

Lecture Notes in Computer Science 7044
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Robert Meersman Tharam Dillon Pilar Herrero
Akhil Kumar Manfred Reichert Li Qing
Beng-Chin Ooi Ernesto Damiani Douglas C. Schmidt
Jules White Manfred Hauswirth Pascal Hitzler
Mukesh Mohania (Eds.)

On the Move to
Meaningful Internet Systems:
OTM 2011

Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2011
Hersonissos, Crete, Greece, October 17-21, 2011
Proceedings, Part I

13

Volume Editors

Robert Meersman, Vrije Universiteit Brussel, Belgium, meersman@vub.ac.be

Tharam Dillon, Curtin University of Technology, Australia, t.dillon@curtin.edu.au

Pilar Herrero, Universidad Politécnica de Madrid, Spain, pherrero@fi.upm.es

Akhil Kumar, Pennsylvania State University, USA, akhilkumar@psu.edu

Manfred Reichert, University of Ulm, Germany, manfred.reichert@uni-ulm.de

Li Qing, City University of Hong Kong, liqing.thu@gmail.com

Beng-Chin Ooi, National University of Singapore, ooibc@comp.nus.edu.sg

Ernesto Damiani, University of Milan, Italy, ernesto.damiani@unimi.it

Douglas C. Schmidt, Vanderbilt University, USA, schmidt@dre.vanderbilt.edu

Jules White, Virginia Tech, Blacksburg, USA, julesw@vt.edu

Manfred Hauswirth, DERI, Galway, Ireland, manfred.hauswirth@deri.org

Pascal Hitzler, Kno.e.sis, Wright State University, USA, pascal.hitzler@wright.edu

Mukesh Mohania, IBM India, New Delhi, mkmukesh@in.ibm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25108-5 e-ISBN 978-3-642-25109-2
DOI 10.1007/978-3-642-25109-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011940438

CR Subject Classification (1998): C.2, D.2, H.4, I.2, H.2-3, J.1, K.6.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

General Co-chairs’ Message for

OnTheMove 2011

The OnTheMove 2011 event in Heraklion, Crete, held during October 17–21,
further consolidated the growth of the conference series that was started in
Irvine, California, in 2002, and held in Catania, Sicily, in 2003, in Cyprus in
2004 and 2005, in Montpellier in 2006, in Vilamoura in 2007 and 2009, in Mon-
terrey, Mexico, in 2008, and in Heraklion 2010. The event continues to attract a
diversified and representative selection of today’s worldwide research on the sci-
entific concepts underlying new computing paradigms, which, of necessity, must
be distributed, heterogeneous, and autonomous yet meaningfully collaborative.
Indeed, as such large, complex, and networked intelligent information systems
become the focus and norm for computing, there continues to be an acute and
even increasing need to address and discuss face to face in an integrated forum
the implied software, system, and enterprise issues as well as methodological,
semantic, theoretical, and application issues. As we all realize, email, the Inter-
net, and even video conferences are not by themselves sufficient for effective and
efficient scientific exchange.

The OnTheMove (OTM) Federated Conference series has been created
to cover the scientific exchange needs of the community/ies that work in the
broad yet closely connected fundamental technological spectrum of Web-based
distributed computing. The OTM program every year covers data and Web
semantics, distributed objects, Web services, databases, information systems,
enterprise workflow and collaboration, ubiquity, interoperability, mobility, grid
and high-performance computing.

OnTheMove does not consider itself a so-called multi-conference event but
instead is proud to give meaning to the “federated” aspect in its full title : it
aspires to be a primary scientific meeting place where all aspects of research and
development of Internet- and intranet-based systems in organizations and for
e-business are discussed in a scientifically motivated way, in a forum of (loosely)
interconnected workshops and conferences. This tenth edition of the OTM Fed-
erated Conferences event therefore once more provided an opportunity for re-
searchers and practitioners to understand and publish these developments within
their individual as well as within their broader contexts. To further promote syn-
ergy and coherence, the main conferences of OTM 2011 were conceived against
a background of three interlocking global themes:

– Virtual (“Cloud”) Computing Infrastructures and Security
– The Internet of Things, and Semantic Web 2.0
– Collaborative (“Social”) Computing for the Enterprise

Originally the federative structure of OTM was formed by the co-location
of three related, complementary, and successful main conference series: DOA

VI General Co-chairs’ Message for OnTheMove 2011

(Distributed Objects and Applications, since 1999), covering the relevant
infrastructure-enabling technologies, ODBASE (Ontologies, DataBases and Ap-
plications of Semantics, since 2002) covering Web semantics, XML databases and
ontologies, and CoopIS (Cooperative Information Systems, since 1993) cover the
application of these technologies in an enterprise context through, e.g., work-
flow systems and knowledge management. In 2007 the IS workshop (Information
Security) was added to try cover also the specific issues of security in complex
Internet-based information systems, and in this 2011 edition these security as-
pects became merged with DOA under the umbrella description of“secure virtual
infrastructures,” or DOA-SVI. Each of the main conferences specifically seeks
high-quality contributions and encourages researchers to treat their respective
topics within a framework that incorporates jointly (a) theory, (b) conceptual
design and development, and (c) applications, in particular case studies and
industrial solutions.

Following and expanding the model created in 2003, we again solicited and
selected quality workshop proposals to complement the more “archival” nature
of the main conferences with research results in a number of selected and more
“avant-garde” areas related to the general topic of Web-based distributed com-
puting. For instance, the so-called Semantic Web has given rise to several novel
research areas combining linguistics, information systems technology, and arti-
ficial intelligence, such as the modeling of (legal) regulatory systems and the
ubiquitous nature of their usage. We were glad to see that six of our earlier suc-
cessful workshops (EI2N, SWWS, ORM, MONET,ISDE, SeDeS) re-appeared in
2011 with in some cases a fourth or even fifth edition, often in alliance with
other older or newly emerging workshops, and that three brand-new indepen-
dent workshops could be selected from proposals and hosted: INBAST, RASEP,
and VADER. (INBAST was merged with the new Industry Track, under the
auspicious leadership of Hervé Panetto and OMG’s Richard Mark Soley.)

We are also proud in particular to note the co-sponsorship of the US National
Science Foundation (NSF) for the EI2N workshop (also initiated by Hervé),
and which increasingly profiles itself as a successful incubator for new “CoopIS-
related” research aspects and topics. Our OTM registration format (“one work-
shop buys all”) actively intends to stimulate workshop audiences to productively
mingle with each other and, optionally, with those of the main conferences.

We were again most happy to see once more in 2011 the number of qual-
ity submissions for the OnTheMove Academy (OTMA, formerly called Doctoral
Consortium Workshop), our “vision for the future” in research in the areas cov-
ered by OTM, managed by a dedicated team of collaborators led by Peter Spyns
and Anja Schanzenberger, and of course by the OTMA Dean, Erich Neuhold,
responsible for our unique interactive formula to bring PhD students together.
In the OTM Academy, PhD research proposals are submitted for peer review;
selected submissions and their approaches are (eventually) presented by the stu-
dents in front of a wider audience at the conference, and independently and
extensively analyzed and discussed in front of the audience by a panel of senior
professors.

General Co-chairs’ Message for OnTheMove 2011 VII

As said, all three main conferences and the associated workshops shared the
distributed aspects of modern computing systems, and the resulting application
pull created by the Internet and the so-called Semantic Web. For DOA-SVI 2011,
the primary emphasis stayed on the distributed object infrastructure and its
virtual and security aspects; for ODBASE 2011, the focus became the knowledge
bases and methods required for enabling the use of formal semantics in Web-
based databases and information systems; for CoopIS 2011, the focus as usual
was on the interaction of such technologies and methods with management issues,
such as occur in networked organizations and enterprises. These subject areas
overlap in a scientifically natural fashion and many submissions in fact also
treated an envisaged mutual impact among them. As with the earlier editions,
the organizers wanted to stimulate this cross-pollination by a “shared” program
of famous keynote speakers around the chosen themes. We were quite proud to
announce:

– Amit Sheth, Wright State University, Ohio, USA
– Schahram Dustdar, Vienna University of Technology, Austria
– Siani Pearson, Hewlett-Packard Laboratories, Bristol, UK
– Niky Riga, Raytheon BBN Technologies, Massachusetts, USA

We received a total of 141 submissions for the three main conferences and
104 submissions in total for the workshops. The numbers are comparable with
those for 2010. Not only may we indeed again claim success in attracting an
increasingly representative volume of scientific papers, many from the USA and
Asia, but these numbers of course allow the Program Committees to compose
a high-quality cross-section of current research in the areas covered by OTM.
In fact, the Program Chairs of the CoopIS 2011 conferences decided to accept
only approximately 1 paper for each 5 submissions, while the ODBASE 2011
PC accepted about the same number of papers for presentation and publication
as in 2009 and 2010 (i.e., average 1 paper out of 3-4 submitted, not counting
posters). For the workshops and DOA-SVI 2011 the acceptance rate varies but
the aim was to stay consistently at about 1 accepted paper for 2-3 submitted,
and this of course subordinated to peer assessment of scientific quality.

As usual we have separated the proceedings into three volumes with their own
titles, two for the main conferences and one for the workshops, and we are again
most grateful to the Springer LNCS team in Heidelberg for their professional
suggestions and meticulous collaboration in producing the files for downloading
on the USB sticks.

The reviewing process by the respective Program Committees was again per-
formed very professionally, and each paper in the main conferences was reviewed
by at least three referees, with arbitrated email discussions in the case of strongly
diverging evaluations. It may be worth emphasizing that it is an explicit On-
TheMove policy that all conference Program Committees and Chairs make their
selections completely autonomously from the OTM organization itself. Like last
year, paper proceedings were on separate request and order this year, and in-
curred an extra charge.

VIII General Co-chairs’ Message for OnTheMove 2011

The General Chairs are once more especially grateful to the many people
directly or indirectly involved in the set-up of these federated conferences. Not
everyone realizes the large number of persons that need to be involved, and the
huge amount of work, commitment, and in the uncertain economic and funding
climate of 2011 certainly also financial risk, the organization of an event like OTM
entails. Apart from the persons in their roles mentioned above, we therefore wish
to thank in particular our eight main conference PC Co-chairs:

– CoopIS 2011: Manfred Reichert, Akhil Kumar, Qing Li
– ODBASE 2011: Manfred Hauswirth, Pascal Hitzler, Mukesh Mohania
– DOA-SVI 2011: Ernesto Damiani, Doug Schmidt, Beng Chin Ooi

And similarly the 2011 OTMA and Workshops PC (Co-)chairs (in arbi-
trary order): Hervé Panetto, Qing Li, J. Cecil, Thomas Moser, Yan Tang (2x),
Alok Mishra, Jürgen Münch, Ricardo Colomo Palacios, Deepti Mishra, Patrizia
Grifoni, Fernando Ferri, Irina Kondratova, Arianna D’Ulizia, Terry Halpin,
Herman Balsters, Almudena Alcaide, Naoki Masuda, Esther Palomar, Arturo
Ribagorda, Yan Zhang, Jan Vanthienen, Ernesto Damiani (again), Elizabeth
Chang, Paolo Ceravolo, Omar Khadeer Hussain, Miguel Angel Pérez-Toledano,
Carlos E. Cuesta, Renaud Pawlak, Javier Cámara, Stefanos Gritzalis, Peter
Spyns, Anja Metzner, Erich J. Neuhold, Alfred Holl, and Maria Esther Vidal.

All of them together with their many PC members, performed a superb and
professional job in managing the difficult yet existential process of peer review
and selection of the best papers from the harvest of submissions. We are all also
grateful to our supremely competent and experienced Conference Secretariat
and technical support staff in Antwerp and Guadalajara, Jan Demey and Daniel
Meersman, and last but certainly not least to our proceedings production team
in Perth (DEBII-Curtin University) this year led by Christopher Jones.

The General Co-chairs acknowledge with gratitude the academic freedom,
logistic support, and facilities they enjoy from their respective institutions, Vrije
Universiteit Brussel (VUB), Curtin University, Perth, Australia, and Universidad
Politécnica de Madrid (UPM), without which such an enterprise quite simply
would not be feasible. We do hope that the results of this federated scientific
enterprise contribute to your research and your place in the scientific network...
We look forward to seeing you again at next year’s event!

August 2011 Robert Meersman
Tharam Dillon

Pilar Herrero

Organization

OTM (On The Move) is a federated event involving a series of major interna-
tional conferences and workshops. These proceedings contain the papers pre-
sented at the OTM 2011 Federated conferences, consisting of three conferences,
namely, CoopIS 2011 (Cooperative Information Systems), DOA-SVI 2011 (Se-
cure Virtual Infrastructures), and ODBASE 2011 (Ontologies, Databases and
Applications of Semantics).

Executive Committee

General Co-chairs
Robert Meersman VU Brussels, Belgium
Tharam Dillon Curtin University of Technology, Australia
Pilar Herrero Universidad Politécnica de Madrid, Spain

OnTheMove Academy Dean

Erich Neuhold University of Vienna, Austria

Industry Case Studies Program Chairs

Hervé Panetto Nancy University, France
Richard Mark Soley OMG, USA

CoopIS 2011 PC Co-chairs

Akhil Kumar Penn State University, USA
Manfred Reichert University of Ulm, Germany
Qing Li City University of Hong Kong

DOA-SVI 2011 PC Co-chairs
Beng Chin Ooi National University Singapore
Ernesto Damiani Milan University, Italy
Douglas C. Schmidt SEI, USA
Jules White Virginia Polytechnic Institute and State

University, USA

ODBASE 2011 PC Co-chairs
Manfred Hauswirth DERI, Ireland
Pascal Hitzler Kno.e.sis, Wright State University, USA
Mukesh Mohania IBM India

X Organization

Publication Chair

Christopher Jones Curtin University of Technology, Australia

Publicity-Sponsorship Chair

Ana-Cecilia Martinez Barbosa DOA Institute, Belgium

Logistics Team

Daniel Meersman Head of Operations
Ana-Cecilia Martinez Barbosa
Jan Demey

CoopIS 2011 Program Committee

Marco Aiello
Antonio Ruiz Cortés
Joonsoo Bae
Zohra Bellahsene
Brian Blake
Nacer Boudjlida
James Caverlee
Jorge Cardoso
Francisco Curbera
Vincenzo D’Andrea
Xiaoyong Du
Schahram Dustdar
Kaushik Dutta
Johann Eder
Rik Eshuis
Ling Feng
Renato Fileto
HongGao Harbin
Ted Goranson
Paul Grefen
Michael Grossniklaus
Amarnath Gupta
Mohand-Said Hacid
Jan Hidders
Birgit Hofreiter
Zhixing Huang
Stefan Jablonski
Paul Johannesson
Epaminondas Kapetanios
Dimka Karastoyanova
Rania Khalaf

Hiroyuki Kitagawa
Frank Leymann
Guohui Li
Rong Liu
ZongWei Luo
Sanjay K. Madria
Tiziana Margaria
Leo Mark
Maristella Matera
Massimo Mecella
Jan Mendling
John Miller
Arturo Molina
Nirmal Mukhi
Miyuki Nakano
Moira C.Norrie
Selmin Nurcan
Werner Nutt
Gerald Oster
Hervé Panetto
Cesare Pautasso
Barbara Pernici
Lakshmish Ramaswamy
Stefanie Rinderle-Ma
Shazia Sadiq
Ralf Schenkel
Jialie Shen
Aameek Singh
Jianwen Su
Xiaoping Sun
Susan Urban

Organization XI

Willem-Jan van den Heuvel
Irene Vanderfeesten
François B. Vernadat
Maria Esther Vidal
Barbara Weber
Mathias Weske

Andreas Wombacher
Jian Yang
Xiaoming Yao
Shuigeng Zhou

DOA-SVI 2011 Program Committee

Rafael Accorsi
Moataz Ahmed
Ghazi Alkhatib
Jaiganesh Balasubramanian
Massimo Banzi
Elisa Bertino
Lionel Brunie
Marco Casassa-Mont
Fabio Casati
Frederic Cuppens
Alfredo Cuzzocrea
Schahram Dustdar
Eduardo Fernandez
Elena Ferrari
Alban Gabillon
Chris Gill
Andy Gokhale
Nils Gruschka
James Hill
Patrick Hung
David Jiang

Guoliang Li
Xumin Liu
Joe Loyall
Leszek Maciaszek
Antonio Maña
Priya Narasimhan
Jean-Cristophe Pazzaglia
Nilabja Roy
Joerg Schwenk
Ahmed Serhrouchni
George Spanoudakis
Azzel Taleb-Bendiab
Sumant Tambe
Bhavani Thuraisingham
Setsuo Tsuruta
Sai Wu
Qi Yu
Xiaofang Zhou
Aoying Zhou

ODBASE 2011 Program Committee

Karl Aberer
Divyakant Agrawal
Harith Alani
Sören Auer
Payam Barnaghi
Ladjel Bellatreche
Paul-Alexandru Chirita
Sunil Choenni
Oscar Corcho
Philippe Cudre-Mauroux
Bernardo Cuenca Grau

Emanuele Della Valle
Prasad Deshpande
Jérôme Euzenat
Walid Gaaloul
Aldo Gangemi
Giancarlo Guizzardi
Peter Haase
Harry Halpin
Takahiro Hara
Andreas Harth
Manfred Hauswirth

XII Organization

Martin Hepp
Pascal Hitzler
Andreas Hotho
Prateek Jain
Krzysztof Janowicz
Matthias Klusch
Shin’Ichi Konomi
Manolis Koubarakis
Rajasekar Krishnamurthy
Shonali Krishnaswamy
Reto Krummenacher
Werner Kuhn
Steffen Lamparter
Wookey Lee
Sanjay Madria
Frederick Maier
Mukesh Mohania
Anirban Mondal
Jeff Z. Pan
Kalpdrum Passi
Dimitris Plexousakis

Ivana Podnar Zarko
Axel Polleres
Guilin Qi
Prasan Roy
Sourav S Bhowmick
Satya Sahoo
Nandlal Sarda
Kai-Uwe Sattler
Peter Scheuermann
Christoph Schlieder
Michael Schrefl
Wolf Siberski
Srinath Srinivasa
Heiner Stuckenschmidt
L. Venkata Subramaniam
York Sure
Kunal Verma
Wei Wang
Josiane Xavier Parreira
Guo-Qiang Zhang

Supporting and Sponsoring Institutions

OTM 2011 was proudly supported or sponsored by Vrije Universiteit Brussel in
Belgium, Curtin University of Technology in Australia, Universidad Politecnica
de Madrid in Spain, the Object Management Group, and Collibra.

Computing for Human Experience: Semantics

Empowered Cyber-Physical, Social and
Ubiquitous Computing beyond the Web

Amit Sheth

Kno.e.sis, Wright State University, USA

Short Bio

Amit Sheth is an educator, research and entrepreneur. He is the LexisNexis Ohio
Eminent Scholar at the Wright State University, Dayton OH. He directs Kno.e.sis
- the Ohio Center of Excellence in Knowledge-enabled Computing which works
on topics in Semantic, Social, Sensor and Services computing over Web and in
social-cyber-physical systems, with the goal of transitioning from information
age to meaning age. Prof. Sheth is an IEEE fellow and is one of the highly
cited authors in Computer Science (h-index = 67) and World Wide Web. He
is EIC of ISI indexed Intl. Journal of Semantic Web & Information Systems
(http://ijswis.org), is joint-EIC of Distributed & Parallel Databases, is series
co-editor of two Springer book series, and serves on several editorial boards.
By licensing his funded university research, he has also founded and managed
two successful companies. Several commercial products and many operationally
deployed applications have resulted from his R&D.

Talk

“Computing for Human Experience: Semantics empowered Cyber-Physical, So-
cial and Ubiquitous Computing beyond the Web”

Traditionally, we had to artificially simplify the complexity and richness of the
real world to constrained computer models and languages for more efficient com-
putation. Today, devices, sensors, human-in-the-loop participation and social in-
teractions enable something more than a “human instructs machine” paradigm.
Web as a system for information sharing is being replaced by pervasive comput-
ing with mobile, social, sensor and devices dominated interactions. Correspond-
ingly, computing is moving from targeted tasks focused on improving efficiency
and productivity to a vastly richer context that support events and situational
awareness, and enrich human experiences encompassing recognition of rich sets
of relationships, events and situational awareness with spatio-temporal-thematic
elements, and socio-cultural-behavioral facets. Such progress positions us for

XIV Computing for Human Experience

what I call an emerging era of “computing for human experience” (CHE). Four
of the key enablers of CHE are: (a) bridging the physical/digital (cyber) divide,
(b) elevating levels of abstractions and utilizing vast background knowledge to
enable integration of machine and human perception, (c) convert raw data and
observations, ranging from sensors to social media, into understanding of events
and situations that are meaningful to humans, and (d) doing all of the above
at massive scale covering the Web and pervasive computing supported human-
ity. Semantic Web (conceptual models/ontologies and background knowledge,
annotations, and reasoning) techniques and technologies play a central role in
important tasks such as building context, integrating online and offline interac-
tions, and help enhance human experience in their natural environment.

Privacy and the Cloud

Siani Pearson

Hewlett-Packard Laboratories

Short Bio

Siani Pearson is a senior researcher in the Cloud and Security Research Lab (HP
Labs Bristol, UK), HP’s major European long term applied research centre.
She has an MA in Mathematics and Philosophy from Oxford and a PhD in
Artificial Intelligence from Edinburgh. She was a Fellow at the Computer Lab
in Cambridge University, and for the last 17 years has worked at HP Labs in a
variety of research and development programs including collaborations with HP
business units and EU PRIME (Privacy and Identity Management for Europe)
project.

Siani’s current research focus is on privacy enhancing technologies, account-
ability and the cloud. She is a technical lead on regulatory compliance projects
with HP Privacy Office and HP Enterprise Services, and on the collaborative
TSB-funded EnCoRe (Ensuring Consent and Revocation) project.

Talk

“Privacy and the Cloud”

Cloud computing offers a huge potential both for efficiency and new business
opportunities (especially in service composition), and is almost certain to deeply
transform our IT. However, the convenience and efficiency of this approach comes
with a range of potential privacy and security risks. Indeed, a key barrier to the
widespread uptake of cloud computing is the lack of trust in clouds by poten-
tial customers. This concern is shared by experts: the European Network and
Information Security Agency (ENISA)’s cloud computing risk assessment report
states “loss of governance” as a top risk of cloud computing, and “data loss or
leakages” is one of the top seven threats the Cloud Security Alliance (CSA) lists
in its Top Threats to Cloud Computing report.

In this talk I will assess how privacy, security and trust issues occur in the con-
text of cloud computing and explain how complementary regulatory, procedural
and technical provisions can be used to help address these issues. In particular,
accountability is likely to become a core concept in both the cloud and in new

XVI Privacy and the Cloud

mechanisms that help increase trust in cloud computing. It is especially helpful
for protecting sensitive or confidential information, enhancing consumer trust,
clarifying the legal situation in cloud computing, and facilitating cross-border
data transfers. I will also talk about some of the innovative technical solutions
that we are developing in HP Labs to enhance privacy in the cloud.

The Social Compute Unit

Schahram Dustdar

Vienna University of Technology (TU Wien)

Short Bio

Schahram Dustdar (ACM Distinguished Scientist), is full Professor of Computer
Science with a focus on Internet Technologies heading the Distributed Systems
Group, Vienna University of Technology (TU Wien).

From 1999 - 2007 he worked as the co-founder and chief scientist of Caramba
Labs Software AG in Vienna (acquired by Engineering NetWorld AG), a ven-
ture capital co-funded software company focused on software for collaborative
processes in teams. He is Editor in Chief of Computing (Springer) and on the
editorial board of IEEE Internet Computing, as well as author of some 300 pub-
lications.

Talk

“The Social Compute Unit”

Social computing is perceived mainly as a vehicle for establishing and maintain-
ing social (private) relationships as well as utilizing political and social inter-
ests. Unsurprisingly, social computing lacks substantial adoption in enterprises.
Clearly, collaborative computing is firmly established (as a niche), but no tight
integration exists of social and collaborative computing approaches to facilitate
mainstream problem solving in and between enterprises or teams of people. In
this talk I will present a fresh look at this problem and examine how to integrate
people in the form of human-based computing and software services into one
composite system, which can be modeled, programmed, and instantiated on a
large scale.

GENI - Global Environment for Network

Innovations

Niky Riga

GENI Project Office, Raytheon BBN Technologies

Short Bio

Niky Riga is a Network Scientist at Raytheon BBN Technologies. Niky joined
the GENI Project Office (GPO) in March 2010. As a member of GPO, Niky
is responsible for supporting GENI experimenters in integrating and deploying
their experiments as well as advocating their requirements to the rest of the
GENI community.

Before joining the GPO, Niky worked on multiple innovative projects within
the Network Research department of BBN. Her focus is on designing and pro-
totyping pioneering transport services for Mobile Ad-hoc Networks, while her
main goal is making innovative, research ideas practical and implementing them
on real systems. She has successfully led various integration efforts. Niky earned
a Diploma in Electrical and Computer Engineering at the National Technical
University of Athens, and an MS degree in Computer Science at Boston Univer-
sity.

Talk

“GENI - Global Environment for Network Innovations”

The Global Environment for Network Innovations (GENI) is a suite of research
infrastructure components rapidly taking shape in prototype form across the
US. It is sponsored by the US National Science Foundation, with the goal of be-
coming the world’s first laboratory environment for exploring future Internets at
scale, promoting innovations in network science, security, technologies, services,
and applications.

GENI allows academic and industrial researchers to perform a new class of
experiments that tackle critically important issues in global communications net-
works such as (a) Science issues: we cannot currently understand or predict the
behavior of complex, large-scale networks, (b) Innovation issues: we face sub-
stantial barriers to at-scale experimentation with new architectures, services,
and technologies (c) Society issues: we increasingly rely on the Internet but are
unsure that can we trust its security, privacy or resilience GENI is enabling

XX GENI - Global Environment for Network Innovations

researchers to explore these issues by running large-scale, well-instrumented,
end-to-end experiments engaging substantial numbers of real users. These experi-
ments may be fully compatible with today’s Internet, variations or improvements
on today’s Internet protocols, or indeed radically novel, clean slate designs. The
GENI project is now supporting such experiments across a mesoscale build-out
through more than a dozen US campuses, two national backbones, and several
regional networks. If this effort proves successful, it will provide a path toward
more substantial build-out.

In this keynote presentation, she will introduce GENI through a couple of
example use-cases, she will review the growing suite of infrastructure and evolv-
ing control framework. She will also present previous and current experiments
running in GENI.

Table of Contents – Part I

Cooperative Information Systems (CoopIS) 2011

CoopIS 2011 PC Co-chairs’ Message . 1

Business Process Repositories

Searching Business Process Repositories Using Operational Similarity . . . 2
Maya Lincoln and Avigdor Gal

Fragment-Based Version Management for Repositories of Business
Process Models . 20

Chathura C. Ekanayake, Marcello La Rosa,
Arthur H.M. ter Hofstede, and Marie-Christine Fauvet

Selecting and Ranking Business Processes with Preferences:
An Approach Based on Fuzzy Sets . 38

Katia Abbaci, Fernando Lemos, Allel Hadjali, Daniela Grigori,
Ludovic Liétard, Daniel Rocacher, and Mokrane Bouzeghoub

Efficient Retrieval of Similar Business Process Models Based on
Structure (Short Paper) . 56

Tao Jin, Jianmin Wang, and Lijie Wen

Business Process Compliance and Risk Management

Preservation of Integrity Constraints by Workflow . 64
Xi Liu, Jianwen Su, and Jian Yang

Monitoring Business Process Compliance Using Compliance Rule
Graphs . 82

Linh Thao Ly, Stefanie Rinderle-Ma, David Knuplesch, and
Peter Dadam

History-Aware, Real-Time Risk Detection in Business Processes 100
Raffaele Conforti, Giancarlo Fortino, Marcello La Rosa, and
Arthur H.M. ter Hofstede

Service Orchestration and Workflows

Transactional Process Views . 119
Rik Eshuis, Jochem Vonk, and Paul Grefen

XXII Table of Contents – Part I

Edit Distance-Based Pattern Support Assessment of Orchestration
Languages . 137

Jörg Lenhard, Andreas Schönberger, and Guido Wirtz

Towards Robust Service Workflows: A Decentralized Approach
(Short Paper) . 155

Mario Henrique Cruz Torres and Tom Holvoet

Intelligent Information Systems and Distributed
Agent Systems

Pricing Information Goods in Distributed Agent-Based Information
Filtering . 163

Christos Tryfonopoulos and Laura Maria Andreescu

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 182
Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer

An Architecture for Defeasible-Reasoning-Based Cooperative
Distributed Planning . 200

Sergio Pajares Ferrando, Eva Onaindia, and Alejandro Torreño

A Case Retrieval Approach Using Similarity and Association
Knowledge . 218

Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky

Emerging Trends in Business Process Support

FlexCon – Robust Context Handling in Human-Oriented Pervasive
Flows . 236

Hannes Wolf, Klaus Herrmann, and Kurt Rothermel

An Artifact-Centric Approach to Dynamic Modification of Workflow
Execution . 256

Wei Xu, Jianwen Su, Zhimin Yan, Jian Yang, and Liang Zhang

Event Cube: Another Perspective on Business Processes 274
J.T.S. Ribeiro and A.J.M.M. Weijters

Techniques for Building Cooperative Information
Systems

Building eCommerce Systems from Shared Micro-schemas 284
Stefania Leone and Moira C. Norrie

A2-VM : A Cooperative Java VM with Support for Resource-Awareness
and Cluster-Wide Thread Scheduling . 302

José Simão, João Lemos, and Lúıs Veiga

Table of Contents – Part I XXIII

Peer-Based Relay Scheme of Collaborative Filtering for Research
Literature . 321

Youliang Zhong, Weiliang Zhao, Jian Yang, and Lai Xu

Security and Privacy in Collaborative Applications

Detecting and Resolving Conflicts of Mutual-Exclusion and Binding
Constraints in a Business Process Context . 329

Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Implementation, Optimization and Performance Tests of Privacy
Preserving Mechanisms in Homogeneous Collaborative Association
Rules Mining . 347

Marcin Gorawski and Zacheusz Siedlecki

Data and Information Management

Segmenting and Labeling Query Sequences in a Multidatabase
Environment . 367

Aybar C. Acar and Amihai Motro

Combining Resource and Location Awareness in DHTs 385
Liz Ribe-Baumann

SQL Streaming Process in Query Engine Net . 403
Qiming Chen and Meichun Hsu

Instance-Based ‘One-to-Some’ Assignment of Similarity Measures to
Attributes (Short Paper) . 412

Tobias Vogel and Felix Naumann

Matching and Alignment: What Is the Cost of User Post-Match Effort?
(Short Paper) . 421

Fabien Duchateau, Zohra Bellahsene, and Remi Coletta

Author Index . 429

Table of Contents – Part II

Distributed Objects and Applications and Secure
Virtual Infrastructures (DOA-SVI) 2011

DOA-SVI 2011 PC Co-chairs’ Message . 431

Performance Measurement and Optimization

Optimizing Integrated Application Performance with Cache-Aware
Metascheduling . 432

Brian Dougherty, Jules White, Russell Kegley, Jonathan Preston,
Douglas C. Schmidt, and Aniruddha Gokhale

Dynamic Migration of Processing Elements for Optimized Query
Execution in Event-Based Systems . 451

Waldemar Hummer, Philipp Leitner, Benjamin Satzger, and
Schahram Dustdar

A Survey on SLA and Performance Measurement in Cloud
Computing . 469

Mohammed Alhamad, Tharam Dillon, and Elizabeth Chang

Instrumentation, Monitoring, and Provisioning

Experiences with Service-Oriented Middleware for Dynamic
Instrumentation of Enterprise DRE Systems . 478

James H. Hill and Douglas C. Schmidt

Dynamic Event-Based Monitoring in a SOA Environment 498
Fabio Souza, Danilo Lopes, Kiev Gama, Nelson Rosa, and
Ricardo Lima

A SIP-Based Network QoS Provisioning Framework for Cloud-Hosted
DDS Applications . 507

Akram Hakiri, Aniruddha Gokhale, Douglas C. Schmidt,
Berthou Pascal, Joe Hoffert, and Gayraud Thierry

Quality of Service

Continuous Access to Cloud Event Services with Event Pipe Queries . . . 525
Qiming Chen and Meichun Hsu

XXVI Table of Contents – Part II

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 542
James Edmondson, Doug Schmidt, and Aniruddha Gokhale

Security and Privacy

Towards Pattern-Based Reliability Certification of Services 560
Ingrid Buckley, Eduardo B. Fernandez, Marco Anisetti,
Claudio A. Ardagna, Masoud Sadjadi, and Ernesto Damiani

Direct Anonymous Attestation: Enhancing Cloud Service User
Privacy . 577

Ulrich Greveler, Benjamin Justus, and Dennis Loehr

Trust Management Languages and Complexity . 588
Krzysztof Sacha

Models and Methods

Ontology-Based Matching of Security Attributes for Personal Data
Access in e-Health . 605

Ioana Ciuciu, Brecht Claerhout, Louis Schilders, and
Robert Meersman

A Unified Ontology for the Virtualization Domain . 617
Jacopo Silvestro, Daniele Canavese, Emanuele Cesena, and
Paolo Smiraglia

2PSIM: Two Phase Service Identifying Method . 625
Ali Nikravesh, Fereidoon Shams, Soodeh Farokhi, and Amir Ghaffari

Automated Statistical Approach for Memory Leak Detection: Case
Studies . 635

Vladimir Šor, Nikita Salnikov-Tarnovski, and
Satish Narayana Srirama

Ontologies, DataBases, and Applications of Semantics
(ODBASE) 2011

ODBASE 2011 PC Co-chairs’ Message . 643

Acquisition of Semantic Information

RDFa Based Annotation of Web Pages through Keyphrases
Extraction . 644

Roberto De Virgilio

Table of Contents – Part II XXVII

An Ontological and Terminological Resource for n-ary Relation
Annotation in Web Data Tables . 662

Rim Touhami, Patrice Buche, Juliette Dibie-Barthélemy, and
Liliana Ibănescu

Inductive Learning of Disjointness Axioms . 680
Daniel Fleischhacker and Johanna Völker

Use of Semantic Information

Breaking the Deadlock: Simultaneously Discovering Attribute Matching
and Cluster Matching with Multi-Objective Simulated Annealing 698

Haishan Liu and Dejing Dou

To Cache or Not To Cache: The Effects of Warming Cache in Complex
SPARQL Queries . 716

Tomas Lampo, Maŕıa-Esther Vidal, Juan Danilow, and
Edna Ruckhaus

Implementation of Updateable Object Views in the ODRA
OODBMS . 734

Rados�law Adamus, Tomasz Marek Kowalski, and Jacek Wíslicki

Reuse of Semantic Information

Domain Expert Centered Ontology Reuse for Conceptual Models 747
Christian Kop

Semantic Invalidation of Annotations Due to Ontology Evolution 763
Julius Köpke and Johann Eder

The Role of Constraints in Linked Data . 781
Marco Antonio Casanova, Karin Koogan Beitman,
Antonio Luz Furtado, Vania M.P. Vidal, José A.F. Macedo,
Raphael Valle A. Gomes, and Percy E. Rivera Salas

ODBASE 2011 Short Papers

A Generic Approach for Combining Linguistic and Context Profile
Metrics in Ontology Matching . 800

DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta

ADERIS: An Adaptive Query Processor for Joining Federated SPARQL
Endpoints . 808

Steven Lynden, Isao Kojima, Akiyoshi Matono, and
Yusuke Tanimura

XXVIII Table of Contents – Part II

Asynchronous Replication for Evolutionary Database Development:
A Design for the Experimental Assessment of a Novel Approach 818

Helves Humberto Domingues, Fabio Kon, and João Eduardo Ferreira

Improving the Accuracy of Ontology Alignment through Ensemble
Fuzzy Clustering . 826

Nafisa Afrin Chowdhury and Dejing Dou

Author Index . 835

CoopIS 2011 PC Co-chairs’ Message

Welcome to the proceedings of CoopIS 2011 held in beautiful Crete! This was
the 19th year of this conference series. CoopIS has established itself as a premier
conference in the information science and systems area, and as an important
part of the OTM (”OnTheMove”) federated conferences, covering different as-
pects of distributed, intelligent, and cooperative information systems. The focus
of CoopIS is on process management technologies, middleware and architectures
for cooperative information systems, and cooperative information systems ap-
plications.

We had a strong program this year. The selection process was very competi-
tive which resulted in quite a few good papers being rejected. Each paper was
reviewed by at least three, and in many cases four, reviewers. From the 95 sub-
missions, we were able to accept only 20 papers as full papers. In addition, eight
papers were included in the program as short papers. We are very grateful to the
reviewers who worked hard to meet a tight deadline during a vacation period.
We were also very ably assisted by the staff at the OTM secretariat, particularly
by Jan Demey. Without their invaluable assistance we would not have been able
to put the program together. We also thank the OTM General Chairs Robert
Meersman and Tharam Dillon for all their support.

August 2011 Manfred Reichert
Akhil Kumar

Qing Li

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, p. 1, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Searching Business Process Repositories Using

Operational Similarity

Maya Lincoln and Avigdor Gal

Technion - Israel Institute of Technology
mayal@technion.ac.il, avigal@ie.technion.ac.il

Abstract. Effective retrieval of relevant know-how segments from busi-
ness process repositories can save precious employee time and support
non-expert users in locating and reusing process data. We present a
methodology for searching repositories and retrieving relevant process
segments, using business logic that is extracted from real-life process
models. The analysis of a process repository enables the construction of
three taxonomies with which it is possible to process the search intention
in operational terms. We tested the method on the Oracle ERP Business
Process Model (OBM), showing the approach to be effective in enabling
the search of business process repositories.

Keywords: Business process search, Business process repositories, Dy-
namic segmentation of process models.

1 Introduction

Researchers have become increasingly interested in developing methods and tools
for automatically retrieving information from business process repositories [3].
Such repositories are considered important and valuable data reservoirs of orga-
nizational know-how. In particular, they enable the retrieval of relevant knowl-
edge segments saving precious time and supporting non-expert users in locating
and reusing required process data [24].

Two common methods for retrieving information from a repository are query-
ing and searching. The former is aimed at retrieving structured information using
a structured query language. The significance of querying business processes has
been acknowledged by BPMI1 that launched a Business Process Query Lan-
guage (BPQL) initiative. The latter allows querying information using keywords
or natural language and was shown in other areas (e.g. information retrieval) to
be an effective method for non-experts.

Research in the field of business process retrieval has mainly focused on words
semantics and structural similarity analysis techniques [3,17,4]. Using these
frameworks one can retrieve process models that either contain semantically
related components (e.g. activity names with a specified keyword) or match a
requested graph structure (e.g. graph paths in which activity A is followed by

1 Business Process Management Initiative, http://www.bpmi.org/

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 2–19, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Searching Business Process Repositories Using Operational Similarity 3

activity B). In this work we tackle the information retrieval challenge from a
different angle, with a search framework for business processes that uses opera-
tional similarity and enables the retrieval of process segments that comply with
organizational standards.

b
. S

e
m

a
nt

ic
-b

a
se

d

q
ue

ry
 r

es
ul

ts
a

. O
p

er
at

io
n-

b
as

ed

se
a

rc
h

re
su

lt

Handle a product
recall request

Escalate a
product recall

Handle received
materials

Save product
related data

Handle product
quality checkups

Receive
complaint

details

Search for the
complaint’s

handling
instructions

Follow the
handling

instructionsDecide if
this is a

new
complaint

No

Submit the complaint and
product to the complaints

evaluation team

Yes

Notify the
complaining
customer of

the treatment
status

Fig. 1. An example of search results for “how to handle a product recall”

As a motivating example consider an employee interested in finding out “how
to handle a product recall.” An expected outcome of this retrieval request would
be a segment from the process repository that represents the order of activities
that one should follow in order to achieve the required process goal, as illustrated
in Fig 1a. The benefit of such a retrieval framework is that the result is ready
for execution. Without any preliminary knowledge of the underlying repository
structure, the user can receive a full-fledged process model.

The retrieval output is related to the search phrase in operational terms.
For example, Fig 1a provides a segment that is only marginally similar to the
search phrase text. Specifically, two of the search phrase terms (“Handle” and
“Recall”) are not represented by any of its activities while the term “Product” is
represented by only one activity. Such “how-to” questions are hard to fulfill using
common query languages due to the complex logic that is embedded within such
questions [4] and especially without specific knowledge on process structure and
activity naming. Therefore, using querying techniques, even if they are based on
semantic similarity, would likely yield disconnected components, as illustrated
in Fig 1b. Such outcome does not tell the user “how-to” fulfill the process goal.

The retrieval framework we propose is based on operational similarity. The
business logic is extracted from process repositories through the analysis of pro-
cess activities. Each activity is encoded automatically as a descriptor [16]. The
collection of all descriptors induces three taxonomies, namely an action scope
model, an object grouping model, and an action influence model, with which we
can search for the appropriate graph segment, which is the activity flow that
provides an answer to the search phrase. The proposed method dynamically seg-
ments a process repository according to the ad-hoc request as expressed in the
user’s search phrase.

4 M. Lincoln and A. Gal

We present an empirical evaluation based on real-world data, showing that by
utilizing the descriptor taxonomies and the process model retrieval method it is
possible to effectively support the search of process repositories in operational
terms. On average, the best result (that was closest to the expected result)
retrieved in each experiment had a 93% precision and was ranked almost always
as the first option in the result list.

This work proposes an innovative method for searching business process mod-
els while making use of the how-to knowledge that is encoded in business process
repositories. The following contributions are presented: (a) generic support to
an operation-based search of business process models; (b) automatic extraction
of business logic from business process repositories; (c) capability to generate
ad-hoc process model segments; and (d) an empirical analysis that evaluates the
method’s usefulness.

The rest of the paper is organized as follows: we present related work in
Section 2, positioning our work with respect to previous research. In Section 3
we present the notion of dynamic segmentation in process model repositories.
In Section 4 we present an activity decomposition model that is used as the
foundation for creating action and object taxonomies. We formulate the search
problem and describe our method for searching business process repositories in
Section 5. Section 6 introduces our empirical analysis. We conclude in Section 7.

2 Related Work

Related works include query and search techniques in BPM. Works such as
[19,20,4,2,9] query business process repositories to extract process model (graph)
segments. Such methods require prior knowledge of the structure of the process
repository and the exact notation that is used to express it while our work offers
techniques that work well even without prior knowledge regarding the process
repository.

Keyword search on general tree or graph data structures can also be applied
to process repositories [12,10,11]. These methods allow users to find information
without having to learn a complex query language or getting prior knowledge
of the process structure. Some works extend the tree and graph keyword search
methods to support a more intuitive interface for the user by enabling searches
based on natural language [14,13]. According to [1], the straightforwardness of
a natural language makes it the most desirable database query interface. The
retrieved information in both keyword and natural language search methods is
in the form of single process model components such as activities and roles.
Our work extends such works to support the retrieval of complete segments by
applying dynamic segmentation of the process repository. The search result is
a compendium of data (a segment of a business process model) related to the
operational meaning of the searched text.

Another line of work focuses on automatic construction of process data on-
tologies. The work in [5] proposes a query-by-example approach that relies on
ontological description of business processes, activities, and their relationships,

Searching Business Process Repositories Using Operational Similarity 5

which can be automatically built from the workflow models themselves. The
work in [6] automatically extracts the semantics from searched conceptual mod-
els, without requiring manual meta-data annotation, while basing its method
on a model-independent framework. Our framework differs from these works in
that we target the automatic extraction and usage of the operational layer (the
“how-to”) and the business rules encapsulated in the process repository.

3 Dynamic Segmentation

This section describes dynamic segmentation in process model repositories. Sec-
tion 3.1 presents a model for business process repositories followed by a descrip-
tion and a formal model of a dynamic segmentation.

3.1 A Business Process Repository and Static Segmentation

The Workflow Management Coalition (WFMC) [7] defines a business process
model as a “set of one or more linked procedures or activities which collectively
realize a business objective or policy goal.” An example of such a business process
model is the “Fulfill a Purchase Order” process model, presented in Fig. 2a using
YAWL [22]. The dashed lines represent parts of the process that are not shown
due to space limitations.

A process repository is a collection of interconnected process models, where the
execution of an activity in one process model may invoke the execution of another
activity in another process model. Formally, we define a process repository to
be a graph G = (V, E), where V represents activities and an edge (ai,aj) in E
exists if aj ’s execution follows that of ai.

Process C: Approve a Purchase Order

a. The searched process is contained in one , more comprehensive ,
process model

b. The searched process is contained in more than one
process models

Receive
purchase

requisition

Complete
PO form

Update
PO

status

Get PO
approval

Forward
PO to
buyer

Document
PO

approval

Process B: Handle a Purchase Requisition
Check

feasibility
of PO

Complete
PO form

Send
PO to

supplier

Process A: Fulfill a Purchase Order

Get PO
approval

Forward
PO to
buyer

Receive
purchase
requisition

Fig. 2. Examples of process models

Each of the process models in the process repository has a name, and we refer
to it as a static segment of the process repository. For example, the processes
“Handle a Purchase Requisition” in Fig. 2b represents a segment of process
activities (steps). This static, pre-defined, segmentation of process repositories
is determined according to the logic of the repository developer and changes from
one repository to the other. To illustrate, the SAP business process repository
consists of more than 16,500 activities segmented into more than 2,400 processes

6 M. Lincoln and A. Gal

while the Oracle business process repository (OBM) consists of about 9,700
activities segmented into 1,553 processes. 92% of the two repositories refer to
the same business areas (e.g. processes from the domain of accounting, human
resource management, production, logistics, etc.), yet only 23% of the process
names are semantically similar. The rest of the processes have segments that do
not share starting and/or ending activities.

3.2 Dynamic Segments in Business Process Repositories

It is possible to partition the process repository graph in different ways, cre-
ating new, dynamic, process model segments. To illustrate, consider a process
for manually creating a purchase order. In one repository, this process can be
part of a larger process model called: “Fulfill a Purchase Order,” which includes
the creation, approval, and submission of a purchase order (see illustration in
Fig. 2a, where the dynamic segment activities are shaded). In a different process
repository, with different process models, the sequence of activities that fulfill the
example process goal cut across two static process models: “Handle a Purchase
Requisition” and “Approve a Purchase Order” (see illustration in Fig. 2b). Note
that although in both repositories there is an activity sequence that fulfills the
searched process goal (Manually Create a Purchase Order) - this process model
is not represented separately (as a standalone segment) in those repositories and
therefore does not have a pre-defined process name.

Formally, we can define a dynamic segment to be a sub-graph induced by G.
Let G be the set of all subgraphs that are induced by G, and hence, the set of
all possible dynamic segmentations of a repository.

G = {G′ = (V ′, E′)|V ′ = {v1, v2, ...vn}ε2|V | ∧ ∀{vi, vj}εV ′, (vi, vj)εE
′ if (vi, vj)εE}

4 Descriptor Analysis

This section enhances the descriptor model of [16,15] to support process model
search. We provide a brief overview of the descriptor model in Section 4.1 fol-
lowed by an introduction of three new taxonomies in sections 4.2-4.4. To illus-
trate and assess the taxonomies we use the Oracle Applications ERP process
repository.

4.1 The Descriptor Model

In the Process Descriptor Catalog model (“PDC”) [16] each activity is composed
of one action, one object that the action acts upon, and possibly one or more
action and object qualifiers. Qualifiers provide an additional description to ac-
tions and objects. In particular, a qualifier of an object is roughly related to an
object state. State-of-the-art Natural Language Processing (NLP) systems, e.g.,
the Stanford Parser,2 can be used to automatically decompose process and ac-
tivity names into process/activity descriptors. Each descriptor, d, can therefore
2 http://nlp.stanford.edu:8080/parser/index.jsp

Searching Business Process Repositories Using Operational Similarity 7

be represented as a tuple d = (o, oq, a, aq), where o is an object, oq is a set of
object qualifiers, a is an action, and aq is a set of action qualifiers.

For example, in Fig. 1, the activity “Notify the complaining customer of the
treatment status” generates the following activity descriptor: (“customer”, “com-
plaining”, “notify”, “of the treatment status”).

We denote by A the set of all actions (including qualifiers) in a process repos-
itory, G. Similarly, O denotes the set of all objects. We also denote by a(d) the
action part of the descriptor, including the action qualifiers, e.g., “notify of the
evaluation status” in the example. Similarly, o(d) denotes the object part.

4.2 The Action Scope Model (ASM)

The action scope model is a graph ASM = (VASM , EASM), which represents
the relationship between an action in a process name (a primary action) and
the actions in its corresponding static model segment. As such, it represents an
operational meaning of primary actions in the repository. Recall that a process
repository consists of pre-defined process segments. We use this segmentation
for learning about the scope of actions in the following way. Each action in the
repository is related with a set of directional graphs of actions that represent
the order of actions within this primary action’s segments. Therefore, VASM is
a set of descriptor actions that are found in the segments of the primary action.
An edge in EASM connects two actions that appear sequentially in the process
model. Since such a primary action can be part of more than one process name,
and since the same action may be represented more than once in the same process
model segment - each edge in the action scope model is labeled with its weight,
denoted w(e), calculated by the number of its repetitions in the related process
model segments. Graph splits are also represented in the action scope model. We
denote by createASM (PM) the action of creating an ASM from a given static
model segment, PM .

As a motivation for using this model in the context of searching process mod-
els, we analyzed 17 real-life processes from the Oracle Business Model (OBM)
(we elaborate on the experiment setup in Section 6). Based on this sample we
calculated a tf-idf measure [18] for each action as follows. For a group of pro-
cesses that share the same primary action, we count the number of times each
action appears in the group (serves to compute tf) and the number of different
processes in the repository (processes with a different primary action) where
this action appears overall (serves to compute idf). For example, out of the 17
processes, five contain the primary action “Create,” including 49 activities al-
together. The action “Define” is presented five times in the set of all actions:
four times in the “Create” processes, and one time in a different process. There-
fore, its tf-idf is (4/49) ∗ (log(13/(1 + 2))) = 0.052. Note that the five “Create”
processes are taken into account as one large process for this calculation.

In order to examine the quality of this value, we compare it to a random
tf-idf values as follows. When assuming a random distribution of activities over
processes, an activity that repeats n times in the repository has an expected n/k
appearances in each process, assuming k processes. Therefore, given m processes

8 M. Lincoln and A. Gal

that share the same primary action, we expect an activity to appear n∗m/k times
in these processes, and the tf-idf computation is done accordingly. Continuing
with the previous example, with five appearances of “Define” in the repository
and 17 processes, we expect “Define” to appear 5/17 times in a process and
5 ∗ 5/17 = 1.47 times in “Create” processes and 3.53 times elsewhere. This
results in a tf-idf of 0.01. When applying such a calculation to all actions in all
the 17 processes, it was found that on average, their tf-idf is 4.6 times better
than the random value. We are therefore encouraged to learn about participating
actions in a process segment given a primary action.

Action scope model for: Manually Create

Process model for: Manually Create Non-Production Requisitions

Process model for: Manually Create Item

Determine if
goods will be

sourced from an
externally hosted

catalog

Search
electronic
catalog

Add items to
shopping cart

Determine
units of

measure

Decide if the item
will be stocked

using dual unit of
measure types

Define a new
conversion of

measure types

Decide if Item
will be

classified by
type

Verify that
inventory types

have been
defined

Determine 2

Determine Decide 21 Define Decide Verify1 2 2 1 define 2 Decide Verify2

a.
 P

ro
ce

ss
 m

od
el

s
fr

om
 th

e
O

B
M

re

po
si

to
ry

b.
 T

he
 r

es
ul

te
d

ac
tio

n
sc

op
e

 m
od

e
l

Decide if
goods

sourced
externally

No

Punch-out to the content
provider’s on- line catalogs

Yes

Determine
shipping

information for
checkout

Decide
No,1

Search Add1
1

Punch-out
Yes,1

Determine
1

Identify 1 1

Fig. 3. A segment of the action scope model for the action “Manually Create” in the
OBM repository for the Procurement category

Consider the following two processes from the OBM repository: “Manually
Create Non-Production Requisitions” and “Manually Create Item.” These pro-
cesses are represented in the OBM by corresponding graph segments as illus-
trated in Fig 3a. Using these two process models, it is possible to generate an
action scope model for the action “Manually Create” (Fig 3b). The dashed lines
in this illustration represent graph parts that are not shown due to space limita-
tions. According to this example, there are two optional action paths compatible
to the “Manually Create” action starting by either “Identify” or “Determine.”
Since “Decide” follows “Determine” twice in this model, the respective edge
weight is set to 2.

Given an action scope model graph, ASM , the intensity of any path i of
length n − 1, (ai,1, ai,2, ..., ai,n) in ASM, ιASM

i , is computed to be:

ιASM
i = 1 − n−1∑ n−1

j=1 w(ai,j ,ai,j+1)
.

Searching Business Process Repositories Using Operational Similarity 9

The values of ιASM
i are in [0,1], with higher values representing a stronger,

more common ASMi. For example, the intensity of the second path in the action
scope model for “Manually Create” (Fig. 3b) is calculated as follows:

ιASM
2 = 1 − 8

1+2+1+2+2+1+2+2 = 0.385.

We define fitness, fASM , between a segment, PM , and an ASM to be zero if
there is no path in the ASM that represents the PM . If such path exists, the
fitness value is determined by its intensity. Formally, we define fitness as follows:

fASM (PM, ASM) =

{
ιASM
i ∃ ASMiεASM | createASM(PM) = ASMi

0 otherwise

4.3 The Object Grouping Model (OGM)

The object grouping model represents the relationship between an object (a
primary object) and the objects in its corresponding static model segment. As
such, it represents an operational meaning of primary objects in the repository.
Since such a primary object can be part of more than one process segment, and
since the same object may be represented more than once in the same process
model segment - each edge in the object grouping model is labeled with its weight
calculated by the number of its repetitions in the related process model segments.
Therefore, an object grouping model of an object, o, denoted as OGM(o) is a
bag (repetitions allowed) {o1, o2, ..., ok}.

As a motivation for this model usage in the context of this work, and similarly
to the tf-idf calculations made for assessing the relevance of using the ASM ,
we calculated the tf-idf measure for each object in each group of processes that
share the same primary object. As a result, we found that on average, their tf-idf
is 5.3 times better than the random value. We are therefore encouraged to learn
about participating objects in a process segment given a primary object.

To illustrate, consider two processes from the OBM repository: “Issue a Pur-
chase Order” and “Authorize a Purchase Order.” These processes are repre-
sented in the OBM by corresponding graph segments as illustrated in Fig 4a.
Using these two process models, it is possible to generate an object grouping
model for the object “Purchase Order,” as illustrated in Fig 4b. According to
this example, process models that are related to the object “Purchase Order”
deal also with objects such as “Purchase Order Notifications,” “Blanket Agree-
ment Document,” and “Requisitions,” while the last option’s weight equals 2
since it is represented twice in the two input process models.

Given a segment, PM , (possibly a result of a user’s search phrase) we calculate
its proximity, λOGM , to a given object grouping model, OGM , as follows. We
denote by OPM the set of all objects in PM . We compute precision and recall
on OPM and OGM(o) as follows:

P (PM, OGM(o)) = |OPM|∩|OGM(o)|
|OPM| ; R(PM, OGM(o)) = |OPM|∩|OGM(o)|

|OGM(o)| .
PM is considered more similar to OGM(o) as both P (PM, OGM(o)) and

10 M. Lincoln and A. Gal

Object grouping model for: Purchase Order

Process model for: Issue a Purchase Order

Process model for: Authorize a Purchase Order

Review
requirements

for
procurement of

goods

Negotiate
terms with

supplier for a
Blanket

Agreement

Create a
Blanket

Agreement
document

Check
purchase

order
notifications

Review the
purchase

order Approve the purchase order

a.
 P

ro
ce

ss
 m

od
e

ls
 fr

om
 th

e
O

B
M

re

po
si

to
ry

b
. T

h
e

re
su

lte
d

 o
b

je
ct

g

ro
up

in
g

m
od

e
l

Decide if
Requisitions
exist for the

requirements

No

Review requisitions
Yes

Specify items
negotiated for

this
agreement

Select the requisitions to be
converted to a purchase order

Decide if the
purchase
order is

approved

No
Reject the

purchase order
Notify

requester

Yes

Blanket
Agreement
document

Items negotiated
for this

agreement

Purchase Order

Terms for a
Blanket

Agreement
Requisitions

Requirements for
procurement of

goods

11121

Purchase order
notifications

Purchase
order

14

Fig. 4. A segment of the object grouping model for “Purchase Order” in the OBM
repository for the Procurement category

R(PM, OGM(o)) are higher. Therefore we define λOGM (PM, OGM(o)) as the
harmonic mean of these figures:

λOGM (PM, OGM(o)) =
P (PM, OGM(o)) ∗ R(PM, OGM(o))
P (PM, OGM(o)) + R(PM, OGM(o))

∗ 2

λOGM ranges between [0,1], and higher values represent a stronger match be-
tween the given PM and OGM(o). It is also possible to define a threshold,
thOGM , below which λOGM is set to zero.

Determine if
requirement generated

from planning or
manual

Decide if
requirement is
from planning

Review
imported

production
requisitions

Define the
requisition

Submit the
requisition

for approval

Review
requirements for
procurement of

goods

Decide if
requisitions exist

for the
requirements

Review
requisitions

Select the
requisition(s) to be

converted to a
purchase order

Review the
purchase

order

Submit the
purchase
order for
approval

Fig. 5. An example of a process model for “Manually create purchase order”

For example, let us examine a given process model PM that represents the
flow of activities for “Manually create purchase order,” as illustrated in Fig. 5.
The object grouping model for “Purchase Order,” (Fig. 4) and PM share three
objects in common: “Purchase order,” “Requisition,” and “Requirements for
procurement of goods,” that repeat in PM activities once, twice, and once again,
respectively (see Fig. 6). Both models consist of 11 objects, each. Therefore,

Searching Business Process Repositories Using Operational Similarity 11

OGM(o) OPM

Requisition

Requisition for approval

Requirements for procurement of goods

Purchase order

Requisition

Requisition

Requirement Requirement

imported production
requisitions

purchase order for
approval

requisition(s) to be
converted to a
purchase order

Purchase order

Purchase order

Purchase order
Purchase order

notifications

Terms for a
Blanket

Agreement
Blanket

Agreement
document

Items negotiated
for this

agreement

Fig. 6. An example of proximity calculation

precision and recall are both 4/11 (single and plural forms of the same object
are considered to be the same) and the proximity in our example is calculated
to be 0.18.

4.4 The Action Influence Model (AIM)

The action influence model represents the relationship between a primary action
and the flow of states (object qualifiers) of the primary object in static model
segments that correspond to the primary action. As such, it reflects the influence
of a primary action on the way a primary object changes. Each edge in the
action influence model is labeled with its weight representing the number of its
repetitions in the related process model segments.

As a motivation for this model usage in the context of this work, and similarly
to the calculations made for the ASM , we calculated the tf-idf measure for each
two adjacent object-qualifiers (object-qualifier pairs) in any of the static model
segments that share the same primary action. We found that on average, their
tf-idf is 3.6 times better than the random value. We can therefore deduce that it
is possible to learn about participating object-qualifier pairs in a process segment
given a primary action.

To illustrate, consider the two process models named: “Manually Create Non-
Production Requisitions” and “Manually Create Item.” They both deal with
manual creation, but focus on different objects, “Non-Production Requisitions”
and “Item.” Their initial part is illustrated in Fig. 3a and continued in Fig. 7a.
By following changes to the qualifiers of the primary object in these process
models we end up with the action influence model for “Manually Create” as
illustrated in Fig. 7b. In this example, both primary object states change from
“For approval” to “New” and then to “Rejected” or “Approved” in their cor-
responding process models and therefore the corresponding edges in the action
influence model are labeled with weight of 2. In addition, we note that one of the

12 M. Lincoln and A. Gal

Action influence model for : Manually Create

Process model for : Manually Create Non - Production Requisitions

Process model for : Manually Create Item

Complete
preparing
the item

New

2

2

a.
 P

ro
ce

ss
 m

od
el

s
fr

om
 t

he
 O

B
M

re

po
si

to
ry

b
. T

h
e

re
su

lte
d

a
ct

io
n

in

flu
en

ce
 m

o
de

l

Create the new
non-production

requisition

Submit the new
non-production
requisition for

approval

Decide if to approve
the reviewed non -

production requisition

Review the
item for
approval

Update the
approved

item

Save the
approved

item

New Reviewd
Approved

1
Yes,2

Rejected

Review the
submitted non -

production
requisition

Submitted 1 For approval
2

New
No,2

21

Decide if
new item is
approved ? Yes,2

No,2

Approved
Yes,2

Rejected

New
No,2

Document the rejected item
data

2For approval 21 1

Fig. 7. A segment of the action influence model for the action “Create” in the OBM
repository for the Procurement category

qualifiers in the action influence model is represented by an empty rectangle since
its corresponding activity included the object “Item” as is, without any quali-
fiers. Also, it is worth noting that the first two activities in the process model
for “Manually Create Non-Production Requisitions” represent the object “New
Item.” Nevertheless, the corresponding qualifier “New” is represented only once
at the beginning of the action influence model, since no change has been made
to the object “Item” when advancing the process between these two activities.

Given a process model, PM , it is possible to calculate its similarity, σAIM
i ,

to a given path in an action influence model, AIMi, using one of the state-of-
the-art methods for assessing similarity between process models (e.g. [23,8,21]).
For that purpose, an action influence model is created for the primary object
of PM (referred to as a temporary action influence model, TAIM) and then
compared to AIMi. σAIM

i can be then normalized to the range of [0,1]. On top
of this score for each path in AIM , we also add an additional score that reflects
the weights of the matched edges, so that the proximity between PM and AIM ,
λAIM , is calculated as follows:

λAIM (PM, AIM) =
Σk

i=1(σ
AIM
i +

∑
eεAIMi∩T AIM

w(e)∑
eεAIMi

w(e)
)

k ∗ 1
2 ,

where w(e) is the weight assigned to e in AIMi, and k is the number of paths
in AIM . Note that since the additional score refers only to edges, it can be zero
even when σAIM

i > 0 (e.g. when some activity names are matched) and therefore
it is not multiplied, but added to σAIM

i .
λAIM ranges between [0,1], where higher values reflect a higher proximity of

the given PM and AIM . It is also possible to define a threshold, thAIM , in a
similar manner as thOGM .

Searching Business Process Repositories Using Operational Similarity 13

Following our example, we first generate a temporary AIM for “Manually
Create” based on the example process model graph (Fig. 5). Since the primary
object “Purchase Order” is presented twice in this process model, at first with-
out qualifiers, and then with the qualifier “For approval,” the temporary AIM
contains these two qualifiers, as illustrated in Fig. 8.

1For approval1 1

Fig. 8. An example of a temporary AIM

At the next phase of our example, we calculate the similarity between the
temporary AIM and each of the two object qualifier paths presented in the
action influence model for “Manually Create” (Fig. 7b). To do that we use
the similarity method presented in [23]. There is a full match (similar text)
of one node (“For approval”) between the temporary AIM and the first path
in the AIM for “Manually Create,” and a full match of two nodes between the
temporary AIM and the second path in the AIM for “Manually Create.” There-
fore, the similarity score that these matches contribute is 1 and 2 for the first
and second path, respectively. Since the optimal match between the temporary
AIM and each of the paths in the AIM for “Manually Create” is a situation in
which the entire temporary AIM is fully matched, the optimal similarity score
is 2. Therefore, the similarity score between the temporal AIM and the first
and second paths is σ1 = 1

2 and σ2 = 2
2 = 1, respectively. In addition, there

are no matched edges between the temporary AIM and the first path (since the
node labeled “For approval” is not directly connected to the start or end nodes).
Nevertheless, there is one matched edge between the temporary AIM and the
second path - that directly connects the node with no qualifiers with the “For
approval” node. This edge’s occurrence is 1 and its weight is 1, resulting in a
score addition of 1

12 to the score of the second path. This addition is divided by
the maximal number of matched edges (3 in this example). As a result, the final
similarity score is: λAIM (PM, AIM) = (1

2+0)+(1+ 1
12)

2 ∗ 1
2 = 0.4.

5 The Process Model Search Problem and Method

This section describes the process model search method. We first provide a formal
description of the search problem (Section 5.1). Then, we describe in Section 5.2
the use of the three taxonomies of Section 4 in a search procedure.

5.1 The Process Model Search Problem

Let G be a graph that represents a process repository. Let λ be a benefit model
λ : G, A, O → [0, 1] and let S be a search phrase, given either as a descriptor or
in natural language that is converted into a descriptor (see Section 4.1).

14 M. Lincoln and A. Gal

Given S and a segment G′ we define λ as follows:

λ(G′, a(S), o(S)) = f(G′, ASM(a(S)) ∗ λOGM (G′, OGM(o(S)) ∗ λAIM (G′, AIM(a(S)) (1)

Given S, G, and λ find a segment, G′, that best fits the search phrase. The
process model search problem can be formally defined as follows:

Problem 1. Given G, S, and λ, find G′εG s.t. G′ = argmaxG′′εGλ(S, G′′)

In what follows we actually find the top k segments, ranked according to their
operational relevance to the searched phrase. This way we expand the retrieved
result range, allowing users to examine more than one result that may also
contain useful information with regards to the search problem.

5.2 The Process Model Search Method

The process model search method (PMSM) relies on an underlying process de-
scriptor analysis model and dynamically segments a business process repository
to fit a given search phrase. We use the search request “Manually Create a Pur-
chase Order” to illustrate the suggested method.

Search for process
model segments

that fulfil the
searched action

Assess the
relevance of
each result
candidate

Sift
irrelevant

result
candidates

Sort the
list of

search
results

Decompose the
search phrase into

a process
descriptor format

Fig. 9. The process model search method

Method Overview. The search procedure is composed of five main phases as
follows (see illustration in Fig. 9). At first, it receives as input the name of a
required process model in natural language or as a process descriptor. For the
former, the input is automatically decomposed into a process descriptor format
using NLP systems such as the Stanford Parser. According to this phase, the
search phrase in our example will be transformed into the following process de-
scriptor: object=“order,” action=“create,” object qualifier=“purchase,” action
qualifier=“manually.” If more than one action and one object appear in the
search phrase, it is automatically interpreted as separate descriptors (expressing
all possible combinations of the given descriptor components) that are sepa-
rately searched. Handling search phrases that include multiple process names as
a unified process group is a topic for future work.

Based on the process descriptor input (the “target descriptor”), the PMSM
searches first for all process model segments within the process repository that
can be relevant candidates for the search result. This dynamic segmentation
phase is the most important phase in this method since it enables the discovery
of process models that do not have a pre-defined static segment in the repository,
but are rather a part of or a sequential collection of pre-segmented process models
(see Section 3.2).

Searching Business Process Repositories Using Operational Similarity 15

At the next phase each process model option is assessed according to three or-
thogonal measures that reflect its relevance to the search request using proximity
to the action scope model, the object grouping model, and the action influence
model. According to these three relevance measures, non-relevant process mod-
els are removed from the option list, and finally the remaining process model
options are being sorted according to a weighted grade of the three relevance
measures. The sorted process model segment list is presented to the requester -
as the search result for her request.

Phase 1: Dynamic Segmentation. The goal of this phase is to retrieve all
process model segments that fulfill the target action. For example, given the
target action “Manually Create,” the PMSM will search at this phase all process
model segments that are aimed at manually creating an object of any type,
without restricting the segment to the target object. Note that a näıve solution
in this phase would be to examine all possible process model segments within the
repository. Nevertheless, such algorithm can be highly inefficient (with n static
segments and m the size of the biggest segment, there are 2nm induced dynamic
segments over G). Therefore, we reduce the collection of segments by selecting
only relevant candidates at the first phase. Also note that this phase focuses
on actions rather than objects as a basis for retrieving optional search results,
since the search method is based on the operational meaning of the search and
therefore all process model segments that relate to the search action represent
a full set of optional results from which we select relevant results that are also
related to the searched object.

To do that, the PMSM searches in the process repository for graph segments
that are similar - both structurally and textually - to the action scope model of
the target action. Since the action scope model is a graph of activities with partial
names (only the action part is represented) - it is possible to convert it into a
query statement using any state-of-the-art business process query mechanisms
(e.g. [2,4]) and search for graph segments that are similar to it.

Determine Decide// //

Determine Decide // Define Decide Verify// // // // Define // Decide Verify//

No// Search Add//
//

Punch-outYes// //
J Determine//

Fig. 10. Segments of BPMN-Q queries generated from the ASM for “Manually Create”
in the OBM repository

In our example, the action scope model for “Manually Create” consists of
two graphs (see Fig. 3). Each of these graphs will be converted into a query
statement and be searched separately in the repository. A representation of those
two graphs as a query statement using the BPMN-Q method suggested in [2] is
illustrated in Fig. 10. The dashed lines in this illustration represent query parts
that are not presented here due to space limitations. To relax the generated

16 M. Lincoln and A. Gal

query statements we mark all their edges with “//” - stating that there may be
zero or more activities between each connected activities in the query result.

By running the two queries of our example on the OBM repository using the
BPMN-Q method, 14 results were retrieved. One of those results is presented
in Fig. 5. This example highlights the need for dynamic segmentation. This seg-
ment is combined sequentially from three process models in the OBM repository
- starting with the last five activities of “Create Production Requisitions,” con-
tinuing with “Issue a Purchase Order” (Fig. 4a) and terminating with the first
activities of “Authorize a Purchase Order” (also presented in Fig. 4a).

Phase 2: Assessing the Relevance of Result Candidates. This phase is
aimed at determining the relevance of each result option retrieved at the previous
phase to the search request. To do that, we use the three measures defined in
Section 4 as follows.

1. Each result retrieved at phase 1 is compatible with one of the action paths
in the action scope model, and therefore related to the intensity, ij of this
path (as detailed in Section 3).

2. We calculate each result’s λOGM (Section 4.3) as a measure for its proximity
to the target object. To understand the necessity of this measure consider,
for example, a process segment resulted at phase 1 that highly represents
the “Manually Create” action (the order of its actions represents one of
the action sequences in the ASM of the “Manually Create” action). Nev-
ertheless, none of the objects involved in this process model participates in
process models related to the object “Purchase Order.” In this case we can
deduce that this segment is only loosely related to the primary object in our
example.

3. The proximity to the action influence model is aimed at preferring results
that express a typical modification of the primary object states as a result of
applying the primary action. To measure the proximity between each result
to the primary action’s influence model we use λAIM (Section 4.4).

Phase 3: Sifting Irrelevant Result Candidates. In this phase two thresh-
olds, thOGM and thAIM (see sections 4.3 and 4.4), are used to determine the
inclusion of each result candidate in the final result list. Note that it is not
sufficient to apply a threshold on the final grade (as calculated in phase 4) to
determine inclusion. A candidate may receive a relatively high final grade and
still be irrelevant to the searched phrase. For example, a candidate may be highly
similar to the search phrase’s action influence model but may not consist any
relevant objects from its object grouping model. Therefore, we include in the
final result list only results for which λOGM >thOGM and λAIM > thAIM .

Phase 4: Sorting the List of Search Results. At this phase a final grade, λi,
for each result candidate, Ri, is calculated according to Eq. 1, using the grades
of the three measures calculated in phase 2.

Following our example, the final grade for the optional result presented in
Fig. 5 is: λi = 0.385 ∗ 0.18 ∗ 0.4 = 0.03. Finally, the optional process models are

Searching Business Process Repositories Using Operational Similarity 17

sorted according to their final grade in an ascending order - from the closest to
the most distant option as regards to the user’s search phrase.

6 Experiments

We now present an empirical evaluation of the proposed method effectiveness.
We first present our experimental setup and describe the data that was used.
Then, we present the experiment results and provide an empirical analysis of
these results.

Data Set and Experiment Setup. We chose a set of 17 real-life processes
from the Oracle Business Model (OBM),3 comprising 152 activities altogether.
Using these processes we created a “process repository database,” that includes
the 17 process models and their derived taxonomies.

To evaluate the suggested method we conducted 17 experiments. At each ex-
periment, a single process was removed from the database and then was searched
according to its name. More specifically, each experiment was conducted accord-
ing to the following steps: (a) preparation: removal of one of the process names
from the database and reconstruction of the taxonomies so that the database
will contain the process model (its graph segment) but the three taxonomies will
not contain any of its descriptor components; (b) search for the removed process
in the database, using its name as the search phrase.

The similarity between the result’s temporal AIM and each of the object
qualifier paths in the primary action’s AIM (see Section 4.4) was calculated
using the method in [23]. In addition, the threshold parameters for sifting ir-
relevant result candidates (defined in Section 5.2) were set to: thOGM = 0.1,
thAIM = 0.2.

The search results have then been objectively evaluated with respect to the
original, removed, process. For each of the 17 experiments we also chose the “best
result,” the one most similar to the goal process model, calculated using the
similarity method presented in [23]. Our metrics for measuring the effectiveness
of the method, as detailed below, assess both the quality of an average result, as
well as the average quality of the best result in each experiment - showing the
best performance of the search method.

We use five metrics to measure the effectiveness of the method. For all re-
sults and for the best result we compute: (1) the average percentage of correct
activities, showing how similar the results are with respect to the goal, correct
result; (2) the average percentage of redundant activities, showing the amount
of redundant, unnecessary activities in the retrieved results. Finally, we identify
the average location of the best result in the list of search results - showing the
effectiveness of the grading mechanism, that aims at locating the best result at
the beginning of the result list.

Results and Analysis. On average, each result contained 81.7% of the goal
process model activities. On average, the best result has a higher overlap of
3 http://www.oracle.com/applications/tutor/index.html

18 M. Lincoln and A. Gal

92.9% with the goal process model and was ranked in a high location in the list
of results (1.2), usually in the first place. In addition to the correct activities,
the results also contained, on average, 14.2% of redundant activities out of the
goal process model, while this percentage was lower (8.0%) in the best result.

These experiments have shown the usefulness of using a descriptor repository
in searching for business process models based on their operational meaning. We
also showed the method to be effective in the given experimental setup, both in
terms of the similarity between the results and the goal result and with respect
to the ranking of the best result.

7 Conclusions

We proposed a mechanism to automate the search of process models that saves
search time and supports non-expert users in searching for business process
models in a process repository using their own terminology of the process goal.
By analyzing a process repository we can automatically create three taxonomies
with which it is possible to process the search intention in operational terms.
We provide a formal model of the problem, a method for providing a ranked
response to a user’s request, and we show the method to be empirically effective,
using the Oracle ERP Business Process Model, as a testbed.

The proposed method and experiments provide a starting point that can al-
ready be applied in real-life scenarios, yet several research issues remain open.
We mention four such extensions here. First, extending the empirical study to
further examine the quality of retrieved search results aiming at improving and
fine-tuning the method. Second, supporting search phrase relaxations to retrieve
more result options in cases where the search phrase retrieves only few or no
results. Third, extending the method for supporting synonyms to extend the
repository vocabulary. Forth, supporting multiple descriptors in a search phrase.

References

1. Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to
databases–an introduction. Natural Language Engineering 1(01), 29–81 (1995)

2. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA 2007,
vol. 119, pp. 115–128 (2007)

3. Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process mod-
els. In: 12th International IEEE Enterprise Distributed Object Computing Con-
ference, pp. 85–94. IEEE (2008)

4. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying business processes with
BP-QL. Information Systems 33(6), 477–507 (2008)

5. Belhajjame, K., Brambilla, M.: Ontology-based description and discovery of busi-
ness processes. Enterprise. Business-Process and Information Systems Modeling,
85–98 (2009)

6. Bozzon, A., Brambilla, M., Fraternali, P.: Searching Repositories of Web Appli-
cation Models. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE
2010. LNCS, vol. 6189, pp. 1–15. Springer, Heidelberg (2010)

Searching Business Process Repositories Using Operational Similarity 19

7. Coalition, W.M.: The workflow management coalition specification - terminology
& glossary. Technical report, Technical Report WFMC-TC-1011, Workflow Man-
agement Coalition (1999)

8. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Proceedings of the fourth Asia-Pacific Conference on
Comceptual Modelling, APCCM 2007, pp. 71–80. Australian Computer Society,
Inc., Darlinghurst (2007)

9. Goderis, A., Li, P., Goble, C.: Workflow discovery: the problem, a case study from
e-Science and a graph-based solution (2006)

10. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked keyword
search over XML documents. In: Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 16–27. ACM (2003)

11. He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs.
In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 305–316. ACM (2007)

12. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword proximity search on
XML graphs (2003)

13. Katz, B., Lin, J., Quan, D.: Natural language annotations for the Semantic Web.
In: Meersman, R., Tari, Z. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002.
LNCS, vol. 2519, pp. 1317–1331. Springer, Heidelberg (2002)

14. Li, Y., Yang, H., Jagadish, H.V.: NaLIX: A generic natural language search envi-
ronment for XML data. ACM Transactions on Database Systems (TODS) 32(4),
30 (2007)

15. Lincoln, M., Golani, M., Gal, A.: Machine-Assisted Design of Business Process
Models Using Descriptor Space Analysis. In: Hull, R., Mendling, J., Tai, S. (eds.)
BPM 2010. LNCS, vol. 6336, pp. 128–144. Springer, Heidelberg (2010)

16. Lincoln, M., Karni, R., Wasser, A.: A Framework for Ontological Standardization of
Business Process Content. In: International Conference on Enterprise Information
Systems, pp. 257–263 (2007)

17. Markovic, I., Pereira, A.C., Stojanovic, N.: A framework for querying in business
process modelling. In: Proceedings of the Multikonferenz Wirtschaftsinformatik
(MKWI), Munchen, Germany (2008)

18. McGill, M.J., Salton, G.: Introduction to modern information retrieval. McGraw-
Hill (1983)

19. Momotko, M., Subieta, K.: Process query language: A Way to Make Workflow
Processes More Flexible. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.)
ADBIS 2004. LNCS, vol. 3255, pp. 306–321. Springer, Heidelberg (2004)

20. Shao, Q., Sun, P., Chen, Y.: WISE: a workflow information search engine. In: IEEE
25th International Conference on ICDE 2009, pp. 1491–1494. IEEE (2009)

21. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process Equiv-
alence: Comparing Two Process Models Based on Observed Behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006)

22. van der Aalst, W.M.P., Ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Information Systems 30(4), 245–275 (2005)

23. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Similarity Between
Business Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

24. Yan, Z., Dijkman, R., Grefen, P.: Business Process Model Repositories-Framework
and Survey. Technical report, Beta Working Papers

Fragment-Based Version Management for
Repositories of Business Process Models

Chathura C. Ekanayake1, Marcello La Rosa1,
Arthur H.M. ter Hofstede1,2, and Marie-Christine Fauvet3

1 Queensland University of Technology, Australia
{c.ekanayake,m.larosa,a.terhofstede}@qut.edu.au

2 Eindhoven University of Technology, The Netherlands
3 University of Grenoble, France

marie-christine.fauvet@imag.fr

Abstract. As organizations reach higher levels of Business Process Management
maturity, they tend to accumulate large collections of process models. These repos-
itories may contain thousands of activities and be managed by different stakehold-
ers with varying skills and responsibilities. However, while being of great value,
these repositories induce high management costs. Thus, it becomes essential to
keep track of the various model versions as they may mutually overlap, supersede
one another and evolve over time. We propose an innovative versioning model,
and associated storage structure, specifically designed to maximize sharing across
process models and process model versions, reduce conflicts in concurrent edits
and automatically handle controlled change propagation. The focal point of this
technique is to version single process model fragments, rather than entire process
models. Indeed empirical evidence shows that real-life process model reposito-
ries have numerous duplicate fragments. Experiments on two industrial datasets
confirm the usefulness of our technique.

1 Introduction

Organizations need to develop process models to document different aspects of their
business operations. For example, process models are used to communicate changes in
existing operations to relevant stakeholders, document procedures for compliance in-
spection by auditors or guide the development of IT systems [31]. Such process models
are constantly updated to suit new or changed requirements, and this typically leads
to different versions of the same process model. Thus, organizations tend to accumu-
late large numbers of process models over time [25]. For example, Suncorp, one of
the largest Australian insurers, maintain a repository of 6,000+ process models [24],
whereas the Chinese railway company CNR has 200,000+ models.

The requirement to deal with an increasing number of process models within or-
ganizations poses a maintenance challenge. Especially, it becomes essential to keep
track of the various models as they may mutually overlap, supersede one another and
evolve over time. Moreover, process models in large organizations are typically edited
by stakeholders with varying skills, responsibilities and goals, sometimes distributed
across independent organizational units [7]. This calls for techniques to efficiently store
process models and manage their evolution over time.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 20–37, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Fragment-Based Version Management for Repositories of Business Process Models 21

In this paper, we propose a novel versioning model and associated storage structure
which are specifically designed for process model repositories. The main innovation
lies in storing and versioning single process fragments (i.e. subgraphs), rather than en-
tire process models. In this way duplicate fragments across different process models,
or across different versions of the same process model, are stored only once. In fact,
empirical evidence [40] shows that industrial process model collections feature a high
number of duplicate fragments. This occurs as new process models are created by copy-
ing fragments from existing models within the same collection. For example, we iden-
tified nearly 14% of redundant content in the SAP R/3 reference model [20]. Further,
when a new process model version is created, only a subset of all its fragments typically
changes, leaving all other fragments unchanged across all versions of the same model.

Besides effectively reducing the storage requirements of (large) process model repos-
itories, our technique provides three benefits. First, it keeps track of shared frag-
ments both horizontally, i.e. across different models, and vertically, i.e. across different
versions of the same model. As a result, this information is readily available to the
repository users, who can monitor the various relations among process model versions.
Second, it increases concurrent editing, since locks can be obtained at the granularity
of single fragments. Based on the assumption that different users typically work on
different fragments at the same time, it is no longer necessary to lock an entire pro-
cess model, but only those fragments that will actually be affected by a change. As
a result, the use of traditional conflict resolution techniques is limited to situations in
which the same fragment is edited by multiple users concurrently. Finally, our tech-
nique provides sophisticated change propagation. For example, if an error is detected
in a shared fragment, the fix can be automatically propagated to all process models
containing that fragment, without having to edit each process model individually. This
in turn can facilitate reuse and standardization of best business practices throughout the
process model repository. To the best of our knowledge, the use of process fragments for
version control, concurrency control (i.e. locking) and change propagation of process
model collections has not been studied in existing research. Commercial BPM suites
only offer propagation of attribute changes at the node level, e.g. a label change.

The proposed technique is independent of the process modeling language being
adopted as all the developed methods operate on an abstract modeling notation. Thus,
we can manage processes modeled in a variety of languages, e.g. BPMN, EPCs, BPEL,
YAWL. We implemented this technique on top of the MySQL relational DBMS and
used the prototype to conduct experiments on two industrial process model collections.
The results show that the technique yields a significant gain in storage space and demon-
strate the usefulness of its locking and change propagation mechanisms.

We present our technique in three steps. First, we introduce the versioning model in
Sec. 2. Next, we describe our locking mechanism in Sec. 3 and finally our controlled
changed propagation in Sec. 4. In Sec. 5 we discuss the storage structure used to imple-
ment our technique on top of relational DBMSs. We present the experimental setup and
results in Sec. 6, and discuss related work in Sec. 7. We draw conclusions in Sec. 8.

2 Versioning Model
We define process model versions according to a branching model which is inspired
by popular version-control systems such as Concurrent Version Systems (CVS) [5] and

22 C.C. Ekanayake et al.

Apache Subversion (SVN).1 Accordingly, each process model can have one or more
branches to account for co-existing developments. Each branch contains a sequence of
process versions and has a unique name within a process model.

A new branch can be created by “branching out” from a version in another existing
branch, where the existing branch may belong to the same process model (internal
branching) or to another process model (external branching). The primary branch is
the first branch being created for a process model, and as such it can be new or be
derived via external branching. Non-primary branches of a process model can only be
derived via internal branching. Only the last version of a branch, namely the current
version can be modified.

Branch 1
Home

(primary)

1.0

1.1

1.2

1.3

1.0

1.1

1.2

1.0

1.1

1.0

“draft”

“signed”

“released”

Branch 2
Motor

Branch 4
Commercial

Branch 3
Private

“signed”

“alpha”

“beta”

“initial”

“draft”

Fig. 1. Process model versioning (current
version of each branch is shaded)

A modification to a current version pro-
duces a new version in the same branch
which becomes the current version. Ac-
cording to this versioning model, a specific
version of a process model is referred to
by the tuple (process model name, branch
name, version number). Optionally, a ver-
sion may have a name which needs not be
unique. This model is shown in Fig. 1 by us-
ing an example from the insurance domain.
Here the primary branch is new and named
“Home”, whereas “Motor”, “Private” and “Commercial” are all secondary branches.
For example, version 1.0 of the Motor branch, named “alpha”, is derived from version
1.1 of the Home branch, named “signed”.

Determine
whether tax

invoice is valid

Determine if the
invoice relates
to the claim

Complete customer or
third party

reimbursement

Determine
source of
invoice

Investigate error

yes

yes

yes

Close the
relevant invoice
received activity

yes

F14

F13F12F10

F11

F5 F7

F4

F1 F2

Determine if
invoice is
duplicate

Determine whether
invoice received is

for proof of
ownership

Determine if
invoice has

already been paid

Determine
whether Insurer
authorised work

Contact customer
activity for the

relevant Insurer team

Contact service
provider activity for the
relevant Insurer team

Close the
relevant invoice
received activity

yes

F6 F8

F9

F3

Task Exclusive OR
gateway

Start
event

End
eventLegend: Flow

relation

Fig. 2. Version 1.0 of the Home insurance claims process model, and its RPST fragments

1 http://subversion.apache.org

http://subversion.apache.org

Fragment-Based Version Management for Repositories of Business Process Models 23

The focal idea of our versioning model is to use process model fragments as stor-
age units. To obtain all fragments from a process model, we use the Refined Process
Structure Tree (RPST) [41]. The RPST is a linear-time method to decompose a process
model into a tree of hierarchical SESE fragments. A SESE fragment is a subgraph of a
process model with a single entry and a single exit node. Each fragment in the hierarchy
contains all fragments at the lower level, but fragments at the same level are disjoint.
Thus, a given process model has only one RPST decomposition. The advantage of using
SESE fragments is that they are modular: any change inside a fragment does not affect
other fragments outside the modified fragment. Fig. 2 shows version 1.0 of the Home
insurance claims process model, and its RPST decomposition. The notation is BPMN.

For each model, we store its SESE fragments with their composition relationships.
A fragment may contain one or more child fragments, each of which may also contain
child fragments, forming a tree structure. Fig. 3 shows the fragment version tree of the
process model in Fig. 2.

We maintain a version history for each fragment. Each fragment has a sequence of
versions and the latest version is named as the current version. When a new fragment is
added, its version sequence starts with 1 and is incremented by one for each subsequent
version. Fig. 3 depicts fragments as rectangles and fragment versions as circles; version
numbers are shown inside circles. As all fragments in this example are new, each frag-
ment has version 1. Each process model version points to the root fragment version of
its fragment version tree.

1 F1

1 F2

1 F7

1 F41 F3

1 F101 F11

1 F12

1 F141 F13

1 F6

1 F91 F8

1 F5

P: “Insurance claims”
B: “Home”

V: 1.0 – “draft”

Fig. 3. RPST of model in Fig. 2

By using fragments as units of storage, we
can efficiently support version control, change
management and concurrency control for
process models. Before describing how we
realize such operations, we explain how a
fragment is stored in the repository. Each frag-
ment version needs to store its composition
relationships and its structure. The composi-
tion relationships contain the identifiers of all
the immediate child fragment versions. The
structure of a fragment version is the subgraph
of that fragment version where the subgraphs
of all its child fragment versions are replaced
by placeholders called pockets. Each pocket is associated with an identifier and within
the structure of a particular fragment version, it points to one child fragment version. In
this way we can maximize reuse across fragments, since two fragments can share the
same structure but point to different child fragment versions from within their pockets.
Fig. 4 shows the structure of fragment F2 from Fig. 2. This structure contains three child
fragments, each represented by a pocket. In version 1 of F2, pocket 1 points to version
1 of F3, pocket 2 to version 1 of F4 and pocket 5 to version 1 of F5. Next, we describe
how to reuse structures by mapping different child fragment versions to pockets.

2.1 Vertical Sharing

Process models are not static artifacts but evolve with an organization. As we store
individual fragments, all unmodified fragments can be shared across different versions

24 C.C. Ekanayake et al.

of the same process model. We call this vertical sharing. When a new version of a
process model is created, only those fragments that have changed or that have been
added are stored. Fig. 5 shows the derivation of version 1.1 from version 1.0 of the
Home insurance claims process by modifying fragment F3.

yes

yes

Pocket 3

Pocket 2 Pocket 1

Fig. 4. Structure of fragment F2
from the model in Fig. 2

Fragment F3 is modified by removing F6 and
adding F25 and F32. This leads to a new version
of F3 with the modified content (version 2). In ad-
dition, new versions of F2 and F1 need to be cre-
ated with the modified composition relationships.
All other fragments (i.e. F4 to F14) remain the same
and are shared between version 1.0 and 1.1 of the
Home insurance process.

1 F1

1 F2

1 F7

1 F4

1 F3

1 F101 F11

1 F12

1 F141 F13

1 F6

1 F91 F8

1 F5

P: “Insurance claims”
B: “Home”

V: 1.0 – “draft”

2 F1

2 F2

2 F3

1 F32

1 F28

1 F25

P: “Insurance claims”
B: “Home”

V: 1.1 – “signed”

Shared fragments

Fig. 5. Sharing fragments across multiple versions of the same
process model

As we mentioned ear-
lier, we reuse structures
of fragments across subse-
quent fragment versions in
order to avoid redundancy.
For example, changing
fragment F3 does not
affect the structure of
fragment F2. However,
a new version of F2 has
to be created to represent
the modified composition
relationships (i.e. replace-
ment of version 1 of F3
with version 2). Thus, the
structure can be shared
across versions 1 and 2
of F2. Let us consider the
structure of version 1 of F2 as shown in Fig. 4. According to the example, version 1
of F2 maps version 1 of fragments F3, F4 and F5 to pockets 1, 2 and 3 respectively.
In version 2 of F2, the structure does not change except for the mapping of pocket 1
which now points to version 2 of F3. Thus, we reuse the structure of version 1 of F2 in
its version 2 simply by changing the mapping of its pocket 1.

2.2 Horizontal Sharing

Real-life process model repositories hardly have unique process models. It is common
in fact that multiple process models share common fragments. For example, we
identified 840 duplicate fragments in the SAP reference model. In order to avoid such
redundancy, we also allow fragment versions to be shared among multiple branches
within or across process models. We call this horizontal sharing. By keeping track of
such derivation relationships, we can efficiently propagate changes and keep the repos-
itory in a consistent state. As an example, Fig. 6 shows the relationship between version

Fragment-Based Version Management for Repositories of Business Process Models 25

1.2 of the Home insurance branch and version 1.1 of the Motor insurance branch, which
share fragments F3 and F5, and their child fragments. Similar sharing relations can exist
between branches of different process models.

3 Locking
If two or more users try to modify two overlapping sections within the same process
model or across different process models, the resulting process model(s) may become
inconsistent. The solution used by current process model repositories to avoid such
conflicts is to lock an entire process model before editing it. However, such a solution
limits the ability for collaboration, especially in light of the current trend for collabora-
tive process modeling, as only one user can edit a process model at a time. We propose
a fragment-based locking mechanism for process models which supports increased col-
laboration while reducing the number of conflicts.

1 F1

1 F2

F7

1 F4

1 F3

F6

1 F5

P: “Insurance claims”
B: “Home”

V: 1.2 – “released”
Propagation: “Instant”

1 F35

1 F36

1 F37

1 F39

1 F41

1 F38

P: “Insurance claims”
B: “Motor”

V: 1.1 – “beta”
Propagation: “Delayed”

Shared fragments

1 F40

1 F42

11

Fig. 6. Sharing fragments across different process model
branches

Users can lock indi-
vidual fragments, upon
which, any subsequent
locking requests to those
fragments will be denied.
When a lock is requested
for a fragment, we need to
consider the lock granted
for that fragment, as well
as the locks of its ancestor
and descendant fragments.
To illustrate this, let us as-
sume that a user requests
a lock for F3 in Fig. 6 and
that a lock has already been granted for its child fragment F6. If the requested lock is
granted for F3, both F3 and F6 can be edited concurrently. As F3 contains F6, the user
editing F3 can also edit the content of F6, which may result in a conflict with the edits
done by the other user on F6. Thus, in this situation a lock for F3 cannot be granted.
The same situation holds for the ancestor fragments of F3. If any ancestor fragment of
F3 (e.g. F2) is locked, a lock for F3 cannot be granted. Thus, a fragment can only be
locked if a lock has not yet been granted for that fragment and for any of its ancestor
or descendant fragments. For example, two users can lock F3 and F7 at the same time.
Concurrent updates to these two fragments do not cause conflicts, as neither of these
fragments contain the other fragment. In this case, any subsequent lock request for
fragments F3 and F7, and for their descendant and ancestor fragments will be denied.

This fragment-based locking mechanism is realized by associating two locking at-
tributes with each fragment: a boolean direct lock and an integer indirect lock counter.
A direct lock is assigned to a fragment that is directly locked by a user and gives the
user the actual right to edit that fragment. The indirect lock counter is used to prevent
conflicting lockings to descendant fragments. It is set to zero and incremented by one
every time a descendant of the fragment in question is directly locked. A direct lock
can only be placed if a fragment is not directly locked, its indirect lock counter is zero

26 C.C. Ekanayake et al.

and none of its ancestor fragments is directly locked either. If so, the fragment is locked
and the indirect lock counters of all its ancestors are incremented. Once a request for
removing a lock is issued, the direct lock for that fragment is removed and the indirect
lock counters of all its ancestor fragments are decremented. The indirect lock counter is
required as multiple descendant fragments of a given fragment may be directly locked
at the same time. In such situations, the counter of that fragment should not be reset
until all direct locks of its descendant fragments have been released.

4 Controlled Change Propagation

In current process model repositories, similarity relations between different process
models are not kept, so an update to a section of a process model remains confined
to that process model, without affecting all process models of the repository that share
(parts of) that section. This problem where two or more process models become “out-of-
synch” is currently rectified manually, through maintenance cycles which are laborious
and error-prone. For example, a team of business analysts at Suncorp was recently in-
volved in a process consolidation effort between two of their insurance products, due to
an update to one of the two products. However, it took them 130 man-hours to identify
25% of the shared fragments between the process models for these two products [24].
In fact, our experience tells us that real-life collections suffer from frequent mismatches
among similar process models.

Since we reuse fragments across multiple process models, this provides a great op-
portunity to simplify the maintenance of the repository. For example, if a possible im-
provement is identified for fragment F3 of Fig. 6, that improvement can be made avail-
able immediately to both the Home and Motor insurance process models, since this
fragment is shared by both these models. However, propagating fragment changes im-
mediately to all affected process models may not be always desirable. Let us assume
that the current version of the Motor insurance process model has been deployed in
an active business environment. If an update to F3 has introduced an error, that error
will immediately affect the Motor insurance process model, which could potentially
impact important business operations. In order to prevent such situations, we support a
flexible change propagation mechanism, where change propagations are controlled by
a propagation policy associated with process model branches. The propagation policy
of a process model branch can be set as either instant propagation or delayed propa-
gation. If instant propagation is used in a branch, any change to any fragment in the
current version of that branch is recursively propagated to all ascending fragments of
that fragment in the current version, until the root fragment. Since the root fragment
changes, a new version for that branch will be created, which will become the current
version. If delayed propagation is used in a branch, changes to a fragment will not be
immediately propagated throughout the current version. Instead, such changes will cre-
ate pending updates for the current version. Then owners of the affected process model
are notified of all pending updates for that model. They can then review the pending
updates and only trigger the necessary ones. Once a pending update is triggered, it will
be propagated and a new version of the interested process model will be created.

Coming back to the example in Fig. 6, let us assume that the change propagation
policy of the Home insurance branch is set to instant while that of the Motor insurance

Fragment-Based Version Management for Repositories of Business Process Models 27

branch is set to delayed. If fragment F6 is updated (i.e. version 2 of F6 is created), new
versions will instantly be created for all the ancestor fragments of F6 in the current ver-
sion of Home (i.e. F3, F2 and F1, shown with a thicker border Fig. 6). As a new version
is created for F1, which is the root fragment of Home, a new version of this process
model will also be created, say version 1.3. On the other hand, since the Motor branch
has a delayed propagation policy, new versions will not be created for the ancestor frag-
ments of F6 in the current version of this branch. This means that F3 in Motor will still
point to version 1 of F6, F36 to version 1 of F3 and F35 to version 1 of F36. Thus, the
current version of Motor will still use version 1 of F6 and remain the same. However,
the pending updates will be notified to the owner of the current version of Motor, who
can decide whether or not to implement them.

Sometimes one may not need to create a new fragment version/process model ver-
sion when a fragment is modified, e.g. after fixing a minor error. Our technique supports
such in-place editing of fragments, where the edited fragment version and all its ances-
tor fragments are updated without creating new versions. Changes performed in this
mode will be available to all ancestor fragments instantly, irrespective of the change
propagation policies.

5 Conceptualization of the Storage Structure

We now describe the conceptual model used to store our versioning system on top of a
relational DBMS. The algorithms to populate and use this data structure, e.g. inserting
or updating a fragment, can be found in the technical report [15].

An Object Role Modeling diagram of the storage structure is shown in Fig. 7. For
illustration purposes, we populated this model with information from two process mod-
els: “Insurance claims” (the example used so far) and “Order processing”. Each process
has two branches (e.g. Insurance claims has branches “Home” and “Motor”). Further,
each branch has a root process model (i.e. the root Node), representing the first version
of that branch. For example, the root process model of the Motor branch of the insurance
claims process has node identifier N4 and refers to version number 1.0 having version
name “alpha”. Each branch has a sequence of nodes where each node represents one
version of a process model. Each node can have at most one immediate predecessor.
For example, node N5 refers to version number 1.1 of its branch, and is the successor
of node N4. The root node of a primary branch may optionally be derived from a node
of an external process model branch (none in the sample population). The root node
of a non-primary branch is always derived from a node of an internal process model
branch. For example, the root node of the Motor branch (node identifier N4) is derived
from node N2 of the Home branch.

Each node in a branch (i.e. each process model version) has an associated fragment
version tree. In our example, the root fragment versions of process model versions 1.0
and 1.1 of the Home branch (i.e. nodes N1 and N2) are FV1 and FV6. FV1 and FV6
are both contained in fragment F1 according to the sample population. Thus, FV1 and
FV6 are two versions of the same fragment. In fact, FV1 is mapped to fragment version
number 1 whilst FV6 is mapped to fragment version number 2 of F1. A fragment ver-
sion can have multiple parents and children. For example, FV2 is the parent fragment
of FV3, FV4 and FV5, while FV3 is the child of both FV2 and FV7. Hence, FV3 is

28 C.C. Ekanayake et al.

Process
(.id)ProcessName

/ has

Branch
(.id)BranchName

/ has

Node
(.id)

VersionNumber
/ refers to

has as primary

has as immediate predecessor is derived from

intransitive,
acyclic

has as root

FragmentVersionNumber
/r

ef
er

s
to

Fragment
(.id)

co
nt

ai
ns

U

up
da

te
s

ar
e

go
ve

rn
ed

by

FragmentVersion
(.id)

ProcessElement
(.id)Pocket

is
co

nn
ec

te
d

to

NonPocket

/h
as

Label

/b
el

on
gs

to

ElementType
(name)

has a structural

pocket...in fragment version...refers to fragment version...

{‘Task’, ‘Event’,
‘Gateway’,
‘Pocket’}

has as immediate parent

VersionName
/ has

Insurance claims P1
Order processing P2

Home B1
Motor B2
Bulk B3
Special B4

draft N1
signed N2

released N3
alpha N4
beta N5

... ...

PE1 Determine if ...
PE9 Investigate error

PE15 XOR-split
PE70 Inspect goods

... ...

P1 B1
P2 B3

B1 N1
B2 N4
B3 N6
B4 N9

N2 N1
N3 N2
N5 N4
... ...

N4 N2
N9 N7

N1 FV1
N2 FV6
N4 FV24
... ...

FV2 FV1
FV3 FV2
FV4 FV2
FV5 FV2
FV7 FV6
FV3 FV7
... ...

FV1 1
FV6 2
FV24 1

... ...

F1 FV1
F1 FV6
F35 FV24
... ...

PE34 FV1 FV2
PE34 FV6 FV7
PE35 FV2 FV3

...

1.0 N1
1.1 N2
1.2 N3
1.0 N4
1.1 N5
... ...

has as root / is root of

is associated with
Structure

(.id)

contains

FV1 S5
FV6 S5
... ...

S5 PE1
S5 PE34
S5 PE35
... ...

StructuralCode{‘Instant’, ‘Delayed’}ChangePropagationPolicy
(.name)

DirectLock
(.boolean)

/ indicates the direct lock status of

IndirectLockCounter
(.nr)

/ records the indirect lock count of

Each Pocket is a ProcessElement that is of ElementType ‘Pocket’
Each NonPocket is a ProcessElement that is not of ElementType ‘Pocket’

Fig. 7. Object-Role Modeling diagram of the storage structure

shared between FV2 and FV7. A fragment version is associated with a structure which
stores all process elements contained only in that fragment version. A structure is asso-
ciated with a structural code, which is computed by considering its elements and their
interconnections. The structural code is used to efficiently compare structures of frag-
ments. Furthermore, two fragments can be efficiently compared by considering both
structural codes and composition relationships. Process elements within structures can
be of type non-pocket (i.e. tasks, events, gateways) and pocket. A pocked is a place
holder for a child fragment. Continuing our running example, in fragment version FV1,
pocket PE34 is mapped to fragment version FV2 while in FV6, PE34 is mapped to FV7.
Thus, FV1 and FV6 share the structure S5 with different mapping for pocket PE34. Fi-
nally, the diagram models the association of change propagation policies with process
branches and locking attributes with fragment versions.

As shown in the diagram of Fig. 7, we use a directed attributed graph of vertices (i.e.
process elements) and edges (i.e. flow relations) to represent process models and frag-
ments. Process elements can be tasks, events (e.g. timer or message events), gateways
(e.g. AND-split, XOR-split, OR-join) and pockets. This meta-model is an extension of
the canonical format used in the AProMoRe repository [25], where we introduced a new
process element, namely the Pocket, to act as a placeholder for dynamically-computed
child fragments. This abstract representation allows us to apply version control to pro-
cess models developed in multiple business process modeling languages (e.g. BPMN,
YAWL, EPCs, BPEL), as well as to facilitate change propagation and concurrency con-
trol on those process models, regardless of their modeling language. For example, in
order to version EPC models, we only have to convert EPCs to our representation for-
mat and vice versa. Once EPC models are converted to our representation format, those

Fragment-Based Version Management for Repositories of Business Process Models 29

process models can be stored as tuples in the relational schema derived from Fig. 7. A
full mapping between AProMoRe’s canonical format and various process modeling lan-
guages is provided in [25]. We observe that in order to achieve language-independence,
AProMoRe’s canonical format covers only a set of concepts which are common to most
process modeling languages.

6 Evaluation

We implemented the proposed versioning model and associated storage structure in Java
on top of the MySQL DBMS, and used this prototype to evaluate our technique. We
conducted the experiments on two industrial process model collections: 595 EPC mod-
els from the SAP R/3 reference model and 248 EPC models from IBM’s BIT library.2

First, we measured the gain induced by vertical sharing. We took a set of models with
varying size (ranging from 25 to 107 nodes for the SAP dataset and from 10 to 40 nodes
for the IBM dataset), and for each of them we created 100 subsequent versions by ran-
domly updating a set of adjacent nodes (i.e. localized changes). We allowed four types
of basic change operations with corresponding probabilities: change task label (33%),
delete task (33%), insert a task between two adjacent nodes (17%) and insert a task in
parallel to another task (17%). These probabilities were chosen to balance insertions and
deletions so as to prevent excessive growth or shrinkage of a process model, thus simu-
lating localized changes. For each model, we repeated the experiment by changing 5%,
20% and 50% of the models’ size. After creating a new version, we calculated the vertical
storage gain Gv compared to storing full process model versions. Let N be the number
of nodes for storing full versions and Nv the number of nodes stored if sharing fragments
vertically. Then Gv = (N −Nv) ·100/N . Fig. 8 reports the average Gv for each dataset,
by aggregating the values of all changed process models. Our technique incurs a slight
initial overhead due to storing pockets and edges connecting pockets. However, the ver-
tical storage gain rapidly increases as we add new versions. For the SAP dataset it levels
off at 82% for small updates (5% of model size), and 55% for larger updates (50% of
size) whilst for the IBM dataset it levels off at 78% for small updates and 46% for larger
updates. This confirms our intuition that storing duplicate fragments only once across
different process model versions can dramatically reduce the overall repository size.

Second, we measured the gain Gh induced by horizontal sharing. For each dataset,
we randomly inserted all process models in the repository, and as we increased the size
of the repository, we compared the size of storing duplicate fragments only once with
the size of storing full process models. We only counted the size of maximal fragments
across different process models, i.e. we excluded child fragments within shared frag-
ments. Let N be the number of nodes for storing full process models, F the set of frag-
ments, Nf the number of nodes of fragment f and Of the number of its occurrences.
Then Gh =

∑
f∈F Nf · (Of − 1)/N · 100. Fig. 9a shows the results of this exper-

iment. As expected, the horizontal gain increases with the number of process models
reaching a final value of 35.6% for the SAP dataset and 21% for the IBM dataset. This
trend is determined by the increasing number of shared fragments as the total size of
the repository increases. For example, for the SAP dataset there are 98 shared fragments

2 http://www.zurich.ibm.com/csc/bit/downloads.html

http://www.zurich.ibm.com/csc/bit/downloads.html

30 C.C. Ekanayake et al.

-5
5

15
25
35
45
55
65
75
85
95

1 11 21 31 41 51 61 71 81 91

Av
er

ag
e

st
or

ag
e

ga
in

 (%
)

Version number

Average storage gain for vertical sharing - SAP

5%
20%
50%

-5
5

15
25
35
45
55
65
75
85

1 11 21 31 41 51 61 71 81 91

Av
er

ag
e

st
or

ag
e

ga
in

 (%
)

Version number

Average storage gain for vertical sharing - IBM

5%
20%
50%

Fig. 8. Average storage gain when sharing fragments across versions of the same process model

when the repository is populated with 100 process models and this number increases to
840 fragments with the full dataset. This gives an indication of the reduction in main-
tenance effort, as any update to any of those fragments or their child fragments, will be
automatically reflected onto all process models containing those fragments.

Following from the results of the previous experiment, we tested the effects of change
propagation onto the repository. We populated the repository with the SAP dataset and
performed 100 updates on randomly selected fragments. An update to a fragment con-
sists of a combination of the following operations with associated probabilities: label
change (33%), serial node insertion (17%), parallel node insertion (33%) and node dele-
tion (33%). The total number of operations performed in an update is proportional to the
number of nodes in the fragment being updated. In these tests we set the operations-to-
nodes ratio to one. For example, when updating a fragment with 10 nodes, 10 operations
were performed consisting of approximately 3 label changes, 3 node deletions, 2 serial
node insertions and 2 parallel node deletions.

The change propagation policy of all process models was set to instant propagation
during these tests as we wanted all changes to be immediately propagated to all affected
models. After each update, we measured the total number of automatically propagated
changes in the repository. We repeated the same experiment for the IBM dataset. The
average results for 10 test runs with both datasets are shown in Fig. 9b. Accordingly,
the number of propagated changes increases with the number of updates performed on a
process model collection. For example, on average 20 automatic changes were applied
by the repository across different process models when 100 updates were performed on
the SAP dataset. If our change propagation method is not used, process modelers have
to analyze the entire process model collection and apply all these changes to relevant
process models manually, which could be a time consuming and error-prone activity.
Thus, automatic change propagation provides indeed a significant benefit in maintaining
the consistency of the repository.

Finally, we measured the effectiveness of our fragment-based locking by comparing
it with the model-based locking available in current process model repositories. In this
experiment, we used software agents to randomly lock fragments of a given process
model collection in order to simulate random updates. We first generated a sequence
of locking actions for each agent and saved it in a file. An action is a tuple (process
model identifier, fragment identifier, locking duration). For example action (12, 25, 560)
forces an agent to lock fragment 25 of process model 12 for 560 milliseconds. For each

Fragment-Based Version Management for Repositories of Business Process Models 31

0

5

10

15

20

25

30

35

40

1 51 101 151 201 251 301 351 401 451 501 551

St
or

ag
e

ga
in

 (%
)

Process models in the repository

Storage gain for horizontal sharing

SAP
IBM

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91

Pr
op

ag
at

ed
 c

ha
ng

es

Number of updates

Effect of change propagation with the number of
updates

SAP
IBM

Fig. 9. Vertical storage gain (a) and change propagation (b) with the growth of the repository

action, the process model was selected using a uniform probabilistic distribution over all
process models in a given collection. The fragment was selected based on a Gaussian
distribution over the sizes of the fragments of the selected process model, where the
mean size of the distribution was set to 10% of the size of the selected process model.
The locking duration was determined based on an inverse exponential distribution with
mean of 5 seconds, in order to speed up the tests.

Once all action files were generated, we executed two tests for each file: i) each agent
attempted to lock only the specified fragment; ii) each agent attempted to lock the en-
tire process model for each action, to simulate the traditional model-based locking. We
executed these tests for two process model collections, with 10 and 30 process mod-
els, chosen with uniform size distribution from the SAP dataset. We used these small
numbers of process models as in an average BPM project multiple users typically work
collaboratively on a small set of process models. For each collection, we performed
three tests by varying the number of concurrent agents from 10, to 20 and 30, and we
computed the success rate for each test as the ratio of the number of successful opera-
tions over the number of total operations. The results are shown in Fig. 10.

As expected, the fragment-based locking mechanism scored the highest success
rate in all tests. We also observed that the gain of this locking compared to that of
model-based locking increases with the increase of concurrent agents (for example, when
using 10 agents on 30 process models, fragment level locking facilitated 15% more op-
erations than process level locking, while fragment level locking facilitated 110% more
operations for 30 agents). Further, this gain is higher when agents are competing for a

0

20

40

60

80

100

10 20 30

Su
cc

es
s r

at
e

(%
)

Concurrent agents

Success rate for 10 process models
Fragment level
Process level

0

20

40

60

80

100

10 20 30

Su
cc

es
s r

at
e

(%
)

Concurrent agents

Success rate for 30 process models
Fragment level
Process level

Fig. 10. Success rate of locking operations in 10 process models (a) and 30 process models (b)

32 C.C. Ekanayake et al.

smaller number of process models. Thus, we can conclude that our fragment-based lock-
ing mechanism is more effective than the traditional model-based locking.

7 Related Work

In this section we discuss related work in the field of BPM as well as in other fields,
such as software engineering and computer aided design. Our discussion is categorized
under version control, repositories, process model changes and concurrency control.

7.1 Version Control

Version control has been extensively studied in at least three different fields: Temporal
Databases (TDBs), Software Engineering (SE) and Computer Aided Design (CAD).
TDBs [36,14] deal with issues that arise when data evolution and histories of tempo-
ral models have to be managed. In SE, Source Code Control System (SCCS) [34] was
probably one of the precursors of version control systems. Here a revision of a file is
created each time the file is modified. Revision Control Systems (RCS) [39] extended
SCCS by introducing the concept of variant to capture branching evolution (e.g. in
SCCS, evolutions are represented as a sequence, while in RCS they are represented as
a tree). Space consumption is optimized by only storing textual differences (deltas) be-
tween subsequent versions. This is the same approach used by popular version control
systems such as CVS and SVN. It is possible to use textual deltas to version control pro-
cess models by considering XML based serializations of process models (e.g. EPML,
XPDL, YAWL). However, such deltas only serve as a method to reconstruct different
versions and do not facilitate other essential aspects of process model repositories as
mentioned later in this section.

Within SE, approaches in the area of Software Configuration Management [9], pro-
pose to use database technology to enhance the underlying data model and make the
notion of version explicit. Damokles [13] is probably one of the first database-based ver-
sioning environment for SE. It offers the notion of revision as a built-in datatype and a
version-aware data modeling language. In [30] the authors present an object graph ver-
sioning system (HistOOry) which allows applications to store and efficiently browse
previous states of objects. This approach keeps history of object graphs, while ours
deals with version control of graphs. Moreover, our goals are different: we focus on
graph fragment reusability and update propagation.

A version control method specifically designed for process models is proposed in [2].
This method is based on change operations: the differences between two process model
versions are specified as a set of insert, delete and modify operations on tasks, links and
attributes. The version history of a process model is stored as the initial version plus the
set of change operations required to derive all subsequent versions. When a new process
model version is checked in, the change operations required to derive this version from
the last version of the same process model are computed and stored as the delta of the
new version. Similarly, when a process model version is checked out, all change oper-
ations required to derive the requested version from the initial version are retrieved and
applied to the initial version to construct the requested version. Another method for pro-
cess model version control is to store all versions of a process model in a single graph by
annotating the graph’s nodes and edges with version numbers [45]. Once such a graph

Fragment-Based Version Management for Repositories of Business Process Models 33

is built, one can derive any version of its process model by following a set of derivation
rules. Thus, deltas between process model versions are captured as a set of graph ele-
ments (i.e. nodes and edges). However, the types of deltas proposed in the above two
methods, as well as the textual deltas used in SCCS, RCS, CVS and SVN discussed ear-
lier, do not have any other purpose than reconstructing different versions. In contrast, we
use process fragments as deltas, which are meaningful components of process models.
In addition to reconstructing different versions, we use fragments to automatically prop-
agate changes across process model versions and across different process models, and
to reduce conflicting edit operations over these models. Further, fragments can be used
as queries for searching specific process models in large repositories, as done in [40], or
as compositional units to create new process models. For example, a fragment used in
an old process model version can be reused in a new version of another process model.
Hence, we argue that our fragment-based approach is better-suited for the management
of process models, specially when other requirements such as change propagation, con-
currency control and search are considered, in addition to pure version control.

Thomas [38] presents an architecture for managing different versions of reference pro-
cess models. However this approach focuses on high-level aspects of versioning such as
integration with different enterprise databases, inter-connections with external applica-
tions, attributes to be associated with versions and user interface design. Thus, this work is
complementary to our research as our methods can be embedded in such an architecture.

7.2 Repositories
Repositories provide a shared database for artifacts produced or used by an enterprise,
and also facilitate functions such as version control, check-in, check-out and configura-
tion management [6]. The use of repositories for managing artifacts in different domains
has been studied and different storage mechanisms have been proposed. The concept of
managing complex artifacts as aggregations of lower level components has been dis-
cussed in the literature (e.g. [9,17,19,18]). In particular, version control and change
propagation of such composite artifacts have been studied in the context of CAD repos-
itories [17,19,18]. Accordingly, the highest degree of sharing is obtained when all soft-
ware components are versioned including composite and atomic components, and their
relationships. The storage technique that we propose extends such concepts in the con-
text of process model management. Most of the research on composite artifact storage
mechanisms assumes that lower level objects and their composition relationships are ex-
plicitly stated by users. In our technique, we use the RPST algorithm to automatically
decompose process models into lower level fragments in linear time. Further, when
storing process models we always decompose them into the smallest possible RPST
fragments, thus increasing the advantages of space utilization, change propagation and
concurrency control. We also share the structures and composition relations between
such process models. This allows us to maximize the sharing of fragments among pro-
cess models (i.e. identical structures are shared even if child mappings are not the same).
Further, we share components (i.e. fragments) and structures across multiple versions
(i.e. vertically) as well as across different process models (i.e. horizontally).

Business process model repositories stemming from research initiatives support pro-
cess model-specific features in addition to basic insert, retrieve, update and delete
functions [27,37,28,8,44], such as searching stored process models based on different

34 C.C. Ekanayake et al.

parameters. For example, the semantic business process repository [28] focuses on
querying business processes based on ontologies while the process repository proposed
in [8] also focuses on the lifecycle management of process models. Similar features
can be found in commercial process model repositories, such as the ARIS platform
[10]. However, both academic and commercial process model repositories only support
basic version control at the level of process nodes. Moreover, none of these solutions
adequately addresses the problems of change management and concurrency control. For
example, in ARIS one can only propagate updates to node attributes.

A repository designed for storing process model fragments is proposed in [35]. The
purpose is to develop new process models by reusing existing fragments. As such, this
repository only stores individual fragments but not entire process models, nor the rela-
tions among their fragments. On the other hand, we focus on storage and management
of process models, so we use fragments as a means to decompose process models hier-
archically, and to identify commonalities among process models and their versions.

Redundant process fragments are identified as an issue when managing large pro-
cess model repositories in [42]. If these fragments are not kept in sync, changes to the
repository may lead to inconsistencies. Since we share redundant fragments only once,
and we propagate changes across them, our technique can be seen as a way of solving
the “redundant process fragments” issue described in [42].

7.3 Process Model Changes
Different classifications of process model changes have been proposed in the literature
[43,11,12]. Weber et al. [43] propose a set of change patterns that can be applied to pro-
cess models and process instances, in order to align these artifacts with changing require-
ments. These change patterns focus on fragment-level operations (e.g. inserting a new
fragment into a process model, deleting a fragment or moving a fragment to a differ-
ent position) as well as on control-flow changes (e.g. adding a new control-flow depen-
dency and changing the condition of a conditional branch). The classification proposed by
Dijkman [11,12] focuses on finer-grained changes including the insertion and removal
of an activity, the refinement of an activity into a collection of activities and the modifi-
cation of an activity’s input requirements. This classification also includes changes per-
formed on resource-related aspects, such as allocating an activity to a different human
role. These classifications are useful for many areas, such as developing and evaluating
process model editors, identifying differences between process models, designing change
operation based concurrency control techniques and developing version control systems.
However, our storage and version control technique considers the final states of process
models, and the operations applied to derive different process models are not required
for our approach. As such, this work is complementary to ours. In fact, we do not impose
any restriction on the type of changes that can be performed on our process models.

7.4 Concurrency Control

Fine-grained locking of generic objects and CAD objects has been studied in [29,3,4].
However, the possibility of fine-grained locking of process models at the process frag-
ment level has not been studied in the literature. The issue of resolving conflicts in
different process model versions has been explored both at design-time and at run-time.
At run-time, the propagation of process model changes to running process instances

Fragment-Based Version Management for Repositories of Business Process Models 35

without causing errors and inconsistencies has been extensively studied in the liter-
ature [32,33,16,21]. Since our process models are design-time artifacts, this work is
complimentary to ours. At design-time, Küster et al. [23,22,1] propose a method for
merging two versions of the same process model based on the application of change
operations which can be automatically identified without the need for a change log.
Similar to our approach, this solution relies on the decomposition of process models
into SESE fragments. However, this approach focuses on resolving conflicts once over-
lapping modifications are detected, while our approach prevents conflicts before they
occur through selective locking. Thus, it may be possible to combine both approaches
in order to develop flexible collaborative environments.

8 Conclusion

This paper presents a novel versioning model and associated storage structure specifi-
cally designed to deal with (large) process model repositories. The focal idea is to store
and version single SESE process fragments, rather than entire process models. The mo-
tivation comes from the observation that process model collections used in practice
feature a great deal of redundancy in terms of shared process fragments.

The contribution of this technique is threefold. First, repository users can effectively
keep track of the relations among different process models (horizontal sharing) and
process model versions (vertical sharing). Second, sophisticated change propagation is
achieved, since changes in a single fragment can be propagated to all process models
and process model versions that share that fragment. This goes well beyond the change
propagation provided by current process model repositories. This in turn allows users to
automatically ensure consistency, and maximize standardization, in large process model
repositories. Finally, locking can also be defined at the granularity of single fragments,
thus fostering concurrent updates by multiple users, since it is no longer required to lock
entire process models. To the best of our knowledge, fragment-based concepts have not
been adopted to study these aspects of process model collections to date.

An important application of our technique is the management of variability in pro-
cess model repositories. In fact, variants of a same process model, e.g. the “Home” and
“Motor” variants of an “Insurance claim” process model, are never that dissimilar from
each other, i.e. they typically share various fragments [24]. These variants can either be
explicitly modeled as different branches of the same process, or their commonalities can
be automatically detected when these variants are inserted into the repository. In both
cases, our technique will trace these links among the variants, and keep the variants
synchronized whenever they undertake changes.

This technique was implemented and its usefulness was evaluated on two indus-
trial process model collections. In future work, we plan to combine our fragment-based
locking method with operational merging [26] to provide more flexible conflict resolu-
tion in concurrent fragment updates. Currently, our technique is limited to the control
flow of process models. In future, we plan to also version process’ data and resources.
Moreover, we plan to further evaluate our technique from a qualitative point of view, by
conducting usability tests with process model repository users.

Acknowledgments. This research is funded by the Smart Services Cooperative Re-
search Centre (CRC) through the Australian Government’s CRC Programme.

36 C.C. Ekanayake et al.

References

1. Gerth, C., Küster, J.M., Luckey, M., Engels, G.: Precise Detection of Conflicting Change
Operations Using Process Model Terms. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.)
MODELS 2010. LNCS, vol. 6395, pp. 93–107. Springer, Heidelberg (2010)

2. Bae, H., Cho, E., Bae, J.: A Version Management of Business Process Models In Bpms. In:
Chang, K.C.-C., Wang, W., Chen, L., Ellis, C.A., Hsu, C.-H., Tsoi, A.C., Wang, H. (eds.)
APWeb/WAIM 2007. LNCS, vol. 4537, pp. 534–539. Springer, Heidelberg (2007)

3. Bancilhon, F., Kim, W., Korth, H.F.: A model of cad transactions. In: Pirotte, A., Vassiliou,
Y. (eds.) VLDB, pp. 25–33. Morgan Kaufmann (1985)

4. Barghouti, N.S., Kaiser, G.E.: Concurrency control in advanced database applications. ACM
Comput. Surv. 23(3), 269–317 (1991)

5. Berliner, B., Prisma, I.: CVS II: Parallelizing software development. In: Proceedings of the
USENIX Winter 1990 Technical Conference, vol. 341, p. 352 (1990)

6. Bernstein, P.A., Dayal, U.: An overview of repository technology. In: VLDB, pp. 705–713.
Morgan Kaufmann (1994)

7. Cardoso, J.: Poseidon: a Framework to Assist Web Process Design Based on Business Cases.
Int. J. Cooperative Inf. Syst. 15(1), 23–56 (2006)

8. Choi, I., Kim, K., Jang, M.: An xml-based process repository and process query language for
integrated process management. KPM 14, 303–316 (2007)

9. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM
Computing Surveys 30(2), 232–282 (1998)

10. Davis, R., Brabänder, E.: ARIS design platform: getting started with BPM. Springer-Verlag
New York Inc. (2007)

11. Dijkman, R.M.: A classification of differences between similar Business Processes. In:
EDOC, p. 37. IEEE Computer Society (2007)

12. Dijkman, R.M.: Diagnosing Differences Between Business Process Models. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 261–277. Springer, Hei-
delberg (2008)

13. Dittrich, K.-R.: The damokles database system for design applications: its past, its present,
and its future, pp. 151–171. Ellis Horwood Books (1989)

14. Dumas, M., Fauvet, M.-C., Scholl, P.-C.: TEMPOS: a platform for developing temporal ap-
plications on top of object DBMS. IEEE TKDE 16(3) (2004)

15. Ekanayake, C.C., La Rosa, M., ter Hofstede, A.H.M., Fauvet, M.-C.: Fragment-based version
management for repositories of business process models. QUT ePrints 39059. Queensland
University of Technology, Australia (2010)

16. Joeris, G., Herzoz, O.: Managing evolving workflow specifications. In: Proc. of IFCIS,
pp. 310–321. IEEE (1998)

17. Katz, R.H.: Towards a unified framework for version modeling in engineering databases.
ACM Comput. Surv. 22(4), 375–408 (1990)

18. Katz, R.H., Chang, E.E.: Managing change in a computer-aided design database. In: VLDB,
pp. 455–462 (1987)

19. Katz, R.H., Chang, E.E., Bhateja, R.: Version modeling concepts for computer-aided design
databases. In: SIGMOD Conference, pp. 379–386. ACM (1986)

20. Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation: Iterative Process Prototyp-
ing. Addison-Wesley (1998)

21. Kim, D., Kim, M., Kim, H.: Dynamic business process management based on process change
patterns. In: Proc. of ICCIT, pp. 1154–1161. IEEE (2007)

22. Küster, J.M., Gerth, C., Engels, G.: Dependent And Conflicting Change Operations of Pro-
cess Models. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS,
vol. 5562, pp. 158–173. Springer, Heidelberg (2009)

Fragment-Based Version Management for Repositories of Business Process Models 37

23. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and Resolving Process Model
Differences in the Absence of a Change Log. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)

24. La Rosa, M., Dumas, M., Uba, R., Dijkman, R.M.: Merging Business Process Models. In:
Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 96–113.
Springer, Heidelberg (2010)

25. La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas, M.,
Garcia-Banuelos, L.: Apromore: An advanced process model repository. In: ESWA (2011)

26. Lippe, E., van Oosterom, N.: Operation-based merging. SIGSOFT Software Engineering
Notes 17(5), 78–87 (1992)

27. Liu, C., Lin, X., Zhou, X., Orlowska, M.E.: Building a repository for workflow systems. In:
TOOLS (31), pp. 348–357. IEEE Computer Society (1999)

28. Ma, Z., Wetzstein, B., Anicic, D., Heymans, S., Leymann, F.: Semantic business process
repository. In: SBPM. CEUR, vol. 251 (2007)

29. Munson, J.P., Dewan, P.: A concurrency control framework for collaborative systems. In:
CSCW, pp. 278–287 (1996)

30. Pluquet, F., Langerman, S., Wuyts, R.: Executing code in the past: efficient objet graph ver-
sioning. In: OOPSLA 2009, Orlando, Florida, USA (2009)

31. Reijers, H.A., van Wijk, S., Mutschler, B., Leurs, M.: BPM in Practice: Who Is Doing What?
In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 45–60. Springer,
Heidelberg (2010)

32. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adaptive work-
flow systems. Distributed and Parallel Databases 16(1), 91–116 (2004)

33. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and Overlapping Process Changes: Chal-
lenges, Solutions, Applications. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS,
vol. 3290, pp. 101–120. Springer, Heidelberg (2004)

34. Rochkind, M.-J.: The source code control system. IEEE TSE 1(4), 364–370 (1975)
35. Schumm, D., Karastoyanova, D., Kopp, O., Leymann, F., Sonntag, M., Strauch, S.: Process

fragment libraries for easier and faster development of process-based applications. Journal
of Systems Integration 2(1), 39–55 (2011)

36. Snodgrass, R.T.: Temporal databases. In: Proc. of GIS (1992)
37. Song, M., Miller, J.A., Arpinar, I.B.: Repox: An xml repository for workflow designs and

specifications. Technical report, Univeristy of Georgia, USA (2001)
38. Thomas, O.: Design and implementation of a version management system for reference mod-

eling. JSW 3(1), 49–62 (2008)
39. Tichy, W.-F.: Design implementation and evaluation of a revision control system. In: Proc.

of the 6th Int. Conf. on Software Engineering, Tokyo, Japan (1982)
40. Uba, R., Dumas, M., Garcı́a-Bañuelos, L., La Rosa, M.: Clone Detection in Repositories

of Business Process Models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011.
LNCS, vol. 6896, pp. 248–264. Springer, Heidelberg (2011)

41. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl.
Eng. 68(9), 793–818 (2009)

42. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model repos-
itories. Computers in Industry 62(5), 467–486 (2011)

43. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features -
enhancing flexibility in process-aware information systems. DKE 66(3), 438–466 (2008)

44. Yan, Z., Dijkman, R.M., Grefen, P.W.P.J.: Business process model repositories - framework
and survey. Technical Report 232409, TU/e, The Netherlands (2009)

45. Zhao, X., Liu, C.: Version Management in the Business Process Change Context. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 198–213. Springer,
Heidelberg (2007)

Selecting and Ranking Business Processes with
Preferences: An Approach Based on Fuzzy Sets

Katia Abbaci1, Fernando Lemos2, Allel Hadjali1, Daniela Grigori2,
Ludovic Liétard3, Daniel Rocacher1, and Mokrane Bouzeghoub2

1 IRISA/ENSSAT, Rue de Kérampont BP 80518 Lannion, France
{katia.abbaci,allel.hadjali,daniel.rocacher}@enssat.fr
2 PRiSM Lab, 45 Av. des États Unis 78000 Versailles, France

{fernando.lemos,daniela.grigori,mokrane.bouzeghoub}@prism.uvsq.fr
3 IRISA/IUT, Rue Edouard Branly BP 30219 Lannion, France

ludovic.lietard@univ-rennes1.fr

Abstract. Current approaches for service discovery are based on se-
mantic knowledge, such as ontologies and service behavior (described
as process model). However, these approaches still remain with a high
selectivity rate, resulting in a large number of services offering similar
functionalities and behavior. One way to improve the selectivity rate
and to provide the best suited services is to cope with user preferences
defined on quality attributes. In this paper, we propose and evaluate a
novel approach for service retrieval that takes into account the service
process model and relies both on preference satisfiability and structural
similarity. User query and target process models are represented as anno-
tated graphs, where user preferences on QoS attributes are modelled by
means of fuzzy sets. A flexible evaluation strategy based on fuzzy linguis-
tic quantifiers (such as almost all) is introduced. Then, two families of
ranking methods are discussed. Finally, an extensive set of experiments
based on real data sets is conducted, on one hand, to demonstrate the
efficiency and the scalability of our approach, and on the other hand,
to analyze the effectiveness and the accuracy of the proposed ranking
methods compared to expert evaluation.

Keywords: web service retrieval, quality of services, preferences, fuzzy
set theory, linguistic quantifier.

1 Introduction

Searching for a specific service within service repositories become a critical is-
sue for the success of service oriented and model-driven architectures and for
service computing in general. This issue has recently received considerable at-
tention and many approaches have been proposed. Most of them are based on
the matchmaking of process input/outputs [1], service behavior (described as
process model) [2,3,4] or ontological knowledge [4]. However, these approaches
have high selectivity rate, resulting in a large number of services offering similar
functionalities and behavior [4].

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 38–55, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Selecting and Ranking Business Processes with Preferences 39

One way to discriminate between similar services is to consider non-functional
requirements such as quality preferences (response time, availability, etc.). In-
deed, for a given query in a given context, there is no need to provide all possible
services but only those satisfying user preferences and contextual constraints. A
recent trend towards quality-aware approaches has been initiated [5,6,7], but it
is limited to atomic services. Our goal is to go further these approaches into a
unique integrated approach dealing with functional and non-functional require-
ments in service retrieval. Targeting this goal poses the following challenges: (i)
At the description level, provide a model allowing to specify non-functional re-
quirements at different granularity levels of the service functional description;
(ii) At the discovery level, define an evaluation method that efficiently computes
the satisfiability of a target service w.r.t. the functional and non-functional re-
quirements of a user query.

More specific challenges related to non-functional characteristics should also
be taken into account: (i) Services are deployed over dynamic and heterogeneous
environments such that their non-functional properties are often given or derived
with different accuracies; (ii) Users are not always able to precisely specify their
non-functional constraints; (iii) Users have different points of view over what is
a satisfactory service according to the same set of non-functional constraints;
(iv) The service retrieval should avoid empty or overloaded answers due to the
imprecision of the user’s query.

Preferences are a natural way to facilitate the definition of non-functional
constraints in user query. They are flexible enough, on one hand, to avoid empty
returns caused by very strict user constrains and, on the other hand, to provide
an adequate set of relevant results even when user specifies too general con-
straints. In addition, fuzzy logic has been used as a key technique to take into
account human point of view in preference modelling and evaluations [8].

In [9], it is proposed a QoS-aware process discovery method whereas the user
query is a graph annotated with QoS factors. Starting from [9], this paper in-
vestigates a novel approach for service selection and ranking taking into account
both behavior specification and QoS preferences. User query and target process
models are represented as graphs, where queries are annotated with preferences
on QoS properties and targets are annotated with QoS attributes. Preferences
are represented by means of fuzzy sets as they are more suitable to the inter-
pretation of linguistic terms (such as high or fast) that constitute a convenient
way for users to express their preferences. To avoid empty answers for a query,
an appropriate flexible evaluation strategy based on fuzzy linguistic quantifiers
(such as almost all) is introduced.

In the remainder of this paper, Section 2 provides some basic background and
discusses related works. Section 3 describes process model specification with
preferences. Section 4 addresses fuzzy preference modelling and evaluation. Sec-
tion 5 presents our interpretation of process models similarity based on linguistic
quantifiers. Section 6 discusses service ranking methods. Section 7 proposes an
illustrative example and Section 8 presents a set of experiments conducted to
evaluate our approach. Finally, Section 9 concludes the paper.

40 K. Abbaci et al.

2 Background and Related Work

Here, we recall some notions on preference modelling (e.g., Pareto and fuzzy set
based models) and we review preference-based service discovery approaches.

2.1 Preference Modelling

The semantics of preferences assumed in this work is the one provided by the
databases area: preferences are used to help in reducing the amount of informa-
tion returned in response to user queries and to avoid the happening of empty
answers. Generally, two families of approaches can be distinguished to model
preferences. The first one relies on commensurability assumption which leads to
a total pre-order [10,11,8]. We highlight the SQLf proposal [11], which is based
on the extension of the relational algebra to fuzzy set theory. The second family
assumes that commensurability does not hold, in this case no compensation is
allowed between criteria and only a partial order is obtained [12,13,14].

One popular approach of this last family is Preference SQL [13]. It provides
foundations for a Pareto-based preference model for database systems. A prefer-
ence is formulated as a strict partial order on a set of attribute values. It intro-
duces a number of preference operators to express and compose preferences. Let
us note that all tuples returned by a Preference SQL query satisfy the Pareto
principle. A compensatory strategy between different atomic conditions is not
possible due to the fact that Preference SQL makes use of different functions
for evaluating the distance with which a tuple disagrees with an atomic condi-
tion. Moreover, the most preferred tuples are returned to the user without being
capable to distinguish how better is one tuple compared to another.

