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Abstract. Existing RDF engines have developed caching techniques able to
store intermediate results and reuse them in further steps of the query execution
process; thus, execution time is speeded up by avoiding repeated computation of
the same results. Although these techniques can be beneficial for many real-world
queries, the same e�ects may not be observed in complex queries. Particularly,
queries comprised of a large number of graph patterns that require the compu-
tation of large sets of intermediate results that cannot be reused, or queries that
require complex computations to produce small amounts of data, may require fur-
ther re-orderings or groupings in order to make an e�ective usage of the cache.
In this paper, we address the problem of determining a type of SPARQL queries
that can benefit from caching data during query execution or warming up cache.
We report on experimental results that show that complex queries can take ad-
vantage of the cache, if they are reordered and grouped according to small-sized
star-shaped groups; complex queries are not only comprised of a large number
of patterns, but they may also produce a large number of intermediate results.
Although the results are preliminary, they clearly show that star-shaped group
queries can speed up execution time by up to three orders of magnitude when
they are run in warm cache, while original queries may exhibit poor performance
in warm cache.

1 Introduction

SPARQL has been defined as a standard query language for RDF and several query
engines have been defined to store and retrieve RDF data [3,10,11,13,14,21,28,31]. The
majority of these approaches have implemented optimization techniques and eÆcient
physical operators able to speed up execution time [3,16,21,28]. Additionally, some
of these approaches have implemented structures to eÆciently store and access RDF
data, and have developed execution strategies able to reuse data previously stored in the
cache. In this paper we focus on the study of the benefits of this last feature supported
by RDF engines such as RDF-3X[22], BitMat [4], MonetDB[12], and RDFVector [19];
we study the types of queries that can benefit from caching intermediate results as well
as the benefits of maintaining them in cache, or warming up cache.

The Database community has extensively studied the benefits of caching techniques
to enhance the performance of queries by using recently accessed data [6,15,17,35]. On
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the other hand, in the context of the Semantic Web, recent publications have reported
great benefits of running queries in warm or hot caches, i.e., the e�ects of maintaining
the cache populated with valid data previously generated[4,19,22]; also, techniques to
cache the most useful previous computed results have been proposed [18,33,34]. Par-
ticularly, RDF-3X and MonetDB have been reported as engines with high performance
in warm cache. The behavior of RDF-3X is due to the fact that it has developed op-
timization and execution techniques, which in conjunction with compressed indexed
structures and caching techniques, provide the basis for eÆcient executions of a large
set of real-world SPARQL queries. In addition, these techniques benefit an eÆcient us-
age of previously loaded intermediate results in caches. However, as we will show in
this paper, there is a family of queries, comprised of small-sized star-shaped groups of
graph basic patterns, where further optimization and execution techniques have to be
performed in order to fully exploit the RDF-3X caching features. MonetDB[35] imple-
ments a column-based storage manager and lightweight data compression techniques
which provide high performance of query-intensive workloads. Additionally, MonetDB
o�ers sophisticated cache management techniques named in-cache processing, to eÆ-
ciently control previously cached data. Finally, MonetDB has developed a vectorized
execution model that contrary to the traditional pipeline iterator model, is able to pass
entire vectors of values through the pipeline and exploits the properties of the query
engine.

Motivated by these data management features and the results reported in the litera-
ture [4,21,35], we studied the impact of the shape of SPARQL queries on the perfor-
mance of RDF-3X and MonetDB, when queries are run in both cold and warm caches,
i.e., when intermediate results are maintained or not in cache. We show that if these
queries are rewritten as bushy plans 1 comprised of small-sized star-shaped groups, the
cold cache execution time can be reduced by up to three orders of magnitude when the
query is run in warm cache, while the performance of original queries may not follow
the same trend. Based on these results and the fact that the RDF-3X and MonetDB are
not tailored to identify or execute bushy plans comprised of small-sized star-shaped
groups, we have enabled both engines to support bushy plans. First, RDF-3X engine
was modified to accept plans of any shape and assign particular operators to join small-
sized sub-queries in a bushy plan; we call this new version GRDF-3X. Furthermore,
we implemented a translation schema to convert SPARQL bushy plans into nested SQL
queries, which enforces MonetDB to execute the plan in a bushy fashion. We will de-
scribe the optimization techniques [16] that benefit the generation of bushy plans, which
exploit the usage of previously cached intermediate results.

To summarize, the main contributions of this paper are the following:

– We define a family of queries that can benefit from caching intermediate results
or warming up cache. These queries reduce the number of intermediate results and
CPU processing, and can be rewritten as bushy plans comprised of small-sized star-
shaped groups.

– We describe GRDF-3X, an extension of the RDF-3X engine able to eÆciently eval-
uate bushy plans comprised of small-sized star-shaped groups.

1 A bushy plan corresponds to a query plan where operands of the join operators can be inter-
mediate results produced by other operators of the plan.
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– We explain the schema translation of bushy plans into nested SQL queries that are
executed against vertical partitioned tables in MonetDB.

– We provide an empirical analysis of the performance of the RDF-3X, GRDF-3X
and MonetDB engines when queries are evaluated in both cold and warm caches.

This paper is comprised of five additional sections. Section 2 describes existing state-
of-the-art approaches in conjunction with an analysis of the advantages and limitations
of each approach. Section 3 illustrates a motivating example; section 4 presents the
main features that characterize the small-sized star-shaped group queries. Section 5
presents an experimental study where we report on the performance of the small-sized
star shaped group queries. Finally, we conclude in section 6 with an outlook to future
work.

