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Abstract. Current approaches for service discovery are based on se-
mantic knowledge, such as ontologies and service behavior (described
as process model). However, these approaches still remain with a high
selectivity rate, resulting in a large number of services offering similar
functionalities and behavior. One way to improve the selectivity rate
and to provide the best suited services is to cope with user preferences
defined on quality attributes. In this paper, we propose and evaluate a
novel approach for service retrieval that takes into account the service
process model and relies both on preference satisfiability and structural
similarity. User query and target process models are represented as anno-
tated graphs, where user preferences on QoS attributes are modelled by
means of fuzzy sets. A flexible evaluation strategy based on fuzzy linguis-
tic quantifiers (such as almost all) is introduced. Then, two families of
ranking methods are discussed. Finally, an extensive set of experiments
based on real data sets is conducted, on one hand, to demonstrate the
efficiency and the scalability of our approach, and on the other hand,
to analyze the effectiveness and the accuracy of the proposed ranking
methods compared to expert evaluation.

Keywords: web service retrieval, quality of services, preferences, fuzzy
set theory, linguistic quantifier.

1 Introduction

Searching for a specific service within service repositories become a critical is-
sue for the success of service oriented and model-driven architectures and for
service computing in general. This issue has recently received considerable at-
tention and many approaches have been proposed. Most of them are based on
the matchmaking of process input/outputs [1], service behavior (described as
process model) [2,3,4] or ontological knowledge [4]. However, these approaches
have high selectivity rate, resulting in a large number of services offering similar
functionalities and behavior [4].
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One way to discriminate between similar services is to consider non-functional
requirements such as quality preferences (response time, availability, etc.). In-
deed, for a given query in a given context, there is no need to provide all possible
services but only those satisfying user preferences and contextual constraints. A
recent trend towards quality-aware approaches has been initiated [5,6,7], but it
is limited to atomic services. Our goal is to go further these approaches into a
unique integrated approach dealing with functional and non-functional require-
ments in service retrieval. Targeting this goal poses the following challenges: (i)
At the description level, provide a model allowing to specify non-functional re-
quirements at different granularity levels of the service functional description;
(ii) At the discovery level, define an evaluation method that efficiently computes
the satisfiability of a target service w.r.t. the functional and non-functional re-
quirements of a user query.

More specific challenges related to non-functional characteristics should also
be taken into account: (i) Services are deployed over dynamic and heterogeneous
environments such that their non-functional properties are often given or derived
with different accuracies; (ii) Users are not always able to precisely specify their
non-functional constraints; (iii) Users have different points of view over what is
a satisfactory service according to the same set of non-functional constraints;
(iv) The service retrieval should avoid empty or overloaded answers due to the
imprecision of the user’s query.

Preferences are a natural way to facilitate the definition of non-functional
constraints in user query. They are flexible enough, on one hand, to avoid empty
returns caused by very strict user constrains and, on the other hand, to provide
an adequate set of relevant results even when user specifies too general con-
straints. In addition, fuzzy logic has been used as a key technique to take into
account human point of view in preference modelling and evaluations [8].

In [9], it is proposed a QoS-aware process discovery method whereas the user
query is a graph annotated with QoS factors. Starting from [9], this paper in-
vestigates a novel approach for service selection and ranking taking into account
both behavior specification and QoS preferences. User query and target process
models are represented as graphs, where queries are annotated with preferences
on QoS properties and targets are annotated with QoS attributes. Preferences
are represented by means of fuzzy sets as they are more suitable to the inter-
pretation of linguistic terms (such as high or fast) that constitute a convenient
way for users to express their preferences. To avoid empty answers for a query,
an appropriate flexible evaluation strategy based on fuzzy linguistic quantifiers
(such as almost all) is introduced.

In the remainder of this paper, Section 2 provides some basic background and
discusses related works. Section 3 describes process model specification with
preferences. Section 4 addresses fuzzy preference modelling and evaluation. Sec-
tion 5 presents our interpretation of process models similarity based on linguistic
quantifiers. Section 6 discusses service ranking methods. Section 7 proposes an
illustrative example and Section 8 presents a set of experiments conducted to
evaluate our approach. Finally, Section 9 concludes the paper.
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2 Background and Related Work

Here, we recall some notions on preference modelling (e.g., Pareto and fuzzy set
based models) and we review preference-based service discovery approaches.