Fuzzy sets were introduced in [15] for dealing with the representation of classes
or sets whose boundaries are not well defined. Then, there is a gradual transi-
tion between the full membership and the full mismatch (an order relation on
membership levels can be established). Typical examples of such fuzzy classes
are those described using adjectives of the natural language, such as cheap, fast,
etc. Formally, a fuzzy set F on the universe X is described by a membership
function μF : X → [0, 1], where μF (x) represents the membership degree of x
in F . By definition, if μF (x) = 0 then the element x does not belong at all to
the fuzzy set F , if μF (x) = 1 then x fully belongs to F . When 0 < μF (x) < 1,
one speaks of partial membership. The set {x ∈ F |μF (x) > 0} represents the
support of F and the set {x ∈ F |μF (x) = 1} represents its core.

In addition, the closer μF (x) to the value 1, the more belonging to F . There-
fore, given x, y ∈ F , one says that x is preferred to y iff μF (x) > μF (y). If
μF (x) = μF (y), then x and y are equally preferred. In practice, the member-
ship function associated to F is often represented by a trapezoid (α, β, ϕ, ψ)1,
where [α, ψ] is its support and [β, ϕ] is its core. Among other forms (Gaussian,
sigmoidal, bell, etc), this one is very easy to be defined and to manipulate.

1 In our case, the quadruplet (α, β, ϕ, ψ) is user-defined to ensure the subjectivity
property.

Selecting and Ranking Business Processes with Preferences 41

A fuzzy set-based approach to preference queries proposed in [8] is founded on
the use of fuzzy set membership functions that describe the preference profiles
of the user on each attribute domain involved in the query. This is especially
convenient and suitable when dealing with numerical domains, where a contin-
uum of values is to be interfaced for each domain with satisfiability degrees in
the unit interval scale. Then satisfiability degrees associated with elementary
conditions are combined using fuzzy set connectives, which may go beyond con-
junctive and disjunctive aggregations (by possibly involving fuzzy quantifiers, if
the satisfiability of most of the elementary conditions in a query is required).

2.2 Preference-Based Service Discovery

Crisp Logic-based Approaches. Most of the first approaches for service discovery
using preferences were based on crisp logic solution and considered the services
as black boxes [16,6,17]. With regard to the specification model, some of them do
not deal with preferences; instead, they compute for each service a score based
on set of the non-functional properties of the service [16]. The other approaches
does not propose or use preference constructors to help user better define his
preferences or interpret the results [6,17]. The models presented are not abstract
enough to provide a widely use of the approach in different contexts; some of
them imposes a restricted set of properties over which user can work.

Fuzzy Logic-based Approaches. In last decades, several service discovery ap-
proaches based on fuzzy set theory have been proposed [18,19]. In [19] the authors
treat the web service selection for composition as a fuzzy constraint satisfiabil-
ity problem. They assign to each QoS criterion five fuzzy sets describing its
constraint levels. In [20,21], QoS based service selection is modelled as a fuzzy
multiple criteria decision making problem. In [22], a service selection mechanism
is presented allowing the service broker to select a set of services from a query
specifying imprecise constraints defined by fuzzy sets. The query evaluation is
based on the aggregation of the obtained degrees over constraints. Şora et al.
[5] propose an approach to automatically generate fuzzy rules from user prefer-
ences and rank the candidate services using a fuzzy inference process. The global
score of each web service is given in a scale of satisfiability levels instead of an
aggregation of the satisfiability degrees of the preferences.

The aforementioned fuzzy approaches take into account only the satisfiability
of preferences whereas they ignore the structural similarity of web services. Most
of them do not verify the subjectivity property, which considers the user point of
view when defining the membership functions. Moreover, these works deal only
with services as black boxes. In this paper, user can also define preferences over
the activities of the service behavior specification and both structural similarity
and user preference satisfiability are considered.

3 Preferences in Process Model Specification

Many languages are currently available to describe service process models, e.g.,
WS-BPEL and OWL-S. They represent a process model as a set of atomic

42 K. Abbaci et al.

start

end

AND

AND

B'

D'
C'

 A'

Fig. 1. Target Graph t1

start

AND

C

AND

end

A

B

Fig. 2. Query Graph q1

activities combined using control flow structures. As a consequence, these lan-
guages can be abstracted as a direct graph G = (V, E), where the vertices
represent activities (e.g., hotel reservation, payment) or control flow nodes (e.g.,
and, or), while the edges represent the flow of execution between activities.

In this work, services are specified as graphs annotated with QoS properties
and user queries are specified as graphs annotated with preferences. Figure 1
presents a global annotation indicating the security of the process model and
activity annotations indicating other QoS attributes of some activities. Figure
2 shows a sample user query annotated with a global preference indicating user
prefers services providing RSA encryption and some activity preferences involv-
ing reliability, response time and cost. It is worth mentioning that our model
can be implemented by extension mechanisms in OWL-S.

We precise that, in this work, target models are considered already annotated
with QoS attributes while the user is the one to define the preference annotations
of his query. Techniques to obtain the QoS information of a process model can
be found in [23]. Next, we present the formal definitions of our model:

Definition 1. An annotation is a pair (m, r), where m is a QoS attribute
and r is a value for m2. It can be specified over a process model graph (global
annotation) or over an atomic activity (activity annotation).

Definition 2. A preference is an expression that represents a desire of the
user over the QoS attributes of a process model or activity. It can be specified
over a process model graph (global preference) or over an atomic activity
(activity preference). It can be of one the following forms3:

2 We abstract from the different units in which a value can be described.
3 Based on a subset of preferences defined in [13].

Selecting and Ranking Business Processes with Preferences 43

– around (m, rdesired, μaround): it favors the value rdesired for attribute m; oth-
erwise, it favors those close to rdesired. The membership function μaround

evaluates the degree to which a value r satisfies rdesired;
– between (m, rlow, rup, μbetween): it favors the values inside the interval

[rlow, rup]; otherwise, it favors the values close to the limits. The func-
tion μbetween evaluates the degree to which a value r satisfies the interval
[rlow, rup];

– max (m, μmax): itfavors the highest value; otherwise, the closest value to the
maximum is favored. For example, the maximum of availability is equal by
default to 100%. The function μmax evaluates the degree to which a value r
satisfies the highest value of m;

– min (m, μmin): it favors the lowest value; otherwise, the closest value to the
minimum is favored, as example: the minimum of response time or cost is
equal by default to 0. μmin evaluates to which degree a value r satisfies the
lowest value of m;

– likes (m, rdesired): it favors the value rdesired; otherwise, any other value is
accepted;

– dislikes (m, rundesired): it favors the values that are not equal to rundesired;
otherwise, rundesired is accepted;

– Pareto ⊗ (pi, pj): it states that the two soft preference expressions pi and pj

are equally important;
– Prioritized & (pi, pj): it states that the soft preference expression pi is more

important than the soft preference expression pj .

The work in [13] distinguishes two types of preferences: atomic (around, between,
max, min, likes and dislikes) and complex (⊗ and &). It also distinguishes two
types of atomic preferences: numerical (around, between, max and min) and
non-numerical (likes and dislikes). The values in non-numerical preferences are
taken from a global ontology of a type “is-a” O, given by the user.

4 A Fuzzy Model to Evaluate Preferences

Here, we introduce a fuzzy semantics of the atomic preferences discussed in
the Section 3, and show how they can be evaluated. In particular, we propose a
metric, called satisfiability degree (δ), that measures how well a set of annotations
of a target process model satisfies a set of preferences present in the query. The
computation of this degree is done both for atomic and complex preferences.

4.1 Atomic Preferences

For numerical atomic preferences, the satisfiability degree is obtained thanks
to user-specific membership functions. Table 1 summarizes the fuzzy modelling
of numerical preferences of interest. Given a preference p and an annotation
a : (m, r), one is interested in computing the degree to which the annotation a
satisfies the fuzzy characterization underlying p.

For example, consider the constructor between: a fuzzy preference p : between
(m, rlow, rup) is characterized by the membership function (α, β, ϕ, ψ), where

44 K. Abbaci et al.

Table 1. Fuzzy modelling of numerical preferences

NUMERICAL
PREFERENCE FUZZY INTERPRETATION

β = rlow; ϕ = rup; α and ψ are two values from the universe X . Let a : (m, r) be
an annotation of a target graph, the satisfiability degree of preference p according
to a is given by: (i) p is completely satisfied iff r ∈ [rlow, rup]: μbetween (p, a) = 1,
i.e. δ (p, a) = 1; (ii) the more r is lower (resp. higher) than rlow (resp. rup), the
less p is satisfied: 0 < μbetween (p, a) = δ (p, a) < 1; (iii) for r ∈]−∞, α]∪[ψ, +∞[,
p is not satisfied: μbetween (p, a) = δ (p, a) = 0.

For non-numerical atomic preferences, the satisfiability degree is based on
the semantic similarity between concepts. We applied the widely known seman-
tic similarity proposed in [24], which states that given an ontology O and two
concepts c1 and c2, the semantic similarity wp between c1 and c2 is given by
wp (O, c1, c2) = 2N3/N1+N2+2N3, where c3 is the least common super-concept of
c1 and c2, N1 is the length of the path from c1 to c3, N2 is the length of the
path from c2 to c3, and N3 is the length of the path from c3 to the root of the
ontology. Given a non-numerical atomic preference p and an annotation a, the
satisfiability degree δ (p, a) is given by:

– If p = likes (m, rdesired), then δ (p, a) =

{
1, rdesired = r

wp(O, rdesired, r), otherwise

– If p = dislikes (m, rundesired), then δ (p, a) = 1 − δ (likes (m, rundesired) , a)

Selecting and Ranking Business Processes with Preferences 45

One can use other semantic similarity measures between business processes
[25,26]. This issue is not discussed here and it is beyond the scope of this study.

4.2 Complex Preferences

To compute the satisfiability degree of complex preferences, we first construct
a preference tree tp that represents the complex preference structure of a set of
preferences Sp. In that preference tree, the nodes represent atomic preferences
and the edges represent a more important than relation (prioritized preference,
denoted by &) from parent to child. Preferences belonging to the same level and
having the same parent express Pareto preference, denoted by ⊗. Each level i of
the tree is associated with a weight ωi = 1/i except the level0.

For example, consider the preference tree of q1 in Figure 3. Preference p11

is an atomic preference that is not component of any complex preference. p5 :
& (p2, p3) is a complex preference composed of preferences p2 and p3; it means
that p2 is more important than p3. p7 : ⊗ (p3, p4) is a complex preference com-
posed of preferences p3 and p4; it means that p3 and p4 are equally important.

Considering that each atomic preference pi has a satisfiability degree δi, a new
satisfiability degree δ′i is computed taking into account the weight ωi underly-
ing pi in the spirit of [8]. δ′i is defined using the formula (1) (we assume that
maxi=1,n wi = 1).

δ′i = max (δi, 1 − ωi) (1)

This new interpretation of pi considers as acceptable any value outside of its
support with the degree 1−ωi. It means that the larger ωi (i.e., pi is important),
the smaller the degree of acceptability of a value outside the support of pi. At
the end, we have calculated the satisfiability degree of user atomic preferences
considering their constructors and the complex preferences composing them.

5 Process Model Similarity: A Linguistic Quantifier-Based
Method

We describe here a method to compute preference satisfiability between pro-
cess model graphs. We also discuss a method to assess the structural similarity

Fig. 3. Sample preference tree

46 K. Abbaci et al.

between two process model graphs. Both degrees will be used to rank potential
targets (see Section 6). We precise that this work is not interested in discovering
a mapping between two process models; we suppose a mapping already exists
such that we can compare matched activities annotations against user prefer-
ences. In this issue, please consider the work in [4] for an algorithm that returns
a mapping between two process models.

To evaluate the structural similarity of two graphs q and t, we propose to
use a graph matching algorithm like in [4]. This algorithm returns a mapping
M and a set E of edit operations necessary to transform q into t. A mapping
between q and t is a set of pairs (v, w), such that v is an activity of q and w
is an activity of t. The edit operations considered are simple graph operations:
node/edge deletion and addition. Figure 4 illustrates a mapping between query
graph q1 and target graph t1. Let SS (v, w) denotes the structural similarity
between activities v and w; we use the metric proposed in [4]. Let δ (q1.Sp, t1.Sa)
be the satisfiability degree between global preferences and annotations and let
δ (v, w) be the satisfiability degree between activities v and w (see Section 4).

Next, we rely on the linguistic quantifier “almost all ” for the similarity eval-
uation process. This quantifier is a relaxation of the universal quantifier “all ”
and constitutes an appropriate tool to avoid empty answers since it retrieves
elements that would not be selected when using the quantifier “all ”.

5.1 Preference Satisfiability between Process Models

A natural user interpretation of the similarity between query and target PMs
according to preferences is given by the truth degree of the following proposition:

γ1: Almost all preferences of q are satisfied by t

The above statement is a fuzzy quantified proposition of the form “Q X are P ”,
where (i) Q is a relative quantifier (e.g., almost all, around half, etc.) [27] which
is defined by a function μQ such as μQ () is the degree of truth of “Q X are
P ” when a proportion of elements of X fully satisfy A and the other elements
being not satisfied; (ii) X is a set of elements; (iii) P is a fuzzy predicate. In
[28], a decomposition method to compute the truth degree δγ of γ : Q X areP
is proposed. The method is a two-step procedure:

– Let Ω = {μ1, . . . , μn} be a set of degrees of the elements of X w.r.t. P ,
ordered in decreasing way; i.e. μ1 ≥ . . . ≥ μn;

– The truth degree δγ is given by the equation (2), where μQ (i/n) is a mem-
bership degree of the element i/n to Q.

δγ = max
1≤i≤n

min (μi, μQ (i/n)) (2)

In our case, Ω =
{
μ1 : δ

′
1, . . . , μn : δ

′
n

}
is the set of satisfiability degrees of all

(global and activity) atomic preferences of query q, where δ
′
i is the satisfiability

degree of an atomic preference pi computed by formula (1). The semantics of

Selecting and Ranking Business Processes with Preferences 47

Set of global
preferences

Set of global
annotations

Query graph Target graph

start

AND

C

AND

end

A

B

start

end

AND

AND

B'
D'

C'

A'

Fig. 4. Sample mapping M between query graph q1 and target graph t1

the linguistic quantifier almost all is given in Table 2. In this case, (i) the user
is totally satisfied if at least 80% of preferences are satisfied and (ii) the user is
not satisfied at all if at most 50% of preferences are satisfied.

5.2 Structural Similarity between Process Models

Similarly, we can apply the technique of fuzzy quantifiers to obtain a structural
similarity degree between two process models. The structural similarity between
a query and target process models can be given by the truth degree of the
following propositions “γ1, γ2 and γ3” (defined in Table 2):

γ2: Almost all the activities of q are mapped with activities of t, and
γ3: Almost no edit operation is necessary to transform q into t

The truth degree of proposition γ2 is obtained from the formula (2), where
Ω = {μ1 : SS1, . . . , μn : SSn} is the set of semantic similarity degrees of all
mapped activities of q, and SSi is the semantic similarity degree of a query
activity v mapped with a target activity w. In the case of the proposition γ3,
the expression "almost no edit operation is necessary to transform q into t" is
equivalent to the expression "almost all edit operations are not necessary to
transform q into t". Therefore, its truth degree is computed as follows:

δγ = max
1≤i≤n

min (1 − μi, 1 − μQ (i/n)) (3)

In this case, Ω = {μ1 : C1, ..., μn : Cn} is the set of transformation costs of
mapped target activities with the corresponding activities of q, and Ci is the
transformation cost of a target activity w into a query activity v.

48 K. Abbaci et al.

Table 2. Decomposition-based interpretations of propositions γ1, γ2, γ3

PROPOSITION SET MEMBERSHIP FUNCTION

,

where is the number of mapping
elements

,

where is the number of mapping
elements

,

where is the number of query
activities

0

So, the structural similarity between q and t is evaluated as follows:

SS = min (δγ2 , δγ3) (4)

In our approach, we consider particularly the formulae (2) and (3), where μQ (i/n) =
i/n. Thus, the meaning of delivered degrees has a simple and clear semantics for
the user [29]. The evaluation of γ1, γ2 and γ3 means that:
"At least δ∗γ1

% of preferences of q are satisfied by t to at least a degree of δγ1 , at
least δ∗γ2

% of the activities of q are mapped with t to at least a degree of δγ2 , and
at least δ∗γ3

% of q does not need edit operation to transform q into t to at least a
degree of δγ3" (where δ∗γi

= 100 × δγi).

6 Process Model Ranking

Previous section has presented an fuzzy set-based approach to compute the sim-
ilarity between one query and one target graphs. In this section, given a set of
target graphs that are relevant to the query, we discuss some methods to rank-
order these graphs according to their structural and preference similarities. Let
δ (q, t, M) be the satisfiability degree between query graph q and target graph t
according to a mapping M . Similarly, let SS (q, t, M, E) be the structural simi-
larity between q and t according to a mapping M and a set E of edit operations.
We classify ranking methods into two categories:

Selecting and Ranking Business Processes with Preferences 49

Ranking Methods based on Aggregation. In this first category, ranking methods
aggregate both structural and preference similarities into a unique degree used
to rank-order the target graphs. Two kind of aggregations are considered:

Weighted Average-Based Aggregation. The weighted average of SS (q, t, M, E)
and δ (q, t, M) is given by:

rank (q, t) = ωSS × SS (q, t, M, E) + (1 − ωSS) × δ (q, t, M) (5)

where 0 < ωSS < 1 is a weight assigned to the structural similarity criterion.

Min-Combination Based Aggregation. The min-combination method [30] selects
the smallest value of the two similarity degrees SS (q, t, M, E) and δ (q, t, M):

rank (q, t) = min (SS (q, t, M, E) , δ (q, t, M)) (6)

Ranking Method without Aggregation. The two distinct similarity degrees are
used to rank-order target graphs. The answers are ranked by using the lexico-
graphic order. A priority is given to the structural similarity while the preference
similarity is only used to break ties.

7 Illustrative Example

We give here an example of service discovery for query q1 of Figure 2. We consider
a set {t1, . . . , t8} of eight potential answers to q1 retrieved by a matchmaking
algorithm as discussed in Section 5. First, we compute the preference satisfiability
between q1 and the potential target graphs (see Section 5.1). Next, we compute
the structural similarity between q1 and the potential targets (Section 5.2). Then,
we apply the ranking methods described in Section 6. To illustrate, we evaluate
the preference satisfiability and structural similarity between q1 and target t1 of
Figure 1. We consider the mapping between them as depicted in Figure 4.

Preferences Satisfiability. First, the satisfiability degree δ′i of each preference
pi of q1 is calculated as shown in Table 3. For instance, the satisfiability degree
δ2 = δ (p2, a2) between preference p2 and annotation a2 is obtained by func-
tion μmax [reliability]. According to equation (1) and the generated preference
tree, the new interpretation of the satisfiability degrees is presented in column
δ′i. Second, we apply the truth degree described in Section 5.1 to obtain the
global satisfiability degree between q1 and t1, as follows: δγ1 (q1, t1) = max (min
(1, μQ (1/9)), ..., min (0.5, μQ (9/9))) = 0.67. This means that at least 67% of
preferences of q1 are satisfied by t1 to at least a degree 0.67.

Structural Similarity. Assume now that the structural similarities between ac-
tivities are given by SS (A, A′) = 0.72, SS (B, B′) = 0.85 and SS (C, C′) = 0.66,
and the costs of transformation of target activities are C (start) = C (end) =
C (A′) = 0, C (AND − split) = 0.1, C (B′) = C (C′) = 0.2, C (D′) = 0.4,
C (AND − join) = 0.1. In a similar way, the structural similarity degree be-
tween q1 and t1 is obtained as δγ2 (q1, t1) = 0.66 and δγ3 (q1, t1) = 0.75. Now,

50 K. Abbaci et al.

Table 3. Satisfiability degrees of each pair of matched activities

SATISFIABILITY DEGREE CALCULATION

ATOMIC PREFERENCES COMPLEX PREFERENCES

PREF. MEMBERSHIP FUNCTION PREFERENCE TREE

 -

 0.75

Table 4. Structural similarity and pref-
erence satisfiability degrees of a set of
target graphs.

TARGET
GRAPH

STRUCTURAL
SIMILARITY

SATISFIABILITY
DEGREE

Table 5. Ranking of target graphs accord-
ing to weighted average, min-combination
and lexicographic order methods.

WEIGHTED
AVERAGE

MIN-
COMBINATION

LEXICOGRAPHIC
ORDER

SS (q, t, M, E)=min (δγ2 , δγ3) = 0.66, which means that at least 66% of query ac-
tivities are mapped to at least a degree 0.66 and at most 66% of target activities
have transformation cost to at most 0.66.

Ranking. Consider the preference satisfiability and structural similarity degrees
of each potential target presented in Table 4. Table 5 summarizes the results of
the different ranking methods discussed in Section 6 (where ωSS = 0.75).

The Lexicographic order ensures that the first in the ordered list is that hav-
ing the best structural similarity and, in case of ties, that having the best pref-
erence satisfiability. For example t3 is better than all the other target graphs
because its structural similarity is the greatest value. However, a drawback of
this method is that the rank can be too drastic, as for the case of t5 : (0.78, 0.21)
and t6 (0.68, 0.72). In a such case, the idea of a weighted average is more suitable
since it allows for a compensation. Now, with the weighted average t6 is better
than t5 but generally it does not provide a clear semantics of the induced order.

Selecting and Ranking Business Processes with Preferences 51

Finally, the min-combination method relies on the worst satisfiability for each
service and does not highlight the structural similarity versus the preference
satisfiability. The weighted min-combination can overcome the above limitation.

8 Complexity Analysis and Experimental Results

In what follows, we first study the complexity of our approach and then present
the set of experiments conducted to (i) measure the time the preference eval-
uation task takes in the process model matchmaking and to (ii) evaluate the
effectiveness of the results.

8.1 Complexity Analysis

The complexity of our solution can be analyzed in three steps. In the case of
the evaluation of atomic preferences, it implies the time to find the relevant
annotation and the time to evaluate the atomic preference itself. Considering
the time to find the relevant annotation in a set of m annotations per activity,
the time to evaluate all the n atomic preferences of a user query is O (n · m), if
we consider that to evaluate an atomic preference is either trivial in the case of
numerical preferences or polynomial in the case of non-numerical preferences4
[24]. The complexity remains polynomial even if we consider that each query
activity defines as much atomic preferences as the number of considered non-
functional properties.

In the case of the evaluation of complex preferences, the worst case is when all
atomic preferences of each query activity are aggregated by complex preferences.
Therefore, we have the time to evaluate each atomic preference and the time to
construct and to evaluate the preference tree. The time to construct the tree is
linear, since we only analyze the complex preferences, which are never more than
half of the total of preferences. The time to evaluate the preference tree is also
linear w.r.t. the quantity of preferences. Finally, the evaluation of the linguistic
quantifiers is also polynomial, since it consists of an ordering of degrees plus the
choosing for an element satisfying a condition. As a conclusion, we can see that
the complexity of our solution is polynomial.

8.2 Experiments Setup

To run our experiments, we implemented a prototype that works over the sys-
tem proposed by [4]. We adapted their business process model to consider non-
functional annotations and their query model to consider preference annotations.
We also reused their test set of process models and queries.

The main goals of our experiments are to: (i) Measure the overhead time w.r.t.
the matchmaking time. It is important to note that matchmaking algorithms are
NP-complete; (ii) Measure the effectiveness of our results by means of Normal-
ized Discounted Cumulative Gain (NDCG) score; (iii) Compare the effectiveness
of our results with the crisp logic-based approach presented in [9].
4 The least common ancestor and the distances between concepts in an ontology can

be calculated previously, off query time.

52 K. Abbaci et al.

Test set setup. In our experiments, we considered two real-data sets containing
target graphs: the first one is composed of 24 graphs of flight reservation domain
having an average size of 18 activities, while the second has 32 graphs of hotel
reservation domain having an average size of 12 activities, which means that
the graphs have a quite considerable size. The graphs in each group have similar
structure, which induces the matchmaking results to be close and not empty. We
annotated the activities of each target with 10 annotations, one for each of the
10 considered QoS attributes. The attributed values were generated randomly.

Three different query process models were proposed: FlightReservationQuery1
(FR-1), FlightReservationQuery2 (FR-2) and HotelReservationQuery1 (HR-1).
The activities of these queries were annotated with textual preferences pertinent
to the domain of each activities. These textual preferences were described us-
ing natural language and their semantics considered the concept of atomic and
complex preferences.

We generated adapted versions of these queries according to the model pro-
posed in our approach (Fuzzy logic-based approach) and in [9] (Crisp logic-based
approach), since our objective is also to compare both approaches.

Definition of the ideal ranking. A group of experts was invited to manually ana-
lyze the satisfiability of each target graph w.r.t. to the textual queries considering
the behavior specification and QoS preferences. After the analysis, the experts
gave one single note to each target in a 1-7 Likert scale (1 for strongly different,
7 for strongly similar). At the end, an expert ranking was defined for each query.

Experiment execution. Five rankings were obtained after query evaluation:

1. (Crisp AVG) Results from crisp approach ordered by the weighted average
of structural similarity and preference satisfiability;

2. (Crisp LEX) Results from crisp approach ordered by the lexicographic order
of structural similarity and preference satisfiability;

3. (Fuzzy AVG) Results from our approach ordered by the weighted average of
structural similarity and preference satisfiability;

4. (Fuzzy LEX) Results from our approach ordered by the lexicographic order
of structural similarity and preference satisfiability;

5. (Fuzzy MIN) Results from our approach ordered by the min-combination of
structural similarity and preference satisfiability;

From the results of each ranking, the top-k targets were selected and the NDCG
scores were computed. The overhead time was calculated over the whole set of
results. All the evaluations were conducted on a machine with an Intel i5 2.8GHz
processor, 4GB of memory, running Windows 7 OS and Java VM version 1.6.

8.3 Experimental Results

As can be seen from the results presented in Table 6, the extra time taken to
evaluate the hard preferences is insignificant w.r.t. the matchmaking time. It
barely represents 1% of the matchmaking time.

Selecting and Ranking Business Processes with Preferences 53

Table 6. Matchmaking and preference evaluation times

Query/Time (ms) AMT APET
FR-1 82.8 0.9
FR-2 180.8 0.8
HR-1 50.9 0.8

Legend:
- AMT: Average Matchmaking Time
- APET: Average Preference Evaluation Time

FR-1 FR-2 HR-1
Crispy AVG 0.920 0.971 0.968
Crispy LEX 0.943 0.946 1.000
Fuzzy AVG 0.973 0.979 1.000
Fuzzy LEX 0.951 0.925 1.000
Fuzzy MIN 0.943 0.909 0.907

0.900

0.925

0.950

0.975

1.000

Crispy AVG Crispy LEX Fuzzy AVG Fuzzy LEX Fuzzy MIN

Fig. 5. Effectiveness using NDCG measure

Figure 5 presents the NDCG scores according to the different approaches and
their proposed ranking methods. In this case, the closer the score is to 1, the
closer the ranking proposed by the corresponding approach is to the ranking
defined by the experts. For query FR-1, all scores of fuzzy approaches overcame
the crisp ones. For query FR-2, fuzzy AVG score was better than crisp results.
For query HR-1, some crisp and fuzzy approaches provided the expert ranking.

The results clearly show that both crisp and fuzzy approaches provided a good
effectiveness, although the scores of fuzzy AVG method always overcome crisp
scores. Fuzzy LEX score was very unstable w.r.t. to the expert ranking since
the experts tried to find a compromise between structure and quality, whereas
in lexicographic order, the priority is given to the structural similarity while the
preference similarity is only used to break ties. The restrictiveness of Fuzzy MIN
proved to be very ineffective, although the semantics of its results is very strong.

9 Conclusion

In this paper, we have proposed an approach for web service selection and rank-
ing. In our approach, the evaluation process takes into account two aspects: (i)

54 K. Abbaci et al.

structural similarity, and (ii) preference satisfiability. User preferences are mod-
elled with fuzzy predicates. Both preference satisfiability and structural similar-
ity are interpreted thanks to linguistic quantifiers. This makes the matchmaking
process more flexible and realistic. Some ranking methods have been proposed
as well. We also introduced a complexity analysis of our solution and we showed
that the preference evaluation does not raise the complexity of process model
matchmaking. Finally, we presented the set of experiments conducted over an
implementation of our approach to measure the effectiveness of the results. These
experiments showed that our approach gathered with the weighted average pro-
poses a better ranking than the considered crisp solution.

As future work, we plan to apply fuzzy set-based techniques to evaluate hard
constraints over QoS attributes (such as cost ≥ 20) in process model matchmak-
ing. We also plan to investigate other fuzzy aggregation and ranking methods
that minimize the restrictiveness of those presented in this work.

Acknowledgment. This work has received support from the French National
Agency for Research (ANR) on the reference ANR- 08-CORD-009.

References

1. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery
with owls-mx. In: Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems, ser. AAMAS 2006, pp. 915–922 (2006)

2. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for busi-
ness process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

3. van Dongen, B., Dijkman, R., Mendling, J.: Measuring similarity between busi-
ness process models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS,
vol. 5074, pp. 450–464. Springer, Heidelberg (2008)

4. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking bpel processes for
service discovery. IEEE Transactions on Services Computing 3, 178–192 (2010)

5. Şora, I., Lazăr, G., Lung, S.: Mapping a fuzzy logic approach for qos-aware service
selection on current web service standards. In: ICCC-CONTI, pp. 553–558 (2010)

6. Zhang, Y., Huang, H., Yang, D., Zhang, H., Chao, H.-C., Huang, Y.-M.: Bring
qos to p2p-based semantic service discovery for the universal network. Personal
Ubiquitous Computing 13(7), 471–477 (2009)

7. Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: Proc. of ECOWS,
pp. 265–274 (2006)

8. Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: Why and how? In:
Proc. of FQAS, pp. 89–103 (1996)

9. Lemos, F., Gater, A., Grigori, D., Bouzeghoub, M.: Adding preferences to semantic
process model matchmaking. In: Proc. of GAOC (2011)

10. Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: A system for the ef-
ficient execution of multi-parametric ranked queries. In: SIGMOD Conference,
pp. 259–270 (2001)

11. Bosc, P., Pivert, O.: Sqlf: a relational database language for fuzzy querying. IEEE
Trans. on Fuzzy Systems 3(1), 1–17 (1995)

Selecting and Ranking Business Processes with Preferences 55

12. Chomicki, J.: Preference formulas in relational queries. ACM Transactions on
Database Systems 28(4), 427–466 (2003)

13. Kießling, W.: Foundations of preferences in database systems. In: VLDB. VLDB
Endowment, pp. 311–322 (2002)

14. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE,
pp. 421–430 (2001)

15. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
16. D’Mello, D.A., Kaur, I., Ram, N., Ananthanarayana, V.S.: Semantic web service

selection based on business offering. In: Proc. of EMS, pp. 476–481 (2008)
17. Agarwal, S., Lamparter, S., Studer, R.: Making Web services tradable: A policy-

based approach for specifying preferences on Web service properties. Web Seman-
tics: Science, Services and Agents on The World Wide Web 7(1), 11–20 (2009)

18. Sathya, M., Swarnamugi, M., Dhavachelvan, P., Sureshkumar, G.: Evaluation of
qos based web- service selection techniques for service composition. IJSE 1, 73–90
(2010)

19. Lin, M., Xie, J., Guo, H., Wang, H.: Solving qos-driven web service dynamic com-
position as fuzzy constraint satisfaction. In: Proc. of EEE, pp. 9–14 (2005)

20. Chen, M.-F., Gwo-Hshiung, T., Ding, C.: Fuzzy mcdm approach to select service
provider. In: Proc. of ICFS (2003)

21. Xiong, P., Fanin, Y.: Qos-aware web service selection by a synthetic weight. In:
Proc. of FSKD (3), pp. 632–637 (2007)

22. Hafeez, O., Chung, S., Cock, M.D., Davalos, S.: Towards an intelligent service
broker with imprecise constraints: Fuzzy logic based service selection by using
sawsdl. TCSS 702 Design Project in Computing and Software Systems, University
of Washington (2008)

23. Dumas, M., García-Bañuelos, L., Polyvyanyy, A., Yang, Y., Zhang, L.: Aggregate
quality of service computation for composite services. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 213–227. Springer,
Heidelberg (2010)

24. Wu, Z., Palmer, M.S.: Verb semantics and lexical selection. In: Proc. of ACL,
pp. 133–138 (1994)

25. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic
business process models. In: Proc. of the Fourth APCCM, vol. 67, pp. 71–80 (2007)

26. Koschmider, A., Oberweis, A.: How to detect semantic business process model
variants? In: Proc. of the 2007 ACM SAC, pp. 1263–1264 (2007)

27. Glöckner, I.: Fuzzy Quantifiers in Natural Language: Semantics and Computational
Models. Der Andere Verlag, Osnabrück (2004)

28. Yager, R.R.: General multiple-objective decision functions and linguistically quan-
tified statements. International Journal of Man-Machine Studies 21, 389–400 (1984)

29. Liétard, L.: A new definition for linguistic summaries of data. In: IEEE World
Congress on Computational Intelligence, Fuzzy. IEEE, Hong-Kong (2008)

30. Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing.
In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in
Databases. IGI Global, pp. 97–114 (2008)

Efficient Retrieval of Similar Business Process

Models Based on Structure

(Short Paper)

Tao Jin1,2, Jianmin Wang2, and Lijie Wen2

1 Department of Computer Science and Technology, Tsinghua University, China
2 School of Software, Tsinghua University, China

Abstract. With the business process management technology being
more widely used, there are more and more business process models,
which are typically graphical. How to query such a large number of mod-
els efficiently is challenging. In this paper, we solve the problem of query-
ing similar models efficiently based on structure. We use an index named
TaskEdgeIndex for query processing. During query processing, we esti-
mate the minimum number of edges that must be contained according
to the given similarity threshold, and then obtain the candidate models
through the index. Then we compute the similarity between the query
condition model and every candidate model based on graph structure by
using maximum common edge subgraph based similarity, and discard the
candidate models that actually do not satisfy the similarity requirement.
Since the number of candidate models is always much smaller than the
size of repositories, the query efficiency is improved.

1 Introduction

The wide use of business process management technology results in a large num-
ber of business process models. These models are typically graphical. For exam-
ple, there are more than 200,000 models in China CNR Corporation Limited.
How to query such a large number of models efficiently is challenging. For exam-
ple, before a designer creates a new business process model, if s/he can obtain
the models nearly containing her/his draft model (which is always incomplete)
as a subgraph, and then continue to work on these models instead of starting
from scratch, it would save a lot of time and it is less error-prone. Since the
number of models is large, the efficiency of similarity retrieval is very important.

The problem to be solved in this paper can be described as follows. Given a
query condition model q, quickly find all the models (notated as S) in the model
repository R satisfying that, for every model m in S, we can find a subgraph sub
in m, the similarity between sub and q based on structure must not be less than
a specified threshold θ.

There are many methods to compute the similarity between graphs based
on their structure such as the method based on graph edit distance, maximum
common subgraph. In this paper, we use the maximum common edge subgraph

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 56–63, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Efficient Retrieval of Similar Business Process Models Based on Structure 57

(MCES) based similarity, which is widely used. For example, MCES based sim-
ilarity was used in [1,2]. MCES based similarity is superior to graph edit based
similarity in that no particular edit operations together with their costs need
to be defined. Since the computation of MCES based similarity is NP-hard, it
would be much time-consuming if we scan the repository sequentially and com-
pute the similarity between the query condition model and every model in the
repository. In this paper, we use a filtering-verification framework to reduce the
number of times of MCES based similarity computation. Our contributions in
this paper can be summarized as follows.

– We apply MCES based similarity algorithm to business process models.
– We use an index named TaskEdgeIndex to speed up the query processing.
– We implement our approach in the BeehiveZ system and do some experi-

ments to evaluate our approach.

There are many different notations used to capture the business processes, such
as BPMN, BPEL, XPDL, EPC, YAWL, PNML and so on. Among all the nota-
tions, Petri net has good formal foundation and simple graph notations, so that
it can not only be understood and used easily but also can be used for analysis.
Many researchers have worked on the transformation from other notations to
Petri nets. You can refer to [3] for an overview. To deal with business process
models with different formats in an uniform way, we assume that all the models
in the repository are represented as or transformed to Petri nets.

2 Preliminaries

Petri net was introduced into business process management area for modeling,
verification and analysis in [4]. The details of Petri net can be found in [5].

Definition 1 (Petri net). A Petri net is a triple N = (P, T, F), with P and T
as finite disjoint sets of places and transitions (P ∩ T = ∅), and F ⊆ (P × T) ∪
(T ×P) is a set of arcs (flow relations). We write X = (P ∪T) for all nodes of a
Petri net. For a node x ∈ X, •x = {y ∈ X |(y, x) ∈ F}, x• = {y ∈ X |(x, y) ∈ F}.

In this paper, we measure the similarity between two Petri nets using MCES
based similarity. To obtain the MCES of two given graphs, first we get the line
graphs of the original graphs, and then get the modular product graph of the
line graphs, finally, we get the maximum clique of the modular product graph.
When we project the maximum clique back to the original graphs, we can get
the MCES of the two given original graphs. The details can be found in [1]. In
the following, we give the corresponding definitions for Petri net.

Definition 2 (Task edge). Given a Petri net N = (P, T, F), a task edge is
a pair te = 〈t1, t2〉 satisfying that t1, t2 ∈ T ∧ ∃p ∈ P (p ∈ t1 • ∧p ∈ •t2). We
distinguish the source and target of a task edge as s(te) = t1, t(te) = t2, and all
the task edges is denoted as TE(N).

58 T. Jin, J. Wang, and L. Wen

Definition 3 (Task edge graph). A directed graph TEG(N) = (V, E) is the
task edge graph of a Petri net N = (P, T, F) satisfying: V = TE(N), ∀te1, te2 ∈
V , te1 is adjacent to te2 iff t(te1) = s(te2). We denote the incident task as
adj(te1, te2) = t(te1) = s(te2), which means that the task edge te1 and te2 share
the same task. If te1 is adjacent to te2, 〈te1, te2〉 ∈ E. We denote the set of
vertices of a graph G as V (G) and the set of edges as E(G).

Definition 4 (Task edge graph modular product). The modular product
of two task edge graphs TEG1 and TEG2, MPG(TEG1, TEG2), is defined
on the vertex set V (TEG1) × V (TEG2) where the respective vertex labels are
compatible and two vertices (ui, vi) and (uj , vj) of modular product are adja-
cent when (ui, uj) ∈ E(TEG1) ∧ (vi, vj) ∈ E(TEG2) ∧ w(ui, uj) = w(vi, vj) or
(ui, uj) �∈ E(TEG1) ∧ (vi, vj) �∈ E(TEG2). Here w(ui, uj) = w(vi, vj) indicates
that the labels of adj(ui, uj) and adj(vi, vj) are compatible. Compatible labels
means that the labels are equal when label similarity is not considered or similar
when label similarity is considered.

Definition 5 (Sub-similarity). Given two business process models represented
as Petri nets N1 and N2, we can construct the task edge graph modular prod-
uct first, and then find the biggest clique in the modular product, which is the
maximum common subgraph between the corresponding task edge graphs, denoted
as ω(teg(N1), teg(N2)). The MCES based similarity between N1 and N2 can be
measured as:

subSim(N1, N2) =
|V (ω(teg(N1), teg(N2)))|
min(|TE(N1)|, |TE(N2)|) . (1)

3 Index Construction and Query Processing

To improve the query efficiency, we use an index named TaskEdgeIndex as a fil-
ter to obtain a set of candidate models which contain at least a specific number
of task edges in the query condition model. Then in the verification stage, we
calculate the MCES based similarity between query condition model and every
candidate model and discard all the candidate models with the similarity less
than the specified threshold θ. Since the number of candidate models is always
much smaller than the size of repository, the query efficiency can be improved.
Moreover, the computation of task edges for the models in the repository is com-
pleted during the construction of TaskEdgeIndex, so during the query processing
the time is saved.

3.1 Index Construction

The TaskEdgeIndex sets up the relation between task edges and models, and it
has two parts (we only discuss the index on logical level here, the information of
implementation can be found in Section 4). One part is a forward index (notated
as FI), which stores the mapping from models to task edges. The items indexed

Efficient Retrieval of Similar Business Process Models Based on Structure 59

in FI are like (m, TE), in which, m is denoted as a model, represented as a Petri
net, and TE is the set of task edges of the corresponding model. FI can be used
to obtain the task edges of a model. The other part is an inverted index (notated
as II), which stores the mapping from task edges to models. The items indexed
in II are like (te, te.list), in which, te is denoted as a task edge, and te.list is
denoted as a set of models where the corresponding te appears. II can be used
to obtain all the models that contain a specific task edge.

Given a model represented as a Petri net, Algorithm 1 extracts all the task
edges. Every place in the model is traversed and the corresponding task edges
are extracted.

Algorithm 1. Task edges extraction (getTaskEdges)
input : a model m represented as a Petri net
output: all the task edges in the given model m

1 foreach p in P do
2 foreach tpre ∈ •p do
3 foreach tsuc ∈ p• do
4 TE.add(〈tpre, tsuc〉);

5 return TE;

Based on the Algorithm 1, the TaskEdgeIndex can be constructed as described
in Algorithm 2. From Algorithm 2, we can see that when a new model is added
to the repository, the index can be updated incrementally. When one model is
deleted from the repository, the mapping between the model and its task edges
can be deleted from TaskEdgeIndex directly.

Algorithm 2. Add a model to TaskEdgeIndex
input: a model m represented as a Petri net

1 TE = getTaskEdges(m);
2 foreach te in TE do
3 FI.add(m,te);
4 II.add(te,m);

3.2 Query Processing

Based on TaskEdgeIndex, the query processing can be divided into two stages,
namely, the filtering stage and the refinement stage. Firstly, in the filtering stage,
we extract all the task edges from the query condition model q by using Algo-
rithm 1. and use the inverted index (II) to get the set of candidate models where
at least θ×|TE(q)| task edges from the query condition model appear. Secondly,
in the refinement stage, for every candidate model, we calculate the MCES based

60 T. Jin, J. Wang, and L. Wen

similarity between it and the query condition model by using Equation 1. If the
similarity is less than the specified threshold θ, the corresponding candidate
model is removed from the candidate set. Finally, all the models satisfying the
user’s requirement are returned.

Algorithm 3. Retrieve the similar models
input : a query condition model q, and the model similarity threshold θ
output: all the models satisfying the requirement

// filtering stage

1 qTE = getTaskEdges(q);
2 foreach te in qTE do
3 ret.add(II.getModelSet(te));

4 foreach c in ret do
5 mTE = FI.getTaskEdges(c);
6 if |mTE ∩ qTE| < θ × |qTE| then
7 ret.remove(c);

// refinement stage

8 foreach c in ret do
9 if subSim(c,q)<θ then

10 ret.remove(c);

11 return ret;

The above procedure is described as Algorithm 3. Here, we can see that the
model similarity threshold has effect on the query efficiency, because it affects
the size of candidate set after Line 7 executed.

4 Tool Support and Evaluation

To evaluate our approach, we implemented it in our system named BeehiveZ.
BeehiveZ can be downloaded from http://code.google.com/p/beehivez/.
BeehiveZ was developed in Java, all the models were stored as Text in MySQL
RDBMS. The TaskEdgeIndex was managed by Apache Lucene . The model sim-
ilarity threshold can be configured in BeehiveZ. Since the model similarity has
effect on the query efficiency as shown in Section 3.2, to measure the query time
cost at the worst case, we set the model similarity threshold to be 0 by default
in our experiments, which means that even if there is only one common edge
between one model and the query condition model, the model will be returned
as a resulting model. During our experiments, we used a computer with Intel(R)
Core(TM)2 Duo CPU E8500 @3.16GHz and 2GB memory. This computer ran
Ubuntu 9.04 and JDK6. The heap memory for JVM was configured as 1GB.

All the models in our experiments were generated automatically using the
rules from [5]. According to 7PMG proposed in [6], models should be decomposed

http://code.google.com/p/beehivez/

Efficient Retrieval of Similar Business Process Models Based on Structure 61

if they have more than 50 elements, so we generated models with the maximum
number of transitions as 50, the number of places and arcs in a model is not
configurable. Firstly, we generated 10 query condition models and added them
to the repository. And then, we generated more models by batch. At last, there
were more than 600,000 models in the repository. The number of models with
different number of transitions followed the normal distribution. There were
totally 15,605,621 transitions, and the number of transitions with different labels
was 242,234.

140

160

8

9
ou

r)
25

models

80

100

120

140

160

e
co
st
(S
ec
)

5

6

7

8

9
ti
m
e
co
st
(H
ou

r)

15

20

25

si
ze

(G
B)

models

TEIndex

40

60

80

100

120

140

160

Q
ue

ry
ti
m
e
co
st
(S
ec
)

2

3

4

5

6

7

8

9
st
ru
ct
io
n
ti
m
e
co
st
(H
ou

r)

10

15

20

25

St
or
ag
e
si
ze

(G
B)

models

TEIndex

0

20

40

60

80

100

120

140

160

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

Q
ue

ry
ti
m
e
co
st
(S
ec
)

0

1

2

3

4

5

6

7

8

9

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

In
de

x
co
ns
tr
uc
ti
on

ti
m
e
co
st
(H
ou

r)

0

5

10

15

20

25

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

50
K

00
K

St
or
ag
e
si
ze

(G
B)

models

TEIndex

0

20

40

60

80

100

120

140

160

50
K

10
0K

15
0K

20
0K

25
0K

30
0K

35
0K

40
0K

45
0K

50
0K

55
0K

60
0K

Q
ue

ry
ti
m
e
co
st
(S
ec
)

The number of models in the repository

0

1

2

3

4

5

6

7

8

9

50
K

10
0K

15
0K

20
0K

25
0K

30
0K

35
0K

40
0K

45
0K

50
0K

55
0K

60
0K

In
de

x
co
ns
tr
uc
ti
on

ti
m
e
co
st
(H
ou

r)

The number of models in the repository

0

5

10

15

20

25

50
K

10
0K

15
0K

20
0K

25
0K

30
0K

35
0K

40
0K

45
0K

50
0K

55
0K

60
0K

St
or
ag
e
si
ze

(G
B)

The number of models in the repository

models

TEIndex

0

20

40

60

80

100

120

140

160

50
K

10
0K

15
0K

20
0K

25
0K

30
0K

35
0K

40
0K

45
0K

50
0K

55
0K

60
0K

Q
ue

ry
ti
m
e
co
st
(S
ec
)

The number of models in the repository

0

1

2

3

4

5

6

7

8

9

50
K

10
0K

15
0K

20
0K

25
0K

30
0K

35
0K

40
0K

45
0K

50
0K

55
0K

60
0K

In
de

x
co
ns
tr
uc
ti
on

ti
m
e
co
st
(H
ou

r)

The number of models in the repository

0

5

10

15

20

25

50
K

10
0K

15
0K

20
0K

25
0K

30
0K

35
0K

40
0K

45
0K

50
0K

55
0K

60
0K

St
or
ag
e
si
ze

(G
B)

The number of models in the repository

models

TEIndex

(a) query time cost (b) index construction time cost (c) storage size

Fig. 1. The performance of TaskEdgeIndex

The change of retrieval efficiency can be found in Fig. 1(a). With more and
more models added to the repository, it is more time-consuming, but the time
is still acceptable. Because for different query condition models, the change of
query time is similar, we only show the query time on the query condition model
with 26 transitions here. In the above experiment, we set the model similarity
threshold to be 0. The query efficiency changes along with the change of model
similarity threshold, which can be found in Table 1. There were more than
600,000 models in the repository, and we also used the same query condition
model with 26 transitions. With the model similarity threshold increases, the
query time cost decreases, which means that TaskEdgeIndex can discard more
models with a higher model similarity threshold. The index construction time
can be found in Fig. 1(b). It shows the accumulated time for index construction
from scratch. Since our index can be constructed incrementally, when new models
are added to the repository, the index can be updated immediately, the time for
index updating is very short. The storage size of index can be found in Fig. 1(c).
The storage size of index is less than 3% of the models.

Table 1. Query time (sec) with different model similarity thresholds

0 0.1 0.2 0.4 0.6 0.9 1.0

time(sec) 145.43 11.46 7.87 7.84 7.81 7.69 7.68

62 T. Jin, J. Wang, and L. Wen

5 Related Work

There are already some works on business process model query. In [7] the authors
used an indexing technique to search for matched process models, it belongs to
the category of exact query. BP-QL was proposed in [8], and it is a language
used for BPEL model query. The VisTrails system [9] allows users to query busi-
ness process by example and to refine business processs by analogies. A business
process search engine, WISE, was proposed in [10], which returns the most spe-
cific business process hierarchies containing matched keywords. A framework was
proposed in [11], which is based on a visual query language for business process
models named BPMN-Q, and makes use of the robust indexing infrastructure
available by RDBMS. In [12], the authors use path indexes to improve the exact
business process model query efficiency. In [13], the authors use ordering relation
indexes to improve the business process model query efficiency based on behav-
ior. In [14], the authors use an index named TARIndex to improve the similar
business process model retrieval based on behavior. But all the above works have
not touched the area of similar business process model retrieval based on graph
structure, while we solve the problem of efficient similar model retrieval based
on structure in this paper. In [15], the authors used some structure features to
estimate the similarity between models and an index technique was used, and
then graph edit based similarity is measured between some selected models and
the query condition model. But it is not guaranteed that all the models satisfy-
ing the requirement will be returned as a result, because the relation between
the structure feature filtering and the graph edit based similarity measure is not
clear. Some correct models may not pass the filtering stage. While through our
approach, all the models satisfying the requirement will be returned as resulting
models. If one model cannot pass our filtering stage, it means that the investi-
gated model does not contain enough number of common edges with the query
condition model, so it is impossible to have a subgraph sufficiently similar to the
query condition model according to MCES based similarity.

6 Conclusion and Future Work

In this paper we focus on improving the efficiency of similar process model query
based on graph structure. We use MCES based similarity to measure the similar-
ity between business process models. To improve the query efficiency, we use an
index named TaskEdgeIndex to support query processing. The TaskEdgeIndex
works as a filter, so that we only need to compute the similarity between the
query condition model and every model in the candidate set which is obtained
with the use of TaskEdgeIndex. The size of candidate set is always much smaller
than the size of the repository, that is why the query efficiency can be improved.
Moreover, the task edges computation of models in the repository is completed
during the TaskEdgeIndex construction, so during the query processing the time
is saved. Analysis and experiments show that our approach is efficient.

Efficient Retrieval of Similar Business Process Models Based on Structure 63

However, we only consider the tasks and the execution order between tasks
when we measure the similarity between business process models. We will also
consider the data processing and the resource allocation in the future.

Acknowledgments. Thework is supportedby theNational Science andTechnol-
ogy Major Project (HGJ) of China (No. 2010ZX01042-002-002-01), the National
Basic Research Program (973 Plan) of China (No. 2009CB320700), the National
High-Tech Development Program (863 Plan) of China (No. 2008AA042301) and
an NSF Project of China (No. 61003099).

References

1. Raymond, J.W., Gardiner, E.J., Willett, P.: RASCAL: Calculation of Graph Simi-
larity using Maximum Common Edge Subgraphs. Comput. J. 45(6), 631–644 (2002)

2. Yan, X., Yu, P.S., Han, J.: Substructure Similarity Search in Graph Databases. In:
SIGMOD Conference, pp. 766–777 (2005)

3. Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri Net Transformations for Business
Processes - A Survey. T. Petri Nets and Other Models of Concurrency 2, 46–63
(2009)

4. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

5. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

6. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven Process Modeling Guide-
lines (7PMG). Information & Software Technology 52(2), 127–136 (2010)

7. Mahleko, B., Wombacher, A.: Indexing Business Processes based on Annotated
Finite State Automata. In: ICWS, pp. 303–311 (2006)

8. Beeri, C., Eyal, A., Kamenkovich, S., Milo, T.: Querying Business Processes. In:
VLDB, pp. 343–354 (2006)

9. Scheidegger, C.E., Vo, H.T., Koop, D., Freire, J., Silva, C.T.: Querying and Re-
Using Workflows with VisTrails. In: SIGMOD Conference, pp. 1251–1254 (2008)

10. Shao, Q., Sun, P., Chen, Y.: WISE: A Workflow Information Search Engine. In:
ICDE, pp. 1491–1494 (2009)

11. Sakr, S., Awad, A.: A Framework for Querying Graph-Based Business Process
Models. In: WWW, pp. 1297–1300 (2010)

12. Jin, T., Wang, J., Wu, N., La Rosa, M., ter Hofstede, A.H.M.: Efficient and Ac-
curate Retrieval of Business Process Models Through Indexing. In: Meersman, R.,
Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 402–409. Springer,
Heidelberg (2010)

13. Jin, T., Wang, J., Wen, L.: Querying Business Process Models Based on Semantics.
In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588,
pp. 164–178. Springer, Heidelberg (2011)

14. Jin, T., Wang, J., Wen, L.: Efficient Retrieval of Similar Business Process Models
Based on Behavior. Technical report. Tsinghua University (2011)

15. Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with
Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T.S., Herrero, P.
(eds.) OTM 2010. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010)

Preservation of Integrity Constraints by Workflow

Xi Liu1,2,3,�, Jianwen Su3,��, and Jian Yang4

1 State Key Laboratory for Novel Software Technology, Nanjing University, China
2 Department of Computer Science and Technology, Nanjing University, China

3 Department of Computer Science, University of California at Santa Barbara, USA
4 Department of Computing, Macquarie University, Australia

liux@seg.nju.edu.cn, su@cs.ucsb.edu, jian.yang@mq.edu.au

Abstract. Integrity constraints on data are typically defined when workflow and
business process models are developed. Keeping data consistent is vital for work-
flow execution. Traditionally, enforcing data integrity constraints is left for the
underlying database system, while workflow system focuses primarily on per-
forming tasks. This paper presents a new mechanism that turns a workflow into
an equivalent one that will preserve integrity constraints. For a given workflow
schema (or model) and a given set of data integrity constraints, an algorithm de-
veloped in this paper injects additional conditions into the workflow schema that
restricts possible execution paths. The modified workflow will guarantee data
consistency (i.e., satisfaction of the integrity constraints) whenever the workflow
updates the database(s). In addition, we show that our injection mechanism is
“conservative complete”, i.e., the conditions inserted are weakest possible. By
making workflow execution self-behaving, enforcing integrity constraints over
multi-databases is avoided, and constraints specific to a workflow can also be en-
forced effectively. Mechanisms such as this enhance independence of workflow
executions from the environment—a much desired property.

1 Introduction

Data integrity is the assurance of data correctness, consistency and completeness. From
the database perspective, data integrity can be imposed within a database at its design
stage through the use of standard rules and procedures, and maintained through the use
of error checking and validation routines [2]. Data is the most important asset for any
business to make decisions and gain global competitiveness. Decisions made on data
that lack integrity can result in losing opportunities and even losing business.

Database management systems (DBMSs) are developed for storing and managing
data that is generated and updated by various applications. Workflow systems are an
important class of software systems that manage organizational business processes and
normally utilize database systems for storing data, executing tasks, and logging. Work-
flow has been studied for over a decade [16]. Recently with the emerging web service
technology, notations and specifications for workflows have been developed such as

� Supported in part by National Natural Science Foundation of China (No.90818022 and
No.61021062) and a grant from China Scholarship Council.

�� Supported in part by NSF grant IIS-0812578 and a grant from IBM.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 64–81, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Preservation of Integrity Constraints by Workflow 65

BPMN, BPEL, YAWL, etc. These workflow models mostly focus on the aspect of task
flow control and completely rely on the underlying database systems to take care of
data integrity. However an enterprise workflow system can run across different agen-
cies, departments and organizations, thus it needs to interact with different databases.
Take an online shopping workflow as an example, it may need to communicate with a
customer database that is only logically integrated from databases of different branches
and other partner companies. Distributed DBMS technology does not provide a satis-
factory solution in enforcing effectively data integrity defined across multiple database
systems. Even when a DBMS detects a violation, it is often difficult to locate the origin
in a workflow that causes the error. Also, these underlying databases can be shared by
many applications and workflow systems. On the other hand, there are data integrity
constraints specific to individual workflow, i.e., they are “local” to the workflow in
question. It is not appropriate to enforce such local constraints on databases shared
among different applications including other workflows. With the current trend of us-
ing “cloud” as the outsourcing facility for data storage and management, pushing local
data integrity constraints into a shared database system may result in undesirable ef-
fects. Moreover, it is unclear that cloud would realize mechanisms to maintain data
consistency in loosely coupled databases [8, 13].

A database system can only check/validate data integrity. It still relies on applica-
tions and workflow to produce the correct data and updates, i.e., adhered to integrity
constraints. Therefore, in a complex workflow system interacting with distributed data-
bases, it will become an obstacle to always let the database systems check data integrity
and come back to the workflow to make necessary corrections for it to proceed.

To overcome the above discussed problems, we propose a mechanism to make a
workflow self-behaving in terms of data integrity. The key novelty is to modify a work-
flow schema by injecting certain conditions according to the defined integrity con-
straints to guard against inconsistent updates. The data integrity is therefore guaranteed
within the workflow, and we further gain the independence of workflow execution from
the underlying database systems concerning workflow related data updates.

We develop Integrity Preservation Mechanism (IPM) based on a recent artifact-centric
workflow model of [17]. The concept of artifact-centricity in workflow modeling was
introduced in [24]. There have been increased studies on design and modeling using
artifact-centric [5, 6, 17, 22] or other data-aware approaches [12, 21]. The technical de-
velopment of this paper uses the artifact-centric modeling language GSM (Guard-Stage-
Milestone) [17]. The language is a declarative meta-model using event-condition-action
rules to capture business stakeholders’ view [9, 18]. We develop a formal model to spec-
ify the execution of GSM workflow based on transition systems and the Z notation [25].
Specified integrity constraints are ensured by strengthening the guard of the operations
in the execution workflow schema to prohibit updates that may violate integrity. This
process is called guard injection in this paper.

To make guard injection work properly, the injection must be strong enough to pre-
vent any integrity violations and weak enough to allow some or even all correct execu-
tions to proceed. The technical challenge is to formulate the appropriate balance in the
injection algorithm design.

66 X. Liu, J. Su, and J. Yang

Customer(custid PRIMARY KEY,
email NOT NULL,
addr,
UNIQUE(email))

Ship(shipid PRIMARY KEY,
ordid NOT NULL,
addr NOT NULL,
name NOT NULL,
from NOT NULL,
ship stat,
FOREIGN KEY(ordid)

REFERNECES Order)

Inventory (invid PRIMARY KEY,
prod, avail qty, loc)

Order(ordid PRIMARY KEY,
custid NOT NULL,
invid NOT NULL,
shipid, qty, ord stat,
FOREIGN KEY(custid)

REFERNECES Customer
FOREIGN KEY(invid)

REFERNECES Inventory
FOREIGN KEY(shipid)

REFERNECES Ship)

Fig. 1. Key artifacts in EzMart

This paper makes the following technical contributions.

1. We formulate a new technical problem of preserving integrity constraints by mod-
ifying workflow specifications, develop an algorithm for solving this problem, and
prove the correctness of the algorithm.

2. We introduce the concept of “conservative runs” and show that our solution is also
“conservative complete”, i.e., injections are always weakest possible.

3. In carrying out this work, we also define a formal transition-system semantics for
GSM (whose alternative semantics were developed recently [9, 18]).

We note here that although IPM is based on GSM, the methodology and techniques
developed in this paper can be easily applied to other workflow specification languages
supporting logical data models. In particular, IPM works as long as the action effect can
be formulated as a transition system (and the workflow execution is guarded).

The remainder of the paper is organized as follows. Section 2 motivates the problem
and illustrates GSM with an example. Section 3 sketches a formal semantics for GSM.
Sections 4 and 5 are devoted to the injection algorithm and correctness proof, resp.,
with the concepts of soundness and conservative completeness included in Section 5.
Section 6 reports on related work, and Section 7 concludes the paper. Due to space
limitation, we omit detailed formalisms and technical proofs in the paper, and include
them in an online appendix [23].

2 A Motivating Example and GSM

In this section, we illustrate the main problem with an example workflow. The example
is specified in the declarative artifact-centric workflow model GSM [17], which provides
the technical setting for this paper.

2.1 The EzMart Workflow

In an online shopping center “EzMart”, a registered customer can buy products and
the purchased items are delivered to the customer’s address. Modeled with an artifact-
centric approach [6], EzMart contains four artifact classes: Customer, Order, Ship, and

Preservation of Integrity Constraints by Workflow 67

Customer
register

Order
create

Order
pay

Order
paid

Ship
prepare

Register
request

Checkout

Bank
reply

Pay by
bank

Order
further action

Contact
customer

support

Order
action taken

Customer
support

reply

Inventory
sell

…

…

…

Environment (customer, manager, …)

Fig. 2. The EzMart workflow in BPMN-like notation

Inventory. The artifacts are structured as relations as shown in Fig. 1, where ord stat
can be one of “CREATE”, “INVUPD”, “CANCEL”, or “RETURN”, and ship stat can be
one of “PREPAR”, “SHIPIN”, “FINISH”, or “FAILED”.

Fig. 2 shows a part of EzMart which is a typical online store process.1 The customer
first registers, can then select products and proceed to checkout. An order is created
when the checkout request is made and the customer pays the order using an online
bank service. When the order is paid, a shipment process starts and it completes when
the package is delivered to the customer. After an order is made, the customer may
contact the customer support to take further action(s) on the order, and the order may
be returned or canceled (and also possibly changed to other status), the order status is
updated accordingly. The back-end inventory management will calculate the available
quantity as an order is paid. When the quantity is too low, the inventory manager is
notified and a replenishment process starts that will eventually update the quantity (not
showed in Fig. 2).

2.2 GSM Specification of EzMart

We now specify key components of EzMart using the workflow language GSM [17].
GSM models complex business process with globalization and out-sourcing in a declar-
ative fashion. The behavior and constraints of business operations are specified in event-
condition-action rules.

There are two key constructs in GSM: the information model and the lifecycle model.
The former consists of the artifacts and their data attributes (as described in Subsec-
tion 2.1). The latter is specified using “stages” consisting of guards, milestones, and
stage bodies. Intuitively, a stage represents a phase of processing of an artifact. A stage
is entered if its guard is true, and ends when a milestone is accomplished (a condition
becomes true). Fig. 3 shows a specification of EzMart in GSM that extends the BPMN
workflow shown in Fig. 2. In Fig. 3, a stage (body) is shown as a rectangular with round-
corners, a diamond on a stage is the guard (diamond with a “+” in the middle represents
the corresponding stage will create a new artifact instance), and a circle on a stage is
the milestone (a circle with a bullet indicates a finish milestone, a milestone that can
complete a lifecycle).

1 In Fig. 2, we use the inclusive gateway of in BPMN, denoted by a diamond with a cycle in the
middle. Such a gateway allows one or more branches following to be taken.

68 X. Liu, J. Su, and J. Yang

Customer

Order

prepare+ readyShip

Inventory

paid+∧…

register registered
+

pay paid

ship sent

inv

initiate initiated
+ sell sold

deliver

report result

update by

manager
added

qtyav<10

create created+ further

action
actiontaken

checkout ostat :=
custsuppreply.ostat

invokes custsuppostat :=CREAT;
qty := checkout.qty;
custid := checkout.custid; ...

payorder∧
ordid=payorder.ordid ∧…

paid+∧…

Fig. 3. GSM lifecycle model of EzMart

We focus on artifact class Order to illustrate how the GSM model of EzMart works.
When the customer is ready to checkout, a checkout event is sent to EzMart. An Order
artifact is then created by stage create, where ord stat is set to “CREATE”, custid and
ordid (reference to associated customer and inventory, resp.) and the qty are set accord-
ing to the content of the triggering event checkout.

To pay the order, the customer sends a payorder event with ordid matching the
artifact ID. The stage pay then opens, and bank service is invoked to pay the order.
When the bank replies, the finish milestone paid is achieved.

After the order is made, the customer can request some further actions on the order.
If the customer does so, stage further action opens and customer support human task
custsupp is invoked. The milestone actiontaken is achieved by the reply event of cus-
tomer support. This reply takes the immediate effect on milestone actiontaken to change
the status of the order, e.g. mark the status of the order as canceled.

When the order is paid, the control event paid+ (achieving the milestone paid) can
trigger stages prepare of Ship and sell of Inventory. Furthermore, in stage sell, the
ord stat of the Order artifact identified by the ID retrieved from the event paid+ is
assigned to “INVUPD” (i.e. Order(paid+.ordid).ostat := INVUPD).

Stage guard conditions and milestones are formulas on events and attributes (stage
and milestone status is not used). In the remainder of the paper, the term “sentry” is
used to refer to conditions for both guard and milestones.

2.3 Integrity Constraints

Artifacts are stored in a database (conceptually). Data in workflow are a representation
of the reality and thus integrity constraints arise naturally [6]. Some integrity constraints
in EzMart (e.g. not-null, keys and foreign keys) are already shown in the artifact rela-
tion definitions in Fig. 1. There are additional integrity constraints. The constraints on
attribute content restrict the domains of attribute values. For each Order artifact, the
quantity is greater than 0, i.e. qty > 0; for Ship artifacts, sending address must be

Preservation of Integrity Constraints by Workflow 69

different from the delivery address, i.e. from �= addr; for Inventory artifacts, the avail-
able quantity is non-negative, avail qty ≥ 0.

In addition to the constraints on attributes of a single artifact, there are further busi-
ness specific constraints:

– Status constraint: Given an artifact s of Ship, if the shipment has started but not yet
finished, the associated order cannot be canceled nor returned. That is, if s.ship stat
is neither “FINISH” nor “FAILED”, and there is an artifact o of Order, such that
s.ordid = o.ordid and o.shipid = s.shipid, then the order status o.ord stat must
not be “RETURN” nor “CANCEL”.

– Address-name constraint: Given an artifact of Order, the delivery address addr
and recipient’s name name of the associated Ship artifact must match the address
addr and name of the associated Customer artifact.

– Ship-from constraint: Given an artifact of Order, the sending address of the ship-
ment must match the inventory warehouse location loc.

– Ship-order reference circle: Given an artifact of Order, the Ship artifact referenced
by attribute o.shipid must also reference back to o, and vice versa.

2.4 Enforcing Integrity Constraints: A Challenge

Traditionally workflow systems rely on the underlying database system to ensure data
consistency. However, in reality the data are quite likely stored and managed distribut-
edly. Artifacts in a single artifact class may be stored in several databases. Assume that
EzMart combines two old shopping centers that maintain their own customer databases.
Some integrity constraints in EzMart, e.g. the candidate key on Customer, cannot be
handled properly and easily by one database system alone [14].

The recent trend of cloud computing and SOA brings other opportunities: (1) data
management of EzMart can be outsourced and the service provider may “pack” similar
data from EzMart and other applications together, (2) the customer data EzMart uses
may be owned by a separate data service provider who may not respect data integrity
constraints from EzMart. Consider the repository for Order of EzMart that shares the
same actual data with electronic order database of other companies. The data service
provider has to keep the data of EzMart from the other companies as well as maintaining
constraints from different applications. This results in high complexity and expenses. In
general, elevating integrity constraints local to one workflow to global for the data ser-
vice provider is problematic. For example, other applications may not require quantity
in the order to be strictly positive (cf. attribute content constraint of EzMart).

It is desirable for a workflow to block its own updates if they violate integrity con-
straints. Consider the attribute content constraint on Order that requires for each Order
artifact o, o.qty > 0. In Fig. 4, the stage create uses the triggering event checkout to
assign qty. Then if we strengthen the sentry of the guard to allow only the event with
checkout.qty > 0 to pass, the constraint on Order cannot be violated by the update
from the stage. To generalize this idea, associated data integrity constraints should be
preserved within EzMart by strengthening the guard condition— the guard injection.

As an extreme, the simplest and effective injection is to inject FALSE to the guard
of every stage. Then no execution would violate the constraints—because there will be

70 X. Liu, J. Su, and J. Yang

create+ created
...
qty := checkout.qty
...

insert the condition:
Enable the stage only
if checkout.qty > 0

Fig. 4. Prevent the violation by strengthen the sentry condition

no execution at all. To make the injection useful, we need to make sure the injected
constraints must be weaker or even the “weakest”. The injection should block all ex-
ecutions that can violate the constraints but should also allow as many executions as
possible that preserve data consistency.

This paper develops a technical approach that calculates injection according to the
constraint set and actions in stage bodies. The approach is proved to be both “sound”
(strong enough to prevent violations) and “conservative complete” (weak enough to
have a useful workflow).

3 A Formal Semantics of GSM

In order to analyze GSM workflow for possible injection, it is necessary to formalize
its semantics. In this section, we define the execution model (an operational semantics)
of GSM specifications. First we give an intuitive explanation of GSM execution. Then
we present a transition system semantics for GSM. The formalism is inspired (but not
restricted) by the Z notation [25]. Our transition system semantics is complementary
to recent GSM operational semantics presented in [9, 18]. Our semantics focuses on
manipulation of data and system variables, and forbids the concurrency between atomic
stages. A brief comparison can be found in the online appendix [23].

3.1 Intuitive Explanation

The GSM execution model was initially described in [17], and further developed in
[18]. A workflow starts with no artifacts. An artifact is created when a create-instance
stage opens. A stage opens if its sentry is satisfied and then actions defined in the stage
body starts to execute. For example, stage update by manager in EzMart opens when
attribute avail qty of the Inventory artifact is less than 10. If the stage is to create in-
stance, a new artifact is created, e.g. create stage creates a new Order artifact.

A milestone is achieved when its achieving sentry is satisfied and its belonged stage
is open. For example, actiontaken is achieved when stage further action is opened and
the reply event from task custsupp comes (i.e. the head event in the external event
queue is reply from custsupp). A milestone is invalidated when its invalidating sentry is
satisfied, i.e. the milestone changes to or stays in the status of not achieved.

A stage can also reopen, when its sentry is satisfied again. For example, stage
further action can run several times as long as the event takeaction is received. Our
workflow model extends the GSM slightly with the notion of “finish” milestones, such
as registered, paid, etc. And only when all of the finish milestones are achieved can we
say a workflow execution finishes (formal and strict definition in Section 5).

When the status of a stage or a milestone changes, a control event is generated. The
control event can also be used as a triggering event. An example is the triggering event

Preservation of Integrity Constraints by Workflow 71

of sell. The stage needs a control event paid+ to open, and paid+ denotes the paid
milestone’s achieving.

3.2 GSM Transition Systems

In our execution model, a GSM workflow is a transition system consisting of a state
space (a set of states), an initial state and a set of operations (or transitions). The state
space is a set of all possible “snapshots” of artifacts, each is called a state which spec-
ifies, at a specific time during the execution, the attribute value, the status of stage and
milestones and event queues. The initial state is a special state that the transition system
starts on, where no artifacts exists in the transition system, and event queues are empty.

Operations are transitions from one state to the next, identified by “operation sig-
natures”, and the transition enabling condition (called the “guard”) and state changes
made by the transition (called the “actions”) are specified. There are the following six
types of operations:

– Open : opens a stage, if the stage sentry is satisfied and no other stage is open.
When the stage opens, all of its milestones are set to be not achieved. New instance
is created if the stage is a create-instance stage.

– Body : executes the stage body.
– AchieveClose : achieves a milestone. The operation is enabled when the achiev-

ing sentry of the milestones is satisfied, and the stage containing the milestone is
opened. When the milestone is achieved, its stage is closed. And if the milestone is
triggered by some external events, immediate effect is taken on the attributes.

– Invalid : invalidates a milestone (changes the milestone status to not achieved).
– DeCQ : removes the head event from control event queue. This operation has a

lower priority than the above four types of operations.
– DeEQ : removes the head event from external even queue. This operation has the

lowest priority. That is, only when none of the above five types of operations can
be enabled, can DeEQ be enabled.

Status change of stage opening and closing, milestone achieving and invalidating gen-
erates control events, which are also control events to be added to the event queue (used
to trigger other stages or milestones in the workflow). Parameters of the signature for
each Open operation are the stage name and (if the stage is a create-instance stage) the
artifact ID, for Body are the stage name and artifact ID, for AchieveClose and Invalid
are the milestone name and artifact ID, and no parameter for DeCQ and DeEQ.

Due to space limitation, only the state space and Open operation (for a create-
instance stage) are presented, an example is given to briefly explain the operations
AchieveClose. A complete formalism of state space and operations is included in [23].

Given a GSM workflow AP, its transition system is denoted by TSAP. The state space
is specified by the construct STATE in Z notation, shown in the left column of Fig. 5.

In the state space each artifact class αi is represented as a table consisting the artifact
ID, the data attribute value (denoted by x, y, . . .), and stage and milestone status (de-
noted by stage or milestone names, such as s,m,. . .). And the set of all artifact classes
in AP is A = {αi | i ∈ 1 . .n}. For any artifact class α, we use S(α) and M(α) to denote
the sets of all stages and milestones of α, resp.

72 X. Liu, J. Su, and J. Yang

The state variable XOp is a finite set of signatures of possible next operations, where
OPSIG is the type of operation signatures. Variable eq and cq are two queues of external
events and control events, resp., where ExtEv and IntEv are respectively the type of
external events and control (internal) events. State variables that do not immediately
help in understanding the execution model are omitted.

STATE
α1(id, x, y, . . .) : ArtifactClass
α2(. . . , , s, m, . . .) : ArtifactClass
...
αn(. . .) : ArtifactClass
XOp : F OPSIG
eq : seq ExtEv
cq : seq IntEv
...

Open(create)

new = Order(newid(), null, . . . ,
TRUE /*create*/, FALSE, FALSE, . . .)

Open(create) ∈ XOp
∀β : A; id : ID; t : S(β) � β(id).t = FALSE

(head eq) isevent checkout

. . .

Order := Order ∪ {new}
XOp := (XOp − {Open(create)})∪

{Body(create, new.id)}

Fig. 5. State space and an example operation

We give an example state s of TSEzMart:

– s.A is the set of tables of artifacts of classes Customer, Order, Ship and Inventory.
– s.XOp = {Open(create)}, the set of the open stage operation of create of Order.
– s.eq = 〈checkout(. . .), . . . 〉 and s.cq = 〈 〉 (empty queue).

On the initial state, all artifact class tables are empty, next operation set (XOp) is the set
of Open operations for create-instance stages, external and control event queues (eq and
cq) are both empty. As for EzMart, init.XOp is the set of Open(register), Open(create),
Open(prepare) and Open(inv initiate).

Operations are defined using the schema extended from Z notation [25].2 Operation
Open is responsible to handle stage opening. We use Open(create) of Order, specified
in the right column of Fig. 5, as an example of the operation to open a create-instance
stage. Let s be the current state as the example state given above, and s′ be the next state
after the transition specified by the operation Open(create). Suppose s.Order has one
row: Order(ord001, cust002, . . .). If there is no stage being open on s, then s satisfies
the guard of Open(create). A new Order artifact, denoted by the local variable new, is
created, where the ID is assigned using a system new ID generator, all other attributes
are assigned to null and statuses of all stages and milestones are set to FALSE except the
status of create is set to TRUE. Let’s assume the new ID generator gives ord002 on s.
Then, after this operation, s′.Order has two rows,

Order(ord001, cust002, . . .); Order(ord002, null, . . . , TRUE, FALSE, FALSE, . . .)

and s′.XOp = {Body(create, ord002)}. Since the open stage event of create is not used
in EzMart, control event queue cq is kept unchanged.

2 Readers who are familiar with Z can find out our notation still follows the fundamental idea of
Z, and the extension is only “syntactical” to make our specification easier.

Preservation of Integrity Constraints by Workflow 73

We group achieving of a milestone and closing of its stage in AchieveClose. Con-
sider the operation of achieving milestone actiontaken. The signature of the operation
is AchieveClose(actiontaken, ordid). Suppose that on the current state s, s.XOp contains
AchieveClose(actiontaken, ord002), s.Order(002).pay = TRUE, s.Order(002).paid =
FALSE, and s.eq = 〈custsuppreply(. . .)〉, where event custsuppreply is the reply
from customer support task custsupp. Then this operation can be enabled with ordid tak-
ing the value of ord002. As a result, on the next state, artifact s′.Order(ord002) is updated
as pay = FALSE, paid = TRUE, and ostat is set according to custsuppreply.ostat —
the immediate effect of the event.

4 Guard Injection

Based on the GSM execution model, we explore in this section our approach to enforce
integrity constraints. The key idea is to inject conditions according to the specified
constraints and the stage to “block” possible violations. We first define constraints and
some needed notions, and then present the algorithm for guard injection.

Our problem is similar to but different from checking integrity constraints in dis-
tributed databases where the exact changes to the database are known [14, 19]. Our
problem considers workflow specifications when the updates to the database are un-
known but parameterized. A key idea of [14, 19] is to “look forward” at the
“post-condition” of the update and check locally if the constraint with respect to the
post-condition can be satisfied without looking at database(s). (If not, databases are
consulted to check the integrity constraints.) The injection technique developed in this
paper “looks backward” to calculate “weakest” precondition of stage and ensures that
potentially executed updates would never violate the constraints.

4.1 Integrity Constraints

In this paper, each integrity constraint κ is defined in the following form (cf [2]):

κ = ∀ x � (φ(x) → ∃ y � ψ(x, y)) (1)

where x and y are finite vectors of variables with no repetition, x is nonempty (while
y can be empty), and Formula φ and ψ are nonempty conjunction of artifact relation
atoms and comparison atoms of the form x ◦ y, where x is a variable and y is a variable
or constant and ◦ denotes operators: =, �=, ≥, ≤, > and <. Variables in x and y are
artifact IDs or data attributes of artifacts in AP. There is at least one artifact relation
atoms in φ. Formula φ uses all variables in x and ψ uses all variables in y.

The conjunctive atoms in φ are premises and the right hand side of the arrow is re-
ferred to as the consequent. For simplicity, we assume all constraints are free from triv-
ial atoms (equivalent to TRUE or FALSE). Variables in x are referred to as ∀-quantified
variables, while the ones in y as ∃-quantified variables.

For example, the attribute content and not-null constraint on Order and status con-
straint are given in Section 2 and we repeat here:

74 X. Liu, J. Su, and J. Yang

Attribute content and not-null constraint on Order, κattr: For each Order artifact, nei-
ther of the references custid and invid is null, and the quantity is larger than 0, i.e.
qty > 0;

Status constraint, κstat: Given an artifact s of Ship, if s.ship stat is neither FINISH nor
FAILED, and there is an artifact o of Order, s.t. s.ordid = o.ordid and o.shipid =
s.shipid, then the order status o.ord stat must not be RETURN or CANCEL.

Written in the form of Equation (1), these two constraint formulas are:

κattr = ∀ ordid, custid, invid, shipid, qty, ord stat�
Order(ordid, custid, invid, shipid, qty, ord stat) →

custid
= null ∧ invid
= null ∧ qty > 0
κstat = ∀ ordid, custid, invid, shipid, qty, ord stat, addr, name, from, ship stat�

Order(ordid, custid, invid, shipid, qty, ord stat) ∧
Ship(shipid, ordid, addr, name, from, ship stat) ∧
ship stat
= FINISH ∧ ship stat
= FAILED →

ord stat
= RETURN ∧ ord stat
= CANCEL

The complete list of formulas for all constraints in EzMart in the form of Equation (1)
can be found in [23].

We say a concerning attribute of constraint κ is some attribute α.x of some artifact
class α, where α.aid is in ∀-quantified variables of κ, α is an artifact relation atom in
κ, and any one of the following holds:

– there is a constant appearing at the column of x in artifact relation atom of α in κ;
– there is a variable x′ appearing at the column of α.x in artifact relation atom of α,

and x′ ◦ y also appears in κ, where y is a constant or any other variables; or
– there is some variable x′ appearing more than once in κ and one of its appearances

is at the column of α.x in artifact relation atom of α.

The set of concerning attributes of κ is denoted by CA(κ).
The sets of concerning attributes of κattr and κstat are

CA(κattr) = {Order.custid, Order.invid, Order.qyt}
CA(κstat) = {Ship.ordid, Ship.ship stat, Order.shipid, Order.ord stat} .

Given a constraint κ and an attribute x ∈ CA(κ), the set of writing stages of x is denoted
by WS(x). A writing stage of x is such a stage s that x ∈ WriteSet(s), where WriteSet(s)
denotes the set of attributes that can be written by the body of stage s. The set of writing
milestones of x is denoted by WM(x). A writing milestone of x is such a milestone m
that uses the reply event to update attribute x.

In EzMart, the writing stage of concerning attributes of κattr is create; and the writing
stages and the writing milestone of concerning attributes of κstat are

Ship.ordid : prepare Ship.ship stat : prepare, ship
Order.shipid : ship Order.ord stat : create, sell, actiontaken

4.2 Calculating Injected Conditions

The algorithm to calculate the injection is now presented. The intuition of the injec-
tion is first described. Then the algorithm is given along with examples using attribute
content and not-null constraint on Order (κattr) and status constraints (κstat).

Preservation of Integrity Constraints by Workflow 75

The intuition of the algorithm is to “inject” properly converted constraints into guards
of Open operations of writing stages and stages of writing milestones of concerning
attributes of the constraints. As a result, the guard is strengthened to block all updates
that may violate the integrity constraints, but to allow updates that preserve the data
integrity.

For writing stages, we analyze the stage body to understand how the updates are
made. For example, stage create uses the triggering external event checkout to set
custid, invid and qty — the concerning attribute of κattr. The injection is a substitu-
tion for the concerning attribute according to the stage update. The injection is replac-
ing concerning variable in κattr by corresponding content of event checkout. Assume
there is no violation before the update made by create, if the current state satisfies the
injection, the execution of create under such a checkout event preserves the data con-
sistency regarding to κattr. Moreover, such an injection is also weak enough only to
block the updates that result in violation. As for the writing milestones, because there
is no information about the task reply in the workflow, the injection to its stage’s Open
operation has to be made to the strongest—FALSE.

In the following we present the detail of the algorithm. To begin with, implicit foreign
key references are made explicit in the constraint set. A stage, e.g. ship, of one artifact
class α, e.g. Ship, can write attributes of artifact class β, e.g. Order.shipid. Then the for-
eign key constraint is added to the integrity constraint set, if it is not already specified:

∀ aid, bid, x � α(aid, bid, x) ∧ bid �= null → ∃ y � β(bid, y)

where x and y are disjoint vectors of other “unrelated” attributes in α and β, resp. In
EzMart, all of the foreign key dependencies are already specified.

Algorithm 1. Guard injection
Input: TSAP and K
Output: Inj : S → FO

Set Inj(s) := TRUE for each stage s in AP;
foreach κ ∈ K and x ∈ CA(κ) do

foreach s ∈ WS(x) do
Inj(s) := Inj(s) ∧ SUB(κ, s [, aid]), where1

aid is the artifact ID in Open(s [, aid]) in TSAP;
endfch
foreach m ∈ WM(x) do

Inj(s) := FALSE

endfch
endfch

The procedure of injection is given in Algorithm 1. It takes the transition system TSAP

of GSM specification AP and the set of integrity constraint K as input. The output is the
injection function Inj which maps each stage in AP to a first order formula. The idea of
the algorithm is simple. For each constraint κ in K and for each concerning variable x
of κ, if x is going to be written by a stage s, the algorithm injects the converted κ by

76 X. Liu, J. Su, and J. Yang

replacing x with the assignment in the body of s, where the substitution is accomplished
by function SUB (given below); if x is going to be written by a reply event triggering a
milestone, then FALSE is injected.

The function SUB used in Line 1 of Algorithm 1 is to convert the constraint formula
κ according to the stage s and (if s is not a create-instance stage) the artifact ID aid.
Concerning attributes and artifact relations are replaced according to the assignments
in the body of s.

First, in Line 2 of SUB, by function explicitref (κ), reference dependency premises are
added when the stage writes attributes of another artifact class. The substitution proce-
dure then starts by taking care of each ∀-quantified α IDs. The variable x is replaced by
the assignment in the stage body (Line 3), and the ID is replaced (Line 4), by newid()
if the stage creates new instance; otherwise, by the artifact ID of the updated artifact in
the stage assignment (denoted by lhsid, which is ID field of head event if the artifact is
identified by the event or aid otherwise). After the variables are properly replaced, they
are removed from the ∀-quantified variable list. Note that when the stage is creating an
instance, replacing the id with newid() also replace the relation atom to TRUE because
the new instance is going to be inserted and therefore the relation atom holds. Note that
after the substitution, β(. . . , newid(), . . .) is further replaced by FALSE for any artifact
relation β, and id ◦ newid() is further replaced by FALSE for any id unless ◦ is �= . More
technical details of SUB can be found in the online appendix [23].

Function. SUB(κ, s[, aid]) returns the constraint formula after substitution

IDκ := all ∀-quantified artifact IDs of the artifact whose attribute is updated in s;
con := explicitref (κ);2

ret := TRUE;
foreach id in IDκ do

con := con[exp/β(id).x], where x and exp are vectors of the same length3

and for any 0 ≤ i < #x, s.Body contains β(id).xi := expi ;
if s.creatInst = TRUE then4

con := con[TRUE/α(id, . . .)], where s ∈ S(α);
con := con[newid()/id]

else
con := con[lhsid/id];

endif
ret := ret ∧ con

endfch
return ret

In EzMart, for the attribute content and not-null constraint on Order (κattr in Sub-
section 4.1), all of the three concerning variables are replaced by the corresponding
content of event checkout in stage create. And since the stage creates a new instance,
the Order artifact relation atom is replaced by TRUE. This gives the substitution result,
after trivial reduction,

SUB(κattr, create) = TRUE → (head eq).custid
= null ∧
(head eq).invid
= null ∧ (head eq).qty > 0

Preservation of Integrity Constraints by Workflow 77

Then for the status constraint (κstat in Subsection 4.1), the stage sell of Inventory sets
Order((head cq).ordid).ord stat to “INVUPD”, where by the stage sentry, head cq is a
paid+ event. Therefore we have,

SUB(κstat, sell, invid) = ∀ custid, shipid, qty, ord stat, addr, name, from, ship stat�
Order((head cq).ordid, custid, invid, shipid, qty, INVUPD) ∧
Ship(shipid, (head cq).ordid, addr, name, from, ship stat) ∧
ship stat
= FINISH ∧ ship stat
= FAILED →

INVUPD
= RETURN ∧ INVUPD
= CANCEL

where ordid is replaced by (head cq).ordid, and ord stat is replaced by the constant
INVUPD. And obviously, this is equivalent to TRUE.

After Algorithm 1 completes, injection to stages of Order is given as follows. Note
that trivial expressions are directly removed and the injected formula is reduced.

Inj(create) = SUB(κattr, create) ∧
∃ email, addr, name, info, prod, avail qty, loc, price�

Customer((head eq).custid, email, addr, name, info) ∧
Inventory((head eq).invid, prod, avail qty, loc, price)

Inj(further action) = FALSE

The second conjunct injection on stage create is the one for foreign key constraint (to
Customer and Inventory); injections for ship-order reference circle, address-name, ship-
from and status constraint are all reduced to TRUE. Injection on further action is FALSE

because actiontaken milestone of this stage uses the reply event to update ord stat, a
concerning attribute of the status constraint κstat.

The complete list of constraints and injections on EzMart can be found in [23].

5 Soundness and Conservative Completeness

To state the correctness of the injection algorithm, we first define some technical no-
tions. Examples from EzMart are given along the definitions and the technical results
of “soundness” and “conservative completeness”.

Definition 1 (run and complete run). Let AP be a GSM specification, TSAP its transi-
tion system. A run of TSAP is an alternating sequence of states and operations

ρ = s0t0s1t1 . . . tn−1sn

where s0, s1, . . . are states (specified by STATE), s0 is the initial state, and t0, t1, . . . are
operations (specified by OPER), such that for each ti (i ≥ 0), si |= guard(ti).

Let A be the set of artifact classes in AP. A run ρ is said to be finished iff state sn

satisfies that for each artifact of α : A with id : ID,

– there is a finish milestone achieved, i.e. ∃m : M(α) � m is a finish milestone ∧
α(id).m = TRUE; and

– there is no stage being open, i.e. ∀ s : S(α) � α(id).s = FALSE.

78 X. Liu, J. Su, and J. Yang

In EzMart, each run starts with the initial state and followed by an open stage operation
of register, create, prepare or inv initiate. On state s1, only the stage body operation
of the just opened stage in t0 can be enabled. State s2 is the result of the stage body
operation. The run is finished if on the last state in the run, milestones registered of all
artifacts of Customer, paid of all artifacts of Order, result of all artifacts of Ship and the
initiated of all artifacts of Inventory, are all achieved, and there is no stage being open.

Given a run, if it does not violates any constraint, we say this run is sound.

Definition 2 (Sound run). Let AP be a GSM specification, TSAP be its transition sys-
tem and K a set of integrity constraints on artifacts of AP. A run ρ of TSAP is said to
be K-sound iff for each κ ∈ K, κ holds in every state in ρ. When K is clear from the
context, we simply say ρ is sound.

Consider run ρ1 = s0t0s1t1s2t2s3 in EzMart where t0 is Open(register) and creates a
new Customer artifact with ID cust001, t1 is Body(register, cust001) which sets
Customer(cust001).email to abcdef.com, and t2 is AchieveClose(registered, cust001).
We can see that ρ1 is a finished run, and also sound. Because email is not empty, at-
tribute content constraint on Customer is satisfied on all of the states in ρ1. There is
only one artifact in the system, the candidate key and foreign keys are also satisfied,
and all business specific constraints are also satisfied.

Now consider another run ρ2 = s0t0 · · · tisi+1 · · · . Suppose on si, there is an arti-
fact Ship(ship005).ship stat = SHIPIN and ti is AchieveClose(action taken, ord002). If
Order(ord002).shipid = ship005 and the immediate effect of reply event is to set the
Order(ord002).ord stat to CANCEL, then status constraint (κstat, see Subsection 2.1) is
violated, because the order ord002 is canceled when the purchased item is still shipping.
Therefore ρ2 is not a sound run.

In business processes, many tasks are third-party services or human tasks. It is not
reasonable to assume all tasks will strictly follow some contract. We have to be pre-
pared that external tasks may give unpredictable reply in the domain. To ensure the
constraints are never violated, we need to be cautious or conservative. Therefore, in the
Algorithm 1, if the reply event may update a concerning attribute of a constraint, FALSE

is injected to the associating stage.

Definition 3 (Conservative run). Let AP, TSAP and K be the same as in Definition 2. A
finished run ρ of TSAP is said to be K-conservative iff ρ is sound and for any constraint
κ ∈ K, there is no reply event being used to update any attribute in CA(κ). When K is
clear from the context, we simply say ρ is conservative.

Consider a run ρ3 = s0t0 · · · sktksk+1 · · · , and tk is Body(further action, ord002). The
milestone actiontaken belongs to stage further action, and is a writing milestone of con-
cerning attributes ord stat of status constraint. Therefore ρ3 is not conservative.

The transition system of AP with injection according to integrity constraint set K is
denoted by InjTSAP(K). When K is clear from the context, InjTSAP(K) is simply writ-
ten as InjTSAP. It is constructed by concatenating in conjunction Inj(s) with the original
guard of Open operation of each stage s. (If Inj(s) is equivalent to TRUE, then the op-
eration guard after injection is equivalent to the one before.) The definition of “correct”
injection, is given by the notion of “soundness” and “conservative completeness” of

Preservation of Integrity Constraints by Workflow 79

transition system with injection, where soundness captures no violation—the injection
is strong enough, while conservative completeness allows the maximal behavior under
conservative strategy— the injection is weak enough.

Definition 4 (Sound and conservative complete injection). Let AP, TSAP and K be
the same as in Definition 2, and Inj be the guard injection function. We say the injection
Inj is sound iff each finished run of InjTSAP is sound, conservative complete iff each
conservative run of TSAP is also a conservative run of InjTSAP.

The main property of our algorithm is now stated, a proof can be found in the online
appendix [23].

Theorem 1. Given a GSM specification AP and a set of integrity constraints K, the
transition system with injection, InjTSAP, is both sound and conservative complete.

Again, we take advantage of EzMart to illustrate the idea of injection correctness. First,
for any run of InjTSEzMart, there is no violation. Take stage create as an example. If the
head event of eq satisfies the sentry and injection of create, then, because Inj(create)
uses the assignment in create, after the update made in the body of create, the constraint
is still satisfied. And because Inj(further action) = FALSE, this injection can block any
possible updates made by the incoming reply event, and therefore ensures the integrity
constraints.

Then, suppose there is a conservative run ρ of TSEzMart that is not in InjTSEzMart. If
this is because the Open operation of create cannot be enabled in the injected workflow,
say (head eq).qty = 0, then Inj(create) fails; in ρ after the update made by create, the
qty of newly created artifact of Order is 0 which violates the attribute content constraint
on Order, and thus ρ cannot be sound. If it is because of the blocking in the injected
system of Open operation of further action, then ρ is not conservative. Therefore, the
injected workflow InjTSEzMart is both sound and conservative complete.

6 Related Work

Triggers are a powerful tool to “fix” constraint violations as a reactive means, e.g. [7]. In
distributed databases, checking constraints involving remote databases is expensive. It
was discussed in [15] to maintain distributed integrity constraint efficiently by reducing
the necessity to look at remote databases. It was investigated in [14] to use local data to
test conjunctive query constraints with arithmetic comparison. In [19], a similar prob-
lem is discussed on conjunctive query constraints with negations. The approach used to
generate complete local tests is basically to check constraint containment and calculate
local tests with respect to “post-condition” of specific updates. To the contrary, our in-
jection is to calculate the weakest precondition conservatively of potential updates and
to ensure that updates never result in violation.

It is also studied that by enhancing the underlying systems, data consistency can be
maintained in loosely coupled databases. A framework was developed that uses sev-
eral communication protocols between different sites to maintain data consistency [13].
When strict consistency cannot be ensured, enforcing the weakened integrity constraints

80 X. Liu, J. Su, and J. Yang

is possible by a rule-based configurable toolkit presented in [8]. While these work con-
struct strong data management systems, our work makes a minimum requirement on
underlying DBMSs.

Using preconditions can also be found in [4] and [11]. The idea of finding weakest
precondition rooted in [10]. The difference of using preconditions between our work
and program verification is that the variable states and properties are on databases.
In [4], the authors explored appropriate transaction languages to ensure integrity con-
straints using weakest preconditions. Calculation of weakest precondition was not dis-
cussed. In [11], authors studied the automated construction of artifact-centric workflows
so that the workflow execution results are consistent with requirement defined on data,
where weakest precondition of each task is calculated.

Rules were given in [20] to derive a set of functional dependencies that hold on
query results on given relations. Decidability of dependency implication problem on
Datalog programs was studied in [1]. Preservation of integrity constraints by a set of
parameterized transactions was studied for relational databases [3] and for semantic
databases [26].

7 Conclusion

This paper develops an approach to ensure data integrity within workflow execution by
injecting converted constraints into guard of updates. The injection is proved to ensure
data integrity while allowing all conservative runs of the original workflow.

The problem raised in this paper is hardly solved, there are many interesting issues
to explore further. In one direction, it is desirable to extend this method for constraints
with aggregations and arithmetic. Also, conservative requirement for injection can be
relaxed by considering more accurate task models such as semantic web services and
task contracts in the workflow. Another area of interest is to consider workflow with
concurrent executions, which will require new injection techniques. Finally, it is in-
teresting to investigate how techniques such as guard injection can be combined with
mechanisms in federated databases [13].

Acknowledgment. The authors are grateful to Richard Hull (IBM T. J. Watson Re-
search Center) for his informative discussions on the GSM semantics.

References

1. Abiteboul, S., Hull, R.: Data functions, datalog and negation. In: Proc. ACM SIGMOD Int.
Conf. on Management of Data (1988)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
3. Abiteboul, S., Vianu, V.: A transaction-based approach to relational database specification.

Journal of the ACM 36(4), 758–789 (1989)
4. Benedikt, M., Griffin, T., Libkin, L.: Verifiable properties of database transactions. In: Proc.

ACM Symposium on Principles of Database Systems (PODS), pp. 117–127 (1996)
5. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-

centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

Preservation of Integrity Constraints by Workflow 81

6. Bhattacharya, K., Hull, R., Su, J.: A data-centric design methodology for business processes.
In: Handbook of Research on Business Process Modeling. Information Science Publishing
(2008)

7. Ceri, S., Widom, J.: Deriving production rules for constraint maintainance. In: Proc. Int.
Conf. on Very Large Data Bases (VLDB), pp. 566–577 (1990)

8. Chawathe, S., Garcia-Molina, H., Widom, J.: A toolkit for constraint management in hetero-
geneous information systems. In: Proc. Int. Conf. on Data Engineering (1996)

9. Damaggio, E., Hull, R., Vaculı́n, R.: On the equivalence of incremental and fixpoint se-
mantics for business artifacts with guard-stage-milestone lifecycles. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 396–412. Springer, Heidelberg
(2011)

10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM 18(8), 453–457 (1975)

11. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes.
In: Proc. Int. Conf. on Database Theory, ICDT (2009)

12. Glushko, R.J., McGrath, T.: Document Engineering: Analyzing and Designing Documents
for Business Informatics and Web Services. The MIT Press (2008)

13. Grefen, P., Widom, J.: Protocols for integrity constraint checking in federated databases.
Distrib. Parallel Databases 5, 327–355 (1997)

14. Gupta, A., Sagiv, Y., Ullman, J.D., Widom, J.: Constraint checking with partial information.
In: Proc. ACM Symp. on Principles of Database Systems (PODS), pp. 45–55 (1994)

15. Gupta, A., Widom, J.: Local verification of global integrity constraints in distributed
databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 49–58 (1993)

16. Hollingsworth, D.: The workflow reference model: 10 years on. In: Workflow Handbook.
Workflow Management Coalition, pp. 295–312 (2004)

17. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F(T.), Hobson, S., Linehan,
M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the Guard-Stage-
Milestone Approach for Specifying Business Entity Lifecycles (Invited talk). In: Bravetti,
M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24. Springer, Heidelberg (2011)

18. Hull, R., Damaggio, E., Masellis, R.D., Fournier, F., Gupta, M., Heath III, F., Hobson, S.,
Linehan, M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculı́n, R.: Business artifacts with
guard-stage-milestone lifecycles: Managing artifact interactions with conditions and events.
In: Proc. ACM Int. Conf. on Distributed Event-Based Systems, DEBS (2011)

19. Huyn, N.: Maintaining global integrity constraints in distributed databases. Constraints 2,
377–399 (1997)

20. Klug, A.: Calculating constraints on relational expression. ACM Trans. Database Syst. 5,
260–290 (1980)

21. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamental require-
ments and their support in existing approaches. Int. Journal of Information System Modeling
and Design (IJISMD) 2(2), 19–46 (2011)

22. Liu, G., Liu, X., Qin, H., Su, J., Yan, Z., Zhang, L.: Automated realization of business work-
flow specification. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009.
LNCS, vol. 6275, pp. 96–108. Springer, Heidelberg (2010)

23. Liu, X., Su, J., Yang, J.: Preservation of Integrity Constraints by Workflow: Online Appendix,
http://seg.nju.edu.cn/˜liux/pub/CoopIS11_appendix.pdf

24. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Systems Journal 42(3), 428–445 (2003)

25. Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall (1992)
26. Su, J.: Dependency preservation in semantic databases. Acta Inf. 31, 27–54 (1994)

http://seg.nju.edu.cn/~liux/pub/CoopIS11_appendix.pdf

Monitoring Business Process Compliance Using

Compliance Rule Graphs

Linh Thao Ly1, Stefanie Rinderle-Ma2, David Knuplesch1, and Peter Dadam1

1 Institute of Databases and Information Systems, Ulm University, Germany
2 Faculty of Computer Science, University of Vienna, Austria

{thao.ly,david.knuplesch,peter.dadam}@uni-ulm.de,
stefanie.rinderle-ma@univie.ac.at

Abstract. Driven by recent trends, effective compliance control has be-
come a crucial success factor for companies nowadays. In this context,
compliance monitoring is considered an important building block to sup-
port business process compliance. Key to the practical application of a
monitoring framework will be its ability to reveal and pinpoint viola-
tions of imposed compliance rules that occur during process execution. In
this context, we propose a compliance monitoring framework that tack-
les three major challenges. As a compliance rule can become activated
multiple times within a process execution, monitoring only its overall
enforcement can be insufficient to assess and deal with compliance vi-
olations. Therefore, our approach enables to monitor each activation of
a compliance rule individually. In case of violations, we are able to de-
rive the particular root cause, which is helpful to apply specific remedy
strategies. Even if a rule activation is not yet violated, the framework
can provide assistance in proactively enforcing compliance by deriving
measures to render the rule activation satisfied.

1 Introduction

In many application domains of information systems, business process compli-
ance is increasingly gaining importance. In healthcare, for example, medical
guidelines and clinical pathways should be followed during patient treatments.
In the financial sector, regulatory packages such as SOX or BASEL III have
been introduced to strengthen customers’ confidence in bank processes. Finally,
collections of quality controls, e.g., Six Sigma or ITIL, are of particular impor-
tance for the internal control of business processes. In this paper we assume an
example scenario that is set in bank accounting, where a variety of rules and
policies exists (e.g., as a result of risk management). A selection of such rules is
listed below:

c1 Conducting a payment run creates a payment list containing multiple items
that must be transferred to the bank. Then, the bank statement must be
checked for payment of the corresponding items. In order to avoid fraud and
errors, the payment list must be transferred to the bank only once.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 82–99, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Monitoring Business Process Compliance Using Compliance Rule Graphs 83

c2 For payment runs with amount beyond e10,000, the payment list has to be
signed before being transferred to the bank and has to be filed afterwards
for later audits.

c3 When payment of an open item is confirmed in the bank statement, the item
has to be marked as cleared eventually.

c4 Once marked as cleared, the item must not be put on any payment list.
c5 If an open item is not marked as cleared within 30 days, the bank details

may be faulty. Thus, the bank details have to be (re)checked.

One way to ensure business process compliance is to verify the models of the af-
fected business processes implemented within process-aware information systems
against such imposed rules in order to achieve compliance by design. For that
purpose, a multitude of approaches for business process model checking has been
proposed in literature. However, design time checks are not quite sufficient as
in many application domains, business process models are rarely documented or
adhered to. To support business process compliance in such scenarios, it must be
possible to monitor whether process executions (regardless whether an explicit
process model exists) comply with imposed rules.

1.1 Challenges for Compliance Monitoring

Fig. 1A depicts a general compliance monitoring architecture. The events ob-
served from process execution provide the basis for compliance monitoring. The
actual low-level execution events may also be aggregated to meaningful events
and then provided to the monitoring tier using event processing frameworks
(e.g., complex event processing [1]). The monitoring tier, in turn, monitors com-
pliance with imposed rules. It provides input to the reporting tier, where the
results are visualized in accordance with the needs of the stakeholders involved.
We assume that events such as the events from the bank accounting case listed
in Fig. 1B can be provided by the event service. Clearly, the information that the
monitoring tier is capable of providing constitutes the basis for presentation and
visualization to stakeholders such as the process supervisor. This raises three
fundamental challenges that we will discuss using the bank accounting case.

Challenge 1: Identification and Monitoring of Individual Activations of
a Compliance Rule. Consider again compliance rule c4. Then, a closer look at
trace T from Fig. 1B reveals that c4 is violated over T as item 2 and item 3 are al-
ready marked as cleared but item 3 is still put on a payment list again. In order to
effectively deal with such violations, it is not sufficient for the monitoring tier just
to identify that c4 is violated. Imagine that multiple other items are also marked
as cleared within T . Then, it becomes very difficult to pinpoint the item(s) caus-
ing violations. Hence, the monitoring tier must provide fine-grained compliance
feedback such that it becomes possible to pinpoint the violation.

In this example, two activations of c4 are present in the execution, namely for
item 2 and item 3. We refer to an event pattern that activates a compliance rule
as a rule activation. For example, c4 becomes activated when an item is marked

84 L.T. Ly et al.

Example of an observed event trace T:

e1 = (payment run, payment list A, amount = €60,000)
Reporting

Monitoring cockpit Monitoring cockpit

A B

e2 = (transfer to bank, payment list A)

e3 = (check bank statement, payment list A)

e4 = (file payment list, payment list A)

(t fi d it 1)

Monitoring cockpit Monitoring cockpit

C3
Instance 1 of C3

Instance 2 of C3

Instance 3 of C3

Instance 4 of C3

e5 = (payment confirmed, item 1)

e6 = (payment confirmed, item 2)

e7 = (mark as cleared, item 2)

e = (payment confirmed item 3)

Compliance monitoring

e8 = (payment confirmed, item 3)

e9 = (mark as cleared, item 3)

e10 = (put on payment list, item 3)

Event service

Process execution …

Fig. 1. General compliance monitoring architecture and events from the bank account-
ing case

as cleared. As activities can be carried out multiple times, e.g., for different items,
there can be multiple activations of a compliance rule in a process execution1.
As the example also shows, the activations can be in different compliance states.
For example, the activation for item 3 is violated while the one for item 2 is
not. Therefore, the monitoring tier must be able to identify the rule activations
and to provide information on their individual compliance state as the basis for
effectively assessing and dealing with incompliance.

Challenge 2: Proactive Prevention of Violations. Generally, each activa-
tion of a compliance rule can be in one of three compliance states in a stage
of process execution: satisfied, violated, or violable. Satisfied and violated are
permanent states. For example, the activation of c4 for item 3 is violated while
the activation of c3 for item 2 is satisfied. A violable activation, however, can
become both violated or satisfied depending on the events observed in the future.

The state violable can have very different semantics depending on the rule
activations. Consider for example the activation of c3 for item 1 (referred to as
ACT1) and the activation of c4 for item 2 (referred to as ACT2). Then, both
are violable as ACT1 can become violated if item 1 is not marked as cleared
in the future and ACT2 can become violated if item 2 is put on a payment list
again. Obviously, different measures are necessary to render ACT1 and ACT2
satisfied. In order to proactively prevent violations, the monitoring tier has to
make the state violable more transparent to process supervisors. In particular,
support with regard to how to render an activation satisfied is desirable. Being
aware that ACT1 can be rendered satisfied by marking item 1 as cleared, a
process supervisor may, for example, schedule this task. To our best knowledge,
challenge 2 has not been addressed yet.

Challenge 3: Root Cause Identification in Case of Violations. The iden-
tification of violations is only a first step. A rule activation can become violated,
1 Note that there can also be rules that are only activated once, e.g., cardinality rules.

We consider them as being activated upon the process start.

Monitoring Business Process Compliance Using Compliance Rule Graphs 85

Reportingp g

Modeling

Compliance monitoring
Compliance
requirements

g

E t i

Compliance rule
graphs (CRG)

Process execution

Event service

Fig. 2. Fundamental architecture of the SeaFlows compliance monitoring framework

when required events were not observed or prohibited events were observed
within a particular scope. Particularly for more complex rules, a violation can
have multiple causes, each of which may require different compensation mech-
anisms. Therefore, being able to identify the root cause of a violation would
facilitate the application of adequate compensation.

1.2 Contributions

In this paper, we propose an approach developed in the SeaFlows project2 that
tackles these three challenges. The basic architecture of the framework is de-
picted in Fig. 2. We adopt a graph-based compliance rule language referred to
as Compliance Rule Graphs (CRG) [2]. Our approach enables to “instantiate”
a CRG each time a new activation of it is observed and thus to individually
monitor the activations. As a result, feedback can not only be provided on the
overall enforcement of a compliance rule but also on its activations. Our mon-
itoring approach is based on a pattern matching mechanism that exploits the
structure of CRGs for monitoring and introduces markings to indicate observed
event patterns that are relevant to the compliance rule to be checked. From the
markings, it is possible to derive measures to proactively prevent violations in
case of violable rule activations, for example to derive pending activities. For
violated activations, we can derive the root cause from the markings.

In the following, we first introduce necessary fundamentals on CRGs in Sect. 2.
The monitoring framework is then presented in Sect. 3. Sect. 4 introduces our
proof-of-concept implementation. In Sect. 5, we discuss related work. Sect. 6
summarizes the paper and provides an outlook on future research.

2 Compliance Rule Graph Fundamentals

For our monitoring framework we adopted compliance rule graphs (CRG), a
graph-based compliance rule modeling language [2], as the graph structure has
some advantages that we can exploit for monitoring as we will later show. The
CRG language adopts the typical rule structure (i.e., if some conditions apply,
then some consequence must also apply). As we address compliance rules on

2 www.seaflows.de

86 L.T. Ly et al.

the occurrence, absence, and ordering relations of events, the rule antecedent
and rule consequences are constituted by event patterns, respectively. Their ex-
plicit structure makes it easier to comprehend CRGs than for example complex
logic formulas. For brevity reasons, we will focus on compliance rules with only
one consequence event pattern in this paper. Our approach is, however, also
applicable to compliance rules with multiple consequence patterns.

Based on the assumption adopted from graph-based process modeling lan-
guages that a graph is a suitable representation for expressing occurrence and
ordering relations of events, the event patterns associated with the rule an-
tecedent and the rule consequence are modeled by means of directed graphs.
In order to distinguish between the antecedent and the consequence, they are
modeled using designated node types (condition and consequence node types).
Thus, from their looks, CRGs are acyclic directed graphs with different node
types with a graph fragment describing the rule antecedent pattern and a graph
fragment describing the rule consequence pattern.

These event patterns can be modeled using occurrence nodes, i.e., nodes that
represent the occurrence of events of associated type and properties (e.g., data
conditions) and edges constraining their ordering (similar to what we are used to
from process modeling)3. Beside occurrence nodes, absence nodes representing
the absence of certain events can be used to further refine the event patterns.
By combining these modeling primitives, it is possible to model sophisticated
event patterns, which can serve as antecedent or consequence of a CRG. Def. 1
provides a basic definition of CRGs.

Definition 1 (Compliance rule graph). A compliance rule graph is a 7-tuple
R = (NA, NC , EA, EC , EAC , nt, p) where:

– NA is a set of nodes of the antecedent graph of R,
– NC is a set of nodes of the consequence graph of R,
– EA is a set of directed edges connecting nodes of NA,
– EC is a set of directed edges connecting nodes of NC ,
– EAC is a set of directed edges connecting nodes of the antecedent and the

consequence graph of R,
– nt : NA ∪ NC → {AnteOcc, AnteAbs, ConsOcc, ConsAbs} is a function as-

signing a node type to the nodes of R, and
– p is a function assigning a set of properties (e.g., activity type, data condi-

tions) to each node of R.

Assuming an existing event model, Fig. 3A depicts the modeling of the CRG
for compliance rule c1 in two steps. Apparently, c1 is activated by the payment
run creating a payment list. This is modeled through the corresponding AnteOcc

node. As c1 requests the payment run to be followed by the event transfer to
bank and the subsequent event check bank statement for the created payment list,
ConsOcc nodes are used to model this consequence pattern. In a second step, the

3 Note that the antecedent pattern can also be left empty to model for example car-
dinality constraints.

Monitoring Business Process Compliance Using Compliance Rule Graphs 87

Consequence
occurrence

Consequenc
e absence

Antecedent
occurrence

Antecedent
absence

vard

Data context

’’Conducting a payment run creates a payment list, which has to be transferred to the
bank first. Then, the bank statement has to be checked for corresponding payments.’’

’’Payment run must be transferred to the bank only once.’’

1) Modeling the antecedent CRG and the basic consequence CRG structure

2) Refining the consequence CRG by means of absence constraints

Compliance rule c2

Compliance rule c3

Item

Payment
confirmed

Mark as
cleared

Compliance rule c4

Mark as
cleared

Put on
payment list

Item

Compliance rule c5

Open item

Mark as cleared

30 days later

Check bank details

Item

A B

Payment list

Payment run Transfer to bank Check bank
statement

Transfer to bankTransfer to bank

Compliance rule c1

Payment list

Payment run Transfer to bank Check bank
statement

Payment run
(amount > 10.000 €)

Transfer to
bank

Sign payment list

Payment list

File payment
list

Fig. 3. Step by step modeling CRG for c1 (A) and CRGs for c2 - c5 (B)

consequence CRG is refined to capture the condition that the payment list must
be transferred to the bank only once. This condition is captured by ConsAbs

nodes signifying the requested absence of additional events of type transfer to
bank. In this manner, we can also model the other compliance rule examples by
means of CRG as depicted in Fig. 3 B. For example, the CRG for compliance
rule c5 expresses that in case an open item event is followed by a time event
representing 30 days later without having recorded mark as cleared, the bank
details have to be checked. Note that we assume an event processing framework
that can deliver such time events.

Intuitively, an event pattern of a CRG (regardless of whether it is an antecedent
or a consequence pattern) matches a set of events if the occurrence nodes and
the ordering relations match a set of nodes and the absence constraints expressed
through the absence nodes are satisfied. If the antecedent pattern is composed
from only AnteAbs nodes, then there can be only one match of the antecedent
(if the absence constraints apply). Each match of the antecedent event pattern
constitutes an activation of the corresponding CRG. For example, the sequence
of the events e1 (payment run with amount beyond e10,000) and e2 (payment list
A is transferred to the bank) from Fig. 1 constitutes a match of the antecedent of
c2. CRGs with empty antecedent pattern are activated upon the process start.

Definition 2 (Semantics of CRGs). Let R = (NA, NC , . . .) be a CRG and
σ =< e1, . . . , en > be an execution trace. Then, R is satisfied over σ iff:

– for R with non-empty antecedent pattern holds: for each match of the an-
tecedent pattern of R in σ, there is also a corresponding match of R’s con-
sequence pattern in σ and

– for R with empty antecedent pattern holds: there is also a match of R’s
consequence pattern in σ.

Due to their explicit structure, verbalization, a technique known from business
rule modeling, can be easily realized for CRGs. While CRG is a compositional

88 L.T. Ly et al.

e5 = (payment confirmed, item 1)

End of process executione8 = (payment confirmed, item 3)

e7 = (mark as cleared, item 2)

e9 = (mark as cleared, item 3)

e6 = (payment confirmed, item 2)Compliance rule c3:

Payment
confirmed

Mark as
cleared

Item ms1Item 1 ms1Item 1

ms2Item 2 ms3Item 2

ms4Item 3

ms6Item 1ms1Item 1ms1Item 1

ms3Item 2 ms3Item 2

ms5Item 3 ms5Item 3

ms3Item 2

ms1Item 1

Node markings:

NOT_EXECUTED

EXECUTED

NULL

Activation A1

Activation A2

Activation A1

Activation A2

Activation A1

Activation A2

Activation A1

Activation A2

Activation A1

Activation A2

Activation A1

Activation A3 Activation A3 Activation A3

Fig. 4. Observed patterns with regard to CRG c3 when processing events e5 - e9

language, we can also use CRGs to model frequent rule patterns, for example
[3]. Due to space limitations, we abstain from going into further details on the
properties of CRGs (e.g., syntactic correctness, further modeling primitives).
Further details can be found in [2]. In this paper, we only focus on a subset of
the CRG language that is sufficient to illustrate our monitoring framework.

3 Compliance Monitoring

Generally, it would be possible to monitor compliance with an imposed CRG
by transforming it into an automaton or by generating event queries (e.g., for
complex event processing [1]) from it. The benefits and drawbacks of these
approaches are discussed in Section 5. For example, addressing challenge 1 is
cumbersome when employing the automaton approach [4]. The beauty of our
approach is that no transformation of the modeled compliance rules (in the
form of CRGs) into other representations is necessary in order to enable mon-
itoring. A CRG is instead monitored by exploiting its graph structure. Thus,
feedback can be provided specifically on the basis of the structure of the very
CRG leaving no gap between the modeled rule and the feedback mechanism.

The basic idea behind the approach is illustrated by Fig. 4 using the example
of CRG c3. Fig. 4 depicts event patterns that are relevant to c3 and that become
observable in different stages of process execution when processing the events
of trace T from Fig. 1. Instead of textually describing these patterns, we use
the graph structure of CRGs and node markings that indicate whether or not
an event was observed to capture these observable patterns. New patterns are
marked in grey color.

Monitoring Business Process Compliance Using Compliance Rule Graphs 89

Ne
Current patterns represented by

Apply compliance notions to update
feedback on rule activations and

New
observed

event

p p y
marking structures

(start of monitoring: empty pattern,
where all nodes are assigned NULL)

compliance state

For violable activations:
Derive preventive measures from
node markings

Application of rules to derive updated patterns
For violated activations:

Derive root cause from node
markings

Updated
patterns

Fig. 5. Updating compliance feedback when a new event is observed

Example 1. Consider Fig. 4 and c3. Then, after observing e1-e5, the pattern
“payment confirmed for item 1 without subsequent mark as cleared yet” becomes
observable in the execution trace. This pattern is captured by ms1 using the node
state Executed to indicate that payment confirmed was already observed. When
observing e6, a similar pattern can be formed for item 2. Obviously, ms1 and ms2

each constitutes an activation of c3. When observing e7, ms2 is no longer current
but instead, the situation can be represented by ms1 and ms3, where ms3 reflects
the pattern “payment confirmed for item 2 with subsequent mark as cleared”.
Thus, ms3 constitutes a satisfied activation of c3. Observation of e8 yields a
new pattern for item 3 represented by ms4. This pattern is replaced by ms5

after item 3 is marked as cleared (event e9). If the process execution would be
terminated, ms1 would be no longer current for activation A1 as item 1 will not
be marked as cleared. Thus, ms1 is updated to ms6. Altogether, after execution
of e1-e9 and the termination of the process execution, the compliance with c3 is
reflected by the patterns ms6, ms3, and ms5, where each of this represents an
activation of c3. While the activations A2 and A3 are satisfied as the required
events were observed, activation A1 for item 1 is violated as it was not marked
as cleared as indicated by the ConsOcc node marked with NotExecuted.

In the example, we built the observable patterns manually. Inspired by pattern
matching, our monitoring framework automatically identifies all activations of
a CRG to be checked and further tries to identify a match of the consequence
pattern in the execution trace. For that purpose, it builds such patterns based
on the graph structure of the CRG to be checked that become observable in the
partial execution trace as illustrated in the example. However, in the monitoring
framework, these patterns are not built from scratch each time a new event is
observed. Instead, new observable patterns are derived from existing patterns
by applying defined rules when observing a new event. Fig. 5 summarizes the
overall procedure when a new event is observed.

Each relevant observable pattern represented by marking the CRG as illus-
trated in the example is stored in a data structure called marking structure (in
brief MS). From the node semantics and the node markings, it can be derived
whether a MS represents a rule activation. Also the individual compliance state
of the rule activation can be determined this way (challenge 1). For a violable
rule activation, measures can be derived from the node markings to proactively

90 L.T. Ly et al.

enforce the satisfaction, for example, the pending activities can be identified
(challenge 2). In case of violation, the node markings further enable root cause
analysis without additional cost (challenge 3).

In the following, we first formalize the MSs and introduce formal notions to
assess them with regard to compliance in Section 3.1. In Section 3.2, we introduce
the algorithm for deriving updated observed patterns from old patterns when a
new execution event is observed. Finally, we further show how the challenges 2
and 3 can be dealt with in Section 3.3.

3.1 CRG Markings and Compliance Notions

In Fig. 4, we already introduced the node markings that are used to indicate
whether or not an event was observed: A CRG node n marked with Null signifies
that no matching event is observed yet. Regardless of the node type, a CRG node
n in a pattern marked with Executed means that a matching event has been
observed. A CRG node n marked with NotExecuted means that the associated
event has not been and will not be observed (e.g., when the window for an event
to occur has elapsed). Using the node markings, we can use the specific CRG
structure to express relevant patterns that become observable in the execution
trace. During compliance monitoring for a CRG, each such pattern is captured in
a data structure called marking structure (MS), e.g., ms1 in Fig. 4. In particular,
a MS captures a (potential) activation of a CRG observable from the trace. It
contains a marking for each antecedent node of the CRG and multiple markings
for the CRG’s consequence pattern4. Def. 3 formalizes the notion of MSs.

Definition 3 (CRG MS). Let R = (NA, NC , . . .) be a CRG and NodeStates :=
{Null, Executed, NotExecuted} be the set of execution states of CRG nodes.
Then, a CRG MS of R is defined as a 3-tuple
ms := (nsA, evA, {(ns1

C , ev1
C), . . . , (nsk

C , evk
C)}) where

– nsA : NA → NodeStates is a function assigning an execution state to each
node of A.

– evA is a function assigning an observed execution event (or a dummy event
in case nsA(n) ∈ {Null, NotExecuted}) to each node of A. We denote
(nsA,evA) as AnteMark of R.

– nsi
C : NC → NodeStates is a function assigning an execution state to each

node of C.
4 The rationale behind this is that depending on the particular CRG, the pattern

matching procedure may has to try different options to form a match of the con-
sequence pattern out of the events contained in the execution trace. Consider for
example the rule “After A, there has to a B that is not followed by a C”. Then,
assuming that an A is present in the trace, the first subsequent B may not lead
to a match of the consequence as it can still be followed by a C. In this case, it
becomes necessary to also explore other options, which results in multiple markings
for the consequence pattern. This only becomes necessary for the particular case
of ConsOcc nodes with direct ConsAbs successors and is taken into account by our
pattern matching mechanism (cf. Section 3.2).

Monitoring Business Process Compliance Using Compliance Rule Graphs 91

– evi
C is a function assigning an observed execution event (or a dummy event

in case nsi
C(n) ∈ {Null, NotExecuted}) to each node of C. We denote

(nsi
C ,evi

C)as ConsMark of R.

Example 2. Consider ms1 from Fig. 4:

– ms1 = (nsA, evA, {(nsC , evC)}) with
– nsA(payment confirmed) = Executed, evA(payment confirmed) = e5,
– nsC(mark as cleared) = Null, and evC(mark as cleared) = no event.

As illustrated by Fig. 4, in each stage of process execution, the compliance
with an imposed CRG can be reflected by a set of MSs. To assess these MSs, we
can benefit from the node semantics and the node markings. Generally, for a
CRG’s antecedent or consequence pattern composed from occurrence and ab-
sence nodes, a match in the execution trace is found if all events associated with
occurrence nodes are observed (i.e., marked as Executed) and for all absence
nodes, no matching events were observed (i.e., marked as NotExecuted). If the
antecedent is marked accordingly, the corresponding MS constitutes an activation
of the CRG. Recall that a rule activation is satisfied if a match of the CRG’s
consequence can also be found in the execution trace. Thus, the activation is
satisfied if the MS also contains a ConsMark that is marked as described. Def. 4
formalizes this intuition:

Definition 4 (Compliance Notions for MSs). Let R = (NA, NC , . . .) be a
CRG and ms = (nsA, evA, {(ns1

C , ev1
C), . . . , (nsk

C , evk
C)}) be a MS of R. Then,

– we will say ms is activated if the following holds:
• ∀n ∈ NA : nt(n) = AnteOcc ⇒ nsA(n) = Executed ∧
∀n ∈ NA : nt(n) = AnteAbs ⇒ nsA(n) = NotExecuted

For an activated ms, we further distinguish between the following states:

– ms is satisfied if the following holds:
• ∃nsi

C , i ∈ {1, . . . , k} :
(∀n ∈ NC : nt(n) = ConsOcc ⇒ nsi

C(n) = Executed)∧
(∀n ∈ NC : nt(n) = ConsAbs ⇒ nsi

C(n) = NotExecuted)
– ms is violated if the following holds:

• ∀nsi
C , i ∈ {1, . . . , k} :

(∃n ∈ NC : nt(n) = ConsOcc ⇒ nsi
C(n) = NotExecuted)∨

(∃n ∈ NC : nt(n) = ConsAbs ⇒ nsi
C(n) = Executed)

– Otherwise, ms is considered violable.

Example 3. Consider again Fig. 4. Then,

– ms1, ms3, and ms6 are all activated, i.e., they constitute activations of c3.
– ms1 is violable, ms3 is satisfied, while ms6 is violated.

92 L.T. Ly et al.

Def. 4 enables us to assess obtained MSs. Altogether, this enables the process
supervisor to get an overview on rule activations in the process execution and
provides basic information on their compliance state. In Section 3.3, we will fur-
ther discuss how the monitoring framework can be used to assist the process
supervisor in identifying the root cause for violations and even in preventing
violations. Before that, we first introduce the pattern matching mechanism op-
erating on MSs behind our framework in Section 3.2.

3.2 The Pattern Matching Mechanism

As mentioned, each MS represents a (potential) activation of the CRG. As indi-
cated in Fig. 5, the monitoring of a CRG starts with a MS where all nodes are
assigned Null (i.e., no events observed yet). How to derive updated MSs from
existing MSs when a new event is observed? The pattern matching mechanism of
the framework is based on three considerations:

1: The objective is to identify all rule activations present in the execution
trace. For that purpose, it becomes necessary to explore different options to
form a match of the CRG’s antecedent pattern out of the events in the trace in
the pattern matching process.

2: For each MS, the objective is further to identify a match of the consequence
CRG (cf. Def. 2). For that purpose, we try to explore only one option if possible
to increase the efficiency. Alternative options are only explored if necessary.

3: Exploit the ordering of nodes for pattern matching: A node can only match
an event, if the node and event specification match and the node is not yet as-
signed to another event. Additionally, also matching events for relevant prede-
cessors must have already been found. In particular, for AnteOcc and AnteAbs

nodes, AnteOcc predecessors must be already marked as Executed. For ConsOcc
and ConsAbs nodes, AnteOcc and ConsOcc predecessors must be marked as
Executed.

Based on these considerations, algorithm 1 derives updated patterns from a MS

when an event is observed. The outer loop implements consideration 1. The inner
loop in line 19 updates the observable patterns with regard to the consequence
CRG (represented by the ConsMarks). It further implements consideration 2, as
only for particular nodes, namely ConsOcc nodes with direct ConsAbs successors,
alternative options have to be explored.

Example 4. Fig. 6A applies algorithm 1 to c2 over the events < e1, e2, e4 >5.
New MSs are highlighted. The monitoring starts with ms1. When e1 is observed,
application of algorithm 1 yields both ms1 and ms2. Here, ms1 enables the
recognition of future activations of c2, while ms2 explores whether e1 leads to
a rule activation6. So far, no activation of c2 is observed yet. When observing
5 e3 is irrelevant to c2.
6 Note that when manually conducting pattern matching (cf. Fig. 4), we would typ-

ically not identify ms1. However, such not yet matching patterns are important to
enable automatically deriving updated patterns from existing patterns.

Monitoring Business Process Compliance Using Compliance Rule Graphs 93

Algorithm 1 Deriving updated patterns from a MS over an event

1: R = (A,C, . . . , . . .) is a CRG; e is an observed event; MSRes = ∅;
2: ms = (nsA, evA, {(ns1C , ev1C), . . . , (nskC , evkC)}) is a MS of R;

{CRG nodes that match e (cf. consideration 3):}
3: NAnteOcc is the set of AnteOcc, NAnteAbs is the set of AnteAbs nodes matching e ;
4: N i

ConsOcc, i = 1, . . . , k; is the set of ConsOcc nodes matching e of (nsiC , ev
i
C);

5: N i
ConsAbs, i = 1, . . . , k; is the set of ConsAbs nodes matching e of (nsiC , ev

i
C);

6: for all Q ∈ P(NAnteOcc) do
7: create a copy ms′ of ms;
8: for all n ∈ Q do
9: ns′A(n) = Executed; ev′A(n) = e;
10: mark all AnteAbs predecessors of n with ns′A(n) = Null as NotExecuted;
11: for all ConsMarks (nsiC , ev

i
C) of ms′ do

12: mark all ConsOcc predecessors of n with nsiC(n) = Null as NotExecuted;
13: mark all ConsAbs predecessors of n with nsiC(n) = Null as NotExecuted;
14: end for
15: end for
16: for all n with n ∈ NAnteAbs ∧ ns′A(n) = Null do
17: ns′A(n) = Executed; ev′A(n) = e;
18: end for
19: CM = ∅;
20: for all ConsMarks cm = (nsiC , ev

i
C) of ms′ do

21: N = N i
ConsOcc\{n ∈ NC | nt(n) = ConsOcc ∧ nsiC(n) = NotExecuted};

22: D = {n ∈ N | n has no direct ConsAbs successor };
23: I = N\D;
24: for all Q = D ∪ T, T ∈ P(I) do
25: create a copy cm′ = (ns′iC ,ev

′i
C) of cm;

26: for all n ∈ Q do
27: ns′iC(n) = Executed; ev′iC(n) = e;
28: mark all ConsAbs predecessors of n with ns′iC(n) = Null as NotExecuted;
29: end for
30: for all n with n ∈ N i

ConsAbs ∧ ns′iC(n) = Null do
31: ns′iC(n) = Executed; ev′iC(n) = e;
32: end for
33: CM = CM ∪ {cm′};
34: end for
35: end for
36: set ConsMarks of ms′=CM ;
37: MSres = MSres ∪ {ms′};
38: end for
39: return MSres;

.

e2, ms1 remains unaffected. However, ms2 results in ms2 and ms3. Here, ms2

enables the recognition of possible future rule activations in combination with e1.
The compliance notions (cf. Def. 4) reveal that ms3 constitutes an activation of
c2, A1, that is already violated as the payment list was not signed before being
transferred to the bank. In this case, the process supervisor can be notified. If
in practice the activity transfer to bank can be put on hold, the system could
even suspend its execution being aware that the activity leads to incompliance.
Despite the violation, the monitoring of A1 can still be continued. Thus, when
observing e4, ms3 yields ms4. Activation A1 is still violated, but nevetheless due
to one but not two causes as we will later discuss in Section 3.3.

Example 5. Fig. 6B applies algorithm 1 to c4 over the events < e7, e9, e10 >.
As mark as cleared occurs twice the execution (as e7 for item 2 and as e9 for
item 3), compliance monitoring reveals two activations of c4, namely A1 and

94 L.T. Ly et al.

File
payment list

e4 = (file payment list, payment list A)e2 = (transfer to bank, payment list A)

Compliance rule c2:

NOT_EXECUTEDEXECUTEDNULL

PR TB

SL

FL

Payment list ms1

PR TB

SL

FL

Payment list ms1

PR TB

SL

FL

Payment list A ms3

PR TB

SL

FL

Payment list A ms2

PR TB

SL

FL

Payment list ms1

PR TB

SL

FL

Payment list A ms4

PR TB

SL

FL

Payment list A ms2

- ACTIVATED
- VIOLATED

Monitoring of the rule activation for payment
list A can still be continued.

Activation A1 Activation A1
- ACTIVATED
- VIOLATED

e10 = (put on payment list, item 3)

A

e1 = (payment run, payment list A, amount = €60,000)

PR TB

SL

FL

Payment list ms1

PR TB

SL

FL

Payment list A ms2

Payment run
(amount > 10.000 €)

Transfer to bank

Sign payment
list

Payment list

Initial empty pattern:

Node markings:

Monitoring:

Monitoring compliance rule c2:

Monitoring compliance rule c4:

Compliance rule c4

Mark as
cleared

Put on
payment list

Item

M P

Item ms1

M P

Item 3 ms4

M P

Item ms1

M P

Item 2 ms2

- ACTIVATED
- VIOLABLE

- ACTIVATED
- VIOLATED

Activation A2

Activation A1

e9 = (mark as cleared, item 3)

M P

Item 3 ms3

M P

Item ms1

M P

Item 2 ms2

- ACTIVATED
- VIOLABLE

- ACTIVATED
- VIOLABLE

Activation A1

Activation A2

e7 = (mark as cleared, item 2)

M P

Item ms1

M P

Item 2 ms2

Initial empty pattern:

B Monitoring:
e10 = (put on payment list, item 3)

Fig. 6. Monitoring c2 over < e1, e2, e4 > (A) and c4 over < e7, e9, e10 > (B)

A2, after observing e7 and e9. At that stage, both activations are violable.
However, item 3 is later put on a payment list again (indicated by e10). As a
result, activation A2 becomes violated as the absence constraint is violated.

3.3 Prevention of Violations and Root Cause Analysis

Prevention of violations A violable rule activation can become both satisfied

or violated depending on future events. Due to its graph notation, such a MS can
be presented to the process supervisor if required in order to identify measures
to prevent a violation. Additionally, the system can assists in preventing viola-
tions by deriving concrete actions in order to render the activation satisfied.
Based of Def. 4, the rule activation becomes satisfied when a match of the
consequence is found. Thus, from a ConsMark (nsC , evC) that can still lead to
a match of the consequence, we can derive actions to satisfy the corresponding
activation as follows:

Monitoring Business Process Compliance Using Compliance Rule Graphs 95

– Each ConsOcc node n with nsC(n) = Null represents a still pending ac-
tivity.
Possible action: Schedule the pending activity7.
Example: Consider ms1 from Fig. 4. Then, ConsOcc node mark as cleared
is pending as it is still marked as Null. To satify this activation, the corre-
sponding activity can be scheduled, for example, by putting it into an agent’s
worklist.

– Each ConsAbs node n with nsC(n) = Null that does not have any ConsOcc

predecessors still in state Null represents an active absence constraint. The
absence of the corresponding event is necessary in order for this ConsMark

to constitute a match of the consequence CRG.
Possible action: Deactivate the corresponding activity until n is marked
as NotExecuted (e.g., when the window of n elapsed).
Example: Consider ms2 from Fig. 6B. Then, ConsAbs node put on pay-
ment list represents an active absence constraint. As no ConsOcc nodes are
pending, immediate end of process execution would render this activation
satisfied. To enforce compliance, the activity put on payment list can be
deactivated for item 2.

As the pattern matching mechanism employs a rather greedy strategy to iden-
tify a match of the consequence, the thus derivied action chains constitute the
“shortest” ways to enforce compliance.

Root cause identification. In a similar manner to violation prevention, the root
cause of a violated rule activation can be easily derived from a ConsMarks.
Generally, an activation can become violated if required events do not occur
or / and prohibited events occur during process execution. These causes are also
reflected in the MS. For a ConsMark (nsC , evC) of a violated MS, we can identify
why it does not constitute a match of the consequence CRG:

– Each ConsOcc node n with nsC(n) = NotExecuted represents a required
activity missing in the pattern.
Example: Consider ms4 from Fig. 6A. Then, the missing event sign payment
list before transferring payment list A to the bank can be precisely identified
as the root cause for the violation of rule activation A1.

