[ŷi = 1] = a1 + a3, but it is
judged Pr[ŷi = 1] = a1 by mistake in the proposed method I, which affects on the
probability Pr[ŷi = 1|y′

i]. As the result, the score S
(j)
i given by Eq.(22) is affected

by the miscalculation in the method I. By contrast, the score S
(j)
i in Eq.(26) in

the method II is stable for the miscalculation. Assuming an ideal case that the
EM algorithm can estimate the parameters with no error, the performance of
the proposed methods is evaluated under a same condition. For the comparison,
we plot the results of ideal case by solid lines and the actual values by dotted
lines in Fig.2. We can see that the traceability of method I is very close to, but is
slightly lower than that of method II in an ideal case. For further comparison, we
check the performance in the ideal case under the other collusion attacks for 103

trials of Monte Carlo simulation, which results are described in Fig.3. Notice that
the results of method II under “all-0” and “all-1” collusion strategies are much
higher than that of method I. It comes from the effect of equalization explained
in Sect.4. From this result, we can say that colluders can not get any benefit
from the information of symbols embedded in a copy. Under the “WCA”, we also
evaluate the performance for 105 trials of Monte Carlo simulation, which results
are plotted in Fig.4. The results are almost equal to those of the “majority”
attack.

Even if the score of innocent users can be approximated by a Gaussian dis-
tribution, the probability of false-positive cannot be simply expressed by Gauss
error function. The total false-positive probabilities under the “majority” attack
and “WCA” are plotted in Fig.5. In these figures, the solid and dotted lines are
the results derived from the experiment and F (Z), respectively. Although the
experimental results are slightly dispersed because the number of Monte Carlo
simulation is only 105, they are almost equal to F (Z) and are less than a given
probability η = 10−4. It means that the Gaussian approximation based on the
CLT for calculating the threshold Z is not bad under this condition.

In order to numerically compare the performance against collusion strate-
gies, the number of detected colluders and the total false-positive probability
are summarized in Table 1 and Table 2, respectively. As a whole, it is observed
that the traceability of the method II is better than that of the method I, and
the method II outperforms the conventional methods. It is remarkable that the
total false-positive probability of “minority” attack is the worst one among 8
collusion strategies under this experimental condition. Since our scope in this
paper is not to evaluate the validity of Gaussian assumption, but to calculate a
proper correlation score S

(j)
i under the noisy environment, the design of appro-

priate threshold Z is not deeply discussed and we merely employ the Gaussian
assumption to calculate Z for a given ε1 for its simplicity. Indeed, the use of
rare event simulator F (Z) can be a better method for designing the threshold
though it requires an iterative search for obtaining an objective threshold for a
given ε1.
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Table 1. Number of detected colluders for 8 collusion strategies when L = 5000 and
c̃ = 8

SNR detector collusion strategy
[dB] maj min ran all-0 all-1 ave ave2 WCA

HD 0.037 0.042 0.040 0.040 0.039 0.038 0.040 0.039
−4 SD 0.109 0.123 0.117 0.118 0.116 0.187 0.243 0.113

method I 0.120 0.132 0.137 0.001 0.001 0.179 0.202 0.134
method II 0.132 0.145 0.137 0.262 0.260 0.179 0.202 0.135

HD 0.860 0.881 0.874 0.878 0.865 0.864 0.872 0.868
0 SD 1.125 1.132 1.132 1.157 1.140 2.779 4.058 1.128

method I 1.532 1.545 1.579 0.172 0.165 2.586 3.872 1.574
method II 1.596 1.608 1.579 6.079 6.069 2.780 4.060 1.574

HD 4.270 4.242 4.257 4.268 4.241 4.258 4.250 4.255
4 SD 3.425 3.391 3.410 3.471 3.440 7.240 7.969 3.413

method I 4.109 4.107 4.547 5.418 5.394 7.132 7.984 4.562
method II 4.822 4.817 4.768 8.000 8.000 7.138 7.985 4.762

HD 6.144 6.131 6.143 6.148 6.131 6.139 6.135 6.137
8 SD 5.097 5.078 5.098 5.160 5.127 7.972 8.000 5.097

method I 5.604 5.531 6.041 7.016 7.006 7.547 8.000 6.054
method II 6.228 6.232 6.183 8.000 8.000 7.966 8.000 6.174

Table 2. False-positive probability η[×10−4] experimentally derived for 8 collusion
strategies when L = 5000 and c̃ = 8, where the values in parenthesis are F (Z)

SNR detector collusion strategy
[dB] maj min ran all-0 all-1 ave ave2 WCA

method I 0.8 1.5 0.3 0.7 0.9 0.1 0.3 1.4
−4 (0.432) (1.183) (0.734) (0.227) (0.233) (0.504) (0.720) (0.620)

method II 0.6 1.3 0.3 0.4 0.3 0.1 0.3 1.4
(0.432) (1.183) (0.734) (0.227) (0.233) (0.504) (0.720) (0.620)

method I 0.4 0.8 0.4 0.7 1.4 0.2 0.3 1.0
0 (0.411) (1.202) (0.693) (0.073) (0.077) (0.252) (0.347) (0.628)

method II 0.4 1.0 0.5 0.1 0.0 0.2 0.3 1.0
(0.403) (1.202) (0.693) (0.073) (0.077) (0.252) (0.347) (0.628)

method I 0.1 1.6 0.6 0.6 1.2 0.2 0.1 0.9
4 (0.414) (1.215) (0.716) (0.039) (0.038) (0.245) (0.148) (0.636)

method II 0.1 1.2 1.0 0.0 0.3 0.1 0.1 0.9
(0.414) (1.212) (7.416) (0.038) (0.038) (0.245) (0.148) (0.636)

method I 0.3 1.2 0.7 0.1 1.0 0.0 0.0 0.5
8 (0.431) (1.221) (0.699) (0.029) (0.032) (0.035) (0.079) (0.644)

method II 0.4 1.1 0.7 0.0 0.2 0.0 0.0 0.6
(0.431) (1.221) (0.699) (0.029) (0.032) (0.035) (0.079) (0.644)
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6 Conclusion

In this paper, we proposed a soft decision tracing algorithm to catch more col-
luder even if a pirated codeword is distorted by Gaussian noise. We first estimate
the parameters of Gaussian channel using the EM algorithm by giving some con-
strains. Then, the correlation score is calculated using the posterior probability of
each symbol of received codeword. Considering the bias between the probability
of symbols, we give a weight on the posterior probability. The experimental re-
sults show that the proposed method without the weighting requires an accurate
estimation of the number of Gaussian mixture model to get a best performance,
and the method with the weighting is not so sensitive for such an estimation.
For the specific collusion strategies such as “all-0” and “all-1”, it is confirmed
from our experiment that the weighting effectively enhances the performance of
tracing algorithm.

Although the proposed method is specified for AWGN channel, it can be ex-
tended for further complicated attack channels by tuning the EM algorithm. For
example, if additive colored Gaussian noise is injected to a pirated codeword, we
must estimate the mean values μ1 and μ2, while they are fixed under the AWGN
channel. Furthermore, when the distribution of additive noise is modeled by a
certain distribution such as Laplace and Rayleigh distributions, it is sufficient to
replace the Gaussian term N(y′

i; μ, σ2) appeared in this paper with the modeled
one.
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Abstract. Software errors are frequently responsible for the limited
availability of Internet Services, loss of data, and many security com-
promises. Self-healing using rescue points (RPs) is a mechanism that
can be used to recover software from unforeseen errors until a more
permanent remedy, like a patch or update, is available. We present RE-
ASSURE, a self-contained mechanism for recovering from such errors
using RPs. Essentially, RPs are existing code locations that handle cer-
tain anticipated errors in the target application, usually by returning
an error code. REASSURE enables the use of these locations to also
handle unexpected faults. This is achieved by rolling back execution to
a RP when a fault occurs, returning a valid error code, and enabling
the application to gracefully handle the unexpected error itself. REAS-
SURE can be applied on already running applications, while disabling
and removing it is equally facile. We tested REASSURE with various
applications, including the MySQL and Apache servers, and show that
it allows them to successfully recover from errors, while incurring mod-
erate overhead between 1% and 115%. We also show that even under
very adverse conditions, like their continuous bombardment with errors,
REASSURE protected applications remain operational.

1 Introduction

Program errors or bugs are ever-present in software, and specially in large and
highly complex code bases [20]. They manifest as application crashes or unex-
pected behavior and can cause significant problems, like limited availability of
Internet services [22], loss of user data [11], or lead to system compromise [24].
Many attempts have been made to increase the quality of software and reduce
the number of bugs. Companies enforce strict development strategies and edu-
cate their developers in proper development practices, while static and dynamic
analysis tools are used to assist in bug discovery [2,5]. However, it has been es-
tablished that it is extremely difficult to produce completely error-free software.

To alleviate some of the dangers that bugs like buffer overflows and dan-
gling pointers entail, various containment and runtime protection techniques
have been proposed [8,1,7,12,18]. These techniques can offer assurances that cer-
tain types of program vulnerabilities cannot be exploited to compromise security,

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 16–32, 2011.
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but they do not also offer high availability and reliability, as they frequently ter-
minate the compromised program to prevent the attacker from performing any
useful action.

In response, researchers have devised novel mechanisms for recovering exe-
cution in the presence of errors [13]. ASSURE [26], in particular, presents a
powerful system that enables applications to automatically self-heal. Its oper-
ation revolves around the understanding that programs usually include code
for handling certain anticipated errors, and it introduces the concept of rescue
points (RPs), which are locations of error handling code that can be reused to
gracefully recover from unexpected errors. In ASSURE, RPs are the product of
offline analysis that is triggered when a new and unknown error occurs, but they
can also be the result of manual analysis. For example, RPs can by identified by
examining the memory dump produced when a program abnormally terminates.
Also, they serve a dual role, first they are the point where execution can be
rolled back after an error occurs, and second they are responsible for returning
a valid and meaningful error to the application (i.e., one that will allow it to
resume normal operation).

Regrettably, deploying RPs using ASSURE is not straightforward, but it de-
mands that various complex systems are present. For instance, to support exe-
cution rollback, applications are placed inside the Zap [19,15] virtual execution
environment, while RP code is injected using Dyninst [4]. Zap is a considerably
complex component that is tightly coupled with the Linux kernel, and requires
maintenance along with the operating system (OS). In practice, RPs are a use-
ful but temporary solution for running critical software until a proper solution,
in the form of a dynamic patch or update, is available. It is our opinion that
RPs have not been widely used mainly because of the numerous requirements,
in terms of additional software and setup, of previous solutions like ASSURE.

We propose REASSURE, a self-contained mechanism for healing software us-
ing RPs. REASSURE assumes that a RP has already been identified, and needs
to be deployed quickly and in a straightforward manner. It builds on Intel’s PIN
dynamic binary instrumentation (DBI) framework to install the RP and pro-
vide the virtual execution environment for rolling back execution. As Pin itself
is simply an application, installation is simple and very little maintenance (or
none at all) is necessary. Furthermore, REASSURE does not need to be continu-
ously operating or even present, but it can be easily installed and attached only
when needed. Disabling it and removing it from a system is equally uncompli-
cated, since it can be detached from a running application without interrupting
its operation. Combined with a dynamic patching mechanism [4,9,17], applica-
tions protected with REASSURE can be run and eventually patched without
any interruption.

We have implemented REASSURE as a Pin tool for Linux1. Our evaluation
with popular servers, like Apache and MySQL, that suffer from well known
vulnerabilities shows that REASSURE successfully prevents the protected ap-
plications from terminating. When no faults occur, the performance overhead

1 Interested readers can contact the authors for a copy.
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Recurring fault in application without self-healing 

Rescue-point 
analysis 

Recurring fault in application with self-healing 

Recovery 

Crash 

Fig. 1. Software self-healing overview. A faulty application will crash and need to be
restarted every time a fault occurs. With self-healing, an analysis of the fault when it
first occurs, results in the definition of a rescue point for the application, which allows
it to gracefully recover from future occurrences of the same fault.

imposed by REASSURE varies between 1% and 115% depending on the ap-
plication, while in the presence of errors there is little effect on the protected
application until the frequency of faults surpasses five faults per second. We
should also note that Pin supports multiple platforms (e.g., Windows and Mac
OS), and REASSURE can be extended to support them with little effort.

This paper is organized as follows: Section 2 presents an overview of software
healing using RPs. We describe REASSURE in Sect. 3, and evaluate its effec-
tiveness and performance in Sect. 4. Section 5 discusses limitations and future
work, while related work is discussed in Sect. 6. We conclude in Sect. 7.

2 Software Self-healing Using Rescue Points

Software self-healing using RPs was first proposed in ASSURE [26], where the
authors describe an architecture that enables unmodified applications to auto-
matically heal themselves in the presence of unanticipated faults. An overview
of the idea behind this scheme is presented in Fig. 1. The architecture can be
decomposed into two parts. The first, is responsible for generating a RP when an
unexpected error occurs, while the second is in charge of applying the produced
RP on the application and recovering from future errors.

2.1 What Is a Rescue Point?

We define a rescue point as a function, preceding and encapsulating code suffer-
ing from an fault (i.e., the fault it aims to mend) that contains error handling
code, which can be reused to gracefully handle the unexpected error. For in-
stance, consider the function shown in Fig. 2. It calls three other functions,
namely f1(), f2(), and f3(). Let’s assume that f3() contains a bug, which if trig-
gered will terminate the application. We observe that f3() does not return any
value, which means that it either always succeeds or simply does not handle
certain conditions, such as the one causing the fault. On the other hand, the
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FAULT 

r1 = f1() 

if (r1 != 0) 
return err1;

r2 = f2() 

if (r2 != 0) 
return err2;

f3() 

return OK;

…[code]… 

…[code]… 

…[code]… 

function() { Rescue
Point 

Rollback 
changes 

Commit 
changes 

}

Fig. 2. Rescue point example. The function shown contains error handling code which
can be used to handle errors occurring in the faulty f3() function.

function encompassing it contains code that handles erroneous conditions, like
f1() and f2() returning an error. Therefore, we can use this function as a RP
that will enable the application to self-heal from an error in f3().

2.2 Rescue Point Discovery

ASSURE described a mechanism to automatically discover possible RPs and
select the best fit to deploy in terms of survivability after an error occurs. Briefly,
the procedure starts by profiling the application before it is deployed to discover
all possible RPs. This is achieved by monitoring the values returned by the
application’s functions, as it is provided with fuzzed and faulty inputs. Later,
when it is deployed and running normally, ASSURE takes periodic checkpoints
of the application state and maintains an execution log that includes network
traffic by running the application within Zap.

Concurrently, it monitors the application to detect failures and misbehavior.
The simplest way to achieve this is to intercept signals such as a segmentation
fault that indicates improper memory handling. Other approaches that detect
memory errors can also be employed [18,8,1,21]. When an error is detected AS-
SURE initiates offline rescue point analysis (see Fig. 1) in a replica, which returns
the application to the last checkpoint before the fault and attempts to reproduce
the fault by replaying the execution log. The aim of this analysis is to detect the
location of the error, thus enabling the selection of an appropriate RP. Interested
readers are referred to [26] for detailed information.

Alternatively, RPs can be discovered manually. For instance, an application
terminating due to a segmentation fault can be configured to dump core, a file
that describes the state of the application at the time of the fault. Processing
the dumped core can reveal the function containing the fault, which can be
frequently used as a RP itself or assist the user to find a nearby RP fit to handle
the error.
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2.3 Rescue Point Deployment

In ASSURE, RPs are deployed using two systems. First, Dyninst [4] is employed
to inject special code in the beginning of the corresponding function that check-
points the application, and in case of an error returns a valid error code. Second,
the Zap-based virtual environment is used to actually perform the checkpoint, as
well as rollback the application when an error occurs. In the latter case, execution
returns in the RP, which returns an error.

Using Zap enabled ASSURE to keep overhead low and achieve fast recovery
times. Unfortunately, deploying RPs in this fashion is not very practical. Zap re-
quires extensive modifications to the OS and cannot be dynamically installed and
removed. Software self-healing targets systems that require temporary protection
against known bugs until an official patch is available that properly addresses
the error. As such, users are reluctant to install and maintain the additional
software required to deploy ASSURE.

We offer an attractive alternative that simplifies RP deployment in the form
of a self-contained mechanism built using Intel’s Pin dynamic instrumentation
framework. Our tool, REASSURE, only requires the Pin framework which oper-
ates on stock software and hardware. It can be dynamically applied for as long as
it is required. For example, until the application is updated, or until an ingress
filtering mechanism is used to block the inputs causing the fault. Afterward, it
can detach itself from the application and be removed from the system.

3 REASSURE Implementation

3.1 The Pin DBI Framework

Pin [16] enables the development of tools that can augment, modify, or simply
monitor a binary’s execution at the instruction level. It provides a rich API that
can be used by developers of tools (Pintools) to install callbacks to inspect a pro-
gram’s instructions and routines, as well as intercept system calls and signals.
In Pin’s terms, it allows the instrumentation of the application. Additionally, in-
strumentation routines can modify original code by removing instructions or by
more frequently adding new code, referred to as analysis code. The instrumented
application executes on top of Pin’s virtual machine (VM) runtime, which es-
sentially consists of a just-in-time (JIT) compiler that combines the original and
analysis instructions, and places the produced code blocks into a code cache,
where the application executes from.

The same block of application code can be instrumented in different ways
through versioning. Every application thread initially executes in version zero,
which corresponds to the default code cache. Instrumentation code can change
the version of a running thread by adding analysis code that will change the
version of the thread executing a particular instruction or block of code. When
a thread switches to a new version, execution continues from the code cache of
that version. If a block of code has not been instrumented for a certain version,
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the instrumentation routine is called again and can install different analysis code
based on the version.

Pin is actively developed and supports multiple hardware architectures and
OSs. Pintools can be applied on any supported binary by either launching the
binary through Pin or by attaching on an already running binary. The latter be-
havior is highly desirable for REASSURE, as it allows us to deploy RPs without
interrupting an already executing application. We implemented REASSURE as
a Pintool on Linux, but it is by no means limited to the Linux OS.

3.2 Installing Rescue Points

RPs can be installed on any callable application function. Such a function can be
identified by its name or its address. The latter can be useful in cases where a bi-
nary has been entirely stripped of symbol information, and as such its functions
are only identifiable by their address. In systems where the targeted binary is
stripped and address space layout randomization (ASLR) [21] is used, specifying
a RP’s function may require additional analysis. That is because the function
cannot be located by name, and its address may change due to the executable or
library containing it being mapped to a different location because of ASLR. In
such cases, the application can be launched without REASSURE, so we can first
obtain the address where the object containing the RP’s function was actually
loaded. For instance, libfoo.so may be loaded at address 0xb6e7a000. In Linux,
such information can be obtained through the /proc pseudo-file system. Addi-
tionally, we can statically determine the offset of the RP’s function within the
object. For example, function foo() may be defined at offset 0x800 in libfoo.so.
By combining this information, we can calculate the address foo(), which in this
example would be 0xb6e7a800, and attach REASSURE on the process using the
calculated RP address.

Assuming we have the means to identify RP functions, installing them is
straightforward. If the function is defined by name, REASSURE first determines
the address it resides in. This is accomplished by scanning the application and all
its shared libraries as they are loaded. Concurrently, we scan each RP function we
encounter to find at least one exit point (i.e., a ret instruction) that will be used
to return a valid error when a fault occurs. Finally, we install an instrumentation
callback, which causes Pin to notify our tool whenever a new block of code is
encountered. The instrumentation routine performs the following operations:
1. If a RP’s entry point is encountered, analysis code is inserted to switch the

thread that enters the RP to checkpointing mode. Primarily, this causes the
thread entering the RP to switch to a different code cache version (discussed
in Sect. 3.1) and saves the thread’s CPU state. The checkpointing version
of the instrumentation inserts analysis code that logs all the writes being
performed by the application required for rolling back when an error occurs.

2. If aRP’s exit point is encountered, analysis code is inserted to switch the thread
returning from the function out of checkpoint mode and to normal execution.
Besides switching to the original code cache that does not log program writes,
the analysis code also discards the log of writes (i.e., commits the changes).
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Table 1. Signals intercepted by REASSURE to identify and recover from program
errors

Signal Description

SIGSEGV Invalid memory reference/segmentation fault
SIGILL Illegal instruction (e.g., because of an invalid control-flow transfer)
SIGABRT Abort signal sent by the abort system call
SIGFPE Floating point exception (e.g., divide by zero)

3.3 Memory Writes Logging

A RP’s code, as well as all code called from it, is instrumented so as to log all
the writes being performed. This write log serves the purpose of keeping track of
all the modifications performed within a RP, so that it can be rolled back when
an error occurs (i.e., usually the same error that necessitated the introduction of
the RP). This is achieved by augmenting every memory write instruction within
a RP with analysis code that appends an entry in a dynamically expanding
array, which holds the address being written and the value being overwritten.
Because we are using Pin’s instrumentation versioning, only the instructions
being reached from within a RP are actually instrumented this way.

The analysis functions responsible for writes logging need to be carefully writ-
ten to avoid certain erroneous conditions. For instance, consider a program per-
forming an illegal memory write that causes a page fault within a RP. This
memory write is also instrumented, so that the value being overwritten is saved
in the log. Unfortunately, since the target address is invalid, the logging code
executing before the actual write will cause the page fault instead. We have
written these analysis routines in such a way that such a fault will not leave the
writes log in a corrupted state (e.g., with an erroneous number of entries).

3.4 Recovery from Faults

When terminal faults occur in Linux, the OS issues a synchronous signal, which
if not handled will cause a process to terminate. For instance, an invalid memory
reference will cause a SIGSEGV signal to be delivered by the OS. REASSURE
intercepts such signals to identify errors occurring within RPs and initiate re-
covery. Table 1 lists all the signals intercepted by REASSURE to recover from
program faults. Note that other OSs have similar mechanisms to synchronously
notify applications of such errors. For example, Windows uses exceptions.

When REASSURE receives one of the signals in Table 1, we first check that
the thread that received the signal is actually within a RP. If that is the case,
we proceed to restore the values that have been overwritten since the entry to
the RP and restore the saved CPU state. These actions effectively rollback the
CPU and memory modifications in single-threaded applications, and applications
where the function the RP was applied on does not access shared data or interact
with other threads. We discuss concurrency issues in multithreaded applications
separately in Sect. 3.5. We proceed by updating the program counter to point to
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the ret instruction found during the RP’s installation and use Pin’s API to set
the function’s return value to the one specified by the RP as a valid error return
value. In x86 architectures the return value is simply placed in the eax register.
Recovery is completed by suppressing the delivery of the signal to the application
and resuming execution from the updated program counter. In opposition, if one
of these signals is received while the thread is not in a RP, we deliver it to the
application for processing.

3.5 Concurrency

Restoring the CPU state and undoing memory writes is sufficient for recovering
from faults in single-threaded applications, but this may not be the case in
multithreaded applications. In general, threads share a common address space
and, as such, updates made by one thread are immediately visible to all of
them. Let’s consider a multithreaded application with a buggy function that
makes updates that affect multiple threads. It is possible that memory updates
made by thread A within a RP are used by thread B to make further updates.
Consequently, if an error occurs in thread A, the recovery process may leave
residual data because of thread B having propagated the updates of thread A.

We address such concurrency issues by introducing blocking RPs that block
other threads for their duration. REASSURE provides two modes of operation
to accommodate blocking RPs. The first caters to applications that expect a
very high rate of faults, while the second offers faster operation as long as the
rate of faults is reasonable (evaluated in Sect. 4.3).

Always-on blocking mode operates by conditionally instrumenting every block
of instructions with an analysis routine that blocks the executing thread when a
certain flag, which is asserted by the blocking-RP upon entry, is set. Because this
mode introduces frequent checks of the “block” flag, it incurs high overheads,
but has low latency (i.e., we can quickly activate/deactivate blocking) and is
thus more appropriate for applications where faults occur very frequently.

On-demand blocking mode utilizes OS facilities to achieve better performance.
In particular, we use signals (i.e., the SIGUSR2 signal) to asynchronously in-
terrupt the remaining threads whenever a blocking-RP is entered. Similarly, to
fault-related signals, REASSURE intercepts the delivery of SIGUSR2 to install
temporary blocks in receiving threads. Since the code that the thread was exe-
cuting may have already been instrumented, we first remove the code currently
executing from the code cache. After suppressing the delivery of the signal, Pin
attempts to resume execution and since the block of code is no longer present
in the code cache, our instrumentation routine is invoked again. This allows us
to install an analysis routine that will block the thread. When a RP exits, we
remove the blocking analysis code by once again removing the corresponding
instructions from the code cache. This method has the advantage of the appli-
cation generally executing faster, since “blocking” code is not installed de facto
for every block of code. On the other hand, since it relies on the OS to issue
and deliver signals, it takes longer to block threads which may lead to decreased
performance when a high rate of errors is observed.
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Table 2. Applications and benchmarks used for the evaluation of REASSURE. All of
applications contain exploitable bugs as described by their common vulnerability and
exposure (CVE) id.

Application Bug type Benchmark

MySQL v5.0.67 Input validation CVE-2009-4019
MySQL’s test-insert
and test-select

Apache v1.3.24 Memory corruption CVE-2002-0392 Apache’s ab utility
CoreHTTP v0.5.3a Stack overflow CVE-2007-4060 Apache’s ab utility
Samba v3.0.21 Heap overflow CVE-2007-2446 Linux’s dd utility

4 Evaluation

We evaluated REASSURE along two axes. First, we show that it is able to
correctly heal various applications that contain bugs that can cause them to ab-
normally terminate. Second, we evaluate the performance overhead imposed by
REASSURE on these applications. In both cases, we employed existing bench-
marks and tools to generate workloads. Table 2 lists the applications and bench-
marks used during the evaluation. We conducted the experiments presented in
this section on a DELL Precision T5500 workstation with dual 4-core Xeon CPUs
(with HyperThreading disabled) and 24GB of RAM running Linux 2.6.

4.1 Recovery from Errors

We tested REASSURE’s ability to heal software by triggering known bugs in
the applications listed in Table 2, while concurrently running the corresponding
benchmarks. When REASSURE is not employed, the applications terminate and
the benchmarks are interrupted in all cases. In contrast, when using REASSURE
to apply a RP that engulfs the function that causes the crash, the applications
recover from the error and the benchmarks conclude successfully.

Table 3 shows the RPs applied on the applications. All applications except
MySQL do not use multiple threads, but instead consist of either a single event-
driven process or multiple processes. For this reason, we used non-blocking RPs
for all applications besides MySQL. For the latter, even though its RP does not
access shared data and consequently does not require blocking, we tested it with
both RP types to demonstrate REASSURE’s correctness.

4.2 Performance in the Absence of Errors

For each application in Table 2, we performed the corresponding benchmark,
first with the application executing natively, then running under the Pin DBI
framework, and last under REASSURE with the corresponding RP installed.
This allows us to quantify the overhead imposed by REASSURE compared with
native execution, as well as the relative overhead compared with the baseline,
which in our case is Pin. In the tests described in this section, we did not inject
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Table 3. The rescue points applied to recover from the bugs listed in Table 2

Application Function name Return value Type

MySQL v5.0.67 Item func set user var::update() 1
Non-blocking
Blocking

Apache v1.3.24 ap bread() -1 Non-blocking
CoreHTTP v0.5.3a HttpSprockMake() 0 Non-blocking
Samba v3.0.21 switch message() -1 Non-blocking

any requests that would trigger the bugs each application suffers from, never-
theless the RPs listed in Table 3 were installed.

Figure 3 shows the results obtained after running 10 iterations of MySQL’s
test-insert and test-select benchmark tests over an 1Gb/s network link. The y-
axis lists the various server configurations tested, which from top to bottom are:
native execution, execution over Pin, REASSURE using a non-blocking RP, and
REASSURE using a blocking RP both in on-demand and always-on blocking
mode. The x-axis shows the average time (in seconds) needed to complete each
benchmark, while the errors bars represent standard deviation. Note that the
figure also includes standard deviation for test-select, but it is insignificant and
thus not visible. We observe that the test-insert and test-select benchmarks take
on average 24% and 53% more time to complete when running the server over
REASSURE and no blocking RPs, while a significant part of the overhead is
because of Pin (under Pin the tests take 18% and 46% more time). Using on-
demand blocking has little effect on performance, while using always-on blocking
increases the overhead to 42% and 115% respectively.

Figures 4(a) and 4(b) depict the results obtained after running 10 iterations
of Apache’s ab benchmark utility over an 1Gb/s network link for the Apache and
corehttp web servers respectively. The y-axis displays the average throughput in

Total time (sec)

0 250 500 750 1000 1250 1500 1750

Native

Pin

REASSURE
(non−blocking RP)

REASSURE
(on−demand blocking RP)

REASSURE
(always−on blocking RP)

test−insert

test−select

Fig. 3. MySQL performance. Time needed to complete MySQL’s test-insert benchmark
over an 1Gb/s network link. We apply the rescue point in three different ways: as a
non-blocking RP, a blocking RP with on-demand thread blocking, and a blocking RP
with always-on blocking.
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Fig. 4. Web server performance. We used Apache’s ab benchmark utility to measure the
throughput of the Apache and corehttp web servers when requesting files of different
size over an 1Gb/s network link.

requests per second as reported by ab, and the error bars represent standard
deviation. We performed the experiments requesting files of different size from
the web servers (listed in the x-axis), while we repeated each test with the
corresponding server running: natively, over Pin, and with REASSURE (the
RPs used are non-blocking). Corehttp is a single-process server and Apache
was configured to only spawn a single process for serving requests to obtain
comparable results.

In Fig. 4(a), we see that Apache performs approximately 4%-10% slower when
run with REASSURE and the greater part of the overhead is because of Pin.
We also notice that the overhead drops as the size of the requested file increases.
This is due to the workload becoming more I/O intensive (i.e., more data need
to be transferred per request) and the number of requests arriving at the server
shrinks. On the other hand, Fig. 4(b) shows that corehttp performs significantly
worse than Apache. When running under REASSURE its throughput is reduced
by approximately 40%-60%, while even when running under Pin we observe a
31%-54% reduction in throughput. There are two reasons corehttp performs so
poorly. First, it is the only application where the RP is actually in the critical
path of execution and it is entered for every performed request. Second, corehttp
consists of many and short lived function calls that require additional processing
by Pin, which be design receives control before performing any indirect control
transfer like a function return. Note that the performance of code running within
a RP greatly depends on parameters like the initial size of the writes log described
in Sect. 3.3. If the RP is in the critical path, as in the case of corehttp, and
contains many memory writes, the log will have to be frequently enlarged to
accommodate the application. In the experiments described in this section, the
initial size of the writes log, as well as the step used to enlarge it, is 50000 entries.

Finally, Fig. 5 shows the results of copying an 100MB file to a directory shared
through samba over an 1Gb/s network link. The y-axis shows the average transfer
rate (in MB/s) achieved by the dd utility. Once again, we performed 10 iterations
of each test and we display standard deviation using error bars. We observe that



REASSURE: A Self-contained Mechanism for Healing Software RPs 27

Transfer rate (MB/s)

0 1 2 3 4 5 6 7

Native

Pin

REASSURE

Fig. 5. Samba performance. We used the dd utility to copy an 100MB file containing
randomly generated data to a directory shared using samba. The shared directory was
mounted on a remote host over an 1Gb/s network link.

when running the samba server over REASSURE there is a negligible drop in
the transfer rate (approximately 1%), even though the installed RP is entered
on every file transfer request.

4.3 Performance in the Presence of Errors

We complemented the experiments in the previous section by performing a set of
tests against the Apache web server and the MySQL DB server running over RE-
ASSURE and in the presence of errors. For Apache, we measured its throughput
(in requests per second) using the ab utility to request a 16KB file, while con-
currently we issued requests with varying frequency that triggered the server’s
fault, which was protected by a non-blocking RP. Figure 6 shows the results
of this experiment. The x-axis is in logarithmic scale and corresponds to the
time interval (in seconds) used to submit a faulty request to the server (i.e., we
attempted to crash the server every x seconds). When there is an one second or
longer interval between the attacks to the server, it performs as well as when no
errors occur, while at the same time it “heals” from the occurring errors. As the
frequency of the attacks increases the attainable throughput drops. Finally, if er-
rors occur continuously (zero seconds injection interval) the server still survives,
even though throughput is greatly reduced.

In Fig. 7, we show the results obtained from running MySQL’s test-select,
while faults were injected as in the experiment described above. The y-axis
shows the time needed to complete each test and the x-axis corresponds to
the time interval between fault injections. Both axes are in logarithmic scale.
We utilized a blocking RP to recover from the faults, both in on-demand and
always-on blocking mode, and in both cases we observe that if the time between
faults is one second or longer, there is only a minor decrease in performance.
As the frequency of the faults increases, so does the overhead in both blocking
modes. Predominantly, on-demand blocking outperforms always-on blocking, but
in high fault frequencies (approximately one fault per 0.1s or less) the situation is
reversed. Users of REASSURE that are able to anticipate the rate of faults, can
use this knowledge to select the better performing blocking mode. Alternatively,



28 G. Portokalidis and A.D. Keromytis

T
hr

ou
gh

pu
t (

R
eq

/s
)

0

250

500

750

1000

1250

Fault injection interval (seconds elapsed between fault injection)

0

0.
2

0.
5 1 10 20

Average performance without faults

378.77

1019.851039.81 1044.82 1052.58 1052.76

Fig. 6. Throughput of Apache web server as the number of faulty requests changes.
Measured using Apache’s ab benchmark utility to request a 16KB file containing ran-
domly generated data. At the same time a non-blocking RP was employed to recover
from the injected errors.

REASSURE could also monitor the frequency of faults to automatically switch
from one mode to the other (discussed in Sect. 5).

5 Limitations and Future Work

There are various issues that should be considered before deploying a blocking-
RP. For instance, if the RP function attempts to acquire a lock that is already
held by another thread, the application may be deadlocked as REASSURE blocks
all other threads. One should also be aware of certain library calls that may ob-
tain locks (e.g., printf()). Therefore, blocking-RPs should be used with prudence
and only when necessary, specially considering their overhead. Some of the is-
sues with blocking-RPs can be addressed by extending REASSURE, so that RPs
can be installed just on certain parts of a function (fine-grained RPs). We could
then install a rescue point within the critical region of a function, after a lock
has already been obtained.

Some caution is also needed when setting up RPs in functions that perform
certain system calls, as the current implementation of REASSURE does not
rollback the effects of system calls. Frequently, this fact does not have any adverse
effect on the application. For instance, retrieving the system’s time, reading a
random number from /dev/urandom, and requiring more heap size do not affect
the application in case of a rollback. In fact, even operations such as writing an
entry in a log file or a network socket can be allowed from within a RP. While
the data are still written to the destination, a rollback will leave the system in
a valid state. However, this may not be the case for all applications, as RPs
containing writes on critical files (e.g., a DB’s data file) may lead to a corrupted
state. In practice, the cases where a RP should not be installed can be even more
uncommon, as the error a RP is guarding against may occur before any such
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Fig. 7. Performance of MySQL DB server as the number of faulty requests changes.
We measured the time needed to complete MySQL’s test-select test in the presence of
faults, and used a blocking RP to recover from the errors in always-on and on-demand
blocking mode.

critical system calls, and as such the latter are inconsequential (i.e., they are
only executed when the error does not occur). In the future, we plan to extend
REASSURE to also rollback certain system calls, like mmap and munmap. Some
support for file and socket writes may also be incorporated by delaying/buffering
the writes until the RP has concluded.

Finally, RPs should be applied with caution, when the targeted function up-
dates data shared with other processes through shared memory. Since the up-
dates are immediately visible to other processes, a rollback in case of error cannot
guarantee that the new memory values have not been already read by another
process. A possible-yet-costly solution could involve committing the updates into
shadow memory, private to the thread in a RP, and upon completion copying
the updates from shadow to application memory. Fine-grained RPs could also
provide a workaround for applications with such issues.

In the future, we also plan to include certain optimizations that will improve
performance. For instance, the write log (Sect. 3.3) is dynamically expanding
and its expansion can be costly if it occurs frequently. We can “remember” the
write log size required by a RP to reduce this cost. We also saw in Sect. 4.3
that depending on the frequency of errors when using blocking-RPs, it may
be preferable to use always-on instead of on-demand blocking and vice versa.
Instead, REASSURE can automatically switch between versions based on the
observed fault rate.

6 Related Work

Software self-healing using RPs was first proposed in ASSURE [26]. The au-
thors described a mechanism that can automatically analyze an application
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error to identify and select the appropriate RP. The deployment of the RPs
was performed using a modified OS featuring the Zap [19] virtual execution en-
vironment. REASSURE does not require any modifications to the OS, and can
be easily enabled and disabled. However, the RP identification component of
ASSURE can be used in combination with our work.

Selective transactional emulation (STEM) [27] is a speculative recovery tech-
nique that also identifies the function where an error occurs, and it could be also
used to assist in identifying RPs. Unlike REASSURE, STEM requires source
code to perform the error analysis, and does not work with multiprocess and mul-
tithreaded applications. Failure-oblivious computing [25] is another speculative
recovery technique that is based on the compiler inserting code to handle invalid
memory writes by virtually extending the target buffer. This approach offers
more robust fault response than simply crashing, but at significant performance
overhead, ranging from 80% up to 500% for a variety of different applications,
while it also requires recompilation of the target application.

Rebooting techniques [28,10,6] attempt to restore a system to a clean state
before or after a fault. Program restart takes significantly longer time, resulting
in substantial application down-time, while data loss may also occur. Micro-
rebooting can be faster by only restarting parts of the system, but requires
a complete rewrite of applications to compartmentalize failures. None of these
techniques effectively deal with deterministic bugs, since these may recur post-
restart.

Checkpoint-restart techniques [3,14] can be used in a similar fashion to re-
booting, but achieve better restart times since the application can start from a
checkpoint. While down time is reduced, compared with rebooting, these tech-
niques still do not handle deterministic bugs, or bugs maliciously triggered by an
attacker (e.g., a DoS attack). Checkpoint-restart has been also combined with
running N-versions of a program [3]. This method assumes that failures occur
independently in the various versions, but introduces prohibitive costs for most
applications, as multiple versions need to be maintained and run concurrently.

Automatically generating and applying patches has also been proposed, as a
way to heal software [23,17,29]. Unfortunately, automatically applying patches
has not been generally adopted, due to the possibility that additional errors are
introduced during the patching, or that the patched application stops behaving
as expected.

7 Conclusions

We presented REASSURE, a self-contained mechanism for healing software us-
ing rescue points. REASSURE is easy to use and does not require modifications
to the OS, making RPs an attractive and practical solution for temporary healing
software until a patch or update is made available. It enables the reuse of existing
error handling code to also handle unanticipated failures, such as the ones that
can lead to the abnormal termination of an application. We have tested REAS-
SURE with various applications including the Apache and MySQL servers, and
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show that it successfully allows them to recover from otherwise terminal errors.
In the absence of errors REASSURE incurs an overhead between 1% and 115%
depending on whether a RP is encountered frequently, and whether the appli-
cation is I/O or CPU bound. We also show that when errors occur frequently,
REASSURE protected applications survive, even under very adverse conditions
like their continuous bombardment with errors.
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Abstract. This paper examines two-pass authenticated key exchange
(AKE) protocols that do not use the NAXOS technique and that are
secure under the gap Diffie-Hellman assumption in the random oracle
model. Their internal structures are also discussed. We introduce an
imaginary protocol, however insecure, to analyze the protocols and show
the relations between these protocols from the viewpoint of how they
overcome the insecurity of the introduced protocol.

In addition, this paper provides ways to characterize the AKE pro-
tocols and defines two parameters: one consists of the number of static
keys, the number of ephemeral keys, and the number of shared values,
and the other is defined as the total sum of these numbers. When an
AKE protocol is constructed based on some group, these two parame-
ters indicate the number of elements in the group, i.e., they are related
to the sizes of the storage and communication data.

Keywords: Two-pass authenticated key exchange, extended Canetti-
Krawczyk security, gap Diffie-Hellman assumption, NAXOS technique.

1 Introduction

The authenticated key exchange (AKE) [1,3,4,14] is one of the most impor-
tant cryptographic protocols. In key exchange protocols, two parties exchange
ephemeral information and then they generate a common secret, called a session
key, from their private information, the exchanged information, and other infor-
mation. The AKE assures that the session key is derived only by their intended
peers.

Most of the AKEs are constructed utilizing the Diffie-Hellman (DH) proto-
col [9] and the security relies on the computational Diffie-Hellman problem or
its related problem such as the gap Diffie-Hellman problem [19].

Roughly speaking, in the computational Diffie-Hellman (CDH) problem, the
computational Diffie-Hellman value, gxy, must be computed from X (= gx) and
Y (= gy) in a cyclic group where the group is generated by primitive element g.
In the decisional Diffie-Hellman (DDH) problem, it is required to decide that Z
is the computational Diffie-Hellman value of X and Y or a random one given X ,

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 33–50, 2011.
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Y , and Z. In the gap Diffie-Hellman (GDH) problem, the computational Diffie-
Hellman value of X and Y must be computed with the help of the DDH oracle.
The GDH (CDH and DDH, respectively) assumption is that the GDH (CDH
and DDH, respectively) problem is assumed to be hard for any polynomial-time
algorithm to solve.

The first formal security definition for AKEs was given by Bellare and Rog-
away [1].1 After much discussion, a framework, named the CK model, was estab-
lished by Canetti and Krawczyk [4], and later, LaMacchia, Lauter, and Mityagin
proposed another model, the extended Canetti-Krawczyk (eCK) model [14].

In the eCK model [14], the adversary activates all parties and this activation
is done in two ways: One is to force the party to send a message and the other
is to let the party receive a message. Both are done while all communications
between the parties are controlled by the adversary. When a party generates
the session key in a session, the session is referred to as being complete. In two-
pass protocols, the party would have both outgoing and incoming messages in the
session for the completed session. If an owner has a completed session and its peer
has the same session ID as the completed session, the session of the peer is called a
matching session. The adversary can adaptively access session keys, static private
keys, and ephemeral private keys. At some point, the adversary chooses a session
as the test session and it is given a value, which is the session key of the session or
a random value with probability 1

2 . The adversary continues the actions and at
the end, a bit is output regarding whether or not the given value is the session key
with a better probability than 1

2 . This is called the indistinguishability test and
the aim of the adversary is to pass the indistinguishability test. The adversary
is not allowed to access both the static private key and the ephemeral private
key of the owner or of its peer (if one exists). If the winning probability of this
game is negligible for any adversary, then the AKE protocol is eCK-secure.

The eCK security is strong in the sense that the adversary in the eCK model
obtains much information regarding the test session since the adversary is al-
lowed to access either the static private key or the ephemeral private key of each
party establishing the test session.2

After the eCK model was proposed, several eCK-secure authenticated key
exchange protocols were invented. NAXOS [14], NETS [15], and CMQV [22] are
typical examples of the eCK-secure protocols under the GDH assumption in the
random oracle model (ROM) [2], and they utilize the NAXOS technique. Here,
the NAXOS technique is a technique in which the exponent of the ephemeral
public key is generated as the output of a hash function from the static private
key and the ephemeral private key, i.e., X = gH(x,a) where X is the ephemeral
public key, x is the ephemeral private key, a is the static private key, and H
is the hash function (regarded as a random oracle). Even when the ephemeral
key is revealed, the discrete log of the ephemeral public key is unknown to the

1 Bellare and Rogaway provided the model in shared-key setting. The model in public-
key setting was defined by Blake-Wilson, Johnson and Menezes [3].

2 Note that the eCK security is not stronger in all senses than the CK security. Cremers
pointed out that they are incompatible [7,8].
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adversary without the static private key and this allows for a simple security
proof in the eCK model.

Recently, disadvantages in the NAXOS technique have been independently
pointed out by Cheng, Ma, and Hu [6] and Wu and Ustaoğlu [24]. The AKE
protocols that do not rely on the NAXOS technique but utilize the DH protocol
decrease the risk of leaking the static private key in comparison to protocols that
utilize the NAXOS technique since the derivation of the ephemeral public key is
independent from the static private key. The DH-like AKE protocols that do not
utilize the NAXOS technique are secure even when the discrete logarithm of the
ephemeral public key is revealed. Several two-pass eCK-secure AKE protocols
that do not use the NAXOS technique have been proposed [24,21,12,17,23,10]
and there are subtle differences in their efficiency levels.

1.1 Background

Many eCK-secure AKE protocols have been proposed based on the DH protocol.
These AKE protocols are roughly classified from the following viewpoints: (1)
whether or not the NAXOS technique is used, (2) security is proven in the ROM
or in the standard model, and (3) the security is based on the CDH assumption,
the DDH assumption, and the GDH assumption.

NAXOS [14], NETS [15], and CMQV [22] are eCK-secure AKE protocols
under the GDH assumption in the ROM and all of them adopt the NAXOS
technique.

SMEN− [24] is an eCK-secure protocol under the GDH assumption in the
ROM, and it does not use the NAXOS technique. In [24], a protocol that is
eCK-secure under the GDH assumption and uses the NAXOS technique (SMEN)
was also proposed. In [12], Kim, Fujioka, and Ustaoğlu proposed an eCK-secure
protocol under the GDH assumption in the ROM (Protocol 1, denoted as KFU1
in this paper) and an eCK-secure protocol under the CDH assumption in the
ROM (Protocol 2). UP proposed in [23] and FHMQV proposed in [21] are eCK-
secure protocols under the GDH assumption in the ROM also.

NAXOS+ [16] and Huang-Cao [11] are eCK-secure AKE protocols under a
weaker assumption, the CDH assumption, in the ROM, and Okamoto [17,18] and
Moriyama-Okamoto [17] are eCK-secure protocols under the DDH assumption in
the standardmodel.NAXOS+,Huang-Cao, andOkamotoutilize theNAXOStech-
nique but theMoriyama-Okamoto protocol does not rely on theNAXOStechnique.

As indicated above, many AKE protocols have been proposed and the respec-
tive security proofs are given in the corresponding references. Recently, Fujioka
and Suzuki have provided a sufficient condition to construct a eCK-secure AKE
protocol under the GDH assumption in the ROM [10], and the condition is
that the exponents of the shared value in an AKE protocol are expressed by
admissible polynomials.

This paper concentrates on the structure most commonly used in AKEs with-
out the NAXOS technique. In the structure, peers have static keys, they exchange
ephemeral information, compute the shared values, and then generate the session
keys with a hash function. We call this kind of AKE protocol regular.
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1.2 Contributions

In this paper, we first examine the two-pass AKE protocols that do not use
the NAXOS technique and that are eCK-secure under the GDH assumption
in the ROM, and discuss their relations. We introduce an imaginary but inse-
cure protocol, called the multiplied biclique DH protocol, to analyze the AKE
protocols that utilize the imaginary protocol as an internal protocol. Although
this protocol is insecure, its security discussion reveals the technical difficulty
in designing a secure AKE protocol. This paper analyzes the relations among
SMEN−, FHMQV, KFU1, and UP which are two-pass AKE protocols that do
not use the NAXOS technique and that are eCK-secure under the GDH as-
sumption in the ROM. We clarify the internal structures of SMEN−, FHMQV,
KFU1, and UP, and show that they utilize the multiplied biclique DH protocol
as an internal protocol. By analyzing how to avoid insecurity in the protocol, we
show the relations between the AKEs. KFU1 runs two multiplied biclique DH
protocols in parallel with the same ephemeral key on two static keys. SMEN−

can be thought of as a two ephemeral key variant of KFU1 and this reduces
the number of shared values to one. UP is a version of KFU1 in which one of
the static public keys is generated with a random oracle. In the security proof,
FHMQV virtually runs two multiplied biclique DH protocols in sequence with
the same ephemeral key on two randomized static keys. These analyses could
be useful since they do not only give intuitive security proofs of the subject
protocols but also lead to a design principle of eCK-secure AKE protocols. Ac-
tually, a design principle was provided as a sufficient condition to construct
eCK-secure protocols under the GDH assumption in the ROM [10]. An analysis
that leads to this condition can be viewed as an extension of these analyses on
how the above protocols overcome the insecurity of the multiplied biclique DH
protocol.

To characterize these two-pass eCK-secure AKE protocols, we define two pa-
rameters: One consists of the number of static keys, the number of ephemeral
keys, and the number of shared values, and the other is defined as the total sum
of these numbers. When an AKE protocol is constructed based on some group,
the numbers of keys and shared values are counted as the number of elements in
the group so that these parameters give efficiency indices for the protocol since
the number of static keys and the number of ephemeral keys are related to the
sizes of the storage and communication data, respectively.

1.3 Organization

Section 2 provides the definitions to characterize the AKE protocols in addi-
tion to the security definitions, introduces an imaginary protocol, the multiplied
biclique DH protocol, and discusses the insecurity of the protocol. In Section 3,
the relations among SMEN−, FHMQV, KFU1, and UP are presented, and Sec-
tion 4 discusses the characterization of the AKE protocols, and describes open
problems.
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2 Preliminaries

2.1 Security Definitions

For further eCK details and explanations see [14].
In the eCK model, each party is a probabilistic polynomial-time Turing ma-

chine and is assigned a static public and private key pair together with a certifi-
cate that binds the identity of the party to its public key. We denote the identity
of a party as Â, B̂, Ĉ, . . . 3. We assume that, the certificate authority (CA) does
not require proof of possession of the corresponding private key included in a
certificate. However, the CA verifies that the public key is in G× = G − {idG},
where idG is the identity element of group G.

We outline the eCK model for two-pass Diffie-Hellman protocols where two
parties, Â and B̂, exchange static and ephemeral public keys and thereafter
compute a session key that depends on the exchanged public keys and identities
of the parties.

Session. An invocation of a protocol is called a session. A session is activated
by an incoming message in the form of (I, Â, B̂) or (R, Â, B̂, Y ). If Â is activated
with (I, Â, B̂), then Â is called the session initiator ; otherwise, it is called the
session responder. After activation, session initiator Â creates ephemeral public
key X and sends (R, B̂, Â, X) to session responder B̂. Responder B̂ then prepares
ephemeral public key Y , computes the session key, and sends (I, Â, B̂, X, Y ) to
Â. Upon receiving (I, Â, B̂, X, Y ), Â also computes a session key for its own
session. We say that a session is completed if its owner computes a session key.

If Â is the initiator of a session, the session is identified via (I, Â, B̂, X,×) or
(I, Â, B̂, X, Y ). For responder Â the session is identified via (R, Â, B̂, Y, X). The
matching session of (I, Â, B̂, X, Y ) is a session with identifier (R, B̂, Â, X, Y )
and vice versa. In the remainder of the paper we will omit I and R since these
“role markers” are implicitly defined from the order of the ephemeral public
keys.

Adversary. Adversary A is modeled as a probabilistic Turing machine that
controls all communications including session activation and is performed via the
Send(message) query. The message has one of the following forms, (pid, pid),
(pid, pid, X), or (pid, pid, X, Y ), where pid and pid are identities. Each party
submits its responses to the adversary, who decides the global delivery order.

The adversary does not have immediate access to the private information of
a party. However, leakage of private information is captured via the adversary
queries given below.

– EphemeralKeyReveal(sid): The adversary obtains the ephemeral private key
associated with session sid.

– SessionKeyReveal(sid): The adversary obtains the session key for session sid
provided that the session holds a session key.

3 In the eCK model, the adversary selects these identifier strings.
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– StaticKeyReveal(pid): The adversary learns the static private key of party
pid.

To define eCK security we need the following definition.

Definition 1 (Freshness). Let sid∗ be the session identifier of a completed
session owned by honest party Â with peer B̂, who is also honest. If a matching
session exists, then let sid∗ be the session identifier of the matching session of
sid∗. Define sid∗ to be fresh if none of the following conditions hold.

1. An adversary issues a SessionKeyReveal(sid∗) or SessionKeyReveal(sid∗)
query (if sid∗ exists).

2. sid∗ exists and the adversary makes either of the following queries
– both StaticKeyReveal(Â) and EphemeralKeyReveal(sid∗), or
– both StaticKeyReveal(B̂) and EphemeralKeyReveal(sid∗).

3. sid∗ does not exist and the adversary makes either of the following queries.
– both StaticKeyReveal(Â) and EphemeralKeyReveal(sid∗), or
– StaticKeyReveal(B̂).

Security Experiment. Initially, adversary A is given a set of honest par-
ties, for whom A selects identifiers. Then the adversary makes any sequence
of the queries described above. During the experiment, A makes special query
Test(sid∗), where sid∗ is a fresh session. A is given either a random key or
the session key held by sid∗ with equal probability. The test query does not
terminate the experiment, and the experiment continues until A makes a guess
whether or not the key is random. The adversary wins the game if test session
sid∗ is still fresh and if the guess by A was correct.

Definition 2 (eCK security). The advantage of adversary A in the AKE
experiment with AKE protocol Π is defined as

AdvAKE
Π (A) = Pr[A wins]− 1

2
.

We say that AKE protocol Π is secure in the eCK model if the following condi-
tions hold.

1. If two honest parties complete matching sessions, then except with negligible
probability, they both compute the same session key.

2. For any probabilistic polynomial-time bounded adversary A, AdvAKE
Π (A) is

negligible.

2.2 Efficiency Definitions

We call an AKE protocol regular when it has the following structure. Assume
party Â wants to share a key with another party, B̂, where Â has α static
private keys a1, . . . , aα and their static public keys A1 (= ga1), . . . , Aα (= gaα),
and B̂ has α static private keys b1, . . . , bα and their static public keys B1 (=
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gb1), . . . , Bα (= gbα). Here α is a natural number (∈ N), g is a primitive element
whose order is a prime, q, in group G, and a1, . . . , aα, b1, . . . , bα are randomly
selected in Zq. Then, Â generates β ephemeral private keys x1, . . . , xβ ∈ Zq

where β is a natural number (∈ N), computes ephemeral public keys X1 (=
gx1), . . . , Xβ (= gxβ ), and sends X1, . . . , Xβ to B̂. In response, B̂ also generates
β ephemeral private keys y1, . . . , yβ (∈ Zq), computes ephemeral public keys
Y1 (= gy1), . . . , Yβ (= gyβ ), and returns Y1, . . . , Yβ to Â. Â computes γ shared
values Z1, . . . , Zγ from a1, . . . , aα, x1, . . . , xβ , B1, . . . , Bα, and Y1, . . . , Yβ while
B̂ computes shared values Z1, . . . , Zγ from b1, . . . , bα, y1, . . . , yβ, A1, . . . , Aα,
and X1, . . . , Xβ where γ is a natural number (∈ N). Both parties obtain session
key K from the shared values and the session information using function H as
K = H(Z1, . . . , Zγ , Â, B̂, X1, . . . , Xβ , Y1, . . . , Yβ). Hereafter, we call this H the
session key derivation function.

We note that α, β, and γ may not be natural numbers, that is, these can be
zero. We discuss this later.

Here, we give three definitions to evaluate the efficiency of the AKE protocol.

Definition 3. A regular AKE protocol is type (α-β-γ) when it has α static keys,
β ephemeral keys, and γ shared values where α, β, γ ∈ N.

Definition 4. The count of a regular AKE protocol, δ, is defined as the total
sum of the keys and shared values.

In other words, a type (α-β-γ) AKE protocol has count δ (= α + β + γ).

When a type (α-β-γ) AKE protocol is constructed based on some group G, the
number of keys and the shared values are the number of elements in G and their
sum total yields the efficiency index of the protocol.

Definition 5. We denote a regular AKE protocol with its count δ as a δ-count
AKE protocol.

2.3 Optimality and Impossibility

Here, we extend regular AKE protocols to allow α, β, andγ to be zero and discuss
the security of the protocols. In other words, the protocol has 0 as an entry in
its type, i.e., it is a type (0-∗-∗), type (∗-0-∗), or type (∗-∗-0) protocol where ∗
is a non-zero value.

It is clear that the following lemmas and proposition are trivial.

Lemma 1. There exists no eCK-secure type (0-∗-∗) AKE protocol.

Proof. It is well known that the classic DH protocol is vulnerable against the
person-in-the-middle attack.

Assume that the AKE is type (0-∗-∗). Then, in the protocol, since the peers
have no static key and exchange ephemeral keys X1, . . . , Xβ and Y1, . . . , Yβ where
β is the number of ephemeral keys, the peers compute the session key only
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from the ephemeral keys and public information, e.g., the session ID. When the
adversary generates Y1, . . . , Yβ , the adversary can compute the same session key
as the peer who is the owner of the test session. It is clear that there exists an
adversary who can pass the indistinguishability test.

Lemma 2. There exists no eCK-secure type (∗-0-∗) AKE protocol.

Proof. Assume that the AKE is type (∗-0-∗). Then, all sessions are performed
with static keys and public information, e.g., the session ID. When the adversary
makes a query for static keys, the session keys in every session with the static
keys are known and this means that forward secrecy cannot be assured. This
concludes that any type (∗-0-∗) AKE is insecure.

Lemma 3. There exists no eCK-secure type (∗-∗-0) AKE protocol.

Proof. Assume that the AKE is type (∗-∗-0). Then, the AKE without shared
values cannot guarantee the secrecy of the session keys since the session key is
generated only from the publicly available part. It is clear that there exists an
adversary who can pass the indistinguishability test.

Proposition 1. There exists no eCK-secure δ-count AKE protocol where δ is
less than three.

Proof. When δ < 3, it is clear that some entry in its type must be 0. Then, the
above three lemmas conclude this. �	

2.4 Multiplied Biclique DH Protocol and Security

We introduce an imaginary AKE protocol, the multiplied biclique DH protocol,
to analyze the internal structures of SMEN−, FHMQV, KFU1, and UP. The
shared value in the multiplied biclique DH protocol is computed by multiplying
all DH values of possible pairs of static and ephemeral keys.

Assume party Â wants to share a key with another party, B̂. This means that
Â is the initiator and B̂ is the responder of the session. Â has a static private
key, a, and its static public key A (= ga). B̂ has a static private key, b, and its
static public key B (= gb). Term g is a primitive element whose order is a prime,
q, in group G, and a and b are randomly selected in Zq. Then, Â generates an
ephemeral private key, x ∈ Zq, computes ephemeral public key X (= gx), and
sends X to B̂. In response, B̂ generates an ephemeral private key, y (∈ Zq),
computes ephemeral public key Y (= gy), and returns Y to Â. Â computes one
shared value, Z, as Z = (Y B)(x+a) while B̂ computes Z = (XA)(y+b). Both
parties obtain session key K from the shared values and the session information
using the session key derivation function, H .

In the multiplied biclique DH protocol, shared value Z is gyagxbgabgxy, and
gya, gxb, gab, and gxy are DH values of all possible pairs of static and ephemeral
keys. The multiplied biclique DH protocol is regular and a type (1-1-1) AKE
protocol.
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A = ga B = gb

X = gx

X−→
Y = gy

Y←−
Z = (Y B)(x+a) Z = (XA)(y+b)

K = H(Z, Â, B̂, X, Y )

Fig. 1. Multiplied biclique DH protocol

We consider the security of the multiplied biclique DH protocol in the eCK
model. We try to prove that the existence of an adversary breaks the GDH as-
sumption. In other words, we construct a CDH solver with the DDH oracle from
the eCK adversary of the protocol. The task of the CDH solver is to compute
guv (with the help of the DDH oracle) given g, gu (= U), and gv (= V ). To do
so, the solver must simulate all responses of the queries asked by the adversary.
We note that in the simulation, it is the most important point to keep consis-
tency between the hash table and the session key table. The session key table
contains a session key value with its identifier including Â, B̂, X , and Y . The
hash table contains a hash value of Z, Â, B̂, X , and Y , and the value must
coincide with a session key value where Z is the valid shared value of the session
with respect to (Â, B̂, X , Y ). Here, a shared value, Z is to be said valid on the
session with respect to (Â, B̂, X , Y ) when Z is equal to g(ya+xb+ab+xy) where x
is the ephemeral private key of X , y is the ephemeral private key of Y , a is Â’s
static private key of A, and b is B̂’s static private key of B.

In the eCK model, the adversary is not allowed to access private information in
either the static or ephemeral keys, which the owner and its peer (if one exists)
of the test session possess [14]. The multiplied biclique DH protocol consists
of four types of information: the static key of the initiator, the ephemeral key
of the initiator, the static key of the responder, and the ephemeral key of the
responder. The shared key contains all DH values of all meaningful combinations
of the above keys, i.e., except the DH values of the static key and the ephemeral
key owned by the same peer. So we may construct the solver by embedding
U (= gu) and V (= gv) into the keys. We denote u = dlg(U) when U = gu.

The basic strategy to prove that an AKE is eCK-secure in the ROM is to
guess the session that the eCK adversary chooses as the test session to embed
an instance of a hard problem into the keys in which the adversary cannot
access the private information, and to simulate all answers to the queries from
the adversary. When the adversary can pass the indistinguishability test even
in this situation, the adversary is forced to ask the hash query related to the
test session since the session key derivation function is regarded as the random
oracle. This means that we may extract the answer from the values in the query
and can construct a solver for the hard problem.

Let the instance of the CDH problem be (g, U, V ) where U = gu and V =
gv. Assume that the test session has the matching session. Then, the adver-
sary is allowed to ask the following queries: (a) EphemeralKeyReveal(sid∗) and
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EphemeralKeyReveal(sid∗), (b) StaticKeyReveal(Â) and StaticKeyReveal(B̂). (c)
EphemeralKeyReveal(sid∗) and StaticKeyReveal(B̂), and (d) StaticKeyReveal(Â)
and EphemeralKeyReveal(sid∗).

In case (a), the solver randomly generates x and y, and sets A = U and B = V
where Â is the owner of the test sessionand B̂ is thepeer.When theadversarymakes
a hash query including Â, B̂, gx, and gy, the solver can extract the CDH answer,
W , fromZ in the query as W = Z/UyV xgxy with the help of the DDH oracle to ask
DDH(U, V, W ). If the adversary can correctly guess Z, then W is the CDH value of
U and V since W = Z/UyV xgxy = g(yu+xv+uv+xy)/gyugxvgxy = guv.

