
Searching Business Process Repositories Using

Operational Similarity

Maya Lincoln and Avigdor Gal

Technion - Israel Institute of Technology
mayal@technion.ac.il, avigal@ie.technion.ac.il

Abstract. Effective retrieval of relevant know-how segments from busi-
ness process repositories can save precious employee time and support
non-expert users in locating and reusing process data. We present a
methodology for searching repositories and retrieving relevant process
segments, using business logic that is extracted from real-life process
models. The analysis of a process repository enables the construction of
three taxonomies with which it is possible to process the search intention
in operational terms. We tested the method on the Oracle ERP Business
Process Model (OBM), showing the approach to be effective in enabling
the search of business process repositories.

Keywords: Business process search, Business process repositories, Dy-
namic segmentation of process models.

1 Introduction

Researchers have become increasingly interested in developing methods and tools
for automatically retrieving information from business process repositories [3].
Such repositories are considered important and valuable data reservoirs of orga-
nizational know-how. In particular, they enable the retrieval of relevant knowl-
edge segments saving precious time and supporting non-expert users in locating
and reusing required process data [24].

Two common methods for retrieving information from a repository are query-
ing and searching. The former is aimed at retrieving structured information using
a structured query language. The significance of querying business processes has
been acknowledged by BPMI1 that launched a Business Process Query Lan-
guage (BPQL) initiative. The latter allows querying information using keywords
or natural language and was shown in other areas (e.g. information retrieval) to
be an effective method for non-experts.

Research in the field of business process retrieval has mainly focused on words
semantics and structural similarity analysis techniques [3,17,4]. Using these
frameworks one can retrieve process models that either contain semantically
related components (e.g. activity names with a specified keyword) or match a
requested graph structure (e.g. graph paths in which activity A is followed by

1 Business Process Management Initiative, http://www.bpmi.org/

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 2–19, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Searching Business Process Repositories Using Operational Similarity 3

activity B). In this work we tackle the information retrieval challenge from a
different angle, with a search framework for business processes that uses opera-
tional similarity and enables the retrieval of process segments that comply with
organizational standards.

b
. S

e
m

a
nt

ic
-b

a
se

d

q
ue

ry
 r

es
ul

ts
a

. O
p

er
at

io
n-

b
as

ed

se
a

rc
h

re
su

lt

Handle a product
recall request

Escalate a
product recall

Handle received
materials

Save product
related data

Handle product
quality checkups

Receive
complaint

details

Search for the
complaint’s

handling
instructions

Follow the
handling

instructionsDecide if
this is a

new
complaint

No

Submit the complaint and
product to the complaints

evaluation team

Yes

Notify the
complaining
customer of

the treatment
status

Fig. 1. An example of search results for “how to handle a product recall”

As a motivating example consider an employee interested in finding out “how
to handle a product recall.” An expected outcome of this retrieval request would
be a segment from the process repository that represents the order of activities
that one should follow in order to achieve the required process goal, as illustrated
in Fig 1a. The benefit of such a retrieval framework is that the result is ready
for execution. Without any preliminary knowledge of the underlying repository
structure, the user can receive a full-fledged process model.

The retrieval output is related to the search phrase in operational terms.
For example, Fig 1a provides a segment that is only marginally similar to the
search phrase text. Specifically, two of the search phrase terms (“Handle” and
“Recall”) are not represented by any of its activities while the term “Product” is
represented by only one activity. Such “how-to” questions are hard to fulfill using
common query languages due to the complex logic that is embedded within such
questions [4] and especially without specific knowledge on process structure and
activity naming. Therefore, using querying techniques, even if they are based on
semantic similarity, would likely yield disconnected components, as illustrated
in Fig 1b. Such outcome does not tell the user “how-to” fulfill the process goal.

The retrieval framework we propose is based on operational similarity. The
business logic is extracted from process repositories through the analysis of pro-
cess activities. Each activity is encoded automatically as a descriptor [16]. The
collection of all descriptors induces three taxonomies, namely an action scope
model, an object grouping model, and an action influence model, with which we
can search for the appropriate graph segment, which is the activity flow that
provides an answer to the search phrase. The proposed method dynamically seg-
ments a process repository according to the ad-hoc request as expressed in the
user’s search phrase.

4 M. Lincoln and A. Gal

We present an empirical evaluation based on real-world data, showing that by
utilizing the descriptor taxonomies and the process model retrieval method it is
possible to effectively support the search of process repositories in operational
terms. On average, the best result (that was closest to the expected result)
retrieved in each experiment had a 93% precision and was ranked almost always
as the first option in the result list.

This work proposes an innovative method for searching business process mod-
els while making use of the how-to knowledge that is encoded in business process
repositories. The following contributions are presented: (a) generic support to
an operation-based search of business process models; (b) automatic extraction
of business logic from business process repositories; (c) capability to generate
ad-hoc process model segments; and (d) an empirical analysis that evaluates the
method’s usefulness.

The rest of the paper is organized as follows: we present related work in
Section 2, positioning our work with respect to previous research. In Section 3
we present the notion of dynamic segmentation in process model repositories.
In Section 4 we present an activity decomposition model that is used as the
foundation for creating action and object taxonomies. We formulate the search
problem and describe our method for searching business process repositories in
Section 5. Section 6 introduces our empirical analysis. We conclude in Section 7.