– Each ConsAbs node n with nsC(n) = Executed represents an prohibited
activity observed in the pattern.
Example: Consider ms4 from Fig. 6B. Then, the prohibited event put on
payment list for item 3 is identified as the root cause for the violation.

4 Implementation

We impemented our monitoring approach in the SeaFlows Toolset [5] that
comprises a variety of tools for supporting compliance throughout the process
7 Since CRGs are acyclic, we can further derive a process to be scheduled by adopting

the ordering relations of the occurrence nodes in case multiple activities are pending.

96 L.T. Ly et al.

Fig. 7. Execution of c2 over < e1, e2, e4 > and ms4 as one of the resulting MSs

lifecycle. The SeaFlows Compliance Monitor is integrated into the AristaFlow
BPM Suite that is based on ADEPT [6]. CRGs are modeled using a graphical
editor and stored as XML files. For convenient compliance rule modeling, the
SeaFlows Compliance Rule Editor allows for modeling parametrized compliance
rules patterns that can be reused whenever a rule with a similar structure is re-
quired. Fig. 7 shows the rule activation captured by MS ms4 (cf. Fig. 6A) obtained
when observing the event sequence < e1, e2, e4 > from Fig. 1. The root cause of
the violation is visualized directly in the CRG by using the node markings and
the color highlighting. This enables process supervisors to easily pinpoint vio-
lations and to apply root cause specific remedies, for example initiate an audit
activity as the transferred payment list was not signed before being transferred
to the bank.

5 State-of-the-Art

Most work addressing process monitoring focus on data consistency or process
performance (e.g., KPI monitoring or business activity monitoring). Several ap-
proaches address root cause analysis in the context of design time verification
[7,8,5]. Generally, for a predefined set of rule patterns, possible types of violations
can be anticipated, which can be used for root cause analysis. However, runtime
monitoring of complex rules on the occurrence, absence, and ordering of particu-
lar events necessitates more advanced strategies. We distinguished three classes
of monitoring approaches addressing constraints on the behavior of events. In
addition, compliance monitoring is also related to conformance checking.

Monitoring Business Process Compliance Using Compliance Rule Graphs 97

Automaton-based monitoring. One approach to monitor compliance with imposed
rules is to use an automaton that reaches an accepting state if the rule to be checked
is satisfied. As compliance rules are typically not modeled as automaton, they first
have to be modeled using a formalism, such as linear temporal logic (LTL), from
which an automaton can be generated. To hide the complexity of LTL from the
modeler, graphnotations for frequently used constraint patterns based on the work
of Dwyer and Corbett [3], such as ConDec [9], were suggested. Maggi et al. [10] sug-
gest a monitoring approach based on LTL and colored automata. It includes infor-
mation about the accepting states of the automata of the individual constraints in a
global automaton representing the conjunction of all imposed constraints. The lat-
ter is important to identify whether constraints are conflicting. In case a violation
occurs, the monitoring can still be continued. Generally, challenge 1, the support
of individual rule activations, is cumbersome to tackle using automaton-based ap-
proaches as this would require an additional instantiation mechanism. In addition,
it is a non-trivial task to derive meaningful information from a non-accepting state
of a generated automaton in case of violations (e.g., root cause).

Logic-based monitoring. Some approaches employ logic formalisms to conduct
monitoring. In [4], Montali et al. introduce an event calculus formalization for
ConDec [9] constraints, which supports the identification of constraint activa-
tions. While this approach can also deal with temporal scopes, the formalization
was done for existence, absence, and response constraints. Alberti et al. [11] re-
port on monitoring contracts expressed as rules using the notion of happened
and expected events. At runtime, events are aggregated in a knowledge base and
reasoning is employed to identify violations. It seems that proactive prevention
of violations and root cause analysis were not addressed by these approaches.

Violation pattern based monitoring Incompliance with rules on the occurrence,
absence, and ordering of events can also be detected by querying the (partial)
execution trace for violation patterns. To conduct the querying, existing frame-
works and technologies such as complex event processing (CEP) [1] are appli-
cable. In [8], Awad et al. introduce anti-patterns for basic rule patterns such
as precedence. While this approach addresses design time verification of process
models, the anti-patterns can also be applied to query the execution trace. For
simple compliance rules or basic relations (as for example introduced in [12]),
all violation patterns can be anticipated. However, for more complex compliance
rules on the occurrence, absence, and ordering of events that can be violated
in multiple ways, automatic computation of violation patterns to identify all
posssible violations becomes a real challenge. This has not been addressed yet.
In their work, Giblin et al. [13] developed the REALM rule model. For REALM
patterns, such as “y must occur within time t after x”, they provide transforma-
tions into ACT correlation rules, which can be used for detecting relevant event
patterns. Event processing techonologies are further used by numerous compli-
ance monitoring frameworks to detect violations, e.g., in the COMPAS project
[14,15]. How the event queries are generated from complex compliance rules is
not the focus of these approaches.

98 L.T. Ly et al.

Conformance checking. Conformance checking investigates whether a process
model and process logs are conform to each other. Generally, the conformance
can be tested for example by replaying the log over the process model. To tackle
this, several approaches were proposed [16,17] that introduce techniques and
notions such as fitness and appropriateness to also quantify conformance. Im-
plementations of these approaches (e.g., the Conformance Checker) are available
in the process mining framework ProM [18]. Conformance checking and compli-
ance rule monitoring exhibit major differences that require different techniques.
For example, compliance rules are typically declarative while process models
are mostly procedural. In addition, most of the work on conformance checking
operates a posteriori. However, these approaches provide good inspiration, for
example to develop metrics for quantifying compliance. Weidlich et al. show in
[12] how to derive event queries for monitoring process conformance from a pro-
cess model. They employ a behavioral profile that serves as an abstraction of
the process model. The profile captures three relations among the activities of a
process model (e.g., strict order relation). For these relations, event monitoring
queries can be generated (cf. discussion on violation pattern based monitoring).

6 Summary and Outlook

In this paper, we addressed three major challenges in the context of monitoring
the compliance with imposed rules. Our framework enables the identification of
all activations of a compliance rule. In case of a compliance rule is violated, it
becomes possible to pinpoint the rule activations involved. In addition, as our
framework does not require any transformations into other representations in
order to conduct the monitoring, feedback and diagnosis can be given specifically
based on the corresponding rule structure. In particular, we can derive the root
cause for a violation from the node markings of the particular rule. Even for
rule activations that are not yet permanently violated, we can derive actions
(in particular pending activities and active absence constraints) that can be
helpful to process supervisors to proactively prevent violations. The validity of
the approach was shown based on our proof-of-concept implementation. Our
monitoring approach is not restricted to CRGs but can also be adapted to deal
with other graph-based rule languages. We also conducted research to further
increase the efficiency of our approach, for example by pruning paths to be
explored using domination rules. In future work, we will further address the
interplay of CRGs, for example conflicting rules.

References

1. Jacobsen, H.A., Muthusamy, V., Li, G.: The PADRES event processing network:
Uniform querying of past and future events. IT - Information Technology, 250–261
(2009)

2. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and Verification of Instantiable Com-
pliance Rule Graphs in Process-Aware Information Systems. In: Pernici, B. (ed.)
CAiSE 2010. LNCS, vol. 6051, pp. 9–23. Springer, Heidelberg (2010)

Monitoring Business Process Compliance Using Compliance Rule Graphs 99

3. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proc. ICSE 1999, pp. 411–420 (1999)

4. Montali, M., Maggi, F., Chesani, F., Mello, P., van der Aalst, W.: Monitoring
business constraints with the event calculus. Technical report. Universita degli
Studi di Bologna (2011)

5. Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M.,
Dadam, P.: SeaFlows toolset – compliance verification made easy for process-aware
information systems. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 76–91. Springer, Heidelberg (2011)

6. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed and Parallel Databases 16, 91–116 (2004)

7. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: On the formal
specification of regulatory compliance: A comparative analysis. In: Maximilien,
E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS,
vol. 6568, pp. 27–38. Springer, Heidelberg (2011)

8. Awad, A., Weske, M.: Visualization of compliance violation in business process
models. In: Proc. BPI 2009 (2009)

9. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business
processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006.
LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

10. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
business constraints with linear temporal logic: An approach based on colored
automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

11. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., Torroni,
P.: Expressing and verifying business contracts with abductive logic. In: Normative
Multi-agent Systems. Number 07122 in Dagstuhl Seminar Proceedings (2007)

12. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-
Based Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg
(2011)

13. Giblin, C., Müller, S., Pfitzmann, B.: From regulatory policies to event monitoring
rules: Towards model-driven compliance automation. Technical Report Research
Report RZ-3662. IBM Research GmbH (2006)

14. Holmes, T., Mulo, E., Zdun, U., Dustdar, S.: Model-aware monitoring of soas
for compliance. In: Dustdar, S., Li, F. (eds.) Service Engineering, pp. 117–136.
Springer, Heidelberg (2011)

15. Birukou, A., D’Andrea, V., Leymann, F., Serafinski, J., Silveira, P., Strauch, S.,
Tluczek, M.: An integrated solution for runtime compliance governance in SOA.
In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS,
vol. 6470, pp. 122–136. Springer, Heidelberg (2010)

16. van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining and security: Detect-
ing anomalous process executions and checking process conformance. Electr. Notes
Theor. Comput. Sci. 121, 3–21 (2005)

17. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33, 64–95 (2008)

18. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de
Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W(E.), Wei-
jters, A.J.M.M.T.: ProM 4.0: Comprehensive support for real process analysis.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494.
Springer, Heidelberg (2007)

History-Aware, Real-Time Risk Detection in
Business Processes

Raffaele Conforti1, Giancarlo Fortino2,
Marcello La Rosa1, and Arthur H.M. ter Hofstede1,3

1 Queensland University of Technology, Australia
{raffaele.conforti,m.larosa,a.terhofstede}@qut.edu.au

2 Università della Calabria, Italy
fortino@unical.it

3 Eindhoven University of Technology, The Netherlands

Abstract. This paper proposes a novel approach for identifying risks in exe-
cutable business processes and detecting them at run-time. The approach con-
siders risks in all phases of the business process management lifecycle, and is
realized via a distributed, sensor-based architecture. At design-time, sensors are
defined to specify risk conditions which when fulfilled, are a likely indicator of
faults to occur. Both historical and current process execution data can be used to
compose such conditions. At run-time, each sensor independently notifies a sen-
sor manager when a risk is detected. In turn, the sensor manager interacts with the
monitoring component of a process automation suite to prompt the results to the
user who may take remedial actions. The proposed architecture has been imple-
mented in the YAWL system and its performance has been evaluated in practice.

1 Introduction

According to the AS/NZS ISO 31000 standard, a business process risk is the chance of
something happening that will have an impact on the process objectives, and is mea-
sured in terms of likelihood and consequence [26]. Incidents such as scandals in the
finance sector (the 4.9B Euros fraud at Société Générale), in the health sector (Patel
Inquiry) and in the aviation industry (failed terrorist attacks) have shown that business
processes are constantly exposed to a wide range of risks.

Failures of process-driven risk management can result in substantial financial and
reputational consequences, potentially threatening an organization’s existence. Legisla-
tive initiatives such as the Sarbanes-Oxley Act1 and Basel II [2] in the finance sector
have highlighted the pressing need to better manage business process risks. As a conse-
quence of these mandates, organizations are now seeking new ways to control process-
related risk and are attempting to incorporate it as a distinct view in their operational
management. However, whilst conceptually appealing, to date there is little guidance as
to how this can best be done. Currently the disciplines of process management and risk
management are largely disjoint and operate independently of one another. In industry
they are usually handled by different organizational units. Within academia, recent re-
search has centered on the identification of process-related risks. However the incidents

1 www.gpo.gov/fdsys/pkg/PLAW-107publ204

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 100–118, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

www.gpo.gov/fdsys/pkg/PLAW-107publ204

History-Aware, Real-Time Risk Detection in Business Processes 101

described above demonstrate that a focus on risk analysis alone is no longer adequate,
and an active, real-time risk detection and controlling is required.

We propose a novel approach for operationalizing risk management in Business Pro-
cess Management automation Suites (BPMSs). The aim of this approach is to provide
a concrete mechanism for identifying risks in executable business process models and
detecting them during process execution. This is achieved by considering risks through-
out the BPM lifecycle, from process model design where risk conditions are defined,
through to process diagnosis, where risks are monitored. By automating risk detection,
the interested users (e.g. a process administrator) can be notified as early as a risk is
detected, such that remedial actions can be taken to rectify the current process instance,
and prevent an undesired state of the process (fault for short), from occurring. Based on
historical data, we can also compute the probability of a risk at run-time, and compare
it to a threshold, so as to notify the user only when the risk’s criticality is no longer
tolerable. To the best of our knowledge, this is the first attempt to incorporate risks into
executable business processes and enable their automatic detection at run-time.

The proposed approach is realized via a distributed, sensor-based architecture. A sen-
sor is an independent software component which monitors a risk condition capturing the
situation upon which the risk of a given fault may occur. Conditions can be determined
via a query language that can fetch both historical and current execution data from the
logs of the BPMS. At run-time sensors are registered with a central sensor manager.
At a given sampling rate, or based on the occurrence of a (complex) event, the sensor
manager retrieves and filters all data relevant for the various sensors (as it is logged by
the BPMS engine), and distributes it to the relevant sensors. If a sensor condition holds,
i.e. if the probability of the associated risk is above a given threshold, the sensor alerts
the sensor manager which in turn notifies the monitoring component of the BPMS. The
distributed nature of the architecture guarantees that there is no performance overhead
on the BPMS engine, and thus on the execution of the various process instances. We
implemented this architecture on top of the YAWL system. We extended the YAWL Ed-
itor to cater for the design of risk sensors, and equipped the run-time environment with
a sensor manager service that interacts with YAWL’s monitoring service and execution
engine.

To prove the feasibility of the proposed approach, we used fault tree analysis [4] (a
well-established risk analysis method) to identify risk conditions in a reference process
model for logistics, in collaboration with an Australian risk consultant. These risks em-
brace different process aspects such as tasks’ order dependencies, involved resources
and business data, and relate to historical data where needed, to compute risk probabil-
ities. We expressed these conditions via sensors in the YAWL environment, and mea-
sured the time needed to compute these conditions at run-time. The tests showed that
the sensor conditions can be computed in a matter of milliseconds without impacting
on the performance of the running process instances.

This paper is organized as follows. Section 2 illustrates the running example in the lo-
gistics domain. Section 3 describes our risk-aware BPM approach while Sect. 4 presents
the sensor-based architecture to implement this approach. The architecture is evaluated
in Sect. 5. Section 6 covers related work while Sect. 7 concludes the paper.

102 R. Conforti et al.

2 Running Example

In this section we use an example to illustrate how the risk of possible faults to occur
during a business process execution can be identified as early as possible. In particular,
we show how risks can be expressed in terms of process-specific aspects such as tasks
occurrence, data or available resources. The example, shown in Figure 1, describes the
payment subprocess of an order fulfillment business process which is inspired by the
VICS industry standard for logistics [30]. This standard is endorsed by 100+ companies
worldwide, with a total sales volume of $2.3 Trillion annually [30]. The notation used
to represent this example is that of YAWL [13], although a deep knowledge of this
language is not required.

This process starts after the freight has been picked up by a carrier and deals with
the shipment payment. The first task is the production of a Shipment Invoice containing
the shipment costs related to a specific order for a specific customer. If shipments have
been paid in advance, all that is required is for a Finance Officer to issue a Shipment
Remittance Advice specifying the amount being debited to the customer. Otherwise,
the Finance Officer issues a Shipment Payment Order that needs to be approved by a
Senior Finance Officer (who is the superior of this Finance Officer). At this point, a
number of updates may be made to the Shipment Payment Order by the Finance Officer
that issued it, but each of these needs to be approved by the Senior Finance Officer.
After the document is finalized and the customer has paid, an Account Manager can
process the shipment payment by specifying the balance. If the customer underpaid, the
Account Manager needs to issue a Debit Adjustment, the customer needs to pay the
balance and the payment needs to be reprocessed. A customer may also overpay. In this
case the Account Manager needs to issue a Credit Adjustment. In the latter case and in
case of a correct payment, the shipment payment process is completed.

Process
Shipment
Payment

Approve
Shipment

Payment Order

[payment incorrect
due to overcharge]

[payment correct]

[payment incorrect
due to underpayment]

Input
condition

Output
condition

Task

[else]

[pre-paid
shipments]Issue

Shipment
Invoice

Issue Shipment
Remittance
Advice

[order
approved]

[order
not approved]

Issue
Shipment
Payment
Order

Update
Shipment

Payment Order

Settle
Account

Receive
Payment

Issue Credit
Adjustment

Issue Debit
Adjustment

Receive
Payment

XOR
join

XOR
splitArc

Fig. 1. Order-Fulfillment: Payment subprocess

In collaboration with a risk analyst of an Australian consulting company, we identi-
fied four faults that can occur during the execution of this payment subprocess. In order
to prevent the occurrence of these faults, for each of them we also defined an associated
risk condition by using fault tree analysis [4]. Accordingly, each risk condition is ex-
pressed as a set of lower-level boolean events which are organized in a tree via logical
connectives such as ORs, ANDs and XORs. Below we describe the four risk conditions
identified. However, for space reasons, in Fig. 2 we only show the fault tree for two of
them.

The first fault is an overtime process fault. A Service Level Agreement (SLA) for a
process or for a given task within a process, may establish that the process (or task) may

History-Aware, Real-Time Risk Detection in Business Processes 103

not last longer than a Maximum Cycle Time MCT , otherwise the organization running
the process may incur a pecuniary penalty. In our case, an overtime fault occurs if an
instance of the payment subprocess is not completed within an MCT of five days.

To detect the risk of overtime fault at run-time, we should check the likelihood that
the running instance does not exceed the MCT based on the amount of time Tc expired
at the current stage of the execution. Let us consider Te as the remaining cycle time,
i.e. the amount of time estimated to complete the current instance given Tc. Then the
probability of exceeding MCT can be computed as 1− MCT /(Te + Tc) if Te + Tc >
MCT and is equal to 0 if Te +Tc ≤ MCT . If this probability is greater than a tolerance
value (e.g. 60%), we notify the risk to the user. The estimation of the remaining cycle
time is based on past executions of the same process and can be computed using the
approach in [29] (see Section 5 for more details).

The second fault is related to the resources participating in the process. The Senior
Finance Officer who has approved a Shipment Payment Order for a given customer,
must have not approved another order by the same customer in the last d days, otherwise
there is an approval fraud. This fault is thus generated by the violation of a four-eye
principle across different instances of the Payment subprocess.

To detect the risk of this fault we first have to check that there is an order, say order
o of customer c, to be approved. This means checking that an instance of task Approve
Shipment Payment Order is being executed. Moreover, we need to check that either of
the following conditions holds: i) o has been allocated to a Senior Finance Officer who
has already approved another order for the same customer in the last d days; or ii) at
least one Senior Finance Officer is available who approved an order for customer c in
the last d days and all other Senior Finance Officers who never approved an order for c
during the last d days are not available. The corresponding fault tree is shown in Fig. 2.

Allocation to
same resource

Approval of o
allocated to Senior

Finance Officer r

r approved
another order

for customer c in the
 last d days

Other resources
are busy

At least
one Senior Finance

Officer is available who
approved an order for
customer c in the last

 d days

All other Senior
Finance Officers who

never approved an order
for c in the last d days

are busy

Order o of
customer c needs

to be approved

Approval fraud
risk

Debit adjustment
being issued to

customer c

Underpayment
fraud risk

It is likely that the
maximum number of

debit adjustments will be
issued to c within a d-

day time frame

Event Conditional
event

Logical
AND

Logical
OR

Fig. 2. The fault trees for Approval Fraud and Underpayment Fraud

The third fault relates to a situation where a process instance executes a given task
too many times. This situation typically occurs in the context of loops. Not only could
this lead to a process slowdown but also to a “livelock” if the task is in a loop whose
exit condition is purposefully never met. In general, given a task t a maximum number

104 R. Conforti et al.

of allowable executions of t per process instance MAE i(t) can be fixed as part of the
SLA for t. With reference to the Payment subprocess, this can occur for example if
task Update Shipment Payment Order is re-executed five times within the same process
instance. We call this an order unfulfillment fault.

To detect the risk of this fault at run-time, we need to check if: i) an order o is been
updated (i.e. task Update Shipment Payment Order is currently being performed for or-
der o); and ii) it is likely that this order will be updated again (i.e. task Update Shipment
Payment Order will be repeated within the same process instance). The probability that
the number of times a task will be repeated within the same instance of the Payment
subprocess is computed by dividing the number of instances where the MAE i for task
Update Shipment Payment Order has been reached, over the number of instances that
have executed this task at least as many times as it has been executed by the current
instance, and have completed. The tolerance value indicates a threshold above which
the risk should be notified to the user. For example, if this threshold is 60% for task t, a
risk should be raised if the probability of MAE i(t) is greater than 0.6.

The fourth fault is an underpayment fraud. It relates to a situation in which a given
task is executed too many times across multiple process instances. Similar to the previ-
ous fault, given a task t we can define a maximum number of allowable executions of t
per process MAE p(t) as part of the SLA for p. In our example, this type of fault occurs
when a customer underpays more than three times within the last five days.

To detect the risk of underpayment fraud, we need to check if: i) a debit adjustment
is currently being issued to a customer c (i.e. task Issue Debit Adjustment is currently
being performed for customer c); and ii) it is likely that the maximum number of debit
adjustments will be issued to the same customer in a d-day time frame. The probability
that MAE p is reached for task Issue Debit Adjustment of customer c in d days is com-
puted by dividing the number of customers for which the MAEp for task Issue Debit
Adjustment has been reached within d days, over the number of customers for which
this task has been executed at least as many times as it has been executed for c within d
days. Similar to the previous risk, if this probability is above a tolerance value, the risk
should be raised and the user notified. The corresponding fault-tree is shown in Fig. 2.

The faults identified in this example, and the associated risks, can easily be general-
ized to other domains. For example, a fault due to an approval fraud can occur in any
business process that involves an approval procedure (e.g. loan approvals).

3 Risk-Aware Business Process Management

As we have seen in the context of the payment example, a fault in a business process
is an undesired state of a process instance which may lead to a process failure (e.g. the
violation of a policy may lead to a process instance being interrupted). Identifying a
fault in a process requires determining the condition upon which the fault occurs. For
example, in the payment subprocess, we have an underpayment fraud if a customer
underpays more than three times within a five-day time frame.

However, a fault condition holds only when the associated fault has occurred, which
is typically too late to avoid a process failure. Indeed, we need to be able to estimate
the risk of a process fault, i.e. if, and possibly with what likelihood, the fault will occur

History-Aware, Real-Time Risk Detection in Business Processes 105

in the future. Early risk detection allows process users to promptly react with counter-
measures, if any, to prevent the related fault from occurring at all.

We use the notion of risk condition, as opposed to fault condition, to describe the set
of events that lead to the possibility of a fault to occur in the future. In order to evalu-
ate risk conditions “on-line”, i.e. while a process instance is being executed, we need
to consider the current state of the BPMS. This means knowing the state of all running
instances of any process (and not only the state of the instance for which we are comput-
ing the risk condition), the resources that are busy and those that are available, and the
values of the data variables being created and consumed. Moreover, we need to know
the historical data, i.e. the execution data of all instances that have been completed. In
particular, we can use historical data to estimate the probability of a given fault to occur,
i.e. the risk probability. For example, for the underpayment fraud, we can estimate the
likelihood that another debit adjustment is being issued for a given combination of cus-
tomer/order (historical data), given that one such debit adjustment has just been issued
(current data). To obtain a boolean risk condition, we compare the risk probability that
we obtain with a tolerance value, such that the condition holds if the risk probability
exceeds the given threshold. For example, we raise the risk of underpayment fraud if
the risk probability is greater then 60%.

In other cases, we may avoid to embed a risk probability in the risk condition, if we
are able to determine the occurrence of a set of events which directly leads to a high
risk. This is the case of the approval fraud, where both the events “Allocation to same
resource” and “Other resources are busy” already signal a high risk of approval fraud.

Based on these considerations, we present a novel approach for on-line risk detection
in business processes. The focal idea of this approach, shown in Fig. 3, is to embed
elements of risk into all four phases of the traditional BPM lifecycle [7].

Process
Implementation

Risk-aware workflow
implementation

Risk
Identification

Risk analysis

Risk-annotated
models

Risk-annotated
workflows

Current
process data

Historical
process data

Risk prevention
changes

Process Design

Risk-aware
process modelling

1

2

3

4Process Diagnosis

Risk monitoring and
controlling

Process
Enactment
Risk-aware

workflow execution
Risk mitigation

changes

Reporting

Risks

Fig. 3. Risk-aware Business Process Management lifecycle

Input to this “risk-aware” BPM lifecycle is a Risk Identification phase, where risk
analysis is carried out to identify risks in the process model to be designed. Traditional
risk analysis methods such as FTA (as seen in the previous section), Root Cause Anal-
ysis [17] or CORAS [25], can be employed in this phase. The output of this phase is a
set of risks, each expressed as a risk condition.

106 R. Conforti et al.

Next, in the Process Design phase, these high-level risk conditions are mapped down
to process model-specific aspects. For example, the condition “debit adjustment being
issued to customer c for order o” is mapped to the occurrence of a specific task, namely
“Issue Debit Adjustment” in the Payment process model. The result of this second
phase is a risk-annotated process model. In the next phase, Process Implementation,
these conditions are linked to workflow-specific aspects, such as content of variables,
and resource allocation states. For example, “customer c” is linked to the Customer
element of the XML representation of the Debit Adjustment document. Process
Implementation may be integrated with Process Design if the language used at design-
time is executable (e.g. BPMN 2.0 or YAWL).

The risk-annotated workflow model resulting from Process Implementation is then
executed by a risk-aware process engine during Process Enactment. Historical data
stored in process logs, and current execution data coming from process enactment, are
filtered, aggregated and analyzed in the Process diagnosis phase, in order to evaluate
the various risk conditions. When a risk condition evaluates to true, the interested users
(e.g. a process administrator) are notified and reports can also be produced during this
phase for auditing purposes. Finally, this phase can trigger changes in the current pro-
cess instance, to mitigate the likelihood of a fault to occur, or in the underlying process
model, to prevent a given risk from occurring ever again.

In the next section we describe a sensor-based architecture to operationalize this
enhanced BPM lifecycle.

4 Sensor-Based Realization

In order to realize our risk-aware BPM lifecycle, we devised an approach based on
sensors. In a nutshell, the idea is to capture risk and fault conditions via sensors, and
then monitor these sensors during process execution. An overview of this approach is
shown in Fig. 4 using the BPMN 2.0 notation [21].

Sensors are defined during the Process Design and Process Implementation phases
of our risk-aware BPM lifecycle (see Fig. 3), for each process model for which the
presence of risks and/or faults need to be monitored. If the process model is specified
via an executable language, then these two phases coincide.

Enact Process
Model

Process
model

Define sensor

Process
case

Process
logs

Sensor

Register sensor

Monitor sensor

Update sensor
data

Check sensor
condit ion

Send
notif icat ion

Trigger
occurred

Process instance
completed

For each sensor

Suff icient
data

Sensor
condit ion

fulf illed

Insuff icient
data Sensor condit ion

not fulf illed

Fig. 4. Realization of risk-aware BPM lifecycle via sensors

History-Aware, Real-Time Risk Detection in Business Processes 107

Sensor � v : Variables; c : Condition;
t : Trigger

Variables � Assignment+

Condition � riskCond, faultCond : boolExpr

Trigger � timer | event

Assignment � CaseExpr | CaseElemExpr |
VarFunc | Definition

CaseExpr � result : varName;
e : CaseIDStat; a : Action

CaseElemExpr � ce : CaseExpr ; x : TaskOrNet

VarFunc � result, input : varName;
va : varAction

Definition � result : varName; c : constant

CaseIDStat � absoluteExpr | relExpr |
CaseCondSet

CaseCondSet � CaseCondExpr | CaseCond |
CaseParam

CaseCondExpr � pes1 , pes2 : CaseCondSet;
bo : booleanOp

CaseCond � x : TaskOrNet; a : Action;
c : compOp; r : rightHandExpr

CaseParam � i : idFunc; c : compOp;
r : rightHandExpr

TaskOrNet � taskLabel | netName

Action � predFunc | taskOrNetVar |
SubVarExpr | inputPredFunc

(a)

Abstract element Description

Sensor
is composed by Variables ,
Condition , Trigger

Variables identifies a set of Assignment

Condition
identifies the sensor condition
composed by a risk condition and
by a fault condition

Trigger specifies the type of trigger desired

Assignment
defines a mapping between
a variable and a piece of information

CaseExpr
identifies information belonging
to the process instance

CaseElemExpr
identifies information belonging to
an element of the process instance

VarFunc
returns the result of a function
executed on a variable

Definition
sets the value of a variable to
a predefined value

CaseIDStat
identifies a process instance
or a set of process instances

CaseCondSet
describes how a process instance
can be identified

CaseCondExpr
is a boolean conjunction
of CaseCondSet

CaseCond
specifies the condition that
the process instance must satisfy

CaseParam
specifies the parameter related to
the process instance id

TaskOrNet
identifies an element of the process
model using taskLabel or netName

Action
identifies the type of information
desired

(b)

Fig. 5. Abstract syntax of sensor definition language (a); Description of its elements (b)

A sensor is defined through a boolean sensor condition, constructed on a set of pro-
cess variables, and a sensor activation trigger. Process variables are used to retrieve
information from the specific instance in which the sensor condition will be evaluated
as well as from other instances, either completed or still running. For example, we can
use variables to retrieve the resource allocated to a given task, the value of a task vari-
able, or the status of a task. Process instances can either be identified based on the
current instance (e.g. the last five instances that have been completed before the current
one), or based on the fulfillment of a case condition (e.g. “all instances where a given
resource has executed a given task”). The sensor condition can represent either a risk
condition associated with a fault, or a fault condition, or both. If both conditions are
specified, the fault condition is evaluated only if the risk condition evaluates to true. For
example, the sensor will check if an overtime process fault has occurred in a process in-
stance only if first the risk of such fault has first been detected, based on the estimation
of the remaining cycle time for this instance. Finally, the sensor activation trigger can
be either a timer periodically fired according to a sampling rate (e.g. every 5 minutes),
or an event emitted by the process engine (e.g. the completion of a task). Figure 5 shows
a simplified version of the sensor definition language by using an abstract syntax [19];
the complete definition of this language is provided in the technical report [5].

108 R. Conforti et al.

During Process Enactment, the defined sensors are registered with a sensor man-
ager, which activates them. In the Process Diagnosis phase, which starts as soon as
the process is enacted, the activated sensors receive updates on the variables of their
sensor conditions according to their trigger (timer or event). When a sensor receives an
update, it checks its sensor condition. If the condition holds, a notification is sent from
the sensor to the monitor service of the BPMS.

The sensor manager relies on three interfaces to interact with the BPMS (see
Fig. 6(a)):

– Engine interface, used to register a sensor with a particular event raised by the
BPMS engine. When the event occurs the sensor is notified by the sensor manager.

– Database interface, used to query the BPMS database in order to collect current
and historical information.

– Monitor interface, used to notify the detection of risks and faults to the monitor
service of the BPMS.

Process engine

Sensor Manager

Monitor service

Process logs
Sensors

BPMS

DB
int.face

Engine
int.face

Monitor
int.face

(a) (b)

Fig. 6. Sensor-based architecture (a); Database Interface schema model (b)

These interfaces can be implemented by the vendor or user of the BPMS where the
sensor manager needs to be installed. In this way, our sensor manager can virtually be
interfaced with any BPMS. As an example, the conceptual model of the database inter-
face is showed in Fig. 6(b), where methods have been omitted for space reasons. This
conceptual model is inspired by the reference process meta-model of the WfMC [14],
in order to cover as many aspects as possible of a workflow model, and meantime, to
remain as generic as possible. For example, class WorkFlowDefinition allows one to re-
trieve information about the process model where the sensor is defined, such as process
identifier and name, while class SubProcess allows one to retrieve information about a
specific subprocess, and so on. This interface should be implemented according to the
characteristics of the specific database used in the BPMS at hand. For an efficient use of
the interface, one should also define indexes on the attributes of the BPMS database that
map the underlined attributes in Fig. 6(b). These indexes have been determined based
on the types of queries that can be defined in our sensor condition language.

History-Aware, Real-Time Risk Detection in Business Processes 109

An alternative approach to achieve the portability of the sensor manager, would be to
read the BPMS logs from a standard serialization format such as OpenXES. However,
as we will show in Sect. 5, this solution is rather inefficient.

The advantages of using sensors are twofold. First, their conditions can be monitored
while the process model is being executed, i.e. in real-time. Second, according to a
distributed architecture, each sensor takes care of checking its own condition after being
activated by the sensor manager. In this way, potential execution slowdowns are avoided
(e.g., the process engine and the sensor manager could be deployed to two different
machines).

We now have all ingredients to show how the risks that we identified for the Payment
subprocess can be captured via sensor conditions, using the language defined in Fig. 5.
For space reasons we only focus on the approval fraud and underpayment fraud risks.
A description of the other sensor conditions is provided in the technical report [5].

We recall that there is an approval fraud whenever a Senior Finance Officer approves
two orders for the same customer within five days. Accordingly, the corresponding risk
can be detected if given an order o of customer c to be approved, either of the following
conditions holds: i) o has been allocated to a Senior Finance Officer who has already
approved another order for the same customer in the last five days; or ii) at least one
Senior Finance Officer is available who approved an order for customer c in the last five
days and all other Senior Finance Officers who never approved an order for c during the
five days are not available.

This risk condition is triggered by an event, i.e. the spawning of a new instance of
task Approve Shipment Payment Order. This is checked by using a variable to retrieve
the status of this task in the current instance. The risk condition itself is given by the
disjunction of the two conditions described above. The first such condition is checked
by using a variable (r1) to retrieve which resources were allocated to task Approve
Shipment Payment Order, and another variable (n) to retrieve the number of times this
task was completed for customer c. This latter variable is defined via a case condition
over customer c, the completion time of this task (that must be greater than the allocate
time (t1) of the current task Approve Shipment Payment Order minus five days (d) in
milliseconds), and the identifier of the instance (that must be different from the identifier
of the current instance).

The second condition is checked by using two variables and invoking two functions.
A variable (r2) to retrieve which resources completed task Approve Shipment Payment
Order, and another variable (r3) to retrieve all resources that can be offered this task
(i.e. the current task). The first variable is defined via a case condition over customer
c and the completion time of this task (that must be greater than the offered time (t2)
of the current task Approve Shipment Payment Order minus five days (d)). The two
invoked functions return the number of tasks started on the resources that completed
task Approve Shipment Payment Order, and the number of tasks in the execution queue
of the resources who have been offered this task, and did not complete it for customer c
in the last five days.

110 R. Conforti et al.

The definition of the above variables in our sensor language is provided below, while
the Action elements used in these definitions are described in Table 1.

r1 : ResAllocated = case(current).Approve Shipment Payment Order 593(allocateResource)
c : customer = case(current).Issue Shipment Invoice 594.ShipmentInvoice.Company
d : days = 5
t1 : AllocateTime = case(current).Approve Shipment Payment Order 593(AllocateTimeInMillis)
t2 : OfferTime = case(current).Approve Shipment Payment Order 593(OfferTimeInMillis)
n : #TimesApproved = case(Approve Shipment Payment Order 593(completeResource)=ResAllocated ∧

Issue Shipment Invoice 594.ShipmentInvoice.Company=customer ∧
Approve Shipment Payment Order 593(CompleteTimeInMillis)>
(AllocateTime-(days*24*60*60*1000)) ∧
(ID)!=[IDCurr]).Approve Shipment Payment Order 593(CountElements)

r2 : ResCompleted = case(Issue Shipment Invoice 594.ShipmentInvoice.Company=customer ∧
Approve Shipment Payment Order 593(isCompleted)=“true” ∧
Approve Shipment Payment Order 593(CompleteTimeInMillis)>
(OfferTime-(days*24*60*60*1000)) ∧
(ID)!=[IDCurr]).Approve Shipment Payment Order 593(completeResource)

r3 : DefResOffered = case(current).Approve Shipment Payment Order 593(offerDistribution)

After the definition of the variables, the risk condition is specified as follows:

(#TimesApproved>0)∨((ResCompleted.startMinNumber=0)∧
(DefResOffered.startMinNumberExcept.ResCompleted>=1)).

We recall that an underpayment fraud occurs whenever a customer underpays more than
three times in a five-day time frame. Accordingly, the respective risk can be detected
if i) task Issue Debit Adjustment is being performed for a given customer and order
(this is the trigger for this risk); and ii) the probability that the maximum number of
allowable executions for this task will be reached in a five-day time frame, is above
the fixed tolerance value for this risk, say 60% (this is the risk condition itself). This
condition can be checked by using two variables: one (n) to retrieve the number of
times the task Issue Debit Adjustment has been completed for this customer (c) within
five days (d), the other (p) to retrieve the probability that an attempted fraud will take
place. For this second variable, we use the Action “FraudProbabilityFunc” to
compute the specific probability (see Table 1).

The defined variables are implemented through the sensor language as follows:

StartTime = case(current).Issue Debit Adjustment 605(StartTimeInMillis)
c : customer = case(current).Issue Shipment Invoice 594.ShipmentInvoice.Company
d : days = 5
n : #Completions = case(Issue Shipment Invoice 594.ShipmentInvoice.Company=customer ∧

Issue Debit Adjustment 605(Count)>0 ∧
Issue Debit Adjustment 605(CompleteTimeInMillis)>(StartTime-days*24*60*60*1000))
.Issue Debit Adjustment 605(CountElements)

GroupingElem = Issue Shipment Invoice 594.ShipmentInvoice.Company
WindowElem = Issue Debit Adjustment 605(CompleteTimeInMillis)

Threshold = 0.6
p : Probability = case(Issue Debit Adjustment 605(Count)>0 ∧ (ID)!=[IDcurr]).Issue Debit Adjustment 605

(FraudProbabilityFunc, #Completions, 3, GroupingElem, WindowElem, (days*24*60*60*1000))

These variables are used to compose the following risk condition: Probability>0.6.

History-Aware, Real-Time Risk Detection in Business Processes 111

Table 1. Description of the Action elements used in the example sensor conditions

Action Description
(ID) returns the ID of the generic instance that is being analyzed
[IDCurr] returns the ID of the instance that the sensor is monitoring
Count returns the number of times a task has been completed
allocateResource returns the resources to which the task has been allocated
completeResource returns the resource that completed the task
isStarted returns “true” if the task has been started
isCompleted returns “true” if the task has been completed
OfferTimeInMillis returns the time (in millisecond) when the task has been offered
StartTimeInMillis returns the time (in millisecond) when the task has been started
CompleteTimeInMillis returns the time (in millisecond) when the task has been completed
ShipmentInvoice.Company returns the value of the subvariable Company belonging to the variable ShipmentInvoice
offerDistribution returns list of resources to which the task is offered by default
CountElements returns the number of instances that satisfy the parameters required

FraudProbabilityFunc
returns the probability of a fraud using as parameters: the current number of executions,
the maximum number of executions allowed, the parameter used to group the instances,
the parameter used to identify a temporal window, the dimension of the temporal window

5 Evaluation

In this section we discuss the implementation of the sensor-based architecture in the
YAWL system and then evaluate its performance.

5.1 Implementation

In order to prove the feasibility of our approach, we implemented the sensor-based
architecture in the YAWL system.2 We decided to extend the YAWL system for the
following reasons. First, this system is based on a service-oriented architecture, which
facilitates the seamless addition of new services. Second, the system is open-source,
which facilitates its distribution among academics and practitioners, and widely used
in practice (the system has been downloaded over 100,000 times since its first incep-
tion in the open-source community). Finally, the underlying YAWL language is very
expressive as it provides wide support for the workflow patterns [13].

As part of this implementation, we extended the YAWL Editor version 2.2beta with
a new component, namely the Sensor Editor, for the specification of sensors within
YAWL process models. Such graphical component, shown in Fig. 7, fully supports the
specification of sensor conditions as defined in Sect. 4.

Moreover, we implemented the Sensor Manager as a generic component which
exposes three interfaces (engine, database and monitor) as described in Sect. 4. We
then wrapped this component into a Web service which implements the three interfaces
for the YAWL system, allowing the component to interact with the YAWL Engine, the
Monitor service and the YAWL database. While there is a straightforward mapping
between the YAWL Engine and our engine interface, and between the YAWL Monitor
service and our monitor interface, we had to join several YAWL tables to implement
our database interface. This is because in the YAWL system, event logs are scattered
across different database tables. For example, to retrieve all identifiers of the process

2 Available at www.yawlfoundation.org

www.yawlfoundation.org

112 R. Conforti et al.

Fig. 7. The Sensor Editor within the YAWL Editor

instances for a specific process model, given the model identifier, we need to perform a
join among the following YAWL tables: logspecification,lognetinstance,
lognet and logevent.

The complete mapping is illustrated in Tab. 2. As an example, this table also shows
the mapping between our database interface and the relational schema used by Oracle
BPEL 10g to store BPEL process logs. Also in this case, the database can be fully
mapped by joining several tables.

Finally, we implemented a separate service to estimate the remaining cycle time
Te for a process or task instance. This service uses ProM’s prediction miner [29] to
compute the estimations, and provides the results to the Sensor Manager on demand.
While the estimation of Te could be done on-line, i.e. while evaluating a particular
sensor condition at run-time, parsing the full logset each time would be inefficient.
Rather, we compute this estimation off-line, whenever a new process model is deployed
to the YAWL Engine, by using the logset available at that time. Periodically, we update
the logset with the new instances being executed meantime, and invoke this service to
refresh the estimations for each process model currently deployed.

Table 2. Database interface mapping for YAWL 2.2beta and Oracle BPEL 10g

Database table Tables that need to be joined
YAWL Oracle BPEL 10g

WorkFlowDefinition logspecification, lognet, lognetinstance, logevent cube instance and cube scope
SubProcess logspecification, lognet, lognetinstance, logevent cube instance and cube scope

Activity
lognetinstance, logtask, logtaskinstance, lognet,

wftask and work item
logevent, logspecification, rs eventlog

Variables
logtask, lognet, lognetinstance, logtaskinstance,

audit trail, audit detail and xml document
logevent, logdataitem, logspecification

Role rs participant wftask
ActivityRole rs eventlog, logtaskinstance wftask

History-Aware, Real-Time Risk Detection in Business Processes 113

5.2 Performance Analysis

We used our implementation to evaluate the scalability of the approach. First, we mea-
sured the time needed to evaluate the basic functions (e.g. counting the number of in-
stances of a task or retrieving the resource allocated to a task). Next, we measured the time
needed to evaluate the sensor conditions for the risks defined in the Payment subprocess.
The tests were run on an Intel Core I5 M560 2.67GHz processor with 4GB RAM run-
ning Linux Ubuntu 11.4. The YAWL logs were stored on the PostGres 9.0 DBMS. These
logs contained 318 completed process instances from 36 difference process models, ac-
counting for a total of 9,399 process events (e.g. task instance started and completed,
variable’s value change). Specifically, there were 100 instances from the Payment sub-
process yielding a total of 5,904 process events. The results were averaged over 10 runs.

Table 3. Performance of basic functions

Basic function Description OpenXES Database Reduction
time [ms] time [ms] rate [%]

net status
functions checking if a net status has been reached

6,535 18.9 99.71
(isStarted, isCompleted)

net time
functions returning the time when a net status has been reached

6,781 18.8 99.72
(startTime, completeTime, startTimeInMillis, completeTimeInMillis)

net variable returns the value of a net variable 6,489 432.6 93.33
task count number of times a task has been completed 803 19.8 97.53

task resource
functions that return the resources associated with a task

850 20.9 97.54
(offerResource, allocateResource, startResource, completeResource)

task status
functions checking if a task status has been reached

792 30.5 96.14
(isOffered, isAllocated, isStarted, isCompleted)

task time
functions returning the time when a task status has been reached

824 22.3 97.29(offerTime, allocateTime, startTime, completeTime, offerTimeInMillis,
allocateTimeInMillis, startTimeInMillis, completeTimeInMillis)

task variable returns the value of a task variable 787 96.7 87.71

task distribution
functions returning the resources associated with a task by default

243 -(offerDistribution, allocateDistribution, startDistribution,
completeDistribution)

task initiator
functions returning the allocation strategy for a resource association

249.6 -
(offerInitiator, allocateInitiator, startInitiator, completeInitiator)

Table 3 shows the results of the evaluation of the basic functions provided by our lan-
guage. In particular, in this table we compare the evaluation times obtained by accessing
the YAWL logs via our database interface, with those obtained by accessing a serializa-
tion of the logs, e.g. in the OpenXES format. While OpenXES provides a simple and
unique representation of a generic set of process logs, accessing an OpenXES file in
real-time, i.e. during the execution of a process instance, is not feasible, due to the long
access times (e.g. 6.5 sec. on average for evaluating a net variable). On the other hand,
accessing the logs via our database interface, despite it requires the creation of a spe-
cific implementation for each BPMS database, provides considerably faster times than
accessing OpenXES files (at least 87% gain w.r.t. OpenXES access). In fact, as we can
see from Tab. 3, the evaluation times for all the basic functions are below 30 ms, apart
from function task variable, which takes 100 ms and function net variable,
which takes 430 ms.

The last two basic functions reported in Tab. 3, namely task distribution
and task initiator, are evaluated in less than 250 milliseconds. These functions

114 R. Conforti et al.

are not computed by accessing the logs, but rather by accessing information that is
contained directly in an executable process model, e.g. the resources that are associated
with a specific task. However, in our implementation we still use the database interface
to access this information, in order to provide the developer with a single access point
to all process-related data.

Table 4 reports the results of the evaluation of the sensor conditions defined for our
running example. While the sensor conditions for the overtime process and order un-
fulfillment faults are very low (below 150 ms), longer times are obtained for evaluating
the conditions for the two faults related to fraud. This is because both these conditions
require to evaluate “complex queries”, i.e. queries over the entire process logs: In the
approval fraud, we need to retrieve all resources that approved an order for a specific
customer, while in the underpayment fraud we need to retrieve all process instances
where a debit adjustment was issued and aggregate these instances per customer. These
queries are different than those needed to evaluate the basic functions, as the latter are
performed on the events in the logs that are relative to a single known process instance,
e.g. the instance for which the sensor condition is being evaluated.

Table 4. Performance of sensors

Sensor Min Max Average St.Dev.
[ms] [ms] [ms] [ms]

Overtime process 121 137 131.8 4.66
Approval fraud 6,483 7,036 6,766.4 183.06
Order unfulfillment 69 91 77.4 7.18
Underpayment fraud 3,385 3,678 3,523 89.98

The worst-case complexity of evalu-
ating one such a complex query is still
linear on the number of parameters that
need be evaluated in the query (corre-
sponding to the language element Cond-
ExprSet in Sect. 4) multiplied by the total
number of instances present in the logs
(corresponding to the size of table Work-
flowDefinition addressed by our database interface).

In conclusion, the performances of evaluating sensor conditions should always be
considered w.r.t. the specific process for which the risks are defined, and the type of
trigger used. For example, let us assume an average duration of 24 hours for the Payment
subprocess, with a new task being executed every 30 minutes. This means we have up
to 30 minutes to detect an overtime process risk before a new task is executed, and we
need to compute this sensor condition again. If we choose a rate of 5 minutes to sample
this condition, we are well below the 6 minute-threshold, so we can check this sensor’s
condition up to 6 times during the execution of a task. Since we do this in less than
150 ms, this time is acceptable. For an event-driven risk we also need to consider the
frequency of the specific event used as trigger. For example, the approval fraud risk is
triggered every time an instance of task Approve Shipment Payment Order is offered
to a Senior Financial Officer for execution. Since we take up to 7 seconds to compute
this sensor condition, we are able to cope with a system where there is a request for
approval every 7 seconds. So also for this sensor, the performance is quite acceptable.

6 Related Work

Risk measurement and mitigation techniques have been widely explored in various
fields. At the strategic level risk management, standards prescribe generic procedures
for identifying, analyzing, evaluating and treating risks (see e.g. [26]). Although help-
ful, such general guidelines are inevitably vague and fail to provide any specific

History-Aware, Real-Time Risk Detection in Business Processes 115

guidance for operationalizing risk management strategies in business processes. At the
other extreme, there are many techniques for identifying risks in specific areas such as
employee fraud [1], conflict of interest [18] and in the engineering field more gener-
ally [12,3]. Other approaches, such as fault-tree analysis [4], are general enough to be
applied to multiple domains. However, none of these approaches provides insights on
how to define and operationalize the detection of process-related risks.

Previous process-based research recognizes the importance of explicitly linking
elements of risk to business process models. zur Muehlen et al. [23,32] propose a taxon-
omy of process-related risks and describe its application in the analysis and documen-
tation of business processes. This taxonomy includes five process-related risk types
(goals, structure, information technology, data and organization) which can be captured
by four interrelated model types: i) risk structure model describing the relationships be-
tween risks; ii) risk/goal matrix; iii) risk state model describing the dynamic aspects of a
risk; and iv) an extension to the EPC notation to assign risks to individual process steps.
An extension of the work in [23] is proposed in [20], where the authors describe a four-
step approach to integrate risks in business processes at the operational and strategic
levels via value-focused process engineering.

A different perspective is offered by the ROPE (Risk-Oriented Process Evaluation)
methodology [10,28]. ROPE is based on the observation that process activities require
resources to be adequately executed. If faults occur (here called “threats”), they im-
pact the functionality of resources until one or more affected resources are no longer
available. In the worst case a resource represents a single point of failure and conse-
quently hinders the execution of the related process activity. If a threat is detected, an
appropriate countermeasure process is invoked to counteract the threat. However, if this
cannot be done, a recovery process can be invoked to re-establish the functionality of
the affected resources until they are available again for the respective business process
activity. The aim of the ROPE methodology is to incorporate all these aspects in a sin-
gle model that can be simulated to determine a company’s critical business processes
and single points of failure. Finally, on the basis of the ROPE methodology, a reference
model for risk-aware BPM is proposed in [15,16].

With respect to the risk-aware BPM lifecycle shown in Fig. 3, all the above proposals
only cover the phases of risk analysis and risk-aware process modeling. None of them
specifies how risk conditions can be concretely linked to run-time aspects of process
models such as resource allocation, data variables and control-flow conditions, for the
sake of detecting risks during process execution. Thus, none of these approaches oper-
ationalizes risk detection into workflow management systems. Moreover, they neglect
historical process data for risk estimation. As such, these approaches are complemen-
tary to our work, i.e. they can be used at a conceptual level for the identification of
process-related risks, which can then be implemented via our sensor-based technology.

Our sensor-based architecture is also related to real-time monitoring of business pro-
cess execution. Similarly to our approach, Oracle Business Activity Monitoring (BAM)
[22] relies on sensors to monitor the execution of BPEL processes. Three types of sen-
sors can be defined: activity sensors, to grab timings and variable contents of a specific
activity; variable sensors, to grab the content of the variables defined for whole BPEL
process (e.g. the inputs to the process); and fault sensors, to monitor BPEL faults. These

116 R. Conforti et al.

sensors can be triggered by a predefined set of events (e.g. task activation, task comple-
tion). For each sensor, one can specify the endpoints where the sensor will publish its
data at run-time (e.g. a database or a JMSQueue). We allow the specification of more
sophisticated sensor (and fault) conditions, where different process-related aspects can
be incorporated such as data, resource allocation strategies, order dependencies, as well
as historical data and information from other running process instances. Moreover, our
sensors can be triggered by process events or sampled at a given rate. Nonetheless, our
sensor-based architecture is exposed as a service and as such it could be integrated with
other process monitoring systems, such as Oracle BAM.

Real-time monitoring of process models can also be achieved via Complex Event
Processing (CEP) systems. In this context, CEP systems have been integrated into com-
mercial BPMSs, e.g. webMethods Business Events3, ARIS Process Event Monitor [6]
and SAP Sybase [27], as well as explored in academia [9,11]. A CEP system allows the
analysis of aggregated events from different sources (e.g. databases, email accounts as
well as process engines). Using predefined rules, generally defined with a specific SQL-
like language [31], a CEP system can verify the presence of a specific pattern among a
stream of simple events processed in a given time window. Our approach differs from
CEP systems in the following aspects: i) strong business process orientation vs general
purpose system; ii) ability to aggregate complex XML-based events (e.g. process vari-
ables) and analyze them (e.g. for the sake of computing a risk probability) vs processing
simple sequences of events; iii) time-driven and event-driven triggers vs event-driven
trigger only. For the same reasons, our sensors differ from (simple) event receptors that
are generally available in BPMSs. Moreover, CEP systems typically suffer from perfor-
mance overheads [11,31] which limit their applicability to real-time risk detection [31].

7 Conclusion

The contribution of this paper is twofold. First, it provides a concrete mechanism for
identifying risks in executable business process models and for detecting them during
process execution. This is achieved by embedding elements of risk within each phase
of the BPM lifecycle: from process design, where high-level risks are mapped down to
specific process model elements, to process diagnosis, where risk conditions are mon-
itored in real-time. The second contribution is an operationalization of the proposed
risk-awareness approach in the context of BPMSs. This is achieved via a distributed,
sensor-based architecture that is interfaced with a BPMS via a set of interfaces. Each
risk is associated with a sensor condition. Conditions can relate to any process aspect,
such as control-flow dependencies, resource allocations, the content of data elements,
both from the current process instance and from instances of any process that have al-
ready been completed. At design-time, these conditions are expressed via a Java-like
query language within a process model. At run-time, each sensor independently alerts
a sensor manager when the associated risk condition evaluates to true during the exe-
cution of a specific process instance. When this occurs, the sensor manager notifies a
process administrator about the given risk by interfacing with the monitoring service
of the BPMS. This allows early risk detection which in turn enables proper remedial
actions to be taken in order to avoid potentially costly process faults.

3 http://www.softwareag.com/au/products/wm/events/overview

http://www.softwareag.com/au/products/wm/events/overview

History-Aware, Real-Time Risk Detection in Business Processes 117

The sensor-based architecture was implemented in the YAWL system and its perfor-
mance evaluated in practice. The tests show that the sensor conditions can be computed
efficiently and that no performance overhead is induced to the BPMS engine. To the
best of our knowledge, this is the first attempt to embed risks into executable business
processes and enable their automatic detection at run-time. And while we restricted our
focus to the realm of risks, our sensor-based architecture can also be applied to other
domains where there is a requirement to measure and analyze process data in real-time,
e.g. process compliance or cost-monitoring.

This work suffers from several limitations, which provide opportunities for future
work. First, it does not support the actual risk mitigation but only risk detection. We plan
to devise a mechanism for automatically generating remedial actions that can be applied
once a risk has been detected at run-time. The idea is to use genetic algorithms such as
simulated annealing [24] to create perturbations on the current process instance in order
to rectify its execution and thus avoid a fault from eventually occurring. Our previous
application of simulated annealing to the problem of automatically correcting business
process models [8] showed that such perturbations can be obtained very efficiently. The
challenge stands in properly defining the objective functions so as to create meaningful
perturbations. Second, in this paper we only evaluated the performance of the prototype
implementation. Clearly this is not enough to state that the approach can be applied in
practice. In this regard, we plan to interview a pool of risk analysts drawn from our
business contacts in Australia in order to assess the approach’s perceived usefulness
and ease of use. Finally, we plan to equip the risk modeling component with a set of
predefined risks, categorized by type (e.g. approval fraud) and domain (e.g. finance,
logistics), which can be used as templates to generate skeletons of risk conditions.

Acknowledgments. We thank Colin Fidge for his valuable comments on an early ver-
sion of this paper, and Michael Adams for his help with the YAWL implementation.
This research is partly funded by the ARC Discovery Project “Risk-aware Business
Process Management” (DP110100091).

References

1. Albrecht, W.S., Albrecht, C.C., Albrecht, C.O.: Fraud Examination, 3rd edn. South-Western
Publishing (2008)

2. Basel Committee on Bankin Supervision. Basel II - International Convergence of Capital
Measurement and Capital Standards (2006)

3. Bhushan, N., Rai, K.: Strategic Decision Making: Applying the Analytic Hierarchy Process,
3rd edn. Springer, Heidelberg (2004)

4. International Electrotechnical Commission. IEC 61025 Fault Tree Analysis, FTA (1990)
5. Conforti, R., Fortino, G., La Rosa, M., ter Hofstede, A.H.M.: History-aware, real-time risk

detection in business processes (extended version). QUT ePrints 42222, Queensland Univer-
sity of Technology (2011), http://eprints.qut.edu.au/42222

6. Davis, R.B., Brabander, E.: ARIS Design Platform: Getting Started with BPM. Springer,
Heidelberg (2007)

7. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Sys-
tems: Bridging People and Software through Process Technology. Wiley & Sons (2005)

8. Gambini, M., La Rosa, M., Migliorini, S., ter Hofstede, A.H.M.: Automated Error Correction
of Business Process Models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011.
LNCS, vol. 6896, pp. 148–165. Springer, Heidelberg (2011)

http://eprints.qut.edu.au/42222

118 R. Conforti et al.

9. Gay, P., Pla, A., López, B., Meléndez, J., Meunier, R.: Service workflow monitoring through
complex event processing. In: ETFA. IEEE (2010)

10. Goluch, G., Tjoa, S., Jakoubi, S., Quirchmayr, G.: Deriving resource requirements applying
risk-aware business process modeling and simulation. In: ECIS. AISeL (2008)

11. Hermosillo, G., Seinturier, L., Duchien, L.: Using Complex Event Processing for Dynamic
Business Process Adaptation. In: SCC. IEEE (2010)

12. Hespos, R., Strassmann, P.: Stochastic Decision Trees for the Analysis of Investment Deci-
sions. Management Science 11(10) (1965)

13. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern Business
Process Automation: YAWL and its Support Environment. Springer, Heidelberg (2010)

14. Hollingsworth, D.: The Workflow Reference Model. Workflow Management Coalition
(1995)

15. Jakoubi, S., Tjoa, S.: A reference model for risk-aware business process management. In:
CRiSIS. IEEE (2009)

16. Jakoubi, S., Tjoa, S., Goluch, S., Kitzler, G.: Risk-Aware Business Process Management:
Establishing the Link Between Business and Security. In: Xhafa, F., et al. (eds.) Com-
plex Intelligent Systems and Their Applications. Optimization and its Applications, vol. 41,
pp. 109–135. Springer Science+Business Media, LLC (2010)

17. Johnson, W.G.: MORT - The Management Oversight and Risk Tree. U.S. Atomic Energy
Commission (1973)

18. Little, A., Best, P.: A framework for separation of duties in an sap r/3 environment. Manage-
rial Auditing Journal 18(5), 419–430 (2003)

19. Meyer, B.: Introduction to the theory of programming languages. Prentice-Hall (1990)
20. Neiger, D., Churilov, L., zur Muehlen, M., Rosemann, M.: Integrating risks in business pro-

cess models with value focused process engineering. In: ECIS, AISeL (2006)
21. OMG. Business Process Model and Notation (BPMN) ver. 2.0 (January 2011),

http://www.omg.org/spec/BPMN/2.0
22. Oracle. BPEL Process Manager Developer’s Guide, http://download.oracle.com/

docs/cd/E15523 01/integration.1111/e10224/bp sensors.htm
(accesssed June 2011)

23. Rosemann, M., zur Muehlen, M.: Integrating risks in business process models. In: ACIS.
AISeL (2005)

24. Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C., Misra, R.: Dominance-based multi-
objective simulated annealing. IEEE Trans. on Evolutionary Computation 12(3) (2008)

25. Soldal Lund, M., Solhaug, B., Stolen, K.: Model-Driven Risk Analysis. Springer, Heidelberg
(2011)

26. Standards Australia and Standards New Zealand. Standard AS/NZS ISO 31000 (2009)
27. Sybase. Sybase CEP Implementation Methodology for Continuous Intelligence,

http://www.sybase.com.au/files/White Papers/
Sybase CEP Implementation Methodology wp.pdf (accessed June 2011)

28. Tjoa, S., Jakoubi, S., Quirchmayr, G.: Enhancing business impact analysis and risk assess-
ment applying a risk-aware business process modeling and simulation methodology. In:
ARES, pp. 179–186. IEEE Computer Society (2008)

29. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction: When Will
This Case Finally Be Finished? In: Chung, S. (ed.) OTM 2008, Part I. LNCS, vol. 5331, pp.
319–336. Springer, Heidelberg (2008)

30. Voluntary Interindustry Commerce Solutions Association. Voluntary Inter-industry Com-
merce Standard (VICS), http://www.vics.org (accessed June 2011)

31. Wang, D., Rundensteiner, E.A., Ellison, R.T., Wang, H.: Active complex event processing
infrastructure: Monitoring and reacting to event streams. In: ICDEW. IEEE (2011)

32. zur Mühlen, M., Ho, D.T.-Y.: Risk Management in the BPM Lifecycle. In: Bussler, C.J.,
Haller, A. (eds.) BPM 2005. LNCS, vol. 3812, pp. 454–466. Springer, Heidelberg (2006)

http://www.omg.org/spec/BPMN/2.0
http://download.oracle.com/docs/cd/E15523_01/integration.1111/e10224/bp_sensors.htm
http://download.oracle.com/docs/cd/E15523_01/integration.1111/e10224/bp_sensors.htm
http://www.sybase.com.au/files/White_Papers/Sybase_CEP_Implementation_Methodology_wp.pdf
http://www.sybase.com.au/files/White_Papers/Sybase_CEP_Implementation_Methodology_wp.pdf
http://www.vics.org

Transactional Process Views

Rik Eshuis, Jochem Vonk, and Paul Grefen

Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{h.eshuis,j.vonk,p.w.p.j.grefen}@tue.nl

Abstract. To enable effective interorganisational collaborations, pro-
cess providers have to disclose relevant parts of their local business
processes in public process views. A public process view has to be con-
sistent with the underlying private process. Local business processes are
typically supported by transactions, which ensure a robust and reli-
able execution. Process views currently do not support the specification
of transactional properties. This paper introduces transactional process
views and studies how they can be constructed from an internal business
process that is annotated with a transactional specification. This way,
we provide a well-structured approach to obtain robust and reliable pro-
cess behaviour at the public external level, thus facilitating trustworthy,
fine-grained collaboration between organisations. We consider various
transactional models. The feasibility of the approach is shown by means
of a case study.

1 Introduction

Due to complex markets, organisations more and more collaborate in dynamic
business networks to deliver a requested service or product [18]. To enable an
effective collaboration, partners in such a business network have to interconnect
their local business processes, such that an inter-organisational business pro-
cess emerges that is specific to the business network. Since business networks
are highly dynamic and change frequently [9], partners are often not willing to
fully disclose their local business processes. Moreover, not all details of the local
business process are relevant for other partners in the network. Yet an efficient
collaboration requires that relevant parts are disclosed.

Public process views have been proposed as means to coordinate and monitor
the execution of local, private business processes that are part of a global business
network process [3,5,16]. A public process view can hide and omit private or
irrelevant details of an an internal business process and this way acts as a filter
between the internal, private business process and the global business network.
Several approaches have been proposed to construct a public process view from
a private business process, e.g. [3,5,16,27,35].

Local business process typically use transactions to ensure that they are ex-
ecuted in a robust and reliable way [15,31]. We call such processes transac-
tional processes or transactional workflows [10]. Clearly, the use of transactions

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 119–136, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

120 R. Eshuis, J. Vonk, and P. Grefen

in an internal level process impacts process views generated for that process:
transactional features realised by the internal process can be offered in a public
process view to provide increased levels of reliability to business partners. For
instance, an organisation can offer the same process view with different levels
of transactional support at different prices. Conversely, the process provider has
to ensure that transactional properties specified for a process view are indeed
realisable by the underlying internal transactional process. Existing approaches
for constructing process views from internal processes, e.g. [3,5,16,27,35], do not
consider transactions and therefore ignore consistency between a public process
view and an internal business process from a transactional point of view.

In this paper, we propose the notion of a transactional process view , which
specifies not only the ordering of public activities but also the offered trans-
actional semantics of different parts of the process. We outline an approach to
construct a transactional process view from an internal process model and a
transaction specification. The approach extends an existing approach for con-
structing non-transactional process views from internal block-structured process
models [5]. However, the underlying principles can be applied to any of the al-
ternative approaches for constructing non-transactional process views that we
discuss in Section 7.

This paper is organised as follows. Section 2 introduces transactional process
views by means of an example that is used throughout the paper. Section 3 intro-
duces the various transaction models we consider. Section 4 defines transactional
process models, which are process models annotated with transactional proper-
ties. We use transactional process models for specifying both process views and
private processes. Section 5 discusses how aggregation and customisation can
be used to construct a transactional process view for an internal transactional
process. We focus especially on how transactional properties of the underlying
internal process propagate to the public process view. Section 6 presents a case
study of an inter-organisational transactional process from the domain of health-
care. Section 7 discusses related work while Section 8 wraps up with conclusions
and further work.

2 Overview

By means of an extended example we present an overview of transactional pro-
cess views. Figure 1 shows the internal business process of a travel agency, in
which a client books a trip. The notation is explained in detail in Section 4. In
the sales subprocess, the client first selects in parallel a hotel, transport (e.g.
flight), and car. Next, the costs are calculated. After the sales subprocess, the
client can either cancel the booking or continue by finalising the booking. In
parallel, the travel agency prepares the documents and the client receives an
invoice and pays. These last two steps are repeated if the client does not pay
within a certain time frame. Next, the travel agency sends the documents.

To ensure a reliable execution, a transaction can be used to realise an activity.
In Figure 1, activities are annotated with their transactional semantics. The

Transactional Process Views 121

Select hotel

Select trans.

Select car

Select

Calculate

Sales

Cancel

Book

Send invoice Receive payment

Prepare documents

Send docs

NT

Travel booking

CT

FT

FT

NC

Backoffice

FT FT

FT

Fig. 1. Travel agency process

NT

NC

FT FT

CT = Chained Transaction with safepoints (shadowed)

FT = Flat (ACID)
NT = Nested Transaction with Non Critical subtransaction

FT FT

CT

Fig. 2. Layering of transactions for Fig. 1

figure implicitly specifies a layering of transactions that is visualised as a tree in
Figure 2. The overall process is a chained transaction (CT) which contains two
safepoint activities (indicated with shadows): Prepare documents and Receive
payment. A rollback of a chained transaction stops just after the last reached
safepoint activities (see Section 3), so in case the chained transaction is rolled
back after Send docs has been performed, only Send docs needs to be performed
again. Note that the chained transaction also includes the subprocess Backoffice,
but this has no separate transactional semantics, so chained transactions can
cross the boundaries of subactivities. The Sales subprocess is executed as a nested
transaction (NT) in which activity Select car is non-critical (NC): if it fails, the
Sales transaction can still complete successfully. The other activities in Sales are
critical. There are four flat (FT) transactions, which satisfy the wellknown ACID
properties [7]. More explanation on the different transaction models is presented
in Section 3.

Figure 3 presents a possible process view for the process in Fig. 1. The process
view has been constructed by aggregating two independent parts of the original
process. The aggregated parts are shown in the lower half of the figure; each
part is linked to a new activity in the process view that hides the activities
being aggregated. The remaining activities in the process view like Calculate are
realised by private activities that are not shown in the figure. A process view
is constructed in a customised way based on input of the process provider [5].
The process provider indicates which activities in the private process must be
aggregated, such that their details will be hidden in the process view (dotted
activities in Fig. 1). As a consequence of the aggregation requirements, other

122 R. Eshuis, J. Vonk, and P. Grefen

Select Calculate

Sales Cancel

Finalise booking Send docsNT

Travel booking

CT

Select hotel

Select trans.

Select car

Book

Send invoice Receive payment

Prepare documents

Transactional process view

Private aggregates

FT

FT

FT FT

FT

FT

NC

Fig. 3. Example aggregated process view for Fig. 1

activities have to be included in the aggregate to comply with the consistency
rules between process view and internal process [5]; in Fig. 1 these are the non-
dotted activities contained inside the private aggregates.

In Section 5 we explain in more detail different aspects of the construction of
the transactional process view in Fig. 3.

3 Transactions

We first discuss the three transactional models we consider in this paper. Next,
we explain how they can be combined by layering them.

3.1 Transaction Models

In the paper we consider three mainstream transaction models. An elaborate
introduction to transactional models can be found elsewhere [7,31].

A flat transaction satisfies the ACID properties. This means that the transac-
tion is guaranteed to execute in its entirety or not at all and that the outcome of
operations performed within a flat transaction is the same as if these operations
would be performed in a sequence.

A nested transaction is composed of sub-transactions in a hierarchical manner.
A sub-transaction can be divided into further sub-transactions if necessary, but
only the leaf-level sub-transactions really perform database operations while
others function as coordinators. A complete nested transaction satisfies the ACID
properties. Since sub-transactions within nested transactions in general share
data, isolation is relaxed within a nested transaction.

A nested transaction can contain non-critical sub-transactions. A non-critical
sub-transaction does not need to complete successfully in order for the nested
transaction to successfully complete.

Transactional Process Views 123

Table 1. Considered layerings of transaction models (mark ‘x’ means allowed)

Ancestor
Flat Nested Chained

Descendant
Flat x x
Nested x x
Chained x

A chained transaction is a long running transaction, for instance a saga [6],
that is decomposed into small sub-transactions whose effects can be undone by
executing compensating actions. A chained transaction can specify arbitrarily
complex behaviour, including sequence, choice, parallelism, and loops (cf. the
chained transaction Travel booking in Fig. 1 which contains the choice behaviour
of subprocess Backoffice).

Certain sub-transactions inside a chained transaction can be marked as safe-
points [11]. Executing a safepoint sub-transaction produces a stable, consistent
state of the chained transaction. When a chained transaction is rolled back by
executing compensating actions, the rollback stops at the last reached stable
state, so the state resulting after executing the last safepoints [11]. To simplify
the exposition, we do not consider the specification of compensation actions in
the sequel but they can be included without any problem.

3.2 Layered Transactions

Different types of transactions can be combined by layering them. In that case,
the transaction at a top layer coordinates the transactions at the lower layers. For
instance, in the WIDE project[12] a transactional workflow model was developed
in which an activity that specifies a chained transaction can contain a subac-
tivity that specifies a nested transaction. In that case, the chained transaction
coordinates the nested transaction.

However, not every possible layering is meaningful. A flat transaction cannot
coordinate any other type of transaction. A nested transaction can only coor-
dinate nested or flat transactions. A chained transaction can coordinate a flat,
chained or nested transaction. Table 1 lists allowed layerings [31]. Other combi-
nations can still be meaningful, but typically require new forms of transaction
management that to the best of our knowledge have not been addressed in the
literature. Therefore we do not consider these here.

4 Transactional Process Models

We introduce transactional process models, which are process models in which
activities are annotated with transactional properties. A transactional annota-
tion specifies the transactional semantics of the activity, based on the trans-
actional models introduced in the previous section. Not every annotation is
meaningful, however, so we also present constraints that rule out inappropri-
ate annotations.

124 R. Eshuis, J. Vonk, and P. Grefen

4.1 Definition

A transactional process model [10] specifies how a given set A of activities are
ordered. Activities can be compound, so contain other activities. The used order-
ing constructs are sequence, choice, parallelism, and loops. Compound activities
resemble sub-processes. Non-compound activities are called atomic. In Fig. 1,
for instance Sales is a compound activity while Select hotel is atomic.

Activities can have transactional properties. For this paper, each activity can
be annotated with one transaction model, provided the activity type matches the
transaction characteristics. For instance, a flat transaction only matches atomic
activities, while a chained transaction only matches compound activities. After
presenting the formal definition of transactional process models, we formalise
the consistency constraints that rule out inappropriate annotations.

Let P denote the set of all structured process models and let T the set of
transaction models. A structured transactional process model P ∈ P is a tuple
(A, child, type, succ, transType, noncritical, safepoint) where:

– A is a set of activities,
– child : A × A is a predicate that defines the hierarchy relation between

activities. We have child(a, a′) if and only if a is a child (subactivity) of a′.
– type : A → {SEQ, PAR, XOR, LOOP, BASIC} is a function that assigns

to each activity its type. Type SEQ indicates that all children of the activity
execute in sequence, PAR that they execute in parallel, XOR that one of
them is executed at a time, and LOOP that the children execute zero or
more times. We require that each SEQ, XOR, and PAR node has more
than one child and that each LOOP node has only a single child, which is
no LOOP node. An activity has type BASIC if and only if it is a leaf in
the tree, i.e. it has no children.

– succ : A → A is partial function that specifies for each child node of a SEQ
node its successor. We require that if (x, y) ∈ succ, then they share the same
parent z, so child(x, z) and child(y, z).

– transType : A → T a function that assigns an activity with its transaction
model semantics. For this paper, we let T = {FT, CT, NT }, where trans-
action type FT stands for the flat (ACID) transaction model, CT for the
chained transaction model, and NT for nested transaction model.

– noncritical ⊆ A is a set of activities that are not critical, i.e. they can
fail without jeopardising the successful completion of other activities. Non-
critical activities are only used within nested transactions.

– safepoint ⊆ A is a set of activities that are safepoints, i.e., the state of
the process is saved and can be recovered. Safepoints are only used within
chained transactions.

We use an auxiliary function children : A → P(A) that defines for each activity
its set of child activities. For a leaf activity, this set is empty. The definition of
children makes use of predicate child:

children(a) = { a′ ∈ A | child(a′, a) }.

Transactional Process Views 125

If c ∈ children(n), activity n is parent of c, written parent(c). By children+

and children∗ we denote the irreflexive-transitive closure and reflexive-transitive
closure of children, respectively. So children∗(n) = children+(n) ∪ {n}. If n ∈
children∗(n′), we say that n is a descendant of n′ and that n′ is an ancestor of
n. Note that each activity is ancestor and descendant of itself.

To ensure that the child predicate indeed arranges activities in a hierarchy
represented by a tree structure, we require that each activity has one parent,
except one activity r, which has no parent. Next, we require that r is ancestor
of every activity in A. These constraints ensure that activity are structured in a
tree with root r. Leaves of the tree are the BASIC activities. Internal activities
have type SEQ, PAR, XOR, or LOOP .

Notation. We show structured process models graphically, using a variant of the
UML activity diagram notation [28]. We explain the notation using the diagram
in Fig. 1. In the diagram, containment indicates hierarchy; for instance, activity
Select car is child of activity Select. Sequential activities have an incoming and
outgoing arrow crossing their border, whereas choice and parallel activities have
a diamond and bar, respectively, on their border. Within a sequence activity,
the ordering relation is specified by means of arrows. Loop activities have no
dedicated symbol, but are indicated by drawing a self-edge for the unique child
of the loop activity. Safepoints are indicate with shadows. The bold annotations
are transactional properties (types), introduced in the previous subsection.

Auxiliary functions. To define the construction of process views in Section 5, we
will make use of some auxiliary functions on the syntax of structured process
models [5]. For a set X of activities, the least common ancestor (lca) of X ,
denoted lca(X) is the activity x such that x is ancestor of each activity in X ,
and every other activity y that is ancestor of each activity in X , is ancestor of
x:

– X ⊆ children∗(x), and
– For every y ∈ A such that X ⊆ children∗(y), we have that x ∈ children∗(y).

Since activities are arranged in a tree, every set of activities has a unique least
common ancestor. For example, in Fig. 1 the lca of Select trans. and Select car
is Select, whereas the lca of Cancel and Book is Backoffice. Note that the lca of
a single activity is the activity itself, i.e. lca({x}) = x.

The before relation < denotes temporal ordering. Given two activities a, a′ ∈
A, we have a before a′, written a < a′, if and only if

– activity l = lca({a, a′}) has type SEQ, and
– for the children ca, ca′ of l such that a is descendant of ca and a′ is descendant

of ca′ , we have that ca′ is a successor of ca so casucc ∗ ca′ .

For example, in Fig. 1 we have Book < Prepare documents.

126 R. Eshuis, J. Vonk, and P. Grefen

4.2 Transaction Type Constraints

A process model P uses a function transType that labels each activity with a
transaction type. However, not every labelling is meaningful, since a transac-
tion type has to match the kind of activity. We specify next some consistency
constraints that rule out inappropriate labellings.

First we introduce an auxiliary definition. The scope of an activity a, denoted
scope(a), is the most nested activity that is strict ancestor of a, so scope(a) �= a,
and that has a transactional type. For instance, in Fig. 1 the scope of Select car
is Select whereas the scope of Book is Backoffice.

Let a ∈ A be an activity from P . The following constraints are valid for a:

1. a flat transaction has no children: transType(a) = FT implies
children(a) = ∅.

2. a nested or chained transaction has children: transType(a) = CT or
transType(a) = NT implies children(a) �= ∅.

3. a non-critical activity is only used within the scope of a nested transaction:
a ∈ noncritical implies transType(scope(a)) = NT .

4. a safepoint is only used within the scope of a chained transaction: a ∈
safepoint implies transType(scope(a)) = CT .

5. a chained transaction is not used within a nested transaction: transType(a) =
CT implies there is no ancestor a′ of a such that transType(a′) = NT .

Most constraints are self explanatory. The last constraint formalises the layering
constraint stated in Section 3.2.

5 Aggregation and Customisation

First, we discuss how transactional aggregates are constructed for transactional
process views, by extending an earlier defined aggregation procedure for non-
transactional process views [5]. Next, we focus on deriving the right transactional
properties in the process views for the constructed transactional aggregates. This
way, we can define the proper derivation of a transactional process view from a
transactional process. Finally, we outline how aggregated transactional process
view can be customised by hiding activities from the process view [5].

5.1 Constructing Transactional Aggregates

An aggregate agg is a set of activities from the process model that is represented
in the process view by a single activity aagg , i.e. activity aagg hides the activities
contained in the aggregate agg. Activity aagg is atomic and has no child activities
in the process view. Therefore, its transactional type can neither be chained (CT)
nor nested (NT).

In the approach of [5] for constructing non-transactional process views, the
user must specify which set of activities have to be aggregated. However, the
aggregate might need to contain some additional activities as well, in order to
get a process view that is consistent with the underlying process model. The view

Transactional Process Views 127

and the process model are consistent if the orderings of the underlying process
model are respected by the view and no additional orderings are introduced
in the view. We have defined declarative rules and an equivalent operational
algorithm for constructing a minimal aggregate set for an input set of activities,
such that the resulting process view is consistent with the underlying process [5].

In a transactional process view, activity aagg may hide transactional activ-
ities. In that case, the transaction type of aagg becomes flat (FT). There are
two specific cases. The first case is that the aggregate agg equals a chained or
nested transaction x with all its descendants, so agg = children ∗(x) and ei-
ther transType(x) = CT or transType = NT . Predicate completeCompound
captures formally when agg hides a complete chained or nested transaction:

completeCompound(agg) = ∃x ∈ agg : children ∗(x) = agg

∧ (transType(x) = CT ∨ transType(x) = NT)

In that case aagg hides the complete chained or nested transaction and aagg

becomes a flat transaction.
In the second case, aggregate agg contains only flat transactions, so predicate

completeFT (agg) is true, where

completeFT (agg) = ∀x ∈ agg : transType(x) = agg.

Since agg only contains flat transactions, aagg becomes a flat transaction as well.
In all other cases, the transaction type of aagg is undefined. For instance, ac-

tivity Select in Fig. 3 has an undefined transaction type, since the corresponding
aggregate contains only part of the nested transaction Sales, while Finalise book-
ing has transaction type FT since the corresponding aggregate contains only flat
transactions.

We formalise these rules to determine the transaction type of a new activity
in the process view, by defining partial function getTT (a, agg), which expects
an activity a that represents an aggregate agg (set of activities) and returns the
transaction type of a, if defined:

getTT (a, agg)=
{

FT , if completeCompound(agg) or completeFT (agg)
undefined , otherwise

5.2 Properties of Transactional Aggregates

Let aagg be a new activity in the process view that hides an aggregate set agg
of activities of the underlying internal process. If aagg is in the scope of a nested
or chained transaction, then aagg can have special transactional properties; for
instance aagg can become a safepoint if its scope is a chained transaction. In
this subsection, we study how these transactional properties for aagg are derived
from the underlying aggregate.

First, we lift the notion of scope to sets of activities. The scope of a set of
activities X is the most nested activity a that contains all activities in X and
that has a transactional type.

128 R. Eshuis, J. Vonk, and P. Grefen

Nested Transactions: Dealing with Non-critical Activities. Consider an
aggregate agg whose scope is a nested transaction. If agg contains non-criticial
activities, then aagg is non-critical if and only if all aggregated activities are
non-critical. In that case, if all aggregated activities fail at the private level,
the aggregate can fail at the public level and the nested transaction can still
complete successfully. In all other cases, an aggregated activity in agg can fail
that is critical. Then the abstract activity aagg and the nested transaction have
to fail as well. In the process view in Fig. 3 activity Select is critical since the
corresponding aggregate contains critical activities Select hotel and Select trans.

Chained Transactions: Dealing with Safepoints. Consider an aggregate
agg whose scope is a chained transaction, so aagg is in the scope of the chained
transaction in the process view. Some activities in the aggregate can be safe-
points. Now the question is whether aagg should become a safepoint in the
process view. If safepoints in agg are not present in the process view, an in-
consistency between process view and private process can arise if a rollback is
performed for aagg. Then aagg in the process view is completely rolled back, but
in the private process the rollback stops already at the last reached safepoints.
Clearly, then there is an inconsistency between the execution state of the process
view and the state of internal underlying process.

To avoid these inconsistencies, we require that an aggregate agg is only a
safepoint if and only if all “last” activities it contains are safepoints, where “last”
means that a is not followed by other activities in the aggregate, and in addition
all safepoints it contains are last, so the aggregate does not contain intermediate
safepoints that are followed by other safepoints. If the aggregate would contain
intermediate safepoints, an inconsistency could arise between the state of the
transactional process view and the state of the underlying transactional process,
as explained above.

Formally, an activity a in an aggregate agg is last if and only if it has no
successor activity in the set of aggregated activities:

last(a, agg) ⇔ for all x ∈ agg : a �= x ⇒ a �< x.

Predicate lastSP is true if and only if all last activities in the aggregate agg are
safepoints and all safepoints are last activities.

lastSP (agg) ⇔ for all a ∈ agg : last(a, agg) ⇔ a ∈ safepoint

The aggregate in Fig. 3 that corresponds to Finalise booking satisfies lastSP .
It may well be that the aggregation procedure described in [5] constructs

an aggregate that does contain intermediate safepoints, which is undesirable.
To address such cases, the aggregation procedure can be changed by returning
multiple subaggregates and letting safepoints determine the boundary of each
subaggregate. The union of the returned subaggregates then comprises the com-
plete aggregate. In each subaggregate, safepoints are the last activities. This is
only feasible if the subaggregates are ordered sequentially. For instance, consider
a process that consists of a sequence of activities A, B, C, D, E, and let C

Transactional Process Views 129

and E be safepoints. If B and D have to aggregated, the aggregation procedure
of [5] constructs an aggregate containing B, C and D. The changed aggregation
procedure could return one subaggregate for B and C, and one for D and E, and
the activities representing both subaggregates in the process view become safe-
points. Due to space limitations, we do not further elaborate such an extension
of the aggregation algorithm.

5.3 Generating Transactional Process Views with Aggregates

Above, we have outlined how transactional properties of aggregated activities at
the internal level propagate to the activities in the process view that represent
the aggregated activities. Now we define a function gen : (P × A) → P that
generates from a given structured process model and an aggregate the result-
ing transactional process view, which is again a structured process model. If
there are multiple aggregates, the function can be repeatedly applied. The func-
tion extends an earlier defined function for generating non-transactional process
views [5] with transactional elements.

If agg is the constructed aggregate for process model P with activity set A, so
agg ⊆ A, then the process model P ′ = gen(P, agg) is constructed by replacing
agg with a new activity aagg �∈ A that does not get any children in the process
view P ′.

Now the problem is that the new activity aagg needs to be attached as child
to some activity A \ agg, i.e., some activity l ∈ A \ agg has to act as parent
of aagg in the process view P ′. Let l be the lowest activity in A \ agg that is
ancestor (in P) of all activities in agg. The construction procedure in [5] ensures
that activity l exists and is unique. Therefore, l can be the unique parent of aagg

in P ′.
Formally, P ′ = (A′, child′, type′, succ′, transType′, noncritical′, safepoint′)

where

– A′ = A \ agg ∪ {aagg}
– child′ = (child ∩ (A′ × A′)) ∪ {(aagg, l)}
– type′ = type ∩ (A′ × {SEQ, PAR, XOR, BASIC})∪ {(aagg, BASIC)}
– succ′ = (succ ∩ (A′ × A′)) ∪ {(aagg, y) | x ∈ agg ∧ y �∈ agg ∧ (x, y) ∈

succ} ∪ {(x, aagg) | x �∈ agg ∧ y ∈ agg ∧ (x, y) ∈ succ}
– transType′ = transType ∩ (A′ × {FT, CT, NT, ET })∪

∪ {aagg, getTT (aagg)}
– noncritical′ =

{
(noncritical \ agg) ∪ {aagg} , if aagg ⊆ noncritical
noncritical \ agg , otherwise

– safepoint′ =
{

(safepoint \ agg) ∪ {aagg} , if lastSP (agg)
safepoint \ agg , otherwise

The definition of transType′ makes use of function getTT that identifies the
transaction type of aagg based on the transactional properties of agg; see Sec-
tion 5.1.

130 R. Eshuis, J. Vonk, and P. Grefen

5.4 Customisation

The consumer for which the process provider will execute its process can create
a customised process view that only contains the “relevant” activities, where a
process consumer can determine himself which activities are relevant [5]. All the
other activities are “noise” that should be filtered.

To create a customised process view, the process consumer first selects the
relevant activities that have to be in the view. Next, all unselected activities
are replaced with internal activities, which are executed at the private level but
invisible at the public process view level. Each internal activity gets label τ , so
internal activities cannot be distinguished from each other from the consumer
point of view. Therefore, they can be grouped as much as possible. For instance,
a sequence of internal activities is grouped into a single internal activity [5].

Let P be an (aggregated) process view and let I be a set of activities from
P that the consumer wishes to monitor in the customised process view P ′ =
(A′, child′, type′, succ′, transType′, noncritical′, safepoint′). The non-transactio-
nal elements of the tuple, i.e. A′, child′, type′ and succ′, have been defined in our
previous work [5]. We define the transactional elements of the tuple by keeping
only the transactional properties related to activities in I:

– transType′ = transType ∩ (I × {FT, CT, NT, ET })
– noncritical′ = noncritical ∩ I
– safepoint′ = safepoint ∩ I

Since a τ action is hidden, we assume its transactional properties are hidden too.
For instance, if in the customisation process safepoint activities are relabelled τ ,
they are no longer safepoints in the customised view: the safepoint information
is simply invisible at the public level, though the safepoint still exists at the
private level. By similar reasoning, if non-critical activities in the scope of a
nested transaction become non-critical, the non-critical activities are lost in the
customised view.

6 Case Study

As a case study, we have applied the approach to an inter-organisational business
process from the healthcare domain. Processes in the healthcare domain are often
very complex. They contain numerous subprocesses and activities covering mul-
tiple departments in a hospital and/or hospitals and/or other organisations. As
healthcare processes deal with patients, reliability of such processes is even more
important than it is in many other complex business processes. Using trans-
actional process views, quality aspects of process execution such as reliability
aspects can be captured and monitored.

The case study is based on a teleradiology process for the acquisition and
interpretation of medical scans of patients (see Fig. 4). The process has been
designed in close collaboration with an industrial partner [30] that can offer
technology support for certain parts of this process. The complete process is

Transactional Process Views 131

Schedule
Prepare
Patient

Acq. CT

Acq. MRI

Acq.
X-Ray

Scan
Interpretation

Create
Report

Notify &
Distribute

Billing

Business
Intelligence

NT

NC

Reporting

NT

CT

Scan acquisition Tele radiology

Wrap up

FT

Fig. 4. Teleradiology process

Schedule
Prepare
Patient

Acq. CT

Acq. MRI

Acq.
X-Ray

Scan &
report

Notify &
Distribute

Wrap up

NT

NC

Reporting

FT

Scan acquisition

CT

Tele radiology

FT

Fig. 5. Process view for teleradiology process in Fig. 4

offered by for instance the radiology department of a hospital or by a specialised
radiology clinic.

A process designer at the process provider side (e.g. a specialised radiology
clinic) has designed the internal process specification shown in Fig. 4. The pro-
cess starts by scheduling the patient. A patient can reschedule the appointments
if necessary. At the scheduled time, the required scans are acquired (Scan ac-
quisition), after which an interpretation report is created and distributed to the
client (Reporting). The process ends after billing and business intelligence have
been performed (Wrap up). The process results in a report that a medical spe-
cialist, who ordered the scan, can use to base his diagnosis and treatment on.
An extensive description of the process is provided elsewhere [30].

The provider can be a specialised radiology clinic that wishes to hide certain
parts of the internal process for business reasons. First, the provider wishes to
aggregate the first part of the Reporting subprocess into a new activity Scan
& report in Fig. 5. Note that Reporting and its subactivities are part of the
top-level chained transaction. The generation of a report is safepoint at the
internal level that is propagated to the process view. If for instance the compound
transaction is rolled back immediately after executing Notify & distribute, the
internal process rolls back to the state reached after Create Report which is
consistent with the state in the process view reached after completing Scan &
report, so the resulting state in the internal process is consistent with the resulting
state in the transactional process view.

Since billing and business intelligence are private parts of the underlying pro-
cess, the provider also aggregates these two activities into activity Wrap up in
the process view. Activity Wrap up in Fig. 5 is a flat transaction in the process

132 R. Eshuis, J. Vonk, and P. Grefen

view, since it has no children and the underlying aggregate contains the complete
nested transaction for compound activity Wrap up in Fig. 4.

Note that many other process views can be constructed for the process in
Fig. 4. For instance, if the consumer is only interested in reporting and billing, a
customised process view can be created in which all activities related to patient
scheduling, preparation and scanning are hidden by having them grouped inside
a single internal activity. Due to space limitations, this process view is not shown.

7 Related Work

Process views have originally been proposed for use in an inter-organisational
context. One of the earliest works is by Liu and Shen [16], who focus on deriving
a non-transactional process view from a given structured process definition in
the context of collaborative processes that operate within virtual enterprises.
Such processes span the boundaries of multiple organisations. Process views are
used to align the collaborative process with the local private business processes.

Chiu et al. [4] use non-transactional process views to support interoperability
of multiple workflows across organisations. They present a meta model and an
interoperation model for workflow views, consisting of communication scenarios
between these views, and a set of interoperation parameters. They show how the
approach can be realised using web services and XML technology, but they do
not consider the use of transactions.

Next, there are approaches that use views for enabling inter-organisational
workflow cooperation [3,26,27,34,36]. The approach of Chebbi et al. [3] con-
sists of three main steps: workflow advertisement, workflow interconnection, and
workflow cooperation. The main focus of the paper is on the second step. They
present reduction rules to derive from an internal process model an abstract
process model which only contains tasks that cooperate with partner workflows
outside the organisation. On this public process, partner-specific views can be
defined that are linked with an access contract. Related to this work, Tahamtan
and Eder [26,27] focus on the construction of process views in the context of fed-
erated choreographies. Zhao et al. [34,36] use visibility constraints on internal
process models to derive partner-specific workflow views. Each partner can com-
bine the workflow views of its partner with its internal process into what Zhao
et al. call a relative workflow model. Next, they discuss how an organisation
can use a relative workflow model to track the progress of its indirect partners,
e.g. how a consumer can track the progress of the process of the provider of the
provider. None of these works combines process views with transactions.

Ye et al. [33] study the analysis of atomicity properties for a set of interacting
public process views that use atomicity spheres [13,24]. Part of the approach
considers the use of axioms from process algebra to construct a public process
view from a private process while preserving atomicity. However, the constructed
process view is fixed: its construction cannot be influenced by a user, whereas
the transactional process views generated in this paper are constructed based on
user input, specifying which activities are to be aggregated or omitted. Atom-
icity spheres can be easily incorporated in the formalisation of transactional

Transactional Process Views 133

process models. However, some atomicity spheres are incorrect, since they do
not terminate properly. The transactional process models defined in this paper
are by construction correct. Incorporating atomicity spheres means we have to
introduce the concept of incorrect process view, which considerably complicates
the approach.

Schulz and Orlowska [25] focus on architectural support for workflow (process)
views. They look into possible interactions that can occur between workflow
views and between workflow views and private workflows. Next, they analyze
how such interactions can be supported by describing different ways of coupling
workflow views and private workflows. Finally, they define a cross-organisational
workflow architecture that supports the execution of workflow views. However,
they do not consider the use of transactions.

Some existing industrial standards, notably WS-BPEL [1] and BPMN [32],
distinguish between an abstract (public) and a concrete (private) process. The
abstract process is a nondeterministic protocol describing possible interactions,
whereas a concrete process is actually executable by a process engine. This dis-
tinction between abstract and concrete process is similar to the one made in
this paper between a process view and its underlying internal process. Unlike
our approach, these standards do not define any consistency constraints between
these different process levels, nor do they address customisation.

Some researchers have studied process views in the context of WS-BPEL [1].
König et al. [14] propose a new WS-BPEL profile for easy checking of compati-
bility between an abstract BPEL process and an executable BPEL process. The
profile uses consistency rules that enforce compatibitily. Zhao et al. [35] discuss
the construction and implementation of process views in WS-BPEL. They de-
velop a framework to support different abstraction and concretisation operators
for WS-BPEL processes. The process view transformation is under supervision
of a set of rules on structural consistency and validity.

Though WS-BPEL does not provide transactional mechanisms, it is comple-
mented by standards like WS-Coordination [21] and WS-Transaction [20] that
do provide transactional mechanisms. For an elaborate overview of these dif-
ferent web service transaction standards we refer to Wang et al. [31]. We are
unaware of any research in which these web service transaction standards are
used in combination with WS-BPEL abstract processes.

Process views are also used in intra-organisational business process manage-
ment to generate user-specific process views. Liu and Shen [17] discuss the con-
struction of personalised process views, that are specific to a organisational user
(actor) of the process, based on relationships among tasks and roles that are
specified in role-based access control systems. Bobrik et al. [2] also study the
creation of such personalised views. They identify parameterisable operations
that can be flexibly composed in order to reduce or aggregate process infor-
mation in the desired way, based on the specific needs of the respective target
application. However, small inconsistencies are tolerated in favour of a more ad-
equate visualisation. Motahari [19] et al. focus on the use of process views to

134 R. Eshuis, J. Vonk, and P. Grefen

abstract and visualise process executions that are captured in process logs. Also
in all these approaches, transactions are not considered.

Several researchers have proposed combinations of workflow management or
business process management and transaction technology [8,10,24]. The focus of
these works is on the interaction of process management technology and trans-
action management technology. However, these works do not consider the use
and construction of transactional process views. For instance, in the CrossFlow
project [8,29], cross-organisational processes with transactional semantics are
defined on the external level, which resembles with process views. But the rela-
tion between external level and internal level is not explicitly defined: external
level models are created ad-hoc and there is no consistency relation between
an internal level and an external level process in CrossFlow. This paper com-
plements the work done in CrossFlow by defining a structured and systematic
approach for constructing transactional process views that are consistent with
the underlying transactional processes.

8 Conclusion

We have introduced a well-structured approach that allows a process provider
to construct a transactional process view from a transactional process model.
In defining transactional process models, we have considered the mainstream
transactional models, including nested transactions and chained transactions,
but the approach can be easily extended to other transaction models with a
comparable complexity. Using the approach, process views can be constructed
in a flexible way, since the actual process view that is generated is driven by
input of the process consumer and provider about the activities that need to
be hidden or omitted. Using this construction approach, it is possible to specify
robust and reliable process behaviour at the public external level.

In today’s business, dynamic cooperations between autonomous organisations
becomes increasingly important. In the past, organisations cooperated with each
other in rather static networks with a long life span. To comply with current mar-
ket settings, however, organisations have to shift their priority to flexibility and
ability to change if they want to survive [22]. As a consequence, dynamic co-
operation between organisations is often required to meet market demands [9].
Collaborations have a short lifespan and are increasingly with a lot of different
business partners with different levels of trust. By using transaction management
technology in combination with process management technology, organisations
can collaborate with each other in a trustworthy yet fine-grained way. Our ap-
proach can aid in establishing such dynamic yet trustworthy collaborations in
an efficient way.

There are several directions for further work. First, the approach can be ex-
tended to deal with process models that are not block-structured. However, we
expect this complicates the integration with transactions, since process models
that are not block-structured can easily contain modelling errors that lead to
deadlocks at run time. Next, we plan to investigate technology to support the

Transactional Process Views 135

run-time execution of transactional process views. Various proposals for com-
bining transaction and process management have been made [23,24] that can be
used as starting point.

References

1. Anders, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Roller,
D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Process Execu-
tion Language for Web Services, Version 1.1. In: Standards proposal by BEA Sys-
tems. International Business Machines Corporation, Microsoft Corporation. SAP
AG, Siebel Systems (2002)

2. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

3. Chebbi, I., Dustdar, S., Tata, S.: The view-based approach to dynamic inter-
organizational workflow cooperation. Data Knowl. Eng. 56(2), 139–173 (2006)

4. Chiu, D., Cheung, S., Till, S., Karlapalem, K., Li, Q., Kafeza, E.: Workflow view
driven cross-organizational interoperability in a web service environment. Inf. Tech.
and Management 5(3–4), 221–250 (2004)

5. Eshuis, R., Grefen, P.: Constructing customized process views. Data and Knowl-
edge Engineering 64(2), 419–438 (2008)

6. Garcia-Molina, H., Salem, K.: Sagas. In: Dayal, U., Traiger, I.L. (eds.) SIGMOD
Conference, pp. 249–259. ACM Press (1987)

7. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann (1993)

8. Grefen, P., Aberer, K., Hoffner, Y., Ludwig, H.: CrossFlow: Cross-organizational
workflow management in dynamic virtual enterprises. International Journal of
Computer Systems Science and Engineering 15(5), 277–290 (2000)

9. Grefen, P., Mehandjiev, N., Kouvas, G., Weichhart, G., Eshuis, R.: Dynamic busi-
ness network process management in instant virtual enterprises. Computers in
Industry 60(2), 86–103 (2009)

10. Grefen, P., Vonk, J.: A taxonomy of transactional workflow support. Int. J. Coop-
erative Inf. Syst. 15(1), 87–118 (2006)

11. Grefen, P., Vonk, J., Apers, P.: Global transaction support for workflow manage-
ment systems: from formal specification to practical implementation. The VLDB
Journal 10(4), 316–333 (2001)

12. Grefen, P., Vonk, J., Boertjes, E., Apers, P.M.G.: Two-layer Transaction Man-
agement for Workflow Management Applications. In: Hameurlain, A., Tjoa, A.M.
(eds.) DEXA 1997. LNCS, vol. 1308, pp. 430–439. Springer, Heidelberg (1997)

13. Hagen, C., Alonso, G.: Exception handling in workflow management systems. IEEE
Trans. Software Eng. 26(10), 943–958 (2000)

14. König, D., Lohmann, N., Moser, S., Stahl, C., Wolf, K.: Extending the compatibility
notion for abstract WS-BPEL processes. In: Huai, J., Chen, R., Hon, H.-W., Liu,
Y., Ma, W.-Y., Tomkins, A., Zhang, X. (eds.) WWW 2008, pp. 785–794. ACM
(2008)

15. Leymann, F., Roller, D.: Production Workflow – Concepts and Techniques.
Prentice-Hall (2000)

16. Liu, D.-R., Shen, M.: Workflow modeling for virtual processes: an order-preserving
process-view approach. Inf. Syst. 28(6), 505–532 (2003)

136 R. Eshuis, J. Vonk, and P. Grefen

17. Liu, D.-R., Shen, M.: Business-to-business workflow interoperation based on
process-views. Decision Support Systems 38(3), 399–419 (2004)

18. Mehandjiev, N., Grefen, P.: Dynamic Business Process Formation for Instant Vir-
tual Enterprises. Springer, Heidelberg (2010)

19. Motahari Nezhad, H.R., Benatallah, B., Casati, F., Saint-Paul, R.: From business
processes to process spaces. IEEE Internet Computing 15, 22–30 (2011)

20. OASIS. Web services atomic transaction 1.1 (2007)
21. OASIS. Web services coordination 1.1 (2007)
22. Pieper, R., Kouwenhoven, V., Hamminga, S.: Beyond the hype: E-business strategy

in leading European companies. Van Haren Publising (2002)
23. Schäfer, M., Dolog, P., Nejdl, W.: An environment for flexible advanced compen-

sations of web service transactions. TWEB 2(2) (2008)
24. Schuldt, H., Alonso, G., Beeri, C., Schek, H.-J.: Atomicity and isolation for trans-

actional processes. ACM Trans. Database Syst. 27(1), 63–116 (2002)
25. Schulz, K., Orlowska, M.: Facilitating cross-organisational workflows with a work-

flow view approach. Data Knowl. Eng. 51(1), 109–147 (2004)
26. Tahamtan, A., Eder, J.: Privacy preservation through process views. In: IEEE

AINA Workshops 2010, pp. 1100–1107. IEEE Computer Society Press (2010)
27. Tahamtan, A., Eder, J.: View driven interorganizational workflows. International

Journal of Intelligent Information and Database Systems (to appear, 2011)
28. UML Revision Taskforce. UML 2.3 Superstructure Specification. Object Manage-

ment Group, 2010. OMG Document Number formal (May 5, 2010)
29. Vonk, J., Grefen, P.: Cross-organizational transaction support for e-services in

virtual enterprises. Distributed and Parallel Databases 14(2), 137–172 (2003)
30. Vonk, J., Wang, T., Grefen, P., Swennenhuis, M.: An analysis of contractual and

transactional aspects of a teleradiology process. Beta Working Paper Series, WP
263, Eindhoven University of Technology (2011)

31. Wang, T., Vonk, J., Kratz, B., Grefen, P.: A survey on the history of trans-
action management: from flat to grid transactions. Distributed and Parallel
Databases 23(3), 235–270 (2008)

32. White, S., et al.: Business Process Modeling Notation (BPMN) Specification, Ver-
sion 1.1. Object Management Group (2008), http://www.bpmn.org

33. Ye, C., Cheung, S.-C., Chan, W.K., Xu, C.: Atomicity analysis of service compo-
sition across organizations. IEEE Trans. Software Eng. 35(1), 2–28 (2009)

34. Zhao, X., Liu, C.: Tracking Over Collaborative Business Processes. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 33–48. Springer,
Heidelberg (2006)

35. Zhao, X., Liu, C., Sadiq, W., Kowalkiewicz, M., Yongchareon, S.: Implementing
process views in the web service environment. World Wide Web 14(1), 27–52 (2011)

36. Zhao, X., Liu, C., Yang, Y.: An Organisational Perspective on Collaborative Busi-
ness Processes. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F.
(eds.) BPM 2005. LNCS, vol. 3649, pp. 17–31. Springer, Heidelberg (2005)

http://www.bpmn.org

Edit Distance-Based Pattern Support
Assessment of Orchestration Languages

Jörg Lenhard, Andreas Schönberger, and Guido Wirtz

Distributed and Mobile Systems Group, University of Bamberg, Germany
{joerg.lenhard,andreas.schoenberger,guido.wirtz}@uni-bamberg.de

Abstract. Orchestration languages are of paramount importance when
implementing business processes based on services. Several languages for
specifying Web Services-based orchestrations are available today. Ex-
amples are the Web Services Business Process Execution Language or
Windows Workflow. Patterns for process-aware information systems have
frequently been used to assess such languages. Various studies discuss
the degree of support such languages provide for certain sets of patterns.
However, the traditional trivalent support measure is limited in terms
of granularity and selectivity. This paper proposes an edit distance com-
plexity measure that allows to overcome these issues. The applicability
of this measure is demonstrated by an analysis of several orchestration
languages using four different pattern catalogs.

Keywords: SOA, Pattern, Edit Distance, Orchestration, BPEL, WF.

1 Introduction

Today, service-oriented architectures (SOAs) form the primary means to create
flexible, interoperable and cooperative information systems. In SOAs, business
processes are implemented as composite services [15]. Such composite services
combine calls to existing services by defining control- and data-flow dependencies
between the different service invocations. Orchestrations have been introduced
in [16] as executable process definitions that use Web Services as primitives for
interactions.

Several languages for implementing Web Services-based orchestrations are
available, such as the Web Services Business Process Execution Language (BPEL)
[13] or Windows Workflow (WF) [3]. Traditional comparisons of such languages
predominantly use patterns to assess their expressiveness. Workflow control-flow
patterns [23] and service interaction patterns [2] are of outstanding importance.
The more patterns a language supports and the higher the degree of support it
provides is, the more expressive it is.

The traditional pattern support measure offers three possible values, i.e., direct
(+), partial (+/-) or no direct support (-) for a pattern [23, p. 50]. These values
are calculated based on the number of language constructs (e.g. decision or loop
constructs) needed for implementing a pattern. The constructs needed therefore
are used to represent how directly a pattern is supported. If a pattern can be

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 137–154, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

138 J. Lenhard, A. Schönberger, and G. Wirtz

implemented using a single construct, a solution provides direct support. If a
combination of two constructs needs to be used, the result is partial support. In
all other cases, there is no direct support. This support measure has been used
in various studies [1, 5, 6, 8, 17–20, 23–25, 27]. Unfortunately, it comes with a
number of problems, so that the calculation of the degree of support provided
even is left out in some studies (cf. [14]):
1. Although discussed by some authors, the support measure in its present

form does not reveal whether a pattern can be implemented in a language at
all. Solutions using more than two constructs may exist. However, these are
rated as offering no direct support. This low level of granularity results in a
limited degree of selectivity provided by the support measure. The notion
of no direct support can easily be misinterpreted to believe that a pattern
cannot be implemented in a language at all.

2. Usually, the degree of support is determined by a conceptual analysis of the
set of core constructs of a language specification. Due to this, the complexity
of pattern solutions and the effort required by the implementer of a pattern
is not truly captured. An executable implementation of a pattern might
require the use of more constructs and other aspects that do not belong to
this set, such as variable or correlation set definitions, which an analysis of
a specification does not reveal.

3. Only the use, but not the configuration of constructs is considered in the tradi-
tional support measure. This can lead to an inaccurate classification. Assume
the default configuration of a construct provides a complete solution to a pat-
tern in one language. In another language, also a single construct is sufficient,
but this construct must be configured in several non-trivial steps. Clearly, the
first language supports the pattern more directly and the solution is less costly.
Nevertheless, both languages achieve the rating of direct support.

The contribution of this paper is the definition of a more accurate support measure
that offers higher granularity and selectivity. It hence contributes to alleviating the
above deficiencies. This measure is based on the edit distance concept [11] and op-
erationalized for pattern-based analysis of orchestration languages. The basic idea
is to count the number of steps taken by the user of a language when implementing
a pattern, as this is more suitable to capture the effort required by the user. The
implementation steps we consider are semantically meaningful units of change,
specific for orchestration languages. The proposed measure allows to determine
the cost associated with the implementation of a pattern in a certain language
and unveils whether or not a pattern can be implemented at all.

To verify the applicability of this support measure, we furthermore provide an
extensive analysis of the orchestration languages BPEL 2.0 [13], its implemen-
tation in the OpenESB BPEL Service Engine (Sun BPEL), and WF in revision
4 [3]. We analyze these languages for their support of four pattern catalogs, the
workflow control-flow patterns [19, 23], the service interaction patterns [2], the
time patterns [8] and the patterns for changes in predefined regions [24]. These
catalogs have been used in various studies, e.g. [4, 6, 12, 14, 25, 27], and de-
scribe aspects that are of paramount importance for realistic processes. In total,

Edit Distance-Based Pattern Support Assessment 139

they consist of 70 different patterns. We calculate the degree of support with
our proposed support measure, the traditional trivalent measure, and compare
the results. Although partly based on preceding analyses [2, 19, 25, 27], the as-
sessment of the support provided by the languages in the specified revisions for
these pattern catalogs is new.

This paper builds upon previous work on assessing pattern support. In [10],
we have introduced a uniform method for checking whether a pattern implemen-
tation is valid and we have put forward the idea of using an edit distance-based
support measure. The approach for assessing the validity of candidate pattern
implementations has been reused for this study and is not further discussed. Con-
cerning the edit distance-based support measure, we provide an operationaliza-
tion for orchestration languages that enables comparability across orchestration
languages and we provide an extensive evaluation of our measure in terms of
selectivity and applicability by assessing the above four pattern catalogs.

The paper is structured as follows: In the following section we review re-
lated work and discuss relevant pattern catalogs and pattern-based analyses. In
Sect. 3 we define and demonstrate the use of the edit distance support measure.
Thereafter, we present the results of the analysis and discuss their implications.
Finally, Sect. 4 concludes the paper with remarks on future work.

2 Related Work
Research on applying patterns for the design and implementation of SOAs and
process-aware information systems is very popular, e.g. [12, 28]. However, the
work here focuses on applying patterns to measure the effort for creating process
models, in particular orchestration models. Therefore, we first identify relevant
pattern catalogs and orchestration languages. Then, we discuss existing studies
that evaluate the expressiveness of process languages using patterns and finally
focus on metrics for measuring pattern support.

There are numerous approaches that present pattern catalogs for assessing
process-aware information systems. The workflow patterns initiative started this
movement with the control-flow patterns [19, 23]. They also cover data patterns
[18], resource patterns [17] and exception handling patterns [20]. The first pattern
catalog that addresses specific requirements of service-oriented processes with a
number of important interaction scenarios is the service interaction patterns
catalog [2]. Similarly, [22] characterizes business functions that are frequently
needed in processes as activity patterns. [1] defines correlation mechanisms that
are used in service interactions in the form of correlation patterns. The means
for creating process instances are covered by process instantiation patterns [5].
Constructs that allow for flexibility of processes in the face of changes to their
structure are captured as change patterns in [24]. Common time constraint mech-
anisms are proposed in [8] in the form of time patterns.

In the area of orchestration languages, BPEL [13], currently available in revi-
sion 2.0, is a widely accepted standard. It is a mainly block-structured language
specification that has been implemented by several vendors. As is common prac-
tice in pattern-based analyses [17–19, 23], an implementation of this language

140 J. Lenhard, A. Schönberger, and G. Wirtz

needs to be treated as a separate language. One such implementation is the Ope-
nESB BPEL Service Engine.1 WF [3] is a proprietary orchestration language
maintained by Microsoft as a part of the .NET framework. Since April 2010,
it is available in revision 4. Compared to previous versions, it has undergone
significant changes. WF contains block-structured and graph-oriented elements.

Almost all of the studies that introduce pattern catalogs also analyze the
degree of support that varying languages and systems provide for the patterns
in focus [1, 2, 5, 8, 17–20, 23, 24]. The support provided by BPEL 1.1 and in some
cases also by one of its implementations is discussed for the control-flow, data,
resource, service interaction, and correlation patterns [2, 17–20, 23]. The process
instantiation patterns and correlation patterns [1, 5] are evaluated for BPEL
2.0. Further pattern-based analyses of BPEL 1.1 and comparisons to other Web
Services composition languages can be found in [6, 25]. For WF, only a single
study that assesses its support for control-flow patterns in its revision 3.5 can
be found so far [27]. All these studies use the traditional support measure or do
not qualify the degree of support at all.

In this paper, we evaluate the complexity of a process model through the
computation of a distance metric. Other attempts for measuring this complex-
ity focus on the structure of the execution sequences produced by a process
[4] or count the number of and, or, and xor nodes in its graph [21]. The edit
distance, or Levenshtein distance [11], originally measures the distance between
strings by counting the minimal amount of insertions, substitutions or deletions
of characters that are needed to transform one string into the other. Here, we
address process models instead of strings. The graph edit distance [7] has been
put forward for this use case. It computes the distance between two process
models using the amount of insertions, deletions and substitutions of nodes and
control-flow edges in the process graph. Such edit distances have various appli-
cations in the area of service-oriented systems, for example in service discovery
of composite services [26]. There, they are used to match a set of processes to a
given query. Here however, our aim is to accurately classify the cost of changing
process models. We argue that the graph edit distance is too abstract to be used
for the problem at hand. It does not consider the configuration of nodes or edges
and does not consider crucial characteristics that are typical for orchestration
languages, such as variables or correlation sets. Consequently, its application
would bear the same issues as the traditional support measure. Therefore, we
specialize the set of underlying edit operations to capture the specifics of orches-
tration languages. A specialized set of edit operations allows for a more accurate
cost estimation, than a mere comparison of nodes and edges would.

3 Edit Distance Support Measure

Our support measure is based on the idea to measure the degree of support
provided by a language through the computation of the distance between an
executable process stub without specific functionality and a process implementing
1 Please refer to http://wiki.open-esb.java.net/Wiki.jsp?page=BPELSE

http://wiki.open-esb.java.net/Wiki.jsp?page=BPELSE

Edit Distance-Based Pattern Support Assessment 141

a given pattern [10]. A process stub is a minimal process definition, a process
model that forms the typical starting point of any realistic process. This process
stub can be extended with the language constructs that are needed to implement
exactly a single pattern. The distance between these two process models, the
process stub and the pattern implementation, computed in a metrical scaling,
provides a notion of complexity for the implementation of a pattern in a language.
It is of importance that the process stub and the computation of the distance
metric are similar for different languages. Also, the languages have to reside on
a similar level of abstraction, which is the case for the languages in focus here.
Omitting this requirement would not allow for meaningful results when directly
comparing different languages.

Similarity between the process stubs of different languages can not be based on
syntactical similarity because the languages have a different syntax. However, the
process stubs can be implemented according to the same abstract scheme which
will be presented in the next section, along with code samples2 for the process
stubs in BPEL 2.0, Sun BPEL, and WF 4. In the same fashion, the computation
of the distance between the process stub and a pattern implementation using an
edit distance, must be based on the same set of edit operations, even for different
languages. Therefore, we go on with defining an abstract set of edit operations
for orchestration languages and describe the mapping of these edit operations
to the specifics of the languages in focus.

3.1 Common Schema for Process Stubs

To obtain distance values that are comparable for multiple languages, it is neces-
sary to have a common basis, i.e., to use a semantically equivalent process stub.
In this study, we examine multiple orchestration languages. Therefore, also the
process stub ought to be applicable to orchestration languages in general. As a
minimal feature of the executability of an orchestration model, it should provide
the ability to create new process instances. In an orchestration, this is typically
done using a single event trigger [5] such as an incoming message. Activities
that process incoming messages, often called receive activities, are most conve-
nient for this purpose. The main aim of the process stub is to extend it with the
implementation of pattern. This can be achieved with a sequence activity. For
the reason of extensibility, it is beneficial to be able to direct some input to a
process instance. The initial message that triggers the creation of a new process
instance is sufficient for this. Normally, this requires the definition of a variable
in the process model, and a mapping from the input message to this variable.
In BPEL3 there are receive and sequence activities for these purposes. To
have input data available for a process instance, a variable definition and its
2 All code samples in this paper are limited to the most crucial aspects that are

needed for understanding. Certain features, such as XML namespaces, are omitted
completely.

3 For the sake of brevity, we will not discuss the specifics of Sun BPEL separately
from BPEL. Naturally, the languages are similar to a large extent. In cases where
differences exist, we will make this explicitly clear.

142 J. Lenhard, A. Schönberger, and G. Wirtz

reference in the receive activity are needed. Finally, also the WSDL interface
for the BPEL process needs to be imported and used in a myRole partnerLink.
List. 1 (taken from [10]) outlines such a process stub in BPEL 2.0.

Listing 1. Process stub for BPEL 2.0 and Sun BPEL

< p r o c e s s >
< i m p o r t location=” P r o c e s s I n t e r f a c e . wsdl ” />
< p a r t n e r L i n k s >

< p a r t n e r L i n k name=” MyPartnerLink” myRole=” patte rnRole ” />
< / p a r t n e r L i n k s >
< v a r i a b l e s >

< v a r i a b l e name=” S t ar t P r oc e ss In p u t ” messageType=” i n t ” />
< / v a r i a b l e s >
< s e q u e n c e >

< r e c e i v e createInstance=” yes ” variable=” S t ar t P r oc e ss In p u t ”
partnerLink=” MyPartnerLink” operation=” S t a r t P r o c e s s ” />
<!−−Pattern Implementation−−>

< / s e q u e n c e >
< / p r o c e s s >

In WF, the process stub looks very similar. An orchestration can be implemented
as a workflow service and Receive and Sequence activities with the same se-
mantics as in BPEL are available. Variables are scoped differently in WF and
the definition of the service interface is not needed, but is inferred by the work-
flow engine from the messaging activities in the workflow. List. 2 outlines the
process stub for WF.

Listing 2. Process stub for WF 4

< W o r k f l o w S e r v i c e >
< S e q u e n c e >

< S e q u e n c e . V a r i a b l e s >
< V a r i a b l e Name=” InstanceID ” TypeArguments=” In t32 ” />

< / S e q u e n c e . V a r i a b l e s >
< R e c e i v e CanCreateInstance=” True” OperationName=” S t a r t P r o c e s s ” >

< R e c e i v e P a r a m e t e r s C o n t e n t >
< O u t A r g u m e n t Key=” InputData” > [I n s t a n c e I D] < / O u t A r g u m e n t >

< / R e c e i v e P a r a m e t e r s C o n t e n t >
< / R e c e i v e >
<!−−Pattern Implementation−−>

< / S e q u e n c e >
< / W o r k f l o w S e r v i c e >

These process stubs are now enriched with the implementation of a particular
pattern. The distance between a process stub and the pattern implementation is
used to determine the degree of support provided for a pattern by the languages.
It reflects the effort needed by the implementer of a pattern and the complexity
of the implementation.

3.2 Edit Operations
The idea for calculating the edit distance here is to count all meaningful imple-
mentation steps that are needed by a user to achieve the functionality required

Edit Distance-Based Pattern Support Assessment 143

by a pattern definition. Therefore, all relevant changes in a process model should
be covered and not just changes to nodes and edges in the process graph. In the
following, we present a set of edit operations for orchestration languages and de-
scribe how they are represented in BPEL 2.0 and WF 4. The operations represent
self-contained semantical units that stand for atomic implementation steps from a
programmer perspective. As an example, adding a variable to a process model and
setting its name and type, is considered as a single implementation step. These
steps are independent of the serialization format or graphical representation of
a language. This means that, although they might require several changes to the
code of a process model or several actions in a graphical editor, they capture a sin-
gle semantic change of a feature of the process model. Changes to process models
can be facilitated by using a sophisticated development environment when imple-
menting a pattern. But in taking into account features such as auto-completion
or the macros of an editor, an analysis would no longer evaluate a language, but
rather an environment for the language. As this is not our intention, we abstract
from any tooling available when calculating the distance values.

The set of edit operations has been identified as follows: Starting with a list
of candidate operations, the relevance of an operation was determined by the
fact that it was needed to implement the behaviour required by a pattern. Dur-
ing the implementation of certain patterns it became obvious that further edit
operations had to be defined, especially for messaging activities, and the list
was extended. This procedure is similar to the method used by several authors
for extrapolating a set of patterns from a set of real-world process models or
the capabilities of several workflow systems [2, 8, 17, 18, 22–24]. No other edit
operations apart from the operations described were necessary and it was pos-
sible, using this set of operations, to calculate selective and meaningful support
values (cf. Sect. 4). More than 150 process models4 were developed and these
models serve as empirical evidence for the relevance of the edit operations from
a programmer perspective. Each of the following operations adds one point to
the edit distance of a solution to a pattern.

Insert Activity: The insertion or substitution of an activity and the setting of
the activity name.
Any BPEL 2.0 activity and any WF 4 activity is covered by this operation.
Further configuration of an inserted activity is not included. In a block-
structured process model, activities are necessarily nested. There, inserting
an activity also includes the modification of a composite activity (e.g. insert-
ing a child activity). Therefore, the modification of the composite activity
is also included in the insertion. For example, inserting an activity into an
onMessage activity in BPEL 2.0 also modifies it.

Insert Edge: The insertion of a control-flow edge and the setting of its name.
This operation is generally only available in a graph-oriented model. In BPEL

4 As discussed, we considered a total of 70 patterns. Because we analyzed three lan-
guages, there are up to three process models per pattern. Moreover, several patterns,
especially the service interaction patterns [2], require more than one process model
for a valid implementation.

144 J. Lenhard, A. Schönberger, and G. Wirtz

2.0, edges are represented by links in a flow activity. In WF 4, edges are
represented by FlowSteps in a Flowchart activity. An insertion of an edge
in a graph also includes the setting of its target and source. All further
configuration, such as the setting of a condition for the activation of an edge
is not included in its insertion. For all other consideration, edges can be
treated just as activities.

Insert Auxiliary Construct: The insertion of a process element, apart from
nodes and edges.
Apart from activities and edges, languages may use a variety of auxiliary
constructs that can be defined in a process model and be used by the ac-
tivities of a process. Such elements are, for example, variables, correlations,
or references to partners involved in the process. The insertion of such an
element involves its initial configuration, such as the setting of its name
and type. In BPEL 2.0, such constructs are variables, correlationSets,
and partnerLinks. For a variable, the name and type must be fixed. For
a correlationSet, the name and properties must be specified and for a
partnerLink, the name, partnerLinkType, and role must be declared. In
WF 4, the only additional process elements are Variables. Correlations
can be defined using variables of a specific type, CorrelationHandle, and
references to partners are not defined explicitly, but are contained in the
configuration of messaging activities. In WF 4, the insertion of a Variable
involves the setting of its type, name, and optionally a default value.

Configure Messaging Properties: The setting of the messaging properties in
a messaging activity.
Messaging activities require the configuration of several properties, all re-
lated to the interface of the service to which they correspond. Typically,
this is the setting of a service name and an operation name. The opera-
tion name marks an operation provided by the service which is identified
by the service name. As they are logically related, these configurations are
captured in a single edit operation. In BPEL 2.0, the configuration of the
messaging properties of an activity involves the setting of the partnerLink,
portType and operation. In WF 4, it corresponds to the setting of the
ServiceContractName and the OperationName.

Configure Addresses: The setting of an endpoint address.
For an outbound messaging activity, apart from the messaging properties
that relate to the interface of the service, also the address of a concrete ser-
vice instance needs to be set. Otherwise, a messaging activity would not be
able to direct a message to it. In BPEL 2.0, this is not necessarily needed, as
the address of a service may be inferred from the partnerLink used in the
activity which needs to be set as part of the messaging properties. This is not
the case for WF 4, as it does not make use of an explicit predefined specifi-
cation of the partners a process interacts with. Here, the relevant addresses
need to be set separately for each messaging activity. Setting addresses can
be done in several ways, such as via an Endpoint element and the setting of
its AddressUri and the Binding to be used.

Edit Distance-Based Pattern Support Assessment 145

Configure Correlations: The configuration of message correlation.
In general, the configuration of message correlation requires a mapping from
the parameters available to an activity to a predefined correlation variable.
In BPEL 2.0, this operation involves the definition of a correlations and a
correlation element, the setting of its name, and potentially whether the
correlation set should be initiated. In WF 4, a CorrelationHandle needs to
be referenced and a query that determines the elements of the parameters
of the activity that identify the correlation needs to be specified.

Configure Parameters: The setting of the input or output parameters of mes-
saging activities.
In BPEL 2.0, this implies referencing a predefined variable. If the parame-
ters capture an outbound message, concrete data has to be assigned to this
variable in a separate activity in advance to its use as a messaging parameter.
The insertion of the activity that performs this assignment and its configu-
ration is not covered by this edit operation. In WF 4 it implies the definition
of a parameter and the mapping of the parameter to a predefined Variable
using an expression.

Configure Expression: The setting of an attribute value of an activity, edge,
or auxiliary construct to an expression.
Several attributes of process elements may require expressions as values. Ex-
amples are logical expressions used in the termination condition of a looping
activity. The construction of such an expression may require several steps
and may involve the use of several operators in a dedicated expression lan-
guage (which is XPath 1.0 for BPEL 2.0 and Visual Basic for WF 4). The
construction of an expression is rated as a single edit operation.

Assignment: The setting of the content of an assign activity.
The assignment of a value to a variable involves the specification of the
variable name and the expression that produces the value which is assigned.
While WF 4 allows for single assignments in an Assign activity only, BPEL
2.0 allows for multiple ones using multiple copy elements.

Change Configuration: The change of any default value of an activity, edge
or auxiliary construct to another value.
All other changes of the configuration of the elements of a process can be
represented by this operation. In BPEL 2.0 or WF 4, this could for example
be the change of an attribute value or the setting of a child element of an
activity. Several activities capture their configuration in child elements. An
example is an onAlarm in BPEL 2.0 where the configuration of the wait
condition is fixed in a for or until element.

The goal of the edit operations chosen is to measure the effort of implementing a
pattern from a programmer perspective. The granularity of this set of operations
essentially is a design choice and it would be an option to decrease or increase it.
For instance, rating the insertion of an activity and its complete configuration as
a single operation decreases the granularity, while counting each modification of
an attribute of a construct increases it. Although we did not perform a complete
analysis, we calculated the distance values for a subset of the process models with

146 J. Lenhard, A. Schönberger, and G. Wirtz

these two modifications and observed the effect this had on the selectivity of the
measure and its ability to characterize the complexity of the process models. It
turned out that in neither case, the ability of the measure to discriminate between
the languages (cf. Sect. 4) differed strongly. The problem with the first approach
is that it assigns similar distance values to the implementations of control-flow
and service interaction patterns, in spite of the fact that the latter describe
more complicated scenarios. This is the case, because even complex messaging
activities are as costly as more simple activities. As an example, a sequence of
two assign activities would have the same distance value as a sequence of a
send and a receive activity, although the latter two are more complicated to
configure. In the second approach, activities that are rather simple but needed
frequently and require extensive configuration tend to hide the complexity of
other activities where the setting of attribute values corresponds to important
design decisions. Examples are assign activities which require the specification
of sources, targets, and possibly expressions or type specifications, and easily
outweigh the configuration of a looping activity to execute in parallel. To sum
up, the set of edit operations presented here provides, in our point of view,
an acceptable trade off between the selectivity of the measure and its ability
to assess the complexity of a pattern. An empirical study is needed to assess
whether the complexity values calculated with the measure really correspond to
the impression of human implementers.

From a theoretical point of view, edit distances that do not use the same
weights for insertion and deletion operations are quasi-metrics [29, p. 12], as
they do not satisfy the property of symmetry. Here, we assign higher costs to
insertions, as we specify a number of fine-grained insertion operations. Deletions
can only be achieved indirectly through substitution. The upper bound of the
computation complexity of the distance value of a process model to a process
stub is linear to the number of activities and auxiliary constructs used, multiplied
with the maximum number of configuration options available for an activity.

3.3 Calculation Example

Next, we describe an implementation of the Racing Incoming Messages pattern
[2] and present a code sample for the executable process in WF 4. This pattern
describes a scenario where a party awaits one out of a set of messages. The
messages may be of different structure, originate from different parties and be
processed in a different manner, depending on their type. This aspect is well
understood in all of the languages in focus here, although the solutions differ
slightly. The implementation presented is motivated by the solution to the pat-
tern in BPEL 1.1 described in [2].

The implementation in WF 4 builds upon the Pick activity. This activity
contains multiple PickBranch activities, one for each of the messages that can be
received. A minimal realization of the pattern contains two alternative messages.
Each PickBranch activity contains a Trigger. Any WF activity can serve as
Trigger and as soon as the Trigger completes, the according body is executed.
When a Trigger completes, all other PickBranches are canceled.

Edit Distance-Based Pattern Support Assessment 147

Listing 3. Racing Incoming Messages pattern in WF

< W o r k f l o w S e r v i c e >
< S e q u e n c e >

< P i c k >
< P i c k B r a n c h >

< P i c k B r a n c h . T r i g g e r >
< R e c e i v e ServiceContractName=” RacingIncomingMessages ”

OperationName=” ReceiveMessageA” CanCreateInstance=”True” />
< / P i c k B r a n c h . T r i g g e r >
<!−− Process MessageA −−>

< / P i c k B r a n c h >
< P i c k B r a n c h >

< P i c k B r a n c h . T r i g g e r >
< R e c e i v e ServiceContractName=” RacingIncomingMessages ”

OperationName=” ReceiveMessageB” CanCreateInstance=”True” />
< / P i c k B r a n c h . T r i g g e r >
<!−− Process MessageB −−>

< / P i c k B r a n c h >
< / P i c k >

< / S e q u e n c e >
< / W o r k f l o w S e r v i c e >

This structure is outlined in List. 3. The following edit operations add to the
edit distance of this process compared to the process stub presented in List. 2:

1. Insert Activity: Substitute the Receive activity from the process stub with
the Pick activity.

2. Insert Activity: Insert the first PickBranch activity.
3. Insert Activity: Insert the first Receive activity into the Trigger of the

first PickBranch activity.
4. Configure Messaging Properties: To be able to receive messages, the

OperationName and ServiceContractName of the first Receive activity has
to be set.

5. Configure Activity: The Receive activity must be able to create a new
process instance (by setting its CanCreateInstance attribute to true), oth-
erwise the executable process would not be valid.

6. Insert Activity: Insert the second PickBranch activity.
7. Insert Activity: Insert the second Receive activity into the Trigger of the

second PickBranch activity.
8. Configure Messaging Properties: To be able to receive messages, the

OperationName and ServiceContractName of the second Receive activity
has to be set.

9. Configure Activity: Set the CanCreateInstance attribute of the second
Receive activity to true.

In total, this adds up to an edit distance of nine. There are similar process mod-
els in BPEL 2.0 and Sun BPEL, based on the pick activity. BPEL 2.0 scores
an edit distance of eight, and Sun BPEL of ten (cf. Table 2). The edit distance
allows to see that there are subtle differences in the degree of support provided
by the languages. Things are different, when using the traditional trivalent mea-
sure. There, the solution achieves direct support, as there is a single essential

148 J. Lenhard, A. Schönberger, and G. Wirtz

activity (the Pick) implementing the pattern. This valuation could be ques-
tioned, as there is undoubtedly more than one activity involved in the solution.
Nevertheless, this valuation corresponds to the assumptions made in other eval-
uations [2, 6]. The same applies to the solutions in BPEL 2.0 and Sun BPEL.
They also result in a rating of direct support. So when using the traditional
measure, this pattern reveals no difference in the support provided by WF 4 ,
BPEL 2.0, or Sun BPEL.

4 Results and Evaluation

In the following sections, we present the results of an assessment of the languages
WF 4, BPEL 2.0, and Sun BPEL for the control-flow patterns [19, 23], the
service interaction patterns [2], the time patterns [8] and the patterns for changes
in predefined regions [24]. A detailed discussion of all these patterns and the
solutions to them in the respective languages is not possible in the context of this
paper. Therefore, the following sections present the overall results of the analysis
and discuss their implications. We refer the interested reader to a technical report
[9] for a description of every pattern and a discussion of the solutions in each of
the languages. All process models that have been developed are available.5 Our
intention when developing the process models was to minimize the edit distance
while providing a valid solution to a pattern. More efficient solutions to the
patterns in terms of computing complexity may be possible.

4.1 Control-Flow Patterns

Table 4.1 outlines the results for the control-flow patterns [19, 23] and compares
them to the results of studies which analyzed preceding versions of BPEL and
WF. The control-flow patterns describe typical structures of the control-flow
perspective of automated processes. Our solutions to the patterns in the newer
language revisions were motivated by preceding studies [19, 25, 27], given re-
quired language constructs were still in place in the newer language versions.
The results of preceding studies only present the trivalent support measure.

Table 4.1 reveals that the edit distance support measure provides a higher
degree of selectivity among the languages than the traditional trivalent measure
does. The number of solutions in both, BPEL 2.0 and WF 4, can be used to
assess the quality of the languages, but also to quantify the degree of selectivity
provided by a support measure. This quantification is based on the number
of solutions where a support measure discriminates between the languages in
relation to the total number of solutions to the same patterns. A value of 1 for
this relation states that a support measure completely discriminates in all cases.
A value of 0 states that a support measure discriminates in no case. For 30 of the
43 patterns here, solutions could be found in WF 4. In BPEL 2.0, 31 patterns
could be implemented. For 29 patterns, solutions could be found in both, WF 4
5 The process models can be downloaded at http://www.uni-bamberg.de/pi/

orch-pattern. [9] also contains a description on how to execute them.

http://www.uni-bamberg.de/pi/orch-pattern
http://www.uni-bamberg.de/pi/orch-pattern

Edit Distance-Based Pattern Support Assessment 149

Table 1. Support of workflow control-flow patterns. If available, the edit distance is
displayed first followed by the trivalent measure in parentheses. A value of ‘-’ for the
edit distance means that no valid solution could be found. As opposed to this, a value
of ‘-’ for the trivalent measure means that either no valid solution could be found or
that all possible valid solutions require the use of more than two constructs.