The solver must simulate all other sessions; however, the solver can easily
carry out these simulations. When the initiator and the responder of the session
are neither Â nor B̂, the solver randomly generates the ephemeral and the static
private keys, and then perfectly simulates the session.

Without loss of generality, assume that the initiator of the session is Â and
that the peer, Ĉ, is controlled by the adversary. Let C be Ĉ’s static public key.
The solver can generate ephemeral private key x of the ephemeral public key
which Â sends to Ĉ but may not know both the static private key of C and
the ephemeral private key of Y ′ which is generated by Ĉ (maybe the adversary).
However, when the adversary makes a hash query including Z, Â, Ĉ, gx, and Y ′,
the solver can check the validity of them with the help of the DDH oracle to ask
DDH(Y ′C, gxU, Z) (note that U = A). When they are valid, the solver maintains
the hash table and the session key table maintaining consistency between them.

Similar arguments can be applied to the other cases ((b), (c), and (d)). Thus,
the security proof is accomplished when the test session has the matching session.

Next, assume that the test session does not have the matching session. Again,
let the instance of the CDH problem be (g, U, V ) where U = gu and V = gv. In
this situation, the message of the responder in the test session is modified by the
adversary. Then, the solver must embed U or V of the instance into the static
key of the responder. This is the most difficult case in the security proof. The
validity check for the simulation can be easily performed with the help of the
DDH oracle to ask DDH(Y B, XA, Z) from publicly available values Y , B, X ,
and A, and the value Z in the hash query as Z = (Y B)(x+a) = (XA)(y+b).

It seems that the simulation can be performed perfectly. However, it is
hard to extract the CDH value. The solver must set B = V since ephemeral
public key Y may be controlled by the adversary and the solver cannot em-
bed V into Y . We assume that the solver embeds the other value, U , into
A or X depending on the event. This relates to the third condition of the
freshness definition. In other words, the adversary is not allowed to make ei-
ther query: (i) both StaticKeyReveal(Â) and StaticKeyReveal(B̂), or (ii) both
EphemeralKeyReveal(sid∗) and StaticKeyReveal(B̂).

Setting A = U in the former case, the solver wants to extract guv from Z
where u = dlg(U) and v = dlg(V ). In this case, ephemeral key X can be set
as X = gx where x is selected by the solver. Although the solver can obtain
g(uy+uv) = Z/(Y B)x where y = dlg(Y ), it seems hard to extract guv without
knowing u and y since the solver knows only x.
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On the other hand, setting X = U in the latter case, the solver wants to extract
guv from Z. In this case, static key A can be set as A = ga where a is selected by
the solver. Although the solver can obtain g(uv+uy) = Z/(Y B)a, it seems hard to
extract guv without knowing u and y since the solver knows only a.

The security proof seems to be difficult when the test session does not have
the matching session. Indeed, the insecurity of this protocol is pointed out in the
paper by Krawczyk that proposes HMQV [13]. The adversary chooses a value,
x̃, computes X̃ = gx̃/A, and sends X̃ to B̂ as the initial message from Â. B̂
sends Y = gy and computes shared value Z = (X̃A)(y+b). Then, the adversary
can also compute Z as (BY )x̃.

At the end, let us observe a tuple, (gya, gxb, gab, gxy). It is worthy to note
that when the value the solver wants to extract appears in a half of the tuple,
then the value the solver cannot compute appears in the other half of the tuple.
In the former case above, gab (= guv) appears in the second half of the tuple
but the unknown value gya (= gyu) appears in the first half. In the latter case
above, gxb (= guv) appears in the first half but the unknown value gxy (= guy)
appears in the second half.

3 Relations among SMEN−, FHMQV, KFU1, and UP

In this section, we show that the previous four protocols (SMEN−, FHMQV,
KFU1, and UP) use the multiplied biclique DH protocol as an internal protocol
and show how they overcome the above insecurity. Based on this analysis, we
show the relations among the protocols.

3.1 KFU1 Protocol

KFU1 is a two-pass AKE protocol that does not use the NAXOS technique
and is eCK-secure under the GDH assumption in the ROM (proposed as Pro-
tocol 1) [12]. In [12], they proposed an eCK-secure protocol (Protocol 2) also
under the CDH assumption in the ROM using the twinning DH technique [5].

We describe KFU1 in Fig. 2. It is clear that KFU1 is a type (2-1-2) AKE pro-
tocol and that KFU1 performs two multiplied biclique DH protocols in parallel
for two independent static keys with the same ephemeral key.

A1 = ga1 , A2 = ga2 B1 = gb1 , B2 = gb2

X = gx

X−→
Y = gy

Y←−
Z1 = (Y B1)

(x+a1) Z1 = (XA1)
(y+b1)

Z2 = (Y B2)
(x+a2) Z2 = (XA2)

(y+b2)

K = H(Z1, Z2, Â, B̂, X, Y )

Fig. 2. KFU1 protocol



44 A. Fujioka

We consider a similar difficult case discussed in the security proof of the
multiplied biclique DH protocol.

Setting A1 = U , A2 = U t, B1 = V , and B2 = V r with randomly chosen
t and r, the solver wants to extract ga1b1 from Z1 and Z2 where a1 = dlg(U)
and b1 = dlg(V ). Since the solver can set ephemeral key X (= gx), the solver
computes Z ′

1 = g(a1y+a1b1) = Z1/(Y B1)x and Z ′
2 = g(a2y+a2b2) = Z2/(Y B1)x

where a2 = dlg(U t) = ta1 and b2 = dlg(V r) = rb1. Then, the solver can extract
ga1b1 from Z ′

1/(Z ′
2)1/t = g(1−r)a1b1 .

On the other hand, setting X = U , B1 = V , and B2 = V r with randomly
chosen r, the solver wants to extract gxb1 from Z1 and Z2 where x = dlg(U)
and b1 = dlg(V ). Since the solver can set static keys A1 (= ga1) and A2 (=
ga2), the solver computes Z ′

1 = g(xb1+xy) = Z1/(Y B1)a1 and Z ′
2 = g(xb2+xy) =

Z2/(Y B2)a2 where y = dlg(Y ), b2 = dlg(V r) = rb1. Then, the solver can extract
gxb1 from Z ′

1/Z
′
2 = g(1−r)xb1 .

This shows that two shared values enable us to extract the CDH answer.
In the above protocol, the shared values are given as Z1 = (Y B1)(x+a1) =

(XA1)(y+b1) and Z2 = (Y B2)(x+a2) = (XA2)(y+b2). However, even if we adopt
Z1 = (Y B2)(x+a1) = (XA1)(y+b2) and Z2 = (Y B1)(x+a2) = (XA2)(y+b1) as the
shared values, the modified protocol is still secure and is referred to as cross-type
KFU1 hereafter.

3.2 UP Protocol

UP is a two-pass AKE protocol that does not follow the NAXOS technique and
is eCK-secure under the GDH assumption in the ROM [23].

We describe UP in Fig. 3. It is clear that UP is a type (1-1-2) AKE protocol.
UP can be explained using cross-type KFU1 as follows: A1 = A, A2 = Ad,

(a1 = a, a2 = da) and B1 = B, B2 = Be, (b1 = b, b2 = eb).
In other words, UP is a cross-type KFU1 protocol in which a static public key

is generated from the other static public key and the ephemeral public key with
additional function H ′, which must also be regarded as a random oracle.

A = ga B = gb

X = gx

X−→
Y = gy

Y←−
d′ = H ′(X) d′ = H ′(X)
e′ = H ′(Y ) e′ = H ′(Y )

Z1 = (Y Be′)(x+a) Z1 = (XA)(y+e′b)

Z2 = (Y B)(x+d′a) Z2 = (XAd′
)(y+b)

K = H(Z1, Z2, Â, B̂, X, Y )

Fig. 3. UP protocol
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3.3 SMEN− Protocol

SMEN− is a two-pass AKE protocol that does not use the NAXOS technique and
is eCK-secure under the GDH assumption in the ROM [24]. In [24], they also
proposed an eCK-secure protocol using the NAXOS technique, SMEN, under
the GDH assumption in the ROM.

A1 = ga1 , A2 = ga2 B1 = gb1 , B2 = gb2

X1 = gx1 , X2 = gx2

X1,X2−→
Y1 = gy1 , Y2 = gy2

Y1,Y2←−
Z = Y a1

1 Bx1
1 Ba2

2 Y x2
2 Z = Ay1

1 Xb1
1 Ab2

2 Xy2
2

K = H(Z, Â, B̂, X1, X2, Y1, Y2)

Fig. 4. SMEN− protocol

We describe SMEN− in Fig. 4. This shows that SMEN− is a type (2-2-1)
AKE protocol. It is worthy to note that SMEN− achieves the smallest number
of shared values. This will be discussed later.

We consider a similar difficult case discussed in the security proof of the
multiplied biclique DH protocol.

Setting A2 = U and B2 = V , the solver wants to extract ga2b2 from Z where
a2 = dlg(U) and b2 = dlg(V ). Since the solver can set the other static key,
A1 (= ga1), in addition to ephemeral keys X1 (= gx1) and X2 (= gx2), the
solver can obtain ga2b2 by computing Z/(Bx1

1 Y a1
1 Y x2

2 ).
On the other hand, setting X1 = U and B1 = V , the solver wants to extract

gx1b1 from Z where x1 = dlg(U) and b1 = dlg(V ). Since the solver can set the
other ephemeral key, X2 (= gx2), in addition to static keys A1 (= ga1) and
A2 (= ga2), the solver can obtain gx1b1 by computing Z/(Y a1

1 Ba2
2 Y x2

2 ).
This enables us to extract the CDH answer from the single shared value.
SMEN− essentially utilizes two multiplied biclique DH protocols. Let us recall

the discussion at the end of Section 2.4. The shared value of SMEN−, Z,
consists of gy1a1 , gx1b1 , ga2b2 , and gx2y2 , that is, they are the first half of a tuple,
(gy1a1 , gx1b1 , ga1b1 , gx1y1), and the second half of a tuple, (gy2a2 , gx2b2 , ga2b2 ,
gx2y2). This trick enables us to extract the answer as the value we want to extract
and the value we need to compute will appear in (imaginary) different protocols.

3.4 FHMQV Protocol

FHMQV is a two-pass AKE protocol that does not use the NAXOS technique
and is eCK-secure under the GDH assumption in the ROM [21].

We describe FHMQV in Fig. 5. This shows that FHMQV is a type (1-1-1)
AKE protocol. It is worthy to note that FHMQV achieves not only the smallest
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A = ga B = gb

X = gx

X−→
Y = gy

Y←−
d′ = H ′(X) d′ = H ′(X)
e′ = H ′(Y ) e′ = H ′(Y )

Z = (Y Be′)(x+d′a) Z = (XAd′
)(y+e′b)

K = H(Z, Â, B̂, X, Y )

Fig. 5. FHMQV protocol

number of shared values but also the smallest number of all values. This will be
discussed later.

We consider a similar difficult case discussed in the security proof of the
multiplied biclique DH protocol.

Setting A = U and B = V , the solver wants to extract gab from Z where
a = dlg(U) and b = dlg(V ). Since the solver can set ephemeral key X (= gx), the
solver computes Z̃ = g(d′ay+d′e′ab) = Z/(Y Be′

)x with random oracle H ′ where
d′ = H ′(X) and e′ = H ′(Y ), and reiterates the protocol with different random
oracle H ′′. Then the solver computes Z̃ ′ = g(d′′ay+d′′e′′ab) = Z ′/(Y Be′′

)x where
Z ′ is the shared value in the reiterated protocol, d′′ = H ′′(X), and e′′ = H ′(Y ).
Then, the solver can extract gab from (Z̃)d′′

/(Z̃ ′)d′
= g(d′d′′e′−d′d′′e′′)ab.

On the other hand, setting X = U and B = V , the solver wants to extract
gxb from Z where x = dlg(U) and b = dlg(V ). Since the solver can set static key
A (= ga), the solver computes Z̃ = g(xy+e′xb) = Z/(Y Be′

)d′a with random oracle
H ′ where d′ = H ′(X) and e′ = H ′(Y ), and reiterates the protocol with different
random oracle H ′′. Then, the solver computes Z̃ ′ = g(xy+e′′xb) = Z ′/(Y Be′′

)d′′a

where Z ′ is the shared value in the reiterated protocol, d′′ = H ′′(X) and e′′ =
H ′(Y ). Then, the solver can extract gxb from Z̃/Z̃ ′ = g(e′−e′′)xb.

This shows that reiterating the protocol with a different random oracle enables
us to extract the CDH answer even from a single shared value. Therefore, the
security proof of FHMQV requires the forking lemma [20]. Roughly speaking,
the forking lemma implies that if an adversary wins a game with non-negligible
probability, then there exist two random oracles where the adversary wins the
game with non-negligible probability even when either random oracle is used.
Thus, this proves the eCK security of FHMQV.

3.5 Reviewing SMEN−, FHMQV, KFU1, and UP

KFU1 performs two multiplied biclique DH protocols in parallel for two inde-
pendent static keys with the same ephemeral key. This enables us to extract the
answer of the embedded problem by canceling the unknown part in each shared
value by division. In other words, KFU1 is a two static key multiplied biclique
DH protocol.
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UP is a variant of the KFU1 protocol (cross-type KFU1). A static public key
is generated from the other static public key and the ephemeral public key with
additional function H ′ is regarded as a random oracle.

SMEN− can be regarded as a two ephemeral key variant of the KFU1 pro-
tocol and the additional ephemeral key enables us to extract the answer of the
embedded problem from a single shared value by canceling the unknown part in
the shared value since the solver knows the private key.

FHMQV can be regarded as a (imaginary) sequential variant of the KFU1
protocol and, in the security proof, reiterating the protocol enables us to extract
the answer of the embedded problem by canceling the unknown part in each
(single) shared value by division as KFU1.

These four protocols are two-pass AKE protocols that do not use the NAXOS
technique and are eCK-secure under the GDH assumption in a ROM; however,
their internal protocol, the multiplied biclique DH protocol, is insecure.

4 Efficiency Parameters

4.1 Comparison among Existing Protocols

We briefly summarize SMEN−, FHMQV, KFU1, and UP.
SMEN−, FHMQV, KFU1, and UP are type (2-2-1), type (1-1-1), type (2-

1-2) AKEs, and type (1-1-2), respectively. In other words, SMEN−, FHMQV,
KFU1, and UP are 5-count, 3-count, 5-count, and 4-count AKEs, respectively.
The multiplied biclique DH protocol is a type (1-1-1) AKE, i.e., a 3-count AKE,
however it is insecure. This leads us to characterize the efficiency of an AKE
protocol in terms of the count.

Table 1 shows a comparison of two-pass eCK-secure protocols under GDH
in the ROM with an entry for the multiplied biclique DH protocol (MBC DH)
from the viewpoint of data size. We denote the number of static keys, the number
of ephemeral keys, and the number of shared values as #SK, #EK, and #SV,
respectively. In the “NAXOS” entry, o means that the protocol uses the NAXOS
technique, and x indicates that it does not.

Table 1. Comparison of two-pass eCK-secure protocols under GDH in ROM

Protocol #SK #EK #SV Count NAXOS Forking Lemma

(MBC DH) 1 1 1 3 x —
FHMQV 1 1 1 3 x Required
CMQV 1 1 1 3 o Required

UP 1 1 2 4 x Not required
NETS 1 1 2 4 o Not required
SMEN 1 2 1 4 o Not required
KFU1 2 1 2 5 x Not required

SMEN− 2 2 1 5 x Not required
NAXOS 1 1 3 5 o Not required
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CMQV, NETS, SMEN, and NAXOS are two-pass eCK-secure AKE proto-
cols that use the NAXOS technique under the GDH assumption in the ROM.
On the contrary, SMEN−, FHMQV, KFU1, and UP are two-pass eCK-secure
protocols that do not follow the NAXOS technique under the GDH assumption
in the ROM. NAXOS is the first eCK-secure protocol and the table shows that
it uses many shared values. CMQV is the most efficient eCK-secure protocol
among them in terms of the count. We should note that CMQV uses the forking
lemma [20] to prove its security (as discussed later) so its security reduction is
not as tight as those of others. NETS and SMEN have tighter security reduc-
tions than CMQV, and NETS uses the NAXOS technique but SMEN does not.
Both SMEN and SMEN− achieve single shared key protocols with and without
the NAXOS technique, respectively. UP is the most efficient eCK-secure proto-
col among the protocols that do not use the NAXOS technique in terms of the
count. To the best of our knowledge, CMQV and FHMQV are the only protocols
that achieve three in the count.

4.2 Open Problems

Note that the number of shared values in CMQV, SMEN−, SMEN, and FHMQV
is one so they achieve optimality in terms of the number of shared values.

The three-count AKE protocol is optimal in the sense of the number of static
keys, ephemeral keys, and shared values. There exist a three-count eCK-secure
protocol since CMQV and FHMQV satisfy the condition. It seems difficult to
extract the CDH answer from one shared value in a type (1-1-1) AKE protocol
as shown in the security discussion of the multiplied biclique DH protocol. In the
security proof of CMQV and FHMQV, the CDH solver rewinds the adversary
and runs it with a different random oracle, which is used to randomize the static
keys. This means that the CDH solver obtains two substantially different shared
values and then, the solver can extract the CDH value from them. However, this
requires the forking lemma in the security proof of CMQV and FHMQV, and
this implies that tightness of its security reduction is not as tight.

It is natural to raise the following questions.

1. Is it possible to devise a four-count eCK-secure protocol other than UP that
does not utilize the NAXOS technique?

2. Is it possible to devise a three-count eCK-secure protocol that has a tighter
security reduction than CMQV or FHMQV?

5 Conclusion

This paper proposed ways to characterize AKE protocols and defined two pa-
rameters: A regular AKE protocol is type (α-β-γ) when it has α static keys, β
ephemeral keys, and γ shared values, and the count of a regular AKE protocol,
δ, is defined as the total sum of the keys and the shared values.

Based on the characterization, we examined two-pass eCK-secure AKE pro-
tocols that do not use the NAXOS technique: SMEN−, FHMQV, KFU1, and
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UP. We showed relations among the protocols by introducing an imaginary pro-
tocol, the multiplied biclique DH protocol. KFU1 is type (2-1-2) and runs two
multiplied biclique DH protocols in parallel with the same ephemeral key on two
static keys. SMEN− is type (2-2-1) and a two ephemeral key variant of KFU1,
and this reduces the number of shared values to one. UP is type (1-1-2) and
a version of KFU1 in which one of the static public keys is generated with an
additional function regarded as a random oracle. FHMQV is type (1-1-1) and a
(imaginary) sequential variant of the KFU1 protocol, and it achieves optimality
on each parameter.
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Abstract. This paper presents an efficient secure auction protocol for
M + 1st price auction. In our proposed protocol, bidding prices are rep-
resented as binary numbers. Thus, when the bidding price is an integer
up to p and the number of bidders is m, the complexity of our protocol
is a polynomial of log p and m, while in previous secure M + 1st price
auction protocols, the complexity is a polynomial of p and m. We ap-
ply the Boneh-Goh-Nissim encryption to the mix-and-match protocol to
reduce the computation costs.

1 Introduction

1.1 Background

Recently, as the Internet has expanded, many researchers have become interested
in secure auction protocols and various schemes have been proposed to ensure
the safe transaction of sealed-bid auctions. A secure auction is a protocol in
which each player can find only the highest bid and its bidder (called the first
price auction) or the second highest bid and the first price bidder (called the
second price auction). There is also a generalized auction protocol called M +1st
price acution. The M +1st price auction is a type of sealed-bid auction for selling
M units of a single kind of goods, and the M + 1st highest price is the winning
price. M bidders who bid prices higher than the winning price are the winning
bidders, and each winning bidder buys one unit of the goods at the winning
price.

A simple solution is to assume a trusted auctioneer. Bidders encrypt their bids
and send them to the auctioneer, and the auctioneer decrypts them to decide
the winner. To remove the trusted auctioneer, some secure multi-party protocols
have been proposed. The common essential idea is the use of threshold cryp-
tosystems, where a private decryption key is shared by the players. Jakobsson
and Juels proposed a secure MPC protocol to evaluate a function comprising
a logical circuit, called mix-and-match [6]. As for a target function f and the
circuit that calculates f , Cf , all players evaluate each gate in Cf based on their
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encrypted inputs and the evaluations of all the gates in turn lead to the eval-
uation of f . Based on the mix-and-match protocol, we can easily find a secure
auction protocol by repeating the millionaires’ problem for two players. Kuro-
sawa and Ogata suggested the ”bit-slice auction”, which is an auction protocol
that is more efficient than the one based on the millionaire’s problem [8].

Boneh, Goh and Nissim suggested a public evaluation system for 2-DNF for-
mula based on an encryption of Boolean variables [3]. Their protocol is based
on Pallier’s scheme [13], so it has additive homomorphism in addition to the
bilinear map, which allows one multiplication on encrypted values. As a result,
this property allows the evaluation of multivariate polynomials with the total of
degree two on encrypted values.

In this paper, we introduce an efficient secure auction protocol for M + 1st
price auction, in which if the bidding price is an integer up to p and the number
of bidders is m, the complexity of our protocol is a polynomial of log p and m.

1.2 Related Works

As related works, there are many secure auction protocols, however, they have
problems such as those described hereafter. The secure auction scheme for first
price auction proposed by Franklin and Reiter [5] does not provide full privacy,
since at the end of an auction players can know the other players’ bids. Naor,
Pinkas and Sumner achieved a secure second price auction by combining Yao’s
secure computation with oblivious transfer assuming two types of auctioneers
[10]. However, the cost of the bidder communication is high because it proceeds
bit by bit using the oblivious transfer protocol. Juels and Szydlo improved the
efficiency and security of this scheme with two types of auctioneers through ver-
ifiable proxy oblivious transfer [7], which still has a security problem in which
if both types of auctioneers collaborate they can retrieve all bids. Mitsunaga,
Manabe and Okamoto suggested secure auction protocols for first and second
price auction. They applied Boneh-Goh-Nissim Encryption to the bit-slice auc-
tion protocol to improve computation costs [11].

For M + 1st price auction, Lipmaa, Asokan and Niemi proposed an efficient
secure M +1st auction scheme [9]. In their scheme, the trusted auction authority
can know the bid statistics. Abe and Suzuki suggested a secure auction scheme
for the M +1st auction based on homomorphic encryption [1]. However in their
scheme, a player’s bid is not a binary expression. So, its time complexity is
O(m2p) for a m-player and p-bit bidding price auction.

1.3 Our Result

This paper presents an efficient secure auction protocol for M +1st price auction.
In our proposed protocol, bidding prices are represented as binary numbers.
Thus, when the bidding price is an integer up to p and the number of bidders
is m, the complexity of our protocol is a polynomial of log p and m, while in
previous secure M+1st price auction protocols[1], the complexity is a polynomial
of p and m.
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2 Preliminaries

2.1 The Model of Auction and Outline of Auction Protocol

This model involves n players, denoted by P1, P2, ..., Pm and assumes that there
exists a public board. The players agree in advance on the presentation of the
target function, f as a circuit Cf . For each player Pi’s bidding price Zi, the aim
of the protocol is for players to compute f(Z1, ..., Zm) without revealing any
additional information. Its outline is as follows.

1. Input stage: Each Pi(1 ≤ i ≤ m) computes ciphertexts of the bits of Zi

and broadcasts them and proves that the ciphertext represents 0 or 1 by
using the zero-knowledge proof technique in [3].

2. Mix and Match stage: The players blindly evaluates each gate, Gj , in
order.

3. Output stage: After evaluating the last gate GM , the players obtain OM ,
a ciphertext encrypting f(Z1, ..., Zm). They jointly decrypt this ciphertext
value to reveal the output of function f .

2.2 Mix and Match Protocol

Requirements for the Encryption Function. Let E be a public-key prob-
abilistic encryption function. We denote the set of encryptions for a plaintext m
by E(m) and a particular encryption of m by c ∈ E(m) .

Function E must satisfy the following properties.

1.Homomorphic property. There exist polynomial time computable opera-
tions, −1 and ⊗, as follows. For a large prime q,
1. If c ∈ E(m), then c−1 ∈ E(−m mod q).
2. If c1 ∈ E(m1) and c2 ∈ E(m2), then c1 ⊗ c2 ∈ E(m1 + m2 mod q).

For a positive integer a, define
a · e = c⊗ c⊗ · · · ⊗ c︸ ︷︷ ︸

a

.

2.Random re-encryption. Given c ∈ E(m), there is a probabilistic
re-encryption algorithm that outputs c′ ∈ E(m), where c′ is uniformly dis-
tributed over E(m).

3.Threshold decryption. For a given ciphertext c ∈ E(m), any t out of n
players can decrypt c along with a zero-knowledge proof of the correctness.
However, any t-1 out of n players cannot decrypt c.

MIX Protocol. The MIX protocol [4] takes a list of ciphertexts, (ξ1, ...., ξL),
and outputs a permuted and re-encrypted list of the ciphertexts (ξ′1, ..., ξ

′
L) with-

out revealing the relationship between (ξ1, ..., ξL) and (ξ′1, ..., ξ′L), where ξi or ξ′i
can be a single ciphertext c, or a list of l ciphertexts, (c1, ..., cl), for some l > 1.
For all players to verify the validity of (ξ′1, ..., ξ′L), we use the universal verifiable
MIX net protocol described in [14].



54 T. Mitsunaga, Y. Manabe, and T. Okamoto

Plaintext Equality Test. Given two ciphertexts c1 ∈ E(v1) and c2 ∈ E(v2),
this protocol checks if v1 = v2. Let c0 = c1 ⊗ c−1

2 .

1. (Step 1) For each player Pi (where i = 1,...,n):
Pi chooses a random element ai ∈ Z∗

q and computes zi = ai·c0. He broadcasts
zi and proves the validity of zi in zero-knowledge.

2. (Step 2) Let z = z1 ⊗ z2 ⊗ · · · ⊗ zn. The players jointly decrypt z using
threshold verifiable decryption and obtain plaintext v. Then it holds that

v =
{

0 if v1 = v2

random otherwise

Mix and Match Stage. For each logical gate, G(x1, x2), of a given circuit, n
players jointly computes E(G(x1, x2)) from c1 ∈ E(x1) and c2 ∈ E(x2) keeping
x1 and x2 secret. For simplicity, we show the mix-and-match stage for AND gate.

1. n players first consider the standard encryption of each entry in the table
shown below.

2. By applying a MIX protocol to the four rows of the table, n players jointly
compute blinded and permuted rows of the table. Let the ith row be (a′

i, b
′
i, c

′
i)

for i = 1,...,4.
3. n players next jointly find the row i such that the plaintext of c1 is equal to

that of a′
i and the plaintext of c2 is equal to that of b′i by using the plaintext

equality test protocol.
4. For the row i, it holds that c′i ∈ E(x1 ∧ x2).

Table 1. Mix-and-match table for AND

x1 x2 x1 ∧ x2

a′
1 ∈ E(0) b′1 ∈ E(0) c′1 ∈ E(0)

a′
2 ∈ E(0) b′2 ∈ E(1) c′2 ∈ E(0)

a′
3 ∈ E(1) b′3 ∈ E(0) c′3 ∈ E(0)

a′
4 ∈ E(1) b′4 ∈ E(1) c′4 ∈ E(1)

2.3 Evaluating 2-DNF Formulas on Ciphertexts

Given encrypted Boolean variables x1, ..., xn ∈ {0, 1}, a mechanism for public
evaluation of a 2-DNF formula was suggested in [3]. They presented a homomor-
phic public key encryption scheme based on finite groups of composite order that
supports a bilinear map. In addition, the bilinear map allows for one multiplica-
tion on encrypted values. As a result, their system supports arbitrary additions
and one multiplication on encrypted data. This property in turn allows the eval-
uation of multivariate polynomials of a total degree of two on encrypted values.
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Bilinear Groups. Their construction makes use of certain finite groups of
composite order that supports a bilinear map. We use the following notation.

1. G and G1 are two (multiplicative) cyclic groups of finite order n.
2. g is a generator of G.
3. e is a bilinear map e : G×G→ G1.

Subgroup Decision Assumption. We define algorithm G such that given
security parameter τ ∈ Z+ outputs a tuple (q1, q2, G, G1, e) where G, G1 are
groups of order n = q1q2 and e : G × G → G1 is a bilinear map. On input τ ,
algorithm G works as indicated below,

1. Generate two random τ -bit primes, q1 and q2 and set n = q1q2 ∈ Z.
2. Generate a bilinear group G of order n as described above. Let g be a gen-

erator of G and e : G×G→ G1 be the bilinear map.
3. Output (q1, q2, G, G1, e).

We note that the group action in G and G1 as well as the bilinear map can
be computed in polynomial time.

Let τ ∈ Z+ and let (q1, q2, G, G1, e) be a tuple produced by G where n = q1q2.
Consider the following problem. Given (n, G, G1, e) and an element x ∈ G, out-
put ’1’ if the order of x is q1 and output ’0’ otherwise, that is, without knowing
the factorization of the group order n, decide if an element x is in a subgroup of
G. We refer to this problem as the subgroup decision problem.

Homomorphic Public Key System. We now introduce the public key system
which resembles the Pallier [13] and the Okamoto-Uchiyama encryption schemes
[12]. We describe the three algorithms comprising the system.

1.KeyGen Given a security parameter τ ∈ Z, run G to obtain a tuple
(q1, q2, G, G1, e). Let n = q1q2. Select two random generators, g and u

R←− G
and set h = uq2 . Then h is a random generator of the subgroup of G of or-
der q1. The public key is PK = (n, G, G1, e, g, h). The private key is SK = q1.

2.Encrypt(PK, M) We assume that the message space consists of integers in
set {0, 1, ..., T} with T < q2. We encrypt the binary representation of bids
in our main application, in the case T = 1. To encrypt a message m using
public key PK, select a random number r ∈ {0, 1, ..., n− 1} and compute

C = gmhr ∈ G.

Output C as the ciphertext.
3.Decrypt(SK, C) To decrypt a ciphertext C using the private key SK = q1,

observe that Cq1 = (gmhr)q1 = (gq1)m. Let ĝ = gq1 . To recover m, it suffices
to compute the discrete log of Cq1 base ĝ.
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Homomorphic Properties. The system is clearly additively homomorphic.
Let (n, G, G1, e, g, h) be a public key. Given encryptions C1 and C2 ∈ G1 of
messages m1 and m2 ∈ {0, 1, ..., T} respectively, anyone can create a uniformly
distributed encryption of m1+m2 mod n by computing the product C = C1C2h

r

for a random number r ∈ {0, 1, ..., n − 1}. More importantly, anyone can mul-
tiply two encrypted messages once using the bilinear map. Set g1 = e(g, g) and
h1 = e(g, h). Then g1 is of order n and h1 is of order q1. Also, write h = gαq2 for
some (unknown)α ∈ Z. Suppose we are given two ciphertexts C1 = gm1hr1 ∈ G
and C2 = gm2hr2 ∈ G. To build an encryption of product m1 ·m2 mod n given
only C1 and C2, 1) select random r ∈ Zn, and 2) set C = e(C1, C2)hr

1 ∈ G1. Then

C = e(C1, C2)hr
1 = e(gm1hr1 , gm2hr2)hr

1

= gm1m2
1 hm1r2+r2m1+q2r1r2α+r

1 = gm1m2
1 hr′

1 ∈ G1

where r′ = m1r2 +r2m1 +q2r1r2α+r is distributed uniformly in Zn as required.
Thus, C is a uniformly distributed encryption of m1m2 mod n, but in the group
G1 rather than G (this is why we allow for just one multiplication). We note that
the system is still additively homomorphic in G1. For simplicity, in this paper
we denote an encryption of message m in G as EG(m) and one in G1 as EG1(m).

2.4 Key Sharing

In [2], efficient protocols are presented for a number of players to jointly generate
RSA modulus N = pq where p and q are prime, and each player retains a share
of N . In this protocol, none of the players can know the factorization of N . They
then show how the players can proceed to compute a public exponent e and the
shares of the corresponding private exponent. At the end of the computation
the players are convinced that N is a product of two large primes by using zero-
knowledge proof. Their protocol was based on the threshold decryption that
m out of m players can decrypt the secret. The cost of key generation for the
shared RSA private key is approximately 11 times greater than that for simple
RSA key generation. However the cost for computation is still practical. We use
this protocol to share private keys among auction managers. We can assume
that auction managers are either a subset of players or a different group such as
management group for auctions.

3 New Efficient Auction Protocol

In this section, we show an efficient M + 1st price auction based on bit-slice
auction protocols. Compared to previous works on secure M +1st price auctions,
proposed protocol is more efficient because bidding prices are represent as binary
numbers, however it needs high computation costs if a quite large number of
players participate an auction. Because complexity of proposed protocol is a
polynomial of m for the m-player auction.
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3.1 Proposed M + 1st Price Auction Protocol

We define three types of player’s status on j-th bit as Wj(Winner),
Cj(Candidate) and Sj(Survivor) shown as below and the numbers of players in
Wj and Sj as |Wj | and | Sj |. We define the status of players for m-player and
k-bit bidding price shown as below,

Wj [1...m]: Wj [i]=1 if player Pi is decided to be a winner by upper k − j bits
of the bids.

Cj [1...m]: Cj [i]=1 if player Pi is not decided to be a winner but has a possi-
bility of M + 1st highest bidder by upper k − j bits of the bids.

Sj [1...m]: Sj [i]=1 if Cj [i]=1 and j-th bit of Pi’s bid is 1.

Suppose that BM+1st = (b(k−1)
M+1st, ..., b

(0)
M+1st)2 is the M + 1st highest bidding

price and Zi = (z(k−1)
i , ..., z

(0)
i )2 is the bid of player i, where ()2 is the binary

expression. The winners and winning price are found by the following protocol.
As initial setting, we set Wk[i]=0 (1 ≤ i ≤ m) and Ck[i]=1 ( 1 ≤ i ≤ m).

For j = k-1 to 0
Sj [i]=Cj+1[i] * z

(j)
i (1 ≤ i ≤ m)

if | Wj+1 | + | Sj | > M then
b
(j)
M+1st=1

Cj [i] = Sj [i] ( 1 ≤ i ≤ m)
Wj [i] = Wj+1[i] (1 ≤ i ≤ m)

else
b
(j)
M+1st=0

Wj [i] = Wj+1[i] + Sj[i] (1 ≤ i ≤ m)
Cj [i] = Cj+1[i] - Sj [i] (1 ≤ i ≤ m)

end
end

If the number of Winners on (j+1)-th bit and Survirors on j-th bit is more than
M , we keep Winners remained and update Candidates to eliminate players i in
a set of (Cj [i]− Sj [i]), because they have no possibility to win the auction.

If the number of Winners on (j + 1)-th bit and Survirors on j-th bit is less
than or equal to M , Survivors on j-th bid are determined as Winners, so we
update Wj as Wj+1[i] + Sj [i] and eliminate players i of Sj [i] from Cj+1[i].

3.2 Example

We show an example 5-player auction for 3 goods (M=3). The information we
need to find are the first, second and third highest bidders as the winners of the
auction and the forth highest bidding price as the winning price. Assume each
player’s bid as follows,

P1 = 11 = (1011)2
P2 = 7 = (0111)2
P3 = 5 = (0101)2
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Table 2. Example of 5-player auction for 3 goods

C5 W5 K4 S4 C4 W4 K3 S3 C3 W3 K2 S2 C2 W2 K1 S1 C1 W1

P1 1 0 1 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1

P2 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1

P3 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 1

P4 1 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0 1 0

P5 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

| W | and | S | 0 1 1 3 1 1 2 1 3

BM+1st 0 1 0 0

P4 = 4 = (0100)2
P5 = 1 = (0001)2

So, the winners are P1, P2 and P3 and the winning price is 4. We denote Kj be
the vector of players’ j-th bid as Kj = (z(j)

1 , z
(j)
2 , z

(j)
3 , z

(j)
4 , z

(j)
5 ).

We also denote Wj , Cj and Sj be the vector of players’ status, Winner, Can-
didate and Survivors on j-th bid respectively.

For initial setting j =5, all players have possibilities to win the auction, so
according to the definition of the player status all players are Candidates and
they are not decided to win the auction yet, so none of them are Winners.

Next step j =4, only P1’s bid is 1, so P1 is decided to be Survivor and the
number of Winner on upper bit and Survivor on 4th bid is 1. Then, by following
the protocol, P1 is the Winner and is removed from Candidate. The other players
are kept to be Candidates because they have still possibilities to win the auction.

Next step j =3, bids of P2, P3 and P4 are 1, so they are decided as Suvivors.
The number of Winner on upper bit and Survivor on 3rd bid is 4, which means
P2, P3 and P4 can not decided to be Winners but kept to be Candidates and P5

already loses the auction.
Following the protocol, from the 1st bits of the bids P1, P2 and P3 are decided

to be Winners. The winning price is shown in the row of BM+1st in the table 2.

3.3 Secure M + 1st Price Auction Using 2-DNF Scheme and
Mix-and-Match Protocol

We assume n players, P1, ..., Pn and a set of auction managers, AM . The play-
ers bid their encrypted prices and broadcast them. The AM runs an auction
protocol with the encrypted bids and after the auction AM jointly decrypts the
results of the protocol and broadcast it to the players. Players can verify the
winning price (the M + 1st price) and the winners from the encrypted bidding
prices by using verification protocols. To maintain secrecy of the players’ bidding
prices through the protocol, we need to use the mix-and-match protocol. Here,
we define two types of new tables, MAP1 and MAP2. In the proposed protocol,
the MAP1 and MAP2 tables are created among AM before an auction. The AM
jointly computes values in the mix-and-match table for distributed decryption
of plaintext equality test. The function of table MAP1, shown in Table 2, is a
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mapping x1 ∈ {EG1(0), EG1(1)} → x2 ∈ {EG(0), EG(1)}. The table MAP2,
shown in Table 3, is the one for mapping x1 ∈ {EG1(0), EG1(1), ..., EG1(m)} →
x2 ∈ {EG(0), EG(1)}. These tables can be constructed using the mix-and-match
protocol because the Boneh-Goh-Nissim encryption has homomorphic proper-
ties.

Setting. AM jointly generates and shares private keys among themselves using
the technique described in [2].

Bidding Phase. Suppose that BM+1st = (b(k−1)
M+1st, ..., b

(0)
M+1st)2 is the M + 1st

highest bidding price and a bid of a player i is Zi = (z(k−1)
i , ..., z

(0)
i )2, where ()2

is the binary expression. Each player Pi computes a ciphertext of his bidding
price, Zi, as

ENCi = (bk−1
i , ...., b0

i )

where bj
i ∈ EG(z(j)

i ), and publishes ENCi on the bulletin board. He also proves
in zero-knowledge that z

(j)
i = 0 or 1 by using the technique described in [3].

Opening Phase. Let Ck = (ck
1 , .., ck

m), where each ck
i ∈ EG(1) and Wk =

(wk
1 , .., wk

m), where each wk
i ∈ EG1(0).

(Step 1) For j = k -1 to 0, perform the following.
(Step 1-a) For Cj = (cj

1, ..., c
j
m), AM computes sj

i = Mul(bj
i , c

j
i ) for each player

i, and

Sj = (Mul(cj
1, b

j
1), ..., Mul(cj

m, bj
m))

hj = Mul(bj
1, c

j
1)⊗ · · · ⊗Mul(bj

m, cj
m)

dj = wj
1 ⊗ · · · ⊗ wj

m

(Step 1-b) The AM uses table MAP1 for sj
i for each i and finds the values of

s̃j
i . Let S̃j = (s̃j

1, ..., s̃
j
m).

(Step 1-c) AM uses table MAP2 for dj ⊗ hj and decrypts the output value.
The reason MAP2 is used here is to prevent AM finding any other infomation
except dj ⊗ hj is more than M + 1 or not. If the output value is 0, the number
of winners and survivors are less than M + 1. Then, AM updates

Wj = Wj+1 + Sj = (wj+1
1 ⊗ sj

1, .., w
j+1
m ⊗ sj

m)
Cj−1 = Cj − S̃j = (cj

1 ⊗ (s̃j
1)

−1, .., cj
m ⊗ (s̃j

m)−1)
b
(i)
M+1st = 0

If the output value is 1, then
Wj = Wj+1 = (wj+1

1 , .., wj+1
m )

Cj−1 = S̃j = (s̃j
1, ..., s̃

j
m)

b
(i)
M+1st = 1

(Step 2) For the final W0 = (w0
1 , ..., w

0
m), AM decrypts each w0

i with verification
protocols and obtains the winners of the auction. Pi is the winners if and only
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Table 3. Table for MAP1

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(1)

Table 4. Table for MAP2

x1 x2

a1 ∈ EG1(0) b1 ∈ EG(0)

a2 ∈ EG1(1) b2 ∈ EG(0)

· · · bi ∈ EG(0)

aM+1 ∈ EG1(M) bM+1 ∈ EG(0)

aM+2 ∈ EG1(M + 1) bM+2 ∈ EG(1)

· · · bi ∈ EG(1)

am+1 ∈ EG1(m) bm+1 ∈ EG(1)

if plaintexts of w0
i = 1 and

∑
w0

i = M . The M + 1st highest price is obtained
as BM+1st = (b(k−1)

M+1st, ..., b
(0)
M+1st)2.

If more than M players bid the same price which is M + 1st highest, such as a
case four players bid the same price for 5-player auction for 3 goods, this protocol
does not work well. At the end of auction, winners and winning price can not be
decided.

Verification Protocols
Verification protocols are the protocols for players to confirm that AM decrypts
the ciphertext correctly. By using the protocols, each player can verify the results
of the auction are correct. We denote b as a palintext and C as a BGN encryption
of b (C = gbhr), where g, h and r are elements used in BGN scheme and f =
C(gb)−1. Before a player verifies whether b is the plaintext of C, the player
must prove that a challenge ciphertext C′ = gxf r is created by himself with
zero-knowledge proof that he has the value of x.

1. A player proves that he has random element x ∈ Z∗
n with zero-knowledge

proof.
2. The player computes f = C(gb)−1 from the published values, h, g and b,

and select a random integer r ∈ Z∗
n. He sends C′ = gxf r to AM .

3. The AM decrypts C′ and sends value x′ to the player.
4. The player verifies whether x = x′. AM can decrypt C′ correctly only if

order(f) = q1, which means that the AM correctly decrypts C and publishes
b as the plaintext of C.

3.4 Security

1. Privacy for bidding prices
Each player can not retrieve any information except for the winners and the
M + 1st highest price. An auction scheme is secure if there is no polynomial
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(PK, SK) ← KeyGen
(m0, m1, s) ← Ao1

1 (PK)
b ← {0, 1}

c ← Encrypt(PK,mb)
b′ ← Ao1

2 (c, s)
return 1 iff b = b′

Fig. 1. EXPTA,Π

time adversary that breaks privacy with non-negligible advantage ε(τ). We
prove that the privacy for bidding prices in the proposed auction protocols
under the assumption that BGN encryption with the mix-and-match oracle is
semantically secure. Given a message m, the mix-and-match oracle receives
an encrypted value x1 ∈ EG1(m) and returns the encrypted value x2 ∈
EG(m) according to the mix-and-match table shown in Table 3. (which has
the same function as MAP2). Given a message m and the ciphertext x1 ∈
EG1(m), the function of mix-and-match table is to map x1 ∈ EG1(m) →
x2 ∈ EG(m). The range of the input value is supposed to be {0,1,...,m} and
the range of the output is {0,1}. We do not consider cases where the input
values are out of the range. Using this mix-and-match oracle, an adversary
can compute any logical function without the limit where BGN encryption
scheme can use only one multiplication on encrypted values. MAP1 can also
be computed if the range of the input value is restricted in {0,1}. Here,
we define two semantic secure games and advantages for BGN encryption
scheme and the proposed auction protocols. We also show that if there is
adversary B that breaks the proposed auction protocol, we can compose
adversary A that breaks the semantic security of the BGN encryption with
the mix-and-match oracle by using B.

Definition 1
Let Π = (KeyGen, Encrypt, Decrypt) be a BGN encryption scheme, and
let AO1 = (AO1

1 , AO1
2 ), be a probabilistic polynomial-time algorithm, that can

use the mix-and-match oracle O1.

BGN-Adv(τ) = Pr[EXPTA,Π(τ)⇒ 1] − 1/2

where, EXPTA,Π is a semantic security game of the BGN encryption scheme
with the mix-and-match oracle shown in Fig. 1.

We then define an adversary B for an auction protocol and an advantage
for B.

Definition 2
Let Π = (KeyGen, Encrypt, Decrypt) be a BGN encryption scheme, and
let B be two probabilistic polynomial-time algorithm B1 and B2.
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(PK, SK) ← KeyGen
(b1, b2, ..., bm−1, bm0, bm1, s) ← B1(PK)

b ← {0, 1}
c ← (Encrypt(PK, b1), Encrypt(PK, b2), ..., Encrypt(PK, bm−1), Encrypt(PK, bmb))

execute auction protocols using c as players′ bids
and x is transcript of the auction protocol.

b′ ← B2(c, s, x)
return 1 iff b = b′

Fig. 2. EXPTB,Π

Auction-Adv(τ) = Pr[EXPTB,Π = 1] − 1/2

where EXPTB,Π is a semantic security game of the privacy of the auction
protocol shown in Fig. 2.

First of all, B1 generates k-bit integers, b1, b2, ..., bm−1 as plaintexts of
bidding prices for player 1 to m − 1, and two challenge k-bit integers as
bm0 , bm1 where bm0 and bm1 are the same bits except for i-th bit mi

0 and mi
1.

We assume bm0 and bm1 are not the M+1st highest price. Then the auction is
executed with (Encrypt(PK, b1), Encrypt(PK, b2), ..., Encrypt(PK, bm−1),
Encrypt(PK, bmb

)) as the players’ encrypted bidding prices where b
r←−

{0,1}. After the auction, B2 outputs b’ ∈ {0,1} as a guess for b. B wins
if b = b’.

Theorem 1. The privacy of the auction protocols is secure under the as-
sumption that the BGN encryption is semantically secure with a mix-and-
match oracle.

We show if there is adversary B that breaks the security of the proposed
auction protocol, we can compose adversary A that breaks the semantic se-
curity of the BGN encryption with the mix-and-match oracle. A receives
two challenge k-bit integers as bm0 and bm1 from B and then A uses mi

0

and mi
1 as challenge bits for the challenger of the BGN encryption. Then A

receives Encrypt(PK, mi
b) and executes a secure auction protocol with the

mix-and-match oracle. When calculation of plain equality test or mix-and-
match is needed such as checking whether hj is 0 and updating W̃ , A uses
mix-and-match oracle to transfer encrypted value over EG1 to EG. bm0 and
bm1 are not the winning bidding prices and A knows all the input values,
b1, b2, ..., bm−1 except the i-th bit of bmb

. So, A with mix-and-match oracle
can simulate an auction for the adversary of auction B. Through the auction,
B observes the calculation of the encrypted values and the results of the auc-
tion. After the auction, B outputs b′, which is the guess for b. A outputs b′,
which is the same guess with B’s output for bmb

. If B can break the privacy
of the bidding prices in the proposed auction protocol with advantage ε(τ),
A can break the semantic security of the BGN encryption with the same
advantage.
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2. Correctness
For correct players’ inputs, the protocol outputs the correct winner and price.
From Theorem 1 introduced in Section 1.4, the bit-slice auction protocol
obviously satisfies the correctness.

3. Verification of the evaluation
To verify whether the protocol works, players need to validate whether the
AM decrypts the evaluations of the circuit on ciphertexts through the pro-
tocol. We use the verification protocols introduced above so that each player
can verify whether the protocol is computed correctly.

4 Comparison of Auction Protocols

The protocol proposed in [1] based on homomorphic encryption. Each player
encrypts his bidding price k as an integer. When m players and the bidding
prices are in the range of [1, p], AM calculates multiplications of ciphertexts
2mp times. Mixing and decrypting is used for PET (plain equality test) in the
opening phase to check whether the number of i-th bid is more than M + 1
or not for each price i in [1, p] using binary search. Binary search for p needs
log p comparisons and one comparison needs M+1 PETs for each bid to check
whether it is more than M + 1. And m decryptions are used to decide the
winner of the auction. In our protocol each player’s bidding price is repre-
sented as a binary expression. We use PET Mp times when AM calculates
s̃j

i from player j’s i-th bid for all i and j. We also use PET when AM de-
tects whether b

(i)
M+1st is more than M or not. And logp decryptions are used to

open the winning price and m decryptions are used to to open the winners of
auction.

5 Conclusion

We introduced new efficient secure M +1st price auction protocols based on the
mix-and-match protocol and the BGN encryption. As a topic of future work, we
will try to compose a secure auction protocol without using the mix-and-match
protocol.

Table 5. The Comparision of computational complexity

[AS02] Proposed

Bidding(per one bidder) p encryptions logp encyrptions

Running auction (Calculation over group) 2mp multiplications mlogp multiplications
mlogp pairing

Running auction(Mix and Match) log p times on M + 1 inputs log p times on M + 1 inputs

Decrypting to decide the winners m m

Decrypting to decide the winning price logp logp
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Abstract. In 2007, Stange proposed a novel method for computing the
Tate pairing on an elliptic curve over a finite field. This method is based
on elliptic nets, which are maps from Zn to a ring and satisfy a certain
recurrence relation. In the present paper, we explicitly give formulae
based on elliptic nets for computing the following variants of the Tate
pairing: the Ate, Atei, R-Ate, and optimal pairings. We also discuss their
efficiency by using some experimental results.

Keywords: Tate pairing, Ate pairing, R-Ate pairing, Optimal pairing,
elliptic net, normalization.

1 Introduction

Recently, pairing-based cryptography have been one of the most attractive re-
search topics in public-key cryptography since the proposals of some useful
cryptographic schemes, such as the identity-based key agreement, the tripartite
Diffie–Hellman key exchange, and the identity-based encryption schemes [3], [9],
[15]. With respect to the efficient implementation of pairing-based cryptographic
schemes, the computation of pairings, such as the Weil and Tate pairings, is the
bottleneck. Currently, the most suitable pairing for the efficient implementation
of pairing-based cryptographic schemes is the Tate pairing. Therefore, many al-
gorithms for the efficient computation of the Tate pairing and some of its variants
have been proposed, including the ηT [1], Duursma–Lee [6], Ate [8], Atei [20],
R-Ate [10], and optimal [21] pairings.

A standard algorithm for computing pairings is Miller’s algorithm [11], [12].
A generic implementation of Miller’s algorithm uses a classical double-and-add
line-and-tangent method. Therefore, the time required using Miller’s algorithm is
linear with respect to the size of some input parameter r, as well as depending on
the Hamming weight of r. Most improvements of pairing computation attempt
to shorten the number of iterations of a loop in the algorithm, the so-called

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 65–78, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Miller loop. In fact, the Ate, Atei, R-Ate, and optimal pairings are truncated
loop variants of the Tate pairing.

In 2007, Stange [18] defined elliptic nets and proposed an alternative method
for the Tate pairing computation based on elliptic nets. Elliptic nets are a gener-
alization of elliptic divisibility sequences, which are certain non-linear recurrence
sequences related to elliptic functions. In 1948, Ward [22] first studied the arith-
metic properties of elliptic divisibility sequences. As in the case of Miller’s algo-
rithm, a generic implementation of elliptic net algorithms proposed by Stange
uses the double-and-add method, and so, as in the case of Miller’s algorithm,
the time required using the algorithm is linear with respect to the size of r.
Both Miller’s and elliptic net algorithms include two internal steps, referred to
as Double and DoubleAdd [18]. In Miller’s algorithm, the cost of DoubleAdd is
about twice that of Double. In contrast, in the elliptic net algorithm, these two
steps require almost the same amount of time. In particular, the running time
is independent of the Hamming weight of r.

Because the efficiency of the algorithm is comparable to that of Miller’s algo-
rithm, by using further improvements and optimizations, we expect the elliptic
net algorithm to be an efficient alternative to Miller’s algorithm. Therefore, from
both theoretical and practical points of view, it is important to investigate explicit
formulae for computing some variants of the Tate pairing, based on elliptic nets.

In the present paper, we explicitly give formulae based on elliptic nets for
computing the following variants of the Tate pairing: the Ate, Atei, R-Ate, and
optimal pairings.

These pairings are defined as “point-evaluation” pairings, although the Tate
pairing is originally ”divisor-evaluation” pairing. These point-evaluation pair-
ings are defined using normalized functions (see Section 2). Hence, we need to
formulate a normalization of elliptic nets. In the present paper, we give a normal-
ization of elliptic nets and then the formulae of the above-listed point-evaluation
pairings. We also discuss their efficiency by using some experimental results.

The remainder of this paper is organized as follows. Section 2 gives a brief
mathematical description of pairings and elliptic nets. Section 3 contains our
main results concerning pairings described by elliptic nets. In Section 4, we will
show our experimental results. We draw conclusions in Section 5.

2 Mathematical Preliminaries

2.1 Pairings

Let E be an elliptic curve over a finite field Fq with q elements. The set of Fq-
rational points of E is denoted as E(Fq). Let E(Fq)[r] denote the subgroup of
r-torsion points in E(Fq). We write O for the point at infinity on E. Consider
a large prime r such that r | #E(Fq) and denote the embedding degree by k,
which is the smallest positive integer such that r divides qk − 1. Let πq be the
Frobenius endomorphism πq : E → E : (x, y) �→ (xq, yq). We denote the trace of
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Frobenius by t, i.e., #E(Fq) = q + 1 − t. Finally, let μr(⊂ F×
qk) be the group of

r-th roots of unity.

Weil Pairing. The Weil pairing er(·, ·) is defined by

er(·, ·) : E(Fqk)[r]× E(Fqk )[r]→ μr,

(P, Q) �→ er(P, Q) := fr,P (DQ)/fr,Q(DP ),

where DP is a divisor equivalent to (P )−(O) and fs,P is a rational function on E
such that div(fs,P ) = rDP . Similarly, div(fs,Q) = rDQ, where DQ is equivalent
to (Q)− (O). We assume that DP and DQ are chosen with disjoint supports.

Note that the Weil pairing does not depend on the choice of DP and DQ.
Furthermore, the Weil pairing is bilinear and non-degenerate.

Tate Pairing. Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk). Choose a point R ∈ E(Fqk)
such that the support of div(fr,P ) = r(P )− r(O) and DQ := (Q + R)− (R) are
disjoint. Then, the Tate pairing is defined by

〈·, ·〉r : E(Fqk)[r]× E(Fqk)/rE(Fqk )→ F×
qk/(F×

qk)r ,

(P, Q) �→ 〈P, Q〉r := fr,P (DQ) mod (F×
qk)r .

It has been shown that 〈P, Q〉r is bilinear and non-degenerate.
For cryptography applications, it is convenient to define pairings whose out-

puts are unique values rather than equivalence classes. Thus, herein, we consider
the reduced Tate pairing defined by

τr : E(Fqk)[r]× E(Fqk)/rE(Fqk )→ μr,

τr(P, Q) = 〈P, Q〉(qk−1)/r
r .

We call the operation z �→ z(qk−1)/r final exponentiation.
The Weil Tate pairings satisfy that

er(P, Q) =
〈P, Q〉r
〈Q, P 〉r up to r-th powers. (1)

Thus, if the cost of final exponentiation is sufficiently small, the cost of computing
the Tate pairing is almost half of that of computing the Weil pairing. Because
of this, the Tate pairing is widely used in cryptography and there are numerous
improved versions, such as the Ate pairing.

As mentioned in Section 1, a classical and currently standard algorithm for
computing pairings is Miller’s algorithm [11], [12]. One of the efficiency bench-
marks of pairing computation is based on the Miller loop. The length of the
Miller loop is log2(r) in the case of the Tate pairing 〈·, ·〉r . Most improvements
of pairing computation attempt to shorten the Miller loop.
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Barreto et al. [2] pointed out that τr(P, Q) can be computed by τr(P, Q) =
fr,P (Q)(q

k−1)/r if P ∈ E(Fq)[r] and k > 1.

For cryptographic applications, it is usually assumed that points P and Q are
respectively elements in the following groups:

G1 = E(Fq)[r] = E(Fqk)[r] ∩Ker(πq − 1),
G2 = E(Fqk)[r] ∩Ker(πq − q)

Hereafter, we assume that P ∈ G1 and Q ∈ G2.
We give a brief review of the following variants of the Tate pairing: the Ate

[8], Atei [20], R-Ate [10], and optimal [21] pairings. These pairings are defined on
G2×G1 and G1×G2. In the present paper, we consider the case of G2×G1. See
the appropriate papers cited above for the case of G1 ×G2. We use normalized
functions to define the above pairings on G2 ×G1; therefore, we will first define
this normalization as follows.

Normalization of Rational Functions. For s ∈ Z, we define fs,Q as the
rational function satisfying the equation div(fs,Q) = s(Q) − (sQ)− (s − 1)(O).
This function fs,Q is determined uniquely up to multiplication by a constant.
Uniqueness is obtained by normalization. We will denote the normalized form of
fs,R by fnorm

s,R and refer to the latter as the normalized function.
Let uO be a uniformizer of E on O. We may choose as this uniformizer uO =

−x
y . Then the normalized function fnorm

s,R is defined by

fnorm
s,R = fs,R/c, where c = (us−1

O fs,R)(O). (2)

From now on, we may assume that all rational functions on elliptic curves are
normalized.

Ate Pairing. The Ate pairing, proposed by Hess et al. [8], is a generalization
of the ηT pairing [1]. The Ate pairing can be applied to not only supersingular
but also ordinary elliptic curves.

Let T = t−1. We choose integers N and L such that N = gcd(T k−1, qk−1)
and T k − 1 = LN . We assume that r2 does not divide qk − 1. Then the Ate
pairing is defined by fT,Q(P )(Q ∈ G2 and P ∈ G1). We denote by α(Q, P ) the
reduced Ate pairing: α(Q, P ) := fT,Q(P )(q

k−1)/r. The length of the Miller loop
for computing the Ate pairing fT,Q(P ) is log2 |T |.
Atei Pairing. The Atei pairing was proposed by Zhao et al. [20]. Let Ti := qi

(mod r) for i = 1, 2, · · · , k − 1. For each i, we define the following quantities
similarly to those for the Ate pairing: ai is the smallest positive integer such
that T ai

i ≡ 1 (mod r), Ni := gcd(T ai

i − 1, qk − 1), and Li is the positive integer
such that T ai

i − 1 = LiNi.
The Atei pairing on G2 × G1 is defined by fTi,Q(P )(Q ∈ G2 and P ∈ G1).

Analogous to the case for Ate pairing, we denote by αi(Q, P ) the reduced Atei
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pairing: αi(Q, P ) := fTi,Q(P )(q
k−1)/r. The length of the Miller loop for comput-

ing fTi,Q(P ) is log2(Ti).
If Tn := min{Ti : i = 1, 2, · · · , k − 1, 0 ≤ Ti ≤ r − 1}, then fTn,Q(P ) can be

computed faster than the Ate pairing fT,Q(P ).

R-Ate Pairing. The R-Ate pairing was proposed by Lee et al. [10] Let A, B, a, b
be integers such that A = aB + b. We define the R-Ate pairing to be

RA,B(Q, P ) := fa,[B]Q(P ) · fb,Q(P ) ·G[aB]Q,[b]Q(P ),

where GP1,P2 is a rational function on E such that div(GP1,P2) = (P1) + (P2)−
(P3)− (O) (P3 = P1 + P2).

Lee et al. showed that RA,B(Q, P ) is bilinear and non-degenerate under some
conditions (see Theorem III.2 of [10]). Furthermore, they also gave the following
examples in which RA,B(Q, P ) is bilinear and non-degenerate: (A, B) = (qi, r),
(A, B) = (q, T1) where q > T1, (A, B) = (Ti, Tj), and (A, B) = (r, Tj). See
Corollary III.3. in [10].

Optimal Pairing. Optimal pairing was proposed by Vercauteren [21]. Optimal
pairing can be computed in log2 r/φ(k) + ε(k) Miller loop iterations (φ(k) is the
Euler function of k and ε(k) ≤ log2 k).

Theorem 1 ([21] Theorem 1). Let λ be an integer such that r|λ and r2 � λ.
We express λ as λ =

∑l
i=0 ciq

i. Then

a[c0,c1,··· ,cl] : G2 ×G1 → μr

(Q, P ) �→
( l∏

i=0

f qi

ci,Q
(P ) ·

l−1∏
i=0

l[si+1]Q,[ciqi]Q(P )
v[si]Q(P )

) qk−1
r

(where si =
∑l

j=i cjq
j) defines a bilinear map. Furthermore, if

λ

r
kqk−1 �≡ qk − 1

r

l∑
i=0

iciq
i−1 (mod r),

a[c0,c1,··· ,cl](Q, P ) is non-degenerate.

Note that we may consider l = φ(k) − 1 because r | Φk(q), where Φk(X) is the
k-th cyclotomic polynomial. The pairing a[c0,c1,··· ,cl](Q, P ) is called the optimal
pairing because it can be computed very efficiently if c0, c1, · · · , cl can be chosen
very small.

2.2 Elliptic Nets

In 2007, Stange [18] defined elliptic nets as maps from Zn to a ring and they
satisfy a certain recurrence relation associated with elliptic curves. In general, an
elliptic net W is a map from a finitely generated abelian group A to an integral
domain R such that
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W (p + q + s)W (p− q)W (r + s)W (r)
+ W (q + r + s)W (q − r)W (p + s)W (p)
+ W (r + p + s)W (r − p)W (q + s)W (q) = 0

for p, q, r, s ∈ A. Elliptic divisibility sequences arise from an elliptic curve defined
over the rational numbers and a rational point of that curve. These sequences
are strongly related to elliptic functions and the division polynomials of an ellip-
tic curve. For cryptographic applications, the division polynomials of an elliptic
curve are the main tools of Schoof’s algorithm [16]. As we will see later, the
division polynomials of an elliptic curve also play an important role in the com-
putation of elliptic net-based pairings.