2 Related Work

Related works include query and search techniques in BPM. Works such as
[19,20,4,2,9] query business process repositories to extract process model (graph)
segments. Such methods require prior knowledge of the structure of the process
repository and the exact notation that is used to express it while our work offers
techniques that work well even without prior knowledge regarding the process
repository.

Keyword search on general tree or graph data structures can also be applied
to process repositories [12,10,11]. These methods allow users to find information
without having to learn a complex query language or getting prior knowledge
of the process structure. Some works extend the tree and graph keyword search
methods to support a more intuitive interface for the user by enabling searches
based on natural language [14,13]. According to [1], the straightforwardness of
a natural language makes it the most desirable database query interface. The
retrieved information in both keyword and natural language search methods is
in the form of single process model components such as activities and roles.
Our work extends such works to support the retrieval of complete segments by
applying dynamic segmentation of the process repository. The search result is
a compendium of data (a segment of a business process model) related to the
operational meaning of the searched text.

Another line of work focuses on automatic construction of process data on-
tologies. The work in [5] proposes a query-by-example approach that relies on
ontological description of business processes, activities, and their relationships,

Searching Business Process Repositories Using Operational Similarity 5

which can be automatically built from the workflow models themselves. The
work in [6] automatically extracts the semantics from searched conceptual mod-
els, without requiring manual meta-data annotation, while basing its method
on a model-independent framework. Our framework differs from these works in
that we target the automatic extraction and usage of the operational layer (the
“how-to”) and the business rules encapsulated in the process repository.

3 Dynamic Segmentation

This section describes dynamic segmentation in process model repositories. Sec-
tion 3.1 presents a model for business process repositories followed by a descrip-
tion and a formal model of a dynamic segmentation.

3.1 A Business Process Repository and Static Segmentation

The Workflow Management Coalition (WFMC) [7] defines a business process
model as a “set of one or more linked procedures or activities which collectively
realize a business objective or policy goal.” An example of such a business process
model is the “Fulfill a Purchase Order” process model, presented in Fig. 2a using
YAWL [22]. The dashed lines represent parts of the process that are not shown
due to space limitations.

A process repository is a collection of interconnected process models, where the
execution of an activity in one process model may invoke the execution of another
activity in another process model. Formally, we define a process repository to
be a graph G = (V, E), where V represents activities and an edge (ai,aj) in E
exists if aj ’s execution follows that of ai.

Process C: Approve a Purchase Order

a. The searched process is contained in one , more comprehensive ,
process model

b. The searched process is contained in more than one
process models

Receive
purchase

requisition

Complete
PO form

Update
PO

status

Get PO
approval

Forward
PO to
buyer

Document
PO

approval

Process B: Handle a Purchase Requisition
Check

feasibility
of PO

Complete
PO form

Send
PO to

supplier

Process A: Fulfill a Purchase Order

Get PO
approval

Forward
PO to
buyer

Receive
purchase
requisition

Fig. 2. Examples of process models

Each of the process models in the process repository has a name, and we refer
to it as a static segment of the process repository. For example, the processes
“Handle a Purchase Requisition” in Fig. 2b represents a segment of process
activities (steps). This static, pre-defined, segmentation of process repositories
is determined according to the logic of the repository developer and changes from
one repository to the other. To illustrate, the SAP business process repository
consists of more than 16,500 activities segmented into more than 2,400 processes

6 M. Lincoln and A. Gal

while the Oracle business process repository (OBM) consists of about 9,700
activities segmented into 1,553 processes. 92% of the two repositories refer to
the same business areas (e.g. processes from the domain of accounting, human
resource management, production, logistics, etc.), yet only 23% of the process
names are semantically similar. The rest of the processes have segments that do
not share starting and/or ending activities.

3.2 Dynamic Segments in Business Process Repositories

It is possible to partition the process repository graph in different ways, cre-
ating new, dynamic, process model segments. To illustrate, consider a process
for manually creating a purchase order. In one repository, this process can be
part of a larger process model called: “Fulfill a Purchase Order,” which includes
the creation, approval, and submission of a purchase order (see illustration in
Fig. 2a, where the dynamic segment activities are shaded). In a different process
repository, with different process models, the sequence of activities that fulfill the
example process goal cut across two static process models: “Handle a Purchase
Requisition” and “Approve a Purchase Order” (see illustration in Fig. 2b). Note
that although in both repositories there is an activity sequence that fulfills the
searched process goal (Manually Create a Purchase Order) - this process model
is not represented separately (as a standalone segment) in those repositories and
therefore does not have a pre-defined process name.

Formally, we can define a dynamic segment to be a sub-graph induced by G.
Let G be the set of all subgraphs that are induced by G, and hence, the set of
all possible dynamic segmentations of a repository.

G = {G′ = (V ′, E′)|V ′ = {v1, v2, ...vn}ε2|V | ∧ ∀{vi, vj}εV ′, (vi, vj)εE
′ if (vi, vj)εE}

4 Descriptor Analysis

This section enhances the descriptor model of [16,15] to support process model
search. We provide a brief overview of the descriptor model in Section 4.1 fol-
lowed by an introduction of three new taxonomies in sections 4.2-4.4. To illus-
trate and assess the taxonomies we use the Oracle Applications ERP process
repository.