2 Related Work

During the last years, several RDF stores have been developed [3,10,11,13,14,21,31].
Jena [13,32] provides a programmatic environment for SPARQL; it includes the ARQ
query engine and indices, which provide eÆcient access to large datasets.Tuple Database
or TDB [14] is a persistent graph storage layer for Jena; it works with the Jena SPARQL
query engine (ARQ) to support SPARQL together with a number of extensions (e.g.,
property functions, aggregates, arbitrary length property paths). Sesame [31] is an open
source Java framework for storing and querying RDF data; it supports SPARQL and
SeRQL queries. Additionally, di�erent storage and access structures have been pro-
posed to eÆciently retrieve RDF data [7,20,29,30]. Hexastore [30] is a main memory
indexing technique that exploits the role of the arguments of an RDF triple; six in-
dices are designed so that each one can eÆciently retrieve a di�erent access pattern; a
secondary-memory-based solution for Hexastore has been presented in [29]. Fletcher
et al. [7] propose indexing the universe of RDF resource identifiers, regardless of the
role played by the resource. Although all of the former approaches propose di�erent
strategies to speed up the execution time of RDF queries, none of them provide tech-
niques to manage the cache or to load RDF data into resident memory which allow the
observation of di�erences between cold and warm cache execution times.

Additionally, MacGlothlin et al. [19] propose an index-based representation for RDF
documents that materializes the results for subject-subject joins, object-object joins and
subject-object joins. This approach has been implemented on top of MonetDB [12] and
it can exploit the Monet DB cache management system. Abadi et al. [1,2] and Sidirour-
gos et al. [27] propose di�erent RDF store schemas to implement an RDF management
system on top of a relational database system. They empirically show that a physical
implementation of vertical partitioned RDF tables may outperform the traditional phys-
ical schema of RDF tables. In addition, any of these solutions can exploit the properties
of the database manager to eÆciently manage the cache.

Recently, Atre et al. [4] proposed the BitMat approach which is supported on a fully
inverted index structure that implements a compressed bit-matrix structure of the RDF
data. An RDF engine has been developed on top of this bit-based structure, which ex-
ploits the properties of this structure and avoids the storage of intermediate results gen-
erated during query execution. Although BitMat does not use cache techniques, it has
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been shown that its performance is competitive with existing RDF engines that provide
eÆcient cache management. Finally, RDF-3X [21] focuses on an index system, and has
implemented optimization and execution techniques that support eÆcient and scalable
execution of RDF queries. In addition, RDF-3X makes use of the Linux ���� system
call, to load in resident memory portions of data, and thus, di�erences between execu-
tion time in both cold and warm caches can be observed for certain types of queries.
In this paper we show how cache data management features implemented by RDF-3X
and MonetDB, can be better exploited if queries are executed in a way that intermediate
results are minimized.

3 Motivating Example

In this section we illustrate how the shape of a query plan can a�ect the performance of a
SPARQL query when it is run in both cold and warm caches. SPARQL syntax resembles
SQL queries where the ����� clause is comprised of Basic Graph Patterns connected
by diverse operators, e.g., join, optional, or union. Consider the RDF dataset YAGO
(Yet Another Great Ontology)2 that publishes information about people, organizations
and cities around the world. Suppose a user is interested in finding groups of at most
two artists who are influenced by at least one person. Figure 1 presents a SPARQL
query against YAGO; the query is composed of 8 basic graph patterns connected by the
join operator denoted by a “.”; suppose the RDF-3X engine is used to run the query.

PREFIX rdf: �����������
��
�������������� ��! 	"���# �	�
PREFIX yago:������������
�
�"�����
	����
�"����
SELECT ?A1 ?A2 WHERE

�?A1 yago:hasFamilyName ?fn1.
?A1 yago:hasGivenName ?gn1 .
?person1 yago:influences ?A1.
?A2 yago:hasFamilyName ?fn2 .
?A2 yago:hasGivenName ?gn2 .
?person1 yago:influences ?A2.
?A1 rdf:type yago:wordnet artist 109812338.
?A2 rdf:type yago:wordnet artist 109812338.�

Fig. 1. SPARQL Query

Table 1 reports on the time spent by RDF-3X in a Sun Fire X4100 M2 machine with
two AMD Opteron 2000 Series processors, 1MB of cache per core and 8GB RAM,
running a 64-bit Linux CentOS 5.5 kernel. We can see that RDF-3X consumes 2.220
secs to evaluate the query in cold cache while the time is reduced to 0.11 secs by warm-
ing up the cache; this reduction represents 95% of the cold cache execution time, i.e.,
when the query is run and no data have been loaded in cache. This number is consistent
with the results recently reported in the literature, where query execution time in warm
cache can be reduced up to one order of magnitude with respect to cold cache execution
time [4,19,22].

2 Ontology available for download at http:��www.mpi-inf.mpg.de�yago-naga�yago�

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://mpii.de/yago/resource/yago
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Table 1. Run-Time Cold and Warm Cache (secs)

Cold Cache Warm Cache
Mean Standard Deviation Geometric Mean

2.220 0.112 0.004 0.112

Additionally, let’s consider a complex version of this query, where the user is inter-
ested in groups of at most six artists that are influenced by at least one person (Figure
2(a)). For this complex query, the behavior of the RDF-3X engine is di�erent; the query
execution time is 850.24 secs in cold cache while during warm cache, the time is re-
duced to 836.09 secs; thus, the savings are less than 2%. However, one can observe that
almost 96% of the query execution time corresponds to optimization time in both cold
and warm caches, i.e., the time to generate the plan presented in Figure 2(b).