Stange introduced the concept of elliptic nets associated with elliptic curves
and described Tate pairing by using elliptic nets. In this section, we briefly review
elliptic nets. See [18] for detail.

First, we consider a function, denoted by Ψ , associated with elliptic curves
over C by using an elliptic σ-function. We define an elliptic net W (in C) using Ψ .
Next, we construct a function associated with Ψ , denoted by Ω, that is defined
in finite fields by applying a reduction theorem (see Theorem 3 in [18]). Thus,
we are able to consider W in finite fields and construct the Tate pairing in finite
fields.

To describe the Tate pairing fr,P (DQ) by using elliptic nets, Stange showed a

formula for a function fr,P with div(fP ) = r(P )−r(O) as fr,P =
Ω1,0,0,(−S, P, Q)
Ω1,r,0(−S, P, Q)

,

where Ω1,v2,v3(−S, P, Q)(vi ∈ Z) is a function in S and the divisor of
Ω1,v2,v3(−S, P, Q) on a variable S is ([v2]P + [v3]Q) − v2(P ) − v3(Q) − (1 −
v2 − v3)(O). Then a formula for fr,P (DQ), where DQ is a divisor equivalent to
(−S)− (−S −Q), as a function in variable S is computed. The following result
is obtained by setting S = P the formula of fr,P (DQ).

Theorem 2 ([18]). Let E be an elliptic curve over a finite field K. For P ∈
E(K)[r], Q ∈ E(K),

fr,P (DQ) =
WP,Q(r + 1, 1)WP,Q(1, 0)
WP,Q(r + 1, 0)WP,Q(1, 1)

, (3)

where WP,Q(r + 1, i) = Ω1,r,i(−S, P, Q)|S=P .

Remark 1. By using the above theorem and the equation (1), we can easily
obtain the Weil pairing formula using elliptic nets as the following. For P, Q ∈
E(Fqk)[r],

er(P, Q) =
WP,Q(r + 1, 1)WQ,P (r + 1, 0)
WP,Q(r + 1, 0)WQ,P (r + 1, 1)

up to r-th powers.

Here, we assume that an elliptic curve E has a Weierstrass equation of the
form Y 2 = X3 + AX + B. Let ψn(x, y) denote the n-th division polynomial of
an elliptic curve. For simplicity, we write WP,Q(i, j) = W (i, j). Initial values of
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elliptic nets W (i, 0) and W (i, 1) are obtained by the following definition (see
[18]): if P = (x1, y1) and Q = (x2, y2), then

W (1, 0) = 1,

W (2, 0) = 2y1,

W (3, 0) = 3x3
1 + 6Ax2

1 + 12Bx1 −A2,

W (4, 0) = 4y1(x6
1 + 5Ax4

1 + 20Bx3
1 − 5A2x2

1 − 4ABx1 − 8B2 −A3),
W (0, 1) = W (1, 1) = 1,

W (2, 1) = 2x1 + x2 − (
y2 − y1

x2 − x1
)2,

W (−1, 1) = x1 − x2,

W (2,−1) = (y1 + y2)2 − (2x1 + x2)(x1 − x2)2.

Elliptic nets W (i, 0) and W (j, 1) can be computed by the following recursive
formulae.

Proposition 1 ([18])

W (2i − 1, 0) = W (i + 1, 0)W (i − 1, 0)3 − W (i − 2, 0)W (i, 0)3,

W (2i, 0) =
W (i, 0)W (i + 2, 0)W (i − 1, 0)2 − W (i, 0)W (i − 2, 0)W (i + 1, 0)2

W (2, 0)
,

W (2i − 1, 1) =
W (i + 1, 1)W (i − 1, 1)W (i − 1, 0)2 − W (i, 0)W (i − 2, 0)W (i, 1)2

W (1, 1)
,

W (2i, 1) = W (i − 1, 1)W (i + 1, 1)W (k, 0)2 − W (i − 1, 0)W (i + 1, 0)W (i, 1)2,

W (2i + 1, 1) =
W (i − 1, 1)W (i + 1, 1)W (i + 1, 0)2 − W (i, 0)W (i + 2, 0)W (i, 1)2

W (−1, 1)
,

W (2i + 2, 1) =
W (i + 1, 0)W (i + 3, 0)W (i, 1)2 − W (i − 1, 1)W (i + 1, 1)W (i + 2, 0)2

W (2,−1)
.

Note that W (i, 0) = WP,Q(i, 0) is equal to ψi(x1, y1) because WP,Q(i, 0) =
ψi(x1, y1) for i = 1, 2, 3, 4 and the recursive formulae for computing W (2i−1, 0)
and W (2i−1, 0) are the same as the recursive formulae for division polynomials.
Therefore, if E is defined over K and P ∈ E(K), WP,Q(i, 0) ∈ K for all i and
they are killed by final exponentiation.

See [18] for algorithms for computing elliptic nets.

3 The Main Results

In this section, we describe variants of the Tate pairing, the Ate, Atei, R-Ate,
and optimal pairings by using elliptic nets.

As seen in Section 2, these pairings are point-evaluation pairings and are
defined by using normalized functions. Therefore, we need to formulate a nor-
malization of elliptic nets in order to describe the formulae of the above-listed
point-evaluation pairings.
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3.1 Normalization of Elliptic Nets

First, we present the following lemma, which can be proved by using a straight
forward calculation.

Lemma 1. Let ℘(z; Λ) := 1
z2 +

∑
ω∈Λ\{0}(

1
(z−ω)2

− 1
ω2 ) be the Weierstrass ℘

function and σ(z; Λ) := z
∏

ω∈Λ\{0}(1 − z
ω )ez/ω+(1/2)(z/ω)2 be the Weierstrass σ

function on C; then (
℘(z; Λ)

℘′(z; Λ)σ(z; Λ)

)
(0) = −1

2
.

Next, we show the following equation corresponding to equation (2) in Section
2.1.

Proposition 2. Let Λ ∈ C be a lattice corresponding to the elliptic curve E.
Fix w ∈ C \ {0}. For s ∈ Z,

(−℘(z; Λ)/℘′(z; Λ))1−s
Ψs,1(w, z)|z=0 = 2s−1Ψs,0(w, z) .

Proof. The proposition follows from Lemma 1 and the following fact:

Ψs,1(w, z) =
σ(sw + z)

σ(w)s2−sσ(w + z)sσ(z)1−s
.

The uniformizer uO = −x
y corresponds to − ℘(z)

℘′(z) . Thus, we have the following
proposition, which gives the normalization of elliptic nets.

Proposition 3. W̃P,Q(s, 1) denotes the normalization (by −x
y ) for the elliptic

net WP,Q(s, 1). For s ∈ Z, assume [s]P �= O. Then

W̃P,Q(s, 1) =
WP,Q(s, 1)

2s−1WP,Q(s, 0)
.

For practical uses of pairings, we can assume k > 1. In this case, 2(qk−1)/r = 1,
and so we have

W̃P,Q(s, 1)
qk−1

r =
(WP,Q(s, 1)

WP,Q(s, 0)

) qk−1
r

.

3.2 Elliptic Net-Based Pairings

We explain the key lemma which connects various pairings with elliptic nets. We
use W̃P,S(s, 1) to denote the normalization for WP,S(s, 1), where WP,S(s, 1) is
a function in S and P is a fixed point on E.

Lemma 2. For s ∈ Z, we assume that the point Q is neither a zero nor a pole
of fs,P . Then

fs,P (Q) = W̃−P,Q(s, 1)
−1

.
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Proof. Let W−P,S(s, 1) = Ωs,1(−P, S) be a rational function in variable S.
Similar to in [18], the divisor of W−P,S(s, 1) in S is

divS(Ωs,1(−P, S)) = ([−s](−P ))− s(P )− (1− s)(O)
= −{s(P )− ([s]P )− (s− 1)(O)}
= −divS(fs,P ) .

Hence, fs,P = W̃−P,S(s, 1)
−1

from the uniqueness of the normalized function.
Finally, we obtain the desired result by taking S = Q.

The following theorem derives formulae for elliptic net-based pairings.

Theorem 3. If the following function on P and Q,

A(P, Q) =
l1∏

i=0

fαi

ti,P
(Q)

l2∏
j=0

G
βj

[uj ]P,[vj]P
(Q),

is bilinear, then

A(P, Q) =
l1∏

i=0

W̃αi

P,Q(ti, 1)
l2∏

j=0

G
−βj

[−uj ]P,[−vj]P
(Q) .

Proof. Using Lemma 2 and the bilinearity of A(P, Q),

A(P, Q) = A(−P, Q)−1

=
l1∏

i=0

f−αi

ti,−P (Q)
l2∏

j=0

G
−βj

[−uj ]P,[−vj ]P
(Q)

=
l1∏

i=0

W̃αi

P,Q(ti, 1)
l2∏

j=0

G
−βj

[−uj ]P,[−vj]P
(Q) .

�	
We consider the case of the optimal pairing. In this case, we need to compute
scalar multiplications [ciq

i]Q(i = 0, 1, · · · , l) using elliptic nets.
Note that Q := (xQ, yQ) satisfies [ciq

i]Q = [qi]([ci]Q) = πi
q([ci]Q) because

Q ∈ E(Fqk)[r] ∩Ker(πq − q).
Furthermore, as seen in Section 2 of [18], WQ,P (n, 0) = ψn(xQ, yQ). Thus, we

are able to express [n]Q in terms of elliptic nets by using the following famous
multiplication formula:

[n](x, y) =
(

x− ψn−1ψn+1

ψ2
n

(x, y),
ψ2

n−1ψn+2 − ψ2
n+1ψn−2

4yψ3
n

(x, y)
)

.

Hence, we obtain [ciq
i]Q = πi

q([ci]Q) = (xqi

[ci]Q
, yqi

[ci]Q
), where

xqi

[ci]Q
=

(
xQ − WQ,P (ci − 1, 0)WQ,P (ci + 1, 0)

WQ,P (ci, 0)2

)qi

,

yqi

[ci]Q
=

(
WQ,P (ci − 1, 0)2WQ,P (ci + 2, 0) − WQ,P (ci + 1, 0)2WQ,P (ci − 2, 0)

2WQ,P (2, 0)WQ,P (ci, 0)3

)qi
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To summarize, we show formulae of cryptographic pairings:

Theorem 4. Let E be an elliptic curve over a finite field Fq and πq : (x, y) �→
(xq, yq) the q-Frobenius endomorphism on E. We assume that the embedding
degree k > 1. Let r be a large prime number with r|#E(Fq) and (r, q) = 1, and
also T ≡ q (mod r) and Ti ≡ qi (mod r). Let λ =

∑l
i=0 ciq

i be such that r|λ
and r2 � λ. We define si =

∑l
j=i cjq

j.
Then, we have the following.

Tate Pairing: For P ∈ E(Fqk)[r] and Q ∈ E(Fqk),

τr(P, Q) = fr,P (Q)
qk−1

r = W̃P,Q(r + 1, 1)
qk−1

r .

Variants of the Tate Pairing: For P ∈ G1 = E(Fqk)[r] ∩ Ker(πq − 1) and
Q ∈ G2 = E(Fqk )[r] ∩Ker(πq − q),

– Ate

α(Q, P ) = fT,Q(P )
qk−1

r = W̃Q,P (T, 1)
qk−1

r ;

– Atei

αi(Q, P ) = fTi,Q(P )
qk−1

r = W̃Q,P (Ti, 1)
qk−1

r ;

– R-Ate

RA,B(Q,P )
qk−1

r =
{

fa,[B]Q(P ) · fb,Q(P ) · G[aB]Q,[b]Q(P )
} qk−1

r

=
{

W̃[B]Q,P (a, 1) · W̃Q,P (b, 1) · G[−aB]Q,[−b]Q
−1(P )

} qk−1
r

,

where A = aB + b;

– optimal

a[c0,c1,...,cl](Q, P ) =
{ l∏

i=0

fci,Q(P )qi ·
l−1∏
i=0

G[si+1]Q,[ciqi]Q(P )
} qk−1

r

=
{ l∏

i=0

W̃Q,P (ci, 1)
qi ·

l−1∏
i=0

G[−si+1]Q,[−ciqi]Q
−1(P )

} qk−1
r

.

For Tate pairings, we have the following stronger result.

Theorem 5. Let E be an elliptic curve over a finite field Fq. We assume that
the embedding degree k > 1. Let r be a large prime number with r|#E(Fq) and
(r, q) = 1. Then, for P ∈ E(Fq)[r] and Q ∈ E(Fqk),

τr(P, Q) = fr,P (Q)
qk−1

r = WP,Q(r, 1)
qk−1

r . (4)
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Proof. Note that Tate pairing fr,P (Q) is uniquely defined over (mod (F×
qk)r)

even though fr,P is not normalized since P ∈ E(Fq)[r]. Then, just as in the
proof of the Lemma 2,

fr,P (Q) ≡W−P,Q(r, 1)−1 mod (F×
qk)r .

Therefore, from the bilinearity of τr(P, Q) = fr,P (Q)
qk−1

r ,

τr(P, Q) = τr(−P, Q)−1 = WP,Q(r, 1)
qk−1

r .

Remark 2. The differences between (3) in Theorem 2 (see p.7) and (4) are
explained as follows. In [18], Stange gave a general formula of the Tate pairing
with a parameter S by using the divisor DQ. We obtain (3) by putting S = P .
On the other hand, we need to compute only WP,Q(r, 1) because we evaluate
the function fP at the point Q. We can verify WP,Q(r, 1) ≡ WP,Q(r + 1, 1)
(mod (F×

qk )
r
) because fr,P (Q) = fr+1,P (Q) if [r]P = O. (Here we note that

fr,P , fr+1,P are normalized.) Since we assume that P is an Fq rational point on
E, we can compute the Tate pairing 〈P, Q〉r by evaluating fr,P at Q. Thus, the
equation (4) is a special case of (3). However, (4) is sufficient and efficient for
cryptographic use.

4 Implementation

In this section, we will show some experimental results for implementations of
various pairings using elliptic nets.

The computer specifications are the following: CPU, a 2 GHz AMD Opteron
246; memory, 4 GB; and hard disk, 160 GB. Magma [23] was used as the software
for writing the program.

We used the following elliptic curves for our experiments.

1 y2 = x3 + 4 [4]

k = 12,

q = 23498017525968473690296083113864677063688317873484513641020158425447

(224 bit),

r = 1706481765729006378056715834692510094310238833 (151 bit),

T = Tn = 203247593908.
2 y2 = x3 + 3 [5]

k = 12,

q = 1461501624496790265145448589920785493717258890819 (160 bit),

r = 1461501624496790265145447380994971188499300027613 (160 bit),

T = Tn = 1208925814305217958863206.
3 y2 = x3+2x+255754413175205946479962785093275958147811775836074868254475\

5542022504589304559812663114754842137 [13]

k = 10,

q = 269165611404982298837667591457479542280678545574962718143297\
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96276308782360965160815950571330669569 (324 bit),

r = 118497265990650143638940886913063255688422174813106568961 (187 bit),

T = −12131133023075412575000611486055266851595610191692815,

Tn = 104334294221056.

The Tables 1 and 2 show the experimental results of our implementations. The
column “EN” indicates a computation using elliptic nets. The column “Miller”
indicates a computation using Miller’s algorithm. Note that we did not use built-
in functions in Magma (such as “ReducedTatePairing”) but rewrote Miller’s
algorithm by using the Magma language.

The column “R-Ate (i)” corresponds to the index i in Corollary 3.3 of [10].
Note that showing values in some cells parenthetically indicates that those values
correspond to values in other cells. For example, the calculation of the Atei

pairing is sometimes equivalent to that of the Ate pairing.
Our experimental results show that pairing computations using elliptic nets is

comparable to those using Miller algorithm in terms of efficiency. However, our
implementations were not optimized, and so we need to study these algorithms
in detail and optimize their implementations of various pairings.

Table 1. Experimental Results for Tate, Ate, and Atei Pairings

Tate Ate Atei

curve EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s]

1 0.19 0.26 0.22 0.19 (0.22) (0.19)
2 0.13 0.21 0.24 0.21 (0.24) (0.21)
3 0.21 0.31 0.39 0.37 0.23 0.22

Table 2. Experimental Results for R-Ate and Optimal Pairings

R-Ate (2) R-Ate (3) R-Ate (4) Optimal

curve EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s] EN[s] Miller[s]

1 0.65 0.51 0.38 0.31 0.39 0.32 0.98 0.76
2 0.34 0.27 0.33 0.27 0.34 0.26 0.74 0.56
3 0.73 0.67 0.36 0.34 0.40 0.38 1.07 0.94

5 Conclusion

In this paper, we explicitly gave a normalization of elliptic nets and gave for-
mulae based on elliptic nets for computing some variants of the Tate pairing:
the Ate, Atei, R-Ate, and optimal pairings. We also discussed their efficiency
by using some experimental results. Further improvement and optimization of
these elliptic net-based algorithms are expected in future work.
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Abstract. Since the discovery of identity based cryptography, a num-
ber of identity based signature schemes were reported in the literature.
Although, a lot of identity based signature schemes were proposed, the
only identity based deterministic signature scheme was given by Javier
Herranz. This signature scheme uses Schnorr signature scheme for gen-
erating the private key of the users and uses BLS short signature scheme
for generating users signature. The security of this scheme was proved in
the random oracle model using forking lemma. In this paper, we intro-
duce a new identity based deterministic signature scheme and prove the
security of the scheme in the random oracle model, without the aid of
forking lemma. Hence, our scheme offers tighter security reduction to the
underlying hard problem than the existing identity based deterministic
signature scheme.

Keywords: Identity Based Cryptography, Deterministic, Signature,
Tight Security, Random Oracle Model, Provable Security, Without
Forking-Lemma.

1 Introduction

The concept of using the identity of an entity for deriving the public key is
known as Identity Based Cryptography (IBC). This technique was introduced
by Adi Shamir in his seminal paper [15] in 1984. This paved way for eliminat-
ing the use of certificates for authenticating the public keys of a user (in PKI
based system). In identity based system, a trusted authority called Private Key
Generator (PKG) generates the private key for the users. The PKG possesses
a master public key and master private key and uses the master private key to
generate the private key of the users registered with the system. The private key
of the user is the signature on the identity of the user (as message) generated
by the PKG with the master private key. The user makes use of his/her private
key to generate a signature on a message.
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Thus the complete description of an identity based signature scheme can be
conveniently split as the description of the signature scheme employed by the
PKG to create private keys for the users and description of signature generation
algorithm executed by a user on a message. The signature schemes used in these
two parts may resemble some well known signature schemes or customized sig-
nature scheme or they may be deterministic or probabilistic. For example, the
identity based signature scheme by Cha and Cheon [5] may be viewed as BLS [4]
+ a customized scheme, where the BLS signature scheme is used by the PKG to
generate private keys of users and users themselves use the customized scheme
to produce signed documents. For this scheme, the private key generation is de-
terministic while the signature generation process is probabilistic. As another ex-
ample, the scheme by Galindo et al. [6] uses Schnorr signature for private key
generation (by PKG) and again a Schnorr signature scheme [14] for the signature
generation (by a user). For this scheme, the private key generation as well as sig-
nature generation is probabilistic. The scheme by Javier Herranz [9] uses Schnorr
signature for private key generation (by PKG) and BLS signature scheme for the
signature generation (by a user). Thus in this scheme, the private key genera-
tion is probabilistic and the signature generation is deterministic. Table-1 gives
a summary of properties of existing identity based signature schemes.

Table 1. Properties of ID-Based Signatures
P - Probabilistic Signature, D - Deterministic Signature, Custom - Custom designed

signing algorithm

Scheme Private Signing Type of Pairing
Key Algorithm Scheme Computation

Key Sign Sign Verify

Cha-Cheon [5] BLS Custom D P No Yes

Sakai [13] BLS Custom D P No Yes

Barreto [1] [16] Custom D P No Yes

Galindo [6] Schnorr Schnorr P P No No

Javier [9] Schnorr BLS P D No Yes

Ours BasicSign custom P D No Yes

Tightness of Security Reduction: In the computational model, proof of se-
curity for a signature follows if there does not exist a polynomial time algorithm
with the following ability:

The reduction algorithm makes use of a polynomial time algorithm that forges
a signature, to construct a polynomial time algorithm that solves the compu-
tational hard problem. If there is no polynomial time algorithm for solving the
computational hard problem then the existence of such reduction implies that the
signature scheme is not breakable in polynomial time.
This security argument is asymptotic. In CDH based signature schemes, forg-
ing signatures is infeasible in prime order groups where the size of the security
parameter is above some threshold value. For practice, we should exactly know
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Table 2. Tightness Comparison with the Existing Scheme

T - Tight, NT - Not Tight (uses forking-lemma), P - Probabilistic Signature, D -
Deterministic Signature, † - The eight fold increase is due to loose reduction through

forking lemma, We consider Elliptic Curve CDH is hard in 320 bits.

Scheme Tightness Implication on size of |p| Size of one Type
Key Sign Key Size Sign Size group element

Javier [9] NT NT 8*320=2560† 8*320=2560† 2560 D

Ours T T 320 320 320 D

what should be the constraint on security parameter to impose a sufficient in-
feasible computational bound on the adversary.

Bellare and Rogaway [3] gave the method for exact security analysis that fo-
cuses on the computational efficiency of the reduction algorithm. This allows one
to quantify the relation between the difficulty of forging a signature and hard-
ness of the underlying hard problem. The relative hardness of forging the signa-
ture to that of breaking the computational assumption can be loose, close or tight
as pointed out by Micali and Reyzin [10]. In [7], Goh et al. showed that the ap-
plication of forking lemma [12], for proving security of Fiat-Shamir based signa-
tures makes it inefficient by imposing an increase in the length of the modulus p.
In any discrete-log based system of a prime field Zp, breaking the discrete-log in
the index-calculus method works in O(exp( 3

√|p|)). Thus, a factor α increase in
the security parameter implies a α3 increase in the size of the modulus p. This
is why, the reduction with forking lemma for Schnorr signature scheme implies
that the scheme is secure only with a field modulus 8000 bits, if we consider that
discrete-log problem is hard for 1000 bit modulus. In Table-2, we do not con-
sider the schemes reported in [5,13,1,6] because they are all probabilistic signature
schemes. We consider the scheme in [9] for comparing with our scheme.

Application: Aggregation of several signatures is an important computation
done on several signatures in order to optimize communication, computation
and storage costs. Depending on the size of the aggregated output, we refer a
particular aggregation scheme as Naive, Partial or Full aggregation. By using the
identity based signature scheme by Herranz [9] partial aggregation is possible.
His scheme allows a more compact aggregation where the length of the resulting
aggregate signature will not depend on the number of signed messages, but on the
number of signers. This improvement, is considered to be a major improvement
in [9] because in situations where devices have to store many signatures coming
from a small set of users, the size of the aggregate signature gets compact.
This is because, the key generation is probabilistic and the randomness used
to compute the key can be stored by the verifier and since the signature is
deterministic, there is no randomness to be propagated with the signature and
hence the aggregate signature is more compact than the aggregate signatures
generated by probabilistic identity based signature schemes.

Our Contribution: Our first contribution is a novel probabilistic PKI based
signature scheme (and this is of independent interest) described in section 4.
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PKG uses this to generate the private keys for users. The next section (section
5) contains the details of an identity based deterministic signature scheme, and
again this scheme is different from all the existing ones. Our scheme does not
use pairing in the generation process. Of course, in the verification process, we
employ pairing computations. The significant advantage of our scheme is that
it allows a tight reduction to the GDH problem. For all the schemes that are
available so far, the reduction is not tight. However, we show a tight reduction
of the security of our scheme to the GDH problem. Ours is the first and only
system with this property. Due to this property both the key size and signature
size are substantially smaller than the best previously known schemes. Since
our identity based signature scheme offers tight reduction to the GDH problem,
it can be used to generate more compact aggregate signatures using smaller
security parameter values.

2 Preliminaries

Bilinear Pairing: Let G1 be an additive cyclic group generated by P , with
prime order q, and G2 be a multiplicative cyclic group of the same order q. A
bilinear pairing is a map ê : G1 ×G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈ G1,

• ê(P + Q, R) = ê(P, R)ê(Q, R)
• ê(P, Q + R) = ê(P, Q)ê(P, R)
• ê(aP, bQ) = ê(P, Q)ab [Where a, b ∈R Zp]

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q) �= IG2 , where
IG2 is the identity element of G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for
all P, Q ∈ G1.

Computational Assumptions: In this section, we review the computational
assumptions related to bilinear maps that are relevant to the protocol we discuss.

Definition 1. Computation Diffie-Hellman Problem (CDHP): Given (P, aP, bP )
∈ G3

1 for unknown a, b ∈ Zp, the CDH problem in G1 is to compute abP . The
advantage of any probabilistic polynomial time algorithm A in solving the CDH
problem in G1 is defined as:

AdvCDH
A = Pr [A(P, aP, bP ) = abP | a, b ∈ Zp]

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Definition 2. Decisional Diffie-Hellman Problem (DDHP): Given (P, aP, bP, Q)
∈ G4 for unknown a, b ∈ Zp, the DDH problem in G is to check whether Q

?= abP .
The advantage of any probabilistic polynomial time algorithm A in solving the
DDH problem in G1 is defined as:

AdvCDH
A = |Pr [A(P, aP, bP, Q) = 1]− Pr [A(P, aP, bP, abP ) = 1] | a, b ∈ Zp|
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The DDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvDDH

A is negligibly small. Here G is a multiplicative group

Definition 3. Gap Diffie-Hellman Problem (GDHP) [11][5]: We call G a GDH
group if DDHP can be solved in polynomial time but no probabilistic algorithm
can solve CDHP with non-negligible advantage within polynomial time.

3 Identity Based Signature Scheme

In this section, we describe the generic frame work for an identity based signature
scheme. The frame work of an identity based deterministic signature scheme
consists of the algorithms described below, namely Setup, Extract, Sign and
Verify. An identity based signature scheme is deterministic if the signature on
a message by the same user is always the same.

3.1 Definition

– Setup: The private key generator (PKG) provides the security parameter κ
as the input to this algorithm, generates the system parameters params and
the master private key msk. PKG publishes params and keeps msk secret.

– Extract: The user provides his identity ID to the PKG. The PKG runs this
algorithm with identity ID, params and msk as the input and obtains the
private key D. The private key D is sent to user through a secure channel.

– Sign: For generating a signature on a message m, the user provides his
identity ID, his private key D, params and the message m as input. This
algorithm generates a valid signature σ on message m by the user.

– Verify: This algorithm on input a signature σ on message m by the user
with identity ID, params, checks whether σ is a valid signature on message
m by ID. If true it outputs “V alid”, else it outputs “Invalid”.

3.2 Security Model for Existential Unforgeability

An IBDS scheme is secure against existential forgery under adaptive chosen
identity and message attack, if no probabilistic polynomial time algorithm F
has non-negligible advantage in the following game.

– Setup phase: The challenger C runs the setup algorithm and generates the
system public parameters params and the master secret key msk. Now, C
gives params to the forger F and keeps msk secret.

– Training phase: After the setup is done, F starts interacting with C by
querying the various oracles provided by C in the following way:

• KeyGen oracle: When F makes a query with an identity ID as input,
C outputs D, the private key of ID to F , provided C knows the private
key for the queried identity.
• Signing oracle: When F makes a signing query with identity ID and

message m, C outputs a valid signature σ on m by ID.
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– Forgery phase: F identifies an identity, message pair (IDT , m∗), where

• F has not queried the KeyGen query on IDT and
• F has not asked the signature for the pair (IDT , m∗).

F outputs a signature σ, with IDT as signer, and on message m∗. F wins
the game if σ is a valid signature.

AdvIBDS
F = {Pr[F(V erify(σ) = valid)}

3.3 Existing Identity Based Signatures

Here, we review the most important identity based signature schemes.

Table 3. Brief Survey of existing schemes

MSK - Master Private Key, MPK - Master Public Key, Ĥ, H̄ - Cryptographic hash
functions

Scheme Master key Private Key Signature

Cha-Cheon [5] MSK = s DA = sQA ∈ G1 r ∈R Z∗
q

MPK = sP QA = Ĥ(IDA) ∈ G1 U = rQA ∈ G1, h = H̄(m, U) ∈ Z∗
q

V = (r + h)DA ∈ G1, σ = 〈U, V 〉
Sakai [13] MSK = s DA = sQA ∈ G1 r ∈R Z∗

q

MPK = sP QA = Ĥ(IDA) ∈ G1 U = rP ∈ G1, H = H̄(m, U) ∈ G1

V = rH + DA ∈ G1, σ = 〈U,V 〉
Barreto [1] MSK = s DA = 1

s+qA
P ∈ G1 r ∈R Z∗

q

MPK = sP qA = Ĥ(IDA) U = rP ∈ G1, h = H̄(m, U) ∈ Z∗
q

V = (r + h)DA ∈ G1, σ = 〈U, V 〉
Galindo [6] MSK = s xA ∈R Z∗

q , XA = xAP r ∈R Z∗
q

MPK = sP dA = xA + sqA ∈ Z∗
q XA, U = rP, h = H̄(m,U) ∈ Z∗

q

qA = Ĥ(IDA, XA) V = rh̄ + dA ∈ G1, σ = 〈XA, U, V 〉
Javier [9] MSK = s xA ∈R Z∗

q , XA = xAP XA

MPK = sP dA = xA + sqA ∈ Z∗
q U = dAH̄(m) ∈ G1

qA = Ĥ(IDA, XA) σ = 〈XA, U〉

4 Basic Signature Scheme (BasicSign)

We now construct a fully secure public key signature scheme in the random oracle
model under the GDH assumption and without using forking lemma. This is a
PKI based signature scheme and this will be used by the PKG to generate the
private key for the users of our identity based system.

Scheme: Let G1, G2 be cyclic prime order groups of order p, where G1 is an
additive group and G2 be a multiplicative group. Let P ∈R G1 be the generator
of G1, ê : G1×G1 → G2 be a bilinear map and H1(.), H2(.) be two cryptographic
hash functions defined by,

H1: {0, 1}lm → G1 and H2: {0, 1}lm × G1 → Zp
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– User KeyGen: Let UA be a user with public key PKA = 〈P1, P2〉 =
〈s1P, s2P 〉, where s1, s2 are random elements from Zp. Here, the private
key of user UA is SKA = 〈s1, s2〉.

– Sign: To generate the signature on message m, the user UA executes this
algorithm:

• Pick r randomly from Zp.
• Compute Ym = rP2

• Compute Xm = rH1(m, Ym).
• Find qm = H2(m, Xm).
• Compute dm = qms1 + rs2 mod p.
• Output the signature σ = 〈Xm, dm〉

Important Note: The value Ym is not sent along with the signature because
it can be computed from the second component of σ as follows and the hash
value qm is computable by any one on knowing m and Xm:

Ym= dmP − qmP1 = qmP1 + rP2 − qmP1 = rP2

The tuple 〈P2, H1(m, Ym), Ym, Xm〉 = 〈P2, H1(m, Ym), rP2, rH1(m, Ym)〉
is a DH tuple. We verify if 〈P2, H1(m, Ym), Ym, Xm〉 is a DH tuple by test-
ing ê(Xm, P2)

?= ê(H1(m, Ym), Ym). This suggests the following verification
algorithm.

– Verify

• On receiving σ = 〈Xm, dm〉, compute qm = H2(m, Xm) and Ym = dmP−
qmP1.
• Check if ê(Xm, P2)

?= ê(H1(m, Ym), Ym).

If the above check holds accept the signature as “V alid” else return “Invalid”.

4.1 Security

We prove the security of the signature scheme against existential forgery under
adaptive chosen-message attacks in the random oracle model. The following the-
orem shows that the BasicSign scheme is secure and the security of the scheme
follows from the GDH assumption in (G1, G2).

Theorem 1. Suppose (G1, G2) be a (τ, t′, ε
′
)-GDH group pair of order p. Then

the BasicSign signature scheme on (G1, G2) is (t, qSign, qH1 , qH2 , ε)-secure against
existential forgery under adaptive chosen-message attack in the random oracle
model, for all t and ε, that satisfies

ε ≤ ε
′
and t ≥ t′ − (qH1 + qH2 + qSign +O(1))

Proof: Let us assume, F is a forger algorithm that (t, qSign, qH1 , qH2 , ε)-breaks
the BasicSign signature scheme on (G1, G2). We show how to construct a t′-time
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algorithm C that solves GDH on (G1, G2) with probability at least ε
′
. Showing

this will contradict the fact that (G1, G2) is a (t′, ε
′
)-GDH group pair.

Let P be the generator of G1. Algorithm C is provided with the challenge instance
(P, aP, bP ) ∈ G1. The goal of C is to output abP ∈ G1. Algorithm C simulates
the challenger and interacts with F in the following way:

– Setup: Challenger C starts by giving F the common reference string (P , G1,
G2) and the public key (P1 = aP, P2 = s2P ), where s2 is chosen at random
from Zp. The private key corresponding to the public keys (P1 = aP, P2 =
s2P ) are (a, s2). Note that, C does not know one of the private keys namely
a.

– Training Phase: During this phase F has access to the following oracles:

• H1 Queries: Forger F is allowed to query the H1 oracle at any time. To
handle these queries C maintains a list which is defines as 〈m, Ym, h, Hm〉
and we refer this list as L1 − list. Initially, this list is empty and will
be updated as explained below. When F queries the oracle H1 with
(m ∈ {0, 1}lm , Ym ∈ G1) as input, C responds as follows:

∗ If (m, Y ) already exists as a tuple of the form 〈m, Ym, h, Hm〉 in
L1 − List, then C responds with H1(m, Ym) = Hm ∈ G1.
∗ Otherwise, C picks a random h ∈ Zp and sets Hm = hbP .
∗ C stores the tuple 〈m, Ym, h, Hm〉 in L1 − List and responds with

H1(m, Ym) = Hm ∈ G1.

• H2 Queries: F can query this oracle at any time and C maintains a list
of tuples 〈m, Xm, qm〉. This list is called L2 − list. When F issues a
query for (m, Xm) to the H2 oracle, F responds in the following way:

∗ If (m, Xm) already appears in L2−list as a tuple 〈m, Xm, qm〉, then
C responds with H2(m, Xm) = qm ∈ Zp.
∗ Otherwise, C randomly picks a qm ∈ Zp, stores the tuple 〈m, Xm, qm〉

in L1 − list and responds with H2(m, Xm) = qm ∈ Zp.

• Signature Queries: When a signature query is issued by F for message
m, C responds as follows:

∗ C randomly picks dm, qm, h ∈ Zp.
∗ Then, C sets Hm = hP , Ym = dmP − qmP1 ∈ G1 and Xm =(

h

s2

)
Ym ∈ G1.

∗ If a tuple of the form 〈m, Xm, qm〉 appears in the list L1 − list or a
tuple 〈m, Ym, h, Hm〉 appears in the list L2 − list, then repeat the
process by picking new set of random values dm, qm, h ∈ Zp.
∗ C stores the tuple 〈m, Xm, qm〉 in L1 − list and 〈m, Ym, h, Hm〉 in
L2 − list.
∗ C gives the signature σ = 〈Xm, dm〉 to F .

Correctness: The simulated signature is valid and passes the verification
test ê(Xm, Y ) ?= ê(H1(m, Ym), Ym). The correctness is shown below:
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LHS = ê(Xm, Y ) = ê(( h
s2

)Ym, Y ) = ê(( h
s2

)Ym, s2P )
= ê(hYm, P ) = ê(Ym, hP ) = ê(Ym, H1(m, Ym)) = RHS

– Forgery: On getting sufficient training, algorithm F produces a message-
signature pair (m∗, σ∗ =〈X∗

m, d∗m〉) such that σ∗ is not the output generated
by sign oracle for message m∗ and σ∗ is valid. Now, C may compute the
solution to the hard problem as given below.

• C computes q∗m = H2(m∗, X∗
m) and δ =

1
q∗m

(
d∗m(bP ) − s2

h∗X∗
m

)
.

• According to the signature definition X∗ = r∗H∗
m = r∗h∗bP , Y ∗

m =
r∗P2 and d∗m = q∗ma + r∗s2, by the definition of H2.

• Therefore, δ =
1

q∗m

(
(q∗ma + r∗s2)bP − s2

h∗ r∗h∗bP
)

= abP .

This completes the description of algorithm C. Now, we have to show that C
solves the GDH problem on (G1, G2) with probability at least ε

′
. Note that,

in this simulation there is almost no aborting scenario for training phase and
forgery phase. Hence C solving the GDH problem happens almost with the same
advantage of F .

The hard problem is solved after qH1 queries to the H1 oracle, qH2 queries to
the H2 oracle and qSign sign oracle queries and getting the forged signature. The
challenger has to spend O(1) computation to extract the solution to GDH prob-
lem from the forgery generated by the adversary. Therefore the total time t taken
for solving the hard problem is given by t ≤ t′ + (qH1 + qH2 + qSign +O(1)). �

5 Identity Based Deterministic Signature Scheme
(Det-IBS)

Inspired by the impact of tightness of security reduction for a signature scheme,
we present the first identity based deterministic signature scheme with tight secu-
rity reduction to GDH problem. The only identity based deterministic signature
by Herranz [9], employs Schnorr signature scheme for generating the private key
of the user and uses BLS short signature scheme for producing signature on the
message by the user. This system was shown to be secure under GDH problem
on (G1, G2). The reduction given for the scheme in [9] use forking lemma and
hence considered to be loose. We present a signature that works on GDH group
pair (G1, G2). We prove the security of the scheme in the random oracle model
and show how it leads to a tight reduction. The scheme uses BasicSign signa-
ture scheme for generating the private key of users and BLS short signature for
generating the signature on message.

Scheme: Let (G1, G2) be a (t, ε)-GDH group pair with same prime order p and
ê be a bilinear map defined by G1 ×G1 → G2. The signature scheme comprises
of setup, extract, sign and verify algorithms. The scheme makes use of three
cryptographic hash functions H1 : {0, 1}l1 × G1 → G1, H2 : {0, 1}l1 × G1 →
Zp and H3 : {0, 1}lm+1 × {0, 1}l1 → G1, where l1 is the size of the identity
string and lm is the size of the message.
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– Det-IBS.Setup: PKG picks at random s1, s2 ∈ Zp, and P ∈ G1, sets
P1 = s1P ∈ G1, and P2 = s2P ∈ G1. The master public key is (P1, P2).
The master private key is (s1, s2).

– Det-IBS.Extract: Given the master private (s1, s2), and the user identity
IDA ∈ {0, 1}l1, perform the following:

• Pick rA ∈R Zp.
• Compute YA = rAP2 ∈ G1.
• Find HA = H1(IDA, YA) and set XA = rAHA ∈ G1.
• Compute dA = s1qA + s2rA mod p, where qA = H2(IDA, XA).
• The private key is DA = 〈dA, XA, YA〉.

Note: However, in our identity based deterministic signature scheme, we
provide YA explicitly along with the private key How ever YA is computable
by the user with identity IDA on knowing dA and XA.

– Det-IBS.Sign: Given a message m, user identity IDA ∈ {0, 1}l1 and the
user private key DA = 〈dA ∈ Zp, XA ∈ G1, YA ∈ G1〉, choose λ ∈R

{0, 1}, compute Hm = H3(m‖λ, IDA) and V = dAHm. The signature is
σ = 〈V, λ , XA , YA〉 ∈ G3

1 × {0, 1}.
Note: λ can be generated using a pseudo-random function with the identity
IDA, message m and the private key of the user as input. This helps to
preserve the determinism because each time a message is signed by a user,
the bit λ is going to be the same. (Goh et al. [8]).

– Det-IBS.Verify:Given an identity IDA ∈ {0, 1}l1, a messagem ∈ {0, 1}lm ,
and a signature σ = 〈V ∈ G1, λ ∈ {0, 1}, XA ∈ G1, YA ∈ G1〉, compute
qA = H2(IDA, XA), HA = H1(IDA, YA), and Hm = H3(m‖λ, IDA) and
check,

ê(V, P ) ?= ê(Hm, qAP1 + YA) —–(1)
ê(XA, P2) = ê(HA, YA) —–(2)

If both the check passes, output “V alid”; if not, output “Invalid”

Theorem 2. The signature scheme Det-IBS is consistent

Proof: We need to show that, for all private key tuples , and for all messages,
any signature generated by the signing algorithm verifies as a valid signature
under the respective user identity. Indeed, we have for equation (1)

LHS = ê(V, P ) = ê(dAHm, P ) = ê((qAs1 + rAs2 )Hm, P )
= ê(Hm, (qAs1 + rAs2 )P ) = ê(Hm, qAP1 + rAP2)
= ê(Hm, qAP1 + YA) = RHS

and also, for equation (2)

LHS = ê(XA, P2) = ê(rAHA, P2) = ê(HA, rAP2) = ê(HA, YA) = RHS.
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5.1 Security

We prove the security of the identity based deterministic signature scheme
against existential forgery under adaptive chosen-message attacks in the ran-
dom oracle model. The following theorem shows that the Det-IBS scheme is
secure and the security of the scheme follows from GDH assumption on the
groups (G1, G2).

Theorem 3. Let (G1, G2) be a (τ1, t1, ε1) GDH group pair of order p then the iden-
tity based deterministic signature scheme on (G1, G2) is (t2, qs, qH1 , qH2 , qH3 , ε2)
- secure against existential forgery under an adaptive chosen message attack in
random oracle model, for all t2 and ε2 satisfying:

ε2 ≥ 2qH1ε1 and t2 ≤ t1 − (qH1 + qH2 + qH3 + 2qs +O(1))

Here, qH is the total number of identities generated.

Proof: Consider F to be a forger that is assumed to (t2, qs, qH1 , qH2 , qH3 , ε2)
- break the signature scheme. We show how to construct an algorithm C that
solves GDHP on (G1, G2) with probability at least ε1. This will contradict the
fact that (G1, G2) is a GDH group pair.
For doing this, let us assume P be the generator of G1 and (P, aP, bP ) ∈ G3

1

be the GDH problem instance given to C. The goal of C is to find abP ∈ G1. C
simulates the challenger and interacts with F as defined in the EUF-CMA game.
The game is viewed as given below:

– Setup: C starts interaction with F by providing P ∈ G1, P1 = aP ∈ G1 and
P2 = s2P , where s2 ∈R Zp. Here, the master private key a is not known to C.
C also chooses 1 ≤ T ≤ qH randomly and sets the T th unique identity queried
to the H1 hash oracle as the target identity. Without loss of generality, we
assume IDT to be the target identity (not known to F and C at the start of
the game.)

– Training Phase: C interacts with F in the following manner:
H1 Oracle: F queries to this oracle with inputs 〈IDi, Yj〉. C maintains the
list LH1 , consisting of tuples of the form 〈IDi, Yj , Hj , x̂j〉 and responds to
F ’s queries in the following way:

• If the tuple 〈IDi, Yj , Hj , x̂j〉 is already available in the LH1 list, retrieve
and return Hj .
• If i �= T , choose x̂j ∈R Zp and set Hj = x̂jP ∈ G1. Store the tuple
〈IDi, Yj , Hj , x̂j〉 to LH1 and return Hj .
• If i = T , choose x̂j ∈R Zp and set Hj = x̂j(bP ). Store the tuple
〈IDi, Yj , Hj , x̂j〉 to LH1 and return Hj to F .

H2 Oracle: To respond to the queries by F , C maintains the list LH2 , con-
sisting of tuples of the form 〈IDi ∈ {0, 1}l1, Xj ∈ G1, qj ∈ Zp〉. The list is
initially empty. When F queries with (IDi, Xj), C responds as follows:
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• If the tuple 〈IDi, Xj, qj〉 already exists in LH2 list, retrieve and return
qj corresponding to (IDi, Xj) to F .
• Else, pick qj ∈R Zp store (IDi, Xj , qj) in LH2 list and return qj to F .

H3 Oracle: The input to this oracle are mj‖λ, IDi, where λ ∈ {0, 1}. To
respond to the queries by F , C maintains the list LH3 , consisting of tuples
of the form 〈mj , λ, IDi, Hj,λ, yj,λ, �〉. Here � is either ‘⊥’ or ‘�’, where ‘⊥’
represents Hj,λ = yj,λP and ‘�’ represents Hj,λ = yj,λbP . C respond to F
in the following way:

• If the tuple 〈mj , λ, IDi, Hj,λ, yj,λ, �〉 is already there in the list LH3 ,
retrieve and respond with the corresponding Hj,λ.
• Else,

∗ Pick yj,0, yj,1 ∈R Zp.
∗ Flip a coin c ∈ {0, 1}.
∗ Set Hj,c = yj,cbP and store the tuple 〈mj , c, IDi, Hj,c, yj,c,�〉 in list

LH3 .
∗ Set Hj,c = yj,cP and store the tuple 〈mj , c, IDi, Hj,c, yj,c,⊥〉 in list

LH3 .
∗ If c = λ, return Hj,c else, return Hj,c.

Note that Hj,λ is uniform in G1 and is independent of F ’s current view as
required.

Extract Oracle: To respond to this query, C maintains the LE list, consisting
of tuples of the form 〈IDi, di, Xi, Yi〉. When F makes a query with IDi as
input, C checks whether i = T , if so aborts. Otherwise, C performs the
following:

• If the tuple corresponding to IDi is available in list LE , then retrieve
and return (di, Xi, Yi) as the private key corresponding to IDi to F .
• Otherwise, C performs the following:

∗ Pick di, yi ∈R Zp.
∗ Set Xi = dix̂i

s2
P − qix̂i

s2
P1 = (di − aqi) 1

s2
Hi; where Hi = x̂iP .

∗ Compute Yi = diP − qiP1 = (di − aqi)P .
∗ Store the tuple 〈IDi, Xi, qi〉 in LH2 list, the tuple 〈IDi, Yi, Hi, x̂i〉 in

LH1 list and the tuple 〈IDi, di, Xi, Yi〉 to LE list.
∗ Output (di, Xi, Yi) as the private key.

Without loss of generality, we assume that any identity is queried only once
to this oracle.

Signature Oracle: Let (mj , IDi) be the message identity pair for which F
request the signature. C performs the following:

• If there are no entries corresponding to mj‖0, IDi and mj‖1, IDi in the
list LH3 , then query the H3 oracle with input mj‖0, IDi.
• Retrieve the entries corresponding to mj‖0, IDi and mj‖1, IDi in list

LH3 . Let the two tuples retrieved be 〈mj , λ, IDi, Hj,λ, yj,λ,⊥〉 and 〈mj , λ,
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IDi, Hj,λ, yj,λ,�〉 (Note that according to the definition of the H3 or-
acle, one of the entries will have ⊥ and the other one will have � as
the last entry in the tuple.). Pick the entry corresponding to ⊥, here
〈mj , λ, IDi, Hj,λ, yj,λ,⊥〉 is the required tuple.
• If i �= T , then perform the following:

∗ Set Hj = Hj,λ

∗ Set V = diHj . (Note that C knows the private key di corresponding
to IDi)

• If i = T , then perform the following:

∗ Set yj = yj,λ

∗ Set V = yj(qT P1 + xT P2). (Notice that V = yj(qT P1 + xT P2) =
(qT s1 + xT s2)yjP = dT yjP = dT Hj .)

• Return σ = 〈V, Xi, Yi, λ〉 as the signature on the message mj .

– Forgery: Eventually, after getting enough training, F produces a forgery
m∗, IDS , σ∗ = (V, XS , YS , λ). C aborts if any of the following is true:

• S �= T (i.e., IDS is not the target identity set by the challenger).
• The last field of the tuple corresponding to m∗‖λ, IDS in list LH3 is ⊥

(i.e., 〈m∗, λ, IDS , Hj,λ, yj,λ,⊥〉 ∈ LH3).
• σ∗ corresponding to m∗ is invalid. (Since it is a deterministic signature,

m∗ should not be queried to the sign oracle with IDS as the signer.)

Otherwise, C does the following:

• Find qS = H2(IDT , XS), HS = H1(IDT , YS).
• Retrieve x̂S corresponding to 〈IDT , YS , HS , x̂S〉 in the list LH1 .
• Compute Δ = [q−1

S y−1
S (V − s2ySx̂−1

S XS)] = abP .

Note that C can solve the GDH problem instance irrespective of XS and YS ,
that is XS = XT or XS �= XT and YS = YT or YS �= YT

Lemma 1. Let 〈m∗, λ, IDS , Hj,λ, yj,λ,�〉 be the tuple in the list LH3 corre-
sponding to m∗‖λ, IDS and yS = yj,λ. If (IDT , σ∗) is a valid forgery on m∗ then
q−1
S y−1

S (V −s2yS x̂−1
S XS) = abP with P1 = aP , P2 = s2P , H1(IDT , YS) = x̂SbP

and Hm∗ = H3(m∗, IDT ) = ySbP .

Proof: The proof is straight forward and is given below:

LHS= q−1
S y−1

S (V − s2yS x̂−1
S XS)

= q−1
S y−1

S (dSHm∗ − s2yS x̂−1
S XS)

= q−1
S y−1

S ((xSs2 + aqS)Hm∗ − s2yS x̂−1
S xS x̂SbP )

= q−1
S y−1

S (xSs2ySbP + aqSySbP − s2ySxSbP )
= q−1

S y−1
S (qSySabP ) = abP = RHS

�
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This completes the description of the game between C and F . Now, we show how
C solves the GDH instance (P, aP, bP ) with probability at least ε1. For showing
this we have to analyze the probability related to the following events:

– E1 : C does not abort as a result of Extract query
– E2 : F generates a valid message - signature forgery (m∗, σ∗) for IDS = IDT .
– E3 : This event occurs for m∗‖λ, IDS such that the last field of the tuple cor-

responding to m∗‖λ, IDS in list LH3 is � (i.e., 〈m∗, λ, IDS , Hj,λ, yj,λ,�〉 ∈
LH3).

Let qH1 and qE denote the number or queries made to the H1 and Extract
oracles. The probability of the above events to occur is discussed below:

– Probability of C aborting during an extract query is 1
qH1

. There are totally
qE extract queries. Thus the probability that C does not abort in any of the
extract queries is 1− qE

qH1
(i.e., Pr[E1] =

(
1− qE

qH1

)
)

– There are totally qH1 − qE identities are the eligible entities for being a
valid IDS and thus IDS = IDT happens with probability 1

qH1−qE
(i.e.,

Pr[E2] = 1
qH1−qE

)

– Assuming E2 has happened, the probability that the message m∗‖λ be-
ing a fruitful instance (i.e., 〈m∗, λ, IDS , Hj,λ, yj,λ,�〉 ∈ LH3) is 1

2(qH1−qE)

(i.e.,Pr[E3|E2] = 1
2(qH1−qE) ). Note that every message corresponding to IDS

carries the hard problem instance bP with probability 1
2 .

Now, the probability of C solving the GDH is ε1 ≤ ε2

(
1

2(qH1−qE)

)(
1− qE

qH1

)
=

ε2

(
1

2qH1

)
.

Important Remark: The generic method given by Bellare et al. [2] to construct
an identity based signature scheme is to use certificate for the public key PK
and the identity ID of the user, and then use the certificate and the private
key SK corresponding to the public key PK for signing the message. Using this
approach, to construct a deterministic identity based signature we require two
invocations of BLS signature [4]. The first application of BLS signature is by
the PKG to sign ID and PK, and the second BLS signature is by the user to
sign the message m using SK. Let the scheme described above be denoted as Γ .
While proving the security of the scheme Γ , the advantage of C in solving the
GDH problem is given as ε2 ≤ ε1

1
q2

H1
, where ε1 is the advantage of the forger

in breaking the signature scheme Γ . This bound can be further improved with
the help of Goh et al.’s [8] technique which leads to a boost in the advantage,
which is ε2 ≤ ε1

1
2qH1

. Thus the security bounds for the scheme Γ and for our
new scheme are equivalent, our scheme achieves this bound without certificates.
Also, the size of the signature generated are the same. The signature size of both
the schemes will be G3 + |ID|.
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6 Application to Efficient Signature Aggregation

The aggregate signatures generated using our identity based deterministic signa-
ture scheme produces an aggregate signature similar to the aggregate signatures
described in [9]. The size of the aggregate signature depends on the number
of distinct signers and not the number of messages signed. The scheme in [9]
uses multiple forking-lemma and hence the size of the security parameter should
be increased to achieve sufficient security. Since our scheme does not require
forking-lemma in the reduction, the security parameter need not be blown-up as
in [9] and as a result we have signature schemes with small size. The details of
our aggregate signature scheme follows:
The Setup, Extract, Sign algorithm are the same as Det-IBS.Setup, Det-IBS. Ex-
tract and Det-IBS.Sign algorithms. The algorithms aggregate sign and aggregate
verify are explained below:

– Det-IBS.AggSign: Given n signatures σ1 = 〈V1, X1, Y1〉, . . . , σn = 〈Vn, Xn,
Yn〉 on n messages m1, . . . , mn by users with identities ID1, . . . , IDt, where
t < n and a list L which provides the details about which message is signed
by whom, the aggregate signature σAgg is computed as follows:

• Computes VAgg =
n∑

i=1

Vi and sets σAgg = 〈VAgg , X1, . . . , Xt, Y1, . . . , Yt〉
– Det-IBS.AggVerify: Given an aggregate signature σAgg on n messages

m1, . . . , mn by users with identities ID1, . . . , IDt, where t < n and a list L,
σAgg is verified as follows:
Perform the following checks:

ê(VAgg, P ) ?=
n∏

i=1

(ê(H3(mi, IDi), qiP1 + Yi)) —–(3)

ê(
t∑

j=1

Xj , P2) =
t∏

j=1

ê(H1(IDj , Yj), Yj) —–(4)

If the checks in (3) and (4) pass, output “V alid”; if not, output “Invalid”

Note that in the first verification, if a signer has signed more than one message
(This will be documented in the list L), the corresponding Yi and identity IDi

will be reused along with the corresponding message mi. The second verification
needs to be done only for t values as the number of distinct signers is only t.
If a single signer, say UA with identity IDA signs more than one message, our
aggregate signature scheme can be used to generate very efficient aggregate sig-
natures with only three group elements namely, VAgg , XA and YA. This optimizes
the storage and communication complexity of signatures generated and commu-
nicated by a single user. This cannot be achieved by any of the probabilistic
identity based aggregate signature schemes.

We argue the proof of security of the aggregate signature scheme informally.
Consider the forger sends an aggregate signature (with one of the signatures that
is aggregated as a signature by the target identity and the sign oracle was not
queried by the adversary with the corresponding message with the target identity
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as the signer), as the forgery in the EUF-CMA (Existential Unforgeability) game.
The challenger can remove all other signatures except the one corresponding
to the target identity from the aggregate signature by generating them using
the values the challenger has obtained from the random oracle lists. Now, the
resulting signature is a valid individual signature by the target identity on the
target message and that will be a forgery to the basic identity based signature
scheme. This is a contradiction since the basic identity based signature scheme
is EUF-CMA secure the aggregate signature is also secure.

7 Conclusion

In this paper, we have designed an identity based deterministic signature scheme
that has tight reduction to GDH problem. Our scheme is completely different
from all the existing schemes. The PKG uses a novel PKI based signature scheme
to generate the private keys for users and the PKI based signature scheme itself
is of independent interest. We have also proposed a novel scheme for the users
to generate signed documents. Both the schemes allow tight reductions and
this results in substantially smaller keys and signatures than the ones of the
only other identity based deterministic signature scheme by Javier Herranz [9].
Improving the tightness by avoiding the abort scenario during the extract phase
in the deterministic identity based signature scheme is considered to be an open
challenge and an interesting direction to proceed.
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helping in improving the paper.

References

1. Barreto, P.S.L.M., Libert, B., McCullagh, N., Quisquater, J.-J.: Efficient and
provably-secure identity-based signatures and signcryption from bilinear maps. In:
Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 515–532. Springer, Heidel-
berg (2005)

2. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification and signature schemes. Journal of Cryptology 22(1), 1–61 (2009)

3. Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign
with RSA and rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 399–416. Springer, Heidelberg (1996)

4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. Journal
of Cryptology 17(4), 297–319 (2004)

5. Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidel-
berg (2002)

6. Galindo, D., Garcia, F.D.: A schnorr-like lightweight identity-based signa-
ture scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580,
pp. 135–148. Springer, Heidelberg (2009)



Identity-Based Deterministic Signature Scheme without Forking-Lemma 95

7. Goh, E.-J., Jarecki, S.: A signature scheme as secure as the diffie-hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003)

8. Goh, E.-J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the diffie-hellman problems. Journal of Cryptology 20(4), 493–514
(2007)

9. Herranz, J.: Deterministic identity-based signatures for partial aggregation. The
Computer Journal 49(3), 322–330 (2006)

10. Micali, S., Reyzin, L.: Improving the exact security of digital signature schemes.
Journal of Cryptology 15(1), 1–18 (2002)

11. Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the
security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

12. Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M.
(ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg
(1996)

13. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The
2000 Symposium on Cryptography and Information Security, Okinawa, Japan,
pp. 135–148 (January 2000)

14. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

15. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

16. Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear
pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004.
LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)



Nitro: Hardware-Based System Call Tracing for

Virtual Machines

Jonas Pfoh, Christian Schneider, and Claudia Eckert

Technische Universität München, Munich, Germany
{pfoh,schneidc,eckertc}@in.tum.de

Abstract. Virtual machine introspection (VMI) describes the method
of monitoring and analyzing the state of a virtual machine from the hy-
pervisor level. This lends itself well to security applications, though the
hardware virtualization support from Intel and AMD was not designed
with VMI in mind. This results in many challenges for developers of
hardware-supported VMI systems. This paper describes the design and
implementation of our prototype framework, Nitro, for system call trac-
ing and monitoring. Since Nitro is a purely VMI-based system, it remains
isolated from attacks originating within the guest operating system and
is not directly visible from within the guest. Nitro is extremely flexible as
it supports all three system call mechanisms provided by the Intel x86
architecture and has been proven to work in Windows, Linux, 32-bit,
and 64-bit environments. The high performance of our system allows for
real-time capturing and dissemination of data without hindering usabil-
ity. This is supported by extensive testing with various guest operating
systems. In addition, Nitro is resistant to circumvention attempts due to
a construction called hardware rooting. Finally, Nitro surpasses similar
systems in both performance and functionality.

1 Introduction

Virtual machine introspection (VMI) lends itself very well to security applica-
tions [5]. This is, in part, due to the fact that security mechanisms running
within the hypervisor are isolated from attacks that occur within a virtual ma-
chine (VM) and that the hypervisor maintains a complete and untainted view
of a VM’s system state.

In order to leverage the full potential that VMI provides, identifying and
isolating the relevant guest operating system (OS) state information becomes
crucial. This process requires some semantic knowledge about the guest and is
referred to as the semantic gap issue [3]. Bridging this semantic gap has been
classified into three fundamental view generation patterns [12]. One of these
patterns relies on knowledge of the hardware architecture to derive semantic
information about the guest OS. Making use of the hardware architecture allows
one to construct mechanisms that are resistant to evasion attempts through a
method called hardware rooting [13]. This makes hardware-based information
extraction particularly interesting for security approaches that are intended to
detect malicious activity within a monitored VM.
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One promising way of detecting such malicious activity is to monitor system
calls. System calls facilitate communication between the kernel and user space
within an OS and are interesting from a security perspective. System call traces
may be used to classify the actions of a process as benign or malicious with
machine learning approaches [9,6,14]. In addition, prevalent sandboxing envi-
ronments, such as CWSandbox [7], Anubis [2], or the Norman Sandbox product
line, incorporate system call or API monitoring to create their reports. Finally,
particular system calls of interest are monitored in live forensic applications,
such as those found in honeypot environments.

In this paper, we describe the implementation of our prototype VMI frame-
work, Nitro, for hardware-based system call tracing and monitoring. Due to the
properties of VMI, it is isolated from malicious activities within the VM and re-
mains hidden from the guest OS. To our knowledge, Nitro is the first VMI-based
system that supports all three system call mechanisms provided by the Intel x86
architecture and has been proven to work for Windows, Linux, 32-bit, and 64-bit
guests. Moreover, this framework is flexible enough to feasibly support almost
any OS built upon the x86 architecture. Capturing and disseminating data is
done in real-time without hindering usability of the guest, as our performance
tests show. Finally, Nitro is resistant to attempts at evasion due to hardware
anchors. We will discuss the foundations of this approach, its implementation,
and its properties throughout this work.

The remainder of this paper is organized as follows: We start by presenting
some related work in Section 2. We go on to introduce the requirements for
desirable properties of a VMI system in Section 3. The implementation of Nitro is
detailed in Section 4, followed by a discussion of how it meets the aforementioned
requirements in Section 5. In Section 6, we explain our performance evaluation
and present the results, which we compare to a similar system called Ether [4]
in Section 7. Finally, we draw our conclusions in Section 8.

2 Related Work

At the time of this writing, to our knowledge, there are three other systems that
make use of virtualization extensions to implement systems that are capable of
producing system call traces for security applications. The first system, Lares
[11], was the pioneer in this area introducing a mechanism for creating arbitrary
hooks within a Windows guest OS. Lares was developed on the Xen hypervisor
and required drivers to be installed within the Windows guest to facilitate hook-
ing. Since our system does not require any guest OS support at all, it achieves a
much higher level of portability and robustness, as we will show. Thus, a detailed
comparison between Lares and Nitro would not be very meaningful and is not
provided in this paper.

In addition to Lares, the Ether system [4] provides the capability to produce
system call traces. This system is also built upon the Xen hypervisor and takes
a similar approach to that of Nitro. For a detailed comparison, please refer to
Section 7.
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Finally, HyperSleuth [10] also provides the ability to trace system calls, though
the authors indicate that the “approach we use to trace system calls is thus
inspired by Ether”. For this reason we forgo a detailed comparison and direct
the readers attention to our comparison between Nitro and Ether.