4.1 The Descriptor Model

In the Process Descriptor Catalog model (“PDC”) [16] each activity is composed
of one action, one object that the action acts upon, and possibly one or more
action and object qualifiers. Qualifiers provide an additional description to ac-
tions and objects. In particular, a qualifier of an object is roughly related to an
object state. State-of-the-art Natural Language Processing (NLP) systems, e.g.,
the Stanford Parser,2 can be used to automatically decompose process and ac-
tivity names into process/activity descriptors. Each descriptor, d, can therefore
2 http://nlp.stanford.edu:8080/parser/index.jsp

Searching Business Process Repositories Using Operational Similarity 7

be represented as a tuple d = (o, oq, a, aq), where o is an object, oq is a set of
object qualifiers, a is an action, and aq is a set of action qualifiers.

For example, in Fig. 1, the activity “Notify the complaining customer of the
treatment status” generates the following activity descriptor: (“customer”, “com-
plaining”, “notify”, “of the treatment status”).

We denote by A the set of all actions (including qualifiers) in a process repos-
itory, G. Similarly, O denotes the set of all objects. We also denote by a(d) the
action part of the descriptor, including the action qualifiers, e.g., “notify of the
evaluation status” in the example. Similarly, o(d) denotes the object part.

4.2 The Action Scope Model (ASM)

The action scope model is a graph ASM = (VASM , EASM), which represents
the relationship between an action in a process name (a primary action) and
the actions in its corresponding static model segment. As such, it represents an
operational meaning of primary actions in the repository. Recall that a process
repository consists of pre-defined process segments. We use this segmentation
for learning about the scope of actions in the following way. Each action in the
repository is related with a set of directional graphs of actions that represent
the order of actions within this primary action’s segments. Therefore, VASM is
a set of descriptor actions that are found in the segments of the primary action.
An edge in EASM connects two actions that appear sequentially in the process
model. Since such a primary action can be part of more than one process name,
and since the same action may be represented more than once in the same process
model segment - each edge in the action scope model is labeled with its weight,
denoted w(e), calculated by the number of its repetitions in the related process
model segments. Graph splits are also represented in the action scope model. We
denote by createASM (PM) the action of creating an ASM from a given static
model segment, PM .

As a motivation for using this model in the context of searching process mod-
els, we analyzed 17 real-life processes from the Oracle Business Model (OBM)
(we elaborate on the experiment setup in Section 6). Based on this sample we
calculated a tf-idf measure [18] for each action as follows. For a group of pro-
cesses that share the same primary action, we count the number of times each
action appears in the group (serves to compute tf) and the number of different
processes in the repository (processes with a different primary action) where
this action appears overall (serves to compute idf). For example, out of the 17
processes, five contain the primary action “Create,” including 49 activities al-
together. The action “Define” is presented five times in the set of all actions:
four times in the “Create” processes, and one time in a different process. There-
fore, its tf-idf is (4/49) ∗ (log(13/(1 + 2))) = 0.052. Note that the five “Create”
processes are taken into account as one large process for this calculation.

In order to examine the quality of this value, we compare it to a random
tf-idf values as follows. When assuming a random distribution of activities over
processes, an activity that repeats n times in the repository has an expected n/k
appearances in each process, assuming k processes. Therefore, given m processes

8 M. Lincoln and A. Gal

that share the same primary action, we expect an activity to appear n∗m/k times
in these processes, and the tf-idf computation is done accordingly. Continuing
with the previous example, with five appearances of “Define” in the repository
and 17 processes, we expect “Define” to appear 5/17 times in a process and
5 ∗ 5/17 = 1.47 times in “Create” processes and 3.53 times elsewhere. This
results in a tf-idf of 0.01. When applying such a calculation to all actions in all
the 17 processes, it was found that on average, their tf-idf is 4.6 times better
than the random value. We are therefore encouraged to learn about participating
actions in a process segment given a primary action.

Action scope model for: Manually Create

Process model for: Manually Create Non-Production Requisitions

Process model for: Manually Create Item

Determine if
goods will be

sourced from an
externally hosted

catalog

Search
electronic
catalog

Add items to
shopping cart

Determine
units of

measure

Decide if the item
will be stocked

using dual unit of
measure types

Define a new
conversion of

measure types

Decide if Item
will be

classified by
type

Verify that
inventory types

have been
defined

Determine 2

Determine Decide 21 Define Decide Verify1 2 2 1 define 2 Decide Verify2

a.
 P

ro
ce

ss
 m

od
el

s
fr

om
 th

e
O

B
M

re

po
si

to
ry

b.
 T

he
 r

es
ul

te
d

ac
tio

n
sc

op
e

 m
od

e
l

Decide if
goods

sourced
externally

No

Punch-out to the content
provider’s on- line catalogs

Yes

Determine
shipping

information for
checkout

Decide
No,1

Search Add1
1

Punch-out
Yes,1

Determine
1

Identify 1 1

Fig. 3. A segment of the action scope model for the action “Manually Create” in the
OBM repository for the Procurement category

Consider the following two processes from the OBM repository: “Manually
Create Non-Production Requisitions” and “Manually Create Item.” These pro-
cesses are represented in the OBM by corresponding graph segments as illus-
trated in Fig 3a. Using these two process models, it is possible to generate an
action scope model for the action “Manually Create” (Fig 3b). The dashed lines
in this illustration represent graph parts that are not shown due to space limita-
tions. According to this example, there are two optional action paths compatible
to the “Manually Create” action starting by either “Identify” or “Determine.”
Since “Decide” follows “Determine” twice in this model, the respective edge
weight is set to 2.

Given an action scope model graph, ASM , the intensity of any path i of
length n − 1, (ai,1, ai,2, ..., ai,n) in ASM, ιASM

i , is computed to be:

ιASM
i = 1 − n−1∑ n−1

j=1 w(ai,j ,ai,j+1)
.