WF 3.5 WF 4 BPEL BPEL Sun
Pattern taken from [27] 1.1 taken 2.0 BPEL

from [19]
Basic Patterns
WCP-1. Sequence + 2 (+) + 2 (+) 2 (+)
WCP-2. Parallel Split + 3 (+) + 3 (+) 3 (+)
WCP-3. Synchronization + 3 (+) + 3 (+) 3 (+)
WCP-4. Exclusive Choice + 4 (+) + 4 (+) 4 (+)
WCP-5. Simple Merge + 4 (+) + 4 (+) 4 (+)
Advanced Branching and Synchronization Patterns
WCP-6. Multi-Choice + 7 (+/-) + 7 (+/-) 7 (+/-)
WCP-7. Structured Synchronizing Merge + 7 (+/-) + 7 (+/-) 7 (+/-)
WCP-8. Multi-Merge - - (-) - - (-) - (-)
WCP-9. Structured Discriminator +/- 9 (+/-) - 10 (-) 10 (-)
WCP-28. Blocking Discriminator - - (-) - - (-) - (-)
WCP-29. Cancelling Discriminator + 9 (+) - 10 (-) 10 (-)
WCP-30. Structured Partial Join +/- 12 (+/-) - 31 (-) 31 (-)
WCP-31. Blocking Partial Join - - (-) - - (-) - (-)
WCP-32. Cancelling Partial Join + 12 (+) - 31 (-) 31 (-)
WCP-33. Generalized AND-Join - - (-) - - (-) - (-)
WCP-37. Acyclic Synchronizing Merge +/- - (-) + 11 (+) - (-)
WCP-38. General Synchronizing Merge - - (-) - - (-) - (-)
WCP-41. Thread Merge - - (-) +/- - (-) - (-)
WCP-42. Thread Split - - (-) +/- - (-) - (-)
Multiple Instances (MI) Patterns
WCP-12. MI without Synchronization + 6 (+) + 7 (+) 12 (+/-)
WCP-13. MI with a priori + 6 (+) + 7 (+) 19 (+/-)
Design-Time Knowledge
WCP-14. MI with a priori + 6 (+) - 7 (+) - (-)
Run-Time Knowledge
WCP-15. MI without a priori - - (-) - - (-) - (-)
Run-Time Knowledge
WCP-34. Static Partial Join for MI +/- 10 (+/-) - 8 (+/-) - (-)
WCP-35. Cancelling Partial Join for MI + 10 (+) - 8 (+) - (-)
WCP-36. Dynamic Partial Join - - (-) - - (-) - (-)
for Multiple Instances
State-based Patterns
WCP-16. Deferred Choice + 9 (+/-) + 8 (+) 10 (+)
WCP-17. Interleaved Parallel Routing + - (-) +/- 16 (+/-) - (-)
WCP-18. Milestone + 11 (+/-) - 11 (+/-) 11 (+/-)
WCP-39. Critical Section + 9 (+/-) + 15 (+/-) 40 (-)
WCP-40. Interleaved Routing + 9 (+/-) + 15 (+/-) 40 (-)
Cancellation Patterns
WCP-19. Cancel Activity + 9 (+/-) + 8 (+/-) 8 (+/-)
WCP-20. Cancel Case + 4 (+) + 3 (+) 3 (+)
WCP-25. Cancel Region + 9 (+/-) +/- 8 (+/-) 8 (+/-)
WCP-26. Cancel MI Activity + 14 (+/-) - 13 (+/-) 55 (-)
WCP-27. Complete MI Activity - 10 (+) - 8 (+) - (-)
Iteration Patterns
WCP-10. Arbitrary Cycles + 17 (-) - 18 (-) 18 (-)
WCP-21. Structured Loop + 5 (+) + 5 (+) 5 (+)
WCP-22. Recursion - - (-) - - (-) - (-)
Termination Patterns
WCP-11. Implicit Termination + 0 (+) + 0 (+) 0 (+)
WCP-43. Explicit Termination + 9 (+/-) - 6 (+) 6 (+)
Trigger Patterns
WCP-23. Transient Trigger + - (-) - - (-) - (-)
WCP-24. Persistent Trigger + 0 (+) + 0 (+) 0 (+)

150 J. Lenhard, A. Schönberger, and G. Wirtz

and BPEL 2.0. Only in six of these cases, the trivalent measure discriminates, so
the degree of selectivity amounts to 6/29 = 0.21. The edit distance discriminates
in 18 cases, so this number amounts to 18/29 = 0.62. For all 25 patterns to which
solutions could be found in Sun BPEL, also solutions in WF 4 could be found.
Here, the degree of selectivity of the trivalent measure amounts to 11/25 = 0.44,
and for the edit distance it amounts to 14/25 = 0.56.

It is not surprising that the degree of support for several patterns, such as
Parallel Split or Exclusive Choice, is identical in WF 4 and BPEL 2.0 even
using the edit distance. These patterns relate to concepts that are very common
and consequently the solutions are very similar. For several patterns, such as
the Discriminator and Partial Join patterns in BPEL 2.0, it is interesting to see
that there is no support according to the trivalent measure, but the edit distance
shows that they are relatively easy to implement.

The degree of pattern support has changed marginally from BPEL 1.1 to
BPEL 2.0. There are few differences in the set of activities available and only
the new parallel forEach activity has an impact on the support for control-flow
patterns provided by the language. With the help of this activity, several of the
Multiple Instances patterns can be supported. More efficient solutions to the
Discriminator and Partial Join patterns in BPEL 2.0 could be implemented by
providing a completionCondition for the flow activity similar to the forEach
activity. BPEL 2.0 does not support several patterns due to its structuredness
and the inability to create cycles using links, as well as its threading model.
The support provided by Sun BPEL is severely limited by its lack of links,
isolated scopes and parallel forEach activities.

When comparing WF 3.5 to WF 4, one thing becomes obvious: While the
solutions of the patterns have changed considerably (cf. [9]), there is little change
in the overall degree of support provided by the language. All in all however,
fewer patterns are supported. There are two main reasons for this. First, the
lack of the state machine modeling style that was present in WF 3.5 limits the
support. This modeling style was especially suited to provide elegant solutions to
state-based patterns and several other patterns for unstructured process models.
In April 2011, Microsoft reacted to the demands of the community of WF users
and re-introduced the state machine modeling style for WF 4 in its first platform
update of .NET 4.6 Second, while the new flowchart modeling style provides an
excellent means for building unstructured, graph-oriented process models, it is
not able to live up to its full potential, due to its inability to describe concurrent
branches. A Parallel Split or Multi-Choice construct is yet missing in this style.

Altogether, the support provided by WF 4 and BPEL 2.0 is still very similar.
Things are different when comparing Sun BPEL and WF 4. WF 4 provides
support for more patterns and the solutions are often also less complex.

4.2 Service Interaction Patterns

Service interaction patterns [2] describe interaction scenarios that are typical in
the B2B domain. Due to their distributed nature, nearly all service interaction
6 The documentation is available at http://support.microsoft.com/kb/2478063.

http://support.microsoft.com/kb/2478063

Edit Distance-Based Pattern Support Assessment 151

patterns must be implemented by more than one process. In most cases there is
an initiator process that starts a communication session and one or more respon-
der processes. The edit distance that describes the support for a pattern is the
sum of the edit distances of all the processes involved. The results of the analysis
for the service interaction patterns are outlined in Table 2. The degree of support

Table 2. Support of Service Interaction Patterns

Pattern WF 4 BPEL 2.0 Sun BPEL
Single-Transmission Bilateral Patterns
SIP-1 Send 4 (+) 7 (+) 7 (+)
SIP-2 Receive 4 (+) 7 (+) 7 (+)
SIP-3 Send/Receive 9 (+) 15 (+/-) 15 (+/-)
Single-Transmission Multi-lateral Patterns
SIP-4 Racing Incoming Messages 9 (+) 8 (+) 10 (+)
SIP-5 One-to-Many Send 9 (+) 12 (+) 12 (+)
SIP-6 One-from-Many Receive 37 (+/-) 49 (+/-) 49 (+/-)
SIP-7 One-to-Many Send/Receive 36 (+/-) - (-) - (-)
Multi-Transmission Bilateral
SIP-8 Multi Responses 71 (-) 90 (-) 90 (-)
SIP-9 Contingent Requests 28 (+) 34 (+) 34 (+)
SIP-10 Atomic Multicast Notification 40 (-) - (-) - (-)
Routing Patterns
SIP-11 Request with Referral 21 (+) 28 (+) - (-)
SIP-12 Relayed Request 31 (+/-) 47 (+/-) - (-)
SIP-13 Dynamic Routing - (-) - (-) - (-)

for the service interaction patterns provided by WF 4 is considerably better than
that of BPEL 2.0. WF 4 provides a wider range of messaging activities and its
correlation mechanism is less restrictive. WF 4 supports more patterns and, as
the edit distance demonstrates, almost all solutions are less complex. As before,
Sun BPEL falls behind the other two languages in both, the number of patterns
supported and the complexity of the solutions. Especially its lack of support
for dynamic partner binding is critical, resulting from the inability to re-assign
endpoint references to partnerLinks.

4.3 Time Patterns

Time patterns [8] mark typical time-related constraints of the control-flow per-
spective of processes. The results of the analysis of the support for time patterns
are given in Table 3. The support for time patterns relies heavily on the repre-
sentation for dates and times and the expression languages available. WF 4 uses
sophisticated data types and time-based operations from the .NET class library.
BPEL 2.0 requires only the support for XPath 1.0 as expression language, which
completely lacks time-based operations. Sun BPEL incorporates some time-based
functions of XPath 2.0 and thus allows to increase the degree of pattern support.
In fact, for this pattern catalog, Sun BPEL excels BPEL 2.0. By consolidating the
BPEL standard to also require the support for XPath 2.0 as expression language,
BPEL would achieve a similar degree of support as WF 4.

152 J. Lenhard, A. Schönberger, and G. Wirtz

Table 3. Support of Time Patterns

Pattern WF 4 BPEL 2.0 Sun BPEL
Durations and Time Lags
TP-1. Time Lags between two Activities 8 (+) - (-) - (-)
TP-2. Durations 6 (+/-) 7 (+/-) 7 (+/-)
TP-3. Time Lags between Events 8 (+) - (-) - (-)
Restrictions of Process Execution Points
TP-4. Fixed Date Elements 3 (+) 3 (+) 3 (+)
TP-5. Schedule Restricted Elements 3 (+) - (-) - (-)
TP-6. Time Based Restrictions 6 (+) - (-) - (-)
TP-7. Validity Period 4 (+) - (-) 4 (+)
Variability
TP-8. Time Dependent Variability 3 (+) 11 (+/-) 4 (+)
Recurrent Process Elements
TP-9. Cyclic Elements 12 (+/-) - (-) - (-)
TP-10. Periodicity 8 (+/-) 7 (-) 7 (-)

4.4 Patterns for Changes in Predefined Regions

Patterns for changes in predefined regions are a subset of the change patterns
[24]. They describe structures that allow for changes in the control-flow perspec-
tive of processes at run-time. In most cases, these structures can be captured
using certain control-flow patterns. As can be seen in Table 4, WF 4 and BPEL
2.0 are roughly equivalent concerning their support for patterns for changes in
predefined regions. On average, the solutions in WF 4 are less complex. In any
case WF 4 and BPEL 2.0 excel Sun BPEL.

Table 4. Support of Patterns for Changes in Predefined Regions

Patterns for Changes in Predefined Regions WF 4 WS-BPEL 2.0 Sun BPEL
PP-1. Late Selection of Process Fragments 9 (+/-) 8 (+) 10 (+)
PP-2. Late Modeling of Process Fragments - (-) - (-) - (-)
PP-3. Late Composition of Process Fragments 9 (+/-) 15 (+/-) 40 (-)
PP-4. Multiple Instance Activity 6 (+) 7 (+) - (-)

5 Conclusion and Outlook

This study introduced an edit distance-based measure for assessing pattern sup-
port that overcomes granularity and selectivity issues of the traditional measure.
Its applicability was assessed by an analysis of the orchestration languages BPEL
2.0, Sun BPEL, and WF 4. The use of this support measure for calculating
the degree of support overcomes the problems the traditional trivalent support
measure posed on preceding analyses. What is more, it gives a notion for the
complexity of a solution to a pattern in a language and the effort required by its
implementer. Also, it is directly comparable across the boundaries of languages
and pattern catalogs. Future analyses can provide more meaningful and selective
results by relying on this edit distance support measure.

Furthermore, the results show that WF 4 excels both, BPEL 2.0 and its imple-
mentation Sun BPEL, concerning the degree of pattern support. BPEL 2.0 and
WF 4 are largely equivalent concerning their degree of support for control-flow
and change patterns. Things are different when looking at the service interaction

Edit Distance-Based Pattern Support Assessment 153

and time patterns. WF 4 supports two service interaction patterns that are not
supported by BPEL 2.0 and more than twice as many time patterns. Further-
more, for almost all time and service interaction patterns, the solutions are less
complex in WF 4. For Sun BPEL, the analysis demonstrates that its degree of
pattern support is rather limited.

Future work concentrates on the automation of the calculation of the edit dis-
tance. The edit operations presented here can serve as foundation for a unified
model of orchestration languages that allows for an automated calculation of
distance values. To fully automate the computation, it is necessary to construct
a mapping from a concrete orchestration language to this model. Another open
issue is the assessment of the efficiency and scalability of the solutions described
here. As discussed, we cannot guarantee that we have found the most efficient
solutions to all patterns in the languages in focus. A community approach, start-
ing with the results from [9] and involving researchers from other institutions,
might help to optimize the process models. Also the analysis of closely related
languages, such as BPMN 2.0, is an interesting field of study.

References
1. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation Patterns in Service-

Oriented Architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 245–259. Springer, Heidelberg (2007)

2. Barros, A., Dumas, M., ter Hofstede, A.H.M.: Service Interaction Patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

3. Bukovics, B.: Pro WF: Windows Workflow in.NET 4. Apress (June 2010), ISBN-13:
978-1-4302-2721-2

4. Cardoso, J.: Business Process Quality Metrics: Log-Based Complexity of Work-
flow Patterns. In: Meersman, R., Tari, Z., et al. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 427–434. Springer, Heidelberg (2007)

5. Decker, G., Mendling, J.: Process Instantiation. Data and Knowledge Engineer-
ing 68, 777–792 (2009)

6. Decker, G., Overdick, H., Zaha, J.: On the Suitability of WS-CDL for Choreography
Modeling. In: EMISA, Hamburg, Germany, pp. 21–33 (October 2006)

7. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph Matching Algorithms for
Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Rei-
jers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

8. Lanz, A., Weber, B., Reichert, M.: Workflow Time Patterns for Process-Aware
Information Systems. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper, E.,
Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010. LNBIP, vol. 50,
pp. 94–107. Springer, Heidelberg (2010)

9. Lenhard, J.: A Pattern-based Analysis of WS-BPEL and Windows Workflow.
Technical Report 88, Otto-Friedrich-Universität Bamberg, Bamberger Beiträge zur
Wirtschaftsinformatik und Angewandten Informatik (March 2011)

10. Lenhard, J., Schönberger, A., Wirtz, G.: Streamlining Pattern Support Assess-
ment for Service Composition Languages. In: ZEUS, Karlsruhe, Germany. CEUR
Workshop Proceedings, vol. 705, pp. 112–119. CEUR-WS.org (February 2011)

11. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

154 J. Lenhard, A. Schönberger, and G. Wirtz

12. Norta, A., Hendrix, M., Grefen, P.: A Pattern-Knowledge Base Supported Estab-
lishment of Inter-organizational Business Processes. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 834–843. Springer,
Heidelberg (2006)

13. OASIS. Web Services Business Process Execution Language, v2.0 (April 2007)
14. O’Hagan, A., Sadiq, S., Sadiq, W.: Evie - A developer toolkit for encoding service

interaction patterns. Information Systems Frontiers 11(3), 211–225 (2009)
15. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented Computing. Communica-

tions of the ACM 46(10), 24–28 (2003)
16. Peltz, C.: Web Services Orchestration and Choreography. IEEE Computer 36(10),

46–52 (2003)
17. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow

Resource Patterns: Identification, Representation and Tool Support. In: Pastor, Ó.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

18. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
Data Patterns: Identification, Representation and Tool Support. In: Delcambre,
L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS,
vol. 3716, pp. 353–368. Springer, Heidelberg (2005)

19. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
Control-Flow Patterns: A Revised View. Technical report, BPM Center Report
(2006)

20. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception
Patterns. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001,
pp. 288–302. Springer, Heidelberg (2006)

21. Sánchez-González, L., Ruiz, F., Garćıa, F., Cardoso, J.: Towards Thresholds of
Control Flow Complexity Measures for BPMN models. In: Proceedings of the 2011
ACM Symposium on Applied Computing, pp. 1445–1450. ACM (2011)

22. Thom, L.H., Reichert, M., Iochpe, C.: Activity Patterns in Process-aware Infor-
mation Systems: Basic Concepts and Empirical Evidence. IJBPIM 4(2), 93–110
(2009)

23. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

24. Weber, B., Rinderle-Ma, S., Reichert, M.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data and
Knowledge Engineering 66(3), 438–466 (2008)

25. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In: Song, I.-Y.,
Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp.
200–215. Springer, Heidelberg (2003)

26. Wombacher, A., Li, C.: Alternative Approaches for Workflow Similarity. In: IEEE
SCC, Miami, Florida, USA, pp. 337–345 (July 2010)

27. Zapletal, M., van der Aalst, W.M.P., Russell, N., Liegl, P., Werthner, H.: An Anal-
ysis of Windows Workflow’s Control-Flow Expressiveness. In: ECOWS, Eindhoven,
The Netherlands, pp. 200–209 (November 2009)

28. Zdun, U., Dustdar, S.: Model-driven and pattern-based integration of process-
driven soa models. IJBPIM 2(2), 109–119 (2007)

29. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer, Heidelberg (2006)
ISBN 978-0-387-29146-8

Towards Robust Service Workflows:
A Decentralized Approach

(Short Paper)

Mario Henrique Cruz Torres and Tom Holvoet

Department of Computer Science
Katholieke Universiteit Leuven

Leuven, Belgium
{MarioHenrique.CruzTorres,Tom.Holvoet}@cs.kuleuven.be

Abstract. Nowadays service workflows are used to increase the efficiency of
process oriented supply chains. Service workflows can encompass hundreds of
services around a single process. These services are geographically spread and
cross organizational boundaries. This raises the need for coordination, such as
assigning tasks, synchronizing production schedules, between companies collab-
orating through services. We present a fully decentralized coordination mecha-
nism that, using the local knowledge available at each company participating in
the supply chain, allows the enactment of robust processes. We evaluate our solu-
tion through simulations and show that it can create robust service compositions.

1 Introduction

Nowadays the business world faces an increasing pressure to quickly create new prod-
ucts and offer them at lower prices. In order to achieve these goals companies focus
on their core specialties and at the same time collaborate with a wide range of suppli-
ers. Several companies organize themselves around processes, creating process oriented
supply chains. On the one hand process oriented supply chains help companies to im-
prove their efficiency, be more agile and responsive to market changes. On the other
hand, process oriented supply chains demand better communication, even more, bet-
ter collaboration amongst its participants [1]. Cooperation is a cornerstone to enable
process oriented supply [2].

Companies can expose their services on the internet. However there is no simple
way to define how multiple services can interact with each other in order to improve the
overall efficiency of a system, or of a process. There are studies proposing how services
can share resource information in standardized ways [3]. However there is a lack of
mechanisms to specify how services interact, which information to share, and how to
monitor cross-organizational business processes.

Our main contribution is to present a decentralized coordination mechanism that
selects services to participate in a supply chain process. Our mechanism, based on Del-
egate MAS [4], is a step in the direction of decentralized services in supply chains.

The rest of the paper is organized as follows. Section 2 describes the problem ex-
plored. We present our solution in Section 3 and evaluate it on Section 4. Finally, Sec-
tion 5 shows the related works and Section 6 our conclusions.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 155–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

156 M.H. Cruz Torres and T. Holvoet

2 Service Selection in Supply Chains

The Supply Chain Management (SCM) problem we tackle in our research is how to
coordinate the allocation, and monitoring of the activities of companies engaged in
a supply chain process in order to have robust processes. A supply chain process, is
defined by a set of activities that need to be performed in order to achieve a goal, such
as producing and delivering a product.

The problem becomes even more complex due to dynamic nature of the events that
occur in the environment. Communication networks can fail, trucks can break, sched-
ules can slip, companies can have weak commitments towards the supply chain.

2.1 Formalization

We model the supply chain as a graph Sc = 〈A, C〉. Where A = {a1, a2, . . . , an} is the
set of agents representing partner companies, and C ⊆ A × A is the set of connections
between agents.

The set of all possible service types offered by the companies participating in our
supply chain is defined by S = {s0, s1, . . . , sn}, where si ∈ N. Agents maintain a
schedule indicating when they are busy. There is also a monetary price associated to the
use of an agent. An agent ai is defined as:.

ai = (si, Ji, pi) where

⎧⎪⎨⎪⎩
si ∈ S service type
Ji = {(t0, e0), (t1, e1), . . . , (tn, en)} schedule
pi ∈ R

+ price
(1)

Where si is the type of service offered by the agent. The agents maintain information
about the times they will execute an operation and the expected duration time to perform
such operation. This information is the agent schedule J , that is a set of tuples 〈t, e〉,
where t is the time to start executing an operation and e is the expected duration to
execute such operation. Finally, p is the monetary price to use the agent service.

A process oriented supply chain constitutes of a number of activities that need to be
executed in a specific order to create the desired product. For simplicity, we define a
process P = {si, . . .}, where si ∈ S, as a set of sequential service types that need to
be invoked to complete the process.

When a distributor requests a new batch of products, it starts a process instance. A
process instance can be seen as a path containing the expected time to start executing a
service and the agent that will execute the service. A path is defined as

Path = {〈tj , ak〉}, where tj ≤ tj+1, ∀t ∈ N and ak, ∀ak ∈ A (2)

A given Path is a valid path for the process P if and only if for each pair 〈t, a〉, the agent
a, associated to the service type si from P , provides operations required by services of
type si. This means that a path is valid if and only if the agents scheduled to participate
in the path offer services of the same type required by the process.

Towards Robust Service Workflows: A Decentralized Approach 157

The expected completion time of a Path = {〈t1, a1〉, 〈t2, a2〉, . . . , 〈tn, an〉} is given
by tn + θ(an, tn), where θ : A × N → N provides the time it takes to execute a task
in a given agent an at a given time tn. Agents use the schedule information J and the
time information to define the function θ.

The main problem we want to solve is to find a robust Path, illustrated in Equation
3, while minimizing the costs associated to the selected path. The metric we use to
define a robust path is the variation of total completion times.

min

√√√√ 1
n

n∑
i=0

(
θ(ai, ti) − θ(a, t)

)2

(3)

3 Decentralized Service Coordination

In our approach, all supply chain companies participate, through their agents, in a ser-
vice overlay network. This network is created according to trust relations, business
contracts, between the companies. We assume that each agent maintains the informa-
tion about its peers in the network. Hence there is no central entity used to store a map
of the network.

Selecting services to participate in a supply chain process is a complex problem.
We use Ant Colony Optimization (ACO) techniques in our coordination mechanism to
tackle this complexity.

3.1 Ant Colony Optimization

ACO algorithms are inspired by food foraging behavior of real ant colonies. Ants are
good at finding the shortest paths between their nest and sources of food. However
they have little capacity to find the paths individually, they collaborate with each other
to solve their food foraging problem. Ants drop pheromones in the environment leav-
ing pheromone trails where they walk. Pheromones are chemical scents that stay in
the air during a certain period. As more ants follow a certain path, they reinforce the
pheromone trail on that path, leading to even more ants to follow that particular path [5].

In ACO a set of virtual ants, which are software agents, indirectly cooperate to find
solutions to complex optimization problems. The ACO meta-heuristic defines a number
of steps to create algorithms that mimic ant behavior. It can be applied to any problem
that can be reduced to path-traversal problems.

The virtual ants have well defined behavior in order to contribute to finding solutions.
Virtual ants drop information, called pheromones, along the paths that lead to good
solutions. That way, other virtual ants, can smell the pheromone trail and follow it as
well, converging to a path that represents a good solution to the problem at hand.

We use the pheromone concept to avoid direct communication between the agents,
and also to indicate the quality of a certain path. We also use the concepts of virtual ants
in our agents, called ExplorationAnts and IntentionAnts. We also use the probabilistic
nature of the ants behavior to design our ExplorationAnts, what is explained next.

158 M.H. Cruz Torres and T. Holvoet

3.2 Decentralized Coordination and ACO

Companies taking part in the service overlay network can have multiple participation
modes: (i) service provider, which offer operations to other companies, (ii) service re-
quester, which request operations from other companies.

A service provider is represented by a ResourceAgent. ResourceAgents are also
responsible for storing the quality of service (QoS) information of the services they rep-
resent. Besides representing service providers, ResourceAgents maintain a reservation
list indicating when their services will be used. This reservation list is frequently up-
dated to avoid having stale information, i.e. in the case an agent does not intend to
use the resource anymore. ResourceAgents also maintain information about their direct
peers.

OrgAgents represent the service requesters. OrgAgents are responsible for selecting
the services that will participate in a composition and are also responsible for main-
taining the QoS of the composite service they represent. The main goal of OrgAgents is
to create robust compositions, that is, enact supply chain processes with the best par-
ticipants. OrgAgents delegate parts of their work to other agents, more specifically to
ExplorationAnts and IntentionAnts, as TaskAgents in Delegate MAS.

ExplorationAnts and IntentionAnts are a special type of agent with constrained be-
havior. An OrgAgent sends out a number of ExplorationAnts to find out what are the
best services available to accomplish the process at hand.

Once the ExplorationAnts find a valid path, they return this information to their Or-
gAgent. The OrgAgent collects the information brought by all ExplorationAnts and de-
cides, based on its goals, to commit to one particular path. When an OrgAgent commits
to a particular path, it sends out IntentionAnts that will reinforce the intention of the
OrgAgent, making reservations, to use the services offered the ResourceAgents along
the selected path.

ExplorationAnts main function is to search for ResourceAgents that can participate
in a certain process. In order to do that, ExplorationAnts crawl the agent overlay net-
work looking for ResourceAgents that: (i) offer the required type of service, (ii) can
perform the service at the required time, and (iii) have a good QoS. The QoS is rep-
resented by the vector q = (q1, . . . , qn), where qi ∈ R represents the quality i. The
quality can be, for instance, the duration time to execute one operation, price, trusti-
ness, etc. ExplorationAnts try to find a path containing agents capable of performing all
the required operations needed by their OrgAgents. ExplorationAnts take QoS param-
eters into account, asking this information to ResourceAgents. They evaluate the QoS

using an heuristic η, defined in Equation 4:

η : (q1, . . . , qn) → R, such that η((q1, . . . , qn)) =
1∑n
i q∗i

, q∗i is the normalized qi

(4)
where η is evaluated every time an ExplorationAnt checks for the quality of a service
represented by a given ResourceAgent. An ExplorationAnt decides on which path to
follow according to the probability given by Equation 5:

Pij(t) =
[τij(t)]α[ηij(t)]β∑

l∈Ni
[τil(t)]α[ηil(t)]β

(5)

Towards Robust Service Workflows: A Decentralized Approach 159

where τ is the pheromone level, α indicates how much the ExplorationAnt values the
pheromone information, η is the heuristic that takes the QoS into account, and β indi-
cates the weight to the QoS information the ExplorationAnt gives.

ExplorationAnts select a path to follow according to the probabilities defined in
Equation 5. There is always room for exploratory behavior, unless the parameter α
is set to high. If α is set to high, ExplorationAnts will only follow the paths with the
highest pheromone concentration. ExplorationAnts jump from ResourceAgent to Re-
sourceAgent, either until their time to live expires or they have found a valid path, that
is, they have found all the required ResourceAgents needed for the composition.

When an OrgAgent decides to follow a particular path, it sends out IntentionAnts.
IntentionAnts make reservations to use the services of the selected ResourceAgents.
Another function of IntentionAnts is to drop pheromones along the chosen path in the
agent overlay network. The pheromone information is used by ExplorationAnts, when
they are looking for services.

If a pheromone trail becomes to strong, ExplorationAnts will have a higher proba-
bility to follow this trail instead of exploring new solutions. We use a mechanism called
Pheromone Evaporation that decreases the pheromone level associated to a certain
path as time pass by.

4 Evaluation

This section shows the experimental results that we had simulating our coordination
mechanism in different scenario settings. As explained in Section 3 there are two types
of agents operating in the overlay network, ResourceAgents and OrgAgents, and two
types of ants, ExplorationAnts and IntentionAnts. All ResourceAgents are bootstrapped
with the same parameter configurations. OrgAgents are bootstrapped with the same
commitment level.

In our simulation’s scenario there are 20 agents of type Manufacture1 (mean re-
sponse 110 ms ±11 ms), 100 agents of type TransportRegion1 (mean response time
300 ms ±30 ms), 20 agents of type Manufacture2 (mean response time 80 ms ±8 ms),
100 agents of type TransportRegion2 (mean response time 300 ms ±30 ms), and 8 Or-
gAgents. Due to the probabilistic nature of our coordination mechanism we performed
30 simulations per experiment to obtain statistically significant results with a 95% con-
fidence interval.

4.1 Static Environment

In this experiment, services never fail and have an execution time given by the Poisson
probability distribution as describe above. OrgAgents are configured with a commit-
ment level of 0.0. The compositions created by our coordination mechanism had a aver-
age response time of 790 ms ±80 ms, basically resembling the nature of the component
services. With this values at hand we decided to investigate how different OrgAgent’s
commitment strategies could influence the created compositions. What is explained in
the OrgAgent sensitivity analysis.

160 M.H. Cruz Torres and T. Holvoet

Sensitivity Analysis of OrgAgent’s Commitment Levels influence the quality of cre-
ated compositions. A commitment level of 1.0 indicates that the OrgAgent performs the
component service selection only once and never changes this selection, it is called a
blinded committed agent. A blind committed OrgAgent is unable cope with unexpected
changes in the environment, since it never changes its component services.

A cautious agent has a commitment level of 0.0. It revises its commitments every
cycle, what can incur in instability in the system, since the agent can keep alternating
between component services and never engage with any one.

Figure 1a indicates the average response time of the created compositions by instan-
tiating OrgAgents with different commitment levels, in a static environment.

●

●

●

● ●

● ●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

72
0

74
0

76
0

78
0

80
0

82
0

Sensitivity to commitment levels

Commitment Level (%)

R
es

po
ns

e
T

im
e

(m
s)

(a) Commitment level between 0.0 and 1.0

●

●

●

●

●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08 0.10

72
0

74
0

76
0

78
0

80
0

Sensitivity to commitment levels

Commitment Level (%)

R
es

po
ns

e
T

im
e

(m
s)

(b) Commitment level between 0.0 and 0.1

Histogram for Commitment level 0.02

Response time (ms)

D
en

si
ty

700 720 740 760 780

0.
00

0.
01

0.
02

0.
03

0.
04

(c) Static environment

Compositions in dynamic environment

Response Time (ms)

D
en

si
ty

660 680 700 720 740 760 780

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

(d) Dynamic environment

Fig. 1. Sensitivity analysis of OrgAgent’s commitment levels and simulation results

Given the results obtained we found that a commitment level of 0.02 gives the best
compositions for this scenario, depicted in Figure 1b. A commitment level of 0.02 in-
dicates that an agent will change its path if the increment in the solution is greater than
2 %.

The quality of the compositions created by the OrgAgents with a commitment level
of 0.02 increased by a factor of more than 10%, what is depicted in Figure 1c. It is

Towards Robust Service Workflows: A Decentralized Approach 161

interesting to note that the standard variations were also minimized when the OrgAgent
had their commitment levels changed to 0.02.

4.2 Dynamic Environment

The reality has many sources of dynamic events, such as network failures, failures to
keep commitments, even failures to properly predict schedules. To approximate our
simulations to the reality we performed simulations with our coordination mechanism
in a dynamic environment. We randomly, using the Uniform probability distribution,
fail services that are participating in the agent overlay network at a rate of 1 service
failure per 10 iterations. The OrgAgents were configured with commitment level of
0.02. The results are depicted in Figure 1d.

It can be seen from Figure 1d that the coordination mechanism can still create re-
sponsive service compositions, in the presence of component service failures. However
we should note that the objective to minimize the standard deviation is hard to achieve,
since a number of services are failing and the remaining services can have greater dif-
ferences in their QoS values, in this case response time.

5 Related Work

There is plenty of research about selecting component services to participate in ser-
vice compositions. These works focus on creating algorithms capable of selecting the
best available component services, in terms of QoS. Our work shares the idea that it
is possible to improve properties from composite services by selection and biding to
component services at runtime. However, in our research we study the problem of not
only selecting the best available services, but also selecting component services that
will lead to robust compositions.

The work presented in [6] discusses and evaluate different techniques for component
service selection. The simulation results show that the most efficient approach is the
proxy-based, followed by the collaborative approach. In the proxy-based approach, all
the service invocations go through a proxy that can then, load balance and select the best
available services. In the collaborative approach different composite services collabo-
rate, sharing QoS information about component services, to allow a better component
service selection.

Our solution shares characteristics with both the proxy-based and collaborative ap-
proaches. We focus, however, on the creation of robust compositions instead of focusing
only on minimizing a certain QoS metric, such as response time or price.

The work on [7] explicitly focus on creating robust service compositions. The work
uses decision theory for dealing with the uncertainty associated with component ser-
vice providers. It proposes a mechanism for component service selection that explicitly
takes the reliability of the created composition into account. The service selection al-
gorithm takes the most critical tasks into account and use service redundancy for these
tasks. The algorithm also uses planning techniques to create contingency plans, in the
case of component services failures. Another interesting characteristic of the algorithms
presented in [7] is the use of service reservation for parts of the composite service.

162 M.H. Cruz Torres and T. Holvoet

Our work also takes the robustness of the composition into account when selecting
component services. However our approaches differ in how to create robust composi-
tions. Our approach relies on the aggregated information available in the agent overlay
network and in advanced reservations of services that will participate in the composi-
tion.

6 Conclusions and Future Work

The main contribution of this work is to present a decentralized coordination mecha-
nism capable of creating robust service compositions. We have strong indications that
our mechanism can be used to create collaborative systems that need to support compa-
nies interacting in a supply chain.

We should note that supply chains are quite irregular in reality what was not explored
in our current work, but should, definitely, be explored in our future works.

A future research is to evaluate how adding autonomic behaviour to our OrgAgents,
for instance, changing the commitment levels at runtime, can influence the quality of
the created compositions. Finally we intend to evaluate our coordination mechanism in
a real network environment.

References

1. Sandberg, E., Abrahamsson, M.: The role of top management in supply chain management
practices. International Journal of Retail & Distribution Management 38(1), 57–69 (2010)

2. Glenn Richey, R., Tokman, M., Dalela, V.: Examining collaborative supply chain service tech-
nologies: a study of intensity, relationships, and resources. Journal of the Academy of Mar-
keting Science 38(1), 71–89 (2010)

3. Ludwig, H., Nakata, T., Wäldrich, O., Wieder, P., Ziegler, W.: Reliable Orchestration of Re-
sources Using WS-Agreement. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS,
vol. 4208, pp. 753–762. Springer, Heidelberg (2006)

4. Holvoet, T., Weyns, D., Valckenaers, P.: Patterns of delegate mas. In: International Conference
on Self-Adaptive and Self-Organizing Systems, pp. 1–9 (2009)

5. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimization. Artifi-
cial Life 5, 137–172 (1999)

6. Ghezzi, C., Motta, A., Panzica La Manna, V., Tamburrelli, G.: QoS Driven Dynamic Binding
in-the-Many. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093,
pp. 68–83. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-13821-8_7

7. Stein, S., Payne, T., Jennings, N.: Robust execution of service workflows using redundancy
and advance reservations. IEEE Transactions on Services Computing 4(2), 125–139 (2011)

http://dx.doi.org/10.1007/978-3-642-13821-8_7

Pricing Information Goods in Distributed Agent-Based
Information Filtering�

Christos Tryfonopoulos1 and Laura Maria Andreescu2

1 University of Peloponnese, Tripoli, Greece
trifon@uop.gr

2 APYDOS, Luxembourg
landreescu@apydos.com

Abstract. Most approaches to information filtering taken so far have the under-
lying hypothesis of potentially delivering notifications from every information
producer to subscribers; this exact information filtering model creates efficiency
and scalability bottlenecks and incurs a cognitive overload to the user. In this
work we put forward a distributed agent-based information filtering approach
that avoids information overload and scalability bottlenecks by relying on ap-
proximate information filtering. In approximate information filtering, the user
subscribes to and monitors only carefully selected data sources, to receive inter-
esting events from these sources only. In this way, system scalability is enhanced
by trading recall for lower message traffic, information overload is avoided, and
information producers are free to specialise, build their subscriber base and charge
for the delivered content. We define the specifics of such an agent-based architec-
ture for approximate information filtering, and introduce a novel agent selection
mechanism based on the combination of resource selection, predicted publishing
behaviour, and information cost to improve publisher selection. To the best of our
knowledge, this is the first approach to model the cost of information in a filtering
setting, and study its effect on retrieval efficiency and effectiveness.

1 Introduction

Much information of interest to humans is available today on the Web, making it
extremely difficult to stay informed without sifting through enormous amounts of
information. In such a dynamic setting, information filtering (IF), also referred to as
publish/subscribe, continuous querying, or information push, is equally important to
one-time querying, since users are able to subscribe to information sources and be noti-
fied when documents of interest are published. This need for content-based push tech-
nologies is also stressed by the deployment of new tools such as Google Alert. In an
IF scenario, a user posts a subscription (or continuous query) to the system to receive
notifications whenever certain events of interest take place (e.g., when a document on
Special Olympics becomes available). Since in an IF scenario the data is originally
highly distributed residing on millions of sites (e.g., with people contributing to blogs,

� Part of the work was done while the authors were with Max-Planck Institute for Informatics.
The authors would like to thank David Midgley for his comments and suggestions on the
economic aspects of this work.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 163–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

164 C. Tryfonopoulos and L.M. Andreescu

news portals, social networking feeds), a distributed approach seems an ideal candidate
for such a setting.

In this work we put forward ABIS (Agent-Based Information filtering System), a
novel agent-based architecture that supports content-based approximate information fil-
tering. While most exact information filtering approaches [32,15,14,34,1,27,8] taken so
far have the underlying hypothesis of potentially delivering notifications from every in-
formation producer, ABIS relaxes this assumption by monitoring only selected sources
that are likely to publish documents relevant to the user’s interests in the future. In
ABIS, a user subscribes with a continuous query and monitors only the most interest-
ing sources in the system, to receive published documents from these sources only. The
system is responsible for managing the user query, discovering new potential sources
and moving queries to better or more promising publishers. Approximate IF improves
the scalability issues of exact IF by trading recall for lower message traffic, avoids in-
formation overload to the user, by allowing him to receive selected notifications from
selected publishers, and proves an interesting business model for pricing information
goods delivered by information producers. In approximate IF, each information pro-
ducer might have its own customer base of interested subscribers, and may charge the
delivered content by subscription or per item. Notice that this is not possible in the
case of exact IF, since information consumers receive all matching notifications, from
all producers, while to facilitate the distribution of the service, no notion of ownership
control and publisher quality is employed. Finally, notice that system throughput and
notification latency in exact IF depend heavily on publication size (which is usually
large for textual IF). On the other hand, approximate IF is not affected by publication
size (as there is no notion of information dissemination at publication time) and of-
fers one-hop latency, since each publisher maintains its own database of subscribers.
The interested reader is referred to [36] for an insightful comparison of exact and
approximate IF.

As possible application scenarios for ABIS consider the case of news filtering (but
with the emphasis on information quality rather than timeliness of delivery) or blog
filtering where users subscribe to new posts. Not only do these settings pose scalabil-
ity challenges, but they would also incur an information avalanche and thus cognitive
overload to the subscribed users, if the users were alerted for each and every new docu-
ment published at any source whenever this matched a submitted continuous query. Our
approximate IF approach ranks sources, and delivers matches only from the best ones,
by utilising novel publisher selection strategies. These strategies take into consideration
the quality of the information publisher, based on per-publisher statistics, and the price
of information as this is set by the publisher. Despite the utilisation of a Distributed
Hash Table (DHT) [31] to maintain publisher statistics, notice that our architecture can
also be realised in other settings, like a single coordinator agent monitoring a number of
distributed sources, or a cloud-based multi-agent system providing an alerting service.

To the best of our knowledge, this is the first approach that aims at connecting system
efficiency and effectiveness with the cost component, and puts economic modelling in
the picture of distributed IF. In the light of the above, the contributions presented in this
work are threefold:

Pricing Information Goods in Distributed Agent-Based Information Filtering 165

– We define an agent-based architecture and its related protocols to support approx-
imate IF functionality in a distributed multi-agent environment. This is the first
approach to model approximate IF in an agent-based setting.

– We show that traditional resource selection strategies are not sufficient in approxi-
mate IF, and devise a novel method to rank publishers according to their expertise,
their predicted publishing behavior (based on time-series analysis of IR metrics)
and the price of the information goods they publish. This method allows us to
achieve high recall, while monitoring only a small number of publishers.

– We study the effect of introducing a price component in an IF setting and exper-
imentally demonstrate that price of information is a key element, that may have
an significant effect on recall observed by the subscribers. Our modelling utilises
concepts such as correlation between the quality/expertise of the publisher and the
price it charges for information goods, computation of this price depending on the
demand, and charging agents for utilisation of resources such as local agent and
network utilisation.

In previous work, we have compared exact and approximate information filtering in
[36,44], applied approximate IR and IF to the digital library domain [46], and inves-
tigated different time series analysis methods [45]. The current paper extends the core
ideas behind approximate IF in a multi-agent architecture, and emphasises the price
component and its effect on system effectiveness and efficiency.

The rest of the paper is organised as follows. Related work is discussed in Section 2.
Section 3 presents the ABIS architecture, implemented services and agent protocols,
while Section 4 introduces our agent selection method. Experimental results are pre-
sented in Section 5, and Section 6 concludes this paper.

2 Related Work

In this section we discuss related work in the context of pricing information goods in
agent-based systems, and IF in distributed (e.g., multi-agent, P2P) environments.

2.1 Pricing of Information in Agent-Based Models

Information has the property of non-rivalrous consumption, contrary to other goods
such as cars and apples that need to be produced individually in order to be consumed
individually, and once purchased are removed from the market for subsequent buyers.

One distinct feature of information goods is that they have large fixed costs of pro-
duction, and small variable costs of reproduction, which makes value-based more ap-
propriate than cost-based pricing [40]. Different consumers may have radically different
values for the same information good, so techniques for differential pricing become very
important. The best known form of differential pricing is called quality discrimination
or versioning [39]. Using versioning, the producer will divide the consumers into dif-
ferent groups according to their willingness to pay, or choose the price of the versions
and their compelling features to induce the consumers to “self select" into appropriate
categories [40].

166 C. Tryfonopoulos and L.M. Andreescu

Different pricing strategies are relevant for different disciplines and applications. It
is important to be aware of the fact that not all services will necessarily be provided to
all users. In [19] a thorough analysis on database pricing strategies is carried out, and
different strategies (such as connect-time pricing, per-record charge, and value-based
pricing) are identified and compared. In [21] complex adaptive systems are used to anal-
yse pricing decisions in an industry with products that can be pirated, while [7] looks
into pricing models for information from Bloomberg, Reuters and Bridge, and presents
the advantages of subscription, two-tier pricing schemes (flat fee for subscription and
then a small charge for every item ordered) and n-tier pricing schemes.

Available research also offers a variety of models that can be used to study the cost
of transactions between agents in a market model. [18] models the cost of a product
on two dimensions: a price for the product itself and a transaction cost. The transaction
cost also has two components: a component that is correlated to the amount of data
that needs to be transported through the network and a component that is based upon
changes in quantities ordered. Along the same line, [38,41] discuss incentives for dif-
ferent pricing schemes for information goods, distinguishing between pure competitive
markets (several producers of an identical commodity) and markets where producers
have market power. In [13] the problem of using services provided from other agents is
considered, while [11] presents a case-study on file-transfer and focuses on the utilisa-
tion factor of the links between agents.

2.2 Distributed Information Filtering

Research on distributed processing of continuous queries has its origins in SIENA [4],
and extensions on the core ideas of SIENA, such as DIAS [22] and P2P-DIET [23,17].

With the advent of DHTs such as CAN, Chord and Pastry, a new wave of pub-
lish/subcribe systems has appeared. Scribe [30], Hermes [27], HYPER [42], Meghdoot
[15], PeerCQ [14], and many others [36,1,44,8,34] utilised a DHT to build a content-
based system for processing continuous queries.

Many systems also employed an IR-based query language to support information
filtering on top of structured overlay networks have been deployed. DHTrie [34], Ferry
[43], and [2], extended the Chord protocol [31] to achieve exact information filtering
functionality and applied document-granularity dissemination to achieve the recall of
a centralised system. In the same spirit, LibraRing [33] presented a framework to pro-
vide information retrieval and filtering services in two-tier digital library environments.
Similarly, pFilter [32] used a hierarchical extension of the CAN DHT [29] to store user
queries and relied on multi-cast trees to notify subscribers. In [1], the authors show
how to implement a DHT-agnostic solution to support prefix and suffix operations over
string attributes in a publish/subcribe environment.

Information filtering and retrieval have also been explored in the context of multi-
agent systems. In [28] the design of a distributed multi-agent information filtering
system called D-SIFTER is presented, and the effect of inter-agent collaboration on
filtering performance is examined. In [24], a peer-to-peer architecture for agent-based
information filtering and dissemination, along with the associated data models and lan-
guages for appropriately expressing documents and user profiles is presented. Finally,

Pricing Information Goods in Distributed Agent-Based Information Filtering 167

the MAWS system [16] utilises mobile agents to reduce the volume of irrelevant links
returned by typical search engines.

Query placement, as implemented in exact information filtering approaches such as
[1,32,34], is deterministic, and depends upon the terms contained in the query and the
hash function provided by the DHT. These query placement protocols lead to filtering
effectiveness of a centralised system. Compared to a centralised approach, [1,32,34]
exhibit scalability, fault-tolerance, and load balancing at the expense of high message
traffic at publication time. In ABIS however, only the most promising agents store a
user query and are thus monitored. Publications are only matched against its local query
database, since, for scalability reasons, no publication forwarding is used. Thus, in the
case of approximate filtering, the recall achieved is lower than that of exact filtering,
but document-granularity dissemination to the network is avoided.

3 Services and Protocols in ABIS

In this section we present the services implemented in ABIS and the respective proto-
cols that regulate agent interactions.

3.1 Types of Services

Within the multi-agent system we can distinguish between three types of services: a di-
rectory service, a publication service and subscription service. All agents in ABIS imple-
ment the directory service, and one or both of the publication and subscription service,
depending whether they want to act as information producers, consumers or both.

Directory Service. The directory service manages aggregated statistical meta-
information about the documents that are offered by publishers (i.e., aggregated sta-
tistical information for terms, prices per document). The role of this service is to serve
as a global meta-data index about the documents and the prices available on the market.
This index is partitioned among all agents in ABIS and is utilised by the subscribers
to determine which publishers are promising candidates to satisfy a given continuous
query in the future. There are different alternatives to implementing this type of direc-
tory, ranging from centralised solutions that emphasise accuracy in statistics and rely
on server farms, to two-tier architectures. In our approach, we utilise a distributed di-
rectory of agents organised under a Chord DHT [31] to form a conceptually global,
but physically distributed directory. The directory manages the statistics provided by
the publishers in a scalable manner with good properties regarding system dynamics
(e.g., churn). The DHT is used to partition the term space, such that every agent is re-
sponsible for the statistics of a randomised subset of terms within the directory. Hence,
there is a well defined directory agent responsible for each term (through the DHT hash
function).

Publication Service. The publication service is implemented by information produc-
ers (e.g., digital libraries or agents with local crawlers that perform focused crawling
at portals of their interest) or users that are interested in selling their content. The pub-
lishers do not a priori know how much a subscriber is willing to pay for information

168 C. Tryfonopoulos and L.M. Andreescu

from his domain. In an ideal model the publishers will adjust the price according to
the demand from the market: when a publisher is overloaded with requests, he would
increase the price for the information he is offering. An agent implementing only the
publication service creates meta-data for the resources it stores and uses the directory
service to offer them to the rest of the network.

Each publisher exposes its content to the directory in the form of per-term statis-
tics about its local index. These posts contain contact information about publishers,
together with statistics to calculate quality measures and prices for a given term (e.g.,
frequency of occurrence). Typically, such statistics include quality measures to sup-
port the publisher ranking procedure carried out by subscribers, and are updated after
a certain number of publications occurs. Finally, publishers are responsible for locally
storing continuous queries submitted by subscribers and matching them against new
documents they publish.

Subscription Service. The agents implementing the subscription service are infor-
mation consumers, which subscribe to publications and receive notifications about re-
sources that match their interests. The goal of the subscribers is to satisfy their long-term
information needs by subscribing to publishers that will publish interesting documents
in the future. A subscriber has access to all prices set by publishers for certain resource
types through the directory service, and the subscribers are free to choose the best offer
from the market that suits their needs and budget. To do so, subscribers utilise directory
statistics to score and rank publishers, based on appropriate publisher selection and be-
haviour prediction strategies, as well as on the actual price of the requested item and
the budget of the agent as we will discuss in following sections. To follow the changes
in the publishing behaviour of information producers, subscribers periodically re-rank
publishers by obtaining updated statistics from the directory, and use the new publisher
ranking to reposition their continuous queries.

3.2 The ABIS Protocols

All agents implementing the aforementioned services follow a specific protocol to facil-
itate message exchange in a scalable way. Below we describe the protocols that facilitate
agent interaction, for each one of the described services.

The Directory Protocol. The directory service manages aggregated information about
each agent’s local knowledge in a compact form. Every agent is responsible for the
statistics for a randomised subset of terms within the directory. To keep the statistics
up-to-date, each agent distributes per-term summaries of its local index along with its
contact information. For efficiency reasons, these messages are piggy-backed to DHT
maintenance messages and batching is used.

To facilitate message sending between agents we will use the function SEND(msg, I)
to send message msg to the agent responsible for identifier I. Function SEND() is similar
to the Chord function LOOKUP(I) [31], and costs O(logN) overlay hops for a network
of N agents. In ABIS, every publisher uses POST messages to distribute per-term statis-
tics. This information is periodically updated (e.g., every k time units or every k publi-
cations) by the publisher agent, in order to keep the directory information as up-to-date

Pricing Information Goods in Distributed Agent-Based Information Filtering 169

as possible. Let us now examine how a publisher agent P updates the global directory.
Let T = {t1,t2, . . . ,tk} denote the set of all terms contained in all document publications
of P occurring after the last directory update. For each term ti, where 1 ≤ i ≤ k, P com-
putes the maximum frequency of occurrence of term ti within the documents contained
in P’s collection (t f max

ti), the number of documents in the document collection of P that
ti is contained in (d fti), and the size of the document collection cs. Having collected
the statistics for term ti, P creates message POST(id(P), ip(P), t f max

ti ,d fti ,cs, ti), where
id(P) is the identifier of agent P and ip(P) is the IP address of P. P then uses func-
tion SEND() to forward the message to the agent responsible for identifier H(ti) (i.e.,
the agent responsible for maintaining statistics for term ti). Once an agent D receives
a POST message, it stores the statistics for P in its local post database to keep them
available on request for any agent.

Finally, notice that the directory service does not have to use Chord, or any other
DHT; our architecture allows for the usage of any network structure given that the
necessary information (i.e., the per-agent IR statistics) is made available through appro-
priate protocols to the rest of the services.

The Subscription Protocol. The subscription service is implemented by agents that
want to monitor specific information producers. This service is critical since it is re-
sponsible for selecting the publishers that will index a query. This procedure uses the
directory service to discover and retrieve the publishers that have information on a given
topic. Then a ranking of the potential sources is performed and the query is send to top-k
ranked publishers. Only these publishers will be monitored for new publications.

Let us assume that a subscriber agent S wants to subscribe with a multi-term query
q of the form t1t2 . . . tk with k distinct terms. To do so, S needs to determine which
publishers in the network are promising candidates to satisfy the continuous query with
appropriate documents published in the future. This publisher ranking can be decided
once appropriate statistics about data sources are collected from the directory, and a
ranking of the publishers is calculated based on the agent selection strategy described
in Section 4.

To collect statistics about the data publishers, S needs to contact all directory agents
responsible for the query terms. Thus, for each query term ti, S computes H(ti), which
is the identifier of the agent responsible for storing statistics about other publishers
that publish documents containing the term ti. Subsequently, S creates message COL-
LECTSTATS(id(S), ip(S),ti), and uses the function SEND() to forward the message in
O(logN) hops to the agent responsible for identifier H(ti). Notice that the message con-
tains ip(S), so its recipient can directly contact S.

When a agent D receives a COLLECTSTATS message asking for the statistics of term
ti, it searches its local post store to retrieve the agent list Li of all posts of the term.
Subsequently, a message RETSTATS(Li, ti) is created by D and sent to S using its IP
found in the COLLECTSTATS message. Once S has collected all the agent lists Li for the
terms contained in q, it utilises an appropriate scoring function score(n,q) to compute
a agent score with respect to q, for each one of the agents n contained in Li. Based on
the score calculated for each publisher, a ranking of publishers is determined and the
highest ranked agents are candidates for storing q.

170 C. Tryfonopoulos and L.M. Andreescu

Subsequently, S selects the highest ranked publishers that will index q. Thus, only
publications occurring at those publishers will be matched against q and create appro-
priate notifications. Agents publishing documents relevant to q, but not indexing q, will
not produce any notification for it, since they are not aware of q. Since only selected
agents are monitored for publications, the publisher ranking function becomes a criti-
cal component, which will determine the final recall achieved. This ranking function is
discussed in detail in the next section.

Once the agents that will store q have been determined, S constructs message IN-
DEXQ(id(S), ip(S),q) and uses the IP addresses associated with the agent to forward
the message to the agents that will store q. When a publisher P receives a message
INDEXQ containing q, it stores q using a local query indexing mechanism such as [35].

Filtering and agent selection are dynamic processes, therefore a periodic query repo-
sitioning, based on user-set preferences, is necessary to adapt to changes in publisher’s
behaviour. To reposition an already indexed query q, a subscriber would re-execute the
subscription protocol, to acquire new publisher statistics, compute a new ranking, and
appropriately modify the set of agents indexing q.

Publication and Notification Protocol. The publication service is employed by users
that want to expose their content to the network. A publisher P utilises the directory to
update statistics about the terms contained in the documents it publishes. All queries
that match a published document produce appropriate notifications to interested sub-
scribers.

According to the above, the procedure followed by P at publication time is as fol-
lows. When a document d is published by P, it is matched against P’s local query
database to determine which subscribers should be notified. Then, for each subscriber
S, P constructs a notification message NOTIFY(id(P), ip(P),d) and sends it to S using
the IP address associated with the stored query. If S is not on-line at notification arrival,
then P utilises function SEND() to send the message through the DHT, by using the
id(S) also associated with q. In this way, S will receive the message from its successor
upon reconnection. Notice that agents publishing documents relevant to a query q, but
not storing it, will produce no notification.

4 Publisher Ranking Strategy

To select which publishers will be monitored, the subscription protocol of Section 3.2
uses a scoring function to rank publisher agents according to quality and price. In this
section we quantify these concepts, and give the rationale between our choices.

4.1 Quality vs Price

The publisher ranking strategy is a critical component, since it decides which publishers
will store a continuous query. Contrary to exact information filtering, where the system
would deliver all events matching a subscription, in approximate information filtering a
subscriber registering with a continuous query q has to decide which publishers are the
most promising candidates for satisfying q, as he will receive events that match q only
from those publishers.

Pricing Information Goods in Distributed Agent-Based Information Filtering 171

To make an informed selection on the publishers, a subscriber agent ranks them
based on a combination of publisher quality and price quoted for the specific type of
information. This combination describes the benefit/cost ratio and allows the subscriber
to assign a score to every publisher. Empirical studies have shown that price and quality
are the two key determinants of the consumer’s choice to buy or not a product [9]. The
score for each publisher is computed as follows:

score(P,q) = (1−α) ·quality(P,q)−α · price(P,q) (1)

In Equation 1, quality(P,q) denotes how relevant P is to the continuous query q, while
α is a tunable parameter that affects the balance between the importance of price over
quality. The price(P,q) component in Equation 1 refers to the price a publisher is quot-
ing for published documents matching a continuous query q. The publishers are com-
puting the price on demand according to their popularity and the popularity of their
documents. The price has the same domain as quality for allowing their use within the
same formula, and is recomputed whenever the popularity of the publisher changes (i.e.,
a new continuous query is stored at the publisher). In the experimental section we study
the price in different scenarios, and show the effect on recall when the price choice is (i)
random, (ii) strongly correlated with quality, and (iii) partially correlated with quality.

4.2 Calculating Publisher Quality

To assess the quality of the information producer, as required in Equation 1, the sub-
scriber uses a combination of resource selection and behaviour prediction as shown
below:

quality(P,q) = γ · sel(P,q)+ (1− γ) · pred(P,q) (2)

The functions sel(P,q) and pred(P,q) are scoring functions based on resource selection
and publication prediction methods respectively that assign a score to a publisher P with
respect to a query q. The tunable parameter γ affects the balance between authorities
(high sel(P,q) scores) and agents with potential to publish matching documents in the
future (high pred(P,q) scores). Based on these scores, a score representing the quality
of a publisher is determined.

To show why an approach that scores publishers based only on resource selection
is not sufficient, and to give the intuition behind publisher behaviour prediction, con-
sider the following example. Assume an agent A1 that is specialised and has become
an authority in sports, but publishes no relevant documents any more. Another agent
A2 is not specialised in sports, but is currently crawling a sports portal, and publishing
documents from it. Imagine a user who wants to stay informed about the 2011 Spe-
cial Olympics, and subscribes with the continuous query 2011 Special Olympics. If the
ranking function solely relies on resource selection, agent A1 would always be chosen
to index the user’s query (since it was a sports authority in the past), despite the fact
that it no longer publishes sports-related documents. On the other hand, to be assigned
a high score by the ranking function, agent A2 would have to specialise in sports – a
long procedure that is inapplicable in a filtering setting which is by definition dynamic.
The fact that resource selection alone is not sufficient is even more evident in the case
of news items. News items have a short shelf-life, making them the worst candidate for
slow-paced resource selection algorithms.

172 C. Tryfonopoulos and L.M. Andreescu

Behaviour Prediction. To predict the publishing behaviour of an agent, we model IR
statistics maintained in the distributed directory as time-series data and use statistical
analysis tools [5] to model publisher behaviour. Time-series techniques predict future
values based on past observations and differ in (i) their assumptions about the internal
structure of the time series (e.g., whether trends and seasonality are observed) and (ii)
their flexibility to put more emphasis on recent observations. Since the IR statistics we
utilise exhibit trends, for instance, when agents successively crawl sites that belong to
the same/different topics, or, gradually change their thematic focus, the employed time
series prediction technique must be able to deal with trends. Furthermore, in our sce-
nario we would like to put more emphasis on an agent’s recent behaviour and thus assign
higher weight to recent observations when making predictions about future behaviour.
For the above reasons we chose double exponential smoothing (DES) as our prediction
technique, since it supports decreasing weights on observed values and allows for trend
in the series of data.

The function pred(P,q) returns a score for a publisher P that represents the likelihood
of publishing documents relevant to query q in the future. Using the DES technique de-
scribed above, two values are predicted. Firstly, for all terms t in query q, we predict
the value for d fP,t (denoted as d f ∗P,t), and use the difference (denoted as δ(d f ∗P,t)) be-
tween the predicted and the last value obtained from the directory to calculate the score
for P (function δ() stands for difference). Value δ(d f ∗P,t) reflects the number of rele-
vant documents that P will publish in the next period. Secondly, we predict δ(cs∗) as
the difference in the collection size of agent P reflecting the agent’s overall expected
future publishing activity. We thus model two aspects of the publisher’s behaviour: (i)
its potential to publish relevant documents in the future (reflected by δ(d f ∗P,t)), and (ii)
its overall expected future publishing activity (reflected by δ(cs∗)). The time series of
IR statistics that are needed as an input to our prediction mechanism are obtained using
the distributed directory. The predicted behaviour for agent P is quantified as follows:

pred(P,q) = ∑
t∈q

log
(
δ(d f ∗P,t)+ log(δ(cs∗P)+ 1)+ 1

)
(3)

In the above formula, the publishing of relevant documents is more accented than the
dampened publishing rate. If an agent publishes no documents at all, or, to be exact, the
prediction of δ(d f ∗P,t) or δ(cs∗P) is 0 then the pred(P,q) value is also 0. The addition of
1 in the log formulas yields positive predictions and avoids log(0).

Resource Selection. The function sel(P,q) returns a score for a publisher P and a query
q, and is calculated using standard resource selection algorithms from the IR literature,
such as tf-idf based methods, CORI or language models (see [26] for an overview).
Using sel(P,q) we identify authorities specialised in a topic, which, as argued above,
is not sufficient for our IF setting. In our implementation we use an approach based on
document frequency (d f), and maximum term frequency (t f max). The values of sel(P,q)
for all query terms t are aggregated as follows:

sel(P,q) = ∑
t∈q

β · log(d fP,t)+ (1−β) · log
(
t f max

P,t

)
(4)

Pricing Information Goods in Distributed Agent-Based Information Filtering 173

The value of the parameter β can be chosen between 0 and 1 and is used to emphasise
the importance of d f versus t f max. Experiments with resource selection have shown
that β should be set around 0.5.

4.3 Economic Modelling of ABIS

In this section we analyse the economic modeling of ABIS and review the basic as-
sumptions and expectations from such a modelling.

Usefulness of the information goods received by a subscriber, is a qualitative crite-
rion, that is difficult to model. In ABIS we model usefulness by matching interest, i.e.,
by assuming that all received documents relevant to the requested topic are useful to
the subscriber, and do not discuss issues such as novelty and coverage of information,
or user effort. In our modelling, after a subscriber acquires a history of transactions
with certain publishers it develops an affect for some of the publishers. Affect can be
modelled in various ways, depending on the task at hand, and can be either positive
or negative (as in e.g., [10] where affect causes a “preference shock" to the consumers
that buy only from a certain manufacturer). In ABIS, an information consumer does not
know the quality of the information goods, but he uses the affect developed from previ-
ous transactions to approximate it. Subsequently, he compares the values of information
quality to the expected values and update its affect [25].

The costs in ABIS are results of agent actions [18], such as transactions (e.g., un-
subscribing from a publisher and subscribing to another, changing a submitted query),
network communication, and use of common infrastructure (e.g., the directory service).
Since each agent may play a dual role both as a publisher and a subscriber, it will
naturally try to maximise his revenue, and the utility of the received resources, while
minimising expenses that occur due to publication or subscription actions. In general,
the information market in the ABIS system is not a pure competitive market [38] since
the subscribers do not know in advance the exact quality of the information they are
buying. The ABIS system resembles the modelling of a team of sales people [37]. In
this model agents would try to collaborate with others in order to get their expertise for
a (cross/up) sale. After deciding which agents to collaborate with, it will be possible to
model the gap between the initial expectations and the actual actions of the agent. In
[12] it is shown that this gap is smaller in a competitive relationship compared to that
of a cooperative relationship. As in many cooperative environments each agent usu-
ally retains its connections with the other agents, while also being free to explore new
mutually beneficial connections.

The main goal of this agent-based modelling is to study the influence of the cost
component on the quality of received resources, study the interactions between agents
that are trying to maximise the benefits of information flow, and gain insights about the
activity and the behaviour of the publishers and subscribers.

5 Experimental Evaluation

In this section we present our findings regarding the introduction of cost in information
goods, and how it affects the effectiveness of an information filtering system. We study

174 C. Tryfonopoulos and L.M. Andreescu

the behaviour of the ABIS system using different publishing scenarios, while varying
the correlation between price, quality and customer demand.

5.1 Experimental Setup

To conduct each experiment described in the next sections the following steps are exe-
cuted. Initially the network is set up and the underlying Distributed Hash Table (DHT)
is created. Then, subscribers use the ranking function based on resource selection, pre-
dicted publishing behaviour and cost of information to decide which are the best pub-
lishers subscribe to. Subsequently, they utilise the subscription protocol described in
detail in Section 3.2 to subscribe to the selected publishers. Once the queries are stored,
the documents are published to the network and at certain intervals (called rounds)
queries are repositioned, and new documents are published.

Evaluation Metrics. To measure the effect of cost in information filtering, and com-
pare between cases of IF with and without monetary flow in ABIS, we utilise the fol-
lowing metrics:

– Messages. We measure the number of directory, subscription and notification mes-
sages in the system to perform the filtering task at hand.

– Recall. We measure recall by computing the ratio of the total number of notifica-
tions received by subscribers to the total number of published documents matching
subscriptions. In experiments we consider the average recall computed over all
rounds (i.e., for the complete experiment).

– Ranking. We use an extension of Spearman’s footrule distance to compare rank-
ings of publishers calculated by subscribers. This metric allows us to compare two
different publisher rankings by calculating the distance between the elements in
two ranking lists. In our extension of Spearman’s metric, if an element from list A
is not present in list B, it is considered as being in the last available position in B.

System Parameters. There is a number of system parameters that regulate agent be-
havior and had to be determined and set. Due to space considerations the procedure and
experimentation of finding the optimal values for these parameters is omitted and the
interested reader is referred to [44]. One such key parameter is the percentage of the
available publishers that a subscriber can follow. When all publishers are monitored,
then recall is 100%, and our approach degenerates to exact filtering. Exact informa-
tion filtering will always give the best result with regard to recall, but also incur high
message traffic to the system and cost to the subscriber. On the other hand, when using
a random selection of publishers, monitoring k% of publishers will typically result in
recall around k%. To achieve higher than k%, the publisher ranking strategy presented
in Section 4 is employed. Additionally, parameter γ in Equation 2 controls the balance
between resource selection and behavior prediction; a value of γ close to 0 emphasises
behavior prediction, while values close to 1 emphasise resource selection. In previous
work [44], we determined that monitoring around 10% of publishers, and setting the
value of γ to 0.5 represents a good trade-off between recall and message overhead. Ad-
ditionally, both coefficients used in the double exponential smoothing were set to 0.5,
as in [45].

Pricing Information Goods in Distributed Agent-Based Information Filtering 175

Finally, for deciding the budget per agent, we relied to studies on budget distribution
and spending for a variety of cases, ranging from family budgets to consumer budgets
[20,6]. The main conclusions drawn from these studies are that (i) budget distribu-
tion follows a power law, with a small percentage of families/consumers having a high
yearly budget, and a large percentage of the families being in the (long) tail of the distri-
bution, with a low budget, and (ii) the percentage of the income spend on (information)
goods does not vary with the budget. According to [3] and the above remarks, we di-
vided the agents into three classes: low budget agents, average budget agents, and high
budget agents. 60% of the agents are part of the low budget class, 30% of the agents
have an average budget, and 10% belong to the high budget agent class. Subsequently,
we experimentally computed a budget that would allow the information consumers to
subscribe to all top-k publishers, and allowed the low budget agents to have 60%, the
medium budget agents to have 80% and the high budget agents to have 120% of this
ideal budget.

Documents and Queries. The document collection contains over 2 million documents
from a focused Web crawl categorised in one of ten categories: Music, Finance, Arts,
Sports, Natural Science, Health, Movies, Travel, Politics, and Nature. The overall num-
ber of corpus documents is 2,052,712. The smallest category consists of 67,374 doc-
uments, the largest category of 325,377 documents. The number of distinct terms after
stemming adds up to 593,876.

In all experiments, the network consists of 1,000 agents containing 300 documents
each in their initial local collection. Each agent is initialised with 15% random, 10%
non-categorised, and 75% single category documents, resulting in 100 specialised agents
for each category. Using the document collection, we construct continuous queries con-
taining two, three or four query terms. Each of the query terms selected is a strong
representative of a document category (i.e., a frequent term in documents of one cate-
gory and infrequent in documents of the other categories). Example queries are music
instrument, museum modern art, or space model research study.

5.2 Varying the Price-Quality Correlation

In this experiment we aimed at observing the behaviour of the system when we varied
the correlation between the price and quality of publisher. In this experiment, 100%
correlation between price and publisher quality, means that the better the quality of
the publisher, the higher the price it charges for publications. In this case quality can be
easily forecasted and consumers will know that the information goods will be expensive
but useful to them. The other extreme in this correlation is when prices have no (0%)
correlation with quality, and are chosen randomly. In the case of 75% (respectively
50% and 25%) correlation between price and quality, we modelled the correlation, as
the likelihood that a publisher sells 25% (respectively 50% and 75%) of the information
goods underpriced up to 20% of the initial value, and 75% (respectively 50% and 25%)
overpriced up to 10% of the initial value.

In Figure 1(a) the achieved recall of the system for different values of α and differ-
ent price-quality correlations is shown. The first observation emanating from this graph
is that the introduction of a price component reduces the observed recall of the sys-
tem (notice that recall has the highest values for a = 0, i.e., not pricing involved in the

176 C. Tryfonopoulos and L.M. Andreescu

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.2 0.4 0.6 0.8 1

re
ca

ll

α

0% correlation
50% correlation
75% correlation

100% correlation

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

re
ca

ll

price-quality correlation

α=0.2
α=0.5
α=0.8

(b)

Fig. 1. Recall against α and price-quality correlations

ranking of publishers). This is an important result, showing that when information pub-
lishers charge for information, consumers trade quality subscriptions for cheaper ones.
Notice also that in all cases of price-quality correlation, recall is retained high, as long
as it plays the most important role in the ranking (α < 50%). This was also expected,
since when price is of importance, consumers will choose cheaper publishers, leading
to a reduction in the observed recall. Additionally, when the price is the only ranking
criterion for information consumers (a = 1), recall is close to that of a random choice
of publishers (remember that agents monitor only 10% of publishers in the system).

Another observation is that the correlation between the price set by the publisher and
its actual quality, plays (as expected) an important role only when price and quality are
equally important. When one of the two components becomes dominant in the ranking
function, it outweighs the effect of the other. This is also in accordance with our expec-
tations, since when price comes into the picture, quality is sacrificed to reduce costs,
or increase the received publications. These observations are best shown in Figure 1(b)
where recall for varying the value of price-quality correlation and three different values
of α is presented. Finally, notice that the small variation in the observed recall and agent
behavior between different price-quality correlations, is also partly due to the modelling
of ABIS as a closed system, where monetary flow is limited through the budgets of the
agents, since no new wealth is produced.

Figure 2(a) shows the difference in publisher rankings when varying α and for differ-
ent price-quality correlations. The difference in the ranking of publishers is measured
using an extension of Spearman’s footrule metric. To produce a point in the graph we
compare the list of publishers ranked by a subscriber when no cost is introduced, and
the same list when we introduce cost with the given value for α. This is performed
for all the subscribers in the system, and the average metric is calculated. The first ob-
servation emanating from the graph is that for α = 0, all price-quality correlations are
naturally zero, since no cost is associated with the information goods, and thus the lists
compared are identical. Another observation, is that when α is increasing, i.e., price
becomes more important in the ranking process, Spearman’s metric increases too, as
publishers with high quality get lower positions in the ranking, while publishers with
lower quality (but cheaper) are ranked high. Additionally, notice that the difference in

Pricing Information Goods in Distributed Agent-Based Information Filtering 177

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

E
xt

en
de

d
S

pe
ar

m
an

’s
 fo

ot
ru

le
 m

et
ric

α

0% correlation
100% correlation

50% correlation
75% correlation

(a) Difference in publisher ranking

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.2 0.4 0.6 0.8 1

re
ca

ll

α

Change in Publishing Behaviour
Consistent Publishing Behaviour

(b) Recall for different publishing scenarios

Fig. 2. Publisher rankings and behaviors against α

recall observed in Figure 1, is also partially depicted here as difference in the ranking
of the information producers. Finally, when the price of a publisher has no association
with the quality of its documents (random price setting), the difference in the ranking
of publishers is about 40% higher, than the case of price and quality being correlated
(leftmost points in the graph).

5.3 Varying the Publishing Behaviour

In this section we look into recall and how this is affected by different publishing be-
haviours, when varying the importance of information cost in the system. The publish-
ing behavior of agents is modelled using two different scenarios: consistent publishing
and category change, that represent the two extremes of publishing behaviours.

Consistent publishing. In the consistent publishing scenario, the publishers maintain
their specialisation, by disregarding market conditions, even if this results in very
low revenue.

Category change. In the category change scenario, publishers change their topic of
specialisation over time based on changes in consumer behaviour, revenue and mar-
ket conditions. In this scenario, a publishing agent initially publishes documents
from one category, and switches to a different category after a number of rounds,
to simulate changes in portfolio contents or business strategies.

As we can observe in Figure 2(b), in both scenarios, the system reaches the highest
recall when no price component is added (leftmost point in the graph), while as cost of
information gains importance, the observed recall drops, since agents seek for cheaper
publishers. A second observation, is that the consistent publishing scenario is less af-
fected by the introduction of the price component, and achieves significantly higher
recall as α increases. This happens because in this scenario, publishers have build up
an expertise, and since this expertise is not changed, the quality component increases,
leading to the ranking of these publishers high in the list. Contrary, when publishers
change their area of focus, the observed recall of the system falls, since subscribers are

178 C. Tryfonopoulos and L.M. Andreescu

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1

of

 m
es

sa
ge

s/
do

cu
m

en
t

α

0% correlation
50% correlation
75% correlation

100% correlation

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

0 50 100

of

 m
es

sa
ge

s
(x

10
K

)

percentage of price-quality correlation

subscription and notification messages
directory messages

(b)

Fig. 3. Message traffic against α and price-quality correlations

not able to correlate price and quality for the publishers (see also Section 5.2). This ob-
servation resembles the case of companies that have to allocate a marketing budget to
convince consumers about a new product. Here, the publishers change their publishing
behaviour to sell a new product (i.e., a new topic) and the old customers walk away,
resulting in recall reduction.

5.4 System Performance

In this series of experiments we targeted the system performance in terms of message
traffic. In Figure 3(a) we present the message traffic per agent (subscription and noti-
fication messages) incurred in the system when varying α. In this graph we see that
the number of messages per agent is reduced, as the price component is emphasised.
This can be explained as follows. As subscribers utilise the price component to rank
publishers, they choose publishers of lower quality and price. This, as we also observed
in the previous sections, results in a reduction in the observed recall, since subscribers
receive less notifications, as they subscribe to non-expert publishers. On the other hand
expert publishers have a smaller customer base, and are thus forced to notify fewer
subscribers. The interested reader is also referred to [44], where we demonstrated that
recall and message traffic are interconnected.

Figure 3(b) demonstrates the total amount traffic observed in the system, and how
this traffic is split in the various message categories, as the price-quality correlation is
varied. As expected the directory traffic dominates the messaging load of the system,
as necessary messages with agent statistics and prices are disseminated. Notice that
directory traffic is not affected by the correlation between price and quality, since the
publishers are responsible for updating their publication statistics and prices, regardless
of the size of their customer base. Finally, notice that the number of subscription and
notification messages is slightly affected from the price-quality correlation, as quality
publishers widen their customer base with more subscribers.

5.5 Summary of Results

The experiments presented in this section, show the behaviour of a IF system when
a price component is introduced in the selection process of publishers. To the best of

Pricing Information Goods in Distributed Agent-Based Information Filtering 179

our knowledge these are the first results that connect recall and message traffic with
the cost component, and put economic modelling in the picture of distributed IF. Our
findings show that when introduced, the price component affects the average recall of
the system, since it outweighs quality in the ranking of publishers. Our experiments
showed that the price component should participate in publisher ranking with no more
than 10-20% of the total score, to avoid loss in observed recall. Additionally, we showed
that adding a price component in such a system, reduces message traffic, as (i) this is
directly connected to recall, and (ii) agents avoid costly actions like frequent document
publications, and query repositioning. Thus, pricing information goods in distributed
settings should be carried out carefully, to avoid user dissatisfaction due to reduced
flow of relevant documents.

6 Conclusions and Outlook

In this work we have defined an architecture and the associated protocols to achieve
distributed agent-based approximate IF, and introduced a novel publisher selection mech-
anism that ranks monitored information producers according to their expertise, their
predicted publishing behavior (based on time-series analysis of IR metrics) and the
price of the information goods they publish. We have showed that approximate IF is
an efficient and effective alternative to the exact IF paradigm, as it manages to trade
recall for low message overhead, while providing an interesting business model. We are
currently porting our implementation to PlanetLab to conduct more extensive experi-
mentation, and adding new features such as monitoring of monetary flow.

References

1. Aekaterinidis, I., Triantafillou, P.: PastryStrings: A Comprehensive Content-Based Pub-
lish/Subscribe DHT Network. In: ICDCS (2006)

2. Bender, M., Michel, S., Parkitny, S., Weikum, G.: A Comparative Study of Pub/Sub Methods
in Structured P2P Networks. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel,
A.M. (eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 385–396. Springer,
Heidelberg (2007)

3. Breker, L.P.: A survey of network pricing schemes. In: Theoretical Computer Science (1996)
4. Carzaniga, A., Rosenblum, D.-S., Wolf, A.: Design and Evaluation of a Wide-Area Event

Notification Service. In: ACM TOCS (2001)
5. Chatfield, C.: The Analysis of Time Series - An Introduction. CRC Press (2004)
6. DeLong, J.B.: Six Families Budget Their Money. In: Lecture notes for American Economic

History, University of California at Berkeley (2008)
7. Demetriades, I., Lee, T.Y., Moukas, A., Zacharia, G.: Models for pricing the distribution of

information and the use of services over the Internet: A focus on the capital data market
industry (1998), http://web.mit.edu/ecom/www/Project98/G12/

8. Drosou, M., Stefanidis, K., Pitoura, E.: Preference-aware publish/subscribe delivery with
diversity. In: DEBS (2009)

9. Dumrogsiri, A., Fan, M., Jain, A., Moinzadeh, K.: A supply chain model with direct and
retail channels. European Joumal of Operational Research (2008)

10. Faig, M., Jerez, B.: Inflation, Prices, and Information and Competitive Search. Journal of
Macroeconomics (2006)

http://web.mit.edu/ecom/www/Project98/G12/

180 C. Tryfonopoulos and L.M. Andreescu

11. Feldman, M., Lai, K., Chuang, J., Stoica, I.: Quantifying Disincentives in Peer-to-Peer Net-
works (2003),
http://www.cs.berkeley.edu/~istoica/papers/2003/discincentives-wepps.pdf

12. Forker, L., Stannack, P.: Cooperation versus Competition: do buyers and suppliers really see
eye-to-eye? European Journal of Purchasing and Supply Management (2000)

13. Fuqua, A., Ngan, T.-W.J., Wallach, D.: Economic Behavior of Peer-to-Peer Storage Net-
works. In: Economics of Peer-to-Peer Systems (2003)

14. Gedik, B., Liu, L.: PeerCQ: A Decentralized and Self-Configuring Peer-to-Peer Information
Monitoring System. In: ICDCS (2003)

15. Gupta, A., Sahin, O.D., Agrawal, D., El Abbadi, A.: Meghdoot: Content-Based Pub-
lish/Subscribe Over P2P Networks. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS,
vol. 3231, pp. 254–273. Springer, Heidelberg (2004)

16. Hassan, A., Elie, K.: MAWS: A platform-independent framework for Mobile Agents using
Web Services. In: JPDC (2006)

17. Idreos, S., Koubarakis, M., Tryfonopoulos, C.: P2P-DIET: One-Time and Continuous
Queries in Super-Peer Networks. In: Hwang, J., Christodoulakis, S., Plexousakis, D.,
Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS, vol. 2992,
pp. 851–853. Springer, Heidelberg (2004)

18. Johansson, B., Persson, H.: Self-organised adjustments in a market with price-setting firms.
In: Chaos, Solitons and Fractals (2003)

19. West, Jr., L.A.: Private Markets for Public Goods: Pricing Strategies of Online Database
Vendors. In: Journal of Management of Information Systems (2000)

20. Kennickell, B.B.A., Moore, K.: Recent Changes in U.S. Family Finances: Evidence from the
2001 and 2004 Survey of Consumer Finances (2006)

21. Khouja, M., Hadzikadic, M., Rajagopalan, H., Tsay, L.: Application of complex adaptive
systems to pricing reproductible information goods. Decision Support Systems (2007)

22. Koubarakis, M., Koutris, T., Tryfonopoulos, C., Raftopoulou, P.: Information Alert in Dis-
tributed Digital Libraries: The Models, Languages, and Architecture of DIAS. In: Agosti,
M., Thanos, C. (eds.) ECDL 2002. LNCS, vol. 2458, p. 527. Springer, Heidelberg (2002)

23. Koubarakis, M., Tryfonopoulos, C., Idreos, S., Drougas, Y.: Selective Information Dissemi-
nation in P2P Networks: Problems and Solutions. In: SIGMOD Record (2003)

24. Koubarakis, M., Tryfonopoulos, C., Raftopoulou, P., Koutris, T.: Data Models and Languages
for Agent-Based Textual Information Dissemination. In: Klusch, M., Ossowski, S., Shehory,
O. (eds.) CIA 2002. LNCS (LNAI), vol. 2446, p. 179. Springer, Heidelberg (2002)

25. Li, C., Singh, M., Sycara, K.: A Dynamic Pricing Mechanism for P2P Referral Systems. In:
AAMAS (2004)

26. Nottelmann, H., Fuhr, N.: Evaluating Different Methods of Estimating Retrieval Quality for
Resource Selection. In: SIGIR (2003)

27. Pietzuch, P., Bacon, J.: Hermes: A Distributed Event-Based Middleware Architecture. In:
Proceedings of the International Workshop on Distributed Event-Based Systems, DEBS (July
2002)

28. Raje, R., Qiao, M., Mukhopadhyay, S., Palakal, M., Peng, S., Mostafa, J.: Homogeneous
Agent-Based Distributed Information Filtering. In: Cluster Computing (2002)

29. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A Scalable Content-
Addressable Network. In: SIGCOMM (2001)

30. Rowstron, A., Kermarrec, A.-M., Castro, M., Druschel, P.: Scribe: The Design of a Large-
scale Event Notification Infrastructure. In: Crowcroft, J., Hofmann, M. (eds.) COST264
Workshop (2001)

31. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications. In: SIGCOMM (2001)

http://www.cs.berkeley.edu/~istoica/papers/2003/discincentives-wepps.pdf

Pricing Information Goods in Distributed Agent-Based Information Filtering 181

32. Tang, C., Xu, Z.: pFilter: Global Information Filtering and Dissemination Using Structured
Overlay Networks. In: FTDCS (2003)

33. Tryfonopoulos, C., Idreos, S., Koubarakis, M.: LibraRing: An Architecture for Distributed
Digital Libraries Based on DHTs. In: Rauber, A., Christodoulakis, S., Tjoa, A.M. (eds.)
ECDL 2005. LNCS, vol. 3652, pp. 25–36. Springer, Heidelberg (2005)

34. Tryfonopoulos, C., Idreos, S., Koubarakis, M.: Publish/Subscribe Functionality in IR Envi-
ronments using Structured Overlay Networks. In: SIGIR (2005)

35. Tryfonopoulos, C., Koubarakis, M., Drougas, Y.: Filtering Algorithms for Information Re-
trieval Models with Named Attributes and Proximity Operators. In: SIGIR (2004)

36. Tryfonopoulos, C., Zimmer, C., Weikum, G., Koubarakis, M.: Architectural Alternatives for
Information Filtering in Structured Overlays. In: Internet Computing (2007)

37. Üstüner, T., Godes, D.: Better Sales Networks. In: Harvard Business Review (2006)
38. Varian, H.R.: Pricing Information Goods. In: Research Libraries Group Symposium, Harvard

Law School (1995)
39. Varian, H.R.: Pricing Electronic Journals. D-Lib Magazine (1996)
40. Varian, H.R.: Versioning Information Goods (1997),

http://people.ischool.berkeley.edu/~hal/Papers/version.pdf
41. Varian, H.R.: Buying, Sharing and Renting Information Goods. Journal of Industrial Eco-

nomics (2000)
42. Zhang, R., Hu, Y.C.: HYPER: A Hybrid Approach to Efficient Content-Based Pub-

lish/Subscribe. In: ICDCS (2005)
43. Zhu, Y., Hu, Y.: Ferry: A P2P-Based Architecture for Content-Based Publish/Subscribe Ser-

vices. In: IEEE TPDS (2007)
44. Zimmer, C., Tryfonopoulos, C., Berberich, K., Koubarakis, M., Weikum, G.: Approximate

Information Filtering in Peer-to-Peer Networks. In: Bailey, J., Maier, D., Schewe, K.-D.,
Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 6–19. Springer, Heidel-
berg (2008)

45. Zimmer, C., Tryfonopoulos, C., Berberich, K., Weikum, G., Koubarakis, M.: Node Behavior
Prediction for LargeScale Approximate Information Filtering.In: LSDS-IR (2007)

46. Zimmer, C., Tryfonopoulos, C., Weikum, G.: MinervaDL: An Architecture for Information
Retrieval and Filtering in Distributed Digital Libraries. In: Kovács, L., Fuhr, N., Meghini, C.
(eds.) ECDL 2007. LNCS, vol. 4675, pp. 148–160. Springer, Heidelberg (2007)

http://people.ischool.berkeley.edu/~hal/Papers/version.pdf

Trust Alignment: A Sine Qua Non of Open

Multi-agent Systems

Andrew Koster1,2, Jordi Sabater-Mir1, and Marco Schorlemmer1,2

1 IIIA - CSIC
2 Universitat Autònoma de Barcelona

Bellaterra, Spain

Abstract. In open multi-agent systems trust is necessary to improve co-
operation by enabling agents to choose good partners. Most trust models
work by taking, in addition to direct experiences, other agents’ communi-
cated evaluations into account. However, in an open multi-agent system
other agents may use different trust models and as such the evaluations
they communicate are based on different principles. This article shows
that trust alignment is a crucial tool in this communication. Furthermore
we show that trust alignment improves significantly if the description of
the evidence, upon which a trust evaluation is based, is taken into ac-
count.

1 Introduction

A prerequisite for cooperation is that an agent may reasonably expect this coop-
eration to succeed. The cooperating agents need to know that their interaction
partner will perform the action it agreed to. In many systems this can be en-
forced by the architecture of the system, however in open systems in which the
individual agents maintain their autonomy, such as e-Commerce or smart elec-
tricity grids, this type of guarantee is not available and agents may be capable
of cheating, lying or performing other unwanted behaviour. In such open multi-
agent systems the agents need to choose selectively whom to cooperate with and
trust is a fundamental tool for performing this selection.

Unfortunately, it is more complicated than equipping an agent with one of
the available computational trust models [1] and expecting it to function in a
social environment. Using trust as a method for picking successful cooperation
partners relies not only on having a good trust model, but also on communica-
tion of trust evaluations with other agents [2]. This communication is far from
straightforward, because trust is an inherently subjective concept [3]. In this pa-
per we show that to communicate trust evaluations between agents some form
of trust alignment is needed.

The subjectivity of trust can be seen in the following example, which also
demonstrates why this is problematic for communication: consider an e-Com-
merce environment in which two agents buy the same bicycle via an online
auction. One may evaluate the sale as very successful, because the bicycle was

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 182–199, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 183

cheap and in good condition. The other, however, puts more emphasis on de-
livery time and, since the seller delayed significantly before sending, it gives the
seller a negative evaluation. Despite having identical interactions, the two agents
differ significantly in their trust evaluations of the seller agent. If one of these
agents had asked the other agent for advice regarding the seller, that advice
would not have been accurate within the receiving agent’s frame of reference,
because the two agents support their trust evaluations with different aspects of
the interaction. This problem extends to all domains in which open multi-agent
systems may be applied. If trust evaluations – and other subjective opinions
– are to be communicated accurately in such domains, a different set of tools
is required than is used for the communication of facts. In [4] this is referred
to as trust alignment and a couple of different methods for such alignment are
suggested.

In this article we discuss the methods used to solve the problem and show,
through experimentation, firstly that trust alignment is necessary for effective
communication about trust, and secondly that, for truly effective alignment, the
evidence on which a trust evaluation is based needs to be taken into account.
This experimentation is detailed in Section 3 and the results are discussed in
Section 4 before concluding the article in Section 5. The next section further
introduces the problem of trust alignment and the proposed solutions to it.

2 Methods for Aligning Trust

Trust alignment is a method of dealing with the problem of interpreting another
agent’s trust evaluations, despite knowing that such evaluations are entirely sub-
jective. As such it is classified as a problem of semiotic, or pragmatic, alignment
[5]. While such problems are described in the field of semantic alignment, very
little work has been done on finding solutions. Despite this, the field of semantic
alignment provides a valuable framework [6] in which to define the problem of
trust alignment. We can define trust alignment as the process of finding a trans-
lation of the other agent’s trust evaluations, based on shared evidence. Its result
is a method to translate other trust evaluations from the same agent, based on
non-shared evidence. With evidence we mean an objective description of some
artifacts in the environment, such as interactions the agents have participated
in. Shared evidence is an objective description of an artifact which both agents
have perceived, while non-shared evidence refers to artifacts which the receiving
agent has not perceived. By using the shared evidence as a common ground,
two agents can communicate their differing trust evaluations based on the same
evidence and use these different evaluations of the same object as the starting
point for finding a translation.

With this definition we can analyze the various processes which could serve
to find such a translation. While many trust models have been proposed for
computational agents in a multi-agent system [1], very few consider the inter-
pretation of other agents’ evaluations as being problematic. Of those that do, the
majority are attempts at distinguishing between honest and dishonest agents.

184 A. Koster, J. Sabater-Mir, and M. Schorlemmer

Approaches such as those described by [7,8] attempt to find lying agents and
discard all trust evaluations received from them. However, by discarding this
information such methods run the risk of missing out on a lot of information;
not because the communicating agent is dishonest, but because it has a different
underlying trust model. Especially in an open multi-agent system it cannot be
assumed that any agent with a differing opinion is being untruthful, although
there may very well be such untruthful agents in the system. Detecting these
is a separate and important problem, which such reputation filtering methods
deal with, however these methods cannot properly be considered solutions to the
problem of trust alignment.

By realizing trust alignment is first and foremost a problem of alignment, a
number of common ontologies have been proposed to bridge the gap between
different trust models [9,10]. However in practice these ontologies do not have
the support of many of the different trust methodologies in development. An on-
tology alignment service is presented in [11], but all these approaches are limited:
they align the meaning of the concepts of trust, but not how an agent arrives at,
or uses, a specific evaluation, and thus they do not deal with the fact that trust
evaluations are subjective. To clarify this distinction we refer back to the exam-
ple in the introduction: the agents disagree on how to evaluate a target, with one
agent giving more importance to cost and quality, whereas the other gives more
importance to delivery time. If these agents were to communicate their evalua-
tions then, despite having a shared ontology, they would not be meaningful to
the other agent. While a single interaction is generally not considered enough
to base a trust evaluation on, such differences in how evaluations are computed
are propagated all throughout the model, and eventually two syntactically equal
evaluations can mean something different to different agents. Therefore, despite
the work that has been done on applying common ontologies, for instance in the
ART testbed [12], the scope in which this is possible seems limited.

2.1 Learning a Translation

The first work to address trust alignment directly is, to our knowledge, [13]. This
work describes a trust model that evaluates a trustee with an integer between
1 and 4, where 1 stands for very untrustworthy and 4 for very trustworthy. The
alignment process uses the recommendations from another agent about known
trustees to calculate four separate biases: one for each possible trust value. First
the alignment method calculates the own trust evaluations of the corresponding
trustee for each incoming recommendation. The semantic distance between the
own and other’s trust is simply the numerical difference between the values of
the trust evaluations. The semantic distances are then grouped by the value of
the corresponding received trust value, resulting in four separate groups. Finally
the bias for each group is calculated by taking the mode of the semantic dis-
tances in the group, resulting in four integers between -3 and 3, which can be
used when the agent receives recommendations about unknown trustees. Simply
subtract the corresponding bias from the incoming trust evaluation to translate
the message. While this is a very simple approach it seems to work surprisingly

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 185

well. We will return to this method in Section 3.4, however first we will dis-
cuss later developments, based on a similar concept but recognizing that trust
evaluations may differ between situations and thus the evidence for such trust
evaluations must be taken into account in the translation.

2.2 Machine Learning Using Context

Current methods to learn a translation take the context into account, by using
machine learning techniques to learn which own trust evaluation corresponds to
a recommendation, when taking the evidence supporting the evaluations into
account [14,15]. The evidence in these methods is a description in a shared, ob-
jective language of the interactions a trust evaluation is based on. For instance,
the experimentation described in [14] links an evaluation of a sale interaction
with a single propositional variable describing that sale (specifically whether the
item was delivered on time or not). The alignment method uses this linked infor-
mation: the evidence together with both its own and the other’s trust evaluation
as input for a machine learning algorithm. This algorithm learns a generaliza-
tion, which serves to translate future communications in which the receiving
agent cannot calculate its own trust evaluation, because the interaction being
described is not shared. Insofar as we know there are two approaches which
have been shown to work using this technique: BLADE [14] uses a conjunction
of propositions to describe the interactions and a Bayesian Inference Learner
to learn a generalization and we proposed a method [15] that allows a descrip-
tion of the interactions in first-order logic and an Inductive Logic Programming
learner to find the generalization. While these two methods use different ma-
chine learning techniques, the largest difference between the two approaches is
the representation of the contextual information. BLADE uses a propositional
representation, which cannot adequately represent domains involving multiple
entities and the relationships among them [16], while first-order logic is suited
for this task. We discuss these methods in greater detail in Section 3.4.

3 Experiments

All the methods in the previous section have been implemented, however thus far
no attempt has been made to show what approach is best used. As such it is an
open question whether taking the context into account improves the alignment.
Moreover, it has not been evaluated to what extent alignment methods improve
communication at all. In this section we answer these questions empirically.

3.1 Experimental Setup

The aim of the experiments is to measure the effect of communication about trust
on the accuracy of agents’ trust evaluations. We are explicitly not interested in
evaluating trust models and whether they choose the correct target. For this
there are other methods, such as the aforementioned ART testbed. To measure

186 A. Koster, J. Sabater-Mir, and M. Schorlemmer

the effect of communication we need to compare two situations: (1) an agent’s
estimated trust evaluations, initially given incomplete information about the
environment, but allowing communication about trust, and (2) that same agent’s
most accurate trust evaluations; given perfect and complete information about
an environment. This allows for the comparison between the two evaluations and
gives a measure for the accuracy of the estimated trust evaluation. By varying
the amount of communication allowed and the type of alignment used we can
measure the influence that alignment has upon the accuracy of the agents’ trust
evaluations.

Publication

Topic

title: String
Article

name: String
Author

authors

name: String
language: String
prestige: int

Institute
1

+

worksAt

*

1

hasTopics
*+

*

+
name: String
core_rating: String

Conference name: String
ACMKeyword

name: String
ACMSubject

name: String
ACMSubcategory

keywordOf

inSubcategory

name: String
ACMSubcategory

inCategory

name: String
eigenfactor: float

Journal
publishedIn

hasTopics
+

*

1

1

1

*

*

*

Fig. 1. A UML-like specification of the domain language

Drawing from the LiquidPub project [17], the experiments are focused around
a scenario1 in which agents have to recommend authors to each other, basing
these recommendations on the articles they have written. We generate synthetic
articles written by between one and five authors each. We specify these articles
in a language using a fixed vocabulary, given in Figure 1, that describes proper-
ties of the articles. We consider these articles as representations of an interaction
between authors, readers and any other stakeholders. We focus on the way read-
ers observe such an interaction through the action of reading the article and
forming an opinion about it and the authors. The authors are the trustees to be
evaluated, the readers the evaluators and the articles serve as evidence.

In an initialization phase, the articles are divided over the reader agents, such
that each reader only receives articles written by a configurable percentage of the
author agents. The goal is to give each reader only partial information, so that
each of them has incomplete information about only some of the authors in the
system, thus creating the need for communication. For this communication two
languages are needed. The first is that in which subjective trust evaluations can
be communicated. This has a fixed syntax, but the semantics are the subjective
evaluations of each agent: the meaning of trust is dependent on each agent’s
trust model. Because of the fixed syntax all agents will agree on what type of

1 Code and documentation can be downloaded at
http://www.megaupload.com/?d=SJL2NLH9 with password: coopis

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 187

Algorithm 1. Abstract Trust Model

Input: t ∈ Authors, the target author to be evaluated
Input: Articles, a set of articles, written by t
Input: Communicated Evaluations, a set of communicated evaluations from

other evaluator agents in the system
Input: default eval, a default trust evaluation, used in case no articles have

been observed and no communicated evaluations have been received
if Articles �= ∅ then

article ratings := ∅
foreach Article a ∈ Articles do

article ratings := article ratings ∪ evaluate(t, a)

trust eval := aggregate(article ratings)

else if Communicated Evaluations �= ∅ then
certainty := 0
foreach Evaluation e ∈ Communicated Evaluations do

if certainty(e) ≥ certainty then
certainty := certainty(e)
trust eval := value(e)

else
trust eval := default eval

Output: trust(t, trust eval)

trust evaluations are allowed, but why a trustee is evaluated with any specific
value is subjective and this is what needs aligning. To describe the articles we
use the same language as the one used to generate them.

After the initialization the experiment runs for n rounds, in which each round
represents the opportunity for the readers to communicate. In each round the
agents may pick one other reader agent to communicate with. A communication
act may be: a request to either align, or to get the other’s trust evaluation of
a single author. After n rounds of communication a measure of each agent’s
individual accuracy is calculated and, averaging these individual measures, the
score of the entire run is determined. This score can then be compared to runs
with a different value for n or using different methods of alignment.

3.2 Trust Models

In the experiments, we use five different reader agents, each with its own trust
model. All these models use the same general structure, given in Algorithm 1.
The models distinguish between direct trust and communicated trust. If the
reader has observed any articles written by the author T , it uses direct trust.
This depends on the evaluate and aggregate functions to calculate a trust
evaluation. If no articles have been observed, then communicated trust is used:
each communicated evaluation has an uncertainty associated with it, which is
dependent on the alignment method used. The agent selects the single commu-
nication with the highest certainty to use. If there are also no communicated
evaluations available, then a default trust evaluation is used. This is a very basic

188 A. Koster, J. Sabater-Mir, and M. Schorlemmer

trust model and most models in the literature use a more sophisticated method
of aggregating information from different sources (e.g. direct trust, reputation,
communicated evaluations), however this model is sufficient to show the prob-
lems that arise if the agents do not align and to evaluate the different alignment
methods. Sophisticated aggregation methods have large advantages at the indi-
vidual level, because they allow for richer models and more predictive methods,
however if two agents use different aggregation methods, it is hard to distinguish
whether the difference in trust evaluation is because the agents use a different
aggregation method, or because they use different aspects of the interactions.

Work has been done on learning aggregated values [18], however this work is
not yet applicable to the more complicated aggregation methods used in modern
trust models. The trust alignment methods described in Section 2 avoid this issue
by aligning the ratings of individual interactions. The agents can then use their
own aggregation method, thereby obviating the need to solve the more complex
problem of finding an alignment after aggregation. For the aggregate we take
the average of the article ratings, although as we just explained, an agent could
equally well use a probabilistic method such as BRS [19] or a more social network
oriented approach, such as Yu & Singh’s model [20].

The evaluate function is where each of the reader’s trust models differs.
Based on the description of articles in the domain ontology given in Figure 1,
each agent has a different way of calculating some values for subjective proper-
ties of the article, such as readability or originality. Based on these, the agent
calculates the rating of the author, using a list of “if-then-else” rules in Prolog,
such as the following:

evaluation(Target, Article, 5) :- authors(Article, Authors), member(Target, Agents),
significance(Article, Sig), Sig > 0.7, originality(Article, Ori),
Ori > 0.7, readability(Article, Read), Read > 0.7, !.

This rule states that if the target agent is an author of the article and the
observations of significance, originality and readability are all greater than 0.7
then the evaluation of the author, based on that article has value 5. All five of
the readers’ trust models are comprised of such rules, but they only coincide in
the structure. The trust models differ in the actual content of the rules, such
as the values attributed to different combinations of the subjective properties.
Furthermore, the way in which the subjective properties, such as readability, are
calculated, is different.

Additionally, one of the readers distinguishes between the first and other au-
thors, using a different set of rules for either case. Another reader distinguishes
between articles published in journals and those published in conferences. This
leads to five different models, with different complexities for the alignment be-
tween them.

3.3 Strategy

In addition to the trust model, each agent must have a strategy to choose what
to do in each round. While we cannot focus too much on this in the scope of this
article, we realize that this choice may have a large influence on the outcome

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 189

of the experiment. We therefore implement two strategies for comparison. The
first is a simple random strategy. Each agent chooses an author at random. It
then chooses a reader agent at random to ask about that author. If it has not
previously aligned with that reader, rather than asking for the agent’s evaluation,
it asks to align. If it has already aligned, it asks for the other agent’s evaluation
of the chosen author.

The second strategy is a non-random strategy in which each agent first chooses
the author it has the least certain evaluation of. We use a very simple notion of
certainty: an agent’s certainty is equal to the percentage of the author’s articles
that the agent has observed. This notion may not be particularly accurate (for
instance, if the author has written only very few articles), but it is only a heuristic
for selecting which author to obtain more information about. It does not affect
the trust evaluation. After choosing the target author, it picks the reader agent
that has the most observations of that target and whose opinion has not yet been
asked. After choosing the author and evaluator agent, this strategy behaves the
same as the random strategy: if the agent has already aligned with the chosen
evaluator it asks for a trust evaluation and otherwise it asks to align. While there
are many optimizations possible, they are also further distractions from the main
tenet of this research. We do not doubt that there are ways of improving the
strategy of choosing when to align or with whom to communicate, however the
main idea is that if we can show that the trust evaluations are more accurate
with alignment than without, performance should only improve if the strategy
is optimized.

3.4 Alignment Methods

Before discussing the experiments in detail we need to introduce the trust align-
ment methods we compare.

Average Bias. Our first alignment method is a very simple method, which
does not take the context into account. When aligning, it calculates the mean
difference between the other’s recommendations and the own trust evaluations
and use this as a single bias. We will call this method the alignment using an
average distance bias.

Abdul-Rahman & Hailes’ Method (AR&H). AR&H’s model cannot be
applied directly, because it requires discrete values to calculate the bias. Because
in our models the aggregated trust evaluation is the average of an author’s ratings
as the trust evaluation, we do not have discrete values. However, we can apply
AR&H’s alignment method at the level of the ratings of individual articles, which
are discrete: specifically, in our experiment they are natural numbers between
-5 and 5. Furthermore, because we use a real value for the trust evaluation we
can refine the method slightly by using the mean, rather than the mode for each
bias. Other than that slight refinement, the method applied is the same as that
already described in Section 2.1.

190 A. Koster, J. Sabater-Mir, and M. Schorlemmer

Koster et al.’s method. The third alignment method we test is the one we
proposed in [15], using a first-order Inductive Logic Programming (ILP) algo-
rithm. This is one of the two methods designed thus far, based on machine
learning algorithms, the other being BLADE [14], which uses a propositional
Bayesian Inference Learner. Comparing these two methods is not straightfor-
ward, because of the difference in representation. In [21], it is demonstrated
empirically that propositional logic decision tree learners (which are proposi-
tional ILP algorithms) and Bayesian Inference Learners perform approximately
equally, although ILP algorithms perform computationally better in large prob-
lems. Unfortunately BLADE is not equipped to deal with the more complex
problem we consider here, in which a first-order – rather than a propositional
– logic is used to describe articles. To learn relations in this language would
require a different, first-order Bayesian network, which falls outside the scope of
this work.

The implementation of our method, which we will refer to as Koster et al.’s
method, follows the description in [22], which uses the first-order regression
algorithm Tilde [23] to learn an alignment. Regression is a form of supervised
learning, in which the goal is to predict the value of one or more continuous target
variables [24] from a (finite) set of cases. A first-order regression algorithm does
this by using, in addition to the numerical cases, an additional description in first-
order logic. A case in our situation is a numerical rating of an article, together
with a description of that article, communicated using the ontology in Figure
1. The algorithm is implemented in the ACE package [25] and gives as output
a set of Prolog clauses which can be used to translate future communications.
The technical report describing this version of the alignment method includes
some preliminary experimentation. It gives experiments showing under what
circumstances the learning algorithm gives good results, but does not place this
in a frame of reference in which the algorithm can be compared to other methods,
or even with the lack of alignment.

3.5 Comparing Alignment Methods

The first experiment aims to compare the alignment methods with each other as
well as with the two default modes: no communication at all and communication
without alignment. As described in Section 3.2, if an agent has no knowledge
of an author, it uses a default trust evaluation. Because the agents have in-
complete information about the environment, this case will occur when no, or
too little, communication is allowed. The default evaluation can be seen as the
agent’s initial evaluation of any author, before learning anything about it and
we distinguish between the following options:

A mistrusting agent. always gives its most negative evaluation to any agent
it has no knowledge of.

A trusting agent. always gives its most positive evaluation to any agent it has
no knowledge of.

A neutral agent. always gives a middle evaluation to any agent it has no
knowledge of.

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 191

A reflective agent. calculates the mean of all its previous trust evaluations of
other agents and uses this for any agent it has no knowledge of.

The first three options give a fixed value, independent of the agent’s evaluations
of other targets in the system, whereas the last option allows the agent some
type of adaptability, depending on what trust evaluations it has so far given to
other targets. If the targets it has knowledge of are all bad agents, then it will
be more similar to the first option, whereas if they are all good it will be more
similar to the second. Of all options for no communication we expect this will be
the best choice for an agent, although it is also the only option which requires
extra computation.

Setting up the Experiment. We start by running a number of experiments
to ascertain which parameters should be used for a fair comparison between the
alignment models. By changing the total number of articles and the percentage
of articles observed by each agent we can change the average number of articles
shared by the agents. This mainly influences the functioning of AR&H’s and
Koster et al.’s methods. At low numbers of shared articles AR&H’s method out-
performs Koster et al.’s, however with around 100 articles shared between any
two agents Koster et al.’s method starts to outperform AR&H’s. This difference
in performance increases until approximately 500 articles are shared, on average.
Running the experiment at higher numbers of shared interactions is unnecessary,
because all algorithms have reached peak performance. We opt to run our ex-
periments with 500 shared articles, thus achieving the optimal results obtainable
with each of the alignment methods. The goal of the experiment is to measure
the influence the different alignment methods have. Therefore we require each
agent’s information about the environment to be incomplete. We achieve this by
only allowing each reader agent to observe articles by 40% of the author agents.
This means that to find out about the other 60% of the authors, communication
is required. By having a total of 2000 articles written by different combinations
of 50 authors, we can measure the influence of communication while still allowing
agents to, on average, share 500 articles. We run each experiment 50 times with
different articles to have a decent statistical sample. In this first experiment we
vary two parameters: the number of rounds in which agents may communicate
and the baseline trust evaluation an agent uses to evaluate targets it has no
information of. The results are plotted in Figure 2. The y-axis represents the
error with respect to the most accurate evaluation: if the agent were to have
perfect information about all articles. Given the probability distribution of a
trust model’s evaluations, the error is the probability of the agent’s evaluation
of a trustee being between the estimated and most accurate evaluation2. It is a
measure of the inaccuracy of the alignment method, because the percentage on
the y-axis is not the chance that an agent’s evaluation is wrong, but rather a
measure of how wrong an agent is on average.

2 Calculated as the cumulative probability between the two values.

192 A. Koster, J. Sabater-Mir, and M. Schorlemmer

Results. We firstly see in Figure 2(b) that if we use the neutral baseline (us-
ing 0 as the default evaluation), then all communication is preferable over no
communication. The same is not true if we use the reflective baseline (taking
the average of past evaluations of other targets), as seen in Figure 2(a). In this
case communication without alignment gives worse results than not communi-
cating at all. This is easily explained: if the observed articles are a representative
sample of the population then the mean of trust evaluations based on these will
be near the mean of the most accurate trust evaluations. Consequently, always
using the default will be quite good. However, the other evaluators’ trust evalu-
ations are based on different properties of the articles and may thus be further
from the most accurate trust evaluation. The more of these unaligned commu-
nicated evaluations an agent incorporates, the less accurate its evaluations will
become. We allocate articles at random and therefore each agent does observe a
representative sample of them. This same would not be true if the network were
not a random network or the location of an agent in the network influenced its
trustworthiness: the trustees observed would not be a representative sample of
the other agents in the network and the error from using the default would be
larger. If this error becomes large enough it would resemble the situation with
the neutral baseline, in which case the error from using unaligned communica-
tions results in an improvement. We have omitted the experiments using the
trusting and distrusting baselines, because their results are very similar to those
of the experiment with the neutral baseline and thus add very little information.

Using the reflective baselinea) b)

Fig. 2. Average score - with and without alignment

The main result of this experiment is that communication with alignment
always gives significantly better results than either no communication or com-
munication without alignment. In the graphs of Figure 2 we have plotted the
average accuracy for all five of the agents, however as discussed in Section 3.2,
the individual trust models play a large role in this performance. The different
alignment methods give different returns for the individual agents, but always
significantly outperform the situations without alignment. Furthermore the dif-
ferences seen in the graphs are significant. Because the accuracy measure is

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 193

not normally distributed we evaluated this by using a Kruskal-Wallis test for
analysis of variance [26]. The pair-wise difference is also significant, as tested
using Mann-Whitney U-tests3. While this seems to indicate that Koster et al.’s
method performs slightly better than either of the methods which do not take
the context into account, it seems premature to draw this conclusion, given the
assumptions underlying the experiment. However, this experiment does serve to
show that some form of alignment is necessary to communicate about trust. The
real advantages of taking the context into account are discussed in Section 3.7,
where we deal with untrustworthy communicators.

Fig. 3. The random strategy for partner selection

3.6 Using a Random Strategy

The first variation on this experiment we explore is to change the strategy for
selecting a communication action. The first experiment uses the non-random
strategy and we compare these results to the exact same experiment, but using
the random strategy. For this experiment we use the reflective baseline and the
results up to 300 rounds of communication are plotted in Figure 3. As is to be
expected, we see that in the short term picking the communication at random
does quite significantly worse than using a heuristic to choose whom to com-
municate with: after 50 rounds of using the non-random strategy all alignment
methods are doing significantly better (see Figure 2(a)) than after 50 rounds
of using the random strategy (Figure 3). However in the long run the effect is
flattened out and eventually the random strategy achieves the same optimum
alignment as the non-random strategy. This implies that, after enough rounds of
communication, the optimum is fixed by the alignment method and the strategy
does not influence it. To show that the value they converge on really is the lowest
average error an agent can achieve using the given alignment method, we run
3 For all tests we obtain p 	 0.01: the probability that the different datasets were

obtained from the same population is very small.

194 A. Koster, J. Sabater-Mir, and M. Schorlemmer

the non-random strategy for 150 rounds, which is enough rounds for all possible
communications to take place. For all the methods tested we compare this with
the outcome after 50 rounds for the non-random strategy and 300 rounds for
the random strategy: these values are mutually indistinguishable4, showing that
even after exhausting all possible communication the alignment is not further
improved and truly is an optimum.

The strategy, however, does have a strong influence on how fast this optimum
is reached. Using a different strategy will change the speed of convergence, but
any good strategy will allow agents to converge on the most accurate evaluations
of all agents in the system, just better strategies will converge faster.

This means that from an agent designer’s viewpoint the strategy and align-
ment method can be completely separated: if an evaluator agent requires infor-
mation about a target agent, the alignment method defines an optimal accuracy
for this information while the strategy defines how many agents on average the
evaluator agent must communicate with before it has communicated with the
agent giving the most accurate information.

3.7 Simulating Lying Agents

In the first experiment we tacitly assumed all agents are truthful and willing to
cooperate. If they do not cooperate with the alignment process there is obviously
nothing we can do, but assuming other agents are truthful is a rather strong
assumption. This experiment is therefore set up to see what happens with the
communication if we simulate the other agents passing incorrect information.
Note that if the agents are entirely consistent in their lies, AR&H and Koster et
al.’s alignment methods will be able to deal with this perfectly, as they learn a
translation from the other’s trust evaluation. Additionally, Koster et al.’s method
is even able to deal with lying if it is not always consistent, but based on some
specifics of the underlying article (such as: always lie if the author works at a
certain institute). The problem for all alignment algorithms appears if agents
just invent a random value. We run another round of experiments, this time
increasingly replacing truthful agents by lying ones. A lying agent, rather than
giving an actual trust evaluation, communicates random ratings of articles. The
results can be seen in Figure 4. The agents using communication use the reflective
baseline as their default evaluation in the case they do not have other information
available.

Results. We focus first on graph (d) in Figure 4 and see that if all agents are
lying then communication with no alignment converges to the accuracy of the
trust evaluations without communications and using the average of all possible
trust evaluations as the fixed evaluation for unknown agents. We can explain
this convergence by seeing that the mean of all possible trust evaluations is
also the mean value of a random distribution over the possible trust values. A
similar thing happens using AR&H’s method, which calculates what its own trust
evaluation should be if the other agent communicates a certain value. However,
4 Obtaining p
 0.05 for all Mann-Whitney U-Tests.

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 195

a) b)

c) d)

Fig. 4. Slow degradation from a domain with no lying agents to a domain with all
lying agents

because the other’s trust evaluations are random, choosing all those at a certain
value will give a random sample of the own trust evaluations, the mean of which
will, on average, be the mean of all the own trust evaluations, so AR&H’s model
stays approximately flat on the default baseline (using the average of all the
agent’s own trust evaluations). For similar reasons the average bias does slightly
worse, converging to a value between the two baselines. Koster et al.’s method,
on the other hand, appears to hardly be affected by the noisy trust evaluations.
This shows a large advantage of taking the context into account: Koster et al.’s
method maintains its performance, because the communications in the domain
language can be used for the alignment method to compensate for the noisy trust
evaluations. It ignores the noisy trust evaluations and learns by using only the
information about the underlying articles. If we were to add noise to this part
of the communication as well, Koster et al.’s model would collapse to AR&H’s
and thus stay flat as well.

With this explanation of what happens when all agents lie we can see that
by slowly adding more liars to the system, the performance of the various algo-
rithms morphs from the system with no liars (Figure 2(a)) to the system with all
liars (Figure 4(a)-(d) progressively). To prevent this from happening a further

196 A. Koster, J. Sabater-Mir, and M. Schorlemmer

refinement would be necessary: detecting which agents are the liars and disre-
garding their communications, as discussed in Section 2.

4 Discussion

The experimentation in the previous section demonstrates that trust alignment
improves the accuracy of agents’ trust evaluations. Koster et al.’s method even
works in situations where the communicated evaluations are 100% noise. How-
ever, we must take care when interpreting these experiments. The first thing to
note is that the trust models used, as described in Section 3.2, are simplifica-
tions of those used in the literature. Agents only communicate the evaluations
based on their own direct experiences, rather than having an evaluation which is
aggregated from a number of different sources. This, however, only strengthens
the point we are trying to make: the more complex an agent’s trust evaluation
can be, the greater the probability that two agents, despite using the same on-
tology for their trust evaluations, mean different things, because the actual way
they calculate the evaluations are completely different. The use of more complex
trust models thus leads to an even greater need for alignment. Unfortunately, the
more complex the trust models, the more information will be required to apply
a method such as Koster et al.’s, which requires numerous samples of different
types of evidence supporting the trust evaluations. Luckily, the worst case for
Koster et al is that the domain information is too complex to use, in which case
it will perform similarly to AR&H’s method. In such cases there may be other
machine learning techniques, such as case based reasoning [27], which is designed
to handle large sets of complex data, which could offer a solution.

Additionally the alignment is required to take place before aggregation. This
means that regardless of how complex the aggregation method is, as long as what
is being aggregated is not too complex, the alignment can work. However, it also
means that a large amount of information needs to be communicated. There
may be scenarios in which this communication is prohibitive and a simpler form
of alignment, such as AR&H’s method, or even the average bias, must be used.
However, in domains such as e-Commerce, a lot of data is readily made available:
on eBay5 for example, for any transaction it is public knowledge what item was
sold and how much it cost. Similarly in social recommender systems, which is how
we would classify the example scenario in this paper, people are often willing to
explain their evaluation of an experience in great detail (such as on Tripadvisor6).
This is exactly the type of information that is needed for aligning. If necessary
this could be combined with a method of incentivizing truthful feedback, such
as described in [28]. This could also be helped to mitigate lies, which is the final
point for discussion.

Our model only generates noise in the trust evaluation, not in the description
of the evidence. Furthermore, if a hostile agent has knowledge of the aligning
agent’s trust model, it could tailor its alignment messages so that it can send
5 www.ebay.com
6 www.tripadvisor.com

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 197

false evaluations undetected. Luckily a lot of work has been done in detecting
fraudulent, or inconsistent information, both in the context of trust and reputa-
tion [7,8], as well as in collaborative filtering [29]. As briefly mentioned in Section
3.7 such a method could be used in combination with alignment methods. By
merging an alignment method with a filtering method the efficacy of both can
be significantly improved. Good alignment rules can be used to minimize the
useful information discarded, while the filtering methods are well equipped to
decide when an agent is not giving any useful information at all.

5 Conclusions and Future Work

The experimentation shows clearly that communication without alignment may
have a negative influence on the accuracy of an agent’s trust evaluations and
thus that alignment is a necessary step when talking about trust. We see that
even a simple alignment method such as calculating an average bias, can give a
significant boost to the trust model’s accuracy. AR&H and Koster et al.’s meth-
ods function at least as well as not communicating even if all other agents are
liars. Koster et al.’s method outperforms all other methods tested, by taking the
context in which a trust evaluation was made into account. This performance,
however, comes at a cost: Koster et al.’s model uses a relatively complex learning
algorithm and requires communication about not only ratings of individual in-
teractions, but also an objective description of the interaction it is based on. The
functioning of this alignment method may very well depend on the expressive-
ness of the language for describing interactions. If such a language is very basic,
then alignment may not be possible and a simpler method must be used. Simi-
larly, privacy issues may arise in scenarios where agents are willing to exchange
trust evaluations, but not anything more. In such cases the best we can do is the
method taking an average bias. Whether the increased complexity and commu-
nication load is worth the added performance should be evaluated per domain.
Additionally, the trust models themselves influence the accuracy of alignments.
Analyzing the interplay of some different trust models used in practice, as well
as more – or less – descriptive domain languages for describing the context, is an
important concern for future research. Another promising method for alignment
lies in argumentation about trust [30]. Such methods attempt to establish and
explain the causal link between what happened in the environment and the trust
evaluation it resulted in by giving a formal argumentation framework in which
agents can communicate their reasons for trust. Thus far such methods are not
yet developed sufficiently to be applied for alignment.

Acknowledgements. This work is supported by the Generalitat de Catalunya
grant 2009-SGR-1434 and the Spanish Ministry of Education’s Agreement Tech-
nologies project (CONSOLIDER CSD2007-0022, INGENIO 2010) and the CBIT
project (TIN2010-16306). Additionally the authors would like to thank the anony-
mous reviewers for their feedback.

198 A. Koster, J. Sabater-Mir, and M. Schorlemmer

References

1. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems 43(2), 618–644 (2007)

2. Conte, R., Paolucci, M.: Reputation in Artificial Societies: Social beliefs for social
order. Kluwer Academic Publishers (2002)

3. Castelfranchi, C., Falcone, R.: Trust Theory: A Socio-cognitive and Computational
Model. Wiley (2010)

4. Koster, A.: Why does trust need aligning? In: Proc. of 13th Workshop “Trust in
Agent Societies”, Toronto, pp. 125–136. IFAAMAS (2010)

5. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
6. Schorlemmer, M., Kalfoglou, Y., Atencia, M.: A formal foundation for ontology-

alignment interaction models. International Journal on Semantic Web and Infor-
mation Systems 3(2), 50–68 (2007)

7. Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputation
in the context of inaccurate information sources. Journal of Autonomous Agents
and Multi-Agent Systems 12(2), 183–198 (2006)

8. Şensoy, M., Zhang, J., Yolum, P., Cohen, R.: Context-aware service selection under
deception. Computational Intelligence 25(4), 335–366 (2009)

9. Pinyol, I., Sabater-Mir, J.: Arguing About Reputation: The lRep Language. In:
Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.) ESAW 2007. LNCS
(LNAI), vol. 4995, pp. 284–299. Springer, Heidelberg (2008)

10. Casare, S., Sichman, J.: Towards a functional ontology of reputation. In: AAMAS
2005: Proc. of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, Utrecht, The Netherlands, pp. 505–511. ACM (2005)

11. Nardin, L.G., Brandão, A.A.F., Muller, G., Sichman, J.S.: Effects of expressive-
ness and heterogeneity of reputation models in the art-testbed: Some preliminar
experiments using the soari architecture. In: Proc. of the Twelfth Workshop Trust
in Agent Societies at AAMAS 2009, Budapest, Hungary (2009)

12. Brandão, A.A.F., Vercouter, L., Casare, S., Sichman, J.: Exchanging reputa-
tion values among heterogeneous agent reputation models: An experience on art
testbed. In: Proc. of the 6th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2007), Honolulu, Hawaii, pp. 1047–1049. IFAA-
MAS (2007)

13. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: Pro-
ceedings of the 33rd Hawaii International Conference on System Sciences, vol. 6,
pp. 4–7 (2000)

14. Regan, K., Poupart, P., Cohen, R.: Bayesian reputation modeling in e-marketplaces
sensitive to subjectivity, deception and change. In: Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI), Boston, MA, USA, pp. 1206–1212.
AAAI Press (2006)

15. Koster, A., Sabater-Mir, J., Schorlemmer, M.: Engineering trust alignment: a first
approach. In: Proc. of the Thirteenth Workshop “Trust in Agent Societies” at
AAMAS 2010, Toronto, Canada, pp. 111–122. IFAAMAS (2010)

16. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)
17. Liquid publications: Scientific publications meet the web. September 2, (2010),

http://liquidpub.org

18. Uwents, W., Blockeel, H.: A Comparison Between Neural Network Methods for
Learning Aggregate Functions. In: Boulicaut, J.-F., Berthold, M.R., Horváth, T.
(eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 88–99. Springer, Heidelberg (2008)

http://liquidpub.org

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 199

19. Jøsang, A., Ismail, R.: The beta reputation system. In: Proceedings of the Fifteenth
Bled Electronic Commerce Conference e-Reality: Constructing the e-Economy,
Bled, Slovenia (2002)

20. Yu, B., Singh, M.P.: An evidential model of distributed reputation management.
In: AAMAS 2002: Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pp. 294–301. ACM, New York (2002)

21. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine
Learning 29(2–3), 131–163 (1997)

22. Koster, A., Sabater-Mir, J., Schorlemmer, M.: Engineering trust alignment: Theory
and practice. Technical Report TR-2010-02, CSIC-IIIA (2010)

23. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees.
In: Shavlik, J. (ed.) Proceedings of the 15th International Conference on Machine
Learning, pp. 55–63 (1998)

24. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

25. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.:
Improving the efficiency of inductive logic programming through the use of query
packs. Journal of Artificial Intelligence Research 16, 135–166 (2002)

26. Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticions: A
Step-by-Step Approach. Wiley (2009)

27. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 7(1), 39–59 (1994)

28. Witkowski, J.: Truthful feedback for sanctioning reputation mechanisms. In: Pro-
ceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI
2010), Corvallis, Oregon, pp. 658–665. AUAI Press (2010)

29. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Ad-
vances in Artificial Intelligence 2009. Article no. 421425 (January 2009)

30. Pinyol, I., Sabater-Mir, J.: An argumentation-based protocol for social evaluations
exchange. In: Proceedings of The 19th European Conference on Artificial Intelli-
gence (ECAI 2010), Lisbon, Portugal (2010)

An Architecture for Defeasible-Reasoning-Based

Cooperative Distributed Planning

Sergio Pajares Ferrando, Eva Onaindia, and Alejandro Torreño

Universitat Politècnica de València,
Camino de Vera, s/n
46022 Valencia, Spain

{spajares,onaindia,atorreno}@dsic.upv.es

Abstract. Cooperation plays a fundamental role in distributed plan-
ning, in which a team of distributed intelligent agents with diverse pref-
erences, abilities and beliefs must cooperate during the planning process
to achieve a set of common goals. This paper presents a MultiAgent
Planning and Argumentation (MAPA) architecture based on a multia-
gent partial order planning paradigm using argumentation for communi-
cating agents. Agents use an argumentation-based defeasible reasoning
to support their own beliefs and refute the beliefs of the others according
to their knowledge. In MAPA, actions and arguments may be proposed
by different agents to enforce some goal, if their conditions are known to
apply and arguments are not defeated by other arguments applying. In
order to plan for these goals, agents start a stepwise dialogue consisting
of exchanges of plan proposals to satisfy this open goal, and they eval-
uate each plan proposal according to the arguments put forward for or
against it. After this, an agreement must be reached in order to select
the next plan to be refined.

Keywords: Cooperative distributed planning, Defeasible Reasoning,
Argumentation.

1 Introduction

A Cooperative Information System (CIS) is a large scale information system that
interconnects various systems of different and autonomous organizations,
geographically distributed and sharing common objectives [18]. With the emer-
gence of new technologies in computing, such as SaaS, cloud computing, Service
Oriented Computing, mash-ups, Web Services, Semantic Web, Knowledge Grid,
and other approaches, it is becoming increasingly natural to deal with Agent-based
computing orMultiAgentSystems.[28].Agents, as distributed autonomous soft-
ware entities, are required to engage in interactions, argue with one another, make
agreements, and make proactive run-time decisions, individually and collectively,
while responding to changing circumstances. For this reason, agents are being ad-
vocated as a next-generation model for engineering complex distributed systems.

Planning is the art of building control algorithms that synthesize a course of
action to achieve a desired set of goals of the information system. Unlike classical

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 200–217, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Architecture for Cooperative Distributed Planning 201

planning, in many real-world applications agents often have distributed contra-
dictory information about the environment and their deductions are not always
certain information, but plausible, since the conclusions can be withdrawn when
new pieces of knowledge are posted by other agents. For this purpose, argu-
mentation, which has recently become a very active research field in computer
science [4,23], can be viewed as a powerful tool for reasoning about inconsistent
information through a rational interaction of arguments for and against some
conclusion.

Defeasible Logic Programming (DeLP) [9] is a framework for reasoning
about defeasible information (also known as defeasible reasoning), where ten-
tative conclusions are obtained from uncertain or incomplete information, and
conclusions might no longer be valid after new information becomes available.
The work in [10] (see section 3) introduces a first approach known as DeLP-
POP framework, to integrate DeLP in Partial Order Planning (POP) [21], and
the work in [20] (see section 3) extends DeLP-POP framework to a multiagent
environment. As an example on how defeasible reasoning is introduced in these
frameworks, we can view an agent as a business person who needs to travel be-
tween London and Athens, and has to build a plan to get to Athens. One may
think the first action to do is to buy a flight ticket through an airline web site.
However, another agent who is aware of the latest news on the Internet, might
think the business man will not be able to fly due to a strike announcement in
London. Under these circumstances, the second agent will put forward an argu-
ment against the first one in order to ensure that the business man accomplishes
his goal to get Athens.

The motivation for introducing distributed planning in a multi-agent environ-
ment is twofold. On one hand, a multi-agent system design can be beneficial in
many domains, particularly when a system is composed of multiple entities that
are distributed functionally or spatially. On the other hand, distributed execu-
tion promotes the efficiency of parallel processing of actions, the robustness of
the system to cope with complex planning problems and the simplicity of an
incremental construction across a network of interconnected agents, thus avoid-
ing the critical failures and resource limitations of centralized systems. In this
paper, we present a MultiAgent Planning and Argumentation (MAPA) architec-
ture for cooperative distributed planning in a multiagent DeLP-POP framework,
which extends and refines the preliminary work presented in [20]. This paper is
organized as follows: section 2 gives a short related work; section 3 describes
a background; section 4 introduces the MAPA architecture; section 5 presents
the planning protocol of the architecture; and section 6 shows an example of
application to validate the MAPA architecture. Finally, we conclude and present
some directions for future work.

2 Related Work

This subsection is devoted to study the most relevant related works found in the
literature: multi-agent argumentation, cooperative distributed planning (with-
out defeasible reasoning) and centralized planning. Some systems that build on

202 S. Pajares Ferrando, E. Onaindia, and A. Torreño

argumentation apply theoretical reasoning for the generation and evaluation of
arguments to build applications that deal with incomplete and contradictory
information in dynamic domains. Some proposals in this line focus on planning
tasks, or also called practical reasoning, i.e. reasoning about what actions are
the best to be executed by an agent in a given situation. Dung’s abstract sys-
tem for argumentation [7] has been used for reasoning about conflicting plans
and generating consistent sets of goals [2]. Further extensions of these works
present an explicit separation of the belief arguments and goal arguments and
include methods for comparing arguments based on the value of goals and the
cost of resources [23]. The combination of defeasible reasoning and planning has
been used in [22], in which the whole plan is viewed as an argument and then,
defeasible reasoning about complete plans is performed. Although the work in
[22] combines defeasible reasoning and partial order planning, defeasible reason-
ing is not used in the same way as [10]. In contrast, [10] uses arguments for
warranting subgoals, and hence, defeasible reasoning is used in each step of the
planning search process. In any case, none of these works apply to a multi-agent
environment.

A proposal for dialogue-based centralized planning is that of [26], but no
argumentation is made use of. The work in [3] presents a dialogue based on ar-
gumentation to reach agreements on plan proposals. Unlike our proposal, which
focuses on an argumentative and stepwise construction of a plan, this latter work
is aimed at handling the interdependencies between agents’ plans. The work in
[24] introduces a framework to build joint plans supported through the use of
argumentation schemes as a mechanism of dialogue during the planning search.
On the other hand, we can also find some systems that perform argumentation
in multi-agent systems by using defeasible reasoning but are not particularly
concerned with the task of planning [27].

3 Background

The key element of DeLP are defeasible rules (Head −� Body), which are used
to represent a deductive relation between pieces of knowledge that could be
defeated once other piece of knowledge is considered. Specifically, arguments
(combinations of defeasible rules and facts) for conflicting pieces of information
are built, and then compared to decide which one prevails. For instance, a de-
feasible rule like ”According to Internet news, an airport strike is expected”,
is denoted as ”strike −�news”. Note that, if it occurs in London, then it will
disrupt the passengers’ plans for flying between London and Athens.

The principle of least commitment in Partial Order Planning makes it one
of the more open planning frameworks. This is evidenced by the fact that most
existing architectures for integrating planning with execution, information gath-
ering, and scheduling are based on partial order planners. In [25], authors ar-
gue that POP-based frameworks offer a more promising approach for handling
domains with durative actions, and temporal and resource constraints as com-
pared to other planning approaches. In fact, most of the known implementations

An Architecture for Cooperative Distributed Planning 203

of planning systems capable of handling temporal and durative constraints (in-
cluding IxTET [12], as well as NASAÂs RAX [16]) are based on the POP
paradigm. Even for simple planning tasks, partial order planners offer a higher
degree of execution flexibility. In contrast, none of the known state-space plan-
ners can find parallel plans efficiently [14], and planners such as Graphplan [6]
only generate a very restricted types of parallel plans. For this reason, partial
order planning remains attractive when compared to state-space planning.

An extension of POP with DeLP-style argumentation, denoted DeLP-POP
framework, was introduced in [10], where both actions and arguments may be
used to enforce some goal, if their conditions (are known to) apply and arguments
are not defeated by other arguments applying. Unlike actions, arguments will
not only be introduced to intentionally support some step of a plan, but they will
also be presented to defeat or defend other supporting arguments in the plan.
When actions and arguments are combined in a partial order plan, new types
of interferences or threats appear [10]. These interferences need to be identified
and resolved to obtain valid plans.

Finally, the work in [20] proposes a preliminary extension of the theoretical
DeLP-POP framework to a multiagent environment. Specifically, it proposes a di-
alogue for argumentative plan search, by which agents exchange plan proposals
and arguments for or against such proposals. Unlike [20], the MAPA architecture
presented here solves the qualification problem, identifies new types of threats,
and extends the agents’ knowledge bases by including a set of agent-specific pref-
erences. This allows us to extend and adapt the planning protocol of MAPA to a
fully-automated argumentative dialogue between agents so as to reach agreements
during the plan construction. Moreover, the MAPA architecture promotes a more
practical vision of the extension of DeLP-POP to a multi-agent environment.

4 Elements of the MAPA Architecture

In state-based planning, a plan Π is a linear sequence of actions, and thus before
each action is added to the plan Π , we know which consistent state will hold.
In contrast, MAPA architecture is based on POP1, where a partial order plan Π
is a set of actions whose execution ordering ≺ is only partially specified (thus
encoding multiple linear plans).

The MAPA architecture works on a planning process distributed among several
planning agents, which have an incomplete knowledge (i.e. the set of actions and
arguments that an agent can propose can be different from other agents’), and
have to devise a joint, non-linear plan which may be later executed by them.
The following subsections expose (i) the agents’ planning model and the notion
of argument, (ii) the improvements introduced to deal with the qualification
problem and the notion of plan, and (iii) the new definition and handling of
threats introduced by the qualification problem.
1 We consider that POP is the best planning approach concerned with the dynamic

multiagent nature due to the ease to join several plan proposals into a single joint
plan.

204 S. Pajares Ferrando, E. Onaindia, and A. Torreño

4.1 The Agents’ Planning Model and Arguments

The planning model of each agent is based on a set of literals Lit, such that � ∈ Lit
is a ground atom and ∼� ∈ Lit is a negated ground atom, where ∼represents the
strong negation and � =∼�. Each agent x of the MAPA architecture is initially
endowed with a planning task Mx = ((Ψx, Δx), Ax, Fx, G) where:

1. Ψx ⊆ Lit, represents a consistent set of true facts which describe the initial
state of the task.

2. Δx is a set of defeasible rules δ = �0, . . . , �k −� �
′
0, . . . , �

′
k.

3. Ax is a set of actions α = 〈P(α), X(α)〉 where P(α) ⊆ Lit is a set of precon-
ditions and X(α) ⊆ Lit is a set of effects.

4. Fx represents a consistent set of the agent-specific preferences Fx ⊆ {(a, d) |
(a ∈ A), d ∈ [0, 100]}, where the action a is preferred with the estimated
interest degree d.

5. G ⊆ Lit is the set of common goals which have to be satisfied.

The diversity of preferences is addressed by means of agreements between the
agents during the planning process. We assume that agents are fully cooperative,
so they have no incentives to retain relevant information. In POP, Ψ (consistent
set of agents’ initial states of the task) and G are encoded as dummy actions
{αΨ ≺ αG} with X(αΨ) = Ψ , P(αG) = G, and P(αΨ) = X(αG) = ∅.

An argument A for � ∈ Lit, is denoted as A = ({�}, {Δ′}), where Δ
′

is
a subset of defeasible rules Δ

′ ⊆ Δ. A is consistent if base(A) ∪ A is non-
contradictory.

Fig. 1. An argument A for l using the two defeasible rules: δ0 = l −�{p0, p1} and
δ1 = p1 −�{q0, q1, q2}

Figure 1 shows an example of an argument proposed A, where literals(A) =
{l, p0, p1, q0, q1, q2}. This argument for a literal � does not suffice to warrant �, it
depends on the interaction among arguments (see section 5.2), which will grant
consistency. Given two arguments A,B, we say A attacks B if the conclusion of
A contradicts some fact used in B, that is, if concl(A) ∈ literals(B). Therefore,
the MAPA architecture semantically differentiates between supporting arguments
(or argument steps) as the arguments specifically used to support some open

An Architecture for Cooperative Distributed Planning 205

condition of the plan, and attacking arguments which are only introduced to
attack some argument step previously introduced in the plan (i.e. it is not used
to support any open condition).