In this plan, internal nodes correspond to the physical operator �	
� ��
�. The
leaves correspond to star-shaped groups that share exactly one variable; the �����

��
� physical operator is used to evaluate each of the stars in the query. We denote
by Stari the star-shaped group comprised of the basic graph triple patterns presented in
Figure 3(a); the plan produced by RDF-3X is reported in Figure 3(b). First, the merge
join is used to evaluate the join between the basic graph triple patterns; the index scan
is used to access RDF-3X to recover the instantiations of the variables in the query.

Clearly, if the plan is created in way that the first pattern in the star is very selective,
then the number of matched triples is reduced and the chances to locate intermediate
results in cache increase. RDF-3X executes this physical plan in 48.51 secs in cold
cache and 40.60 secs in warm cache; thus, if only the plan execution time is measured,
then the observed savings increase to 16.30%; however, this improvement is still low.
The poor performance of the RDF-3X engine in this plan can be a consequence of

SELECT ?A1 ?A2 ?A3 ?A4 ?A5 ?A6 WHERE
�?A1 yago:hasFamilyName ?fn1. ?A1 yago:hasGivenName ?gn1 .
?person1 yago:influences ?A1.?A2 yago:hasFamilyName ?fn2 .
?A2 yago:hasGivenName ?gn2 . ?person1 yago:influences ?A2.
?A3 yago:hasFamilyName ?fn3. ?A3 yago:hasGivenName ?gn3 .
?person1 yago:influences ?A3.?A4 yago:hasFamilyName ?fn4 .
?A4 yago:hasGivenName ?gn4 . ?person1 yago:influences ?A4.
?A5 yago:hasFamilyName ?fn5. ?A5 yago:hasGivenName ?gn5 .
?person1 yago:influences ?A5.?A6 yago:hasFamilyName ?fn6 .
?A6 yago:hasGivenName ?gn6 . ?person1 yago:influences ?A6.
?A1 rdf:type yago:wordnet artist 109812338.
?A2 rdf:type yago:wordnet artist 109812338.
?A3 rdf:type yago:wordnet artist 109812338.
?A4 rdf:type yago:wordnet artist 109812338.
?A5 rdf:type yago:wordnet artist 109812338.
?A6 rdf:type yago:wordnet artist 109812338.�

(a) SPARQL Query

Star1 Star2

Star3

Star4

Star5

Star6

HASHJOIN

HASHJOIN

HASHJOIN

HASHJOIN

A:1,022

B:3,122

D:87,750

C:14,714

572,042

HASHJOIN

(b) RDF-3X Plan

Fig. 2. SPARQL Query and RDF-3X Plan
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�?Ai yago:hasFamilyName ?fni.
?Ai yago:hasGivenName ?gni .
?person1 yago:influences ?Ai.
?Ai rdf:type yago:wordnet artist 109812338.�

(a) Star-shaped group Stari

?A1 yago:hasFamilyName ?fn1.

?A1 yago:hasGivenName ?gn1 . 

?person1 yago:influences ?A1.

?A1 rdf:type yago:wordnet_artist_109812338.

IndexScan PredicateSubjectObject

IndexScan ObjectPredicateSubject

IndexScan PredicateObjectSubject
MergeJoin

IndexScan PredicateSubjectObject
MergeJoin

MergeJoin

Stari
?A1

(b) RDF-3X Plan for a star-shaped group

Fig. 3. Star-Shaped Group and an RDF-3X Plan for a Star

the way this plan is evaluated. The plan is a left linear plan and generates 106,608
intermediate result triples. Particularly, the sub-plan surrounded by the circle produces
87,750 triples that may cause page faults, which degrades the performance of the RDF-
3X engine.

On the other hand, if the query had been evaluated in a di�erent fashion, the number
of intermediate results could be reduced. For example, consider the plans presented
in Figure 4. These plans are bushy and are comprised of star-shaped groups of small
cardinality. The number of intermediate triples in any of these plans is only 17,780.

Given that any of these bushy plans maintains less triples in cache during execution
time, cold cache execution time can be reduced, and the performance in warm cache is
improved. The cold cache execution time for the plan in Figure 4(a) is 26.82 secs, while

Star1 Star2 Star3 Star4 Star5 Star6

HASHJOIN HASHJOIN HASHJOIN

HASHJOIN

HASHJOIN

A:1,022
B:1,022 D:1,022

C:14,714

572,042

(a) Bushy Plan 1

Star1 Star2 Star3 Star4 Star5 Star6

HASHJOIN HASHJOIN HASHJOIN

HASHJOIN

HASHJOIN

A:1022
B:1022 C:1022

D:14,714

572,042

(b) Bushy Plan 2

Fig. 4. Di�erent Bushy Plans
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it consumes 14.03 secs in warm cache. Similarly, the plan in Figure 4(b) runs in 19.07
secs in cold cache and in 13.60 secs in warm cache; thus, the savings in warm cache are
47.68% and 28.68%, respectively. In this paper we illustrate the benefits of executing
bushy trees in both cold and warm caches.