3 Properties

In Section 1 we outline the key properties of Nitro. These properties, a de-
scription, and the requirements to achieve each property are discussed within
this section in a general manner. How exactly Nitro meets these requirements
follows later in Section 5.

Guest OS Portability. Guest OS portability refers to a property that allows
the same VMI mechanism to work for various guest OSs without major changes.
Ideally, a guest OS portable VMI mechanism would work on any guest OS with
no change, however we tolerate some minor configuration changes to the VMI
mechanism, as long as the basic mechanics of that approach is shared among all
guests.

In order to achieve guest OS portability, the underlying VMI mechanism may
not rely on knowledge of the guest OS itself, but rather on knowledge of the
virtual hardware specifications. For example, Jones et al. make use of the CR3
register in order to track processes [8]. How this register is to be used within
the memory management unit (MMU) is specified by the x86 architecture, and
all OSs running on this hardware and using the MMU must conform to these
specifications. Thus, this basic method can be used to track processes in various
guest OSs without change as long as the OSs support virtual memory.

Evasion-Resistance. An evasion-resistant mechanism is a mechanism which
is impossible for an attacker to circumvent when correctly implemented and
deployed in an ideal system. We define a correctly implemented mechanism as a
mechanism that perfectly enforces the policy that it was designed to enforce with
no flaws or errors. In the same manner, we define an ideal system as a system
that perfectly implements its design and contains no flaws or errors. Since we
know that these ideal properties are impractical, it may be possible to circumvent
the mechanism if and only if such a flaw is found and exploited by a malicious
entity. This is why we refer to this property as “evasion-resistant” rather than
“evasion-proof”. We begin this discussion by describing how a mechanism may
be rooted in hardware.

In order to interpret the low-level binary state information of a virtual ma-
chine, the hypervisor must incorporate knowledge of the hardware architecture
or the guest OS to bridge the semantic gap. As Pfoh et al. argue [12], an approach
that relies on guest OS knowledge alone might be circumvented by attacks that
change the guest OS architecture itself. For example, the manner in which the
guest OS uses a particular data-structure may be manipulated by a malicious
entity. This stems from the fact that this knowledge of the guest OS is in no way
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bound to the running OS kernel. The fact that such attacks against VMI mech-
anisms have been successfully implemented recently [1] shows, that this threat
is not of pure theoretical nature.

If, in contrast, the VMI mechanism bases its knowledge on information about
the virtual hardware architecture, these attacks cannot be applied. The guest
OS and all software running on it, including any malware, must play by the
rules of the virtual hardware. An attacker has no means of changing these rules.
Thus, this knowledge of the hardware specifications is bound to the hardware
architecture. For example, if the hardware architecture specifies that a control
register holds the address of a data-structure, there is nothing a malicious entity
can do to circumvent this as the hardware will expect this to be the case in order
to run correctly.

This argument can be expanded further to also cover other parts of state
information as follows: If we can start at a feature of the virtual hardware spec-
ification (e. g., a register) and, from there, follow references in memory, thus
building a chain to a critical data-structure, a malicious entity cannot modify
that data-structure unnoticed. Figure 1 depicts such a chain. We will therefore
refer to a portion of state information as being rooted in hardware if such a chain
can be built [13].

Having introduced hardware rooting, we now describe the two requirements
for an evasion-resistant VMI mechanism. First, the monitored or protected por-
tions of the VM’s state must be rooted in the virtual hardware, as described
above. Second, each involved piece of VM state along the described reference
chain must be protected such that it cannot be manipulated in violation of pol-
icy or that any change to such a piece of VM state is ignored by the guest OS.
If both of these requirements are met the mechanism is evasion-resistant.

4 Implementation

This section describes the steps we took in implementing our prototype. Nitro
is based upon the Linux Kernel Virtual Machine (KVM). KVM is split into two
portions, namely a user application that is built upon QEMU and a set of Linux
kernel modules.

The user application portion of KVM provides the QEMU monitor which is
a shell-like interface to the hypervisor. It provides general control over the VM.
For example, it is possible to pause and resume the VM as well as to read out
CPU registers using the monitor. We modified KVM by adding new commands
to the monitor to control Nitro’s features. That is, all Nitro commands are input
via this monitor.

These commands are then sent to the kernel module portion of KVM through
an I/O control interface. The majority of Nitro is implemented in these kernel
modules. Finally, the output is realized by making use of the proc filesystem.
That is, Nitro creates a node in the proc filesystem and obtaining its output is
as simple as reading from a file.
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Fig. 1. The relationship between the Interrupt
Descriptor Table Register (IDTR), the Inter-
rupt Descriptor Table (IDT), and the system
call dispatcher shows that the system call dis-
patcher is rooted in the IDTR through a chain
that includes the IDT

Fig. 2. Control flow of a system
call that traps to the hypervisor

4.1 VMI Mechanisms for Trapping System Calls

In some cases the virtualization extensions provided by hardware manufacturers
support trapping the specific event one is interested in, which makes the effort
straightforward. However, it is often the case, especially for security mechanisms,
that the hardware extensions do not support trapping the desired event. In these
instances, we must indirectly induce a trap to the hypervisor. Finding these
indirect methods for trapping desired events is often a challenge.

As it turns out, trapping to the hypervisor on the event of a system call
is not supported on the popular Intel IA-32 (i. e., x86) and Intel 64 (formerly
EM64T) architectures. In this case, we must find a way to indirectly cause the
trap as discussed above. We do this by forcing system interrupts (e. g., page
faults, general protection faults, etc) for which trapping is supported by the
Intel Virtualization Extensions (VT-x). Hence, we have effectively created a
mechanism for trapping system calls even though the hardware extensions do
not natively support this. The resulting control flow is depicted in Figure 2. Since
the three system call mechanisms are quite different in their nature, a unique
trapping mechanism must be designed for each. These trapping mechanisms and
their implementations are described below.

Interrupt-Based System Calls. System calls may be implemented as a user-
defined interrupt. The x86 architecture handles interrupts through an Interrupt
Descriptor Table (IDT). This IDT may have as many as 256 entries, each of
which is 8 bytes long. The exact size of the IDT is stored in the IDTR along
with the address at which the IDT resides in system memory. When an interrupt
occurs, the hardware consults the IDT via the IDTR to determine the location
for the appropriate handler and continues execution there as shown in Figure 1.
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Intel’s VT-x extensions allow one to trap system interrupts (interrupts 0 to
31) to the hypervisor, but they do not provide a mechanism for trapping user
interrupts (interrupt 32 and above) which may be used for system calls.1 This
means that we must design a way to cause this user interrupt to generate a
system interrupt.

We can achieve this by virtualizing the IDT, that is, we copy out the guest’s
IDT into the hypervisor. We must then manipulate the IDTR and trap all write
accesses to it, thus disallowing any further manipulation. As the IDT size value
stored in the IDTR is added to the base address to get the offset of the last
valid byte of the IDT, we can set this size to 32 · 8 − 1 = 255. This leaves all
system interrupts unaffected, however all attempts at invoking a user interrupt
(i. e., interrupts greater than 31) will result in a general protection fault as the
bounds of the IDT will have been exceeded. The advantage of this approach is
that the IDT remains unaffected in memory, but is effectively ignored for user
interrupts.

The next step is to trap all general protection faults to the hypervisor, which
the virtualization extensions support natively. However, we must still determine
the difference between general protection faults that we generated and those that
occur naturally2. This can be done by inspecting the current instruction and
determining whether or not it is the int instruction and whether the interrupt
number is greater than 31.

If we identify the exception as being natural, we inject this exception into
the guest and allow it to continue. However, if we recognize the exception to be
caused by a user interrupt, we look at the interrupt number to determine whether
we have trapped a system call. If this is the case, we collect data according to
the rules specified for Nitro’s data collection engine (see Section 4.3). In either
case, the int instruction must be emulated using the IDT that we copied out of
the guest and hand control back to the guest OS.

SYSCALL-Based System Calls. System calls may also be implemented us-
ing the SYSCALL instruction and its analogue counterpart SYSRET. Both of these
rely on a set of MSRs, namely STAR MSR, CSTAR MSR, and LSTAR MSR.
Exactly which of these registers is used depends on whether the guest OS is
running in legacy, long, or compatibility mode. Additionally, this mechanism
can effectively be turned on and off by setting and unsetting the SCE flag in
the Extended Feature Enable Register (EFER). Making use of either SYSCALL
or SYSRET with the SCE flag not set results in an invalid opcode exception.

Forcing this mechanism to cause a system interrupt is then a matter of unset-
ting the SCE flag and setting the hypervisor to trap all invalid opcode exceptions,
which is natively supported by the virtualization extensions. Once control has
passed to the hypervisor, we must once again differentiate between natural ex-
ceptions and those caused by our introspection. This is achieved by looking at
the violating instruction and if this instruction is not either SYSCALL or SYSRET,
1 In contrast, AMD’s SVM virtualization extensions do provide a mechanism for trap-

ping user interrupts.
2 We refer to exceptions that are not caused by our changes as natural exceptions.



102 J. Pfoh, C. Schneider, and C. Eckert

we inject an invalid opcode exception into the guest OS and return control to
it. However, if the violating instruction is, in fact, SYSCALL, Nitro collects the
desired information, emulates this instruction, and returns control back to the
guest OS.

In addition to emulating the SYSCALL instruction, Nitro must be capable of
handling exceptions caused by the SYSRET instruction and emulating this in-
struction as well. This is due to the fact that the changes made to the EFER
affect the SYSRET instruction in the same manner that they affect the SYSCALL
instruction. Thus, use of the SYSRET instruction will also cause an invalid opcode
exception and must be handled accordingly. In doing so, Nitro is also able to
collect the return value of the invoked system call if the application requires this
information.

SYSENTER-Based System Calls. Similar to SYSCALL and SYSRET, the SYS-
ENTER and SYSEXIT pair of instructions also rely on a set of MSRs, namely SYS-
ENTER CS MSR, SYSENTER ESP MSR, and SYSENTER EIP MSR. The
values in each of these MSRs are copied into specific system registers upon a
call to SYSENTER. Specifically and most interesting for the development of Ni-
tro, the value of the SYSENTER CS MSR is copied into the CS register when
SYSENTER is executed and an attempt to load the CS register with a null value
results in a general protection exception. Hence, causing a system interrupt is a
matter of saving the current value of the SYSENTER CS MSR register in the
hypervisor and loading it with a null value. This will cause each SYSENTER oper-
ation to attempt to load a null value into the CS register, thus causing a system
interrupt that the hypervisor can trap.

Once the hypervisor has trapped a general protection exception, differenti-
ating between natural and forced exceptions is once more a matter of checking
the current instruction at the time of the exception. If we come across a natural
exception, as with the previous system call mechanisms, we inject the exception
into the guest OS and allow it to continue. In the case that we come across
general protection exception and the current instruction is SYSENTER, we collect
the relevant data, emulate the instruction using the saved value of the SYSEN-
TER CS MSR, and return control to the guest OS.

As with the SYSCALL/SYSRET-based system call mechanism, the change that
we make to the guest in order to induce a system interrupt also affects the
SYSEXIT instruction. Consequently, we must also emulate this instruction and
with that, get a chance to easily extract the return value of the system call
invoked.

4.2 Process Identification

It is always important to be able to determine which process produced a system
call. This requires that we collect information which is unique to a process each
time a system call is interrupted. Nitro collects the value of the CR3 register
along with the value of the first valid entry in the corresponding top-level page
directory. This allows us to identify a process due to the fact that the value in
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the CR3 register (i. e., the address of the top-level page directory) is unique for
a single process. In order to handle the case in which a newly created process
receives a top-level page directory which is located at the same location of a
previously destroyed process’s top-level page directory, we also consider the first
valid entry in the corresponding top-level page directory in order to create a
truly unique identifier.

4.3 Collection of System Call Data

In our experience, different applications for system call traces depend on varying
amounts of information. In some cases a simple sequence of system call numbers
without arguments may suffice, while other scenarios may require detailed infor-
mation including register values, stack-based arguments, and return values from
a small subset of system calls. As we cannot foresee every guest OS type and
possible application of system call tracing, Nitro does not deliver a fixed set of
data per system call. Instead, it allows the user to define flexible rules to control
the data collection during system call tracing in a fine-grained manner.

For example, the user can specify where exactly the guest OS stores the system
call number (generally in the EAX register). Nitro can then extract this system
call number along with a process identifier as described in Section 4.2. This
information is often enough for certain machine learning techniques used for
detection of malware or malicious behavior in processes [9,6].

In other instances, system call arguments or even dereferenced memory vari-
ables pointed to by arguments are crucial. To meet these requirements, Nitro’s
rules are expressive enough to account for both stack-based as well as register-
based argument passing in addition to printing register values directly or deref-
erencing them. The syntax of such a rule takes the following format:

add scmon rule CONDITION REG CONDITION VAL ACTION REG OFFSET ACTION,

where CONDITION REG contains the name of the register that should be tested to
determine whether information should be collected, CONDITION VAL contains the
value the CONDITION REG should contain in order for further information to be
collected, ACTION REG contains the name of the register that contains the base
value we are interested in, OFFSET contains the offset (positive or negative) from
the ACTION REG for the data we are interested in when collecting dereferenced
values, and ACTION defines whether the ACTION REG should be dereferenced as
well as the format the output should take. This may result in printing or derefer-
encing the data as hexadecimal, integer, unsigned integer, or string. We provide
a description of the rules in Backus-Naur Form in Appendix A. As an example,
it is easy to specify a rule that dereferences and outputs the string being written
every time a user process makes use of the write system call within a Linux
guest. This rule would look as follows:

add scmon rule rax 4 rcx 0 derefstr
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This rules-based method of requesting information makes Nitro very flexible
and contributes to its OS agnostic nature.

Keeping the design goals for Nitro in mind, we collect only information whose
location and format is defined by the hardware specifications or for which a rule
is specified. However, the flexible design of Nitro allows an easy incorporation of
guest OS specific knowledge in order to collect additional information about the
calling process. We have successfully combined Nitro with other projects within
our research group to include information such as process and user IDs into the
output. However, we keep these projects separate in order to keep Nitro as simple
and flexible as possible. This allows Nitro to be applicable in a greater range of
applications. When combined with a memory analysis tool we call InSight, we
are able to produce output as shown in Figure 3. This provides additional guest
OS specific information, such as the type of descriptor being written to, while
allowing Nitro to remain applicable of a wide range of guest OSs.

Jun 20 17:58:20: sys_write : unsigned int fd, const char

__user *buf , size_t count

fd: unsigned int: 0x3 → (socket) → [...]: (SOCK_STREAM )

flags: ()

buf: const char __user *: 0x7FFF702FF320 →
buffer content hex (of size 107):

47 45 54 20 2f 20 48 54 54 50 2f 31 2e 30 da 55 73 65

72 2d 41 67 65 6e 74 3a 20 57 67 65 74 2f 31 2e 31 32

20 28 6c 69 6e 75 78 2d 67 6e 75 29 da 41 63 63 65 70

74 3a 20 2a 2f 2a da 48 6f 73 74 3a 20 67 6f 6f 67 6c

65 2e 64 65 da 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 4b

65 65 70 2d 41 6c 69 76 65 da da

buffer content string:

GET / HTTP /1.0

User -Agent: Wget /1.12 (linux -gnu)

Accept: */*

Host: google.de

Connection : Keep -Alive

count: size_t: 0x6B

Fig. 3. Output of Nitro when combined with a memory analysis tool

5 Discussion and Evaluation

In most VMI-based mechanisms, performance overhead becomes a concern. For
this reason, it is important to keep unnecessary traps to the hypervisor at an
absolute minimum. In all the mechanisms described in Section 4, we make use
of a system interrupt to facilitate the trap to the hypervisor due to the fact that
system calls are not natively trappable.

For our implementation, we looked at the individual system call mechanisms
and determined all system interrupts that each system call mechanism could
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be made to produce and how to induce them. We then inspected all feasible
solutions and considered them in terms of their impact on performance. For
example, all three system call mechanisms can be made to produce a page-fault,
however we passed on this for two reasons. First, page faults occur often (relative
to other system interrupts) in regular system activity. This means that each
page fault would result in a costly trap to the hypervisor to distinguish between
forced and “natural” page faults, most of which would be natural. Second, this
would essentially nullify any performance improvement that comes from using
Extended Page Tables or Nested Page Tables.3 In general, we strove for a system
interrupt that occurs infrequently during normal operation and one whose use
would not counteract performance enhancements in other parts of the system.
This is how we came to the implementation and made our system viable for live
collection.

Revisited: Guest OS Portability. Nitro is guest OS portable due to the
fact that all three mechanisms described in Section 4 make sole use of hardware
knowledge. This allows the mechanisms to work for any guest OS that is com-
patible with the x86 or the Intel 64 architecture. The IDTR and IDT as well as
all the involved MSRs and their uses are specified by the hardware architecture
and must be used in the way specified. That is, any guest OS must use these
hardware mechanisms according to the specifications regardless of the guest OS.4

One potential hindrance for guest OS portability is the fact that how infor-
mation is passed between kernel and user space is left to the OS designer. For
example, some OSs are designed such that system call arguments are passed
in registers, while others pass arguments on the stack. Nitro addresses this by
providing the flexible set of rules described in Section 4.3. That is, the user can
control which data is collected by specifying rules at run-time. This allows Nitro
to be used across all guest OSs by simply changing the rule-set.

Revisited: Evasion-Resistance. We make the reasonable assumption that
the hypervisor itself is secure. In addition, any components that reside within
the hypervisor are safe from attacks originating from within a guest OS due to
the hypervisor’s isolation property.

While we have the aforementioned assumption with regard to the hypervisor
itself, this alone is not enough. This is due to the fact that our VMI mechanisms
make changes to the state of the guest VM. These state changes are clearly not
protected by the isolation property as they take place within the guest OS itself.
A malicious entity might simply revert the changes we made to the system state
to circumvent our security mechanisms. For this reason we took special care to
make sure that Nitro is evasion-resistant.

As stated in Section 3, evasion-resistance requires that the VMI mechanism
is rooted in hardware and that each involved piece of VM state is protected
3 These are hardware extensions implemented by Intel and AMD, respectively, to

counter the performance degradation caused by using shadow page tables.
4 Technically, an OS could also implement system calls entirely in software, but would

then lack the privilege level feature of the CPU, leading to an insecure OS kernel.
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against manipulation. Since the VMI mechanisms for the fast system call mech-
anisms and the interrupt-based mechanism differ slightly in this regard, they are
discussed separately in the following.

In order to achieve an evasion-resistant VMI mechanism for fast system calls,
it is rooted in either the SYSENTER CS MSR (SYSENTER-based) or the EFER
(SYSCALL-based) as discussed in Section 3. In addition, the VMI mechanism may
protect each of these registers from manipulation, which is directly supported
by the virtualization extensions provided. This is enough to achieve evasion-
resistance because Nitro’s manipulation of the system call mechanisms are con-
strained to these registers. That is, due to the changes we made to the system,
all fast system calls are trapped to the hypervisor and there is no way for a mali-
cious entity to circumvent this without making changes to exactly those parts of
the system that Nitro protects. Hence, this approach is both rooted in hardware
and protects all involved pieces of VM state, resulting in an evasion-resistant
mechanism.

Making the interrupt-based system call traps evasion-resistant is similar to
the method described for fast system calls with one additional step. The mech-
anism is rooted in the IDTR and this register is protected against malicious
manipulation by the hypervisor. In addition, a shadow copy of the original IDT
is created within the hypervisor at boot time. This already is enough to achieve
evasion-resistance as the changes to the guest OS are limited to this register. In
addition, only the shadow IDT is referred to for each user interrupt. That is, any
changes to the IDT within the guest OS do not affect the ability to trap user
interrupts. In order to hinder this, a malicious entity would have to manipulate
the IDTR directly or the shadow IDT within the hypervisor, both of which are
protected with the help of the virtualization extensions.

6 Performance Testing

In this section, we present our general performance testing results for all guest
OSs tested, which include: Windows XP SP2 (32-bit), Ubuntu Linux 9.04 Server
(32-bit), and Ubuntu Linux 9.04 Server (64-bit). The tests were performed on
an Intel Core 2 Duo processor at 2.4 GHz with 2 GB of RAM. We used a Debian
Lenny (5.0.6 64-bit) host system for all tests. Finally, we used KVM 0.12.4 to
act as the hypervisor.

These tests were performed by running benchmarks on the guest OSs once
with Nitro disabled, then once with Nitro enabled and comparing these results.
While the results themselves are of interest, we focus primarily on the amount
of degradation observed because the degradation is a strong indicator for the
overhead incurred by our system call tracing.

Throughout these tests, we made sure to test each mechanism. That is, we
present tests that measure the performance of our mechanism for SYSENTER-
based, SYSCALL-based, and interrupt-based system calls. It is important to note
that the mechanism implemented at the time of this testing for the interrupt-
based system calls function by redirecting the interrupt to a new gate descriptor
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Table 1. Windows XP SP2 (32-bit) performance comparison between KVM/Nitro
(SYSENTER-based) and Xen/Ether

Xen/Ether KVM/Nitro (SYSENTER)

Benchmark
Tracing
disabled

Tracing
enabled

Degra-
dation

Tracing
disabled

Tracing
enabled

Degra-
dation

HTML Render [pg/s] 3.277 0.598 81.74% 2.826 2.034 28.04%
File Decryption [MB/s] 65.561 64.561 1.53% 64.697 64.654 0.07%
HDD [MB/s] 45.198 7.215 84.04% 46.545 9.726 79.10%
Text Edit [pg/s] 89.066 17.246 80.64% 84.743 40.032 52.76%
Image Decompression [MPix/s] 33.856 32.951 2.67% 33.364 33.103 0.78%
File Compression [MB/s] 2.737 2.677 2.19% 2.744 2.741 0.10%
File Encryption [MB/s] 15.821 15.515 1.94% 15.853 15.826 0.17%
Virus Scan [MB/s] 333.988 85.307 74.46% 314.118 155.718 50.43%
Mem. Latency [MemAcc/s] 6.735 3.580 46.84% 6.231 3.782 39.30%
PerformanceTest [score] 586.500 383.020 34.69% 628.700 540.260 14.07%

within the IDT, rather than emulating the int instruction. The following sub-
sections present our results. All scores and times presented are a mean over three
scores or runs.

Windows XP. In testing a Windows XP guest OS we made use of two com-
mercial benchmarking products, namely PCMark05 from Futuremark and Per-
formanceTest from PassMark.5 These tools perform various CPU, memory, disk
drive, and graphics tests. Each make heavy use of system calls as is evidenced
by the output of Nitro. PCMark05 returns a value for each performed test, while
PassMark outputs a single combined score.

The standard deviation of all tests were negligible, except for the ‘HDD’ and
‘Virus Scan’ tests where we observed standard deviations of 6.3 and 61.0, re-
spectively. We hypothesize that this is due to the fact that these are both disk
I/O intensive tests. In any case, we present these results for the sake of com-
pleteness, however, due to their high deviation from the mean, we do not draw
any conclusions from these values.

For these tests we were able to modify the virtual hardware such that the
guest OS determined that the SYSENTER and SYSEXIT instructions were not
available and thus resorted to the interrupt-based mechanism for system calls.
This allowed us to test the performance of both SYSENTER-based (Table 1) and
interrupt-based (Table 2) system call mechanisms.

It is interesting to note that across both sets of tests the degradation varies
greatly from benchmark to benchmark, however the benchmarks with the low-
est degradation (< 10%) all perform some sort of compression, decompression,
encryption, or decryption. Such functions are highly arithmetic and perform

5 Available from http://www.futuremark.com/products/pcmark05/ and
http://www.passmark.com/products/pt.htm, respectively.

http://www.futuremark.com/products/pcmark05/
http://www.passmark.com/products/pt.htm
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Table 2. Windows XP SP2 (32-bit) performance results with interrupt-based system
calls on KVM/Nitro

KVM/Nitro (interrupt)

Benchmark Tracing disabled Tracing enabled Degradation

HTML Render [pg/s] 3.05 2.28 25.12%
File Decryption [MB/s] 65.87 65.57 0.45%
HDD [MB/s] 46.06 9.13 80.17%
Text Edit [pg/s] 83.61 56.44 32.49%
Image Decomp. [MPix/s] 33.75 32.24 4.46%
File Compression [MB/s] 2.81 2.64 6.07%
File Encryption [MB/s] 16.10 15.23 5.42%
Virus Scan [MB/s] 325.34 102.63 68.45%
Mem. Latency [MemAcc/s] 6.23 4.67 25.00%
PerformanceTest [score] 623.16 557.66 10.51%

Table 3. Ubuntu Linux 9.04 Server performance results on KVM/Nitro

Apache Compile Results

Linux Guest OS Tracing disabled Tracing enabled Degradation

32-bit Interrupt-based 168.989s 195.254s 15.54%
32-bit SYSENTER-based 167.916s 212.492s 26.55%
64-bit SYSCALL-based 179.166s 232.640s 29.85%

relatively few system calls since these arithmetic operations do not require OS
support. We believe that this is the reason for the variation in degradation across
the benchmarks. While the PCMark05 tests (the first nine benchmarks in Tables
1 and 2) are great for identifying to which degree an operation is affected by
overhead in the system call mechanism, we feel that the results delivered by Per-
formanceTest give a better overall impression of the performance degradation in
the guest OS as a whole.

Ubuntu Linux. For testing all Linux guest OSs we created a script that makes
use of the ‘time’ command in Linux. Using this utility we measured the compile
time of the Apache web server 2.2.16. The time utility makes use of the hardware
clock and we verified beforehand that the hardware clock within the VM is
consistent with the host system’s hardware clock. We used this as a benchmark
as it is resource intensive enough to show performance degradation and makes
extensive use of system calls as is evidenced by the output of Nitro.

Presented in Table 3 are the test results when performed on a Ubuntu Linux
9.04 Server (32-bit) guest OS. As with our testing for the Windows XP SP2 guest,
we manipulated the virtual hardware in order to be able to report results for
interrupt-based and SYSENTER-based system call mechanisms. Considering these



Nitro: Hardware-Based System Call Tracing for Virtual Machines 109

results, we notice that the interrupt-based guest OS incurs less degradation than
the SYSENTER-based guest. This is due to the fact that the mechanism in place
for trapping the SYSENTER instruction requires emulating that instruction, while
the mechanism in place for trapping the int instruction does not.

The testing process we used for a 64-bit Linux guest OS is identical to the
processes we used for the 32-bit Linux guest with the obvious exception that
we use Ubuntu Linux 9.04 Server (64-bit). One noteworthy difference between
the 32-bit and 64-bit version of this operating system is that the 64-bit version
makes use of the SYSCALL-based system call mechanism, making this the only
test case that makes use of this instruction. These results are also presented
in Table 3. Comparing the degradation of this guest to its 32-bit counterpart
reveals that this OS incurred the most degradation among the Linux guests.

7 Comparison

We chose to compare our system to the Ether system [4] because Ether is the
only other system to our knowledge (aside from HyperSleuth [10], which bases
its system call tracing on Ether’s approach) that supports some forms of system
call tracing using VMI without having to install drivers or modules in the guest
OS. Both in function and performance, Nitro surpasses Ether with regard to
system call tracing and monitoring. In this section we discuss these differences
in further detail.

Functional Differences. The largest functional difference between Ether and
Nitro is the hypervisor that they are built upon. Ether builds upon the Xen
hypervisor, while Nitro builds upon KVM. Nitro and Ether’s system call tracing
mechanism are similar in respect to the output they provide, though Ether’s
output is guest OS specific. That is, the output is Windows specific. Despite
this, we tried Ether on further guest OSs in order to determine whether the
underlying mechanism may be used for other guest OSs.

We tested both systems for functionality on Windows XP SP2 (32-bit), Ubuntu
Linux 9.04 Server (32-bit), and Ubuntu Linux 9.04 Server (64-bit). Nitro proved
functional on all tested platforms, while Ether proved 100% functional only on
Windows XP SP2. While we expected Ether to be functional on Ubuntu Linux
9.04 Server (32-bit) because this OS uses the same system call mechanism as
Windows XP SP2, the guest OS became very unstable and was not usable from
a user’s perspective when system call tracing was enabled. Finally, Ether was
unable to provide any system call information for Ubuntu Linux 9.04 Server (64-
bit) although the guest OS continued to run without issue. We believe that this
is due to the fact that Ether fails to consider the SYSCALL/SYSRET mechanism
for system calls completely. We see this as a major detractor as this limits the
number of guest OSs for which system call tracing or monitoring will work.

Performance Comparison. We performed all presented tests on the same
hardware and host OS as described in Section 6. In addition, we used the same
Windows XP SP2 (32-bit) image for all tests to ensure the consistency of the
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Fig. 4. Performance degradation of Xen/Ether and KVM/Nitro when tracing a Win-
dows XP SP2 guest OS (ref. Table 1)

guest OS. Finally, for Ether we used the recommended Xen 3.1.0 as hypervisor.
It is also important to note that we chose the specific benchmarks out of the
PCMark05 suite due to the fact that these are the same benchmarks that Ether’s
authors used when testing their system originally. We felt it was important to
include the same set of tests in the interest of equity.

Nitro and Ether are based on two different hypervisors, namely KVM and
Xen. As our intentions were not to compare the performance between KVM and
Xen but to compare the efficiency of the different implementations for system
call tracing, we look at the relative performance degradation between the un-
modified version of KVM and Nitro and compare this to the relative performance
degradation between the unmodified version of Xen and Ether. This way we can
measure the performance overhead incurred by each VMI implementation and
do a fair comparison of Nitro and Ether.

As Ether only worked correctly for a Windows XP SP2 guest OS, we were
only able to compare the performance of Ether and Nitro on this guest. These
results are presented in Table 1 and Figure 4. Again, we do not draw any con-
clusions from the ‘HDD’ and ‘Virus Scan’ results due to their high observed
standard deviation (this high standard deviation was observed for Xen/Ether as
well as KVM/Nitro), however the results are present in Table 1 for the curious
reader. Despite this, we see that Nitro outperforms Ether both on the absolute
scores and the amount of degradation in all tests performed. In the benchmarks
that focus on arithmetic operations (i. e., use relatively fewer system calls), for
example compression and encryption tests, Nitro outperforms Ether only nomi-
nally. However in the case of HTML rendering, text editing, and memory latency,
Ether’s degradation is between 5 and 54 percentage points greater than that of
Nitro. As mentioned in Section 6, while the PCMark05 benchmarks nicely reveal
which specific operations incur the greatest degradation, the PerformanceTest
benchmark is a better indicator of the overall degradation of the system. We see
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that with this benchmark Ether’s degradation is over 20 percentage points more
than that of Nitro.

We hypothesize that Ether’s greater degradation is primarily due to the fact
that Ether forces a page fault interrupt to perform system call tracing. This adds
additional overhead to a part of the hypervisor which is already responsible
for incurring a large performance overhead. Additionally, this design decision
effectively counteracts any benefits one might have from using Ether with a
hypervisor which makes use of Extended Page Tables.

8 Conclusion

We have shown that Nitro is a powerful and flexible tool for system call tracing
and monitoring. It supports all three system call mechanisms provided by Intel’s
x86 architecture for both 32-bit and 64-bit environments. In fact, we have suc-
cessfully collected system call traces with Nitro for Windows, Linux, 32-bit, and
64-bit guests and we are confident that it will perform equally well for a variety
of additional guest OSs. Further, the proven performance of our implementa-
tion allows the collection and dissemination of data in real-time. Finally, all of
the VMI mechanisms presented have been shown to be evasion-resistant. That
is, these mechanisms cannot be manipulated in a way which allows a malicious
entity to circumvent system call tracing or monitoring. Its flexible and secure
nature allows Nitro to be used effectively in a variety of applications, such as
machine learning approaches to malware detection, honeypot monitoring, as well
as sandboxing environments.

As Nitro builds upon KVM which is licensed under the GPLv2, we release the
source code of our system under the same license. The source code is available
at http://code.google.com/p/nitro-kvm/. We hope that this tool is useful
for the community and will help to further security research.

Acknowledgements. The authors would like to thank Cornelius Diekmann for
his contribution to this work by combining Nitro with other tools to help show
its potential.
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A Nitro Output Rules Definition

We present the flexibility of our rules by expressing them in Backus-Naur Form.
rule ::= add scmon rule <condition> <location> <action>

condition ::= <register> <value>
location ::= <register> <offset>
register ::= rax | rbx | rcx | rdx | rsp | rbp | rsi | rdi

value ::= [0,4294967295]
offset ::= [-2147483648,2147483647]

action ::= hex | int | uint | derefhex | derefint | derefuint | derefstr
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Abstract. Dynamic taint analysis (DTA) has been heavily used by secu-
rity researchers for various tasks, including detecting unknown exploits,
analyzing malware, preventing information leaks, and many more. Re-
cently, it has been also utilized to track data across processes and hosts
to shed light on the interaction of distributed components, but also for
security purposes. This paper presents Taint-Exchange, a generic cross-
process and cross-host taint tracking framework. Our goal is to provide
researchers with a valuable tool for rapidly developing prototypes that
utilize cross-host taint tracking. Taint-Exchange builds on the libdft open
source data flow tracking framework for processes, so unlike previous
work it does not require extensive maintenance and setup. It intercepts
I/O related system calls to transparently multiplex fine-grained taint in-
formation into existing communication channels, like sockets and pipes.
We evaluate Taint-Exchange using the popular lmbench suite, and show
that it incurs only moderate overhead.

1 Introduction

Dynamic taint analysis (DTA) has been a prominent technique in the computer
security domain, used independently or frequently complementing other sys-
tems [9,23,21,19,20,27,26,7], while researchers seem to continuously find new ap-
plications for it, many times extending to other domains [12,29]. Originally, taint
tracking systems enabled the tracking of marked or “tainted” data throughout
the execution of a single process [21], or an entire host in the case of virtual ma-
chine (VM)- and emulator-based systems [13,20]. The latter enabled researchers
to track the interactions between processes running within a virtual machine.

However, as taint tracking is applied on more domains, like the visualiza-
tion of information flow among the components of a system [17,28] and the au-
tomatic troubleshooting of application misconfigurations [1], systems that can
also propagate taint between different hosts over the network have been also
developed. Existing cross-application and cross-host taint propagation systems
frequently make use of VMs and emulators [17,28], incurring unnecessary over-
head and requiring extensive maintenance and setup. Other implementations are
very problem-specific, requiring extensive modifications for reuse by the research
community to solve new problems.

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 113–128, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



114 A. Zavou, G. Portokalidis, and A.D. Keromytis

This paper presents a generic cross-process and cross-host taint tracking
framework, called Taint-Exchange. Our system, builds on the libdft open-source
data flow tracking (DFT) framework [14], which performs taint tracking on
unmodified binary processes using Intel’s Pin dynamic binary instrumentation
framework [15]. We have extended libdft to enable transfer of taint informa-
tion for data exchanged between hosts through network sockets, and between
processes using pipes and unix sockets. Taint information is transparently mul-
tiplexed with user data through the same channel (i.e., socket or pipe), allowing
us to mark individual bytes of the communicating data as tainted. Additionally,
users have the flexibility to specify which communication channels will propagate
or receive taint information. For instance, a socket from HOST A can contain
fine-grained taint information, while a socket from HOST B may not contain
detailed taint transfer information, and all data arriving can be considered as
tainted. Similarly, users can also configure Taint-Exchange to treat certain files
as tainted. Currently, entire files can be identified as a source of tainted data.

Most real-world services consist of multiple applications exchanging data, that
in many cases run on different hosts, e.g., Web services. Taint-Exchange can be
a valuable asset in such a setting, providing transparent propagation of taint
information, along with the actual data, and establishing accurate cross-system
information flow monitoring of interesting data. Taint-Exchange could find many
applications in the system security field. For example, in tracking and protecting
privacy-sensitive information as it flows throughout a multi-application environ-
ment (e.g., from a database to a web server, and even to a browser). In such a
scenario, the data marked with a “sensitive” tag, will maintain their taint-tag
throughout their lifetime, and depending on the policies of the system, Taint-
Exchange can be configured to raise an alert or even restrict their use on a
security-sensitive operation, e.g., their transfer to another host. In a different
scenario, a Taint-Exchange-enabled system could also help improve the secu-
rity of Web applications by tracking unsafe user data, and limiting their use in
JavaScript and SQL scripts to protect buggy applications from XSS and SQL-
injection attacks.

Taint-Exchange, along with libdft, provides a stable and reusable cross-host
taint tracking platform that can promote new research and expedite the develop-
ment of research prototypes. The main contributions of this paper are summa-
rized in the following:

– We designed and implemented a reusable cross-process and cross-host taint
tracking framework. Taint-Exchange is based on libdft [14], a customizable
DFT framework that offers an extensive API for creating tools

– Taint-Exchange operates transparently on unmodified x86 Linux binaries,
allowing real-world legacy applications to take advantage of our framework
transparently

– We offer flexible configuration of taint sources, as well as allowing mixing
our own fine-grained taint transferring sockets with ordinary sockets. For
example, many security-oriented DTA implementations [19] do not support
configurable taint sources, and mark all incoming network as tainted
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– We improved on inter-process taint tracking over previous system-wide track-
ing systems (e.g. Minos [9], TaintBochs [7], Rakscha [10], RIFLE [24]), which
are based on slow full-system emulators (e.g. Xen [2], QEMU [3], Bochs [4]),
by enabling cross-host and cross-process tracking on the communication
channels that matter to the target applications, rather than overloading
every operation in the entire system with unnecessary heavyweight taint
tracking operations

– We evaluate the overhead imposed by Taint-Exchange, and show that it
incurs minimal overhead over the baseline tool libdft

The rest of the paper is organized as follows. Section 2 introduces the concept
of dynamic taint tracking and presents the most important implementations in
this research area. In Sect. 3 we present our protocol and our system. In Sect. 4,
we highlight the implementation choices made when we built our system. In
Sect. 5, we evaluate our system. We discuss future work in Sect. 6, and finally,
our conclusions follow in Sect. 7.

2 Background and Related Work

2.1 Dynamic Taint Tracking

Dynamic taint tracking is the mechanism of monitoring the flow of tainted data,
at runtime, within an instance of a software application (process) or a system,
after “recognizing” the data of interest according to a predefined taint configura-
tion, and associating it with metadata, usually referred to as taint tags. There-
fore, most dynamic taint analysis implementations can be described by three
elements the taint sources, the propagation policy and the taint sinks. Regarding
taint-tags, in most cases one bit of taint is sufficient, but there are situations
where multiple bits are useful. For instance, to distinguish between multiple
input sources or to distinguish between trust levels.

Dynamic taint tracking is not a new concept. One of its first practical instan-
tiations was employed in detecting and defending against software attacks [19],
while it has found many more applications since then. Currently, dynamic track-
ing approaches range from per-process taint tracking [6,8,14,19,21,25,29], to
whole-system tracking [9,10,20,27] using emulation environments and hardware
extensions.

2.2 Single-Process Taint Tracking

Most application-level taint tracking tools, like TaintCheck [19], TaintTrace [6],
libdft [14], Dytan [8], and LIFT [21] use dynamic binary instrumentation (DBI)
frameworks, like PIN [15], StarDBT [5] and Valgrind [18]. While quite effective
and useful, as they do not require any modifications to source code or customized
hardware, they impose significant impact on the performance, as every instruc-
tion needs to be instrumented, and additional storage, usually called shadow
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memory, is required for storing the tags. As a result, there has been great inter-
est in optimization techniques in order to improve their performance. TaintTrace
achieved significantly faster taint-tracking by using more efficient instrumenta-
tion based on DynamoRIO, combined with simple static analysis to speed up the
taint-tag access. LIFT also achieved significant additional performance benefits
by using better static analysis and faster instrumentation techniques.

2.3 Cross-Process and Cross-Host Taint Tracking

A large body of research has also focused on cross-process or system-wide taint
tracking, leading to the creation of many tools [9,10,27,28], mostly based on em-
ulators and hardware extensions to efficiently handle data tracking for an entire
operating system (OS). For instance, the whole system emulator QEMU [3] is em-
ployed by various solutions that implement DTA [13,20,27], while TaintBochs [7]
builds on the Bochs IA-32 emulator. The architecture community attempted to
integrate or assist dynamic taint tracking with hardware extensions [9,10,23,24],
to alleviate the significant performance impact due to extra tag processing from
DBI frameworks and emulators.

While there is much research aiming at intra-process and system-wide DTA
implementations, it was not until very recently that interest has risen for efficient
cross-host taint propagation systems [1,11,28]. Most of these techniques are more
problem-specific, and therefore it would be difficult to adapt the techniques and
tools developed for use in other contexts. For instance, DBTaint [11] is targeting
taint information flow tracking specifically for databases, whereas ConfAid [1],
which is the closest to our design, tackles the problem of discovering a set of
possible root causes in configuration files that may be responsible for software
misconfigurations. System tomography [17], which also looks into the concept
of propagating taint information remotely, builds on the QEMU emulator so
it cannot be applied on already deployed software and incurs large slowdowns.
Finally, Neon [28] also requires modifications in the underlying system to per-
form dynamic taint tracking. It uses a modified NFS server for handling the
initial tainting, and utilizes a network-filter for monitoring the tainted packets
arriving/leaving the server.

In contrast to previous approaches, that use slow-emulators or VMs to perform
system-wide taint tracking, in Taint-Exchange we use an already available and
fast single-process taint-tracking framework [14], and extend it to perform fine-
grained, cross-process, and cross-host transfer of taint information. Although
our design was inspired by prior works, it addresses different challenges, is more
general, and completely transparent to applications.

3 Taint-Exchange

We designed and implemented Taint-Exchange based on the libdft data flow
tracking framework [14], to produce a generic system for efficiently performing
cross-process and cross-host taint tracking. Nevertheless, Taint-Exchange could
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Fig. 1. Taint-Exchange overview. Taint information can be exchanged using network
sockets and pipes. Sockets and files can also be configured as taint sources.

be easily retargeted to numerous other taint tracking systems similar to libdft,
e.g., TaintCheck [19], TaintTrace [6], LIFT [21], or Dytan [8], as Taint-Exchange
is a broadly applicable design. libdft was chosen because it is one of the fastest
process-wide taint-tracking frameworks, which performs at least as fast, if not
faster than similar systems such as LIFT and Dytan.

3.1 Design Overview

We will present the main aspects of Taint-Exchange, following the three-dimensions
described in Sect. 2. Figure 1 shows an overview of Taint-Exchange, the various
sources of tainted data that can be configured, and the mechanisms for exchang-
ing taint information between processes and hosts.

Taint Sources. The taint sources are the “starting points” of the system, where
taint is assigned to data of interest. Our current framework supports configurable
taint sources from the two most common input channels, the file-system and the
network. In the current implementation, the user of Taint-Exchange directly
interacts with the underlying framework (i.e., both Taint-Exchange and libdft)
to define the taint sources, as they each time depend on the problem being
tackled. Although configuration is straightforward, we stress that a better user
interface for the configuration of the taint sources would improve usability, but
this is beyond the scope of this paper.

Configuring the filesystem taint sources is straightforward. A shadow file
taint config is maintained for listing all tainted files in the system. The de-
signer has to update it with the taint files, using full-path format, and all data
originating from files listed in taint config will be marked as tainted.
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In addition, network sockets and pipes can also be among the taint sources,
so data arriving from them can be also tagged as tainted. Sockets and pipes can
be also configured to receive and transmit detailed taint information regarding
the data being exchanged (described later in this section).

A global array (state sfd) is used to keep track of the important “channels”
that comprise Taint-Exchange’s taint sources. The open(), socket(), accept(),
dup(), and close() system calls are intercepted to update the state sfd array
accordingly. The marked “channels” will be the ones monitored for tainted data.
Briefly, for read-like calls, such as read(), readv(), recv() etc., this includes
the extraction of a taint-header from the received data stream, the reception of
the taint information, and the appropriate marking of the received data.

Data Tags. Currently our system only supports binary tags (tainted or clean
data), but this is only a limitation because of the chosen underlying taint tracking
system libdft [14]. In fact, according to the authors of libdft, future versions will
include support for multiple labels/colors for tracked data. In the future, we
plan to port our tool to using the lated libdft version to take advantage of the
richer data tags. Of course, we expect larger tags to have a larger impact on the
performance of data transfers, but it is something that needs to investigated.

Taint Propagation. There are three cases that we examined for the propagation
of taint tags. Firstly, the intra-propagation of taint values during the execution of
a single process. As we discussed in Sect. 2, this has been thoroughly explored
by past work, and there exist many tools [6,8,14,19] for efficiently handling this
issue. Generally, all these tools allocate a “shadow storage” for every process to
store which data is tainted (i.e., data tags). We will refer to this shadow memory
as a tagmap. The second case of taint propagation we consider is the cross-process
propagation of taint tags for the data exchanged between processes. Previous re-
search has mostly addressed this topic by performing system-wide taint tracking
using modified VMs and specialized hardware [9,10,20,27], mostly based on em-
ulators and hardware extensions for efficiently handling system-wide tracking of
tainted information. The last case we examine is the cross-host transfer of tainted
tags. Relatively little research has explored this path [1,11,17,28].

For Taint-Exchange, taint transfer refers to the propagation of taint infor-
mation along with the data, when processes on the same host or on different
hosts communicate. Our mechanism supports processes that communicate using
sockets and pipes. Briefly, the main idea is to monitor the information flow be-
tween the taint sources, and intercept the system calls from the read/receive
and write/send families that are used to read from and write to the tainted
channels. In the case of data leaving the current process (or host), a taint-
header is composed and attached to the data, indicating which bytes, if any,
are tainted. We will describe the taint-header in detail in Sect. 3.2. On the receiv-
ing side, as “extended” data enters the process (or host), and assuming that the
source descriptor is among the taint sources described earlier, the taint header
will be extracted from the received data, and the taint-tag storage structure of
the process will be updated accordingly.
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Fig. 2. Taint-Exchange encapsulates data using a header to transparently inject taint
information in data transfers

Cross-process taint transfer is handled the same way as cross-host taint trans-
fer. The only difference is the source descriptor, which in the case of pipes is the
pid or name of the application we are communicating with. IPC through UNIX
sockets is very similar to TCP sockets, so the mechanism remains almost entirely
the same.

Taint Sinks. Taint sinks refer to the “locations” in the system, where the user
needs to perform some assertions on the data. For example, tainted data may
not be allowed to be transmitted overa certain socket, or used as program control
data (e.g., a function return address). or it should just be logged. Taint sinks
are problem-specific, and can be configured by the user. libdft offers an extensive
API for the users to check for the presence of tainted data on instructions and
on system or function calls.

3.2 Taint Headers

Taint Header Structure. To multiplex data and taint information, Taint-
Exchange prefixes each data transfer with a taint header, which essentially en-
capsulates the transferred data into new “packet” protocol, following the format
shown in Fig. 2. It consists of the following fields:

fmt the format version of that taint information
hdr len the length of the header including that taint information
data len the length of the data payload (i.e., the data the application is actually

transferring)
taint information fine-grained taint information regarding the payload, and

following the format specified by fmt
data the data payload

Composing the Taint Header. A taint header is created when write-like
system calls, such as write(), writev(), send() etc., are executed and the des-
tination descriptor of the system call is among the ones configured to transfer
taint. The process’ tagmap is referenced to determine which parts of the out-
going data message is tainted. Depending on the number of tainted bytes and
their distribution, Taint-Exchange determines which format to use to encode
the taint information for the data. We support two formats for encoding taint
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Fig. 3. Space overhead of the different Taint-Exchange taint information transfer for-
mats. For both formats, the fixed header size is 9 bytes. The overhead of the bitmap
format is linear with the number of bytes transferred, while with the vector protocol
it depends solely on the number of tainted data segments.

information. The first, is a bitmap which contains one bit for every byte of data
being transferred, and the second using a vector for each segment of data that
is tainted. For example, if bytes 5 through 15 are tainted, the vector describing
this segment is [5, 10]. That is, there is a segment of tainted data starting at
offset 5 of the data and lasting for 10 bytes. The space overhead of these two
formats is drawn in Fig. 3. We see that depending on the number of tainted
segments a different format is preferable. Usually, for large continuous areas of
tainted bytes, a vector proves to be a more efficient choice, whereas for sparsely
tainted bytes the bitmap is preferable.

4 Implementation

4.1 The libdft Data Flow Tracking Framework

Taint-Exchange operates by intercepting and instrumenting the system calls
used for inter-process as well as for cross-host communication, while it relies on
an already available tool, libdft [14], to perform the taint tracking within each
process. For this purpose, we instrumented the socketcall family of system calls
(i.e., socket(), and accept()), the dup() system call, and the read/receive-
like and write/send-like system calls. We also intercept the open(), close()
and mmap() system calls for handling files.

For the intra-process dynamic taint tracking we chose libdft [14], a dynamic
Data Flow Tracking (DFT) framework, designed to transparently perform DFT
on binaries. Although our design is independent of the underlying IFT system,
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for our implementation we chose libdft because of its availability, well-defined
API, and efficient instrumentation, which makes it one of the fastest process-
wide taint-tracking frameworks. libdft is used as a shared library offering a user-
friendly API for customizing intra-process taint propagation, and can be used on
unmodified multi-threaded and multiprocess applications. It relies on PIN [15],
a dynamic binary instrumentation framework (DBI) from Intel, widely used in
the implementation of other DTA tools [8,29].

Similarly to PIN’s, the libdft API allows both instrumentation and analy-
sis of the target process. In particular, libdft’s I/O interface component, of-
fers an extensive system call level API, enabling instrumentation hooks before
(pre syscall) and after (post syscall) every system call, while making use
of the underlying DFT services. We have registered analysis callbacks for the
“interesting” system calls, which get invoked when these system calls are en-
countered, to observe the process’ communication “channels”, and to inject taint
information along with the native data (i.e., the data the application is commu-
nicating). For the system calls that are not explicitly handled by Taint-Exchange,
the default behavior is to clear the tags of the data being read (i.e., the data
written in the process’ memory). This way, over-tainting is avoided since “un-
interesting” system calls, that overwrite program memory with new inputs read
from the kernel, are not ignored. It is worth to mention that libdft does not
suffer from taint-explosion (i.e., over-tainting data that should not be tagged),
because it does not consider control-flow dependencies and it operates in user-
space. Control-flow dependencies, kernel data structures, and pointer tainting
have been identified as the prominent causes of taint-explosion [22].

4.2 Taint-Exchange Data Structures

The tagmap is the taint-tag storage maintained by libdft, reflecting the taint-
status of the running process’ memory and CPU registers for each running
thread. Its implementation plays a crucial role in performance and memory over-
head. libdft supports byte-level memory tagging, which is mapped to a single-bit
tag in the process’ tagmap, and four 1-bit tags for every 32-bit GPR. libdft offers
an extensive API for the update of the taint-tags in tagmap (e.g., tagmap setb,
tagmap getb, tagmap clrb are handling the taint-tag per byte of addressable
memory).

The state sfd is the global array of tainted descriptors, that designates the
important “channels”, being monitored for tainted data. It is updated by the
system call subset used for handling files and creating/closing sockets, and is
indexed by the file (or socket) descriptor. Initially, all elements of the array are
empty. The array is updated by the instrumented versions of open(), socket(),
accept(), dup() and close() system calls, and variations of them.

Finally, taint config is the configuration file for filesystem taint sources. The
files listed in it should be written in full-path format.
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4.3 Filesystem Taint Sources

Currently, our framework supports configurable taint sources from the file-system
and the network. The taint config file, lists the files that contain data of in-
terest, which should be tainted and tracked throughout the monitored system.
This is implemented, by the instrumented open() system call, which marks as
“tainted” the state sfd elements, that correspond to the files listed in taint config.
The descriptors of these files are considered “channels” of incoming tainted data.
Therefore, whenever a system call, like read(), tries to read data from them the
corresponding taint-tags in the tagmap structure are updated accordingly.

4.4 Taint Propagation over the Network

The main purpose of Taint-Exchange is the delivery of taint-tags along with the
transferred data in all the tainted “channels”. To establish information about
the TCP channels the socket() and accept() system calls are instrumented.
For simplicity, in the current implementation, every network connection is con-
sidered capable of propagating tainted data, but this could be easily limited to
work only on specific IPs. When a TCP connection is established, state sfd struc-
ture is updated accordingly to add the new socket descriptor to the monitored
“channels”.

The cross-host taint propagation mechanism is handled by the instrumented
versions of write/send-like system calls on the sending side, and read/receive-
like system call on the receiving side. When the sender transmits data by invoking
a write() (or an equivalent) system call, Taint-Exchange constructs the corre-
sponding taint-header according to the relevant taint-tags as reflected in the
tagmap of the sending process and attaches it to the original data. The receiv-
ing side, will invoke an instrumented read() call (or an equivalent) to process
the “extended data”, and update the process’ tagmap with the taint-tags corre-
sponding to the received data.

4.5 Cross-Process Taint Propagation

Interprocess communication can happen through unix sockets, TCP/UDP sock-
ets, pipes, and shared memory. If the processes are communicating via sockets
or pipes, taint tags can propagate between communicating processes in the same
manner we described in the previous section. The main difference is the source
descriptor, which in the case of pipes is linked to the pid or name of the appli-
cation the process is communicating with. IPC through UNIX sockets is very
similar to TCP sockets, so the mechanism remains almost entirely the same. We
are currently not handling data exchanged through shared memory segments.

5 Evaluation

The aim of this section is to demonstrate the communication overhead of Taint-
Exchange, when transparently passing taint information, along with real data,
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across the network. To assess the impact imposed by Taint-Exchange, we per-
formed several micro benchmarks using utilities from the lmbench [16] Linux
performance analysis suite. During the tests we only used the bitmap format
to represent taint information as the overhead of the vector format can vary
significantly depending on the application scenario.

Our testbed consisted of two identical hosts, equipped with two 2.66GHz
quad core Intel Xeon X5500 CPUs and 24GB of RAM each, running Linux
(Debian “squeeze” with kernel version 2.6.32). The version of Pin used during
the evaluation was 2.9 (build 39599). When conducting our experiments, the
hosts were idle with no other user processes running under taint-tracking apart
from the evaluation suites.

Since Taint-Exchange intercepts socket connection calls to inject the addi-
tional taint information, we used lmbench’s bandwidth benchmark bw tcp to
measuring the impact of our approach when moving the “extended” data over
the network. bw tcp measures TCP bandwidth by creating two processes, a
server and a client, that are moving data over a TCP/IP connection. We re-
peated our tests with data of different sizes (i.e., 64, 128, 256, 512, 1024 and
1047 bytes), and against three different scenarios: (a) using a simple pintool,
null tool, which uses minimum PIN instrumentation to add callbacks to system
calls without further employing any form of analysis. We developed this as the
base case, to establish the lower bound of our instrumentation and analysis over-
head as imposed by PIN’s runtime environment alone. (b) libdft-dta, a tool based
on libdft to employ basic dynamic taint analysis. We used this tool to achieve an
estimation of the overhead imposed by libdft. (c) Taint-Exchange.

We repeated the measurements 10 times and calculated the mean and stan-
dard deviation of the output. The results are presented in Figure 4. We see that
there is an obvious impact on the throughput of TCP sockets, which becomes
more severe as the size of the sent data increases. As expected, Taint-Exchange
has the largest impact of the three scenarios as the number of data sent every
time is more than the other applications. For example, in the case of the 64 bytes
buffer sent, the space overhead will be 17 bytes (as described in Section 3.2).

When running our tests we noticed that there was an instability in the mea-
surements, as size of the buffer increased, and especially with the libdft-dta tool.
We assume that maybe the measurements are affected also by the instruction
instrumentation that libdft-dta employs. Unfortunately, we have not yet deter-
mined the exact reasons for this instability as we are not fully aware of lmbench’s
internal workings. The 1437B buffer in our experiments is a default of the lm-
bench benchmark, and has to do with the maximum number of (payload) bytes
that can be transmitted within a single Ethernet frame. This also explains the
oscillation in performance, as the taint information can no longer fit within the
same Ethernet frame as the data. We should note that Pin itself introduces sig-
nificant overhead with small buffer sizes like the ones used by the lmbench suite
(Fig. 4), reducing throughput by 10x-20x compared with native execution. On
the other hand, when using large, 10MB buffers (i.e., the largest buffer measured
by lmbench), Pin does incur any observable overhead on throughput.
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Fig. 4. TCP socket throughput measured with lmbench for various buffer sizes. We
draw the mean and standard deviation. Note that the effect of Pin with the buffers
drawn here is quite pronounced, reducing throughput by 10x-20x compared with native
execution. In contrast, it does not incur any observable overhead with large, 10MB
buffers.

Since the implementation of Taint-Exchange is mostly based on the instru-
mentation of system calls, we also employed the lat syscall benchmark to measure
the latency impact of the three implementations . We used lat syscall with the
open, read and write system calls, in order to show how these operations are
affected. We chose these three system calls as they represent the calls that were
affected the most by Taint-Exchange. More specifically, open() is handling the
initial configuration of tainted “channels” from the file-system, while the read
and write system calls are the ones handling the movement of the tainted in-
formation along. In the performed tests, lat syscall read measures how long it
takes to read one byte from /dev/zero, whereas lat syscall write measures how
long it takes to write one byte to /dev/null. lat syscall open measures how long
it takes to open and then close a file. The results are presented in Figure 5. The
conditions during these measurements were the same as with bw tcp, regarding
repetitions and the calculation of the mean and standard deviation from the
original measurements.

The observed overhead is attributed to the overhead of PIN for the dynamic
instrumentation analysis of the process, as well as the overhead inserted by
libdft performing the taint-tracking. The additional overhead imposed by Taint-
Exchange, apart from the obvious reasons such as the instrumentation of these
system calls for handling the taint-headers and the continuous update the taint
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Fig. 5. System call latency measured with lmbench. Note that Pin, as probably most
DBI frameworks, greatly affects system call latency (approximately 20x slower than
native).

data structures, is also implementation-specific. For instance, in our current im-
plementation every write() system call performed by the application results
in an additional write being performed to inject the taint-header. Similarly, the
instrumented version of the read() system call is reading the “extended” data
in three pieces, inevitably imposing the overhead seen in Figure 5. Note that
Pin, as probably most DBI frameworks, greatly affects system call latency (ap-
proximately 20x slower than native) because it receives control before and after
every call. We attribute Pin’s overhead on throughput with small buffer sizes,
to the general increase in system call overhead.

6 Future Work

In this paper, we presented a preliminary implementation of Taint-Exchange,
our approach for handling cross-application and cross-host transfer of tainted
information. There are some obvious extensions to the work presented in this
paper, which we plan to address in a next version of Taint-Exchange. In the
current implementation, every TCP socket is by default considered among the
important “channels”, that participate in the taint-propagation process. We are
planning to build a more fine-grained configuration procedure, so that certain
IPs can be included (or excluded) from participating into the propagation of the
taint-tags over the network.

In addition, we plan to support persistent taint information storage for files,
to be able to handle both tainted and untainted data stored in a file. An auxiliary
file per original file could be used to maintain the information on the tainted
bytes of the original file. A similar scheme with the one used for passing taint
information over the network will be probably used (e.g., bitmap for files with
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interleaved tainted and clean data, and vectors for files that store tainted data in
large blocks). Compression may also be utilized to reduce storage requirements.
Coarser-grained tracking can already be performed. For instance, when tainted
data are written to a file, taint-exchange can consider the entire file as tainted.

Finally, in order to reduce the overhead of the inserted taint header we think
that it is a promising direction to explore the use of TCP optional headers to pass
the taint information. This option would not only help us trivially implement
communication between a native and a taint-exchange application, but it could
also potentially improve the overall performance of our proposed mechanism.

7 Conclusion

We presented Taint-Exchange, a generic cross-host and cross-process taint track-
ing framework. Taint-Exchange enables the transfer of fine-grained taint infor-
mation across processes and the network. It does so by intercepting I/O system
calls to transparently inject and extract information regarding the taintness of
every byte transferred between processes running under Taint-Exchange. It also
provides a flexible mechanism for easily customizing the sources of tainted data,
be it a network socket, a file, or an IPC mechanism like a pipe or UNIX socket.
Our evaluation of Taint-Exchange shows, as expected, that I/O is affected be-
cause of the additional data being sent, and the utilization of the same channel
to do so. Nonetheless, we believe that the overhead is small, specially when com-
pared with the high overheads imposed by the various dynamic taint tracking
systems.
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Abstract. Distributed denial of service attacks are great security threats to 
computer networks, especially to large scale networks such as WiMAX. 
Detecting this kind of attack is not as easy as some other attacks, because the 
traffic created by attack is too similar to the traffic of the network in the normal 
case. So in this paper a novel framework is proposed to detect DDoS attack in 
IEEE802.16-based networks efficiently. The key idea of the proposed method is 
to exploit some statistical features of the incoming traffic. In fact we design a 
system in which some entropy-based features of the traffic are analyzed. Based 
on these features we decide whether the attack has occurred or not. Previous 
works have all focused on the entropy of IP address of the incoming packets, 
while in this system we have comprehensively considered some other entropy-
based features which help a lot in detecting the attack rather than just 
considering the entropy of the incoming IP addresses. Also in the proposed 
method we have tried to exploit the long range dependency of the traffic to 
detect the attack.  The simulation results show that the proposed method can 
detect DDoS attacks efficiently. 

Keywords:  WiMAX, DDoS attack, Entropy, Initial network entry, RNG-REQ 
Message. 