2.1 Preference Modelling

The semantics of preferences assumed in this work is the one provided by the
databases area: preferences are used to help in reducing the amount of informa-
tion returned in response to user queries and to avoid the happening of empty
answers. Generally, two families of approaches can be distinguished to model
preferences. The first one relies on commensurability assumption which leads to
a total pre-order [10,11,8]. We highlight the SQLf proposal [11], which is based
on the extension of the relational algebra to fuzzy set theory. The second family
assumes that commensurability does not hold, in this case no compensation is
allowed between criteria and only a partial order is obtained [12,13,14].

One popular approach of this last family is Preference SQL [13]. It provides
foundations for a Pareto-based preference model for database systems. A prefer-
ence is formulated as a strict partial order on a set of attribute values. It intro-
duces a number of preference operators to express and compose preferences. Let
us note that all tuples returned by a Preference SQL query satisfy the Pareto
principle. A compensatory strategy between different atomic conditions is not
possible due to the fact that Preference SQL makes use of different functions
for evaluating the distance with which a tuple disagrees with an atomic condi-
tion. Moreover, the most preferred tuples are returned to the user without being
capable to distinguish how better is one tuple compared to another.

Fuzzy sets were introduced in [15] for dealing with the representation of classes
or sets whose boundaries are not well defined. Then, there is a gradual transi-
tion between the full membership and the full mismatch (an order relation on
membership levels can be established). Typical examples of such fuzzy classes
are those described using adjectives of the natural language, such as cheap, fast,
etc. Formally, a fuzzy set F on the universe X is described by a membership
function μF : X → [0, 1], where μF (x) represents the membership degree of x
in F . By definition, if μF (x) = 0 then the element x does not belong at all to
the fuzzy set F , if μF (x) = 1 then x fully belongs to F . When 0 < μF (x) < 1,
one speaks of partial membership. The set {x ∈ F |μF (x) > 0} represents the
support of F and the set {x ∈ F |μF (x) = 1} represents its core.

In addition, the closer μF (x) to the value 1, the more belonging to F . There-
fore, given x, y ∈ F , one says that x is preferred to y iff μF (x) > μF (y). If
μF (x) = μF (y), then x and y are equally preferred. In practice, the member-
ship function associated to F is often represented by a trapezoid (α, β, ϕ, ψ)1,
where [α, ψ] is its support and [β, ϕ] is its core. Among other forms (Gaussian,
sigmoidal, bell, etc), this one is very easy to be defined and to manipulate.

1 In our case, the quadruplet (α, β, ϕ, ψ) is user-defined to ensure the subjectivity
property.
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A fuzzy set-based approach to preference queries proposed in [8] is founded on
the use of fuzzy set membership functions that describe the preference profiles
of the user on each attribute domain involved in the query. This is especially
convenient and suitable when dealing with numerical domains, where a contin-
uum of values is to be interfaced for each domain with satisfiability degrees in
the unit interval scale. Then satisfiability degrees associated with elementary
conditions are combined using fuzzy set connectives, which may go beyond con-
junctive and disjunctive aggregations (by possibly involving fuzzy quantifiers, if
the satisfiability of most of the elementary conditions in a query is required).

2.2 Preference-Based Service Discovery

Crisp Logic-based Approaches. Most of the first approaches for service discovery
using preferences were based on crisp logic solution and considered the services
as black boxes [16,6,17]. With regard to the specification model, some of them do
not deal with preferences; instead, they compute for each service a score based
on set of the non-functional properties of the service [16]. The other approaches
does not propose or use preference constructors to help user better define his
preferences or interpret the results [6,17]. The models presented are not abstract
enough to provide a widely use of the approach in different contexts; some of
them imposes a restricted set of properties over which user can work.

Fuzzy Logic-based Approaches. In last decades, several service discovery ap-
proaches based on fuzzy set theory have been proposed [18,19]. In [19] the authors
treat the web service selection for composition as a fuzzy constraint satisfiabil-
ity problem. They assign to each QoS criterion five fuzzy sets describing its
constraint levels. In [20,21], QoS based service selection is modelled as a fuzzy
multiple criteria decision making problem. In [22], a service selection mechanism
is presented allowing the service broker to select a set of services from a query
specifying imprecise constraints defined by fuzzy sets. The query evaluation is
based on the aggregation of the obtained degrees over constraints. Şora et al.
[5] propose an approach to automatically generate fuzzy rules from user prefer-
ences and rank the candidate services using a fuzzy inference process. The global
score of each web service is given in a scale of satisfiability levels instead of an
aggregation of the satisfiability degrees of the preferences.