4 Star-Shaped Group Queries

We have developed optimization and execution techniques to support the execution of
complex SPARQL queries that can be decomposed in small-sized star-shaped queries
[16,28]. A star-shaped query is the join of multiple basic graph patterns that share ex-
actly one variable or a star-shaped basic graph pattern w.r.t. ?X (?X��BGP) . This type
of query is very likely to be found in real-world scenarios and can be formally defined
as follows:

Definition 1 (Star-Shaped Basic Graph Pattern w.r.t. ?X, ?X� � BGP [28]). Each
triple pattern �?X p o � or �s p ?X � such that s � ?X, p � ?X and o � ?X, is a star-
shaped basic graph pattern w.r.t. ?X denoted by ?X�-BGP. Let P and P� be ?X�-BGPs
such that, var(P)� var(P�) � �?X� then, P� P� is star-shaped basic graph pattern w.r.t.
?X, i.e., an ?X�-BGP.

Star-shaped basic graph patterns in Figure 3(a) correspond a ?A1�-BGP.
We have developed four di�erent strategies (operators) that are used to retrieve and

combine intermediate generated RDF triples of small-sized star shaped groups.

1. Index Nested-Loop Join (njoin): For each matching triple in the first pattern, we
retrieve the matching triples in the second pattern, i.e., the join arguments3 are in-
stantiated in the second pattern through the sideways passing of variable bindings.
When the data is indexed, the operator can exploit these indices with the instan-
tiations of the second pattern to speed up the execution task. Time complexity in
terms of I�O’s of the njoin between sub-queries A and B on join variables JV , is
expressed by the following formula:

Costn join(A� B� JV) � Cost(A) � #Instantiations(JV) �Cost(B)

The first term of the formula represents the cost of evaluating the outer sub-query of
the join, while the second term counts the cost of executing B for each instantiation
of the join variables JV . If tuples of B in the instantiations of JV that satisfy A can
be maintained in cache, the number of I�O’s will be reduced and in consequence,
the cost of the operator will be reduced. So, the optimizer should try to select this
operator, only when the number of instantiations of JV is small.

2. Group Join (gjoin): Given two groups, each of them is independently evaluated,
and the results are combined to match the compatible mappings. The gjoin operator
can take advantage of the cache, because intermediate results previously loaded in
cache can be reused without the need to execute the operations required to compute
them; however, the size of the results should be small to avoid page faults. Time

3 The join arguments are the common variables in the two predicates that represent the patterns.
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complexity in terms of I�O’s of the gjoin between sub-queries A and B on join
variables JV , is expressed by the following formula:

Costg join(A� B� JV) � Cost(A) �Cost(B) � 2 � (Card(A) �Card(B))

The first and second terms of the formula represent the cost of evaluating the outer
and inner sub-queries of the join. The third term counts the cost of storing and
retrieving from disk the intermediate results produced by A and B, assuming the
worst case when matches are done in hash tables previously flushed to secondary
memory. In case cardinalities of A and B are minimized, results produced by A and
B can be retained in cache, avoiding the cost of storing and retrieving intermediate
results from disk.

3. Star-Shaped Group Evaluation (sgroup): the main idea is to evaluate the first pat-
tern in the star-shaped group and identify the bindings�instantiations of the shared
variable. These instantiations are used to bind the rest of the patterns in the group.
This operator can be very eÆcient if the first pattern in the group is very selective,
i.e., there are only few valid instantiations of the shared variable, and the rest of the
patterns are indexed by these instantiations.
Time complexity in terms of I�O’s of the sgroup between basic graph triple patterns
A1, A2, A3, ..., An on shared variable JV , is expressed by the following formula:

Costsgroup(A1� (A2����� An)� JV)�Cost(A1)�#Instantiations(JV)�Cost((A2� ���� An))

The first term of the formula represents the cost of evaluating the first basic graph
triple pattern; the second corresponds to the cost of executing the rest of the ba-
sic graph triple patterns with the instantiations produced by the execution of the
first. The third term counts the cost of storing and retrieving from disk the interme-
diate results produced by executing each graph basic pattern, assuming the worst
case when matches have been flushed to secondary memory. In case the number
of instantiations of the shared variable JV is minimized, results produced by the
execution of the rest of the basic graph patterns can be retained in cache, avoiding
the cost of storing and retrieving intermediate results from disk.

4. Index Star-Shaped Group Evaluation (isgroup): In the case that all of the patterns in
the group are indexed, the valid instantiations of each pattern can be independently
retrieved and merged together to produce the output. For example, in the plan in
Figure 4(a), 
���� could be evaluated by searching the instantiations of the variable
�	� that correspond to artists influenced by at least one person, the instantiations
that have a given name, and the ones that have a given last name. These sets of
instantiations are merged to produce the star-shaped group answer. This operator
can benefit from running in warm cache if the number of valid instantiations to
be merged, is small because computations of the join between the two basic graph
patterns could be stored in cache, and reused to compute the join with the third
basic graph pattern.

Time complexity in terms of I�O’s of the isgroup between basic graph triple
patterns A1, A2, A3, ..., An on shared variable JV , is expressed by the following
formula:
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Costisgroup(A1� (A2� ���� An)� JV) � Cost(A1) �Cost(A2) � ��� � Cost(An)�

2 � (Card(A1) �Card(A2) � ��� � Card(An))

The first n terms of the formula represent the cost of evaluating the basic graph
triple patterns. The last term counts the cost of storing and retrieving from disk the
intermediate results produced by evaluating the basic graph triple patterns, assum-
ing the worst case when matches are flushed to secondary memory. In case car-
dinalities of the instantiations of A1� A2� ���� An are minimized, intermediate results
can be retained in cache, avoiding the cost of storing and retrieving intermediate
results from disk.

