

Lecture Notes in Computer Science 7045
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Robert Meersman Tharam Dillon Pilar Herrero
Akhil Kumar Manfred Reichert Li Qing
Beng-Chin Ooi Ernesto Damiani Douglas C. Schmidt
Jules White Manfred Hauswirth Pascal Hitzler
Mukesh Mohania (Eds.)

On the Move to
Meaningful Internet Systems:
OTM 2011

Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2011
Hersonissos, Crete, Greece, October 17-21, 2011
Proceedings, Part II

13

Volume Editors

Robert Meersman, Vrije Universiteit Brussel, Belgium, meersman@vub.ac.be

Tharam Dillon, Curtin University of Technology, Australia, t.dillon@curtin.edu.au

Pilar Herrero, Universidad Politécnica de Madrid, Spain, pherrero@fi.upm.es

Akhil Kumar, Pennsylvania State University, USA, akhilkumar@psu.edu

Manfred Reichert, University of Ulm, Germany, manfred.reichert@uni-ulm.de

Li Qing, City University of Hong Kong, liqing.thu@gmail.com

Beng-Chin Ooi, National University of Singapore, ooibc@comp.nus.edu.sg

Ernesto Damiani, University of Milan, Italy, ernesto.damiani@unimi.it

Douglas C. Schmidt, Vanderbilt University, USA, schmidt@dre.vanderbilt.edu

Jules White, Virginia Tech, Blacksburg, USA, julesw@vt.edu

Manfred Hauswirth, DERI, Galway, Ireland, manfred.hauswirth@deri.org

Pascal Hitzler, Kno.e.sis, Wright State University, USA, pascal.hitzler@wright.edu

Mukesh Mohania, IBM India, New Delhi, mkmukesh@in.ibm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25105-4 e-ISBN 978-3-642-25106-1
DOI 10.1007/978-3-642-25106-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011940438

CR Subject Classification (1998): C.2, D.2, H.4, I.2, H.2-3, J.1, K.6.5

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

General Co-chairs’ Message for

OnTheMove 2011

The OnTheMove 2011 event in Heraklion, Crete, held during October 17–21,
further consolidated the growth of the conference series that was started in
Irvine, California, in 2002, and held in Catania, Sicily, in 2003, in Cyprus in
2004 and 2005, in Montpellier in 2006, in Vilamoura in 2007 and 2009, in Mon-
terrey, Mexico, in 2008, and in Heraklion 2010. The event continues to attract a
diversified and representative selection of today’s worldwide research on the sci-
entific concepts underlying new computing paradigms, which, of necessity, must
be distributed, heterogeneous, and autonomous yet meaningfully collaborative.
Indeed, as such large, complex, and networked intelligent information systems
become the focus and norm for computing, there continues to be an acute and
even increasing need to address and discuss face to face in an integrated forum
the implied software, system, and enterprise issues as well as methodological,
semantic, theoretical, and application issues. As we all realize, email, the Inter-
net, and even video conferences are not by themselves sufficient for effective and
efficient scientific exchange.

The OnTheMove (OTM) Federated Conference series has been created
to cover the scientific exchange needs of the community/ies that work in the
broad yet closely connected fundamental technological spectrum of Web-based
distributed computing. The OTM program every year covers data and Web
semantics, distributed objects, Web services, databases, information systems,
enterprise workflow and collaboration, ubiquity, interoperability, mobility, grid
and high-performance computing.

OnTheMove does not consider itself a so-called multi-conference event but
instead is proud to give meaning to the “federated” aspect in its full title : it
aspires to be a primary scientific meeting place where all aspects of research and
development of Internet- and intranet-based systems in organizations and for
e-business are discussed in a scientifically motivated way, in a forum of (loosely)
interconnected workshops and conferences. This tenth edition of the OTM Fed-
erated Conferences event therefore once more provided an opportunity for re-
searchers and practitioners to understand and publish these developments within
their individual as well as within their broader contexts. To further promote syn-
ergy and coherence, the main conferences of OTM 2011 were conceived against
a background of three interlocking global themes:

– Virtual (“Cloud”) Computing Infrastructures and Security
– The Internet of Things, and Semantic Web 2.0
– Collaborative (“Social”) Computing for the Enterprise

Originally the federative structure of OTM was formed by the co-location
of three related, complementary, and successful main conference series: DOA

VI General Co-chairs’ Message for OnTheMove 2011

(Distributed Objects and Applications, since 1999), covering the relevant
infrastructure-enabling technologies, ODBASE (Ontologies, DataBases and Ap-
plications of Semantics, since 2002) covering Web semantics, XML databases and
ontologies, and CoopIS (Cooperative Information Systems, since 1993) cover the
application of these technologies in an enterprise context through, e.g., work-
flow systems and knowledge management. In 2007 the IS workshop (Information
Security) was added to try cover also the specific issues of security in complex
Internet-based information systems, and in this 2011 edition these security as-
pects became merged with DOA under the umbrella description of“secure virtual
infrastructures,” or DOA-SVI. Each of the main conferences specifically seeks
high-quality contributions and encourages researchers to treat their respective
topics within a framework that incorporates jointly (a) theory, (b) conceptual
design and development, and (c) applications, in particular case studies and
industrial solutions.

Following and expanding the model created in 2003, we again solicited and
selected quality workshop proposals to complement the more “archival” nature
of the main conferences with research results in a number of selected and more
“avant-garde” areas related to the general topic of Web-based distributed com-
puting. For instance, the so-called Semantic Web has given rise to several novel
research areas combining linguistics, information systems technology, and arti-
ficial intelligence, such as the modeling of (legal) regulatory systems and the
ubiquitous nature of their usage. We were glad to see that six of our earlier suc-
cessful workshops (EI2N, SWWS, ORM, MONET,ISDE, SeDeS) re-appeared in
2011 with in some cases a fourth or even fifth edition, often in alliance with
other older or newly emerging workshops, and that three brand-new indepen-
dent workshops could be selected from proposals and hosted: INBAST, RASEP,
and VADER. (INBAST was merged with the new Industry Track, under the
auspicious leadership of Hervé Panetto and OMG’s Richard Mark Soley.)

We are also proud in particular to note the co-sponsorship of the US National
Science Foundation (NSF) for the EI2N workshop (also initiated by Hervé),
and which increasingly profiles itself as a successful incubator for new “CoopIS-
related” research aspects and topics. Our OTM registration format (“one work-
shop buys all”) actively intends to stimulate workshop audiences to productively
mingle with each other and, optionally, with those of the main conferences.

We were again most happy to see once more in 2011 the number of qual-
ity submissions for the OnTheMove Academy (OTMA, formerly called Doctoral
Consortium Workshop), our “vision for the future” in research in the areas cov-
ered by OTM, managed by a dedicated team of collaborators led by Peter Spyns
and Anja Schanzenberger, and of course by the OTMA Dean, Erich Neuhold,
responsible for our unique interactive formula to bring PhD students together.
In the OTM Academy, PhD research proposals are submitted for peer review;
selected submissions and their approaches are (eventually) presented by the stu-
dents in front of a wider audience at the conference, and independently and
extensively analyzed and discussed in front of the audience by a panel of senior
professors.

General Co-chairs’ Message for OnTheMove 2011 VII

As said, all three main conferences and the associated workshops shared the
distributed aspects of modern computing systems, and the resulting application
pull created by the Internet and the so-called Semantic Web. For DOA-SVI 2011,
the primary emphasis stayed on the distributed object infrastructure and its
virtual and security aspects; for ODBASE 2011, the focus became the knowledge
bases and methods required for enabling the use of formal semantics in Web-
based databases and information systems; for CoopIS 2011, the focus as usual
was on the interaction of such technologies and methods with management issues,
such as occur in networked organizations and enterprises. These subject areas
overlap in a scientifically natural fashion and many submissions in fact also
treated an envisaged mutual impact among them. As with the earlier editions,
the organizers wanted to stimulate this cross-pollination by a “shared” program
of famous keynote speakers around the chosen themes. We were quite proud to
announce:

– Amit Sheth, Wright State University, Ohio, USA
– Schahram Dustdar, Vienna University of Technology, Austria
– Siani Pearson, Hewlett-Packard Laboratories, Bristol, UK
– Niky Riga, Raytheon BBN Technologies, Massachusetts, USA

We received a total of 141 submissions for the three main conferences and
104 submissions in total for the workshops. The numbers are comparable with
those for 2010. Not only may we indeed again claim success in attracting an
increasingly representative volume of scientific papers, many from the USA and
Asia, but these numbers of course allow the Program Committees to compose
a high-quality cross-section of current research in the areas covered by OTM.
In fact, the Program Chairs of the CoopIS 2011 conferences decided to accept
only approximately 1 paper for each 5 submissions, while the ODBASE 2011
PC accepted about the same number of papers for presentation and publication
as in 2009 and 2010 (i.e., average 1 paper out of 3-4 submitted, not counting
posters). For the workshops and DOA-SVI 2011 the acceptance rate varies but
the aim was to stay consistently at about 1 accepted paper for 2-3 submitted,
and this of course subordinated to peer assessment of scientific quality.

As usual we have separated the proceedings into three volumes with their own
titles, two for the main conferences and one for the workshops, and we are again
most grateful to the Springer LNCS team in Heidelberg for their professional
suggestions and meticulous collaboration in producing the files for downloading
on the USB sticks.

The reviewing process by the respective Program Committees was again per-
formed very professionally, and each paper in the main conferences was reviewed
by at least three referees, with arbitrated email discussions in the case of strongly
diverging evaluations. It may be worth emphasizing that it is an explicit On-
TheMove policy that all conference Program Committees and Chairs make their
selections completely autonomously from the OTM organization itself. Like last
year, paper proceedings were on separate request and order this year, and in-
curred an extra charge.