Searching Business Process Repositories Using Operational Similarity 9

The values of ιASM
i are in [0,1], with higher values representing a stronger,

more common ASMi. For example, the intensity of the second path in the action
scope model for “Manually Create” (Fig. 3b) is calculated as follows:

ιASM
2 = 1 − 8

1+2+1+2+2+1+2+2 = 0.385.

We define fitness, fASM , between a segment, PM , and an ASM to be zero if
there is no path in the ASM that represents the PM . If such path exists, the
fitness value is determined by its intensity. Formally, we define fitness as follows:

fASM (PM, ASM) =

{
ιASM
i ∃ ASMiεASM | createASM(PM) = ASMi

0 otherwise

4.3 The Object Grouping Model (OGM)

The object grouping model represents the relationship between an object (a
primary object) and the objects in its corresponding static model segment. As
such, it represents an operational meaning of primary objects in the repository.
Since such a primary object can be part of more than one process segment, and
since the same object may be represented more than once in the same process
model segment - each edge in the object grouping model is labeled with its weight
calculated by the number of its repetitions in the related process model segments.
Therefore, an object grouping model of an object, o, denoted as OGM(o) is a
bag (repetitions allowed) {o1, o2, ..., ok}.

As a motivation for this model usage in the context of this work, and similarly
to the tf-idf calculations made for assessing the relevance of using the ASM ,
we calculated the tf-idf measure for each object in each group of processes that
share the same primary object. As a result, we found that on average, their tf-idf
is 5.3 times better than the random value. We are therefore encouraged to learn
about participating objects in a process segment given a primary object.

To illustrate, consider two processes from the OBM repository: “Issue a Pur-
chase Order” and “Authorize a Purchase Order.” These processes are repre-
sented in the OBM by corresponding graph segments as illustrated in Fig 4a.
Using these two process models, it is possible to generate an object grouping
model for the object “Purchase Order,” as illustrated in Fig 4b. According to
this example, process models that are related to the object “Purchase Order”
deal also with objects such as “Purchase Order Notifications,” “Blanket Agree-
ment Document,” and “Requisitions,” while the last option’s weight equals 2
since it is represented twice in the two input process models.

Given a segment, PM , (possibly a result of a user’s search phrase) we calculate
its proximity, λOGM , to a given object grouping model, OGM , as follows. We
denote by OPM the set of all objects in PM . We compute precision and recall
on OPM and OGM(o) as follows:

P (PM, OGM(o)) = |OPM|∩|OGM(o)|
|OPM| ; R(PM, OGM(o)) = |OPM|∩|OGM(o)|

|OGM(o)| .
PM is considered more similar to OGM(o) as both P (PM, OGM(o)) and

10 M. Lincoln and A. Gal

Object grouping model for: Purchase Order

Process model for: Issue a Purchase Order

Process model for: Authorize a Purchase Order

Review
requirements

for
procurement of

goods

Negotiate
terms with

supplier for a
Blanket

Agreement

Create a
Blanket

Agreement
document

Check
purchase

order
notifications

Review the
purchase

order Approve the purchase order

a.
 P

ro
ce

ss
 m

od
e

ls
 fr

om
 th

e
O

B
M

re

po
si

to
ry

b
. T

h
e

re
su

lte
d

 o
b

je
ct

g

ro
up

in
g

m
od

e
l

Decide if
Requisitions
exist for the

requirements

No

Review requisitions
Yes

Specify items
negotiated for

this
agreement

Select the requisitions to be
converted to a purchase order

Decide if the
purchase
order is

approved

No
Reject the

purchase order
Notify

requester

Yes

Blanket
Agreement
document

Items negotiated
for this

agreement

Purchase Order

Terms for a
Blanket

Agreement
Requisitions

Requirements for
procurement of

goods

11121

Purchase order
notifications

Purchase
order

14

Fig. 4. A segment of the object grouping model for “Purchase Order” in the OBM
repository for the Procurement category

R(PM, OGM(o)) are higher. Therefore we define λOGM (PM, OGM(o)) as the
harmonic mean of these figures:

λOGM (PM, OGM(o)) =
P (PM, OGM(o)) ∗ R(PM, OGM(o))
P (PM, OGM(o)) + R(PM, OGM(o))

∗ 2

λOGM ranges between [0,1], and higher values represent a stronger match be-
tween the given PM and OGM(o). It is also possible to define a threshold,
thOGM , below which λOGM is set to zero.

Determine if
requirement generated

from planning or
manual

Decide if
requirement is
from planning

Review
imported

production
requisitions

Define the
requisition

Submit the
requisition

for approval

Review
requirements for
procurement of

goods

Decide if
requisitions exist

for the
requirements

Review
requisitions

Select the
requisition(s) to be

converted to a
purchase order

Review the
purchase

order

Submit the
purchase
order for
approval

Fig. 5. An example of a process model for “Manually create purchase order”

For example, let us examine a given process model PM that represents the
flow of activities for “Manually create purchase order,” as illustrated in Fig. 5.
The object grouping model for “Purchase Order,” (Fig. 4) and PM share three
objects in common: “Purchase order,” “Requisition,” and “Requirements for
procurement of goods,” that repeat in PM activities once, twice, and once again,
respectively (see Fig. 6). Both models consist of 11 objects, each. Therefore,

Searching Business Process Repositories Using Operational Similarity 11

OGM(o) OPM

Requisition

Requisition for approval

Requirements for procurement of goods

Purchase order

Requisition

Requisition

Requirement Requirement

imported production
requisitions

purchase order for
approval

requisition(s) to be
converted to a
purchase order

Purchase order

Purchase order

Purchase order
Purchase order

notifications

Terms for a
Blanket

Agreement
Blanket

Agreement
document

Items negotiated
for this

agreement

Fig. 6. An example of proximity calculation

precision and recall are both 4/11 (single and plural forms of the same object
are considered to be the same) and the proximity in our example is calculated
to be 0.18.