4.2 The Qualification Problem and Plan Definition

The qualification problem [13], which is an important problem currently not
supported in many planning architectures, is concerned with the impossibility of
listing all the preconditions required for a real-world action to have its intended
effect. For instance, let α (e.g. ”flying from London to Athens”) be an action with
n effects {e0, e1, . . .} ⊆ Lit (e.g. e0 =”be at Athens city”), which are defeated
by the defeasible conditions {d0, d1, . . .} ⊆ Lit (e.g. d0 = ”Volcanic ash cloud
between London to Athens”, d1 =”Airport strike in London”) respectively. Note
that, if these defeasible conditions occur, the expected effects of α would not
be achieved. The work in [10] solves this issue by introducing these defeasible
conditions as negated preconditions of α ({d0, d1, . . .} ⊆ P(α)), which must be
derived by arguments.

Fig. 2. An example solving the qualification problem

However, an action α in MAPA architecture follows a specific representation in
order to deal with this problem. We introduce a fictitious effect μ (meaning α
was just executed); then we define X(α) = {μ} and expand the set of rules Δ with
{ek−�μ}∪{ek −�μ, dk}, where ek represents the effect of the action α and dk is a
defeasible condition. For instance, in Figure 2, the precondition e0 of the action
αG is initially derived by an argument D = ({e0}, {e0 −�μ}) whose base(D) = μ
will be satisfied by α. Then an attacking argument Q = ({e0}, {e0 −�μ, d0, d1}),
which is a defeater of D (Q attacks D), arises from the distributed knowledge
among agents. Triangles in Figure 2 represent argument steps (i.e. arguments
that support preconditions of action steps), for instance the argument D, or
arguments attacking some other argument, for instance the argument Q, and
both are labeled with the argument name, while rectangles represent action

206 S. Pajares Ferrando, E. Onaindia, and A. Torreño

steps (i.e. actions that support the basis of an argument step) and are labeled
with the action name.

The MAPA architecture defines a plan Π as a tuple Π = (A(Π), Args(Π),
G(Π),OC(Π), CL(Π),SL(Π)), where A(Π) denotes the set of action steps,
Args(Π) represents the set of argument steps, G(Π) is the the task’s common
goals, OC(Π) is a set of ordering constraints, and CL(Π) and SL(Π) represent
the sets of causal and support links correspondingly. Let �1 be an open goal,
motivated by some action step β ∈ A, i.e. �1 ∈ P(β), and, let �2 be another open
goal, motivated by some argument step A ⊆ Δ, i.e. �2 ∈ base(A). Then, the goal
�1 ∈ P(β) must be supported by the argument A, which will introduce a support
link (A, �1, β) ∈ SL(Π), where SL(Π) ⊆ Δ×G(Π)×A, while the goal �2 must
be satisfied by an action α, by introducing a causal link (α, �2,A) ∈ CL(Π)
where CL(Π) ⊆ A×G(Π)×Δ. Note that an argument B cannot support another
argument A with a support link in SL(Π), and an action α1 cannot support
another action α2 with a causal link in CL(Π). To get B to support step A, A
must be replaced by A ∪ B, and to get α1 to support action step α2, an argu-
ment ({ek}, {ek−�μ}) must be inserted between α1 and α2, where X(α2) = μ and
P(α1) = ek. Additionally, unlike in DeLP-POP, ordering constraints are placed
between argument steps (A,B) ∈ OC(Π), since every action (excepting αG) is
preceded by an argument which derives its actual effects.

4.3 Interferences among Actions and Arguments

If only actions are taken into account in a planning architecture, then there is
only one type of destructive interference that can arise in a plan under construc-
tion. This interference is captured by the notion of threat in POP, and occurs
when a new action inserted in the plan threatens (deletes) a goal solved by other
action steps. When actions and arguments are combined to construct plans, new
types of interferences appear that need to be identified and resolved to obtain a
valid plan. In multiagent DeLP-POP [20], we identified three types of interfer-
ences or threats, that cover all the interferences that may arise in a partial plan:
argument-argument, action-argument and action-action threats.

However, since the goals must be initially derived by some argument step
in the MAPA architecture, and then its basis must be satisfied by another ac-
tion step (including the initial step), argument-argument threats cover all the
interferences that may arise in a plan dealing with the qualification problem.
Nevertheless, MAPA architecture differentiates semantically between:

1. Planning threats (PlaThreats): Threats that arise between two argument
steps. For instance, let ”w” be an open condition of the plan in Figure 3(c’),
then the argument with an admiration is acting as a supporting argument
and a PlaThreat will be discovered. These threats override the typical action-
action and action-argument threats of [20]. As we will discuss in subsection
5.1, this kind of threats will be discovered and possibly resolved (by promote
or demote) in the POP Search Tree.

An Architecture for Cooperative Distributed Planning 207

2. Argumentation threats (ArgThreats): Threats that arise when an agent
discovers a new defeater which specifically attacks some argument step. Un-
like the PlaThreats, here the attacks to some argument step are made by some
attacking argument. For instance, in case that the argument with an admi-
ration in Figure 3(c’) is an attacking argument (i.e ”w” is not an open goal),
Figure 3(c’) represents an ArgThreat. Although this kind of threat is also
called argument-argument threat in [20], here we rename them to ArgThreats
with the aim of distinguishing between PlaThreats and ArgThreats. As shown
is subsection 5.2, these threats will be discovered and possibly resolved (by
Defeat-the-defeater in Figure 3(c”)) in the POP Evaluation Tree.

Fig. 3. (c) Selected plan. (c’) Threat. (c”) Solution to (c’): Defeat-the-defeater.

5 Cooperative Distributed Planning Protocol in the
MAPA Architecture

Figure 4 illustrates the planning protocol, which is mainly composed of three dif-
ferent cooperative distributed processes among the planning agents: Plan Gen-
eration, Plan Evaluation, and Plan Selection.

Different planning heuristics such as Z-LIFO [11], or the threat detect-&-solve
[10] can be used to select the next open goal to solve. In our case, we will consider
turn-based dialogues, a mechanism traditionally used in cooperative scenarios
where agents only participate during their turn. Additionally, agents can also be
modeled to put a veto on information or decisions of other agents. Agents are
enumerated, and each process is implemented through a different argumentative
dialogue.

5.1 Plan Generation

The input is both the selected plan Πr and the selected open goal (flaw) Φ, ac-
cording to the Plan Selection process (see subsection 5.3) and open goal selection
heuristic. The flaw Φ can be referred to both goals and PlaThreats. The main
goal of this process is to allow agents to propose a set of refinement plans

208 S. Pajares Ferrando, E. Onaindia, and A. Torreño

No

Proposed refinements set

Yes

Plan Generation
Selected open

condition

Is it a solution?

Dummy Plan

Plan EvaluationPlan Selection Evaluated proposed
refinement set

No

Selected refinement

No

Yes

YesNo solution

Backtracking

Solution found

Heuristic Flaw
Selection

Fig. 4. Planning Protocol in the MAPA architecture

Refinements(Πr), where each Πr(ξ) ∈ Refinements(Πr) is a refinement step in
the POP Search Tree that solves a selected flaw Φ such that Φ ∈ flaws(Πr) and
Φ /∈ flaws(Πr(ξ)). Following, we explain the two steps involved in this process:

1. PROPOSALS ROUND: Each agent, at its turn, proposes alternative ways
to achieve or derive Φ. The process ends when all agents have had a turn.
Refinements of a plan Πr are labeled as Π

(n,i)
r (ξ), where n ∈ Z indicates

the refinement proposal by the agent, i ∈ Z represents the agent, and r ∈ Z

represents the selected plan by the Plan Selection process. Note that, at each
turn, an agent can propose as many plans as possible from its knowledge.

2. LEARNING ROUND: Each agent updates its set of actions with the new
actions which appear in the refinements proposed by other agents.

The output of this process is a set of plans Refinements(Πr) where each Πr(ξ) ∈
Refinements(Πr) extends Πr. If |Refinements(Πr)| > 0, i.e. there is at least one
refinement plan, it is used as an input to the Plan Evaluation process (see section
5.2). If |Refinements(Πr)| = 0, i.e. there is not any proposal to solve the flaw Φ,
a backtracking step is performed, pruning the current base plan Πr.

5.2 Plan Evaluation

Roughly, the problem stems from different agents discussing about a given plan;
since these agents may have different initial facts and defeasible rules they
may not agree on the evaluation of the plan at some step. Along with the
POP Search Tree of the previous section, the MAPA architecture also consid-
ers the notion of POP Evaluation Tree.

An Architecture for Cooperative Distributed Planning 209

Definition 1. POP Evaluation Tree: Let Πr(ξ) be a refinement of plan Πr from
the previous process. A POP Evaluation Tree for Πr(ξ), denoted TΠr(ξ), where
there is at least one argument step (A, �, β) ∈ SL(Πr(ξ)), is defined as follows:

– The root of the tree is labeled with the plan 〈Πr(ξ)〉.
– Each node of the first level 〈Πr(ξ, ξ

′
) | ξ

′
= Defeater(B, (A, �, β))〉, is a new

plan extending Πr(ξ) with some new defeater B that attacks A, discovering
a new ArgThreat in Πr(ξ).

– Each node of the second level 〈Πr(ξ, ξ
′
, ξ

′′
) | ξ

′′
= Defeater(C, Defeater(B,

(A, �, β)))〉, is a new plan extending Πr(ξ, ξ
′
) with some new defeater C that

attacks B (Defeat-the-Defeater), solving the ArgThreat in Πr(ξ).

The input of this process is a set Refinements(Πr) of plans proposed by the
agents in the previous process. Each plan Πr(ξ) ∈ Refinements(Πr) represents
the root of a new POP Evaluation Tree TΠr(ξ). Following, we explain the steps
involved in this cooperative process:

1. ATTACK ROUND: It initiates an evaluation dialogue for the root plan of
each TΠr(ξ), where each agent sends as many 〈Πr(ξ, ξ

′
) | ξ

′
= Defeater(B,

(A, �, β))〉 as they know at their turn (Figure 5). If the agent does not know
how to attack a root plan, then it will skip its turn.

2. DEFENSE ROUND: It allows the agents to propose ways 〈Πr(ξ, ξ
′
, ξ

′′
) |

ξ
′′

= Defeater(C, Defeater(B, (A, �, β)))〉 to solve discovered ArgThreats in
each 〈Πr(ξ, ξ

′
) | ξ

′
= Defeater(B, (A, �, β))〉. This round only applies to

those POP Evaluation Trees which have discovered threats (Figure 5).
3. LEARNING ROUND: In this stage, each agent will update its sets of initial

facts and defeasible rules, by extracting literals � ∈ Lit and defeasible rules,
from arguments’ bases and plan proposals. Unlike the previous Plan Gen-
eration process, where agents learn abilities as actions, this step is focused
exclusively on the literals and defeasible rules.

4. EVALUATION: This stage marks each plan Πr(ξ) ∈ Refinements(Πr) as an
undefeated plan, in case that defeater plans 〈Πr(ξ, ξ

′
) | ξ

′
= Defeater(B, (A, �,

β))〉 have not been discovered, or if they have been discovered but there is
a plan 〈Πr(ξ, ξ

′
, ξ

′′
) | ξ

′′
= Defeater(C, Defeater(B, (A, �, β)))〉. Otherwise,

Πr(ξ) is marked as a defeated plan.

The process ends when all the plans in Refinements(Πr) have been evaluated.
The output of this process is Evaluated(Refinements(Πr)), the set of evalu-
ated plans (Figure 5). As shown in the next process, undefeated plans, which
constitute the most promising refinements to reach a solution, are preferred to
defeated plans. However, defeated plans are kept, since each non-resolved attack
could be resolved in a subsequent evaluation process.

5.3 Plan Selection

Plan selection canbedone through theapplicationof standarddomain-independent
heuristics for evaluating plans. These heuristics approximate the cost of a solution

210 S. Pajares Ferrando, E. Onaindia, and A. Torreño

Discovering ArgThreats

No

Yes

Mark as an
undefeated plan

More turns?

Yes

No
Yes

Pass-turn

No

More turns? Yes

Pass-turn

No

Were the ArgThreats
resolved?

Yes

Yes

No

Mark as a
defeated plan

Firs
t rou

nd

Sec
ond

roun
d

No

Plan Generation

Plan Selection

Backtracking

Learning literals

A
TTA

C
K
R
O
U
N
D

D
EFEN

SE
R
O
U
N
D

LE
A
R
N
IN
G

R
O
U
N
D

EV
A
LU
A
TI
O
N

Resolving ArgThreats

Fig. 5. Plan Evaluation protocol overview

plan in terms of the number of actions, the cost or the duration of the actions. Us-
ing this type of heuristics as the standard rating (RS) for plan assessment will
ignore the dynamic multi-agent nature of the MAPA architecture, where a set of
preferences is assumed by each agent. Therefore, a second rating based on the
agents’ preferences is necessary. We will refer to it as the preference rating (RF).
Moreover, a third rating in terms of trust in cooperative planning is justified in
[15] as a judgement about the risk attached to each component in the plan requir-
ing cooperation, which we will call trust rating (RT). RT depends on the trust in
(i) each argument step and (ii) each action step in the plan, where (i) is the trust-
worthiness (reputation) of the information sources which are used by the agent
in order to have a perception of the environment (coded as facts and defeasible
rules [10]), and, (ii) is the result of dividing the number of times the action is suc-
cessfully executed into the total number of executions of the action. The MAPA
architecture stores the execution of each action as a new case [1], recorded as suc-
cessful if the action is executed correctly, or failure if the action failed during the
execution. The success or failure of an action is determined by the achievement of
the action effects. For simplicity, we only consider trust in action steps.

Unlike the Plan Generation and the Plan Evaluation process, where agents
reason about agent facts, defeasible rules and actions, here agents reason about
standard ratings, preference ratings, and trust ratings, considering a compro-
mise between the desire to minimize the computational overhead and that of
maximizing the quality of the plan. This process receives as input the set of
evaluated plans Evaluated(Refinements(Πr)) from the Plan Evaluation process
and a set of previously not-selected partial plans OtherRefinements, in order to
select a new plan Πr ∈ {Evaluated(Refinements(Πr))

⋃
OtherRefinements} as

output. Following, we explain the steps involved in this process:

An Architecture for Cooperative Distributed Planning 211

1. PLAN FILTERING: The aim is to guide the plan search by selecting the best
subset FilteredPlans ⊆ {Evaluated(Refinements(Πr))

⋃
OtherRefinements} (as

candidate plans), according to the highest RS(Π) and RT (Π), such that
Π ∈ {Evaluated(Refinements(Πr))

⋃
OtherRefinements}2, where:

– RS(Π) = (cost(Π) + heuristic(Π)), where heuristic(Π) is a heuristic es-
timation of the cost of reaching a solution plan Π� from Π , and,

– RT (Π) is the product of the trust values of the action steps in Π .
2. PLAN RANKING: The agents (i ∈ {1, 2, . . . , k}) calculate their preference

ratio for each candidate plan Πn ∈ FilteredPlans. For this purpose, they
review whether each action a ∈ A(Πn) is preferred by them. If an action
a1 ∈ A(Πn) is preferred ((a1, d1) ∈ Fi | d1 > 50), then they increase by one
the value Ri

F (Πn); if they do not prefer an action a2 ∈ A(Πn), ((a2, d2) ∈ Fi |
d2 <= 50), then they subtract one unit from Ri

F (Πn), and otherwise they
keep Ri

F (Πn) unchanged. This stage, which simulates a internal reasoning
process for or against to select each plan Πn, allows each agent to establish
a preference relation between the plans in FilteredPlans.

3. PLAN NEGOTIATION: Since each agent has identified its preferred candi-
date plans, now the purpose of the negotiation is to reach an agreement
about the next base plan Πr ∈ FilteredPlans. This stage can range from a
simple voting process to a more sophisticated negotiation mechanism.

Finally,{NonSelectedPlans⊂Evaluated(Refinements(Πr)) |Πr /∈ NonSelectedPlans}
is added to the set OtherRefinements, and the process returns the agreed plan
Πr. If Πr is not a solution, the control will be passed to the Heuristic Flaw
Selection (see Figure 4). Otherwise, the planning process will end successfully.

6 Evaluating the MAPA Architecture within the Context
of a Transit Journey Planning Service

Transit users generally know their origin and destination cities. Based on the
schedules provided by the transit agencies, users choose the best routes that
match their travel needs. For this purpose, a Transit Journey Planning Service
(TJPS) (a specialized electronic search engine) is used to find the best route
between two locations by using some means of transportation. TJPSs are being
widely used by transit agencies accessed through a web user interface on a com-
puter terminal to support clients’ requests on public transport information. Most
of the existing TJPSs, provided by transit agencies and companies (Google Tran-
sit Planner, Transport Direct, Transport for London, Trip Planning Tool etc.)3,
are based on static schedule data. To the best of our knowledge, these centralized
planners (i) do not react to environmental changes such as bad weather, traffic
jams or bad railroads, and therefore they do not provide support to defeasible

2 Undefeated plans are preferred over defeated plans.
3 http://www.google.com/transit, http://www.transportdirect.info,
http://www.journeyplanner.org, http://www.networkedtraveler.org

http://www.google.com/transit
http://www.transportdirect.info
http://www.journeyplanner.org
http://www.networkedtraveler.org

212 S. Pajares Ferrando, E. Onaindia, and A. Torreño

reasoning, and (ii) are not able to work in a cooperative distributed environment
so there is no choice for exchanging information between them.

However, defeasible reasoning is becoming an increasingly important feature
in many environments where context awareness in not fully specified. The work
in [5] presents a potential application for distributed defeasible reasoning in
ambient computing environments, where the ambient agents, who have different
viewpoints, have to face the available context. Similarly, defeasible reasoning is
also being applied to semantic web and e-commerce [17]. Here, we present a novel
application of cooperative distributed defeasible planning to a TJPS problem.

The MAPA architecture is implemented in Magentix 24, a platform for open
Multiagent Systems based on the Apache Qpid5 implementation of AMQP 6 for
communication between agents. This platform incorporates a security module
which provides key features regarding security, privacy, openness and interoper-
ability not offered by other current agent platforms.

Internet
Ag1 Ag2

Launcher

Fig. 6. Deploying the MAPA architecture

6.1 Preliminaries

According to the multi-agent systems paradigm, we have implemented a CIS as
a collection of software agents (Figure 6) in the MAPA architecture. Each agent
simulates an information system, and interacts with the others so as to achieve
the common goals, thus forming a multi-agent society. More specifically, we
consider a scenario with six different cities and two geographically distributed
transit agencies, Ag1 (Greece transit agency) and Ag2 (UK transit agency),
aimed at providing a customer with a plan to travel from London to Athens
(Figure 7). The agencies are implemented as agents and have different knowledge
(knowledge is fully distributed), so two pieces of information derived from each
agent may appear to be contradictory. There are several ways to travel between
both cities: via car, ship, train or plane. Let’s assume that Ag1 uses BBC News
as a source of information, but Ag2 prefers CNN News to keep up to date, and

4 http://www.gti-ia.dsic.upv.es/sma/tools/magentix2/index.php
5 http://qpid.apache.org/
6 http://www.amqp.org

http://www.gti-ia.dsic.upv.es/sma/tools/magentix2/index.php
http://qpid.apache.org/
http://www.amqp.org

An Architecture for Cooperative Distributed Planning 213

both agree on finding a plan that minimizes the journey duration. The planning
tasks of the agents are defined in Figure 8, where we consider propositional
STRIPS [8] planning representation.

Athens B

C

Railway

Airline

Maritime Line

F Road

London

Road

Airline

D

Road

Initial State

Goal State

Road

Road

Fig. 7. Scenario of the application example

In what follows, we define the meaning of each literal and action. Literals:

– A, L - Athens, London; B, C, D, F - Other cities,
– cus, car, tra, pl, shi - a customer, a car, a train, a plane, a ship,
– r, rl, al, ml - a road, a railway, an airline company, a maritime line,
– bw, sn, wg, va, ds, aeo - bad weather, snow, wind gusts, volcano ash cloud,

dangerous situation, airplane engines work well (after test),
– br, ll, esf , fp - bad railroad, landslides, electrical supply failure, flying panic,
– h, tj, kudBBC, kudCNN - holidays, traffic jam, kept up to date by BBC

news, kept up to date by CNN news, and,
– μC , μP , μT , μS - moved car, moved plane, moved train and moved ship.

Actions are the following (notation: X(α) α←− P(α), i.e. the action effects are
indicated on the left side, while the action preconditions on the right side):

1. mP (pl, x, y): moving plane ’pl’ from location ’x’ to ’y’ takes 2 time units and
400 cost units.

2. mT (tra, x, y): moving train ’tra’ from location ’x’ to ’y’ takes 6 time units
and 200 cost units.

3. mS(shi, x, y): moving ship ’shi’ from location ’x’ to ’y’ takes 3 time units
and 100 cost units.

4. fMc(car, x, y): fast-moving car ’car’ from location ’x’ to ’y’ takes 8 time
units and 80 cost units.

6.2 Implementation

The planning process starts with an empty plan Π∅ = {αΨ ≺ αG} and flaws(Π∅) =
{(at cus A)}. First, the MAPA architecture enters the Plan Generation process,
where four plans are suggested: i) taking the car between D and A, Π

(1,Ag1)
∅ (ξ),

214 S. Pajares Ferrando, E. Onaindia, and A. Torreño

ΨAg1 =
{

(wg B A); aeo; kudBBC; (at cus L); fp; (at pl C); (at car L); (link al C A); (link r D A); . . .
}

ΨAg2 =
{

kudCNN ; fp; (at cus L); (at tra B); (at shi C) (link rl B A); (link ml C B); (link r F A); . . .
}

ΔAg1 =

⎧⎨⎩ {(at pl ?y), (at cus ?y)} −�(μP ?x ?y); {∼(at tra ?y),∼(at cus ?y)} −�{(μT ?x ?y), (br ?x ?y)};
{(at car ?y), (at cus ?y)} −�(μC ?x ?y); {∼(at shi ?y),∼(at cus ?y)} −�{(μS ?x ?y), (ss ?x ?y)};
(br ?x ?y) −�(esf ?x ?y); (esf ?x ?y) −�(sn ?x ?y); (sn B A) −�kudBBC; ∼(va C A) −�aeo; . . .

⎫⎬⎭

ΔAg2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{∼(at pl ?y),∼(at cus ?y)} −�{(μP ?x ?y), (ds ?x ?y)}; {(at tra ?y), (at cus ?y)} −�(μT ?x ?y);
{∼(at car ?y),∼(at cus ?y)} −�{(μC ?x ?y), (tj ?x ?y)}; {(at shi ?y), (at cus ?y)} −�(μS ?x ?y);

(ds ?x ?y) −�(va ?x ?y); (va C A) −�kudCNN ; ∼(ll ?x ?y) −� ∼(bw ?x ?y);
∼(ll ?x ?y) −� ∼(bw ?x ?y); ∼(bw B A) −�kudCNN ; ∼(sn B A) −�kudCNN ;

(tj ?x ?y) −�{(h ?x)(link r ?x ?y)}; (h F) −�kudCNN ; . . .

⎫⎪⎪⎪⎬⎪⎪⎪⎭
AAg1 =

{
1. (μC ?x ?y)

fMc←−−− {(link r ?x ?y), (at car ?x), (at cus ?x)}
2. (μP ?x ?y)

mP←−−− {(link al ?x ?y), (at pl ?x), (at cus ?x)}

}

AAg2 =

{
3. (μT ?x ?y)

mT←−−− {(link rl ?x ?y), (at tra ?x), (at cus ?x)}
4. (μS ?x ?y)

mS←−− {(link ml ?x ?y), (at shi ?x), (at cus ?x)}

}

FAg2 =
{

(mT, 90); (mP 0); (mS 60)
}

FAg1 =
{

(fmC 70); (mT, 80); (mP 5)
}

G = {(at cus A)}

Fig. 8. Initial facts, defeasible rules, actions, preferences and common goals

or ii) between F and A, Π
(2,Ag1)
∅ (ξ), iii) taking the train between B and A,

Π
(1,Ag2)
∅ (ξ), and iv) taking the plane between C and A, Π

(3,Ag1)
∅ . We only show

the plan iv) Π
(3,Ag1)
∅ (ξ) = {(mP, (μP C A),AAg1), (AAg1, (at cus A), αG)} where

AAg1 = ({(at cus A)}, {(at cus A) −�(μP C A)}) (see Figure 10(a)). The agents
learn the actions they did not know from these plans.

Second, the Plan Evaluation process starts, where: i) Π
(1,Ag1)
∅ (ξ) is not at-

tacked by any defeater and it is labeled as an undefeated plan. ii) Π
(2,Ag1)
∅ (ξ)

is attacked because city F is on holiday, so a traffic jam can be expected in the
road between F and A, and, therefore, the effects of the action fMc may not
be satisfied. Since there are not proposals to solve this ArgThreat, Π

(2,Ag1)
∅ (ξ)

is labeled as a defeated plan. iii) Π
(1,Ag2)
∅ (ξ) receives one attack because snow

is expected between B and A, so an electrical failure that damages the railroad
between B and A might occur. If this happens, the effects of the action mT
may not be satisfied. Here, Ag2 proposes a Defeat-the-defeater, which justifies
that snow conditions are not expected between B and A, and then Π

(1,Ag2)
∅ (ξ)

is labeled as undefeated plan. iv) Ag2 attacks Π
(3,Ag1)
∅ (ξ) with 〈Π(3,Ag1)

∅ (ξ, ξ
′
) |

ξ
′

= Defeater(BAg2, (AAg1, (at cus A), αG))〉 where BAg2 = ({∼(at cus A)}, {∼
(at cus A)−�{(μP C A), (ds C A)}; (ds C A)−�(va C A); (va C A)−�kudCNN})
(see Figure 9) because the volcano ashes are expected between the city C and A
according to the CNN News, but Ag1 moves against (ds C A) with 〈Π(3,Ag1)

∅ (ξ, ξ
′
,

ξ
′′
) | ξ

′′
= Defeater(CAg1, Defeater(BAg2, (AAg1, (at cus A), αG)))〉 where CAg1 =

An Architecture for Cooperative Distributed Planning 215

Fig. 9. Discussing about the plan Π
(3,Ag1)

∅ (ξ) in the Plan Evaluation process

({∼(va C A)}, {∼(va C A)−�aeo}) (see Figure 9). It is a Defeat-the-defeater res-
olution move since ∼ concl(CAg1) ∈ literals(BAg2)) (see Figure 10(a”)), and then
Π

(3,Ag1)
∅ (ξ) is labeled as an undefeated plan. The agents learn the literals and

defeasible rules, they do not know at the beginning of the turn.
Third, the Plan Selection process starts. The best subset of plans is defined

as FilteredPlans = {Π(1,Ag2)
∅ (ξ), Π

(3,Ag1)
∅ (ξ)}, since Π

(2,Ag1)
∅ (ξ) was labeled as

a defeated plan and heuristic(Π(1,Ag1
∅ (ξ)) returns a high value. Finally, agents

)()1,2(
0

Ag))()1,2(
0)(Ag)()1,1(

0
Ag)()1,1(

0)(Ag)()2,1(
0

Ag)()1,3(
0

Ag

)(0

..

.

.

.

.

.

.

.

.

.

.

.

))))()2,1(
0)(Ag)) ,3(

0
Ag

)(0)(

)',()1,3(
0

Ag

)'',',()1,3(
0

Ag

)()1,3(
0

Ag

(a) (a’) (a’’)

(at cus A)

(at cus A)

…, ds
va

va

G

mP

p

aeo
kudCNN

))()1)(g

,',()1,3(
0 '(Ag

)',()1,3(
0 '(Ag

)()1,3(
0)(Ag

'', '

)

(att (cuss A)A)

(at ((((cus A)))A

vavva

GG

pppppppppp

aeoa
kudCNNkudCNNkudCNNNN

))

Fig. 10. Screenshots: (a) The POP Search Tree. (a’) The POP Evaluation Tree for the

plan Π
(3,Ag1)

∅ (ξ). (a”) Viewing the content of the plan Π
(3,Ag1)

∅ (ξ, ξ
′
, ξ

′′
).

216 S. Pajares Ferrando, E. Onaindia, and A. Torreño

choose Πr = Π
(1,Ag2)
∅ (ξ) as they prefer to take the train because of their fear of

flying. For space reasons, we omit the rest of the plan search.

7 Conclusions and Future Work

We have presented MAPA, a decentralized architecture for cooperative planning
in multiagent DeLP-POP, dealing with the qualification problem. It is imple-
mented as three independent cooperation processes between agents of a team
who propose, criticize, defend and select alternative plans by means of arguments
and actions. For future work, we intend to work in several directions: extend-
ing MAPA to other multi-agent scenarios like argumentation-based negotiation
or to temporal planning [19]; and evaluating MAPA in applications of dynamic
networked cooperative business processes and knowledge-sharing, including the
ability to work with and within complex supply chains. Finally, evaluating the
efficiency and effectiveness of the MAPA architecture.

Acknowledgments. This work is mainly supported by FPU grant reference
AP2009-1896 awarded to Sergio Pajares Ferrando and projects TIN2008-06701-
C03-01, Consolider Ingenio 2010 CSD2007-00022, and PROMETEO/2008/051.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 7(1), 39–59 (1994)

2. Amgoud, L.: A formal framework for handling conflicting desires. In: Nielsen,
T.D., Zhang, N.L. (eds.) ECSQARU 2003. LNCS (LNAI), vol. 2711, pp. 552–563.
Springer, Heidelberg (2003)

3. Belesiotis, A., Rovatsos, M., Rahwan, I.: Agreeing on plans through iterated dis-
putes. In: 9th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2010), pp. 765–772 (2010)

4. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Arti-
ficial Intelligence 171(10-15), 619–641 (2007)

5. Bikakis, A., Antoniou, G.: Distributed defeasible contextual reasoning in ambient
computing. In: Aarts, E., Crowley, J.L., de Ruyter, B., Gerhäuser, H., Pflaum, A.,
Schmidt, J., Wichert, R. (eds.) AmI 2008. LNCS, vol. 5355, pp. 308–325. Springer,
Heidelberg (2008)

6. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial
Intelligence 90(1-2), 281–300 (1997)

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–358 (1995)

8. Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2(3-4), 189–208 (1971)

9. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: An argumentative ap-
proach. Theory and Practice of Logic Programming 4(2), 95–138 (2004)

10. Garćıa, D.R., Garćıa, A.J., Simari, G.R.: Defeasible reasoning and partial order
planning. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932,
pp. 311–328. Springer, Heidelberg (2008)

An Architecture for Cooperative Distributed Planning 217

11. Gerevini, A., Schubert, L.: Accelerating partial-order planners: Some techniques for
effective search control and pruning. Journal of Artificial Intelligence Research 5,
95–137 (1996)

12. Ghallab, M., Laruelle, H.: Representation and control in ixtet, a temporal planner.
In: 2nd International Conferende on Artificial Intelligence Planning Systems (AIPS
1994), vol. 94, pp. 61–67 (1994)

13. Ginsberg, M.L., Smith, D.E.: Reasoning about action II: The qualification problem.
Artificial Intelligence 35(3), 311–342 (1988)

14. Haslum, P., Geffner, H.: Admissible heuristics for optimal planning. In: 5th In-
ternational Conferende on Artificial Intelligence Planning Systems (AIPS 2000),
pp. 140–149 (2000)

15. Ibbott, C.J., O’Keefe, R.M.: Trust, planning and benefits in a global interorgani-
zational system. Information Systems Journal 14(2), 131–152 (2004)

16. Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in inter-
planetary space: Theory and practice. In: 5th International Conference on Artificial
Intelligence Planning and Scheduling (ICAPS 2000), pp. 177–186 (2000)

17. Kontopoulos, E., Bassiliades, N., Antoniou, G.: Visualizing semantic web proofs of
defeasible logic in the dr-device system. Knowledge-Based Systems 24(3), 406–419
(2011)

18. Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., Batini, C.:
Managing data quality in cooperative information systems. In: Chung, S., et al.
(eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 486–502.
Springer, Heidelberg (2002)

19. Pajares, S., Onaind́ıa, E.: Temporal defeasible argumentation in multi-agent plan-
ning. In: 22nd International Joint Conferences on Artificial Intelligence (IJCAI
2011), pp. 2834–2835 (2011)

20. Pardo, P., Pajares, S., Onaind́ıa, E., Godo, L., Dellunde, P.: Multiagent argumen-
tation for cooperative planning in delp-pop. In: 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 971–978 (2011)

21. Penberthy, J.S., Weld, D.: Ucpop: A sound, complete, partial order planner for adl.
In: Proceedings of the 3rd International Conference on Knowledge Representation
and Reasoning (KR 1992), pp. 103–114 (1992)

22. Pollock, J.: Defeasible planning. In: Proceedings of the AAAI Workshop, Integrat-
ing Planning, Scheduling and Execution in Dynamic and Uncertain Environments.
Carnegie Mellon University (June 1998)

23. Rahwan, I., Amgoud, L.: An argumentation-based approach for practical reasoning.
In: International Workshop on Argumentation in Multi-Agent Systems (ArgMAS),
pp. 74–90 (2007)

24. Sapena, O., Torreño, A., Onaind́ıa, E.: On the construction of joint plans through
argumentation schemes. In: 10th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2011), pp. 1195–1196 (2011)

25. Smith, D.E., Frank, J., Jónsson, A.K.: Bridging the gap between planning and
scheduling. The Knowledge Engineering Review 15(1), 47–83 (2000)

26. Tang, Y., Norman, T., Parsons, S.: A model for integrating dialogue and the execu-
tion of joint plans. In: International Workshop on Argumentation in Multi-Agent
Systems (ArgMAS), pp. 60–78 (2010)

27. Thimm, M.: Realizing argumentation in multi-agent systems using defeasible logic
programming. In: International Workshop on Argumentation in Multi-Agent Sys-
tems (ArgMAS), pp. 175–194 (2009)

28. Wooldridge, M.: Agent-based software engineering, vol. 144, pp. 26–37 (1997)

A Case Retrieval Approach Using Similarity and

Association Knowledge

Yong-Bin Kang1, Shonali Krishnaswamy1, and Arkady Zaslavsky1,2

1 Faculty of IT, Monash University, Australia
{yongbin.kang,shonali.krishnaswamy}@monash.edu

2 ICT Centre, CSIRO, Australia
arkady.zaslavsky@csiro.au

Abstract. Retrieval is often considered the most important phase in
Case-Based Reasoning (CBR), since it lays the foundation for overall
performance of CBR systems. Retrieval in CBR aims to retrieve relevant
cases that can be successfully used for solving a new problem. To realize
retrieval, CBR systems typically rely on a strategy that exploits similar-
ity knowledge, and it is called similarity-based retrieval (SBR). In SBR,
similarity knowledge approximates the usefulness of cases for solving a
new problem. In this paper, we show that association analysis of stored
cases can be used to strengthen SBR. We present a new approach for
extracting and representing association knowledge from the cases using
association rule mining. We propose a novel retrieval strategy USIM-
SCAR that qualitatively enhances SBR by leveraging both similarity
and association knowledge. We demonstrate the significant advantages
of using USIMSCAR over SBR through an experimental evaluation using
medical datasets.

1 Introduction

Case-Based Reasoning (CBR) [1] is a widely researched technology for problem-
solving in many application domains such as medical diagnosis [2], help-desk
service [3], product recommendation [4], and classification [5]. The fundamental
premise of CBR is that experience in the form of past cases can be leveraged to
solve new problems. It is based on the fact that in many application domains,
similar problems usually have similar solutions. In CBR, experiences are stored
in a database known as a case base, and an individual experience is called a case.

Typically, there are four well-organized phases adopted in CBR [1]. The first
phase is to retrieve one or several cases considered useful for solving a given
target problem. Once useful cases are retrieved, the second phase is to reuse
their solution information. The third phase is to revise or adapt the solution
information to better fit the target problem if necessary. The fourth phase is to
retain the new solution once it has been confirmed or validated.

Retrieval is often considered the most important phase in CBR, since it lays
the foundation for overall performance of CBR systems [6]. Its aim is to retrieve
useful cases that can be successfully used to solve a new problem. If retrieved

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 218–235, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Case Retrieval Approach Using Similarity and Association Knowledge 219

cases are not useful, CBR systems will not eventually produce any good solution
for the new problem.

To accomplish the retrieval process, CBR systems typically rely on a re-
trieval strategy that exploits similarity knowledge. This strategy is often called
similarity-based retrieval (SBR) [7]. In SBR, similarity knowledge aims to ap-
proximate the usefulness of stored cases as to solving a new problem [8]. This
knowledge is usually encoded in the form of similarity measures, which are used
to compute similarities between a new problem and the cases. By using simi-
larity measures, SBR retrieves useful cases ranked by their similarities to the
new problem. The solutions of these cases are then utilized to solve the problem.
A limitation of SBR is that it tends to rely strongly on similarity knowledge
only, ignoring other available knowledge that can be additionally leveraged for
improving its retrieval performance [7,9,8].

While many kinds of learnt and induced knowledge (e.g. statistical [10], do-
main [8,11], adaptation [7,12] knowledge) have been utilized to enhance SBR, this
paper proposes that association analysis of stored cases can improve traditional
SBR. We propose a new retrieval strategy USIMSCAR that leverages associa-
tion knowledge in conjunction with similarity knowledge. Association knowledge
is formalized to represent certain interesting relationships, shared by a large
number of cases, acquired from stored cases using association rule mining. The
key idea of USIMSCAR thus lies in its usage of both similarity and association
knowledge to deliver an improved retrieval strategy for CBR. We show USIM-
SCAR improves SBR through an experimental evaluation using medical datasets
found in UCI ML Repository.

This paper is organized as follows. In Section 2, we present the motivation
of our work. In Section 3, we present a background of similarity knowledge
and association knowledge. In Section 4, we present our approach for formaliz-
ing association knowledge. In Section 5, we present USIMSCAR that leverages
similarity and association knowledge. In Section 6, we evaluate USIMSCAR in
comparison with SBR. In Section 7, we review the literature work related to this
paper. In Section 8, we present our conclusion and future research directions.

2 Motivating Scenario

To illustrate our research motivation, we use a medical diagnosis scenario pre-
sented in [13]. Consider a case base D in Table 1, where each case is represented
as a pair of a problem and the corresponding solution. Each problem is described
by five attributes (symptoms) A1, ..., A5, and each solution by an attribute (a
diagnosis) A6. Our aim is to diagnose the correct disease ‘appendicitis’ for a new
patient Q, since Q really suffered from ‘appendicitis’ as noted in [13].

To predict a diagnosis for Q, in principle, SBR may find similar cases to Q
using a similarity metric. Assume that we use the following metric, used in [13],
that measures the similarity between Q and each case P ∈ D,

220 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

Table 1. A patient case base

Cases ID
Local Pain Other Pain Fever Appetite Loss Age Diagnosis Similarity

(A1) (A2) (A3) (A4) (A5) (A6) to Q

P1 right flank vomit 38.6 yes 10 appendicitis 0.631
P2 right flank vomit 38.7 yes 11 appendicitis 0.623
P3 right flank vomit 38.8 yes 13 appendicitis 0.618
P4 right flank sickness 37.5 yes 35 gastritis 0.637
P5 epigastrium nausea 36.8 no 20 stitch 0.420
Q right flank nausea 37.8 yes 14 ?

Weight 0.91 0.78 0.60 0.40 0.20

SIM(Q, P) =
∑n

i=1 wi · sim(qi, pi)∑n
i=1 wi

,

sim(qi, pi) =

⎧⎪⎨⎪⎩
1 − |qi−pi|

Amax
i −Amin

i
, if Ai is numeric,

1, if Ai is discrete & qi = pi,

0, otherwise,

(1)

where wi is a weight assigned to an attribute Ai of Q and P by domain experts,
qi and pi are values of Ai, n is the number of attributes of Q and P (i.e. n = 5),
and sim(qi, pi) is a function computing the similarity between qi and pi.

Once cases similar to Q are selected using the metric SIM , SBR determines a
diagnosis for Q. Assume that SBR utilizes the most similar case to Q. As seen in
Table 1, P4 is thus chosen, since it is the most similar case to Q. This means that
a diagnosis choice for Q is ‘gastritis’. However, it turns out to be wrong, since
Q actually suffered from ‘appendicitis’, as outlined above. This scenario shows
that SBR has a limitation rooted in its nature−its ability tends to be strongly
determined by the use of only similarity knowledge.

To address this issue, our idea is to formalize special knowledge, called as-
sociation knowledge, that indicates how certain known problems are strongly
associated with certain known solutions in a case base, and to exploit it during
the retrieval process in CBR. For example, in Table 1, we observe that the values
of A5 (Age) of three cases P1, P2, and P3 are quite similar, which range from 10
to 13. These values are associated with ‘appendicitis’. Whereas the value of A5

of P4 is 35, and it is associated with ‘gastritis’. We note that the former associa-
tion is supported by three cases, while the latter by only one case. If we quantify
such associations, it may be usefully exploited in conjunction with similarity
knowledge for solving the target problem. For example, assume that each of the
above associations is quantified as the proportion of the cases that support it.
The former association (as1) is then quantified as 0.6 (3/5), and the latter (as2)
as 0.2 (1/5). In Table 1, we see that SIM(Q, P4) is 0.637, and SIM(Q, P1) is
0.631. We now measure the usefulness of each case with respect to Q by com-
bining its similarity to Q and the quantified value of the association that the
case supports. Suppose that the combination is implemented via the arithmetic
multiplication operation. Then, we measure the usefulness of P4 as 0.127 by
SIM(Q, P4)×as2, and that of P1 as 0.379 by SIM(Q, P1)×as1. Regarding the

A Case Retrieval Approach Using Similarity and Association Knowledge 221

computed usefulness, the higher the better. We thus conclude that P1 is more
useful than P4 so that P1’s diagnosis ‘appendicitis’ can be used as a diagnosis
for Q. This meets our objective of this scenario. This paper presents how to
extract and represent association knowledge as well as exploit this knowledge in
conjunction with similarity knowledge in order to qualitatively enhance SBR.

3 Background to Research on Similarity and Association
Knowledge

Prior to presenting the underpinnings of our proposed retrieval strategy, it is es-
sential to provide a background of similarity and association knowledge. This sec-
tion provides this background. We first present our case representation scheme,
which is the basis for formalizing both similarity and association knowledge.

To represent cases, many CBR systems generally adopt well-known knowledge
representation formalisms, such as attribute-value pairs and structural represen-
tations [14]. In our work, we choose the attribute-value pairs representation due
to its simplicity, flexibility and popularity. Let A1, ..., Am be attributes defined
in a given domain. An attribute-value pair is a pair (Ai, ai), where Ai is an at-
tribute (or feature1) and ai is a value of Ai∈[1,m]. A case C is a pair C = (X, Y)
where X is a problem, represented as X = {(A1, a1), ..., (Am−1, am−1)}, and Y
is the solution of X , represented as Y = (Am, am). We call an attribute Am a
solution-attribute. A case base D is a collection of cases.

3.1 Background to Research on Similarity Knowledge

Similarity knowledge is referred to as knowledge encoded via similarity measures
computing the similarities between a new problem Q and stored cases. SBR
mainly exploits this knowledge. Similarity knowledge represents a heuristic for
estimating the usefulness of stored cases as to solving Q. Intuitively, the higher
the similarity between Q and the case C is, the more useful C is as to solving Q.
A formulation of similarity measures suitable for cases represented by attribute-
value pairs is often based on a widely used principle. This is the local-global
principle that decomposes a similarity measure by local similarities for individual
attributes of the cases and a global similarity aggregating the local similarities [8].
An accurate local similarity function relies on attribute types. A global similarity
function can be arbitrarily complex, but simple functions are usually used. A
widely used form is weighted average aggregation [8] (e.g. SIM in Eq. 1).

3.2 Background to Research on Association Knowledge

We now present the fundamentals of association knowledge in a CBR context.
These are association rule mining [15], class association rule mining [16], and
the soft-matching criterion [17].
1 To simplify the presentation, we do not distinguish between terms “attributes” and

“features”, and use these terms interchangeably.

222 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

Association rule mining [15] aims to mine certain interesting relationships,
called associations, in a transaction database. It focuses on discovering a set of
highly correlated features shared a large number of transactions in the database.
Let I be a set of distinct literals, called items. A set of items X ⊆ I is called an
itemset. Let D be a set of transactions. Each transaction T ∈ D is a set of items
such that T ⊆ I. We say that T contains an itemset X , if X ⊆ T holds. Every
association rule has two parts: an antecedent and a consequent. An association
rule is an implication of the form X → Y , where X ⊆ I is an itemset in the
antecedent and Y ⊆ I is an itemset in the consequent, and X ∩ Y = ∅. The rule
X → Y has support s in D if s% of transactions in D contain X ∪Y . This holds
in D with confidence c if c% of transactions in D that contain X also contain Y .
Association rule mining can also be used for discovering interesting relationships
among stored cases. In a CBR context, a transaction is seen as a case, and an
item is seen as an attribute-value pair. Referring to Table 1, we can mine a rule
r1 : (A1, right flank) → (A2, vomit). Let X be an item (A1, right flank). Let Y
be an item (A2, vomit). The support of r1 is 0.6, since X and Y occur together
in three out of five cases in D. The confidence of r1 is 0.75, since Y occurs in
three out of four cases that contain X in D. Apriori [15] is one of the traditional
algorithms for association rule mining.

Consider a special subset of association rules whose consequents are restricted
to a single target variable. Rules in this subset are called class association rules
(cars) [16]. In a CBR context, cars can be seen as special association rules whose
consequents are restricted to hold special items, formed as pairs of a “solution-
attribute” (see earlier in this section) and its values. We call such an item a
solution-item. Thus, a car has the form X → y, where X ⊆ I an itemset in the
antecedent and y ∈ I is a solution-item in the consequent. In Table 1, we can mine
a car: r2 : (A2, vomit) → (A6, appendicitis). But the above rule r1 is not a car,
since r1 does not contain any solution-item in the consequent. We here emphasize
that the aim of building association knowledge is to formalize special knowledge
encoding how certain attribute-value pairs of known problems are associated
with known solutions in a case base. For the purpose, we will use the form of
cars, since it is suited well for it. Note that the car X → y encodes an association
between an itemset X , holding attribute-value pairs of known problems, and a
solution-item y holding an attribute-value pair of a known solution.

Consider the association rule X → Y . A limitation of traditional association
rule mining algorithms (e.g. Apriori [15]) is that itemsets X and Y are discovered
based on the equality relation. Unfortunately, when dealing with items similar
to each other, these algorithms may perform poorly. For example, consider the
sales database of a supermarket. Apriori cannot find rules like “80% of the
customers who buy products similar to milk (e.g. cheese) and products similar
to eggs (e.g, mayonnaise) also buy bread.” To address this issue, the SoftApriori
algorithm [17] was proposed. It uses the soft-matching criterion, where itemsets
in the antecedent and the consequent are found using similarity assessment. By
employing the concept of similarity, the soft-matching criterion can be used to
model richer relationships among features of cases than the equality relation [17].

A Case Retrieval Approach Using Similarity and Association Knowledge 223

4 Association Knowledge Formalization

Association knowledge is encoded via special rules that are “cars” whose an-
tecedents are determined based on the “soft-matching criterion”. We call these
rules soft-matching class association rules (scars). A scar represents a strongly
evident correlation, between certain attribute-value pairs of known problems and
a known solution shared by a significant number of relevant cases.

LetD be a set of cases, where each case is characterized by attributes A1, ..., Am.
Based on our case representation scheme, presented in Section 3, we call a pair
(Ai, ai)1≤i≤m−1 an item. We call a pair (Am, am) a solution-item. Let I be a set
of items. A set L ⊆ I with k = |L| is called a k-itemset or simply an itemset. Let
sim(x, y) be a function computing the similarity between two items x, y ∈ I. We
say that x and y are similar, iff sim(x, y) ≥ a user-specified minimum similarity
(minsim). Let x be an item (A2, 38.6). Let y be an item (A2, 38.7). Assuming
a similarity function for an attribute A2 is defined as sim(x, y) = 1 − |x−y|

40 ,
sim(x, y) is 0.998. Given two itemsets X, Y ⊆ I (|X | ≤ |Y |), softSuppR(X, Y)
is a function defined as

∑ sim(x,y)
|X| , where x ∈ X and y ∈ Y are two items charac-

terized by the same attribute. We say that X is a soft-subset of Y (X ⊆soft Y),
iff softSuppR(X, Y) ≥ minsim; or Y softly contains X . The problem described
in each case C ∈ D is also seen as a k-itemset with k = |m − 1|, since it is rep-
resented as {(A1, a1), ..., (Am−1, am−1)}. The soft-support-sum of an itemset X
regarding D is defined as softSuppSum(X) =

∑
C∈D softSuppR(X, C), where

X ⊆soft C. The soft-support of X is defined as softSupp(X) = softSuppSum(X)
|D| .

The soft-support for a scar X → y is defined as the fraction of cases in D that
softly contain an itemset X and contain a solution-item y. The soft-confidence
of this rule is defined as the fraction of cases in D that softly contain X also
contain y. In this paper, a ruleitem is of the form 〈X, y〉 and basically represents
a scar X → y.

The key operation for scars mining is to find all ruleitems that have soft-
supports ≥ minsupp (a user-specified minimum support). We call such ruleitems
frequent ruleitems. For all the ruleitems that have the same itemset in the an-
tecedent, one with the highest interestingness is chosen as a possible rule (PR).
To measure the interestingness of association rules, the support and confidence
criteria are typically used. On some occasions, a combination of them is used.
Often, a rationale for doing so is to define a single optimal interestingness by
leveraging their correlations. We choose an interestingness measure that com-
bines soft-support and soft-confidence such that they are monotonically related.
We thus choose the Laplace measure [18]. Given a ruleitem r : X → y, its Laplace
measure Laplace(r) can be denoted as N ·softSupp(X→y)+1

N ·softSupp(X→y)/softConf(X→y)+2 , where
N = |D|. If Laplace(r) ≥ a user-specified minimum level of interesting (min-
interesting), we say r is accurate. A candidate set of scars consists of all the PRs
that are frequent and accurate.

Let k-ruleitem be a ruleitem whose antecedent has k items. Let Fk be a
set of frequent k-ruleitems. In Fk, each ruleitem r: X → y has two fields:
r.anteSoftSuppSum storing soft-support-sum of ruleitems in D that softly

224 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

1: F1 = findFrequentRuleItems(D);
2: SCAR1 = genRules(F1);
3: k = 2;
4: while Fk−1 �= ∅ do
5: CRk = generateCandidatesRuleItems(Fk−1);
6: for each case C ∈ D do
7: for each r : X → y ∈ CRk do
8: if r ⊆soft C then
9: r.anteSoftSuppSum += softSuppR(X,C);

10: if y = C.solution then
11: r.softSuppSum += softSuppR(X,C);
12: end if
13: end if
14: end for
15: end for
16: Fk = {r ∈ CRk |softSupp(r)| ≥ minsupp};
17: SCARk = genRules(Fk);
18: k++;
19: end while
20: SCARS =

⋃
k≥minitemsize SCARk;

21: prSCARS = pruneRules(SCARS);
22: Return prSCARS;

Algorithm 1. The algorithm for scars mining

contain X , and r.softSuppSum storing the soft-support-sum of ruleitems in
D that softly contain X and also contain y. Thus, softSupp(r) = r.softSuppSum

|D|
and softConf(r) = r.softSuppSum

r.anteSoftSuppSum .
Algorithm 1 is the algorithm for scars mining: (1) For 1-ruleitems X ⊆ I,

we find F1 as F1 = {{X}|softSupp(X) ≥ minsupp}. A set SCAR1 is then
generated by only choosing PRs from F1 (lines 1 - 2). (2) For each k subsequent
pass, we find a set of new possibly frequent ruleitems CRk using Fk−1 found in
the (k − 1)th pass. We then scan D, and updates the anteSoftSuppSum and
softSuppSum of ruleitems in CRk. We then generate a new Fk by extracting
ruleitems in CRk whose soft-support ≥ minsupp. A set SCARk is generated
by only choosing PRs from Fk (lines 3 - 19). (3) From SCAR1, ..., SCARk,
we choose only sets whose i ∈ [1, k] ≥ minitemsize (a user-specified minimum
ruleitem size), and store them in a set SCARS. Our idea is to choose a small
representative subset of frequent ruleitems from the large number of resulting
frequent ruleitems. The longer the frequent ruleitem, the more significant it is,
driven from the studies [19]. We perform a rule pruning on ruleitems in SCARS.
A rule r is pruned, if Laplace(r) < min-interesting. The set of ruleitems after
the pruning is stored in a set prSCARS and returned (lines 20 - 22).

5 A Unique Retrieval Strategy: USIMSCAR

Given a new problem Q, the goal of our novel retrieval strategy USIMSCAR is
to generate a retrieval result RR. RR consists of potentially useful objects that
can be used to solve Q by leveraging both similarity and association knowledge.

A Case Retrieval Approach Using Similarity and Association Knowledge 225

Such objects are obtained from both stored cases and scars mined. Let D be a
set of cases. Let prSCARS be the set of scars mined from D. We below present
the USIMSCAR algorithm:

1: RC = retrieveSimilarCases(Q, D);
2: RS = retrieveSimilarScars(Q, RC, prSCARS);
3: for each case C ∈ RC do
4: rC = getBestSCAR(C, prSCARS);
5: if rC �= ∅ then
6: USF (C, Q) = SIM(C, Q) · Laplace(rC);
7: else
8: USF (C, Q) = SIM(C, Q) · min-interesting;
9: end if

10: object = createObject(C, USF (C, Q));
11: RR = RR

⋃
object;

12: end for
13: for each scar r ∈ RS do
14: USF (r, Q) = SIM(r,Q) · Laplace(r);
15: object = createObject(r, USF (r,Q));
16: RR = RR

⋃
object;

17: end for
18: RR = enhanceObjects(RR);
19: Return RR;

Algorithm 2. The USIMSCAR algorithm

(1) In D, we find the k most similar cases RC to Q (line 1). We denote SIM(C, Q)
as the similarity between a case C ∈ D and Q.
(2) In prSCARS, we find the k most similar scars RS to Q (line 2). A ques-
tion raised is how to define a function SIM(r, Q) that computes the similarity
between a scar r and Q. Our answer to it lies in our choice of the “cars rep-
resentation” for scars mining. Note that scars have the identical structure as
cases−the antecedents and consequents of scars correspond to the problem and
solution part of cases respectively. Thus, SIM(r, Q) can be defined in the same
way as SIM(C, Q), where C is a case in D. To generate RS, we only consider the
scars in prSCARS such that their itemsets in the antecedents are “soft-subsets”
of cases in RC, rather than scanning all scars in prSCARS for efficiency. We
denote such rules as RCS. Note that each case C ∈ RC is chosen as a similar
case to Q (C ∼ Q). Assuming each scar r ∈ RCS has the form r : X → y, X is
a soft-subset of C (X ⊆soft C). Since C ∼ Q and X ⊆soft C, X ⊆soft C ∼ Q
can be derived. It implies that RCS is the collection that is a particular subset
(i.e. soft-subset) of cases in RC similar to Q.
(3) For each case C ∈ RC, we select a special scar rC ∈ prSCARS (line 4). A
rule r ∈ prSCARS is chosen as rC , if it has the highest interestingness (i.e. the
Laplace measure) among those scars in prSCARS such that their itemsets in
the antecedents are “soft-subsets” of C and their solutions in the consequents
are “equal” to the solution of C. We then compute the usefulness of C re-
garding Q (USF (C, Q)) by combining SIM(C, Q) and Laplace(rC) using the
multiplication operation. If candidate(s) for rC is chosen more than one, let

226 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

us say m, we use the average of the interestingness of these m scars to com-
pute Laplace(rC). If there is no candidate for rC , we use min-interesting for
Laplace(rC). Note that in SBR, the usefulness of C regarding Q is generally
measured by SIM(C, Q). In contrast, our combination schemes aim to enhance
such usefulness by leveraging SIM(C, Q) and Laplace(rC). We then cast C to
a generic object O that can encapsulate any cases and scars. O has two fields:
O.inst = C; O.usf = USF (C, Q). O is added to a retrieval result RR (lines 4 -
11);
(4) For each scar r ∈ RS, we compute the usefulness of r regarding Q (USF (r, Q))
by combining SIM(r, Q) and Laplace(rC) using the multiplication operator. This
aims to directly leverage each scar in RS whose interestingness is high with re-
spect to Q. For each scar r ∈ RS, we cast r to a generic object O. O has two
fields: O.inst = r; O.usf = USF (r, Q). O is added to RR (lines 13 - 17).
(5) We further enhance the usefulness of each object in RR (line 18). This is
achieved based on the solution occurrence of objects in RR. Our premise is that
if the solution of an object O is more frequent in RR, O is more useful in RR. The
solution of each object O ∈ RR is differently interpreted, according to whether
O was cast from a case C or a scar r. If created from C, its solution indicates the
solution of C; if created from r, its solution means the solution in the consequent
of r. Let S be a set of solutions of objects in RR. Let SO be a set of objects in
RR that have the solution equal to the solution of an object O ∈ RR. For each
object O ∈ RR, we compute δ(SO) as δ(SO) = |SO|/|RR| Finally, we enhance
O.usf by multiplying δ(SO). Each object O ∈ RR, with its usefulness regarding
Q (O.usf), will be utilized to induce a solution for Q.

We now illustrate how USIMSCAR performs with the case base D shown in
Table 1, already used in Section 2, and how a solution is induced from RR. From
D, assume that we generate the following scars shown in Table 2.

Table 2. The scars generated

Rules Laplace Soft-subset of

r1: {(A1,right flank),(A2,vomit),(A3,38.6),(A4,yes),(A5,13)} → (A6,appendicitis) 0.922 P1, P2, P3

r2: {(A1,right flank),(A2,vomit),(A3,38.7),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 P1, P2, P3

r3: {(A1,right flank),(A2,vomit),(A3,38.8),(A4,yes),(A5,10)} → (A6,appendicitis) 0.922 P1, P2, P3

r4: {(A1,right flank),(A2,sickness),(A3,37.5),(A4 ,yes),(A5,35)} → (A6,gastritis) 0.775 P4

USIMSCAR takes the following steps (assume k=2 for steps (1) and (2)): (1)
Retrieve the 2 most similar cases to Q: RC = {P4, P1} with SIM(P4, Q) = 0.637,
SIM(P1, Q) = 0.631. (2) Retrieve the 2 most similar scars to Q: RS = {r1, r4}
with SIM(r1, Q) = 0.640, SIM(r4, Q) = 0.637. (3) For each case C ∈ RC, rC

is determined. For P4, r4 is selected. For P1, r1, r2 and r3 are selected. Thus,
USF (P4, Q) = 0.494, USF (P1, Q) = 0.581. Then, P4 with USF (P4, Q) and P1

with USF (P1, Q) are cast to new generic objects, and stored in RR. (4) For
each scar r ∈ RS, its usefulness regarding Q is computed: USF (r1, Q) = 0.594,
USF (r4, Q) = 0.496. Then, r1 with USF (r1, Q) and r4 with USF (r4, Q) are
cast to new generic objects, and stored in RR. (5) Assume that each object in

A Case Retrieval Approach Using Similarity and Association Knowledge 227

RR has a field s holding its solution. RR has four objects RR = {O1, ..., O4}
(see Table 3). As observed, there are only two sets of objects regarding solutions.
For each object O ∈ RR, O.usf is enhanced by weighting δ(SO) = |SO|/|RR|.
The enhancement results are shown under the column ‘final usefulness’ in the
table. Finally, if we choose the most useful one with respect to Q, O3 is chosen.
Its solution ‘appendicitis’, Q really had, is thus used as a diagnosis for Q.

Table 3. The retrieval result RR

field: inst field: usf field: solution final usefulness

O1.inst = P4, O1.usf = 0.494, O1.s = gastritis 0.247
O2.inst = P1, O2.usf = 0.581, O2.s = appendicitis 0.291
O3.inst = r1, O3.usf = 0.594, O3.s = appendicitis 0.297
O4.inst = r4, O4.usf = 0.496, O4.s = gastritis 0.248

6 Evaluation

Our evaluation goal is to empirically show that USIMSCAR can improve SBR
regarding retrieval performance. As a target application task, we choose a task
highly dependent on the retrieval performance in CBR. One suitable task is
to solve classification problems on the basis of the case-based approach. The
case-based approach for classification is defined as follows [20]: given a new
problem Q, its goal is to retrieve a set of similar cases to Q from a case base,
and classify Q based on the retrieved cases. Thus, in principle, this approach
is strongly dependent on the result obtained through retrieval in CBR. Based
on this evaluation approach, we apply USIMSCAR and SBR in predicting an
appropriate diagnosis for a new patient through information of patients whose
diagnosis is already known with medical datasets found in UCI ML Repository2.

6.1 Experimental Setup

SBR is typically realized through the approach using a derivative of the nearest
neighbor algorithm [6]. This approach is called k-nearest neighborhood retrieval
or simply k-NN. The idea of k-NN is that to solve a new problem Q, useful cases
are determined using the k most similar cases to Q. For our comparison pur-
poses, we choose the following k-NN based approaches available in Weka [21]: (1)
IBk is a simple implementation of k-NN, and relies on the Euclidean distance to
find the k most similar cases to Q; (2) IBkCFS denotes an approach integrating
IBk with an algorithm of feature selection, a technique for determining relevant
features from the original features of cases. The algorithm chosen is CfsSub-
setEval available in Weka. IBk is extended to include feature selection by only
considering relevant features when finding the similar cases to Q; (3) IBkLVF
denotes as an approach integrating IBk with the feature selector Consistency-
SubsetEval in Weka; (4) IBkIG denotes as an approach integrating IBk with an

2 http://www.ics.uci.edu/˜mlearn/MLRepository.html

228 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

algorithm of feature weighting, a technique for predicting optimal weights of the
original features of cases. The chosen algorithm is InfoGainAttributeEval avail-
able in Weka. Integrating IBk with feature weighting is straightforward−features
of cases (including Q) can be weighted by feature weighting, and then such fea-
tures are used to find the similar cases to Q; and (5) IBkCS denotes an approach
that integrates IBk with the feature weighting evaluator ChiSquaredAttributeE-
val available in Weka [21]. We also call these k-NN based approaches classifiers,
since these will be used for classification tasks.

In the context of the k-NN classifiers, given Q, classification is done using
two stages: the first is to retrieve a set of similar cases RR to Q using similarity
knowledge, and the second is to classify Q using the solutions (classes) in RR.
In the context of USIMSCAR, these stages can be seen as follows. The first is
to retrieve a set of useful cases and rules RR regarding Q using similarity and
association knowledge, and the second is to classify Q using information driven
in RR. Our work is focused on the first stage. The second stage is often covered
by voting [14]. We choose two well-known voting schemes to perform this stage:
(1) majority voting−the majority solution in RR is chosen as a solution for
Q, and (2) distance weighted voting−each object O ∈ RR gets to vote on the
solution of Q with a vote weighted by its similarity to Q (in the context of the
k-NN classifiers) or usefulness regarding Q (in the context of USIMSCAR).

Table 4 provides a summary of the medical datasets used in our experiments.

Table 4. The medical datasets used in the experiments

Dataset No of Cases No of Attributes
Attr Type

No of Classes
Numeric Nominal

Breast Cancer (BC) 286 9 9 2
Breast Cancer Wins (BCW) 683 10 10 2
Breast Tissue (BT) 106 9 9 6
Pima Indian Diabetes (PID) 768 9 9 2
StatLog Heart Disease (SHD) 270 13 7 6 2
New Thyroid (THY) 215 5 5 3

For our evaluation criteria, we use two metrics widely used for evaluating clas-
sifiers. The first is the classification accuracy that has been very often assumed
to be the best performance indicator for evaluating classifiers. It measures the
proportion of correctly classified instances out of all the tested instances. How-
ever, this accuracy does not take into account the cost of making wrong decisions.
To supplement this lack, we choose F-measure. F-measure is defined as the har-
monic mean between precision (P) and recall (R), denoted as F-measure = 2PR

P+R .
P represents the proportion of the instances, which truly have a class X , among
all those classified as a class X . R indicates the proportion of the instances, clas-
sified as a class X , among all those instance having a class X . A high F-measure
value indicates that both P and R are reasonably high.

USIMSCAR and the five k-NN based classifiers compared (simply 5CF) are
all tested with six medical datasets by using 10-fold cross-validation. In this val-
idation practice, each dataset is partitioned into ten subsets. Of the ten subsets,

A Case Retrieval Approach Using Similarity and Association Knowledge 229

a single subset is retained as testing data, and the remaining nine subsets are
used as training data. The cross-validation process is then repeated ten times
(the folds), with each of the ten subsets used exactly once as the testing data.

The similarity knowledge, used in the experiments, is encoded as a similarity
measure using the global-local principle explained in Section 3.1. Given a new
problem Q and a case C, their similarity is defined as the function SIM in Eq.
1. We configured that this function is equally used in 5CF and USIMSCAR. To
perform Algorithm 1, we use the following parameters: minsupp = 0.1 (10%);
minsim = 0.95 (95%); min-interesting= 0.7 (70%); and minitemsize = 0.5 ∗ N ,
where N is the total number of the attributes of instances in the training data.

6.2 Results and Analysis

For each dataset, we first report the mean number of scars generated by perform-
ing Algorithm 1, where the mean is attained by applying 10-fold cross-validation:
BC:228, BCW: 1513, BT: 6013, PID: 524, SHD: 676, and THY: 1073. We found
that the number of the scars generated increases with the increase in the number
of the attributes of instances for each dataset. However, interestingly, the num-
ber of the scars acquired from BT is the highest as 6010, although the number of
instances in the training data is the lowest as 96 (106 * 0.9). This was occurred,
since some items in BT relatively appear very frequently.

To test approaches (USIMSCAR and 5CF), we need to find a best value for the
top k that indicates the number of the most similar cases to a new problem Q. We
test 5CF using various values for the k, ranging from 1 to 15, since we observed
that increasing k beyond 15 hardly changed the results. To run USIMSCAR, we
also need to find a value for the top k that indicates the number of the most
similar cases and scars to Q. We tested USIMSCAR using the same value range
for finding it. Our comparison purposes, we finally use the best result obtained
from the use of the best choice of the k in terms of classification accuracy (CA)
and F-measure (FM).

Results Using Majority Voting. We first present the results of USIMSCAR
and 5CF using majority voting in terms of CA. Table 5 shows a summary of the
results. The best approach is denoted in boldface for each dataset.

As observed in Table 5, USIMSCAR performs best for three dataset (BCW,
BT, and THY). For BCW, its improvement over 5CF ranges from 0.44% to
0.73%. For BT, the improvement is up to 6.60%. For THY, the improvement
is consistently equal to 1.4%. Whereas USIMSCAR occupies 2nd place for the
datasets (BC, PID, and SHD). Thus, it outperforms the other four classifiers for
the datasets. For BC, PID, and SHD, it performs better than those classifiers
with a range of 1.75% - 2.45%, 0.39% - 1.43%, and 0.74% - 1.48%, respectively.

Table 6 shows a summary of the results of USIMSCAR and 5CF in terms of
FM. The best one is also denoted in boldface for each dataset. As can be seen,
USIMSCAR outperforms 5CF with three (BCW, BT, and THY) out of the six
datasets. For BC, and BCW, its improvement ranges from 0.09% to 4.9%, and
0.47% to 0.78%, respectively. For THY, its improvement is consistently equal

230 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

Table 5. The best results using majority voting in terms of classification accuracy (%)

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 75.874 74.126 76.224 73.776 73.427 73.427
BCW 97.657 97.218 97.218 97.218 96.925 97.218
BT 71.698 71.698 65.094 67.925 69.811 70.755
PID 75.781 74.349 77.214 75.000 74.870 75.391
SHD 83.333 82.593 81.852 82.222 85.185 81.852
THY 97.674 96.279 96.279 96.279 96.279 96.279

Table 6. The best results using majority voting in terms of F-measure (%)

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 68.744 65.147 68.653 64.896 63.840 65.147
BCW 97.419 96.946 96.946 96.946 96.643 96.946
BT 71.178 71.465 63.249 65.127 67.689 68.435
PID 72.212 70.751 74.137 71.923 71.463 71.923
SHD 83.078 82.339 81.561 82.000 84.966 82.725
THY 96.883 95.084 95.084 95.084 95.084 95.084

to 1.80%. USIMSCAR occupies 2nd place for the other three datasets (BT,
PID, and SHD). Thus, it performs better than the other four classifiers for the
datasets. For BT, PID, and SHD, it outperforms these classifiers with a range
of 2.74% - 7.93%, 0.29% - 1.46%, and 0.35% - 1.52%, respectively.

Through Tables 5 and 6, we find that USIMSCAR outperforms 5CF for the six
datasets in 27 out of 30 comparisons in terms of both CA and FM. It indicates
that using majority voting USIMSCAR achieves better performance in 90% of
the cases than 5CF in terms of the metrics.

Results Using Weighted Voting. We now analyze the experimental results
of USIMSCAR and 5CF using weighted voting in terms of CA. Table 7 shows
a summary of the results. The best one is denoted in boldface for each dataset.
As can be observed, USIMSCAR outperforms 5CF for all the six datasets. The
improvement of USIMSCAR over them for each dataset is as follows. For BC,
BCT, BT, PID, SHD, and THY, it is 4.90% - 6.64%, 0.29% - 0.58%, 6.64% -
13.20%, 10.42% - 13.15%, 5.93% - 7.78%, and 1.40%, respectively.

Table 8 shows a summary of the results of USIMSCAR and 5CF in terms
of FM. The best one is also denoted in boldface for each dataset. As observed,
USIMSCAR outperforms 5CF for all the six datasets. The improvement of USIM-
SCAR over them for each dataset is as follows. For BC, BCT, BT, PID, SHD, and
THY, it is 10.19% - 12.12%, 0.32% - 0.62%, 6.16% - 14.16%, 13.83% - 15.15%,
6.10% - 7.83%, and 1.80%, respectively.

Through Tables 7 and 8, we find that USIMSCAR outperforms 5CF for the six
datasets in all 30 comparisons in both CA and FM. This means that USIMSCAR
achieves better performance in 100% of the cases than the classifiers in terms of
both metrics.

A Case Retrieval Approach Using Similarity and Association Knowledge 231

Table 7. The best results using weighted voting in terms of classification accuracy (%)

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 79.021 73.427 • 73.776 • 72.727 • 72.378 • 74.126 •
BCW 97.657 97.218 97.218 97.365 97.072 97.218
BT 78.302 71.698 • 65.094 • 67.925 • 69.811 • 71.698 •
PID 87.500 74.479 • 77.083 • 75.391 • 74.479 • 74.349 •
SHD 89.630 82.222 • 82.222 • 81.852 • 83.704 • 82.593 •
THY 97.674 96.279 96.279 96.279 96.279 96.279

Table 8. The best results using weighted voting in terms of F-measure (%)

Dataset USIMSCAR IBk IBkCFS IBkLVF IBkIG IBkCS

BC 74.251 64.053 • 65.245 • 62.517 • 62.127 • 64.053 •
BCW 97.421 96.946 96.946 97.104 96.798 96.946
BT 77.626 71.465 • 63.466 • 65.127 • 67.689 • 68.435 •
PID 86.140 71.177 • 74.055 • 72.307 • 70.995 • 72.307 •
SHD 89.553 82.034 • 81.942 • 81.723 • 83.451 • 81.723 •
THY 96.883 95.084 95.084 95.084 95.084 95.084

Using the results shown in Tables 5 - 8, to find whether the performance
improvement of USIMSCAR in terms of CA and FM is statistically significant
over 5CF, we carried out statistical tests. A common approach for measuring a
significant test for a difference between two proportions is the Z-test [22]. We
performed statistical tests using the Z-test at 90% confidence. In the tables,
‘•’ indicates that USIMSCAR attains a significant improvement over the target
classifier at 90% confidence. As observed in Tables 5 and 6, using majority voting,
there is no statistical difference between USIMSCAR and 5CF in terms of both
CA and FM. However, as seen in Tables 7 and 8, 67% of comparisons (20 out of 30
comparisons) between USIMSCAR and 5CF are statistically significant in terms
of both CA and FM. We note that insignificant improvement of USIMSCAR over
5CF does not mean that there is no differences between them, merely that the
tests were unable to detect significance differences. As Keen [23] indicated, such
improvement still can be important if it occurs repeatedly in many contexts.
Thus, the insignificant improvement of USIMSCAR may be still valuable, and
this is where a wide range of tests will be additionally carried out.

We emphasize that for all the six datasets, USIMSCAR using weighting voting
(UWV) outperforms USIMSCAR using majority voting (UMV) in terms of both
CA and FM. As observed in Table 9, UWV attains better performance than
UMV in the 4.63% of the occasions in terms of CA on average. It attains better
performance than UMV in the 5.34% of occasions in terms of FM on average.
This findings indicate that it is more useful to utilize the quantified “usefulness
information” of objects in the retrieval result RR of USIMSCAR, rather than
utilizing merely distribution information of the solutions in RR. Recall that UWV

is configured to perform using the usefulness of objects in RR, which is quantified
using both similarity and association knowledge. Whereas UMV is configured to
perform using distribution information of solutions in RR.

232 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

Table 9. USIMSCAR with two voting schemes

(a) In classification accuracy

Dataset UMV UWV Diff

BC 75.874% 79.021% 3.147%
BCW 97.657% 97.657% 0%
BT 71.698% 78.302% 6.604%
PID 75.781% 87.500% 11.719%
SHD 83.333% 89.630% 6.297%
THY 97.674% 97.674% 0%
Mean 83.670% 88.297% 4.628%

(b) In F-measure

Dataset UMV UWV Diff

BC 68.744% 74.251% 5.507%
BCW 97.419% 97.421% 0.002%
BT 71.178% 77.626% 6.448%
PID 72.212% 86.140% 13.928%
SHD 83.078% 89.553% 6.475%
THY 96.883% 96.883% 0%
Mean 81.586% 86.979% 5.393%

7 Related Work

SBR has been successfully applied in various application domains, such as med-
ical diagnosis [2] and help-desk service [3], to predict useful cases with respect
to solving the target problem. As mentioned in Section 6, SBR is typically im-
plemented through k-NN.

Over the years, researchers have extensively studied k-NN to enhance its accu-
racy. For example, it is shown that k-NN can be integrated with feature selection
[24] or feature weighting [25]. As other trends, to enhance SBR, much work fo-
cuses on integrating SBR with machine learning, domain knowledge, and adap-
tation knowledge. The evolution of machine learning has resulted in retrieval
approaches that combine SBR with rule-induction (RI) methods to improve
SBR [26,9]. RI systems learn domain-specific knowledge, from stored cases, of-
ten represented as IT-THEN rules. Once this knowledge is available, SBR is
augmented with rule-based reasoning using this knowledge. Several researchers
propose a retrieval approach, in which similarity assessment during SBR is in-
tegrated with domain knowledge [8]. Aamodt [11] proposes an approach that
cases are enriched with domain knowledge. Domain knowledge often represents
the knowledge about the environment in which the target system operates, e.g.
facts, heuristics. These approaches aim to guide the retrieval of relevant cases
using domain knowledge. Some work tries to enhance SBR using adaptation
knowledge. For example, the adaption-guided retrieval (AGR) approach is pro-
posed [7], in which adaptation knowledge indicates whether a case can be easily
modified to fit the new problem. In AGR, matches between the target problem
and cases are done, only if there is enough evidence existed in adaptation knowl-
edge that such matches can be catered for during retrieval. USIMSCAR differs
from the above approaches in three aspects:

– Knowledge acquisition: The acquisition of both domain knowledge and adap-
tation knowledge is usually known as a very complex and difficult task [8],
thus often leads to knowledge bottleneck phenomenon. The acquisition is
also very often done with the support of domain experts [7,8]. However, the
acquisition of association knowledge (AK) is straightforward, since AK is
acquired from stored cases. This is also efficient, since acquisition is auto-
matically done using association rule mining.

A Case Retrieval Approach Using Similarity and Association Knowledge 233

– Knowledge formalization: AK is formalized by capturing interesting associ-
ations, between known problem features and known solutions, shared by a
large number of cases. In this context, this formalization can be compared
to feature selection and feature weighting, since they focus on estimating
the relevancy of certain problem features highly correlated to specific known
solutions from the CBR viewpoint. However, they are often based on find-
ing only relationships between single individual features and each solution,
ignoring interesting relationships between combinations of features and each
solution. The latter relationships may be curial in a certain circumstance.
For example, two individual features may be strongly related to a certain
solution but together may not, or vice versa. In contrast, AK can represent
both kinds of relationships, thereby providing enriched relationships between
the features of problems and solutions. This benefit originally comes from
the use of association rule mining, which enables to extract all interesting
correlations and frequent patterns derived in a case base.

– Knowledge exploitation: The uniqueness of USIMSCAR lies in the use of
AK in conjunction with similarity knowledge (SK). This exploitation can
be compared to the usage of the rules generated by RI methods from an
analysis of cases. We note that this usage is classified into two schemes:
one for weighting features [9], and the other for generating a solution for a
given problem without using knowledge derived from similarity measurement
between a given problem and cases (i.e. SK) [26]. In contrast, we leverage
combined information inherent in both SK and AK for the retrieval process
in CBR.

8 Conclusion and Future Work

In this paper, we proposed a new retrieval strategy USIMSCAR that outper-
forms similarity-based retrieval (SBR). Its uniqueness lies in leveraging associa-
tion knowledge in conjunction with similarity knowledge during CBR retrieval.
Also, we proposed a unique approach for extracting and representing association
knowledge using association rule mining techniques. We evaluated USIMSCAR
in comparison with SBR using medical datasets found in UCI ML Repository.
The experimental results demonstrated that USIMSCAR is an effective retrieval
strategy for CBR that qualitatively outperforms SBR.

USIMSCAR can be extended to cases, where each problem is represented
by complex structures. In CBR, case problems can be characterized by not only
attribute-value pairs, but also more complex structures like object-oriented (OO)
or hierarchical (HR) representation [6]. The OO representation utilizes the data
modeling approach of OO paradigm such as “is-a”. In the HR representation, a
case problem is characterized through multiple levels of abstraction, and its at-
tribute values reference nonatomic cases. For USIMSCAR to treat the case prob-
lems characterized by such representations, two issues must be addressed−how to
formalize similarity knowledge and association knowledge. To address the former,
one may use the similarity approaches proposed in [27]. To address the latter,

234 Y.-B. Kang, S. Krishnaswamy, and A. Zaslavsky

one may integrate the soft-matching criterion and extended Apriori algorithms
[28,29] for association rule mining in OO data and HR data. USIMSCAR can
also be extended to cases, where each case problem is associated with more than
one solution. This can be simply generalized into the occasion−a case problem
is associated with one solution. The generalization is possibly done by splitting
a case C into k number of sub cases, according to its k number of solutions. All
these cases are forced to have the same case ‘id’ of C. For example, there is a case
C = (X, Y) (id = C), where X is a problem and Y is a corresponding solution.
Assume that X consists of two treatments {2-tylenol, 2-aspirin}. For C to be
used in USIMSCAR, we split C into two sub cases, whose ids are the same of
C. By doing so, we obtain two cases: C = (X,2-tylenol) and C = (X,2-aspirin).
Then, USIMSCAR can run for these cases without modification.

References

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications 7, 39–59 (1994)

2. Ahn, H., Kim, K.-j.: Global optimization of case-based reasoning for breast cytology
diagnosis. Expert Syst. Appl. 36, 724–734 (2009)

3. Kang, Y.-B., Zaslavsky, A., Krishnaswamy, S., Bartolini, C.: A knowledge-rich
similarity measure for improving it incident resolution process. In: Proceedings of
the 2010 ACM SAC, pp. 1781–1788. ACM (2010)

4. Bradley, K., Smyth, B.: Personalized information ordering: a case study in online
recruitment. Knowledge-Based Systems 16, 269–275 (2003)

5. Nilsson, M., Funk, P., Sollenborn, M.: Complex Measurement Classification in Med-
ical Applications Using a Case-Based Approach. In: Ashley, K.D., Bridge, D.G.
(eds.) ICCBR 2003. LNCS, vol. 2689, pp. 63–73. Springer, Heidelberg (2003)

6. De Mantaras, R.L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,
Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt, A., Watson,
I.: Retrieval, reuse, revision and retention in case-based reasoning. Knowl. Eng.
Rev. 20, 215–240 (2005)

7. Smyth, B., Keane, M.T.: Adaptation-guided retrieval: questioning the similarity
assumption in reasoning. Artif. Intell. 102, 249–293 (1998)

8. Stahl, A.: Learning of knowledge-intensive similarity measures in case-based rea-
soning. PhD thesis. Technical University of Kaiserslautern (2003)

9. Cercone, N., An, A., Chan, C.: Rule-induction and case-based reasoning: hybrid
architectures appear advantageous. IEEE Trans. on Know. and Data Eng. 11,
166–174 (1999)

10. Park, Y.J., Kim, B.C., Chun, S.H.: New knowledge extraction technique using
probability for case-based reasoning: application to medical diagnosis. Expert Sys-
tems 23, 2–20 (2006)

11. Aamodt, A.: Knowledge-intensive case-based reasoning in CREEK. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 1–15.
Springer, Heidelberg (2004)

12. Hoffmann, A., Khan, A.S.: A new approach for the incremental development of
retrieval functions for CBR. Applied Artificial Intelligence 20, 507–542 (2006)

13. Castro, J.L., Navarro, M., Sánchez, J.M., Zurita, J.M.: Loss and gain functions for
CBR retrieval. Inf. Sci. 179, 1738–1750 (2009)

A Case Retrieval Approach Using Similarity and Association Knowledge 235

14. Cunningham, P.: A Taxonomy of Similarity Mechanisms for Case-Based Reasoning.
IEEE Trans. on Knowl. and Data Eng. 21, 1532–1543 (2009)

15. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: SIGMOD 1993, pp. 207–216. ACM (1993)

16. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Proceedings of the 4th KDD, pp. 443–447 (1998)

17. Nahm, U.Y., Mooney, R.J.: Mining soft-matching association rules. In: Proceedings
of CIKM 2002, pp. 681–683 (2002)

18. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. ACM
Comput. Surv. 38, 9 (2006)

19. Hu, T., Sung, S.Y., Xiong, H., Fu, Q.: Discovery of maximum length frequent
itemsets. Inf. Sci. 178, 69–87 (2008)

20. Jurisica, I., Glasgow, J.: Case-Based Classification Using Similarity-Based Re-
trieval. In: International Conference on Tools with Artificial Intelligence, p. 410
(1996)

21. Witten, I.H., Frank, E.: Data mining: Practical machine learning tools and tech-
niques with Java implementations. Morgan Kaufmann, San Francisco (2000)

22. Richard, C.S.: Basic Statistical Analysis. Allyn & Bacon (2003)
23. Keen, E.M.: Presenting results of experimental retrieval comparisons. Inf. Process.

Manage. 28, 491–502 (1992)
24. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.

Learn. Res. 3, 1157–1182 (2003)
25. Park, J.H., Im, K.H., Shin, C.K., Park, S.C.: MBNR: Case-Based Reasoning with

Local Feature Weighting by Neural Network: Special Issue: Soft Computing in Case
Based Reasoning. Applied Intelligence 21, 265–276 (2004)

26. Auriol, E., Wess, S., Manago, M., Althoff, K.-D., Traphöner, R.: INRECA: A Seam-
lessly Integrated System Based on Inductive Inference and Case-Based Reasoning.
In: Aamodt, A., Veloso, M.M. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 371–380.
Springer, Heidelberg (1995)

27. Bergmann, R., Stahl, A.: Similarity measures for object-oriented case represen-
tations. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI),
vol. 1488, pp. 25–36. Springer, Heidelberg (1998)

28. Kuba, P., Popelinsky, L.: Mining frequent patterns in object-oriented data. Tech-
nical Report, Masaryk University, Czech Republic (2005)

29. Pater, S.M., Popescu, D.E.: Market-Basket Problem Solved With Depth First
Multi-Level Apriori Mining Algorithm. In: SOFA 2009. 3rd International Work-
shop on Soft Computing Applications, pp. 133–138 (2009)

FlexCon – Robust Context Handling in
Human-Oriented Pervasive Flows

Hannes Wolf, Klaus Herrmann, and Kurt Rothermel

Institute of Parallel and Distributed Systems,
Universitätsstraße 38, D-70569 Stuttgart, Germany

�hannes.wolf,klaus.herrmann,kurt.rothermel�@ipvs.uni-stuttgart.de

Abstract. Workflows are increasingly becoming a universal means for
driving and coordinating complex processes, not only in the business
world but also in areas like pervasive computing. Pervasive flows run
in parallel with the user’s real-world actions and are synchronized using
automatically collected context information about her current activities
(context events). Respective workflows cannot be rigidly defined since
the user needs to retain her flexibility and must not be obstructed by
the workflow. However, if the order of activities is not defined until the
activities are actually executed, correctly assigning the uncertain context
events becomes a major challenge. We propose FlexCon – a novel event
assignment approach for such human-oriented workflows that is based on
hybrid workflow models and Dynamic Bayesian Networks. FlexCon ex-
ploits the dependency between context events to provide more accurate
information as to which events need to be consumed by which workflow
activities. Our evaluations show that FlexCon improves the event accu-
racy on average by 54% and the number of successful completed flows
on average by 88%. Thus, FlexCon represents a major step towards un-
obtrusive pervasive applications.

1 Introduction

Workflows are an adequate means for modeling the functionality and the tempo-
ral flow of complex activities in many areas of information technology. Tradition-
ally, they are rooted in business applications [1], where processes span diverse
departments of the same company or different companies. In recent years, how-
ever, an influx of workflow technologies into the domain of pervasive systems
has started. They have been proposed as useful tool for environments with in-
tensive human interaction [2]. Gradually, workflows have become more flexible,
supporting [3] and also gained context-awareness [4].

In the ALLOW project [5], we investigated the concept of Adaptable Pervasive
Flows (in short flows) as a means for rendering complex applications and the
environment (technical equipment, information systems etc.) adaptive to the
mobile user. The basic idea of flows is that a process that a user has to execute
is modeled as a flow. This flow is running in the background in parallel to the
actual real-world actions of the user and can support her in different ways.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 236–255, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 237

The key to this is that the flow requires as little explicit input from the user
as possible in order to offer unobtrusive support. First, the flow can guide the
user through the process by giving her feedback in critical situations (e.g. visual
or audio). Second, it may take over certain routine tasks automatically (e.g.
documenting the actual process for legal or quality-related reasons). Third, the
flow may prepare the environment (e.g. configuring electronic devices etc.) in
advance to minimize disturbances and the work load of the user. Fourth, the flow
may automatically adapt itself in case it recognizes that the planned execution
will fail (e.g. due to lack of a required resource). All of this is possible since the
flow “knows” the prospective future activities associated with the process – they
are part of the flow model.

To achieve this with minimal explicit input, the flow system monitors what
the user does in the real world in order to automatically synchronize with her
actions and drive the flow forward respectively. This monitoring, which provides
the majority of the input to the flow, is done by means of activity recognition
[6,7] using different types of sensors. The respective data is provided to the flow
as so-called context events.

As an example, consider a nurse in a hospital that has a flow modeling the
morning routine of a patient. That flow involves different activities like washing,
dressing, measuring blood pressure, and disinfecting hands. The actions
associated with these activities in the real world are detected by the activity
recognition system and provided to the flow as context events. Some of the
activities have a clear ordering relation, e.g. she has to wash the patient before
she dresses him. Others are mandatory but may occur at different stages of the
flow (e.g. measuring blood pressure). Yet other activities like disinfecting
hands may be carried out multiple times as needed. Thus, a respective flow must
not be defined rigidly with a fixed predefined order between activities. It must
allow the nurse the flexibility of executing the process in her own way and in the
way required by the specific situation.

When the flow arrives at a certain activity, there may be different ways of
continuing (different possible next activities). Depending on the context events
received, the flow has to decide which of these paths the user took. Supplying
the correct context events to the right flow activities is a tough challenge under
these conditions. First, events may be noisy, duplicated, deleted due to failure
or delayed. This is a fundamental problem that occurs irrespectively of the flex-
ibility in the flow models [8]. Second, due to the gained flexibility, it may not
be completely clear which activity is actually executed next and thus awaits a
respective event.

To solve this fundamental problem of pervasive flow technology in general, we
propose FlexCon, a system that leverages a combination of imperative (rigid)
and declarative (flexible) flow models, Dynamic Bayesian Networks (DBN), and
particle filters to reduce the uncertainty of context events. FlexCon builds prob-
abilistic models of the dependencies between events and uses this information
to improve the processing of probabilistic context events. We evaluated FlexCon
based on a real-world hospital study and found that it decreases the context

238 H. Wolf, K. Herrmann, and K. Rothermel

event uncertainty by up to 73%. While standard flow technology exhibits a high
flow failure rate1 of 82% under the conditions explained above, the failure rate of
FlexCon is only 65% on average of all flows. This presents a major step forward
in the areas of workflow-based pervasive computing.

The rest of the paper is structured as follows: In Section 2 we will investigate
the related work in relevant areas. We present the basic models of context and
workflows in Section 4. After that we introduce our FlexCon approach in Section
5 and evaluate it based on a real-world scenario in Section 6. Finally, we present
our conclusions in Section 7.

2 Related Work

In the following, we will investigate the state-of-the-art in the relevant areas of re-
search. We will first discuss activity recognition systems and how they deal with
context uncertainties. While our work is not directly associated with this area,
it does provide a new approach for handling the uncertainties perceived in ac-
tivity recognition systems on a higher layer by exploiting application knowledge.
Subsequently, we will take a closer look at the field of context-aware workflows.

There have been numerous studies on activity recognition in the health-care
domain [9,10,11]. The major factors for decreasing the uncertainty in the recog-
nition results are the selection of appropriate sensors and exploiting available
application models. Biswas et al. [11] specifically remark that the recognition
process can benefit from the knowledge of domain experts. A flow is a very
detailed representation of expert application knowledge, that FlexCon uses to
increase the accuracy of events.

Barger et al. [9] studied a health status monitoring application that learns
behavioral patterns of a user from his daily activities using a number of motion
sensors. But their system lacks an application model too, leading to missed
events and false positives and a rather low recognition accuracy for uncommon
situations.

Najafi et al. [10] have built a monitoring system for elderly people using one
acceleration sensor, and detecting position transitions and mode of locomotion.
While this approach performs very well for single transitions in a specific test
scenario, the sensing quality decreases over extended periods of time due to the
lack of an application model.

The presented approaches all use sophisticated activity recognition techniques,
but do not consider the kind of application knowledge a flow provides, thus,
neglecting the huge potential.

The integration of context information into classic workflows used in enter-
prises has first been suggested by Wieland et al. [4], who provide interfaces for
accessing context information from within a workflow. This approach was later
extended to deal with Quality of Context [12]. Here, a policy language is used
to define the acceptable amount of uncertainty in context information and to
1 A flow fails if context events are assigned to false activities or are discarded due to

false recognition results.

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 239

filter out information that does not match the specified criteria. This approach
is based on the idea to simply prevent the workflow from receiving uncertain
information. However, if a workflow does not receive the information at all, this
can be just as detrimental as receiving false information. We go one important
step further by improving the information such that it becomes useful for the
flow.

Adam et al. [13] proposed fuzzy logic to enable soft decisions in workflows
based on the input provided to the workflow. However, they did not consider
uncertainties or ambiguities in the input information. Their approach aims at
making a better decisions from the business perspective.

PerFlows, presented by Urbanski et al. [14], are context-aware workflows that
are suitable for pervasive scenarios and provide flexible activity scheduling and
processing. However, they require heavy user interaction to work properly. This
is disadvantageous in scenarios where the workflows shall run in the background
in order not to obstruct the user. In our own previous work [15], we presented
an approach for dynamic context-awareness suited for pervasive flow-based ap-
plications. But this approach also neglects the handling of uncertain context
information.

In 2010, we have proposed FlowCon [15], the first system that was able to
decrease the uncertainty of events by learning the dependencies between events
and by explicitly exploiting the temporal structure encoded in imperative flows
(flows with a strict temporal ordering among activities). FlowCon can increase
the number of successfully executed flows by a factor of 6 to 8 under normal
conditions. With the FlexCon system presented in this paper, we build on this
work and apply related technologies to hybrid flow models that are more flexible
and allow users to act more freely. Overall, this represents a significant step
forward in this field.

3 Scenario

The application scenario we use to evaluate FlexCon is from the health care
domain. We studied the processes conducted by nurses in a geriatric ward in
Mainkofen, Germany over a period of 14 days.

Through a mining process, we extracted workflows from the observations made
at the ward. The respective processes have not been defined as workflows before.
However, in this highly structured working environment, workflows are implicitly
followed in order to fulfill a number of standards in terms of patient care. In total
we collected 32 datasets from 15 different nurses, where each dataset covers the
care of 3 to 5 patients, yielding a total of 130 observed workflow executions.

The purpose of applying a system of adaptable pervasive flows in this in-
stitution is twofold: First, the activities shall be automatically documented for
the records for quality control, process improvement, and legal reasons. Second,
the flow system shall give guidance in case the standard procedures are not fol-
lowed in order to avoid mistakes and help inexperienced personnel in learning
the procedures.

240 H. Wolf, K. Herrmann, and K. Rothermel

Transition
Optional
Activity

Mandatory
activity

Not succession
constraint

Response
constraint

…… a1 Note
results

a2 Wash at
sink

a4 Dress
patient

a3 Wash in
Bed

a6 Disinfect
hands

a5 Change
Bedding

Fig. 1. Example workflow from a hospital scenario

A typical workflow, e.g. from the morning routine, consists of 30 to 50 ac-
tivities of which about 20% have no strict order. The entire navigation in such
a flow depends on context events (i.e. the correct next activity is chosen based
on the context events received). An example fragment is depicted in Figure 1.
Solid boxes depict mandatory activities that need to be executed unconditionally
while dashed boxes are optional. For example, a2 and a3 are optional activities.
The execution of a flow instance is valid if, one of the optional activities, both
or non of them have been executed, while a1, a4, and a6 need to be executed for
the flow to be successful. Solid arrows are transitions that imply a strict ordering
between the activities: a1 must be followed by either a2 or a3 and a4 must follow
both a1 and a2. The dashed lines are constraints that define certain restrictions
on the execution order of the related activities. The figure depicts two examples:
the semantics of the not succession constraint between a3 and a5 is that a valid
flow execution must not contain both activities. It may contain either one or
none of them, and if one is executed, it can be executed arbitrarily often. As
we will explain in Section 4, constraints can be arbitrary linear temporal logic
expressions. Some of them have been translated into a graphical representation.

The flow shown in Figure 1 is a fragment of a larger flow that models the ac-
tual processes found in the Mainkofen nursing ward. Its overall semantics is the
following: When a nurse arrives at this fragment, she must document the results
(a1) of the preceding steps, which include some regular morning examinations,
such as measuring blood pressure. As these examinations are carried out without
assistance of an electronic device, the flow ensures that the nurse will not forget
the results during the following steps. Then she has to take a decision: she may
wash the patient at the sink (a2) or in his bed (a3), depending on the patients
condition and mood. In FlexCon actually both activities are entered as soon as

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 241

a1 has completed. Depending on the incoming context events, either one or both
are executed. If the nurse decides to wash the patient in his bed (a3), she cannot
change the bedding (a5) since the patient still never leaves his bed during the
whole procedure (this is done in a different flow). After the nurse has completed
the washing activity, she needs to dress the patient (a4). When she dressed him,
she must disinfect her hands (a6) at some later point in time, possibly after
a number of other intermediate activities. But, she may disinfect her hands at
any point in time, while the flow is being executed. This is beneficial in two
ways. First, the nurse can flexibly decide to disinfect her hands multiple times,
e.g. during washing the patient, also allowing the system to keep track of her
personal hygiene as well as the patients. Second, the flow can guide the nurse
to disinfect her hands before she continues to care for another patient, this way
enforcing the hospitals hygiene rules.

4 Flow and Context Models

In this section, we will first define our model of context information before we
give a definition of hybrid flows.

4.1 Context Model

As the flows should not obstruct the nurse in her daily routine, they are solely
driven by context events. Therefore, adequate sensors and an activity recog-
nition and context management system (CMS), must be available to gather
context information and provide the context events. However, state of the art
activity recognition systems have some drawbacks. Either, they require the pre-
cise deployment of (expensive) sensors, or the setup and training of the system
is tedious. Cheaper activity recognition systems, e.g. based on standard smart
phones, only provide moderate recognition rates, at best. While the former tech-
nology might be applicable in high-cost environments such as an operating room,
we have to rely on the latter kind in the area of cost-sensitive every-day patient
care.

In the scope of our scenario, we assume that in practice the type of different
events FlexCon is interested in, is a finite set.

Definition 1 (Event Type). A type of situation that can be recognized in the
real world is referred to as an event type u ∈ U , where U denotes the universe
of all event types that the CMS can measure.

An event type describes the abstract semantics of an context event. For example,
nurse walking could be an event type. Events of this type are created whenever
a nurse changes her mode of locomotion to walking. Event types that represent
semantically similar context can belong to a common event type set, and each
event type belongs to at least one event type set.

242 H. Wolf, K. Herrmann, and K. Rothermel

Definition 2 (Event Type Set). An event type set E ⊂ U contains a number
of event types E � {u1, . . . , um},m > 0. A single event type can be a member of
different event type sets.

The event type set containing all event types for a nurse’s locomotion modes
could be, e.g. {nurse walking, nurse sitting, nurse standing}. The purpose of an
event type set is twofold: First, it allows the flow modeler to simply select the
most appropriate context the activity should respond to. As seen below, a flow
model defines a function that maps every activity to a number of distinct event
type sets. Second, the related semantics of all event types in an event type set
allows for a more accurate recognition: Event types that are not contained in
one of the expected event type sets of the current flow activity are likely to be
out of scope. When executed the flow registers the event type sets of a running
activity at the CMS and receives event instances.

Definition 3 (Event Instance). An event instance e ∈ Ue is an instance of a
specific event type u ∈ U . Ue is the universe of all event instances occurring in
the system. e belongs to a specific event type u ∈ E, and the uncertainty about
which exact event type in E e belongs to is given by a probability distribution
IeE : E �→ [0, 1], where

∑
u∈E I

e
E(u) = 1.

IeE is our basic model of uncertainty. Instead of saying that an event instance is
of type u, the CMS provides the distribution IeE , and IeE(u) is the probability
that e is of type u ∈ E. For example if u = nursewalking and u ∈ E then
IeE(nursewalking) = 0.52 indicates that the probability of e being of type nurse
walking is 52%.

4.2 Hybrid Flow Model

A flow model is a template for a specific type of flow. A runnable instance of
such a model must be created whenever a flow is to be executed. We call this
a flow instance. In the following, we also refer to such an instance simply as a
flow. The flow instance is executed by a flow engine. In our work we employ
hybrid flow models that contain transitions as well as constraints between ac-
tivities and, thus, are a mixture of classical imperative production workflows [1]
and declarative flexible [16] workflows. Transitions are annotated with boolean
conditions over the possible set of context events while constraints consist of lin-
ear temporal logic expressions that describe the acceptable temporal relation of
two or more tasks (e.g. a must be executed before b). If a flow modeler currently
wants to use a mixture of both modeling paradigms he is required to add this
flexibility in a hierarchical way [17]. He must decompose the application into a
number of hierarchical layers, usually representing a different level of abstraction
and choose the best modeling paradigm for each layer. Our hybrid flow model,
allows the use of both paradigms directly on all abstraction levels and can also
be applied to applications where the hierarchical decomposition is not possible
or introduces further complexity.

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 243

Definition 4 (Hybrid Flow Model). A hybrid flow model F is a 4-tuple
F � (A, T,C, L), consisting of a set of activities A, a set of transitions T , a set
of conditions C, and a set of constraints L.

Definition 5 (Activity). An activity a represents an atomic piece of work
within a flow. This includes invoking web services, internal computations, no-
tifying a human about a task, or receiving context events indicating changes in
the real world.. The set A � {a1, . . . , an} defines all activities of a flow. An
arbitrary number of event types can be added to each activity. Let εa : � �→ P(U)
be the event type assignment function for a, where P(U) denotes the powerset
over the universe of events types. Further, let k be the number of event types
associated with a, then εa(i) yields the i-th event type for i ≤ k, and ∅ for i > k.
We write εa for short when referring to the set of all event type sets assigned to
a. Furthermore activities may be marked as mandatory.

Activities in a flow may be executed arbitrarily often and in any order, such as
a6. A flow can successfully complete its execution when all mandatory activities
have been executed at least once. Transitions and constraints limit this flexibil-
ity and impose structural ordering on the flow activities, such as the response
constraint between a4 and a5. When an activity is started it registers at the
CMS for context events of its event types εa. As example, let e ∈ Ue be an
event instance of type u that the activity a1 note results in the flow requires
to complete its execution. Let u = write and u ∈ Eα, where Eα contains the
event types {wash, dry, write, fetch, disinfect} representing some activities of
the nurse. When the engine enters the execution of a1, Eα is registered at the
CMS.

Definition 6 (Transition). Given a set of activities A, the set of all transitions
within a flow is T ⊆ A×A. A transition t = (ax, ay) represents a directed control
flow dependency from ax to ay with ax, ay ∈ A. A transition is annotated with
exactly one transition condition, that is referred to as c(t). Further, we define
din(ai) � |{(ax, ay) ∈ T |ai = ay}| and dout(ai) � |{(ax, ay) ∈ T |ai = ax}| as
degree of incoming and outgoing transitions for an activity.

The transitions allow certain control flow variants (cf. Figure 1): linear sequences
(dout(a4) = 1), parallel branching (dout(a1) > 1) and joins like for (din(a4) > 1),
and combinations of those. Conditional decisions can be made taking the transi-
tion conditions into account.

Definition 7 (Context Condition). A context condition c is inductively de-
fined as c → u|(c1 ∨ c2)|(c1 ∧ c2)|¬(c1) with u ∈ U and c1, c2 are already valid
conditions and the common semantics for the probabilistic logical operators.

The condition c(t) for t = (ax, ay) is evaluated when ax has received an event
instance e for every εa. We insert the received event instances and check
c[u/IeE(u)] ≥ tn against the navigation threshold tn. If the equation is fulfilled,
the condition evaluates to true and the activity ay is executed.

244 H. Wolf, K. Herrmann, and K. Rothermel

Definition 8 (Constraint). A constraint l is an expression in linear temporal
logic (LTL) that defines the temporal ordering of one or more activities in the flow.
l is inductively definedas l→a|(l1∨l2)(logical or)|(l1∧l2) (logical and)|¬(l1) (logical
negation)|(l1 → l2) (logical implication)|�(l1) (eventually)| �(l1) (globally) | l1Ul2
(strong until), where a ∈ A and l1, l2 are already valid constraints. The literals given
in the expression l denote the completion of the respective activity a in the flow.

Constraints can be grouped in different classes of constraints such as existence,
(negative) relation, (negative) order [16] and provided in a graphical represen-
tation (c.f. Figure 1). At runtime they are converted to finite state machines
(FSM) [18] and can be checked online for violations. If the FSM is in an accept-
ing state the constraint is valid. When the FSM is not in an accepting state the
constraint is temporary violated. The subsequent execution of further activities
can eventually lead to a valid constraint. For example consider the response con-
straint for a4 and a6. It is valid as long as a4 has never been executed. After a4
has been executed, the constraint becomes temporary violated until a6 has been
executed. A constraint is permanently violated if the FSM reaches an error state
and no sequence of activities can fulfill the constraint anymore. The response
constraint can never be permanently violated. In contrast, the not succession
constraint becomes permanently violated if both a3 and a5 have both been exe-
cuted in the same flow instance. A flow can successfully complete its execution
iff all constraints are valid. Arbitrary constraints are possible, but the common
constraints are given in a graphical notation for the ease of modeling. For ex-
ample, the not-succession constraint depicted in Figure 1 would be defined as
�(a3 → ¬(�(a5))).

The execution of the flow model yields a flow trace. When an activity is
completed, this is recorded in the flow trace along with the event instances it
received.

Definition 9 (Flow Trace). A flow trace T is a sequence of completed activi-
ties T � (a1, . . . , aj) in ascending order of completion times. The event instances
each activity has received are also stored within the trace. Let θ(T , a, u) �→ e be
a function that yields the event instance e ∈ u associated with activity a in trace
T .

From a single trace, it is possible to reconstruct the actual execution of a flow
instance and which context information, i.e. event instances, lead to this execu-
tion. All traces are stored in a flow history documenting the executions for later
analysis. We use the flow history of a flow model as the data set for training the
FlexCon algorithm later.

5 FlexCon

We will first provide an overview of the working principle and architecture of
FlexCon using a concrete example based on the scenario and flow we presented.
Following that, we explain our method to create the DBN from the flow in detail
and how we adopted particle filtering techniques for our approach.

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 245

5.1 Overview

The main goal of FlexCon is to decrease the uncertainty of an event instance e.
This means, if e is of type u, then FlexCon shall collect additional evidence for this
fact and increase the probability p = IeE(u) for the event type u in the given dis-
tribution. To achieve this we use the flow as additional source of information. The
flow model provides information concerning the structure (activities, transitions,
constraints) of the flow and, thus, about the expected temporal relation of respec-
tive context events. The flow instance provides information given by its execution
state, i.e. the current state of the activities and the already received context events.

Let us assume that the flow engine has started the execution of a1, and receives
the event of the types associated with a1, including Eα (c.f. Section 4.2). In a
system without FlexCon, the flow engine would simply compare the probability
p = IeEα(u) with the engine’s navigation threshold tn and execute the respective
transition if p > tn. This simple approach is depicted in Figure 2 on the left.
FlexCon, in the other hand, uses the information encoded in the flow model
and the flow instance to infer additional evidence for the fact that e is of type
u. Thus, it improves the probability distribution IeEα that is the basis for the
threshold comparison, leading to a more robust flow navigation.

FlexCon uses Dynamic Bayesian Networks to interpret context events depend-
ing on the current state of the flow. A DBN is a probabilistic data structure that
is flexible enough to represent the current flow state, the already received events,
and the relation between the events according to the transitions and constraints
of the flow model. FlexCon builds the structure of the DBN from the flow model
and trains the DBN using traces of previously executed flows. This is shown in
Figure 2 on the lower right. We explain the details of the construction algorithm
in the next section.

When a flow instance is executed, every incoming context event e is sent to
the DBN. Any such event is associated with a probability distribution IeE (cf.
Definition 3). The DBN infers an additional conditional probability distribution
I ′eE for e over E. The distribution IeE given by the CMS and I ′eE given by the
DBN are combined, yielding an overall distribution I ′′eEα which is then used by
the flow engine to make its navigation decision. Our evaluations show that if
e ∈ u then, on average, I ′′eE (u) > IeE(u). Hence, FlexCon reduces the uncertainty
contained in the original distribution such that the flow engine can make more
correct threshold decisions.

Using exact inference to get I ′eE from a complex DBN, such as the one built
from the flow model, is computationally infeasible. Therefore, we use an approach
based on particle filters [19] to increase the performance. We adapted the standard
particle filter approach to reduce the computational effort, which allows us to use
more particles on a more sparse DBN network and achieve more accurate inference
results. We present a detailed description of the inference algorithm in Section 5.3.

5.2 Dynamic Bayesian Network - Structure and Learning

A Bayesian Network BN = (X̄,D) is a directed acyclic graph representing a joint
probability distribution over a number of random variables (RVs) {X1, ...Xn} =

246 H. Wolf, K. Herrmann, and K. Rothermel

Flow Engine

Events

Flow Engine

~
p = IeE(u)

p‘= I’eE(u)

p‘‘= I’’eE(u)

a) simple event usage b) flow based event usage

p = IeE(u)

DBNEvents

HistoryFlow Structure

Fig. 2. Architecture overview

X̄. X̄ represents the nodes and the edges D ⊆ X̄ × X̄ define a conditional
dependency from the source RV to the target RV. In FlowCon, we used BNs as
the flows where based on imperative models that specify the complete execu-
tion order. Therefore, the simple static BNs were sufficient. The hybrid model in
FlexCon, however, introduces much more freedom for the users to drive the flow
forward in different ways and, thus, more dynamics. The static BN model does
not support such a dynamically changing probabilistic process. Therefore, Flex-
Con employs Dynamics Bayesian Networks which are tailored for dynamically
changing systems.

In a DBN [19,20], the state of the RV changes over time and the observed
values for the RV in the current time slice X̄t depend on the observations of one or
more previous time slices. This dependency is expressed by the transition model
TM = P (X̄t|X̄t−1). When we write X1,0, we refer to the RV X1 in the time slice
t = 0. Additionally, a DBN has a prior distribution PD = P (X̄0) for time t = 0,
such that the definition of a DBN is given as follows: DBN = (X̄, TM,PD)2.

DBN Construction. Let F1 = (A, T,C, L) be the flow model from our example
in Section 3. For each a ∈ A and each E ∈ εa, FlexCon creates a node in the
DBN. More formally, the function χ : A×P(U)→ X̄ maps an activity a and an
event type set E to a unique RV X of the DBN. Let further χ̄(a, εa) be the set
of all RVs associated with activity a. χ(a,E) = X with E ∈ εa is discrete and
can assume the same values present in the event type set E plus a null class,
represented by ⊥. For example, let us consider a1 and Eα ∈ εa1 (c.f. Section
4.2). The respective random variable χ(a1, Eα) = Xα can assume any value
from {wash, dry, write, fetch, disinfect,⊥}. χ(a,E)t and χ̄(a, εa)t refer to the
respective RVs in time slice t.

The time slices in our DBN are defined with respect to the execution state
of the flow: Every time an activity completes its execution and the flow state is
changed accordingly, we enter the next time slice in the DBN. FlexCon creates
the transition model (the time dependencies) from the transitions and constraints
2 Since FlexCon has no hidden variables, there is no need for a sensor model as it is

usually found in the DBN definition.

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 247

in the flow model. Both of them enforce an execution order on the set of activities.
We map these order relations to the transition model, introducing directed edges
(dependencies) from one time slice to the next. The strength of these dependen-
cies in learned from flow traces (past flow executions) in a subsequent step. In the
following, we describe the construction and learning phases first for transitions
and then for constraints.

A transition t = (ax, ay) ∈ T between two activities represents a very strong
dependency as ay can only be executed when ax has been completed. Therefore,
we create a dependency in the network for a pair of RVs if a transition exists
between the respective activities as follows.
(χ(ax, Ex)t, χ(ay, Ey)t+1) ∈ P (X̄t+1|X̄t) ⇐⇒ ((ax, ay) ∈ T)∧(Ex ∈ εax)∧(Ey ∈ εay).

For example, consider the activities a1 and a2 in Figure 1: They have a transition
and, therefore, each X ∈ χ̄(a2, εa2)t+1 would have χ(a1, Eα)t as parent node,
because Eα ∈ εa1 .

As constraints usually provide a less strict ordering of activities it is more diffi-
cult to derive the correct dependencies for the transition model. These dependen-
cies can be different for each execution trace of the same flow. Let
l1 = �(a3 → ¬(�(a5))) represent the not-succession constraint in the exam-
ple in Figure 1. First, FlexCon assumes that there is a bidirectional dependency
between all the activities that are contained as literals in the expression (a3 and
a5 in the example). Hence, FlexCon adds (X3,t, X5,t+1) and (X5,t, X3,t+1), with
X3 ∈ χ̄(a3, εa3) and X5 ∈ χ̄(a5, εa5) as dependencies in the DBN. In a second
step, FlexCon determines the type of dependency that has to be included in
the transition model TM. If the sequential execution of the originating activity
a3 and the the target activity a5 of the dependency permanently violates the
constraint (as is the case in the example), FlexCon marks this dependency as
negative. Negative dependencies are handled differently in the learning process
as described below. If the sequential execution leads to a valid or temporarily
violated constraint (c.f. Section 4.2), the dependency is handled like a transi-
tion. If the subsequent execution of the two activities has no influence on the
constraint, we do not add a dependency at all. The latter is the case for the
response constraint between a4 and a6 in Figure 1, where the execution of a6
has absolutely no dependency on the execution of a4.

DBN Learning. In order to learn the strength of dependencies in the DBN, we
use the flow history as training data, counting the occurrences of all event pairs
and learning their joint probability distribution. The portion of the flow history
that is relevant for the learning is controlled by a sliding window algorithm
taking only a number of recent traces into account. This helps in controlling the
effectiveness of the learning procedure in the face of a changing behavior of the
flow system.

For dependencies originating from flow transitions, the simple counting al-
gorithm as explained above is sufficient. For constraints, we have to apply a
different mechanism: In order to learn the strength of negative relations, we in-
crease the count of the null-class for every trace where no such event sequence

248 H. Wolf, K. Herrmann, and K. Rothermel

could be observed. This leads to a reduced probability of any other event type
of the respective event type set. As an example, consider the not succession
constraint of a3 and a5 again. The execution of a3 will indicate that a5 is never
going to happen in any valid execution of this flow instance. Therefore, we reduce
the belief of the DBN that any of the events associated with a5 is likely to be
recognized. An inexperienced nurse may execute the activity sequence a3, a5
nonetheless, but the flow can provide guidance for this case, preventing the
nurse from violating the constraint l1.

DBN Initialization. Finally, we need to initialize the DBN for t = 0, and
provide the prior distribution PD = P (X̄0). This distribution is also extracted
from the flow history: We search for traces of the respective flow model and
create individual distributions for all the activities the flow has been started
with at least once. For F1, this includes a1, a5 and a6, and the distribution
for Eα ∈ εa1 could have the following values: P (wash) = 0.01, P (dry) = 0.01,
P (write) = 0.85, P (fetch) = 0.05, P (disinfect) = 0.01 and P (⊥) = 0.07. In most
of the cases the correct writing activity has been recorded. In some cases, fetch
has been misinterpreted, while sometimes there was no meaningful evidence at
all (⊥). The rates for the uncommon activities (wash, dry, disinfect) are even
lower.

5.3 Clustered Particle Filtering

In order to exploit the knowledge encoded in the DBN for a specific flow model,
a process called inference has to be executed. That is, the posteriori distribution
of the variables (nodes) has to be calculated given real evidence. In our case, the
evidence are the real context events received from the CMS in time slice t, and the
inference is done by computing all the conditional probabilities for the variables
in time slice t + 1. Exact inference is infeasible for complex DBNs like the ones
generated from flows. Even more so, as this process is running in parallel to the
flow execution: Whenever new evidence is available, the inference has to be done
to get the probability distributions for the upcoming context events. Therefore,
FlexCon uses a heuristic approach that is based on particle filters [19]. That is,
we use a large number of random samples (the particles) from the distribution
of the DBN at a certain time slice t and propagate them through the DBN to
approximate the individual distributions associated with each node in the follow-
ing time slice of the DBN. A particle filter approximates the exact distribution
by generating a set of particles N(X̄) for all random variables. The higher the
number of particles the better the approximation of the real distribution. But
the computation time grows linearly with the number of particles.

To propagate and calculate probabilities in the DBN the filter executes the
following four steps. To initialize the filter, it first generates an initial particle
set N(X̄0) sampled from the prior distribution PD = P (X̄0) given by the DBN.
In a second step each particle is propagated to the next time slice (t = 1 in this

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 249

case) according to the distribution given by the conditional probability table.
In the third step, the particles are weighted with the evidence available at the
current time slice. Each particle is multiplied with the probability of the current
observation. In the final step, the set of particles is resampled according to the
weight of the individual particles. A detailed description of the basic principles
has been published by Russel and Norvig [19].

We modified this standard algorithm as explained in the following, to accom-
modate it to the needs of FlexCon. The result is a clustered particle filter that is
similar to the F3 filter presented by Ng et al. [21]. First of all, a single particle
in FlexCon does not represent a full sample of X̄ but only a sample of a subset
of the variables

⋃
E∈εa χ(a,E), i.e. all variables of a single activity. Therefore,

we call it clustered particle filtering, where each cluster can also be identified
by N(χ̄(a, εa)). This is an useful abstraction for a number of reasons. Each time
slice in the DBN covers the completion of a single activity in the flow. There-
fore, it is enough to process particles of that activity. All other particles are only
propagated as they may be needed later on. This allows us to increase the total
number of particles as the average processing load per particle is decreased. The
unprocessed particles can be directly transferred to the same node in the next
time slice, without the need for a dependency between these nodes.

For example, consider the trace T1 = (a1, a6, a3, a4, a6). After executing a1,
the particles from χ̄(a1, εa1)0 are propagated to χ̄(a3, εa3)1 since there is a tran-
sition (a1, a3), while χ̄(a6, εa6)0 are just passed to χ̄(a6, εa6)1, without further
processing.

The second modification changes the propagation and weighting steps. Usually
the full set of evidence, i.e. P (χ̄(a′, εa′)t+1|X̄t), is available for propagating the
particles in time slice t. As we only process the particles for a single activity a
and only observe the received events for this activity as evidence, we can only
rely on the conditional probability P (χ̄(a′, εa′)t+1|χ̄(a, εa)t), instead. This means
that we cannot use the evidence of events that have been observed ”outside” of
the current cluster N(χ̄(a, εa)t). As a consequence we introduce an small error
in the inference. However, the majority of X ∈ X̄ will be independent from
the variables in χ̄(a′, εa′), because there is no dependency defined by the flow.
Therefore the introduced error is rather low and we actually discuss in Section
6 that not using this evidence makes FlexCon a bit more robust. Alternatively,
it would also be possible to sample the evidence from the current distribution
N(X̄ \ χ̄(a, εa)) of the other activities, but this also introduces inference errors.

After the propagation phase, the actual observations (i.e. the received event
instances) become available to the DBN. We can then weight the particles mul-
tiplying the number of particles |N(χ(a,E) = u)| for a specific event type u with
the actual probability of the event type given by IeE(u). Based on the computed
weights all the particles for χ̄(a, εa) are resampled according to the distribution
of the weighted particles.

The third modification is the actual processing of the received event in-
stance e in order to decrease its uncertainty. This step is accomplished after the

250 H. Wolf, K. Herrmann, and K. Rothermel

propagation of the particles and before the weighting. We compute the condi-
tional probability weights for I ′eE from the particles in χ(a,E), where the weight

p′ = |N(χ(a,E) = u)|
|N(χ(a,E))|

for I ′eE (u) is just the relative particle frequency, as the distribution in the sam-
ple N(χ̄(a, εa)) represents a sufficient approximation of the correct conditional
probability distribution. All probabilities p = IeE(u) are added to the respective
p′ and the resulting distribution is normalized again, yielding I ′′eE (u).

Algorithm 1. Clustered Particle Filter Algorithm
Input: DBN = (X̄, TM,PD), a, e[]
if N(X̄) = ∅ then
N(χ̄(a, εa))← createInitialParticleSet(PD)

end if
5: for all e ∈ e[] do

weightEvent(e, IeE, χ(a,E))
weightParticles(N(χ(a,E)), IeE)
N(χ(a,E))← resampleParticles(N(χ(a,E)))

end for
10: propagateParticles(N(χ̄(a, εa)), TM)

Algorithm 1 depicts the standard particle filter algorithm including the changes
introduced by FlexCon. The input to the algorithm includes the DBN , the cur-
rently completed activity a and the set of event instances e[], a has received.

6 Evaluation

For our evaluation, we have generated flows according to a probabilistic pattern-
based model [22] that has the same properties as the flows observed in the
real-world hospital scenario. We do this to get a number of flows that is large
enough to achieve statistical relevance. The flows we generate have the same
average number of activities and the same structural properties. Essentially,
the ratio between activities that have normal transitions and activities that are
connected to other activities by constraints is equal.

Use of flow patterns [23] allows us to generate imperative flows based on
structures commonly found in human-centric flows. We generate these flows and
randomly add a respective portion of unconnected constraint-based activities
(CBAs) to the flow. Next, we randomly generate constraints and use these to
connect the CBAs to the imperative parts of a flow. Finally, the resulting flows
are validated by generating traces from them. Flows that produce deadlocks
(two or more activities blocking each other due to conflicting constraints) are
discarded.

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 251

Overall, we generated 165 structurally different flows and 200 traces per flow
for our evaluations.

The simulation has three important independent parameters. The first one
is the navigation threshold tn of the flow engine as defined in Section 4. For
a higher navigation threshold the flow engine accepts less uncertainty in the
context events it receives. We tested tn from 0.4 to 0.6 in steps of 0.05.

The second parameter is the average recognition rate arr of the CMS. When
a context event e is created in the CMS, arr is the average probability assigned
to the correct event type in the distribution IeE by the CMS. The remaining
probability 1 − arr is geometrically distributed to the other event types of the
respective event type set E.

The variance v is the third simulation parameter. It represents the noise added
to the distribution IeE created by the CMS. The probability of each event type
u ∈ E is varied by ±v/2, and IeE is normalized again. We evaluated the system
for variance values between 0.05 and 0.6 in steps of 0.05.

To assess the performance of FlexCon we use the relative event improvement
and the number of completed flows as our two metrics. The relative event im-
provement r is defined as r = I ′′eE (u)/IeE(u) for the correct event type u. If
r > 1.0, then FlexCon was able to provide additional evidence for the occur-
rence of the correct event type u, and the flow engine has a higher chance of
making the correct navigation decision.

The number of completed flows is simply the percentage of all traces that
did complete their execution successfully. We did include the learning of the
model in the simulations and the execution starts without a flow history. To put
our system further into perspective, we directly compare the results with our
previous measurement of the same metrics in FlowCon. Note that the flows in
FlowCon are purely imperative. That is, activities are connected by transitions
and there are no constraints that leave the decision about the ordering of the
activities to the user. Thus, the task of FlowCon is much easier than that of
FlexCon due to the additional flexibility of the flows.

6.1 Results and Discussion

The evaluation results are depicted in Figure 3. We only show the results for
tn = 0.4 and arr = 0.45 for clarity. Furthermore, these conditions closely resem-
ble the situation in the hospital and they can be compared best to our previous
work.

Figure 3(a) depicts the comparison of the relative event improvement rates for
FlowCon and FlexCon. The average event improvement is better for almost all
variance values. Even for the higher variances of v ≥ 0.4, where the improvement
of FlowCon declines, FlexCon is able to maintain a good improvement, mainly
due to the changed method of accuracy improvement: While FlowCon uses all the
observed event instances as evidence for calculating the probability of the current
event, FlexCon only applies the evidence for the current particle for particle
propagation, i.e. independently from other particles. When we misinterpret an
event instance from a preceding node this has less impact on the particle filter, as

252 H. Wolf, K. Herrmann, and K. Rothermel

(a) Comparision of event improvement

(b) Comparision of flow completion

Fig. 3. Simulation Results - Comparision between FlowCon and FlexCon

only the propagated particles from this node are influenced, but not the particles
from other preceding nodes. Where in FlowCon the whole conditional probability
for the current event can be distorted, in FlexCon only a partial result suffers
from the misinterpretation. However, if only one parent exists for a given node
in the DBN, FlexCon is also sensitive to this kind of misinterpretation, leading
to r < 1.0 making the result worse.

The high standard deviation for the event improvement on the flows can be
explained by the flows’ flexible structure. If two subsequently executed activities
are not connected by a constraint or transition, we cannot improve the event
in any way as there will be no connection in the DBN between the respective
nodes. So according to the flow structure, we have a very high improvement for
the dependent events but none for the independent ones.

Figure 3(b) shows the comparison of the flow completion rates, between Flow-
Con, FlexCon and the respective basic flow engines which do not take any action
to decrease the event uncertainty. FlowCon - Basic and FlexCon - Basic simply

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 253

execute the same flows without uncertainty reduction. Both basic systems fail at
very low variance values. For v ≥ 0.15 less than 6% of the flows can be completed
successfully for both basic flow engines. The high values for the basic FlexCon
flow engine compared to the basic FlowCon flow engine for v = 0.05 and v = 0.1
result from a changed method of generating the event instance distribution.

The FlexCon DBN-Engine manages to complete 45% of the flows at v = 0.15
and this performance decreases slowly for higher v ≥ 0.2. It is still able to
complete 20% of the flows at v = 0.6.

Again, the standard deviation on the number of completed flows is rather
high, for the same reason as above. Some of the flows allow a very good event
improvement leading to a reliable execution, after the training phase of the DBN
is complete. Those flows (about 5% of the tested flows) exhibit an completion
rate of well over 80% and are the main reason for the high standard deviation.
Most of the flows are close to the average, and can complete their execution in
about 30% of the cases.

7 Conclusions and Future Work

We have proposed FlexCon – a system that leverages the application knowledge
encoded in workflows to make them more robust against inaccurate and noisy
input data. FlexCon uses Dynamic Bayesian Networks and particle filters to
reduce the uncertainty of the real-world context events received by pervasive
flows. Our evaluations show that the uncertainty of an event received by a flow
is reduced by 54% on average and the percentage of successfully completed flows
is increased by 23-40%.

FlexCon is an important step towards applying flow technology as a part of
pervasive systems. In real-world scenarios, found e.g. in the health care domain,
users need to be supported in their activities without obstructing them. Thus, the
flows need to automatically synchronize with their activities based on collected
data such that users are not required to communicate with the flow explicitly.
Especially in the health care domain, any explicit interaction (using touch screens
etc.) may have severe implications in terms of hygiene.

The sensor data that is used to infer the current activity of a user is char-
acterized by a high level of noise and inaccuracy. FlexCon offers a way to infer
more reliable information from this data and, thus, render the respective flows
more robust.

In our future work, we will investigate, if more sophisticated approaches to
map the flow to a DBN yield a better event improvement. Furthermore we will
optimize the number of particles used during the execution to speed up perfor-
mance of the approach. Depending on the success we will adapt the prototype
for a smart-phone, deploy in the hospital and study the usefulness. Furthermore
we study the impact of a different uncertainty model on the recognition accuracy
and the algorithm performance.

254 H. Wolf, K. Herrmann, and K. Rothermel

References

1. Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice
Hall PTR (2000)

2. Dadam, P., Reichert, M., Kuhn, K.: Clinical Workflows - The Killer Application for
Process-oriented Information Systems? In: Proc. 4th Int’l Conference on Business
Information Systems, pp. 36–59. Springer, Heidelberg (2000)

3. van der Aalst, W., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science-Research and Development 23(2),
99–113 (2009)

4. Wieland, M., Kopp, O., Nicklas, D., Leymann, F.: Towards context-aware work-
flows. In: Pernici, B., Gulla, J.A. (eds.) CAiSE 2007 Proceedings of the Workshops
and Doctoral Consortium, vol. 2. Tapir Acasemic Press, Trondheim Norway (2007)

5. Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable Pervasive Flows–
An Emerging Technology for Pervasive Adaptation. In: Proceedings of the 2008
Second IEEE International Conference on Self-Adaptive and Self-Organizing Sys-
tems Workshops, pp. 108–113. IEEE Computer Society (2008)

6. Kunze, K., Lukowicz, P.: Dealing with sensor displacement in motion-based onbody
activity recognition systems. In: Proceedings of the 10th International Conference
on Ubiquitous Computing. UbiComp 2008, pp. 20–29. ACM, New York (2008)

7. Bahle, G., Kunze, K., Lukowicz, P.: On the use of magnetic field disturbances as
features for activity recognition with on body sensors. In: Lukowicz, P., Kunze, K.,
Kortuem, G. (eds.) EuroSSC 2010. LNCS, vol. 6446, pp. 71–81. Springer, Heidel-
berg (2010)

8. Wolf, H., Herrmann, K., Rothermel, K.: Robustness in Context-Aware mobile com-
puting. In: IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob 2010), Niagara Falls, Canada (October
2010)

9. Barger, T., Brown, D., Alwan, M.: Health-status monitoring through analysis of
behavioral patterns. IEEE Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans 35(1), 22–27 (2005)

10. Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C., Robert, P.:
Ambulatory system for human motion analysis using a kinematic sensor: moni-
toring of daily physical activity in the elderly. IEEE Transactions on Biomedical
Engineering 50(6), 711–723 (2003)

11. Biswas, J., Tolstikov, A., Jayachandran, M., Fook, V.F.S., Wai, A.A.P., Phua, C.,
Huang, W., Shue, L., Gopalakrishnan, K., Lee, J.E.: Health and wellness moni-
toring through wearable and ambient sensors: exemplars from home-based care of
elderly with mild dementia. Annales des Télécommunications 65(9-10), 505–521
(2010)

12. Wieland, M., Käppeler, U.P., Levi, P., Leymann, F., Nicklas, D.: Towards Inte-
gration of Uncertain Sensor Data into Context-aware Workflows. In: Tagungsband
INFORMATIK 2009 Ü Im Focus das Leben, 39. Lecture Notes in Informatics
(LNI), Jahrestagung der Gesellschaft für Informatik e.V (GI), Lübeck (2009)

13. Adam, O., Thomas, O.: A fuzzy based approach to the improvement of business
processes. In: First International Workshop on Business Process Intelligence (BPI
2005), pp. 25–35 (September 2005)

14. Urbanski, S., Huber, E., Wieland, M., Leymann, F., Nicklas, D.: Perflows for the
computers of the 21st century. In: IEEE International Conference on Pervasive
Computing and Communications, PerCom 2009, pp. 1–6 (March 2009)

FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows 255

15. Wolf, H., Herrmann, K., Rothermel, K.: Modeling Dynamic Context Awareness for
Situated Workflows. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009
Workshops. LNCS, vol. 5872, pp. 98–107. Springer, Heidelberg (2009)

16. Pesic, M., Schonenberg, H., van der Aalst, W.M.: Declare: Full support for loosely-
structured processes. In: IEEE International Enterprise Distributed Object Com-
puting Conference, p. 287 (2007)

17. Aalst, W.M., Adams, M., Hofstede, A.H., Pesic, M., Schonenberg, H.: Flexibility
as a Service, pp. 319–333. Springer, Heidelberg (2009)

18. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: Proceedings, International Conference on Auto-
mated Software Engineering (ASE 2001), pp. 412–416. IEEE Computer Society
(2001)

19. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn.
Prentice-Hall (2002)

20. Murphy, K.P.: Dynamic Bayesian Networks: Representation, Inference and Learn-
ing. PhD thesis. University of California, Berkeley (2002)

21. Ng, B., Peshkin, L., Pfeffer, A.: Factored particles for scalable monitoring. In:
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence,
pp. 370–377. Morgan Kaufmann (2002)

22. Chiao, C., Iochpe, C., Thom, L.H., Reichert, M.: Verifying existence, completeness
and sequences of semantic process patterns in real workflow processes. In: Proc. of
the Simpósio Brasileiro de Sistemas de Informação, Rio de Janeiro, pp. 164–175.
UNIRIO, Brazil (2008)

23. Lau, J.M., Iochpe, C., Thom, L.H., Reichert, M.: Discovery and analysis of activity
pattern co-occurrences in business process models. In: ICEIS, vol. 3, pp. 83–88
(2009)

An Artifact-Centric Approach to
Dynamic Modification of Workflow Execution�

Wei Xu1, Jianwen Su2, Zhimin Yan1,4, Jian Yang3, and Liang Zhang1

1 School of Computer Science, Fudan University, China
2 Department of Computer Science, UC Santa Barbara, USA
3 Department of Computing, Maquaire University, Australia

4 Real Estate Information Center, Hangzhou, China

Abstract. Being able to quickly respond to change is critical to any organiza-
tions to stay competitive in the marketplace. It is widely acknowledged that it is
a necessity to provide flexibility in the process model to handle changes at both
model level as well as instance level. Motivated by a business policy rich and
highly dynamic business process in the real estate administration in China, we
develop a dynamically modifiable workflow model. The model is based on the
artifact-centric design principle as opposed to the traditional process-centric ap-
proach. Runtime execution variations can be specified as execution modification
rules, which lead to deviations to the normal executions. With the support of rules
and declarative constructs such as retract, skip, add, and replace, ad-hoc changes
can be applied to execution at anytime depending on the runtime data and the
instance status gathered through the use of artifacts in our model.

1 Introduction

Changes of business policies and operational routines can lead to unavoidable business
processes restructuring. Currently available workflow management systems (WfMS)
have provided basic support in modeling and enactment, but with limited flexibility
in handling changes, especially unanticipated and just-in-time changes. Such ad hoc
changes happen frequently in many organizations and are witnessed in business sectors
such as banking, clinic trails, and other administrative intensive task management. For
example, in a bank reporting system, it may decide to send the reports via email instead
of postal mail for some special transactions; it may decide to inform the customers and
produce reports quarterly instead of monthly unless the customer declares otherwise
and is willing to pay extra fees.

Various process models, languages, and mechanisms in the past offer flexibility in
business processes. From language perspective, there are declarative workflow languages
[10] which adopt a complete declarative approach to specify process logic without explic-
itly modeling of control flow and data flow as in the procedural workflow. From mech-
anism perspective, FLOWer [2] and ADEPT [13] provide deviation operations such as
“undo”, “redo”, and “skip”, and verification techniques to ensure applicability of oper-
ations at runtime. From the modeling perspective, most work is based on the traditional

� Supported in part by NSF grant IIS-0812578, NSFC grant 60873115 and a grant from IBM.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 256–273, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Artifact-Centric Approach to Dynamic Modification 257

activity-centric workflow models. Recently, there is a growing interest in artifact-centric
workflow models where business artifacts (objects with lifecycle) are the modeling focus.
The artifact-centric approach provides much needed ease in managing runtime change
since runtime status information (of enactments) are readily available in artifacts.

Providing process flexibility to support foreseen and unforeseen changes is a very
active research area recently. It is widely recognized that runtime process execution
flexibility is crucial for managing business process lifecycle and it needs special at-
tention [20,15,19]. The real challenge in managing dynamic workflow execution is to
provide a systematic and integrated support for the process designer to specify how the
process would react to various runtime changes and for the process to evolve gracefully
in a controlled, incremental, and predictable manner.