VIII General Co-chairs’ Message for OnTheMove 2011

The General Chairs are once more especially grateful to the many people
directly or indirectly involved in the set-up of these federated conferences. Not
everyone realizes the large number of persons that need to be involved, and the
huge amount of work, commitment, and in the uncertain economic and funding
climate of 2011 certainly also financial risk, the organization of an event like OTM
entails. Apart from the persons in their roles mentioned above, we therefore wish
to thank in particular our eight main conference PC Co-chairs:

– CoopIS 2011: Manfred Reichert, Akhil Kumar, Qing Li
– ODBASE 2011: Manfred Hauswirth, Pascal Hitzler, Mukesh Mohania
– DOA-SVI 2011: Ernesto Damiani, Doug Schmidt, Beng Chin Ooi

And similarly the 2011 OTMA and Workshops PC (Co-)chairs (in arbi-
trary order): Hervé Panetto, Qing Li, J. Cecil, Thomas Moser, Yan Tang (2x),
Alok Mishra, Jürgen Münch, Ricardo Colomo Palacios, Deepti Mishra, Patrizia
Grifoni, Fernando Ferri, Irina Kondratova, Arianna D’Ulizia, Terry Halpin,
Herman Balsters, Almudena Alcaide, Naoki Masuda, Esther Palomar, Arturo
Ribagorda, Yan Zhang, Jan Vanthienen, Ernesto Damiani (again), Elizabeth
Chang, Paolo Ceravolo, Omar Khadeer Hussain, Miguel Angel Pérez-Toledano,
Carlos E. Cuesta, Renaud Pawlak, Javier Cámara, Stefanos Gritzalis, Peter
Spyns, Anja Metzner, Erich J. Neuhold, Alfred Holl, and Maria Esther Vidal.

All of them together with their many PC members, performed a superb and
professional job in managing the difficult yet existential process of peer review
and selection of the best papers from the harvest of submissions. We are all also
grateful to our supremely competent and experienced Conference Secretariat
and technical support staff in Antwerp and Guadalajara, Jan Demey and Daniel
Meersman, and last but certainly not least to our proceedings production team
in Perth (DEBII-Curtin University) this year led by Christopher Jones.

The General Co-chairs acknowledge with gratitude the academic freedom,
logistic support, and facilities they enjoy from their respective institutions, Vrije
Universiteit Brussel (VUB), Curtin University, Perth, Australia, and Universidad
Politécnica de Madrid (UPM), without which such an enterprise quite simply
would not be feasible. We do hope that the results of this federated scientific
enterprise contribute to your research and your place in the scientific network...
We look forward to seeing you again at next year’s event!

August 2011 Robert Meersman
Tharam Dillon

Pilar Herrero

Organization

OTM (On The Move) is a federated event involving a series of major interna-
tional conferences and workshops. These proceedings contain the papers pre-
sented at the OTM 2011 Federated conferences, consisting of three conferences,
namely, CoopIS 2011 (Cooperative Information Systems), DOA-SVI 2011 (Se-
cure Virtual Infrastructures), and ODBASE 2011 (Ontologies, Databases and
Applications of Semantics).

Executive Committee

General Co-chairs
Robert Meersman VU Brussels, Belgium
Tharam Dillon Curtin University of Technology, Australia
Pilar Herrero Universidad Politécnica de Madrid, Spain

OnTheMove Academy Dean

Erich Neuhold University of Vienna, Austria

Industry Case Studies Program Chairs

Hervé Panetto Nancy University, France
Richard Mark Soley OMG, USA

CoopIS 2011 PC Co-chairs

Akhil Kumar Penn State University, USA
Manfred Reichert University of Ulm, Germany
Qing Li City University of Hong Kong

DOA-SVI 2011 PC Co-chairs
Beng Chin Ooi National University Singapore
Ernesto Damiani Milan University, Italy
Douglas C. Schmidt SEI, USA
Jules White Virginia Polytechnic Institute and State

University, USA

ODBASE 2011 PC Co-chairs
Manfred Hauswirth DERI, Ireland
Pascal Hitzler Kno.e.sis, Wright State University, USA
Mukesh Mohania IBM India

X Organization

Publication Chair

Christopher Jones Curtin University of Technology, Australia

Publicity-Sponsorship Chair

Ana-Cecilia Martinez Barbosa DOA Institute, Belgium

Logistics Team

Daniel Meersman Head of Operations
Ana-Cecilia Martinez Barbosa
Jan Demey

CoopIS 2011 Program Committee

Marco Aiello
Antonio Ruiz Cortés
Joonsoo Bae
Zohra Bellahsene
Brian Blake
Nacer Boudjlida
James Caverlee
Jorge Cardoso
Francisco Curbera
Vincenzo D’Andrea
Xiaoyong Du
Schahram Dustdar
Kaushik Dutta
Johann Eder
Rik Eshuis
Ling Feng
Renato Fileto
HongGao Harbin
Ted Goranson
Paul Grefen
Michael Grossniklaus
Amarnath Gupta
Mohand-Said Hacid
Jan Hidders
Birgit Hofreiter
Zhixing Huang
Stefan Jablonski
Paul Johannesson
Epaminondas Kapetanios
Dimka Karastoyanova
Rania Khalaf

Hiroyuki Kitagawa
Frank Leymann
Guohui Li
Rong Liu
ZongWei Luo
Sanjay K. Madria
Tiziana Margaria
Leo Mark
Maristella Matera
Massimo Mecella
Jan Mendling
John Miller
Arturo Molina
Nirmal Mukhi
Miyuki Nakano
Moira C.Norrie
Selmin Nurcan
Werner Nutt
Gerald Oster
Hervé Panetto
Cesare Pautasso
Barbara Pernici
Lakshmish Ramaswamy
Stefanie Rinderle-Ma
Shazia Sadiq
Ralf Schenkel
Jialie Shen
Aameek Singh
Jianwen Su
Xiaoping Sun
Susan Urban

Organization XI

Willem-Jan van den Heuvel
Irene Vanderfeesten
François B. Vernadat
Maria Esther Vidal
Barbara Weber
Mathias Weske

Andreas Wombacher
Jian Yang
Xiaoming Yao
Shuigeng Zhou

DOA-SVI 2011 Program Committee

Rafael Accorsi
Moataz Ahmed
Ghazi Alkhatib
Jaiganesh Balasubramanian
Massimo Banzi
Elisa Bertino
Lionel Brunie
Marco Casassa-Mont
Fabio Casati
Frederic Cuppens
Alfredo Cuzzocrea
Schahram Dustdar
Eduardo Fernandez
Elena Ferrari
Alban Gabillon
Chris Gill
Andy Gokhale
Nils Gruschka
James Hill
Patrick Hung
David Jiang

Guoliang Li
Xumin Liu
Joe Loyall
Leszek Maciaszek
Antonio Maña
Priya Narasimhan
Jean-Cristophe Pazzaglia
Nilabja Roy
Joerg Schwenk
Ahmed Serhrouchni
George Spanoudakis
Azzel Taleb-Bendiab
Sumant Tambe
Bhavani Thuraisingham
Setsuo Tsuruta
Sai Wu
Qi Yu
Xiaofang Zhou
Aoying Zhou

ODBASE 2011 Program Committee

Karl Aberer
Divyakant Agrawal
Harith Alani
Sören Auer
Payam Barnaghi
Ladjel Bellatreche
Paul-Alexandru Chirita
Sunil Choenni
Oscar Corcho
Philippe Cudre-Mauroux
Bernardo Cuenca Grau

Emanuele Della Valle
Prasad Deshpande
Jérôme Euzenat
Walid Gaaloul
Aldo Gangemi
Giancarlo Guizzardi
Peter Haase
Harry Halpin
Takahiro Hara
Andreas Harth
Manfred Hauswirth

XII Organization

Martin Hepp
Pascal Hitzler
Andreas Hotho
Prateek Jain
Krzysztof Janowicz
Matthias Klusch
Shin’Ichi Konomi
Manolis Koubarakis
Rajasekar Krishnamurthy
Shonali Krishnaswamy
Reto Krummenacher
Werner Kuhn
Steffen Lamparter
Wookey Lee
Sanjay Madria
Frederick Maier
Mukesh Mohania
Anirban Mondal
Jeff Z. Pan
Kalpdrum Passi
Dimitris Plexousakis

Ivana Podnar Zarko
Axel Polleres
Guilin Qi
Prasan Roy
Sourav S Bhowmick
Satya Sahoo
Nandlal Sarda
Kai-Uwe Sattler
Peter Scheuermann
Christoph Schlieder
Michael Schrefl
Wolf Siberski
Srinath Srinivasa
Heiner Stuckenschmidt
L. Venkata Subramaniam
York Sure
Kunal Verma
Wei Wang
Josiane Xavier Parreira
Guo-Qiang Zhang

Supporting and Sponsoring Institutions

OTM 2011 was proudly supported or sponsored by Vrije Universiteit Brussel in
Belgium, Curtin University of Technology in Australia, Universidad Politecnica
de Madrid in Spain, the Object Management Group, and Collibra.

Computing for Human Experience: Semantics

Empowered Cyber-Physical, Social and
Ubiquitous Computing beyond the Web

Amit Sheth

Kno.e.sis, Wright State University, USA

Short Bio

Amit Sheth is an educator, research and entrepreneur. He is the LexisNexis Ohio
Eminent Scholar at the Wright State University, Dayton OH. He directs Kno.e.sis
- the Ohio Center of Excellence in Knowledge-enabled Computing which works
on topics in Semantic, Social, Sensor and Services computing over Web and in
social-cyber-physical systems, with the goal of transitioning from information
age to meaning age. Prof. Sheth is an IEEE fellow and is one of the highly
cited authors in Computer Science (h-index = 67) and World Wide Web. He
is EIC of ISI indexed Intl. Journal of Semantic Web & Information Systems
(http://ijswis.org), is joint-EIC of Distributed & Parallel Databases, is series
co-editor of two Springer book series, and serves on several editorial boards.
By licensing his funded university research, he has also founded and managed
two successful companies. Several commercial products and many operationally
deployed applications have resulted from his R&D.

Talk

“Computing for Human Experience: Semantics empowered Cyber-Physical, So-
cial and Ubiquitous Computing beyond the Web”

Traditionally, we had to artificially simplify the complexity and richness of the
real world to constrained computer models and languages for more efficient com-
putation. Today, devices, sensors, human-in-the-loop participation and social in-
teractions enable something more than a “human instructs machine” paradigm.
Web as a system for information sharing is being replaced by pervasive comput-
ing with mobile, social, sensor and devices dominated interactions. Correspond-
ingly, computing is moving from targeted tasks focused on improving efficiency
and productivity to a vastly richer context that support events and situational
awareness, and enrich human experiences encompassing recognition of rich sets
of relationships, events and situational awareness with spatio-temporal-thematic
elements, and socio-cultural-behavioral facets. Such progress positions us for

XIV Computing for Human Experience

what I call an emerging era of “computing for human experience” (CHE). Four
of the key enablers of CHE are: (a) bridging the physical/digital (cyber) divide,
(b) elevating levels of abstractions and utilizing vast background knowledge to
enable integration of machine and human perception, (c) convert raw data and
observations, ranging from sensors to social media, into understanding of events
and situations that are meaningful to humans, and (d) doing all of the above
at massive scale covering the Web and pervasive computing supported human-
ity. Semantic Web (conceptual models/ontologies and background knowledge,
annotations, and reasoning) techniques and technologies play a central role in
important tasks such as building context, integrating online and offline interac-
tions, and help enhance human experience in their natural environment.