The aforementioned fuzzy approaches take into account only the satisfiability
of preferences whereas they ignore the structural similarity of web services. Most
of them do not verify the subjectivity property, which considers the user point of
view when defining the membership functions. Moreover, these works deal only
with services as black boxes. In this paper, user can also define preferences over
the activities of the service behavior specification and both structural similarity
and user preference satisfiability are considered.

3 Preferences in Process Model Specification

Many languages are currently available to describe service process models, e.g.,
WS-BPEL and OWL-S. They represent a process model as a set of atomic
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activities combined using control flow structures. As a consequence, these lan-
guages can be abstracted as a direct graph G = (V,E), where the vertices
represent activities (e.g., hotel reservation, payment) or control flow nodes (e.g.,
and, or), while the edges represent the flow of execution between activities.

In this work, services are specified as graphs annotated with QoS properties
and user queries are specified as graphs annotated with preferences. Figure 1
presents a global annotation indicating the security of the process model and
activity annotations indicating other QoS attributes of some activities. Figure
2 shows a sample user query annotated with a global preference indicating user
prefers services providing RSA encryption and some activity preferences involv-
ing reliability, response time and cost. It is worth mentioning that our model
can be implemented by extension mechanisms in OWL-S.

We precise that, in this work, target models are considered already annotated
with QoS attributes while the user is the one to define the preference annotations
of his query. Techniques to obtain the QoS information of a process model can
be found in [23]. Next, we present the formal definitions of our model:

Definition 1. An annotation is a pair (m, r), where m is a QoS attribute
and r is a value for m2. It can be specified over a process model graph (global
annotation) or over an atomic activity (activity annotation).

Definition 2. A preference is an expression that represents a desire of the
user over the QoS attributes of a process model or activity. It can be specified
over a process model graph (global preference) or over an atomic activity
(activity preference). It can be of one the following forms3:

2 We abstract from the different units in which a value can be described.
3 Based on a subset of preferences defined in [13].
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– around (m, rdesired, μaround): it favors the value rdesired for attribute m; oth-
erwise, it favors those close to rdesired. The membership function μaround

evaluates the degree to which a value r satisfies rdesired;
– between (m, rlow, rup, μbetween): it favors the values inside the interval

[rlow, rup]; otherwise, it favors the values close to the limits. The func-
tion μbetween evaluates the degree to which a value r satisfies the interval
[rlow, rup];

– max (m,μmax): itfavors the highest value; otherwise, the closest value to the
maximum is favored. For example, the maximum of availability is equal by
default to 100%. The function μmax evaluates the degree to which a value r
satisfies the highest value of m;

– min (m,μmin): it favors the lowest value; otherwise, the closest value to the
minimum is favored, as example: the minimum of response time or cost is
equal by default to 0. μmin evaluates to which degree a value r satisfies the
lowest value of m;

– likes (m, rdesired): it favors the value rdesired; otherwise, any other value is
accepted;

– dislikes (m, rundesired): it favors the values that are not equal to rundesired;
otherwise, rundesired is accepted;

– Pareto ⊗ (pi, pj): it states that the two soft preference expressions pi and pj

are equally important;
– Prioritized & (pi, pj): it states that the soft preference expression pi is more

important than the soft preference expression pj .

The work in [13] distinguishes two types of preferences: atomic (around, between,
max, min, likes and dislikes) and complex (⊗ and &). It also distinguishes two
types of atomic preferences: numerical (around, between, max and min) and
non-numerical (likes and dislikes). The values in non-numerical preferences are
taken from a global ontology of a type “is-a” O, given by the user.

4 A Fuzzy Model to Evaluate Preferences

Here, we introduce a fuzzy semantics of the atomic preferences discussed in
the Section 3, and show how they can be evaluated. In particular, we propose a
metric, called satisfiability degree (δ), that measures how well a set of annotations
of a target process model satisfies a set of preferences present in the query. The
computation of this degree is done both for atomic and complex preferences.