We have implemented these four operators in our own RDF engine named OneQL [16].
Although execution time and memory usage are reduced, OneQL is implemented in
Prolog and its performance cannot compete with state-of-the-art RDF engines such as
RDF-3X. To fairly compare the performance of the plans comprised of these operators,
we have extended the RDF-3X engine and called it GRDF-3X.

First, we modified the RDF-3X parser to consider all given plans; the original RDF-
3X parser completely ignores groups and parentheses, and it flattens any input plan.
Additionally, GRDF-3X exclusively assigns the RDF-3X �	
� ��
� operator to eval-
uate gjoin, while njoin, isgroup and sgroup are evaluated with ����� ��
�s; each
basic graph pattern is evaluated by using 
���� 
�	�. GRDF-3X reorders the pat-
terns in a star-shaped group, but no star-groups are further identified. Based on these
extensions, GRDF-3X can evaluate the plans presented in Figures 2(b) and 4, and it ex-
ploits the properties of these plans that were illustrated in Section 2. In case star-shaped
groups are small-sized, the performance of RDF-3X in warm caches can be improved
in several orders of magnitude.

Furthermore, we followed the vertical partitioning approach [1] to implement an
RDF dataset as a relational database in MonetDB. For each property P, a table of two
columns is defined; the first column stores the values of the subjects associated with
P, while the second column stores the object values; indices are created on the two
columns. A dictionary encoding is used to store integer keys instead of the string values
of the subjects, properties, and objects. A table �����������
�� �!" maintains the
encodings. SPARQL queries are translated into SQL by evaluating each triple pattern �#
$ �� in a SPARQL query as conditions $%
 or $%� in the SQL query. These conditions
can be placed in the ����� clause or 
�!��� clause depending on the values of #
or �. If # (res, �) is a constant, then the condition $%
&�'�#" (res, $%�&�'��") is
added to the ����� clause, where �'�#" represents the encoding of #. If # (res, �)
is a variable that also appears in another triple pattern, say, �# $� �(�, and they are
connected through the SPARQL operator 	��, then the condition $%
&$�%
 is added
to the ����� clause; similarly, if both patterns are connected by an �$)
��	*, a left
outer join relates the conditions $%
 and P1.S. Thus, the SPARQL operators 	�� and
�$)
��	* are translated into a relational join and a left outer join, respectively. Finally,
if both triple patterns are related through +�
��, the condition $%
 (res, $%�) is added
to the 
�!��� clause; the SPARQL operator +�
�� is expressed as a SQL ,����. In
case the SPARQL query corresponds to a bushy plan, we follow the same translation
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schema for each star-shaped group of triple patterns. For a gjoin between sub-queries
S 1 and S 2, a SQL query is created by adding to the -��� clause of the query, the SQL
sub-queries that result from translating S 1 and S 2 with the alias s1 and s2; if the gjoin
condition �. is on the variables A1� ���� An, the conditions s1�A1&s2�A2 	�� %%%% 	��

s1�An&s2�An are added to the ����� condition of the SQL query; the njoin is translated
as the SQL join. Figure 5 illustrates the proposed translation schema.

SELECT ?A1 ?A2 where
��?A1 yago:hasFamilyName ?fn1.
?A1 yago:hasGivenName ?gn1 .�
GJOIN
�?A2 yago:hasFamilyName ?fn2 .
?A2 yago:hasGivenName ?gn2 .��

(a) SPARQL Bushy Plan

SELECT s1.A1, s2.A2
FROM

(Select HFN.S as A1
from hasFamilyName as HFN, hasGivenName as HGN
where HFN.S=HGN.S ) as s1,
(Select HFN.S as A2
from hasFamilyName as HFN, hasGivenName as HGN
where HFN.S=HGN.S ) as s2

WHERE s1.A1=s2.A2
(b) SQL Query

Fig. 5. Translation Schema-SPARQL into SQL

Finally, we have developed query optimization techniques able to identify query
plans comprised of small-sized star-shaped groups. These techniques have been devel-
oped in the OneQL System on top of the following two sub-components [16,23,24,25]:
(a) a hybrid cost model that estimates the cardinality and execution cost of execution
plans, (b) optimization strategies to identify plans comprised of small-sized star-shaped
groups. The proposed optimization techniques are based on a cost model that estimates
the execution time of intermediate RDF triples generated during query execution, and
are able to identify execution plans of any shape. Re-orderings and groupings of the
basic graph patterns are performed to identify star-shaped groups of small size. In ad-
dition, physical operators are also assigned to each join and star-shaped group. The
optimizer is implemented as a Simulated Annealing randomized algorithm which per-
forms random walks over the search space of bushy query execution plans. Random
walks are performed in stages, where each stage consists of an initial plan generation
step followed by one or more plan transformation steps. An equilibrium condition or a
number of iterations determines the number of transformation steps. At the beginning
of each stage, a query execution plan is randomly created in the plan generation step.
Then, successive plan transformations are applied to the query execution plan in order
to obtain new plans. The probability of transforming a current plan p into a new plan p�

is specified by an acceptance probability function P(p� p�
� T ) that depends on a global

time-varying parameter T called the temperature; it reflects the number of stages to be
executed. The function P may be nonzero when cost(p�) � cost(p), meaning that the
optimizer can produce a new plan even when it is worse than the current one, i.e., it
has a higher cost. This feature prevents the optimizer from becoming stuck in a local
minimum. Temperature T is decreased during each stage and the optimizer concludes
when T � 0. Transformation rules applied to the plan during the random walks cor-
respond to the SPARQL axioms of the physical operators implemented by the query
engine. The axioms state properties such as: commutativity, associativity, distributivity
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of gjoins over njoins, and folding and unfolding of star-shaped groups. These trans-
formation rules are fired according to probabilities that benefit the generation of bushy
plans comprised of small-sized star-shaped groups [28]. These plans usually reduce
intermediate results as well as the execution time in both cold and warm caches.