Privacy and the Cloud

Siani Pearson

Hewlett-Packard Laboratories

Short Bio

Siani Pearson is a senior researcher in the Cloud and Security Research Lab (HP
Labs Bristol, UK), HP’s major European long term applied research centre.
She has an MA in Mathematics and Philosophy from Oxford and a PhD in
Artificial Intelligence from Edinburgh. She was a Fellow at the Computer Lab
in Cambridge University, and for the last 17 years has worked at HP Labs in a
variety of research and development programs including collaborations with HP
business units and EU PRIME (Privacy and Identity Management for Europe)
project.

Siani’s current research focus is on privacy enhancing technologies, account-
ability and the cloud. She is a technical lead on regulatory compliance projects
with HP Privacy Office and HP Enterprise Services, and on the collaborative
TSB-funded EnCoRe (Ensuring Consent and Revocation) project.

Talk

“Privacy and the Cloud”

Cloud computing offers a huge potential both for efficiency and new business
opportunities (especially in service composition), and is almost certain to deeply
transform our IT. However, the convenience and efficiency of this approach comes
with a range of potential privacy and security risks. Indeed, a key barrier to the
widespread uptake of cloud computing is the lack of trust in clouds by poten-
tial customers. This concern is shared by experts: the European Network and
Information Security Agency (ENISA)’s cloud computing risk assessment report
states “loss of governance” as a top risk of cloud computing, and “data loss or
leakages” is one of the top seven threats the Cloud Security Alliance (CSA) lists
in its Top Threats to Cloud Computing report.

In this talk I will assess how privacy, security and trust issues occur in the con-
text of cloud computing and explain how complementary regulatory, procedural
and technical provisions can be used to help address these issues. In particular,
accountability is likely to become a core concept in both the cloud and in new

XVI Privacy and the Cloud

mechanisms that help increase trust in cloud computing. It is especially helpful
for protecting sensitive or confidential information, enhancing consumer trust,
clarifying the legal situation in cloud computing, and facilitating cross-border
data transfers. I will also talk about some of the innovative technical solutions
that we are developing in HP Labs to enhance privacy in the cloud.

The Social Compute Unit

Schahram Dustdar

Vienna University of Technology (TU Wien)

Short Bio

Schahram Dustdar (ACM Distinguished Scientist), is full Professor of Computer
Science with a focus on Internet Technologies heading the Distributed Systems
Group, Vienna University of Technology (TU Wien).

From 1999 - 2007 he worked as the co-founder and chief scientist of Caramba
Labs Software AG in Vienna (acquired by Engineering NetWorld AG), a ven-
ture capital co-funded software company focused on software for collaborative
processes in teams. He is Editor in Chief of Computing (Springer) and on the
editorial board of IEEE Internet Computing, as well as author of some 300 pub-
lications.

Talk

“The Social Compute Unit”

Social computing is perceived mainly as a vehicle for establishing and maintain-
ing social (private) relationships as well as utilizing political and social inter-
ests. Unsurprisingly, social computing lacks substantial adoption in enterprises.
Clearly, collaborative computing is firmly established (as a niche), but no tight
integration exists of social and collaborative computing approaches to facilitate
mainstream problem solving in and between enterprises or teams of people. In
this talk I will present a fresh look at this problem and examine how to integrate
people in the form of human-based computing and software services into one
composite system, which can be modeled, programmed, and instantiated on a
large scale.

GENI - Global Environment for Network

Innovations

Niky Riga

GENI Project Office, Raytheon BBN Technologies

Short Bio

Niky Riga is a Network Scientist at Raytheon BBN Technologies. Niky joined
the GENI Project Office (GPO) in March 2010. As a member of GPO, Niky
is responsible for supporting GENI experimenters in integrating and deploying
their experiments as well as advocating their requirements to the rest of the
GENI community.

Before joining the GPO, Niky worked on multiple innovative projects within
the Network Research department of BBN. Her focus is on designing and pro-
totyping pioneering transport services for Mobile Ad-hoc Networks, while her
main goal is making innovative, research ideas practical and implementing them
on real systems. She has successfully led various integration efforts. Niky earned
a Diploma in Electrical and Computer Engineering at the National Technical
University of Athens, and an MS degree in Computer Science at Boston Univer-
sity.

Talk

“GENI - Global Environment for Network Innovations”

The Global Environment for Network Innovations (GENI) is a suite of research
infrastructure components rapidly taking shape in prototype form across the
US. It is sponsored by the US National Science Foundation, with the goal of be-
coming the world’s first laboratory environment for exploring future Internets at
scale, promoting innovations in network science, security, technologies, services,
and applications.

GENI allows academic and industrial researchers to perform a new class of
experiments that tackle critically important issues in global communications net-
works such as (a) Science issues: we cannot currently understand or predict the
behavior of complex, large-scale networks, (b) Innovation issues: we face sub-
stantial barriers to at-scale experimentation with new architectures, services,
and technologies (c) Society issues: we increasingly rely on the Internet but are
unsure that can we trust its security, privacy or resilience GENI is enabling

XX GENI - Global Environment for Network Innovations

researchers to explore these issues by running large-scale, well-instrumented,
end-to-end experiments engaging substantial numbers of real users. These experi-
ments may be fully compatible with today’s Internet, variations or improvements
on today’s Internet protocols, or indeed radically novel, clean slate designs. The
GENI project is now supporting such experiments across a mesoscale build-out
through more than a dozen US campuses, two national backbones, and several
regional networks. If this effort proves successful, it will provide a path toward
more substantial build-out.

In this keynote presentation, she will introduce GENI through a couple of
example use-cases, she will review the growing suite of infrastructure and evolv-
ing control framework. She will also present previous and current experiments
running in GENI.

Table of Contents – Part II

Distributed Objects and Applications and Secure
Virtual Infrastructures (DOA-SVI) 2011

DOA-SVI 2011 PC Co-chairs’ Message . 431

Performance Measurement and Optimization

Optimizing Integrated Application Performance with Cache-Aware
Metascheduling . 432

Brian Dougherty, Jules White, Russell Kegley, Jonathan Preston,
Douglas C. Schmidt, and Aniruddha Gokhale

Dynamic Migration of Processing Elements for Optimized Query
Execution in Event-Based Systems . 451

Waldemar Hummer, Philipp Leitner, Benjamin Satzger, and
Schahram Dustdar

A Survey on SLA and Performance Measurement in Cloud
Computing . 469

Mohammed Alhamad, Tharam Dillon, and Elizabeth Chang

Instrumentation, Monitoring, and Provisioning

Experiences with Service-Oriented Middleware for Dynamic
Instrumentation of Enterprise DRE Systems . 478

James H. Hill and Douglas C. Schmidt

Dynamic Event-Based Monitoring in a SOA Environment 498
Fabio Souza, Danilo Lopes, Kiev Gama, Nelson Rosa, and
Ricardo Lima

A SIP-Based Network QoS Provisioning Framework for Cloud-Hosted
DDS Applications . 507

Akram Hakiri, Aniruddha Gokhale, Douglas C. Schmidt,
Berthou Pascal, Joe Hoffert, and Gayraud Thierry

Quality of Service

Continuous Access to Cloud Event Services with Event Pipe Queries . . . 525
Qiming Chen and Meichun Hsu

XXII Table of Contents – Part II

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 542
James Edmondson, Doug Schmidt, and Aniruddha Gokhale

Security and Privacy

Towards Pattern-Based Reliability Certification of Services 560
Ingrid Buckley, Eduardo B. Fernandez, Marco Anisetti,
Claudio A. Ardagna, Masoud Sadjadi, and Ernesto Damiani

Direct Anonymous Attestation: Enhancing Cloud Service User
Privacy . 577

Ulrich Greveler, Benjamin Justus, and Dennis Loehr

Trust Management Languages and Complexity . 588
Krzysztof Sacha

Models and Methods

Ontology-Based Matching of Security Attributes for Personal Data
Access in e-Health . 605

Ioana Ciuciu, Brecht Claerhout, Louis Schilders, and
Robert Meersman

A Unified Ontology for the Virtualization Domain . 617
Jacopo Silvestro, Daniele Canavese, Emanuele Cesena, and
Paolo Smiraglia

2PSIM: Two Phase Service Identifying Method . 625
Ali Nikravesh, Fereidoon Shams, Soodeh Farokhi, and Amir Ghaffari

Automated Statistical Approach for Memory Leak Detection: Case
Studies . 635

Vladimir Šor, Nikita Salnikov-Tarnovski, and
Satish Narayana Srirama

Ontologies, DataBases, and Applications of Semantics
(ODBASE) 2011

ODBASE 2011 PC Co-chairs’ Message . 643

Acquisition of Semantic Information

RDFa Based Annotation of Web Pages through Keyphrases
Extraction . 644

Roberto De Virgilio

Table of Contents – Part II XXIII

An Ontological and Terminological Resource for n-ary Relation
Annotation in Web Data Tables . 662

Rim Touhami, Patrice Buche, Juliette Dibie-Barthélemy, and
Liliana Ibănescu

Inductive Learning of Disjointness Axioms . 680
Daniel Fleischhacker and Johanna Völker

Use of Semantic Information

Breaking the Deadlock: Simultaneously Discovering Attribute Matching
and Cluster Matching with Multi-Objective Simulated Annealing 698

Haishan Liu and Dejing Dou

To Cache or Not To Cache: The Effects of Warming Cache in Complex
SPARQL Queries . 716

Tomas Lampo, Maŕıa-Esther Vidal, Juan Danilow, and
Edna Ruckhaus

Implementation of Updateable Object Views in the ODRA
OODBMS . 734

Rados�law Adamus, Tomasz Marek Kowalski, and Jacek Wíslicki

Reuse of Semantic Information

Domain Expert Centered Ontology Reuse for Conceptual Models 747
Christian Kop

Semantic Invalidation of Annotations Due to Ontology Evolution 763
Julius Köpke and Johann Eder