4.1 Atomic Preferences

For numerical atomic preferences, the satisfiability degree is obtained thanks
to user-specific membership functions. Table 1 summarizes the fuzzy modelling
of numerical preferences of interest. Given a preference p and an annotation
a : (m, r), one is interested in computing the degree to which the annotation a
satisfies the fuzzy characterization underlying p.

For example, consider the constructor between: a fuzzy preference p : between
(m, rlow, rup) is characterized by the membership function (α, β, ϕ, ψ), where
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Table 1. Fuzzy modelling of numerical preferences
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β = rlow; ϕ = rup; α and ψ are two values from the universe X . Let a : (m, r) be
an annotation of a target graph, the satisfiability degree of preference p according
to a is given by: (i) p is completely satisfied iff r ∈ [rlow, rup]: μbetween (p, a) = 1,
i.e. δ (p, a) = 1; (ii) the more r is lower (resp. higher) than rlow (resp. rup), the
less p is satisfied: 0 < μbetween (p, a) = δ (p, a) < 1; (iii) for r ∈ ]−∞, α]∪[ψ,+∞[,
p is not satisfied: μbetween (p, a) = δ (p, a) = 0.

For non-numerical atomic preferences, the satisfiability degree is based on
the semantic similarity between concepts. We applied the widely known seman-
tic similarity proposed in [24], which states that given an ontology O and two
concepts c1 and c2, the semantic similarity wp between c1 and c2 is given by
wp (O, c1, c2) = 2N3/N1+N2+2N3, where c3 is the least common super-concept of
c1 and c2, N1 is the length of the path from c1 to c3, N2 is the length of the
path from c2 to c3, and N3 is the length of the path from c3 to the root of the
ontology. Given a non-numerical atomic preference p and an annotation a, the
satisfiability degree δ (p, a) is given by:

– If p = likes (m, rdesired), then δ (p, a) =

{
1, rdesired = r

wp(O, rdesired, r), otherwise

– If p = dislikes (m, rundesired), then δ (p, a) = 1 − δ (likes (m, rundesired) , a)
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One can use other semantic similarity measures between business processes
[25,26]. This issue is not discussed here and it is beyond the scope of this study.

4.2 Complex Preferences

To compute the satisfiability degree of complex preferences, we first construct
a preference tree tp that represents the complex preference structure of a set of
preferences Sp. In that preference tree, the nodes represent atomic preferences
and the edges represent a more important than relation (prioritized preference,
denoted by &) from parent to child. Preferences belonging to the same level and
having the same parent express Pareto preference, denoted by ⊗. Each level i of
the tree is associated with a weight ωi = 1/i except the level0.

For example, consider the preference tree of q1 in Figure 3. Preference p11

is an atomic preference that is not component of any complex preference. p5 :
& (p2, p3) is a complex preference composed of preferences p2 and p3; it means
that p2 is more important than p3. p7 : ⊗ (p3, p4) is a complex preference com-
posed of preferences p3 and p4; it means that p3 and p4 are equally important.

Considering that each atomic preference pi has a satisfiability degree δi, a new
satisfiability degree δ′i is computed taking into account the weight ωi underly-
ing pi in the spirit of [8]. δ′i is defined using the formula (1) (we assume that
maxi=1,n wi = 1).

δ′i = max (δi, 1 − ωi) (1)

This new interpretation of pi considers as acceptable any value outside of its
support with the degree 1−ωi. It means that the larger ωi (i.e., pi is important),
the smaller the degree of acceptability of a value outside the support of pi. At
the end, we have calculated the satisfiability degree of user atomic preferences
considering their constructors and the complex preferences composing them.

5 Process Model Similarity: A Linguistic Quantifier-Based
Method

We describe here a method to compute preference satisfiability between pro-
cess model graphs. We also discuss a method to assess the structural similarity

 

  

 

 

 

  

 

 

 

    

 

Fig. 3. Sample preference tree
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between two process model graphs. Both degrees will be used to rank potential
targets (see Section 6). We precise that this work is not interested in discovering
a mapping between two process models; we suppose a mapping already exists
such that we can compare matched activities annotations against user prefer-
ences. In this issue, please consider the work in [4] for an algorithm that returns
a mapping between two process models.