1   Introduction 

The WiMAX technology which is based on IEEE 802.16 may use radio transmission 
for high speed direct access to internet. Due to high bit rate and QoS support, 
WiMAX networks are able to offer multimedia services such as voice and video 
streaming and instant data transfers. Today Mobile WiMAX is one of the wireless 
broadband standards capable of providing the quadruple play technologies data, 
voice, video and mobility using a single network. Although many solutions have been 
presented for analyzing and detecting DDoS attacks, but still this threat is an 
important security problem for these networks [1,2,3]. Traditional wireless 
technologies such as 2.5G cellular networks are not exposed to DDoS attack since 
they are mainly based on circuit switching. However, with emergence of broadband 
wireless services like Mobile WiMAX system that are based on packet switching, 
cellular networks are no more safe against DDoS attacks [4,5,6]. In [1,7], Nasreldin, 
et al. studied the security vulnerabilities of IEEE 802.16 and categorized the threats as 
solved and unsolved ones. However interrupt attacks, such as DoS attacks, in which 
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an intruding entity blocks information sent from the source entity to the destination 
entity have not been discussed much, and since WiMAX is a rather recent technology, 
this vulnerability has not been deservedly studied yet. In the next section of this paper 
the previous works in similar networks such as internet and heavy traffic campus 
networks will be reviewed then in section 3 a reference model which is used to 
simulate an attacked network and its traffic, bandwidth allocation for ranging and 
vulnerability to DDoS attacks are described. Section 4 presents the network traffic 
model and the method employed for calculating entropy-based parameters. In section 
5 WiMAX network simulations with the mentioned vulnerability and the evaluated 
statistical parameters in different condition are described. Finally we conclude our 
paper in section 6. 

2   Related Works and Background 

2.1   DDoS Attack in Similar Networks 

Since DDoS attacks can make a server or base station to go out of service, lots of 
researches have been done on this attack. In this section some works which have been 
done in similar networks will be reviewed. The researchers have used entropy and 
distributions of traffic features to detect DDoS attack and have paid a lot of attention 
to it. As one of the recent investigations, in [8] Lee, et al. used cluster analysis to 
detect DDoS attack by selecting some parameters and features of the traffic which 
show anomalies in the traffic. They used 2000 DARPA Intrusion Detection Scenario 
data set and as a result they divided the data to 5 groups. By extracting some features 
of the traffic which includes entropy of source and destination IP address, entropy of 
source and destination port number, entropy of packet type, occurrence rate of packet 
type (ICMP, UDP, TCP SYN) and number of packets and clustering them in to 5 
groups, they differentiated between the normal and attack traffic. Among the five 
phases of the DDoS attack, they could detect three phases. In [9] George, et al. 
extracted two types of features from the network traffic. One type is extracted from 
the header of the received packets and the other type includes some behavioral 
features which are extracted from the network traffic. The first type includes source 
and destination IP address, source and destination port number and flow size 
distribution. The second type includes the in- and out-degree of each active internal IP 
address inside the network under consideration. By using CMU, GA Tech, Internet2 
and G`EANT data sets and calculating the correlation between the extracted features 
they showed that there is a strong relationship between port and address distributions 
while the degree distributions and flow size distribution are weakly correlated with 
each other and with the port/address distributions. The correlation between the port 
number and addresses distribution arises due to the underlying traffic templates. In 
[10], Shui and Wanlei calculated the entropy of flows at a router, if the router entropy 
is less than a given threshold, then an attack alarm is raised and then the routers on the 
path of the suspected flow will calculate the entropy rate of the suspected flow. If the 
entropy rates are the same or the difference is less than a given value, then the traffic 
is marked as attack traffic and the packets are discarded. In [11] Sumit and Sahoo also 
used entropy and entropy rate to model an anomaly detection system for DDoS 
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attacks in grid computing. In their proposed algorithm, first the entropy of the 
received packets is estimated. If the estimated entropy exceeds the threshold, then the 
entropy rate will also is calculated and compared with a threshold. If it is more than 
the specified limit, the traffic is recognized as the attack traffic. 

2.2   DDoS Attack in WiMAX Networks 

The Mobile WiMAX is a broadband wireless technology that some of its security 
vulnerabilities are not much explored [1]. In [4] Youngwook et al. exploited the 
unused most significant 64 bits of the 128-bit Cipher-based Message Authentication 
Code (CMAC) which is designed to provide the integrity of management message. 
They used DREG REQ message to extract SAI and use it to defend the Mobile 
WiMAX network against DDoS attack. In fact they proposed a method to defend the 
network against the DDoS attack. 

Since it is assumed that high-volume attack traffic causes significant changes in the 
power spectral density of traffic and few works have been done in understanding the 
analysis capability provided by a set of entropy metrics in conjunction with one 
another, our proposed method analyzes the network traffic by extracting more 
effective features. Since WiMAX networks are new technology few works have been 
done in these networks, so there is no real data set to compare the achieved results 
with the results of a real attack. 

3   DDoS Attack on WiMAX Network 

In this section interrupt attacks on WiMAX Networks such as DoS attacks are studied 
in brief.  

3.1   Reference Network Model 

The Mobile WiMAX Reference Network Model (RNM) consists of Access Service 
Network (ASN) and Connectivity Service Network (CSN) as shown in Fig. 1[4]. 
Constituted of several BSs and an ASN Gateway (ASN-GW) ASN provides radio 
connectivity service for its mobile subscribers (MS) and CSN offers IP access service 
to a number of ASN-GWs. A BS provides direct radio access to the MSs in its cell 
and ASN GW connects the BSs in its paging group to the CSN. ( The ASN 
coordinates traffic across multiple Base Transceiver Stations (BTS) and supports 
security,  handoffs and Quality of Service (QoS). Typically the ASN includes 
numerous BTSs with one or more ASN gateways. The ASN manages radio resources, 
MS access, mobility, security and QoS. It acts as a relay for the CSN for IP address 
allocation and AAA functions. The ASN gateway hosts the Mobile IP Foreign Agent 
(FA).  The CSN performs core network functions, including policy and admission 
control, IP address allocation, billing and settlement. It hosts the Mobile IP Home 
Agent (HA), the IP and AAA servers, and PSTN and VoIP gateways. The CSN is also 
responsible for internetworking with non-WiMAX networks (e.g. 3G, DSL) and for 
roaming through links to other CSNs. 
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Fig. 1. WiMAX Reference Network Model 

3.2   Bandwidth Allocation for Ranging 

When a subscriber station (SS) attempts initial entry to the network, first it requests 
bandwidth by using RNG-REQ and Ranging Response (RNG-RSP) messages [12]. 
Figure 2 shows the initial entry process.  

 

Fig. 2. Initial entry process 

In its down link (DL) channel, the BS decides on allocating bandwidth to SSs per 
CID (Connection Identifier, connections are identified by a connection identifier. A 
16-bit value that identifies a connection or an uplink/ downlink pair of associated 
management connections to equivalent peers in the medium access control layer of 
the BS and SS. The CID address space is common between DL and UL and 
partitioned among the different types of connections) basis and does not requires the 
SSs to be involved. The BS always reserve required bandwidth for ranging interval 



 An Entropy Based Approach for DDoS Attack Detection 133 

which is indicated in Uplink-MAP (UL-MAP). To get bandwidth for ranging, an SS 
chooses an appropriate ranging code to transmit during the ranging interval. On 
successful reception of the code, the BS assigns proper bandwidth to the SS for 
ranging [13]. As Figure 2 shows, there is no authentication or authorization for 
granting bandwidth any SS can request bandwidth for ranging. This procedure 
provides a possibility of DDoS attack to BS and ASN-GW for malicious SSs to 
generate as many fraudulent requests as they intend to [4].  

3.3   Attacks to BS and ASN GW  

To connect to a network, an SS attempts to determine whether it is in the coverage of 
a suitable WiMAX network first. The SS stores a permanent list of all operational 
parameters of the connecting network, such as the DL (Downlink, the direction from 
the base station to the subscriber station) frequency used during the previous 
connection operation [12]. The MS first attempts to synchronize with the stored DL 
frequency if this fails, then scans other frequencies in an attempt to synchronize with 
the DL of the most suitable BS. During the DL synchronization, the MS listens for the 
DL frame preambles. When one is detected the MS can synchronize itself to the DL 
transmission of the BS. Once it obtains DL synchronization, the MS listens to the 
various control messages, such as DCD, UCD, DL-MAP, and UL-MAP, that follow 
the preamble to obtain the PHY- and MAC related parameters corresponding to the 
DL and UL (Uplink, the direction from a subscriber station to the base station) 
transmissions [13]. The initial entry process has 6 stages. Stage 1 and 2 that include 
synchronization and initial ranging are shown in figure 2. A RNG-REQ is transmitted 
by the SS at initialization periodically to determine network delay and to request 
power and/or DL burst profile change [12]. This message has a standard syntax that 
specifies type, size and the value of the request. An attacker may misuse RNG-REQ 
message, changing some fields randomly and send it to BS in large volume to waste 
the resources of the network. 

4   Detection System 

The goal of the proposed system is to provide an environment to analyze the network 
traffic under the DDoS attack more efficiently. In this section first statistical 
preliminaries will be introduced, and then an efficient traffic modeling for extracting 
features will be presented. 

4.1   Statistical Preliminaries 

To perform the DDoS attack, the attacker usually sends large amount of RNG-REQ 
messages to the BS changing the address field of the messages randomly. So we can 
exploit entropy concept to measure the dispersion of the addresses sent to the BS, 
because in the attack state the dispersion of the addresses is higher than the normal 
state. 

The entropy of a random variable X measures the uncertainty of X , and is defined 
as: 
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Where 1 2,...,, nx x x are the values within the given range for X and ( )iP x shows the 

probability that X takes the value x  and is defined as: 

Where m  is the number of the messages with  x   as the destination address and m 
represents the number of the total addresses within the epoch. 
The normalized entropy is defined as: 

Where N  represents the number of different addresses within the specified epoch and  log N  is the normalization factor. 
In mobile WiMAX networks whenever an SS try to join the network, it should 

send a RNG-REQ message to BS; moreover, there are other situations in which the 
SSs send RNG-REQ messages toward the BS. So in detecting the attack we can 
consider just RNG-REQ messages sent in the initial network entry. The situations in 
which an SS also sends RNG-REQ messages to BS are as follow: 

• Re-entry to network from idle mode: If an MS has some pending traffic or its 
security context is going to expire, it should perform re-entry to network 
from idle mode. Also after De-Registering from the network, the SS enters 
idle mode. Idle mode re-entry to network is the same as the initial network 
entry except that some procedures are omitted. In order to perform re-entry 
to network from idle mode, the MS should send RNG-REQ message to the 
BS, but in this case some parameters of the messages are different.  

• Keep-alive check in sleep mode: In order for a BS to maintain supervision of 
MSs in sleep mode and to perform necessary adjustments, BS may 
implement a keep-alive check mechanism which includes sending RNG-
REQ message to BS. 

• Handover: When a mobile station tries to switch between two BSs and 
migrates from the air-interface provided by one base station to the air-
interface provided by another BS, it should perform handover process. In 
order to perform handover it should send a RNG-REQ message to BS. 

• Location update: There are two location update procedures, secure location 
update and unsecure location update. In secure location update, MS first 
sends a RNG-REQ message including the CMAC tuple to the BS. 

In all the above situations since the MS has once joined the network, a CID has been 
assigned to it which is different from the CID assigned to the MS during the initial  
 

(1) E(X)  P(X x ) log P(X x ) 

(2) P(X x ) mm  

(3) E (X) E(x)log N  
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network entry process. So RNG-REQ messages sent to BS in other situations except 
the initial network entry can be seprated using the conditional entropy. So we can use 
Conditional Entropy to get more information from the received messages. The 
conditional entropy quantifies the remaining entropy or uncertainty of a random 
variable Y given that the value of another random variable X is known.  
     The Conditional Entropy measures the uncertainty of the variable X considering 
the variable Y and is defined as: 

Where  P(X|Y) represent the probability of  X considering Y, and is defined as: 

Considering X as the RNG-REQ messages with x  as the MAC address sent to BS and 
Y as the RNG-REQ messages sent to BS as none of the following purpose, 

• Re-entry to network from idle mode 
• Keep-alive check in sleep mode 
• Handover 
• Location update 

We calculate the conditional entropy of the message to extract more efficient 
information from network traffic to detect the attack. 

Another statistical concept which helps us in detecting the attack is called Mutual 
Information. The mutual information parameter I (X;Y) is defined as: 
 

 

Note that before considering Y, the uncertainty of X is H(x), after  observing and 
considering it, this uncertainty goes down to H(x|y). Therefore, the mutual 
information measures the amount of information we learn about X by considering Y. 
In our analysis, we would like to estimate the value of X based on the observation of 
Y, which includes the real attack messages and the normal legitimate accessing 
messages. Recall that the conditional entropy measures how much uncertainty 
remains for X given considering Y. 

4.2   Modeling the Network Traffic 

The arrival process of packets to the network has been mostly modeled by Poisson 
process; however, recently it is shown that the self-similar model is more appropriate 
for heavy loaded network traffic [14]. The traffic of internet based protocols show 
that traffic variation exists in large time slots and the traffic in smaller slots is 
correlated to the traffic in larger slots. In fact, the traffic of heavy loaded networks can  
 

(4) H(X|Y) (P X x , Y y . log P X x | Y y ) 

(5) P(X|Y)  P(X Y)P(Y) P(Y) 0  

(6) I(X; Y) H(X) H(X|Y) 
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be modeled by fractal time series which have the self-similarity and Long Range 
Dependency (LRD) properties [15]. Based on the LRD properties of the traffic, in the 
phase of extracting network traffic features, at the end of specified given epochs a 
vector is extracted. The more epochs are smaller, we have less delay, but we cannot 
choose the epochs smaller than a specified threshold, because in this case we may lose 
some useful data. The dataset is split in to non-overlapping epochs consisting of flows 
that completed within. 

5   Experimental Results and Discussion 

Most of the works done so far, assume that low volume of traffic has been used for 
DDoS attack, and the target network is not centralized. In contrast, the recent Mobile 
WiMAX networks are centralized and expected to handle considerable volume of data 
traffic, so that DDoS attack needs to be revisited. In our research, to analyze the 
attack traffic, first the Reference Network Model (RNM) is simulated by OPNet 
where some of the SSs generate the attack traffic. Our data set uses flow data captured 
in the OPNet simulation environment consisting of the traffic from normal and 
malicious SSs sent to the BS. In the following the entropy resulted from network 
traffic is presented. 

 

 

Fig. 3. The Entropy of the address of received messages, subseries=64 

Table 1. Max, min and average value of the Entropy in figure 3 
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Fig. 4. The Entropy of the address of received messages, subseries=128 

Table 2. Max, min and average value of the Entropy in figure4 

Max Value Min Value Average Entropy 

0.460956424 0.311654769 0.403591572 Normal Traffic 

0.783333333 0.43119818 0.626945912 Attack Traffic 

 

 

Fig. 5. The Entropy of the address of received messages, subseries=256 

Table 3. Max, min and average value of the Entropy in figure5 
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Assuming the size of subseries to be 64, 128 and 256 respectively, the figures 5, 6 
and 7 show the entropy value of the MAC address of the received messages in normal 
and attack state. The tables 1, 2 and 3 show the minimum, maximum and average 
value of the estimated entropy in these three cases. According to the irregular 
dispersion of the addresses in the attack state, the estimated entropy in the attack state 
is more than the estimated entropy of the normal state. On the other hand, estimating 
the entropy based on different subseries size show that the entropy value of the 
network traffic with subseries size of 128 varies between 0.3116 and 0.4609 in normal 
state and in the attack state it varies between 0.4311 and 0.7833. By making the 
subseries bigger and assuming the subseries size to be 256, it is seen that the entropy 
varies between 0.4753 and 0.5127 in the normal state and between 0.5093 and 0.7273 
in the attack state. By choosing smaller subseries size, it is seen that the results are to 
some extent closer to results achieved by subseries size of 128. Comparing the results 
in three different condition shows that big subseries have less precision and give us 
less information about the network traffic in comparison with subseries of smaller 
size. Also it is shown that analyzing the network traffic with subseries size of 64 has 
more precision than the other two conditions, because there is a bigger difference 
between the entropy in the normal and attack state which help us to detect the attack 
more precisely. The more the difference between the entropy of the attack state and 
normal state is higher, the more precise the detection of the attack is. After calculating 
the entropy of the received messages, to get more information from the network 
traffic the conditional entropy of the network traffic is estimated. Then based on the 
entropy and conditional entropy, more precise information can be extracted from the 
network traffic to help us in detecting the attack which is called Mutual Information. 
In the following first the results achieved by calculating the conditional entropy will 
be presented then the mutual information of the entropy and conditional entropy will 
be presented. 

 

 

Fig. 6. The Conditional Entropy of the address of received messages, subseries=64 
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Table 4. Max, min and average value of the Conditional Entropy in figure6 

Max Value Min Value Average Conditional Entropy 

0.150011 0.00565246 0.12878809 Normal Traffic 

0.547494 0.32036791 0.460910558 Attack Traffic 

 

 

Fig. 7. The Conditional Entropy of the address of received messages, subseries=128 

Table 5. Max, min and average value of the Conditional Entropy in figure7 

Max Value Min Value Average 
Conditional 

Entropy 

0.170450176 0.099296019 0.14735965 Normal Traffic 

0.646462667 0.40383335 0.54489437 Attack Traffic 

 

 

Fig. 8. The Conditional Entropy of the address of received messages, subseries=256 
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Table 6. Max, min and average value of the Conditional Entropy in figure8 

Max Value Min Value Average 
Conditional 

Entropy 

0.195040818 0.172669932 0.186677367 Normal Traffic 

0.673525469 0.459405771 0.579264891 Attack Traffic 

Assuming the size of subseries to be 64, 128 and 256 respectively, the figures 8, 9 
and 10 show the conditional entropy value of the MAC address of the received RNG-
REQ messages considering the four states mentioned in the previous section, in 
normal and attack state. The tables 4, 5 and 6 show the minimum, maximum and 
average value of the estimated conditional entropy in these three cases. According to 
the irregular dispersion of the addresses in the attack state and the estimated 
conditional entropy, it is seen that the estimated conditional entropy in the attack state 
is more than the estimated value in the normal condition, but on the other hand by 
comparing it with the estimated entropy it is seen that it has gone down to some 
extent, because in this case some of the messages are ignored and are not considered. 
Moreover, comparing the resulted graphs with three different subseries show that with 
subseries size of 256 the conditional entropy varies between 0.172 and 0.1950 in the 
normal state and between 0.4594 and 0.6735 in the attack state, but by assuming the 
subseries size smaller, it is seen that in the case of subseries size of 64 it varies 
between 0.0056 and 0.15 in the normal state and between 0.3203 and 0.5474 in the 
attack state. So it can be concluded that smaller subseries size are more precise than 
bigger ones and give us more information about the network traffic. 

Following graphs present the Mutual Information parameter information of the 
network traffic, achieved by the estimated Entropy and Conditional entropy of the 
network traffic. 

 
 

 

Fig. 9. The Mutual Information of the Entropy and Conditional entropy of received messages, 
subseries=64 
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Table 7. Max, min and average value of the Mutual Information parameter in figure9 

Max Value Min Value Average Mutual Information 

0.46005 0.109292 0.229157 Normal Traffic 

0.161787 -0.05491 0.096786 Attack Traffic 

 

Fig. 10. The Mutual Information of the Entropy and Conditional entropy of received messages, 
subseries=128 

Table 8. Max, min and average value of the Mutual Information parameter in figure10 

Max Value Min Value Average Mutual Information 

0.317333 0.098504321 0.255822 Normal Traffic 

0.136871 0.010591804 0.081454 Attack Traffic 

 

 

Fig. 11. The Mutual Information of the Entropy and Conditional entropy of received messages, 
subseries=256 
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Table 9. Max, min and average value of the Mutual Information parameter in figure11 

Max Value Min Value Average Mutual Information 

0.32227 0.282255 0.297452 Normal Traffic 

0.085665 0.040992 0.063164 Attack Traffic 

Assuming the size of subseries to be 64, 128 and 256 respectively, the figures 11, 
12 and 13 show the Mutual Information parameter value of the MAC address of the 
received RNG-REQ messages considering Entropy and Conditional Entropy value of 
the received traffic. The tables 7, 8, and 9 present the maximum, minimum and 
average value of the estimated Mutual Information parameter. The resulted Mutual 
Information parameter shows that the value of this parameter in normal state is higher 
than its value in attack state. Because in the normal state some of the RNG-REQ 
messages sent to BS may be sent as one of the four purposes mentioned in the 
previous section, so there is a difference between the resulted Entropy and 
Conditional Entropy, while in the attack state the ratio of these kinds of messages is 
low and there is no so much difference between the estimated Entropy and 
Conditional Entropy. According to the resulted graphs, in the attack state, the Mutual 
Information parameter varies between 0.2822 and 0.3222 when the size of subseries is 
considered to be 256 in the normal state and between0.0409 and 0.0856 in the attack 
state. By changing the subseries size to a smaller size, 64, the Mutual information 
parameter varies between 0.1092 and 0.96 in the normal state and between -0.0549 
and 0.1617 in the attack state. So considering the estimated results and this fact that, 
the more the difference between Entropy and conditional Entropy is less the more 
information can be extracted from the network traffic, we conclude that totally the 
precision of the resulted parameters in the case of subseries size of256 is more than 
the other two cases. 

6    Conclusion and Future Works 

In this paper we presented an analytical model for WiMAX network traffic under 
DDoS attack and evaluated the Entropy, Conditional Entropy and Mutual Information 
parameters of the traffic in both normal and attack states. According to the simulation 
results, as the statistical properties of the attack traffic pattern differ from the ones for 
the normal traffic pattern, the attack can be detected using extracted statistical 
properties of the traffic. The difference between our proposed system and the existing 
system is that we had a different look at the arrival process of the messages to the BS. 
Since recently it is shown that the self-similar model is more appropriate for heavy 
loaded network traffic, we exploited this property and evaluated the network traffic 
with three different subseries size.  For the future work, the results of this paper can 
be used to train an artificial neural network to detect DDoS attacks. Artificial Neural 
Networks in order to distinguish between the attack state and normal state need some 
feature to feed the network, so the results of this research will be used to train the 
network and identify the attack. 
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Abstract. The aim of this paper is to emphasize the significance of
a certain mathematical problem in research on information security. We
point out that the mathematical problem, which we refer to as “Function
Density Problem,” has connections to the following two major crypto-
graphic topics; security analysis of hash functions in the real world (like
SHA-1), and construction of pseudorandom generators with some en-
hanced security property. We also provide a first example to show how a
study of Function Density Problem can contribute to the progress of the
above-mentioned two topics. Other potential applications of Function
Density Problem to information security are also discussed.
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1 Introduction

1.1 Background and Related Works

It is widely understood that some mathematical problems have been playing in-
dispensable roles in research on cryptography and information security. For in-
stance, the (expected) difficulty of integer factorization is the source of security of
RSA cryptosystem [7], while the problem of solving multivariate quadratic (MQ)

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 144–160, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Mathematical Problem for Security Analysis of Hash Functions 145

equations got attracting several studies after the development of Matsumoto-
Imai cryptosystem [5] and its variants, whose constructions are closely related
to MQ equations. It is expected that an interesting mathematical problem rele-
vant to some cryptographic topics can contribute to the progress on such topics.

The aim of this paper is to emphasize the significance of a certain mathe-
matical problem, which has connections to the following two major topics in
information security; security analysis of hash functions in the real world (like
MD5 and SHA-1), and construction of pseudorandom generators with some en-
hanced security property. First, we give some descriptions of these two topics.

Security Analysis of Hash Functions. Intuitively, a hash function is a func-
tion (mapping) H : X → Y from some (finite) set X to another (finite) set Y
that possesses a certain desirable security property. When we concern efficiency
or computability of H , we consider an algorithm that computes the function H
(also denoted by H) and call it hash algorithm. A standard security require-
ment for hash functions is collision resistance, which informally means that it
is difficult to find a collision pair (x1, x2) for H , i.e., x1 �= x2 ∈ X satisfying
H(x1) = H(x2). Hash functions have been playing central roles in various infor-
mation security applications, and secure hash functions for real-life applications
are usually expected to possess the collision resistance property.

However, most of the preceding successful studies for showing security of hash
functions actually dealt with keyed hash functions (or hash families); intuitively,
a family of hash functions Hk parameterized by a key k is called collision resistant
if, for any (efficient) adversary, the attack to find a collision pair of Hk fails for
a randomly chosen key k with high probability. Several constructions of keyed
hash functions have been proposed so far (e.g., [2]). The above security notion of
keyed hash functions can be interpreted as allowing one to (randomly) choose a
concrete instance Hk of the hash family after an adversary is given. In contrast, in
most of real-life applications, the concrete instance of hash algorithms is specified
first, and then an adversary can try to attack the fixed hash algorithm. This
reversal of order causes a crucial difficulty in guaranteeing (or even usefully
formalizing) security of a non-keyed hash algorithm H , as (unless the trivial
situation where the domain of H is not larger than the image of H) there does
always exist a collision pair (x1, x2) for H and any adversary (existing in theory)
who innately knows the pair (x1, x2) is obviously able to efficiently attack the H .
In fact, even an instance of standardized or de facto standard hash algorithms has
been suffered from feasible attacks (e.g., [9]). In this paper, we try to propose a
theoretical, unified way to say (preferably affirmative) something about security
of a concrete instance of hash algorithms.

Regarding related works, Rogaway [8] gave a detailed observation about the
difference between “inexistence of effective attack algorithms” and “lack of knowl-
edge on construction of effective attack algorithms” for non-keyed hash algo-
rithms. He emphasized the difference of the two situations (by the term “human
ignorance”), and discussed how to prove security of a cryptographic protocol by
reducing the security into that of the hash algorithm which the protocol uses in-
ternally. However, he did not discuss how to evaluate security of non-keyed hash
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algorithms themselves, which we study in this paper. On the other hand, in this
paper we adopt the concrete security formulation rather than the asymptotic
one; some observation for security of non-keyed hash algorithms in asymptotic
security formulation is also given in Rogaway’s paper.

Construction of Enhanced Pseudorandom Generators. A pseudorandom
generator (PRG) is an algorithm G : S → X with (finite) set S of inputs (seeds)
and (finite) output set X such that, when a seed s ∈ S is chosen uniformly at
random, the output G(s) ∈ X of G is also “random” in some sense. Conven-
tionally, the meaning of “randomness” here is formulated by using the notion
of distinguisher, which is an algorithm D : X → {0, 1} with 1-bit output and
the input set being the output set X of G. In this paper we adopt concrete
security formulation rather than asymptotic one, in which case a major security
requirement for PRGs is (T, ε)-security; namely, G is called (T, ε)-secure if, for
any distinguisher D for G with (time) complexity bounded by T , the statistical
distance between the output distribution D(G(US)) of D with input given by
G with uniformly random seed s ∈ S (referred to as “pseudorandom input”)
and the output distribution D(UX) of D with uniformly random input x ∈ X
(referred to as “random input”) is bounded by ε [4]. (Intuitively, any such D
cannot distinguish the random element x of X and the pseudorandom element
G(s) with significant advantage.) There are a large number of constructions
of PRGs, most of which are provably secure (possibly in asymptotic security
formulation) under standard assumptions such as Factoring Assumption and
Decisional Diffie-Hellman Assumption (e.g., [1,4]).

On the other hand, in a recent work of Dubrov and Ishai [3], an enhanced
notion for PRGs, called pseudorandom generators that fool non-boolean distin-
guishers (nb-PRGs in short), was proposed. This notion is obtained by modifying
the above-mentioned original security notion by allowing the distinguishers D
to have larger output sets; namely, G is called (T, n, ε)-secure if, for any “non-
boolean” distinguisher D : X → Y for G with (time) complexity bounded by
T and output set Y of size at most n, the statistical distance between the out-
put distributions of D with random and pseudorandom inputs is bounded by
ε. In their paper Dubrov and Ishai showed interesting applications of nb-PRGs,
e.g., secure pseudorandomization, without any restriction on computational com-
plexity of the adversary’s attack algorithm, of a certain kind of information-
theoretically secure protocols.

However, constructing secure nb-PRGs seems much more difficult than the
case of the usual PRGs. In fact, to the authors’ best knowledge, the only con-
structions of nb-PRGs proposed so far are ones in the original paper of Dubrov
and Ishai [3], which are based on certain non-standard computational assump-
tion. Hence it will be fruitful if we can give some implication result such that
any PRG (in the usual sense) with a certain parameter is also an nb-PRG with
a (possibly different) parameter. In fact, a straightforward implication has been
mentioned in the original paper, but this is far from being efficient (i.e., to obtain
nb-PRGs with reasonable security parameters, the original PRGs are required
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to have somewhat impractical security parameters). In this paper, we try to
establish a more efficient implication result.

1.2 Our Contributions, and Organization of This Paper

In Section 2, we propose a mathematical problem, which we refer to as “Function
Density Problem”. Intuitively, this problem is to evaluate the possibility of close
approximations of arbitrary functions by using some “easy” functions.

Then we introduce motivating applications of Function Density Problem to
two topics in information security. First, in Section 3, we discuss theoretical
analysis of collision resistance of non-keyed hash algorithms. We give an abstract
“typical” attack strategy for a hash algorithm, in which one is supposed to make
use of a close approximation of the target hash algorithm. We point out the
relevance of Function Density Problem to this attack strategy.

Secondly, in Section 4, we discuss an enhanced security notion for PRGs
(called nb-PRG) introduced by Dubrov and Ishai [3]. We give a new implica-
tion result (Theorem 1) showing that any secure PRG is also a secure nb-PRG,
with somewhat modified security parameter. We point out that an application of
Function Density Problem can contribute to make the implication more efficient.

Then in Section 5, we describe a concrete example of Function Density Prob-
lem, in order to arise some image or intuition of how a study of Function Density
Problem can proceed. More detailed studies of this problem will be a future re-
search topic.

Finally, in Section 6 we give a concluding remark, which includes a discussion
on further possible applications of Function Density Problem in information
security. We also include an appendix for a proof of a lemma in Section 3.

2 Function Density Problem

In this section, we introduce our proposed mathematical problem, which we call
Function Density Problem. First we give a general description of the problem.
Let C be a set of some functions, and let C′ be a certain subset of C. Moreover,
suppose that to any pair of functions f, g ∈ C, a “distance” denoted by d(f, g)
is associated in some manner. Then our problem is formulated as follows:

Definition 1 (Function Density Problem). Under the above setting, Func-
tion Density Problem is the following problem: Determine (or give some estimate
of) the quantity

r(C; C′) = max{d(f ; C′) | f ∈ C} (1)

(the symbol ‘r’ stands for “radius”), where, for each f ∈ C, d(f ; C′) = min{d(f, g) |
g ∈ C′} is the distance from f to C′ induced by the function d(·, ·).
Remark 1. Although in a very general situation the maximum or minimum in
the above definition may not exist (therefore we should use “sup” and “inf”
instead of the “max” or “min”), these maximum and minimum indeed exist for



148 K. Nuida et al.

all situations discussed in this paper. For example, the maximum and minimum
always exist when C is a finite set and the distance d(f, g) is (as usual) a real
number for any f, g ∈ C.
Actually, the above formulation alone covers too wide situations to make some
significant observation; we should suppose some concrete properties or structures
of the sets C, C′ and the distance function d(·, ·) (which will depend on the
concrete applications of this problem). In the remaining part of this paper, we
adopt the following setting that is relevant to the applications discussed in later
sections. Let C be the set of all functions f : X → Y from a given finite set X
to a given set Y . Let C′ be a set of functions f ∈ C which are “easy” in certain
sense (specified in later arguments). Moreover, for any f, g ∈ C, we define the
distance between f and g by

d(f, g) = |{x ∈ X | f(x) �= g(x)}| . (2)

Note that, under identification of members of C with sequences of length |X |
over the alphabet Y , this definition coincides with the (generalized) Hamming
distance. Intuitively, we regard a member g of C′ as a close approximation of a
given f ∈ C when the distance d(f, g) is small, as such an f can be converted to
g by changing its values at only a small number of points in the domain. Then
the quantity d(f ; C′) would mean the potential of a function f by some “easy”
function, and r(C; C′) would mean the potential of an arbitrary function X → Y
by some “easy” function. In other words, it can be said that, the smaller the
quantity r(C; C′) is, the more densely the “easy” functions are included in the set
C. How Function Density Problem can be related to some topics in information
security is explained in the following sections.

Remark 2. It would be worth emphasizing that, even if the quantity d(f ; C′)
is small in the above situation, it does NOT mean that a close approximation
g ∈ C′ of the f is efficiently computable. The fact that d(f ; C′) is small only
guarantees the existence of such an approximation g, and how to construct it in
practice is a different (possibly difficult) problem. (This would be also relevant
to “human ignorance” observation in [8] mentioned in Section 1.1.)

3 Hash Functions and Function Density Problem

In this section, we point out a relation between security analysis of (non-keyed)
hash functions and Function Density Problem introduced in Section 2. Let
H : X → Y be a given concrete instance of hash algorithms, with input set
X and output set Y being both assumed to be finite for simplicity. One of the
goals of the cryptanalysis for H is to practically find a collision pair (x1, x2) for
H (recall that (x1, x2) is called a collision pair for H if x1, x2 ∈ X , x1 �= x2 and
H(x1) = H(x2)). To motivate the relevance of Function Density Problem to this
situation, first we informally describe an abstract “typical” strategy for finding
a collision pair:
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1. Construct a close approximation H ′ : X → Y of H such that collision pairs
for H ′ can be found with reasonable computational time.

2. Find randomly a collision pair (x′
1, x

′
2) for H ′.

3. Construct from (x′
1, x

′
2) a candidate (x1, x2) of a collision pair for H (in the

simplest case we just set (x1, x2) = (x′
1, x

′
2)).

4. Check if (x1, x2) is indeed a collision pair of H .
5. If (x1, x2) is not a collision pair for H , go back to Step 2 and repeat the

process.

Intuitively, the number of iterations in the above strategy before finding a col-
lision pair for H would be expected to be small if the approximation H ′ is
sufficiently close to H (see Lemma 1 below for a quantitative expression of this
expected tendency). Hence security of a hash algorithm H against such an attack
strategy is related to the possibility of finding its close approximation.

More precisely, we set (x′
1, x

′
2) = (x1, x2) in the above strategy for simplicity.

Let the set C in Function Density Problem be the set of all functions from X to
Y . Let the distance d(f, g) between f, g ∈ C be defined as in (2). Moreover, let C′
be a subset of C such that any hash function H ′ in C′ admits an efficient attack
by a known attack strategy. In the above attack strategy, the approximation H ′

for H is supposed to be chosen from C′. Now we have the following lemma:

Lemma 1. Suppose that H, H ′ : X → Y with |Y | = n ≥ 2, and d(H, H ′) = d,
0 < d < |X |. Then the probability that a collision pair for H ′ chosen uniformly
at random is also a collision pair for H is higher than or equal to

2α0|X | − n(α0 + 1)α0 − 2dα0

2α0|X |+ 2d|X | − n(α0 + 1)α0 − 2dα0 − d2 − d
(3)

where α0 = �(|X | − d− 1)/n�. Moreover, when |X | ≥ d + (n− 1)2, the value in
(3) is getting larger as d becomes smaller.

Proof. See the Appendix below.

Now imagine the following situation: The subset C′ of C consists of any hash
function (from X to Y ) for which collision pairs can be found in reasonable
computational complexity by using some already known collision finding tech-
nique. In this situation, there are the following two cases:

1. If r(C; C′) is small, then any hash function H belonging to the set C can
be potentially attacked by just finding a close approximation H ′ ∈ C′ of H
(and applying a known technique to this H ′). This would suggest that, any
hash function in C possesses a potential risk that a collision pair is found
by someone with a combination of just known attack techniques and some
expert’s sixth sense to give an appropriate approximation.

2. If r(C; C′) is significantly large, then C contains at least one hash function for
which the above attack strategy combined with any known collision finding
technique will not succeed. This would suggest that, there is a hope to obtain,
by searching within the set C, a hash function for which one needs to develop
a new attack technique in order to find a collision pair.
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As a consequence, if two candidate sets C1, C2 for a new hash function and the
corresponding subsets C′1, C′2 are given, and if r(C1; C′1) is small while r(C2; C′2)
is significantly large, then this fact would give us a motivation to select a new
hash function from C2 rather than C1. The authors hope that Function Density
Problem can contribute to security analysis of non-keyed hash functions in such
a way, though of course how to specify the subset C′ is a big problem to be
studied. (One may also feel that it seems infeasible to compute the quantity
r(C; C′) for practical classes of hash functions; even if it is true, some result on
a bound or tendency of r(C; C′) would still give us an insight into the security
level of those hash functions.)

Remark 3. Here we notice that, although we have focused on the collision resis-
tance in this paper, a similar argument would also be applicable to other security
notions for hash functions, such as the (second) preimage resistance.

4 Pseudorandom Generators and Function Density
Problem

As a second application of Function Density Problem, in this section we dis-
cuss some implication results of nb-PRGs from usual PRGs. First we recall the
security notion for PRGs. Here we emphasize that we adopt concrete security
formulation rather than asymptotic one. Now the definition is as follows, where
UX denotes the uniform probability distribution over a finite set X :

Definition 2 (see e.g., [4]). Let G : S → X be an algorithm with finite input
set S and finite output set X. Then G is called a (T, ε)-secure pseudorandom
generator (PRG) if, for any algorithm (distinguisher) D : X → {0, 1} with time
complexity bounded by T , we have AdvD(G) ≤ ε where AdvD(G) is the advantage
of D defined by

AdvD(G) = |Pr[D(UX) = 1]− Pr[D(G(US)) = 1]| . (4)

Let Δ(P1, P2) denote the statistical distance of two probability distributions
P1, P2 over the same finite set Z defined by

Δ(P1, P2) =
1
2

∑
z∈Z

|Pr[P1 = z]− Pr[P2 = z]| (5)

= max
E⊂Z

|Pr[P1 ∈ E]− Pr[P2 ∈ E]| . (6)

Then the advantage AdvD(G) of a distinguisher D defined above is equal to
Δ(D(UX), D(G(US))), as both D(UX) and D(G(US)) are probability distribu-
tions over the 1-bit set {0, 1}. This motivates the following enhancement of
Definition 2 introduced by Dubrov and Ishai [3]:

Definition 3 ([3]). Let G : S → X be an algorithm with finite input set S and
finite output set X. Then G is called (T, n, ε)-secure if, for any distinguisher
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D : X → Y with time complexity bounded by T and output set Y of size bounded
by n, we have AdvD(G) ≤ ε where we put AdvD(G) = Δ(D(UX), D(G(US))).
Such an algorithm G is called a pseudorandom generator that fools non-boolean
distinguishers (nb-PRG, in short).

Note that, in this definition, the output set Y of D may be assumed to have the
maximal size n without loss of generality. In the original paper [3], several appli-
cations of nb-PRGs are discussed; e.g., randomness used in some information-
theoretically secure protocols (such as multi-party computation of certain types)
can be replaced with outputs of nb-PRGs, without any restriction on compu-
tational complexity of the adversary’s attack algorithm. However, despite the
significance of nb-PRGs, it seems much more difficult to construct secure nb-
PRGs than the case of usual PRGs. In fact, to the authors’ best knowledge,
the only constructions of nb-PRGs proposed so far are the ones by Dubrov and
Ishai themselves [3], and their construction is based on certain non-standard
computational assumption.

A hopeful solution for constructing nb-PRGs under standard assumptions is
to convert usual PRGs secure under standard assumptions (which have been
frequently proposed) into secure nb-PRGs. In fact, an implication relation such
that any (T, ε)-secure PRG is also (T ′, n, ε′)-secure with modified parameters
T ′, ε′ is mentioned (without proof) in [3]. The relation is derived from the first
expression (5) of statistical distance, in the following manner (which is taken from
[6]). For a subset Z ′ of a set Z, let χZ′ : Z → {0, 1} denote the characteristic
function of Z ′ defined by χZ′(x) = 1 if x ∈ Z ′ and χZ′(x) = 0 if x ∈ Z \Z ′. We
write χz = χ{z} for simplicity when Z ′ = {z}. Then for any PRG G : S → X
and any non-boolean distinguisher D : X → Y with |Y | ≤ n, we have

Δ(D(UX), D(G(US))) =
1
2

∑
y∈Y

|Pr[D(UX) = y]− Pr[D(G(US)) = y]|

=
1
2

∑
y∈Y

|Pr[χy ◦D(UX) = 1]− Pr[χy ◦D(G(US)) = 1]|

=
1
2

∑
y∈Y

Advχy◦D(G) .

(7)

This implies that, to show that a (T ′, ε′)-secure PRG G is also a (T, n, ε)-secure
nb-PRG, it suffices to choose the parameters as T ′ = T +δ1 and ε′ = 2ε/n, where
δ1 is the maximum of the overhead in computational complexity of composing
some χy to D. In other words, we have the following proposition:

Proposition 1. Any (T + δ1, 2ε/n)-secure PRG is also (T, n, ε)-secure, where
the value δ1 is defined as above.

However, in practical applications n should be somewhat large, which makes the
implication in Proposition 1 inefficient.
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For another implication relation, here we use the second expression (6) of
statistical distance instead of the first one (5) used above. Namely, we have

Δ(D(UX), D(G(US))) = max
Y ′⊂Y

|Pr[D(UX) ∈ Y ′]− Pr[D(G(US)) ∈ Y ′]|
= max

Y ′⊂Y
|Pr[χY ′ ◦D(UX) = 1]− Pr[χY ′ ◦D(G(US)) = 1]|

= max
Y ′⊂Y

AdvχY ′◦D(G) .

(8)

This implies the following result:

Proposition 2. Any (T + δ2, ε)-secure PRG is also a (T, n, ε)-secure, where δ2

is the maximum of the overhead in computational complexity of composing some
χY ′ to D.

In contrast to Proposition 1, there is no overhead for bound of advantage ε in
this second implication. However, the overhead δ2 for bound of computational
complexity is expected to be very large, as the set Y (of somewhat large size)
may contain a very complicated subset Y ′, for which the function χY ′ would be
complicated as well.

From now, we try to improve the above trade-off between overheads for bounds
of advantage and of computational complexity, by applying Function Density
Problem. Let C = CY be the set of characteristic functions χY ′ for subsets
Y ′ ⊂ Y , and let the distance d(f, g) be defined as in (2) where Y is used instead
of X . Then d(χY1 , χY2) is equal to the size of the symmetric difference Y1�Y2 =
(Y1 \ Y2) ∪ (Y2 \ Y1) of Y1 and Y2. Now we fix a subset C′ = C′Y of CY for each
Y . Let δ3,Y be the maximum of the overhead in computational complexity of
composing some χY ′ ∈ C′Y to D. Moreover, we put rY = r(CY ; C′Y ) for simplicity.
Then we have the following result:

Theorem 1. In the above situation, suppose that δ3,Y ≤ δ3 and rY ≤ r for every
set Y of size n. Let δ1 be as in Proposition 1. If G : S → X is (T + δ1, ε1)-secure
and (T + δ3, ε3)-secure, then G is also (T, n, rε1 + ε3)-secure.

Proof. For each distinguisher D : X → Y , let Y0 be a subset of Y that attains
the maximum of the second expression (6) of the statistical distance;

Δ(D(UX), D(G(US))) = |Pr[D(UX) ∈ Y0]− Pr[D(G(US)) ∈ Y0]| . (9)

Note that Y0 can be chosen in such a way that

Pr[D(UX) ∈ Y0]− Pr[D(G(US)) ∈ Y0] ≥ 0 (10)

(if this inequality fails, use Y \ Y0 instead of Y0). Moreover, as rY ≤ r, there is
a subset Y1 ⊂ Y such that χY1 ∈ C′Y and d(χY0 , χY1) = |Y0 � Y1| ≤ r. Now we
have

Pr[D(UX) ∈ Y0]− Pr[D(UX) ∈ Y1]
= Pr[D(UX) ∈ Y0 \ Y1]− Pr[D(UX) ∈ Y1 \ Y0]

(11)
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and a similar equality holds for Pr[D(G(US)) ∈ Y0]− Pr[D(G(US)) ∈ Y1]. This
implies that

(Pr[D(UX) ∈ Y0]− Pr[D(UX) ∈ Y1])
− (Pr[D(G(US)) ∈ Y0]− Pr[D(G(US)) ∈ Y1])

= (Pr[D(UX) ∈ Y0 \ Y1]− Pr[D(G(US)) ∈ Y0 \ Y1])
− (Pr[D(UX) ∈ Y1 \ Y0]− Pr[D(G(US)) ∈ Y1 \ Y0])

=
∑

y∈Y0\Y1

(Pr[D(UX) = y]− Pr[D(G(US)) = y])

−
∑

y∈Y1\Y0

(Pr[D(UX) = y]− Pr[D(G(US)) = y])

≤
∑

y∈Y0�Y1

|Pr[D(UX) = y]− Pr[D(G(US)) = y]|

=
∑

y∈Y0�Y1

|Pr[χy ◦D(UX) = 1]− Pr[χy ◦D(G(US)) = 1]|

=
∑

y∈Y0�Y1

Advχy◦D(G) .

(12)

Now if D has computational complexity bounded by T , then the assumption on
G and the definition of δ1 imply that∑

y∈Y0�Y1

Advχy◦D(G) ≤
∑

y∈Y0�Y1

ε1 = |Y0 � Y1| · ε1 ≤ rε1 . (13)

Hence we have

Δ(D(UX), D(G(US))) ≤ rε1 + (Pr[D(UX) ∈ Y1]− Pr[D(G(US)) ∈ Y1])
≤ rε1 + |Pr[χY1 ◦D(UX) = 1]− Pr[χY1 ◦D(G(US)) = 1]|
= rε1 + AdvχY1◦D(G) ≤ rε1 + ε3 ,

(14)

as desired, therefore the claim follows.

Regarding the relation between parameters in Theorem 1, first note that it is
natural to expect that δ1 ≤ δ3 by the definitions, which allows us to suppose
that ε1 ≤ ε3. Now if we can find appropriate subsets C′Y in such a way that
every characteristic function χY ′ ∈ C′Y has low computational complexity and
the quantity r(CY ; C′Y ) is small, then both δ3 and r can be small as well, which
would make the implication relation in Theorem 1 more efficient than those in
Propositions 1 and 2, improving the above-mentioned trade-off. Hence a study of
Function Density Problem (of special case for functions with 1-bit output sets)
will contribute to establish an efficient implication relation.
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Remark 4. We mention that, for the above two applications of Function Density
Problem, a kind of “risk-hedging” relation exists as follows. Namely, if we find
that the quantity r(C; C′) tends to be large, then it would support the argument
in Section 3 to show security of the hash functions. On the other hand, if we find
that the quantity r(C; C′) tends to be small, then it would support the argument
in Section 4 to show efficient implication relation of nb-PRGs from usual PRGs.

5 Example for Function Density Problem

In this section, we describe a concrete example of Function Density Problem.
We emphasize that the example here is aimed at arising some image or intuition
of how a study of the problem itself can proceed, rather than proposing some
definition of the subsets C′ which is useful from the viewpoints of above applica-
tions. The authors let the problem of specifying appropriate subsets C′ be open
as a future research topic.

In our example, we consider the case that the functions have n-bit inputs and
1-bit outputs; X = {0, 1}n and Y = {0, 1} (which is relevant to the situation
of Section 4). First note that, when we regard {0, 1} as the two-element finite
field, each function f : X → Y can be expressed as an n-variable square-free
polynomial;

f(x1, . . . , xn) =
∑

a1,...,an∈{0,1}
f(a1, . . . , an)

∏
i;ai=0

(1− xi)
∏

i;ai=1

xi (15)

(note that the term
∏

i;ai=0(1 − xi)
∏

i;ai=1 xi for each summand in the right-
hand side becomes 1 if xi = ai for every i, and 0 otherwise). For example, when
n = 2 we have

f(x1, x2)
= f(0, 0)(1− x1)(1− x2) + f(0, 1)(1− x1)x2 + f(1, 0)x1(1− x2) + f(1, 1)x1x2 .

(16)

Now we set C′ = C′k to be the subset of C consisting of functions that can be
expressed as a square-free polynomial of degree at most k. For example, C′0 is the
set of constant functions, and C′1 is the set of affine functions. (The choice of C′
here as a set of “easily breakable” hash functions would be more reasonable when
we consider the (second) preimage resistance rather than the collision resistance;
see Remark 3.) The distance d(f, g) is defined as in (2). In this situation, we have
the following result on upper and lower bounds for the quantity r(C; C′k):

Proposition 3. Let un,k =
∑n

i=k+1

(
n
i

)
, and let �n,k be the minimum integer �

such that 2un,k ≤∑
i=0

(
2n

i

)
. Then we have

�n,k ≤ r(C; C′k) ≤ min{un,k, 2n−1} . (17)
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Proof. First we prove the lower bound. For a function f : {0, 1}n → {0, 1}, let
f>k denote the sum of monomials of degree larger than k appearing in the
polynomial expression of f . Note that f>k = 0 for every f ∈ C′k. Note also that
d(f, g) ≤ d means that f = g+χZ for some subset Z ⊂ {0, 1}n of size at most d.
Now if r(C; C′k) = r, then for each f ∈ C, there is a g ∈ C′k such that f = g + χZ ,
hence f>k = (χZ)>k, for some Z ⊂ {0, 1}n of size at most r. The number of
possibilities of f>k is 2un,k , as there are un,k monomials of degree larger than k.
On the other hand, the number of possibilities of (χZ)>k is at most the number
of subsets of {0, 1}n of size at most r, which is

∑r
i=0

(
2n

i

)
. Hence it must hold

that 2un,k ≤∑r
i=0

(
2n

i

)
, therefore r ≥ �n,k by the definition of �n,k.

Secondly, we prove the upper bound. Note that r(C; Ck) ≤ 2n−1, as any func-
tion f ∈ C can be converted into a constant function by changing the value f(x)
at every point x ∈ {0, 1}n such that f(x) is in the minority among the 2n val-
ues of f (the number of such points is at most 2n−1). From now, we show that
r(C; C′k) ≤ un,k. Now note that, for each square-free monomial xi1xi2 · · ·xik+1 of
degree k+1, there exists a (unique) point a ∈ {0, 1}n such that the characteristic
function χa (in the polynomial form) contains no monomials of degree at most
k and a unique monomial of degree k + 1. Indeed, the point a = (a1, . . . , an) de-
fined as aj = 1 if j = ih for some 1 ≤ h ≤ k+1 and aj = 0 otherwise satisfies the
condition. This implies that, for any f ∈ C, by adding at most the same number
(i.e.,

(
n

k+1

)
) of χa as the square-free monomials of degree k + 1, the monomials

of degree k + 1 in f can be cancelled without changes of monomials of degree
lower than or equal to k. Iterating the process also for higher degrees, all the
monomials of degree at least k + 1 can be cancelled (hence a function in C′k is
obtained) by adding at most un,k functions χa. This implies that r(C; C′k) ≤ un,k,
therefore the claim of Proposition 3 holds.

Remark 5. We notice that a part r(C; C′k) ≤ un,k of the above inequality can be
generalized to an arbitrary linear subspace C′k of C, in which case un,k will be
replaced with dim(C) − dim(C′k) where dim denotes the dimension as a linear
space over the two-element field. See the forthcoming full version of this paper.

We give the precise values of �n,k for some smaller cases, in Table 1.

Table 1. The values of �n,k for some small parameters

n − k
1 2 3 4 5 6 7 8

2 1 2
3 1 2 4
4 1 2 4 8

n 5 1 2 5 10 16
6 1 2 5 13 22 32
7 1 2 6 16 31 49 64
8 1 2 6 19 43 75 105 128
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The next result shows how the lower and upper bounds in Proposition 3 are
close to each other:

Proposition 4. In the setting of Proposition 3, we have

�n,k ≤ un,k ≤ n�n,k . (18)

Proof. It suffices to prove the second inequality, or equivalently, the inequality
un,k < n�n,k+1. As 2un,k ≤∑n,k

i=0

(
2n

i

)
by the definition of �n,k, it suffices to show

that
∑n,k

i=0

(
2n

i

)
< 2nn,k+1, or more generally,

∑m
i=0

(
N
i

)
< 2Nm for all integers

N > m ≥ 0 (then apply it to N = 2n, m = �n,k; note that �n,k ≤ un,k < 2n by
the definition of un,k). We use induction on m. The case m = 0 is trivial. For
the case m ≥ 1, we have N ≥ m + 1 ≥ 2 and

m∑
i=0

(
N

i

)
=

m−1∑
i=0

(
N

i

)
+
(

N

m

)
< 2Nm−1 +

(
N

m

)
(induction hypothesis)

= 2Nm−1 +
N(N − 1) · · · (N −m + 1)

m!
≤ N ·Nm−1 + Nm = Nm + Nm = 2Nm .

(19)

Hence the claim holds.

This proposition shows that the lower bound and the upper bound in Proposition
3 have almost the same order. For further evaluation of the quantity r(C; C′k), we
can introduce other formulations of the problem in terms of some mathematical
tools such as simplicial complexes, linear algebra, and Gröbner bases. In this
paper the authors do not want to go into details, which will be discussed in the
full version of this paper.

6 Concluding Remarks

In this paper, we first introduced a mathematically formulated problem, Func-
tion Density Problem. Then we proposed two applications of the problem to
the area of information security; collision-resistance analysis of non-keyed hash
algorithms, and efficient implication of nb-PRGs from usual PRGs. The authors
hope that these applications can contribute to security evaluation of real-life
hash algorithms such as the forthcoming SHA-3, and to secure implementation
of information-theoretically secure protocols by using nb-PRGs. We also showed
an example of how a study of Function Density Problem may proceed.

To conclude this paper, we mention some other potential applications of Func-
tion Density Problem. There are some cryptographic protocols for which the
constructions are motivated by some NP-complete/NP-hard problems, but ac-
tually the distributions of the problem instances in the protocols are somewhat
biased, therefore it has not succeeded to prove the security of the protocols di-
rectly from the hardness of the underlying problems (e.g., McEliece cryptosystem
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and other code-based protocols relevant to decoding problem for random linear
codes; knapsack cryptosystem relevant to Subset Sum Problem; etc.). We hope
that the idea of Function Density Problem can be applied to measure the close-
ness of the approximations of the underlying hard problems in those protocols.
On the other hand, it would also be an interesting future work to find other
applications of Function Density Problem.

Acknowledgements. The authors would like to thank Dr. Goichiro Hanaoka
for his precious comment on potential applications of the subject of this paper
discussed in Section 6. The authors would also like to thank the anonymous
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Appendix: Proof of Lemma 1

Here we give a proof of Lemma 1 in Section 3. Put Y = {y1, . . . , yn}. For
1 ≤ i ≤ n, put

ai = |{x ∈ X | H ′(x) = yi}| , bi = |{x ∈ X | H(x) �= H ′(x) = yi}| . (20)

Put

ϕ1(a1, . . . , an; b1, . . . , bn) =
n∑

i=1

ai(ai − 1) ,

ϕ2(a1, . . . , an; b1, . . . , bn) =
n∑

i=1

(ai − bi)(ai − bi − 1) .

(21)
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Then the number of collision pairs for H ′ is ϕ1(a1, . . . , an; b1, . . . , bn), while the
number of collision pairs for H is at least ϕ2(a1, . . . , an; b1, . . . , bn). Therefore
the probability specified in the statement of Lemma 1 is at least

ϕ(a1, . . . , an; b1, . . . , bn) =
ϕ2(a1, . . . , an; b1, . . . , bn)
ϕ1(a1, . . . , an; b1, . . . , bn)

. (22)

From now, we give a lower bound for the values of ϕ under the obvious conditions
0 ≤ bi ≤ ai,

∑n
i=1 ai = |X | and

∑n
i=1 bi = d.

Step 1: If the minimum of the function ϕ is attained by (ai)n
i=1 and (bi)n

i=1, then
we have bi > 0 for a unique index i, and ai − bi ≥ aj for any index j �= i.

(Proof of Step 1) If i �= j and bi, bj > 0, and we suppose ai ≤ aj by symmetry,
then we have(

(ai−1)(ai−2)+(aj+1)aj

)−(ai(ai−1)+aj(aj−1)
)

= 2(aj−ai+1) > 0 , (23)

therefore the value of ϕ1 increases when ai, aj , bi, bj are replaced with ai−1, aj +
1, bi − 1, bj + 1, respectively. On the other hand, the value of ϕ2 is not changed
by this replacement. Therefore the value of ϕ is decreased by this replacement,
contradicting the assumption on (ai)n

i=1 and (bi)n
i=1. Hence an index i with bi > 0

is unique, therefore bi = d. Similarly, if j �= i and ai − bi < aj , then we have(
(ai − bi + 1)(ai − bi) + (aj − 1)(aj − 2)

)− ((ai − bi)(ai − bi − 1) + aj(aj − 1)
)

= 2(ai − bi − aj + 1) ≤ 0 ,

(24)

with equality holding if and only if ai−bi = aj−1. This implies that the value of
ϕ at the (ai)n

i=1 and (bi)n
i=1 is larger than or equal to the value of ϕ with bi and

bj (= 0) being replaced with bi − 1 and 1, respectively, where the equality holds
if and only if ai − bi = aj − 1. As the former value is the minimum, the equality
condition ai − bi = aj − 1 should hold. Moreover, if bi − 1 > 0 then the latter
value of ϕ (which is now equal to the former value) cannot be the minimum by
the above argument, which also leads to a contradiction. Hence we have bi = 1
(therefore d = 1) and ai = aj . Now we have(

(ai+1)ai+(aj−1)(aj−2)
)−(ai(ai−1)+aj(aj−1)

)
= 2(ai−aj+1) > 0 . (25)

This implies that the value of ϕ will decrease when ai and aj are replaced with
ai + 1 and aj − 1, respectively, contradicting the assumption that the former
value is the minimum. Hence we have ai − bi ≥ aj for every j �= i, concluding
the proof of Step 1.

Step 2: If the minimum of the function ϕ is attained by (ai)n
i=1 and (bi)n

i=1, then
we have |ai − aj| ≤ 1 for any pair of indices i �= j such that bi = bj = 0.

(Proof of Step 2) Assume contrary that ai − aj ≥ 2 for such a pair of indices
i �= j. For � = 1, 2, let α denote the value of ϕ at the (ai)n

i=1 and (bi)n
i=1, and
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let β denote the value of ϕ with ai and aj being replaced with ai−1 and aj +1,
respectively. Then we have β1−α1 = β2−α2 = 2(aj − ai +1) < 0. On the other
hand, for the index i′ with bi′ > 0, we have ai′ ≥ bi′ + ai ≥ bi′ + aj + 2 ≥ 2
by the assumption and Step 1, therefore α1 > α2. Now we present the following
lemma, which is proven by an easy calculation:

Lemma 2. If p > q ≥ 0 and r > 0, then q/p < (q + r)/(p + r).

By using this lemma, we have

α2

α1
=

β2 − 2(aj − ai + 1)
β1 − 2(aj − ai + 1)

>
β2

β1
, (26)

contradicting the assumption that α2/α1 is the minimum of the value of ϕ.
Hence the claim of Step 2 holds.

By Step 1 and Step 2, the values (ai)n
i=1 and (bi)n

i=1 that attain the minimum
of ϕ satisfy the following conditions: bi > 0 for a unique i, and there is an integer
α such that ai − bi ≥ α + 1 and aj ∈ {α, α + 1} for every j �= i. Note that this
α can be taken as α ≥ 0; this is obvious if some aj with j �= i is positive, while
if aj = 0 for every j �= i, then we can choose α = 0, as ai = |X | > d = bi and
ai− bi ≥ 1. Let k be the number of indices j �= i such that aj = α + 1, therefore
0 ≤ k ≤ n − 1. Then we have ai = |X | − (n − 1)α − k, while bi = d, therefore
the condition ai − bi ≥ α + 1 implies that k ≤ |X | − nα − d− 1. Now we write
the values of ϕ1 and ϕ2 in this case as ϕ1(α, k) and ϕ2(α, k), respectively. Then
we have

ϕ1(α, k) = k(α + 1)α + (n− 1− k)α(α − 1) + ai(ai − 1) ,

ϕ2(α, k) = k(α + 1)α + (n− 1− k)α(α − 1) + (ai − d)(ai − d− 1) ,
(27)

therefore ϕ1(α, k)− ϕ2(α, k) = 2dai − d2 − d. Now by Lemma 2, we have

1− ϕ2(α, k)
ϕ1(α, k)

=
2dai − d2 − d

ϕ1(α, k)
≤ 2dai − d2 − d + 2d((n− 1)α + k)

ϕ1(α, k) + 2d((n− 1)α + k)

=
2d|X | − d2 − d

k(α + 1)α + (n− 1− k)α(α − 1) + ai(ai − 1) + 2d(n− 1)α + 2dk

(28)

(note that 2d((n− 1)α + k) ≥ 0, as α ≥ 0). Let ψ(α, k) denote the denominator
of the right-hand side. Then, by using the property ∂

∂kai = −1, we have

∂

∂k
ψ(α, k) = (α + 1)α−α(α− 1)− (2ai− 1)+ 2d = 2α− 2ai + 1 + 2d < 0 (29)

(note that ai−d ≥ α+1), therefore ψ(α, k) is decreasing as k is increasing. On the
other hand, we have ψ(α, n−1) = ψ(α+1, 0). Now note that α ≤ (|X |−d−1)/n,
as 0 ≤ k ≤ |X | −nα− d− 1. This implies that ψ(α, k) takes the minimum value
at α = α0 = �(|X | − d − 1)/n� and k = k0 = |X | − nα0 − d − 1 (note that
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k0 ≤ n− 1). Moreover, we have ai = α0 + d + 1 if α = α0 and k = k0. Hence a
straightforward calculation shows that

1− ϕ2(α, k)
ϕ1(α, k)

≤ 2d|X | − d2 − d

ψ(α0, k0)

=
2d|X | − d2 − d

2α0|X |+ 2d|X | − n(α0 + 1)α0 − 2dα0 − d2 − d
,

(30)

therefore

ϕ2(α, k)
ϕ1(α, k)

≥ 1− 2d|X | − d2 − d

2α0|X |+ 2d|X | − n(α0 + 1)α0 − 2dα0 − d2 − d

=
2α0|X | − n(α0 + 1)α0 − 2dα0

2α0|X |+ 2d|X | − n(α0 + 1)α0 − 2dα0 − d2 − d
,

(31)

which proves the lower bound (3) in the statement of Lemma 1.
Finally, suppose that d ≥ 2, and let η1(d) and η2(d) denote the denominator

and the numerator in (3), respectively. For any value x depending on d, let Δ[x]
temporarily denote the value of x at d − 1 minus the value of x at d. Then we
have Δ(−d2 − d) = 2d, therefore

Δ[η2(d)] = Δ[2α0|X | − n(α0 + 1)α0 − 2dα0] ,

Δ[η1(d)] = Δ[2α0|X | − n(α0 + 1)α0 − 2dα0]− 2|X |+ 2d < Δ[η2(d)] .
(32)

Moreover, we have Δ[α0] ∈ {0, 1}, and if Δ[α0] = 0, then Δ[η2(d)] = 2dα0 > 0.
On the other hand, if Δ[α0] = 1, then we have

Δ[(α0 + 1)α0] = (α0 + 2)(α0 + 1)− (α0 + 1)α0 = 2(α0 + 1) ,

Δ[2dα0] = 2(d− 1)(α0 + 1)− 2dα0 = 2d− 2α0 − 2 ,
(33)

therefore

Δ[η2(d)] = 2|X | − 2n(α0 + 1)− 2d + 2α0 + 2
= 2|X | − 2(n− 1)α0 − 2n− 2d + 2

≥ 2|X | − 2(n− 1)
|X | − d− 1

n
− 2n− 2d + 2 =

2
n

(|X | − d + 2n− 1− n2
) ≥ 0

(34)

(where we used the assumption |X | ≥ d + (n− 1)2). Now by Lemma 2, we have

η2(d− 1)
η1(d− 1)

=
η2(d) + Δ[η2(d)]
η1(d) + Δ[η1(d)]

≥ η2(d)
η1(d) + Δ[η1(d)] −Δ[η2(d)]

>
η2(d)
η1(d)

. (35)

Hence the proof of Lemma 1 is concluded.
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Abstract. HC-128 is an eSTREAM finalist and no practical attack on
this cipher is known. We show that the knowledge of any one of the
two internal state arrays of HC-128 along with the knowledge of 2048
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pletely in 242 time complexity. Though our analysis does not lead to
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suggest a modification to HC-128 that takes care of the recently known
cryptanalytic results with little reduction in speed.
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1 Introduction

The stream cipher HC-128 [16] is part of the eSTREAM [4] Portfolio (revision
1, September 2008) in the Software category. The designer, Wu, performed some
security analysis of the cipher [16, Sections 3,4]. Another observation by Dunkel-
man [3] in the eSTREAM discussion forum shows that the keystream words of
HC-128 leak information regarding secret states. A generalization of these re-
sults has been studied in [10]. In [9], it has been shown that the key and IV
setup algorithm can be reversed if both the P, Q arrays are available after the
key scheduling. Recently, a fault analysis on HC-128 has been presented in [7].
None of the existing results on HC-128 disproves the security conjectures of the
designer and frequent use of this cipher in commercial domain is expected.