The Role of Constraints in Linked Data . 781
Marco Antonio Casanova, Karin Koogan Beitman,
Antonio Luz Furtado, Vania M.P. Vidal, José A.F. Macedo,
Raphael Valle A. Gomes, and Percy E. Rivera Salas

ODBASE 2011 Short Papers

A Generic Approach for Combining Linguistic and Context Profile
Metrics in Ontology Matching . 800

DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta

ADERIS: An Adaptive Query Processor for Joining Federated SPARQL
Endpoints . 808

Steven Lynden, Isao Kojima, Akiyoshi Matono, and
Yusuke Tanimura

XXIV Table of Contents – Part II

Asynchronous Replication for Evolutionary Database Development:
A Design for the Experimental Assessment of a Novel Approach 818

Helves Humberto Domingues, Fabio Kon, and João Eduardo Ferreira

Improving the Accuracy of Ontology Alignment through Ensemble
Fuzzy Clustering . 826

Nafisa Afrin Chowdhury and Dejing Dou

Author Index . 835

Table of Contents – Part I

Cooperative Information Systems (CoopIS) 2011

CoopIS 2011 PC Co-chairs’ Message . 1

Business Process Repositories

Searching Business Process Repositories Using Operational Similarity . . . 2
Maya Lincoln and Avigdor Gal

Fragment-Based Version Management for Repositories of Business
Process Models . 20

Chathura C. Ekanayake, Marcello La Rosa,
Arthur H.M. ter Hofstede, and Marie-Christine Fauvet

Selecting and Ranking Business Processes with Preferences:
An Approach Based on Fuzzy Sets . 38

Katia Abbaci, Fernando Lemos, Allel Hadjali, Daniela Grigori,
Ludovic Liétard, Daniel Rocacher, and Mokrane Bouzeghoub

Efficient Retrieval of Similar Business Process Models Based on
Structure (Short Paper) . 56

Tao Jin, Jianmin Wang, and Lijie Wen

Business Process Compliance and Risk Management

Preservation of Integrity Constraints by Workflow . 64
Xi Liu, Jianwen Su, and Jian Yang

Monitoring Business Process Compliance Using Compliance Rule
Graphs . 82

Linh Thao Ly, Stefanie Rinderle-Ma, David Knuplesch, and
Peter Dadam

History-Aware, Real-Time Risk Detection in Business Processes 100
Raffaele Conforti, Giancarlo Fortino, Marcello La Rosa, and
Arthur H.M. ter Hofstede

Service Orchestration and Workflows

Transactional Process Views . 119
Rik Eshuis, Jochem Vonk, and Paul Grefen

XXVI Table of Contents – Part I

Edit Distance-Based Pattern Support Assessment of Orchestration
Languages . 137

Jörg Lenhard, Andreas Schönberger, and Guido Wirtz

Towards Robust Service Workflows: A Decentralized Approach
(Short Paper) . 155

Mario Henrique Cruz Torres and Tom Holvoet

Intelligent Information Systems and Distributed
Agent Systems

Pricing Information Goods in Distributed Agent-Based Information
Filtering . 163

Christos Tryfonopoulos and Laura Maria Andreescu

Trust Alignment: A Sine Qua Non of Open Multi-agent Systems 182
Andrew Koster, Jordi Sabater-Mir, and Marco Schorlemmer

An Architecture for Defeasible-Reasoning-Based Cooperative
Distributed Planning . 200

Sergio Pajares Ferrando, Eva Onaindia, and Alejandro Torreño

A Case Retrieval Approach Using Similarity and Association
Knowledge . 218

Yong-Bin Kang, Shonali Krishnaswamy, and Arkady Zaslavsky

Emerging Trends in Business Process Support

FlexCon – Robust Context Handling in Human-Oriented Pervasive
Flows . 236

Hannes Wolf, Klaus Herrmann, and Kurt Rothermel

An Artifact-Centric Approach to Dynamic Modification of Workflow
Execution . 256

Wei Xu, Jianwen Su, Zhimin Yan, Jian Yang, and Liang Zhang

Event Cube: Another Perspective on Business Processes 274
J.T.S. Ribeiro and A.J.M.M. Weijters

Techniques for Building Cooperative Information
Systems

Building eCommerce Systems from Shared Micro-schemas 284
Stefania Leone and Moira C. Norrie

A2-VM : A Cooperative Java VM with Support for Resource-Awareness
and Cluster-Wide Thread Scheduling . 302

José Simão, João Lemos, and Lúıs Veiga

Table of Contents – Part I XXVII

Peer-Based Relay Scheme of Collaborative Filtering for Research
Literature . 321

Youliang Zhong, Weiliang Zhao, Jian Yang, and Lai Xu

Security and Privacy in Collaborative Applications

Detecting and Resolving Conflicts of Mutual-Exclusion and Binding
Constraints in a Business Process Context . 329

Sigrid Schefer, Mark Strembeck, Jan Mendling, and Anne Baumgrass

Implementation, Optimization and Performance Tests of Privacy
Preserving Mechanisms in Homogeneous Collaborative Association
Rules Mining . 347

Marcin Gorawski and Zacheusz Siedlecki

Data and Information Management

Segmenting and Labeling Query Sequences in a Multidatabase
Environment . 367

Aybar C. Acar and Amihai Motro

Combining Resource and Location Awareness in DHTs 385
Liz Ribe-Baumann

SQL Streaming Process in Query Engine Net . 403
Qiming Chen and Meichun Hsu

Instance-Based ‘One-to-Some’ Assignment of Similarity Measures to
Attributes (Short Paper) . 412

Tobias Vogel and Felix Naumann

Matching and Alignment: What Is the Cost of User Post-Match Effort?
(Short Paper) . 421

Fabien Duchateau, Zohra Bellahsene, and Remi Coletta

Author Index . 429

DOA-SVI 2011 PC Co-chairs’ Message

Welcome to the 12th International Symposium on Distributed Objects, Middle-
ware and Applications (DOA 2010), held in Crete, Greece, October 2010. The
DOA conference series has become a key forum for presenting and discussing
new perspectives and exciting research results. Over the years, DOA topics have
included new computing paradigms like Web Services and SOA, cloud comput-
ing, virtualization, and many others, dealing with new new problems and ideas
as well as with the design and deployment of practical applications. DOA has
always managed to reach the right balance between theoretical and practical
aspects of IT research. Hopefully, this year is no exception. Much interest has
focused on the emerging paradigm of cloud computing, with papers covering top-
ics as diverse as virtualization management, cloud-based service environments
and cloud encryption and security; but other key topics of distributed computing,
especially the ones related to services, continued to be well represented among
DOA submissions. Contributions based on experimental work were particularly
encouraged, with early results also accepted where they were considered to be
sufficiently important to a wider audience. The quality of submissions this year
was very high, again following a well-established DOA tradition. All of the pa-
pers passed through a rigorous selection process, with at least three reviewers
per paper and much discussion on the relative merits of accepting each paper
throughout the process. At the end, we decided to accept 12 regular papers
of the original 27 submissions. Two more submissions were accepted as posters.
Putting together a conference like DOA is always a team effort, and many differ-
ent contributions need to be acknowledged. First of all we would like to gratefully
acknowledge the work of all of the authors, whether or not their paper was ac-
cepted. Thanks for choosing DOA to present your research work. Secondly, we
are grateful to the dedicated work of the leading experts in the field from all over
the world who served on the Program Committee and whose names appear in
the proceedings. Thanks for helping us in putting together an excellent program.
Finally, we would like to thank the whole OTM team for its support and guid-
ance, including the General Co-chairs Tharam Dillon and Robert Meersman, the
Publication Chairs, and the secretariat. The proceedings you hold in your hand
are the result of the hard work that everyone has put into DOA. We hope you
enjoy them and maybe consider submitting something in the future.

August 2011 Ernesto Damiani
Doug Schmidt
Beng Chin Ooi

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, p. 431, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimizing Integrated Application Performance
with Cache-Aware Metascheduling�

Brian Dougherty1, Jules White1, Russell Kegley2, Jonathan Preston2,
Douglas C. Schmidt3, and Aniruddha Gokhale3

1 Virginia Tech
2 Lockheed Martin Aeronautics

3 Vanderbilt University
{brianpd,julesw}@vt.edu,

{d.schmidt,a.gokhale}@vanderbilt.edu,
{russell.b.kegley,jonathan.d.preston}@lmco.com

Abstract. Integrated applications running in multi-tenant
environments are often subject to quality-of-service (QoS) requirements,
such as resource and performance constraints. It is hard to allocate re-
sources between multiple users accessing these types of applications while
meeting all QoS constraints, such as ensuring users complete execution
prior to deadlines. Although a processor cache can reduce the time re-
quired for the tasks of a user to execute, multiple task execution schedules
may exist that meet deadlines but differ in cache utilization efficiency.
Determining which task execution schedules will utilize the processor
cache most efficiently and provide the greatest reductions in execution
time is hard without jeopardizing deadlines.

The work in this paper provides three key contributions to increasing
the execution efficiency of integrated applications in multi-tenant envi-
ronments while meeting QoS constraints. First, we present cache-aware
metascheduling, which is a novel approach to modifying system execution
schedules to increase cache-hit rate and reduce system execution time.
Second, we apply cache-aware metascheduling to 11 simulated software
systems to create 2 different execution schedules per system. Third, we
empirically evaluate the impact of using cache-aware metascheduling to
alter task schedules to reduce system execution time. Our results show
that cache-aware metascheduling increases cache performance, reduces
execution time, and satisfies scheduling constraints and safety require-
ments without requiring significant hardware or software changes.

1 Introduction

Current trends and challenges. Multi-tenant environments, such as Software-
as-a-Service (SaaS) platforms and integrated avionics systems, are often subject
to stringent quality-of-service (QoS) requirements, such as resource requirements
and performance constraints [29]. To ensure that response time specified by
service-level agreements (SLAs) are upheld, execution time must be minimized.
� This work was sponsored in part by the Air Force Research Lab.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 432–450, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Optimizing Integrated Application Performance 433

One approach to reduce execution time is to reduce the time spent loading data
from memory by efficiently utilizing processor caches.