5 Experimental Study

We conducted an experimental study to empirically analyze the e�ects of caching in-
termediate results during the execution of simple and complex SPARQL queries. We
report on the execution time of MonetDB Apr2011 release, RDF-3X version 0.3.4 and
GRDF-3X built on top of RDF-3X version 0.3.4. Particularly, we analyze the impact
on the execution time performance of running bushy plans comprised of small-sized
star-shaped groups in both cold and warm caches.

Benchmarking has motivated the evaluation of these query engines, and contributed
to improve scalability and performance [9]. Among the most used benchmarks, we
can mention: LUBM [8], the Berlin SPARQL Benchmark [5], the RDF Store Bench-
marks with DBpedia4, and the SP2Bench SPARQL benchmark [26]. Similarly to exist-
ing benchmarks, we tailored a family of queries that allow us to reveal the performance
of a state-of-the-art RDF engine, and we focus on illustrating the impact of the shape
of query plans on the performance of the query engine in warm caches. During the
definition of our benchmarks of queries, query shape, number of basic graph patterns,
selectivity of the instantiations, and size of intermediate results were taken into account.

Datasets and Query Benchmark: We used the real-world ontology YAGO which is
comprised of around 44,000,000 RDF triples. We developed two sets of queries5:

– Benchmark 1 has 9 simple queries, which are comprised of between 3 and 5
basic patterns (Figure 6(a)).

– Benchmark 2 has 9 queries, which are comprised of between 17 and 26 basic
patterns (Figure 6(b)).

Additionally, we consider the LinkedCT dataset6 which exports information of clin-
ical trials conducted around the world; this dataset is composed of 9,809,330 RDF
triples. We define a benchmark 3 comprised of 10 queries over LinkedCT; queries
are composed of between 13 and 17 patterns. 7

Evaluation Metrics: We report on runtime performance that corresponds to the real
time produced by the time command of the Linux operation system. Runtime repre-
sents the elapsed time between the submission of the query and the output of the an-
swer; optimization time just considers the time elapsed between the submission of
the query and the output of the query physical plan. Experiments were run on a Sun
Fire X4100 M2 machine with two AMD Opteron 2000 Series processors, 1MB of
cache per core and 8GB RAM, running a 64-bit Linux CentOS 5.5 kernel. Queries
in benchmark 1, 2 and 3 were run in cold cache and warm cache. To run cold cache,

4 http:��www4.wiwiss.fu-berlin.de�benchmarks-200801�
5 http:��www.ldc.usb.ve�˜mvidal�OneQL�datasets�queries�YAGO�
6 http:��LinkedCT.org
7 http:��www.ldc.usb.ve�˜mvidal�OneQL�datasets�queries�LinkedCT�
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we cleared the cache before running each query by performing the command #� /�

0#��� 1 ���� 2 � 3����3#�#3 �3'��� �����#0. To run on warm cache, we
executed the same query five times by dropping the cache just before running the
first iteration of the query; thus, data temporally stored in cache during the execu-
tion of iteration i could be used in iteration i � 1. Additionally, the machine was
dedicated exclusively to run these experiments.

query #patterns answer size
q1 4 10
q2 3 1
q3 3 4
q4 5 6
q5 3 2,356
q6 3 1,027
q7 3 5,683
q8 3 46
q9 3 1

(a) Benchmark 1

query #patterns answer size
q1 17 1,170
q2 21 4,264
q3 26 22,434
q4 17 238
q5 21 516
q6 26 1,348
q7 17 342
q8 21 1,220
q9 26 5,718

(b) Benchmark 2

Fig. 6. Query Benchmark Description

5.1 Performance of Star-Shaped Groups in Cold and Warm Cache

In attempting to identify the types of queries that can benefit from running in warm
cache, we ran queries of Benchmark 1 in both cold and warm caches. These queries are
comprised of a simple star-shaped group and were executed in RDF-3X and MonetDB.
Table 2 reports on the execution time of cold cache, and the minimum value observed
during the execution in warm cache; it also reports on the geometric means. We can
see that both engines were able to improve performance if valid data is already loaded
in cache. RDF-3X is able to improve cold cache execution times by a factor of 35 in
the geometric mean when the queries are run in warm cache. MonetDB improves cold
cache execution time by a factor of 31 in the geometric mean. Optimization time is
negligible because the optimizer only has to reorder the patterns of the stars in each
query. Additionally, the time to translate SPARQL queries into the MonetDB represen-
tation is not considered. In both cases, the majority of the execution time in warm cache
was dominated by recovering the instantiations of shared variables of the star-shaped
groups, that were maintained in memory during warm cache.