To evaluate the structural similarity of two graphs q and t, we propose to
use a graph matching algorithm like in [4]. This algorithm returns a mapping
M and a set E of edit operations necessary to transform q into t. A mapping
between q and t is a set of pairs (v, w), such that v is an activity of q and w
is an activity of t. The edit operations considered are simple graph operations:
node/edge deletion and addition. Figure 4 illustrates a mapping between query
graph q1 and target graph t1. Let SS (v, w) denotes the structural similarity
between activities v and w; we use the metric proposed in [4]. Let δ (q1.Sp, t1.Sa)
be the satisfiability degree between global preferences and annotations and let
δ (v, w) be the satisfiability degree between activities v and w (see Section 4).

Next, we rely on the linguistic quantifier “almost all ” for the similarity eval-
uation process. This quantifier is a relaxation of the universal quantifier “all ”
and constitutes an appropriate tool to avoid empty answers since it retrieves
elements that would not be selected when using the quantifier “all ”.

5.1 Preference Satisfiability between Process Models

A natural user interpretation of the similarity between query and target PMs
according to preferences is given by the truth degree of the following proposition:

γ1: Almost all preferences of q are satisfied by t

The above statement is a fuzzy quantified proposition of the form “Q X are P ”,
where (i) Q is a relative quantifier (e.g., almost all, around half, etc.) [27] which
is defined by a function μQ such as μQ (	) is the degree of truth of “Q X are
P ” when a proportion 	 of elements of X fully satisfy A and the other elements
being not satisfied; (ii) X is a set of elements; (iii) P is a fuzzy predicate. In
[28], a decomposition method to compute the truth degree δγ of γ : QX areP
is proposed. The method is a two-step procedure:

– Let Ω = {μ1, . . . , μn} be a set of degrees of the elements of X w.r.t. P ,
ordered in decreasing way; i.e. μ1 ≥ . . . ≥ μn;

– The truth degree δγ is given by the equation (2), where μQ (i/n) is a mem-
bership degree of the element i/n to Q.

δγ = max
1≤i≤n

min (μi, μQ (i/n)) (2)

In our case, Ω =
{
μ1 : δ

′
1, . . . , μn : δ

′
n

}
is the set of satisfiability degrees of all

(global and activity) atomic preferences of query q, where δ
′
i is the satisfiability

degree of an atomic preference pi computed by formula (1). The semantics of
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Fig. 4. Sample mapping M between query graph q1 and target graph t1

the linguistic quantifier almost all is given in Table 2. In this case, (i) the user
is totally satisfied if at least 80% of preferences are satisfied and (ii) the user is
not satisfied at all if at most 50% of preferences are satisfied.

5.2 Structural Similarity between Process Models

Similarly, we can apply the technique of fuzzy quantifiers to obtain a structural
similarity degree between two process models. The structural similarity between
a query and target process models can be given by the truth degree of the
following propositions “γ1, γ2 and γ3” (defined in Table 2):

γ2: Almost all the activities of q are mapped with activities of t, and
γ3: Almost no edit operation is necessary to transform q into t

The truth degree of proposition γ2 is obtained from the formula (2), where
Ω = {μ1 : SS1, . . . , μn : SSn} is the set of semantic similarity degrees of all
mapped activities of q, and SSi is the semantic similarity degree of a query
activity v mapped with a target activity w. In the case of the proposition γ3,
the expression "almost no edit operation is necessary to transform q into t" is
equivalent to the expression "almost all edit operations are not necessary to
transform q into t". Therefore, its truth degree is computed as follows:

δγ = max
1≤i≤n

min (1 − μi, 1 − μQ (i/n)) (3)

In this case, Ω = {μ1 : C1, ..., μn : Cn} is the set of transformation costs of
mapped target activities with the corresponding activities of q, and Ci is the
transformation cost of a target activity w into a query activity v.
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Table 2. Decomposition-based interpretations of propositions γ1, γ2, γ3

PROPOSITION SET  MEMBERSHIP FUNCTION  
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where  is the number of mapping 
elements 
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elements 
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where  is the number of query 
activities 
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So, the structural similarity between q and t is evaluated as follows:

SS = min (δγ2 , δγ3) (4)

In our approach, we consider particularly the formulae (2) and (3), where μQ (i/n) =
i/n. Thus, the meaning of delivered degrees has a simple and clear semantics for
the user [29]. The evaluation of γ1, γ2 and γ3 means that:
"At least δ∗γ1

% of preferences of q are satisfied by t to at least a degree of δγ1 , at
least δ∗γ2

% of the activities of q are mapped with t to at least a degree of δγ2 , and
at least δ∗γ3

% of q does not need edit operation to transform q into t to at least a
degree of δγ3" (where δ∗γi

= 100 × δγi).