Several research techniques utilize processor caches more efficiently to reduce
execution time. For example, Bahar et al. [5] examined several different cache
techniques for reducing execution time by increasing cache hit rate. Their exper-
iments showed that efficiently utilizing a processor cache can result in as much as
a 24% reduction in execution time. Likewise, Manjikian et al. [16] demonstrated
a 25% reduction in execution time as a result of modifying the source-code of
the executing software to use cache partitioning.

Fig. 1. Example of an Integrated Avionics Architecture

Many optimization techniques [21,17,27] increase cache hit rate by enhanc-
ing source code to increase temporal locality of data accesses, which defines the
proximity with which shared data is accessed in terms of time [13]. For exam-
ple, loop interchange and loop fusion techniques can increase temporal locality
of accessed data by modifying application source code to change the order in
which application data is written to and read from a processor cache [13,16].
Increasing temporal locality increases the probability that data common to mul-
tiple tasks persists in the cache, thereby reducing cache-misses and software
execution time [13,16].

Open problem ⇒ Increasing cache hit rate of integrated applications
without source code modifications. Integrated applications are a class of
systems consisting of a number of computing modules capable of supporting
numerous applications of differing criticality levels [14]. Like other multi-tenant
environments, integrated applications prohibit data sharing between multiple
concurrent users, while requiring that execution completes within predefined
deadlines.

Software architectures for integrated applications are built from separate com-
ponents that must be scheduled to execute in concert with one another. Prior
work has generally focused on source-code level modifications for individual

434 B. Dougherty et al.

applications instead of integrated applications, which is problematic for multi-
tenant environments built from multiple integrated applications. Systems based
on the integration of multiple applications (such as the integrated avionics ar-
chitecture shown in Figure 1) often prohibit code-level modifications due to
restricted access to proprietary source code and the potential to violate safety
certifications [23] by introducing overflow or other faulty behavior.

Solution approach → Heuristic-driven schedule alteration of same-
rate tasks to increase cache hit rate. Priority-based scheduling techniques
can help ensure software executes without missing deadlines. For example, rate-
monotonic scheduling [20] is a technique for creating task execution schedules
that satisfy timing constraints by assigning priorities to tasks based on the task
periodicity and ensuring utilization bounds are not exceeded. These tasks are
then split into sets that contain tasks of the same priority/rate.

Rate monotonic scheduling specifies that tasks of the same rate can be sched-
uled arbitrarily [8] as long as priority inversions between tasks are not introduced.
Figure 2 shows two different valid task execution schedules generated with rate
monotonic scheduling. Since task A2 and task B2 share the same priority, their
execution order can be swapped without violating timing constraints. This paper
shows how to improve cache hit rates for systems built from multiple integrated
applications by intelligently ordering the execution of tasks within the same rate
to increase temporal locality of task data accesses. We refer to this technique
as metascheduling, which involves no source code modifications.

Fig. 2. Valid Task Execution Schedules

This paper presents cache-aware metascheduling, which is a novel scheduling
optimization technique we developed to improve cache effects of integrated ap-
plications without violating scheduling constraints or causing priority inversions.
Since this technique requires no source code modifications, it can be applied to
integrated applications without requiring source software permissions or com-
pletely invalidating safety certifications.

This paper provides the following contributions to R&D on scheduling opti-
mizations to increase the cache hit rate of integrated applications:

• We present a metascheduling technique that satisfies scheduling constraints
and safety requirements, increases cache hits, and requires no new hardware
or software.

Optimizing Integrated Application Performance 435

• To motivate the need for scheduling enhancements to improve cache hit rate
in integrated applications, we present an industry case study of an integrated
avionics system in which modifications to its constituent applications are
prohibitively expensive due to safety (re)certification requirements.

• We present empirical results of 2 task execution schedules performance and
demonstrate that applying cache-aware metascheduling can result in in-
creased cache-hit rates and reduced system execution time.

Paper organization. The remainder of the paper is organized as follows: Sec-
tion 2 examines an integrated avionics system designed to meet scheduling dead-
lines and assure required safety constraints; Section 3 summarizes the challenges
of creating a metric that predicts integrated application performance at design
time and guides execution schedule modifications; Section 4 describes a cache-
aware metascheduling strategy for increasing cache hit-rate and reducing execu-
tion time of an integrated avionics system; Section 5 analyzes empirical results
that demonstrate the effectiveness of cache-aware metascheduling for increas-
ing cache hit-rate and reducing system execution time; Section 6 compares our
cache-aware metascheduling approach with related work; and Section 7 presents
concluding remarks.

2 Integrated Avionics System Case Study
This section presents a case study representative of an integration avionics sys-
tem provided by Lockheed Martin that shows how integrated applications are
configured in modern aircraft, such as the one shown in Figure 1. This case
study underscores the similarity between multi-tenant environments and inte-
grated applications in terms of response time requirements and data sharing
restrictions. It also shows how scheduling methods for integrating applications
can be applied to ensure safety constraints and scheduling requirements are met.
Section 5.2 describes modifications to this method that increase the cache hit-
rates of integrated application architectures.

In this architecture, task execution schedules are divided into frames in which
a subset of tasks execute. Two tasks are schedule to execute sequentially at
the start of each base frame. The task that executes at the base frame rate
is scheduled to run, followed by another task at a rate of lower frequency. For
example, at Frame 0 the scheduler will execute the software that runs at 75 Hz
and the software that executes at 37.5 Hz, or half as frequently. This pattern
continues repeatedly until the lowest rate software in the system has completed.
All scheduling of integrated application tasks in the avionics system occurs in
this manner.

One method for ensuring that tasks execute with a predetermined frequency
is to set a base execution rate and then set all other tasks to execute propor-
tionately often. The execution of the tasks can the be interleaved based on the
relative execution rate, as shown in Figure 3. Applications 1 and 2 both have
tasks that execute at rates N, N/2, and N/4. The rate N tasks from both appli-
cations always execute before any other tasks in a given frame. Although it is

436 B. Dougherty et al.

Fig. 3. Interleaved Execution Order is Repeatable

not necessarily the case that all rate N tasks from Application 1 will run before
the rate N tasks from Application 2, our case study makes this order repeatable,
i.e., the interleaving A1/B2/A2 will not change from frame to frame after it is
established when the system starts.

3 Challenges of Analyzing and Optimizing Integrated
Applications for Cache Effects

This section presents the challenges faced by system integrators who attempt
to optimize integrated applications to improve cache hit rate. Systems are often
subject to multiple design constraints, such as safety requirements and schedul-
ing deadlines, that may restrict which optimizations are applicable. This section
describes three key challenges that must be overcome to optimize application
integration by improving the cache hit rate of integrated applications.

Challenge 1: Altering application source code may invalidate safety
certification. Existing cache optimization techniques, such as loop fusion and
data padding [12,19], increase cache hit rate but requiring application source code
modifications, which may invalidate previous safety certifications by introducing
additional faults, such as overflow. Re-certification of integrated applications
is a slow and expensive process, which increases cost and delays deployment.
Proprietary source code also may not be accessible to integrators. Even if source
code is available, moreover, integrators may not have the expertise required
to make reliable modifications. What is needed, therefore, are techniques that
improve cache hit rates without modifying integrated application software.

Optimizing Integrated Application Performance 437

Challenge 2: Optimization techniques must satisfy scheduling con-
straints. Integrated applications are often subject to scheduling constraints
and commonly use priority-based scheduling methods, such as rate monotonic
scheduling, to ensure that software tasks execute predictably [28,10]. These con-
straints prohibit many simple solutions that ignore task priority, such as execut-
ing all task sets of each application, that would greatly increase cache hit-rate.
These techniques can cause integrated applications to behave unpredictably, with
potentially catastrophic results due to missed deadlines and priority inversions.
What is needed, therefore, are techniques that can be applied and re-applied
when necessary to increase the cache hit-rate and decrease integrated applica-
tion execution time without violating timing constraints.

Challenge 3: System complexity and limited access to source code. Cur-
rent industry practice [3] for increasing cache hit rate require collecting detailed,
instruction-level information that describe integrated application behavior with
respect to the memory subsystem and data structure placement. Obtaining in-
formation of this granularity, however, can be an extremely laborious and time
consuming for large-scale systems, such as integrated avionics systems contain-
ing millions of lines of codes and dozens of integrated applications. Moreover,
these large-scale systems may be so complex that it is not feasible to collect this
information.

System integrators can more easily obtain higher level information, such as the
percentage of total memory accesses made by a given task. What is needed, there-
fore, are techniques that allow system integrators to increase the cache hit rate of
integrated applications without requiring intricate, low-level system knowledge.

4 Improving Cache Hit Rate via Cache-Aware
Metascheduling

This section presents cache-aware metascheduling, which is a technique we de-
veloped to increase cache hit rate through re-ordering the execution schedule
of same-rate tasks of integrated applications. Cache-ware metascheduling can
potentially increase the cache hit-rate and reduce execution time of systems in
which resources are not shared between concurrent executions, such as multi-
tenant environments and integrated avionics systems.

4.1 Re-ordering Same-Rate Tasks with Cache-Aware
Metascheduling

Rate monotonic scheduling can be used to create task execution schedules for
integrated applications that ensure scheduling deadlines are met. This technique,
however, allows the definition of additional rules to determine the schedule of
same-rate tasks [18,4,15]. As shown in Figure 4, reordering same-rate tasks, or
metascheduling, can produce multiple valid execution schedules.

For example, Figure 4 shows how Task A1 can execute before or after Task
B1. Either ordering of these same rate tasks meets scheduling constraints. Since

438 B. Dougherty et al.

the original schedule satisfies constraints and reordering same rate tasks does not
introduce priority inversions, schedules generated by metascheduling are valid.
Moreover, metascheduling does not require alterations to application source code
or low-level system knowledge.

The motivation behind metascheduling is that although different execution
orders of same-rate tasks do not violate scheduling constraints, they can impact
the cache hit-rate. For example, if two same-rate tasks that share a large amount
of data execute sequentially, then the first task may “warm up” the cache for the
second task by preloading data needed by the second task. This type of cache
warming behavior can improve the cache hit rate of the second task.

Same-rate task orderings can also negatively affect cache hit rate. For ex-
ample, tasks from integrated applications often run concurrently on the same
processor. These tasks may be segregated into different processes, however, pre-
venting tasks from different applications from sharing memory. If two tasks do
not share memory there is no cache warmup benefit. Moreover, the first task
may write a large amount of data to the cache and evict data needed by the
second task from the cache, reducing the cache hit rate of the second task.