Then, we studied the performance of queries in Benchmark 2, which can be rewrit-
ten as bushy trees comprised of several small-sized star-shaped groups. Tables 3 and
4 report on cold cache execution times, the minimum value observed during the exe-
cution in warm cache, and the geometric means. Similarly to the previous experiment,
queries were run in RDF-3X and MonetDB. Additionally, three optimized versions of
the queries were run in GRDF-3X; one was created by hand, the other was generated
by our OneQL query optimizer [16], and the last one was generated by RDF-3X. Fur-
thermore, bushy plans that correspond to the hand-created plans were translated in SQL
nested queries following the translation schema presented in the previous section.
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Table 2. Benchmark 1-Run-Time RDF-3X and MonetDB in Cold and Warm Cache (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

RDF-3X 0.53 0.22 0.25 0.20 3.57 2.25 5.01 0.61 0.29 0.70
MonetDB 0.88 0.45 0.64 0.51 0.76 0.59 0.98 0.46 0.67 0.63

Warm Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

RDF-3X 0.012 0.042 0.012 0.015 0.095 0.058 0.150 0.012 0.011 0.02
MonetDB 0.01 0.01 0.02 0.02 0.04 0.08 0.05 0.01 0.01 0.02

For queries in Benchmark 2, we could observe that RDF-3X performs poorly in
warm cache; cold cache times improve by nearly a factor of 1.2 in the geometric means.
This behavior of the RDF-3X engine may be because the execution time of queries in
Benchmark 2 is dominated by CPU-intensive processing that consumed up to 98% of
the CPU time. Additionally, a large portion of the execution time was spent in query
optimization and the generation of the physical plan. The reason for this is that the
RDF-3X optimizer relies on a dynamic-based programming algorithm that is not able
to eÆciently scale up to complex queries. Finally, although plans generated by RDF-
3X were comprised of small-sized star-shaped groups, they were shaped as left-linear
plans, which generate a large number of intermediate results that may produce page
faults.

On the other hand, we evaluated three optimized versions of the queries in Bench-
mark 2 in GRDF-3X: (1) optimal plans that were generated by hand; (2) OneQL plans
that were produced by the OneQL optimizer; (3) plans generated by RDF-3X. The two
first groups of optimized queries were shaped as bushy trees comprised of small-sized
star-shaped groups, and ran in GRDF-3X in a bushy fashion such that the number of
intermediate results was minimized. The plans generated by RDF-3X were also com-
posed of small-sized star-shaped but combined in a left-linear tree fashion in which
intermediate results were not minimal; execution times of these plans allow to illustrate
RDF-3X execution time without considering optimization time. First, we could observe
that the execution of the two first types of queries consumed up to 25% of the CPU time
when they were run in GRDF-3X; the execution time in both cold and warm caches was
reduced by up to five orders of magnitude. Also, the optimization time was negligible
because GRDF-3X respected the groups in the input plan, and it only had to reorder
the patterns of the stars in each query. Finally, because these two groups of plans were
bushy trees comprised of small-sized star-shaped groups, the number of intermediate
results was smaller; thus, intermediate results could be maintained in resident memory
and used in further iterations. The GRDF-3X performance in warm cache was consis-
tently good for hand-optimized queries; it could reduce the cold cache run time by a
factor of 5 in the geometric means. For OneQL query plans, GRDF-3X reduced the
cold cache run time by nearly a factor of 2.7 in the geometric means. Finally, RDF-3X
generated plans exhibit a performance in warm cache that reduces execution time in
cold cache by a factor of 1.88.

Furthermore, we can observe that MonetDB also performs poorly when the original
query is executed in warm cache; cold cache times are improved by nearly a factor
of 1.06 in the geometric means; Table 4 reports on MonetDB runtime. This observed
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Table 3. Benchmark 2- RDF-3X Run-Time Cold and Warm Cache (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

RDF-3X 62.30 84.87 100,657.34 85.95 61.2 188,909.69 0.14 1.47 827.75 166.03
GRDF-3X

(Optimal Plan) 1.60 1.80 2.34 1.22 1.38 1.36 0.99 1.05 1.75 1.45
GRDF-3X

(OneQL Plan) 1.64 10.85 3.8 1.28 9.2 3.8 1.18 2.62 3,57 3.18
GRDF-3X

(RDF-3X Plan) 60.92 56.16 93,010.25 60.35 59.93 183,291.76 1.34 1.7 2.64 102.68
Warm Caches

q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean
RDF-3X 58.21 59.54 72,584.71 58.52 59.73 175,909.80 0.14 1.46 808.77 144.13

GRDF-3X
(Optimal Plan) 0.34 0.26 0.93 0.14 0.31 0.17 0.12 0.31 0.69 0.29

GRDF-3X
(OneQL Plan) 0.40 7.08 2.18 0.36 7.6 1.52 0.18 0.93 1.64 1.22

GRDF-3X
(RDF-3X Plan) 54.42 55.42 71,231.74 58.52 50.33 140,822.38 0.25 0.29 0.64 54.34

behavior reinforces our assumption about the performance of RDF-3X in this set of
queries, which are dominated by CPU-intensive processing and generate a large number
of intermediate results that may produce page faults. Table 5 reports on the size in bytes
of the intermediate results produced during the execution of these queries in MonetDB;
these values were reported by the MonetDB tool ��!����. The original version of q3
could not be executed in ��!����, and the size of intermediate memory could not be
computed. We can observe that optimized queries reduce the size of intermediate results
by a factor of 81.24 (q3 is not considered). Additionally, we can observe that MonetDB
performs very well executing the optimized queries; runtime was reduced by a factor
of 1,196.76. The observed performance supports our hypothesis that optimized queries
better exploit the features of both MonetDB and RDF-3X.