6 Process Model Ranking

Previous section has presented an fuzzy set-based approach to compute the sim-
ilarity between one query and one target graphs. In this section, given a set of
target graphs that are relevant to the query, we discuss some methods to rank-
order these graphs according to their structural and preference similarities. Let
δ (q, t,M) be the satisfiability degree between query graph q and target graph t
according to a mapping M . Similarly, let SS (q, t,M,E) be the structural simi-
larity between q and t according to a mapping M and a set E of edit operations.
We classify ranking methods into two categories:



Selecting and Ranking Business Processes with Preferences 49

Ranking Methods based on Aggregation. In this first category, ranking methods
aggregate both structural and preference similarities into a unique degree used
to rank-order the target graphs. Two kind of aggregations are considered:

Weighted Average-Based Aggregation. The weighted average of SS (q, t,M,E)
and δ (q, t,M) is given by:

rank (q, t) = ωSS × SS (q, t,M,E) + (1 − ωSS) × δ (q, t,M) (5)

where 0 < ωSS < 1 is a weight assigned to the structural similarity criterion.

Min-Combination Based Aggregation. The min-combination method [30] selects
the smallest value of the two similarity degrees SS (q, t,M,E) and δ (q, t,M):

rank (q, t) = min (SS (q, t,M,E) , δ (q, t,M)) (6)

Ranking Method without Aggregation. The two distinct similarity degrees are
used to rank-order target graphs. The answers are ranked by using the lexico-
graphic order. A priority is given to the structural similarity while the preference
similarity is only used to break ties.

7 Illustrative Example

We give here an example of service discovery for query q1 of Figure 2. We consider
a set {t1, . . . , t8} of eight potential answers to q1 retrieved by a matchmaking
algorithm as discussed in Section 5. First, we compute the preference satisfiability
between q1 and the potential target graphs (see Section 5.1). Next, we compute
the structural similarity between q1 and the potential targets (Section 5.2). Then,
we apply the ranking methods described in Section 6. To illustrate, we evaluate
the preference satisfiability and structural similarity between q1 and target t1 of
Figure 1. We consider the mapping between them as depicted in Figure 4.

Preferences Satisfiability. First, the satisfiability degree δ′i of each preference
pi of q1 is calculated as shown in Table 3. For instance, the satisfiability degree
δ2 = δ (p2, a2) between preference p2 and annotation a2 is obtained by func-
tion μmax [reliability]. According to equation (1) and the generated preference
tree, the new interpretation of the satisfiability degrees is presented in column
δ′i. Second, we apply the truth degree described in Section 5.1 to obtain the
global satisfiability degree between q1 and t1, as follows: δγ1 (q1, t1) = max (min
(1, μQ (1/9)), ..., min (0.5, μQ (9/9))) = 0.67. This means that at least 67% of
preferences of q1 are satisfied by t1 to at least a degree 0.67.

Structural Similarity. Assume now that the structural similarities between ac-
tivities are given by SS (A,A′) = 0.72, SS (B,B′) = 0.85 and SS (C,C′) = 0.66,
and the costs of transformation of target activities are C (start) = C (end) =
C (A′) = 0, C (AND − split) = 0.1, C (B′) = C (C′) = 0.2, C (D′) = 0.4,
C (AND − join) = 0.1. In a similar way, the structural similarity degree be-
tween q1 and t1 is obtained as δγ2 (q1, t1) = 0.66 and δγ3 (q1, t1) = 0.75. Now,
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Table 3. Satisfiability degrees of each pair of matched activities

SATISFIABILITY DEGREE CALCULATION 

ATOMIC PREFERENCES COMPLEX PREFERENCES 

PREF. MEMBERSHIP FUNCTION  PREFERENCE TREE  

 -  

 

 

    

    

    

    

    

    

   0.75 

    

Table 4. Structural similarity and pref-
erence satisfiability degrees of a set of
target graphs.

TARGET 
GRAPH 

STRUCTURAL 
SIMILARITY  

SATISFIABILITY 
DEGREE  

   

   

   

   

   

   

   

   

Table 5. Ranking of target graphs accord-
ing to weighted average, min-combination
and lexicographic order methods.