Cache-aware metascheduling is the process of reordering the execution of
same-rate tasks to increase beneficial cache effects, such as cache warm up,
and reduce negative effects, such as requiring reading data from main memory.
Cache-aware metascheduling is relatively simple to implement, does not require
in-depth knowledge of the instruction level execution details and memory layout
of a large-scale system, and can be achieved without source code modifications
to tasks, making it ideal for increasing the performance of existing integrated ar-
chitectures and multi-tenant systems. Section 5 shows that reordering same-rate
tasks does improve cache hit rates and reduce execution time. A key question,
however, is what formal metric can be used to choose between multiple potential
same-rate task execution schedules.

4.2 Deciding between Multiple Metaschedules

While cache-aware metascheduling can be used to produce multiple valid same-
rate task execution schedules, it is not always apparent which schedule will
produce the overall best hit-rate and application performance. For example,
Figure 4 shows a schedule generated with rate monotonic scheduling and two
additional valid schedules created by permuting the ordering of same-rate tasks
for a flight controller (FC) application and a targeting system (TS) application.

The only difference between the task execution schedules are the order in
which tasks of the same-rate are executed.

It is not obvious which task execution schedule shown in Figure 4 will produce
the best cache hit-rate. For example, Metaschedule 2 in Figure 4 shows 2 tasks of
Application FC executing sequentially, while no tasks of Application TS execute
sequentially. If the tasks in Application FC share a large amount of data temporal
locality should increase compared to the original schedule since the cache is
“warmed up” for the execution of FC1 by FC2.

Optimizing Integrated Application Performance 439

Fig. 4. Multiple Execution Schedules

In Metaschedule 1, however, 2 tasks of Application TS execute sequentially
while no tasks of Application FC execute sequentially. If Application TS shares
more data than Application FC, Metaschedule 1 will yield greater temporal
locality than both the original schedule and schedule FC since the cached will
be warmed up with more data. It may also be the case that no data is shared
between any tasks of any application, in which case all three schedules would
yield similar temporal locality and cache hit rates.

Figure 4 shows it is hard to decide which schedule will yield the highest cache
hit rate. Constructing a metric for estimating temporal locality of a task execution
schedules could provide integrated application developers with a mechanism for
comparing multiple execution schedules and choosing which one would most yield
the highest cache hit rate. It is hard to estimate temporal locality, however, due to
several factors, such as the presence and degree of data sharing between tasks.

4.3 Using Cache-Half Life to Drive Cache-Aware Metascheduling

While metascheduling can be used to produce new execution schedules that con-
tinue to meet scheduling constraints, many of these schedules will not improve,
and may even reduce the cache-hit rate and increase execution time of the sys-
tem. We define a new heuristic, referred to as the cache half-life that can be used
to drive the metascheduling process.

Cache Half-Life. We now explain the key factors that impact cache hit rate
in integrated architectures and multi-tenant systems. A beneficial effect occurs
when task T1 executes before task T2 and loads data needed by T2 into the
cache. The beneficial effect can occur if T1 and T2 execute sequentially or if
any intermediate task executions do not clear out the data that T1 places into

440 B. Dougherty et al.

the cache that is used by T2. The cache half-life is this window of time between
which T1 and T2 can execute before the shared data is evicted from the cache
by data used for intermediate task executions. While this model is simpler than
the actual complex cache data replacement behavior, it is effective enough to
give a realistic representation of cache performance [22].

For example, assume there are 5 applications, each consisting of 2 tasks, with
each task consuming 20 kilobytes of memory in a 64k cache. The hardware uses a
Least Recently Used (LRU) replacement policy, which replaces the cache line that
remained the longest without being read when new data is written to the cache.
The cache half-life formulation will differ for other cache replacement policies.

Fig. 5. Using Cache Half-life to Drive Cache-aware Metascheduling

Executing the tasks will require writing up to 200 kilobytes to cache. Since the
cache can only store 64 kilobytes of data, all data from all applications cannot
persist in the cache simultaneously. Assuming the cache is initially empty, it
would take a minimum of 4 task executions writing 20 kilobytes each before
any data written by the first task potentially becomes invalidated. This system
would therefore have a cache half-life of 4.

Our cache-aware metascheduling algorithm uses the cache half-life to increase
the cache hit-rate and reduce system execution time. We attempt to maximize
the number of tasks of the same application that execute before the cache half-life
of the initial execution task expires.

For example, as shown in Figure 5 task A1 of Application ’A’ executes at
timestamp 0. The cache half-life of task A1 is 3 timestamps. As a result, for at
least timestamps 2-4 data from Application ’A’ will persist in the cache. Any
tasks that share data with task A1 could use the data stored in the cache rather
than accessing the data from main memory, resulting in a cache hit and reducing
system execution time.

In this example, moving Task A2 from timestamp 5 to timestamp 3 will
give Task A2 the opportunity to take advantage of the data cached by Task
A1, resulting in a potentially higher cache hit-rate without violating scheduling
constraints. Conversely, moving Task A2 to timestamp 4 will not increase the
cache hit-rate as most or all of the data written by Task A1 to the cache will
have been overwritten by this point due to tasks of other applications executing.

Optimizing Integrated Application Performance 441

5 Empirical Results

This section analyzes the results of a performance analysis of integrated applica-
tions in multiple systems with different execution schedules generated through
metascheduling. These systems also differ in the amount of memory shared be-
tween tasks. We investigate the impact of cache-aware metascheduling on L1
cache misses and runtime reductions for each system.

5.1 Overview of the Hardware and Software Testbed

To examine the impact of cache-aware metascheduling on integrated application
performance, we collaborated with members of the Lockheed Martin Corporation
to generated multiple systems that mimic the scale, execution schedule and data
sharing of modern flight avionics systems. We specified the number of integrated
applications, number of tasks per application, the distribution of task priority,
and the maximum amount of memory shared between each task for each system.
Together these integrated applications comprise a representative avionics system.
We also developed a Java-based code generator to synthesize C++ system code
that possessed these characteristics.

Figure 6 shows how the generated systems included a priority-based scheduler
and multiple sample integrated applications that consisted of a variable number
of periodic avionic tasks. Rate monotonic scheduling was used to create a de-
terministic priority based schedule for the generated tasks that adheres to rate

Fig. 6. System Creation Process

442 B. Dougherty et al.

monotonic scheduling requirements. The systems then were compiled and exe-
cuted on a Dell Latitude D820 with a 2.16Ghz Intel Core 2 processor with 2 x
32kb L1 instruction caches, 2 x 32 kb write-back data caches, a 4 MB L2 cache
and 4GB of RAM running Windows Vista.

For each experiment, every system was executed 50 times to obtain an average
runtime. The cache performance of these executions were profiled using the Intel
VTune Amplifier XE 2011. VTune is a profiling tool that is capable of calculating
the total number of times an instruction is executed by a processor.

For example, to determine the L1 cache misses of System A, we compiled
and then executed it with VTune configured to return the total times that the
instruction MEM_LOAD_REQUIRED.L1D_MISS is called. The data sharing
and memory usage of these integrated applications, as well as the metacheduling
strategy, are all parameterized and varied to generate a range of test systems. We
use these simulated systems to validate cache-aware metascheduling by showing
that taking into account data sharing when selecting a metaschedule performance
in terms of execution time and cache misses.

System Size vs. Cache Size. The amount of memory required for the system
has a major impact on the caching efficiency of the system. For example, consider
a system that requires 6 kilobytes of memory executing on a processor with an
L1 cache of 60 kilobytes. Assuming this is the sole executing system, all of data
can be stored in the cache, leaving 90% of the cache free. The cache effects
would therefore be the same for any system that does not require memory that
exceeds the available memory in the cache.

Cache-aware metascheduling currently does not take into account available
cache size since this may vary drastically from platform to platform. For our
experiments, we require that memory requirements of all generated software sys-
tems exceed the memory available in the cache. Otherwise, the cache could store
all of the data used by all applications simultaneously, removing any contention
for cache storage space, which is unrealistic in industry systems.

Data Sharing Characteristics. The data shared between applications and
shared between tasks of the same integrated application can greatly impact the
cache effectiveness of a system. For example, the more data shared between two
applications, the more likely the data in the cache can be utilized by tasks of the
applications, resulting in reduced cache misses and faster system runtime. The
system described in Section 2 prohibits data sharing between tasks of different
integrated applications.

All systems profiled in this section are also restricted to sharing data between
tasks of the same application. Integrated applications that exchange a great deal
of common message data, however, are likely to share memory. To account for
this sharing, our future work is examining cache-aware metascehduling strategies
that account for these architectures.

Task Execution Schedule. The execution schedule of the software tasks of
the system can potentially affect system performance. For example, assume there
are two integrated applications named App1 and App2 that do not share data.

Optimizing Integrated Application Performance 443

Each application contains 1,000 task methods, with tasks of the same application
sharing a large amount of data. The execution of a single task stores enough
memory to completely overwrite any data in the cache, resulting in a cache
half-life of 1.

When a task from App1 executes it completely fills the cache with data that
is only used by App1. If the same or another task from App1 executes next,
data could reside in the cache that could potentially result in a cache hit. Since
no data is shared with App2, however, executing a task from App2 could not
result in a cache hit and would overwrite all data used by App1 in the class. We
predict that multiple execution schedules therefore effect performance differently
in terms of cache hit-rate and execution time.

5.2 Experiments: Determining the Impact of Cache-Aware
Metascheduling on Cache Hit-Rate and Runtime Reductions

Experiment design. The execution schedule of tasks can potentially impact
both the runtime and number of cache misses of a system. We manipulated the
execution order of a single software system with 20% shared data probability
between 5 applications consisting of 10 tasks each to create 2 new execution
schedules. First, rate monotonic scheduling was use to create the baseline sched-
ule. This cache-aware metascheduling was then applied to reorder same rate
tasks to increase the temporal proximity between executions of tasks that share
data to the Optimized schedule.

Experiment 1: Using Cache-Aware Metascheduling to Reduce Cache
Misses. This experiment measures the impact of applying cache-aware

Fig. 7. Execution Schedules vs L1 Cache Misses

444 B. Dougherty et al.

metascheduling on the total L1D cache misses generated by an execution
schedule.