There are two internal state arrays of HC-128, P and Q, each containing 512
many 32-bit words. The keystream is generated in blocks of 512 words. Within
a block, one of these arrays gets updated and the keystream word is produced
by XOR-ing the updated entry with the sum of two words from the other array.

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 161–177, 2011.
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The role of the two arrays is reversed after every block of 512 keystream words
generation. In this paper, we show that the knowledge of one internal state array
of HC-128 reveals the other.

1.1 Outline of the Contribution

Without loss of generality, we consider four consecutive blocks B1, B2, B3 and
B4 of keystream generation such that Q is updated in blocks B1 and B3 and P is
updated in blocks B2 and B4. Suppose the keystream words corresponding to all
of these four blocks are known. Henceforth, by the symbols P and Q, we would
denote the arrays after the completion of block B1 and before the start of block
B2. After the completion of block B2, Q remains unaltered and P is updated to,
say, PN . After the completion of block B3, Q would again be updated to, say,
QN .

Block B1: Block B2: Block B3:
P unchanged, P updated to PN , PN unchanged,
Q updated. Q unchanged. Q updated to QN .
(Q denotes the updated array)

Block B4, that is not shown in the diagram, would only be used for verifying
if our reconstruction is correct or not.

In Section 3, we present Algorithm 4 (called ReconstructState), that takes
as input the 512 words of the array P and (assuming that the 2048 keystream
words corresponding to the four blocks B1, B2, B3 and B4 are known) produces
as output 512 words of the array QN . Since the update of an array depends only
on itself, it turns out that from block B3 onwards the complete state becomes
known. The proof of correctness of the algorithm is established through Lemma 2
and Theorems 1, 2 and 3 and the data and time complexity requirements are
analyzed in Theorem 4.

Our analysis shows some combinatorial properties of the internal state evo-
lution of HC-128. At present, this does not lead to any immediate attack on
HC-128.

In Section 4, we propose little modification to the existing HC-128 that escapes
the structural analysis of this paper and all currently known cryptanalytic results
over HC-128. We also present performance comparisons with the existing design
of HC-128.

1.2 Connection to Previous Works and Motivation

Liu and Qin [9] showed that the initialization (i.e., Key and IV setup) algorithm
of HC-128 is reversible and hence once all the 1024 (32-bit) words of the internal
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state consisting of two tables P and Q, each containing 512 words are known
then one can get the Key and IV. Referring to [9], denote the tables P and
Q after 1024k steps (one “big step” [9]) by Pk and Qk. It is shown in [9] that
Pk||Qk can be reconstructed from Pk+1||Qk+1 in two steps: first compute Qk

using Pk+1||Qk+1, then compute Pk using Qk and Pk+1. That is, computing Pk

only needs knowing Qk together with Pk+1, and similarly, computing Qk only
needs knowing Pk together with Qk+1. Our work shows that the assumption
that “adversary needs Pk and Qk+1 to reconstruct Qk” (according to [9]) can be
replaced with the assumption that “adversary needs Pk and 2048 words of the
keystream to reconstruct Qk”, albeit with an extra effort of 242 computations.
As a consequence, information of only half of the internal state can reveal the
complete secret key.

Use of partial state information in mounting a full state recovery attack is
not new in the domain of stream ciphers. In case of RC4, for instance, Knud-
sen et al.’s state recovery attack [8] reconstructs the complete state in a com-
plexity of 2779. However, the work [15] showed that the above attack requires
only 2220 search complexity if 112 entries of the permutation are known and
presents an improvement whereby state recovery with the same complexity re-
quires prior knowledge of only 73 permutation entries in certain cases. The
work [11] is currently the best known state recovery attack on RC4 with com-
plexity 2241. In [11, Appendix C], the complexity is formulated as a function
of L, where L is the number of previously known permutation entries and so
the complexity can be reduced below 2241 if certain permutation entries are
available to the attacker. Though there are many differences between RC4 and
HC-128 (e.g., in terms of key size) and a particular attack on one may not
be readily applicable to the other, it gives motivation to study the effect of
partial state exposures in the cryptanalysis of other stream ciphers. If by side
channel information or some fault model, half of the state of HC-128 becomes
revealed, then that can be cascaded with our analysis to reveal the full state
efficiently.

HC-128 is a relatively new cipher and more cryptanalytic research on this
cipher is expected. We believe our work is just a first step towards state recovery
of HC-128 and would generate interest in the community for further investigation
in this direction.

2 Description of HC-128

This is adapted from [16, Section 2]. The following operations are used in HC-
128:
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+ : x + y means (x + y) mod 232, where 0 ≤ x < 232 and 0 ≤ y < 232.
� : x � y means (x− y) mod 512.
⊕ : bit-wise exclusive OR.
‖ : concatenation.
� : right shift operator. x� n means x being right shifted n bits.
 : left shift operator. x n means x being left shifted n bits.
≫ : right rotation operator. x ≫ n means
((x� n)⊕ (x (32− n)), where 0 ≤ n < 32, 0 ≤ x < 232.
≪ : left rotation operator. x ≪ n means
((x n)⊕ (x� (32− n)), where 0 ≤ n < 32, 0 ≤ x < 232.

Two tables P and Q, each with 512 many 32-bit elements are used as internal
states of HC-128. A 128-bit key array K[0, . . . , 3] and a 128-bit initialization
vector IV [0, . . . , 3] are used, where each entry of the array is a 32-bit element.
Let st denote the keystream word generated at the t-th step, t = 0, 1, 2, . . ..

The following six functions are used in HC-128:

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x� 3),
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x� 10),
g1(x, y, z) = ((x ≫ 10)⊕ (z ≫ 23)) + (y ≫ 8),
g2(x, y, z) = ((x ≪ 10)⊕ (z ≪ 23)) + (y ≪ 8),
h1(x) = Q[x(0)] + Q[256 + x(2)],
h2(x) = P [x(0)] + P [256 + x(2)].

Here x = x(3)‖x(2)‖x(1)‖x(0), x is a 32-bit word and x(0) (least significant
byte), x(1), x(2) and x(3) (most significant byte) are four bytes.

The key scheduling of HC-128 is as follows.

Key and IV Setup:

1. Let K[0, . . . , 3] be the secret key and IV [0, . . . , 3] be the initialization vector.
Let K[i + 4] = K[i] and IV [i + 4] = IV [i] for 0 ≤ i ≤ 3.
2. The key and IV are expanded into an array W [0, . . . , 1279] as follows.

W [i] = K[i], for 0 ≤ i ≤ 7;
= IV [i − 8], for 8 ≤ i ≤ 15;
= f2(W [i − 2]) + W [i − 7]

+f1(W [i − 15]) + W [i − 16] + i, for 16 ≤ i ≤ 1279.
3. Update the tables P and Q with the array W as follows.

P [i] = W [i + 256], for 0 ≤ i ≤ 511
Q[i] = W [i + 768], for 0 ≤ i ≤ 511

4. Run the cipher 1024 steps and use the outputs
to replace the table elements as follows.

For i = 0 to 511, do
P [i] = (P [i] + g1(P [i � 3], P [i � 10], P [i � 511])) ⊕ h1(P [i � 12]);

For i = 0 to 511, do
Q[i] = (Q[i] + g2(Q[i � 3], Q[i � 10], Q[i � 511])) ⊕ h2(Q[i � 12]);
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The keystream is generated using the following steps.

The Keystream Generation Algorithm:
i = 0;
repeat until enough keystream bits are generated
{

j = i mod 512;
if (i mod 1024) < 512
{

P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

}
end-if
i = i + 1;

}
end-repeat

3 Reconstruction of One Internal Array from Another

We introduce a few notations for the ease of analysis. We describe them first
and then move on to the actual strategy.

As discussed in Section 1, we consider four consecutive blocks B1, B2, B3

and B4. In B1 and B3, Q is updated. Let Q denote the updated array after the
completion of block B1 and let QN be the new array after Q is updated in block
B3. In B1, P remains unchanged and in B2, it is updated to PN . Let sb,i denote
the i-th keystream word produced in block Bb, 1 ≤ b ≤ 4, 0 ≤ i ≤ 511.

Consider that the keystream words sb,i, 1 ≤ b ≤ 4, 0 ≤ i ≤ 511, are observable.
We formulate a special state reconstruction problem as follows.

Given the partial state information P [0 . . . 511],
reconstruct the complete state (PN [0 . . . 511], QN [0 . . . 511]).

Since the update of each of P and Q depends only on P and Q respectively,
once we determine PN and QN , we essentially recover the complete state infor-
mation for all subsequent steps.

Our state reconstruction proceeds in five phases, described in next five sub-
sections.
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3.1 First Phase: Complete PN from P

Observe that the update of P (or Q) depends only on itself, i.e.,

PN [i] =

⎧⎪⎪⎨⎪⎪⎩
P [i] + g1(P [509 + i], P [502 + i], P [i + 1]), for 0 ≤ i ≤ 2;
P [i] + g1(PN [i− 3], P [502 + i], P [i + 1]), for 3 ≤ i ≤ 9;
P [i] + g1(PN [i− 3], PN [i− 10], P [i + 1]), for 10 ≤ i ≤ 510;
P [i] + g1(PN [i− 3], PN [i− 10], PN [i− 511]), for i = 511.

(1)

Thus, if one knows the 512 words of P (or Q) corresponding to any one block,
then one can easily derive the complete P (or Q) array corresponding to any
subsequent block.

The First Phase consists of determining PN from P using Equation (1).

3.2 Second Phase: Part of Q from PN

The keystream generation of block B2 follows the equation

s2,i =
{

h1(P [500 + i])⊕ PN [i], for 0 ≤ i ≤ 11;
h1(PN [i− 12])⊕ PN [i], for 12 ≤ i ≤ 511. (2)

Since h1(x) = Q[x(0)] + Q[256 + x(2)], we can rewrite Equation (2) as

Q[li] + Q[ui] = s2,i ⊕ PN [i] (3)

where for 0 ≤ i ≤ 11, li = (P [500 + i])(0) and ui = 256 + (P [500 + i])(2)

and for 12 ≤ i ≤ 511, li = (PN [i− 12])(0) and ui = 256 + (PN [i− 12])(2).

}
(4)

Note that li, ui and the right hand side s2,i⊕PN [i] of System (3) of equations are
known for all i = 0, 1, . . . , 511. Thus, there are 512 equations in ≤ 512 unknowns
and so applying Gauss elimination would require a complexity of 5123 = 227.
However, we show in Lemma 1 that a unique solution does not exist for any
such system and hence we have to take a different approach to solve the system.
Though the proof of Lemma 1 is simple, we include here for easy reference.

Lemma 1. Suppose r + s linear equations are formed using variables from the
set {x1, x2, . . ., xr, y1, y2, . . ., ys}, r ≥ 1, s ≥ 1. If each equation is of the form
xi + yj = bij for some i in [1, r] and some j in [1, s], where bij’s are all known,
then such a system does not have a unique solution.

Proof. Consider the (r + s) × (r + s) coefficient matrix A of the system with
the columns denoted by C1, . . . , Cr+s, such that the first r columns C1, . . . , Cr

correspond to the variables x1, . . . , xr and the last s columns Cr+1, . . . , Cr+s

correspond to the variables y1, . . . , ys. Every row of A has the entry 1 in exactly
two places and the entry 0 elsewhere. The first 1 in each row appears in one of
the columns C1, . . . , Cr and the second 1 in one of the columns Cr+1, . . . , Cr+s.
After the elementary column transformations C1 ← C1 + . . . + Cr and Cr+1 ←
Cr+1 + . . . + Cr+s, the two columns C1 and Cr+1 has 1’s in all the rows and
hence become identical. This implies that the matrix is not of full rank and hence
unique solution does not exist for the system. �	



A Theoretical Analysis of the Structure of HC-128 167

The left hand side of every equation in System (3) is of the form Q[li] + Q[ui],
where 0 ≤ li ≤ 255 and 256 ≤ ui ≤ 511. Taking r = s = 256, xi = Q[i − 1],
1 ≤ i ≤ 256 and yj = Q[255 + j], 1 ≤ j ≤ 256, we see that Lemma 1 directly
applies to this system, establishing the non-existence of a unique solution. At
this stage, one could remove the redundant rows to find a linear space which
contains the solution. However, it is not clear how many variables need to be
guessed to arrive at the final solution. Below we formulate a graph theoretic
approach to derive the entries of the array Q efficiently, by guessing the value of
only a single variable.

Definition 1. System (3) of 512 equations can be represented in the form of a
bipartite graph G = (V1, V2, E), where V1 = {0, . . . , 255}, V2 = {256, . . . , 511}
and for each term Q[li] + Q[ui] of System (3) of equations, there is an edge
{li, ui} ∈ E, li ∈ V1 and ui ∈ V2. Thus, |E| = 512 (counting repeated edges,
if any). We call such a graph G with the vertices as the indices of one internal
array of HC-128 the index graph of the state of HC-128.

Lemma 2. Let M be the size of the largest connected component of the index
graph G corresponding to block B2. Then M out of 512 words of the array Q
can be derived in 232 search complexity.

Proof. Consider any one of the 512 equations of System (3). Since the sum
Q[li] + Q[ui] is known, knowledge of one of Q[li], Q[ui] reveals the other. Thus,
if we know one word of Q at any index of a connected component, we can
immediately derive the words of Q at all the indices of the same component.
Since this holds for each connected component, we can guess any one 32-bit
word in the largest connected component correctly in 232 attempts and thereby
the result follows. �	
The arrays P, Q and the keystream of HC-128 can be assumed to be random.
Hence our index graph G can be considered to be a random bipartite graph.
Analysis of the size distribution of the connected components of random finite
graphs is a vast area of research in applied probability and there have been
several works [6,14,12,5,2] in this direction under different graph models. In [14],
the model considered is a bipartite graph G(n1, n2, T ) with n1 vertices in the first
part, n2 vertices in the second one and the graph is constructed by T independent
trials, each of them consists of drawing an edge which joins two vertices chosen
independently of each other from distinct parts. This coincides with our index
graph model of Definition 1 with n1 = |V1|, n2 = |V2| and T = |E|.

In general, let n1 ≥ n2, α = n2
n1

, β = (1 − α) ln n1, n = n1 + n2. Let ξn1,n2,T

and χn1,n2,T respectively denote the number of isolated vertices and the number
of connected components in G(n1, n2, T ). We have the following result from [14].

Proposition 1. If n→∞ and (1+α)T = n ln n+Xn+o(n), where X is a fixed
number, then Prob (χn1,n2,T = ξn1,n2,T + 1) → 1 and for any k = 0, 1, 2, . . . ,

P rob (ξn1,n2,T = k)− λke−λ

k! → 0, where λ = e−X (1+e−β)
1+α .
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In other words, if n is sufficiently large and n1, n2, T are related by (1 + α)T =
n ln n + Xn + o(n), then the graph contains one giant connected component
and some isolated vertices whose number follows a Poisson distribution with
parameter λ given above.

Corollary 1. If M is the size of the largest component of the index graph G,
then the mean and standard deviation of M is respectively given by E(M) ≈
442.59 and sd(M) ≈ 8.33.

Proof. For our index graph, n1 = n2 = 256, n = n1 + n2 = 512, T = 512,
α = n2

n1
= 1, β = (1 − α) ln n1 = 0. The relation (1 + α)T = n ln n + Xn + o(n)

is equivalent to (1+α)
n T = lnn + X + o(n)

n . As n → ∞, the ratio o(n)
n → 0 and

hence X → (1+α)
n T − ln n. Substituting α = 1, T = 512 and n = 512, we get

X ≈ −4.24. By Proposition 1, the limiting distribution of the random variable
ξn1,n2,T is Poisson with mean (as well as variance) λ = e−X (1+e−β)

1+α ≈ e4.24 ≈
69.41. Moreover, in the limit, χn1,n2,T = ξn1,n2,T +1 and this implies that all the
vertices except the isolated ones would be in a single giant component. So M =
n−ξn1,n2,T and the expectation E(M) = n−E(ξn1,n2,T ) = n−λ ≈ 512−69.41 =
442.59. Again, the variance V ar(M) = V ar(n − ξn1,n2,T ) = V ar(ξn1,n2,T ) = λ,
giving sd(M) = sd(ξn1,n2,T ) =

√
λ ≈ 8.33. �	

We simulate 10 million trials of HC-128, each time generating 1024 consecutive
words of keystream corresponding to the complete arrays P and Q. In our ex-
periments, the average of the number ξn1,n2,T of isolated vertices of the index
graph of the state of HC-128 was found to be 69.02 with a standard deviation
of 6.41. These values closely match with the theoretical estimates of the mean
λ ≈ 69.41 and standard deviation

√
λ ≈ 8.33 of ξn1,n2,T derived in Corollary 1.

Again from Corollary 1, theoretical estimates of the mean and standard de-
viation of the size M of the largest component is 442.59 and 8.33 respectively.
From the same simulation described above, the empirical average and standard
deviation of M are found to be 407.91 ≈ 408 and 9.17 respectively.

Observe that there is a small gap between the theoretical estimate and the
empirical result of the mean value of M . It arises from the fact that the theory
takes n as infinity, but its value in the context of HC-128 is 512. In the limit
when n → ∞, each vertex is either an isolated one or it belongs to the single
giant component. In practice, on the other hand, except the isolated vertices
(≈ 69 in number) and the vertices of the giant component (≈ 408 in number),
the remaining few (≈ 512− 69− 408 = 35 in number) vertices form some small
components. However, the low (9.17) empirical standard deviation of M implies
the robustness of the empirical estimate 408 of E(M). Later we show that as a
consequence of Theorem 2, any M > 200 is sufficient for our purpose.

Suppose C = {y1, y2, . . . , yM} is the largest component of G. Algorithm 1
summarizes the steps to obtain the set of indices y1, y2, . . . , yM from the Sys-
tem (3) of equations.
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Input: System (3) and (4) of equations.
Output: Set {y1, y2, . . . , yM} corresponding to the largest component of the

index graph G.
Form a bipartite graph G = (V1, V2, E) as follows;1

V1 ← {0, . . . , 255}; V2 ← {256, . . . , 511}; E ← ∅;2

for i ← 0 to 511 do3

Determine li and ui using Equation (4);4

E ← E ∪ {li, ui};5

end
Find all connected components of G;6

Let C = {y1, y2, . . . , yM} be the largest component with size M ;7

Algorithm 1. FindMaxCC

After applying algorithm FindMaxCC, we can guess the word corresponding to
any fixed index, say y1. As explained in the proof of Lemma 2, each guess of Q[y1]
uniquely determines the values of Q[y2], . . . , Q[yM ]. According to Corollary 1 and
the discussion following it, we can guess around 408 words of Q in this method.
This is the Second Phase of our solution.

3.3 Third Phase: Tail of Q from Its Parts

We use the following result, which we call Propagation Theorem, to determine
the remaining unknown words.

Theorem 1 (Propagation Theorem). If Q[y] is known for some y in [0, 499],
then m = � 511−y

12 � more words of Q, namely, Q[y+12], Q[y+24], . . . , Q[y+12m],
can all be determined from Q[y] in a time complexity that is linear in the size of
Q.

Proof. Consider block B1. Following our notation in the beginning of Section 3,
the equation for keystream generation is

s1,i = h2(Q[i− 12])⊕Q[i], for 12 ≤ i ≤ 511.
Written in another way, it becomes

Q[i] = s1,i ⊕
(
P
[
(Q[i− 12])(0)

]
+ P
[
256 + (Q[i− 12])(2)

])
.

Setting y = i− 12, we have, for 0 ≤ y ≤ 499,

Q[y + 12] = s1,y+12 ⊕
(
P
(
[Q[y])(0)

]
+ P
[
256 + (Q[y])(2)

])
(5)

This is a recursive equation, in which all s1 values and the array P are completely
known. Clearly, if we know one Q[y], we know all subsequent Q[y + 12k], for
k = 1, 2, . . ., as long as y + 12k ≤ 511. This means k ≤ 511−y

12 . The number m of
words of Q that can be determined is then the maximum allowable value of k,
i.e., m = � 511−y

12 �. �	
We recursively apply Equation (5) to the words of the Q array determined from
the maximum size connected component of the index graph and derive many
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of around 104(= 512 − 408) unknown words in the array. This is the Third
Phase of our solution. If we imagine the words initially marked as ‘known’ or
‘unknown’, then this step can be visualized as propagation of the ‘known’ labels
in the forward direction. We represent this procedure in the form of Algorithm 2,
called PropagateQ.

Input: Q[0 . . . 511] with known entries in indices y1, y2, . . . , yM .
Output: Q[0 . . . 511] with fewer unknowns.
for j ← 1 to M do

y ← yj ;
while y ≤ 499 do

if Q[y + 12] is still unknown then

Q[y + 12] ← s1,y+12 ⊕
(
P
[
(Q[y])(0)

]
+ P
[
256 + (Q[y])(2)

])
;

end
y ← y + 12;

end

end

Algorithm 2. PropagateQ

Even after this phase, some words of Q remain unknown. However, as Theo-
rem 2 implies, we observe that through this propagation, all the words Q[500],
Q[501], . . ., Q[511] can be ‘known’ with probability almost 1.

Theorem 2. After the execution of Algorithm PropagateQ, the expected number
of unknown words amongst Q[500], Q[501], . . ., Q[511] is approximately 8 · (1−
43
512 )M +4 · (1− 42

512 )M , where M is the size of the largest component of the index
graph G.

Proof. After the Second Phase, exactly M words Q[y1], Q[y2], . . ., Q[yM ] are
known corresponding to the distinct indices y1, y2, . . ., yM in the largest com-
ponent C of size M in G. Since G is a random bipartite graph, each of indices
y1, y2, . . . yM can be considered to be drawn from the set {0, 1, . . . , 511} uniformly
at random (without replacement). We partition this sample space into 12 disjoint
residue classes modulo 12, denoted by, [0], [1], . . . , [11]. Then, each of the indices
y1, y2, . . . , yM can be considered to be drawn from the set {[0], [1], . . . , [11]} (this
time with replacement; this is a reasonable approximation because M � 12) with
probabilities proportional to the sizes of the residue classes. Thus, for 1 ≤ j ≤M ,
Prob(yj ∈ [r]) = 43

512 if 0 ≤ r ≤ 7 and 42
512 if 8 ≤ r ≤ 11.

Let mr = 1, if none of y1, y2, . . . , yM are from [r]; otherwise, let mr = 0.
Hence, the total number of residue classes from which no index is selected is

Y =
11∑

r=0

mr. Now, in the Third Phase, we propagate the known labels in the
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forward direction using Equation (5) (see Theorem 1, the Propagation Theorem).
The indices {500, 501, . . . , 511} are to the extreme right end of the array Q and
hence they also form the set of “last” indices where the propagation eventually
stops. Further, each index in the set {500, 501, . . . , 511} belongs to exactly one
of the sets [r]. Hence, the number of unknown words amongst Q[500], Q[501],
. . ., Q[511] is also given by Y .

We have,

E(mr) = Prob(mr = 1) =
{

(1− 43
512 )M for 0 ≤ r ≤ 7;

(1− 42
512 )M for 8 ≤ r ≤ 11.

Thus, E(Y ) =
11∑

r=0

E(mr) = 8 · (1− 43
512 )M + 4 · (1 − 42

512 )M . �	

Substituting M by its theoretical mean estimate 443 as well as by its empirical
mean estimate 408 yields E(Y ) ≈ 0. In fact, for any M > 200, the expression (1−
43
512 )M +4·(1− 42

512 )M for E(Y ) becomes vanishingly small. Our experimental data
also supports that in every instance, none of the words Q[500], Q[501], . . . , Q[511]
remains unknown.

Remarks

1. The probability that one particular 8-bit pattern is missing from 512 many
randomly selected 8-bit segments of the P array, that are used to form the
indices ui’s in System (3) of equations, is (1− 2−8)512 ≈ 0.13. Assuming that
the missing unknown is equally likely to be one of {Q[256], . . . , Q[511]}, the
probability that there is one missing unknown and it is in {Q[500], . . . , Q[511]}
is ≈ 0.13 · 12

256 ≈ 0.0061. Thus, one may be tempted to conclude that the
probability that at least one of {Q[500], . . . , Q[511]} remains unknown is non-
negligible.

However, we like to point out that the analysis in the above paragraph
corresponds to the unknown values in System (3) of equations, i.e., after the
First Phase of the solution. On the other hand, the analysis in Theorem 2
corresponds to the unknown values after we have propagated the known
indices using the Propagation Theorem, i.e., after the Third Phase of the
solution.

2. Changing bytes 1 or 3 of Q[y] yields no change in Equation (5). Combining
this with the Second Phase, we could form a new set of equations and at-
tempt to solve them. However, as Theorem 2 establishes, this is not required;
propagation of known Q[y] values in steps of 12 covers all the unknowns.

3.4 Fourth Phase: Complete QN from Tail of Q

Next, we use the following result to determine the entire QN array.

Theorem 3. Suppose the complete array PN and the 12 words Q[500], Q[501],
. . ., Q[511] from the array Q are known. Then the entire QN array can be re-
constructed in a time complexity linear in the size of Q.
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Proof. Following our notation in the beginning of Section 3, the equation for the
keystream generation of the first 12 steps of block B3 is s3,i = h2(Q[500 + i])⊕
QN [i], 0 ≤ i ≤ 11. Expanding h2(.), we get, for 0 ≤ i ≤ 11,

QN [i] = s3,i ⊕
(
PN

[
(Q[500 + i])(0)

]
+ PN

[
256 + (Q[500 + i])(2)

])
.

Thus, we can determine QN [0], QN [1], . . .QN [11] from Q[500], Q[501], . . .Q[511].
Now, applying Theorem 1 on these first 12 words of QN , we can determine all
the words of QN in linear time (in size of Q). �	
Due to Theorem 3, we can devise an algorithm called PropagateQTail to QNext.
Applying this algorithm constitutes the Fourth Phase of our solution.

Input: Q[0 . . . 511] with known entries in indices 500, . . . , 511.
Output: QN [0 . . . 511] with all entries known.
for i ← 0 to 11 do

QN [i] ← s3,i ⊕
(
PN

[
(Q[500 + i])(0)

]
+ PN

[
256 + (Q[500 + i])(2)

])
;

y ← i;
while y ≤ 499 do

QN [y + 12] ← s3,y+12 ⊕
(
PN

[
(QN [y])(0)

]
+ PN

[
256 + (QN [y])(2)

])
;

y ← y + 12;
end

end

Algorithm 3. PropagateQTail to QNext

3.5 Fifth Phase: Verification

After QN is derived, we need to verify its correctness. For this, we update PN

as it would be updated in block B4 and generate 512 keystream words with this
PN and the derived QN . If the generated keystream words entirely match with
the observed keystream words {s4,0, s4,1, . . . , s4,511} of block B4, then our guess
is correct. This verification is the Fifth (and final) Phase of our algorithm. If
we find a mismatch, then we repeat the procedure with the next guess, i.e., with
another possible value in [0, 232 − 1] of the word Q[y1].

Once QN is correctly determined, the words of the Q array for all the suc-
ceeding blocks can be deterministically computed from the update rule for Q.

3.6 Complete State Reconstruction Algorithm and Total
Complexity

The above discussion is formalized in Algorithm 4, called ReconstructState.
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Input: P [0 . . . 511].
Output: PN [0 . . . 511], QN [0 . . . 511].
for i ← 0 to 511 do1

Determine PN [i] using Equation (1);2

end
Call FindMaxCC to find out y1, y2, . . . , yM ;3

for Each possible value of Q[y1] do4

Determine Q[y2], . . . , Q[yM ] from System (3);5

Call PropagateQ;6

Call PropagateQTail to QNext;7

With the new QN , generate 512 keystream words by updating PN ;8

Verify correctness of the guess in Step 4 by matching these keystream9

words with the observed keystream words of block B4;
end

Algorithm 4. ReconstructState

Theorem 4. The data complexity of Algorithm 4 is 216 and its time complexity
is 242.

Proof. For the First Phase, we do not need any keystream word. For each of
the Second, Third, Fourth and Fifth Phases, we need a separate block of 512
keystream words. Thus, the required amount of data is 4 · 512 = 211 no. of 32
(= 25)-bit keystream words.

Step 1 of Algorithm 4 takes time linear in the size of P , i.e., of complexity 29.
Then Step 3 of Algorithm 4 calls the FindMaxCC subroutine.

For all the steps inside FindMaxCC up to Step 5, the total time required
is linear in the size of Q, i.e., of complexity 29. Step 6 of FindMaxCC can be
performed through depth-first search which requires O(|V1| + |V2| + |E|) time
complexity. For |V1| = 256, |V2| = 256 and |E| = 512, the value turns out to be
210.

After returning from FindMaxCC, the For loop at Step 4 of Algorithm 4 needs
to be iterated 232 times and for each iteration, the statements inside take time
that is linear in the size of the array Q, i.e., of complexity 29. Thus, the total
time required is 29 + 210 + 232 · 29 < 242. �	

Note that for System (3) of equations, one must verify the solution by first
generating some keystream words and then matching them with the observed
keystream, as is done in Algorithm 4. During Step 4 (i.e., in the Second Phase),
one may exploit the cycles of the largest component to verify correctness of the
guess. If the guessed value of a variable in a cycle does not match with the
value of the variable derived when the cycle is closed, we can discard that guess.
However, in the worst case, all the 232 guesses have to be tried and if there is no
conflict in a cycle, the guess has to be verified by keystream matching. Thus, it
is not clear if there is any significant advantage by detecting and exploiting the
cycles and so we have not considered this in the description of the algorithm.
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4 Design Modification with Respect to Known
Observations

Here we propose a modification of the HC-128 cipher. We have two design goals:

– to guard against the available analysis in literature and
– not to sacrifice the speed in the process.

Thus, we attempt to keep the same structure as the original HC-128 with mini-
mal changes.

Apart from the present paper, we are aware of three other works on the anal-
ysis of keystream generation algorithm of HC-128, one by the designer Wu [16],
another in [10] and the most recent one from [7].

The works [16,10] exploit the fact that h1(.) as well as h2(.) makes use of
only 16 bits from the 32-bit input. Our current work also uses this fact to form
System (3) of equations, that eventually leads to reconstruction of the state.
Thus, all of these results indicate that the form of h1(.), h2(.) need to be modified
so as to incorporate all the 32 bits of their inputs. In our new versions of these
functions (Equation (6)), we suggest XOR-ing the entire input with the existing
output (sum of two array entries). However, certain precautions may need to be
taken so that other security threats do not come into play.

We replace h1 and h2 as follows.

hN1(x) = (Q[x(0)] + Q[256 + x(2)])⊕ x.

hN2(x) = (P [x(0)] + P [256 + x(2)])⊕ x.

}
(6)

We need to modify the update functions g1 and g2 with the twin motivation of
preserving the internal state as well as making sure that the randomness of the
keystream is ensured. We propose the following:

gN1(x, y, z) =
(
(x ≫ 10)⊕ (z ≫ 23)

)
+ Q[(y � 7) ∧ 1FF ].

gN2(x, y, z) =
(
(x ≪ 10)⊕ (z ≪ 23)

)
+ P [(y � 7) ∧ 1FF ].

}
(7)

We keep f1 and f2 the same as in original HC-128.
We include a randomly chosen word from the Q array in the update of P

array elements and a randomly chosen word from the P array while updating
the Q array elements. This would ensure that each new block of P (or Q) array
is dependent on the previous block of Q(or P ) array. Thus, our analysis of
Section 3 would not apply and the internal state would be preserved even if half
the internal state elements are known.

Likewise, in the equation of the distinguisher proposed by the designer [16,
Section 4], the term P [i�10] will get replaced by some random term of Q array.
With this replacement, it is not obvious how a similar distinguishing attack can
be mounted. The similar situation will happen for the distinguishers proposed
in [10].

Now let us concentrate on the fault attack presented in [7]. The fault analy-
sis in [7] assumes that if a fault occurs at Q[f ] in the block in which P is updated,
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then Q[f ] is not referenced until step f − 1 of the next block (in which Q would
be updated). This assumption does not hold for our design due to the nesting
use of P and Q in the updates of one another (Equation (7)). Thus, on our
modified design, the fault position recovery algorithm given in [7, Section 4.2]
would not work immediately. In particular, Lemma 1 and Lemma 2 of [7] would
not hold on our modified cipher.

The security of any stream cipher is always a conjecture. We have tried to
circumvent the known weaknesses of HC-128. The way we have modified the
design, it appears that no new security holes are introduced. However, the new
design is open to the community for further analysis.

4.1 Performance Evaluation

We evaluated the performance of our new design using the eSTREAM testing
framework [1]. The C-implementation of the testing framework was installed in
a machine with Intel(R) Pentium(R) D CPU, 2.8 GHz Processor Clock, 2048
KB Cache Size, 1 GB DDR RAM on Ubuntu 7.04 (Linux 2.6.20-17-generic) OS.
A benchmark implementation of HC-128 and HC-256 [17] is available within
the test suite. We implemented our modified version of HC-128, maintaining the
API compliance of the suite. Test vectors were generated in the NESSIE [13]
format. The results presented below correspond to tests with null IV using the
gcc-3.4 prescott O3-ofp compiler.

HC-128 Our Proposal HC-256
Stream Encryption 4.13 4.29 4.88
(cycles/byte)

The encryption speed of our proposed design is of the same order as that
of original HC-128. We also observe that the extra array element access in the
new update rules (Equation (7)) as compared to the original update rules does
not affect the performance much. HC-128 was designed as a lightweight version
of HC-256. The idea of cross-referencing each other in the update rules of P
and Q has also been used in the design of HC-256 and that is why the half
state exposure does not reveal the full state in case of HC-256. However, our
modification to HC-128 removes the known weaknesses of HC-128 but keeps the
speed much better than HC-256, with only little reduction in speed compared
to HC-128.

5 Conclusion

The eSTREAM candidate HC-128 uses two internal arrays, each containing 512
many 32-bit words. In this paper, we show that one of the two arrays is redundant
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in the sense that if one knows only one array completely and has access to
2048 consecutive keystream words then the other array can be completely re-
constructed in 242 time complexity. This does not immediately pose a threat to
the security of the cipher. However, this is a structural weakness which has not
been studied before the present work. We also propose a design modification of
HC-128 that avoids the half state exposure analysis as well as is free from the
known weaknesses in the literature. We evaluate the performance of our proposal
in the eSTREAM testing framework and compare the speed with that of HC-128
and HC-256.
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Abstract. This paper implements the super-sbox analysis on 8-round
AES proposed by Gilbert and Peyrin in order to verify its correctness
and the attack cost. The attack consists of three parts; the first outbound
phase, inbound phase with a super-sbox technique, and the second out-
bound phase. Gilbert and Peyrin estimated that the attack would re-
quire 248 computational cost and 232 memory, which could be feasible
but not easy to practically implement. In this research, we first analyze
the relationship among memory, computational cost, and the number of
solutions in the inbound phase, and then show that the tradeoff exists
for the super-sbox analysis. With this tradeoff, we implement the attack
for each of the outbound phase independently so that the cost for the
entire attack can be estimated by the experiments. As a result of our
experiment, we show that the computational cost to obtain a pair of val-
ues satisfying the inbound phase is approximately 4 times higher and the
freedom degrees are 4 times smaller than the previous estimation, which
indicates that applying the super-sbox analysis is harder than expected.

Keywords: super-sbox analysis, time-memory tradeoff, AES, AES based
hash.

1 Introduction

Hash functions are used in the wide range of cryptographic applications. Since
the break of MD5 and SHA-1, [1,2], cryptographers have been seeking secure and
efficient hash function constructions. Currently, various types of hash functions
can be seen, especially in the SHA-3 competition [3].

One of the most solid approaches for designing hash functions is the construc-
tion based on AES [4,5]. For the security evaluation, the following two factors
are important; 1) provable security and 2) enough amount of dedicated analy-
sis. From these viewpoints, AES based hash functions have the following strong
points; 1) AES round function, which consists of S-box and MDS matrix, gives
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the lower bound of the number of active S-boxes in the differential trail. Thus
the upperbound of the differential and linear characteristics can be evaluated. 2)
Regardless of the fact that AES, as a block-cipher, has been analyzed for more
than 10 years, no significant weakness is detected in a single-key model. This
gives the trust about the security of the AES based structure. In fact, there are
many hash functions that are designed based on AES, for example Whirlpool
[6], Grøstl [7], ECHO [8], and SHAvite-3 [9].

Recently, an outstanding progress in the known-key attack [10] on AES and
cryptanalysis against AES based hash functions or permutations has been made.
Specifically, the rebound attack proposed by Mendel et al. at FSE 2009 [11] works
efficiently against AES based structures. After its publication, many improve-
ments upon the rebound attack have been proposed, such as start-from-the-
middle attack [12], super-sbox analysis on the rebound attack [13,14], rebound
attack with multiple inbound phases [15], and scrutinized rebound attack [16].
Furthermore, several techniques were proposed as applications of the super-sbox
analysis, for example, hyper-sbox analysis [17] and non-full-active super-sbox
analysis [18].

Different from the rebound attack, super-sbox analysis requires expensive at-
tack cost especially for memory, e.g. 232 computational cost and 232 memory
for AES, or 264 computational cost and 264 memory for Grøstl and Whirlpool.
In [18], Sasaki et al. changed the differential path so that several bytes in the
super-sbox part are not activated. This could reduce the attack cost to a prac-
tical range, but instead, the attacker’s advantage in their distinguisher was also
reduced. As far as we know, any method to reduce the attack cost especially for
memory with the original differential path (activating all bytes) is not proposed.

Regarding the rebound attack (without the super-sbox), the attack complex-
ity is strictly evaluated by considering the details of the differential distribution
table of the S-box and the property of the MDS matrix. On the other hand,
regarding the super-sbox, which consists of the mixture of two S-box layers and
one linear diffusion layer, its behavior is hard to strictly evaluate and thus has
not been discussed deeply so far. While there is a consensus that the complexity
evaluation of the super-sbox analysis in [13] is reasonable, the analysis still lacks
the theoretical and precise explanation, and as far as we know there is no ex-
perimental result showing the cost of the super-sbox analysis. Therefore, there
could be a constant-time difference between the widely believed complexity and
the actual attack cost.

In several previous analyses, the available freedom degrees is really tight, e.g.
distinguishers for the old version of the full Grøstl compression function [19,20]
has 2z freedom degrees to satisfy the differential characteristic with a probability
of 2−z. In such a case, a constant-time increase of the attack cost, and thus, a
constant-time decrease of freedom degrees will give a big impact on the success
probability of the attack. In addition, by taking into account the fact that several
applications of the super-sbox analysis were proposed, verifying the cost of the
super-sbox analysis by implementing the attack is useful.
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Fig. 1. Internal structure of the super-sbox analysis against AES

An Example of Previous Optimistic Complexity Evaluation

The detailed structure of the super-sbox against AES is described in Fig. 1.
All bytes in all states must have a difference. First, the difference of State #D
is randomly chosen. Then, for all possible 232 paired values at State #D, the
corresponding difference and values at State #A is computed. Previous work
[13] assumed that all 232 computations make State #A full active. However,
this is not true because the differences in several bytes may be cancelled in the
middle (at State #B). Hence, the number of solutions of the super-sbox analysis
is obviously less than the previous estimation. The impact of the loss only from
this observation is small, but this motivates us to do the precise complexity
evaluation of the super-sbox analysis.

Our Contributions

In this paper, we implement the super-sbox analysis against 8-round AES [13].
The attack in [13] requires 248 8-round AES computations and a memory for
storing 232 AES state, which is 236 bytes, namely 64 GBytes.

First of all, we consider the time-memory tradeoff for the super-sbox analysis,
namely, obtaining the same number of solutions of the inbound phase with a
reduced memory and an increased computational cost. Developing the time-
memory tradeoff gives us several benefits.

1. The super-sbox analysis is mainly useful for the evaluation in the hash func-
tion setting. Many AES based hash functions use a larger internal state size.
For example, the super-sbox analysis against Whirlpool and Grøstl requires
264 computational cost and a memory for 264 internal state. If the time-
memory tradeoff is available, this can be 280 computational cost and 248

memory. Hence, the time-memory tradeoff will be useful in the future.
2. Developing the tradeoff is a usual way to proceed in estimating the efficiency

of the attack.
3. The attack with 64-GByte memory can be implemented with a machine

whose price is about 10,000 dollars. If the memory size is much smaller, the
attack can be implemented with cheaper price.

Let us denote the computational cost for computing each super-sbox by T , the
memory size for each super-sbox by M , the number of iterations of the inbound
phase by N , and the number of obtained solutions of the inbound phase by D,
We show that the following tradeoff exists in the super-sbox analysis;

D = N ·M · (T/232)4.
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Therefore, the same results as previous super-sbox analysis can be obtained by
reducing the memory size M and increasing the computational cost coming from
N by the same factor.

We then separate the differential path into the first half and the last half,
and implement the attack for these two parts independently. Separating the
path makes the cost for the experiment to be 224 4-round AES computations in
time and 232 AES state in memory. We then apply the tradeoff to change the
costs into 232 4-round AES computations in time and 224 AES state in memory.
Finally, we can implement the attack with a PC which is much cheaper than the
one with more than 64-GByte memory. We assume that the number of solutions
D for the super-sbox (with 232 AES state in memory) is 28 times of the one for
our memory-reduced version. Based on this assumption, we estimate the attack
cost for the original super-sbox analysis.

Our experimental results show that the computational cost of the super-sbox
analysis is approximately 4 times higher than the previous estimation and the
freedom degrees are 4 times smaller than the previous estimation. Namely, the
cost of the previous super-sbox is approximately 250 8-round AES computations
instead of 248, and the available freedom degrees are approximately 262 rather
than 264, which indicates that applying the super-sbox analysis is harder than
expected.

2 Specifications

Advanced Encryption Standard (AES) [4,5] is a 128-bit block cipher supporting
three different key sizes; 128, 192, and 256 bits. The AES encryption and decryp-
tion perform 10, 12, and 14 rounds for AES-128, -192, and -256, respectively.

By using the key schedule function, round keys are generated from the original
secret key. We omit its description because the super-sbox analysis regards round
keys as given constant numbers.

When the data is processed, the internal state is represented by a 4 ∗ 4 byte
array. At the first, the original secret key is XORed to the plaintext, and then, a
round function consisting of the following four operations is iteratively applied.

- SubBytes(SB): substitute each byte according to an S-box table.
- ShiftRows(SR): apply the j-byte left rotation to each byte at row j.
- MixColumns(MC): multiply each column by an MDS matrix. MDS guaran-

tees that the sum of active bytes in the input and output of the MixColumns
operation is at least 5 unless all bytes are non-active.

- AddRoundKey(AK): apply a bit-wise exclusive-or with a round key.

Note that the MixColumns operation is not computed for the last round.
In this paper, we count the round number of AES from 1. Namely, the

computation for AES-128 starts from round 1 and ends with round 10. We
denote the initial state in round x by #xI . Then, states immediately after Sub-
Bytes, ShiftRows, MixColumns, and AddRoundKey in round x are denoted by
#xSB , #xSR, #xMC , and #xAK , respectively. Obviously, #xAK is identical
with #(x + 1)I .
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Table 1. An enumeration for byte positions in a state

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

We also denote byte positions in a state S by an enumeration {0, 1, 2, . . . , 15},
where the byte 4j + i corresponds to the byte in the i-th row and j-th column
of S, and is denoted by S[4j + i]. We often denote several bytes of state S by
S[A, B, . . .], e.g. 4 bytes in the right most column are denoted by S[12, 13, 14, 15].
To make it clear, we show the enumeration in Table 1.

3 Previous Work

3.1 Known-Key Attack on 8-Round AES

In 2010, Gilbert and Peyrin applied the super-sbox analysis upon the rebound
attack, and obtained the known-key distinguisher on 8-round AES [13]. The goal
of this attack is to find a pair of plaintexts such that the paired plaintexts have
differences in byte positions 0, 5, 10, and 15, and the corresponding ciphertexts
have differences in byte positions 0, 7, 10, and 13. The sketch of the attack is as
follows.

1. The attacker prepares the differential path. Fig. 2 is the one used in [13].
Then, the differential path is divided into two phases; inbound and outbound.

2. Many paired values which satisfy the inbound differential path are generated
efficiently by using the super-sbox technique.

3. These pairs are tested whether or not they can also satisfy the outbound
differential path.

In the analysis by [13], one paired values satisfying the inbound differential path
can be generated with a complexity of 1 on average. Because the probability of
the differential propagation for the outbound phase is 2−48, the attacker finds
the paired values satisfying the whole path with a computational cost of 248

8-round AES computations. Note that finding paired values which have the
same property for a random permutation requires 264 queries with a limited
birthday attack [13], and thus 8-round AES can be distinguished from a random
permutation.

The outbound phase is just testing the differential propagation of the given
paired values. Therefore, the essence of the attack lies in the inbound phase,
namely, how to efficiently find many paired values satisfying the inbound dif-
ferential path. We explain the details of the inbound and outbound phases in
Sect. 3.2 and Sect. 3.3, respectively.
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Round 3

#3I #3SB #3SR #3MC

SB SR MC AK

Round 4

#4I #4SB #4SR #4MC

SB SR MC AK

Round 1

#1I #1SB #1SR #1MC

SB SR MC AK

Round 2

#2I #2SB #2SR #2MC

SB SR MC AK

Round 5

#5I #5SB #5SR #5MC

SB SR MC AK

Round 6

#6I #6SB #6SR #6MC

SB SR MC AK

Round 7

#7I #7SB #7SR #7MC

SB SR MC AK

Round 8

#8I #8SB #8SR #8AK

SB SR AK

Fig. 2. Differential path of 8-round known-key distinguisher on AES. Active bytes are
in grey.

3.2 Inbound Phase by Using the Super-Sbox

The goal of the inbound phase is finding solutions satisfying the differential path
through 3rd round to 5th round, which is shown in Fig. 3. The previous super-
sbox analysis finds 232 pairs satisfying the differential path with 232 memory
and 232 computational cost. The detailed algorithm is described in Alg. 3.1.

Gilbert and Peyrin [13] and several following work assume that by the 232 it-
erations of step 3.1, each of 232 entries in T will have one solution on average for
one super-sbox. Therefore, at step 3.1, for each entry of T , each super-sbox will
produce one solution on average. In the end, the algorithm in Alg. 3.1 can pro-
duces 232 solutions of the inbound differential path with 232 memory for step 3.1
and 232 computational cost for step 3.1. Note that, this algorithm can be iterated
by changing the chosen value at step 3.1. Hence, the attack can produce up to
232 · 232 = 264 solutions by iterating the super-sbox part for 232 times.
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I SB SR MC

I SB SR MC

I MCI SB SR MC

Fig. 3. Differential path for inbound phase. Black cells denote bytes involved in one of
the super-sboxes.

Algorithm 3.1. Previous algorithm for the super-sbox analysis by [13].
Input: the differential path and a randomly generated subkey for round 4.
Output: 224 paired values satisfying the differential path of Fig. 3.
1. For all possible 232 differences at state #3SB, compute the corresponding difference

at state #4I , and store the results in a table L with the size of 232 AES state.
2. Choose a difference at state #5MC and compute the corresponding difference at

state #5SR.
3. For each of 232 possible 4-byte values of #5SR[3, 6, 9, 12], compute the super-sbox,

namely, compute the corresponding difference at #4I [12, 1, 6, 11]. If this difference
matches one of the entries of T generated at step 1, store these values in the same
entry of L. (232 computational cost is required for this step.)

4. Repeat step 3.1 for the other three super-sboxes (starting from #5SR[0, 7, 10, 13],
#5SR[1, 4, 11, 14], and #5SR[2, 5, 8, 15].)

5. For each entry of L, if the difference can be produced for all super-sboxes, output
all possible combinations of solutions for all super-sboxes.

3.3 Outbound Phase

In the outbound phase, we check the differential propagation of the paired values
sent from the inbound phase. Namely, we check whether or not the pair satisfies
the differential paths from #2MC to #2SR in round 2 and from #6SR to #6MC

in round 6. If both propagations are satisfied, we compute the corresponding
values of state #1I and #8AK . The both differential propagations from #2MC

to #2SR and #6SR to #6MC have a success probability of (2−8)3 = 2−24, and
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thus, the total success probability is 2−48. Therefore, by generating 248 solutions
in the inbound phase, we can find a pair which satisfies the whole differential
path.

The total attack cost is a sum of the one for the inbound phase and the one
for the outbound phase. For one iteration of the inbound phase in Alg. 3.1,
the inbound phase requires 232 in time and a memory for 232 AES state. the
outbound phase requires 232 in time and negligible memory. Because the inbound
phase is iterated 216 times to produce 248 solutions, the final complexity is
216 ·232 = 248 8-round AES computations in time and 232 AES state in memory.

4 Tradeoff in Super-Sbox Analysis

In this section, we analyze the relation among the computational cost (T ), the
required memory (M), and the number of obtained solutions (D), and show that
the time-memory tradeoff exists in the super-sbox analysis.

4.1 Algorithms for Super-Sbox Analysis with Reduced Memory

First of all, we clarify the procedure for the super-sbox analysis with reduced
time and memory. In this attack, compared to Alg. 3.1, we only use the memory
of size M for step 3.1, T computational cost for step 3.1, and obtain D solutions
of the inbound phase. The algorithm is described in Alg. 4.1. Note that steps 3.1,
3.1, and 3.1 are exactly the same as the ones in Alg. 3.1.

Algorithm 4.1. Super-Sbox analysis with a Time-Memory tradeoff.
Input: the different path and a randomly generated subkey for round 4
Output: D paired values satisfying the differential path of Fig. 3
Parameters: T , M , D
1. Choose M differences out of 232 choices at state #3SB and compute the corre-

sponding difference at state #4I . Store the results in a table L with the size of M
AES state.

2. Choose a difference at state #5MC and compute the corresponding difference at
state #5SR.

3. For T out of 232 possible 4-byte values of #5SR[3, 6, 9, 12], compute the super-sbox,
namely, compute the corresponding difference at #4I [12, 1, 6, 11]. If this difference
matches one of the entries of L generated at step 1, store these values in the same
entry of L. If the match does not occur, discard the pair. (T computational cost is
required for this step.) After T trials, eliminate entries from L which do not have
solutions for this super-sbox.

4. Repeat step 4.1 for the other three super-sboxes (starting from #5SR[0, 7, 10, 13],
#5SR[1, 4, 11, 14], and #5SR[2, 5, 8, 15].)

5. For each entry of L, if the difference can be produced for all super-sboxes, output
all possible combinations of solutions for all super-sboxes.
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4.2 Relationship among T , M , and D

We analyze the value of D with T in time and M in memory. For simplicity, let
us firstly discuss the cases where we only reduce either T or M .

Reducing the Memory Size M . We estimate the number of solutions D for
the parameters T = 232 and M < 232. In step 4.1, M differences are stored
at state #4I . We call these differences “target differences.” That is to say, we
have M target differences in a list L. Then in step 4.1, 232 differences at state
#4I [12, 1, 6, 11] are computed. If we assume that the resulting differences are
uniformly distributed, all differences at state #4I [12, 1, 6, 11] are reached exactly
once. Therefore, all target differences in L will have one solution for this super-
sbox. In step 4.1, the same procedure is repeated for the other three super-sboxes,
and thus all target differences in L will have one solution for all super-sboxes.
Finally, in step 4.1, all M target differences in L will produce one combination
of solutions of four super-sboxes. Therefore, the value of D is equal to M .

Reducing the Computational Cost T . We estimate the number of solutions
D for the parameters T < 232 and M = 232. In step 4.1, we have 232 target
differences (all possibilities) in a list L. Then in step 4.1, T differences at state
#4I [12, 1, 6, 11] are computed. Under the same assumption, only T differences
out of 232 possibilities can be reached and has one solution for this super-sbox.
Hence, the number of the target differences in L will be 232 ·T/232 (decrease by a
factor of T/232). In step 4.1, after the repetition for the other three super-sboxes,
the number of the target differences in L will be 232 · (T/232)4, and each of them
has only solution for all the super-sboxes. Finally, in step 4.1, 232 · (T/232)4

differences in L will produce one combination of solutions of four super-sboxes.
Therefore, the value of D is 232 · (T/232)4.

Generic Relationship among T , M , and D. By combining the previous
two analyses, we can express D by reduced M and T . First, in step 4.1, M
target differences are stored in a list L. Next, in steps 4.1 and 4.1, the size of
the target differences will decrease by the factor of (T/232)4, and each remaining
target difference have one solution for all the super-sboxes. Finally, the relations
among T , M , and D is described as

D = M · (T/232)4. (1)

Note that the limitation exists for the range of M and T . During one choice of
the difference at step 4.1 in Alg. 4.1, no advantage can be obtained if the attacker
spends more than 232 computational cost and memory. Hence, the range of M
and T are expressed as

0 < T ≤ 232, 0 < M ≤ 232. (2)

Equation (1) can be used for optimizing the attack depending on the attack
scenario. It indicates that if we reduce T and keep M unchanged, D, which is
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the number of solutions we can obtain, decreases by the speed of the power 4.
On the other hand, if we reduce M and keep T unchanged, D decreases only
linearly. Hence, reducing T makes the super-sbox analysis very inefficient, while
reducing M can be a possible variation of the analysis.

4.3 Time-Memory Tradeoff for Entire Inbound Phase

The relation in Eq.(1) is the tradeoff inside the one iteration (one choice of the
difference at step 4.1) of the algorithm in Alg. 4.1. we should consider the fact
that algorithm in Alg. 4.1 can be iterated up to 232 times with changing the
chosen difference at step 4.1. Let us denote the number of repetitions of Alg. 4.1
by N . Then, the relation for M, N, T , and D can be written as

D = N ·M · (T/232)4. (3)

Note that by repeating the attack N times, the total computational cost becomes
NT and the total memory size keeps unchanged from M .

As discussed in Sect. 4.2, reducing T makes the analysis very inefficient. There-
fore, keeping T = 232 is a reasonable strategy. Under this condition, the equation
becomes

NM = D, (4)

where, the total attack cost is N · 232. In most of the case including the super-
sbox analysis, the number of required solutions of the inbound phase is a fixed
constant as soon as the attack target and the attack model are determined.
Hence, regarding D as a constant number would be useful. In fact, D is 248 for
the super-sbox analysis. Finally, the equation becomes

NM = Constant. (5)

It is obvious that if M is reduced, N must be increased by the same factor
for achieving the attack, and this increases the computational cost by the same
factor. Finally, under the condition that T is fixed, we can conclude that the
time-memory tradeoff exists for the entire super-sbox analysis, which T ime ×
Memory = Constant. This answers the question we raised in the beginning of
Sect. 4, namely, for example, we can perform the super-sbox analysis with 240

in time and 224 in memory.
Note that the limitation also exists for N . At step 4.1 in Alg. 4.1, the number

of possible differences we can choose is 232. Hence, the limitation for all of the
parameters are expressed as

0 < T ≤ 232, 0 < M ≤ 232, 0 < N ≤ 232. (6)

5 Experiment

In this section, we verify the correctness and the complexity of the super-sbox
analysis on 8-round AES-128 by implementing the attack and carrying out some
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experiments. Note that the complexity of previous super-sbox and ours in Sect. 4
were roughly estimated. There may exist some difference between the theoretical
complexity estimation and the cost in practice. This is mainly because of the
optimistic assumption on the super-sbox behavior in the theoretical estimation;
when we try 232 values for step 3.1 in Alg. 3.1, the output of the super-sbox is
uniformly distributed. Our experiment actually shows that the required cost is
approximately 4 times higher than the theoretical estimation.

5.1 Implementation Technique

We implement the super-sbox analysis on a 32-bit OS personal computer. We
introduce two ideas to carry out the verification with a small computational cost
and memory.

Separating differential path. We separate the differential path into two
parts; from state #1I to #5MC and from #6I to state #8AK . We then
try to satisfy each differential path independently. Because it includes only 1
probabilistic differential propagation with a success probability of 2−24, each
path can be satisfied with only 224 solutions of the inbound phase. Therefore,
we can do the verification with the less computational cost than usual.

Time-Memory tradeoff. Previous super-sbox analysis requires 232 computa-
tional cost and 232 memory. Note that attacks using 232 memory is hard
to implement, and thus we need to reduce the memory. By using the sepa-
rated differential path, the outbound phase has a success probability of 2−24.
Therefore, the number of solutions we need is reduced from 232 of previous
work. In this case, we can apply the tradeoff discussed in Sect. 4. According
to Eq. (1), if D is reduced, M can be reduced by the same factor. Therefore,
we can implement the attack for D = 224 with parameters T = 232 and
M = 224 in Alg. 4.1.

In the end, by verifying both half-paths with a computational cost of 2 ·232 half-
AES = 232 full-AES computations and 224 memory, we can expect that 8-round
known-key distinguisher would correctly work with a computational cost of 248

and 232 memory.

5.2 Experimental Results

Parameters for the Experiment. We generate solutions for the inbound
phase by the algorithm in Alg. 4.1 with parameters T = 232 and M = 224.
We expect that 224 solutions for the inbound phase can be obtained, and for
each solution, we check the half-differential path for the outbound phase. If any
solution for the inbound phase cannot satisfy the outbound phase, we repeat the
algorithm by changing the difference at step 4.1, in other words, we increase N .

In our experiment, for step 4.1 of the algorithm in Alg. 4.1, we fixed the
difference of #3SB[0] to a unique value and considered all possible 224 differences
for #3SB[1, 2, 3]. One may suspect that fixing the difference of #3SB[0] causes
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Fig. 4. Experimental results of the first half of the separated differential path. The unit
for the vertical axis is 238. “theoretical value” describes the double of the complexity
estimation of [13].
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Fig. 5. Experimental results of the last half of the separated differential path. The unit
for the vertical axis is 238. “theoretical value” describes the double of the complexity
estimation of [13].

the biased distribution, and thus generates biased experimental results. In the
remarks at the end of this section, we show that fixing the difference of #3SB[0]
does not generate biased results. In order to collect the data for Figs. 4 and 5, we
repeated the inbound phase producing 224 solutions many times. For all trials,
we randomly determine the difference at state #5MC in step 2 of the algorithm.

Results. The results of the experiment which obtains the pairs satisfying the
differential path from state #1I to state #5MC is shown in Fig. 4.

The figure shows the computational cost for satisfying the outbound path
several times. First, we point out that we simply need to spend the doubled cost
compared to [13]. This is because that among 224 pairs generated in the inbound
phase by combining all possibilities of 4 super-sboxes at step 3.1 in Alg. 3.1,
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duplicated pairs such as (a, b) and (b, a) are included. These pairs always result in
the same difference through any linear operation including MixColumns. Hence,
we can use only 223 unique pairs in this experiment, and thus to obtain 224 pairs
we need double of the computational cost of [13]. Due to this property, in Figs. 4
and 5, we denote the double complexity of [13] by “theoretical value”.

Our experimental results in Figs. 4 and 5 indicate that the cost for the out-
bound phase is even higher than the doubled theoretical estimation. We con-
firmed that the probability for the outbound path is 2−24, and thus it can be
satisfied with a high probability if 224-225 solutions of the inbound phase are
generated1. Therefore, this fact indicates that we cannot obtain D = 224 solu-
tions for the inbound phase with T = 232 and M = 224, which was estimated
based on the assumption of the uniform output of the super-sbox. In practice,
it outputs only 221.7 solutions, and to cover the loss of the factor of 22.3, the
attack is repeated N = 22.3 times.