WEIGHTED 
AVERAGE 

MIN- 
COMBINATION 

LEXICOGRAPHIC 
ORDER 

     

     

     

     

     

     

     

     

SS (q, t,M,E)=min (δγ2 , δγ3) = 0.66, which means that at least 66% of query ac-
tivities are mapped to at least a degree 0.66 and at most 66% of target activities
have transformation cost to at most 0.66.

Ranking. Consider the preference satisfiability and structural similarity degrees
of each potential target presented in Table 4. Table 5 summarizes the results of
the different ranking methods discussed in Section 6 (where ωSS = 0.75).

The Lexicographic order ensures that the first in the ordered list is that hav-
ing the best structural similarity and, in case of ties, that having the best pref-
erence satisfiability. For example t3 is better than all the other target graphs
because its structural similarity is the greatest value. However, a drawback of
this method is that the rank can be too drastic, as for the case of t5 : (0.78, 0.21)
and t6 (0.68, 0.72). In a such case, the idea of a weighted average is more suitable
since it allows for a compensation. Now, with the weighted average t6 is better
than t5 but generally it does not provide a clear semantics of the induced order.
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Finally, the min-combination method relies on the worst satisfiability for each
service and does not highlight the structural similarity versus the preference
satisfiability. The weighted min-combination can overcome the above limitation.

8 Complexity Analysis and Experimental Results

In what follows, we first study the complexity of our approach and then present
the set of experiments conducted to (i) measure the time the preference eval-
uation task takes in the process model matchmaking and to (ii) evaluate the
effectiveness of the results.

8.1 Complexity Analysis

The complexity of our solution can be analyzed in three steps. In the case of
the evaluation of atomic preferences, it implies the time to find the relevant
annotation and the time to evaluate the atomic preference itself. Considering
the time to find the relevant annotation in a set of m annotations per activity,
the time to evaluate all the n atomic preferences of a user query is O (n ·m), if
we consider that to evaluate an atomic preference is either trivial in the case of
numerical preferences or polynomial in the case of non-numerical preferences4
[24]. The complexity remains polynomial even if we consider that each query
activity defines as much atomic preferences as the number of considered non-
functional properties.

In the case of the evaluation of complex preferences, the worst case is when all
atomic preferences of each query activity are aggregated by complex preferences.
Therefore, we have the time to evaluate each atomic preference and the time to
construct and to evaluate the preference tree. The time to construct the tree is
linear, since we only analyze the complex preferences, which are never more than
half of the total of preferences. The time to evaluate the preference tree is also
linear w.r.t. the quantity of preferences. Finally, the evaluation of the linguistic
quantifiers is also polynomial, since it consists of an ordering of degrees plus the
choosing for an element satisfying a condition. As a conclusion, we can see that
the complexity of our solution is polynomial.

8.2 Experiments Setup

To run our experiments, we implemented a prototype that works over the sys-
tem proposed by [4]. We adapted their business process model to consider non-
functional annotations and their query model to consider preference annotations.
We also reused their test set of process models and queries.

The main goals of our experiments are to: (i) Measure the overhead time w.r.t.
the matchmaking time. It is important to note that matchmaking algorithms are
NP-complete; (ii) Measure the effectiveness of our results by means of Normal-
ized Discounted Cumulative Gain (NDCG) score; (iii) Compare the effectiveness
of our results with the crisp logic-based approach presented in [9].
4 The least common ancestor and the distances between concepts in an ontology can

be calculated previously, off query time.
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Test set setup. In our experiments, we considered two real-data sets containing
target graphs: the first one is composed of 24 graphs of flight reservation domain
having an average size of 18 activities, while the second has 32 graphs of hotel
reservation domain having an average size of 12 activities, which means that
the graphs have a quite considerable size. The graphs in each group have similar
structure, which induces the matchmaking results to be close and not empty. We
annotated the activities of each target with 10 annotations, one for each of the
10 considered QoS attributes. The attributed values were generated randomly.

Three different query process models were proposed: FlightReservationQuery1
(FR-1), FlightReservationQuery2 (FR-2) and HotelReservationQuery1 (HR-1).
The activities of these queries were annotated with textual preferences pertinent
to the domain of each activities. These textual preferences were described us-
ing natural language and their semantics considered the concept of atomic and
complex preferences.