4.4 The Action Influence Model (AIM)

The action influence model represents the relationship between a primary action
and the flow of states (object qualifiers) of the primary object in static model
segments that correspond to the primary action. As such, it reflects the influence
of a primary action on the way a primary object changes. Each edge in the
action influence model is labeled with its weight representing the number of its
repetitions in the related process model segments.

As a motivation for this model usage in the context of this work, and similarly
to the calculations made for the ASM , we calculated the tf-idf measure for each
two adjacent object-qualifiers (object-qualifier pairs) in any of the static model
segments that share the same primary action. We found that on average, their
tf-idf is 3.6 times better than the random value. We can therefore deduce that it
is possible to learn about participating object-qualifier pairs in a process segment
given a primary action.

To illustrate, consider the two process models named: “Manually Create Non-
Production Requisitions” and “Manually Create Item.” They both deal with
manual creation, but focus on different objects, “Non-Production Requisitions”
and “Item.” Their initial part is illustrated in Fig. 3a and continued in Fig. 7a.
By following changes to the qualifiers of the primary object in these process
models we end up with the action influence model for “Manually Create” as
illustrated in Fig. 7b. In this example, both primary object states change from
“For approval” to “New” and then to “Rejected” or “Approved” in their cor-
responding process models and therefore the corresponding edges in the action
influence model are labeled with weight of 2. In addition, we note that one of the

12 M. Lincoln and A. Gal

Action influence model for : Manually Create

Process model for : Manually Create Non - Production Requisitions

Process model for : Manually Create Item

Complete
preparing
the item

New

2

2

a.
 P

ro
ce

ss
 m

od
el

s
fr

om
 t

he
 O

B
M

re

po
si

to
ry

b
. T

h
e

re
su

lte
d

a
ct

io
n

in

flu
en

ce
 m

o
de

l

Create the new
non-production

requisition

Submit the new
non-production
requisition for

approval

Decide if to approve
the reviewed non -

production requisition

Review the
item for
approval

Update the
approved

item

Save the
approved

item

New Reviewd
Approved

1
Yes,2

Rejected

Review the
submitted non -

production
requisition

Submitted 1 For approval
2

New
No,2

21

Decide if
new item is
approved ? Yes,2

No,2

Approved
Yes,2

Rejected

New
No,2

Document the rejected item
data

2For approval 21 1

Fig. 7. A segment of the action influence model for the action “Create” in the OBM
repository for the Procurement category

qualifiers in the action influence model is represented by an empty rectangle since
its corresponding activity included the object “Item” as is, without any quali-
fiers. Also, it is worth noting that the first two activities in the process model
for “Manually Create Non-Production Requisitions” represent the object “New
Item.” Nevertheless, the corresponding qualifier “New” is represented only once
at the beginning of the action influence model, since no change has been made
to the object “Item” when advancing the process between these two activities.

Given a process model, PM , it is possible to calculate its similarity, σAIM
i ,

to a given path in an action influence model, AIMi, using one of the state-of-
the-art methods for assessing similarity between process models (e.g. [23,8,21]).
For that purpose, an action influence model is created for the primary object
of PM (referred to as a temporary action influence model, TAIM) and then
compared to AIMi. σAIM

i can be then normalized to the range of [0,1]. On top
of this score for each path in AIM , we also add an additional score that reflects
the weights of the matched edges, so that the proximity between PM and AIM ,
λAIM , is calculated as follows:

λAIM (PM, AIM) =
Σk

i=1(σ
AIM
i +

∑
eεAIMi∩T AIM

w(e)
∑

eεAIMi
w(e)

)

k ∗ 1
2 ,

where w(e) is the weight assigned to e in AIMi, and k is the number of paths
in AIM . Note that since the additional score refers only to edges, it can be zero
even when σAIM

i > 0 (e.g. when some activity names are matched) and therefore
it is not multiplied, but added to σAIM

i .
λAIM ranges between [0,1], where higher values reflect a higher proximity of

the given PM and AIM . It is also possible to define a threshold, thAIM , in a
similar manner as thOGM .

Searching Business Process Repositories Using Operational Similarity 13

Following our example, we first generate a temporary AIM for “Manually
Create” based on the example process model graph (Fig. 5). Since the primary
object “Purchase Order” is presented twice in this process model, at first with-
out qualifiers, and then with the qualifier “For approval,” the temporary AIM
contains these two qualifiers, as illustrated in Fig. 8.