Finally, we conducted a similar experiment and ran queries in benchmark 3 against
LinkedCT; as in previous experiments, we built an optimal bushy plan by hand, each
optimal plan was comprised of small-sized sub-queries. In GDRF-3X sub-queries in
the optimized plans were executed using the gjoin operator implemented in GRDF-

Table 4. Benchmark 2-MonetDB Run-Time Cold and Warm Cache (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

Original
Query 485.30 2,993.14 3,727.33 128.57 213.03 1,751.56 576.06 3,757.61 2,622.82 1044.10
Opt
Plan 0.81 0.80 1.37 0.75 1.17 0.68 0.81 0.65 1.05 0.87

Warm Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

Orig
Plan 496.71 2,593.59 3,710.13 135.74 205.25 1,536.79 461.82 4,280.02 2,027.63 978.21

Optimal
Plan 0.14 0.20 0.54 0.13 0.14 0.17 0.13 0.15 0.24 0.18
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Table 5. Benchmark 2-MonetDB Size of Intermediate Results (Bytes)

q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean
Original
Query 1.13E�11 2.66E�11 N�R 4.22E�10 5.57E�10 2.89E�11 7.12E�10 1.60E�11 3.24E�11 1.28E�11

Optimal
Plan 1.38E�9 1.63E�9 1.99E�9 1.38E�9 1.63E�9 1.88E�9 1.37E�9 1.61E�9 1.87E�9 1.58E�9

Table 6. Benchmark 3-Execution RDF-3X Time Cold and Warm Caches (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom. Mean

RDF-3X 6.35 3.55 4.13 1,543.82 3.71 4.36 1,381.9 2.75 3.83 0.51 10.62
GRDF-3X 0.76 0.59 0.51 0.52 0.80 0.73 0.71 0.59 0.51 0.52 0.61

Warm Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom. Mean

RDF-3X 2.44 2.28 2.41 1,385.09 2.71 1.75 1,321.05 1.74 1.73 0.14 5.87
GRDF-3X 0.14 0.14 0.14 0.18 0.18 0.18 0.18 0.18 0.17 0.18 0.16

3X; SQL nested queries against vertical partitioned tables were generated to be run in
MonetDB. Original queries were run in both cold and warm caches. Table 6 reports on
cold cache execution times, minimum values observed during the execution in warm
cache, and geometric means for RDF-3X and GRDF-3X executions; Table 7 reports on
execution times for MonetDB.

We can observe that RDF-3X is able to improve cold cache execution time by a factor
of 1.8 in the geometric mean when queries are run in warm cache. However, GRDF-3X
performance in warm cache was consistently good for hand-optimized queries; it could
reduce the cold cache run time by a factor of 3.81 in the geometric mean when the
queries are run in warm cache. In addition, GRDF-3X execution times were reduced
by up to four orders of magnitude in both cold and warm caches (queries q4 and q7)
compared to the original query. This is because the plans were bushy trees comprised
of small-sized star-shaped sub-queries, where the number of intermediate results was
smaller than the original queries. Thus, intermediate results could be maintained in
resident memory and used in further iterations.

Finally, we also ran these queries against MonetDB and the results are reported in
Table 7; the no optimized version of q10 could not be executed because MonetDB ran
out of memory. Similarly to RDF-3X, MonetDB is able to improve cold cache execution
time by a factor of 1.28 in the geometric mean when the original queries are run in warm
cache. However, the performance in warm cache is very good for optimized queries; the
runtime is reduced by a factor of 11.65. Additionally, we can observe that optimized
queries reduce runtime of original queries by a factor of 15.24.

These results provide an empirical evidence about the benefits on warm cache per-
formance of the shape and characteristics of the plans. For simple queries, these two
engines are certainly able to benefit from warming up cache; however, for queries with
several star-shaped groups, the optimizers generate left-linear plans that may produce a
large number of intermediate results or require CPU-intensive processing that degrades
the query engine performance in both cold and warm caches. Contrary, if these queries
are rewritten as bushy plans, the number of intermediate results and the CPU process-
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Table 7. Benchmark 3-Execution MonetDB Time Cold and Warm Caches (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom. Mean

Original
Query 3.86 4.43 4.82 13.58 13.62 6.04 12.82 13.4 13.17 N�R 8.40

Optimized
Plan 2.74 2.68 2.74 11.77 11.87 4.55 11.87 11.87 11.87 N�R 6.52

Warm Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom. Mean

Original
Query 0.66 0.57 0.52 0.49 0.58 0.52 0.59 0.5 0.55 0.5 0.55

Optimized
Plan 0.04 0.04 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.047

ing can be reduced and the performance improves. Thus, the shape of a query plan can
impact on the benefits of caching intermediate results.

6 Conclusions

We have reported experimental results suggesting that the benefits of running in warm
cache depend on the shape of executed queries. For simple queries, RDF-3X and Mon-
etDB are certainly able to benefit from warming up cache; however, for complex
queries, some plans may produce a large number of intermediate results or require
CPU-intensive processing that degrades the query engine performance in both cold and
warm caches. We have presented a type of bushy queries comprised of small-sized star-
groups that reduce the number of intermediate results and the CPU processing. In this
type of queries the performance of RDF-3X and MonetDB is clearly better. These re-
sults encouraged us to extend RDF-3X with the functionality of evaluating bushy plans
comprised of small-sized star-groups, and to define a translation schema to enforce
MonetDB to execute queries in a bushy fashion. In the future, we plan to incorporate
our optimization techniques in existing RDF engines.
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