We generated adapted versions of these queries according to the model pro-
posed in our approach (Fuzzy logic-based approach) and in [9] (Crisp logic-based
approach), since our objective is also to compare both approaches.

Definition of the ideal ranking. A group of experts was invited to manually ana-
lyze the satisfiability of each target graph w.r.t. to the textual queries considering
the behavior specification and QoS preferences. After the analysis, the experts
gave one single note to each target in a 1-7 Likert scale (1 for strongly different,
7 for strongly similar). At the end, an expert ranking was defined for each query.

Experiment execution. Five rankings were obtained after query evaluation:

1. (Crisp AVG) Results from crisp approach ordered by the weighted average
of structural similarity and preference satisfiability;

2. (Crisp LEX ) Results from crisp approach ordered by the lexicographic order
of structural similarity and preference satisfiability;

3. (Fuzzy AVG) Results from our approach ordered by the weighted average of
structural similarity and preference satisfiability;

4. (Fuzzy LEX ) Results from our approach ordered by the lexicographic order
of structural similarity and preference satisfiability;

5. (Fuzzy MIN ) Results from our approach ordered by the min-combination of
structural similarity and preference satisfiability;

From the results of each ranking, the top-k targets were selected and the NDCG
scores were computed. The overhead time was calculated over the whole set of
results. All the evaluations were conducted on a machine with an Intel i5 2.8GHz
processor, 4GB of memory, running Windows 7 OS and Java VM version 1.6.

8.3 Experimental Results

As can be seen from the results presented in Table 6, the extra time taken to
evaluate the hard preferences is insignificant w.r.t. the matchmaking time. It
barely represents 1% of the matchmaking time.
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Table 6. Matchmaking and preference evaluation times

Query/Time (ms) AMT APET
FR-1 82.8 0.9
FR-2 180.8 0.8
HR-1 50.9 0.8

Legend:
- AMT: Average Matchmaking Time
- APET: Average Preference Evaluation Time

FR-1 FR-2 HR-1
Crispy AVG 0.920 0.971 0.968
Crispy LEX 0.943 0.946 1.000
Fuzzy AVG 0.973 0.979 1.000
Fuzzy LEX 0.951 0.925 1.000
Fuzzy MIN 0.943 0.909 0.907

0.900

0.925

0.950

0.975

1.000

Crispy AVG Crispy LEX Fuzzy AVG Fuzzy LEX Fuzzy MIN

Fig. 5. Effectiveness using NDCG measure

Figure 5 presents the NDCG scores according to the different approaches and
their proposed ranking methods. In this case, the closer the score is to 1, the
closer the ranking proposed by the corresponding approach is to the ranking
defined by the experts. For query FR-1, all scores of fuzzy approaches overcame
the crisp ones. For query FR-2, fuzzy AVG score was better than crisp results.
For query HR-1, some crisp and fuzzy approaches provided the expert ranking.

The results clearly show that both crisp and fuzzy approaches provided a good
effectiveness, although the scores of fuzzy AVG method always overcome crisp
scores. Fuzzy LEX score was very unstable w.r.t. to the expert ranking since
the experts tried to find a compromise between structure and quality, whereas
in lexicographic order, the priority is given to the structural similarity while the
preference similarity is only used to break ties. The restrictiveness of Fuzzy MIN
proved to be very ineffective, although the semantics of its results is very strong.

9 Conclusion

In this paper, we have proposed an approach for web service selection and rank-
ing. In our approach, the evaluation process takes into account two aspects: (i)
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structural similarity, and (ii) preference satisfiability. User preferences are mod-
elled with fuzzy predicates. Both preference satisfiability and structural similar-
ity are interpreted thanks to linguistic quantifiers. This makes the matchmaking
process more flexible and realistic. Some ranking methods have been proposed
as well. We also introduced a complexity analysis of our solution and we showed
that the preference evaluation does not raise the complexity of process model
matchmaking. Finally, we presented the set of experiments conducted over an
implementation of our approach to measure the effectiveness of the results. These
experiments showed that our approach gathered with the weighted average pro-
poses a better ranking than the considered crisp solution.

As future work, we plan to apply fuzzy set-based techniques to evaluate hard
constraints over QoS attributes (such as cost ≥ 20) in process model matchmak-
ing. We also plan to investigate other fuzzy aggregation and ranking methods
that minimize the restrictiveness of those presented in this work.
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