In this paper we will go through an analysis of a real estate administration workflow
system to illustrate various of business rule and policy changes that can happen at run-
time, and their impact on the running workflow system. We develop an artifact-centric
model, DEZ-Flow, which is a hybrid model for utilizing the benefits of both declarative
and procedural workflow languages. Since artifacts (with activities, policies) are first
class citizens in the model, runtime status can be easily captured. This provides a solid
foundation for managing just-in-time and ad hoc changes. We then present a rule-based
language that is used to specify logical conditions when the deviations are needed and
how the deviations shall take place. These rules are managed separately from the pro-
cess model; updating and changing can be easily applied to the rules without affecting
the main workflow model. Finally, we present a scheduler that works together with a
flexible task performer to manage just-in-time changes happened to running instances
based on the artifacts and rules.

In summary, we present a novel and functional mechanism to handle ad hoc and
just-in-time changes at runtime. The workflow schema of the running workflow can
stay the same, the changes only lead the affected instances to execution deviations from
the original execution path according to the rules. This approach is particularly suitable
for temporary changes that exhibit long tail characteristics, and the changes can evolve
or disappear over time. Utilizing a hybrid model, i.e., a procedural workflow schema
defining “sunny day” processing and a declarative language for specifying changes,
distinctions among various types of changes (e.g., as classified in [20,19,15]) disappear.
Thus DEZ-Flow provides a uniform and flexible way for handling runtime changes.

The remainder of the paper is organized as follows. We provide a motivating example
in Section 2. In Section 3, we focus on the artifact-centric workflow model EZ-Flow.
We then provide a detail discussion in Section 4 on the extension of EZ-Flow to sup-
port dynamic modification of execution. In Section 5, we analyze the flexibility and
effectiveness of DEZ-Flow. Finally, we conclude the paper in Section 6.

2 Motivating Example

We will in this section present a simplified example from a real business process devel-
oped for the Real Estate Administration (REA) in Hangzhou, China.

The process Certificate Approval for the Preselling of Apartments (or CAPA) is to
evaluate if the city government would issue a certificate to a building contractor for sell-
ing her buildings according to the law and regulations [8]. A simplified CAPA process

258 W. Xu et al.

T1:
Receiving
App-Form

T2:
Preliminary

Decision

T3:
Secondary

Review

T4:
Final

Approval

T5:
Payment

Processing

T6:
Preparing
Certificate

T7:
Delivery

Certificate

R1:
App-Form
Received

R2:
Preliminary
Approved

R3:
Application
Reviewed

R4:
Final

Approved

R5:
Ready for
Delivery

External
Repository

R6:
Certificated

Plan
PAF PAF PAF PAF PAF

PAF
CP

CP

CP

Fig. 1. The Example Workflow CAPA

schema is shown in Fig. 1, which adopts an artifact-centric workflow model (described
in Section 3). For the CAPA process in Fig. 1, there are 7 tasks (represented as rounded
boxes), T1: Receiving App-Form, T2: Preliminary Decisions, T3: Secondary Review, T4:
Final Approval, T5: Payment Processing, T6: Preparing Certificate, T7: Deliver Certifi-
cate; and two artifacts Certificated Plan (CP) and Presale Application Form (PAF) that
can go through the process by applying tasks. PAF is the “core” artifact class (explained
in Section 3). The states of artifacts are reflected in repositories (R1 through R6, repre-
sented as circles). For example, the task Secondary Review changes the state of a PAF
artifact from Preliminary Reviewed repository to its next repository Application Re-
viewed. Every REA bureau in China heavily relies on business processes such as CAPA
for their administrative tasks. Taking a medium city Hangzhou for instance, there are
about 300,000 cases annually.

A big challenge facing the REA authority is the adaptability of the deployed CAPA
workflow. For a highly dynamic business like the real estate market in China, legisla-
tions and national policies can change in an ad hoc way. Some policies are temporally
developed to either restrict or encourage certain groups of building contractors; while
others may have long term effects to regulate the housing market. Consider some cases
happened recently:

– Case 1: special scheme can be introduced under special circumstances. For exam-
ple, a green channel is opened for the project of natural disaster victim resettlement.
In this case the three reviewing tasks Preliminary Decision, Secondary Review, and
Final Approval can be omitted in the review process. Similar policies can also be
applied to other cases, e.g., to elderly people and disabled persons so that they can
complete the transaction sooner.

– Case 2: a new policy is put in place to differentiate groups of building contractors.
A new task Pre-qualification Check needs to be created and added in the process
for every building contractor who has never applied for approval before.

– Case 3: a new policy is introduced to the application for affordable housing for low-
income families. For any applications falling into this category, the task Payment
Processing will be replaced by a similar but different payment task.

An Artifact-Centric Approach to Dynamic Modification 259

– Case 4: a new policy is introduced stating that during the review process, the
accumulated selling area in a PAF must not exceed the planned total area in the
corresponding CP for a building project. Otherwise the application under the con-
sideration needs to be retracted to a previous case depending on the circumstances.

This is a typical case of retract in daily activities involved in administrative
approval in China. The arbitrary nature of the retraction in this case makes it very
difficult to model the reaction paths in the workflow schema.

The above merely lists a few newly introduced policies that can affect the process struc-
ture. In fact, different cities may have different criteria for defining affordable housing
and for deciding on disaster victims. These adjustments can be temporary and vary un-
der different circumstances. Currently, changes and variations are handled either man-
ually or through workflow reconstruction. Typically, a REA bureau of a medium city
such as Hangzhou can have over 500 workflow schemas.

It is desirable to provide support for business process change. In this paper, we are
specifically interested in a holistic solution for a runtime and just-in-time change han-
dling mechanism that requires only a small deviation from original schema to support
ad hoc changes and avoids workflow schema reconstruction. An advantage of this ap-
proach is that the changes introduced can be discarded and/or changed again easily.

3 EZ-Flow: An Artifact-Centric Workflow Model

In this section, we describe the technical model of EZ-Flow (named ArtiFlow in [8])
needed for presenting the dynamic modification mechanism in the next section. The
central notions in EZ-Flow include “artifacts” and “classes”, “tasks”, and “workflow
schemas”. In addition to these concepts, we also describe a simple execution engine
that manages (schedules) the execution of workflows.

In EZ-Flow, key business entities are modeled as artifact classes. Unlike business
documents or objects, artifacts include both the data for the workflow as well as states
of workflow execution [9]. Each (artifact) class has a name and a set of associated
attributes. Every attribute has a name and a type for data values of the attribute. Attribute
types include string, integer, real, Boolean, and a class name. The domains of these
types are standard, attribute values for a class name are elements in an infinite set of
artifact identifiers. Since classes can reference each other through attributes, we further
require that a set of classes is well formed which means that (1) every class has a distinct
name, and (2) every class referenced in an attribute of some class is also a class in the
set (closure of referencing).

Example 1. Consider the artifact class PAF in the CAPA workflow discussed in Section
2. PAF includes the contractor (applicant) name, pre-sale project information, and real
estate bureau office approval results as follows.

PAF (contractorName:string,
projectName:string, projectType:string, sellingArea:float, cp:CP, payment:float,
preliminaryApp:boolean, reviewApp:boolean, finalApp:boolean)

where CP is the following artifact class that includes the certificated plan number and
planned total area for sale, relevant for CAPA workflow:

CP (cpNo:string, planArea:float)

260 W. Xu et al.

events started ready done stored

start fetch invoke store end

evente

(1) (2) (3) (4) (5) (6) Token types

Event
Enactment
(core artifact)

Data

Fig. 2. Executing One Task: An Illustration

Each workflow schema has a primary artifact class, called a core artifact class. A core
artifact carries both data and the enactment (execution state etc.) it is involved in. This
reflects the general principle that artifact lifecycle describes business process [9]. If a
workflow needs other artifacts, these artifacts are called auxiliary artifacts.

In a workflow specification in EZ-Flow, artifacts are manipulated by tasks in their
lifecycles. Each task has a unique name and a signature that is a set of artifact classes
that have been defined. An invocation of a task acts on exactly one artifact from each
class in its signature. A task can read and write its artifacts.

The execution of a task is accomplished via a sequence of actions. Fig. 2 shows the
process of executing a task using a model similar to Petri nets with three types of tokens,
“event”, “enactment”, and “data” tokens. An event token includes the contents of an
event that are used by the task as input or correlation. An enactment token contains the
core artifact that records the information and progress of the enactment. A data token
contains all needed artifacts for actually performing the task.

A task execution is triggered by an event (similar to BPMN). The start transition
initiates the task execution by getting the core artifact using the contents in the event
token. An enactment token is then generated and placed in the “started” place (step (1)
to (2) in Fig. 2). The fetch transition receives all auxiliary artifacts for the execution
using the information in the enactment token, forms a data token, and places it in the
“ready” place (step (2) to (3) in the figure). The task is then performed, indicated by
the invoke transition (step (3) to (4)). In completing the execution, all auxiliary artifacts
are stored back to the appropriate repositories (step (4) to (5)), and then the execution
is wrapped up and ends (step (5) to (6)). Note that the actual execution of the task itself
is represented in the invoke transition in Fig. 2 as a unit step.

We organize events into event types. An event type has a unique name, is associated
with one artifact class, and may contain a set of attributes to describe the event contents.
Similar to artifact classes, attribute types are either the usual data types or class names.
Each event (instance) of an event type must have a unique event identifier, and a value
for each attribute of the corresponding type. Each task is triggered by one event type,
and produces one event upon completion.

During the lifecycle of an artifact, there may be a sequence of tasks that act on it,
between each pair of consecutive tasks the artifact must be stored in a “repository.” A
repository has a unique name and an associated artifact class. At runtime a repository
may contain a (possibly empty) set of artifacts of the associated class.

Definition. A workflow schema is a tuple W = (C, Γ, E, Σ, F, R, L), where

– C is the core artifact class of the workflow, Γ is a set of auxiliary artifact classes
not containing C such that Γ ∪ {C} is well-formed,

An Artifact-Centric Approach to Dynamic Modification 261

– E is a set of event types (with distinct names),
– Σ is a set of tasks with distinct names,
– F maps each task t in Σ to a pair (ei, eo) of event types where ei triggers t and eo

is produced by t, satisfying the condition that each event type can trigger at most
one task and be produced by at most one task,

– R is a set of repositories with distinct names partitioned into: a set RC of reposito-
ries for the core artifact C, RΓ consisting of exactly one repository for each class
in Γ , and a single external repository rext, and

– L is a set of triples (x, y, g) where (1) either x ∈ R and y ∈ Σ or x ∈ Σ and
y ∈ R, and (2) g is a guard on the edge (x, y).

In a workflow schema, an event is external if it is not produced by any task in the
workflow schema. In a system with many workflows, each artifact class is assumed
to be the core for at most one workflow schema. (This assumption simplifies naming
conventions and can be easily removed.)

The explicit identification of a core artifact class in a workflow was in the recent
workflow models GSM [6] and ArtiNet [7]. In fact, this model extends the model in [7]
by adding events and conditions on artifacts. Such conditions are called guards, and are
Boolean conditions on attribute values among the relevant artifacts.

Example 2. The CAPA workflow in Section 2 is a workflow schema under the above
definition, where PAF is the core artifact, and CP an auxiliary artifact. The seven tasks
(T1, ..., T7), six repositories (R1, ..., R6) and an external repository are shown in Fig. 1,
where repositories R1, ..., R5 are for PAF and R6 for CP. The figure also shows the
edges between repositories and tasks, but the guards are omitted. Finally there are nine
event types in CAPA, the set of task-triggering event-producing event triples is:
{(T1, EappForm, EreadyForApproval), (T2, EreadyForApproval, EpreliminaryApp), (T3, EpreliminaryApp,
EreviewedApp), (T4, EreviewedApp,EfinalApp), (T5, Epayment, Epaid), (T6, Epaid,EreadyForDelivery),
(T7, EreadyForDelivery, Earchive)}.

We now describe the semantics of EZ-Flow, based on which the dynamic modification
mechanism is developed.

Given a workflow schema W , we first construct an ArtiNet [7] (a variant of Petri
nets) N corresponding to W as follows. Each repository in W is a place in N , each
event type in W is also a place, each external event also adds a transition with no input
and one output place that is the event place, each task in W is replaced by a sequence
of transitions and places as shown in Fig. 2, each link (r, σ, g) from a repository r to a
task σ becomes a link from r to the fetch transition inside σ, each link (σ, r, g) from a
task σ to a repository r becomes a link from the transition store inside σ to r. Note that
the first and last places in the sequence are the corresponding event places.

To describe the operations of a workflow, we use “snapshots” to represent “mark-
ings” in the sense of ArtiNets. We further construct a snapshot as a database.

A snapshot database contains the following tables: one for each artifact class, each
event type, and one stores all workflow enactments, and one stores a set of relationships
between an artifact and the enactment using the artifact. Since each workflow has a core
artifact class (and one class cannot be the core for two or more workflow schemas), we

262 W. Xu et al.

PAF artifactID contractorName projectName sellingArea cp ... finalApp
paf02 Greentown Sunlight Villa II 20000 cp01 true
paf01 Greentown Sunlight Villa I 55000 cp01 true

CP artifactId cpNo planArea
cp01 Hz2009 100000

0827655

Enactments coreID Task Place
paf02 T1:Receiving App-Form ready
paf01 T4:Final Approval evente

Artifacts artifactID enactment place
paf01 paf01 R4:Final Approved
paf02 paf02 T1:Receiving App-Form
cp01 paf01 R6:Certificated Plan

Epayment eventId projectName payment Enactment · · ·

Fig. 3. A Snapshot S0 Example for CAPA Workflow

will use an artifact ID from the core class to serve as the workflow enactment identifier.
We give details below, assuming W is a workflow schema.

– For each artifact class C in W , there is a table C(artifactID, A1, ..., An) that stores
all artifacts in the class that are currently “active”, where A1, ..., An are all at-
tributes in C, artifactID stores the identifier and serves as the key. (An artifact is
active if it is used in an enactment that has not yet completed.)

– For each event type Ev, the snapshot includes a table Ev(eventID, E1, ..., En,
Enactment) to store all events that happened but have not yet been processed, where
eventID stores a distinct event identifer, E1, ..., En are a listing of all attributes in
the event type and Enactment indicates the workflow enactment (core artifact ID)
associated with the event.

– The snapshot contains a table Enactments(coreID, Task, Place) to store all enact-
ments that have not completed, where coreID is the enactment identifier (the core
artifact identifier), Task denotes the current executing task in the enactment, and
Place reflects the state of the task execution and has one of the six “internal” places
(in Fig. 2) including events, started, ready, done, stored and evente, and

– Finally, the snapshot contains a table Artifacts(artifactID, enactment, place) to in-
dicate which enactment an artifact belongs to and which place (either a place in a
task, or a repository) the artifact currently is.

Note that an artifact first occurs in a snapshot when it is created by the workflow or
is fetched by a task in the workflow. Once an artifact is in a snapshot, it stays in the
snapshot database until the enactment operating on it completes.

A part of a snapshot of the CAPA workflow is shown in Fig. 3. Since the workflow
has two artifact classes, two artifact tables are included, for PAF and CP resp. It also
includes a table for workflow Enactments. Only one of the nine event tables is shown.

Transitions in EZ-flow are defined in a way extended from ArtiNet [7], due to the
presence of data contents in artifacts, guards, and events. Basically, from one snapshot
to the next must be caused either by:

1. An external event arrives. When one external event comes, an event token will be
put into the events place of the associated task, or

2. Fire a transition. A transition fired within a task must be one of the following
(Fig. 2): start, fetch, invoke, store, and end. The start transition consumes an event
token and places a enactment token in the “started” place; the fetch transition con-
sumes this token, the core artifact, and auxiliary artifacts, then puts one token in

An Artifact-Centric Approach to Dynamic Modification 263

Enactments coreID Task Place
paf02 T1:Receiving App-Form done
paf01 T4:Final Approval evente

Enactments coreID Task Place
paf02 T1:Receiving App-Form ready
paf01 T5:Payment Processing events

Epayment eventId projectName payment Enactment
e1 Sunlight Villa 75000 paf01

(a)Firing an Invoke Transition (b)Token Generation From an Event

Fig. 4. Snapshot Derived from S0

“ready” for performing the task (as a simple invoke transition). Similarly, store
transition puts the artifacts back to their repositories and a token in “stored” that
will be used to generate an event token in the evente place.

The transition firings on snapshots can be easily mapped to updates on the database.

Example 3. Consider the example snapshot in Fig. 3. The first row of Enactments ta-
ble shows that a current executing task of paf02, the Receiving App-Form, and is on its
(internal) state ready. So a transition invoke can be fired in this snapshot. Once it fired,
the result snapshot is shown as Fig. 4 (a): the value of Place in the first row of the table
Enactments is updated to the place done. Fig. 4 (b) shows another possible result snap-
shot which can be derived from the original snapshot shown in Fig.3. In this case, an
external event Epayment has been put into the events place of task Payment Processing.
In snapshot shown in Fig. 4 (b) a new record e1 is inserted in the table Epayment. Also,
in the table Enactments the record paf01 is updated.
The EZ-Flow engine consists of two components: (1) A task scheduler that responds to
events and decides to launch tasks according to the workflow schema. (2) A task per-
former that actually manages the execution of tasks, i.e., performs the tasks according
to the semantics as illustrated in Fig. 2. Note that an engine has one instance of sched-
uler running, each time the scheduler decides on executing a task, a new instance of a
task performer is spawned that takes care of performing this particular task. An earlier
implementation of the engine (scheduler) was described in [8].

More specifically, events can be generated by tasks (e.g., an EreadyForApproval event
produced by task Receiving App-Form in CAPA) or externally (e.g., an EappForm event
as a result of an applicant submitting an App-Form to the REA office). When an event
arrives, it will be put into a queue with its contents recorded in the corresponding table
in the snapshot database. The EZ-flow scheduler consumes one event at a time from
the queue and spawns a new task performer to execute the task associated to the event.
Once a task performer is launched, it manages the task execution by moving through its
internal states (events, started, ready, done, stored, and evente). At the last state, a new
event is also generated and put into both the snapshot database and the queue.

4 Dynamic Modification of Execution

In this section, we present a new mechanism to support dynamic, i.e. runtime, modifi-
cation of execution for EZ-Flow workflow schemas. The mechanism is an initial step
towards understanding how workflow executions can be incrementally modified to ac-
commodate changing requirements in artifact-centric models. We believe that such a

264 W. Xu et al.

dynamic modification framework is an effective tool for addressing the “long tail” prob-
lem. We present the technical details of the mechanism, including constructs to change
workflow executions, an execution engine to support such modifications at runtime, and
a simple rule-based language to specify modifications.

We introduce four types of execution modification constructs: skip, replace, add, and
retract. These constructs change the execution of workflow in various ways. Roughly
speaking, the skip construct simply omits the execution of a task; the replace construct
executes a replacement task instead of a task. The add construct executes a specified
additional task immediately before a task. The retract construct “rewinds” the execution
by moving the execution point to a previously completed task. Note that while retract
appears similar to “roll-back”, it does not attempt to “erase” the completed execution.
It is a conceptual level “redo” operation that allows a business manager to, e.g. re-
check a case, re-examine qualification conditions, etc. Therefore, it does not need any
compensation mechanism. (In some cases, the law requires that all performed actions
be recorded on the book.)

In this section, we extend EZ-Flow to a dynamic version named “DEZ-Flow” to
support these constructs. Technically, we need to modify EZ-Flow in three aspects.

1. Extending the snapshot database by including more information on execution,
2. Enrich the fetch transition that will now use the extended snapshot to locate and

obtain the needed auxiliary artifacts, and
3. Modify the workflow scheduler and task performer that will handle execution mod-

ifications on the fly when requested.

Execution modification constructs can only be sequentially applied to a single enact-
ment, i.e., each enactment has at most one execution modification at one time. To
enforce this, the table Enactments is added three new columns: “currConstruct” to
record the construct (rule) currently being applied, “addiTask” to store the additional
task (name) involved, and “addiPlace” to indicate the execution state (internal place)
of executing the additional task. Specifically, when an execution leaves task A to ap-
ply a modification construct (rule), the following would happen. For replace and add
constructs, currConstruct is set to the rule name, addiTask is assigned to an associ-
ated additional task B, and addiPlace records the current execution state (place) of B.
For skip construct, currConstruct is set to the construct name, (but addiTask and ad-
diPlace are not used). When the execution returns to A, addiTask and addiPlace are
reset to “none”. And after A completes currConstruct is also set to “none”. For retract
construct, none of the three columns is used since it is done in a single step.

We now briefly outline the modification to the fetch transition. Recall that in EZ-
Flow, the fetch transition in a task simply retrieves all auxiliary artifacts. The retract
construct may move the current execution control point back to an earlier task. When
this happens, an auxiliary artifact may not be in the original repository as the normal
execution would expect. For example, if the construct “retract to σ1 from σ3” is applied
and the first execution of σ1 has already moved an artifact from the external repository
to the internal one (for the auxiliary artifact), the second execution of σ1 will not be able
to fetch the artifact from the external repository. Also, if σ2 is executed immediately
after σ1, it may also change the location of some artifacts. To ensure that fetch transition

An Artifact-Centric Approach to Dynamic Modification 265

events started ready done stored

start fetch invoke store end

evente

skip

task A

Fig. 5. Semantics of skip Construct

ready doneinvoke

events started ready done stored

start fetch invoke store end

evente

begin-replace end-replace
task A

task B

Fig. 6. Semantics of replace Construct

is successful during the re-runs, the fetch transition needs to know the current location
of each auxiliary artifact. Fortunately, this location information already exists in the
Artifacts table. Thus the fetch transition is slightly generalized from the version in EZ-
Flow to always retrieve artifacts from the current locations.

We now discuss the details of the four constructs.

Skip execution of a task. A skip construct alters the execution of a task in the following
manner. Assuming that the task A is to be skipped (i.e., the condition is satisfied), Fig. 5
shows the modified execution path of a task. The altered execution almost coincides
with the original execution path (Fig. 2) except that the invoke transition (shown in
gray in Fig. 5) is replaced by a new “skip” transition. The skip transition simply marks
the task as “skipped” (in the log), makes no changes on the artifact(s), and incurs no
resource consumption (e.g., human).

Replace execution of one task by execution of another task with the same signature. The
semantics of the replace construct is illustrated in Fig. 6 where the execution of task A
is replaced by the execution of task B (assuming the condition is satisfied). Similar to
skip, replace also modifies the original execution path by having an alternative to the
invoke transition. Replace is accomplished by a pair of transitions. Since task B has
an isomorphic sequence of places and transitions, a transition “begin-replace” redirects
the execution to the “ready” place in task B so the invoke transition of B can proceed
(i.e., performing task B). Upon completion of invoke, a transition “end-replace” routes
the execution back to task A’s place “done”, and the normal execution resumes.

Add execution of a task before executing another task. Fig. 7 shows the changed ex-
ecution path after an adding task B construct is applied to task A. The add construct
inserts an execution of task B right before the fetch transition of A. Specifically, a
new transition “begin-add” routes the execution from the “started” place of task A to
the “started” place of task B (enactment token). This allows additional artifacts to be

266 W. Xu et al.

started

ready done

storedfetch invoke store

events started ready done stored

start

fetch

invoke store end

evente

begin-add end-add
task A

task B

Fig. 7. Semantics of add Construct

started

ready done stored

fetch invoke store end

evente

events started ready done stored

start fetch invoke store end

evente

retract-totask A

task B

Fig. 8. Semantics of retract Construct

fetched for executing task B. After B completes and the additional artifacts are stored
back, the execution returns the enactment token back to the “ready” place of task A
using an “end-add” transition. The normal execution resumes.

Retract to an earlier task. The retract construct simply routes back to an earlier task so
that the execution path since that task can be re-executed. Fig. 8 shows the execution
path when at executing task A, the execution needs to be retracted to task B. Techni-
cally, this is accomplished simply by a transition retract-to to move the enactment token
from the “started” place of task A to the “started” place of task B. When the workflow
schema has no auxiliary artifact classes, the retract-to transition is rather simple and
Fig. 8 illustrates the semantics well. Note that, when workflow schema has one or more
auxiliary artifacts, augmented snapshots and the generalized fetch transition are used,
which allow the retract construct to be correctly supported.

There are also two modalities when applying a modification construct: “must” and
“may”. In the must-do modality, the modification construct must be applied, i.e., the al-
ternative execution path will be taken (if condition is satisfied). In the may-do modality,
the decision for modified execution is external to the workflow engine but the decision
must be made before the invoke transition. Since the transitions prior to invoke do not
have side-effects, the transition(s) is(are) simply rolled back and the alternative path is
taken if the decision is communicated to the workflow engine.

We next explain how these modification constructs are performed and present the
design of a new workflow engine. for dynamically modifiable workflow execution.

Fig. 9 shows (a) the original EZ-Flow engine and (b) the new engine. Recall that the
old engine consists of a scheduler and 0 or more task performers (one for each task being
performed). Furthermore, as Fig. 9(a) illustrates, the scheduler spawns a task performer

An Artifact-Centric Approach to Dynamic Modification 267

EZ-Flow
Scheduler

DEZ-Flow
Scheduler

e1e2

event queue
. . .

perform T2 perform T1 perform T3

task performers

exec(T1,
paf02)

exec(T2,
paf01)

exec(T3,
paf03)

e3 (T4,done,paf04,skip,T4)

event queue
...

e7

exec(T3,
paf03)

perform T1 from
started with
rule retract

exec(T1@started,
paf02,retract,..)

perform T2
from ready

with rule add

exec(T2@done,
paf01,add,T8,T2)

flexible task performers

rule
base

T
3 ,
p
a
f
0
3

perform T3

s
k
i
p
,
T
3

e7

(a) (b)

Fig. 9. Dynamic Workflow Scheduler

in response to an event, and the task performer simply performs the task from start to
finish (according to Fig. 2). Fig. 9(b) shows the new engine consisting of: a dynamic
scheduler, 0 or more flexible task schedulers, and a rule base. Roughly speaking, the
rule base maintains a set of rules, each describing one modification construct and its
enabling condition, and answers queries from task performers with applicable rules. The
dynamic scheduler and flexible task performer implement the execution modification
according to the rule.

Workflow administrators and business managers may create execution modification
rules (a rule language shown at the end of this section). The rule base manages execu-
tion modification rules (to allow rules to be created, updated, deleted) and responds to
queries from flexible task performers to find applicable rules. When a task performer
executes a new task σ, it sends a query of the form “(σ, α)” to the rule base where α
is the corresponding enactment. The rule base then finds the best applicable rule if it
exists. As hinted in Fig. 9, each return result includes the name of the operator and task
names. Note that this process may involve querying the snapshot database for checking
pre-conditions. If no applicable rules are found, the rule base simply returns “none”.

The second part of the new engine is a collection of flexible task performers (or
instances). For example, the skip construct only involves one task and it can be com-
pleted by one task performer. The replace construct is accomplished by multiple task
performer instances: one for task A till “ready”, another for task B from “ready” to
“done”, still another from “done” of task B back to task A, and the last for task A from
“done” to the end. Similarly, the add construct is also done by three task performers,
and the retract construct is done by 2.

The transition of control between task performers is done by “extended events” that
also include a new event type form task-name@place, enactment, and an operation
(construct, and tasks). When the scheduler reads such an event, the event contents are
passed to a new flexible task performer instance. The task performer executes the por-
tion of the execution within this task, and generates another event to continue execution.

When a task performer initially starts it checks if the enactment is currently having
execution modification. If so, it will perform the operation without considering any
other modification constructs. If the DEZ scheduler (see below) receives a rule from
the rule base, it launches a performer for a portion of the task according to the defined
semantics, i.e., it starts from one internal place, ends at another, and generates an event.
Also, the Enactments table needs to be marked with the current construct name.

Finally, a Dynamic Task (DEZ) Scheduler handles both EZ-Flow events and also
new events from flexible task performers. If an EZ-Flow event comes, the scheduler will

268 W. Xu et al.

launch a task according to the workflow schema exactly the same as in EZ-Flow. For an
event of new type, i.e., corresponding to some execution modification rule, the scheduler
will also spawn a flexible performer passing along all the necessary information.

The syntax of rule-based language for formulating dynamic modifications allows
definition of specific conditions on core artifacts (and the enactments) when modifi-
cations may be or must be applied. It is mostly inspired by SQL, each modification
operation is specified in a rule form. The following shows an execution modification
rule for Case 2 in Section 2.

First-Timer : MUST ADD Prequalification BEFORE Preliminary Decision ON PAF
WHERE projectType="affordable"
AND developerName NOT IN

SELECT developerName
FROM PAF P
WHERE P.artifactId <> SELF.artifactId

AND P.projectType="affordable"

In this case, the rule named First-Timer corresponds to the new policy in CAPA that a
building contractor who has never applied for affordable housing preselling project be-
fore should be qualified before Preliminary Decision. As shown in the example, the rule
applies to the workflow with the core artifact PAF. The specific change is to add a task
Prequlification before the task Preliminary Decision, when the WHERE-condition

holds. A WHERE-condition is expressed as a formula in a nested SQL query. Spe-
cially, a keyword SELF is used to reflect the core artifact. Note that the condition is
checked when a PAF artifact is retrieved into the place “started” during the execution
of the task Preliminary Decision. Also, the word MUST indicates that this rule must be
applied whenever the WHERE-condition is true (workflow engine’s decision).

We now incorporate modification rules into workflow schema to obtain “dynamically
modifiable workflow”:

Definition. A dynamically modifiable workflow (DEZ-Flow) schema is a pair Z=(W,P),
where W is a workflow schema, andP is a set of modification rules (with distinct names).

The semantics of dynamically modifiable workflow schema (W,P) can be formulated
based on the discussions in Section 3 and the semantics of the operators. One important
restriction is that at any time only one modification operation is allowed to be allied to
one enactment. In other words, when one modification is ongoing, no other modification
is allowed. However, one enactment can be modified sequentially.

Technically, we introduce a schema change operation. Let Z = (W,P) be a dynamic
workflow schema, P+,P− be two sets of rules. The operation modify (Z,P+,P−)
results in the dynamic schema Z ′ = (W, (P ∪ P+) − P−). The following can be
established by an induction:

Proposition 4 Let Z = (W,P) be a dynamic schema, and P+
1 , ...,P+

n ,P−
1 , ...,P−

n

two sequences of rule sets. Then,
modify(· · · (modify(Z,P+

1 ,P−
1), · · · ,P+

n ,P−
n) = modify(Z,∪n

i=1P+
i ,∪n

i=1P−
i).

In [14], a set of correctness criteria were discussed, most of which state structural
properties on schemas. In our framework, a dynamic schema combines procedural and
declarative components. Understanding whether and how these and other correctness
criteria would apply to dynamic schemas remains to be seen.

An Artifact-Centric Approach to Dynamic Modification 269

RULE NAME CONSTRUCTS
Affordable-Fee replace

Pre-Qualification add
Affordable-Certificate replace

Resettlement-Qualification add
Greenchannel-PD skip
Greenchannel-SR skip
Greenchannel-FA skip

Reapply-PD retract
Reapply-SR retract
Reapply-FA retract 0 1 2 3 4 5 6 7 8 9

0

2

4

6

8

10

12

number of rules

lo
g2

(n
um

be
r

of
 tr

ac
e

ty
pe

s)

(a) Modification Rules (b) Trace Types of CAPA

Fig. 10. Trace Types of CAPA with Different Number of Rules

5 Experimental Evaluation and a Case Study

In this section, we present results on flexibility and performance evaluation of DEZ-
Flow and a case study to apply DEZ-Flow to the running system at REA.

Flexibility measures a workflow’s ability to adapt to complex situations through the
use of different traces of execution. A trace type is a sequence of tasks (names) of
a complete enactment (a complete lifecycle of a core artifact). We count the number
of trace types permitted by a workflow to reflect its flexibility. The more flexible a
workflow is, the more trace types it allows. In the experiment, the CAPA workflow in
Section 2 is used along with 10 rules listed in Fig. 10(a). These rules are acquired from
the actual business changes in the Hangzhou REA.

To calculate trace types of runs of a workflow, we count the number of different types
of sequences delivered from tasks execution in a business process instance. To avoid
infinite length trace types when a schema is cyclic, we limit the length of a meaningful
run of a dynamic workflow to no more than twice the number of tasks in the original
workflow. We count trace types for the original CAPA workflow and for CAPA dynamic
schemas with different number of rules randomly selected from Fig. 10(a).

Fig. 10(b) shows the experiment results. Not surprisingly, the more execution modi-
fication rules are applied, the more trace types a CAPA workflow would allow, and the
number increases almost exponentially. The results match the intuitive understanding
of the rule impact by the staff members at REA.

We now focus on performance of DEZ-Flow using CAPA as the original workflow
schema. We set up an experiment in MatLab, where each task in a workflow is assigned
a labor cost in man-days (top part of Fig. 11(a)). The costs are estimated actual costs
in the REA business in Hangzhou. The total labor cost of a business process execu-
tion is the sum of the costs from the sequence of execution trace. When an unexpected
event happens during workflow execution due to business policy changes, tasks are
added or removed from the execution trace to reflect the change, and in addition, extra
labor costs are required to handle the exceptions (e.g., manager consultation or interac-
tion with IT staff). In actual situations, staff may have to work longer hours to handle
these special cases manually. It can sometimes take more than a day when if the case

270 W. Xu et al.

Task Name Labor Cost
(in man-days)

Receiving App-Form 0.5
Preliminary Decision 1.5

Secondary Review 1
Payment Processing 0.5

Final Approval 0.5
Preparing Certificate 1
Delivery Certificate 0.5

Affordable Payment Processing 0.5
Preparing Affordable Certificate 1

Affordable Pre-qualification 0.5
Resettlement Pre-qualification 0.5

Add Skip Replace Retract
0

1

2

3

4

5

6

7

8

9

7.63

7.04

4.88
4.52

6.13

5.54

7.88
7.52

Different Exception Type

A
ve

ra
ge

 L
ab

or
 C

os
t W

he
n

E
xc

ep
tio

n
H

ap
pe

nd
(M

an
−

D
ay

)

Original Cost
New Cost

(a) Labor Cost of Tasks (b) Trace Types of CAPA

0 2 4 6 8 10
5.5

6

6.5

7

7.5

7.21 7.18

7.01

6.72 6.74

6.5

6.28
6.19

6.05

5.81

5.68

−21.1%

Number of rules

A
ve

ra
ge

 la
bo

ur
 c

os
t p

er
 e

xc
ep

tio
na

l f
lo

w
 (

m
an

−
da

y)

10% 20% 30% 40% 50%
0

1

2

3

4

5

6

7

8

9

6.546.39
6.65

6.33
6.75

6.26
6.71

6.09

6.89

6.1

Exceptional probability

A
ve

ra
ge

 la
bo

r
co

st
 (

m
an

−
da

y)

Original Cost
New Cost

(c) Labor Cost with Different Size of Rule Set (d) Labor Saved with Different Exceptional Rates

Fig. 11. Labor Cost and Their Reduction with DEZ-Flow

involve the department head or staff from other departments. The additional labor cost
for these situations is included in the additional tasks involved in the changes (bottom
part of Fig. 11(a)). By deploying DEZ-Flow modification rules, business changes can
be recognized and handled by applying skip, add, replace, retract actions. Thus execu-
tion trace is modified appropriately just as the original manual way, but the extra labor
cost is minimized.

We classify all exceptional cases based on the main constructs (add, skip, replace,
and retract) of the execution modification rules. Fig. 11(b) compares the original labor
costs (Original Cost) and the cost by applying rules (New Cost). To simulate the actual
working environment, we set up several rounds of runs of CAPA with different per-
centage of exceptional cases. Each round contains 200 runs, which simulates all CAPA
cases dealt with by the Hangzhou REA in one year. The 10 types of exceptions may
occurred in these runs with different probabilities.

Fig. 11(c) and (d) show the results of scalability evaluation. As shown in Fig. 11(c),
when exception occurs, by adding more rules to the workflow the labor cost will linearly
decrease. And the reduction is more than 20% if we have 10 rules in CAPA. Fig. 11(d)
shows that as the exception probability grows, the average labor saved by using the
DEZ-Flow approach also increases linearly. Fig.11(c) and (d) only show the average

An Artifact-Centric Approach to Dynamic Modification 271

is empty?

is satisfied?

check rule conditionselect rule from rule base return next task
YES

NO

YES
NORULE

ENGINE

call rule engine

select task by rule

generate tasklist choose task by user

execute task
has rule

returned?
Is Process
finished?

YES

NO

archive

NO

YES

WORKFLOW
ENGINE

Fig. 12. Modify the Process Engine to Be a Rule-aware

cost for one single business process. In the Hangzhou REA, there are about 300,000
business cases every year and more than 35% of them are long duration cases similar to
CAPA with costs 4-8 man-days per case. Therefore with 30% exception, if 10 rules are
handled using the DEZ-Flow approach, about 38 man-year can be saved for the REA in
Hangzhou. This would be a significant saving for a single bureau.

To validate the applicability of DEZ-Flow, we conducted a case study in the real
business of REA in Hangzhou. With the help of the Hangzhou REA, we modified the
current process engine in the bureau by introducing a rule-adaptation facility. As de-
picted in Fig. 12, it is realized by inserting the primitives in rule-handling task, in addi-
tion to the EZ-Flow facilities. Technically, business operators can insert or delete rules
at any time if necessary. Before the invocation of any task, the task is evaluated first
against rules. If any rules are applicable, the modified engine (rounded rectangles with
thicker lines) will execute the rules, and decide the next task to be executed. Otherwise,
the flow is executed as in the original plan. The main point here is that the next task is
determined by the results of rule execution, rather than the task scheduled in the original
workflow. As a result, the execution of a business process can be adjusted dynamically
at the instance level in a just-in-time manner.

6 Related Work and Our Contributions

Process flexibility in business process modeling and management has been studied over
a decade. Process flexibility is required (1) at design time when developer needs to have
the choice of using procedural (structural) language or declarative language to model
the process partially; (2) when execution decisions have to be made at run time; (3)
when detailed specifications of some tasks cannot be fully defined at design time; (4)
when business rules or policy change.

Substantial work has been done in the related areas in supporting process flexibility:
(1) declarative workflow, (2) configurable workflow, (3) business process evolution.

Work in the area of declarative workflow can be classified as partially or fully declar-
ative. Worklets is a partially declarative approach as a separate case in the workflow
engine to execute a task [1]. A worklet is associated with a task, and worklets can form
repertoire of tasks. A worklet is activated or substituted for another task at runtime.
In [11,17] a fully declarative workflow system is developed. In [18], authors presented

272 W. Xu et al.

the DECLARE framework to analyze the process support in terms of verification and
performance. It uses arbitrary constraint templates as the declarative language to con-
struct a workflow. The flexibility it supports are “defer”, “change”, and “deviate”. It
is not clear how performance is analyzed in comparison with imperative approaches.
[12] proposed an object-centric modeling approach for supporting flexible business pro-
cess modeling. CPN is used for the syntax and semantics of the proposed FlexConnect
model. It can support flexibility in terms of creation, delegation, and nesting flexibility.

Work in the area of configurable workflow for variability support and configuration
in workflow mainly focused on (1) providing variant points on the process which can
be activated, blocked, hidden; (2) verifying configurability of the model [4].

In the area of business process evolution, work has been done in identifying change
patterns and change support [16], extensibility support in business process life cycle
management [3], and variants support in [5]. In [16], a set of change patterns are defined
and the corresponding change operations for the patterns are developed. Authors in [3]
address the issues of customizing reference processes in which some extension points
are defined. Reference [5] proposes an approach for storing change operations that need
to be applied for a process variant to be derive from a base process.

The above work has provided insights in process change handling and verification
techniques that can be used as a foundation for the proposed work. What we focus
here, however, is a framework for handling runtime changes and providing just-in-time
solution. Our main contributions are:

– An artifact-centric workflow model that explicitly captures the runtime status using
snapshots. The snapshots hold the key information that the workflow scheduler and
task performer can rely on to determine the suitable execution at the time.

– A hybrid language for workflow specification. The base workflow schema is pro-
cedural while the flexible points leading to deviations are specified in a declarative
fashion. For the identified points where changes can occur, we can specify rules to
stay flexible.

– Separating the workflow schema from the plug-in rules to cater for ad hoc changes.
When a change occurs, only the rules need to be changed, or new rules added.
The base workflow schema remains unchanged, while the changes only affect the
running instances at the point when a rule becomes effective. Since the base schema
is untouched and the rules can be added and discarded, the approach provides a
holistic and less intrusive way of introducing changes to a running workflow.

7 Conclusions

Supporting workflow flexibility is crucial but challenging. We believe new workflow
models and mechanisms need to be provided to tackle the challenge, especially for
runtime ad hoc execution modifications. In this paper we proposed an approach for
just-in-time modification at runtime based on an artifact-centric workflow model. The
workflow model DEZ-Flow, in particular the scheduler and flexible task performer are
specified. Effectiveness and flexibility of DEZ-Flow are analyzed for a real business
case in a Real Estate Administration in China.

An Artifact-Centric Approach to Dynamic Modification 273

References

1. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A service-
oriented implementation of dynamic flexibility in workflows. In: Meersman, R., Tari, Z.
(eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)

2. Athena, P.: Flower user manual. Technical report, Pallas Athena BV, Apeldoorn, The Nether-
lands (2002)

3. Balko, S., ter Hofstede, A.H.M., Barros, A.P., La Rosa, M.: Controlled flexibility and life-
cycle management of business processes through extensibility. In: EMISA 2009, pp. 97–110
(2009)

4. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., La Rosa, M.: Configurable wor-
flow models. Int. J. Cooperative Inf. Syst. 17(2), 177–221 (2008)

5. Hallerbach, A., Bauer, T., Reichert, M.: Managing business process variants in the process
lifecycle. In: Proc. ICEIS (2008)

6. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III, F., Hobson, S., Linehan, M.,
Maradugu, S., Nigam, A., Sukaviriya, P., Vaculı́n, R.: Introducing the guard-stagemilestone
approach to specifying business entity lifecycles. In: Proc. Workshop on Web Services and
Formal Methods (WS-FM). Springer, Heidelberg (2010)

7. Kucukoguz, E., Su, J.: On lifecycle constraints of artifact-centric workflows. In: Proc. Work-
shop on Web Services and Formal Methods, WSFM (2010)

8. Liu, G., Liu, X., Qin, H., Su, J., Yan, Z., Zhang, L.: Automated realization of business work-
flow specification. In: Proc. Int. Workshop on SOA, Globalization, People, and Work (2009)

9. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specification. IBM
Systems Journal 42(3) (2003)

10. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for looselystruc-
tured processes. In: EDOC 2007, pp. 287–300 (2007)

11. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-Based Work-
flow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

12. Redding, G., Dumas, M.: A flexible object-centric approach for business process modeling.
SOCA 4, 191–201 (2010)

13. Reichert, M., Dadam, P.: Adeptflex-supporting dynamic changes of workflows without los-
ing control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)

14. Rinderle, S.B., Reichert, M.U., Dadam, P.: Correctness criteria for dynamic changes in work-
flow systems – a survey. Data & Knowledge Engineering 50(1), 9–34 (2004)

15. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Process flexibil-
ity: A survey of contemporary approaches. In: CIAO! / EOMAS 2008, pp. 16–30 (2008)

16. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting flexible
processes through recommendations based on history. In: Dumas, M., Reichert, M., Shan,
M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)

17. van der Aalst, W.M.P., Pesic, M.: Decserflow: towards a truly declarative service flow lan-
guage. In: International Conference on Web Service and Formal Methods (2006)

18. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. CSRD 23, 99–113 (2009)

19. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features en-
hancing flexibility in process-aware information systems. Data Knowl. Eng. 66(3), 438–466
(2008)

20. Weber, B., Sadiq, S.W., Reichert, M.: Beyond rigidity - dynamic process lifecycle support.
Computer Science - R&D 23(2), 47–65 (2009)

Event Cube: Another Perspective on Business

Processes

J.T.S. Ribeiro and A.J.M.M. Weijters

School of Industrial Engineering, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{j.t.s.ribeiro,a.j.m.m.weijters}@tue.nl

Abstract. In this paper the so-called Event Cube is introduced, a multi-
dimensional data structure that can hold information about all business
dimensions. Like the data cubes of online analytic processing (OLAP) sys-
tems, the Event Cube can be used to improve the business analysis quality
by providing immediate results under different levels of abstraction. An
exploratory analysis of the application of process mining on multidimen-
sional process data is the focus of this paper. The feasibility and potential
of this approach is demonstrated through some practical examples.

Keywords: process mining, process discovery, OLAP, data mining.

1 Introduction

Business process intelligence (BPI) techniques such as process mining can be
applied to get strategic insight into the business processes. Process discovery,
conformance checking and performance analysis are possible applications for
knowledge discovery on process data [11].

Typically represented in event logs, business process data describe the execu-
tion of the different process events along the time. This means that operational
data are associated with process events, which turns the static nature of the
business data into dynamic. This is a great advantage for business process anal-
ysis once that the business behavior can be tracked. Applying process mining
techniques on the sequences of events that are used to describe the behavior of
process instances, it is possible to discover the business as it is being executed.
However, so far, these techniques are typically designed to focus on specific
process dimensions, omitting information potentially relevant for the analysis
comprehension. An illustrative example demonstrates this observation. Let’s as-
sume that there is an event log where the execution information of a product
repair process is registered. Basically, this process is defined by 7 activities in
which 12 different resources (divided by 3 categories) attempt to fix 2 different
kinds of products. Figure 1 presents the behavior of this process, which is the
result of the application of a control-flow mining technique on the event log. In
these cases the only dimension taken into account is the activity.

Process models, such as the one depicted in Figure 1, have proven to be effective
for process discovery but they can only provide an abstract view of the actual
business process. Basically, two distinct aspects are considered: the events (nodes)

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 274–283, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Event Cube: Another Perspective on Business Processes 275

Fig. 1. Repair process

and the workflow (edges). The events identify what the executed activities are. On
the other hand, the workflow defines how the events were executed. Other kinds
of queries such as who performed the events, when the events were executed, which
objects (e.g., products) are associated with the events (or the process instances),
and why a specific process behavior happens are not directly addressed in such a
basic approach. Nevertheless, some filtering operations or other process mining
techniques may achieve that, though in a non-integrated way.

Specially designed to support on-the-fly hypothesis-driven exploration of data,
OLAP systems are commonly used as reporting tools in almost every application
for business intelligence. Exploiting the data by combining the different dimen-
sions with some measures of interest, it is possible to adjust on-the-fly the analy-
sis’ level of abstraction in an interactive way [2]. Relying on the multidimensional
data model, OLAP tools organize the data in such a way that it is possible to have
multiple perspectives in the same analysis. Considering the event log’s attributes
as dimensions, process models can be built in such a way that events and the work-
flow can be constrained by specific process information. Traditionally, only a single
constraint is considered: the activity as events constraint. In a multidimensional
approach, process models can be constrained by the dimensions the analyst con-
siders relevant. An example to show the potential of the this approach is given in
Figure 2. Making use of event-based attributes such as the product type as extra
events constraint (besides the activity), it is possible to analyze different process
behaviors in a single model. An alternative perspective in which the product type
is used as workflow constraint is presented in Figure 3. The edges represented by
solid lines refer the Product X , while the dotted lines refer the Product Y . Both
models are examples of a conjunction of what, which and how queries.

Fig. 2. Repair process by product type (as events constraint)

In this paper the Event Cube is presented, a multidimensional approach for
process discovery and analysis. Due to its multidimensional nature, the Event
Cube may cover a broader range of queries than any other process mining tech-
nique. This means that different aspects of the business process can be exploited in
an integrated multidimensional analysis. Rather than providing implementation

276 J.T.S. Ribeiro and A.J.M.M. Weijters

Fig. 3. Repair process by product type (as workflow constraint)

details, this paper consists of an exploratory study of the potential and feasibility
of the Event Cube approach, which is implemented in the ProM framework [12].
A further discussion about the concept implementation and evaluation is planned
to be presented in a following paper.

The remainder of this paper is organized as follows. In Section 2 the mul-
tidimensional data model as well as OLAP concepts are introduced. Section 3
identifies the differences between traditional and multidimensional process mod-
els. Section 4 describes the Event Cube and its components. The results of a
preliminary experimental study on the Event cube are presented in Section 5.
Related work and conclusions are discussed in sections 6 and 7.

2 Multidimensional Data Model

Mainly used in OLAP, the multidimensional model represents data by means of a
multidimensional fact-based structure that supports complex queries in real time.
A fact describes a business operation (e.g., sale or purchase), which can be quan-
tified by one or more measures of interest (e.g., the total amount of the sale) and
characterized by multiple dimensions of analysis (e.g., the time, location, prod-
uct and customer). Typically numerical, measures can be aggregated for different
levels of abstraction. Each dimension consists of a set of discrete values called di-
mension values or members. Eventually, in the same dimension, there may be di-
mension values that represent different concept levels. For these cases, a hierarchy
defines the order the different dimension values should be exploited, from a lower
to a higher concept level. The typical example of a hierarchy for the time dimen-
sion based on the attributes day, month, and year is “day < month < year”.

Also designated as hypercube, the data cube provides a multidimensional view
of data (i.e., facts) through the materialization of given measures for every com-
bination of the cube’s dimension values. Each combination defines a different
perspective and is represented by a multidimensional cell. A cell consists of a
pair with a set of dimension values that identifies univocally the cell, and a set
of aggregated values representing the measures. The set of cells that share the
same dimensions forms a cuboid. The complete set of cuboids forms the data
cube through a lattice of cuboids.

A cell is materialized with respect to one of its measures when all the values of
the cell’s representative facts – for that measure – are aggregated according to a
given aggregation function. Additionally, it is said that a cuboid is materialized
when all of its cells are materialized. The same principle applies to the data cube
and its cuboids.

Event Cube: Another Perspective on Business Processes 277

The multidimensional analysis of a data cube consists of the exploitation of
its cuboids. Moving through the lattice of cuboids, the analyst is able to adjust
the analysis perspective by selecting the cube dimensions. There are five typical
OLAP operators that can be used for querying multidimensional data.

Drill-Down descends one level in the lattice by adding one dimension (or hi-
erarchy level) to the current perspective (i.e., decreases the level of abstrac-
tion).

Roll-Up ascends one level in the lattice by removing one dimension (or hierar-
chy level) from the current perspective (i.e., increases the level of abstrac-
tion).

Slice and Dice restricts the perspective by using filtering conditions.
Pivot permutes the analysis’ axes. The perspective remains the same but the

information is given in a different layout.
Top-k Selection restricts the perspective to the top-k cells of a given measure.

Figure 4 exemplifies the result of drilling-down the Figure 1’s one-dimensional
model on the dimension time period. Adding the when query to the what and how
queries, it is possible to visualize that there may exist bottlenecks in the repair
process. This conclusion can be drawn because there is a high amount of incom-
ing edges from different time periods in both simple and complex repairs. Eventu-
ally, adding more dimensions to the model, it is possible to determine the causes
of specific process behaviors. Note that the different edge colors (gray and black)
are used simply to distinguish the interdependencies between time periods.

Fig. 4. Repair process by time period

Figure 5 provides an example where the slice and dice operation is applied.
By selecting the activities Test, Restart Repair and Close, and considering the
instance-based attribute repair status as workflow constraint, it is possible to an-
alyze some of the behavior of the repair process. In order to understand this exam-
ple, remark that the activity Test tests whether the – last – repair was successful
or not, updating the repair status with a “OK” or “Not OK” tag. The history
of test results (for the same process instance) is kept in this attribute. So, mul-
tiple tags provide insight into unsuccessful repair attempts. More than that, this
process perspective clearly shows that a repair case is closed if the repair was suc-
cessful (i.e., there is the tag “OK” in the repair status) or at the end of the third
unsuccessful repair attempt. So, this case is a good example of a why query.

278 J.T.S. Ribeiro and A.J.M.M. Weijters

Fig. 5. Partial repair process by repair status

3 Process Models

A – traditional – process model can be defined as the set of activities and their
dependency relationships (workflow) during a process. Figure 1 is an example
of a traditional model in which the activities and the workflow are represented
by nodes and edges. Typically, these models can be derived from an event log
that contains information about the activities such as the activity designation,
the execution date, or the resource that executed the activity. Hence, event-
related information such as resources or time is often abstracted from the model.
The relationships define how the activities were performed. Depending on the
representation language, complex relationships such as splits and joins may be
explicitly considered. Examples of these languages can be found in [10].

Multidimensional Process Models can be defined as the set of event occur-
rences and their relationships (workflow) during a process. It is considered as
– event – occurrence a possible combination of dimension values from distinct
dimensions (e.g., {Test, Product X}). Additionally, unlike traditional models,
the workflow in multidimensional process models may also be constrained by
multiple dimension values. The result of this extension is that process models
are no longer restricted to what and how queries. In theory, depending on the
available data, any type of query may be answered using these models.

Figures 2 and 3 are simple examples of multidimensional process models. In
the first case, there is no workflow constraint and the event occurrences are de-
fined by two dimensions: activity and product type. In the other case, the product
type is used as workflow constraint and the event occurrences are defined only
by the activity. Remark that event occurrences may not be directly associated
with what queries as it always happens with traditional process models. A good
example of these cases is presented in Figure 6. Defining the one-dimensional
event occurrences as resource category, it is possible to analyze the handover of
work in the process by executing both who and how types of queries.

Fig. 6. Handover of work in the repair process

Event Cube: Another Perspective on Business Processes 279

Depending on the cardinality of each dimension, the number of event occur-
rences may be significative enough to turn the process model unreadable. Known
as curse of dimensionality, this issue is even more evident if the relationships
between occurrences are complex and unpredictable. One possible solution to
minimize the impact of the dimensionality is the usage of simplified model rep-
resentations such as the ones that can be used to represent causal nets (C-Nets)
[13,1]. Simply using two different kinds of elements to represent C-Nets (nodes
and edges), it is possible to provide a clear picture of the process without omit-
ting information. Complex relationships between activities (i.e., the splits and
joins patterns) are provided separately. A similar approach can be applied for
representing multidimensional process models.

4 Event Cube

As indicated before, an Event Cube is defined as a data cube of events and can
be used to extend the current process mining techniques with multidimensional
capabilities. By materializing a selection of dimensions of interest, an Event Cube
can be built to accommodate all the necessary measurements to perform process
mining. This means that, all the information regarding the different perspectives
(and levels of abstraction) is computed and maintained in the cube, facilitating
thus the execution of all types of queries.

The basic implementation of an Event Cube is depicted in Figure 7 and can
be characterized as follows. Relying on an index instead of directly on the event
log, the lattice of cuboids is firstly built according to a given set of dimen-
sions. Representing a different perspective, each of these cuboids holds the event
occurrences that define a given perspective. These occurrences are represented
as multidimensional cells and can be characterized by multiple measures. The
Event Cube materialization process is finished when all the measures of all the
multidimensional cells are computed. Then, the materialized measures can be
either directly analyzed (e.g., using a pivot table) or used for process mining
(e.g., deriving multidimensional process models).

Fig. 7. The Event Cube approach architecture

Indexation consists of the application of information retrieval techniques on
event logs. Commonly used in document retrieval systems, inverted indices are
capable to index multidimensional datasets in such a way that any dimension
value can be directly accessed. Basically, these indices rely on the locations in the
dataset where the dimension values appear. By applying the inverted indexing
concept on event logs, it is possible to directly retrieve all the process events
according to given constraints. Since event logs organize the process data as sets

280 J.T.S. Ribeiro and A.J.M.M. Weijters

of traces (each trace is a set of events), the pair of identifiers (trace ID, event ID)
can be used to index the different event dimensions. The intersection of sets of
identifiers determines the locations of the events (trace and trace position) that
are characterized by specific dimension values. Further details about inverted
indices can be found in [5].

Materialization consists of the computation of the business process-related
measures. For reporting purposes, final measures (e.g., the Throughput Time)
can be either retrieved directly from the event log or derived using some given
function. For process mining purposes (e.g., process discovery), auxiliary mea-
sures can be maintained in order to facilitate the execution of the process mining
techniques. An example of these process mining-related measures is the Flexible
Heuristics Miner’s dependency measures [13] that can be straightforwardly used
to derive multidimensional process models. Basically, this control-flow mining al-
gorithm derives the input and output activities of a given activity by using simple
frequency-based measurements and applying thresholds. Considering multidi-
mensional cells (i.e., event occurrences) instead of activities, the algorithm can
be normally executed on the cuboids’ cells in order to build the multidimensional
process models for the different perspectives.

Analysis consists of the exploitation of the Event Cube information. Apply-
ing the typical OLAP operators on the Event Cube, it is possible to adjust the
analysis’ process perspective by selecting the cube dimensions. This means that
the analyst is able to explore the measures or derive process models under dif-
ferent abstraction levels. One of the major claims in this paper is that process
models can be built using multiple dimensions. In the traditional process models
(e.g., C-Nets) only one dimension is considered: the activity. Nodes represent the
executed activities and edges refer the workflow. Figure 1 shows an example of
these models. So, it can be concluded that traditional process models are defined
by one-dimensional nodes and zero-dimensional edges. Remark that these mod-
els can be represented by an one-dimensional cuboid on the dimension activity.
The number of dimensions of multidimensional process models is defined by the
cuboid dimensionality. So, all of the cuboid’s dimensions need to be selected
either as event occurrences or workflow constraints. This implies that two multi-
dimensional models on the same cuboid (i.e., representing the same perspective)
may adopt very distinct representations. Figures 2 and 3 present two different
representations of the same multidimensional model. In the first case the occur-
rences are formed by the dimensions activity and product type and there are no
workflow constraints. In the second case the occurrences are formed exclusively
by the dimension activity, while the workflow is constrained by product type.

5 Experiments

A preliminary implementation of the Event Cube approach was done in Java
as a ProM 6 plugin [12]. Basically, the implementation consists of an inverted

Event Cube: Another Perspective on Business Processes 281

index, an Event Cube data structure, a multidimensional version of the Flex-
ible Heuristics Miner (FHM), and a graphical user interface for OLAP-based
process analysis. In order to evaluate the scalability of the approach, several
Event Cube instances (with the FHM measurements) as well as multidimen-
sional process models were computed using different event logs. Considering the
computing time as the main performance indicator, this evaluation study aims
at the analysis of the impact of three main variables: (i) the size of the event
log, (ii) the Event Cube’s dimensionality, and (iii) the dimensions’ cardinality.

All the event logs used in these experiments were generated from the repair
process introduced in Section 1. Varying the number of resources as well as
products, 4 event logs with 1000 process instances are used to evaluate the impact
of the dimensions’ cardinality in the Event Cube’s materialization. In order to
keep the process consistency, the existing resources and products are simply
multiplied (cloned). Figure 8c presents the results of this evaluation. The line
represents the materialization time (primary axis) for the different cardinality
setups, while the bars refer the number of materialized cells (secondary axis). In
the event log identifiers (x-Axis), A refers the activities, P the products and R
the resources.

(a) (b) (c)

Fig. 8. Performance results

Using again the same characteristics of the repair process, 6 event logs with
different number of process instances are used to evaluate the impact of the event
log size in the Event Cube’s materialization – as well as the multidimensional
model computation. With respect to the number of process instances (x-Axis),
Figure 8a compares the computing time evolution of building the inverted index,
materializing the Event Cube, and computing a one-dimensional model equiva-
lent to a traditional one. Additionally, the computing time of the original FHM
(i.e., deriving the C-Net directly from the event log) is also presented for com-
parison. Figure 8b presents the evolution of the computing time for building
multidimensional Event Cubes and multidimensional models (y-Axis) with re-
spect to the number of process instances (x-Axis). All the experiments were run
on Intel Core 2 Quad Q9650 3.0GHz with 4Gb on Microsoft Windows XP OS.

An interesting observation in these experiments is the curse of dimensionality
issue. Figure 8c confirms that the dimensions’ cardinalities have direct impact on
the number of cells and, consequently, on the performance. From a different point

282 J.T.S. Ribeiro and A.J.M.M. Weijters

of view, Figure 8b shows that cube’s dimensionality is a bigger issue than the
event log size. As expected, like in traditional OLAP applications, the cube ma-
terialization is the most demanding process. Nonetheless, this is not considered
a critical issue once that the Event Cube materialization should be a single-run
process (i.e., cube instances can be reused at different points in time). The re-
sults also confirm that deriving a multidimensional model from an Event Cube is
almost immediate. Considering only the time for deriving the process model, the
Event Cube clearly outstands the traditional FHM approach (Figure 8a). Taking
into account that the experiments were conducted on a preliminary implementa-
tion (i.e., there is still room for improvements such as the use of multithreading
and efficient materialization strategies), it can be concluded that the experiment
results are promising. However, although the results suggest the feasibility of the
approach, demonstrating it requires additional experiments.

6 Related Work

Traditionally associated to decision support systems (DSS), OLAP systems pro-
vide a different view of the data by applying the multidimensional paradigm
[2]. OLAP techniques organize the data under multiple combinations of dimen-
sions and, typically, numerical measures. A lot of research have been done to
deal with OLAP technical issues such as the materialization process. An exten-
sive overview of these works can be found in [5]. The application of OLAP on
non-numerical data is increasingly being explored. Temporal series, graphs, and
complex event sequences are possible applications [6,3,7].

Process mining techniques provide strategic insight into the business pro-
cesses. Process discovery, conformance checking and performance analysis are
possible applications [11,4,10]. However, the state-of-the-art process mining tech-
niques do not support yet multidimensional analysis. Nevertheless, some research
has been done in multidimensional process analysis [9,8]. Workflow ART is a pro-
posed framework to explore the three main business process dimensions action
(or activity), resource and time. Although several predefined business measures
can be analyzed, this approach is not flexible as an OLAP-based technique. A
fully multidimensional approach for business process analysis can be found in
[8]. Relying in the multidimensional data model, this approach maps the differ-
ent aspects of the business process into a data cube. However, only numerical
information is considered.

7 Conclusions

This paper is about an exploratory analysis of the application of process min-
ing on multidimensional process data. Rather than the concept implementation
details, it is intended to demonstrate the potential and feasibility of the Event
Cube approach. Several examples are given to provide some insight into the dif-
ferent types of business queries the proposed approach can execute. The Event
Cube (i.e., a data cube of events) is defined to support these multidimensional

Event Cube: Another Perspective on Business Processes 283

analyses, which can either be done directly on the cube or using the cube as basis
for process mining techniques such as the Flexible Heuristics Miner. Implement-
ing the main OLAP operators, the proposed framework provides to the business
analyst the opportunity to drill-down the process information without complex
queries and long response times. A preliminary experiment analysis suggests
that the Event Cube approach is feasible. However, further experiments using a
revised implementation and real datasets are still necessary.

Acknowledgements. This work is being carried out as part of the project
“Merging of Incoherent Field Feedback Data into Prioritized Design Information
(DataFusion)”, sponsored by the Dutch Ministry of Economic Affairs, Agricul-
ture and Innovation under the IOP IPCR program.

References

1. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Con-
formance Checking. In: Proceedings of the 6th Workshop on Business Process In-
telligence, BPI 2010 (2010)

2. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26, 65–74 (1997)

3. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: a multi-dimensional
framework for graph data analysis. Knowl. Inf. Syst. 21, 41–63 (2009)

4. Gunther, C.W.: Process Mining in Flexible Environments. PhD thesis, Eindhoven
University of Technology, Eindhoven (2009)

5. Han, J., Kamber, M.: Data mining: concepts and techniques. The Morgan Kauf-
mann series in data management systems. Elsevier (2006)

6. Li, X., Han, J.: Mining approximate top-k subspace anomalies in multi-dimensional
time-series data. In: Proceedings of the 33rd International Conference on Very
Large Data Bases, VLDB 2007, pp. 447–458. VLDB Endowment (2007)

7. Liu, M., Rundensteiner, E., Greenfield, K., Gupta, C., Wang, S., Ari, I., Mehta, A.:
E-Cube: Multi-dimensional event sequence processing using concept and pattern hi-
erarchies. In: International Conference on Data Engineering, pp. 1097–1100 (2010)

8. Mansmann, S., Neumuth, T., Scholl, M.H.: Multidimensional data modeling for
business process analysis. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim,
B. (eds.) ER 2007. LNCS, vol. 4801, pp. 23–38. Springer, Heidelberg (2007)

9. Monakova,G., Leymann,F.:WorkflowART. In:Meersman, R.,Dillon,T.S., Herrero,
P. (eds.)OTM2010,Part I.LNCS,vol. 6426,pp. 376–393.Springer,Heidelberg (2010)

10. Rozinat, A.: Process Mining: Conformance and Extension. PhD thesis, Eindhoven
University of Technology, Eindhoven (2010)

11. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data
Knowl. Eng. 47, 237–267 (2003)

12. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM Framework: A new era in process mining tool
support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
444–454. Springer, Heidelberg (2005)

13. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In: Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Data Mining,
CIDM 2011. IEEE, Paris (2011)

Building eCommerce Systems from Shared

Micro-schemas

Stefania Leone and Moira C. Norrie

Institute for Information Systems, ETH Zurich
CH-8092 Zurich, Switzerland
{leone,norrie}@inf.ethz.ch

Abstract. We present an approach that supports the design of eCom-
merce systems in a modular way based on the composition of micro-
schemas that are shared and reused within a community. We have
designed and developed a platform that supports platform users in com-
posing their individual eCommerce systems through a process of selecting
appropriate micro-schemas from the micro-schema repository, compos-
ing, extending and adapting them at the level of the application model.

Keywords: database design, model reuse.

1 Introduction

eCommerce platforms, such as osCommerce1 and Magento2 are widely used by
small companies for their online businesses. Such platforms support the com-
plete range of tasks and processes associated with eCommerce, ranging from the
management of products, customers and orders to visitor statistics and adver-
tisements. However, while such platforms provide fully-fledged online store func-
tionality, their business model might not match that of a particular company.
For example, a company might sell virtual products, such as digital coupons of
digital photos, that are not physically shipped and thus need a shipment mech-
anism for digital products. Another company might sell products with a very
particular structure and composition that is not supported by the platform.
While these platforms generally do cater for extensibility and the community
is free to develop and share extensions, their monolithic core is rather static.
Extensions and adaptations on the level of the data model result in code ex-
tensions or adaptation of the corresponding application logic and user interface
components, which may involve significant development effort as well as altering
and manipulating the system core. Furthermore, new releases of the core require
adapted and extended core versions to be manually updated – file by file.

An ideal eCommerce platform would support a company in the composition of
an online store in a flexible and lightweight way by means of reusable, standard
building blocks that optimally accommodate their specific requirements. A user
1 http://www.oscommerce.com/
2 http://www.magentocommerce.com/

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 284–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Building eCommerce Systems from Shared Micro-schemas 285

should be able to select from a collection of variants of standard building blocks
which can be adapted and extended if required. Users could then share their
customised versions with the community.

In this paper, we present an approach that supports the creation of such sys-
tems through the reuse and composition of shared micro-schemas that can be
combined, adapted and extended. We present an architecture and eCommerce
platform that supports the plug-n-play composition of online stores from stan-
dard micro-schemas as well as from ones created and adapted by the community.

We start in Sect. 2 with a discussion of the background of this work. We then
present our approach and architecture in Sect. 3, explaining how it allows users
to construct a system in a modular fashion based on the reuse and composition
of micro-schemas. Details of how micro-schemas can be composed are given in
Sect. 4. In Sect. 5, we present the eCommerce platform and a discovery and
inspection system for share micro-schemas is described in Sect. 6. Information
on the implementation is given in Sect. 7. A discussion of open issues is given in
Sect. 8 followed by concluding remarks in Sect. 9.

2 Background

While enterprise information systems and the databases that they use are de-
signed and developed by expert teams, small businesses and individual users
typically do not have the resources and expertise to create solutions tailored to
their requirements and have to rely on off-the-shelf solutions. Researchers have
therefore investigated ways of allowing non-expert users to design their own
information systems through processes of reuse, specialisation and composition.

A common approach is to adopt a service-oriented model that allows users
to build applications through the orchestration of reusable, self-contained ser-
vices [1]. In the realm of the web, so-called mashup tools have become popular
as a means of developing applications through the composition of web services
and a number of these offer endusers graphical tools to do the composition pro-
cess [2,3] as an alternative to programmatic interfaces. Web services interact at
the message level and may span multiple applications and organisations. They
are shared and reused by publishing them to a repository where consumers can
search for and create the necessary bindings to use them.

Services define and manage their own data for the service that they provide.
However, users may have their own data management requirements and want to
design their information spaces accordingly. Sharing and reuse at the database
design level is a valuable means of supporting non-expert users in this task. One
approach is to provide domain-specific solutions based on general domain mod-
els. In Galaxy [4], they assume that communities working in the same domain
agree on general core schemas and allow community members to further extend
and customise these schemas according to their specific needs. They call this
a core/corona design pattern, where coronas are individual, but related, exten-
sions. Developers design their schema by extending the core with new entities
and by reusing existing entities, which can be searched and browsed using a

286 S. Leone and M.C. Norrie

visual schema search engine [5]. In [6], they propose an alternative approach
that allows a general domain model to be decomposed into so-called concept
schemas representing specific entities and all of their related entities, as well as
generalisation-, aggregation- or instance-of hierarchies, which can be refined.

Others have focused on conceptual model repositories for specific domains
such as medicine [7] and ecology [8]. A general repository for the reuse of ER
models, with reusable elements extracted from groups of similar conceptual mod-
els in terms of generic entities and meta-entities, resulting in a kind of design
pattern for a specific application domain has also been proposed [9]. An ap-
proach to sharing conceptual models based on so-called reference models that
are collaboratively created by the community is presented in [10].

While model repositories support reuse, there is no support for the actual
design process in terms of a platform where the system design can be carried
out. This has been addressed by a second class of approaches which support
modular database design based on ideas of component-based systems. In [11], a
methodology for modular database design is based on the notion of modules that
encapsulate a set of relations together with operations and integrity constraints.
Users can create subsumption modules that reuse one or more existing modules
as well as optionally creating additional relations, operations and integrity con-
straints. Similarly, in [12], they propose the use of composable sub-schemas and
other meta-structures to support the modelling and management of large and
complex database schemas. Their approach is based on the observation that large
schemas are often organised in connected components with similar structuring.
Such components are database schemas that have an import and an export inter-
face for connecting them to other components through explicit connector types.
These solutions focus on the composition of schema components, but do not deal
with support for the sharing and reuse of these components.

Community-driven development has reformed the areas of software develop-
ment and content authoring, turning consumers into producers and allowing
endusers to profit from the experience and efforts of their peers. Such systems
typically evolve around an extensible kernel developed in a traditional setting
with the community developing the periphery [13]. The kernel provides the ba-
sic mechanisms required to support sharing and reuse of extensions, with the
periphery representing a continuously evolving space of alternative, overlapping
and possibly even conflicting solutions. While platforms that follow these design
principles offer a flexible approach to system development based on extensions of
the core, these extensions tend to be kept separate and there is no composition
at the level of the data management. We aim at overcoming this gap and ap-
plying the ideas of community-driven development to the domain of eCommerce
to offer a flexible eCommerce system design process, where the system composi-
tion takes place at the level of the data model. We aim for an approach where,
instead of a having a fully-fledged eCommerce core, an eCommerce solution
provider offers a platform together with an extensible kernel and system build-
ing blocks from which individual eCommerce systems can be composed based on
a user’s individual requirements. Importantly, in accordance with crowdsourcing

Building eCommerce Systems from Shared Micro-schemas 287

principles [13], the aim is not to have consistent or complete domain models,
but rather to provide maximum flexibility where conflicting requirements may
be accommodated. Users should be able to freely select and import such building
blocks which can then be composed, adapted and extended as required. They
should be able to register for notifications about changes to a building block
that they have imported, including the production of new revisions or even its
removal, however they would be under no obligation to act on these.

In the following sections, we first present our approach and architecture before
before going on to detail the eCommerce platform and its implementation.

3 Approach

We will start with an example that illustrates how we envision system construc-
tion based on the composition of micro-schemas, followed by an overview of the
platform architecture to illustrate how our approach works in practice.

Order Management

Customer

Category grouped

Products

Order Item

Order Has

Is

places

WishList

consistOf

has

annotatesAnnotation

Sales

New
Products

TopSellers

Shipment
Method

Invoice

Payment
Method

Anonymous
Shopping

Cart

has

Shopping
Cart

Session

has

Shopping
Cart

Is-a

contains

Supplierdelivers

has

CreditCard

PayPal

Is-a

has

Address

has

NewsLetter

Product
Alert

Sales Alert

Premium
NewsLetter

subscribes

Is-a

subscribes

PageAccess

Search
Terms Product

DetailViews

SiteVisit

Is-ahas

searches

Review Rating

Is-a

partOf

Featured
Products

Is-a Product
List

Open Order Delivered
Order

Past Order

Is-a

Related
Product

Recommend
ations

consistOf

gets

Product Selections

Visitor Statistics

Customer Management

Product Management

Wish
List

Shopping Cart

News Letters

User Annotations

Recommendations

Banner Banner
Historyhas

composed

Advertisment

Is-a

Premium
Customer

WholeSale

Sub
Category

Hierarchical Categories

has Premium
Account

Fig. 1. Example of a composed online store

Figure 1 gives an overview of an ER model for an online store inspired by the
osCommerce application model. We have componentised the application model
into micro-schemas which are represented by rectangular boxes around schema
elements that each address a specific information management requirement. In
the lower part of the figure, micro-schemas for product management, hierarchical

288 S. Leone and M.C. Norrie

product categorisation and featured product groups are represented. The man-
agement of customers is supported by a customer management micro-schema
shown in the upper centre of the figure, that has been extended with a micro-
schema for premium customer management. The shopping cart functionality is
provided by the shopping cart micro-schema on the left, while the order manage-
ment micro-schema on the right supports the ordering, shipment and payment
process. Furthermore, the micro-schemas in the centre of the figure provide data
structures to manage product ratings and reviews, customer wish lists, newslet-
ter subscriptions as well as product recommendations. Finally, in the upper left
corner, there are micro-schemas for the management of advertisements as well
as visitor statistics. Note that the complexity of micro-schemas may range from
single entities, such as in the case of the wishlist micro-schema, to rather complex
application models such as the order management micro-schema.

As illustrated in Fig 1, micro-schemas are related to other micro-schemas to
build a more complex schemas. For micro-schema composition, we rely on schema
elements inherent to the modelling language. This is illustrated in Fig. 2. On the
left of the figure, the customer schema is extended with a micro-schema for
managing premium customers through an isA relationship that reflects the fact
that premium customer is a specialisation of customer. On the right of the figure,
the customer micro-schema is associated to an order micro-schema via a places
association that allows customers to place orders.

Order Management

Customer

Order Item

Order HasplaceshasAddress

Open Order Delivered
Order

Past Order

Is-a

Customer Management

Is-a

Premium
CustomerhasPremium

Account

Premium Customer Management

Fig. 2. Composition Example

The system composition is based on an eCommerce platform that supports
these operations. Figure 3 gives an overview of the platform architecture. The top
right corner shows the eCommerce platform which would be hosted by the plat-
form provider and offer customers an eCommerce software solution. Customers
can download the kernel system from the platform to obtain their local installa-
tion which offers the functionality of composing and combining micro-schemas
to construct a customised eCommerce platform.

A platform user can design their eCommerce system through a process of
adapting, extending and composing micro-schemas available in the repository of
the eCommerce platform. The micro-schema repository manages the collection of
micro-schemas that are available for that specific platform and orchestrates their
sharing and reuse. Shared micro-schemas are registered with the micro-schema
repository with a unique name and a detailed description. The platform provider
offers a number of standard micro-schemas that provide general eCommerce

Building eCommerce Systems from Shared Micro-schemas 289

functionality and can be reused, composed, extended and adapted by the users
to build their own eCommerce system. Furthermore, the user community is free
to produce their own micro-schemas or variants of standard micro-schemas and
to share them over the micro-schema repository. For example, a user could design
a micro-schema that extends the eCommerce system with the management of
customer feedback and complaints and share it with the community.

Our system supports the management of different versions of the same micro-
schema as well as revisions of these. A user might for example extend a standard
micro-schema and share it as a variant of the original one, thus supporting
collaborative micro-schema design. Also, they may provide revisions of already
shared micro-schemas.

Sharing

Reuse

Microschema Repository
Comp c

Comp y
Orders

Kernel System

Local eCommerce System

Name

Orders

Customers

…

Description

This com...

…

…

Kernel System
Download

eCommerce Platform

Community
Portal

Discovery and
Inspection

System

Customer

WishList

has annotatesAnnotation
Anonymous
Shopping

Cart

Shopping
Cart

Session

has

Shopping
Cart

I
s
-
a

has

Address

has

NewsLetter

Product Alert

Sales Alert

Premium
NewsLetter

subscribes

I
s
-
a

PageAccess

Search
Terms

Product
DetailViews

SiteVisit

I
s
-
a

has

searches

Review Rating

I
s
-
a

Banner Banner
Historyhas

composed

I
s
-
a

Premium
Customer

WholeSale

has

Premium Account

Local eCommerce
System

Kernel System

Local eCommerce
System

Kernel System

Fig. 3. Architecture

The micro-schema repository can be accessed by users using a discovery and
inspection system that supports the users in finding appropriate micro-schemas
to be used for their local design.

4 Micro-schema Composition

A micro-schema caters for a specific information management task by means of
data structures and application logic and acts as the unit of reuse and composi-
tion in system design. A micro-schema is defined by means of an ER diagram that
defines entities, relationships and isA relationships. An entity defines structure
and behaviour by means of attributes and methods. This stems from the fact
that we have realised our approach based on an object-oriented model where we
represent entities as native constructs of the system. Entities can be associated
through relationships and cardinality constraints may be defined over the rela-
tionship. An isA relationship is a directed relationship that defines one entity
to be a specialisation of another.

290 S. Leone and M.C. Norrie

As shown in the last section, systems are developed by composing, adapting
and extending micro-schemas to form more complex schemas. It has been shown
in previous work on peer-to-peer databases [14] that models with features and
constructs such as specialisation and associations naturally support composi-
tion. Specialisation allows for intuitive composition of micro schemas through
inheritance, while associations act as a mechanism that allows for the natural
composition of schemas as well as the decomposition of a more complex schema
into micro schemas that can be shared and reused.

We support these two types of composition mechanisms: composition by spe-
cialisation and composition by association, as illustrated in Fig. 4.

.........

Micro-schema C Micro-schema D

Micro-schema Association

...

...

...
...

Micro-schema Specialisation

Micro-schema A

...

Micro-schema B

Fig. 4. Composition Mechanisms

Composition by specialisation, shown on the left, specifies by means of an isA
relationship that an entity of a micro-schema A is a specialisation of an entity of
micro-schema B. Composition by association, illustrated on the right, supports
schema composition by associating an entity of a micro-schema C to an entity of
a micro-schema D by means of a relationship, where the relationship is refined
through cardinality constraints.

Customer

Order
Item

Order

Has

Open
Order

Archived
Order

Is-a

Orders SchemaCustomers Schema

Premium
Customer Has Premium

Account

Premium Customers Schema

Customer

Is-a

Premium
Customer

HasAddress

Specialisation

Customer Order Is-aplaces

...

...

Association

Customer

Order
Item

Order

Has

Open
Order

Archived
Order

Is-aplaces Delivered
Order

Is-a

Premium
CustomerHasPremium

Account

Micro-schemas

...

...

...

...

Composition

Composed Schema

HasAddress

Fig. 5. Example

Building eCommerce Systems from Shared Micro-schemas 291

We will now explain the two composition mechanisms in more detail, based on
the example in Fig. 5, where we illustrate the composition of three micro-schemas
that form part of an eCommerce platform. In the upper part of the figure, three
micro-schemas are illustrated, one for the management of customers, one for the
management of premium customers and a third for the management of orders.
These micro-schemas will be composed, as shown in the centre part of the figure
to form a more complex schema, illustrated in the lower part of the figure. We
will now focus on the composition process.

Composition by specialisation is shown in the middle left of Fig. 5, where
the PremiumCustomer entity of the premium customers micro-schema has been
defined to be a specialisation of the Customer entity defined as part of the cus-
tomers micro-schema. The composition is defined by a specialisation specifica-
tion, illustrated in Fig. 6. In (a), the two entities Customer and PremiumCustomer
are represented by means of UML class diagrams showing their attributes and
methods. The specialisation relationship between these two entities is defined
by means of the specialisation specification defined by the user who composes
the two schemas. (b) illustrates the specialisation specification. A specialisation
generally consists of two steps:

- definition of isA relationship
- attribute mappings

In the example, the specification first defines PremiumCustomer to be a spe-
cialisation of Customer using an isA relationship. Then, mappings between
the attributes Customer.firstName and PremiumCustomer.foreName as well as
between the attributes Customer.lastName and PremiumCustomer.name have
been defined. Applying this composition specification to the model in (a), re-
sults in a transformed and composed model shown in (c), where the entity
PremiumCustomer has become a sub-entity of Customer. The attribute map-
pings resulted in the generalisation of the two attributes forename and name of
the PremiumCustomer entity.

getAddress();
sendMail();

int customerNr;
String firstname;
String lastName;
String email;

Customer

sendPromotion();

String name;
String forename;
int account-nr.
String dateOfBirth;

PremiumCustomer

sendPromotion();

int accountNr;
String dateOfBirth;

PremiumCustomer

Specialisation Specification:

isA(Customer, PremiumCustomer)

map(Customer.firstname, PremiumCustomer.forename)
map(Customer.lastname, PremiumCustomer.name)

(a) (b) (c)

getAddress();
sendMail();

int customerNr;
String firstname;
String lastName;
String email;

Customer

Fig. 6. Composition by Specialisation

As a consequence of these transformation rules, operations defined on the
sub-entity can operate on the mapped attributes of the super-entity. For exam-
ple, the method sendPromotion, which makes use of the forename attribute of

292 S. Leone and M.C. Norrie

the PremiumCustomer entity will be redirected to use the firstName attribute
defined by the Customer entity.

Composition by association allows micro-schemas to be associated through a
relationship between two entities. To given an example, in the middle right of
Fig. 5, we associate the Customer entity of the customers micro-schema to the
Order entity of the orders micro-schema via a places association that allows
customers to place orders. Figure 7 gives more detail about the composition by
association. In (a), the two entities Customer and Order are illustrated. Through
the association specification shown in (b), these entities are associated by a
places relation to form the model shown in (c), where customers can place
orders.

Orderplaces
(1:1)

Customer
(0:*)

getAddress();
sendMail();

int customerNr;
String firstname;
String lastName;
String email;

Customer

getDiscPrice();

int OrderNo;
float price;
float discount;

Order

placeOrder(Customer, Order);
List<Order> getOrders(Customer);
Customer getCustomer(Order);

PlacesAssociation Specification

places(Customer, Order)

min(Customer, places) = 0
max(Customer, places) = *
min(Order, places) = 1
max(Order, places) = 1

(a) (b) (c)

getAddress();
sendMail();

int customerNr;
String firstname;
String lastName;
String email;

Customer

getDiscPrice();

int OrderNo;
float price;
float discount;

Order

Fig. 7. Composition by Association

The association specification defines the relation places from Customer to
Order as well as the constraints in terms of minimum and maximum cardinality
constraints. In this example, a customer may place zero or n orders, while an
order is placed by exactly one customer. From the specification of the relation and
the constraints, a Places class is generated that offers a number of operations
that allow two instances to be related as well as to navigate from an instance
to a related one. In our specific example, the Places class offers methods to
place an order and to retrieve the set of orders for a given customer as well as a
customer of a given order. Note that the cardinality constraints have an impact
on the operations and their return values.

5 eCommerce Platform

We have designed and implemented an eCommerce platform based on the
approach and architecture presented in the previous sections. The platform pro-
vides the functionality to configure an eCommerce system based on the composi-
tion of micro-schemas to form a customised and individual eCommerce solution.
Micro-schemas are provided by the platform provider and can be used, extended
and adapted by the platform users. The platform is extensible in that users
are free to develop their own, customised micro-schemas, which can in turn be
shared with the platform community. We will first illustrate the design process,
before giving a more detailed overview of the platform architecture.

Building eCommerce Systems from Shared Micro-schemas 293

Figure 8 summarises the eCommerce system design process. As shown in (1), a
platform user first downloads the eCommerce kernel and installs it on their local
server. The kernel exposes the functionality to compose and configure an eCom-
merce system from shared micro-schemas. In the design phase, shown in (2),
the eCommerce system is designed through a process of browsing and inspecting
the micro-schema repository situated on the eCommerce platform, selecting and
importing suitable micro-schemas into the local system, and, finally, composing,
adapting and extending them to form an individual eCommerce system.

For the task of finding suitable micro-schemas, a user can rely on the dis-
covery and inspection system built on top of the repository for browsing and
inspecting micro-schemas, which basically exposes the search and browse op-
erations through a graphical user interface. Once a suitable micro-schema has
been found, the reuse operation can be used to import a micro-schema into a
local eCommerce system for further composition.

browse()
search()
share()
reuse()

eCommerce Platform

Discovery and Inspection
System

Micro-schema Repository

Kernel

Customised Application
Model

Local System

Kernel API

Local eCommerce System

Kernel

Customised eCommerce Application
Model

(3) Run-time

Local System

Kernel
Download

eCommerce
Platform

(2) Design phase

(1) Installation
Phase

Fig. 8. Design Process

After importing all the required micro-schemas, the user starts to compose,
extend and adapt the micro-schemas to form a customised eCommerce applica-
tion model using the kernel API. The design process may consist of a number
of such iterations, where the user browses the repository, imports appropriate
micro-schemas and composes them. This results in a modular and incremental
eCommerce system design process.

Local users can also share a micro-schema with the community by calling the
share operation, passing a name, description and the schema definition. Note
that a user may also share an adapted or extended version, as well as revisions
of an already shared micro-schema to support the collaborative micro-schema
creation. Figure 9 gives an overview of how micro-schemas are managed along
with their versions and revisions. The metamodel on the left indicates that a

294 S. Leone and M.C. Norrie

micro-schema may have a number of different versions, and each version may
have a number of revisions. On the right, we illustrate the scenario for a product
management micro-schema that has two versions, a simple and a more complex
one, and each version has a number of revisions. Note that versions are identified
by tags, while revisions are identified by revision numbers and the first version
of a micro-schema is the default version. New versions have to be tagged by the
user when offered for sharing.

Versionhas
(1:1)Micro-

Schema

(0:*)
has Revision

(1:1)(1:*)

Rev
isi

on
sOrder

ManagementOrder
ManagementProduct

Management

Order
ManagementOrder

ManagementSimple Product
Management

Versions

Fig. 9. Micro-Schema Versioning

Once the design process has been completed, the local eCommerce system is
deployed and used in production, as shown in (3). Note that we support an agile
design process, where an eCommerce system can be extended with additional
micro-schemas to offer new functionality at a later point in time, as indicated
by the arrow between step (3) and (2).

Figure 10 gives a detailed overview of the platform architecture that supports
this system design process. The architecture consists of the eCommerce platform,
shown on the right, and a number of local eCommerce systems that have installed
the eCommerce kernel and make use of the micro-schema repository for their
system design. The local eCommerce system on the left consists of a kernel
installation and a customised eCommerce application model. The kernel exposes
the functionality to compose and configure an eCommerce system from shared
micro-schemas through the Kernel API and consists of three modules which are
built on top of standard database facilities and storage management. The core
module encapsulates data definition functionality to design an application model
in terms of standard data definition operators to create entities, relationships,
specialisations and constraints as well as data manipulation functionality for
basic data creation, retrieval, manipulation and deletion operations.

The micro-schema module supports the schema composition operations and
orchestrates the sharing and reuse of micro-schemas with the micro-schema
repository, illustrated on the right as part of the eCommerce platform.

browse()
search()
share()
reuse()

eCommerce Platform

Local eCommerce System

Kernel API

Core Module Micro-schema
Module

Database Facilities & Storage Management

Sharing Module

Customised Application Model

Discovery and Inspection System

Sharing Module

Micro-schema Repository

Versioning Module

Fig. 10. Platform Architecture

Building eCommerce Systems from Shared Micro-schemas 295

For micro-schema sharing, the system relies on a sharing module that allows ob-
jects to be shared between peer databases without having to deal with the under-
lying connection and data transfer operations as described in [15]. When a micro-
schema is shared, it is registered with and copied to the micro-schema repository,
using the sharing module to transfer a copy of the shared schema. Similarly, the
sharing module is used during an import operation to transfer copies of the schema
to the local eCommerce system. We currently offer detached and synchronised
modes of sharing. The detached mode creates an independent copy of the imported
micro-schema, while the synchronised mode allows users to be notified when new
revisions of an imported micro-schema are published in the micro-schema repos-
itory and offers them the option to update their local copy accordingly. We note,
however, that the detached mode is the default, and it is not the intention that
imported micro-schemas should automatically evolve to reflect changes in shared
micro-schemas since users should be free to use shared micro-schemas in any way
they wish and the decision on this is taken at the time of importation. Thus, even
if a micro-schema is later removed from the micro-schema repository, this does not
effect those users who have already imported it. We accept, however, that users
might be interested in extended models or new features that appear in later revi-
sions and therefore offer a notification scheme together with a user-controlled syn-
chronisation tool. Furthermore, adapted and extended versions of a micro-schema
can be registered as such with the directory. For the management of versions and
revisions, we rely on a versioning module described in [16], that offers the func-
tionality to manage versions and variants of an object.

6 Discovery and Inspection System

While we have shown how users can compose their eCommerce system from
shared micro-schemas, we have yet to describe how users can find micro-schemas
suited to their specific requirements. To support them in this task, we have
designed a discovery and inspection system.

The process of finding an appropriate micro-schema consists of two steps:
discovering and inspecting. First, a user has to find appropriate micro-schemas
by searching and browsing the repository. This is then followed by an in-depth
inspection of suitable micro-schemas to help the users understand the purpose
of the micro-schema and decide whether it meets their requirements.

The screenshot in Fig. 11 shows the search interface, where users can search
for micro-schemas by keyword or by browsing the tag cloud. The tag cloud is
generated from the terms used in the descriptions of the shared micro-schemas.
When searching for an appropriate micro-schema, the user can either enter a
keyword to initiate the search process, or can select a tag in the tag cloud,
which triggers a search over the repository. The search result can further be
refined by using a combination of keyword search and tag cloud browsing.

As an alternative, the user may directly select a micro-schema from one of
the various collections. In the current example, three new micro-schemas are
displayed in the New collection on the left, one for the management of wish-
lists, one that supports rich product classification and one for visitor statistics.

296 S. Leone and M.C. Norrie

Fig. 11. Search Interface

On the right, the collection of most downloaded micro-schemas is shown. Micro-
schemas are summarised by rectangular boxes with the micro-schema name on
top and a description provided by its developer as well as the community rating
and the number of downloads.

Fig. 12. Detail View

Once a suitable micro-schema has been found, the user may select and in-
spect it more in detail. The screenshot in Fig. 12 illustrates the user interface for
micro-schema inspection. The micro-schema inspection view consists of a textual
description, a data model, a tag cloud and additional information such as com-
munity ratings, release date and number of downloads. The micro-schema shown
supports the management of premium customers where premium customers have
a premium customer account. The developer of this micro-schema has provided a
textual description as well as a data model. The tag cloud is generated from the
micro-schema specification with tags being created from entity and relationship
names as well as from entity attribute names and methods. The size of the tags
corresponds to the number of occurrences of a name in the micro-schema.

7 Implementation

We have implemented the platform and kernel based on object database tech-
nology. Specifically, we extended OMS Avon [17], a Java-based object database

Building eCommerce Systems from Shared Micro-schemas 297

that implements the OM model [18], with functionality to support the modular
design of systems based on the composition of micro-schemas.

OMS Avon can be extended by means of metamodel extension modules [17]
that integrate new data management concepts into the system metamodel,
thereby allowing these concepts to be natively integrated within the database
as metadata concepts. This is enabled through the fact that OMS Avon treats
metadata and data uniformly as data objects and, therefore, metadata are rep-
resented as data objects that can be created, retrieved, manipulated and deleted
like regular data objects. Extension modules consist of new metamodel concepts,
corresponding CRUD classes, and an optional database language extension. The
CRUD classes implement the basic data management operations of creating,
reading, updating and deleting instances of the metamodel concepts and pro-
vide additional methods that implement higher-level operations. Note that the
core model of the database is also implemented as a module and its core concepts
are accessible through corresponding CRUD classes.

Core Module

CollectionCRUD AssociationCRUD

TypeCRUD

ConstraintCRUD

ObjectCRUD

OMObject

QueryTransaction

Database DBMS

Module Runtime

create(...)
retrieve(...)
update(...)
delete(...)

RevisionCRUD

Versioning Module

Kernel
API

Sharing Module

setAvailable(...)
setUnavailable(...)
shareDetached(...)
shareSynchronised(...)
...

SharingCRUD

create(...)
retrieve(...)
update(...)
delete(...)

VersionCRUD

Micro-schema Module

specialise(...)
associate(...)

Composer

String name;
String description;
Set<OMObject>
schema;
SharingMode mode;

MicroSchema

browse(...)
search(...)
share(...)
shareRevision(...)
shareVariant(...)
reuse(...)

Repository

Fig. 13. UML diagram

We used the extension mechanism to realise the concept of micro-schemas,
their composition, sharing and versioning. Figure 13 gives a system overview,
which illustrates both the kernel implementation as well as the platform imple-
mentation. The kernel implementation consists of three modules, namely the core
module, the micro-schema module and the sharing module, while the platform
implementation in addition uses a versioning module. The core module provides
data definition and data manipulation functionality and is used to define, ex-
tend and adapt micro-schemas. Note that while we represent the application
model using ER notation where entities are represented as a single construct,
the implementation of the core model clearly distinguishes between the notions
of entity types and entity sets, using object types to represent entity types and
collections of objects to represent entity sets. Consequently, our metamodel is
defined by the concepts of type, collection, association and constraint, where
constraints include sub-type relationships as well as sub-collection relationships.

Metamodel instances are represented with a single Java class OMObject ac-
cording to the type object pattern [19]. The core CRUD classes are used to handle
instances of that class as instances of the metamodel concepts. For example, an

298 S. Leone and M.C. Norrie

object representing a collection is handled using the CollectionCRUD offering fa-
cilities such as creating and deleting a collection as well as adding and removing
members. Similarly, objects that represent associations are created, retrieved,
updated and deleted using the AssociationCRUD. Note that domain objects are
also represented as OMObject instances and handled using the ObjectCRUD. The
core module also provides access to database facilities such as Database, DBMS
and Transaction as well as the module management which allows extension
modules to be loaded into the database.

Micro-schema composition, sharing and reuse is encapsulated in the micro-
schema module that, together with the CRUD classes of the core module, forms
the kernel API used to design an eCommerce system. The Composer class sup-
ports micro-schema composition. The specialise method is used on the typ-
ing level and creates an isA relationship between two object types, while the
associate method associates two collections of objects. These two methods dif-
fer from the regular creation of specialisation and association through the CRUD
classes of the core API in that they implement the functionality described in
Sect. 4 where existing metadata objects are related as part of the composition
process. The specialise method takes two type objects and a set of attribute
mappings as input parameters to perform the specialisation. The associate
method takes two collection objects to be associated and the cardinality con-
straints as input parameters and generates a set of methods to navigate the
association based on the cardinality constraints.

The composition operators have been realised as follows. In the case of spe-
cialisation, attribute access to mapped attributes is redirected according to the
mapping specification. In the example in Figure 14, we show a specialisation sce-
nario of two type objects represented by means of two Java classes for the sake
of illustration. The Customer type is illustrated next to the PremiumCustomer
type. The method sendPromotionCode defined on a PremiumCustomer accesses
the attribute forename via its getter method. This method, however, has been
altered and invokes the getter of the mapped attribute in the superclass, which is
getFirstname, as shown in the getForename method body. Upon composition,
the types and their methods are manipulated to obtain the required behaviour.

The composition by association is realised by using the AssociationCRUD
for creating the association object and, based on the cardinality constraints,
appropriate methods for navigation and creation are generated as part of the
association object.

The Repository class manages the access to the micro-schema repository and
orchestrates the sharing and reuse operations by abstracting from the underlying
distribution. It offers the possibility to search and browse the repository as well as
to import shared micro-schemas using the reuse method, where the name of the
micro-schema along with version and revision information is passed as input pa-
rameters. Users are also supported in registering new micro-schemas to be shared
as well as sharing revisions and versions of previously imported micro-schemas,
using the appropriate share method. In our implementation, micro-schemas are
represented as a set of metadata objects. To share them through the repository,

Building eCommerce Systems from Shared Micro-schemas 299

Fig. 14. Specialisation Implementation

they are wrapped with a MicroSchema object that builds a repository entry con-
sisting of a micro-schema name, a description, the set of metadata objects that de-
fine the schema and the sharing mode, which is either detached or synchronised.

Note that we have two implementations of these classes, one for the kernel and
one for the platform. The kernel class acts as a proxy and forwards search and
browse method invocations to the the server method implementations, where
the repository resides. Micro-schema sharing and reuse is supported by a shar-
ing module described in [15]. The module is represented by the SharingCRUD
and supports collection-based sharing between two peers based on a push ap-
proach, where members of a collection residing in one database can be pushed to
a collection residing in another database. The sharing module supports different
sharing modes: the method shareDetached simply copies objects to the re-
mote database, while the method shareSynchronised notifies target databases
about new revisions, and, if desired, propagates the updates. When a local user
shares a micro-schema, the Repository invokes the appropriate share method,
which handles the copy process and registration of the shared micro-schema to
the micro-schema repository. To import a micro-schema from the micro-schema
repository, the local user calls the reuse method. Since the sharing module only
supports pushed-based sharing, the import of metadata into a local system is
realised by means of a separate request object that encapsulates the import
queries. The request object triggers the repository to push the metadata objects
to be reused to the local eCommerce system.

As mentioned previously, the platform makes use of a versioning module pre-
sented in [16] to support the creation and sharing of versions and revisions.

8 Discussion

Our approach is in line with research trends in enduser development support.
Lieberman et al. [20] have argued that, while most current work addresses the
problem of designing systems that are easy to use, the challenge of the future
lies in providing systems that are easy to develop. Our work is centred around
such a system that supports users in the design of eCommerce systems based on
micro-schemas shared with the community.

300 S. Leone and M.C. Norrie

While we have presented this work in the domain of eCommerce systems, we
would like to highlight the generality of the approach and its applicability to in-
formation system design in general, where users could be supported in modularly
designing their information systems through the composition of domain-specific
micro-schemas. Given that our platform kernel is general and basically offers
micro-schema composition functionality, a company would simply have to offer
a micro-schema repository with domain-specific micro-schemas that could be
used for composing domain-specific information systems. For example, compa-
nies such as Wordpress that offer web publishing solutions could take over this
idea and offer support for modular web information system design and compo-
sition at the level of the data model. Also, we have shown in previous work,
how such an approach could be applied to the domain of personal information
management [21], where non-expert users could design and compose their infor-
mation space through a graphical user-interface.

The success of such a platform stands and falls with its usability and user
acceptance and it is of utmost importance that users are supported in find-
ing appropriate micro-schemas in an easy and intuitive way. The discovery and
inspection system is a first approach towards supporting users in this task.

There are also issues of security and trust that deserve attention. It is impor-
tant to have mechanisms that can ensure, for example, that a user’s local system
cannot be accessed by other parties unless explicitly shared, and that imported
micro-schemas do not perform any malicious actions. Company-deployed plat-
forms as presented in this work are capable of controlling the sharing process, for
example by means of rules or in-depth examination of shared artefacts. Also, we
have integrated community-driven mechanisms for micro-schema quality control
by means of ratings.

Finally, we plan to complement the notion of micro-schemas with user inter-
face definitions, building on the approach presented in [21], to further facilitate
the design process.

9 Conclusion

We have presented an approach to modular information system development
based sharing and reuse. As proof of concept, we have implemented a platform
that supports the development of eCommerce solutions based on a set of micro-
schemas that represent basic building blocks that can be selectively customised
and composed. While the design is based on the ER model, the implementation
is based on an object database that supports association and specialisation con-
structs as a natural basis for schema composition and allows behaviour as well
as data to be reused in applications.

References

1. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR (2005)

2. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker:
Join the Web. ACM SIGMOD Rec. 36(4) (2007)

Building eCommerce Systems from Shared Micro-schemas 301

3. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
428–443. Springer, Heidelberg (2009)

4. Mork, P., Seligman, L., Rosenthal, A., Morse, M., Wolf, C., Hoyt, J., Smith, K.:
Galaxy: Encouraging Data Sharing among Sources with Schema Variants. In: ICDE
(2009)

5. Chen, K., Madhavan, J., Halevy, A.: Exploring Schema Repositories with Schemr.
In: SIGMOD 2009 (2009)

6. Delcambre, L.M.L., Langston, J.: Reusing (Shrink Wrap) Schemas by Modifying
Concept Schemas. In: ICDE 1996 (1996)

7. Welzer, T., Rozman, I., Družovec, M., Horvat, R.V., Takač, I., Brumen, B.:
Database Reusability in Intelligent Medical Systems. J. Med. Syst. 25(2) (2001)

8. Cushing, J.B., Nadkarni, N., Finch, M., Fiala, A., Murphy-Hill, E., Delcambre, L.,
Maier, D.: Component-based End-User Database Design for Ecologists. J. Intell.
Inf. Syst. 29(1) (2007)

9. Castano, S., De Antonellis, V., Zonta, B.: Classifying and Reusing Conceptual
Schemas. In: Pernul, G., Tjoa, A.M. (eds.) ER 1992. LNCS, vol. 645, pp. 121–138.
Springer, Heidelberg (1992)

10. Koch, S., Strecker, S., Frank, U.: Conceptual Modelling as a New Entry in the
Bazaar: The Open Model Approach. In: OSS 2006 (2006)

11. Casanova, M.A., Furtado, A.L., Tucherman, L.: A Software Tool for Modular
Database Design. ACM Trans. Database Syst. 16(2) (1991)

12. Thalheim, B.: Component Development and Construction for Database Design.
Data Knowl. Eng. 54(1) (2005)

13. Kazman, R., Chen, H.-M.: The Metropolis Model a New Logic for Development of
Crowdsourced Systems. Commun. ACM 52(7) (2009)

14. Norrie, M.C., Palinginis, A.: A Modelling Approach to the Realisation of Modular
Information Spaces. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAiSE 2002. LNCS, vol. 2348, pp. 245–261. Springer, Heidelberg (2002)

15. de Spindler, A., Grossniklaus, M., Lins, C., Norrie, M.C.: Information Sharing
Modalities for Mobile Ad-Hoc Networks. In: COOPIS 2009 (2009)

16. Grossniklaus, M., Norrie, M.C.: An Object-Oriented Version Model for Context-
Aware Data Management. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bar-
tolini, C., Sadiq, W., Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 398–409.
Springer, Heidelberg (2007)

17. Grossniklaus, M., Leone, S., de Spindler, A., Norrie, M.C.: Dynamic Metamodel
Extension Modules to Support Adaptive Data Management. In: Pernici, B. (ed.)
CAiSE 2010. LNCS, vol. 6051, pp. 363–377. Springer, Heidelberg (2010)

18. Norrie, M.C., Grossniklaus, M., Decurtins, C., de Spindler, A., Vancea, A., Leone,
S.: Semantic Data Management for db4o. In: ICOODB 2009 (2009)

19. Martin, R.C., Riehle, D., Buschmann, F. (eds.): Pattern Languages of Program
Design 3. Addison-Wesley Professional (1997)

20. Lieberman, H., Paternò, F., Wulf, V.: End User Development. Human-Computer
Interaction Series. Springer, Heidelberg (2006)

21. Leone, S., Geel, M., Norrie, M.C.: Managing Personal Information through Infor-
mation Components (chapter 1). In: Soffer, P., Proper, E. (eds.) CAiSE Forum
2010. LNBIP, vol. 72, pp. 1–14. Springer, Heidelberg (2011)

A2-VM : A Cooperative Java VM with Support

for Resource-Awareness and Cluster-Wide
Thread Scheduling

José Simão1,2, João Lemos1, and Lúıs Veiga1

1 Instituto Superior Técnico, Technical University of Lisbon / INESC-ID Lisboa
2 Instituto Superior de Engenharia de Lisboa

jsimao@cc.isel.ipl.pt, luis.veiga@inesc-id.pt

Abstract. In today’s scenarios of large scale computing and service pro-
viding, the deployment of distributed infrastructures, namely computer
clusters, is a very active research area. In recent years, the use ofGrids,Util-
ity and Cloud Computing, shows that these are approaches with growing
interest and applicability, as well as scientific and also commercial impact.

This work presents the design and implementation issues of a
cooperative VM for a distributed execution environment that is resource-
aware and policy-driven. Nodes cooperate to achieve efficient manage-
ment of the available local and global resources. We propose A2-VM ,
a cooperative cluster-enabled virtual execution environment for Java, to
be deployed on Grid sites and Cloud data-centers that usually comprise
a number of federated clusters. This cooperative VM has the ability
to monitor base mechanisms (e.g. thread scheduling, garbage collection,
memory or network consumptions) to assess application’s performance
and reconfigure these mechanisms in run-time according to previously
defined resource allocation policies.

We have designed this new cluster runtime by extending the Jikes
Research Virtual Machine to incorporate resource awareness (namely
resource consumption and restrictions), and extending the TerraCotta
DSO with a distributed thread scheduling mechanism driven by policies
that take into account resource utilization. In this paper we also dis-
cuss the cost of activating such mechanisms, focusing on the overhead of
measuring/metering resource usage and performing policy evaluation.

1 Introduction

In today’s scenarios of large scale computing and service providing, the deploy-
ment of distributed infrastructures, namely computer clusters, is a very active
research area. In recent years, the use of Grids, Utility and Cloud Computing,
shows that these are approaches with growing interest and applicability, as well
as scientific and commercial impact.

Managed languages (e.g., Java, C#) are becoming increasingly relevant in
the development of large scale solutions, leveraging the benefits of a virtual
execution environment (VEE) to provide secure, manageable and componentized

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 302–320, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 303

solutions. Relevant examples include work done in various areas such as web
application hosting, data processing, enterprise services, supply-chain platforms,
implementation of functionality in service-oriented architectures, and even in e-
Science fields (e.g., with more and more usage of Java in the context of physics
simulation, economics/statistics, network simulation, chemistry, computational
biology and bio-informatics [15,14,17], there being already many available Java-
based APIs such as Neobio).1

To extend the benefits of a local VEE, while allowing scale-out regarding
performance and memory requirements, many solutions have been proposed to
federate Java virtual machines [22,2,23], aiming to provide a single system image
where the managed application can benefit from the global resources of the
cluster.

A VEE cluster-enabled environment can execute applications with very dif-
ferent resource requirements. This leads to the use of selected algorithms for
runtime and system services, aiming to maximize the performance of the appli-
cations running on the cluster. However, for other applications, for example the
ones owned by restricted users, it can be necessary to impose limits on their re-
source consumption. These two non functional requirements can only be fulfilled
if the cluster can monitor and control the resources it uses both at the VEE and
distributed level, and whether the several local VEE, each running on its node,
are able to cooperate to manage resources overall.

Existing approaches to resource-awareness in VMs, cluster-enabled runtimes,
and adaptability are still not adequate for this intended scenario (more details
in Section 5) as they have not been combined into a single infrastructure for
unmodified applications. Existing resource-aware VMs do not target popular
platforms, and cluster-enabled runtimes have support neither for global thread
scheduling nor for checkpointing/restore mechanisms. Furthermore, lower-level
mechanisms and VM parameters cannot be governed by declarative policies.

In this paper, we report on the design and implementation of A2-VM (Au-
tonomous and Adaptive Virtual Machine), a distributed execution environment
where nodes cooperate to make an efficient management of the available lo-
cal and global resources. We propose a cluster-enabled VEE with the ability to
monitor base mechanisms (e.g. thread scheduling, garbage collection, memory or
network consumptions) at different nodes in order to assess an application’s per-
formance and resource usage, and reconfigure these mechanisms in run-time, in
one or more nodes, according to previously defined resource allocation policies
(or quality-of-execution specifications) . These policies regulate how resources
should be used by the application in the cluster, leading to the adaptation of
components at different levels of the cluster in order to enforce it.

We propose a layered approach to resource monitoring, management and re-
striction enforcement. While restrictions to resources are effectively enforced at
the level of each of the individual cooperating VMs, overall performance as-
sessment and policy-driven resource management are carried out by node and
cluster-wise manager components.

1 http://www.bioinformatics.org/neobio/

304 J. Simão, J. Lemos, and L. Veiga

Fig. 1. Architecture of the A2-VM

The rest of this paper is organized as follows. Section 2 describes the overall
architecture of our proposal for a resource-aware and policy-driven cooperative
VM, introducing the main components of A2-VM , and details on the specific
internal mechanisms and functionality offered. Section 3 describes the main as-
pects of the current development and implementation of A2-VM . In Section 4,
we assess and evaluate A2-VM , regarding: i) the impact of resource aware-
ness and policy support (measuring overhead of resource monitoring and policy
engine performance), and ii) the cluster-wide cooperative thread scheduling of-
fered (overheads and performance improvements). In Section 5, we discuss our
research in light of other systems described in the literature, framing them with
our contribution. Section 6 closes the paper with conclusions and future work.

2 Architecture

The overall architecture of A2-VM (Autonomous and Adaptive Virtual Ma-
chine) is presented in Figure 1. We consider a cluster as a typical aggregation
of a number of nodes which are usually machines with one or more multi-core
CPUs, with several GB of RAM, interconnected by a regular LAN network link
(100 Mbit, 1 Gbit transfer rate). We assume there may be several applications,
possibly from different users, running on the cluster at a given time, i.e., the
cluster is not necessarily dedicated to a single application. The cluster has one
top-level coordinator, the QoE Manager that monitors the Quality-of-Execution
of applications.2

Each node is capable of executing several instances of a Java VM, with each
VM holding part of the data and executing part of the threads of an applica-
tion. As these VMs may compete for the resources of the underlying cluster
2 We opt for this notion instead of hard service-level agreements usually employed

in commercial application hosting scenarios, because we intend to target several
types of applications in shared infrastructures, without necessarily strict contractual
requirements.

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 305

node, there must be a node manager in each node, in charge of VM deployment,
lifecycle management, resource monitoring and resource management/restric-
tion. Finally, in order for the node and cluster manager to be able to obtain
monitoring data and get their policies and decisions carried out, the Java VMs
must be resource-aware, essentially, report on resource usage and enforce limits
on resource consumption. Cooperation among VMs is carried out via the QoE
Manager, that receives information regarding resource consumption in each VM,
by each application, and instructs VMs to allow or restrict further resource us-
age.

In summary, the responsibilities of each of these entities are the following:

– Cluster QoE Manager
• collect global data of cluster applications (i.e. partitioned across VMs

and nodes)
• deploy/regulate nodes based on user’s QoE

– Node QoE Manager
• report information about node load
• deploy new policies on VMs
• create or destroy new instances
• collect VM’s resource usage data

– (resource-aware) VM
• enforce resource usage limits
• give internal information about resource usage

A2-VM is thus comprised of several components, or building blocks. Each one
gives a contribution to support applications with a global distributed image of a
virtual machine runtime, where resource consumption and allocation is driven by
high-level policies, system-wide, application or user related. From a bottom-up
point of view, the first building block above the operating system in each node is
a process-level managed language virtual machine, enhanced with mechanisms
and services that are not available in regular VMs. These include the accounting
of resource consumption.

The second building block aggregates individual VMs, as the ones mentioned
above, to form within the cluster a distributed shared object space assigned to a
specific application. It gives running applications support for single system image
semantics, across the cluster, with regard to the object address space. Techniques
like bytecode enhancement/instrumentation or rewriting must be used, so that
unmodified applications can operate in a partitioned global address space, where
some objects exist only as local copies and others are shared in a global heap.

The third building block turns A2-VM into a cluster-aware cooperative virtual
machine. This abstraction layer is responsible for the global thread scheduling
in the cluster, starting new work items in local or remote nodes, depending
on a cluster wide policy and the assessment of available resources. This layer
is the A2-VM boundary that the cluster-enabled applications interface with
(note that for the applications, the cluster looks like a single, yet much larger,
virtual machine). Similarly to the previous block, application classes are further

306 J. Simão, J. Lemos, and L. Veiga

instrumented/enhanced (although the two sets of instrumentation can be applied
in a single phase), in order to guarantee correct behavior in the cluster. Finally,
it exposes the underlying mechanisms to the adaptability policy engine, and
accepts external commands that will regulate how the VM’s internal mechanisms
should behave.

The resource-aware VM, the distributed shared object layer, and the cluster
level scheduler are all sources of relevant monitoring information to the policy
engine of A2-VM . This data can be used as input to declarative policies in order
to determine a certain rule outcome, i.e. what action to perform when a resource
is exhausted or has reached its limit, regarding a user or application.

Currently, thread scheduling tries first to collocate threads of the sample ap-
plication to the same VM, until the specified CPU load, wait time, and mem-
ory usage thresholds are reached. After that, subsequent threads are allocated
elsewhere within the same node or across the cluster, balancing the load. Ap-
plication performance is monitored by a combination of black-box and grey-box
approaches. Black-box consists in the monitoring of the parameters mentioned
above that allows us to determine, roughly, whether an application is experienc-
ing poor performance due to resource shortage or contention. Grey-box approach
consists in monitoring advancement of file cursors (for sequential reading and
writing), and data transferred in order to estimate current progress against pre-
vious executions of the same application.

On top of this distributed runtime are the applications, consuming resources
on each node and using the services provided by the resource-aware VM that is
executing on each one. A2-VM targets mainly applications with a long execution
time and that may spawn several threads to parallelize their work, as usual in
e-Science fields such as those mentioned before.

The following sections will describe the depicted architecture, explaining the
specific contributions of each component.

2.1 Resource Awareness and Control

The Resource Aware virtual machine is the underlying component of the pro-
posed infrastructure. It has two main characteristics: i) resource usage moni-
toring, and ii) resource usage restriction or limitation. Furthermore, there are
checkpointing, restore and migration mechanisms, used for more coarse-grained
load-balancing across the cluster, that are out of the scope of this paper [13].

Current virtual machines (VM) for managed languages can report about sev-
eral aspects of their internal components, like used memory, number of threads,
classes loaded [19,18]. However they do not enforce limits on the resources con-
sumed by their single node applications. In a cluster of collaborating virtual
machines, because there is a limited amount of resources to be shared among
several instances, some resources must be constrained in favor of an application
or group of applications.

Extending a managed language VM to be aware of the existing resources must
be done without compromising the usability (mainly portability) of application
code. The VM must continue to run existent applications as they are. This

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 307

component is an extended Java virtual machine with the capacity to extract high
and low level VM parameters, e.g., heap memory, network and system threads
usage. Along with the capacity to obtain these parameters, they can also be
constrained to reflect a cluster policy. The monitoring system is extensible in
the number and type of resources to consider.

2.2 Cluster-Wide Cooperative VM

To enable effective distribution of load among different nodes of the cluster, our
system relies on a cluster level load balancer capable of spawning new threads
(or work tasks) on any cluster node based on a cluster wide policy. When an
application asks for a new thread to be created (e.g., by invoking the start
method on a Thread object), the request can be either denied or granted based on
the resource allocation decided for the cluster. If it is granted, the load balancer
will create the new thread in the most appropriate node to fulfill the cluster
policy. For example, if the application has a high priority order compared to
other applications of the cluster, then the thread could be created in a lesser
loaded node (preferably, one with a VM already assigned to the application’s
DSO; if needed and allowed, a new VM on any lesser loaded node) . The decision
on what node new threads are created is left to the policy engine to decide with
current information. Nevertheless, the resource-aware VM has an important role
in this process by making it possible to impose a hard limit on resources, e.g.,
the number of running threads of the application at a specific node, or globally.

A2-VM aims to accommodate applications developed by users with different
levels of expertise regarding the development of multi-threaded applications and
cluster architectures, giving a performance versus transparency trade-off. To this
end, the thread scheduler has two operation modes: i) Identity and ii) Full SSI.
Identity mode should be used if we have the byte-code of a multi-threaded Java
application that is explicitly synchronized (e.g., using Java monitors), or there
is access to the source code and synchronization code can be added with ease.
Full SSI mode should be used if we have the byte-code of a multi-threaded Java
application that is not explicitly synchronized (mainly applications comprised
of cooperating threads that make use of volatile object fields that the Java VM
specification assures to be updated in a single memory write operation, while
Terracotta does not honour this) and there is no access to the source code. For
instance, in DaCapo 2009 benchmarks, 6 out of 14 applications do indeed use
such volatile fields, and rely on the VM to uphold this semantics, hence the
relevance of the Full SSI mode to ensure compatibility, transparency and correct
functionality when deploying such applications with A2-VM on a cluster.

2.3 Adaptability and the Policy Engine

The policy engine is responsible for loading and enforcing the policies provided
by administrators and possibly users regarding resource management. It achieves
this by, globally, sending the necessary commands to the resource-aware VMs
in order for them to modify some runtime parameters, or the type of algorithm

308 J. Simão, J. Lemos, and L. Veiga

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>
<RAMConfiguration>

<ResourceAttr ibute s name=”NumberOfThreads” i n i t a l L im i t=”15” />
<ResourceAttr ibute s name=”CpuUsage” i n i t a l L im i t=”75%” />
. . .

<Rule ta rge t=”NumberOfThreads”>
< !−− Determines how accumulation i s done −−>
<OnConsume> <Counter /> </OnConsume>
< !−− Determines what happens i f l imit i s reached −−>
<OnLimit> <ResourceException/> </OnLimit>
< !−− Determines what happens i f consumption i s successful −−>
<OnAfterComsumption>

<UseCluster th r e sho ld=”AllCpus”/>
</OnAfterComsumption>

</Rule>
<Rule ta rge t=”CpuUsage”>

<OnConsume> <HistoryAverage window=”5”/> </OnConsume>
<OnLimit> <Suspend mi l i s e c ond s=”500”/> </OnLimit>

</Rule>
. . .

</RAMConfiguration>

Fig. 2. Declarative policy

used to accomplish a cluster related task, as well as instructing them to spawn
threads or activate checkpointing/restore and migration mechanisms. A special
focus of this component of A2-VM is also on the improvement of applications’
performance, and what can be adapted in the underlying resource-aware VMs
in order to achieve it.

It operates autonomously or in reaction to a given resource outage in the
VMs. Autonomous behavior is governed by maintaining knowledge about the
applications’ previous execution, and adjusting the VMs and cluster parameters
to achieve better performance for that specific application. Reactive operation is
driven by declarative policies that determine the response to a resource outage.
This response may result in a local adaptation (e.g. restrain the resources of
another VM in the same node, or change the GC algorithm to consume less
memory but eventually taking more time to execute).

Figure 2 presents a declarative policy to be used by VM instances represented
in Figure 1 (i.e. VM1..5). It defines limits for CPU usage, and the number of
threads and sockets the application is allowed to use. CPU usage and threads
are monitored and managed by specific rules but using a similar, reusable ap-
proach: i) CPU usage is monitored with a sliding window in order to filter ir-
relevant peaks, while ii) the number of active threads is also monitored with a
sliding window in order to trigger rescheduling only when the limit is consistently
exceeded.

3 Implementation

Some of the building blocks of A2-VM ’s architecture are partially available
in the research community but do not operate in an ensemble. Nevertheless,
although some essential functionalities needed in our architecture are missing,

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 309

Fig. 3. Resource-aware JVM

the available components constitute a good starting point we can leverage and
extend with our own work.

Our first implementation effort is centered on developing a managed language
virtual machine with the capacity to monitor and restraint the use of resources
based on a dynamic policy, defined declaratively outside the VM. Some work
has been done in the past aiming to introduce resource-awareness in such high
level virtual machines (details in Section 5). Nevertheless, to the best of our
knowledge, none of them is publicly available or usable with popular software,
operating systems and hardware architectures. Based on this observation, we
have chosen to extend the JikesRVM [1] to be resource-aware. Thus, in the next
subsection we will describe different aspects of our current work on JikesRVM.
Later on, we describe the main implementation aspects of our system regarding
the spawning and scheduling of threads in other nodes.

3.1 Extending JikesRVM with Resource-Awareness

Figure 3 depicts further details on the architecture of the resource-aware VM
we developed for A2-VM . The resource-ware VM has a specific module for
each type of manageable resource (e.g., files, threads, CPU usage, connections,
bandwidth, and memory). Each of the module exports to the RAM (Resource
Awareness Management) module an attribute that abstracts the specifics of the
resource. This way, when the RAM decides to limit, reduce or block the usage
of a resource by the application, it can instruct the respective attribute without
worrying about the details of applying limitation to that specific resource (e.g.,
disallowing file open, or take a thread out of scheduling). The RAM consumes
profile information from the main VM and A2-VM mechanisms (GC and JIT
level, and distributed scheduling and migration, respectively). These mechanisms
can be adapted and reconfigured by command of the RAM.

Being RAM the engine that enables awareness and adaptation, all its decisions
are carried out according to the evaluation of rules in the policies loaded by the

310 J. Simão, J. Lemos, and L. Veiga

public class ThreadsCreationNode implements No t i f i c a t i o n {
long th r e sho ld ;
public ThreadsCreationNode (long th r e sho ld) { th r e sho ld = thr e sho ld ; }
public void postConsume (

ResourceDomain domain ,
long previousUsage , long currentUsage) {
i f (currentUsage >= thre sho ld)

Schedu le r . g e t In s tanc e () . changeAl locat ionToCluste r () ;
}

}

Fig. 4. A sample notification handling to change thread allocation to the cluster

node manager. The node manager is also notified by the RAM, in each VM,
about the application’s performance and outcome of RAM’s decisions.

The management of a given resource implies the capacity to monitor its cur-
rent state and to be able to directly or indirectly control its use and usage. The
resources that can be monitored in a virtual machine can be either specific of the
runtime (e.g. number of threads, number of objects, amount of memory) or be
strongly dependent in the operating system (e.g. CPU usage). To unify the man-
agement of such disparate types of resources, we carried out the implementation
of JSR 284 - The Resource Management API [12] in the context of JikesRVM,
previously not implemented in the context of any widely usable virtual machine.

The relevant elements to resource management as prescribed by JSR 284 are:
resources, consumers and resource management policies. Resources are repre-
sented by their attributes. For example resources can be classified as Bounded
or Unbounded. Unbounded resources are those that have no intrinsic limit (or
if it exists, it is large enough to be essentially ignored) on the consumption of
the resource (e.g. number of threads). The limits on the consumption of un-
bounded resources are only those imposed by application-level resource usage
policies. Resources can also be Bounded if it is possible to reserve a priori a
given number of units of a resource to an application. A Consumer represents
an executing entity which can be a thread or the whole VM. Each consumer is
bound to a resource through a Resource Domain. Resource domains impose a
common resource management policy to all consumers registered. This policy
is programmable through callback functions to the executing application. Al-
though consumers can be bound to different Resource Domains, they cannot be
associated to the same resource through different Domains. When a resource is
about to be consumed, the resource-aware VM, implementing JSR 284, delegates
this decision, via a callback, that can be handled by RAM, and either allowed,
delayed or denied (with an exception thrown).

Figure 4 shows a notification, ThreadsCreationNode, which can be used to
configure an A2-VM instance. This callback would be called on each local thread
allocation (in JikesRVM, Java threads are backed by a native class, RVMThread
that is shown, and that interacts with the host OS threads). It determines that
if the number of threads created in the local node reaches a certain threshold
new threads will be created elsewhere in the cluster. The exact node where they
will be placed is left to be determined by the distributed scheduler own policy.

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 311

public class HistoryAverage implements Constra int {
. . .
long [] sample sHistory ;
public HistoryAverage (int wndSize , long maxConsumption) { . . . }
public long preConsume(ResourceDomain domain ,

long currentUsage , long proposedUsage) {
long average = 0 ;
i f (nSamples == sample sHistory . l ength) {

average = currentSum / nSamples ;
currentSum −= sample sHistory [i dx] ;

}
else { nSamples += 1 ; }
currentSum += proposedUsage ;
sample sHistory [i dx] = proposedUsage ;
i dx = (idx + 1) % sample sHistory . l ength ;

return average > maxConsumption ? 0 : proposedUsage ;
}

}

Fig. 5. Regulate consumption based on past wndSize observations

Figure 5 shows a constraint, HistoryAverage, which can be used to regulate
a CPU usage policy. Consider a scenario where the running application cannot
use the CPU above a threshold for a given time window, because the remaining
CPU available is reserved for another application (e.g., as part of the quality-of-
execution awarded to it). In this case, when the CPU usage monitor evaluates
this rule, it would suspend all threads (i.e. return 0 for the allowed usage) if the
intended usage is above the average of the last wndSize observations. A practical
case would be to suspend the application if the CPU usage is above 75% for more
than 5 observations.

3.2 Cluster-Wide Cooperative Thread Scheduling

In A2-VM , to achieve distributed thread scheduling, we need to be able to spawn
threads in a node different from where the thread’s start method is invoked.

Our mechanism to distribute threads among the cluster is built by leveraging
and extending the Terracotta [6] Distributed Shared Objects. This middleware
uses the client/server terminology and calls the application JVMs that are clus-
tered together Terracotta clients or Terracotta cluster nodes. These clients run
the same application code in each JVM and are clustered together by injecting
cluster-aware bytecode into the application Java code at runtime, as the classes
are loaded by each JVM. This bytecode injection mechanism is what makes
Terracotta transparent to the application. Part of the cluster-aware bytecode
injected causes each JVM to connect to the Terracotta server instances. In a
cluster, a Terracotta server instance handles the storage and retrieval of object
data in the shared clustered virtual heap. The server instance can also store this
heap data on disk, making it persistent just as if it were part of a database.
Multiple terracotta server instances can exist as a cohesive array.

In a single JVM, objects in the heap are addressed through references. In the
Terracotta clustered virtual heap objects are addressed in a similar way, through
references to clustered objects which we refer to as distributed shared objects or

312 J. Simão, J. Lemos, and L. Veiga

managed objects in the Terracotta cluster. To the application, these objects are
just like regular objects on the heap of the local JVMs, the Terracotta clients.
However Terracotta knows that clustered objects need to be handled differently
than regular objects. When changes are made to a clustered object, Terracotta
keeps track of those changes and sends them to all Terracotta server instances.
Server instances, in turn, make sure those changes are visible to all the other
JVMs in the cluster as necessary. This way, clustered objects are always up-to-
date whenever they are accessed, just as they are in a single JVM. Consistency
is assured by using the synchronization present in the Java application (with
monitors), which turns into Terracotta transaction boundaries. Piggybacked on
these operations, Terracotta injects code to update and fetch data from remote
nodes at the beginning and end of these transactions.

Therefore we need to perform additional byte-code enhancement on appli-
cation classes as a previous step to the byte-code enhancing performed by the
Terracotta cluster middleware before applications are run. To do this we used
the ASM framework [7]. Creation of threads in remote nodes is a result of in-
voking JSR 284 in order to attempt to consume a thread resource at that node.
The most intricate aspects deal with the issue of enforcing thread transparency
(regarding its actual running node) and identity across the cluster, as we explain
next.

The instrumentation replaces Java type opcodes that have the Java Thread
type as argument with equal opcodes with our custom type ClusterThread. It
also replaces the getfield and getstatic opcodes type with ClusterThread
instead of Thread. As the ClusterThread class extends the original Java Thread
class, type compatibility is guaranteed. For the method calls, some of the meth-
ods belonging to the Thread class are final, and therefore cannot be overridden.
To circumvent this, we aliased the final methods and replaced Thread method
calls with the aliased method. For example, if we have an invokevirtual op-
code that invokes the final “join” method of the Thread class, we invoke the
“clusterJoin” method instead.

In Identity mode, the instrumentation process adds the AutolockWriteTerra-
cotta’s annotation, in order to take advantage of the local synchronization (Java
monitors) to add a Terracotta transaction in every method. In Full SSI mode, we
apply ’getters and setters’ instrumentation, in order to add synchronization at its
lowest level, on field access and array writes. We transform individual get and set
operations into invocations to synchronized methods, automatically generated,
that perform the equivalent (now synchronized) get and set operation.

Therefore, for adding getters, we implemented an ASM class adapter trans-
formation that adds a getter for each non-static field. Each getter has the Java
synchronized method modifier and is annotated with the AutolockRead an-
notation to allow for concurrent reads of the field, but still in the context of a
Terracotta transaction. For generating setters, we implemented a similar class
adapter, with the corresponding AutolockWrite annotation. We also developed
equivalent instrumentations for static fields.

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 313

To use the getters and setters generated, we developed a method adapter that
replaces direct field accesses with method calls. As such, the method adapter
replaces the getfield and putfield instructions with invokevirtual instruc-
tions that will invoke the generated corresponding getters and setters. Equiva-
lent getstatic and putstatic instructions will be replaced by invokestatic
instructions that will invoke the corresponding static getters and setters. In array
access, writes using array store instructions also need synchronization at some
point, if the array is in shared object space. Considering this scenario, we devel-
oped a new class with static methods that consumes exactly the same arguments
and performs the array store inside a synchronized block. Our method adapter
will then replace the array store instruction by an invocation of the method
corresponding to the data type.

4 Evaluation

In this section we are going to describe the methodology used for evaluating the
A2-VM prototype, and its results. We used up to three machines in a cluster,
with Intel(R) Core(TM)2 Quad processors (with four cores each) and 8GB of
RAM. Each machine was running Linux Ubuntu 9.04, with Java version 1.6.0 16
and JikesRVM base code version 3.1.1, Terracotta Open Source edition, version
3.3.0, and multi-threaded Java applications that have the potential to scale well
with multiple processors, taking advantage of the extra resources available in
terms of computational power and memory.

4.1 Policy Evaluation and Resource Monitoring

The first part of our performance evaluation regards the resource-aware VM
and its impact on rules’ evaluation during regular VM operations. Therefore
we conducted a series of tests, measuring different aspects of a running appli-
cation, starting from: i) the overhead introduced in the consumption of a spe-
cific resource, to ii) the overhead of our JSR 284 implementation, and to iii)
policy evaluation in a complete benchmark scenario. All these evaluations are
made locally in a single modified JikesRVM (version 3.1.1), compiled with the
production profile.

In Figure 6.a we can observe the evolution of the overhead introduced to
thread creation, by measuring average thread creation and start time, as the
policy engine has increasingly larger numbers of rules to evaluate, up to 250
(simulating a highly complex policy). The graph shows that this overhead, while
increasing, does not hinder scalability as it is very small, ranging around 500
microseconds.

In Figure 6.b we evaluate whether resource monitoring and policy evaluation
(with 200 constraints) introduce any kind of performance degradation as more
and more threads are created, resources consumed. Figure 6.b clearly shows
(omitting Garbage Collection spikes) that thread creation time does not degrade
during application execution, being around 1 millisecond; although subject to
some variation, it presents no lasting degradation.

314 J. Simão, J. Lemos, and L. Veiga

���

���

���

���

��	

��	

�

	��

���

��

���

���

���

� �� 	�� 	�� ��� ���

�
�
�
�
�
�
�
�
�
�
�
	

�
�
�

�
�
�

�������	
��	�����������������

(a) Thread creation time with increasing
number of constraints to evaluate

�

���

����

����

����

����

����

����

����

� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

	
�

�

�

�
�
�

�
�
�

�
�
�
�
�
�
�
	

�
�
�
�

�
�
�

�
�

�
�

�
�

�
�
�
�

�
�
�

�
	
�
�
�
�
�
	
�
�

�������	
�������

(b) Thread creation time during execution
with 200 constraints (GC spikes omitted)

Fig. 6. Policy evaluation cost

The previous results were obtained monitoring only a single resource, i.e. num-
ber of application threads. For other counted resources, e.g. number of bytes sent
and received, similar results are expected. Although the allocation of new objects
can also be seen as a counted resource, e.g. number of bytes allocated in heap, it
is more efficient to evaluate it differently. The cost of checking for constraints re-
garding object allocation was thus transferred to the garbage collection process,
leaving the very frequent allocation operation free of additional verifications.

Figure 7.a presents the duration of each GC cycle during the execution of Da-
Capo’s benchmark [5] 3. lusearch, with and without evaluating constraints on
heap consumption (i.e. RAM enabled and disabled). The lusearch benchmark
was configured with a small data set, one thread for each available processor
(i.e. four threads) and the convergence option active, resulting in some extra
warm up runs before the final evaluation. Because of the generational garbage
collection algorithm used in our modified JikesRVM, we can observe many small
collection cycles, interleaved with some full heap transversal and defragmenta-
tion operations. The two runs share approximately the same average execution
time and a similar average deviation: 1.38 ± 0.31ms and 1.38 ± 0.27ms, where
the former value is when the RAM module is enabled and the last when RAM is
disabled. With these results we conclude that performance of object allocation
and garbage collection is not diminished with the extra work introduced.

To conclude the evaluation of the RAM module, we stressed an instance of
our resource-aware VM with four macro benchmarks, as presented in Figure 7.b.
These four benchmarks are multi-threaded applications, which allows us to do a
macro evaluation of the proposed modifications. During the execution of these
benchmarks there were three resources being monitored (and eventually con-
strained): the number of threads, the total allocated memory and the CPU
usage. The constraints used in evaluation did not restrain the usage of resources
so that the benchmarks could properly assess the impact of monitoring dif-
ferent resources simultaneously in real applications (as opposed to the specific

3 The version 9.12 used in the evaluation of A2-VM ’s RAM module is available at
http://www.dacapobench.org/

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 315

1

2

4

8

16

32

64

0
.6
8

1
.4
8

1
.8
8

2
.1
6

2
.3
7

2
.8
5

3
.4
8

4
.0
1

4
.4
6

4
.7
9

5
.0
3

5
.4
6

6
.2
7

7
.8
6

8
.3
7

8
.7
7

9
.0
9

9
.3
0

9
.8
2

1
0
.7
2

1
1
.5
2

1
2
.1
7

1
3
.1
7

1
3
.6
3

1
3
.9
7

1
4
.2
5

1
4
.4
5

1
5
.3
4

1
6
.1
5

1
6
.8
7

G
C
e
xe
cu
ti
o
n
ti
m
e
in
m
ili
se
co
n
d
s

Timeline
Instance of A2VM (RAM enabled) Instance of JikesRVM (RAM disabled)

(a) GC execution time during Dacapo’s
LuSearch benchmarck

6800

4835

5911

3424

7048

4949

5984

3609

0

1000

2000

3000

4000

5000

6000

7000

8000

sunflow xalan lusearch luindex

Ex
ec
u
ti
o
n
ti
m
e
(m

ili
se
co
n
d
s)

Instance of JikesRVM (RAM disabled) Instance of A2VM (RAM enabled)

(b) Four Dacapo’s multi threaded bench-
marks with RAM enabled and disabled

Fig. 7. Macro evaluation of an instance of A2-VM

benchmarks presented previously in Figures 6 a) and 6 b). The results show only
a negligible overhead: 3% in average.