1For approval1 1

Fig. 8. An example of a temporary AIM

At the next phase of our example, we calculate the similarity between the
temporary AIM and each of the two object qualifier paths presented in the
action influence model for “Manually Create” (Fig. 7b). To do that we use
the similarity method presented in [23]. There is a full match (similar text)
of one node (“For approval”) between the temporary AIM and the first path
in the AIM for “Manually Create,” and a full match of two nodes between the
temporary AIM and the second path in the AIM for “Manually Create.” There-
fore, the similarity score that these matches contribute is 1 and 2 for the first
and second path, respectively. Since the optimal match between the temporary
AIM and each of the paths in the AIM for “Manually Create” is a situation in
which the entire temporary AIM is fully matched, the optimal similarity score
is 2. Therefore, the similarity score between the temporal AIM and the first
and second paths is σ1 = 1

2 and σ2 = 2
2 = 1, respectively. In addition, there

are no matched edges between the temporary AIM and the first path (since the
node labeled “For approval” is not directly connected to the start or end nodes).
Nevertheless, there is one matched edge between the temporary AIM and the
second path - that directly connects the node with no qualifiers with the “For
approval” node. This edge’s occurrence is 1 and its weight is 1, resulting in a
score addition of 1

12 to the score of the second path. This addition is divided by
the maximal number of matched edges (3 in this example). As a result, the final
similarity score is: λAIM (PM, AIM) = (1

2+0)+(1+ 1
12)

2 ∗ 1
2 = 0.4.

5 The Process Model Search Problem and Method

This section describes the process model search method. We first provide a formal
description of the search problem (Section 5.1). Then, we describe in Section 5.2
the use of the three taxonomies of Section 4 in a search procedure.

5.1 The Process Model Search Problem

Let G be a graph that represents a process repository. Let λ be a benefit model
λ : G, A, O → [0, 1] and let S be a search phrase, given either as a descriptor or
in natural language that is converted into a descriptor (see Section 4.1).

14 M. Lincoln and A. Gal

Given S and a segment G′ we define λ as follows:

λ(G′, a(S), o(S)) = f(G′, ASM(a(S)) ∗ λOGM (G′, OGM(o(S)) ∗ λAIM (G′, AIM(a(S)) (1)

Given S, G, and λ find a segment, G′, that best fits the search phrase. The
process model search problem can be formally defined as follows:

Problem 1. Given G, S, and λ, find G′εG s.t. G′ = argmaxG′′εGλ(S, G′′)

In what follows we actually find the top k segments, ranked according to their
operational relevance to the searched phrase. This way we expand the retrieved
result range, allowing users to examine more than one result that may also
contain useful information with regards to the search problem.

5.2 The Process Model Search Method

The process model search method (PMSM) relies on an underlying process de-
scriptor analysis model and dynamically segments a business process repository
to fit a given search phrase. We use the search request “Manually Create a Pur-
chase Order” to illustrate the suggested method.

Search for process
model segments

that fulfil the
searched action

Assess the
relevance of
each result
candidate

Sift
irrelevant

result
candidates

Sort the
list of

search
results

Decompose the
search phrase into

a process
descriptor format

Fig. 9. The process model search method

Method Overview. The search procedure is composed of five main phases as
follows (see illustration in Fig. 9). At first, it receives as input the name of a
required process model in natural language or as a process descriptor. For the
former, the input is automatically decomposed into a process descriptor format
using NLP systems such as the Stanford Parser. According to this phase, the
search phrase in our example will be transformed into the following process de-
scriptor: object=“order,” action=“create,” object qualifier=“purchase,” action
qualifier=“manually.” If more than one action and one object appear in the
search phrase, it is automatically interpreted as separate descriptors (expressing
all possible combinations of the given descriptor components) that are sepa-
rately searched. Handling search phrases that include multiple process names as
a unified process group is a topic for future work.

Based on the process descriptor input (the “target descriptor”), the PMSM
searches first for all process model segments within the process repository that
can be relevant candidates for the search result. This dynamic segmentation
phase is the most important phase in this method since it enables the discovery
of process models that do not have a pre-defined static segment in the repository,
but are rather a part of or a sequential collection of pre-segmented process models
(see Section 3.2).

Searching Business Process Repositories Using Operational Similarity 15

At the next phase each process model option is assessed according to three or-
thogonal measures that reflect its relevance to the search request using proximity
to the action scope model, the object grouping model, and the action influence
model. According to these three relevance measures, non-relevant process mod-
els are removed from the option list, and finally the remaining process model
options are being sorted according to a weighted grade of the three relevance
measures. The sorted process model segment list is presented to the requester -
as the search result for her request.

Phase 1: Dynamic Segmentation. The goal of this phase is to retrieve all
process model segments that fulfill the target action. For example, given the
target action “Manually Create,” the PMSM will search at this phase all process
model segments that are aimed at manually creating an object of any type,
without restricting the segment to the target object. Note that a näıve solution
in this phase would be to examine all possible process model segments within the
repository. Nevertheless, such algorithm can be highly inefficient (with n static
segments and m the size of the biggest segment, there are 2nm induced dynamic
segments over G). Therefore, we reduce the collection of segments by selecting
only relevant candidates at the first phase. Also note that this phase focuses
on actions rather than objects as a basis for retrieving optional search results,
since the search method is based on the operational meaning of the search and
therefore all process model segments that relate to the search action represent
a full set of optional results from which we select relevant results that are also
related to the searched object.

To do that, the PMSM searches in the process repository for graph segments
that are similar - both structurally and textually - to the action scope model of
the target action. Since the action scope model is a graph of activities with partial
names (only the action part is represented) - it is possible to convert it into a
query statement using any state-of-the-art business process query mechanisms
(e.g. [2,4]) and search for graph segments that are similar to it.