Hypothesis: Increasing temporal locality through cache-aware
metascheduling will result in less cache misses. Altering the task exe-
cution schedule can raise or lower the temporal locality of a sequence of data
accesses. This change in temporal locality could potential affect the cache hit-
rate resulting from executing a specific schedule. One way to potentially raise
temporal locality is to increase the instances in which a task executes before the
cache half-life of a previous task with which it shares memory expires. We hy-
pothesize that increasing temporal locality through cache-aware metascheduling
will result in less cache misses.

Experiment 1 Results. We hypothesized that using cache-aware metaschedul-
ing to increase temporal locality would reduce the number of cache misses. Fig-
ure 7 shows the L1 cache misses for both execution schedules. The baseline
execution schedule resulted in 3.5076x109 L1 cache misses while the Optimized
execution schedule generated 3.484x109 cache misses. Therefore, this data vali-
dates our hypothesis that cache miss rates can be reduced by using cache-aware
metascheduling to increase temporal locality.

Experiment 2: Reducing Execution Time with Cache-Aware
Metascheduling. This experiment measures and compares the total execution
time of a system execution schedule generated with rate monotonic scheduling
and the schedule resulting from applying cache-aware metascheduling.

Hypothesis: Using cache-aware metascheduling to increase
temporal locality of schedule will reduce execution time. While Ex-
periment 1 showed that applying cache-aware metascheduling can reduce cache
misses, the impact of cache-aware metascheduling on system execution time re-
mains unclear. We hypothesize that the schedule generated with cache-aware
metascheduling will execute faster than the schedule generated with normal rate
monotonic scheduling.

Experiment 2 Results. Figure 8 shows the average runtimes for the different
execution schedules. As shown in this figure, the task execution order can have
a large impact on runtime. The baseline execution schedule executed in 3,374
milliseconds. The Optimized execution schedule completed in 3,299 milliseconds,
which was an 2.22% reduction in execution time from the baseline execution
schedule. These results demonstrate that applying cache-aware metascheduling
can reduce the total execution time of a schedule.

Experiment 3: Impact of Data Sharing on Cache-Aware Metaschedul-
ing Effectiveness. This experiment measures the impact of data sharing on
execution time reductions due to cache-aware metascheduling.

Hypothesis: Applying cache-aware metascheduling will reduce exe-
cution time for all levels of data sharing. Figure 8 shows the execution

Optimizing Integrated Application Performance 445

Fig. 8. Runtimes of Various Execution Schedules

Fig. 9. Runtimes of Multiple Levels of Data Sharing

446 B. Dougherty et al.

time of two execution schedules at only 20% data sharing. Data sharing of in-
dustry systems, however, may vary to a large extent. Therefore, we created 10
other systems with different data sharing characteristics. We hypothesize that
cache-aware metascheduling will lead execution time reductions regardless of the
amount of data shared between tasks.

Experiment 3 Results. The execution time for the baseline and Optimized
schedules is shown in Figure 9. The Optimized schedule consistently executed
faster than the baseline schedule with an average execution time reduction
of 2.54% without requiring alteration to application source-code and without
violating real-time constraints. Moreover, this reduction required no purchas-
ing nor implementing of any additional hardware or software or obtaining any
low-level knowledge of the system. These results demonstrate that cache-aware
metascheduling can be applied to reduce the execution time of an array of
systems, such as integrated avionics systems, regardless of cost constraints, re-
stricted access to software source code, real-time constraints, or instruction level-
knowledge of the underlying architecture.

6 Related Work

This section compares the cache-aware metascheduling and its use for cache
optimization with other techniques for optimizing cache hits and system perfor-
mance, including (1) software cache optimization techniques and (2) hardware
cache optimization techniques.

Software cache optimization techniques. Many techniques change the or-
der in which data is accessed to increase the effectiveness of processor caches by
altering software at the source code level. These optimizations, known as data
access optimizations [13], focus on changing the manner in which loops are ex-
ecuted. One technique, known as loop interchange [30], can be used to reorder
multiple loops to maximize the data access of common elements in respect to
time, referred to as temporal locality [2,31,30,24].

Another technique, known as loop fusion [25], is often applied to further in-
crease cache effectiveness. Loop fusion maximizes temporal locality by merging
multiple loops into a single loop and altering data access order [25,12,6]. Yet an-
other technique for improving software cache effectiveness is to utilize prefetch
instructions, which retrieves data from memory into the cache before the data
is requested by the application [13]. Prefetch instructions inserted manually into
software at the source code level can significantly reduce memory latency and/or
cache miss rate [7,9].

While these techniques can increase the effectiveness of software utilizing pro-
cessor caches, they all require source code optimizations. Many systems, such as
the avionic system case study described in Section 2, are safety critical and must

Optimizing Integrated Application Performance 447

undergo expensive certification and rigorous development techniques. Any alter-
ation to these applications can introduce unforeseen side effects and invalidate
the safety certification. Moreover, developers may not have source code propri-
etary applications that are purchased. These restrictions prohibit the use of any
code-level modifications, such as those used in loop fusion and loop interchange,
as well as manually adding prefetch instructions.

These techniques, however, demonstrate the effects of increasing temporal lo-
cality on cache effectiveness and performance. cache-aware metascheduling can
be used as a heuristic to change the execution order of the software tasks to
increase cache effectiveness and performance by ordering the tasks in such a way
that temporal locality is increased. The fundamental difference, however, be-
tween using cache-aware metascheduling for cache optimization and these meth-
ods is that no modifications are required to the underlying software that is
executing on the system, thereby achieving performance gains without requiring
source code access or additional application re-certification.

Hardware cache optimization techniques. Several techniques alter systems
at the hardware level to increase the effectiveness of processor caches. One tech-
nique is to alter the cache replacement policy processors use to determine which
line of cache is replaced when new data is written to the cache. Several policies
exist, such as Least Recently Used (LRU), Least Frequently Used (LRU), First
In First Out (FIFO), and random replacement [11].

The cache replacement policy can substantially influence DRE system per-
formance. For example, LRU is effective for systems in which the same data
will likely be accessed again before enough data has been written to the cache
to completely overwrite the cache. Performance gains will be minimal, however,
if enough new data is written to the cache such that previously cached data
is always overwritten before it can be accessed [26]. In these cases, a random
replacement policy may yield the most cache effectiveness [26].

Moreover, certain policies are shown to work better for different cache lev-
els [1], with LRU performing well for L1 cache levels, but not as well for large
data sets that may completely exhaust the cache. Unfortunately, it is hard—and
often impossible for users—to alter the cache policy of existing hardware. Cache
replacement policies should therefore be considered when choosing hardware to
maximize the effects of cache optimizations made at the software or execution
schedule level.

Cache-aware metascheduling does not alter the cache replacement policy of
hardware since altering the hardware could invalidate previous safety certifica-
tions, similar to altering software at the source code level. Moreover, cache-aware
metascheduling can be used a heuristic to increase temporal locality by alter-
ing the task execution order schedule. While many replacement policies exist,
the metascheduling strategies we apply assumes an LRU replacement policy.
Our future work is examining the impact of cache replacement policy on the
performance gains of schedules altered via cache-aware metascheduling.

448 B. Dougherty et al.

7 Concluding Remarks

Processor data caching can substantially increase performance of systems (such
as integrated applications and other multi-tenant environments) in which SLAs
provide response time assurance and QoS policies that restrict resource sharing.
It is hard, however, to create valid task execution schedules that increase cache
effects and satisfy timing constraints. Metascheduling can be used to generate
multiple valid execution schedules with various levels of temporal locality and
different cache hit rates.

This paper presents a cache-aware metascheduling to increase the performance
gains due to processor caching of integrated applications. We empirically evalu-
ated four task execution schedules generated with cache-aware metascheduling
in terms of L1 cache misses and execution time. We learned the following lessons
from increasing cache hit-rate with cache-aware metascheduling:

• Cache-aware metascheduling increases cache hit rate of integrated
applications. Using cache-aware metascheduling led to runtime reductions
of as much as 5% without requiring code-level modifications, violating
scheduling constraints or implementing any additional hardware, middle-
ware, or software, and thus can be applied to broad range of systems.

• Relatively minor system knowledge yields effective metascheduling
strategies for increasing cache performance. Developing cache-aware
metascheduling strategies does not require an expert understanding of the
underlying software. Reasonable estimates of data sharing and knowledge of
the executing software tasks are all that is required to determine schedules
that yield effective reductions in computation time.

• Algorithmic techniques to maximize cache-hit rate improvements
due to cache-aware metascheduling should be developed. The task
execution schedule was shown to have a large impact on system performance.
Our future work is examining algorithmic techniques for optimizing cache-
aware metascheduling to determine the optimal execution order for tasks in
specific systems (such as multi-tenant environments) to maximize cache hit
rate.

• Cache-aware metascheduling should be applied to cloud-based
multi-tenant environments. Given the similarities (such as response time
requirements and data sharing restrictions) between integration applications
and multi-tenant environments, we expect cache-aware metascheduling to
also increase the efficiency of multi-tenant cloud environments. In future
work, we will apply cache-aware metascheduling to multi-tenant clouds to
determine what degree of performance enhancements can be achieved.