4.2 Cooperative Scheduling

For micro-benchmarking purposes, we developed two sample applications (Fi-
bonacci, Matrix by vector multiplication).

The Fibonacci application computes Fibonacci numbers using Binet’s Fi-
bonacci number formula. It takes the maximum number of Fibonacci to compute,
along with the number of threads, and splits the workload by having each thread
compute a number of Fibonacci numbers corresponding to the maximum given
divided by the number of threads. For the execution time measurements, we con-
figured our application to compute the first 1200 numbers of the Fibonacci se-
quence, with a number of threads directly proportional to the number of threads
available. Also, we tested our application using only the Terracotta middleware,
to have a general idea of how the usage of the original Terracotta platform im-
pacts the performance (this is the price to pay for the memory scalability and
elasticity it provides).

We considered two different scenarios for the tests: Terracotta Inst. only
and Terracotta Inst + Sharing. The former tested the application with only
the Terracotta bytecode instrumentations activated, while the latter also shared
the same data structures shared in the Identity and Full SSI modes. Finally, we
tested our application in a standard local JVM, for comparison purposes with
our distributed solution. The results are presented in Figure 8 (note that results
for 2 and 4 threads refer to execution on a single quad-core node). As we can
observe in the graph, the overhead introduced is not much, as we only share a
relatively small array in each thread for storing the Fibonacci numbers, along
with some auxiliary variables. By adding our middleware, we introduce an extra
overhead which is not very significant, even when running it in Full SSI mode
and as such, it is possible to obtain smaller execution times by adding more
nodes to the Terracotta cluster.

316 J. Simão, J. Lemos, and L. Veiga

We also developed a multi-threaded application that multiplies a matrix by
a vector, splitting the matrix rows across the threads. For the execution time
measurements, we tested our application by multiplying a matrix of 32768 rows
by 32768 columns and a vector of 32768 positions. As with previous applications,
we ran the matrix by vector multiplication with no more than one thread per
processor and measured the time taken by each mode with two, four, eight
and twelve processors. We also tested our application in a standard local JVM,
for comparison purposes with our distributed solution. The results for Identity
and Full SSI mode are presented in Figure 9. Recall that distributed scheduling
is only used for threads above 4; and that local execution without Terracotta
(although not scalable w.r.t. memory and CPU) naturally beats local execution
with Terracotta instrumentation in the limited scenario of a single-node.

As we can observe in the graph, the Terracotta bytecode instrumentations
adds a small overhead, even when we do not share any data in the DSO. By
adding the same data structures that are shared in both Identity and Full SSI
modes, the execution times of the application in Terracotta for two and four
threads are very similar to the ones presented by Identity mode, for the same
number of threads. Therefore, we can obtain better execution times by using
the extra processors. The Full SSI mode adds a very significant overhead (albeit
only necessary for applications that are not explicitly synchronized, probably a
minority), having execution times much greater than any of its counterparts,
as every write in an array of results needs to be propagated to the Terracotta
Server.

5 Related Work

Monitoring low level aspects of a computer system regarding the execution of
a given application must be done with low impact in the overall application’s
performance. For runtime mechanisms, Price et al. [20] describes a method for
modifying the garbage collector to measure the amount of live memory reachable
from each group of threads. Their implementation is also based on an older
version of JikesRVM but the algorithms proposed could be applied to our system
and further extended (i.e. the work presented in [20] does not support all tracing
collectors). They give some usage scenarios for the information accounted, but
leave as an open issue the building of a policy driven framework.

Some system exchange low level precision and additional overhead for the
sake of portability. Binder’s profiling framework [4] statically instruments the
core runtime libraries, and dynamically instruments the rest of the code. The
instrumented code periodically calls pure Java agents to process and collect
profiling information.

Some high level virtual machines have been augmented or designed from
scratch to integrate resource accounting [11,21,3,10]. MVM [10] is based on
the Hotspot virtual machine. It supports isolated computations, akin to address
spaces, to be made in the same instance of the VM. This abstraction is called iso-
late. Another distinguishing characteristic is the capacity to impose constraints

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 317

5

10

15

20

25

30

35

40

2 4 8 12

Ti
m
e
(s
ec
.)

Number of threads

Local Terracotta Inst. only Terracotta Inst. + sharing Identity Mode Full SSI Mode

Fig. 8. Fibonacci - Execution times

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 8 12

Ti
m
e
(s
ec
.)

Number of threads

Local Terracotta Inst Only. Terracotta Inst + sharing Identity Mode Full SSI Mode

Fig. 9. Matrix*Vector - Execution times

regarding consumption of isolates. MVM resource management work is related
to the Java Specification Request 284 [12]. Our work builds on this JSR and uses
a widely accessible VM. MVM only runs on Solaris on top of SPARC’s hardware.
The work in [21] and [3] enables precise memory and CPU accounting. Never-
theless they do not provide an integrated interface to determine the resource
consumption policy, which may involve VM, system or class library resources.

Cluster-aware high language virtual machines have been a topic of interest for
some time. They generically address three main problems: the resource monitor-
ing problem, the migration of workload and a global address reference space. The
architecture presented in [9] federates the multi-task virtual machine [10], form-
ing a cluster where there are local and global resources that can be monitored and
constrained. However, Czajkowski’s work lacks the capacity to relocate workload
across the cluster. Regarding policies, their’s are only defined programmatically
and cannot be changed without recompiling the programs/libraries responsible
by clustering mechanisms (e.g. load balancer).

The Jessica VM thread migration schemes have recently been improved to take
into account the dependency between threads [16]. To preserve locality of objects,
a stack-based mechanism is proposed to profile the set of objects which are tightly

318 J. Simão, J. Lemos, and L. Veiga

coupled with a migrant thread. The mechanisms and algorithms presented in this
work can be explored in our system to determine the node where to spawn new
threads. Moreover, by leveraging the support for a distributed shared object
space in A2-VM , thread migration needs not know in advance, with so fine-
grained detail, which objects are more tightly coupled with a thread, as they
can be fetched later on when accessed again.

In [22], Zhang et al. present VCluster, a thread migration middleware ad-
dressing both tightly coupled shared-memory multiprocessors and loosely cou-
pled distributed memory multiprocessors. Their work focus on thread inter-
communication and migration mechanisms. To use the VCluster middleware,
the programmer must explicitly define what is the high-level thread state, rel-
evant to be migrated to other node. In our work, the application source code
does not need to be modified.

Grid systems have also been designed to take into account each node’s own
resources and task requirements. The work in [8] employees a multi-layer (CPU,
node and site) set of reconfiguration strategies to dynamically adapt grid users’
jobs to changes in the available CPU resources at each node. This adaptation
is focused solely on scheduling the task to a different node, but once the task
is scheduled, no further adaptation is possible. The task, and all its comprised
threads, are run until completion on the same node. Our research also aims to
dynamically adapt the runtime parameters and/or algorithms activated at the
virtual machine in each node. Furthermore, resource monitoring is carried out
during task execution and its threads can be spawned on less loaded nodes in
the cluster.

6 Conclusion

In this document we described the architecture, implementation issues, and eval-
uation of A2-VM , a research effort to design a cooperative Java virtual ma-
chine, to be deployed on clusters, able to manage resources autonomously and
adaptively. It aims at offering the semantics of distributed execution environ-
ment transparently across clusters, each executing an instance of an extended
resource-aware VM for the managed language Java.

Semantically, this execution environment provides a partitioned global ad-
dress space where an application uses resources in several nodes, where objects
are shared, and threads are spawned and scheduled globally. Regarding its oper-
ation, A2-VM resorts to a policy-driven adaptability engine that drives resource
management, global scheduling of threads, and determines the activation of other
coarse-grained mechanisms (e.g., checkpointing and migration among VMs).

In summary, the goal of such an infrastructure is to provide more flexibility,
control, scalability and efficiency to applications running in clusters.

Acknowledgement. This work was supported by FCT (INESC-ID multiannual
funding) through the PIDDAC Program funds.

A2-VM : A Cooperative Java VM with Support for Resource-Awareness 319

References

1. Alpern, B., Augart, S., Blackburn, S.M., Butrico, M., Cocchi, A., Cheng, P., Dolby,
J., Fink, S., Grove, D., Hind, M., McKinley, K.S., Mergen, M., Moss, J.E.B., Ngo,
T., Sarkar, V.: The jikes research virtual machine project: building an open-source
research community. IBM Syst. J. 44, 399–417 (2005)

2. Aridor, Y., Factor, M., Teperman, A.: cJVM: a single system image of a JVM on a
cluster. In: In Proceedings of the International Conference on Parallel Processing,
pp. 4–11 (1999)

3. Back, G., Hsieh, W.C., Lepreau, J.: Processes in KaffeOS: Isolation, Resource Man-
agement, and Sharing in Java. In: In Proceedings of the 4th Symposium on Op-
erating Systems Design and Implementation, pp. 333–346 (2000)

4. Binder, W., Hulaas, J., Moret, P., Villazón, A.: Platform-independent profiling in
a virtual execution environment. Softw. Pract. Exper. 39, 47–79 (2009)

5. Blackburn, S.M., Garner, R., Hoffmann, C., Khang, A.M., McKinley, K.S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosk-
ing, A., Jump, M., Lee, H., Moss, J.E.B., Moss, B., Phansalkar, A., Stefanović, D.,
Van Drunen, T., von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks:
Java benchmarking development and analysis. In: OOPSLA 2006: Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pp. 169–190. ACM, New York (2006)

6. Boner, J., Kuleshov, E.: Clustering the Java Virtual Machine using Aspect-
Oriented Programming. In: AOSD 2007: Industry Track of the 6th international
conference on Aspect-Oriented Software Development. Conference on Aspect Ori-
ented Software Development (March 2007)

7. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a Code Manipulation Tool to Im-
plement Adaptable Systems. In: Proceedings of the ASF (ACM SIGOPS France)
Journées Composants 2002: Systèmes à composants adaptables et extensibles
(Adaptable and Extensible Component Systems) (November 2002)

8. Chen, P.-C., Chang, J.-B., Liang, T.-Y., Shieh, C.-K.: A progressive multi-layer
resource reconfiguration framework for time-shared grid systems. Future Gener.
Comput. Syst. 25, 662–673 (2009)

9. Czajkowski, G., Wegiel, M., Daynes, L., Palacz, K., Jordan, M., Skinner, G., Bryce,
C.: Resource management for clusters of virtual machines. In: Proceedings of the
Fifth IEEE International Symposium on Cluster Computing and the Grid, CC-
GRID 2005, vol. 01, pp. 382–389. IEEE Computer Society, Washington, DC, USA
(2005)

10. Czajkowski, G., Hahn, S., Skinner, G., Soper, P., Bryce, C.: A resource management
interface for the Java platform. Softw. Pract. Exper. 35, 123–157 (2005)

11. Czajkowski, G., von Eicken, T.: JRes: a resource accounting interface for Java. In:
Proceedings of the 13th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, OOPSLA 1998, pp. 21–35. ACM, New
York (1998)

12. Czajkowski, G., et al.: Java specification request 284 - resource consumption man-
agement api (2009)

13. Garrochinho, T., Veiga, L.: CRM-OO-VM: a checkpointing-enabled Java VM for
efficient and reliable e-science applications in grids. In: Proceedings of the 8th
International Workshop on Middleware for Grids, Clouds and e-Science, MGC
2010, pp. 1:1–1:7. ACM, New York (2010)

320 J. Simão, J. Lemos, and L. Veiga

14. Gront, D., Kolinski, A.: Utility library for structural bioinformatics. Bioinformat-
ics 24(4), 584–585 (2008)

15. Holland, R.C.G., Down, T.A., Pocock, M.R., Prlic, A., Huen, D., James, K., Foisy,
S., Dräger, A., Yates, A., Heuer, M., Schreiber, M.J.: Biojava: an open-source
framework for bioinformatics. Bioinformatics 24(18), 2096–2097 (2008)

16. Lam, K.T., Luo, Y., Wang, C.-L.: Adaptive sampling-based profiling techniques
for optimizing the distributed JVM runtime. In: IEEE International Symposium
on Parallel Distributed Processing (IPDPS 2010), pp. 1–11 (April 2010)

17. López-Arévalo, I., Bañares-Alcántara, R., Aldea, A., Rodŕıguez-Mart́ınez, A.: A
hierarchical approach for the redesign of chemical processes. Knowl. Inf. Syst. 12(2),
169–201 (2007)

18. Microsoft. CLR Profiler for the.NET framework 2.0 (2007),
http://www.microsoft.com/download/en/details.aspx?id=13382

19. Oracle. Java virtual machine tool interface (JVMTI),
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/

20. Price, D.W., Rudys, A., Wallach, D.S.: Garbage collector memory accounting in
language-based systems. In: Proceedings of the IEEE Symposium on Security and
Privacy SP 2003, pp. 263–274. IEEE Computer Society, Washington, DC, USA
(2003)

21. Suri, N., Bradshaw, J.M., Breedy, M.R., Groth, P.T., Hill, G.A., Saavedra, R.:
State capture and resource control for java: the design and implementation of
the aroma virtual machine. In: Proceedings of the 2001 Symposium on Ja-
vaTM Virtual Machine Research and Technology Symposium, JVM 2001, vol. 1,
pp. 11–11. USENIX Association, Berkeley (2001)

22. Zhang, H., Lee, J., Guha, R.: Vcluster: a thread-based java middleware for smp
and heterogeneous clusters with thread migration support. Softw. Pract. Exper. 38,
1049–1071 (2008)

23. Zhu, W., Wang, C.-L., Lau, F.C.M.: Jessica2: A distributed java virtual machine
with transparent thread migration support. In: IEEE International Conference on
Cluster Computing, p. 381 (2002)

http://www.microsoft.com/download/en/details.aspx?id=13382
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/

Peer-Based Relay Scheme of

Collaborative Filtering for Research Literature

Youliang Zhong1, Weiliang Zhao1, Jian Yang1, and Lai Xu2

1 Department of Computing, Macquarie University
North Ryde, NSW 2109, Australia

{youliang.zhong,weiliang.zhao,jian.yang}@mq.edu.au
2 Software Systems Research Centre, Bournemouth University

Fern Barrow, Poole, Dorset BH12 5BB, UK
lxu@bournemouth.ac.uk

Abstract. Much work has been done in both industry and academia on
filtering for research literature, however most existing studies have their
limitations in coping with the inherent characteristics of research liter-
ature search, i.e., most articles attract very few readers among all the
researchers, and the recommendations are often circulated through mem-
bers of particular communities. In this paper we propose a peer-based
relay scheme of collaborative filtering for, but not limited to research
literature. In the scheme, a recommendation request is relayed through
a social structure dynamically formed by co-peers with common inter-
ests, and the recommendation results are adjusted and propagated by
the co-peers. A hybrid filtering approach is deployed in the scheme.

Keywords: Recommendation relay scheme, Collaborative filtering, So-
cial networks, Research literature.

1 Introduction

With the development of Web 2.0 technology, collaborative filtering for research
literature has attracted great interests in both industry and academia. The cur-
rent researches in the filed have their limitations in addressing the special issues
of recommending research articles. Unlike mass media products such as movies
and TV programs that are watched by millions of people, a research article is
often read by much less people. An empirical study showed that the average
citations of a scientific paper was 11.9 in 1997, and the number was decreasing
with time [13]. It is also observed that researchers seldom put research articles
and associated ratings in public social sites although they do normally maintain
collections of articles by means of various tools.

When a researcher wants to expand her collections in a particular research
area, she will ask her colleagues to give recommendations of a specific topic, and
her colleagues may continue with the requests to their associates and then send
the results back to the researcher. This is a relay process for getting personalized
recommendations through social networks. Now the challenge is how we can

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 321–328, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

322 Y. Zhong et al.

follow a similar way in collaborative filtering methods. Two critical issues have to
be addressed: (1) how shall a user choose the peers to get their recommendations,
based on similar taste or rating style? (2) how can the involved peers aggregate
the recommendations from others who have various opinions on same or similar
items?

In this paper, we propose a novel filtering scheme, which is based on a peer
structure dynamically formed by ”peers with common interests” in a social net-
work. All the peers relay recommendation requests and responses, and each peer
aggregates and filters recommended items. The peer structure, the hybrid filter-
ing algorithms, and the relay process will be discussed in the paper. The main
contributions of the paper are as follows:

– Relay based collaborative filtering. This paper proposes a collaborative
filtering scheme by explicitly utilizing social relationships, which is based on
a dynamically established social structure, and the recommendation process
is carried out in a relay fashion over the structure. Such a relay approach is
coincident with the human behaviour of making recommendations in social
or professional life.

– Peer-based recommendation. In the proposed scheme, every user works
on its own and collaborates with its peers to expend recommendations. This
is in contrast with most existing recommendation approaches that collect
raw data from all users and make recommendations at a central place. Fur-
thermore, the recommendation results are adjusted by direct and indirect
co-peers during a recommendation process.

The rest of the paper is organized as follows. We firstly present a motivating
example and notations in section 2, and subsequently elaborate the peer-based
relay scheme in section 3. Experiments are illustrated in section 4, and related
work is discussed in section 5, followed by a concluding remark in section 6.

2 Preliminaries

2.1 Motivating Example

Fig 1 illustrates how recommendations are produced in a peer-based social net-
work by a relay mechanism, in which each user maintains a list of items and
associated ratings. For instance, user Alex possesses a list of item ”a, c, e”, with
ratings ”8, 7, 3”. Alex has commonly rated item c with John, and item e with
Peter, however there is no overlap with Eddy. We call an item like c or e as a
co-rated-item (CRI), and friends who have CRIs as co-peers.

Suppose user Alex wants to expand his collection, he sends a request to his
co-peers, and the co-peers may forward the request to their co-peer and so forth.
Therefore, an initial requestor and all its successive co-peers form a Co-Peer
Graph, and every user in the graph will be an active recommendation engine.
Finally, after getting recommendations from its co-peers, Alex aggregates and
filters the recommendations to create a final recommendation list for himself.

Peer-Based Relay Filtering Scheme for Research Literature 323

Fig. 1. Peer-structured recommendation process

2.2 Notations of Co-peer Graph

A co-peer graph is defined as a labeled directed acyclic graph CPG(V, A), where
V is a set of vertices and A a set of directed arcs over V, such that,

• For any v ∈ V , it represents a user that possesses a pair of tuples of items
and ratings. T (v) = {ti | i = 1..n} is a set of items possessed by v, and
R(v) = {v(ti) | i = 1..n} is the set of associated ratings over T (v).

• For a pair of vertices u, v ∈ V , the set intersection of T (u)∩ T (v) is denoted
as Cv

u, referred to co-rated-items (CRI) between v and u. If Cv
u �= ∅, then u

and v become co-peers. Consequently, a directed arc a(u, v) ∈ A from u to
v is established in the graph.

• For v ∈ V , a co-peer u that sends a request to v is called an inbound co-peer
of v or Icp(v) = {u}, while those co-peers that receive a request from v
are called outbound co-peers of v, denoted as Ocp(v). Ocp(v) ∩ Icp(v) = ∅.
Furthermore, for those outbound co-peers of v that commonly rate on a
particular item ti(ti /∈ T (v)) are denoted as Ocpi(v).

• For v ∈ V , if Ocp(v) = ∅, then v is called a leaf peer in the graph. The set
of all leaf peers is referred to as L.

3 Collaborative Relay Scheme

3.1 Collaborative Prediction Algorithms

Considering a pair of co-peers u and v, with co-rated-items Cv
u, and u is the

inbound co-peer of v. For an item ti ∈ P v
u , where P v

u = T (v) \ T (u) indicating
the set of ”potential item” from v for u, we want to predict the rating for the
item ti from v for u, denoted as rv

u(ti). Let us have rv
u(ti) = v(ti) + b, where

324 Y. Zhong et al.

v(ti) is the rating of ti made by v, and b an adjustment constant. According to
Minimum Mean Square Error, we have E =

∑
tj∈Cv

u
(v(tj)+b−u(tj))2, and need

to get a suitable b for a minimized E. Put these together, we have

rv
u(ti) = v(ti) + b, where ti ∈ P v

u , b = 1
|Cv

u|
∑

tj∈Cv
u
(u(tj) − v(tj)),

so, rv
u(ti) = 1

|Cv
u|
∑

tj∈Cv
u
(v(ti) − v(tj)) + Rv(u), (1)

where Rv(u) = 1
|Cv

u|
∑

tj∈Cv
u

u(tj).

From the standing point of an inbound co-peer, user u may have multiple out-
bound co-peers which have made predictions for the user on a same potential
item say ti, the user then needs to aggregate all the coming predicted ratings of
ti, described as follows (formula 2).

ru(ti) = 1
|Ocpi(u)|

∑
v∈Ocpi(u) rv

u(ti). (2)

T (u) = T e(u) ∪ T r(u), where T r(u) = ∪v∈Ocp(u)P
v
u ,

R(u) = Re(u) ∪ {ru(tj) | tj ∈ T r(u)}.

In the above formula, ru(ti) is the aggregated rating of ti for u, and Ocpi(u)
the set of outbound co-peers who commonly rate on item ti. T e(u) and Re(u)
stand for existing items and ratings possessed by user u, and T r(u) and Rr(u)
the recommended items and predicted ratings.

3.2 Content-Based Relevance Probability Formulas

Owing to the distinct feature of research literature, it is very natural to filter
the articles by relevance measurement between articles and a user’s possessed
items or/and profile [1]. In our scheme, we adopt the concepts of ”local- and
document-wide relevance” proposed by [17], and use an equivalent version of
[18] as follows (formula 3), where W (u) represents the words extracted from
the Profiles of a peer user u and a root user v0, and W (t) the words from the
Abstract of an article t. Function f(w, t) stands for the occurrences of a word w
in the article t, The cardinality |T (u)| is the number of the articles possessed by
user u, and |Tw(u)| the subset of |T (u)| of which all articles contain the word w.

ρ(u, t) =
∑

w∈(W (u)∩W (t))

f(w, t)log |T (u)|
|Tw(u)| . (3)

Having calculated the prediction ratings and relevance probabilities of potential
items, two hybrid methods are designed in the proposed scheme, one is Weighted
and the other Mixed, as classified by [5]. The Weighted method takes a form of
α ∗ rating + β ∗ relevance where α + β = 1.0, and the Mixed one uses a
logic OR/AND operator, that is, either α ∗ rating OR/AND β ∗ relevance
becomes a measurement. Finally, we denote a set of recommended items from v
for u as P̃ v

u , where P̃ v
u ⊂ P v

u .

Peer-Based Relay Filtering Scheme for Research Literature 325

3.3 Recommendation Relay Process Sequence

Generally, a root node broadcasts a request to its outbound co-peers, the out-
bound co-peers forward the request further when they have their outbound co-
peers. When the request reaches at leaf peers, they stop forwarding, instead
make individual predictions using formula 1 and filter potential items for their
inbound co-peers. If an inbound co-peer gets a desired number of recommenda-
tions from its outbound co-peers, it then aggregates predictions on recommended
items using formula 2. After that, it computes individual prediction ratings us-
ing formula 1, and sends the predictions backwards to its inbound co-peer. The
relay will iteratively occur until a recommendation list is produced.

To effectively relay recommendations over a co-peer graph, several issues need
to be addressed. Firstly, all users need to avoid repeatedly working for a same
request sending from different co-peers. In other words, we need to have a tree
structure for the co-peer graph. To this end, every user keeps a cache of all
executed requests so that it will reject the same requests afterwards if they have
been processed.

Secondly, without constraints on request-forwarding, co-peers may keep for-
warding and the relay process may never end. To control the termination of
request-forwarding among co-peers, every recommendation request is issued with
constraints, including the maximum number of desired responses, the expected
number of layers of co-peers, and the period of timeout.

Through a full cycle of replay process, the root note in a co-peer graph
will get a set of recommended items and associated prediction ratings of <
T r(v0), Rr(v0 > described in the following formula (4), where T r(v0) represents
the set of all recommended items, and Rr(v0) the associated predicated ratings,
which may be further aggregated and filtered for a final recommendation list.

T r(v0) = ∪v∈Ocp(u)
u,v∈V P̃ v

u ,

Rr(v0) = {rv0(tj) | tj ∈ T r(v0)}. (4)

4 Experiments

4.1 Simulation System and Evaluation Metrics

A simulation system of the proposed scheme has been developed by using Spring
WebFlow, JSF and Spring framework, and a dataset was collected from ISI Web
of Knowledge database [8]. The dataset consisted of 10,228 articles covering 20
different fields of computing science and engineering, and each bibliographic item
of an article had fields of title, author, publish year, abstract and keywords. 530
users were prepared, with randomly selected profiles from authors’ home pages
in relevant conferences. Totally 32,567 ratings are generated using a Gaussian
distribution, ranging from 0 to 10.

In this paper, we use NMAE (Normalized Mean Absolute Error) [7], riMAE
(Mean Absolute Error of recommended items), and Coverage [2] to measure the

326 Y. Zhong et al.

personalized degree of recommendation results. In the following formulas, the su-
perscript ”e” is used for items or ratings which are originally rated by the user,
and rv(.) stands for the predicted ratings generated by recommendation algo-
rithms. T r(v) stands for the recommended items, and T r

l (v) the highly relevant
items that have been recommended.

NMAE = 1
|V |
∑

v∈V

Mv

Re
max(v)−Re

min(v) , Mv = 1
|T e(v)|

∑
tj∈T e(v)

|rv(tj) − ve(tj)|.(5)

riMAEv = 1
|T r(v)|

∑
tj∈T r(v)

rv(tj) − 1
|T e(v)|

∑
ti∈T e(v)

ve(ti). (6)

Coverage = 1
|V |
∑

v∈V

|T r
l (v)|

|T r(v)| . (7)

4.2 Evaluation and Analysis

In the two pictures of Fig. 2, X-axis stands for the users having different sizes
of direct and indirect co-peers from 50 to 165, and Y-axis for Coverage (%)
and NMAE/riMAE values respectively. As shown, the Coverage(%) of the users
with lowest number of co-peers is about 40%, however that of most co-peers
rises to 74%. Likewise, while group 1 has both NMAE and riMAE values at
over 0.2, other groups get the MAE values around 0.15. This indicated that
the personalized degree of recommendations is higher for the users having more
co-peers than those with less.

Fig. 2. Effect of co-peer size

Two pictures of Fig. 3 demonstrate how the depth of relay process affect
recommendation results, in which X-axis stands for the depths of relay process
from 1 to 5, and Y-axis for Coverage (%) and MAE values respectively. As
showed, the Coverage increased from about 51% to near 62% when relay process
went further. On the other hand, while riMAE values kept at a stable level of
0.16xx, NMAE values rose from 0.14 at depth 1 to near 0.19 at depth 5. That
did show NMAE was affected by relay depth, however the NMAE was calculated
on the items that were previously rated by a requesting user. It was the riMAE
which measured the personalized degree of recommendation items, and it were
the riMAE values which were stably staying at a low level of 0.16xx.

Peer-Based Relay Filtering Scheme for Research Literature 327

Fig. 3. Impact of relay depth

5 Related Work

There are basically two types of filtering methods: content-based filtering (CN)
and collaborative filtering (CF). While content-based filtering recommends items
to a user based on the similarities between potential items and those rated by
the user [2,3], collaborative filtering is based on the ratings assigned by other
people with ”similar taste” [14,15]. Of the CF methods, Slope One is one of the
commonly used prediction algorithms [10]. We leverage both Slope One method
and peer-based structure in a social network so that the recommendation can
be replayed and adjusted by the co-peers in the network.

To cope with peer-based collaborative filtering, researches proposed various
distributed or peer-to-peer solutions, especially some of them focused on dis-
tributed data sources and distributed computation, such as [16,4]. In contrast
to these studies, our peer-based relay scheme has neither a global dataset nor a
centralized process, every user maintains its own data set and makes recommen-
dations on its own.

Much work has been done on recommending research articles. The research
of [11] was an important study of applying collaborative filtering to research
articles by using citation information. Several other studies were proposed using
personal behaviour to enrich users’ personal profiles [6,9,12,19].

6 Conclusions

In this paper we propose a novel scheme of filtering research literature, in which a
recommendation process is carried out over a peer-based social structure formed
by ”co-peers with similar interests”, and the recommendation requests and re-
sponses are relayed and adjusted by direct and indirect peers. The scheme will
be also valuable for other applications where most items attract few users, and
the users prefer to circulate recommendations within peer-based groups.

As discussed in the paper, the depth of relay process and the size of co-peers
significantly affect recommendation performance. In fact a user may select co-
peers according to more other factors, such as the depth of social relationship,
the number of potential co-peers and etc. It is also valuable to take qualitative
aspects of social networks into account for instance trust and credibility.

328 Y. Zhong et al.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender sys-
tems: A survey of the State-of-the-Art and possible extensions. IEEE Trans. on
Knowl. and Data Eng. 17(6), 734–749 (2005)

2. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern information retrieval, vol. 463.
ACM press, New York (1999)

3. Belkin, N.J., Croft, W.B.: Information filtering and information retrieval: two sides
of the same coin? Communications of the ACM 35(12), 29–38 (1992)

4. Berkovsky, S., Busetta, P., Eytani, Y., Kuflik, T., Ricci, F.: Collaborative Filtering
over Distributed Environment. In: DASUM Workshop, Citeseer (2005)

5. Burke, R.: Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction 12(4), 331–370 (2002)

6. Geyer-Schulz, A., Hahsler, M., Neumann, A., Thede, A.: Behavior-Based Recom-
mender Systems as Value-Added Services for Scientific Libraries

7. Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A Constant Time
Collaborative Filtering Algorithm. Information Retrieval 4(2), 133–151 (2001)

8. ISI-WoK (2010), http://wokinfo.com/
9. Jung, S., Kim, J., Herlocker, J.L.: Applying collaborative filtering for efficient doc-

ument search. In: IEEE/WIC/ACM International Conference on Web Intelligence,
pp. 640–643. IEEE Computer Society (2004)

10. Lemire, D., Maclachlan, A.: Slope one predictors for online Rating-Based collabo-
rative filtering. Society for Industrial Mathematics (2005)

11. McNee, S.M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S.K., Rashid, A.M.,
Konstan, J.A., Riedl, J.: On the recommending of citations for research papers.
In: ACM Conference on Computer Supported Cooperative Work, New Orleans,
Louisiana, USA, pp. 116–125. ACM (2002)

12. Pohl, S., Radlinski, F., Joachims, T.: Recommending related papers based on digi-
tal library access records. In: ACM/IEEE-CS Joint Conference on Digital Libraries,
pp. 417–418. ACM (2007)

13. Redner, S.: How popular is your paper? An empirical study of the citation distri-
bution. The European Physical Journal B 4(2), 131–134 (1998)

14. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an
open architecture for collaborative filtering of netnews. In: ACM Conference on
Computer Supported Cooperative Work, pp. 175–186. ACM (1994)

15. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating
word-of-mouth. In: SIGCHI Conference on Human Factors in Computing Systems,
pp. 210–217. ACM Press/Addison-Wesley Publishing Co. (1995)

16. Tveit, A.: Peer-to-peer based recommendations for mobile commerce. In: Interna-
tional Workshop on Mobile Commerce, Rome, Italy, pp. 26–29. ACM (2001)

17. Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K. L.: A retrospective study of a hybrid
document-context based retrieval model. Information Processing and Management:
an International Journal 43(5), 1308–1331 (2007)

18. Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting TF-IDF term
weights as making relevance decisions. ACM Transactions on Information Systems
(TOIS) 26(3), 1–37 (2008)

19. Zhang, Z.K., Zhou, T., Zhang, Y.C.: Personalized recommendation via integrated
diffusion on user-item-tag tripartite graphs. Physica A Statistical Mechanics and
its Applications 389, 179–186 (2010)

http://wokinfo.com/

Detecting and Resolving Conflicts of
Mutual-Exclusion and Binding Constraints

in a Business Process Context

Sigrid Schefer1, Mark Strembeck1, Jan Mendling2, and Anne Baumgrass1

1 Institute for Information Systems, New Media Lab
Vienna University of Economics and Business (WU Vienna), Austria

{firstname.lastname}@wu.ac.at
2 Institute for Information Business

Vienna University of Economics and Business (WU Vienna), Austria
jan.mendling@.wu.ac.at

Abstract. Mutual exclusion and binding constraints are important
means to define which combinations of subjects and roles can be assigned
to the tasks that are included in a business process. Due to the combinato-
rial complexity of potential role-to-subject and task-to-role assignments,
there is a strong need to systematically check the consistency of a given
set of constraints. In this paper, we discuss the detection of consistency
conflicts and provide resolution strategies for the corresponding conflicts.

Keywords: business processes, information systems, mutual exclusion,
separation of duty, binding of duty.

1 Introduction

In recent years, business processes are increasingly designed with security and
compliance considerations in mind (see, e.g., [3,16,19]). For example, the defi-
nition of process-related security properties is important if a conflict of interest
could arise from the simultaneous assignment of decision and control tasks to the
same subject. In this context, process-related access control mechanisms are typ-
ically used to specify authorization constraints, such as separation of duty (SOD)
and binding of duty (BOD), to regulate which subject is allowed (or obliged) to
execute a particular task (see, e.g., [4,5,14,15,16,17,19]).

In a workflow environment, SOD constraints enforce conflict of interest poli-
cies by defining that two or more tasks must be performed by different indi-
viduals. Conflict of interest arises as a result of the simultaneous assignment of
two mutual exclusive entities (e.g. permissions or tasks) to the same subject.
Tasks can be defined as statically mutual exclusive (on the process type level)
or dynamically mutual exclusive (on the process instance level). Thus, a static
mutual exclusion (SME) constraint is global with respect to all process instances
in an information system. Therefore, two SME tasks can never be assigned to
the same subject or role. On the other hand, two dynamically mutual exclusive

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 329–346, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

330 S. Schefer et al.

(DME) tasks can be assigned to the same subject but must not be executed by
the same subject in the same process instance.

In contrast, BOD constraints specify that bound tasks must always be per-
formed by the same subject or role (see, e.g., [14,15,16,17]). BOD can be subdi-
vided into subject-based and role-based constraints (see, e.g., [14,15]). A subject-
based BOD constraint defines that the same individual who performed the first
task must also perform the bound task(s). On the other hand, a role-based BOD
constraint defines that bound tasks must be performed by members of the same
role, but not necessarily by the same individual. Throughout the paper, we
will use the terms subject-binding (SB) and role-binding (RB) as synonyms for
subject-based BOD constraints and role-based BOD constraints, respectively.

In recent years, role-based access control (RBAC) [7,11] has developed into a
de facto standard for access control. A specific problem in the area of process-
related RBAC is the immanent complexity of interrelated mutual-exclusion and
binding constraints. Thus, when defining process-related mutual-exclusion or
binding constraints, design-time and runtime checks need to ensure the consis-
tency of the corresponding RBAC model. In particular, at design-time conflicts
may result from inconsistent constraints or assignment relations. At runtime
conflicts may result from invalid task-to-subject allocations (see also [14]).

In this paper, we take the conflicts identified in [14] as a starting point. We
adapt the algorithms from [14] to detect and name corresponding conflicts, and
discuss resolution strategies for these conflicts. In particular, we consider conflicts
at the level of design-time constraint definition, design-time assignment relations,
and runtime task allocation.

The remainder of this paper is structured as follows. Section 2 gives an
overview of process-related RBAC models and the requirements for design-time
and runtime consistency of these models. Sections 3, 4, and 5 present algo-
rithms to detect potential conflicts of mutual-exclusion and binding constraints.
Furthermore, we provide resolution strategies that exemplary show how these
conflicts can be resolved to ensure the consistency of a process-related RBAC
model. Subsequently, Section 6 discusses related work and Section 7 concludes
the paper.

2 Process-Related RBAC Models

The algorithms and resolution strategies presented in Section 3, 4, and 5 are
based on the formal definitions for process-related RBAC models from [14,15].
However, due to the page restrictions we cannot repeat the complete list of
definitions in this paper. Therefore, we now give an overview of the definitions
we use below – for further details please consult [14,15].

Definition 1 (Process-related RBAC Model). A Process-related RBAC
Model PRM = (E,Q,D) where E = S ∪ R ∪ PT ∪ PI ∪ TT ∪ TI refers to
pairwise disjoint sets of the model, Q = rh ∪ rsa ∪ tra ∪ es ∪ er ∪ ar ∪ pi ∪ ti to
mappings that establish relationships, and D = sb ∪ rb ∪ sme ∪ dme to binding
and mutual-exclusion constraints.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 331

An element of S is called Subject. An element of R is called Role. An element
of PT is called Process Type. An element of PI is called Process Instance. An
element of TT is called Task Type. An element of TI is called Task Instance.

We allow the definition of subject-binding (sb), role-binding (rb), static mutual
exclusion (sme), and dynamic mutual exclusion (dme) constraints on task types.
Roles can be arranged in a role-hierarchy (rh), where more powerful senior-roles
inherit the permissions from their junior-roles. The task-to-role assignment re-
lation (tra) defines which tasks can be performed by the members of a certain
role. Thereby, tra specifies the permissions of a role. The task-ownership map-
ping (town) allows to determine which tasks are assigned to a particular role –
including the tasks inherited from junior-roles. The inverse mapping (town−1)
returns the set of roles a task is assigned to. The role-to-subject assignment rela-
tion (rsa) defines which roles are assigned to particular users. The role-ownership
mapping (rown) returns all roles assigned to a certain subject (including roles
that are inherited via a role-hierarchy). The inverse mapping (rown−1) allows
to determine all subjects assigned to a particular role. Each subject can acti-
vate the roles that are assigned to this subject, and the active-role mapping (ar)
returns the role that is currently activated. For each task instance we have an
executing-subject (es) and an executing-role (er).

Definition 2 provides rules for the static correctness of process-related RBAC
models to ensure the design-time consistency of the included elements and rela-
tionships.

Definition 2. Let PRM = (E,Q,D) be a Process-related RBAC Model. PRM
is said to be statically correct if the following requirements hold:
1. Tasks cannot be mutual exclusive to themselves:
∀t2 ∈ sme(t1) : t1 �= t2 and ∀t2 ∈ dme(t1) : t1 �= t2

2. Mutuality of mutual exclusion constraints:
∀t2 ∈ sme(t1) : t1 ∈ sme(t2) and ∀t2 ∈ dme(t1) : t1 ∈ dme(t2)

3. Tasks cannot be bound to themselves:
∀t2 ∈ sb(t1) : t1 �= t2 and ∀t2 ∈ rb(t1) : t1 �= t2

4. Mutuality of binding constraints:
∀t2 ∈ sb(t1) : t1 ∈ sb(t2) and ∀t2 ∈ rb(t1) : t1 ∈ rb(t2)

5. Tasks are either statically or dynamically mutual exclusive:
∀t2 ∈ sme(t1) : t2 �∈ dme(t1)

6. Either SME constraint or binding constraint:
∀t2 ∈ sme(t1) : t2 �∈ sb(t1) ∧ t2 �∈ rb(t1)

7. Either DME constraint or subject-binding constraint:
∀t2 ∈ dme(t1) : t2 �∈ sb(t1)

8. Consistency of task-ownership and SME:
∀t2 ∈ sme(t1) : town−1(t2) ∩ town−1(t1) = ∅

9. Consistency of role-ownership and SME: ∀t2 ∈ sme(t1), r2 ∈ town−1(t2),
r1 ∈ town−1(t1) : rown−1(r2) ∩ rown−1(r1) = ∅

Definition 3 provides the rules for dynamic correctness of a process-related RBAC
model, i.e. the rules that can only be checked in the context of runtime process
instances.

332 S. Schefer et al.

Definition 3. Let PRM = (E,Q,D) be a Process-related RBAC Model and
PI its set of process instances. PRM is said to be dynamically correct if the
following requirements hold:

1. In the same process instance, the executing subjects of SME tasks must be
different:
∀t2 ∈ sme(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) ∩ es(ty) = ∅

2. In the same process instance, the executing subjects of DME tasks must be
different:
∀t2 ∈ dme(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : es(tx) ∩ es(ty) = ∅

3. In the same process instance, role-bound tasks must have the same executing-
role: ∀t2 ∈ rb(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) : er(tx) = er(ty)

4. In the same process instance, subject-bound tasks must have the same
executing-subject: ∀t2 ∈ sb(t1), pi ∈ PI : ∀tx ∈ ti(t2, pi), ty ∈ ti(t1, pi) :
es(tx) = es(ty)

3 Constraint Definition Conflicts

When defining SME, DME, RB, or SB constraints at design-time, a number
of conflicts may occur that would lead to inconsistencies in the corresponding
process-related RBAC model. Below we first present algorithms to detect these
constraint definition conflicts. If a conflict is detected, the algorithms return
the name of the respective conflict. In the following subsections, we provide
descriptions for each conflict type and present different resolution strategies.

3.1 Algorithms for Detecting Constraint Definition Conflicts

Algorithm 1. Check if the definition of a new SME constraint is allowed.

Name: isSMEConstraintAllowed
Input: task1, task2 ∈ TT
1: if task1 == task2 then return selfConstraintConflict
2: if task1 ∈ dme(task2) then return directDMEConflict
3: if task1 ∈ allRoleBindings(task2) then return RBConflict
4: if task1 ∈ allSubjectBindings(task2) then return SBConflict
5: if ∃ r ∈ R | r ∈ town−1(task1) ∧ r ∈ town−1(task2)
6: then return taskOwnershipConflict
7: if ∃ s ∈ S | r1 ∈ rown(s) ∧ r2 ∈ rown(s) ∧
8: r1 ∈ town−1(task1) ∧ r2 ∈ town−1(task2)
9: then return roleOwnershipConflict
10: return true

Algorithm 2. Check if the definition of a new DME constraint is allowed.

Name: isDMEConstraintAllowed
Input: task1, task2 ∈ TT
1: if task1 == task2 then return selfConstraintConflict

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 333

2: if task1 ∈ sme(task2) then return directSMEConflict
3: if task1 ∈ allSubjectBindings(task2) then return SBConflict
4: return true

Algorithm 3. Check if the definition of a new RB constraint is allowed.

Name: isRBConstraintAllowed
Input: task1, task2 ∈ TT
1: if task1 == task2 then return selfConstraintConflict
2: if task1 ∈ sme(task2) then return directSMEConflict
3: if ∃taskx ∈ sme(task1) | taskx ∈ allRoleBindings(task2)
4: then return transitiveSMEConflict
5: if ∃taskx ∈ sme(task2) | taskx ∈ allRoleBindings(task1)
6: then return transitiveSMEConflict
7: return true

Algorithm 4. Check if the definition of a new SB constraint is allowed.

Name: isSBConstraintAllowed
Input: task1, task2 ∈ TT
1: if task1 == task2 then return selfConstraintConflict
2: if task1 ∈ dme(task2) then return directDMEConflict
3: if task1 ∈ sme(task2) then return directSMEConflict
4: if ∃taskx ∈ sme(task1) | taskx ∈ allSubjectBindings(task2)
5: then return transitiveSMEConflict
6: if ∃taskx ∈ dme(task1) | taskx ∈ allSubjectBindings(task2)
7: then return transitiveDMEConflict
8: if ∃taskx ∈ sme(task2) | taskx ∈ allSubjectBindings(task1)
9: then return transitiveSMEConflict
10: if ∃taskx ∈ dme(task2) | taskx ∈ allSubjectBindings(task1)
11: then return transitiveDMEConflict
12: return true

3.2 Resolving Constraint Definition Conflicts

Self-constraint Conflict: A self-constraint conflict occurs if we try to define
tasks as mutual exclusive or bound to themselves (see Figure 1a and Algo-
rithms 1-4). However, because mutual exclusion as well as binding constraints
must be defined on two different task types, such a “self-exclusion” or “self-
binding” would violate the consistency requirements defined in Def. 2.1 and
Def 2.3.
Resolution to Self-constraint Conflicts: In order to prevent inconsistencies
resulting from a self-constraint conflict, mutual exclusion and binding constraints
need always be defined on two different task types (see Resolution 1 and Fig-
ure 1a).
Direct SME Conflict: A direct SME conflict occurs if one tries to define a new
DME, RB, or SB constraint on two task types which are already defined as being

334 S. Schefer et al.

Resolution 1

t1 tx

Before After

SME / RB /
DME / SB

Self-constraint conflict

a)
Before

Direct SME conflict Resolution 2

t1 t2

After

DME / RB / SB

b)

t2t1
SME

DME / RB / SB
Resolution 3

After

t2t1
DME

RB

Before

Direct DME conflict Resolution 4

t1 t2

After

SME / SB

c)

t2t1
DME

SME / SB

t1
SME /
DME

RB / SB /

Fig. 1. Resolving self-constraint (a), SME (b), or DME (c) conflicts

statically mutual exclusive (see Figure 1b). However, as defined in Def. 2.5, two
tasks can either be statically or dynamically mutual exclusive (see also [14,15]).
Furthermore, if two tasks are defined as statically mutual exclusive, it is not
possible to define a binding constraint between the same tasks (see Def. 2.6).
Resolutions to Direct SME Conflicts: Figure 1b shows two resolutions to
prevent direct SME conflicts. In particular, this type of conflict can be avoided by
removing the conflicting SME constraint before defining the new DME or binding
constraint (see Resolution 2). If a direct SME conflict occurs when defining a RB
constraint, it can also be resolved by changing the SME into a DME constraint
(see Resolution 3), because DME constraints do not conflict with RB constraints
(see [14,15]).
Direct DME Conflict: A direct DME conflict occurs if one tries to define a
new SME or SB constraint on two task types which are already defined as being
dynamically mutual exclusive (see Figure 1c). However, as defined in Def. 2.5,
two tasks can either be statically or dynamically mutual exclusive. Moreover,
DME and SB constraints conflict (see Def. 2.7, Def. 3.2, and Def. 3.4).
Resolution to Direct DME Conflicts: A direct DME conflict can be pre-
vented by removing the conflicting DME constraint before defining the new SME
or SB constraint (see Resolution 4 and Figure 1c).
RB Conflict: A RB conflict arises if one tries to define a new SME constraint on
two role-bound task types (see Figure 2a). However, because one cannot define
a SME constraint and a RB constraint on the same task types (see Def. 2.6),
such a configuration would result in a RB conflict.
Resolution to RB Conflicts: A RB conflict can be prevented by removing
the conflicting RB constraint before defining the new SME constraint (see Res-
olution 5 and Figure 2a).
SB Conflict: A SB conflict arises if one tries to define a SME or a DME constraint
between two subject-bound tasks (see Figure 2b). However, because we cannot
define a mutual exclusion constraint and a SB constraint on the same task types
(see Def. 2.6 and Def. 2.7), such a configuration would result in a SB conflict.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 335

Before

RB conflict Resolution 5

t1 t2

After

SME

a)

t2t1
RB

SME

Before

SB conflict Resolution 6

t1 t2

After

SME / DME

b)

t2t1
SB

SME / DME
Resolution 7

After

t2t1
RB

DME

Fig. 2. Resolving RB conflicts (a) or SB conflicts (b)

Resolutions to SB Conflicts: A SB conflict can be prevented by removing
the conflicting SB constraint before defining the new mutual exclusion constraint
(see Resolution 6 and Figure 2b). If a SB conflict occurs when defining a DME
constraint, it can also be avoided by changing the conflicting SB constraint into
a RB constraint (see Resolution 7), because DME and RB do not conflict (see
[14,15]).

Resolution Strategies for Constraint Definition Conflicts
The following resolution strategies define the conflict resolutions described above
with respect to the formal definitions of process-related RBAC models (see Sec-
tion 2 and [14,15]).

Resolution 1. Select two different tasks

Input: taski ∈ TT
1: select taskx ∈ T | taski �= taskx ∧ taskx /∈ sme(taski) ∧ taskx /∈ dme(taski)∧
2: taskx /∈ allRoleBindings(taski) ∧ taskx /∈ allSubjectBindings(taski)

Resolution 2. Remove SME constraint

Input: task1, task2 ∈ TT
1: remove task1 from sme(task2) so that task1 /∈ sme(task2)

Resolution 3. Change SME constraint into DME constraint

Input: task1, task2 ∈ TT
1: remove task1 from sme(task2) so that task1 /∈ sme(task2)
2: and add task1 to dme(task2) so that task1 ∈ dme(task2)

Resolution 4. Remove DME constraint

Input: task1, task2 ∈ TT
1: remove task1 from dme(task2) so that task1 /∈ dme(task2)

Resolution 5. Remove RB constraint

Input: task1, task2 ∈ TT
1: remove task1 from rb(task2) so that task1 /∈ rb(task2)

336 S. Schefer et al.

Resolution 6. Remove SB constraint
Input: task1, task2 ∈ TT
1: remove task1 from sb(task2) so that task1 /∈ sb(task2)

Resolution 7. Change SB constraint into RB constraint
Input:task1, task2 ∈ TT
1: remove task1 from sb(task2) so that task1 /∈ sb(task2)
2: and add task1 to rb(task2) so that task1 ∈ rb(task2)

3.3 Resolving Ownership Conflicts

Task-Ownership Conflict: A task-ownership conflict occurs if one tries to
define a SME constraint between two task types that are already assigned to the
same role (see Figure 3a). Because two SME tasks must never be assigned to the
same role (neither directly nor transitively) such a configuration would result in
a task-ownership conflict (see Def. 2.8).
Resolutions to Task-Ownership Conflicts: Figure 3a shows two resolutions
to prevent task-ownership conflicts. A task-ownership conflict can be avoided
by revoking one of the tasks from the corresponding role before defining the
new SME constraint (see Resolution 8), or by deleting the conflicting role before
defining the new SME constraint (see Resolution 9). Note that Resolution 9 will
rarely be applicable in real-world scenarios and is thus only presented for the
sake of completeness.

t2

t1

Before

r
t2

t1

After

r
t2

t1

Resolution 8

SME

Resolution 9

After

SMEa)

t2

t1r1

r2s

Resolution 10

Before After

t2

t1r1

r2
SME

After

Resolution 11

b)

SME

SME
t2

t1r1

r2s

SME

Task-ownership conflict

Role-ownership conflict

Fig. 3. Resolving task-ownership (a) and role-ownership (b) conflicts

Role-Ownership Conflict: A role-ownership conflict occurs if one tries to
define a SME constraint on two task types which are (via the subject’s roles)
already assigned to the same subject (see Figure 3b). Because two SME tasks
must never be assigned to the same subject (see Def. 2.9) such a configuration
would result in a role-ownership conflict.
Resolutions to Role-Ownership Conflicts: A role-ownership conflict as
shown in Figure 3b can be prevented by revoking one of the conflicting

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 337

task-to-role assignments before defining the new SME constraint (see Resolu-
tion 8), or by revoking one of the corresponding roles from the subject before
defining the new SME constraint (see Resolution 10). Alternatively, it can be
avoided by removing role r1 or r2 (see Resolution 9) or by removing the subject
which owns the conflicting roles (see Resolution 11). Again, Resolutions 9 and 11
will rarely be applicable in real-world scenarios and are only presented for the
sake of completeness.

Resolution Strategies for Ownership Conflicts
The following resolution strategies define the conflict resolutions described above
with respect to the formal definitions of process-related RBAC models (see Sec-
tion 2 and [14,15]).

Resolution 8. Remove task-to-role assignment

Input: role ∈ R, task ∈ TT
1: remove role from town−1(task) so that role /∈ town−1(task)

Resolution 9. Remove role

Input: role ∈ R
1: remove role from R so that role /∈ R

Resolution 10. Remove role-to-subject assignment

Input: subject ∈ S, role ∈ R
1: remove role from rown(subject) so that role /∈ rown(subject)

Resolution 11. Remove subject

Input: subject ∈ S
1: remove subject from S so that subject /∈ S

Resolution 12. Remove task

Input: task ∈ TT
1: remove task from TT so that task /∈ TT

3.4 Resolving Transitive Constraint Conflicts

Transitive SME or DME conflicts arise because of the transitivity of binding
constraints (see Def. 3.3, Def. 3.4, and [14,15]). Therefore, a conflict may arise
when defining a RB or SB constraint on two tasks t1 and t2 because of pre-
existing mutual exclusion constraints between on one of the tasks t1 or t2 and
some third task t3.
Transitive SME Conflict: Figure 4a shows a transitive SME conflict that
occurs if one tries to define a new role- or subject-binding constraint between
two tasks (t1 and t2 in Figure 4a) that would result in a transitive binding of a
third task (tx in Figure 4a) which is already defined as statically mutual exclusive

338 S. Schefer et al.

to one of the other tasks (see SME constraint between t1 and tx in Figure 4a).
However, because binding constraints define that two task instances must be
executed by the same subject/role (see Def. 3.3 and Def. 3.4), while SME tasks
must not be executed by the same subject (see Def. 3.1) such a configuration
would result in a transitive SME conflict between t1 and tx (see also Def. 2.6).

Resolutions to Transitive SME Conflicts: Figure 4a shows conflict resolu-
tions for transitive SME conflicts. Such a conflict can be avoided by removing
the SME constraint before defining the new binding constraint (see Resolution
2). If the conflict arises when defining a RB constraint, it can also be prevented
by changing the SME into a DME constraint before defining the new RB con-
straint (see Resolution 3). Moreover, the conflict can be resolved by removing
the pre-existing binding constraint between t2 and tx before defining the new
binding constraint on t1 and t2 (see Resolution 5 for removing RB constraints
and Resolution 6 for removing SB constraints). Alternatively, a transitive SME
conflict can be avoided by removing the task that causes the transitive SME
conflict (see Resolution 12). However, Resolution 12 will rarely be applicable in
practice.

Fig. 4. Resolving transitive SME (a) and DME (b) conflicts

Transitive DME Conflict: A transitive DME conflict arises because of the
transitivity of SB constraints. Figure 4b shows a transitive DME conflict that
occurs if one tries to define a new subject-binding between two tasks (t1 and t2
in Figure 4b) that would result in a transitive subject-binding of a third task (tx
in Figure 4b) which is already defined as dynamically mutual exclusive to one of
the other tasks (see DME constraint between t1 and tx in Figure 4b). However,
SB constraints define that two task instances must be executed by the same
subject (see Def. 3.4), while DME constraints define that the corresponding task
instance must not be executed by the same subject (see Def. 3.2). Therefore,
such a configuration would result in a transitive DME conflict between t1 and
tx (see also Def. 2.7).

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 339

Resolutions to Transitive DME Conflicts: Figure 4b shows resolutions for
transitive DME conflicts. Such a conflict can be prevented by removing the
DME constraint before defining the new SB constraint (see Resolution 4), or by
removing the pre-existing SB constraint between t2 and tx before defining the
new SB constraint (see Resolution 6). It can also be avoided by changing the
existing SB constraint into a RB constraint before defining the new SB constraint
(see Resolution 7), or by removing the conflicting task tx (see Resolution 12).

4 Detecting and Resolving Assignment Conflicts

Assignment conflicts arise at design-time when defining new assignment rela-
tions between roles, subjects, and tasks. The algorithms defined below check
the design-time consistency of a process-related RBAC model when defining a
task-to-role, role-to-role, or role-to-subject assignment relation. If an assignment
conflict is detected, the algorithms return the name of the respective conflict
(see also [14]).

4.1 Algorithms for Detecting Assignment Conflicts

Algorithm 5. Check if it is allowed to assign a particular task type to a par-
ticular role (task-to-role assignment).

Name: isT2RAssignmentAllowed
Input: taskx ∈ TT , roley ∈ R
1: if ∃ tasky ∈ town(roley) | tasky ∈ sme(taskx) then return

taskAssignmentConflict
2: if ∃ rolez ∈ allSeniorRoles(roley) | taskz ∈ town(rolez) ∧
3: taskz ∈ sme(taskx) then return taskAssignmentConflict
4: if ∃ s ∈ S | roley ∈ rown(s) ∧ rolez ∈ rown(s) ∧
5: taskz ∈ town(rolez) ∧ taskz ∈ sme(taskx) then return

roleAssignmentConflict
6: return true

Algorithm 6. Check if it is allowed to define a (new) junior-role relation be-
tween two roles (role-to-role assignment).

Name: isR2RAssignmentAllowed
Input: junior, senior ∈ R
1: if junior == senior then return selfInheritanceConflict
2: if senior ∈ rh∗(junior) then return cyclicInheritanceConflict
3: if ∃ taskj ∈ town(junior) ∧ tasks ∈ town(senior) |
4: taskj ∈ sme(tasks) then return taskAssignmentConflict
5: if ∃ rolex ∈ allSeniorRoles(senior) | taskx ∈ town(rolex) ∧
6: taskj ∈ town(junior) ∧ taskx ∈ sme(taskj)
7: then return taskAssignmentConflict
8: if ∃ s ∈ S | senior ∈ rown(s) ∧ rolex ∈ rown(s) ∧

340 S. Schefer et al.

9: taskx ∈ town(rolex) ∧ taskj ∈ town(junior) ∧ taskx ∈ sme(taskj)
10: then return roleAssignmentConflict
11: return true

Algorithm 7. Check if it is allowed to assign a particular role to a particular
subject.

Name: isR2SAssignmentAllowed
Input: rolex ∈ R, subject ∈ S
1: if ∃ roley ∈ rown(subject) | tasky ∈ town(roley) ∧
2: taskx ∈ town(rolex) ∧ tasky ∈ sme(taskx) then return

roleAssignmentConflict
3: return true

4.2 Resolving Assignment Conflicts

Self Inheritance Conflict: A self inheritance conflict may arise when defining
a new inheritance relation between roles. In particular, a role cannot be its own
junior-role (see Figure 5a and [14,15]).
Resolution to Self Inheritance Conflicts: This conflict can be resolved by
changing one of the selected roles so that the inheritance relation is defined
between two different roles (see Figure 5a and Resolution 13).
Cyclic Inheritance Conflict: A cyclic inheritance conflict results from the
definition of a new inheritance relation in a role-hierarchy (also called role-to-
role assignment). In particular, a role-hierarchy must not include a cycle because
all roles within such a cyclic inheritance relation would own the same permissions
which would again render the respective part of the role-hierarchy redundant (see
Figure 5b and [14,15]).
Resolutions to Cyclic Inheritance Conflicts: This conflict can be resolved
by defining a new inheritance relation between roles which are not already part
of the same role-hierarchy (see Resolution 13). In Figure 5b, Resolution 13 is
applied by defining a new inheritance relation between rx and ry while keeping
the existing inheritance relation between ry and rz . Moreover, the existing in-
heritance relation between ry and rz can be removed before defining the inverse
inheritance relation with rz as junior role of ry (see Resolution 14).
Task-Assignment Conflict: A task-assignment conflict may occur if the def-
inition of a new tra or junior-role relation would result in the assignment of
two SME tasks to the same role (see Def. 2.8). Figure 6a depicts an example
where a role ry owns a task ty which is defined as SME to another task tx. Thus,
assigning tx to ry would result in a task-assignment conflict.
Resolutions to Task-Assignment Conflicts: To avoid the task-assignment
conflict in Figure 6a, the conflicting SME constraint between the two task types
can be removed or changed into a DME constraint (see Resolutions 2 and 3).
Alternatively, task ty can be revoked from ry, or the conflicting task ty can be
deleted (see Resolutions 8 and 12).

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 341

Cyclic inheritance conflict

rz

ry

senior
junior

senior

junior

Resolution 13

rz

ry

senior
junior

rxsenior
junior

Resolution 14

rz

ry

junior
senior

Before After After

ry

Self inheritance conflict

junior

senior

Resolution 13

rz

ry

senior
junior

Before After

a)

b)

Fig. 5. Resolving self-inheritance (a) and cyclic inheritance (b) conflicts

Before

ty

tx
ry

SME

After

ty

tx
ry

Resolution 2

After

Resolution 3

After

ty

txry

Resolution 8

ty

tx
ry

DME

After

Resolution 12

txry

Task-assignment conflict

SME

ty

tzrz

ry
s1

SME

tx

Before

ty

tzrz

ry SME

tx

Resolution 10

ty

tzrz

ry SME

tx

After

Resolution 11

After

Role-assignment conflict

s1

a)

b)

Fig. 6. Resolving task- (a) and role-assignment (b) conflicts

Role-Assignment Conflict: A role-assignment conflict arises if a new assign-
ment relation would authorize a subject to perform two SME tasks. Figure 6b
shows an example, where an assignment of role ry to subject s1 would result
in a role-assignment conflict because subject s1 would then be authorized to
perform the two SME tasks tz and tx. Thus, such an assignment would violate
the consistency requirement specified in Def. 2.9. Similarly, when defining a new
junior-role or tra relation, we need to check for role-assignment conflicts.
Resolutions to Role-Assignment Conflicts: To avoid a role-assignment con-
flict, the same resolutions as for task-assignment conflicts can be applied (see
Resolutions 2, 3, 8, and 12). In addition, Resolution 10 can be applied by re-
moving the conflicting assignment between rz and s1 (see Figure 6b). Moreover,

342 S. Schefer et al.

the conflict can (theoretically) be resolved by removing the conflicting subject
s1 which is assigned to the two SME tasks (see Resolution 11).

Resolution Strategies for Assignment Conflicts
The following resolution strategies define the conflict resolutions described above
with respect to the formal definitions of process-related RBAC models (see Sec-
tion 2 and [14,15]).

Resolution 13. Select two different roles

Input: rolei ∈ R
1: select rolex ∈ R | rolei �= rolex ∧ rolex /∈ allSeniorRoles(rolei)

Resolution 14. Remove junior-role relation

Input: roley, rolez ∈ R
1: remove roley from rh∗(rolez) so that roley /∈ rh∗(rolez)

5 Detecting and Resolving Runtime Conflicts

Conflicts may also occur when executing process instances. Thus, runtime con-
flicts arise when actually enforcing constraints. In particular, mutual-exclusion
and binding constraints directly impact the allocation of tasks to subjects. Below
we discuss five potential conflicts when allocating a particular task instance to
a certain subject. These conflicts are illustrated in Figures 7a-e, where conflicts
arise when we try to allocate subject s1 to an instance of the a task type tx (in
Figure 7 instances of tx are labeled as txi).

ty

tzrz

ry
s1 tx

executable task conflict

txirx

executing-subject conflict

s1

s2

executing-role conflict

tyi

txirx

ry
s1

Runtime SB conflict

ty

tzrz

ry

s1

SB

tx

s2
tzrz

rx
s1

DME
tx

Runtime DME conflict

a) b) c)

d) e)

Fig. 7. Runtime conflicts

Algorithm 8 checks the runtime consistency of a process-related RBAC model
when allocating a task instance to a particular subject. If one of the runtime
conflicts shown in Figures 7a-e is detected, the algorithm returns the name of
the respective conflict.

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 343

Algorithm 8. Check if a particular task instance executed during a specific pro-
cess instance can be allocated to a particular subject.

Name: isAllocationAllowed
Input: subject ∈ S, tasktype ∈ TT , processtype ∈ PT ,

processinstance ∈ pi(processtype), taskinstance ∈ ti(tasktype, processinstance)
1: if tasktype /∈ executableTasks(subject) then return executableTaskConflict
2: if es(taskinstance) �= ∅ then return executingSubjectConflict
3: if er(taskinstance) �= ∅ ∧ er(taskinstance) �= ar(subject)
4: then return executingRoleConflict
5: if ∃ typex ∈ allSubjectBindings(tasktype) |
6: typex /∈ executableTasks(subject) then return runtimeSBConflict
7: if ∃ instancey ∈ ti(typey, processinstance) |
8: typey ∈ dme(tasktype) ∧ es(instancey) == subject
9: then return runtimeDMEConflict
10: return true

Executable Task Conflict: An executable task conflict arises if the selected
subject is not allowed to execute the task type the corresponding task instance
was instantiated from. If subject s1 is not allowed to execute instances of task
tx (see Figure 7a), the respective task instance must not be allocated to s1.
Resolutions to Executable Task Conflicts: An executable task conflict can
be resolved by allocating an executing subject that actually owns the permission
to perform the respective task (see Resolution 15). Alternatively, one may change
the rsa or the tra relations so that s1 is allowed to execute tx.
Executing-Subject Conflict: An executing-subject conflict arises if the allo-
cation is not possible, because the respective task instance already has been
allocated to another subject. For example, in Figure 7b the task instance txi
already has an executing subject s2 and thus cannot be allocated to s1.
Resolution to Executing-Subject Conflicts: An executing-subject conflict
can only be resolved by first deallocating the executing-subject before the re-
spective task instance can be reallocated to another subject that is allowed to
perform the respective task (see Resolution 16 and Algorithm 8).
Executing-Role Conflict: An executing role conflict visualized in Figure 7c
occurs if a task instance already has an executing role, but this executing role is
not the active role of the designated executing-subject.
Resolution to Executing-Role Conflicts: An executing-role conflict can be
resolved by changing the active role of the subject to the executing-role of the
respective task instance (see Resolution 17).
Runtime SB Conflict: Figure 7d shows an example of a runtime SB conflict
that occurs when we try to allocate s1 to an instance of tx. In particular, we
need to check if some task type tz exists that has a SB relation to tx but can-
not be executed by s1. Such an allocation violates the consistency requirement
specified in Def. 3.4, because subject-bound tasks must have the same executing

344 S. Schefer et al.

subject. Thus, a subject can only be allocated if it owns the right to perform the
corresponding task type as well as all subject-bound tasks.
Resolutions to Runtime SB Conflicts: This conflict can be resolved by
removing the SB constraint (see Resolution 6). Moreover, the tra relation for
the subject-bound task or the rsa relation for one of the roles owning this task
can be changed so that the designated executing-subject is allowed to perform
the tasks that are connected via a (transitive) SB constraint. Furthermore, one
of the subject-bound tasks can be removed in order to resolve the SB conflict
(see Resolution 12), or the executing-subject can be changed (see Resolution 15).
Runtime DME Conflict: In the example from Figure 7e, a runtime DME
conflict would occur if we try to allocate s1 to an instance of tz and to an
instance of tx in the same process instance. This is because a DME constraint
defines that in the same process instance the instances of two DME task types
must not be performed by the same subject (see Def. 3.2).
Resolutions to Runtime DME Conflicts: A runtine DME conflict is pre-
vented by either removing the DME constraint, by removing one of the DME
tasks, or by changing the executing-subject (see Resolutions 4, 12, 16 and 15).

Resolution Strategies for Runtime Conflicts
The following resolution strategies define the conflict resolutions presented above
with respect to the formal definitions of process-related RBAC models.

Resolution 15. Select a subject that is allowed to perform the respective task

Input: task ∈ TT , role ∈ R
1: select subject ∈ S | role ∈ rown(subject) ∧ task ∈ town(role)

Resolution 16. Deallocate a task instance

Input: taski ∈ TI
1: set es(taski) = ∅ and er(taski) = ∅

Resolution 17. Change the executing-subject’s active role to the executing-role
of the respective task

Input: taski ∈ TI , subject ∈ S | es(taski) == subject
1: if er(taski) �= ar(subject)then set ar(subject) = er(taski)

6 Related Work

Sloman and Moffett [9,10,13] were among the first to analyze and categorize con-
flicts between different types of policies. They also presented informal strategies
for resolving these conflicts. In [1], Ahn and Sandhu presented the RCL 2000 lan-
guage for the specification of role-based authorization constraints. They also show
how SOD constraints can be expressed in RCL 2000 and discuss different types of
conflicts that may result from constraints specified via RCL 2000. Bertino et al. [3]

Resolving Conflicts of Mutual-Exclusion and Binding Constraints 345

present a language to express SOD constraints as clauses in logic programs. More-
over, they present corresponding algorithms that check the consistency of such
constraints. Thereby they ensure that all tasks within a workflow are performed
by predefined users/roles only. In [4], Botha and Eloff present an approach called
conflicting entities administration paradigm. In particular, they discuss possible
conflicts of static and dynamic SOD constraints in a workflow environment and
share a number of lessons learned from the implementation of a prototype sys-
tem. Schaad [12] discusses the detection of conflicts between SOD constraints in
a role-based delegation model. Schaad follows a rule-based, declarative approach
by using the Prolog language as an executable specification language.

Wang et al. [18] define algorithms for the detection of conflicts between access
control policies. Similarly, in [2], an approach for the formalization of policy rules
is proposed and algorithms for policy conflict resolutions are derived. Yet, both
approaches do not consider conflicts resulting from SOD or BOD constraints.
Tan et al. [16] define a model for constrained workflow systems, including SOD
and BOD constraints. They discuss different issues concerning the consistency
of such constraints and provide a set of formal consistency rules that guarantee
the definition of a sound constrained workflow specification. In [6] Ferraiolo et
al. present RBAC/Web, a model and implementation for RBAC in Web servers.
They also discuss the inheritance and resulting consistency issues of SOD con-
straints in role-hierarchies. Jaeger et al. [8] present a formal model for constraint
conflicts and define properties for resolving these conflicts. They applied metrics
for resolving Biba integrity violations in an SELinux example policy.

7 Conclusion

In this paper, we discussed resolution strategies for conflicts of process-related
mutual-exclusion and binding constraints. Because of the countless configura-
tions that could cause conflicts, we chose to discuss frequently occurring conflict
types which group similar conflicts. In the same way, we described correspond-
ing types of resolution strategies. If a certain resolution strategy is actually
applicable to a specific real-world conflict can, however, only be decided by the
corresponding process modeler or security engineer.

Note that in our approach, conflicts are detected and resolved before causing an
inconsistent RBAC configuration. In other words, the formal consistency require-
ments for static and dynamic correctness of our process-related RBAC models
must hold at any time and therefore prevent the definition of inconsistent RBAC
models. The application of the algorithms and resolution strategies described in
this paper can help process modelers and security engineers to identify resolution
options for design-time and runtime conflicts in process-related RBAC models.

References
1. Ahn, G., Sandhu, R.: Role-based Authorization Constraints Specification. ACM

Transactions on Information and System Security (TISSEC) 3(4) (November
2000)

346 S. Schefer et al.

2. Baliosian, J., Serrat, J.: Finite State Transducers for Policy Evaluation and Conflict
Resolution. In: Proceedings of the Fifth IEEE International Workshop on Policies
for Distributed Systems and Networks (June 2004)

3. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-
tion constraints in workflow management systems. ACM Transactions on Informa-
tion and System Security (TISSEC) 2(1) (1999)

4. Botha, R.A., Eloff, J.H.: Separation of duties for access control enforcement in
workflow environments. IBM Systems Journal 40(3) (2001)

5. Casati, F., Castano, S., Fugini, M.: Managing Workflow Authorization Constraints
through Active Database Technology. Information Systems Frontiers 3(3) (2001)

6. Ferraiolo, D., Barkley, J., Kuhn, D.: A Role-Based Access Control Model and
Reference Implementation within a Corporate Intranet. ACM Transactions on In-
formation and System Security (TISSEC) 2(1) (February 1999)

7. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control, 2nd
edn. Artech House (2007)

8. Jaeger, T., Sailer, R., Zhang, X.: Resolving constraint conflicts. In: Proc. of the
Ninth ACM Symposium on Access Control Models and Technologies, SACMAT
(2004)

9. Moffett, J.D., Sloman, M.S.: Policy Hierarchies for Distributed Systems Manage-
ment. IEEE Journal on Selected Areas in Communications 11(9) (1993)

10. Moffett, J.D., Sloman, M.S.: Policy Conflict Analysis in Distributed System Man-
agement. Journal of Organizational Computing 4(1) (1994)

11. Feinstein, H., Sandhu, R., Coyne, E., Youman, C.: Role-based access control mod-
els. IEEE Computer 29(2) (1996)

12. Schaad, A.: Detecting Conflicts in a Role-Based Delegation Model. In: Proceedings
of the 17th Annual Computer Security Applications Conference, ACSAC (Decem-
ber 2001)

13. Sloman, M.S.: Policy Driven Management for Distributed Systems. Journal of Net-
work and Systems Management 2(4) (1994)

14. Strembeck, M., Mendling, J.: Generic Algorithms for Consistency Checking of
Mutual-Exclusion and Binding Constraints in a Business Process Context. In:
Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426,
pp. 204–221. Springer, Heidelberg (2010)

15. Strembeck, M., Mendling, J.: Modeling Process-related RBAC Models with Ex-
tended UML Activity Models. Information and Software Technology 53(5) (2011)

16. Tan, K., Crampton, J., Gunter, C.A.: The Consistency of Task-Based Authoriza-
tion Constraints in Workflow Systems. In: Proceedings of the 17th IEEE workshop
on Computer Security Foundations (June 2004)

17. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - A workflow security model
incorporating controlled overriding of constraints. International Journal of Coop-
erative Information Systems (IJCIS) 12(4) (2003)

18. Wang, H., Sun, L., Varadharajan, V.: Purpose-based access control policies and
conflicting analysis. In: Rannenberg, K., Varadharajan, V., Weber, C. (eds.) SEC
2010. IFIP AICT, vol. 330, pp. 217–228. Springer, Heidelberg (2010)

19. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow
management. In: Proc. of the Eleventh ACM Symposium on Access Control Models
and Technologies, SACMAT (June 2006)

Implementation, Optimization and Performance

Tests of Privacy Preserving Mechanisms
in Homogeneous Collaborative Association Rules

Mining

Marcin Gorawski1,2 and Zacheusz Siedlecki1

1 Institute of Computer Science,
Silesian University of Technology,

Akademicka 16, 44-100 Gliwice, Poland
{Marcin.Gorawski,Zacheusz.Siedlecki}@polsl.pl

2 Institute of Computer Science,
Wroclaw University of Technology,

Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Marcin.Gorawski@pwr.wroc.pl

Abstract. This article focuses on optimization and performance tests
of association rules multiparty mining algorithms. We present how to
improve Secure Set Union performance by using a Common Decrypting
Key for a commutative encryption. We have also improved Secure Set
Union making it fully secure in a semi-honest model. As an example of
the above mentioned mechanisms application, the article presents new
algorithms of mining association rules on horizontally partitioned data
with preserving data privacy - CDKSU (Secure Union with Common
Decrypting Key) and its fully secure version - CDKRSU (Secure Union
with Common Decrypting Key and secure duplicate Removing). Those
algorithms are compared with KCS scheme since they are all based on
FDM. As far as the performance optimization is concerned, the appli-
cation of Elliptic Curve Cryptography vs Exponential Cryptography is
presented as well. The real, working system implementing given algo-
rithms is subjected to performance tests which results are presented and
analyzed.

Keywords: cryptography, association rule, multiparty data mining, com-
mutative encryption, elliptic curve.

1 Introduction

In the modern business, success depends on collaboration and partnership. Col-
laborative data mining becomes highly important, because of the mutual benefit
the partners gain. Collaboration occurs among companies that have conflict of
interests or compete against each other on the market. During collaboration
multiple parties want to conduct data mining on a data set that consists of all
the parties’ private data, but neither party wants the other parties or any third

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 347–366, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

348 M. Gorawski and Z. Siedlecki

party to learn much about their private data. It makes data privacy mechanisms
extremely important. The performance expense of this mechanisms, however,
can be prohibitive when applying to large databases. This article focuses on op-
timization of cryptographic privacy preserving mechanisms in association rules
mining algorithms on horizontally partitioned data.

1.1 Related Works

There is a great interest in researchon privacy-preservingdata mining [28,3,31,12].
There have been proposed privacy preserving algorithms for different data mining
applications, including clustering [38,24,21,23], association rules mining on ran-
domized data [35,13], association rules mining across multiple databases [37,25],
Bayes classification [40,39,29,42], decision trees on randomized data [3], frequent
pattern mining [16] and collaborative filtering [9]. Additionally, several privacy
preserving solutions have been proposed for simple primitives that are very useful
for designing privacy preserving data mining algorithms. These include computing
scalar products [8,6,37,43,14,17] and finding common elements [14,3]. The Secure
Multiparty Computation paradigm provides cryptographic solutions for protect-
ing privacy in any distributed computation [19,44]. Works most related to ours are
[11,10,25]. We have improved Secure Sum scheme [11] and created a new algorithm
similar to KCS (Kantarcioglu and Clifton Scheme) [25] (referenced as HPSU also
[22,20]) and based on FDM [10]. We have not come across any study dealing with
the Elliptic Curve Cryptography (ECC) used in multiparty data mining.

1.2 Our Contribution

We have demonstrated that it is possible to increase performance focusing on
optimization of cryptographic mechanisms used in the given algorithms. Of all
the elements of protection, encrypting has the highest computation expense,
but contrary to distorting input data, it does not disturb the results. Previous
research in mining association rules on horizontally partitioned data deal with
commutative [25,15,22] and homomorphic encryption [45]. They all describe the
use of exponential ciphers. It is recommended to substitute exponential ciphers
with methods based on Elliptic Curve Cryptography [30,1]. In this article, the
application of Elliptic Curve Cryptography (ECC) versus Exponential Cryptog-
raphy is presented. We introduce the manner of using a Common Decrypting
Key (CDK) for commutative encryption in a secure union to improve perfor-
mance as well. As an example of the usage of the above mentioned methods,
we have presented our own algorithm CDKSU (Secure Union with Common De-
crypting Key). We have also improved Secure Set Union making it fully secure
in a semi honest model by adding a Secure Duplicate Removing (SDR) protocol.
We have proposed CDKRSU (Secure Union with Common Decrypting Key and
secure duplicate Removing) which is a fully secure version of CDKSU. Those
algorithms are compared with KCS [25], since they are similar and all based
on FDM [10]. The system implementing given algorithms is subjected to perfor-
mance tests. The comparison of the tests results shows the performance benefits
that stem from the use of CDK and ECC.

Privacy Preserving in Collaborative Association Rules Mining 349

2 Homogeneous Collaborative Association Rules Mining
with Data Privacy Preserving

The goal of association rule mining is to discover meaningful associations among
the attributes of a large quantity of data. Briefly, an association rule is an ex-
pression X → Y where X and Y are sets of items. Given a database D, X → Y
means that whenever a record contains X then it also contains Y with certain
confidence. The confidence is the percentage of records containing both X and
Y with regard to the overall number of records containing X . The support of X
is the fraction of records supporting an item X with respect to the database D.

The majority of association rules mining algorithms is based on the algorithm
Apriori whose author is R. Agrawal [5]. Multiple algorithms for distributed
association rules mining have been proposed in [46,4]. On the basis of these
algorithms, multiple association rules mining with preserving data privacy algo-
rithms [25,22,37] have been created. They are essential, if multiple parties want
to find association rules in a data set that consists of all the parties’ private data,
but neither party is willing to disclose its private data to the other parties or
any other parties. The introduction to the association rules multiparty mining
algorithms with preserving data privacy can be found in [22,47].

There have been two main approaches for privacy preserving in multiparty
association rules mining. One is a randomization approach [13,35] in which the
privacy of data cannot be always fully preserved when achieving the precision
of the results [26,2]. The other is a cryptographic approach mostly using SMC
(Secure Multiparty Computation) [44,11].

Most efficient privacy preserving solutions can be often designed for specific
distributed computations. We focus on SMC-based association rules mining algo-
rithms on horizontally partitioned data in the cryptographic approach. This task
is also known as a heterogeneous collaborative association rule mining [25,22,47].
By using CDK for a commutative cipher, we have improved a Secure Set Union
method [11] commonly used in such algorithms. We have designed a new multi-
party association rules mining algorithm CDKSU as an example of an algorithm
using CDK. We have also proposed CDKRSU algorithm which is a fully secure
version of CDKSU using SDR protocol. Bear in mind that it is a fully secure
versio in a semi honest model. These two algorithms are based on FDM and use
a commutative encryption with CDK.

3 Cryptographic Privacy Preserving Mechanisms in a
Homogeneous Collaborative Association Rules Mining

3.1 Commutative Encryption

Definition 1. An encryption algorithm is commutative if given encryption keys
K1, . . . , Kn ∈ K, for any m in domain M , and for any permutation i, j, the
following two equations hold[11]:

350 M. Gorawski and Z. Siedlecki

EKi1 (. . . EKin (m) . . .) = EKj1

(
. . . EKjn (m) . . .

)
∧

m1, m2 ∈ M such that m1 �= m2 and for given k, ε < 1
2k

Pr
[
EKi1 (. . . EKin (m1) . . .) = EKj1

(
. . . EKjn (m2) . . .

)]
< ε

3.2 Commutative Encryption with Common Decryption Key

We have come up with a new method of defining a Common Decrypting Key
CDK (Common Decrypting Key) for a commutative encryption.

Definition 2. For a commutative encryption E you can determine CDK, if for
the given decrypting keys K1, . . . , Kn ∈ K it is possible to determine such a
common key Kd that, when using it to decrypt D for every message m in domain
M and for every permutation i, j, the following equation is hold:

DKd

(
EKj1

(
. . . EKjn (m) . . .

))
= m

Key Kd is called the Common Decrypting Key.

3.3 Pohlig-Hellman Exponential Commutative Cipher

We used Pohlig-Hellman encryption scheme with modulus shared among par-
ties [33]. For given finite field GF (p) where p is prime, ⊗ operation in it, field
element m and integers e, d such that ed = 1 (mod (p − 1)), we know that
med = m1+k(p−1) = m1 ⊗ 1 = m. Based on exponentiation in such finite fields
there are two operations defined:

– encryption me = n,
– decryption nd = m.

Element m is the plaintext message and pair {e, d} is the secret key. It satisfies
equations given in 3.1 because for every a and b the equation (ma)b =

(
mb
)a is

held. Thus Pohlig-Hellman cipher is commutative.
Let’s assume that we have a pair of keys {e, d} satisfying the conditions from

3.2: K1 = {e1, d1} and K2 = {e2, d2}. For each pair like that (in the same field
GF (p)) the following equation is true:

((me1)e2)d1d2 = m

This case can include any number of keys. Thus, by multiplying all the decrypting
keys we will get CDK.

3.4 Elliptic Curves Cryptography

This work presents the use of ECC in association rules multiparty mining algo-
rithms with preserving data privacy. Smooth elliptic curves that were used had

Privacy Preserving in Collaborative Association Rules Mining 351

points that had integer coordinates in finite fields Zp. When referring to ellip-
tic curve further in this work, we will have in mind this type of smooth curve.
Introduction to elliptic curves and their usage in cryptography can be found in
[7]. In order to use elliptic curves cryptography we have to encode our plaintext
data as points on some given elliptic curve E over a finite field Zp. We use a
probabilistic algorithm given by Kolbitz at the beginning of the Elliptic curve
cryptosystems chapter in [27].

Elliptic Curve Pohlig-Hellman Cipher. The Elliptic Curve Pohlig-Hellman
cipher is described in [41]. It works exactly like the Pohlig-Hellman cipher, except
for the fact that the multiplicative group of integers modulo p is replaced by the
additive elliptic curve group.

Let p be a large prime and let E be an elliptic curve modulo p that has order
N . A point on E is enciphered by adding to itself e times so the cipertext point
is Q = eP . The latter is deciphered by multiplying by d: P = dQ. The pair
{e, d} is the secret key. The O is point at infinite. The e and d must satisfy
ed = 1 (modN), because NP = O by Lagrange’s theorem so e (and d) must be
chosen relatively prime to n.

Since elliptic curve group is an abelian group, we can say that ((P ∗ m) ∗ n) =
((P ∗ n) ∗ m), where P is the point on curve and m, n are integers. Such defined
encryption is commutative, which means Cm (Cn (P)) = Cn (Cm (P)). More-
over, since ((P ∗ m) ∗ n) = P ∗ (n ∗ m), then the defined decrytpion has a unique
quality Dm (Dn (P)) = Dm∗n (P). It allows us to sequentially encrypt the mes-
sage using many keys, and then decrypt it using a key that is the product of
multiplying these keys.

3.5 Secure Sum and Product

The secure sum is often given as a simple example of a secure multiparty compu-
tation [36]. The secure product works just like the sum except that the addition
is replaced by multiplication and subtraction by division. Assuming the pres-
ence of three or more parties, the following method securely computes the sum
of values from the individual sites.

There is an operation ⊗ and set G, for which the pair (⊗, G) is a group
consisting of at least two elements. For a sequence x1, . . . ,xl ∈ G let’s mark the
operation x1 ⊗ x2⊗x3, . . . ,xl−1 ⊗ xl as

∏l
i=1 xi. The algorithm calculates the

value V =
∏l

i=1 xi, where: l is a number of sites, xi is the value of a site i [11].
First, the chosen site generates a random number R, uniformly chosen from

[0..n] and to the next site it sends the value of R⊗x1. On the basis of this value,
the next site calculates R ⊗ x1 ⊗ x2 and sends it to the next site, etc. The last
site sends the given value to the first site, which knows the element R’ (which is
the reciprocal of the element R). First site calculates R

′ ⊗R⊗∏l
i=1 xi=

∏l
i=1 xi

and gets the expected value V .
In the secure product the ⊗ is the multiplication. In the secure sum ⊗ is

the addition and the calculated result is V =
∑l

i=1 xi. Additive or multiplicative

352 M. Gorawski and Z. Siedlecki

groups are often used. Calculations in them are conducted modulo given number
(modulus), as described in [11].

3.6 Multiparty Calculation of Common Decrytping Key

Using a multiparty secure product calculation method one can determine CDK
for Pohlig-Hellman and Elliptic Curve Pohlig-Hellman ciphers. When using this
method, if all other sites agree, CDK can be revealed to one of the designated
sites, but the secret encrypting keys that belong to these sites won’t be revealed.

3.7 Calculating the Secure Set Union Using Encryption with CDK

Using a commutative encryption described in the previous chapter, one can se-
curely calculate the union of sets belonging to many parties without revealing
the originator of the particular element. Each party that takes part in the pro-
cess, has its own encrypting key. If every l site has its own private set Zi, then
by calculating the set union, we mean calculating

⋃l
i=1 Zi.

One special type of site has been designated – Site D. It is responsible for
decrypting data, initializing the computation of a CDK (let’s call it Master Key),
and it is the only site that knows its value. Because of that, the communication
should be conducted in such a way, that Site D has no contact with other sites’
data encrypted by all the sites, which at the same time do not belong to the
result. Computation on fully encrypted data (meaning encrypted by all the sites)
will be conducted by the rest of the sites that do not have the access to the Master
Key.

1. Each party encrypts its own data set and sends it to the next party. When
the next party receives data from the previous party, it enciphers it again
using its own encrypting key and sends it to another party.

2. This process is repeated until all the data sets are encrypted by all the
parties. Then, among the parties which are not Site D, the calculation of the
union of sets of encrypted values is conducted. This calculation is based on
commutative encryption properties.

3. Using multiparty Secure Sum algorithm the Master Key is calculated (it can
be calculated once for all iterations).

4. The resulting union is sent to Site D, which deciphers it and then sends to
the other parties.

The use of the CDK reduces the number of expensive decryption operations
required to obtain the result. It is worth mentioning, that analogically one can
conduct the computation of intersection of the sets

⋂l
i=1 zi.

3.8 Secure Duplicate Removing

The protocol is used to send data elements from one site to another so that the
second site does not receive elements it already has. None of the sites is able

Privacy Preserving in Collaborative Association Rules Mining 353

to determine whether there are duplicates between the sites (which have not
been sent). The protocol is based on a one-way function. It would be possible to
use cryptographic hash functions for that purpose. Such functions additionally
compress the data, but also have several properties which increase the compu-
tational load, and are unnecessary in this case.
Four sites are involved in the protocol:

– two sites (A and B) whose data elements are to be compared:
• Site A (source), whose element is to be sent
• Site B (target), which is to receive the element

– Comparator Site, which compares the element values
– Remover Site, which acts as an intermediary in the item transfer from Site

A to Site B and removes any duplicate elements.

The algorithm may be used to transfer an element between two sites as follows:

1. Sites A and B agree between them upon a random data block r. Site A
randomly generates the data block r and sends it to Site B.

2. Site A assigns an identifier to each of its data elements. These identifiers will
identify the messages sent by the Remover Site to Site B.

3. Sites A and B compute concatenation k of a unique representation of each
of their data elements with the data block r.

4. Sites A and B compute the result s of a given one-way function (e.g. secure
cryptographic hash SHA1) of each k.

5. Sites A and B agree upon a set of fake hashes f .
6. Sites A and B send the set of their s, together with the identifiers assigned as

per step 2 above, to the Comparator Site. To hide the number of duplicated
elements from the Comparator Site, Sites A and B also send identical fake
hashes f agreed upon previously.

7. If the Comparator Site detects a duplicate, it sends to the Remover Site the
identifier of the message (from Site A) which is to be removed.

8. Site A transfers to Site B, through the Remover Site, the data elements, as
well as fake elements with identifiers corresponding to the fake duplicates
sent to the Comparator Site. Remover Site passes to Site B all elements
except duplicates with identifiers delivered by the Comparator Site.

4 CDKSU Algorithm

Our CDKSU algorithm (Secure Union with Common Decrypting Key) conducts
multiparty association rules mining algorithms on horizontally partitioned data.
It preserves data privacy in semi-honest model [18]. It assumes that the parties
involved will honestly follow the protocol, but can later try to infer additional in-
formation from whatever data they receive through the protocol. The algorithm
is similar to KCS (HPSU), and differs mainly in the way it safely determines
the union of locally supported itemsets without revealing the originator of the
particular itemset. Despite that privacy protection in this algorithm is based on
the same concept (except for CDK which is described in a separate section).

354 M. Gorawski and Z. Siedlecki

Let us assume that a transaction database DB is horizontally partitioned
among n ≥ 3 sites (namely S1, S2, ..., Sn). Each site has a private transaction
database DB1, DB2, ..., DBn where DBi resides at site Si. The itemset X has
the local support count of X.supi at site Si, if X.supi of the transactions contains
X .

1. Generation of locally large itemsets.
Candidates to be recognised as locally large (frequent) itemsets are generated
using Apriori property [5], from the intersection of the list of locally large
itemsets from a previous operation with the list of globally large itemsets
from previous operation, so from these locally large itemsets, which were
recognised as globally large. In the first iteration these are all one element
itemsets. Parties locally prune candidates and leave out only locally large
itemsets. In order to hide the number of locally large itemsets, fake sets are
added. The number of fake itemsets is randomly generated from a Uniform
distribution in such a way, that the final number of the locally large itemsets
does not exceed the number of the candidates. We do not have to concern
about fake item set content because when calculating a secure union they
are encrypted. Its items have simply got uniform random identifiers and
one of them has random identifier from a range dedicated for fake items.
Without reducing the security of the algorithm, it allows to reject fake sets
after decrypting the element of the union.

2. Secure determination of the union of locally large itemsets.
When using the method described in 3.7 locally large itemsets union is safely
designated. In order to do this, commutative cipher with CDK is used. Each
site has a secret key, which enciphers elements. Each itemset is enciphered
by each site. Next,the union of sets of itemsets that belongs to each party
is calculated, as described in 3.7. In order to hide the number of parties
that possess the given itemset, the union of sets that belongs to the parties
assigned an even ordinal number are calculated by one of the parties, and the
parties that are assigned an odd ordinal number are calculated by another
party, the results are then summed up. The obtained set of all the itemsets
is decrypted by Site D in order to get a plaintext result. Sets that are left
after rejecting the fake sets are candidates for globally large itemsets. Fake
itemsets can be recognised, because they include an element with an identifier
assigned to false sets. It allows to reject the false sets as soon as the element
from the union are deciphered.

3. Secure determination of globally large itemsets.
In order to check if the set X is globally large, it is checked whether its ex-
ceeding support which equals X.sup−s∗ |DB| =

∑n
i=1 (X.supi − s ∗ |DBi|)

is nonnegative. That means it meets the global support threshold. It is ex-
plained in details in [25]. Exceeding the support of every candidate for glob-
ally large itemset is calculated by using Secure Sum algorithm described in
3.5. On its basis, new globally frequent itemsets are designated.

Privacy Preserving in Collaborative Association Rules Mining 355

4. Secure determination of strong association rules.
Out of globally large itemsets all the possible association rules are designated.
Next, analogically to the computation of globally large itemsets exceeding
support, exceeding confidence of rules is designated using Secure Sum de-
scribed in 3.5. Exceeding confidence of rule X→Y for the party Si equals∑n

i=1 (XY.supi − c ∗ X.supi), where XY.supi means a local support for the
set X ∪Y , and c is the minimal support threshold. Rules that meet minimal
support threshold are sent to all the sites as a result.

The algorithm used in the semi-honest model is not fully secure under the defi-
nitions of secure multiparty computation. It should be pointed out, that similar
to KCS it reveals the number of itemsets having a common support between
sites (.e.g. party No. 2, 4, and 6 all support some itemset.) without revealing the
content of these itemsets. By comparison, in computation with a trusted third
party this information is not revealed.

5 CDKRSU Algorithm

The CDKRSU algorithm is similar to the CDKSU algorithm, except that (in
contrast to the latter and to KCS) its security in the semi-honest model corre-
sponds to that provided in computations with a trusted party. No information
on the number of commonly supported item sets is leaked. To hide locally large
item sets duplicated between the sites, the SDR (Secure Duplicate Removing)
protocol is applied at the beginning of the process of secure computation of the
union of locally large item sets. After encrypting their locally large item sets, the
sites send them to other nodes using the SDR protocol. The protocol compares
locally large sets in two consecutive nodes without revealing their content. If
two identical sets are detected, one of them is removed without revealing that
fact to the duplicated-set owners. The removal is carried out so that the owners
do not know that one of the copies is removed. To avoid removing a dupli-
cate occurring in all nodes, the duplicate removal must ensure that no loop is
created. Because of that, the first transmission of encrypted locally large sets
between one pair of sites is conducted without the SDR protocol. One of these
sites must have an even identifier, and the other an odd identifier. Unions of
sets of even and odd sites are computed separately (as described in [25]), so that
the number of sets simultaneously supported by such two sites is hidden. After
completing the full encryption cycle during computing the union of locally large
sets, no duplicate sets occur anymore. The duplicated sets are encrypted only
once.

To improve efficiency, it is possible to generate a random data block of a
proper length instead of computing a cryptographic hash of a fake set. Such
approach is advantageous if the pseudo-random generator is more efficient than
the hashing function.

356 M. Gorawski and Z. Siedlecki

6 Implemented System

For research purposes, the system has been implemented in Java. Such imple-
mentation allows to compare efficiency of each algorithm without favoring any of
them. The system consists of a set of multithreaded components corresponding
to the building blocks used to build the multiparty data mining algorithms. The
blocks are connected in a declarative manner (using the Inversion of Control
container), so that data flows are created. All connections are defined in config-
uration files to enable the implementation of new algorithms. It is possible to
define local and network connections between components to build real multi-
party systems. All algorithms have been built in the same framework, and any
differences in the implementation correspond exactly to the differences in the
algorithm logic. Even those elements in which the algorithms differ have been
built, as far as possible, from the same components and using exactly the same
technology.

7 Performance Tests

In order to compare the efficiency of implementations of algorithms performance
tests were conducted. Additionally the performance of CDKSU algorithm with
exponential Pohlig-Hellman cipher (PH) against CDKSU with Elliptic Curve
Pohlig-Hellman (ECPH) cipher was compared.

7.1 Test Environment

The system in the present test configuration consisted of four sites. Each party
had two computers (Microsoft Windows XP Professional SP3; IntelCoreTM2
Quad 2.66GHz; 2GB RAM; HD: 250GB, SATA2, 7200rpm, 16MB cache) – one
reserved for the database, and the second for the system engine. Computers were
connected to the LAN with a throughput of 80.0 Mbits / sec. Each party had
Oracle 11g database.

7.2 Test Data Sets and Parameters

Performance tests were conducted on a randomly generated test data. It was
generated in such a way that it resembled the sales transaction data which is
typical of the data analyzed in the process of discovering association rules. A
periodical exponential pseudorandom generator was used. It favored groups of
elements that simulated sales transactions. The datasets with 200, 400, 600, 800,
1000, 1200, 1400 and 1600 thousands of transaction were prepared. The number
of possible elements of the transaction for all data sets is 100 and the maximum
number of elements in a single transaction is 30. On average transactions includes
15 elements. Each of the data set has been uniformly distributed between the
four parties.

Privacy Preserving in Collaborative Association Rules Mining 357

Due to the large, variable number of random distorting data, each measure-
ment was performed in two versions. Pessimistic case was with the maximum
amount of distorting data and optimistic with the minimum.

We ran tests with a various minimal support threshold. Preliminary tests
confirmed that the minimum certainty threshold of a rule certainty has negligible
impact so we run all the test with fixed 70% threshold.

When comparing the performance of the CDKSU algorithm with the expo-
nential Pohlig-Hellman cipher (PH) against the CDKSU with the Elliptic Curve
Pohlig-Hellman (ECPH) cipher encryption parameters were selected according to
the guidelines from [30,34,1] to provide a similar protection for both algorithms.
It corresponds to the protection afforded by a conventional 112-bit symmetric
algorithm:

– Elliptic Curve Pohlig-Hellman cipher with prime239v1 parameters (with 239-
bit prime number) as described in standards [30,34]. (In the graphs marked
as ECPH.)

– Pohlig-Hellman with a 2048-bit key. (In the graphs marked as PH.)

7.3 Test Results

The diagrams below shows the results of comparative performance tests. It
should be noted that in addition the functional tests were also performed.

Fig. 1. Comparison of CDKSU,CDKRSU and KCS (HPSU). Pessimistic execution
time versus data set size. The 2048b Pohlig-Hellman cipher was used together with a
15% minimum support threshold.

Comparison of CDKSU, CDKRSU and KCS (HPSU). On most charts,
it appears that CDKSU algorithm has better performance than KCS. Especially
figure 1 shows the difference between KCS and CDKSU very clearly. It illustrates
the pessimistic case where the number of candidates is equal to the maximum
number of locally large itemsets with frequent fake sets. All the fake locally sets

358 M. Gorawski and Z. Siedlecki

Fig. 2. Comparison of CDKSU,CDKRSU and KCS (HPSU). Optimistic execution time
versus data set size. The 2048b Pohlig-Hellman cipher was used together with a 15%
minimum support threshold.

Fig. 3. Comparison of CDKSU,CDKRSU and KCS (HPSU). Pessimistic execution time
versus key size. The Pohlig-Hellman cipher was used together with a 15% minimum
support threshold and the data set that has 800k transactions.

are part of the union and are decrypted. CDK significantly reduces the cost of
decryption. Figure 1 shows also that in the CDKRSU algorithm, using SDR
imposes an additional cost, in particular due to comparing the fake duplicates.
With the largest test sets, for all algorihms an exponential curving of the charac-
teristics is visible due to the system working near the performance limit. Figure 2
shows that, in optmistic case no significant performance differences between the
three algorithms exist. Optimistic tests differed only in the amount of transferred
data as shown on figure 7.

Privacy Preserving in Collaborative Association Rules Mining 359

Fig. 4. Comparison of CDKSU,CDKRSU and KCS (HPSU). Optimistic execution time
versus key size. The Pohlig-Hellman cipher was used together with a 15% minimum
support threshold and the data set that has 800k transactions.

Fig. 5. Comparison of CDKSU, CDKRSU and KCS (HPSU). Pessimistic execution
time versus minimum support threshold. The 2048b Pohlig-Hellman cipher was used
together with the data set with 800k transactions.

Figures 3 and 4 show the exponential dependence between the key length and
the algorithm execution time. It results from the computational complexity of
exponential ciphers.

Figure 4 shows an interesting property of the CDKRSU algorithm. If the cost
of encrypting a duplicated locally large set is higher than the cost of applying
SDR, using the CDKRSU algorithm is advantageous not only in terms of security,
but also in terms of efficiency. Figure 5 shows differences in pessimistic execution

360 M. Gorawski and Z. Siedlecki

Fig. 6. Comparison of data transfered by CDKSU, CDKRSU and KCS (HPSU). Pes-
simistic amount of transfered data versus data set size. The 1024b Pohlig-Hellman
cipher was used together with a 15% minimum support threshold and 70% minimum
support confidence threshold.

Fig. 7. Comparison of data transfered by CDKSU, CDKRSU and KCS (HPSU). Opti-
mistic amount of transfered data versus data set size. The 1024b Pohlig-Hellman cipher
was used together with a 15% minimum support threshold and 70% minimum support
confidence treshold.

times, as well as the asymptotic decrease of the execution time depending on
the minimum support threshold, which is a typical feature of association-rule
discovery algorithms based on the Apriori algorithm. Figure 6 shows that the
elimination of the cyclical decryption thanks to using CDK decreases the transfer
between the sites, as well as that the SDR cost in CDKRSU is lower than the gain
resulting from such decrease. Figure 7 clearly shows the logarithmic relationship
between the input data set size and the execution time. It should be pointed out

Privacy Preserving in Collaborative Association Rules Mining 361

that in the tested implementation, the amount of data transferred between the
sites is so small compared to the network capacity that it has no impact on the
algorithms efficiency.

Execution times to a small extent depend on the size of the input data set size
because of the fixed number of possible elements of the transaction. The number
of possible elements of the transaction determines the number of candidates in
the first round. Their number is so large that it determines the execution time.

Fig. 8. Comparision of CDKSU algorithm with exponential cipher against CDKSU
with elliptic curve cipher. Pessimistic execution time with 15% minimal support thresh-
old, versus input data set size.

Fig. 9. Comparision of CDKSU algorithm with the exponential Pohlig-Hellman cipher
(PH) against CDKSU with the Elliptic Curve Pohlig-Hellman (ECPH) cipher. Op-
timistic execution time with 15% minimal support threshold, versus input data set
size.

362 M. Gorawski and Z. Siedlecki

Comparison of CDKSU Algorithm with the Exponential Cipher
Against CDKSU with the Elliptic Curve Cipher. All performance Tests
have shown that the use of ECC greatly speded up the algorithm. Performance
gain is not linear and depends both on the size of the input set and the minimum
support threshold. This is clearly shown especially in figures 8 and 10 illustrating
the pessimistic case. There is also visible that when using encryption based on
elliptic curves the efficiency of the entire algorithm depends mainly on the size
of the input data set. It appears that the minimum support threshold have much
less impact. Reducing the productivity gap with the increase in the size of the
test set resulted from the increasing databases overload. This was caused by the
fact that the database hard drives were not designed for parallel access.

Fig. 10. Comparision of CDKSU algorithm with the exponential Pohlig-Hellman ci-
pher (PH) against CDKSU with the Elliptic Curve Pohlig-Hellman (ECPH) cipher.
Pessimistic execution time versus minimal support threshold. Input data set has 800k
transactions.

8 Conclusion

Tests have shown that the efficiency of the applied cryptographic algorithm con-
tributes to the efficiency of the whole algorithm to a great extent. The tests have
shown a great increase in the efficiency of the CDKSU algorithm when compared
with KCS, which is due to the use of CDK. In the CDKRSU algorithm, using SDR
imposes an additional cost but it is not crucial when we want to use a fully secure
algorithm. Also the tests have shown an increase in the speed of processing by
2 to 6 times in the pessimistic case of the CDKSU algorithm due to the use of
ECC. As it was expected, elliptic curve cryptosystems are more computationally
efficient than the exponential cryptosystems. The computational cost of the en-
cryption based on the curves (with the protection equivalent to 112-bit symmetric
encryption algorithms) is approximately six times smaller [1]. Although elliptic
curve arithmetic is slightly more complex. It was not clear how this affected the

Privacy Preserving in Collaborative Association Rules Mining 363

Fig. 11. Comparision of CDKSU algorithm with the exponential Pohlig-Hellman ci-
pher (PH) against CDKSU with the Elliptic Curve Pohlig-Hellman (ECPH) cipher.
Optimistic execution time versus minimal support threshold. Input data set has 800k
transactions.

efficiency of the whole data mining algorithm. Such increase in the efficiency is cru-
cial, since in the production environment, the input data sets can be much bigger.
To our knowledge, this is the first paper describing the practical use of the Ellip-
tic Curve Pohlig-Hellman cipher and its implementation tests. Also, we have not
come across anybody else studying the ECC used in the multiparty data mining.
In further research, the prospect of the use of elliptic curve homomorphic ciphers
seems to be interesting. Of crucial importance is the performance gain that stems
from the fact that ECC can be used in algorithmsproposed in [45,47,42]. Examples
of such homomorphic ciphers can be found in [32]. The execution time is difficult
to predict not only because of the arrangement of the input data, but the consid-
erable influence of random data used to conceal the data structure belonging to
one party as well. The efficiency of the mentioned algorithms has not been fully
tested. Closer attention should be devoted to the influence of the arrangement of
the input data and the efficiency of the algorithms whose data are real and not
artificially generated should be tested.

References

1. U. N. S. Agency. The Case for Elliptic Curve Cryptography web page,
http://www.nsa.gov/business/programs/elliptic_curve.shtml

2. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy pre-
serving data mining algorithms. In: PODS 2001: Proceedings of the Twentieth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
pp. 247–255. ACM, New York (2001)

3. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 86–97. ACM Press, New York
(2003)

http://www.nsa.gov/business/programs/elliptic_curve.shtml

364 M. Gorawski and Z. Siedlecki

4. Agrawal, R., Shafer, J.C.: Parallel mining of association rules. IEEE Transactions
on Knowledge and Data Engineering 8(6), 962–969 (1996)

5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of 20th In-
ternational Conference on Very Large Data Bases VLDB 1994, Santiago de Chile,
Chile, September 12-15, pp. 487–499. Morgan Kaufmann (1994)

6. Atallah, M.J., Du, W.: Secure Multi-Party Computational Geometry. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 165–179.
Springer, Heidelberg (2001)

7. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic curves in cryptography. Cambridge
University Press, Cambridge (2000)

8. Canetti, R., Ishai, Y., Kumar, R., Reiter, M.K., Rubinfeld, R., Wright, R.N.: Selec-
tive private function evaluation with applications to private statistics. In: PODC
2001: Proceedings of the Twentieth Annual ACM Symposium on Principles of
Distributed Computing, pp. 293–304. ACM, New York (2001)

9. Canny, J.: Collaborative filtering with privacy. In: SP 2002: Proceedings of the 2002
IEEE Symposium on Security and Privacy, pp. 45–57. IEEE Computer Society,
Washington, DC, USA (2002)

10. Cheung, Han, Ng, Fu, Fu: A fast distributed algorithm for mining association
rules. In: PDIS: International Conference on Parallel and Distributed Information
Systems, pp. 31–42. IEEE Computer Society Technical Committee on Data Engi-
neering, and ACM SIGMOD, Los Alamitos (1996)

11. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.Y.: Tools for privacy
preserving distributed data mining. ACM SIGKDD Explorations 4 (2003)

12. Estivill-Castro, V., Brankovic, L.: Data Swapping: Balancing Privacy Against Pre-
cision in Mining for Logic Rules. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999.
LNCS, vol. 1676, pp. 389–398. Springer, Heidelberg (1999)

13. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining
of association rules. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 217–228.
ACM, New York (2002)

14. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set In-
tersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

15. Frieser, J., Popelinsky, L.: Dioda: Secure mining in horizontally partitioned data.
In: International Workshop on Privacy and Security Issues in Data Mining, PSDM
2004 (September 2004)

16. Fu, A.W.-C., Wong, R.C.-W., Wang, K.: Privacy-preserving frequent pattern min-
ing across private databases. In: ICDM 2005: Proceedings of the Fifth IEEE In-
ternational Conference on Data Mining, pp. 613–616. IEEE Computer Society,
Washington, DC, USA (2005)

17. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On Private Scalar Product
Computation for Privacy-Preserving Data Mining. In: Park, C.-s., Chee, S. (eds.)
ICISC 2004. LNCS, vol. 3506, pp. 104–120. Springer, Heidelberg (2005)

18. Goldreich, O.: Secure multi-party computation (2002) (manuscript)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC
1987: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Com-
puting, pp. 218–229. ACM, New York (1987)

20. Gorawski, M.: Advanced data warehouses. Studia Informatica 30(3B) (2009)

Privacy Preserving in Collaborative Association Rules Mining 365

21. Gorawski, M., Slabinski, L.: Implementation of homomorphic encryption in
privacy-preserving clustering distributed data. In: 2nd ADBIS Workshop on Data
Mining and Knowledge Discovery, Thessaloniki, Greece September 6 (2006); in
conjunction with 10th East-European Conference on Advances in Databases and
Information Systems ADBIS 2006, pp. 37–47 (September 2006)

22. Gorawski, M., Stachurski, K.: On efficiency and data privacy level of associa-
tion rules mining algorithms within parallel spatial data warehouse. In: First
International Conference on Availability, Reliability and Security (ARES 2006),
pp. 936–943. IEEE Computer Society (2006)

23. Jagannathan, G., Pillaipakkamnatt, K., Wright, R.N.: A new privacy-preserving
distributed k-clustering algorithm. In: SDM (2006)

24. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: KDD 2005: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, pp.
593–599. ACM, New York (2005)

25. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of associa-
tion rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng. 16(9),
1026–1037 (2004)

26. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving prop-
erties of random data perturbation techniques. In: ICDM 2003: Proceedings of the
Third IEEE International Conference on Data Mining, page 99. IEEE Computer
Society, Washington, DC, USA (2003)

27. Kolbitz, N.: A Course in Number Theory and Cryptography. Springer, Heidelberg
(1994)

28. Lindell, Y., Pinkas, B.: Privacy Preserving Data Mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–53. Springer, Heidelberg (2000)

29. Meng, D., Sivakumar, K., Kargupta, H.: Privacy-sensitive bayesian network pa-
rameter learning. In: ICDM 2004: Proceedings of the Fourth IEEE International
Conference on Data Mining, pp. 487–490. IEEE Computer Society, Washington,
DC, USA (2004)

30. N.I. of Standards and Technology. FIPS PUB 186-2: Digital Signature Standard
(DSS). National Institute for Standards and Technology, Gaithersburg, MD, USA
(January 2000)

31. O’Leary, D.E.: Some privacy issues in knowledge discovery: The oecd personal
privacy guidelines. IEEE Expert: Intelligent Systems and Their Applications 10(2),
48–52 (1995)

32. Paillier, P.: Trapdooring Discrete Logarithms on Elliptic Curves Over Rings. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 573–584. Springer,
Heidelberg (2000)

33. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over gf(p) and its cryptographic significance. IEEE Transactions on Information
Theory 24, 106–110 (1978)

34. Qu, M.: Standards for efficient cryptography sec 2: Recommended elliptic curve
domain parameters (2010)

35. Rizvi, S.J., Haritsa, J.R.: Maintaining data privacy in association rule mining. In:
VLDB 2002: Proceedings of the 28th International Conference on Very Large Data
Bases, pp. 682–693, VLDB Endowment (2002)

36. Schneier, B.: Applied Cryptography, 2nd edn. Protocols, Algorthms, and Source
Code in C. John Wiley & Sons (2002)

366 M. Gorawski and Z. Siedlecki

37. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. In: KDD 2002: Proceedings of the Eighth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pp. 639–644.
ACM, New York (2002)

38. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically parti-
tioned data. In: KDD 2003: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 206–215. ACM, New
York (2003)

39. Vaidya, J., Clifton, C.: Privacy preserving naive bayes classifier on vertically par-
titioned data. In: 2004 SIAM International Conference on Data Mining (2004)

40. Vaidya, J., Kantarcioglu, M., Clifton, C.: Privacy-preserving naive bayes classifi-
cation. VLDB J. 17(4), 879–898 (2008)

41. Wagstaff, J., Samuel, S.: Cryptanalysis of Number Theoretic Ciphers, 1st edn.
Computational Mathematics Series. Chapman & Hall/CRC Press, Boca Raton,
FL, USA (2003)

42. Wright, R., Yang, Z.: Privacy-preserving bayesian network structure computation
on distributed heterogeneous data. In: KDD 2004: Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
713–718. ACM, New York (2004)

43. Subramaniam, H., Wright, R.N., Yang, Z.: Experimental Analysis of Privacy-
Preserving Statistics Computation. In: Jonker, W., Petković, M. (eds.) SDM 2004.
LNCS, vol. 3178, pp. 55–66. Springer, Heidelberg (2004)

44. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th An-
nual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Com-
puter Society, Washington, DC, USA (1986)

45. Yi, X., Zhang, Y.: Privacy-preserving distributed association rule mining via semi-
trusted mixer. Data Knowl. Eng. 63(2), 550–567 (2007)

46. Zaki, M.J.: Parallel and distributed association mining: A survey. IEEE Concur-
rency 7(4), 14–25 (1999); Special issue on Parallel Mechanisms for Data Mining

47. Zhan, J., Matwin, S., Chang, L.: Privacy-preserving collaborative association rule
mining. J. Netw. Comput. Appl. 30(3), 1216–1227 (2007)

Segmenting and Labeling Query Sequences in a

Multidatabase Environment

Aybar C. Acar1 and Amihai Motro2

1 Bilkent University, Department of Computer Engineering,
Ankara 06800, Turkey

aacar@cs.bilkent.edu.tr
2 George Mason University, Department of Computer Science,

Fairfax, VA 22030 USA
ami@gmu.edu

Abstract. When gathering information from multiple independent data
sources, users will generally pose a sequence of queries to each source,
combine (union) or cross-reference (join) the results in order to obtain
the information they need. Furthermore, when gathering information,
there is a fair bit of trial and error involved, where queries are recursively
refined according to the results of a previous query in the sequence. From
the point of view of an outside observer, the aim of such a sequence of
queries may not be immediately obvious.

We investigate the problem of isolating and characterizing subse-
quences representing coherent information retrieval goals out of a se-
quence of queries sent by a user to different data sources over a period of
time. The problem has two sub-problems: segmenting the sequence into
subsequences, each representing a discrete goal; and labeling each query
in these subsequences according to how they contribute to the goal. We
propose a method in which a discriminative probabilistic model (a Con-
ditional Random Field) is trained with pre-labeled sequences. We have
tested the accuracy with which such a model can infer labels and seg-
mentation on novel sequences. Results show that the approach is very
accurate (> 95% accuracy) when there are no spurious queries in the se-
quence and moderately accurate even in the presence of substantial noise
(∼70% accuracy when 15% of queries in the sequence are spurious).

Keywords: Data Management, Information Integration, Query Pro-
cessing.

1 Introduction

In many database applications users perform complex tasks by breaking them
down to a series of smaller, simpler queries the results of which then become
terms in a larger expression. While the user interface may be presenting this to
the user as a simple button click, multiple queries are usually being evaluated at
the DBMS level to satisfy the request. In some cases this is consciously done by
the users themselves, usually when their user interface does not allow complex

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 367–384, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

368 A.C. Acar and A. Motro

queries or if they are experimenting with the data in order to find the correct
query.

Particularly in the area of virtual databases (multidatabases), this decom-
position of queries into smaller components is a necessary part of the process.
In a multidatabase the actual data resides in a multitude of data sources, each
possibly with different schemas and access methods. Therefore a query posed to
the multidatabase is broken into multiple components, each designed to retrieve
a piece of the required information from the relevant local data source. For the
purposes of this paper, we call the party posing the queries the ‘user’. However,
this user may just as well be an automated application integrating data from
different sources (e.g. a mash-up).

Query consolidation [1] is the reversal of this query decomposition process. A
consolidator attempts to predict the global query that produced a set of smaller
component queries as a result of decomposition. Although it is not possible to
uniquely identify a global query that produces a given set of component queries,
it is possible to estimate some of the likely global queries. The research on
consolidation so far assumes that the local queries are available as a sound and
complete set.

However, in the real world, queries from a given user arrive as a sequence over
time. There is no marker that indicates which queries in a sequence constitute a
meaningful set. In the absence of such information, all the consolidating system
has are logs of queries for local sources. The set of queries that are part of
a global query must therefore be extracted from the sequence in the logs or
collated in real time as these queries arrive. Furthermore it would be very useful
to the consolidation effort to individually label the queries in a segment with their
probable roles in the bigger picture. The purpose of this paper is the investigation
of this problem.

In Section 2, some of the relevant literature and basic methods are introduced.
Section 3 defines the exact problem, discusses relevant issues and the information
available in the solution of the problem. Section 4 details our approach to the
problem using conditional random fields. Section 5 presents experimental results
on two different scenarios. Finally Section 6 concludes the paper with a summary
of findings and future work.

2 Background

2.1 Session Identification

Most of the previous literature on session identification and analysis of query logs
is geared towards Web server access log mining. In access log mining, sequences
of document requests from a Web server are analyzed instead of database queries.
A second form of server log analysis is the analysis of keyword and parameter
queries sent to search engines and other information retrieval services (e.g., digi-
tal libraries, travel sites, &c.) This type of analysis is based on clustering queries
in order to find trends [2] and other clues as to the general information demands
of the users in order to better design services [10].

Segmenting and Labeling Query Sequences in a Multidatabase Environment 369

In terms of session identification, the most prevalent and simplest method of
isolating user sessions is the timeout method. In the timeout method, the user
is assumed to have started a new task after a given amount of time has passed
without activity. For Web information retrieval the threshold is reported [8] to
be 10 to 15 minutes, for optimal separation of subsequent user sessions. Another
method proposed in [6] is based on the fact that the users spend less time
on auxiliary pages (navigation pages &c.) than on content pages. The method
assumes that a session is finished when a user navigates to content page and
times out. The timeout method is applicable to the database query environment
as well, as a supportive addition to the method proposed in the following section.

Finally, a method is proposed in [5] called maximal forward reference. In this
method the user is assumed to be in the same session as long as the next page
requested has a link from the current page. This approach is relevant to the
problem at hand as it uses a metric of relevance between two requests in order
to cluster them into the same session. A similar approach is used in the method
proposed in the following section, to cluster relevant queries together.

As far as query log analysis in database environments, there is one relevant
study [18] that uses methods based on statistical language analysis in order to do
session identification. Their method is based on training a statistical model with
previous examples, predicting session boundaries where a sequence of queries
becomes improbable with respect to previous experience. The method differs
from the one proposed by this paper in that it requires an in-order arrival.
These concepts will be discussed further in the following section.

2.2 Conditional Random Fields

A common approach to segmenting sequence data and labeling the constituent
parts has been the use of probabilistic graphical models. Particularly, hidden
Markov models (HMMs) [16] have been used for sequence data such as natural
language text, speech, bio-sequence data and event streams. An HMM defines the
joint probability distribution p(X,Y), where X is a random variable over possible
sequences of observations and Y is a random variable over the possible sequences
of labels (i.e. the possible states of the process generating said observations) that
can be assigned to the same input. Because they define a joint probability, HMMs
are termed generative models.

A generative model can be used to generate new sequences obeying a certain
distribution defined by the parameters of the model. These parameters are either
coded directly or optimized by using training data. However, given a certain se-
quence of observations, finding the most likely sequence of labels involves using
Bayes’ Rule and knowledge of prior probabilities. Furthermore, defining a joint
probability requires enumerating all possible sequences, both for observations
and labels. Given that the number of possible sequences increases exponentially
with the sequence length, this is generally intractable unless strong assumptions
are made about the independence of sequence elements and long-range depen-
dencies thereof.

370 A.C. Acar and A. Motro

In contrast, a different class of graphical models, known as discriminative
models model the conditional distribution p(Y,x) for a particular sequence of
observations, x and cannot generate the joint distributions. Since the problem
at hand when trying to label a sequence of queries is finding the most probable
sequence of labels given a sequence of observations (i.e. the observation sequence
is already fixed), discriminative models are better suited to the task.

Yi-1 Yi Yi+1

Xi-1 Xi Xi+1

Yi-1 Yi Yi+1

X

(a) Hidden Markov Model (b) Linear-chain Conditional Random Field

Fig. 1. Comparison of a first order hidden Markov model to a simple chain conditional
random field

Such a discriminative model is the Conditional Random Field [12]. A condi-
tional random field (CRF) can be regarded as an undirected graphical model,
or Markov network [11], where each vertex represents a random variable. The
edges of the graph represent dependencies between the variables. In the simplest
case, the graph is a linear chain of state (label) variables Yi dependent on the
previous state and globally conditioned on the sequence of observations X (see
Fig. 1b) but higher order and arbitrary graphs are possible. As long as each state
variable Yi obeys the Markov property (i.e., is conditionally dependent only on
its clique in the graph), the graph is a conditional random field.

Given this structure, it is therefore possible to factorize the joint distribution
of Y into potential functions, each one contained to a clique of vertices in the
CRF. For example, in the case of a linear chain CRF such as that given in Fig.
1, the arguments of any such function will be Yi, Yi−1, and X. As long as the
feature functions are positive and real valued, the product will satisfy the axioms
of probability, provided that it is normalized by a factor. Therefore the definition
of any potential function fk for a clique consisting of a particular observation
sequence x and elements yi and yi−1 of a particular state sequence y would be:

fk(yi, yi−1,x, i) = r ∈ R, 0 ≤ r ≤ 1

The values of these potential functions can then be aggregated over the complete
sequence to obtain the feature functions:

Fk(y,x) =
n∑

i=1

fk(yi, yi−1,x, i)

Segmenting and Labeling Query Sequences in a Multidatabase Environment 371

In trying to segment and label a sequence of queries, we are interested only
in decoding a particular state sequence y. In other words, given a particular
sequence of observations we would like to find out the sequence y that would
maximize p(y|x). This conditional distribution associated with the CRF is:

p(y|x, λ) =
1

Z(x)
exp

K∑
k=1

λkFk(y,x) (1)

where Z(x) is the aforementioned normalization factor, and λ is the set of pa-
rameters (or weights) associated with each of the K feature functions. For any
given application, the training of a CRF involves estimating these parameters.
This parameter estimation is done using maximum likelihood training. Given
a set of training sequences consisting of an observation sequence and the asso-
ciated label sequence, {(x(j),y(j))}, the product of Eqn. 1 over all the j pairs
of sequences is the likelihood. In maximum likelihood training the set λ that
maximizes the log-likelihood function:

L(λ) =
∑

j

[
log

1
Z(x(j))

+
∑

k

λkFk(y(j),x(j))

]
(2)

is found. The log-likelihood function is concave and differentiable. However,
equating the differential to zero does not necessarily result in a closed-form in
terms of the parameters. Therefore the parameters that maximize the likelihood
cannot found analytically [17]. However the problem is amenable to numerical
solution by iterative scaling [3,9] or quasi-Newtonian methods [14].

3 Methodology

3.1 Problem Overview and Assumptions

Throughout this paper, ‘goal’ will be used in the same sense as ‘session’. In
previous literature, the term ‘session’ is used in multiple meanings. Occasionally,
it is used to indicate the range of transactions between a login-logout cycle or
during a given timeframe. In the scope of our problem, however, a session is
generally meant to denote a single information retrieval task of the user, either
done in a single query or by combining multiple queries. In order to avoid this
ambiguity, the set of queries that make up a task of the user will be referred to
as a goal.

We start by assuming that we can identify users by some identification mech-
anism such as a cookie, through authentication, from their network address &c.
Therefore the query sequence we are observing is for a single user at a time.
However, the sequence is not necessarily of queries sent to the same data source.
This data can be collected in two ways. The user can be monitored directly,
either using the logs of the client she is using directly, or through the logs of
a proxy or gateway she uses to access the sources. In this case, the provenance
of the queries in the sequence is more certain (unless someone else is using the

372 A.C. Acar and A. Motro

terminal). Alternatively, given a common identifier (such as IP or a cookie) we
can monitor the logs of the data sources the subject uses. In this case, the queries
belonging to the same user are collected from the various data sources and are
compiled into a single sequence, in order of time stamps.

In either case we assume the existence of a list of queries in chronological
order, coming from the same user. The queries, for the rest of this paper, will
be labelled Qi in a sequence Q = Q1...Qn such that Qi is chronologically earlier
than Qi+1.

For each query Qi, we assume to have access to a set of intrinsic features.
These are given in Table 3.1.

Table 1. Intrinsic Features of Query Qi

Name Notation Description

Attributes Πi The set of fields projected by the query.

Dependencies F∗
i The functional dependency closure of fields in the query.

Constraints Ci The set of constraints associated with the query.

Source Di The unique identifier of the data source the query was sent to.

Answer Set Ri The set of tuples returned in response to the query.

Timestamp ti The universal time at which the query was posed.

We assume that these pieces of information are available for every query in
the sequence. These intrinsic features will be used to generate more detailed
feature functions which will in turn be used to train and decode the CRF.

We only consider conjunctive queries. Hence, each query in the sequence is
represented by a Horn clause. For example, consider a query sent to an online
bookstore’s data service, asking the ISBN, title and year of books by Dickens:

Qex = {(ISBN, T itle, Y ear)|∃AuthorID(Author(”Dickens”, AuthorID)
∧Book(ISBN, T itle, Y ear, AuthorID))}

This query might then have the following intrinsic features:

Πex = {ISBN, T itle, Y ear}
F∗

ex = {ISBN → T itle, ISBN → Y ear, ...}
Cex = {(Author.Name = “Dickens′′), (Book.AuthorID = Author.ID)}
Dex = http://soap.mybooks.com/Search.wsdl
Rex = {(0679783415, “David Copperfield”, 1850), ...}
tex = 2011-04-24T20:39Z

Given a query sequence and the intrinsic features of each member of the sequence,
one needs to solve two distinct problems:

Segmenting and Labeling Query Sequences in a Multidatabase Environment 373

Segmenting. Otherwise known as boundary detection, this involves finding
when one goal in the sequence ends and the other begins.

Labeling. Within each segment (goal) we also seek to find the function of each
member query. This aids in reproducing the original goal exactly.

Both problems have analogues in natural language processing. The segmenting
problem is analogous to sentence boundary detection and the labeling is very
similar to part-of-speech tagging. In order to induce the most useful features for
the task, we now consider a model for the sequence structure.

3.2 Assembly of Goals

In the simplest case, the goal, G, is the conjunction of the queries Qi in the se-
quence. In terms of relational algebra, this is essentially the joining of the answer
sets, Ri, into a single universal relation. However, it may be the case that the
component queries do not offer a join path. Consider a sequence of two queries,
Q1 and Q2 with attributes Π1 = {SSN, Name} and Π2 = {Phone, Address}.
The straightforward conjunction (join) of these will result in a cartesian prod-
uct, which is meaningless. Therefore, perhaps it is better to consider these two
queries as two separate goals of one query each, rather than a goal of two queries.
However, the arrival of a third query Q3 with attributes A3 = {SSN, Phone}
would change the conclusion. The three queries can now be joined into a goal
consisting of three queries.

The problem of isolating goals from a sequence of queries can be stated as
follows: Given a sequence of queries Q = Q1...Qn coming from a user, find all
user goals within the sequence that are maximal and coherent.

We define a goal, G, therefore, as the largest subsequence, G � Q, of the whole
query sequence Q, that is cohesive (i.e. that has a join path). We formalize this
idea of coherence by defining the following feature between any two queries Qi

and Qj :

joinable(i, j) =
{

1 if ∃X ⊆ Πi,Y ⊆ Πj ((X = Y) ∧ (X → Πi ∨ Y → Πj))

0 otherwise
(3)

The joinable function is thus 1 only if there is the possibility of a lossless join
between the answer sets of the two queries. This lossless join property can be
checked using the closures, F+, of the queries. Note that, in evaluating lossless-
ness we only check functional dependencies and not inclusion. Considering the
fact that constituent relations originate from independent sources, enforcing or
requiring inclusion would not be realistic.

So in this simple case, a goal goes on as long as the incoming queries are
joinable to the existing ones in the goal. We call these queries “subgoals”. Ulti-
mately, all subgoals are joined to assemble the goals. We now consider subgoals
that are composed of more than a single query.

374 A.C. Acar and A. Motro

3.3 Composite Subgoals

We define a composite subgoal as one that is created by the disjunction (union)
of its constituent queries.

In constructing a composite subgoal, a user posing a sequence of queries to
several sources is possibly collecting information from each of them in order to
create a more comprehensive view of the information. An example would be to
send a query selecting for the Italian restaurants in Washington D.C. to two
or more different dining registries. The answers obtained are more likely to be
unified rather than intersected since the aim here is to garner as many answers
as possible.

Another case which requires aggregation rather than cross-referencing is when
the complete answer cannot be obtained in a single query due to particular
limitations of the data source. The most common reason for this are the variable
binding limitations imposed by the query languages of the data sources.

As a simple example to this, consider an online telephone directory for some
large organization. Generally, the service will not have the option of listing all the
telephones at once. More likely, the directory will require the user to constrain
(bind) at least one variable, such as the last name, department, &c. A user
wanting the whole list will then be forced to ask for one department at a time,
or worse, a name at a time. Monitoring such a series of queries, it would be
wrong to label them as a conjunction when clearly the intention is to combine
the answers into a large list.

The previous example also hints at a another aspect of the problem: We
have to assume that the user knew or obtained the list of departments (a table
itself) from somewhere, then iteratively expanded each item with the associated
telephone listings. Which in turn means that some query sequences may involve
recursive queries. As a more elaborate example, consider a bibliography database
that limits binding by requiring that some information about a paper (e.g. title)
be given. The only way a user can get all papers, or at least as many papers
as possible, is to start with one paper he knows and to recursively expand the
citations until no new papers can be found.

Recursive plans may be used in case of poorly structured data services as
well. Consider an airline reservation system which only lists direct flights given
a source or destination airport. A user trying to get from Washington to Havana
will not be able to find a direct flight. Instead, the user will ask for flights out of
Washington and will ask followup queries asking for possible destinations from
those places, until he can recursively find a path to Havana with as few stopovers
as possible (e.g. Washington-Toronto-Havana). Again, the aim here is not to join
the answers to these queries, so they need to be treated differently.

Each of these examples illustrate a different form of recursion. In the case of
the bibliography example, a depth-first traversal is the best option. In the case of
the airline example, breadth-first or iterative deepening is needed as depth first
recursion will probably be unnecessarily expensive. A third form of traversal
is the case where the user recurses using some form of heuristic. Assume the
user wants to reach a certain person in a social network service. Similar to the

Segmenting and Labeling Query Sequences in a Multidatabase Environment 375

bibliography example, the only way she can accomplish this is to find a string
of friends that can connect them. If the user knows that the person lives in a
certain city, she may direct the recursion at each level to expand only people
living in that city, knowing that this will result in finding a path more rapidly.

Ultimately, there is one common property of recursive query plans that allows
and outside observer to identify them as such. Each query in such a sequence
will bind one of its attributes to a value obtained from the result of a previous
query in the sequence.We can formalize this using the intrinsic features of queries
previously defined. The feature indicating that two queries Qi and Qj may belong
to a recursive sequence is given as:

recursive(i, j) =
{

1 (i < j) ∧ ∃x ∈ (Πi ∩ Πj);∃y ∈ πx(Ri) [(x = y) ∈ Cj]

0 otherwise
(4)

In creating composite subgoals, a requirement is that the results of the queries,
that are to be part of the subgoal, be union-compatible as defined in relational
algebra. In other words, it is not possible to unify two results unless they have
the same arity and indeed not meaningful unless they share the same attributes.
Therefore, we need a measure to indicate the overlap in attributes between two
queries. This can be simply stated as:

overlap(i, j) =
Πi ∩ Πj

Πi ∪ Πj
(5)

The binary feature associated with overlap is the complete overlap:

completeoverlap(i, j) =

{
1 if overlap(i, j) = 1
0 otherwise

(6)

An analogous and useful feature would compare the overlap in the set of con-
straints between two queries:

constraintoverlap(i, j) =
Ci ∩ Cj

Ci ∪ Cj
(7)

Thus far, the features we have considered have been totally about the queries
themselves. When working in a multidatabase environment, the provenance of
the queries is also very useful. In other words, the source to which the query has
been sent and from whence the answer originated might further help in defining
the role of the query. Particularly if two or more subsequent queries are sent
to the same source, there is a higher likelihood that the user is attempting a
unification or recursion. In terms of query optimization it is more efficient to ask
everything in one query per source. However, if for some reason (e.g. binding
limitations or a less expressive query language at that particular source) the
user is not able to accomplish their subgoal in one query, they will be required
to collect the data in pieces. For example, a complete overlap between two queries
sent to the same source is a good indicator that the user is combining subsets (e.g.

376 A.C. Acar and A. Motro

phone numbers in different departments) of the same information. We therefore
introduce the following feature:

samesource(i, j) =

{
1 if Di = Dj

0 otherwise
(8)

3.4 Application of Conditional Random Fields

Apart from the complexity of assigning relevance to goals there is some diffi-
culty associated with building the goals in the first place. Several aspects of the
sequence will give clues as to the generation of goals:

Do the goals arrive one at a time? The question here is whether the user is done
with one task before she starts another one. If this is not true, parts of different
goals may arrive interleaved with each other. Without interleaving, the problem
of goal identification is simply a problem of boundary detection, namely finding
the first query of each goal. Otherwise, goals have to be extracted explicitly.

Do goals evolve coherently? This is related to whether the queries within a goal
arrive in the correct order. For the goal to be coherent, each arriving query has
to be relevant to at least one other query that is already part of the goal. If
the queries arrive out of order in the worst case it is possible that there will
not exist a coherent goal until the last query of the goal arrives. As an example
consider the queries Π1 = {A, B, C}, Π2 = {K, L, M}, Π3 = {X, Y, Z} and
Π4 = {A, K, X}. A goal consisting of these queries will evolve coherently only
if Q4 arrives first. Whether or not this is assumed to be true will determine the
solution method.

Are queries used by multiple goals? This factor determines the number of possible
goals that can be generated given a sequence of length N. If we assume that each
query can be part of multiple goals, the set of possible goals in the query sequence
Q will be the power set of 2Q. If it is assumed that each query in Q belongs to
just one goal, the set of possible goals becomes the partition of Q. The number
of parts in Q can be at most N, i.e. single-query goals.

In the simplest case, it can be assumed that queries arrive in order, in a non-
interleaved fashion and that each query is part of a single goal only. In this case,
the goal identification starts combining arriving queries into a goal. The first
query to violate the coherence of the goal will be deemed the beginning of the
next goal and the previous goal will be closed.

In the most complicated case, it is accepted that queries can arrive out of
order, interleaved with queries of other goals and certain queries might be used
by multiple goals. In this case the system will have to keep track of multiple
goals at once, evolving some or all of them as new queries are received.

For the purposes of this paper, a middle ground between these two extremes is
assumed. We assume that each query will be part of one goal only. Interleaving

Segmenting and Labeling Query Sequences in a Multidatabase Environment 377

will be neglected. The in-order arrival of queries is not a requirement to the
extent that the sequence can be kept in memory. As will be seen subsequently,
we work in a sliding window on the sequence starting from the last query going
back as far as the window size. A query arriving prematurely will still be added
into its goal as long as it is still within this window.