From the same reason, we get to know that the original super-sbox analysis
which uses the parameters T = 232 and M = 232 can produce only D = 232−2.3 =
229.7 solutions for the inbound phase, and to obtain 232 solutions, the attack
must be repeated N = 22.3 times. This raises the computational cost of previous
super-sbox [13] from 248 to 250.3 and reduces the maximum freedom degrees
from 264 to 261.7.

Remarks. Considering that 28− 1 differential patterns exist in #2SR[0], 28− 1
differential patterns of #2MC [0, 1, 2, 3] can satisfy the differential path, where
the differential patterns of #2MC [0] varies from 1 to 28 − 1. However, the fixed
difference of #3SB[0] only produces 127 differential patterns in #2MC [0], and
thus the probability of satisfying the differential path seems 2−25(= 2−32 · 27)
rather than 2−24(= 2−32 · 28). We show that the above argument is not correct.

Let us explain why the probability of the differential propagation from #2MC

to #2SR is roughly 2−24 with the original super-sbox analysis (with 232 memory).
We count the number of valid paired values in each state. For #2SR[0, 1, 2, 3],
the number of valid paired values is 240(= 232 · 28). Therefore, the number of
valid paired values at #3SB[0, 1, 2, 3] is also 240. On the other hand, solutions
of the inbound phase will have a random value and difference at #3SB[0, 1, 2, 3],
and thus, it takes 264(= 232 · 232) possibilities. Finally, the probability that a
solution of the inbound phase reaches #2SR is 240/264 = 2−24.

Similarly, we evaluate the probability in our memory-reduced algorithm (the
difference of #3SB[0] is fixed). For #2SR[0, 1, 2, 3], the number of valid paired
values is 240(= 232 · 28). Among 240 paired values, they are valid only if the
corresponding difference at #3SB[0] matches the fixed value. The probability
of the match is 2−8. Hence, the number of valid paired values at #3SB is
232(= 240 ·2−8). On the other hand, solutions of the inbound phase will have 232

possibilities on the value and 224 possibilities on the difference, and thus it takes

1 The probability for the outbound path comes from a simple differential propagation
through MixColumns or InverseMixColumns. The correctness of this probability has
been confirmed by much previous researches on AES.
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256 possibilities. Finally, the probability that a solution of the inbound phase
reaches #2SR is 232/256 = 2−24, which is the same as the original super-sbox
analysis.

6 Concluding Remarks and Future Work

In this paper, we analyzed the relations among memory, computational cost,
and the number of solutions for the super-sbox analysis on 8-round AES, and
discovered the tradeoff among these parameters. We then implemented the super-
sbox analysis in order to verify the attack complexity. For this purpose, we
introduced two ideas to make the implementation feasible. As a result of the
experiments, we found that the cost for the super-sbox analysis was more than
the previous estimation, and the available freedom degrees was smaller than the
previous estimation.

Future Work

– We experimentally confirmed the details of the approximated attack com-
plexity for the super-sbox analysis. Giving a theoretical reasoning is a re-
maining work.

– To investigate the super-sbox behavior deeply, making the differential distri-
bution table (DDT) seems helpful. However, making a DDT for 32-bit S-box
requires 264 memory and thus infeasible. The remaining work is doing the
simulation by reducing the byte size e.g. 4 bits in one byte. Comparison of
the super-sbox behavior with changing the byte size seems interesting.

– One of the most important work is investigating the impact of the recon-
sidered complexity on the previously published super-sbox analyses. For ex-
ample, in the distinguisher for the old version of the full Grøstl compression
function [19,20], the attacker only has the freedom degrees of 2z to satisfy
the differential path with the probability of 2−z. In such a case, due to the re-
duced freedom degrees, the success probability of the attack will decrease by
a non-negligible factor. Another interesting target is the analysis on ECHO
[18]. Because ECHO uses the AES round structure recursively, the impact of
the change of the super-sbox complexity will be increase, and thus the strict
complexity estimation is important.
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Abstract. This paper investigates methods that allow a third-party authority to
control contents transmitted using a public key infrastructure. Since public key
encryption schemes are normally designed not to leak even partial information of
plaintext, traditional public key encryption schemes do not allow such control-
ling by an authority. In the proposed schemes, an authority specifies some set of
forbidden messages, and anyone can detect a ciphertext that encrypts one of the
forbidden messages. The syntax of public key encryption with such a functional-
ity (restrictive public key encryption), formal definitions of security requirement
for restrictive public key encryption schemes, and an efficient construction of re-
strictive public key encryption are given.

In principle, restrictive public key encryption schemes can be constructed by
adding an NIZK proof that proves whether the encrypted messages are not pro-
hibited. However if one uses the general NIZK technique to construct such a non-
interactive proof, the scheme becomes extremely inefficient. In order to avoid
such an inefficient construction, the construction given in this paper uses tech-
niques of Teranishi et al., Boudot, and Nakanishi et al.

One of the possible applications of restrictive public key encryption is protect-
ing a public key infrastructure from abuse by terrorists by disallowing encryption
of crime-related keywords. Another example is to perform format-check of a bal-
lot in an electronic voting, by disallowing encryption of irregular format voting.

1 Introduction

Background and Motivation. Public key encryption schemes are required to hide
even partial information of plaintexts. This strong requirement is formalized as the no-
tion of semantic security [14], and it is currently considered as even one of the lowest
requirement for encryption scheme.

As a consequence of the strong secrecy requirement of semantic security, no one can
detect the ciphertext which encrypts some particular plaintexts. This paper considers
how to add such a functionality to public key encryption without losing reasonable
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secrecy of encrypted plaintexts. To formally treat this functionality, we define the notion
of restrictive public key encryption (RPKE). Restrictive public key encryption allows a
trusted third party to specify a set of prohibited messages, and anyone can detect a
ciphertext which encrypts one of the prohibited messages. Moreover, this verification
process is required not to leak information about the encrypted plaintext except whether
it is a prohibited messages or not.

Such a functionality can be realized using well-known NIZK technique, like a gen-
eral NIZK through the Hamilton path problem. However, this realization is extremely
inefficient. Even an OR-proof based NIZK does not suffice for an efficient construction,
this construction requires the very large ciphertext, whose length linearly depends on
the number of allowed messages. In this paper, we explore further efficient construction,
and proposes a scheme that achieves shorter ciphertext whose length does not increase
as the number of allowed messages increase.

One of the application of restrictive public key encryption is a countermeasure against
abuse of a public key infrastructure by terrorists. This is achieved by disallowing en-
cryption of crime-related messages, and forbid terrorists from using a public key in-
frastructure to planning terrorism or sending instruction for terrorist activities. Another
application may be a format-checking in electronic voting, by disallowing encryption
of irregular format ballots. In this application, only encryptions of correctly-formatted
voting is allowed, and gateways can dispose any encrypted ballot of irregular format
without violating privacy of voters.

Contribution. In this paper, we give a formal definition of restrictive public key en-
cryption. We also give an efficient construction of restrictive public key encryption.
The definition even captures very strong security of chosen-ciphertext security. The
construction utilizes the techniques of Teranishi et al. [18], Boudot [6], and Nakanishi
et al. [15], in order to obtain an efficient construction. The construction also has a ca-
pability of updating the message space specified by the authority. We again emphasize
that the construction given in this paper is quite more efficient than the trivial construc-
tion employing the general NIZK technique through the Hamilton path problem and
even more efficient than a simple OR-proof based construction. More concretely, the
encryption cost, the verification cost, and the ciphertext length is constant (independent
from the number of allowed messages and the number of prohibited messages), whereas
in the OR-proof construction they all linearly increase as allowed messages increase.
This efficiency is achieved by the use of techniques of Teranishi et al. [18], Boudot [6],
and Nakanishi et al. [15]. The proposed construction uses the BB signature [2] and the
BBS+ signature [1,3,13] and further uses non-interactive proofs proving possession of
the signature. This non-interactive proofs are constructed from novel algebraic proper-
ties of the BB signature and the BBS+ signature.

Related Works. Verifiable encryption [7,8,17] is one of the most widely known ways
to restrict contents under the secret channel and enables anyone to verify whether en-
crypted messages satisfy certain restrictions or not without leaking other information
about plaintexts. However, verifiable encryption does not have the capability of disal-
lowing to encrypt some specified messages. Fuchsbauer and Pointcheval [12] proposed
a techniques to verify whether an encrypted plaintext satisfies some pairing-product
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equation, but it also lacks a capability of restricting the message space. Searchable en-
cryption [4] seems to be a promising technique to construct restrictive PKE, that is,
once the authority publicizes trapdoor information corresponding to some prohibited
keyword, anyone can detect ciphertexts that encrypt one of the prohibited keyword.
However, in order to update the message space publicized by the authority, this ap-
proach requires to revoke the trapdoor previously publicized. Since all known search-
able encryption schemes does not have such a capability, searchable encryption cannot
be directly adopted to the restrictive PKE context. Another approach is publicizing all
trapdoors for allowed messages, in order to recover encrypted message by using this
trapdoor information and detecting prohibited messages. However, this approach is also
inappropriate, because the information of encrypted message is completely leaked due
to the trapdoor information publicized by the authority.

2 Preliminary

In this section, we define building tools used in our generic RPKE construction.

Public Key Encryption. A public key encryption (PKE) scheme consists of three al-
gorithms, PKE.KeyGen, PKE.Enc and PKE.Dec. The public key pk and the secret key
sk are given by executing PKE.KeyGen(1κ), where κ is the security parameter. For a
message M ∈ MPKE, where MPKE denotes the message space of PKE, a user runs
PKE.Enc(pk,M) and obtains a ciphertext c. The message M is recovered by executing
PKE.Dec(sk, c). In our construction, we need to explicitly describe a random coin u
which is used for encryption. We denote it c = PKE.Enc(pk,M; u). We sometimes omit
pk and describe this PKE.Enc(M; u).

Definition 1. A PKE scheme (PKE.KeyGen,PKE.Enc,PKE.Dec) is said to be IND-
CCA secure when for any probabilistic polynomial-time (PPT) adversary A which
does not query the decryption oracle PKE.Enc(sk, ·) with the challenge ciphertext c∗
after receiving it, the advantage AdvIND-CCA

A (1κ) = Pr[(pk, sk) ← PKE.KeyGen(1κ);

(M∗0,M
∗
1, S tate) ← APKE.Dec(sk,·)(pk); b

$← {0, 1}; c∗ ← PKE.Enc(pk,M∗b); b′ ←
APKE.Dec(sk,·)(c∗, S tate) : b = b′] − 1

2 is negligible.

Signature. A signature scheme consists of three algorithms, Sig.KeyGen, Sign, and
Verify. Sig.KeyGen is a probabilistic algorithm which outputs a signing/verification
key pair (Ks,Kv). Sign(Ks,M) is a probabilistic algorithm which outputs a signature σ
from Ks and a message M ∈ MS ig, whereMS ig is the message space. Verify(Kv,M, σ)
is a deterministic algorithm which outputs 1 if σ is a valid signature, and 0 otherwise.

Definition 2. A signature scheme (Sig.KeyGen,Sign,Verify) is said to be EUF-CMA
secure when for any PPT adversaryA the advantage AdvEUF-CMA

A (1κ) = Pr[(Ks,Kv) ←
Sig.KeyGen(1κ); (M∗, σ∗) ← ASign(Ks ,·)(Kv) : M∗ was not queried to Sign(Ks, ·) ∧
Verify(Kv,M∗, σ∗) = 1] is negligible.

In addition, a signature scheme is said to be EUF-wCMA (weak CMA) [2] if A gives
the set of signing query before the challenger sends Kv toA.
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Σ-protocol [10,9]. Let R ⊂ {0, 1}∗ × {0, 1}∗ be a binary relation. For (x, ω) ∈ R, we call
ω is a witness of x. We assume that the following 3-round form, where x is common
input of a prover P and a verifier V , and ω (such that (x, ω) ∈ R)) is private input to P.
First, P sends a message a to V . V sends a random bit string e′. Finally, P sends a reply
z, and V decides whether the proof is accepted or not. We say that a 3-round protocol
〈P,V〉 is a Σ-protocol for relation R if the following hold:

Completeness: If P and V follow the protocol, then V always accepts.
Special soundness: From any common input x and any pair of accepting conversations

on input x, (a, e′, z) and (a, e′′, z′′) where e′ � e′′, one can efficiently compute ω
such that (x, ω) ∈ R.

Special honest verifier zero-knowledge: There exists a polynomial-time simulator,
which on input x and a random challenge string e′, outputs an accepting conver-
sation of the form (a, e′, z), with the same probability distribution as conversations
between the honest P, V on input x.

In our RPKE construction, we convert the underlying Σ-protocol into NIZK proof of
knowledge by applying Fiat-Shamir heuristic [11]. Therefore, we require random ora-
cles in our construction. We denote such a converted proof as NIZK{ω : (x, ω) ∈ R}
where x is an instance of the language and ω is its witness.

3 Restrictive Public Key Encryption

3.1 Motivating Discussion

First, to control the contents under secure communications, we consider a scenario as
follows. Let us consider four entities: a message restriction authority (MRA), a verifier,
a sender, and a receiver. The MRA indicates a restricted message space MS (a set of
allowed messages), and publicizes the corresponding public verification key to verifiers
and senders. A verifier (which is assumed to be a gateway) inspects whether a ciphertext
sent by the sender is an encryption of a value belonging to the message space MS. We
require that any information about a plaintext is not revealed from a ciphertext, except
the above information. In addition, a verifier inspects all ciphertext, and disposes it
if it does not pass the verification process. In this scenario, the MRA can control the
encrypted contents without compromising user privacy.

3.2 Formal Definitions

Definition 3. A restrictive public key encryption (RPKE) consists of six algorithms
(MRASetup,RKeyGen,MSSetup,REnc,VerifyMS,RDec) such that:

MRASetup: The key generation algorithm for the MRA takes as input a security pa-
rameter κ ∈ N, and returns a public key pkMRA and a private key skMRA.

RKeyGen: The receiver key generation algorithm takes as input pkMRA, and returns a
public key pkd and a private key skd.

MSSetup: The public verification key generation algorithm takes as inputs pkMRA,
skMRA, and MS , and returns the public verification key pkMS .
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REnc: The encryption algorithm takes as inputs pkMRA, pkd, MS , pkMS , and a message
M, and returns a ciphertext C. If M � MS , then the algorithm returns ⊥.

VerifyMS: The public verification algorithm takes as inputs pkMRA, pkd, pkMS , and C,
and returns a bit 1 or 0.

RDec: The decryption algorithm takes as inputs pkMRA, pkd, skd, and C, and returns
M or ⊥.

As a correctness, a restrictive public key encryption scheme has to satisfy that
for any κ ∈ N, any restrictive message space MS, any message M ∈ MS,
(pkMRA, skMRA) ← MRASetup(1κ), (pkd, skd) ← RKeyGen(pkMRA), pkMS ←
MSSetup(pkMRA, skMRA,MS ), and C ← REnc(pkMRA, pkd,MS , pkMS ,M), it holds
that RDec(pkMRA, pkd, skd,C) = M and VerifyMS(pkMRA, pkd, pkMS ,C) = 1.

Here, we describe an implementation of a scenario to control the contents under secure
communications (presented in Sect. 3.1) using restrictive PKE notations. The MRA
runs MRASetup(1κ), publicizes its public key pkMRA, and keeps its secret key skMRA.
The MRA indicates an allowed message space MS , runs MSSetup(pkMRA, skMRA,MS ),
and publicizes pkMS . A receiver runs RKeyGen(pkMRA) and publicizes its public key
pkd, and keeps its corresponding secret key skd. For a plaintext M, a sender com-
putes a ciphertext C by running REnc(pkMRA, pkd,MS , pkMS ,M), and sends C to a
verifier (which is assumed to be gateway). By using only public values pkMRA, pkd,
and pkMS , a verifier checks whether M ∈ MS or not without decrypting C. In ad-
dition, this procedure should be done without any interaction with other entities. If
VerifyMS(pkMRA, pkd, pkMS ∗ ,C) = 1 (i.e., M ∈ MS ), then the verifier forwards C to
the corresponding receiver. Otherwise, if VerifyMS(pkMRA, pkd, pkMS ∗ ,C) = 0 (i.e.,
M � MS or C is an ill-formed value), the verifier disposes C. The receiver runs
RDec(pkMRA, pkd, skd,C), and obtains M. The receiver does not have to consider MS
for decrypting C. In the above scenario, The MRA and the verifier cannot obtain any
information about a plaintext M from a ciphertext, except whether M ∈ MS or not.
If MS is changed updated to MS ′, then the MRA runs MSSetup(pkMRA, skMRA,MS ′),
and publicizes pkMS ′ again. And then pkMS′ is broadcasted to all users.

Here we define verification soundness, which requires that all dishonestly-generated
ciphertext never passes the verification process of VerifyMS. Furthermore, this notion
requires even a ciphertext which is honestly-generated with MS not to pass the verifi-
cation process with a different message space MS′. The latter prevents a sender from
reusing a previous public verification key pkMS. To guarantee that even a receiver cannot
produce such a invalid (dishonestly-generated but passing the verification) ciphertext,
we allowA to generate (pkd, skd).

Definition 4. A restrictive PKE is said to satisfy verification soundness if
the advantage Pr[(pkMRA, skMRA) ← MRASetup(1κ); (pkd, skd,C∗,MS ∗) ←
AMSSetup(pkMRA ,skMRA,·)(pkMRA); pkMS ∗ ← MSSetup(pkMRA, skMRA,MS ∗) :
VerifyMS(pkMRA, pkd, pkMS ∗ ,C∗) = 1 ∧ RDec(pkMRA, pkd, skd,C∗) � MS ∗] is
negligible for any PPT adversaryA.

Next, we define indistinguishability with restrictive message space under chosen ci-
phertext attack (IND-MSR-CCA). To guarantee that even the MRA cannot decrypt a
ciphertext, we assume thatA can generate (pkMRA, skMRA).



198 Y. Sakai et al.

Definition 5. A restrictive PKE is said to satisfy IND-MSR-CCA
if the advantage Pr[(pkMRA, skMRA, s) ← A(1κ); (pkd, skd) ←
RKeyGen(pkMRA); (M∗0,M

∗
1,MS∗, pkMS∗ , s

′) ← ARDec(pkMRA,pkd ,skd ,·)(pkd, s); b
$←

{0, 1}; C∗ ← REnc(pkMRA, pkd,MS, pkMS,Mb); b′ ← ARDec(pkMRA ,pkd ,skd ,·)(C∗, s′) : b =
b′]−1/2 is negligible for all PPT adversaryA which satisfies the following conditions:
(1) The adversaryA doesn’t query the decryption oracle RDec(pkMRA, pkd, skd, ·) with
the challenge ciphertext C∗ after receiving it and (2) M∗0, M∗1, and MS ∗ output by the
adversaryA always satisfy that M∗0, M∗1 ∈ MS ∗.

4 Constructions

In this section we show a generic construction of a restrictive PKE scheme from an
IND-CCA secure PKE, an EUF-CMA signature, and a non-interactive proof obtained
from techniques of Boudot [6], Nakanishi et al. [15], and Teranishi et al. [6,15,18]. We
further show that a concrete instantiation of the generic construction.

Let [1,N] = {1, . . . ,N} be a set of all possible messages (may or may not be pro-
hibited) and r be the number of all prohibited messages. We say that the sequence
(m1, . . . ,mr) is the consecutive prohibited messages of MS when {m1, . . . ,mr} is the all
prohibited messages of MS and it holds that m1 < · · · < mr. Later (m1, . . . ,mr) denotes
the consecutive prohibited messages of MS, where MS is the allowed message space
implicit in the context.

4.1 High Level Overview

From the highest perspective, the proposed construction is to encrypt a plaintext M by
computing c = PKE.Enc(pkd,M; u) and adding a non-interactive proof π that proves
that M ∈ MS, and constitute a whole ciphertext (c, π) as c = PKE.Enc(pkd,M; u) and

π = NIZK{ (M, u) : c = PKE.Enc(pkd,M; u) ∧ M ∈ MS }.
For example, π is a OR-proof (through Fiat-Shamir heuristics) as NIZK{(M, u) : (M =
M1)∨· · ·∨(M = MN−r)}, however, the efficiency might linearly depend on the number of
allowed messages N − r. Or, when using inequality proof with OR-proof to construct a
proof π, the efficiency increases linearly depends on the number of prohibited messages
r. These construction does not provide satisfiable efficiency. To improve the efficiency
of the construction we first apply Teranishi et al. technique.

Teranishi et al. Technique [18]. Using the technique of Teranishi, Furukawa, and
Sako [18], we can reduce the computational complexity just mentioned above. Briefly
speaking, Teranishi et al. technique is an NIZK proof of knowledge that proves a se-
cret knowledge ω is in the interval [1,N]. This technique involves a signature scheme
(Sig.KeyGen,Sign,Verify), and its NIZK proof has the form of NIZK{(S , ω) : S =
Sign(ω)} (where the witness is (S , ω)). This proof system can be efficiently constructed
by using an appropriate signature scheme (the BB signature [2] is used indeed) and its
algebraic property.
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When applying this technique to the restrictive PKE construction, we get the follow-
ing improvement: In the setup, the MRA generates a verification/signing key pair and
secretly possesses the signing key. The MRA then publicizes signatures for all allowed
messages. To encrypt a message M, a sender uses the signature S publicized by the
MRA and compute a ciphertext c = PKE.Enc(pkd,M; u) and a proof of knowledge

π = NIZK{ (M, u, S ) : c = PKE.Enc(pkd,M; u) ∧ S = Sign(M) }, (1)

which is attached to the ciphertext c. In this way, if a sender wants to encrypt an allowed
message M ∈ MS, he can generate an acceptable π using Sign(M) publicized by the
MRA. In contrast, if a sender wants to encrypt a prohibited message M′ � MS, he
cannot generate an acceptable proof π of the form above. This is because the MRA
does not publicize Sign(M′), nor the sender cannot generate Sign(M′) by himself (due
to the unforgeability of the signature), and thus the sender cannot generate the proof of
knowledge NIZK{(M, S ) : S = Sign(M′)} due to the lack of the knowledge needed.

Furthermore, the computational cost of verification of the proof does not depend on
the number of allowed messages, because the proof of knowledge NIZK{(M, u, S ) : c =
PKE : Enc(pkd,M; u) ∧ S = Sign(M)} used here does not depend on the number of
allowed messages.

Boudot Technique [6]. The construction discussed above requires the MRA to pub-
licize |MS| signatures. Here we show how the Boudot technique [6] reduces the size
of this large public parameter. This technique exploits the fact that any natural number
ω ∈ [1,N] can be written as ω = ω2

1 + ω2 using ω1 ∈ [1,N1], the greatest square less
than ω, and ω2 ∈ [0,N2], where N1 = 

√
N� and N2 = 2

√
N�. More concretely, this

technique proves knowledge of the signature using zero-knowledge proof of knowledge
as NIZK{(S 1, S 2, ω, ω

2
1, ω2) : S 1 = Sign(ω1) ∧ S 2 = Sign(ω2) ∧ ω = ω2

1 + ω2}, instead
of NIZK{(S , ω) : S = Sign(ω)} as in the Teranishi et al. technique. The technique also
relies on the algebraic property of the BB signature [2] to construct an efficient NIZK
proof, instead of relying on an inefficient general NIZK proof.

This technique seems to reduce the size of the public parameter in the proposed
construction, however, straightforward application of this technique does not cor-
rectly work. To show this, let us consider the situation that M1 = ω

2
1,1 + ω1,2 and

M2 = ω
2
2,1 + ω2,2 is allowed, M3 = ω

2
3,1 + ω3,2 is prohibited, and ω1,1 = ω3,1

and ω2,2 = ω3,2 hold. In this situation, the MRA publicizes at least four signatures
Sign(ω1,1), Sign(ω2,1), Sign′(ω1,2), Sign′(ω2,2), for senders to produce a proof that the
encrypted message is allowed. This in turn causes malicious senders to be able to pro-
duce a proof for a prohibited message M3 = ω

2
3,1 + ω3,2 by picking up Sign(ω1,1)

and Sign′(ω2,2) from the public verification key. This drawback are solved by applying
Nakanishi et al. technique as follows.

Nakanishi et al. Technique [15]. Adopting Nakanishi et al. technique solves the above
problem and moreover it enables further efficiency improvement. This improvement
relies on the fact that if all the prohibited messages are denoted as m1, . . ., mr, and
m1 < · · · < mr holds, then any allowed message M ∈ MS has a unique “position” j
such that m j < M < m j+1 holds, and any prohibited message M � MS has no such



200 Y. Sakai et al.

position. Another fact that the improvement relies on is that when N < p/2 holds,
y > x is logically equivalent to y − x mod p ∈ [1,N] for any x, y ∈ [1,N]. Using
this technique, one can prove the fact M ∈ MS by proving the existence of j such that
m j < M < m j+1 instead, and prove m j < M < m j+1 itself by proving M − m j ∈
[1,N]∧m j+1 −M ∈ [1,N]. To prove M −m j ∈ [1,N], one can further apply the Boudot
technique as proving knowledge of signatures Sign(δ1,1) and Sign(δ1,2) such that M −
m j = δ

2
1,1 + δ1,2 to reduce the size of the public parameter that the MRA has to prepare.

More precisely, in order to ensure that m j and m j+1 used to prove M−m j ∈ [1,N] are the
prohibited messages, a sender also proves knowledge of signatures Sign(m j,m j+1). This
technique is originally developed by Nakanishi et al. [15] in the context of revocable
group signature. We further apply the technique of Nakanishi et al., in order to construct
an efficient restrictive PKE scheme.

Putting all together, the ciphertext of the proposed construction has the form of (c, π),
and each of components are computed as

c = PKE.Enc(pkd,M; u),

π = NIZK

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M, u, S ′′, S 1, S ′1, S 2, S ′2, δ1,1, δ1,2, δ2,1, δ2,2,m j,m j+1)
: Verify((m j,m j+1), S ′′) = 1 ∧ Verify(δ1,1, S 1) = 1 ∧ Verify′(δ1,2, S 2) = 1
∧ Verify(δ2,1, S ′1) = 1 ∧ Verify′(δ2,2, S ′2) = 1
∧ M − m j = δ

2
1,1 + δ1,2 mod p ∧ m j+1 − M = δ2

2,1 + δ2,2 mod p
∧ c = PKE.Enc(pkd,M; u)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(2)

We again emphasize that π, a non-interactive proof of knowledge, can be instantiated
efficiently, which is obtained from algebraic properties of the involved public key en-
cryption scheme and signature scheme (More concretely, algebraic property of the BB
signature [2] and the BBS+ signature [1,3,13] is used, and for the detailed description
of these two signature scheme see Sect. 4.4).

Updating pkMS. The above idea does not provide the functionality of updating the
message space, but a simple modification (which will be explained below) enables us to
obtain such a functionality. To update the message space specified by the MRA from MS
to MS′ where the prohibited messages of MS and MS′ are {m1, . . . ,mr} and {m′1, . . . ,m′r′ }
respectively, one may think that just re-publicizing signatures Sign′′(m′i ,m

′
i+1) for all

i ∈ {0, . . . , r′} is suffice to do that (where m′0 = 0 and m′r′+1 = N + 1 as in the con-
struction). However, in this way, a malicious sender will re-use some old signature
Sign′′(mi,mi+1) and try to fool the verification process, which inspects whether a ci-
phertext encrypts a value belonging to a new message space MS′. A simple way to
avoid the above attack is to publicize signatures Sign(t,mi,mi+1) where t is a serial
number, instead of Sign(mi,mi+1). In this case a malicious sender is no longer able to
re-use old signatures to fool the verification process.

4.2 Generic Construction

In this section, using the ideas we mentioned above, we show that a generic construction
of restrictive PKE from an IND-CCA secure PKE, an EUF-CMA secure signature, and a
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Σ-protocol for Eq. (2). In the following, let [1,N] = {1, . . . ,N} be a set of whole possible
messages (they may or may not be prohibited), r be the number of prohibited messages.
Let (PKE.KeyGen,PKE.Enc,PKE.Dec) be an IND-CCA secure public key encryption
scheme, (Sig.KeyGen,Sign,Verify), (Sig.KeyGen′,Sign′,Verify′), and (Sig.KeyGen′′,
Sign′′,Verify′′) be EUF-CMA secure signature schemes. The construction is as follows:

MRASetup(1κ): Run (Ks,Kv) ← Sig.KeyGen(1κ), (K′s,K′v) ← Sig.KeyGen′(1κ), and
(K′′s ,K′′v ) ← Sig.KeyGen′′(1κ). For k ∈ [1,  √N�], compute σ1,k ← Sign′(K′s, k).
For k ∈ [0, 2√N�], compute σ2,k ← Sign′′(K′′s , k). Output pkMRA = (Kv,K′v,K′′v ,

{σ1,k}
√

N�
k=1 , {σ2,k}2

√
N�

k=0 ) and skMRA = (Ks,K′s,K′′s ).
RKeyGen(pkMRA): Run (pk, sk) ← PKE.KeyGen(1κ), and output pkd = pk and skd =

sk.
MSSetup(pkMRA, skMRA,MS ): Let MS = [1,N] \ {m1, . . . ,mr} where m1 < · · · < mr,

m0 = 0, and mr+1 = N + 1. Choose a current serial number t ∈ Zp. For � ∈ [0, r],
compute σ� ← Sign(Ks, t,m�,m�+1). Output pkMS = (t, {σ�}r�=0).

REnc(pkMRA, pkd,MS , pkMS ,M): For M ∈ MS , find the position j such that m j <
M < m j+1. If there is no such m j (which means M � MS ), output ⊥. Otherwise,
find σ j from pkMS , compute δ1,1, δ2,1 ∈ [1,  √N�], and δ1,2, δ2,2 ∈ [0, 2√N�],
where M −m j = δ

2
1,1 + δ1,2 and m j+1 −M = δ2

2,1 + δ2,2 and find σ1,δ1,1 , σ2,δ1,2 , σ1,δ2,1 ,
and σ2,δ2,2 from pkMRA. Compute c = PKE.Enc(pkd,M; u), and π of the following
relations:

NIZK

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M, u, σ j, σ1,δ1,1 , σ2,δ1,2 , σ1,δ2,1 , σ2,δ2,2 , δ1,1, δ1,2, δ2,1, δ2,2,m j,m j+1)
: σ j = Sign(t,m j,m j+1)
∧ σ1,δ1,1 = Sign′(δ1,1) ∧ σ2,δ1,2 = Sign′′(δ1,2)
∧ σ1,δ2,1 = Sign′(δ2,1) ∧ σ2,δ2,2 = Sign′′(δ2,2)
∧ M − m j = δ

2
1,1 + δ1,2 mod p

∧m j+1 − M = δ2
2,1 + δ2,2 mod p

∧ c = PKE.Enc(pkd,M; u)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Finally, output C = (c, π).
VerifyMS(pkMRA, pkd, pkMS ,C): Output 1 if π is a valid proof, and 0, otherwise.
RDec(pkMRA, pkd, skd,C): Output PKE.Dec(skd,C).

The above construction, especially the zero-knowledge proof of Eq. (1), can be quite ef-
ficiently instantiated when one adopts appropriate digital signatures and Teranishi et al.,
Boudot, and Nakanishi et al. techniques. More concretely, the BBS+ signature [1,3,13]
is applied for Sign, and two instance of the BB signature [2] are applied for Sign′ and
Sign′′. When applying the BBS+ signature and the BB signature, adopting the tech-
niques of [3,15], the zero-knowledge proof of Eq. (1) is efficiently constructed, and the
entire restrictive PKE construction becomes drastically more efficient than the construc-
tion employing the general NIZK technique.

However, a drawback of this construction is that the plaintext space has to be small.
More concretely, [1,N], the set of all possible (prohibited or allowed) messages, has to
be just a polynomially (not exponentially) large. Due to the construction of NIZK proof,
a message M ∈ [1,N] have to be encoded into the underlying group as gM, and hence
a receiver must compute a discrete logarithm of gM in order to recover the message
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M. This constraint causes an inefficient decryption. However, it can be bypassed by re-
stricting N to be sufficiently small to compute a discrete logarithm efficiently. When one
can use Pollard’s lambda method, M can be recovered from gM in O(

√
N) computation

time.

4.3 Security Analysis

The above construction satisfies the security requirement of verification soundness and
IND-MSR-CCA security. Due to the limitation of pages, the proof is given in the
appendix.

Theorem 1. The construction given above satisfies verification soundness if the un-
derlying signature scheme (Sig.KeyGen,Sign,Verify) is EUF-CMA secure, signatures
(Sig.KeyGen′, Sign′, Verify′) and (Sig.KeyGen′′, Sign′′, Verify′′) are EUF-wCMA se-
cure, and the NIZK proof is constructed from Σ-protocol by using the Fiat-Shamir
heuristics.

Theorem 2. The construction given above is IND-MSR-CCA secure if the underlying
PKE scheme is IND-CCA secure and the NIZK proof is constructed from Σ-protocol by
using Fiat-Shamir heuristics.

4.4 Concrete Instantiation

BB and BBS+ Signatures. Here we describe the BB signature, the BBS+ signature,
and their related definitions required in this paper.

Definition 6. Bilinear groups are a tuple (p,G,GT , e, g) such that G and GT are cyclic
groups of prime order p, g ∈ G is a generator of G, and e is an efficiently computable
bilinear map e : G × G → GT with the following properties: for all g, g′, h, h′ ∈ G,
e(gg′, h) = e(g, h)e(g′, h) and e(g, hh′) = e(g, h)e(g, h′), and e(g, g) is not the unit ofGT .

The description of the BB signature [2] is as follows:

KeyGenBB(1κ): Choose X ∈R Zp and g̃ ∈ G, computes Y = g̃X , and outputs a verifica-
tion key vk = (g̃, Y) ∈ G2 and a private signing key sigk = X.

SignBB(pk, sk,M): Output a signature F = g̃
1

X+M .

VerifyBB(pk, F): Check whether e(F, Yg̃M)
?
= e(g, g).

In our RPKE scheme, to prove M ∈ [1,N] we apply the BB signature whose signa-
tures are represented as SignBB(1), SignBB(2), . . ., SignBB(N). To prove the knowl-
edge of a BB signature Fk = SignBB(k) is as follows: Let g5 ∈ G (we use g5 for
the same purpose in our RPKE, and therefore for the sake of clarity we use it here).
Choose β ∈ Zp and compute C = Fkg

β
5. Then, C satisfies the relation: e(C, Y)/e(g̃, g) =

e(g5, Y)βe(g5, g)θ/e(C, g)k where θ = βk. Therefore, we prove the knowledge of DLs
β and θ to prove the knowledge of SignBB(k). This relation is appeared in the REnc
algorithm of our RPKE scheme for the relations of C2, C3, C4, and C5. Note that, for
C3 and C5, we use the notation ġ instead of g̃ in our RPKE scheme.
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The BBS+ Signature [1,3,13] can be described as follows:

KeyGenBBS+(1κ, L) Choose X ∈R Zp and g, g1, . . . , gL+1 ∈ G, where L is the
length of messages. Computes Y = gX , and outputs a verification key vk =
(g, g1, . . . , gL+1, Y) ∈ GL+3 and a private signing key sigk = X.

SignBBS+(pk, sk, (m1, . . . ,mL)) Choose y, z ∈R Zp, compute B = (gm1
1 · · ·gmL

L g
y
L+1g)

1
X+z ,

and output a signature (B, y, z).

VerifyBBS+(pk, (B, y, z)) Check whether e(B, Ygz)
?
= e(gm1

1 · · · gmL
L g
y
L+1, g).

In our RPKE scheme, to restrictive message space, we apply BBS+ signature with
L = 3 whose signatures are represented as SignBBS+(t,m0,m1), SignBBS+(t,m1,m2),
. . ., SignBBS+(t,mr,mr+1), where (m1,m2, . . . ,mr) are prohibited messages, (m0,mr+1) =
(0,N + 1), and t is the serial number. To prove the knowledge of a BBS+ signature
SignBBS+(t,m j,m j+1) := (B j, y j, z j) is as follows: Let g5 ∈ G. Choose α ∈ Zp and
compute C = B jg

α
5 . Then, C satisfies the relation:

e(C, Y)/e(g, g) = e(g5, Y)αe(g5, g)ζe(g1, g)te(g2, g)mje(g3, g)mj+1e(g4, g)y j/e(C, g)z j

where ζ = αz j. Therefore, we prove the knowledge of DLs α, ζ, m j, m j+1, y j, and z j

to prove the knowledge of SignBBS+(t,m j,m j+1). Note that proving of the knowledge
of t is not necessary, since t is just used as a serial number in our RPKE scheme. This
relation is appeared in the REnc algorithm of our RPKE scheme for the relation of C1.

Construction. In this section, we give a concrete instantiation of RPKE. From the
viewpoint of efficiency, we apply BB [2] and BBS+ [1,3,13] signatures to implement
Teranishi/Nakanishi proof system. In addition, we apply an ElGamal type double en-
cryption DoubleEnc to implement the building PKE scheme.

In the following scheme, (g, g1, g2, g3, g4, Y1) is a verification key of BBS+ signa-

tures {(B j, y j, z j)}r−1
j=1, (g̃, Y2) is a verification key of BB signatures {F1,k}

√
N�

k=1 , (ġ, Y3)

is a verification key of BB signatures {F2,k}2
√

N�
k=0 , and pkd = ( f̂ , ĝ1, ĝ2, ĥ) is a public

key of the double encryption scheme DoubleEnc. For a plaintext M′ ∈ G′ and a ran-
dom number u ∈ Zp, DoubleEncpkd (M′; u) = (ĝu

1, ĝ
u
2,M

′ · ĥu). Other parameters are for
computing NIZK proofs. These NIZK proofs work for exponent in Zp so we need to
encrypt M by f̂ M for some generator f̂ . Therefore, to apply this proving system to PKE,
we require that a plaintext of the building PKE scheme Enc(·) is f̂ M , and the knowl-
edge of M need to be proved from a ciphertext Enc( f̂ M) by using NIZK system. When
receiver obtains f̂ M by using own skd, receiver needs to solve the DL problem to obtain
M from f̂ M . Therefore, as in Boneh et al. [5] and Okamoto et al. [16], we assume N is
small with the condition that the DL problem ( f̂ , f̂ M) can be solved efficiently (e.g., by
using baby-step-giant-step algorithm or Pollard’s lambda method with expected time
O(
√

N)).
The concrete construction we propose is as follows:

MRASetup(1κ): Let (G,GT ) be a bilinear group with a κ-bit prime order p and e :
G × G → GT be a bilinear map. In addition, let G′ be a DDH-hard group with
the same order p. Let H : {0, 1}∗ → Zp be a hash function for NIZK proofs.
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Choose generators g, g̃, ġ, g1, g̃1, g2, g3, g4, g5 ∈ G, f̂ ∈ G′, a signing key of BBS+
signatures X1 ∈ Zp, and signing keys of BB signatures X2, X3 ∈ Zp, and compute
the a verification key of BBS+ signatures Y1 = g

X1 , and verification keys of BB
signatures Y2 = g

X2 and Y3 = g
X3 . For k ∈ [1,  √N�], compute S ign′BB(k) :=

F1,k = g̃
1

X2+k . For k ∈ [0, 2√N�], compute S ign′′BB(k) := F2,k = ġ
1

X3+k . Output

pkMRA =
(
p, e,G,GT ,G

′,H, Y1, Y2, Y3, {F1,k}k=1, {F2,k}2
√

N�
k=0 , f̂

)
, and skMRA = (X1,

X2, X3).
RKeyGen(pkMRA): Choose ĝ1, ĝ2 ∈ G′ and z ∈ Zp, and compute ĥ = ĝz

1. Output a
public key of an ElGamal type double encryption scheme pkd = (ĝ1, ĝ2, ĥ) and the
corresponding secret key skd = z.

MSSetup(pkMRA, skMRA,MS ): Let (m1,m2, . . . ,mr) be consecutive prohibited mes-
sages, m0 = 0, and mr+1 = N + 1. Choose a current serial number t ∈ Zp.
For � ∈ [0, r], compute BBS+ signatures of three signed messages (t,m�,m�+1)

S ignBBS+(t,m�,m�+1) := (B�, y�, z�), where B� = (gt
1g

m�
2 g

m�+1

3 g
y�
4 g)

1
X1+z� , and y�,

z� ∈ Zp. Output pkMS = (t, {(m�, m�+1, B�, y�, z�)}r�=0).
REnc(pkMRA, pkd,MS , pkMS ,M): For M ∈ MS , find the position j such that m j <

M < m j+1. If there is no such m j (which means M � MS ), output ⊥. compute
δ1,1, δ2,1 ∈ [1,  √N�], and δ1,2, δ2,2 ∈ [0, 2√N�], where M − m j = δ

2
1,1 + δ1,2

and m j+1 − M = δ2
2,1 + δ2,2 and find S ign′BB(δ1,1) = F1,δ1,1 , S ign′′BB(δ1,2) = F2,δ1,2 ,

S ign′BB(δ2,1) = F1,δ2,1 , and S ign′′BB(δ2,2) = F2,δ2,2 from pkMRA. Compute c =
DoubleEncpkd ( f̂ M; u), and π of the following relations:

π = NIZK

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M, S ′′, S 1, S ′1, S 2, S ′2, δ1,1, δ1,2, δ2,1, δ2,2)
: S ′′ = SignBBS+(t,m j,m j+1)
∧ S 1 = Sign′BB(δ1,1) ∧ S 2 = Sign′′BB(δ1,2)
∧ S ′1 = Sign′BB(δ2,1) ∧ S ′2 = Sign′′BB(δ2,2)
∧ M − m j = δ

2
1,1 + δ1,2 mod p

∧ m j+1 − M = δ2
2,1 + δ2,2 mod p ∧ c = DoubleEncpkd ( f̂ M ; u)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Concretely, choose α, β1,1, β1,2, β2,1, β2,2, u, ξ1, ξ′1, ξ2, ξ′2 ∈ Zp, compute C1 = B jg
α
5 ,

C2 = F1,δ1,1g
β1,1

5 , C3 = F2,δ1,2g
β1,2

5 , C4 = F1,δ2,1g
β2,1

5 , C5 = F2,δ2,2g
β2,2

5 , C6 = g̃
δ1,1 g̃

ξ1
1 ,

C7 = g̃
δ21,1 g̃

ξ′1
1 , C8 = g̃

δ2,1 g̃
ξ2
1 , C9 = g̃

δ22,1 g̃
ξ′2
1 , ξ′′1 := ξ′1 − ξ1δ1,1, ξ′′2 := ξ′2 − ξ2δ2,1, C10 =

ĝu
1, C11 = ĝ

u
2, C12 = f̂ Mĥu, ζ = αz j, θ1,1 := β1,1δ1,1, θ1,2 := β1,2δ1,2, θ2,1 := β2,1δ2,1,

and θ2,2 := β2,2δ2,2. In addition, compute

π = NIZK

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M, ζ, α, y j, z j,m j,m j+1, δ1,1, δ1,2, δ2,1, δ2,2, θ1,1, θ1,2, θ2,1, θ2,2,
β1,1, β1,2, β2,1, β2,2, ξ1, ξ

′
1, ξ
′′
1 , ξ2, ξ

′
2, ξ
′′
2 , u)

: e(C1 ,Y1)
e(g,g) =

e(g5,Y1)αe(g5,g)ζe(gt
1,g)e(g2,g)

m j e(g3,g)
m j+1 e(g4,g)

y j

e(C1 ,g)
z j

∧ e(C2 ,Y2)
e(g̃,g) =

e(g5,Y2)β1,1 e(g5,g)
θ1,1

e(C2 ,g)
δ1,1

∧ e(C3 ,Y3)
e(ġ,g) =

e(g5,Y3)β1,2 e(g5,g)
θ1,2

e(C3 ,g)
δ1,2

∧ e(C4 ,Y2)
e(g̃,g) =

e(g5,Y2)β2,1 e(g5,g)
θ2,1

e(C4 ,g)
δ2,1

∧ e(C5 ,Y3)
e(ġ,g) =

e(g5,Y3)β2,2 e(g5,g)
θ2,2

e(C5 ,g)
δ2,2

∧ C6 = g̃
δ1,1 g̃

ξ1
1 ∧C7 = Cδ1,16 g̃

ξ′′1
1 ∧ C7 = g̃

−δ1,2+M−mj g̃
ξ′1
1

∧ C8 = g̃
δ2,1 g̃

ξ2
1 ∧C9 = Cδ2,18 g̃

ξ′′2
1 ∧ C9 = g̃

−δ2,2+mj+1−M g̃
ξ′2
1

∧ C10 = ĝ
u
1 ∧C11 = ĝ

u
2 ∧ C12 = f̂ Mĥu

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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(Detailed NIZK proofs are described in the following). Output a ciphertext C =
(C1, . . . ,C12, π).

VerifyMS(pkMRA, pkd, pkMS ,C): Output 1 if π is a valid proof, and 0, otherwise.
RDec((pkMRA, pkd, skd,C)): Compute f̂ M = C12/C

z
10, solve the DL problem ( f̂ , f̂ M),

and output M.

If MS is changed (let MS ′ be a new message space), then MRA chooses t′ (t′ � t for
all previous t), and opens BBS+ signatures S ignBBS+(t′,m′�,m

′
�+1) for all � ∈ [0, r′] as

pkMS ′ , where (m′1,m
′
2, . . . ,m

′
r′) is the new consecutive prohibited messages, m′0 = 0,

and m′r = N.

Detailed NIZK Proofs. Here, we show the detailed proof π of our RPKE scheme.
Concretely, π is computed as follows. Note that all pairing values are pre-computable.

1. Choose rM , rζ , rα, ry j , rz j , rmj , rmj+1 , rδ1,1 , rδ1,2 , rδ2,1 , rδ2,2 , rθ1,1 , rθ1,2 , rθ2,1 , rθ2,2 , rβ1,1 , rβ1,2 ,
rβ2,1 , rβ2,2 , rξ1 , rξ′1 , rξ′′1 , rξ2 , rξ′2 , rξ′′2 , ru ∈ Zp.

2. Compute R1 =
e(g5,Y1)rα e(g5 ,g)

rζ−αrz j e(g1,g)te(g2,g)
rm j e(g3,g)

rm j+1 e(g4,g)
ry j

e(B j,g)
rz j ,

R2 =
e(g5,Y2)

rβ1,1 e(g5,g)
rθ1,1

−β1,1rδ1,1

e(F1,δ1,1 ,g)
rδ1,1

, R3 =
e(g5,Y3)

rβ1,2 e(g5 ,g)
rθ1,2−β1,2rδ1,2

e(F2,δ1,2 ,g)
rδ1,2

, R4 =

e(g5,Y2)
rβ2,1 e(g5,g)

rθ2,1
−β2,1 rδ2,1

e(F1,δ2,1 ,g)
rδ2,1

, R5 =
e(g5,Y3)

rβ2,2 e(g5,g)
rθ2,2−β2,2rδ2,2

e(F2,δ2,2 ,g)
rδ2,2

, R6 = g̃rδ1,1 g̃
rξ1
1 ,

R7 = C
rδ1,1
6 g̃

rξ′′1
1 , R8 = g̃−rδ1,2+rM−rm j g̃

rξ′1
1 , R9 = g̃rδ2,1 g̃

rξ2
1 , R10 = C

rδ2,1
8 g̃

rξ′′2
1 ,

R11 = g̃
−rδ2,2+rm j+1−rM g̃

rξ′2
1 , R12 = ĝ

ru
1 , R13 = ĝ

ru
2 , and R14 = f̂ rM ĥru .

3. Compute c = H(R1, . . . ,R14,C1, . . . ,C12, pkMRA, pkMS , pkd)
4. Compute sM = rM + cM, sζ = rζ + cζ, sα = rα + cα, sy j = ry j + cy j, sz j = rz j + cz j,

smj = rmj + cm j, smj+1 = rmj+1 + cm j+1, sδ1,1 = rδ1,1 + cδ1,1, sδ1,2 = rδ1,2 + cδ1,2,
sδ2,1 = rδ2,1 + cδ2,1, sδ2,2 = rδ2,2 + cδ2,2, sθ1,1 = rθ1,1 + cθ1,1, sθ1,2 = rθ1,2 + cθ1,2,
sθ2,1 = rθ2,1 + cθ2,1, sθ2,2 = rθ2,2 + cθ2,2, sβ1,1 = rβ1,1 + cβ1,1, sβ1,2 = rβ1,2 + cβ1,2,
sβ2,1 = rβ2,1 + cβ2,1, sβ2,2 = rβ2,2 + cβ2,2, sξ1 = rξ1 + cξ1, sξ′1 = rξ′1 + cξ′1, sξ′′1 = rξ′′1 + cξ′′1 ,
sξ2 = rξ2 + cξ2, sξ′2 = rξ′2 + cξ′2, sξ′′2 = rξ′′2 + cξ′′2 , and su = ru + cu.

5. Output C = (C1, . . . ,C12, π), where π = (c, sM , sζ , sα, sy j , sz j , smj , smj+1 , sδ1,1 , sδ1,2 ,
sδ2,1 , sδ2,2 , sθ1,1 , sθ1,2 , sθ2,1 , sθ2,2 , sβ1,1 , sβ1,2 , sβ2,1 , sβ2,2 , sξ1 , sξ′1 , sξ′′1 , sξ2 , sξ′2 , sξ′′2 , su).

Next, we show the verification of the above π. Note that all pairing values are
pre-computable, except the followings e(C1, g

sz j Yc
1), e(C2, g

sδ1,1 Yc
2), e(C3, g

sδ1,2 Yc
3),

e(C4, g
sδ2,1 Yc

2), and e(C5, g
sδ2,2 Yc

3).

1. Compute R′1 =
e(g5 ,Y1)sα e(g5,g)

sζ e(g1,g)te(g2,g)
sm j e(g3,g)

sm j+1 e(g4,g)
sy j e(g,g)c

e(C1 ,g
sz j Yc

1 )
, R′2 =

e(g5,Y2)
sβ1,1 e(g5,g)

sθ1,1 e(g̃,g)c

e(C2 ,g
sδ1,1 Yc

2 )
, R′3 =

e(g5,Y3)
sβ1,2 e(g5,g)

sθ1,2 e(ġ,g)c

e(C3,g
sδ1,2 Yc

3 )
, R′4 =

e(g5,Y2)
sβ2,1 e(g5 ,g)

sθ2,1 e(g̃,g)c

e(C4 ,g
sδ2,1 Yc

2 )
,

R′5 =
e(g5,Y3)

sβ2,2 e(g5 ,g)
sθ2,2 e(ġ,g)c

e(C5 ,g
sδ2,2 Yc

3 )
, R′6 = g̃sδ1,1 g̃

sξ1
1 C−c

6 , R′7 = C
sδ1,1
6 g̃

sξ′′1
1 C−c

7 ,

R′8 = g̃−sδ1,2+sM−sm j g̃
sξ′1
1 C−c

7 , R′9 = g̃sδ2,1 g̃
sξ2
1 C−c

8 , R′10 = C
sδ2,1
8 g̃

sξ′′2
1 C−c

9 ,

R′11 = g̃
−sδ2,2+sm j+1−sM g̃

sξ′2
1 C−c

9 , R′12 = ĝ
su
1 C−c

10 , R′13 = ĝ
su
2 C−c

11 , and R′14 = f̂ sM ĥsuC−c
12 .

2. Check c
?
= H(R′1, . . . ,R

′
14,C1, . . . ,C12, pkMRA, pkMS , pkd).
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4.5 Efficiency Comparison

We give an efficiency comparison between the concrete construction given in Sect. 4.4
and a simple OR-proof based construction (whose detailed description is given in Ap-
pendix A) below. In the OR-proof based construction, computational time of encryption
and verification, the ciphertext length, and the public verification key length are all pro-
portional to the number of allowed messages N − r. In contrast, the proposed concrete
construction achieves constant computational time of encryption and verification and
constant size ciphertexts. The public verification key length now only depends on the
number of prohibited messages, no longer depends on the size of the whole message
space N. A small drawback of the proposed construction is the size of the public value
pkMRA, which is just one group element in the OR-proof based construction, whereas
O(
√

N) group element in the proposed concrete construction. A more detailed compar-
ison of the efficiency is summarized in Table 1.

Table 1. Efficiency Comparison. ME(G), ME(G′), and ME(GT ) denote the computational cost
of multi-exponentiation in G, G′, and GT , respectively. BM denotes that of one bilinear map
computation. |G| and

∣
∣
∣Zp

∣
∣
∣ denotes the bit-length of the representation of a element of G and Zp,

respectively.

Computational Cost
Ciphertext Length

Public Key Length
REnc VerifyMS pkMRA pkMS

OR-proof (N − r)ME(G) (N − r)ME(G) 3 |G|+ |G| |G| (N − r)
based +(3 + 3(N − r))ME(G′ ) +(3 + 3(N − r))ME(G′ ) 2(N − r)

∣
∣
∣Zp

∣
∣
∣

Ours 15ME(G) + 6ME(G′ ) 6ME(G) + 3ME(G′ ) 12|G|+27
∣
∣
∣Zp

∣
∣
∣ ≤ (3

√
N + 4) |G| (r + 1)(4

∣
∣
∣Zp

∣
∣
∣ + |G|)

+5ME(GT ) +5ME(GT ) + 5BM +
∣
∣
∣Zp

∣
∣
∣
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A A Naive RPKE Scheme Based on OR Proofs

Here, we briefly show a naive (inefficient) RPKE scheme based on simple OR-proof.
For a fair comparison, we apply a double encryption DoubleEnc that is implemented
over G′ as in our RPKE scheme.

Protocol 1. The Naive RPKE Scheme

MRASetup(1κ): Let G be a group with a κ-bit prime order p and G′ be a DDH-hard
group with the same order p. Let H : {0, 1}∗ → Zp be a hash function for NIZK
proofs. Choose g ∈ G and f̂ ∈ G′, and output pkMRA =

(
p,G,G′,H, f̂

)
, and

skMRA = ∅.
RKeyGen(pkMRA): Choose ĝ1, ĝ2 ∈ G′ and z ∈ Zp, and compute ĥ = ĝz

1. Output a
public key of a double encryption scheme pkd = (ĝ1, ĝ2, ĥ) and the corresponding
secret key skd = z.

MSSetup(pkMRA, skMRA,MS ): Let MS = (M1,M2, . . . ,MN−r). Output pkMS := {Zi =

gMi }N−r
i=1 .

REnc(pkMRA, pkd,MS , pkMS ,M): A ciphertext of the naive RPKE scheme is repre-
sented as π = NIZK{M : C = DoubleEncpkd ( f̂ M)∧((M = M1)∨· · ·∨(M = MN−r)

)}.
Concretely, choose u ∈ Zp, and compute C1 = ĝ

u
1, C2 = ĝ

u
1, and C3 = f̂ Mĥu. Let a

plaintext M := Mk (k ∈ [1,N − r]). Choose ruk , rMk ∈ Zp, and compute R1,k = ĝ
ruk

1 ,
R2,k = ĝ

ruk

2 , R3,k = f̂ rMk ĥruk , and R4,k = g
rMk . For all � ∈ [1,N − r] \ {k}, choose

su� , sM� , c� ∈ Zp, and compute R1,� = ĝ
su�

1 C−c�
1 , R2,� = ĝ

su�

2 C−c�
2 , R3,� = f̂ sM� ĥsu�C−c�

3 ,

http://www.daimi.au.dk/~ivan/Sigma.pdf
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and R4,� = g
sM�Z−c�

�
. Compute c = H(pkMS ,C1,C2,C3, R1,1, . . ., R4,1, . . ., R1,N−r,

. . ., R4,N−r). Set ck := c − ∑N−r
�=1,��k c� mod p. Compute sMk = rMk + ck Mk and

suk = ruk + cku. Output π = ({sM� , c�}N−r
�=1 ) and (C1,C2,C3).

VerifyMS(pkMRA, pkd, pkMS ,C): Output 1 if
∑N−r
�=1 c� mod p = H(pkMS ,C1,C2,C3,

ĝ
su1

1 C−c1
1 , ĝ

su1

2 C−c1
2 , f̂ sM1 ĥsu1 C−c1

3 , gsM1 Z−c1
1 , . . ., ĝ

suN−r

1 C−cN−r

1 , ĝ
suN−r

2 C−cN−r

2 ,
f̂ sMN−r ĥsuN−r C−cN−r

3 , gsMN−r Z−cN−r
N−r ), and 0, otherwise.

RDec(pkMRA, pkd, skd,C): Compute f̂ M = C3/C
z
1, solve the DL problem ( f̂ , f̂ M), and

output M.

B Proof of Theorem 1

Proof. The NIZK proof has an extractor of the proved secret knowledge: given two
accepting protocol views, where commitments are the same but challenges are different.
By σ∗ = Sign(·, ·, ·) extracted from the output of A, we consider two cases (1) σ∗ �
pkMS ∗ , and (2) σ∗ ∈ pkMS ∗ . Let M∗ := RDec

(
pkMRA, pkd, skd,C∗

)
. From the definition

of verification soundness, M∗ ∈ {m1,m2, . . . ,mr}.
Case 1: We construct an algorithm B that forges one of the underlying signature
scheme (Sig.KeyGen, Sign, Verify). Let C be the challenger of unforgeability game
of this signature. C sends a public value for verification Kv to B. B computes other
public values, and sends pkMRA to A. By using the signing oracle of the unforge-
ability game, B can answer message space queries sent from A. A outputs C∗. Since
VerifyMS

(
pkMRA, pkd, pkMS ∗ ,C∗

)
= 1, using the extractor of the NIZK, B obtains σ∗

and the corresponding signed messages. Since σ∗ � pkMS ∗ , σ∗ is not an answer of the
signing oracle. Therefore, B outputs a forged signature σ∗ and wins.

Case 2: We construct an algorithm B′ that forges one of the underlying signature
scheme (Sig.KeyGen′, Sign′, Verify′). Let C′ be the challenger of unforgeability game
of this signature under the weakly chosen message attack [2]. First, B′ sends mes-
sages 1, . . . ,  √N� to C′. Although, we describe the attack of signatures σ1,∗, the
attack of signatures σ2,∗ is similarly described, and therefore we omit this part (in
this case B′ sends messages 0, . . . , 2√N� to C′). C′ sends a public value for veri-

fication K′v to B′. B′ obtains {σ1,k}
√

N�
k=1 from A, computes other public values, and

sends pkMRA to A. Since B′ has a signing key Ks of the underlying signature scheme
(Sig.KeyGen,Sign,Verify), B′ can answer message space queries.A outputs C∗. Since
VerifyMS

(
pkMRA, pkd, pkMS ∗ ,C∗

)
= 1, using the extractor of the NIZK, B′ obtains σ∗

and the corresponding signed messages. Sinceσ∗ ∈ pkMS ∗ , let σ∗ := Sign(t,m j∗ ,m j∗+1).
Using the extractor of the NIZK, B′ obtains δ1,1, δ1,2, σ1,δ1,1 , σ2,δ1,2 , δ2,1, δ2,2, σ1,δ2,1 , and
σ2,δ2,2 , with the conditions M∗ − m j∗ mod p = δ2

1,1 + δ1,2 and m j∗+1 − M∗ mod p =
δ2

2,1 + δ2,2. Next, we show that m j∗+1 ≤ M∗ or m j∗ ≥ M∗ holds as follows: Since
M∗ � MS ∗ from the definition of verification soundness, there exists m j′ such that
j′ ∈ [1, r] and M∗ = m j′ . For all m� < m j′ , m� < M∗ and m�+1 ≤ M∗ hold. In ad-
dition, for all m� ≥ m j′ , m� ≥ M∗ and m�+1 > M∗ hold. Therefore, for the consecu-
tive m j∗ and m j∗+1, m j∗+1 ≤ M∗ or m j∗ ≥ M∗ holds1. This means m j∗+1 − M∗ ≤ 0 or

1 Note that both cases M∗ < m1 and mr < M∗ are included in these two cases.
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0 ≥ M∗ − m j∗ in Z. If 0 ≥ M∗ − m j∗ , then set δ := M∗ − m j∗ mod p, δ(1) := δ1,1,
δ(2) := δ1,2, σ1,δ := σ1,δ1,1 , and σ2,δ := σ2,δ1,2 . Otherwise, If m j∗+1 − M∗ ≤ 0, then set
δ := m j∗+1 − M∗ mod p, δ(1) := δ2,1, δ(2) := δ2,2, σ1,δ := σ1,δ2,1 , and σ2,δ := σ1,δ2,2 .
Under the assumption  √N�2 + 2√N� < p/2, δ ∈ [p/2, p − 1] holds, and therefore
δ(1) � [1,  √N�] or δ(2) � [0, 2√N�] hold. If δ(2) � [0, 2√N�], then B′ aborts. Note
that the case δ(2) � [0, 2√N�] can be captured in the attack of the signature scheme
(Sig.KeyGen′′,Sign′′,Verify′′). Now we assume that δ(1) � [1,  √N�]. B′ outputs a
forged signature and message pair (δ(1), σ1,δ(1)), and wins, since δ(1) is not an input of
the signing oracle. ��

C Proof of Theorem 2

Proof. Due to the zero-knowledge-ness of NIZK proof, any information is not revealed
from π. Therefore, we can reduce the IND-MSR-CCA game to the IND-CCA game
of the underlying PKE scheme. Let A be an adversary who breaks the IND-MSR-
CCA security of our RPKE scheme, and C the challenger of the IND-CCA game of
the corresponding PKE scheme. Then, we can construct an algorithm B that breaks
the IND-CCA security of the underlying PKE scheme. First, C gives a public key of the
PKE scheme pk toB.B sets pk to pkd, and sends pkd toA. WhenA issues a decryption
query C = (c, π), B checks whether C is a valid ciphertext or not. If C is valid, then B
simply forwards the corresponding part of this query c to C as a decryption query of
the IND-CCA game. When A sends the challenge messages M∗0 and M∗1, B forwards
M0 and M1 to C as the challenge messages. C returns the challenge ciphertext c∗. B
computes the challenge ciphertext of RPKE by applying the simulated NIZK proofs,
say π∗. B sends the challenge ciphertext of RPKE (c∗, π∗) to A. If A issues a valid
(which means the VerifyMS algorithm returns 1) decryption query C = (c∗, π), then
we can construct an algorithm B′ who extracts signed messages m j, δ1,1, and δ1,2 from
C, computes Mb = δ

2
1,1 + δ1,2 + m j, outputs b, and wins. For other decryption queries,

B can apply the decryption oracle of the underlying PKE scheme. Finally, A outputs
the guessing bit, and B also outputs the same bit as the guessing bit of the IND-CCA
game. ��
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Abstract. Proxy re-encryption (PRE) allows a proxy to convert a ci-
phertext encrypted for Alice (delegator) into a ciphertext for Bob
(delegatee) by using a re-encryption key generated by Alice. In PRE,
non-transferability is a desirable property that colluding proxies and del-
egatees cannot re-delegate decryption rights to a malicious user. How-
ever, it seems to be very difficult to directly construct a non-transferable
PRE scheme albeit such attempts as in [9,15,8]. In this paper, we
discuss the non-transferability and introduce a relaxed notion of the non-
transferability, the unforgeability of re-encryption keys against collusion
attack (UFReKey-CA), as one approach toward the non-transferability.
We then propose two concrete constructions of PRE without random
oracles that meet replayable-CCA security and UFReKey-CA assuming
the q-wDBDHI and a variant of DHI problems are hard. Although the
proposed schemes are partial solutions to non-transferable PRE, we be-
lieve that the results are significant steps toward the non-transferability.