Determine Decide// //

Determine Decide // Define Decide Verify// // // // Define // Decide Verify//

No// Search Add//
//

Punch-outYes// //
J Determine//

Fig. 10. Segments of BPMN-Q queries generated from the ASM for “Manually Create”
in the OBM repository

In our example, the action scope model for “Manually Create” consists of
two graphs (see Fig. 3). Each of these graphs will be converted into a query
statement and be searched separately in the repository. A representation of those
two graphs as a query statement using the BPMN-Q method suggested in [2] is
illustrated in Fig. 10. The dashed lines in this illustration represent query parts
that are not presented here due to space limitations. To relax the generated

16 M. Lincoln and A. Gal

query statements we mark all their edges with “//” - stating that there may be
zero or more activities between each connected activities in the query result.

By running the two queries of our example on the OBM repository using the
BPMN-Q method, 14 results were retrieved. One of those results is presented
in Fig. 5. This example highlights the need for dynamic segmentation. This seg-
ment is combined sequentially from three process models in the OBM repository
- starting with the last five activities of “Create Production Requisitions,” con-
tinuing with “Issue a Purchase Order” (Fig. 4a) and terminating with the first
activities of “Authorize a Purchase Order” (also presented in Fig. 4a).

Phase 2: Assessing the Relevance of Result Candidates. This phase is
aimed at determining the relevance of each result option retrieved at the previous
phase to the search request. To do that, we use the three measures defined in
Section 4 as follows.

1. Each result retrieved at phase 1 is compatible with one of the action paths
in the action scope model, and therefore related to the intensity, ij of this
path (as detailed in Section 3).

2. We calculate each result’s λOGM (Section 4.3) as a measure for its proximity
to the target object. To understand the necessity of this measure consider,
for example, a process segment resulted at phase 1 that highly represents
the “Manually Create” action (the order of its actions represents one of
the action sequences in the ASM of the “Manually Create” action). Nev-
ertheless, none of the objects involved in this process model participates in
process models related to the object “Purchase Order.” In this case we can
deduce that this segment is only loosely related to the primary object in our
example.

3. The proximity to the action influence model is aimed at preferring results
that express a typical modification of the primary object states as a result of
applying the primary action. To measure the proximity between each result
to the primary action’s influence model we use λAIM (Section 4.4).

Phase 3: Sifting Irrelevant Result Candidates. In this phase two thresh-
olds, thOGM and thAIM (see sections 4.3 and 4.4), are used to determine the
inclusion of each result candidate in the final result list. Note that it is not
sufficient to apply a threshold on the final grade (as calculated in phase 4) to
determine inclusion. A candidate may receive a relatively high final grade and
still be irrelevant to the searched phrase. For example, a candidate may be highly
similar to the search phrase’s action influence model but may not consist any
relevant objects from its object grouping model. Therefore, we include in the
final result list only results for which λOGM >thOGM and λAIM > thAIM .

Phase 4: Sorting the List of Search Results. At this phase a final grade, λi,
for each result candidate, Ri, is calculated according to Eq. 1, using the grades
of the three measures calculated in phase 2.

Following our example, the final grade for the optional result presented in
Fig. 5 is: λi = 0.385 ∗ 0.18 ∗ 0.4 = 0.03. Finally, the optional process models are

Searching Business Process Repositories Using Operational Similarity 17

sorted according to their final grade in an ascending order - from the closest to
the most distant option as regards to the user’s search phrase.

6 Experiments

We now present an empirical evaluation of the proposed method effectiveness.
We first present our experimental setup and describe the data that was used.
Then, we present the experiment results and provide an empirical analysis of
these results.

Data Set and Experiment Setup. We chose a set of 17 real-life processes
from the Oracle Business Model (OBM),3 comprising 152 activities altogether.
Using these processes we created a “process repository database,” that includes
the 17 process models and their derived taxonomies.

To evaluate the suggested method we conducted 17 experiments. At each ex-
periment, a single process was removed from the database and then was searched
according to its name. More specifically, each experiment was conducted accord-
ing to the following steps: (a) preparation: removal of one of the process names
from the database and reconstruction of the taxonomies so that the database
will contain the process model (its graph segment) but the three taxonomies will
not contain any of its descriptor components; (b) search for the removed process
in the database, using its name as the search phrase.

The similarity between the result’s temporal AIM and each of the object
qualifier paths in the primary action’s AIM (see Section 4.4) was calculated
using the method in [23]. In addition, the threshold parameters for sifting ir-
relevant result candidates (defined in Section 5.2) were set to: thOGM = 0.1,
thAIM = 0.2.

The search results have then been objectively evaluated with respect to the
original, removed, process. For each of the 17 experiments we also chose the “best
result,” the one most similar to the goal process model, calculated using the
similarity method presented in [23]. Our metrics for measuring the effectiveness
of the method, as detailed below, assess both the quality of an average result, as
well as the average quality of the best result in each experiment - showing the
best performance of the search method.

We use five metrics to measure the effectiveness of the method. For all re-
sults and for the best result we compute: (1) the average percentage of correct
activities, showing how similar the results are with respect to the goal, correct
result; (2) the average percentage of redundant activities, showing the amount
of redundant, unnecessary activities in the retrieved results. Finally, we identify
the average location of the best result in the list of search results - showing the
effectiveness of the grading mechanism, that aims at locating the best result at
the beginning of the result list.

Results and Analysis. On average, each result contained 81.7% of the goal
process model activities. On average, the best result has a higher overlap of
3 http://www.oracle.com/applications/tutor/index.html

18 M. Lincoln and A. Gal

92.9% with the goal process model and was ranked in a high location in the list
of results (1.2), usually in the first place. In addition to the correct activities,
the results also contained, on average, 14.2% of redundant activities out of the
goal process model, while this percentage was lower (8.0%) in the best result.