We start by defining a finite state machine which will take one query at a time
and transition from one state to another. The state to which the FSM transitions
to after the arrival of a new query will become the label of that query. The outline
of the state machine is given in Fig. 2

Initial

Subgoal

Composite
Subgoal
(Union)

Recursive
Subgoal

Fig. 2. Labeling Finite State Machine. Only relatively likely transitions are shown.

We now define this finite state machine as a probabilistic one, describing it
with a conditional random field. The probability distribution is thus calculated
as given in Eq. 1. In our case, the sequence x is the query sequence Q (i.e. the
observations) and sequence y is the sequence of states, L the FSM traverses
(i.e. the labels). Each transition of the FSM to the Initial state denotes the
beginning of a new goal. After each arrival of a new query (observation) the
CRF is decoded in order to find the state (label) sequence L that results in the
highest conditional probability P (L|Q). Hence, each time a new query arrives,
the conditional probability is recalculated and may therefore change the labels
on earlier queries as well.

Figure 3 shows an example sequence. Also provided in the figure are the
operations performed on the queries by the user. The latter information is
naturally not available to the party monitoring the queries but serve to illus-
trate the example. Table 2 illustrates the labeling for the incoming queries
incrementally as each one arrives. The first two queries are joinable, there-
fore they are labeled as the initial query and a conjunctive subgoal. The third

378 A.C. Acar and A. Motro

query initially has no relationship to the preceding two. It is therefore labelled
as the beginning of a new goal. The next few are found to be queries most likely
to be combined (i.e. union-ed) with the third query and are thus labelled. The
sixth query is again found to be unrelated to the existing goals and labelled as
the beginning of a new goal. Query 7 happens to be the “keystone” query in
that it has join paths to both query 6 and the previous goals. Therefore when
query 7 arrives, the labels on the previous queries are changed, coalescing the
three goals into one. This is possible since with each new query, the labels of all
the previous queries are reexamined and a new Viterbi path1 is calculated for
the probabilistic FSM. Subsequently, query 8 arrives and is first deemed to be a
single subgoal. However, as more evidence arrives, i.e. queries 9 and 10, it now
becomes more probable that the three constitute a recursive subgoal and thus
the labels are rearranged.

Q1

Init

Time

Q2
SubGoal

Q3 Q4 Q5

Union

Q6
SubGoal

Q7
SubGoal

Q8 Q9 Q10

Recursion

��A

��A

��A

��A

��A

Fig. 3. Consolidation of Example Sequence

3.5 Features of the Conditional Random Field

In order to complete the definition of the CRF that represents this probabilistic
FSM, the set of features Fk(L,Q) have to be defined. There are two forms of
features, namely state and transition features. The state features are defined
in terms of identity functions. There is an identity function for each label type
and each position in the sequence. For example the identity function defining
whether the label Li is the initial state would be:

initial(i) =

{
1 if Li = INIT IAL

0 otherwise
(9)

1 The sequence of transitions with highest probability.

Segmenting and Labeling Query Sequences in a Multidatabase Environment 379

Table 2. Evolution of Example Sequence

Time Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 I

2 I S

3 I S I

4 I S I U

5 I S I U U

6 I S I U U I

7 I S U U U S S

8 I S U U U S S S

9 I S U U U S S R R

10 I S U U U S S R R R

I: Init, S: Subgoal, U: Union, R: Recursion
New or updated labels are shown in boldface

There will be one such identity function for each label per query. For example,
given a sequence of 10 queries and the 4 labels defined in the FSM (i.e. Initial,
Subgoal, Union, and Recursion), there will be 40 identity functions. Rather, we
say that there are 4 state features per clique in the CRF.

The basic transition features have already been given in equations 3 through
8. Since conditional random fields are log-linear models, in order to capture the
query model correctly we need to use conjunctions of the basic features (eqns. 3-
8). For example, a compound feature particularly useful in determining recursion
is (completeoverlap∧ recursive∧samesource). Up to this point, for each clique
in the CRF, we have 9 basic features (those given in Eqns. 3-8 and two features
for absolute and relative timeout) and 4 state identity features. Along with the
possible conjunctions (i.e. the powerset of the 13 features) we may consider up
to 4095 features in evaluating the CRF.

We also need to define the scope of each of the features. Recall that a feature
function is fk(Li, Li−1,Q, i). However, the functions we have defined so far take
two arguments (queries) to be compared according to some criterion (e.g., join-
ability, recursive nature &c.). For each clique, one of these queries is the current
one (i.e., Qi). What this query is being compared to in the sequence is depen-
dent on the scope. We propose two different scopes, namely local and global.
The global scope effectively compares all the queries in the range to Qi and
succeeds if there is at least one successful comparison. For example the feature
fglobal

samesource(Li, Li−1,Q, i) would succeed if there is at least one other query in
the sequence that has the same source as Qi. Therefore given a basic feature
gk(Qi, Qj) a global feature is then:

fglobal
k (Li, Li−1,Q, i) = max

∀j �=i
(gk(Qi, Qj))

In contrast, a local feature only checks the queries proximal in the sequence to
Qi. Hence, for example for a window of 5, the local feature would be:

380 A.C. Acar and A. Motro

f local
k (Li, Li−1,Q, i) = max(max

i−5<j<i
(gk(i, j)), max

i<j<i+5
(gk(i, j)))

Note, however, that the state features previously mentioned and any conjunc-
tions containing them can only be local within a window of 2. Otherwise, the
probability of a given label would not be independent of previous states except
the neighboring one, violating the Markov property.

The final enrichment to the feature space involves the time-shifting of features,
such that clique potentials can be affected by previous and future observations.
A time shifted feature f<j>

i would be defined as:

f<j>
i = f(Qi+j) (10)

So, a feature f<−2>
i would be the said feature for the observation two queries

before Qi used to evaluate the potential for the i-th clique in the CRF. Again this
is limited to the transition features since the potential of a given clique cannot be
a function of the label of state not neighboring it. Therefore, features containing
any of the state identity functions can only be shifted by -1. According to these
restrictions and assuming we use time shifts of -2, -1, 0, 1, 2, global and local
forms for all the possible features, we may have up to 12278 features per clique.

3.6 Gain-Based Feature Selection

Note that the previous estimate is the combinatorial maximum of features ob-
tained in the model we have thus far built. Some of these features will not be
predictive at all and we thus need to prune those that have little utility in order
to keep the model manageable and more importantly to avoid over-fitting the
training data.

In order to do this, we use gain based feature selection. Recall that the training
of a CRF involves optimizing the weight parameter vector λ in the log-likelihood
function (Eqn. 2) in order to obtain the maximum likelihood. This is done in su-
pervised way by iteratively maximizing for a set of training data. Each training
sequence of queries has an associated sequence of correct labels. Thus we are able
to optimize the parameters, λ, to obtain the weights that will have the least train-
ing error. Since some of our features are expected to be less discerning, the changes
in the associated weights will have less impact on the training error. We can there-
fore use the method described in [15]. The gain of a feature f is defined as:

GΛ(f) = max
μ

(LΛ+fμ − LΛ)

where LΛ+fμ and LΛ are the log-likelihoods of the CRF with or without the
feature f , given the training data. If done naively, this gain calculation will be
very time consuming, given the large number of features. Fortunately, there are
several optimizations including mean field approximation and limiting the gain
calculation only to mislabeled outputs (cf. [15] for details). Using this gain-based
pruning we show in the next section that we are able to use approximately a
tenth of the features while gaining better accuracy and better generalization.

Segmenting and Labeling Query Sequences in a Multidatabase Environment 381

4 Experimentation

We performed some simple experiments on the approach thus far explained in
order to validate its accuracy and examine its behaviour. Two publicly available
benchmark databases,TPC-H2 and Mondial3, were used. Of these, TPC-H is the
simulated database of a business including supplier and customer information,
invoices, orders and so forth. It has 8 tables. These 8 tables, for the purposes of
our experiment, are treated as different data sources. Furthermore, the larger ta-
bles have been vertically sliced into smaller parts, each one as a different source.
This allows us to simulate vertically distributed data in a multidatabase envi-
ronment. Therefore, with the subdivisions our TPC-H test scenario simulates 17
different sources in a simulated global virtual database (multidatabase) schema.

The Mondial database has a larger schema and is populated with real-world
geopolitical data from several resources (e.g. the CIA World Fact Book). Origi-
nally it has 23 tables, the larger of which were likewise vertically divided in order
to obtain 30 simulated data sources.

Some parts of the divided tables were given binding limitations (e.g., the
Countries table in Mondial can only be searched by setting name of the country).

In order to create training and test data for the CRF, we then automatically
generate 500 query sequences for each. This was done by first creating a universal
relation for each test scenario. Random views of these universal relations were
then set as targets and a query plan (i.e., a query sequence) was generated for
each target, along with the labels for each of the components. Due to the differ-
ences of the schemas and the random nature of the target selection, the lengths
of the query sequences are distributed over a range of values. For Mondial, the
sequences were between 1 and 36 queries long, with a median of 10. For TPC-H
the sequences were betweem 1 and 23 queries long, with a median of 7.

The 500 sequences where randomly concatenated into groups of 10, each group
becoming a simulated query log for one user. The CRF was trained and tested
using leave-one-out cross-validation. Each database scenario was run 50 different
times with different training and test cases.

Three different CRF scenarios were experimented with. The CRF experiment
is the basic approach with all the possible features. The PrunedCRF experi-
ment is the CRF scenario trained with gain-based pruning of attributes during
training. The training and testing programs were implemented in Java and the
experiments were run on a 2.2 MHz Athlon 64 system with 1 GB of memory
operating under FreeBSD 6. Each cross-validation experiment (i.e. 50 runs) was
completed in times on the order of 1-2 hours, on this platform, depending on
the number of features. The inference (labeling) of the average test group took
around 1.5 seconds. The unpruned method (CRF) has exactly 12,768 features
for both data sets, the pruned CRF had 1,065 and 983 features for Mondial and
TPC-H, respectively.

2 http://www.tpc.org/tpch/
3 http://www.dbis.informatik.uni-goettingen.de/Mondial/

382 A.C. Acar and A. Motro

The training was done using gradient ascent, particularly the L-BFGS [14]
method. To avoid overfitting, the likelihood function was regularized with a
Gaussian prior with variance 5. After each round of training with 49 groups
the remaining test group was labelled and the labels were compared to the true
labels which were decided during the generation of the query sequences. The
accuracy of a test is defined as the percentage of labels that are the same with
the true labels. Table 3 presents the average accuracy of each cross-validation
run, one per scenario.

Table 3. Labeling Accuracy Results

Test Accuracy Test Accuracy
Noise Level Method TPC-H Mondial Noise Level Method TPC-H Mondial

0 %
CRF 94.6% 91.2%

10 %
CRF 73.2% 70.6%

PrunedCRF 96.3% 95.4% PrunedCRF 82.8% 79.5%

5 %
CRF 86.3% 88.1%

15 %
CRF 60.3% 65.1%

PrunedCRF 95.2% 92.3% PrunedCRF 68.6% 69.3%

The robustness of the CRF method to noise was also tested during these
experiments. For each cross-validation run, after the training of the CRF, the test
sequence was tested for accuracy initially as it was. Subsequently the test cases
were each “corrupted” by inverting the values of random observation features
in the test sequence. For example, if the one query was actually joinable with
another, the noise induction might flip the value showing the queries as non-
joinable. With this method, we aim to simulate user and observation errors.
The tests were run at noise levels of 5, 10, and 15%, relating to that fraction of
observation features being corrupted. Table 3 shows the results.

The results are encouraging in that even at relatively high noise levels the
feature pruned CRF and the content enriched CRF are still reasonably accurate
(on average above 95% accuracy at 1-in-20 error in observation). The basic CRF
seems to suffer immediately from the noise, probably due to the tendency of the
unpruned features to over-fit the training data. Therefore, we see that pruned
feature spaces have the additional benefit of lower generalization errors, even in
the case of noisy input.

As a subset of the preceeding analysis, we have also investigated the bound-
ary detection capabilities of each model. This purely to test whether the system
segments the sequences correctly, regardless of the correct labeling of these seg-
ments.

The F1 scores of the boundary detection are given in Table 4. The segmen-
tation behavior of the CRF is much better than the more complicated task of
labeling, with very high accuracies up to very high noise levels. As with the
labeling task, the basic, unpruned CRF suffers as noise increases, for the same
reasons.

Segmenting and Labeling Query Sequences in a Multidatabase Environment 383

Table 4. Segmenting Accuracy Results

Accuracy (F-1) Accuracy (F-1)
Noise Level Method TPC-H Mondial Noise Level Method TPC-H Mondial

0 %
CRF .992 .997

10 %
CRF .971 .971

PrunedCRF .999 .999 PrunedCRF .982 .988

5 %
CRF .984 .973

15 %
CRF .912 .903

PrunedCRF .987 .982 PrunedCRF .938 .962

5 Conclusion

This paper investigates the problem of isolating sets of queries denoting inde-
pendent user goals from a continuous sequence, either in real time or from a log.
The complexities involved can be classified into two categories. The first cate-
gory of difficulties is defining the boundaries of a goal. The second difficulty is
the determination of the individual parts within a goal, regarding their function
in forming the goal.

Even if one has a totally objective way of evaluating a given set of queries as
to whether they contain an interesting goal, there are still ‘technical’ difficulties.
Given a sequence of queries the set denoting a goal is not necessarily an uninter-
rupted sub-sequence. Two or more goals may be interleaved with each other or
with noise. Some queries in the sequence may be replacements or refinements of
older queries. Furthermore, it is possible that the queries needed to build a goal
do not arrive in the order they are used. This defeats machine learning methods
(e.g. [18]) which are sensitive to the sequence in which queries arrive. Another
question is whether the user being monitored is using the same query for mul-
tiple goals or one. This distinction affects the number of goals to be evaluated
greatly4.

A probabilistic and noise-tolerant method of handling the problem has been
introduced. The method can accept realtime streams, constantly evolving a work-
ing scenario as new queries arrive. Scenarios that have stopped evolving are
dropped for fresh ones as new evidence arrive. Furthermore, the method proposed
here leverages the evidence available exclusively in a virtual database environ-
ment, namely the source information, to guide its decisions.

A future direction is the addition of semantic feature based on the data. Such
a method will require semantic information about the application domain either
in a latent fashion or explicitly using the constraints of the schema along with
a logical inference engine. Such an approach has met with some success in the
area of semantic query caching [7] and optimization [4,13]. The same principle
can be applied to the present problem as well.

4 If the component queries are assumed to be re-used, the number of possible goals
increases exponentially, as opposed to a linear growth otherwise.

384 A.C. Acar and A. Motro

References

1. Acar, A.C., Motro, A.: Inferring user goals from sets of independent queries in a
multidatabase environment. In: Ras, Z., Tsay, L.-S. (eds.) Advances in Intelligent
Information Systems. SCI, vol. 265, pp. 225–243. Springer, Heidelberg (2010)

2. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log.
In: Proceedings of Knowledge Discovery and Data Mining, pp. 407–416 (2000)

3. Bilmes, J.: A gentle tutorial on the em algorithm and its application to parame-
ter estimation for gaussian mixture and hidden markov models. Technical Report
ICSI-TR-97-021, University of Berkeley (1997)

4. Cardiff, J., Catarci, T., Santucci, G.: Semantic query processing in a heteroge-
neous database environment. Journal of Intelligent and Cooperative Information
Systems 6(2), 151–192 (1997)

5. Chen, M.-S., Park, J.S., Yu, P.S.: Efficient data mining for path traversal patterns.
Knowledge and Data Engineering 10(2), 209–221 (1998)

6. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide
web browsing patterns. Knowledge and Information Systems 1(1), 5–32 (1999)

7. Godfrey, P., Gryz, J.: Semantic query caching for heterogeneous databases. In:
Proceedings of Knowledge Representation Meets Databases, pp. 6.1–6.6 (1997)

8. He, D., Goker, A.: Detecting session boundaries from web user logs. In: Proceedings
of the BCS-IRSG 22nd Annual Colloquium on Information Retrieval (2000)

9. Jin, R., Yan, R., Zhang, J., Hauptmann, A.: A Faster Iterative Scaling Algorithm
for Conditional Exponential Model. In: Proceedings of the 20th Int. Conf. on Ma-
chine Learning, pp. 282–289 (2003)

10. Joachims, T.: Unbiased evaluation of retrieval quality using clickthrough data.
Technical report, Cornell University, Department of Computer Science (2002)

11. Kindermann, R., Snell, J.: Markov random fields and their applications. American
Mathematical Society, Providence (1980)

12. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the 18th Int.
Conf. on Machine Learning, pp. 282–289 (2001)

13. Levy, A.Y., Sagiv, Y.: Semantic query optimization in datalog programs. In: Pro-
ceedings of Principles of Database Systems, pp. 163–173 (1992)

14. Liu, D., Nocedal, J.: On the Limited Memory BFGS Method for Large Scale Op-
timization. Mathematical Programming 45(1), 503–528 (1989)

15. McCallum, A.: Efficiently inducing features of conditional random fields. In: Pro-
ceedings of the 19th Annual Conference on Uncertainty in Artificial Intelligence
(UAI 2003), pp. 403–411 (2003)

16. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

17. Wallach, H.: Efficient Training of Conditional Random Fields. Master’s thesis,
University of Edinburgh (2002)

18. Yao, Q., Huang, X., An, A.: A Machine Learning Approach to Identifying Database
Sessions Using Unlabeled Data. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2005.
LNCS, vol. 3589, pp. 254–264. Springer, Heidelberg (2005)

Combining Resource and Location Awareness

in DHTs

Liz Ribe-Baumann

Ilmenau University of Technology
liz.ribe-baumann@tu-ilmenau.de

Abstract. Distributed hash tables are designed to provide reliable dis-
tributed data management, but present challenges for networks in which
nodes have varying characteristics such as battery or computing power.
Assuming that nodes are aware of their resource availability and relative
network positions, this paper presents a novel distributed hash table pro-
tocol which uses nodes’ resource levels to remove load from weak nodes,
whose overuse may cause delays or failure, while using nodes’ positions
to reduce cross-network traffic, which may cause unwanted network load
and delays. This protocol provides nodes with links that are physically
near with high resource availability, and simultaneously provides scal-
ability and an O(log(N)) routing complexity with N network nodes.
Theoretical analysis and simulated evaluation show significant decreases
in the routing and maintenance overhead for weak nodes, the physical
distances that lookups traverse, and unwanted node failures, as well as
an increase node lifetime.

1 Introduction

Distributed hash tables (DHTs) have received much attention over the past
decade as an efficient, reliable approach to store large amounts of data in a
distributed fashion. Well established DHTs such as the Content Addressable
Network (CAN) [18] and Chord [21] were designed to route efficiently on homo-
geneous networks without location information. Since DHTs do not inherently
differentiate between nodes’ characteristics (for example, group associations or
robustness), building a DHT on a heterogeneous network comes with many chal-
lenges. Moreover, DHTs typically route messages along nodes independent of
their locations (causing unnecessary lookup delays and cross-network traffic)
and must be specially designed to use location awareness. This paper considers
systems on which DHTs benefit from both heterogeneous node treatment and
location awareness.

Take for example a cloud environment, in which nodes have varying computing
power and network connections: Nodes with high computing power should ob-
tain more load than nodes with low computing power while routing hops should
follow low-latency links in order to reduce cross-rack traffic and shorten lookup
times. Or consider a second example in which widespread wireless nodes run on
battery power (e.g. smart phones which are recharged at regular intervals) and

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 385–402, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

386 L. Ribe-Baumann

maintain a DHT using an intact infrastructure: Nodes with high power avail-
ability can handle more load than nodes with very limited power availability
while latencies between nodes vary greatly depending on nodes’ up and down
links. While in both scenarios all nodes may cooperatively share the storage
load, reducing the maintenance and routing load on weaker nodes would im-
prove the networks’ performance. Moreover, in the second case, minimizing low
power nodes’ maintenance and routing load can help to lengthen nodes’ lifetimes
between recharging. A homogeneous use of the nodes would ultimately result in
shorter battery lifetimes and thus higher failure rates of low power nodes, thus
effecting both the network’s robustness and overall storage capacity. In this pa-
per, we use this example of nodes with varying power availability as our point of
reference. However, heterogeneous networks of nodes with varying bandwidth,
time-to-live, computing power, or other suitable measures can be treated analo-
gously, and therefore, our considerations are formulated in the general terms of
network nodes’ “resource availability.”

The three main approaches to addressing heterogeneous node capabilities have
been the use of hierarchical DHT structures, virtual nodes, or node movements
within the identifier space, aiming to balance either communication or storage over-
head. However, these approaches are difficult to adapt to our scenario. Firstly, the
structural approaches which are capable of reducing the communication overhead
of low resource nodes incorporate only two resource levels: “have” or “have not”(for
example [1,10,25]). Secondly, the virtual nodes and node movement approaches,
which allocate varying quantities of data to each physical node, actually introduce
more maintenance overhead and churn into the network. Neither is ideal for a net-
work in which nodes have varying access to resources such as energy or computing
power, since they assume that higher resource availability infers larger storage ca-
pacity. However, considering that the main communication load in a DHT is ac-
crued from maintenance, it is not nodes’ storage capacities that need to be treated
heterogeneously but rather the maintenance overhead required of the nodes.

This paper presents a novel resource aware and location aware DHT which re-
duces low resource nodes’ load through routing and network maintenance while
providing nodes with links which are physically near. We use two different fail-
ure models for testing: one which assumes that a node’s failure depends on
its resource availability and the number of messages it sends and receives (e.g.
battery-power as nodes’ resource), and a second which assumes that a node’s
resource availability is correlated with its failure probability (e.g. node lifetime
as nodes’ resource). We take a primarily structural, or link-based, approach to
this problem, essentially transferring a large portion of maintenance and routing
responsibilities to high resource nodes.

Our DHT is based on coordinates similar to and inspired by those used by
Vivaldi [5] and structured similar to DHash++ [6], yet, it has significantly differ-
ent behavior with regard to resources. In contrast to other flat DHTs, we choose
links within finger intervals which have suitable combinations of high resource
level and low distance (see Figure 1) and adjust the maintenance frequency of
each link depending on its resource level. This paper’s main contributions are:

Combining Resource and Location Awareness in DHTs 387

B
x

,m
−

1

xID
xID + 2m−2

xID + 2m−1

p3

p4

p1

p2

ProspectiveLinks[m-1]

NodeID Phy.Dist. Res.Level Res.Dist.

p2ID 1.6 2 2.6
p3ID 1.4 1 3.4
p4ID 0.9 0 3.9
p1ID 4.1 3 4.1

Fig. 1. Key ring with six nodes in x’s m − 1st finger interval Bx,m−1, four of which x
knows in its prospective links list (squares). A finger is established to p2, the known
node with the best resource distance (dependent on distance and resource level) to x.

– A novel flat DHT which incorporates both location and resource awareness;
– analytical observations of its routing complexity, links’ resource levels and

distances, link failure probabilities, and maintenance overhead; and
– simulated comparisons of node lifetime and message failures to resource naive

and location aware DHTs with two failure models.

This paper includes an examination of related work in Section 2; discussion of
foundational network conditions and assumptions in Section 3; a description of
our novel DHT in Section 4; a brief discussion of analytical results in Section 5;
and a comparison of the behavior of our DHT with existing DHTs using simu-
lation in Section 6.

2 Related Work

Well established distributed hash tables such as CAN (Content Addressable
Network) [18], Chord [21], and Kademlia [17] were designed to route efficiently
without location information. Proximity-awareness has begun to permeate ar-
eas related to DHTs, including caching and replication protocols and hybrid
overlays [7,16], as well as DHTs’ original designs. Location awareness is inte-
grated into DHTs using a combination of proximity-aware identifier selection
(PIS, such as Mithos [22] and SAT-Match [19]), proximity-aware neighbor selec-
tion (PNS, such as DHash++ [6]), and proximity-aware route selection (PRS,
such as Tapestry [24]), and has generally been directed at reducing overall traffic
or average round trip times [12].

Now recall that the three main approaches to balancing load in heteroge-
neous DHTs are the use of hierarchical DHT structures, virtual nodes, and node
movements within the identifier space. Within hierarchical DHTs, nodes are
often grouped by some defining characteristic such as group associations (e.g.
departments within a university) or peer capabilities (“have” or “have not”).
Systems with group structures such as Canon [9], Hieras [23], and Cyclone [2]

388 L. Ribe-Baumann

use routing protocols which tend to route lookups as far as possible within one
group before forwarding them on to a different group. While resource avail-
ability levels could be used to define groups, current approaches pose several
problems: lookup routing would have to start in the (sparse) highest layers in
order to relieve weaker nodes from routing responsibilities, thus compromising
scalability; low level nodes would primarily maintain links within their group,
i.e. to low level nodes, increasing their necessary link maintenance; and location
awareness could only be provided within single groups, i.e. resource levels. On
the other hand, in hierarchical DHTs based on two-tiered peer capabilities (such
as [1,10,25]) where nodes assume the roles of super-peer or leaf-peer, lookups
are routed directly from leaf nodes to parent nodes. The parent (or super) nodes
are fully responsible for performing lookup routing, completely neglecting the
varying nuances of nodes’ resource availabilities.

In contrast, with virtual nodes, each physical network node balances its load
independently by hosting a varying number of virtual overlay nodes, each with its
own set of keys and links [11,15]. And similar to virtual nodes, node movements
within the identifier space achieve load balance by adjusting the data that each
node stores [3,8]. Nodes with low load choose new nodeIDs that are close to
nodes with high load, thus taking over some of their load.

Consider now, for example, a Chord implementation run on servers and smart-
phones alike: servers have unlimited energy availability and large storage capac-
ities while smart-phones have very limited energy and storage capacities. Since
nodes’ delays may vary greatly depending on their connectivity, fingers should
clearly be chosen across low latency links (i.e. to “near” nodes). While virtual
nodes or node movements could help to suitably distribute data, both would fail
to relieve weaker nodes with dwindling energy of costly maintenance and rout-
ing responsibilities. On the other hand, the integration of a super-peer structure
with “have” or “have not” nodes would invariably over-use or under-use the
resources of the energy restricted devices. Subsequent node failures would then
lead to a drop in the overall network capacity and thus compromise the network’s
scalability.

3 Network Assumptions

We assume that each node x has sufficiently correct two dimensional virtual
(i.e. not necessarily geographical) network coordinates (x1, x2), such as used in
Vivaldi [5] for determining latencies. The physical distance between two nodes
x and y is dphy(x, y) :=

√
(x1 − y1)2 + (x2 + y2)2. Before proceeding, we estab-

lish a definition for nodes’ resource availability levels and discuss what failure
scenarios and underlying DHT properties this work is based on.

3.1 Resource Availability

Recall that we base this work’s resource awareness on nodes with varying bat-
tery strength, from cell phones with very limited power to servers with an inex-
haustible power source. While we model our analysis and simulations after nodes

Combining Resource and Location Awareness in DHTs 389

with varying power availability, the proposed protocol need not be restricted to
this use case. It requires only that each node x has a resource availability that can
be expressed as an integer value xR ∈ {0, 1, . . . , lmax} for some fixed maximum
level lmax. We assume that xR = 0 is the lowest possible resource level (but still
operational) while xR = lmax implies unbounded resources. Note that resource
levels must be globally defined so that a given resource level on differing node
types is comparable, i.e. nodes with identical resource levels have comparable
available resources. If we consider power availability with lmax = 3, that could
mean that a handheld operating on battery power may have resource level two
when fully charged, but a cell phone with a weaker battery may only reach a
resource level one when fully charged.

We use a Zipf distribution for nodes’ resource levels, reflecting trends for
node lifetime found in peer-to-peer networks, where node lifetime tends to fol-
low a heavy-tailed Pareto distribution [4,20] (the continuous counterpart of
the Zipf distribution). The probability that a random node has resource level
� ∈ {0, 1, . . . , lmax} depends on the power m of the Zipf-distribution:

p� := P (xR = �) =
1

(� + 1)m
· 1∑lmax

j=0 1/(j + 1)m
. (1)

3.2 Node Failure

In analysis and simulation, we approach node failure from two different perspec-
tives: On the one hand, we assume that nodes with higher resource levels have
lower failure probability (based on nodes with varying time-to-live); on the other
hand, we assume that failure is caused by node activities which drain a node’s
resources until the node fails (based on nodes with varying power availability).
For the later analysis of the first case, we need a node’s conditional failure prob-
ability distribution P (Fx|xR = �), given the event xR = �. For our observations,
we again choose a Zipf-distribution and assume that this conditional probability
is proportional to P (R = �), i.e. P (Fx|xR = �) = α · P (R = �). Assuming that
there are γ simultaneous node failures, we thus have the constraint:

γ

N
=

lmax∑
j=0

P (Fx|xR = j)P (xR = j) =
lmax∑
j=0

αP (xR = j)2. (2)

Thus, we use P (Fx|xR = j) = αP (xR = j) for α = γ/
(
N
∑lmax

j=0 P (xR = j)2
)
.

3.3 DHT Foundation

We chose to build our DHT on Chord [21] mainly because Chord is the basis of
the location aware DHash++ and has a rather simplistic structure. Our protocol
is, in essence, an extension and could be adapted for many other DHTs. Analo-
gous to Chord, we use consistent hashing [14] to distribute keys to nodes. Each
node x chooses a random (or hashed) nodeID xID from the binary key space

390 L. Ribe-Baumann

0 . . . 2m − 1, which is viewed as a ring with key values increasing in a clockwise
direction. Each node positions itself at its nodeID on the key ring and establishes
links to its immediate predecessor and successor as well as a successor list with
its r nearest successors, making repairs possible after unexpected node failures.
Each key κ is assigned to the first node whose nodeID is equal to or succeeds κ
on the key ring. The asymmetric key distance from a node x (or key) to a node
y (or key) via their nodeIDs is:

Definition 1 (Key Distance.). The key distance from x to y is the clockwise
distance on the key ring from xID to yID:

dkey(x, y) := yID − xID mod 2m.

4 Resource and Location Aware DHT

Our novel DHT, which we call RBFM for resource based finger management,
uses a flat approach to integrate resource awareness into nodes’ links, as opposed
to the more typically hierarchical approach. We recall from Section 2 that the
typical flat approaches of virtual nodes and node relocation actually introduce
additional maintenance overhead. We assume that lower resource nodes have an
integral role in storing data and propose a system design which distributes data
evenly on all nodes while addressing the maintenance and routing responsibili-
ties of heterogeneous nodes. Heterogeneous data distribution and the for DHTs
necessary replication are not included in the scope of this paper (see Section 7).
Based on Chord, each node in RBFM chooses its links based on other nodes’
key distances, physical distances, and resource levels - choosing for each finger
interval a link with a balance of low physical distance and high resource level.

Links. Similar to DHash++ [6] and borrowing the terminology from Chord [21],
each node x with nodeID xID chooses one link - or finger - x.f [i] per finger
interval Bx,i := [xID + 2i−1, xID + 2i) for i ∈ {1, 2, . . . , m}. The corresponding
node that x.f [i] points to is notated x.f [i].node. But while DHash++ chooses the
node with the smallest physical distance to x in each finger interval, we chose
a node based on both its physical distance and resource level, or its resource
distance. This resource distance is inspired by Vivaldi’s [5] distance metric for
network coordinates which uses an additional height dimension to distance a
node from the entire network. Similarly, we use a node’s resource level to distance
it from the entire network, ensuring that the lower a node’s resource level is, the
further it will be distanced from every other node. First, we define each node x’s
resource height xh via a resource height function h : {0, 1, . . . , lmax} → IR+ for
some stretch constant c > 0:

xh = h(xR) := c · (lmax − xR), � ∈ {0, 1, . . . , lmax}. (3)

Combining Resource and Location Awareness in DHTs 391

Definition 2 (Resource Distance). The resource distance between nodes x
and y with coordinates (x1, x2), (y1, y2), resource levels xR, yR ∈ {0, 1, . . . , lmax},
and resource heights xh = h(xR) and yh = h(yR) is:

dres(x, y) = dphy(x, y) + xh + yh.

In order to gain information about other nodes’ resource distances, coordinates
and resource levels are piggybacked on network messages. Each node x maintains
a prospective links list which contains a list of the k best known nodes in terms of
resource distance for each finger interval Bx,i, i ∈ {1, 2, . . . , m}. Thus, at most
k nodes in Bx,i with the shortest resource distances to x are saved via their
nodeIDs and resource distances to x. When receiving a message from sender y,
node x uses y’s coordinates and resource level to determine dres(x, y) and update
its prospective links list accordingly (see Algorithm 1).

Algorithm 1. Updating prospective links list with ≤ k entries
procedure suggestProspectiveLink(nodeInfo)

finger = getFingerInterval(nodeInfo.key)
dist = getResourceDist(nodeInfo.coordinates, nodeInfo.resourceHeight)
if prospLinkList.contains(finger, nodeInfo.key) then

prospLinkList.updateNode(finger, dist, nodeInfo)
else if dist < prospLinkList.getFarthestLinkDist(finger) or

prospLinkList.size(finger) < k then
prospLinkList.addNode(finger, dist, nodeInfo)
while prospLinkList.size(finger) > k do

prospLinkList.removeFarthestLink(finger)
end while

end if
end procedure

Each node x maintains a finger table with one finger x.f [i] in each Bx,i for
i ∈ {1, 2, . . . , m}: if prospective links contains at least one entry for Bx,i, then the
entry with the smallest resource distance is contacted with a finger request (see
Figure 1); otherwise, the owner (i.e. successor) of key xID +2i−1 is contacted as
in Chord (see Algorithm 2). An entry from the prospective links list is deleted
as soon as it is used for a finger request, ensuring that prospective links are up-
to-date and alive. The prospective links list entries are also continually updated
with fresh node information, so the network automatically adapts to changes in
node resource levels or coordinates. Note that if there is a finger interval that
contains no node, then multiple fingers will point to the same node, as in Chord.
On the other hand, if there is at least one node in a finger interval Bx,i, then
x.f [i] will point to a node in Bx,i.

As we will show, the larger i is (i.e. the larger the finger interval), the higher
we can expect x.f [i]’s resource level to be. This means that high resource level
nodes tend to have more incoming fingers than low resource level node s.

392 L. Ribe-Baumann

Algorithm 2. Establishing and maintaining fingers 1 to m − 1
procedure maintainFinger(finger)

lookupKey = myKey + getOffset(finger)
if prospLinkList.size(finger) > 0 then

listEntry = prospLinkList.getClosestEntry(finger)
lookupKey = listEntry.key
prospLinkList.removeUsedEntry(listEntry)

end if
sendLookup(lookupKey)

end procedure

Routing. Lookup routing is performed greedily, identical to unidirectional rout-
ing in Chord [21]: A node x which needs to lookup a key κ in 0 . . . 2m−1 forwards
the lookup to the closest predecessor of κ in its routing table (including its suc-
cessor list and its own nodeID xID). If x is the closest predecessor, then the key
is maintained by x’s successor, and the routing is completed after one hop.

Since fingers are not deterministically defined in this approach, allowing fin-
gers to be spaced more irregularly, the expected (and worst case) number of hops
necessary to locate a key is higher than in Chord. However, this increase can be
expressed as a constant factor, leaving us with the same O(log N) complexity as
in Chord. In fact, simulation results show that the difference in routing lengths
is in fact negligible. Note that we use the term with high probability to express
a probability ≥ 1 − 1/N .

Theorem 1. Given a network with N nodes, with high probability, a message
is routed from any node to the successor node of any key in O(log(N)) hops.

Proof. Assume that a node x is to forward a message to the node y responsible
for key κ, and let p be κ’s immediate predecessor node. We consider how many
hops are necessary to reach p. Let p be in x’s ith finger interval Bx,i = [xID +
2i−1, xID + 2i). Then either:

– x.f [i] is a predecessor to p, and forwarding to this finger reduces dkey(x, p)
by at least 2i−1, or

– x.f [i] is a successor to p. Since p is a successor to the key xID + 2i−2,
x.f [i − 1].node is in the interval [xID + 2i−2, pID]. Forwarding to this finger
reduces dkey(x, p) by at least 2i−2.

We see that the key distance dkey(x,p) ≤ 2i − 1 is reduced by a factor of at least
2i/2i−2 = 1/4 for each forwarding. Thus, we are within one key of p after at
most log(3/4) · m steps:

1 = 2m (3/4)log(4/3) .

Furthermore, after log(3/4) · log N steps we are within 2m/N keys of p, and -
considering the consistent hashing used to generate nodeIDs and assuming that
nodes are uniformly distributed in the keyspace - with high probability there are
no more than O(log N) nodes this keyspace. So p, and with it y, are reached in
at most O(log N) hops. ��

Combining Resource and Location Awareness in DHTs 393

Node Joins and Failures. In order to join the DHT, a node x must have valid
network coordinates, choose a nodeID and resource level, and contact one par-
ticipating node. Once x has established links to its immediate predecessor p and
successor s on the key ring, p and s send their prospective links lists to x, which
x uses to initialize its own list, and corresponding keys are transfered from s to
x. The node x continually updates its prospective links and periodically performs
finger maintenance (see Algorithm 2) to establish and maintain its fingers.

Node failure is handled as in Chord and extended to remove a prospective link
once a node notices that it has failed. While replication is necessary to ensure
data availability for ungraceful node failures, this is not included in the scope of
this paper.

Updating Links. Given a dynamic network with frequent node joins, failures,
movements, and changing resource levels, links must be updated on a regular
basis to uphold the network’s routing characteristics. Links to nodes which have
failed or no longer have the minimum resource distance in a finger interval must
be reassigned; links to newly joined nodes must be established. Note that a
node’s outgoing fingers do not change when its resource level changes, but its
incoming links most likely will since its new resource level will eventually be up-
dated in other nodes’ prospective links lists. Since we correlate a node’s resource
availability with its robustness, we choose the frequency with which a finger f
is updated depending on f.node’s resource level: Fingers to high resource level
nodes require updates less often, since high resource nodes are less dynamic. This
reduces the maintenance load for both lower resource nodes, which initiate link
maintenance, and high resource nodes, which respond to the link maintenance.

We perform link maintenance on a finger f after a time interval which depends
on a reference interval tref and the resource level f.nodeR. One possible finger
maintenance interval g : {0, 1, . . . , lmax} → IR+ in dependency of a resource
level � is, for example g(xR) = tref · (xR + 1)2.

By this function, a finger with resource level 0 would be updated after the
interval timeref and a finger with resource level 3 would be updated after the
interval 16timeref . By adjusting the function g(�), the developer has a direct pos-
sibility to tune the network’s degree of robustness and maintenance overhead.
While routing robustness and maintenance overhead usually imply a direct trade
off, the observation of nodes’ resource availability softens this trade off by de-
creasing the maintenance overhead of specific, not all, links. However, this is
only the case when a node’s failure or reliability is reflected by its resource level.

5 Analysis

We provide measures that indicate that nodes’ fingers in RBFM are robuster and
show how weak nodes’ maintenance load in RBFM is significantly smaller when
compared to the resource naive, location naive Chord and the resource naive,
location aware DHash++. Since we do not consider replication protocols, we are

394 L. Ribe-Baumann

not interested in data loss. We expect RBFM to use lower level nodes less for
routing, which balances load according to nodes’ available resources; to decrease
lookups’ physical distance traveled compared to Chord (but not DHash++),
which decreases cross-network load; to reduce link failure, which improves rout-
ing performance; and reduce maintenance overhead, which especially benefits
low resource nodes. Dependencies between neighboring nodes’ fingers make a
global statistical analysis impractical, so we asses these criteria on a finger ba-
sis by comparing the resource level, physical distance, failure probability, and
generated maintenance messages of nodes’ individual fingers. While the former
evaluations provide a mere anticipation for the system’s expected behavior and
require much interpretation, the evaluation of maintenance messages provides a
clearer view of the systems’ changed load.

Note that for our analytical observations, we assume that nodeIDs are uni-
formly distributed. In reality, nodeIDs are often a deterministic SHA-1 hash of
node’s IP addresses, but unless the SHA-1 function is tampered with (which is
considered hard to do) it distributes nodes nearly uniformly in the key space.

5.1 Expected Resource Level and Distance of Fingers

We start with the physical distance traveled and lookups’ used resource levels by
determining the probability distributions of the physical distance and resource
level of a random node x’s ith finger. Since x.f [i] is looked for in a finger interval
of size 2i−1, the larger i is, the more nodes x has to choose x.f [i].node from.
Since x chooses the node to which it has the smallest resource distance, this node
tends to be physically closer with higher resource availability as i increases. In
fact, our analysis confirms that long key distance fingers tend to be physically
close nodes with high resource levels (see Figure 2).

We derive these probability distributions for a node x’s ith finger using the
probability distribution P (xR = �) = p� for the resource levels from (1) and some
distribution of nodes with respect to x in the coordinate space. This distribution
is expressed as the probability that a random node will have a given physical
distance to x. The following theorem gives us the probability distributions for
the physical distance to and resource level of a finger chosen by x from a given
number of nodes k.

Theorem 2. Given is a node x and a set S of k nodes with resource levels in
{0, 1, . . . , lmax}. Let y ∈ S be a node with the minimum resource distance to
x in S, fD(t) be the probability density function (pdf) over all nodes’ physical
distances, and FD(t) its cumulative distribution function. Then the probability
that y has resource level � ∈ {0, 1, . . . , lmax} is

P (Rk,min = �) = k︸︷︷︸
a.

p�︸︷︷︸
b.

∞∫
0

d.︷ ︸︸ ︷(
1 −

3∑
j=0

FD(t + h(�) − h(j))pj

)k−1

fD(t)dt

︸ ︷︷ ︸
c.

, (4)

Combining Resource and Location Awareness in DHTs 395

and the pdf for y’s physical distance t ≥ 0 is

fDmin(t) = kfD(t)
lmax∑
�=0

p�

(
1 −

lmax∑
j=0

pjFd(t − h(j) + h(�))
)k−1

. (5)

A proof is omitted due to space constraints, but we provide a rough sketch by
explaining the terms in (4):

a. Number of possible nodes that may have minimum resource distance.
b. Probability that yR = �.
c. Probability that for all nodes v ∈ S/{y} : dres(x, v) ≥ dres(x, y).
d. Probability that, with fixed dphy(x, y) = t and yR = �, for all nodes v ∈

S/{y} : dres(x, v) ≥ dres(x, y).

While node x’s i+1st finger interval contains 2i keys, it only contains an expected
k = N

2m · 2i nodes. Choosing the node with the minimum resource distance
to x from these k nodes, (4) gives us the probability that x’s ith finger has
resource level � ∈ {0, 1, . . . , lmax} and (5) gives us the pdf of its physical distance
to x. Note that it is not possible to make any statements about the fingers’
resource levels or physical distances without some assumption about the nodes’
distribution within the coordinate space. For this reason, we consider one specific
and simple case, where nodes are uniformly distributed around x on a disk of
radius r (this means that we observe only the disk’s center node):

fu
D(t) =

{
2t/r2 0 ≤ t ≤ r

0 else
, Fu

D(t) =

{
t2/r2 0 ≤ t ≤ r

0 else.
(6)

To simplify (4) and (5) for this distance distribution, we use a concrete instance
of the height function h(xR) from (3) with c := r/lmaxc̃, which determines the
resource height as a fraction of the network’s physical radius r/c̃ multiplied by
(lmax − xR)/lmax. Then using (4), we obtain a probability distribution which is
independent of r

P (Rk,min = �) =
2p�

r2

r∫
0

(
1 −

lmax∑
j=0

Fu
D(t + h(�) − h(j))pj

)k−1

tdt

= 2p�

1∫
0

(
1 −

lmax∑
j=0

Fu′
D (t +

j − �

c · lmax
)pj

)k−1

tdt

with

Fu′
D (t) =

{
t2 if 0 ≤ t ≤ 1
0 else.

396 L. Ribe-Baumann

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5 6 7 8 9 10

R
es

ou
rc

e
le

ve
l

Set of k=2x nodes

c~ = 1
c~ = 2
c~ = 8
naive

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8 9 10

P
hy

si
ca

l d
is

ta
nc

e
Set of k=2x nodes

c~ = 1
c~ = 2
c~ = 8

DHash++
naive

Fig. 2. The expected resource level and physical distance of the node with minimum
resource distance from sets of 20, 21, . . . , 210 nodes are shown for μ = 2 and r = 10
along with the respective values for DHash++ and a resource and location naive Chord

The expected values of these probabilities are depicted in Figure 2 for lmax =
3, specific values of k (20, 21, . . . , 210), and c = 1.5, as are the corresponding
expected values for the physical distance to the node with minimum resource
distance. Although we do not expect that x knows all of the nodes in each Bx,i,
the expected number of nodes per finger interval doubles per interval and we
presume that each node knows a fair number of nodes per finger interval. A
node’s �log(1/N) + m	th finger interval is the first in which a node is expected
to be found, thus, each set of 2i nodes in Figure 2 corresponds to a node’s
i + 1 + �log(1/N) + m	th finger interval in a network of N nodes.

Figure 2 shows us how stretch affects fingers’ resource levels and physical
distances, with low stretch (c̃ = 8) favoring lower physical distances and high
stretch (c̃ = 1) favoring higher resource levels in an apparent trade off. For a
middle stretch of c̃ = 2, a finger’s expected resource level are doubled when
there are 26 random nodes to choose from, while a mere 24 nodes are needed to
reduce its expected physical distance by more than 1/2. Note that the expected
physical distance of a finger in a location unaware Chord is constant and given
for k = 1 = 20, as is the expected resource level of both Chord and DHash++.
Interpreting the results for the special case in Figure 2, we expect that resource
and location aware fingers cause a higher number of routing hops to be sent across
high level, physically close nodes, resulting in less traffic on low level nodes and
less cross-network traffic, and ultimately resulting in robuster lookups.

5.2 Failures

Recall that we assume two failure scenarios: nodes which fail according to a
given probability distribution and nodes whose resources are depleted with when

Combining Resource and Location Awareness in DHTs 397

sending and receiving nodes until node fail. For the first case, we now consider
the failure probability of a random node x’s fingers given a fixed number of
failures where the failure probabilities depend on nodes’ resource levels. For the
second case, we consider the expected number of maintenance messages for x’s
fingers per unit of time.

Random failures. Let fi = x.f [i].node for simplicity and assume that there are
ki =
N · 2i−m� nodes in Bx,i for i ≥ �log(1/N) + m	. Using the conditional
failure probabilities for the nodes from (2) and the resource probabilities for the
fingers from (4), we have:

P (fi fails) =
lmax∑
j=0

P (fi fails and (fi)R = j)

=
lmax∑
j=0

P (fi fails |(fi)R = j) · P ((fi)R = j)

=
lmax∑
j=0

P (Fx|xR = j) · P (Rki,min = j).

Again using the example distance distribution from Equation 6, Figure 3 shows
an example scenario which demonstrates how the stretch affects fingers’ failure
probabilities. Note that for Chord and DHash++, this probability is constant
for all fingers, resulting in fingers which are more likely to fail. Thus, we would

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 18 20 22 24 26 28

F
ai

lu
re

 p
ro

ba
bi

lit
y

Finger interval

c~ = 10 (c=1)
c~ = 5 (c=2)

c~ = 1.5 (c=6.67)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 20 22 24 26 28

se

nt
 m

ai
nt

en
an

ce
 m

es
sa

ge
s

pe
r

tim
e

un
it

Finger interval

linear
quadratic

cubic

Fig. 3. Scenario with 100000 nodes, 32-bit keyspace, lmax = 3, r = 10, and μ = 2.
The probability that a finger in a given interval fails is shown on the left for variable
stretch c̃ when half of the network nodes fail. The expected number of sent messages
per finger per time unit for linear, quadratic, and cubic finger maintenance intervals is
shown on the right, where the 19th finger is the first in which a node is expected.

398 L. Ribe-Baumann

expect fewer finger failures for the proposed protocol and thus a lower number
of lookup failures.

Resource depletion. Restricting ourselves to maintenance messages only, we can
use the finger maintenance interval function g and (4) to find the expected
number of maintenance messages for a finger fi per unit of time (see Figure 3):

E(# messages for fi) = E

(
1

g(Rki,min)

)
=

1∑lmax

�=0 g(�) · P (Rki,min = �)
.

By summing up these expected number of maintenance messages over all of a
node’s fingers, we obtain the expected number of maintenance messages sent by
a node during one unit of time. Note that in Figure 3, a constant finger mainte-
nance interval g(�) = tref (i.e. as in Chord) would send one message per unit of
time. Similar estimations can also be found for incoming maintenance messages.
From Figure 3 we see that for nodes using quadratic finger maintenance inter-
vals, each finger expectedly requires less than 40% of the maintenance messages
necessary with a constant finger maintenance interval (and less than 15% for
most fingers). Since maintenance overhead accounts for a large portion of the
total network load, we expect that this reduced maintenance overhead would
lead to a significant increase in the nodes’ lifetimes.

6 Evaluation

We evaluated the benefits of RBFM’s resource usage by focusing on the direct
measures of node lifetimes and lookup failures as well as the indirect measures
of the mean resource levels and physical distances used for routing and the total
number of maintenance messages sent. The results support our assumption that
better finger characteristics do indeed result in improvements in these global
behaviors. We used the simulation environment OmNET++ with the overlay
framework OverSim [13], which provides implemented overlays such as Chord
and Kademlia and uses a coordinate sets with over 200000 coordinates. We ex-
tended the functionality of Chord to integrate nodes’ resource levels and coordi-
nates, maintain a prospective links list, and use an alternative selection of fingers
using the prospective links list. We tested our system in two high-failure scenar-
ios with four resource levels, 10000 nodes with quadratically Zipf-distributed
resource availability (μ = 2), nodes’ network coordinates provided by the Over-
Sim framework, and a network coordinate diameter of approximately 2000.

In the first scenario, one-third of all nodes fail simultaneously according to
a Zipf-distribution on their resource levels, as suggested in Section 3. The sec-
ond scenario takes a simplistic approach to simulating dwindling battery power:
nodes in the bottom three levels are assigned “resources” according to their re-
source levels - 100 for level 0, 200 for level 1, and 400 for level 2 - which are then
decremented for each sent and received message. Top level nodes do not lose
resources, due to their inexhaustible resources. A node’s resource level is thus
decreased with node activity until it is depleted and the node fails. This scenario

Combining Resource and Location Awareness in DHTs 399

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

C
ho

rd

D
H

as
h+

+

Li
ne

ar
, c

=1
0

Li
ne

ar
, c

=9
0

Q
ua

d.
, c

=9
0

m
ea

n
no

de
 li

fe
tim

e

Level 0
Level 1
Level 2

0

10

20

30

40

50

60

70

80

C
ho

rd

D
H

as
h+

+

Li
ne

ar
, c

=1
0

Li
ne

ar
, c

=9
0

Q
ua

d.
, c

=9
0%

 d
el

iv
er

ed
 a

pp
lic

at
io

n
m

es
sa

ge
s

k=1
k=3

0

10

20

30

40

50

60

70

C
h

o
rd

D
H

a
s
h

+
+

L
in

e
a

r,
 c

=
1

0

L
in

e
a

r,
 c

=
9

0

Q
u

a
d

.,
 c

=
9

0%
 f

o
rw

a
rd

e
d

 m
a

in
te

n
a

n
c
e

 m
e

s
s
a

g
e

s

Level 0
Level 1
Level 2
Level 3

Fig. 4. The leftmost figure shows the mean node lifetimes for varying protocols and
resource levels for k = 1. The middle figure shows the percentage of delivered appli-
cation lookups using prospective links lists with one and three entries. The rightmost
figure shows the percent of the total forwarded maintenance messages that each level
forwarded for k = 1 and quadratic finger maintenance intervals for RBFM.

is meant to demonstrate the differences between node lifetimes and message loss
of the various protocols. All scenarios used a tref = 60 second reference interval
between finger maintenance, and RBFM used both linear and quadratic finger
maintenance functions, g(xR) = tref · (xR + 1) and g(xR) = tref · (xR + 1)2.
Stretch and the number of prospective fingers k were also varied.

A dummy application on each node generated a lookup to a random key every
60 seconds, which served to test the deliverability of messages to random nodes.
For both scenarios, the differences between the protocols’ average hop counts
for these lookups were nearly negligible. The average hop count varied by at the
most 5% with 6.5 to 6.8 hops, and the standard deviation of hops per lookup
was, at its highest, 1.8.

Due to space limitations, we do not further discuss the results for the scenario
in which one-third of all nodes simultaneously fail, but one result is noteworthy.
Message failures were comparable at around 20 − 25% for Chord, DHash++,
and RBFM with a linear finger maintenance interval for stretch c = 10, 90, but
surprisingly poor (45 − 55%) for the quadratic finger maintenance function for
c = 90. This indicates the importance of adequately frequent finger maintenance
for all levels when large scale failures can be expected.

In the second scenario, each node reduced its resources by 0.05 for each sent
and received message. New nodes were added once nodes had failed to ensure
that there were a total of 10000 nodes with a quadratic Zipf-distribution of their
resource levels. Thus, a total of between 34000 and 59000 nodes (depending on
the protocol) were introduced to the network over the measurement period of
4000 seconds. All results are based on the means of three runs which yielded

400 L. Ribe-Baumann

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
ho

rd

D
H

as
h+

+

Li
ne

ar
, c

=
10

Li
ne

ar
, c

=
90

Q
ua

d.
, c

=
90

m
ea

n
re

so
ur

ce
 le

ve
l p

er
 h

op

k=1
k=3

 350

 400

 450

 500

 550

 600

C
ho

rd

D
H

as
h+

+

Li
ne

ar
, c

=
10

Li
ne

ar
, c

=
90

Q
ua

d.
, c

=
90

m
ea

n
ph

ys
ic

al
 d

is
ta

nc
e

pe
r

lo
ok

up

k=1
k=3

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 6e+07

C
ho

rd
D

H
as

h+
+

Li
ne

ar
, c

=
10

Li
ne

ar
, c

=
90

Q
ua

d.
, c

=
90

m

ai
nt

en
an

ce
 m

es
sa

ge
s

Fig. 5. The left figure demonstrates that the mean resource level per hop with a
suitable configuration of RBFM is nearly twenty times that of Chord and ten times
that of DHash++. The middle figure shows the mean physical distance traveled by a
lookup, the right figure the total number of maintenance messages sent (and forwarded).

negligible variances. The most direct results for node robustness are the mean
node lifetimes for various levels and the application lookup deliverability, as
shown in Figure 4.

Both results were slightly surprising, in that the resource-naive DHash++
performed significantly better with respect to resources than Chord although
we expected both to behave similarly. This improvement can be rationalized by
DHash++’s prospective links list. On the one hand, finger maintenance is often
routed directly to an existing finger in the prospective links list, generating less
maintenance overhead and thus less resource usage (as also seen in Figure 5).
On the other hand, nodes with higher resource levels also have longer lifetimes,
making then more well known to other nodes by their continually backpacked in-
formation. Since this information can propagate longer, these higher level nodes
will invariably take up a larger portion of the prospective fingers lists and thus
other nodes’ fingers, giving it an indirect resource-awareness which improves
lookup deliverability.

The remaining results reflect our analysis, with lower lookup failure and higher
node lifetimes for RBFM configurations. Note that the comparative values for
the lower resource levels are our primary interest, since the highest number of
nodes belong to these volatile levels. As expected, the highest mean node lifetime
is achieved by the RBFM configuration which sends the most infrequent of the
tested maintenance messages: the quadratic finger maintenance interval. And
contrary to the first failure scenario, this configuration is clearly adequate for this
scenario’s constant churn as it has the highest message delivery rate. Figure 4
indicates that the percentage of hops routed over lower levels is significantly
reduced for RBFM, depending on the stretch. As expected from the analysis,

Combining Resource and Location Awareness in DHTs 401

a substantial portion of forwarding responsibilities have been transfered from
lower level to higher level nodes using RBFM. Figure 5 further demonstrates
the RBFM reduction in maintenance messages, with a decreasing tendency for
increasing stretch (i.e. increasing resource-awareness integrated into the resource
distance) and infrequent finger maintenance interval.

The mean resource level per hop and mean physical distance traveled of all
application lookups are shown in Figure 5. Note the increase in mean resource
level of DHash++ compared to Chord, as mentioned above. While both measures
appear to depend on the stretch, as opposed to the finger maintenance interval,
RBFM with a linear finger maintenance interval and low stretch actually has a
lower mean physical distance traveled than DHash++. This is surprising, since
we consider resource awareness and location awareness to be trade offs, and
provides motivation for further study. On the other hand, the increase in mean
resource levels per hop in Figure 5 surpassed our expectations from the analysis.
This increase is due to a combination of the higher resource fingers as in Figure 2
and the fact that higher fingers are used more frequently in routing.

7 Future Work

Using analytical examinations, we have shown that our proposed protocol builds
more robust links and significantly reduces the maintenance and routing load on
weak nodes. In addition to confirming these findings, simulation has shown that,
depending on the scenario, our protocol offers better routing robustness while
reducing the overall maintenance overhead and shifting the remaining overhead
from weak to strong nodes. This furthermore increases the mean node lifetime in
a battery-powered network scenario. RBFM provides an opportunity to allocate
storage and query load to low resource nodes while preventing delays and pro-
tecting nodes from failure due to maintenance and routing load. The protocol
developed here is essentially an extension of Chord and could be considered for
other similar DHTs. Future work should consider data replication within this
extension and the feasibility of developing a hierarchical DHT to obtain similar
resource and location awareness.

References

1. Artigas, M.S., Lopez, P.G., Skarmeta, A.F.: A comparative study of hierarchical
dht systems. In: Proceedings of the 32nd IEEE Conference on Local Computer
Networks, pp. 325–333 (2007)

2. Artigas, M., Lopez, P., Ahullo, J., Skarmeta, A.: Cyclone: A novel design schema
for hierarchical dhts. In: IEEE P2P 2005, pp. 49–56 (2005)

3. Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-
attribute range queries. In: SIGCOMM 2004, pp. 353–366 (2004)

4. Bustamante, F., Qiao, Y.: Friendships that last: Peer lifespan and its role in p2p
protocols. In: Douglis, F., Davison, B. (eds.) Web Content Caching and Distribu-
tion, pp. 233–246. Springer, Netherlands (2004)

5. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network
coordinate system. In: SIGCOMM 2004, pp. 15–26 (2004)

402 L. Ribe-Baumann

6. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M.F., Morris, R.: Design-
ing a dht for low latency and high throughput. In: Proceedings of the 1st NSDI,
pp. 85–98 (2004)

7. El Dick, M., Pacitti, E., Kemme, B.: Flower-cdn: A hybrid p2p overlay for efficient
query processing in cdn. In: EDBT 2009, pp. 427–438 (2009)

8. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. In: VLDB 2004, pp. 444–455 (2004)

9. Ganesan, P., Gummadi, K., Garcia-Molina, H.: Canon in g major: Designing dhts
with hierarchical structure. In: ICDCS 2004, pp. 263–272 (2004)

10. Garcés-Erice, L., Biersack, E.W., Felber, P., Ross, K.W., Urvoy-Keller, G.: Hierar-
chical Peer-to-Peer Systems. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.)
Euro-Par 2003. LNCS, vol. 2790, pp. 1230–1239. Springer, Heidelberg (2003)

11. Godfrey, P.B., Stoica, I.: Heterogeneity and load balance in distributed hash tables.
In: IEEE INFOCOM, pp. 596–606 (2005)

12. Gummadi, K., Gummadi, R., Gribble, S., Ratnasamy, S., Shenker, S., Stoica, I.:
The impact of dht routing geometry on resilience and proximity. In: SIGCOMM
2003, pp. 381–394 (2003)

13. Baumgart, I., Heep, B., Krause, S.: Oversim: A scalable and flexible overlay
framework for simulation and real network applications. In: IEEE P2P (2009),
http://www.oversim.org/wiki

14. Karger, D.R., Lehman, E., Leighton, F.T., Panigrahy, R., Levine, M.S., Lewin, D.:
Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web. In: STOC, pp. 654–663 (1997)

15. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: SPAA 2004, pp. 36–43 (2004)

16. Maniymaran, B., Bertier, M., Kermarrec, A.-M.: Build one, get one free: Leveraging
the coexistence of multiple p2p overlay networks. In: ICDCS 2007, pp. 33–33 (June
2007)

17. Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-Peer Information System
Based on the Xor Metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

18. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content
addressable network. In: SIGCOMM 2001 (2001)

19. Ren, S., Guo, L., Jiang, S., Zhang, X.: Sat-match: A self-adaptive topology match-
ing method to achieve low lookup latency in structured p2p overlay networks. In:
IPDPS 2004, pp. 83–91 (April 2004)

20. Saroiu, S., Gummadi, P.K., Gribble, S.D.: A measurement study of peer-to-peer
file sharing systems. In: Proceedings of the Multimedia Computing and Networking
(2002)

21. Stoica, I., Morris, R., Karger, D., Kaashoek, M., Balakrishnan, H.: Chord: A scal-
able peer-to-peer lookup service for internet applications. In: SIGCOMM 2001,
pp. 149–160 (2001)

22. Waldvogel, M., Rinaldi, R.: Efficient topology-aware overlay network. SIGCOMM
Comput. Commun. Rev. 33, 101–106 (2003)

23. Xu, Z., Min, R., Hu, Y.: Hieras: A dht based hierarchical p2p routing algorithm.
In: ICPP 2003, pp. 187–194 (2003)

24. Zhao, B.Y., Kubiatowicz, J.D., Joseph, A.D.: Tapestry: An infrastructure for fault-
tolerant wide-are location and routing. Tech. Rep. UCB/CSD-01-1141, UC Berke-
ley (2001)

25. Zoels, S., Despotovic, Z., Kellerer, W.: Cost-based analysis of hierarchical dht de-
sign. In: IEEE P2P 2006, pp. 233–239 (2006)

http://www.oversim.org/wiki

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 403–411, 2011.
© Springer-Verlag Berlin Heidelberg 2011

SQL Streaming Process in Query Engine Net

Qiming Chen and Meichun Hsu

HP Labs,
Palo Alto, California, USA

Hewlett Packard Co.
{qiming.chen,meichun.hsu}@hp.com

Abstract. The massively growing data volume and the pressing need for low
latency are pushing the traditional store-first-query-later data warehousing
technologies beyond their limits. Many enterprise applications are now based
on continuous analytics of data streams. While integrating stream processing
with query processing takes advantage of SQL’s expressive power and DBMS’s
data management capability, it raises serious challenges in dealing with
complex dataflow, applying queries to unbounded stream data, and providing
highly scalable, dynamically configurable, elastic infrastructure.

To solve these problems, we model the general graph-structured, continuous
dataflow analytics as a SQL Streaming Process with multiple connected and
stationed continuous queries; then we extend the query engine to support cycle-
based query execution for processing unbounded stream data chunk-wise with
sound semantics; and finally, we develop the Query Engine Net (QE-Net) over
the Distributed Caching Platforms (DCP) as a dynamically configurable elastic
infrastructure for parallel and distributed execution of SQL Streaming
Processes.

We extended the PostgreSQL engines for building the QE-Net
infrastructure. Our experience shows its merit in leveraging SQL and query
processing to analyze real-time, graph-structured and unbounded streams.
Integrating it with a commercial and proprietary MPP based database cluster is
being investigated.

1 Introduction

Due to the massively increasing data volumes and demands for low latency, many
enterprise applications are based on the continuous analytics of data streams which
can run orders of magnitude more efficiently than the traditional store-first-query-
later technologies [6]. Executing data intensive stream analysis by query engines
allows us to take advantage of the expressive power of SQL, the streaming
functionality of query processing, and in general, the database innovations made in
decades. This goal is very different from building a stream processing system from
scratch, with the mature DBMS technology left behind and then re-invented.

In order to support complex data streaming applications by SQL and query
engines, the following problems need to be solved.

404 Q. Chen and M. Hsu

• A single SQL query represents tree-structured operations; the query result cannot
be routed to more than one destination, and in the pipelined fashion. As a result, a
single SQL query has limited dataflow expressive power at the process level.

• A SQL query, such as one with aggregation, may not be definable on the
unbounded stream data. Essentially, an infinite data stream can only be analyzed in
granules, which requires us to apply a SQL query to the incoming data chunk by
chunk falling in consecutive windows (conceptually a chunk can be as small as a
single tuple). Given that it is also required to trace the application states
continuously across chunk boundaries for supporting sliding window based, history
sensitive operations. Meeting these two requirements is challenging since they are
conflict wrt the existing query processing techniques.

• Proving a service grid is the key to support parallel and distributed stream
analytics, which raises the challenges in continuously running, connecting and
coordinating multiple queries on multiple query engines. Further, it is necessary to
facilitate a flexible and dynamically configurable infrastructure, compared with the
statically configured Map-Reduce (M-R) system [5] for dealing with pre-
partitioned, bounded data on disks.
In this project we tackle these problems in three dimensions:

• Graph-structured SQL Streaming Process;
• Granule-based stream analytics;
• Query Engine Net (QE-Net).

We model graph-structured, continuous dataflow analytics by SQL Streaming Process
with multiple stationed, long-standing Continuous Queries (CQs). These CQs are
executed by distributed query engines and connected through multi-nodes memory
sharing.

Since the semantics of a query execution is only definable on a bounded data set,
an unbounded data stream must be processed in granule; we developed the cycle
based CQ model to allow the query to be executed cycle by cycle for processing the
unbounded stream data chunk by chunk, with each execution cycle applied to a
bounded chunk of data.

A QE-Net, as an elastic stream analytics infrastructure, is made of multiple query
engines on a server cluster with Infiniband-based high-speed interconnection. These
query engines serve as the “executors” of SQL query based dataflow operations; they
are dynamically configured for higher flexibility and availability, compared with the
statically configured Map-Reduce platform. SQL is the common language across QE-
Net. For streaming analytics, the queries are stationed CQs with data-driven executions,
and synchronized by the common data chunking criterion. The query results are
exchanged through write/read a unified share-memory across multiple server nodes
which is supported by the recently-popular Distributed Caching Platform (DCP) [1,11].

This novel platform is built by integrating and extending several technologies we
developed at HP Labs in query process [3], dataflow language [4] and stream
processing [3,5]. While staying in the SQL world we also take advantage of the
NoSQL mechanisms, such as M-R and DCP, for enhanced scalability and availability.

The rest of this paper is organized as follows: Section 2 introduces SQL Streaming
Process; Section 3 describes how to handle unbounded stream data granularly;
Section 4 overviews the QE-Net infrastructure. Section 5 concludes the paper.

 SQL Streaming Process in Query Engine Net 405

2 Graph-Structured SQL Streaming Process

Since complex streaming applications are often expressed as graph-structured
dataflows, we introduce the notion of SQL Stream Process. A SQL Streaming Process
represents a continuous dataflow application at the process level by one or more
correlated CQs, which form sequential, concurrent or nested steps. A query may
invoke User Defined Functions (UDFs) including relation-in, relation-out UDFs,
referred to as Relation-Valued Functions (RVFs) as we previously explored [4]. The
result-set of a query at a step, becomes the data source of the successor queries.

We use a simplified as well as extended Linear-Road (LR) benchmark [9] to
demonstrate our framework. The LR benchmark models the traffic on 10 express
ways; each express way has two directions and 100 segments. Cars may enter and exit
any segment. The position of each car is read every 30 seconds and each reading
constitutes an event, or stream element, for the system. A car position report has
attributes vehicle_id, time (in seconds), speed (mph), xway (express way), dir
(direction), seg (segment), etc. With the simplified benchmark, the traffic statistics for
each highway segment, i.e. the number of active cars, their average speed per minute,
and the past 5-minute moving average of vehicle speed, are computed. Based on these
per-minute per-segment statistics, the application computes the tolls to be charged to a
vehicle entering a segment any time during the next minute. As an extension to the
LR application, the traffic statuses of the 10 express ways are compared and then
reported every minute and every hour.

A simplified SQL Streaming Process example for the above traffic analysis is given
in Fig. 1 with the traffic records following the schema below, as the source data.

GPS_car_event [vehicle_id, time, xway, dir, seg, speed, …]

Fig. 1. A time-window based snapshot of the SQL Streaming Process for LR traffic analysis
where queries are pipeline cascaded by “pipes” (queues); the semantics of this snapshot is
defined on a bounded chunk of stream elements

406 Q. Chen and M. Hsu

The process contains the following queries.
• Query Q1 captures GPS events from cars with the timestamps in seconds, and

converts them to minute based tuples; these events bear the positions and speeds of
cars;

• Q21, … Q210 capture the data partitioned by express way, each partition containing
the GPS events of cars on all the segments of an express way;

• Q31, … Q310 apply to the data partitioned by express way, with each aggregating
the per-minute traffic volume and average speed on every segment of an express
way;

• Q51, … Q510 each computes the per-minute, per-segment tolls of an express way
based on the above information; the tolls are applied to the next minute;

• Q6 analyzes and compares the traffic status of those express ways based on the
above traffic statuses and tolls;

• Q7 and Q8 generate two kinds of traffic analysis reports, one on the minute basis
and the other on the hourly basis.

The pseudo specification of this SQL Streaming Process is illustrated below where
the UDFs involved in queries are registered with the query engine in the regular way
which is not shown here. For simplicity we represent a query variable, e.g. the result
of Qi using the corresponding query name with prefix $, e.g. $Qi.

 Create SQL Streaming Process LR_Traffic_Analysis {
 Source { STREAM GPS_ Event_Stream };

 Q1 := SELECT vehicle_id, FLOOR(time/60)::INTEGER AS minute, xway, dir, seg, speed
 FROM GPS_ Event_Stream
 [GRANULE: 60 seconds]

 Q2i := SELECT q1.vehicle_id, q1.minute, q1.xway, q1.dir, q1.seg, q1.speed
 FROM $Q1 q1 WHERE q1.xway = I
 [GRANULE: 1 minute, MAP HASH PARTITION KEY: vehicle_id]
…..

Q3i := SELECT minute, xway, dir, seg,
 AVG(speed) AS avg_speed, COUNT(DISTINCT vehicle_id) AS cars_volume
 FROM $Q2i GROUP BY minute, xway, dir, seg /* for unique minute and xway */
 [GRANULE: 1 minute, REDUCE GROUP KEY: dir, seg]
……

Q5i := SELECT minute, xway, dir, seg, avg_speed, cars_volume,
 Calc_Toll (avg_speed, cars_volume) FROM $Q3i
……

Q6 := SELECT * FROM Analyze ($Q51, $Q52, …, $Q510)
 [INPUTMODE: BLOCK, GRANULE: 1 minute]

Q7 := SELECT * FROM Report_by_Minute ($Q6)
 [INPUTMODE: BLOCK, GRANULE: 1 minute]

 Q8 := SELECT * FROM Report_by_Hour ($Q6)
 [INPUTMODE: BLOCK, GRANULE: 60 minutes]
}

In fact, the queries Q2, Q3, Q5 for an express way are specified as a parameterized
sub-process, for simplicity we do not go through the detailed syntax here.

Let us first consider a snapshot of this dataflow process on one chunk of the stream
data, e.g. the events falling in the one-minute time boundary; in this case the queries

 SQL Streaming Process in Query Engine Net 407

behave like one-time queries. Then this dataflow process has definable semantics on
the bounded input data, so are the involved queries. The aggregation oriented queries
such as Q3, Q8, can be completed on such a bounded chunk of data (otherwise if the
input data are infinite the aggregation is undefinable). This indicates that to apply a
CQ or a dataflow process on infinite stream data, it is necessary to punctuated data
into chunks as specified by the GRANULE property.

Now let us assume that the input stream data are infinite. In this case, all the
queries are CQs running continuously. Apply a CQ to a data stream returns a data
stream as well; therefore the “query variables” are themselves streams. However,
when apply a CQ to the input stream chunk by chunk, the output stream represents the
sequence of chunk-wise data processing results, which we referred to as “granular
stream processing” and will be described in more detail later.

The functions used in Q6, Q7, Q8 are RVFs we discussed in [4] which take
relations (query results) as input; however, as GRANULE is specified, these functions
take chunks of the corresponding relations as their input.

A dataflow process describes the operations orchestrated along the data flow paths.
A streaming process is a dataflow process with unbounded input data streams. In a
SQL Streaming Process described above, the component queries are CQs with long-
standing query instances.

Capture Stream Data by CQ. To fuel queries continuously with unbounded data, we
replace the database table, which contains a set of tuples on disk, by the special kind of
table function, called Stream Source Function (SSF) that returns a sequence of tuples to
feed a query without first storing on disk. Accordingly, the query engine's table-scan
access method is replaced by a special kind of function-scan. A SSF can listen or read
data/events sequence and generate stream elements tuple by tuple continuously.

Connect “Stationed” CQs by “Pipes”. Based on our approach, a CQ is executed as
a long-standing query instance running continuously, rather than as multiple one-time
query instances. To describe the execution environment of CQs, we introduce the
notion of station for hosting a query, and the notion of pipe as the FIFO stream
container for connecting stations. At a minimum, a station is specified with a name,
the hosted CQ, the outgoing pipes, and the query engine for executing the CQ; a pipe
is defined with an ID, a relation schema for type-preservation, an origin and a
destination. A pipe is an abstract object that can be instantiated to a queue or a stream
table (in memory or on disk). The results of a query may be replicated to multiple
pipes for multiple destination stations.

3 Analyzing Unbounded Stream Data Granularly

3.1 Chunk-Wise Stream Processing by Cycle-Based Continuous Queries

The difficulty of using regular SQL queries for stream processing is that a SQL query
is not definable on unbounded data since it cannot return complete result, and if the
query involves aggregation, it never returns any result. Our solution is to cut the input
stream data into a sequence of chunks with each chunk representing a bounded data
set on that a query is definable, and after processing a chunk of data, to rewind the
query instance for processing the next chunk of data.

408 Q. Chen and M. Hsu

We introduce the notion of Cycle-based CQ (CCQ) to characterize such queries. In
general, the execution of CCQ on an infinite stream is made in a sequence of cycles,
one on each stream chunks. To allow this query to apply to the stream data one chunk
at a time, and to return a sequence of chunk-wise query results, the input stream. To
support cycle based query execution for chunk-wise data processing, we developed
the cut-and-rewind query execution mechanism, namely, cut a query execution based
on the cycle specification and then rewind the state of the query without shutting it
down, for processing the next chunk of stream data in the next cycle.

Cut is originated in the SSF at the bottom of the query tree. SSFs have a general
form of STREAM(SS, cycle-spec) specifies that the stream source SS is to be “cut”
into an unbounded sequence of chunks SSC0, SSC1, …, where all tuples in SSCi occur
before any tuple in SSCi+1 in the stream. The “cut point” is specified in the cycle-spec.
Upon detection of end-of-cycle condition, the SSF signals end-of-cycle to the query
engine resulting in the termination of the current query execution cycle. In general the
end of a cycle is determined when the first stream element belonging to the next cycle
is received; that element will be cached to be processed first in the next cycle.

Upon termination of an execution cycle, the query engine does not shut down the
query instance but rewinds it for processing the next chunk of stream data. Rewinding
a query is a top-down process along the query plan instance tree, with specific
treatment on each node type. In general, the intermediate results of the standard SQL
operators (associated with the current chunk of data) are discarded but the application
context kept in UDFs (e.g. for handling sliding windows) is retained. Since the query
instance remains alive across cycles, data for sliding-window oriented, history
sensitive operations can be kept continuously. Bringing these two capabilities together
is the key in our approach.

3.2 Granule-Based Execution of Continuous SQL Stream Process

In a SQL Streaming Process, every query is a stationed CQ that uses a SSF to get the
stream data from its successors. Under the cut-and-rewind mechanism, a CQ is
running cycle by cycle and therefore referred to as Cycle-based CQ (CCQ).

• The default granule is one tuple; a CQ with the default granule and without
aggregation, should not be cut and rewound.

• However, as a rule any query on infinite stream that is defined on punctuated input
or involves aggregation, such as Q3, Q8… above, must be defined as a CCQ, which
is indicated by the GRANULE property.

• A CCQ continuously generates an unbounded sequence of query results, one on
each chunk of the stream data.

• The paces of dataflow wrt timestamps are different at different operators (queries).
The input tuples to Q1 is time-stamped by second, to others is by minute, and after
Q8 is by hour.

A query, including a CCQ, may have PER_TUPLE and BLOCK input modes, with
the default mode as PER_TUPLE. A query, e.g. Q8, in the BLOCK mode means that
it cannot generate results until reading in the whole relation or chunk (if it is a CCQ),
which is orthogonal to chunking.

 SQL Streaming Process in Query Engine Net 409

3.3 Data Parallel Execution of Sequential Operators

We support scalability at two levels – process level and operation level, by two
partitioning mechanisms. Process partitioning is to instantiate multiple instances of a
SQL streaming process or sub-process and deploy them on different engine sets for
parallel execution. Query partitioning is to support the data-parallel execution of one
or more queries connected sequentially. In the above GPS events based traffic
analysis example, for a single express way the stream data are hash partitioned by
vehicle_id across the nodes for running Q2, and Q2 and Q3 are paired for M-R
computation as illustrated in Fig. 2. This data-parallel execution is planned and
launched by the system based on the process specification.

Back to the above GPS events based traffic analysis example, the Map queries
generate local aggregates; the Reduce queries fuse the local aggregation results.
The Map queries are cut and rewound every 60 seconds (1 minute), with each
running cycle by cycle for providing minute based partial aggregates. The Map
results are shuffled to the Reduce sites after each execution cycle based on the
network replicated hash-tables. The Reduce query is again equipped with a SSF for
receiving the Map results. The Map results provide timestamps for the Reduce
operation to be synchronized. Both Map and Reduce queries run in the per-minute
cycle.

Fig. 2. The SQL Streaming Process is planed, parallelized for data-parallel execution of its
sequential building blocks based on the Map-Reduce computation model

410 Q. Chen and M. Hsu

4 Query Engine Net for Executing SQL Stream Process

We execute a SQL Streaming Process by the Query Engine Net (QE-Net) running on
multiple server nodes. The QE-Net is a distributed, scalable, pluggable infrastructure
underling the dataflow programming paradigm to develop cloud applications for
processing continuous unbounded streams of data. On this goal we share the spirit of
Microsoft Orleans [2], Yahoo! S4 [10], Microsoft Dryad [8], and IBM Spade [7].
However, different from these systems, the common language of our infrastructure is
SQL, and the basic executors are query engines which allow us to compose various
SQL compliant engines and to take advantage of SQL’s expressive power and query
processing technology for stream analytics.

A QE-Net is made of multiple query engines (query nodes) on a server cluster with
Infiniband-based high-speed interconnection, with the following major characteristics.

• The QE-Net is a grid of analysis engines serving as “executors” of SQL-based
dataflow operations. The primary function of the QE-Net is to execute graph-
based data streaming, rather than to offer distributed data stores.

• The query engines are dynamically configured for executing a SQL Streaming
Process, which, compared with the statically configured Map-Reduce platform,
offers enhanced flexibility and availability. Note that a query engine is able to
execute multiple CQs belong to different processes, and therefore can be used in
the execution of multiple processes.

• The common language across QE-Net is SQL which makes it homogeneous at the
streaming process level; the servers can be heterogeneous as far as they run the
query engines with the required capability.

• For streaming analytics, the queries are stationed CQs with execution driven by
infinite stream data; they synchronize by the understood data granule criterion.

To connect multiple queries efficiently in a graph-structured analytic SQL dataflow
process, providing a memory sharing mechanism for caching the source and
destination data of these queries is a reasonable choice, and since the dataflow process
is executed by the query engines running on multiple server nodes, a unified view to
the memory on distributed servers is the key. To provide such “everyone talks to
sharable data cache” programming paradigm, we adopt Distributed Caching Platform
(DCP) [1], such as Memcached [11].

5 Conclusions

In this project we tackle these problems in three dimensions. First, we model graph-
structured streaming analytics as SQL Streaming Process composed with multiple
connected continuous queries. Next, we extend the query engine for dealing with
infinite stream data granularly. Finally, we integrate the Query Engine Net (QE-Net)
and the Distributed Caching Platform (DCP) as a highly scalable and elastic
infrastructure for the parallel and distributed execution of SQL Streaming Processes.

This novel platform is prototyped, using PostgreSQL engines, by integrating and
extending several technologies we developed at HP Labs. Integrating it with a
commercial MPP based analytic database cluster, is being investigated.

 SQL Streaming Process in Query Engine Net 411

References

1. Nori, A.: Distributed Caching Platforms. In: VLDB (2010)
2. Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic

Foundations and Query Execution. VLDB Journal 2(15) (June 2006)
3. Chen, Q., Hsu, M., Zeller, H.: Experience in Continuous analytics as a Service (CaaaS). In:

EDBT (2011)
4. Chen, Q., Hsu, M.: Continuous MapReduce for In-DB Stream Analytics. In: Proc. CoopIS

(2010)
5. Dean, J.: Experiences with MapReduce, an abstraction for large-scale computation. In: Int.

Conf. on Parallel Architecture and Compilation Techniques. ACM (2006)
6. Franklin, M.J., et al.: Continuous Analytics: Rethinking Query Processing in a Network

Effect World. In: CIDR (2009)
7. Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., Doo, M.C.: SPADE: The System S

Declarative Stream Processing Engine. In: ACM SIGMOD (2008)
8. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel

programs from sequential building blocks. In: EuroSys 2007 (March 2007)
9. Jain, N., et al.: Design, Implementation, and Evaluation of the Linear Road Benchmark on

the Stream Processing Core. In: SIGMOD (2006)
10. Neumeyer, L., Bruce, R., Anish, N., Anand, K.: S4: Distributed Stream Computing

Platform. In: KDCloud 2010, Sydney, Australia (December 2010)
11. Memcached (2010), http://www.memcached.org/

Instance-Based ‘One-to-Some’ Assignment of Similarity
Measures to Attributes

(Short Paper)

Tobias Vogel and Felix Naumann

Hasso Plattner Institute, University of Potsdam, Germany
{firstname.lastname}@hpi.uni-potsdam.de

Abstract. Data quality is a key factor for economical success. It is usually de-
fined as a set of properties of data, such as completeness, accessibility, relevance,
and conciseness. The latter includes the absence of multiple representations for
same real world objects. To avoid such duplicates, there is a wide range of com-
mercial products and customized self-coded software. These programs can be
quite expensive both in acquisition and maintenance. In particular, small and
medium-sized companies cannot a�ord these tools. Moreover, it is diÆcult to
set up and tune all necessary parameters in these programs. Recently, web-based
applications for duplicate detection have emerged. However, they are not easy
to integrate into the local IT landscape and require much manual configuration
e�ort.

With DAQS (Data Quality as a Service) we present a novel approach to sup-
port duplicate detection. The approach features (1) minimal required user interac-
tion and (2) self-configuration for the provided input data. To this end, each data
cleansing task is classified to find out which metadata is available. Next, similar-
ity measures are automatically assigned to the provided records’ attributes and
a duplicate detection process is carried out. In this paper we introduce a novel
matching approach, called one-to-some or 1:k assignment, to assign similarity
measures to attributes. We performed an extensive evaluation on a large training
corpus and ten test datasets of address data and achieved promising results.

Keywords: Database Management, Database Applications, Data mining, Match-
ing, Intrinsic, Data Quality, matching, duplicate detection, similarity measures,
data cleansing.

1 The Need of Data Quality

The process of searching through a database and looking for pairs of records that have
a high similarity and thereby identifying multiple representations of same real-world
objects is called duplicate detection. To perform eÆcient duplicate detection, the chal-
lenge is to develop good similarity measures and to apply them on the corresponding
attributes in the data to be cleaned. The mapping of similarity measures to attributes is
an assignment problem.

Traditionally, this assignment is created manually, which is time-consuming and te-
dious. The degree of automation in the duplicate detection process increases when those
assignments are generated automatically.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 412–420, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

Instance-Based ‘One-to-Some’ Assignment of Similarity Measures to Attributes 413

Another benefit of the service paradigm comes with the multi-tenancy: the service
can learn and improve the assignment quality when being exposed to many di�erent
datasets better than it could do in a single client scenario.

Data that are to be de-duplicated come in various guises. For example, if the data
is not in relational format, it is unclear which attributes to compare. If the datatype or
semantics are unknown, it is hard to decide how to compare di�erent attributes. We
address these challenges towards a service-based duplicate detection technique with-
out human interaction, which is integrated into the DAQS (Data Quality as a Service)
project. In this paper, we propose

– A classification of di�erent duplicate detection tasks based on the amount of avail-
able meta data

– A technique to classify attributes according to their semantics in the schema
– The novel 1:k assignment problem between attributes and similarity measures and

an extended version of the Hungarian Algorithm to solve it
– A comprehensive evaluation on ten datasets showing the feasibility and e�ective-

ness of our approach

The envisioned duplicate detection service works in three phases, as illustrated in Fig. 1.
Each phase is described in detail in the following sections. In the problem classification
phase (Sec. 2) the provided records are analyzed to determine their format and how
to treat them during further processing, e. g., whether information retrieval techniques
have to be applied, whether schema information are present, etc. In the subsequent
attribute classification phase for each attribute a corresponding similarity measure is
found automatically using the 1:k assignment technique. This phase is explained fur-
ther in Sec. 3 and is the main focus of this paper. Section 4 presents an evaluation of
the assignment results. The third duplicate detection phase executes the duplicate de-
tection logic, i. e., the algorithm that decides against which pairs of records to apply the
similarity measures. It is not the main focus of this paper and is thus described in Sec. 5
together with related work. Finally, Sec. 6 summarizes the approach and proposes future
work.

2 Problem Classification

Duplicate detection relies on knowledge about what the attributes are, which attributes
to compare and how to compare the attributes’ values. Consequently, result quality de-
grades the less information is available.

Figure 2 shows a severity-classification of the problem, depending on the type of
available metadata. Optimal conditions ((1) in Fig. 2) are present, if the semantics of
the attributes are clear. In particular, we know not only the primitive datatype (String,
Integer, etc.) but the concrete semantics (name, phone, date-of-birth, etc.). The compar-
ison function as well as the mapping between the tuple’s attributes can be derived from
them. Consequently, the duplicate detection run can be performed nearly automatically.

In class (2), semantic classes have to be assigned by a human expert, which leads to
the appropriate comparison functions. For instance, compare names using the Jaccard
similarity measure.

414 T. Vogel and F. Naumann

Client

Records 1. Problem
Classification

2. Attribute
Classification

Correspon-
dence Matrix

1:k Mapping

3. Duplicate
Detection

Duplicate
Record Pairs

Classes

Reference/
Example

Data

K Con-
straints

Similarity Metrics

Fig. 1. Workflow and architecture of the duplicate detection service

In class (3), a mapping between the values of di�erent records has to be first es-
tablished. Many methods are shown by Euzenat and Shvaiko [2] that use data types,
attribute names, or values.

In class (4), the elements are structured, but the structure is unknown. To separate
the elements’ attributes from each other, information retrieval techniques have to be
used.

yes

yes no

no

Semantics?

yes no

(1)
Near-automatic

duplicate
detection task

(2)
Single,

homogeneous
list

(3)
Multiple

heterogeneous
records

(4)
Structured
documents

Separator?

Attribute Mapping?

Fig. 2. Four di�erent classes of duplicate detection are illustrated in a tree

With our approach of automatically determining suitable similarity measures we can
transform Class 2 problems to Class 1 problems i. e., we assume having attribute map-
pings and separators.

Instance-Based ‘One-to-Some’ Assignment of Similarity Measures to Attributes 415

3 Attribute Classification

The goal of attribute classification is to assign appropriate, highly specialized similarity
measures to the attributes of the input data based on their semantics: Two instances of
a given name should be compared di�erently than two email addresses.

The process of creating such assignment between attributes and classes (i. e., seman-
tics) is called classification. Similarity measures are directly derived from those classes.
Note, that two di�erent classes may imply the same similarity measure, e. g., state and
country. An assignment consists of correspondences between attributes and classes.

Classification is performed in two phases. First, for each column, the dataset’s values
are compared against a set of reference data for di�erent classes Second, another clas-
sification is performed with the help of feature vectors. based on example data. Each of
the phases returns a set of possible correspondences represented as a correspondence
matrix.

Note that this approach is mostly language-independent. We do not know the lan-
guage or country used in the dataset. However, we provide a large variety of classes
with di�erent abstraction, e. g., German street names vs. general street names as well as
multi-lingual reference and training sets. We trust the algorithm to find the most appro-
priate class and thereby identify the language. Furthermore, for some classes, language
is irrelevant, such as telephone numbers or email addresses.

Phase 1: Dictionary-based Classification. To calculate the similarity between an at-
tribute of the input data and a class, we determine the ratio of the attribute’s values T
that also appear in the class’ reference dataset R divided by the total number of (non-
NULL) attribute values T :

�T � R�
�T �

Ratios below a certain class-specific threshold (0.8 was a good threshold for most of
the classes) are set to zero. We derive a preliminary assignment from this matrix with a
maximum bipartite graph matcher, described in detail in Sec. 3.

Phase 2: Machine Learning Classification. Not all classes can be identified using a
(finite) reference dataset, e. g., telephone number or family name. Therefore, we use
example values available for those classes to learn the particulars of those classes for
classification.

We define a set of boolean features such as single and multiple character, 2-gram and
lookup features, which are applied to each single attribute value, thus creating feature
vectors. We use the common heuristic that there is a high probability that feature vectors
for values from the same attribute�domain are similar.

Once input and example data are represented by feature vectors, the input data can
be classified based on the example data. We use the Naı̈ve Bayes classifier of Weka [4]
and classify each attribute value separately.

Correspondence Matrix. Both the dictionary-based and the machine learning classi-
fication result in a correspondence matrix, each. A correspondence matrix contains n
attributes and m classes, with n � m without loss of generality. The matrix contains all

416 T. Vogel and F. Naumann

possible correspondences between attributes and classes and describes the probability
of each correspondence to appear in the final assignment.

Based on such a matrix, it is not trivial to determine which attribute to assign to
which class. Conceptually, the problem corresponds to the weighted bipartite matching
problem: Given the correspondence matrix with assignment weights, assign to each
attribute a class such that no class participates in more than one assignment and the
sum of weights is maximized. Domain knowledge allows us to restrict the number of
matches to certain classes. For instance, we might want to encode that a person has no
more than two given names but gender can only appear once. Thus, we redefine the
matching problem in Sec. 3.

To incorporate such restrictions in the matching problem, we propose the 1:k assign-
ment which is basically a 1:n assignment, but with varying n for each class.

1:k Assignment and Extended Hungarian Algorithm. Assume an acyclic, directed, bi-
partite graph G � (S � T� E) with a set S of source nodes si, i � [1� n], a set T of target
nodes t j, j � [1�m], and a set E of edges ei j, i � [1� n]� j � [1�m] with �E� � n �m. In our
application, source nodes are the attributes, target nodes are the classes, and edges are
the correspondences between them. Further, assume a correspondence matrix C with
entries ci j quantifying the similarity between source node si and target node t j (c. f.
Tab. 1 without the columns and values in italics).

Assume also a set K of k-constraints k j� k � 1� � � � �m where each k j represents the
number of assignments that are allowed for target node t j. Given the input stated above,
the 1:k assignment problem is to find a mapping M with nodes

mi j �

�������
0 if ei j takes not part in the mapping

1 if ei j takes part in the mapping

where
n�

i�1

mi j � k j (� j � 1� � � � �m)

that maximizes the overall similarity of the selected participating nodes in the mapping:

max

��������
�

�i j

ci j � mi j

	

�

The final assignment M is calculated using a global matching algorithm on the cor-
respondence matrix. This mapping task can be solved with an extended version of
the Hungarian Algorithm [7]. The Hungarian Algorithm solves the assignment prob-
lem [9], which does not allow the multi-mappings of multiple attributes to the same
class. It also requires a square correspondence matrix, so n � m. In general, this is
not the case (m � n), so the extension is to pad C in order to construct C�. To this
end (m � n) additional rows have to be added representing non-existing source nodes:
c�i� j � 0 �n � i� � m.

The k-constraints are incorporated by duplicating columns of C�. The value of k j

determines the total number of additional copies of the column. Note that this column

Instance-Based ‘One-to-Some’ Assignment of Similarity Measures to Attributes 417

duplication requires
�

k
�
�K k j � a additional rows, since the matrix becomes broader,

but still has to comply to the squareness condition. In total, (m � n) � a rows have to
be added to generate a squared correspondence matrix with duplicated columns. See
Tab. 1 for an example C� with K � �k1 � 3� k3 � 2� ���	. It does not matter, where the
additional columns or rows are inserted. ki is also allowed to be infinite for classes that
may appear arbitrarily often (e. g., boolean flags may be assigned unlimitedly). Since
ki cannot actually be set to infinity, is is suÆcient to set ki to the number of source
attributes n. This gives every attribute the chance to become matched to this respective
class.

Table 1. Extended correspondence matrix, now squared

Attributes (Source)�
Classes (Target) Firstname Firstname Firstname Lastname Phone Phone Address City

Fullname 0.8 0.8 0.8 0.6 0.1 0.1 0.2 0.3
Telephone 0.0 0.0 0.0 0.0 0.9 0.9 0.2 0.1

Street 0.2 0.2 0.2 0.4 0.1 0.1 0.9 0.7
House Number 0.0 0.0 0.0 0.0 0.7 0.7 0.7 0.2

dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dummy 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

With this squared correspondence matrix C�, the thus extended Hungarian Algorithm
can be used to create a 1:k assignment: M�. However, the result has to be modified. Un-
fortunately, the Hungarian Algorithm involves all source attributes into the mapping,
even those si� for which i� � n. Since the final mapping M shall have the same dimen-
sions n
m, M� has to be transformed into M. This is achieved by removing all matches
with the dummy si� .

(mi j) � (m�

i� j) i � i� � 1� � � � � n; j � 1� � � � �m

After the mapping M is finally created, each attribute got a class assigned. We can now
directly derive concrete similarity measures for the attributes of the input data. Sub-
sequently, pairs of input records can be examined for duplicates using these similarity
measures.

4 Evaluation

This paper describes the assignment of semantics to attributes in the context of duplicate
detection. Therefore, we evaluate the classification results, rather than the e�ectiveness
of the duplicate detection.

For classification we need instance data. We established ten test datasets with address
data from various sources, described and available for download1. The datasets contain
14 attributes, on average, each dataset providing at least 50,000 tuples.

1 http://www.hpi.uni-potsdam.de/naumann/data

http://www.hpi.uni-potsdam.de/naumann/data

418 T. Vogel and F. Naumann

The results of the complete classification process are shown in Tab. 2. As proposed by
Euzenat and Shvaiko [2] we use F-Measure to describe the overall matching compliance
to the manually defined gold standard. Columns 3 and 4 display the number of correctly
classified attributes and the corresponding F-Measure, respectively.

Table 2. Combined classification results (dictionary and machine learning with Naı̈ve Bayes)

Dataset Number of
attributes

Correct
Matches

F-Measure Close Matches Close Match
F-Measure

Fakenames 21 15 0.71 �3 0.86
Corporate 11 9 0.81 �1 0.91

Crawl1 (KT) 10 8 0.80 �0 0.80
Crawl2 (LN) 13 6 0.46 �2 0.62
Crawl3 (Po) 8 8 1.00 �0 1.00

Crawl4 (RW) 16 8 0.50 �3 0.69
ListB 9 5 0.56 �1 0.67
ListC 7 4 0.57 �1 0.71

Voters 23 12 0.52 �3 0.65
Mines 18 10 0.56 �2 0.67

In most cases, the majority of attributes has been successfully classified. The misses
occur on more unusual attributes, such as credit card verification codes, UPS tracking
numbers, religion, or occupation. They are not believed to be of utmost importance for
the duplicate detection process.

The derived similarity measure might not accurately make use of all the special
characteristics of phone numbers, but might still achieve sound results. Therefore, we
additionally counted “close matches”, such as weight�housenumber, place-of-birth�city-
state-country-combination, or number of children�month (numeric). They are added to
the strict matches and presented in Col. 5 in Tab. 2 with a corresponding F-Measure
column, increasing the average F-Measure from 0.61 by 20 % to 0.73.

We also compared 1:k matching results against (unbounded) 1:n matching. With
the chosen set of k-constraints, 1:k assignments are never worse than 1:n assignments.
There are cases in which 1:k yields better results, especially when the classifier itself
is more simplistic. This is positive, because in general, it cannot be assumed that the
classes are always known and that example data is available. Such lack results in re-
duced classification quality and 1:k raises the F-Measure of the final assignment.

Finally, Fig. 3 shows a comparison of di�erent machine learning algorithms and the
achieved F-Measure on all datasets. Naı̈ve Bayes provides the best cost-benefit tradeo�
and was used for all the experiments. The figure’s legend shows the average F-Measure
and the average classification time for each dataset and each classifier.

5 Related Work

Duplicate Detection. EÆcient duplicate detection is a process that consists of two
merely independent parts. First, an algorithm picks promising pairs of the set of records.
Well-known heuristics are the sorted neighborhood method by Hernandez and Stolfo [5]

Instance-Based ‘One-to-Some’ Assignment of Similarity Measures to Attributes 419

Fig. 3. The influence of di�erent classifiers on the result is small, however the Naı̈ve Bayes clas-
sifier is one order of magnitude faster than the others. The used classifiers are Naı̈ve Bayes,
Bagging, and Ensemble of Nested Dichotomies (END).

and its extensions, such as Monge and Elkan’s [6], as well as blocking or indexing ap-
proaches [3].

Second, a pair of duplication candidates has to be examined using a similarity mea-
sure. In case of relational data, it is common that (a subset of) the attributes are com-
pared. With our approach, highly specialized measurements can be used. An overview
on both areas can be found in [8] or [1].

Schema Matching. Schema matching is the technique of creating and selecting cor-
respondences between two sets of elements, typically attributes of relations. A elab-
orate survey was written by Euzenat and Shvaiko [2]. Instance mappings are used in
iFuice [11], where knowledge about explicit connections between di�erent schemas is
exploited. However, in the use case of customer data, those hyperlink connections are
not available.

6 Conclusion and Outlook

We presented a technique for the automatic assignment of semantic classes to attributes
of a given dataset. The only prerequisite is the availability of training data for the de-
sired domain in form of examples and�or reference data. The matching can be further
improved by providing k-constraints for the 1:k matching. With this matching approach,
the most relevant attributes can be identified and appropriate similarity measures can be
derived.

For future work, we plan to extend the knowledge connected with the semantic
classes. For example, the weighting of attributes should be di�erent (family name vs.
country) and some attributes might even be ignored, because they do not carry benefi-
cial information for the similarity measure, e. g., IDs. This can be achieved by another
learning phase with the use of known duplicate records. To further ease the usefulness
for schema matching, the semantic classes will be augmented with a well-known vo-
cabulary, e. g. with WordNET or YAGO. This helps in postprocessing steps and fosters
interoperability.

420 T. Vogel and F. Naumann

Relations between di�erent attributes should be taken into consideration. I. e., the
presence of English street, city, and state names implies the existence of English ZIP
codes. Another way of connecting them is the matching to composite attributes (e. g.,
given and family name together as full name). Finally, privacy aspects can be incor-
porated by not using the original values but transforming them into a metric space on
client side [10].

Acknowledgements. We thank Dustin Lange for his valuable feedback and help on the
machine learning aspects of this work.

References

1. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE
Transactions on Knowledge & Data Engineering (TKDE) 19 (2007)

2. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
3. Ferro, A., Giugno, R., Puglisi, P.L., Pulvirenti, A.: An EÆcient Duplicate Record Detection

Using q-grams Array Inverted Index. In: Bach Pedersen, T., Mohania, M.K., Tjoa, A.M.
(eds.) DAWAK 2010. LNCS, vol. 6263, pp. 309–323. Springer, Heidelberg (2010)

4. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA
data mining software: An update. SIGKDD Explororation Newsletter 11(1) (2009)

5. Hernández, M.A., Stolfo, S.J.: The merge�purge problem for large databases. In: Proceedings
of the ACM International Conference on Management of Data (SIGMOD), pp. 127–138
(1995)

6. Monge, A., Elkan, C.: An eÆcient domain-independent algorithm for detecting approxi-
mately duplicate database records. In: Proceedings of the SIGMOD Workshop on Data Min-
ing and Knowledge Discovery, DMKD (1997)

7. Munkres, J.: Algorithms for the assignment and transportation problems. Journal of the So-
ciety for Industrial and Applied Mathematics (SIAM) 5(1) (1957)

8. Naumann, F., Herschel, M.: An Introduction to Duplicate Detection. Morgan & Claypool
Publishers (March 2010)

9. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity.
Prentice-Hall (1982)

10. Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A.K.: Privacy preserving schema and
data matching. In: Proceedings of the ACM International Conference on Management of
Data, SIGMOD (2007)

11. Thor, A.: Automatische Mapping-Verarbeitung von Web-Daten. Dissertation, Institut für In-
formatik, Universität Leipzig (2007)

Matching and Alignment: What Is the Cost of

User Post-Match Effort?�

(Short Paper)

Fabien Duchateau1, Zohra Bellahsene2, and Remi Coletta2

1 Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway

fabiend@idi.ntnu.no
2 LIRMM - Université Montpellier 2,

161 rue Ada, 34392 Montpellier, France
{firstname.lastname}@lirmm.fr

Abstract. Generating new knowledge from scientific databases, fusion-
ing products information of business companies or computing an overlap
between various data collections are a few examples of applications that
require data integration. A crucial step during this integration process
is the discovery of correspondences between the data sources, and the
evaluation of their quality. For this purpose, the overall metric has been
designed to compute the post-match effort, but it suffers from major
drawbacks. Thus, we present in this paper two related metrics to com-
pute this effort. The former is called post-match effort, i.e., the amount
of work that the user must provide to correct the correspondences that
have been discovered by the tool. The latter enables the measurement of
human-spared resources, i.e., the rate of automation that has been
gained by using a matching tool.

1 Introduction

Data integration has now been studied for years, and many applications still
make this research field an interesting challenge. Discovering correspondences
between the data sources is one of the first steps of this integration process. As
pointed out by [1], the quality obtained during this step mainly determines the
quality of the whole data integration process. For this reason, matching commu-
nities (both schema and ontology) have been very prolific in producing matching
tools during the last decades to automate the discovery of correspondences. Many
surveys [2–5] and books [6, 7] reflect this interest.

To evaluate the results produced by their tools, these communities mainly
use common quality metrics such as precision, recall, and F-measure. However,
the aim of (semi-)automatic matching is to avoid a manual, labor and error-
prone process. The post-match effort, which consists of checking the discovered
� Supported by ANR DataRing ANR-08-VERSO-007-04. The first author carried out

this work during an ERCIM “Alain Bensoussan” Fellowship Programme.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part I, LNCS 7044, pp. 421–428, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

422 F. Duchateau, Z. Bellahsene, and R. Coletta

correspondences and searching for the missing ones, should therefore be reduced
at most. Yet, the available metrics hardly provide an estimation of this effort.
F-measure is the harmonic mean between precision and recall, while it should
add the correction cost of both measures. On the other hand, the overall (or
accuracy) is a first attempt to evaluate the post-match effort [8].

Consequently, we propose a post-match effort measure and its inverse hu-
man spared resources which tackle these issues. It estimates the number of
user interactions required to correct both precision and recall (i.e., to manually
obtain a 100% F-measure). Thus, it takes into account the effort to (in)validate
discovered correspondences, but also the search for missing ones between the
data sources. This measure is sufficiently generic to be converted into the range
[0, 1] or in time units (e.g., seconds) and it does not require other specific inputs
than those needed to compute precision, F-measure or overall.

2 Preliminaries

Correspondences are semantic links between elements of different data sources
(schemas, ontologies) which represent the same real-world concept. Contrary to
[9], evaluating the quality of the mapping (i.e., the transformation function be-
tween instances of one element into those of another element) is out of scope of
this paper since we focus on correspondences. We also limit correspondences to
1:1 (i.e., one element is matched to only one element) or to 1:n (i.e., one element
is matched to several elements). Currently, only a few tools produce n:m corre-
spondences. Figure 1(b) depicts an example of two schemas (from hotel booking
web forms) and the correspondences discovered by a matching tool.

(a) Expert correspondences (b) Correspondences discovered by a tool

Fig. 1. A running example : hotel booking webforms

A matching dataset is composed of a set of data sources (schemas, ontolo-
gies) to be matched and the set of expert correspondences. This set of expert

Matching and Alignment: What Is the Cost of User Post-Match Effort? 423

correspondences is considered as complete and trustful. Such datasets, also called
testbeds or test collections are used by most evaluation tools as an oracle, against
which they can compare different approaches or tools. To evaluate the match-
ing quality, three measures are commonly accepted in the literature. Precision
calculates the proportion of correct correspondences extracted among the discov-
ered ones. Another typical measure is recall which computes the rate of correct
discovered correspondences among all correct ones. F-measure is a trade-off
between precision and recall. We propose to complete these measures with our
post-match effort measure, which is presented in the next section.

3 Post-Match Effort Metric

We present in this paper two related metrics: post-match effort and human-
spared resources.

3.1 Intuition and Running Example

A set of discovered correspondences, provided by a schema matching tool, has
two issues, namely (i) incorrect discovered correspondences and (ii) missing (cor-
rect) correspondences. Users first have to check each correspondence from the
set, either to (in)validate or complete it (in case of 1:n correspondences). Then,
they have to browse the schemas and discover the missing correspondences. Thus,
we propose to evaluate this user post-match effort by computing the number
of user interactions to reach a 100% F-measure, i.e., to correct the two pre-
viously mentioned issues. A user interaction is an (in)validation of one pair of
schema elements (either from the set of discovered correspondences or between
the schemas). We first introduce three assumptions which underlie our metric:

– Worst case, which means that all pairs of schema elements, which
have not already been matched, must be (in)validated. In addition, the last
(in)validated pair would be a correspondence.

– Uniformity, i.e., missed correspondences are discovered with the same fre-
quency (and not at random). Although not realistic, this assumption mainly
enables a fair comparison when evaluating the post-match effort for different
tools. The worst case assumption anyhow guarantees that the last validated
pair is a correct correspondence.

– Only correspondences 1:1 are taken into account. The metric can be ap-
plied with 1:n correspondences (represented by several 1:1 correspondences),
but we do not consider more complex correspondences (namely n:m). How-
ever, we note that a post-processing technique could transform the 1:1 vali-
dated correspondences into complex correspondences by relying on the data.

Now, let us introduce an example. Figure 1(b), presented in the preliminaries
section, depicts a set of correspondences discovered by a matching tool between
two hotel booking schemas. The expert set of correspondences is shown by figure
1(a). We notice that one discovered correspondence is incorrect: (Hotel Location,

424 F. Duchateau, Z. Bellahsene, and R. Coletta

Hotel Name). Consequently, it has to be invalidated. Besides, the matching tool
has missed two correspondences, namely (Hotel Brand:, Chain) and (Rooms
Needed:, Number of Rooms). These two correspondences have to be searched
among the 23 pairs that have not been validated (8 × 3 possible pairs minus 1
incorrect pair discovered by the tool).

3.2 Estimating the Number of User Interactions

We define the number of user interactions as a positive number which repre-
sents the number of user interactions to obtain a 100% F-measure from a set of
discovered correspondences. It consists of two steps which are described below.

Given two schemas S� and SL of respective sizes |S�| and |SL|, with |S�| ≤ |SL|
(i.e., SL is a larger schema than S�), their expert set of correspondences E con-
tains |E| correspondences. A matching tool applied against these schemas has dis-
covered a set of correspondences M , which contains |M | correspondences. Among
these discovered correspondences, |R| of them are correct, with 0 ≤ |R| ≤ |M |. To
compute the number of user interactions, only the five inputs |S�|, |SL|, |E|, |M |
and|R| are required. In our example, we have the following values:

– |S�| = 14, the number of elements in the smallest schema1.
– |SL| = 19, the number of elements in the largest schema1.
– |E| = 13, the number of expert correspondences
– |M | = 12, the number of correspondences discovered by the matching tool,

shown in figure 1(b).
– |R| = 11, the number of correct correspondences discovered by the matching

tool.

Step 1: checking of all discovered correspondences. This step is very easy
to compute. A user has to check each correspondence from the set of discovered
correspondences, and (in)validate it. Thus, this requires a number of interactions
equal to the number of discovered correspondences in the set, |M | in our case.
We call this metric effortprec since it is directly impacted by precision. Indeed,
a high precision reduces the number of user interactions since there are fewer
incorrect correspondences which have been discovered. Note that at the end of
this step, the precision value is equal to 100%.

effortprec = |M | (1)

In our example, there are 12 discovered correspondences, thus effortprec = 12.
It means that the number of user interactions during this step is equal to 12,
among which 11 validations and 1 invalidation for the incorrect correspondence.

Step 2: manual discovery of missed correspondences. The second step
deals with the manual discovery of all missing correspondences. At the end of this
step, recall reaches 100%, and F-measure too. We assume that all pairs which
have not been invalidated yet must be analyzed by the user. As we consider only
1:1 correspondences, elements that have already been matched are not checked
1 We do not count the root element tagged with <a:schema>.

Matching and Alignment: What Is the Cost of User Post-Match Effort? 425

anymore. The main idea is to check every unmatched element from the smallest
schema against all unmatched elements from the largest schema.

Due to the uniformity assumption, we manually discover a missing correspon-
dence with the same frequency. This frequency is computed by dividing the
number of unmatched elements in the smallest schema by the number of miss-
ing correspondences, as shown by Formula 2. Thanks to 1:1 correspondences
assumption, the number of correct correspondences |R| is at most equal to the
number of correctly matched elements in each schema (i.e., 0 ≤ |R| ≤ |S�|).
Hence we can compute |S�| − |R|.

freq =
|S�| − |R|
|E| − |R| (2)

Back to our example, freq = 14−11
13−11 = 3

2 means that the user will manually find
a missing correspondence for every three unmatched elements from the smallest
schema.

Since we now know the frequency, we can compute the number of interactions
using a sum function. We call this metric effortrec since it is affected by recall.
The higher recall you achieved, the fewer interactions you require during this
step. |SL| − |R| denotes the number of unmatched elements from the largest
schema. With i standing for the analysis of the ith unmatched element from S�,

i

freq represents the discovery of a missing correspondence (when it reaches 1).
We also uniformly remove the pairs which may have been already invalidated
during step 1, by computing |M|−|R|

|S�|−|R| . Thus, we obtain this Formula 3:

effortrec =

|S�|−|R|∑
i=1

(|SL| − |R| − i

freq
− |M | − |R|

|S�| − |R|) (3)

To sum up, for each unmatched of the smallest schema, the user has to analyze
all elements of the largest schema, except for those already matched (|R|), those
already part of a match previously discovered (i

freq) and those invalidated during

the first step (|M|−|R|
|S�|−|R|). We now detail for our example the successive iterations

of this sum function, which vary from 1 to 3.

– effortrec(i = 1), 19 − 11 − 1
1.5 − 1

3 = 7
– effortrec(i = 2), 19 − 11 − 2

1.5 − 1
3 = 6

1
3

– effortrec(i = 3), 19 − 11 − 3
1.5 − 1

3 = 5
2
3

Thus, the second step to discover all missing correspondences requires effortrec

= 7 + 6
1
3 + 5

2
3 = 19 user interactions.

Finally, to compute the number of user interactions between two schemas S�

and SL, noted nui, we need to sum the values of the two steps, thus resulting
in Formula 4. If the set of correspondences is empty, then using a matching tool
was useless and the number of user interactions is equal to the number of pairs
between the schemas.

nui(S�, SL) =

⎧⎨⎩
|S�| × |SL| if |M | = 0

effortprec + effortrec otherwise
(4)

426 F. Duchateau, Z. Bellahsene, and R. Coletta

In our example, the user needs a number of user interactions nui = 12+19 = 31
to correct the set of correspondences produced by the tool.

3.3 Normalization and Generalization

The number of user interactions is not sufficient to measure the benefit of using a
matching tool. Indeed, a given number of interactions may appear as an incredible
effort for correcting the set of correspondences of two small data sources, but it
may seem acceptable when dealing with large data sources. Thus, our post-match
effort (and its inverse, human spared resources) is a normalization of this number
of user interactions based on the size of the data sources. Then, we explain how
to generalize the post-match effort when there are more than two data sources.

Normalization. From the number of user interactions, we can normalize the
post-match effort value into [0,1]. It is given by Formula 5. Indeed, we know
the number of possible pairs (|S�| × |SL|). Checking all these pairs means that
the user performs a manual matching, nui = |S�| × |SL| and pme = 100%.

pme(S�, SL) =
nui(S�, SL)

|S�| × |SL| (5)

We can also compute the percentage of automation of the matching process
thanks to a matching tool. This metric, noted hsr, for human spared re-
sources, is given by Formula 6. This measure enables the computation of the
rate of automation by the matching process.

hsr(S�, SL) = 1 − nui(S�, SL)

|S�| × |SL| = 1 − pme(S�, SL) (6)

If a matching tool achieves a 20% post-match effort, this means that the user has
to perform a 20% manual matching for removing and adding correspondences,
w.r.t. a complete (100%) manual matching. Consequently, we can deduce that the
matching tool managed to automate 80% of the matching process. In our dating
example, the post-match effort is equal to pme = 31

14×19 � 12% and human spared
resources is equal to hsr = 1− 0.12 � 88%. The matching tool has spared 88% re-
sources of the user, who still has to manually perform 12%of the matching process.

Generalization. As matching scenarios may contain more than two data
sources, we need to generalize the post-match effort formula. Let us consider
that a matching scenario contains n data sources such as a set < S1, S2, ..., Sn >.
The generalized post-match effort, noted pmegen, is given by Formula 7. It is the
sum of all numbers of user interactions in all possible couples of data sources,
divided by the sum of all numbers of pairs in all possible couples of data sources.

pmegen =

∑i=n
i=1

∑j=n
j=i+1 nui(Si, Sj)∑i=n

i=1

∑j=n
j=i+1 |Si| × |Sj |

(7)

Matching and Alignment: What Is the Cost of User Post-Match Effort? 427

4 Related Work

To the best of our knowledge, the overall measure (also named accuracy in [8])
is the only one to compute a post-match effort [10]. It is computed with the
following formula in the range [−∞, 1]:

Overall = Recall ×
(
2 − 1

Precision

)
(8)

A major drawback of this measure deals with the fact that removing irrele-
vant correspondences is considered as difficult (in terms of user effort) as adding
missed correspondences. However, this is rarely the case in real-world scenarios.
Another drawback explained by the authors deals with a precision below 50%: it
implies more effort from the user to remove extra correspondences and add miss-
ing ones than to manually do the matching, thus resulting in a negative overall
value which is often disregarded. On the contrary, our measure returns values in
the range [0, 1] and it does not assume that a low precision involves much effort
during post-match. Finally, the overall measure does not consider the size of the
data sources. Yet, even with the same number of expert correspondences, the
manual task for checking the discovered correspondences and finding the missed
correspondences in two large data sources requires a larger effort than in small
data sources. To sum up this comparison, overall is mainly more pessimistic
than HSR. This is illustrated by Figure 2 which depicts the values of overall and
HSR when the number of discovered correspondences (|M |) and the number of
correct discovered correspondences (|R|) vary. In this plot, two parameters are
fixed: the number of expert correspondences |E| to 200 and the average size of
the data sources |S| to 500. All overall values are less than 0 when the number of
correct discovered correspondences is at most half of the number of discovered
correspondences, which is an obvious limitation. We also notice that overall may
be more optimistic than HSR with high precision and recall values (in our plot,
when |M | and |R| are close to |E|). The reason deals with the size of the data
sources, which is not considered by overall. These comments are verified with
other values of |E| and |S|. Due to page limit, all plots are available online2.

5 Conclusion

In this paper, we have presented a former metric which computes the post-match
effort while the latter estimates the percentage of automation due to the use of a
matching tool. The scores computed by our measures and presented as a number
of user interactions can be converted in time units. In addition, except for the size
of the data sources, computing these metrics does not require more information
than traditional quality measures. As a future work, we first intend to extend
our measure so that it takes into account the top-K correspondences returned
by several matching tools. Then, we would like to quantify pre-match effort too.

2 Appendix at http://november.idi.ntnu.no/\simfabien/appendixCoopis11

http://november.idi.ntnu.no/$\sim $fabien/appendixCoopis11

428 F. Duchateau, Z. Bellahsene, and R. Coletta

 0 20 40 60 80 100 120 140 160 180 200 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

 0

 10

 20

 30

 40

 50

 60

 70

Score

HSR
Overall

corresp. disc. (M)

correct corresp. disc. (R)

Fig. 2. A Comparison of Overall and HSR

References

1. Smith, K., Morse, M., Mork, P., Li, M., Rosenthal, A., Allen, D., Seligman, L.:
The role of schema matching in large enterprises. In: CIDR (2009)

2. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10(4), 334–350 (2001)

3. Yatskevich, M.: Preliminary evaluation of schema matching systems. Technical
Report DIT-03-028, Informatica e Telecomunicazioni, University of Trento (2003)

4. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-
capietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171.
Springer, Heidelberg (2005)

5. Noy, N.F., Doan, A., Halevy, A.Y.: Semantic integration. AI Magazine 26(1), 7–10
(2005)

6. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
7. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer,

Heidelberg (2011)
8. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile

graph matching algorithm and its application to schema matching. In: ICDE,
pp. 117–128 (2002)

9. Alexe, B., Tan, W.C., Velegrakis, Y.: STBenchmark: towards a benchmark for
mapping systems. Proceedings of the VLDB 1(1), 230–244 (2008)

10. Do, H.-H., Melnik, S., Rahm, E.: Comparison of Schema Matching Evaluations. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS,
vol. 2593, pp. 221–237. Springer, Heidelberg (2003)

Author Index

Abbaci, Katia 38
Acar, Aybar C. 367
Adamus, Rados�law 734
Alhamad, Mohammed 469
Andreescu, Laura Maria 163
Anisetti, Marco 560
Ardagna, Claudio A. 560

Baumgrass, Anne 329
Beitman, Karin Koogan 781
Bellahsene, Zohra 421, 800
Bouzeghoub, Mokrane 38
Buche, Patrice 662
Buckley, Ingrid 560

Canavese, Daniele 617
Casanova, Marco Antonio 781
Cesena, Emanuele 617
Chang, Elizabeth 469
Chen, Qiming 403, 525
Chowdhury, Nafisa Afrin 826
Ciuciu, Ioana 605
Claerhout, Brecht 605
Coletta, Remi 421, 800
Conforti, Raffaele 100
Cruz Torres, Mario Henrique 155

Dadam, Peter 82
Damiani, Ernesto 560
Danilow, Juan 716
De Virgilio, Roberto 644
Dibie-Barthélemy, Juliette 662
Dillon, Tharam 469
Domingues, Helves Humberto 818
Dou, Dejing 698, 826
Dougherty, Brian 432
Duchateau, Fabien 421
Dustdar, Schahram 451

Eder, Johann 763
Edmondson, James 542
Ekanayake, Chathura C. 20
Eshuis, Rik 119

Farokhi, Soodeh 625
Fauvet, Marie-Christine 20

Fernandez, Eduardo B. 560
Ferreira, João Eduardo 818
Fleischhacker, Daniel 680
Fortino, Giancarlo 100
Furtado, Antonio Luz 781

Gal, Avigdor 2
Gama, Kiev 498
Ghaffari, Amir 625
Gokhale, Aniruddha 432, 507, 542
Gomes, Raphael Valle A. 781
Gorawski, Marcin 347
Grefen, Paul 119
Greveler, Ulrich 577
Grigori, Daniela 38

Hadjali, Allel 38
Hakiri, Akram 507
Herrmann, Klaus 236
Hill, James H. 478
Hoffert, Joe 507
Holvoet, Tom 155
Hsu, Meichun 403, 525
Hummer, Waldemar 451

Ibănescu, Liliana 662

Jin, Tao 56
Justus, Benjamin 577

Kang, Yong-Bin 218
Kegley, Russell 432
Knuplesch, David 82
Kojima, Isao 808
Kon, Fabio 818
Kop, Christian 747
Köpke, Julius 763
Koster, Andrew 182
Kowalski, Tomasz Marek 734
Krishnaswamy, Shonali 218

Lampo, Tomas 716
La Rosa, Marcello 20, 100
Leitner, Philipp 451
Lemos, Fernando 38

430 Author Index

Lemos, João 302
Lenhard, Jörg 137
Leone, Stefania 284
Liétard, Ludovic 38
Lima, Ricardo 498
Lincoln, Maya 2
Liu, Haishan 698
Liu, Xi 64
Loehr, Dennis 577
Lopes, Danilo 498
Ly, Linh Thao 82
Lynden, Steven 808

Macedo, José A.F. 781
Matono, Akiyoshi 808
Meersman, Robert 605
Mendling, Jan 329
Motro, Amihai 367

Naumann, Felix 412
Ngo, DuyHoa 800
Nikravesh, Ali 625
Norrie, Moira C. 284

Onaindia, Eva 200

Pajares Ferrando, Sergio 200
Pascal, Berthou 507
Preston, Jonathan 432

Ribe-Baumann, Liz 385
Ribeiro, J.T.S. 274
Rinderle-Ma, Stefanie 82
Rocacher, Daniel 38
Rosa, Nelson 498
Rothermel, Kurt 236
Ruckhaus, Edna 716

Sabater-Mir, Jordi 182
Sacha, Krzysztof 588
Sadjadi, Masoud 560
Salas, Percy E. Rivera 781
Salnikov-Tarnovski, Nikita 635
Satzger, Benjamin 451
Schefer, Sigrid 329
Schilders, Louis 605

Schmidt, Douglas C. 432, 478, 507, 542
Schönberger, Andreas 137
Schorlemmer, Marco 182
Shams, Fereidoon 625
Siedlecki, Zacheusz 347
Silvestro, Jacopo 617
Simão, José 302
Smiraglia, Paolo 617
Šor, Vladimir 635
Souza, Fabio 498
Srirama, Satish Narayana 635
Strembeck, Mark 329
Su, Jianwen 64, 256

Tanimura, Yusuke 808
ter Hofstede, Arthur H.M. 20, 100
Thierry, Gayraud 507
Torreño, Alejandro 200
Touhami, Rim 662
Tryfonopoulos, Christos 163

Veiga, Lúıs 302
Vidal, Maŕıa-Esther 716
Vidal, Vania M.P. 781
Vogel, Tobias 412
Völker, Johanna 680
Vonk, Jochem 119

Wang, Jianmin 56
Weijters, A.J.M.M. 274
Wen, Lijie 56
White, Jules 432
Wirtz, Guido 137
Wíslicki, Jacek 734
Wolf, Hannes 236

Xu, Lai 321
Xu, Wei 256

Yan, Zhimin 256
Yang, Jian 64, 256, 321

Zaslavsky, Arkady 218
Zhang, Liang 256
Zhao, Weiliang 321
Zhong, Youliang 321

	Title
	Organization
	Table of Contents
	Cooperative Information Systems (CoopIS) 2011
	CoopIS 2011 PC Co-chairs’ Message

	Business Process Repositories
	Searching Business Process Repositories Using Operational Similarity
	Introduction
	Related Work
	Dynamic Segmentation
	A Business Process Repository and Static Segmentation
	Dynamic Segments in Business Process Repositories

	Descriptor Analysis
	The Descriptor Model
	The Action Scope Model (ASM)
	The Object Grouping Model (OGM)
	The Action Influence Model (AIM)

	The Process Model Search Problem and Method
	The Process Model Search Problem
	The Process Model Search Method

	Experiments
	Conclusions
	References

	Fragment-Based Version Management for Repositories of Business Process Models
	Introduction
	Versioning Model
	Vertical Sharing
	Horizontal Sharing

	Locking
	Controlled Change Propagation
	Conceptualization of the Storage Structure
	Evaluation
	Related Work
	Version Control
	Repositories
	Process Model Changes
	Concurrency Control

	Conclusion
	References

	Selecting and Ranking Business Processes with Preferences: An Approach Based on Fuzzy Sets
	Introduction
	Background and Related Work
	Preference Modelling
	Preference-Based Service Discovery

	Preferences in Process Model Specification
	A Fuzzy Model to Evaluate Preferences
	Atomic Preferences
	Complex Preferences

	Process Model Similarity: A Linguistic Quantifier-Based Method
	Preference Satisfiability between Process Models
	Structural Similarity between Process Models

	Process Model Ranking
	Illustrative Example
	Complexity Analysis and Experimental Results
	Complexity Analysis
	Experiments Setup
	Experimental Results

	Conclusion
	References

	Efficient Retrieval of Similar Business Process Models Based on Structure
	Introduction
	Preliminaries
	Index Construction and Query Processing
	Index Construction
	Query Processing

	Tool Support and Evaluation
	Related Work
	Conclusion and Future Work
	References

	Business Process Compliance and Risk Management
	Preservation of Integrity Constraints by Workflow
	Introduction
	A Motivating Example and GSM
	The EzMart Workflow
	GSM Specification of EzMart
	Integrity Constraints
	Enforcing Integrity Constraints: A Challenge

	A Formal Semantics of GSM
	Intuitive Explanation
	GSM Transition Systems

	Guard Injection
	Integrity Constraints
	Calculating Injected Conditions

	Soundness and Conservative Completeness
	Related Work
	Conclusion
	References

	Monitoring Business Process Compliance Using Compliance Rule Graphs
	Introduction
	Challenges for Compliance Monitoring
	Contributions

	Compliance Rule Graph Fundamentals
	Compliance Monitoring
	CRG Markings and Compliance Notions
	The Pattern Matching Mechanism
	Prevention of Violations and Root Cause Analysis

	Implementation
	State-of-the-Art
	Summary and Outlook
	References

	History-Aware, Real-Time Risk Detection in Business Processes
	Introduction
	Running Example
	Risk-Aware Business Process Management
	Sensor-Based Realization
	Evaluation
	Implementation
	Performance Analysis

	Related Work
	Conclusion
	References

	Service Orchestration and Workflows
	Transactional Process Views
	Introduction
	Overview
	Transactions
	Transaction Models
	Layered Transactions

	Transactional Process Models
	Definition
	Transaction Type Constraints

	Aggregation and Customisation
	Constructing Transactional Aggregates
	Properties of Transactional Aggregates
	Generating Transactional Process Views with Aggregates
	Customisation

	Case Study
	Related Work
	Conclusion
	References

	Edit Distance-Based Pattern Support Assessment of Orchestration Languages
	Introduction
	Related Work
	Edit Distance Support Measure
	Common Schema for Process Stubs
	Edit Operations
	Calculation Example

	Results and Evaluation
	Control-Flow Patterns
	Service Interaction Patterns
	Time Patterns
	Patterns for Changes in Predefined Regions

	Conclusion and Outlook
	References

	Towards Robust Service Workflows: A Decentralized Approach
	Introduction
	Service Selection in Supply Chains
	Formalization

	Decentralized Service Coordination
	Ant Colony Optimization
	Decentralized Coordination and ACO

	Evaluation
	Static Environment
	Dynamic Environment

	Related Work
	Conclusions and Future Work
	References

	Intelligent Information Systems and Distributed Agent Systems
	Pricing Information Goods in Distributed Agent-Based Information Filtering
	Introduction
	Related Work
	Pricing of Information in Agent-Based Models
	Distributed Information Filtering

	Services and Protocols in ABIS
	Types of Services
	The ABIS Protocols

	Publisher Ranking Strategy
	Quality vs Price
	Calculating Publisher Quality
	Economic Modelling of ABIS

	Experimental Evaluation
	Experimental Setup
	Varying the Price-Quality Correlation
	Varying the Publishing Behaviour
	System Performance
	Summary of Results

	Conclusions and Outlook
	References

	Trust Alignment: A Sine Qua Non of Open Multi-agent Systems
	Introduction
	Methods for Aligning Trust
	Learning a Translation
	Machine Learning Using Context

	Experiments
	Experimental Setup
	Trust Models
	Strategy
	Alignment Methods
	Comparing Alignment Methods
	Using a Random Strategy
	Simulating Lying Agents

	Discussion
	Conclusions and Future Work
	References

	An Architecture for Defeasible-Reasoning-Based Cooperative Distributed Planning
	Introduction
	Related Work
	Background
	Elements of the MAPA Architecture
	The Agents' Planning Model and Arguments
	The Qualification Problem and Plan Definition
	Interferences among Actions and Arguments

	Cooperative Distributed Planning Protocol in the MAPA Architecture
	Plan Generation
	Plan Evaluation
	Plan Selection

	Evaluating the MAPA Architecture within the Context of a Transit Journey Planning Service
	Preliminaries
	Implementation

	Conclusions and Future Work
	References

	A Case Retrieval Approach Using Similarity and Association Knowledge
	Introduction
	Motivating Scenario
	Background to Research on Similarity and Association Knowledge
	Background to Research on Similarity Knowledge
	Background to Research on Association Knowledge

	Association Knowledge Formalization
	A Unique Retrieval Strategy: USIMSCAR
	Evaluation
	Experimental Setup
	Results and Analysis

	Related Work
	Conclusion and Future Work
	References

	Emerging Trends in Business Process Support
	FlexCon – Robust Context Handling in Human-Oriented Pervasive Flows
	Introduction
	Related Work
	Scenario
	Flow and Context Models
	Context Model
	Hybrid Flow Model

	FlexCon
	Overview
	Dynamic Bayesian Network - Structure and Learning
	Clustered Particle Filtering

	Evaluation
	Results and Discussion

	Conclusions and Future Work
	References

	An Artifact-Centric Approach to Dynamic Modification of Workflow Execution
	Introduction
	Motivating Example
	EZ-Flow: An Artifact-Centric Workflow Model
	Dynamic Modification of Execution
	Experimental Evaluation and a Case Study
	Related Work and Our Contributions
	Conclusions
	References

	Event Cube: Another Perspective on Business Processes
	Introduction
	Multidimensional Data Model
	Process Models
	Event Cube
	Experiments
	Related Work
	Conclusions
	References

	Techniques for Building Cooperative Information Systems
	Building eCommerce Systems from Shared Micro-schemas
	Introduction
	Background
	Approach
	Micro-schema Composition
	eCommerce Platform
	Discovery and Inspection System
	Implementation
	Discussion
	Conclusion
	References

	A2-VM : A Cooperative Java VM with Support for Resource-Awareness and Cluster-Wide Thread Scheduling
	Introduction
	Architecture
	Resource Awareness and Control
	Cluster-Wide Cooperative VM
	Adaptability and the Policy Engine

	Implementation
	Extending JikesRVM with Resource-Awareness
	Cluster-Wide Cooperative Thread Scheduling

	Evaluation
	Policy Evaluation and Resource Monitoring
	Cooperative Scheduling

	Related Work
	Conclusion
	References

	Peer-Based Relay Scheme of Collaborative Filtering for Research Literature
	Introduction
	Preliminaries
	Motivating Example
	Notations of Co-peer Graph

	Collaborative Relay Scheme
	Collaborative Prediction Algorithms
	Content-Based Relevance Probability Formulas
	Recommendation Relay Process Sequence

	Experiments
	Simulation System and Evaluation Metrics
	Evaluation and Analysis

	Related Work
	Conclusions
	References

	Security and Privacy in Collaborative Applications
	Detecting and Resolving Conflicts of Mutual-Exclusion and Binding Constraints in a Business Process Context
	Introduction
	Process-Related RBAC Models
	Constraint Definition Conflicts
	Algorithms for Detecting Constraint Definition Conflicts
	Resolving Constraint Definition Conflicts
	Resolving Ownership Conflicts
	Resolving Transitive Constraint Conflicts

	Detecting and Resolving Assignment Conflicts
	Algorithms for Detecting Assignment Conflicts
	Resolving Assignment Conflicts

	Detecting and Resolving Runtime Conflicts
	Related Work
	Conclusion
	References

	Implementation, Optimization and Performance Tests of Privacy Preserving Mechanisms in Homogeneous Collaborative Association Rules Mining
	Introduction
	Related Works
	Our Contribution

	Homogeneous Collaborative Association Rules Mining with Data Privacy Preserving
	Cryptographic Privacy Preserving Mechanisms in a Homogeneous Collaborative Association Rules Mining
	Commutative Encryption
	Commutative Encryption with Common Decryption Key
	Pohlig-Hellman Exponential Commutative Cipher
	Elliptic Curves Cryptography
	Elliptic Curve Pohlig-Hellman Cipher.

	Secure Sum and Product
	Multiparty Calculation of Common Decrytping Key
	Calculating the Secure Set Union Using Encryption with CDK
	Secure Duplicate Removing

	CDKSU Algorithm
	CDKRSU Algorithm
	Implemented System
	Performance Tests
	Test Environment
	Test Data Sets and Parameters
	Test Results

	Conclusion
	References

	Data and Information Management
	Segmenting and Labeling Query Sequences in a Multidatabase Environment
	Introduction
	Background
	Session Identification
	Conditional Random Fields

	Methodology
	Problem Overview and Assumptions
	Assembly of Goals
	Composite Subgoals
	Application of Conditional Random Fields
	Features of the Conditional Random Field
	Gain-Based Feature Selection

	Experimentation
	Conclusion
	References

	Combining Resource and Location Awareness in DHTs
	Introduction
	Related Work
	Network Assumptions
	Resource Availability
	Node Failure
	DHT Foundation

	Resource and Location Aware DHT
	Analysis
	Expected Resource Level and Distance of Fingers
	Failures

	Evaluation
	Future Work
	References

	SQL Streaming Process in Query Engine Net
	Introduction
	Graph-Structured SQL Streaming Process
	Analyzing Unbounded Stream Data Granularly
	Chunk-Wise Stream Processing by Cycle-Based Continuous Queries
	Granule-Based Execution of Continuous SQL Stream Process
	Data Parallel Execution of Sequential Operators

	Query Engine Net for Executing SQL Stream Process
	Conclusions
	References

	Instance-Based ‘One-to-Some’ Assignment of Similarity Measures to Attributes
	The Need of Data Quality
	Problem Classification
	Attribute Classification
	Evaluation
	Related Work
	Conclusion and Outlook
	References

	Matching and Alignment: What Is the Cost of User Post-Match Effort?
	Introduction
	Preliminaries
	Post-Match Effort Metric
	Intuition and Running Example
	Estimating the Number of User Interactions
	Normalization and Generalization

	Related Work
	Conclusion
	References

	Author Index