Keywords: Proxy re-encryption, non-transferability, unforgeability of
re-encryption keys.

1 Introduction

Proxy re-encryption(PRE) schemes introduced by Blaze, Bleumer, and Strauss
[4], are cryptosystems with the following special property. Alice, the original re-
cipient of some ciphertext, can delegate the decryption rights to Bob by creating
a re-encryption key then giving it to a semi-trusted entity called proxy. Conse-
quently, Alice lets the proxy to convert ciphertexts for Alice into ciphertexts for
Bob without revealing any information about the underlying plaintexts to the
proxy. In PRE, Alice and Bob are called a delegator and a delegatee, respectively.

PRE schemes are often categorized by the following properties: bidirectional or
unidirectional, and multi-hop or single-hop. In bidirectional PRE, a re-encryption
key to convert a ciphertext for Alice into Bob’s can be used to convert a cipher-
text in the opposite direction (from Bob to Alice). On the other hand, in unidi-
rectional PRE, a re-encryption key from Alice to Bob never helps re-encryption

T. Iwata and M. Nishigaki (Eds.): IWSEC 2011, LNCS 7038, pp. 210–229, 2011.
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in the opposite direction. A PRE scheme is multi-hop if a proxy can re-encrypt
ciphertexts that are already re-encrypted, while re-encryption is allowed only
once in a single-hop PRE scheme. Any of the previously proposed schemes is
either a unidirectional single-hop scheme, or a bidirectional multi-hop scheme.
We study unidirectional and single-hop schemes in this paper.

After Blaze et al. introduced the concept of PRE, many concrete PRE schemes
(e.g. those in [10,12,6,14]) with high confidentiality, i.e. (replayable) chosen ci-
phertext attack (CCA) security, were proposed. In the definition of the (re-
playable) CCA security, it is assumed that proxies who have the re-encryption
keys to convert ciphertexts of the (target) honest delegator to corrupted users’
are not corrupted.

In addition to the above basic security property, it is also important to con-
sider the security where such proxies are corrupted. Recently, as cloud computing
emerges, PRE gains much more attention as one of the key security components
to provide secure cloud services. The security against corrupted proxies is es-
pecially important in such applications since the proxies may be out of control
of honest users and the proxies are more likely to be attacked than those in
on-premise systems. In [1], Ateniese, Fu, Green, and Hohenberger mention the
security notion, non-transferability, with respect to the security against malicious
proxies, which is described as “The (malicious) proxy and a set of colluding del-
egatees cannot re-delegate decryption rights.” They also note that “achieving a
proxy scheme that is non-transferable, in the sense that the only way for Bob to
transfer offline decryption capabilities to Carol is to expose his own secret key,
seems to be the main open problem left for proxy re-encryption.”

Until now, some attempts for non-transferable PRE have been taken. For
example, in the scheme proposed by Libert and Vergnaud [9], a delegator can
identify the malicious proxies by analyzing a re-encryption key to convert ci-
phertexts of the delegator into some malicious user’s generated (forged) by the
colluding proxies and delegatees. Although it is one possible approach to the
non-transferable PRE, it still cannot prevent colluding proxies and delegatees
from re-delegating the decryption rights. Further, the scheme is less efficient in
the sense that the ciphertext size depends on the number of delegations and it is
only proved to be secure against chosen plaintext attack(CPA). In the scheme by
Wang et al. [15] which is an ID-based PRE scheme, a trusted third party (private-
key generator, PKG) takes part in generating re-encryption keys. This approach,
however, is not a complete solution to non-transferable PRE because, as pointed
out by He, Chim, Hui, and Yiu [8], it is just a transformation of “delegatee-
proxy-collusion transferable problem” to “PKG alone transferable problem.” In
the ID-based scheme by He, Chim, Hui, and Yiu [8], the delegator and the
delegatee communicate and send some information to each other to generate
the re-encryption key (The delegator also communicates with PKG). Therefore,
colluding proxies and delegatees cannot generate a new re-encryption key with-
out delegator’s help. This approach itself is worth mentioning, however, their
scheme is less practical because it requires additional communication between the
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delegator and the delegatee (and PKG, in the ID-based scheme such as [8]). Fur-
ther, the non-transferability of the scheme in [8] is not proved formally.

In this paper, we introduce the unforgeability of re-encryption keys against col-
lusion attack (UFReKey-CA), which is a relaxed notion (necessary condition) of
the non-transferability, as one approach toward the non-transferability. Roughly
speaking, UFReKey-CA means that even colluding proxies and delegatees can-
not generate a re-encryption key for some user. To the best of our knowledge,
there exists no PRE scheme that satisfies UFReKey-CA and does not require
either a trusted third party or communication between a delegator and a delega-
tee during re-encryption key generation. We also propose a security notion, the
strong unforgeability of re-encryption key against collusion attack (sUFReKey-
CA). Since sUFReKey-CA implies UFReKey-CA and sUFReKey-CA is simpler
(i.e. easier to treat) definition than UFReKey-CA, sUFReKey-CA is useful to
prove UFReKey-CA. We then propose a concrete PRE scheme that meets both
the replayable CCA security and sUFReKey-CA assuming the hardness of vari-
ants of Diffie–Hellman inversion problems in the standard model. In our scheme,
neither trusted third party nor communication between a delegator and a del-
egatee is required during re-encryption key generation, and the size of the keys
and the computational cost does not depend on the number of delegations. We
also propose a PRE scheme supporting temporary delegation, which can limit
the lifetime of re-encryption keys within a certain time interval. Although the
proposed schemes are partial solutions to non-transferable PRE, we believe that
the results are significant steps toward non-transferability.

This paper is organized as follows. In Section 2, we review the definitions re-
lated to our proposal. We discuss the formal definition of the non-transferability
and introduce the (strong) unforgeability of re-encryption keys against collusion
attack in Section 3. We propose a concrete PRE scheme in Section 4, and that
supporting temporary delegation in Section 5. We conclude in Section 6.

2 Preliminaries

2.1 Bilinear Maps and Complexity Assumptions

Groups (G, GT ) of prime order p are called bilinear map groups if there exists a
mapping e : G×G → GT with the following properties: (1)bilinearity: e(ga, hb) =
e(g, h)ab for any (g, h) ∈ G × G and a, b ∈ Z, (2) e(·, ·) is efficiently computable
for any input pair, and (3) non-degeneracy: e(g, h) �= 1GT whenever g, h �= 1G.

We describe q-weak the decision bilinear Diffie–Hellman Inversion (q-wDBDHI)
problem. In [10], it is mentioned that the q-wDBDHI problem is hard in generic
groups (See also [7].).

Definition 1 (q-wDBDHI problem). The q-weak decision bilinear Diffie–
Hellman Inversion problem is to distinguish the two distributions (g, ga, ga2

, . . . ,

gaq

, gb, e(g, g)b/a) and (g, ga, ga2
, . . . , gaq

, gb, e(g, g)z) for a, b, z
R← Z∗

p.

We next propose new problems related to Diffie–Hellman inversion problem.
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Definition 2 (2-DHIwRA problem). The 2-Diffie–Hellman inversion with
randomized answers problem is computing g1/(a+c) given the following:
• input 1: g, ga, ga2

, c (a, c
R← Z∗

p),

• input 2: (xi, yi, Di, Ei, Fi) = (xi, yi, g
xi+γi
a(a+c) , g

ayi+γi
a+c , g

xi+γi
a ) where xi, yi,

γi
R← Z∗

p for i ∈ {1, . . . , L} and L is polynomially bounded.

Definition 3 (m-2-DHIwRA problem). The modified 2-Diffie–Hellman in-
version with randomized answers problem is computing g1/(a+c) given the inputs
1 and 2 of 2-DHIwRA problem and

• input 3: (y′, μ, D′, E′, F ′, G′, H ′) = (y′, μ, g
cy′+γ′
a(a+c) +δ′

x , g
aμy′+γ′

a+c +δ′
y , g

cy′+γ′
a ,

ga(a+c)δ′
x , ga(a+c)δ′

y) where y′, μ, γ′, δ′x, δ′y
R← Z∗

p.

The 2-DHIwRA and m-2-DHIwRA problems can be seen as the 2-DHI (Diffie–
Hellman Inversion) problem [11] with the additional inputs. Therefore, these
problems are not harder than the 2-DHI problem. In this paper, we assume the
hardness of the above problems to prove the security of our schemes.

2.2 Unidirectional Proxy Re-Encryption

In this section, we describe the syntactic definition of unidirectional proxy re-
encryption [1,2] and its security notion [10].

First, we describe the syntactic definition of unidirectional proxy re-encryption.

Definition 4. A (single-hop) unidirectional proxy re-encryption (PRE) scheme
consists of the following algorithms:

Global-setup(λ) is a probabilistic algorithm which takes a security parameter λ
and returns a set par of public parameters with a plaintext space M.

Keygen(λ, par) is a probabilistic algorithm which takes parameters λ and par
and returns a public/secret key pair (pk, sk).

Enc1(m, pkj , par) is a probabilistic algorithm which takes a plaintext m ∈ M, a
user j’s public key pkj, and par, and returns a first level ciphertext Cj for j,
which cannot be re-encrypted for another user.

Enc2(m, pki, par) is a probabilistic algorithm which takes a plaintext m ∈ M, a
user i’s public key pki, and par, and returns a second level ciphertext Ci for
i, which can be re-encrypted with re-encryption keys for another user.

ReKeygen(ski, pkj , par) is a probabilistic algorithm which takes a user i’s secret
key ski, a user j’s public key pkj, and par, and returns a re-encryption
key Rij to re-encrypt second level ciphertexts for i into first level ciphertexts
for j.

ReEnc(Rij , Ci, par) is a probabilistic algorithm which takes a re-encryption key
Rij , a second level ciphertext Ci encrypted under pki, and a set par of com-
mon public parameters, and returns a first level ciphertext Cj re-encrypted
for j or a distinguished message ’invalid.’

Dec1(Cj , skj , par) is a deterministic algorithm which takes a first level ciphertext
Cj for j, a user j’s secret key skj, and par, and returns a plaintext m or a
distinguished message ’invalid’.
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Dec2(Ci, ski, par) is a deterministic algorithm which takes a second level cipher-
text Ci for i, a user i’s secret key ski, and par, and returns a plaintext m or
a distinguished message ’invalid’.

To lighten notations, we will sometimes omit to explicitly write the set par of
public parameters, taken as input by all but one of the above algorithms.

Next, we describe the definition of the replayable chosen ciphertext security
of unidirectional PRE schemes by Libert and Vergnaud [10]. In unidirectional
single-hop PRE schemes, there exist two types of ciphertexts, first level and
second level ciphertexts. Therefore, it is necessary to prove the confidentiality
of each types of ciphertexts. First, we describe the security definition of second
level ciphertexts.

Definition 5 (Second level RCCA security). A unidirectional single-hop
proxy re-encryption scheme is second level secure against replayable chosen-
ciphertext attack (RCCA) (or second level RCCA secure for short) if

|Pr[(pk∗, sk∗) ← Keygen(λ); {(pkh, skh) ← Keygen(λ)}; {(pkc, skc) ← Keygen(λ)};
{R∗h ← ReKeygen(sk∗, pkh)}; {Rh∗ ← ReKeygen(skh, pk∗)};

{Rhc ← ReKeygen(skh, pkc)}; {Rhh′ ← ReKeygen(skh, pkh′)};
(m0, m1, St) ← AOreenc,O1-dec (pk∗, {pkh}, {(pkc, skc)},

{R∗h}, {Rh∗}, {Rhc}, {Rhh′});
d∗ R← {0, 1}; C∗ ← Enc2(md∗ , pk∗); d′ R← AOreenc ,O1-dec(C∗, St) : d′ = d∗] − 1/2|

is negligible for any polynomial time algorithm A. Above, St is the state infor-
mation maintained by A, and keys subscripted by “ ∗”, h (or h′), and c are those
for the target honest user, a honest user other than the target honest user, and
a corrupted user, respectively. Oracles Oreenc and O1-dec proceed as follows:

– Re-encryption oracle Oreenc: on input (pki, pkj , C) where C is a second
level ciphertext and pki, pkj were produced by Keygen, this oracle re-
sponds with invalid if C is not properly shaped (ill-formed) with re-
spect to pki. It returns a special symbol ⊥ if j is a corrupted user and
(pki, C) = (pk∗, C∗). Otherwise, the re-encrypted first level ciphertext Cj =
ReEnc(ReKeygen(ski, pkj), C) is returned to A.

– First level decryption oracle O1-dec: given a pair (pk, C), where C is a first
level ciphertext and pk was produced by Keygen, this oracle returns invalid
if C is ill-formed with respect to pk. If the query occurs in the guess stage,
it outputs ⊥ if (pk, C) is a Derivative of (pk∗, C∗). Otherwise, the plaintext
m = Dec1(sk, C) is returned to A. Derivatives of (pk∗, C∗) are defined as
follows: If C is a first level ciphertext and pk is an honest user’s key, (pk, C)
is a Derivative of (pk∗, C∗) if Dec1(sk, C) ∈ {m0, m1}.

Next, we describe the definition of RCCA security of first level ciphertexts.

Definition 6 (First level RCCA security). A unidirectional single-hop proxy
re-encryption scheme is first level secure against replayable chosen-ciphertext at-
tack (RCCA) (or first level RCCA secure for short) if
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|Pr[(pk∗, sk∗) ← Keygen(λ); {(pkh, skh) ← Keygen(λ)}; {(pkc, skc) ← Keygen(λ)};
{R∗c ← ReKeygen(sk∗, pkc, par)};

{R∗h ← ReKeygen(sk∗, pkh, par)}; {Rh∗ ← ReKeygen(skh, pk∗, par)};
{Rhc ← ReKeygen(skh, pkc, par)}; {Rhh′ ← ReKeygen(skh, pkh′ , par)};

(m0, m1, St) ← AO1-dec(pk∗, {pkh}, {(pkc, skc)},
{R∗c}, {R∗h}, {Rh∗}, {Rhc}, {Rhh′});

d∗ R← {0, 1}; C∗ ← Enc1(md∗ , pk∗); d′ R← AO1-dec(C∗, St) : d′ = d∗] − 1/2|
is negligible for any polynomial time algorithm A. Above, St is the state infor-
mation maintained by A, and keys subscripted by “ ∗”, h (or h′), and c are
those for the target honest user, a honest user other than the target honest user,
and a corrupted user, respectively. Oracle O1-dec is the same as that in Defini-
tion 5 except that the definition of Derivatives: If C is a first level ciphertext and
pk = pk∗, (pk, C) is a Derivative of (pk∗, C∗) if Dec1(sk, C) ∈ {m0, m1}.
Above, all re-encryption keys are available to the adversary. Therefore, the re-
encryption oracle becomes useless and is not given to the adversary.

2.3 Unidirectional Proxy Re-Encryption with Temporary
Delegation

In this section, we describe the syntactic definition of unidirectional proxy re-
encryption with temporary delegation and its security notion [10]. In the PRE
scheme with temporary delegation, it only allows the proxy to re-encrypt mes-
sages from A to B during a limited time period.

The model of unidirectional PRE scheme supporting temporary delegation is
almost the same as that in Definition 4 except that re-encryption key generation,
encryption, and re-encryption algorithms take a period � ∈ {1, ..., L} as input.
Intuitively, the re-encryption key generated by ReKeygen with a period �, can
be used to re-encrypt the ciphertext generated by Enc2 with the same period �.
Note that the public and secret keys are common to all time periods.

Next, we describe the security notion of a PRE scheme with temporary del-
egation. In Definition 5, the challenger generates public keys for all parties and
allows the adversary to obtain private keys for some of them (known key model).

On the other hand, in [10], a stronger security notion is also proposed, called
RCCA security in the chosen key model (RCCA-CK security). In this model, the
adversary can arbitrarily choose public keys without demonstrating knowledge
of the private keys. This provides the adversary with much more flexibility and
power in attacking other honest parties in the system.

The definition of RCCA-CK security can be extended to that for PRE schemes
with temporary delegation. We describe the second level RCCA security in the
chosen key model for PRE schemes with temporary delegation.

Definition 7 (Second level RCCA-CK security for PRE schemes
with temporary delegation). A unidirectional single-hop proxy re-encryption
scheme with temporary delegation is second level secure against replayable chosen-
ciphertext attack in the chosen key model (or RCCA-CK secure for short) if
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|Pr[{(pki, ski) ← Keygen(λ)}i∈HU ; {Rii′ ← ReKeygen(ski, pki′)}i,i′∈HU ;
(m0, m1, i

∗, �∗, St) ← AOdeleg,Oreenc,O1-dec({pki}, {Rii′}); d∗ R← {0, 1};
C∗ R← Enc2(�∗, md∗ , pki∗); d′ R← AOdeleg,Oreenc,O1-dec(C∗, St) : d′ = d∗] − 1/2|

is negligible for any polynomial time algorithm A. Above, St is the state infor-
mation maintained by A, HU is the set of honest users, i∗ ∈ HU is the target
user, and �∗ is the target time period.

Oracles Odeleg, Oreenc, and O1-dec proceed as follows:

– Delegation oracle Odeleg: on input (�, pki, pkj) where � is a time period, pki is
a public key of honest user i ∈ HU (and either � �= �∗ or i �= i∗ in any stage),
and pkj is a public key which A chooses arbitrary, this oracle responds with
ReKeygen(�, ski, pkj).

– Re-encryption oracle Oreenc: on input (�, pki, pkj , C) where � is a time period,
C is a second level ciphertext, pki is a public key of honest user i ∈ HU ,
and pkj is a public key which A chooses arbitrary, this oracle responds with
invalid if C is ill-formed with respect to pki. It returns a special symbol ⊥
if j �∈ HU and (�, pki, C) = (�∗, pk∗, C∗). Otherwise, the re-encrypted first
level ciphertext Cj = ReEnc(ReKeygen(�, ski, pkj), C) is returned to A.

– First level decryption oracle O1-dec: given a pair (pki, C), where C is a first
level ciphertext and i ∈ HU , this oracle returns invalid if C is ill-formed
with respect to pki. If the query occurs in the guess stage, it outputs a spe-
cial symbol ⊥ if (pki, C) is a Derivative of the challenge pair (pki∗ , C∗).
Otherwise, the plaintext m = Dec1(ski, C) is returned to A. Derivatives of
(pki∗ , C∗) are defined as follows: If C is a first level ciphertext and i ∈ HU ,
(pki, C) is a Derivative of (pki∗ , C

∗) if C and C∗ are encrypted for the same
time period �∗ and Dec1(ski, C) ∈ {m0, m1}.

Next, we describe the definition of RCCA-CK security of first level ciphertexts
for PRE schemes with temporary delegation.

Definition 8 (First level RCCA-CK security for PRE schemes with
temporary delegation). A unidirectional single-hop proxy re-encryption
scheme with temporary delegation is first level secure against replayable chosen-
ciphertext attack in the chosen key model (RCCA-CK) (or RCCA-CK secure for
short) if

|Pr[{(pki, ski) ← Keygen(λ)}i∈HU ; {Rii′ ← ReKeygen(ski, pki′)}i,i′∈HU ;
(m0, m1, i

∗, �∗, St) ← AOdeleg,O1-dec({pki}, {Rii′}); d∗ R← {0, 1};
C∗ R← Enc1(�∗, md∗ , pki∗); d′ R← AOdeleg,O1-dec(C∗, St) : d′ = d∗] − 1/2|

is negligible for any polynomial time algorithm A. Above, St is the state in-
formation maintained by A, HU is the set of honest users, i∗ ∈ HU is
the target user, and �∗ is the target time period. An oracle Odeleg responds
with ReKeygen(�, ski, pkj) for any query (�, pki, pkj) where i ∈ HU . That is,
(�∗, pki∗ , pkj) can be queried to Odeleg. An oracle O1-dec is the same as that in
Definition 7 except that the definition of Derivatives: If C is a first level ciphertext
and pk = pk∗, (pk, C) is a Derivative of (pk∗, C∗) if Dec1(sk, C) ∈ {m0, m1}.
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In the above definition, all re-encryption keys are available to the adversary.
Therefore, the re-encryption oracle becomes useless and is not given to the ad-
versary.

3 Unforgeability of Re-Encryption Keys against Collusion
Attack

In this section, we discuss about the non-transferability and propose a security
definition called the unforgeability of re-encryption keys against collusion attack.

As described before, the non-transferability is described in [1] as “A proxy
scheme is non-transferable when the only way for Bob (corrupted delegatee) to
transfer offline decryption capabilities to Carol (malicious user) is to expose his
own secret key.” To our best knowledge, there is no formal definition of the
non-transferability. One considerable definition of the non-transferability natu-
rally derived from the above informal statement is as follows. Here, plaintext
extractors as in the definition of plaintext awareness [3] are employed.

In the following definitions, keys subscripted by “∗”, h, j, and ci are those
for a target honest delegator, a honest user, a malicious user, and a corrupted
delegatee, respectively, and i ∈ {1, . . . , L} where L is polynomially bounded.

Definition 9 (Non-Transferability, NT). A unidirectional single-hop proxy
re-encryption scheme meets the non-transferability if there exists a polynomial
time algorithm P such that

Pr[(pk∗, sk∗) ← Keygen(λ); (pkh, skh) ← Keygen(λ); {(pkci , skci) ← Keygen(λ)};
(pkj, skj) ← Keygen(λ); {R∗ci ← ReKeygen(sk∗, pkci)};

{Rhci ← ReKeygen(skh, pkci)}; m R← M; C∗ ← Enc2(m, pk∗);

{mi
R← M}; {Ci ← Enc2(mi, pkci)}; {m′

i
R← M}; {C′

i ← Enc1(m
′
i, pkci)};

{m′′
i

R← M}; {C′′
i ← ReEnc(Rhci , Enc2(m

′′
i , pkh))};

X ← C(pk∗, {(pkci , skci)}, {R∗ci}); mJ ← J (X, (pkj , skj), C
∗);

mP ← P(X, (pkj, skj), {Ci}, {C′
i}, {C′′

i })
: m �= mJ ∨ mP ∈ {mi} ∪ {m′

i} ∪ {m′′
i }]

is overwhelming for any polynomial time algorithm C, J , and polynomial L.

Intuitively, this definition states that it is impossible for C (colluding proxies and
delegatees) to re-delegate the decryption rights of the target honest delegator *
to J (a malicious user) without delegating any right related to secret keys of
any member in C to P (the malicious user).

In a PRE scheme, a user who has a secret key skci only has rights to
decrypt second level ciphertexts Ci = Enc2(mi, pkci), decrypt first level cipher-
texts C′

i = Enc1(m′
i, pkci) and C′′

i = ReEnc(Rhci , Enc2(m′′
i , pkh)), and gener-

ate re-encryption keys to re-encrypt a ciphertext for the user with ski into
a ciphertext for another user. The definition states that in a non-transferable
PRE scheme, whenever the decryption right of the target honest delegator *
is re-delegated to the malicious user from colluding proxies and delegatees,
at least one of the above rights of any member in the colluding proxies and
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delegatees is necessarily transferred to the malicious user at the same time. In
the above definition, such transfer is modeled with P and detected by the event
“mP ∈ {mi} ∪ {m′

i} ∪ {m′′
i }”, that is, the plaintext extractor P decrypts any

ciphertext C ∈ {Ci} ∪ {C′
i} ∪ {C′′

i } of first or second level ciphertexts for any
member in C by using X . Note that we can omit to consider the rights to gener-
ate a re-encryption key, since if the malicious user can generate a re-encryption
key Rcij , then the malicious user can also decrypt a second level ciphertext Ci.

Unfortunately, we have not succeeded in constructing the scheme which sat-
isfies the above definition, and we consider that it is very difficult to construct
such schemes since the required security level is quite high.

We next propose a security notion called the unforgeability of re-encryption
keys against collusion attack, which is a relaxed notion of the non-transferability.

Definition 10 (Unforgeability of Re-Encryption Keys against Collu-
sion Attack, UFReKey-CA). A unidirectional single-hop proxy re-encryption
scheme meets the unforgeability of re-encryption keys against collusion attack if
there exists a polynomial time algorithm P such that

Pr[(pk∗, sk∗) ← Keygen(λ); (pkh, skh) ← Keygen(λ); {(pkci , skci) ← Keygen(λ)};
(pkj, skj) ← Keygen(λ); {R∗ci ← ReKeygen(sk∗, pkci)};

{Rhci ← ReKeygen(skh, pkci)}; m
R← M; C∗ ← Enc2(m, pk∗);

{mi
R← M}; {Ci ← Enc2(mi, pkci)}; {m′

i
R← M}; {C′

i ← Enc1(m
′
i, pkci)};

{m′′
i

R← M}; {C′′
i ← ReEnc(Rhci , Enc2(m

′′
i , pkh))};

X ← C(pk∗, {(pkci , skci)}, {R∗ci}); R†
∗j ← J (X, (pkj , skj));

mP ← P(X, (pkj, skj), {Ci}, {C′
i}, {C′′

i })
: m �= Dec1(ReEnc(R†

∗j , C
∗), skj) ∨ mP ∈ {mi} ∪ {m′

i} ∪ {m′′
i }]

is overwhelming for any polynomial time algorithm C, J , and polynomial L.

Intuitively, this definition states that it is impossible for C (the colluding proxies
and delegatees) to re-delegate the decryption rights of the target honest delega-
tor * to J (a malicious user) by giving the information to forge the re-encryption
key for J without delegating any right related to secret keys of any member in C
to P (the malicious user). As compared with the non-transferability, the way to
re-delegate the decryption rights is limited to the forgery of the re-encryption key
in the definition of UFReKey-CA. Therefore, it is easy to see that UFReKey-CA
is a relaxed notion of the non-transferability.

In the above definition, the adversary tries to return a forged re-encryption
key R†

∗j such that

m = Dec1(ReEnc(R†
∗j , Enc2(m, pk∗)), skj) (1)

where m
R← M. The adversary always wins if she returns the well-formed re-

encryption key, which is one of the outputs of ReKeygen(sk∗, pkj). On the other
hand, the adversary does not have to output the well-formed re-encryption key
to win the game. That is, the adversary also wins if she forges a re-encryption
key which satisfies the equation (1) and it is an ill-formed re-encryption key,
which is never returned from ReKeygen(sk∗, pkj).
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To the best of our knowledge, there exists no PRE scheme which satisfies
UFReKey-CA and does not require either a trusted third party or communica-
tion between a delegator and a delegatee during re-encryption key generation.
For example, in case of the scheme in [10], the colluding adversaries can gener-
ate the (well-formed) re-encryption key R†

∗j from R∗c = gxc/x∗ , skc = xc and
skj = xj by simply computing R†

∗j = (gxj/x∗)xc/xj = gxc/x∗ . Similarly, for other
previously proposed schemes such as [5,12,6,13,16], the colluding adversaries,
with secret keys skc and skj , can easily generate a forged re-encryption key R∗j

by removing the ingredient(s) related to c from the re-encryption key R∗c and
adding the ingredient(s) related to j to it.

In the definition of UFReKey-CA, there exists the adversary P which extracts
the plaintext from the information X . Generally speaking, it is difficult (compli-
cated) to prove the (non-)existence of the plaintext extractor P . For convenience,
we propose a simple and useful security notion to prove UFReKey-CA.

Definition 11 (Strong Unforgeability of Re-Encryption Keys against
Collusion Attack, sUFReKey-CA). A unidirectional single-hop proxy re-
encryption scheme meets the strong unforgeability of re-encryption keys against
collusion attack if

Pr[(pk∗, sk∗) ← Keygen(λ); {(pkci , skci) ← Keygen(λ)}; (pkj , skj) ← Keygen(λ);

{R∗ci ← ReKeygen(sk∗, pkci)}; m
R← M; C∗ ← Enc2(m, pk∗);

R†
∗j ← A(pk∗, {(pkci , skci)}, (pkj , skj), {R∗ci}) : m = Dec1(ReEnc(R†

∗j , C
∗), skj)]

is negligible for any polynomial time algorithm A, and polynomial L.

Intuitively, this definition states that it is impossible for C (colluding proxies and
delegatees) to re-delegate the decryption rights of the target honest delegator *
to a malicious user A by giving the forged re-encryption keys for the malicious
user, where the secret key(s) of the colluding proxies and delegatees may be
revealed to the malicious user, and the secret key of the malicious user may
be revealed to to the colluding proxies and delegatees. It is easy to see that
the scheme which satisfies sUFReKey-CA also meets UFReKey-CA. Since there
exists no plaintext extractor in the definition of sUFReKey-CA, the proof of
sUFReKey-CA is simpler than that of UFReKey-CA.

Note that we can consider several variations of UFReKey-CA by changing
goals of C. For example, it may be defined that C tries to generate a secret key skci

itself, or generate a forged secret key sk† such that Dec1(sk†, C) = Dec1(skci , C).
We also note that even when such kinds of C are defined in UFReKey-CA,
sUFReKey-CA still implies UFReKey-CA and sUFReKey-CA is still useful to
prove UFReKey-CA.

4 The Scheme

In this section, we propose a unidirectional PRE scheme which meets the RCCA
security and sUFReKey-CA. Our scheme is based on the scheme in [10].
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Before describing it, we review the strong one-time signature which we employ
to construct our scheme. One-time signature Sig = (G,S,V) consists of a triple
of algorithms. The algorithm G takes a security parameter λ and returns a pair
of signing/verification keys (ssk, svk). Then, for any message M , V(σ, svk, M)
returns 1 whenever σ = S(ssk, M) and 0 otherwise. We say that Sig is a strong
one-time signature if no polynomial time adversary can create a new signature
for a previously signed message (See [10] for the formal security definition.).

The differences between our scheme and the scheme in [10] are as follows.
In our PRE scheme, two additional generators g1, g2 = gβ are introduced and
a plaintext is masked with e(g1g2, g)r where r is a random number. The re-

encryption key Rij3 = g
xj+βyj+γ

zi of our scheme contains two secret keys xj , yj of
delegatee, a secret system parameter β, and a random number γ to avoid such
forgery attacks as described in Section 3. In the first level decryption, yj is used
to extract e(g2, g)r from the ciphertext generated by Rij3 and an additional re-

encryption key Rij1 = g
xj+γ

xi . Similarly, xj is used to extract e(g1, g)r from the

ciphertext generated by Rij3 and an additional re-encryption key Rij2 = g
βyj+γ

yi .

4.1 Description

Global-setup(λ): given a security parameter λ, choose bilinear map groups
(G, GT ) of prime order p > 2λ, generators g, g1(= gα), g2(= gβ), u, v

R← G,
and a one-time signature scheme Sig = (G,S,V). The global parameters are
par := {p, G, GT , g, g1, g2, u, v, Sig}. The message space M is equal to GT .

Keygen(λ, par): user i chooses xi, yi, zi
R← Z∗

p. The secret key is ski = (xi, yi, zi).
The public key is pki = (Xi, Y1i, Y2i, Zi, Z1i) where Xi ← gxi, Y1i ←
g1

yi , Y2i ← g2
yi , Zi ← gzi, Z1i ← g1

zi .
Enc1(m, pkj , par): to encrypt a message m ∈ GT under the public key pkj at

the first level, the sender proceeds as follows:
1. Select a one-time signature key pair (svk, ssk) ← G(λ) and set C1 = svk.
2. Pick r, s, t, k, γ

R← Z∗
p and compute,

C′
2X = Y2j

s, C′′
2X = Y2j

rs, C′
2Y = Xj

t, C′′
2Y = Xj

rt, C′
2Z = Y2j

k,

C′′
2Z = Y2j

rk, C′
2Z1 = Xj

k, C′′
2Z1 = Xj

rk, C3 = e(g1g2, g)r · m,

C4 = (usvk · v)r , C5X = (g1 · gγ)
1
s , C5Y = g

γ+1
t , C5Z = (g1 · gγ+1)

1
k .

3. Generate a one-time signature σ ← S(ssk, (C3, C4)) on (C3, C4).
The (first level) ciphertext is Cj = (C1, C

′
2X , C′′

2X , C′
2Y , C′′

2Y , C′
2Z , C′′

2Z , C′
2Z1,

C′′
2Z1, C3, C4, C5X , C5Y , C5Z , σ).

Enc2(m, pki, par): to encrypt a message m ∈ GT under the public key pki at
the second level, the sender proceeds as follows:
1. Select a one-time signature key pair (svk, ssk) ← G(λ) and set C1 = svk.
2. Pick r

R← Z∗
p and compute,

C2X = Xi
r, C2Y = Y1i

r, C2Z = Zi
r, C2Z1 = Z1i

r,
C3 = e(g1g2, g)r · m, C4 = (usvk · v)r.

3. Generate a one-time signature σ ← S(ssk, (C3, C4)) on (C3, C4).
The (second level) ciphertext is Ci = (C1, C2X , C2Y , C2Z , C2Z1, C3, C4, σ).
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ReKeygen(ski, pkj , par): given user i’s secret key ski and user j’s public key pkj ,

generate the re-encryption key Rij = (Rij1, Rij2, Rij3) where γ
R← Z∗

p and

Rij1 = (Xj · gγ)1/xi = g
xj+γ

xi , Rij2 = (Y2j · gγ)1/yi = g
βyj+γ

yi ,

Rij3 = (Xj · Y2j · gγ)1/zi = g
xj+βyj+γ

zi .
ReEnc(Rij , Ci, par): on input of the re-encryption key Rij and a second level

ciphertext Ci, check the validity of the ciphertext by testing:

e(C2X , uC1 · v) = e(Xi, C4), e(C2Y , uC1 · v) = e(Y1i, C4),
e(C2Z , uC1 · v) = e(Zi, C4), e(C2Z1, u

C1 · v) = e(Z1i, C4),
V(C1, σ, (C3, C4)) = 1.

(2)

If the relations (2) hold (well-formed), Ci is re-encrypted by choosing
s, t, k

R← Z∗
p and computing

C′
2X = Xi

s, C′′
2X = C2X

s = Xi
rs, C′

2Y = Y1i
t, C′′

2Y = C2Y
t = Y1i

rt,

C′
2Z = Zi

k, C′′
2Z = C2Z

k = Zi
rk, C′

2Z1 = Z1i
k, C′′

2Z1 = C2Z1
k = Z1i

rk,

C5X = Rij1
1
s , C5Y = Rij2

1
t , C5Z = Rij3

1
k ,

and a re-encrypted ciphertext Cj =(C1, C
′
2X , C′′

2X , C′
2Y , C′′

2Y , C′
2Z , C′′

2Z , C′
2Z1,

C′′
2Z1, C3, C4, C5X , C5Y , C5Z , σ) is returned. Otherwise, ‘invalid’ is re-

turned.
Dec1(Cj , skj): the validity of the first level ciphertext Cj is checked by testing:

e(C′′
2X , uC1 · v) = e(C′

2X , C4), e(C′′
2Y , uC1 · v) = e(C′

2Y , C4),
e(C′′

2Z , uC1 · v) = e(C′
2Z , C4), e(C′′

2Z1, u
C1 · v) = e(C′

2Z1, C4),
e(C5Z , C′

2Z) = e(C5X , C′
2X) · e(Y2j , g),

e(C5Z , C′
2Z1) = e(C5Y , C′

2Y ) · e(Xj , g1),
V(C1, σ, (C3, C4)) = 1.

(3)

If the relations (3) hold (well-formed), the plaintext

m = C3

/{(
e(C5Z ,C′′

2Z)
e(C5X ,C′′

2X )

) 1
yj ·
(

e(C5Z ,C′′
2Z1)

e(C5Y ,C′′
2Y )

) 1
xj

}
is returned. Otherwise (ill-formed), the algorithm outputs ‘invalid.’

Dec2(Ci, ski): if the second level ciphertext Ci satisfies the relations (2), the
plaintext m = C3

/
e(g1g2, C2X)

1
xi is returned. Otherwise, ‘invalid’ is

returned.

4.2 Security

Theorem 1. Our proposed scheme with the strong one-time signature satisfies
second level RCCA security if the 3-wDBDHI problem is hard.

Proof (Sketch). Our scheme is based on the scheme by Libert and Vergnaud [10],
and the proof of the above theorem is almost the same as that for the Libert–
Vergnaud scheme. We use the following lemma in [10].
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Lemma 1. The 3-wDBDHI problem is equivalent to decide whether T equals
e(g, g)b/a2

or a random value given (g, g1/a, ga, ga2
, gb, T ) as input.

We prove that our proposed scheme is second level RCCA secure under the
above (modified 3-wDBDHI) problem. We build an algorithm B which is, given
(g, A−1 = g1/a, A1 = ga, A2 = ga2

, B = gb, T ), solving the modified 3-wDBDHI
problem using second level RCCA adversary A.

The algorithm B simulates A’s input and oracles as follows. The generator
are chosen g1 ← gα and g2 ← gβ where α, β

R← Z∗
p. The key pair (svk∗, ssk∗) R←

G(1λ) of the one-time signature scheme is chosen, and the generator u and v are
set as Aα1

1 and A−α1svk∗
1 Aα2

2 , respectively (α1, α2
R← Z∗

p).
The public key of the target user is set as (A2

x∗ , A2
αy∗ , A2

βy∗ , A2
z∗ , A2

αz∗)
= (ga2x∗ , g1

a2y∗ , g2
a2y∗ , ga2z∗ , g1

a2z∗), that of the honest user h is set as
(A1

xh , A1
αyh ,

A1
βyh , A1

zh , A1
αzh) = (gaxh , g1

ayh , g2
ayh , gazh , g1

azh), and that of the cor-
rupted user c is set as (gxc , g1

yc , g2
yc , gzc , g1

zc), where x∗, y∗, z∗, xh, yh, zh, xc, yc,

zc
R← Z∗

p (B does not have to compute the secret keys of the honest users.).

The re-encryption keys is computed as Rh∗ = (A1

x∗+γ′
xh , A1

βy∗+γ′
yh ,

A1

x∗+βy∗+γ′
zh ), R∗h = (A−1

xh+γ′′
x∗ , A−1

βyh+γ′′
y∗ , A−1

xh+βyh+γ′′
z∗ ), Rhc = (A−1

xc+γ′′′
xh ,

A−1

βyc+γ′′′
yh , A−1

xc+βyc+γ′′′
zh ), and Rhh′ = (g

x
h′+γ

xh , g
βy

h′+γ

yh , g
x

h′+βy
h′+γ

zh ), where
γ′, γ′′, γ′′′, γ R← Z∗

p.
For the re-encryption query (pki, pkj, Ci), B checks the validity of Ci by using

the equations (2). If Ci is ill-formed, B outputs invalid. Otherwise, if i is not
the target user or j is not the corrupted user, B uses the re-encryption key and
responds the query. If i is the target user and j is the corrupted user, C1 �= svk∗

holds with overwhelming probability (because of the strong unforgeability of the
one-time signature). Then, the re-encrypted ciphertext Cj can be computed as

(C1, A1
s, (A1

r)s, A1
αt, (A1

r)αt, A1
k, (A1

r)k, A1
αk, (A1

r)αk, A−1

xj+γ

t , A−1

βyj+γ

s ,

A−1

xj+βyj+γ

k , σ) and A1
r = (C4/C

α2/x∗
2X )

1
α1(C1−svk∗) where s′, t′, k′, γ

R← Z∗
p. This

is a valid ciphertext with the randomness s = s′/ax∗, t = t′/ay∗, k = k′/kz∗.
For the first level decryption query (pkj , Cj), B checks the validity of Cj by

using the equations (3). If Cj is ill-formed, B outputs invalid. When Cj is well-
formed, if j is the corrupted user, B uses the secret key and responds the query.
When j is an honest user, if C1 = svk∗ and (C3, C4, σ) = (C∗

3 , C∗
4 , σ∗), B returns

⊥ since Cj is a Derivative of the challenge ciphertext. In the other case, C1 �= svk∗

holds with overwhelming probability (because of the strong unforgeability of
the one-time signature). Then, we consider the following two cases. If j is not

the target user, B computes X = {e(C4, A−1)/( e(C5Z ,C′′
2Z)

e(C5X ,C′′
2X ) )

α2
yjβ } α+β

α1(C1−svk∗) (=
e(g1g2, g)r) and m = C3/X . If j is the target user, B computes Y = {e(C4, g)/

( e(C5Z ,C′′
2Z)

e(C5X ,C′′
2X) )

α2
yj β } 1

α1(C1−svk∗) (= e(g, g)ar), Z = (e(C4, A−1)/ Y α2)
α+β

α1(C1−svk∗) (=
e(g1g2, g)r) and m = C3/Z. Note that if m ∈ {m0, m1}, B returns ⊥.
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The challenge ciphertext is computed as (svk∗, Bx∗ , Bαy∗ , Bz∗ , Bαz∗ , md∗ ·
T α+β, Bα2 ,S(ssk∗, (C∗

3 , C∗
4 )) where d∗ R← {0, 1}. If T = e(g, g)b/a2

, C∗ is a valid
ciphertext with the random exponent r = b/a2. In contrast, if T is random,
A cannot guess d∗ with probability better than 1/2. Therefore, B decides that
T = e(g, g)b/a2

if d∗ equals to the adversary’s output and that T is random
otherwise. �

Theorem 2. Our proposed scheme with the strong one-time signature satisfies
first level RCCA security if the 3-wDBDHI problem is hard.

Proof (Sketch). The proof is almost the same as that of Theorem 1. We can build
an algorithm B which is, given (g, A−1 = g1/a, A1 = ga, A2 = ga2

, B = gb, T ),
solving the modified 3-wDBDHI problem using RCCA adversary A at level 1.

The algorithm B sets public parameters as in the proof of Theorem 1. The
algorithm B generates a public key for target user as (A1

x∗ , A1
αy∗ , A1

βy∗ ,

A1
z∗ , A1

αz∗) = (gax∗ , g1
ay∗ , g2

ay∗ , gaz∗ , g1
az∗) where x∗, y∗, z∗

R← Z∗
p, and

for the other users as (gx, g1
y, g2

y, gz, g1
z) where x, y, z

R← Z∗
p. Then the re-

encryption key can be computed as Rij = (g
xj+γ

xi , g
βyj+γ

yi , g
xj+βyj+γ

zi ), R∗j =

(A−1

xj+γ

x∗ , A−1

βyj+γ

y∗ , A−1

xj+βyj+γ

z∗ ), Ri∗ = (A1

x∗+γ
xi , A1

βy∗+γ
yi , A1

x∗+βy∗+γ
zi )

where i, j is not the target user. For the first level decryption query, B responds
in the same way as that for the honest user’s case in the proof of Theorem 1.

The challenge ciphertext is computed as (svk∗, A2
βy∗s′

, Bβy∗s′
, A2

x∗t′ , Bx∗t′ ,

A2
βy∗k′

, Bβy∗k′
, A2

x∗k′
, Bx∗k′

, md∗ · T α+β, Bα2 , A−1

α+γ

s′ , A−1

1+γ

t′ , A−1

α+1+γ

k′ , σ∗)
where σ∗ ← S(ssk∗, (C∗

3 , C∗
4 )), s′, t′, k′, γ R← Z∗

p, and d∗ R← {0, 1}. If T =
e(g, g)b/a2

, C∗ is a valid ciphertext with the random exponents r = b/a2, s = as′,
t = at′, k = ak′. In contrast, if T is random, A cannot guess d∗ with probability
better than 1/2. Therefore, B decides that T = e(g, g)b/a2

if d∗ equals to the
adversary’s output and that T is random otherwise. �

Theorem 3. Our proposed scheme meets sUFReKey-CA if the 2-DHIwRA
problem is hard.

Proof. We specify the polynomial time algorithm B which solves 2-DHIwRA
problem by using the polynomial time algorithm A which breaks the strong
unforgeability of re-encryption keys against collusion attack of the proposed
scheme.

1. Given g, A1 = ga, A2 = ga2
, c (input 1 of 2-DHIwRA problem), and

{(xi, yi, Di = g
xi+γi
a(a+c) , Ei = g

ayi+γi
a+c , Fi = g

xi+γi
a )} (input 2 of 2-DHIwRA

problem), B generates the input of A as follows:
– par: Choose μ

R← Z∗
p and set g1(= gα) ← A1 and g2(= gβ) ← A1

μ (i.e.
α = a, β = aμ). The generators u and v are randomly chosen from G.

– pk∗ = (X∗, Y1∗, Y2∗, Z∗, Z1∗): Choose x, y, z
R← Z∗

p and compute X∗ =
(A1

c · A2)x, Y1∗ = (A1
c · A2)y , Y2∗ = (A1

c · A2)yμ, Z∗ = A1
z , Z1∗ =
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A2
z. Here, the corresponding secret key of the target honest user is

sk∗ = (x∗, y∗, z∗) where x∗ = a(a+ c)x, y∗ = (a+ c)y, z∗ = az. Note that
B does not have to compute x∗, y∗, and z∗.

– (pkj , skj): The secret key skj = (xj , yj , zj) of the malicious user is set

as xj , zj
R← Z∗

p and yj ← xj/c. The public key pkj is computed by using
the secret key skj and the public parameters g, g1, g2.

– (pkci , skci), R∗ci : Let (xi, yi, Di, Ei, Fi) be the i-th quintuple of input
2 of 2-DHIwRA problem. The secret key of i-th corrupted delegatee
skci = (xci , yci , zci) is set as xci ← xi, yci ← yi/μ, and zci

R← Z∗
p. The

public key pkci is computed by using the secret key skci and the public
parameters g, g1, g2. The re-encryption key R∗ci = (R∗ci1, R∗ci2, R∗ci3)
is computed as follows. Note that βyci = (aμ)(yi/μ) = ayi.

R∗ci1 =Di
1/x = g

xi+γi
a(a+c)x = g

xci
+γi

x∗ , R∗ci2 = Ei
1/y = g

ayi+γi
(a+c)y = g

βyci
+γi

y∗ ,

R∗ci3 = (Fi · gyi)1/z = g
xi+ayi+γi

az = g
xci

+βyci
+γi

z∗ .

2. The algorithm B runs A with the input computed in step 1. Then, A’s output
R†

∗j = (R1, R2, R3) is returned to B.

3. B outputs W =
(

R3
z

R1
cx·R2

y

) 1
(1+μ)xj as the answer of 2-DHIwRA problem.

We show that the algorithm B outputs g
1

a+c with non-negligible probability.
We can easily see that the distributions of the public parameters and the
public/secret/re-encryption keys generated in step 1 are identical to those of our
proposed scheme. Therefore, the algorithm A outputs a (forged) re-encryption
key R†

∗j = (R1, R2, R3) which satisfies the equation (1) with non-negligible prob-
ability. From the equation (1) and the encryption/decryption/re-encryption al-
gorithms of our proposed scheme, we have

m = m · e(g1g2, g)r

/{(
e(R3

1/k,gz∗rk)

e(R1
1/s,gx∗rs)

) 1
yj ·
(

e(R3
1/k,gαz∗rk)

e(R2
1/t,gαy∗rt)

) 1
xj

}
⇔ m · e

(
R3

z∗(xj+αyj)

R1
x∗xj ·R2

αy∗yj , g
)r

= m · e((g1g2)xjyj , g)r.

Therefore,
R3

z∗(xj+αyj)

R1
x∗xj ·R2

αy∗yj = (g1g2)xjyj . (4)

In step 1, we set x∗ = a(a + c)x, y∗ = (a + c)y, z∗ = az, and xj = cyj . We also
set g1 = ga and g2 = gaμ. Together with the equation (4), we have

R3
az(cyj+ayj)

R1
a(a+c)xcyj ·R2

a(a+c)yyj
= (gagaμ)xjyj ⇔ (W =)

(
R3

z

R1
cx·R2

y

) 1
(1+μ)xj = g

1
a+c .

Hence, the algorithm B outputs g
1

a+c with non-negligible probability.�

5 The Scheme with Temporary Delegation

In this section, we apply similar modification of the re-encryption keys to the
PRE scheme with temporary delegation in [10] and propose the PRE scheme
supporting temporary delegation which meets sUFReKey-CA.
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5.1 Description

Global-setup(λ) is the same as that in Section 4, and the others are as follows:

Keygen(λ, par): user i chooses xi, yi, zi, wi
R← Z∗

p. The secret key is ski =
(xi, yi, zi, wi). The public key is pki = (Xi, Y1i, Y2i, Zi, Z1i, Wi) where Xi ←
gxi , Y1i ← g1

yi , Y2i ← g2
yi , Zi ← gzi , Z1i ← g1

zi , Wi ← gwi . A function
Fi : {1, . . . , L} → G is implicitly defined as Fi(�) = g� · Wi = g�+wi .

Enc1(�, m, pkj , par): to encrypt a message m ∈ GT under the public key pkj at
the first level during period �, the sender proceeds as follows:
1. Select a one-time signature key pair (svk, ssk) ← G(λ) and set C1 = svk.

2. Pick r, s, t, k, h, γ, δx, δy
R← Z∗

p and compute,
C′

2X = Y2j
s, C′′

2X = Y2j
rs, C′

2Y = Xj
t, C′′

2Y = Xj
rt,

C′
2Z = Y2j

k, C′′
2Z = Y2j

rk, C′
2Z1 = Xj

k, C′′
2Z1 = Xj

rk,

C′
2F = Y2j

k, C′′
2F = Y2j

rk, C3 = e(g1g2, g)r · m, C4 = (usvk · v)r,

C5X = (g1 · gγ · Fj(�)δy)
1
s = g

α+γ+(�+wj)δy

s ,

C5Y = (g1+γ · Fj(�)δx)1
t = g

1+γ+(�+wj)δx

t , C5Z = (g1 · g1+γ)
1
k = g

α+1+γ
k ,

C5FX = (Y2j)
δy
h , C5FY = (Xj)

δx
h .

3. Generate a one-time signature σ ← S(ssk, (�, C3, C4)) on (�, C3, C4).
The (first level) ciphertext is Cj = (C1, C

′
2X , C′′

2X , C′
2Y , C′′

2Y , C′
2Z , C′′

2Z , C′
2Z1,

C′′
2Z1, C3, C4, C5X , C5Y , C5Z , C5FX , C5FY , σ).

Enc2(�, m, pki, par): to encrypt a message m ∈ GT under the public key pki at
the second level during period �, the sender proceeds as follows:
1. Select a one-time signature key pair (svk, ssk) ← G(λ) and set C1 = svk.

2. Pick r
R← Z∗

p and compute,
C2X = Xi

r, C2Y = Y1i
r, C2Z = Zi

r, C2Z1 = Z1i
r, C2F = Fi(�)

r
,

C3 = e(g1g2, g)r · m, C4 = (usvk · v)r.

3. Generate a one-time signature σ ← S(ssk, (�, C3, C4)) on (�, C3, C4).
The (second level) ciphertext is Ci = (�, C1, C2X , C2Y ,
C2Z , C2Z1, C2F , C3, C4, σ).

ReKeygen(�, ski, pkj, par): given a period number �, user i’s secret key ski and
user j’s public key pkj , generate the re-encryption key Rij� = (Rij�1, Rij�2,

Rij�3, Rij�4, Rij�5) where γ, δx, δy
R← Z∗

p and

Rij�1 = (Xj · gγ)1/xi · Fi(�)
δx = g

xj+γ

xi
+(�+wi)δx ,

Rij�2 = (Y2j · gγ)1/yi · Fi(�)
δy = g

βyj+γ

yi
+(�+wi)δy ,

Rij�3 = (Xj · Y2j · gγ)1/zi = g
xj+βyj+γ

zi , Rij�4 = Xi
δx , Rij�5 = Y1i

δy .

ReEnc(�, Rij�, Ci, par): on input of the re-encryption key Rij� for period � and
a second level ciphertext Ci, check the validity of the ciphertext by testing:

e(C2X , uC1 · v) = e(Xi, C4), e(C2Y , uC1 · v) = e(Y1i, C4),
e(C2Z , uC1 · v) = e(Zi, C4), e(C2Z1, u

C1 · v) = e(Z1i, C4),
e(C2F , uC1 · v) = e(Fi(�), C4), V(C1, σ, (�, C3, C4)) = 1.

(5)
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If the relations (5) hold (well-formed), Ci is re-encrypted by computing
C′

2X = Xi
s, C′′

2X = C2X
s = Xi

rs, C′
2Y = Y1i

t, C′′
2Y = C2Y

t = Y1i
rt,

C′
2Z = Zi

k, C′′
2Z = C2Z

k = Zi
rk, C′

2Z1 = Z1i
k, C′′

2Z1 = C2Z1
k = Z1i

rk,

C′
2F = Fi(�)h, C′′

2F = C2F
h = Fi(�)

rh
,

C5X = Rij1
1
s , C5Y = Rij2

1
t , C5Z = Rij3

1
k , C5FX = Rij4

1
h , C5FY = Rij5

1
h

where s, t, k, h
R← Z∗

p, and re-encrypted ciphertext Cj = (�, C1, C
′
2X ,

C′′
2X , C′

2Y , C′′
2Y , C′

2Z , C′′
2Z , C′

2Z1, C
′′
2Z1, C

′
2F , C′′

2F , C3, C4, C5X , C5Y , C5Z ,
C5FX , C5FY , σ) is returned. Otherwise (ill-formed), the algorithm outputs
‘invalid.’

Dec1(Cj , skj): the validity of the first level ciphertext Cj is checked by testing:

e(C′′
2X , uC1 · v) = e(C′

2X , C4), e(C′′
2Y , uC1 · v) = e(C′

2Y , C4),
e(C′′

2Z , uC1 · v) = e(C′
2Z , C4), e(C′′

2Z1, u
C1 · v) = e(C′

2Z1, C4),
e(C′′

2F , uC1 · v) = e(C′
2F , C4), V(C1, σ, (�, C3, C4)) = 1,

e(C5Z , C′
2Z) · e(C5FX , C′

2F ), = e(C5X , C′
2X) · e(Y2j , g),

e(C5Z , C′
2Z1) · e(C5FY , C′

2F ) = e(C5Y , C′
2Y ) · e(Xj, g1).

(6)

If the relations (6) hold (well-formed), the plaintext

m = C3

/{(
e(C5Z ,C′′

2Z)·e(C5F X ,C′′
2F )

e(C5X ,C′′
2X)

) 1
yj ·
(

e(C5Z ,C′′
2Z1)·e(C5F Y ,C′′

2F )
e(C5Y ,C′′

2Y )

) 1
xj

}
is returned. Otherwise (ill-formed), the algorithm outputs ‘invalid.’

Dec2(Ci, ski): if the second level ciphertext Ci satisfies the relations (5) (well-
formed), the plaintext m = C3

/
e(g1g2, C2X)

1
xi is returned. Otherwise (ill-

formed), the algorithm outputs ‘invalid.’

5.2 Security

We can prove the following theorem with respect to the confidentiality (RCCA-
CK security) of our scheme.

Theorem 4. Assuming the strong unforgeability of one-time signature, our pro-
posed scheme with temporary delegation satisfies first level RCCA-CK security
and second level RCCA-CK security if the 1-wDBDHI problem is hard.

Our scheme supporting temporary delegation is based on the scheme in Section 4
and the scheme supporting temporary delegation by Libert and Vergnaud [10].
The proof of the above theorem is similar to that of our proposed scheme and
the Libert–Vergnaud scheme with temporary delegation. Due to lack of space,
we omit the the proof of the above theorem.

We show the strong unforgeability of re-encryption keys against collusion
attack (sUFReKey-CA) for our proposed scheme with temporary delegation.
The definition of sUFReKey-CA for the scheme with temporary delegation is
defined as follows: The adversary is given the same public/secret keys as those
in Definition 11, the target time period �∗ R← {1, ..., L} where L is polynomially
bounded, re-encryption keys R∗c� for any corrupted delegatee c(�= j) at any
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period 1 ≤ � ≤ L, and re-encryption keys R∗j� for the malicious user j at period
� �= �∗. Then the adversary tries to compute R†

∗j�∗ such that

m = Dec1(ReEnc(�∗, R†
∗j�∗ , Enc2(�∗, m, pk∗)), skj). (7)

Theorem 5. Our proposed scheme with temporary delegation meets sUFReKey-
CA if the m-2-DHIwRA problem is hard.

Proof (Sketch). The algorithm B for solving the m-2-DHIwRA problem simulates
an input of the algorithm A attacking sUFReKey-CA of our scheme as follows.

For par and pk∗, B sets g2
R← A1

μ where μ is an element of input 3 of m-2-
DHIwRA problem. B also sets W∗ ← g−�∗ · (A1

c ·A2)w = g−�∗+a(a+c)w where �∗

is the target time period and w
R← Z∗

p. The other components are computed as in
the proof of Theorem 3. For the corrupted delegatee’s key, by using the i-th input
2 of the m-2-DHIwRA problem, the secret key skci is set as xci ← xi, yci ← yi/μ

, and zci, wci

R← Z∗
p. Then, R∗ci� can be computed as ((Di ·gγ′′

)1/x ·F∗(�)δx , (Ei ·
A1

γ′′
)1/y ·F∗(�)δy , Fi ·gyi ·(A1 ·gc)γ′′

)1/z, X∗δx , Y1∗δy) where δx, δy, γ′′ R← Zp. R∗ci�

has a proper shape with the randomness γ = γi + a(a + c)γ′′. For the malicious
user’s key, by using the input 3 of the m-2-DHIwRA problem, the secret key skj is

set as yj ← y′, xj ← cy′, zj , wj
R← Z∗

p. Then, R∗j� for � �= �∗ can be computed as
((D′ ·gγ′′

)1/x ·g(�−�∗)δ′′
x ·G′ w

(�−�∗)x ·(Ac
1 ·A2)wδ′′

x , (E′ ·A1
γ′′

)1/y ·g(�−�∗)δ′′
y ·H ′ w

(�−�∗)y ·
(Ac

1 ·A2)wδ′′
y , (F ′ ·gμy′ ·(A1 ·gc)γ′′

)1/z, G′ 1
(�−�∗) ·(Ac

1 ·A2)xδ′′
x , H ′ 1

(�−�∗) ·(Ac
1 ·A2)yδ′′

y )
where δ′′x , δ′′y , γ′′ R← Zp. R∗ci� has a proper shape with the randomness δx =

δ′
x

(�−�∗)x + δ′′x , δy = δ′
y

(�−�∗)x + δ′′y , and γ = γ′ + a(a + c)γ′′.

Finally, B outputs W =
(

R3
zR4

cwR5
w

R1
cx·R2

y

) 1
(1+μ)xj where R†

∗j�∗ =
(R1, R2, R3, R4, R5) is an output of A. We can easily see that W is equal to
g1/a+c with non-negligible probability since R†

∗j�∗ satisfies the equation (7). �

6 Concluding Remarks

We have introduced the notion of (strong) unforgeability of re-encryption keys
against collusion attack, which is a relaxed notion (necessary condition) of the
non-transferability, and proposed two concrete constructions that satisfy the
RCCA security and the strong unforgeability of re-encryption keys.

Unfortunately, we have not succeeded in constructing the scheme that meets
the non-transferability. With respect to the non-transferability of our proposed
scheme, we are aware of the following attack. The colluding proxies and delega-
tees, given a re-encryption key (R∗c1, R∗c2, R∗c3) and a secret key (xc, yc, zc),
computes X = (R1, R2, R3X , R3Y ) = (R1/yc

∗c1 , R
1/xc

∗c2 , R
1/yc

∗c3 , R
1/xc

∗c3 ), and passes
it to a malicious user. Then, the malicious user computes C′′

2X , C′′
2Y , C′′

2Z , C′′
2Z1

from the (challenge) second level ciphertext C∗ according to the re-encryption
algorithm with the randomnesses s, t, k. The malicious user may not be able to
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compute C5X , C5Y , C5Z since she does not have R∗j . However, the malicious
user can compute R′

1 = R1
yj/s, R′

2 = R2
xj/t, R′

3X = R3X
yj/k, R′

3Y = R3Y
xj/k.

Then the malicious user can extract the plaintext m of C∗ as

m = C3

/{(
e(R′

3X , C′′
2Z)

e(R′
1, C

′′
2X)

) 1
yj ·
(

e(R′
3Y , C′′

2Z1)
e(R′

2, C
′′
2Y )

) 1
xj

}

and it seems to be hard to extract xc, yc from X .
Our future work is to construct a non-transferable PRE scheme. It is also our

future work to show the hardness of the (modified) 2-DHIwRA problem.
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