These experiments have shown the usefulness of using a descriptor repository
in searching for business process models based on their operational meaning. We
also showed the method to be effective in the given experimental setup, both in
terms of the similarity between the results and the goal result and with respect
to the ranking of the best result.

7 Conclusions

We proposed a mechanism to automate the search of process models that saves
search time and supports non-expert users in searching for business process
models in a process repository using their own terminology of the process goal.
By analyzing a process repository we can automatically create three taxonomies
with which it is possible to process the search intention in operational terms.
We provide a formal model of the problem, a method for providing a ranked
response to a user’s request, and we show the method to be empirically effective,
using the Oracle ERP Business Process Model, as a testbed.

The proposed method and experiments provide a starting point that can al-
ready be applied in real-life scenarios, yet several research issues remain open.
We mention four such extensions here. First, extending the empirical study to
further examine the quality of retrieved search results aiming at improving and
fine-tuning the method. Second, supporting search phrase relaxations to retrieve
more result options in cases where the search phrase retrieves only few or no
results. Third, extending the method for supporting synonyms to extend the
repository vocabulary. Forth, supporting multiple descriptors in a search phrase.

References

1. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to
databases–an introduction. Natural Language Engineering 1(01), 29–81 (1995)

2. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA 2007,
vol. 119, pp. 115–128 (2007)

3. Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process mod-
els. In: 12th International IEEE Enterprise Distributed Object Computing Con-
ference, pp. 85–94. IEEE (2008)

4. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
BP-QL. Information Systems 33(6), 477–507 (2008)

5. Belhajjame, K., Brambilla, M.: Ontology-based description and discovery of busi-
ness processes. Enterprise. Business-Process and Information Systems Modeling,
85–98 (2009)

6. Bozzon, A., Brambilla, M., Fraternali, P.: Searching Repositories of Web Appli-
cation Models. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE
2010. LNCS, vol. 6189, pp. 1–15. Springer, Heidelberg (2010)

Searching Business Process Repositories Using Operational Similarity 19

7. Coalition, W.M.: The workflow management coalition specification - terminology
& glossary. Technical report, Technical Report WFMC-TC-1011, Workflow Man-
agement Coalition (1999)

8. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Proceedings of the fourth Asia-Pacific Conference on
Comceptual Modelling, APCCM 2007, pp. 71–80. Australian Computer Society,
Inc., Darlinghurst (2007)

9. Goderis, A., Li, P., Goble, C.: Workflow discovery: the problem, a case study from
e-Science and a graph-based solution (2006)

10. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword
search over XML documents. In: Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 16–27. ACM (2003)

11. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs.
In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 305–316. ACM (2007)

12. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on
XML graphs (2003)

13. Katz, B., Lin, J., Quan, D.: Natural language annotations for the Semantic Web.
In: Meersman, R., Tari, Z. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002.
LNCS, vol. 2519, pp. 1317–1331. Springer, Heidelberg (2002)

14. Li, Y., Yang, H., Jagadish, H.V.: NaLIX: A generic natural language search envi-
ronment for XML data. ACM Transactions on Database Systems (TODS) 32(4),
30 (2007)

15. Lincoln, M., Golani, M., Gal, A.: Machine-Assisted Design of Business Process
Models Using Descriptor Space Analysis. In: Hull, R., Mendling, J., Tai, S. (eds.)
BPM 2010. LNCS, vol. 6336, pp. 128–144. Springer, Heidelberg (2010)

16. Lincoln, M., Karni, R., Wasser, A.: A Framework for Ontological Standardization of
Business Process Content. In: International Conference on Enterprise Information
Systems, pp. 257–263 (2007)

17. Markovic, I., Pereira, A.C., Stojanovic, N.: A framework for querying in business
process modelling. In: Proceedings of the Multikonferenz Wirtschaftsinformatik
(MKWI), Munchen, Germany (2008)

18. McGill, M.J., Salton, G.: Introduction to modern information retrieval. McGraw-
Hill (1983)

19. Momotko, M., Subieta, K.: Process query language: A Way to Make Workflow
Processes More Flexible. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.)
ADBIS 2004. LNCS, vol. 3255, pp. 306–321. Springer, Heidelberg (2004)

20. Shao, Q., Sun, P., Chen, Y.: WISE: a workflow information search engine. In: IEEE
25th International Conference on ICDE 2009, pp. 1491–1494. IEEE (2009)

21. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process Equiv-
alence: Comparing Two Process Models Based on Observed Behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006)

22. van der Aalst, W.M.P., Ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Information Systems 30(4), 245–275 (2005)

23. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Similarity Between
Business Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

24. Yan, Z., Dijkman, R., Grefen, P.: Business Process Model Repositories-Framework
and Survey. Technical report, Beta Working Papers

	Searching Business Process Repositories Using Operational Similarity
	Introduction
	Related Work
	Dynamic Segmentation
	A Business Process Repository and Static Segmentation
	Dynamic Segments in Business Process Repositories

	Descriptor Analysis
	The Descriptor Model
	The Action Scope Model (ASM)
	The Object Grouping Model (OGM)
	The Action Influence Model (AIM)

	The Process Model Search Problem and Method
	The Process Model Search Problem
	The Process Model Search Method

	Experiments
	Conclusions
	References