The source code simulating the integrated avionics system discussed in Section 5
can be downloaded at ascent-design-studio.googlecode.com.

ascent-design-studio.googlecode.com

Optimizing Integrated Application Performance 449

References

1. Abandah, G., Abdelkarim, A.: A Study on Cache Replacement Policies (2009)
2. Allen, J., Kennedy, K.: Automatic loop interchange. In: Proceedings of the 1984

SIGPLAN Symposium on Compiler Construction, p. 246. ACM (1984)
3. Asaduzzaman, A., Mahgoub, I.: Cache Optimization for Embedded Systems Run-

ning H. 264/AVC Video Decoder. In: IEEE International Conference on Computer
Systems and Applications, 2006, pp. 665–672. IEEE (2006)

4. Atlas, A., Bestavros, A.: Statistical rate monotonic scheduling. In: Proceedings of
the 19th IEEE Real-Time Systems Symposium, 1998, pp. 123–132. IEEE (1998)

5. Bahar, R., Albera, G., Manne, S.: Power and performance tradeoffs using various
caching strategies. In: Proceedings of the International Symposium on Low Power
Electronics and Design, 1998, pp. 64–69. IEEE (2005)

6. Beyls, K., DâĂŹHollander, E.: Reuse distance as a metric for cache behavior. In:
Proceedings of the IASTED Conference on Parallel and Distributed Computing
and Systems, vol. 14, pp. 350–360. Citeseer (2001)

7. Chen, T., Baer, J.: Reducing memory latency via non-blocking and prefetching
caches. ACM SIGPLAN Notices 27(9), 51–61 (1992)

8. Dhall, S., Liu, C.: On a real-time scheduling problem. Operations Research 26(1),
127–140 (1978)

9. Fu, J., Patel, J., Janssens, B.: Stride directed prefetching in scalar processors. In:
Proceedings of the 25th Annual International Symposium on Microarchitecture,
pp. 102–110. IEEE Computer Society Press (1992)

10. Ghosh, S., Melhem, R., Mossé, D., Sarma, J.: Fault-tolerant rate-monotonic
scheduling. Real-Time Systems 15(2), 149–181 (1998)

11. Guo, F., Solihin, Y.: An analytical model for cache replacement policy perfor-
mance. In: Proceedings of the Joint International Conference on Measurement and
Modeling of Computer Systems, pp. 228–239. ACM (2006)

12. Kennedy, K., McKinley, K.: Maximizing Loop Parallelism and Improving Data
Locality Via Loop Fusion and Distribution. In: Banerjee, U., Gelernter, D.,
Nicolau, A., Padua, D.A. (eds.) LCPC 1993. LNCS, vol. 768, pp. 301–320. Springer,
Heidelberg (1994)

13. Kowarschik, M., Weiß, C.: An Overview of Cache Optimization Techniques and
Cache-Aware Numerical Algorithms. In: Meyer, U., Sanders, P., Sibeyn, J.F. (eds.)
Algorithms for Memory Hierarchies. LNCS, vol. 2625, pp. 213–232. Springer, Hei-
delberg (2003)

14. Lee, Y., Kim, D., Younis, M., Zhou, J., McElroy, J.: Resource scheduling in de-
pendable integrated modular avionics. In: Proceedings International Conference on
Dependable Systems and Networks, DSN 2000, pp. 14–23. IEEE (2000)

15. Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In: Proceedings of Real Time Systems
Symposium, 1989, pp. 166–171. IEEE (1987)

16. Manjikian, N., Abdelrahman, T.: Array data layout for the reduction of cache
conflicts. In: Proceedings of the 8th International Conference on Parallel and Dis-
tributed Computing Systems, pp. 1–8. Citeseer (1995)

17. Nayfeh, B., Olukotun, K.: Exploring the design space for a shared-cache multipro-
cessor. In: Proceedings of the 21st Annual International Symposium on Computer
Architecture, p. 175. IEEE Computer Society Press (1994)

18. Orozco, J., Cayssials, R., Santos, J., Ferro, E.: 802.4 rate monotonic scheduling
in hard real-time environments: Setting the medium access control parameters.
Information Processing Letters 62(1), 47–55 (1997)

450 B. Dougherty et al.

19. Panda, P., Nakamura, H., Dutt, N., Nicolau, A.: Augmenting loop tiling with
data alignment for improved cache performance. IEEE Transactions on Comput-
ers 48(2), 142–149 (2002)

20. Pingali, S., Kurose, J., Towsley, D.: On Comparing the Number of Preemptions
under Earliest Deadline and Rate Monotonic Scheduling Algorithms (2007)

21. Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing predictability of cache re-
placement policies. Real-Time Systems 37(2), 99–122 (2007)

22. Robinson, J., Devarakonda, M.: Data cache management using frequency-based
replacement. ACM SIGMETRICS Performance Evaluation Review 18(1), 134–142
(1990)

23. Rodríguez-Dapena, P.: Software safety certification: a multidomain problem. IEEE
Software 16(4), 31–38 (1999)

24. Shiue, W., Chakrabarti, C.: Memory design and exploration for low power, embed-
ded systems. The Journal of VLSI Signal Processing 29(3), 167–178 (2001)

25. Singhai, S., McKinley, K.: A parametrized loop fusion algorithm for improving
parallelism and cache locality. The Computer Journal 40(6), 340 (1997)

26. Smith, J., Goodman, J.: Instruction cache replacement policies and organizations.
IEEE Transactions on Computers, 234–241 (1985)

27. Sprangle, E., Carmean, D.: Increasing processor performance by implementing
deeper pipelines. In: Proceedings of the 29th Annual International Symposium
on Computer Architecture, 2002, pp. 25–34. IEEE (2002)

28. Stewart, D., Barr, M.: Rate monotonic scheduling. In: Embedded Systems Pro-
gramming, pp. 79–80 (2002)

29. Wang, Z., Guo, C., Gao, B., Sun, W., Zhang, Z., An, W.: A study and performance
evaluation of the multi-tenant data tier design patterns for service oriented com-
puting. In: IEEE International Conference on e-Business Engineering, pp. 94–101.
IEEE (2008)

30. Wolf, M., Maydan, D., Chen, D.: Combining loop transformations considering
caches and scheduling. In: Micro, p. 274. IEEE Computer Society (1996)

31. Yi, Q., Kennedy, K.: Improving memory hierarchy performance through combined
loop interchange and multi-level fusion. International Journal of High Performance
Computing Applications 18(2), 237 (2004)

Dynamic Migration of Processing Elements

for Optimized Query Execution
in Event-Based Systems

Waldemar Hummer, Philipp Leitner, Benjamin Satzger, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology, Austria
{lastname}@infosys.tuwien.ac.at

Abstract. This paper proposes a method for optimized placement of
query processing elements in a distributed stream processing platform
consisting of several computing nodes. We focus on the case that multiple
users run different continuous Complex Event Processing (CEP) queries
over various event streams. In times of increasing event frequency it
may be required to migrate parts of the query processing elements to a
new node. Our approach achieves a tradeoff between three dimensions:
balancing the load among nodes, avoiding duplicate buffering of events,
and minimizing the data transfer between nodes. Thereby, we also take
one-time costs for migration of event buffers into account. We provide a
detailed problem description, present a solution based on metaheuristic
optimization, and evaluate different aspects of the problem in a Cloud
Computing environment.

Keywords: event-based systems, continuous queries, migrating query
processing elements, placement of event subscriptions, WS-Aggregation.

1 Introduction

In recent years, academia and industry have increasingly focused on event-based
systems (EBS) and Complex Event Processing (CEP) [11] for Internet-scale data
processing and publish-subscribe content delivery. The massive and continuous
information flow of today requires techniques to efficiently handle large amounts
of data, e.g., in areas such as financial computing, online analytical processing
(OLAP), wireless and pervasive computing, or sensor networks [22]. In most of
these application areas, filtering and combining related information from differ-
ent event sources is crucial for potentially generating added value on top of the
underlying (raw) data. Platforms that are specialized in continuously querying
data from event streams face difficult challenges, particularly with respect to per-
formance and robustness. Evidently, continuous queries that consider a sliding
window of past events (e.g., moving average of historical stock prices in a finan-
cial computing application) require some sort of buffering to keep the relevant
events in memory. State-of-the-art query engines are able to optimize this buffer
size and to drop events from the buffer which are no more needed (e.g., [17]).

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 451–468, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

452 W. Hummer et al.

However, a topic that is less covered in literature is how to optimize resource
usage in a system with multiple continuous queries executing concurrently.

In our previous work we have presented WS-Aggregation [13,14], a distribu-
ted platform for aggregation of event-based Web services and Web data. The
platform allows multiple users to perform continuous queries over event emit-
ting data sources. WS-Aggregation employs a collaborative computing model in
which incoming user requests are split into parts, which are then assigned to one
or more aggregator nodes. For instance, when a query involves input data from
two or more data sources, each of the inputs may be handled by a different ag-
gregator. Throughout various experiments we observed that query distribution
and placement of processing elements has a considerable effect on the perfor-
mance of the framework. For the remainder of the paper, an event subscription
determines the node that receives and processes the events of an event stream.

In this paper we study how the placement of processing elements affects the
performance of single queries and the overall system. To that end, we take several
aspects into account. Firstly, computing nodes have resource limits, and in times
of peak loads we need to be able to adapt and reorganize the system. Secondly,
complex queries over event streams require buffering of a certain amount of past
events, and the required memory should be kept at a minimum. Finally, if the
tasks assigned to collaborating nodes contain inter-dependencies, possibly a lot
of network communication overhead takes place between the aggregator nodes.
We propose an approach which considers all of the above mentioned points and
seeks to optimize the system configuration. This work is highly important for the
runtime performance of event-based systems that deal with load balancing and
dynamic migration of event subscriptions, as exemplified using WS-Aggregation.

In the remainder of this paper, we first discuss related work in Section 2.
In Section 3, we present the model for event-based continuous queries in WS-
Aggregation. Section 4 discusses different strategies for optimal placement of
processing elements in distributed event processing platforms and formulates the
tradeoff between conflicting goals as a combinatorial optimization problem. Some
implementation details are discussed in Section 6, and the overall approach is
evaluated in Section 7. Section 8 concludes the paper with a future work outlook.

2 Related Work

Due to the large number of its application areas, event processing has attracted
the interest of both industry and research [19,27]. Important topics in CEP
include pattern matching over event streams [1], aggregation of events [20] or
event specification [10]. In this paper, we focus on optimizing the distributed
execution of continuous queries over event streams. Hence, we concentrate on
some related work in this area in the remainder of this section.

Optimized placement of query processing elements and operators has previ-
ously been studied in the area of distributed stream processing systems. Piet-
zuch et al. [23] present an approach for network-aware operator placement on
geographically dispersed machines. Bonfils and Bonnet [7] discuss exploration

Dynamic Migration of Processing Elements for Optimized Query Execution 453

and adaptation techniques for optimized placement of operator nodes in sensor
networks. Our work is also related to query plan creation and multi query op-
timization, which are core fields in database research. In traditional centralized
databases, permutations of join-orders in the query tree are considered in order
to compute an optimal execution plan for a single query [15]. Roy et al. [24]
present an extension to the AND-OR DAG (Directed Acyclic Graph) repre-
sentation, which models alternative execution plans for multi-query scenarios.
Based on the AND-OR DAG, a thorough analysis of different algorithms for
multi-query optimizing has been carried out. Zhu et al. [33] study exchangeable
query plans and investigate ways to migrate between (sub-)plans.

Seshadri et al. [25,26] have identified the problem that evaluating continu-
ous queries at a single central node is often infeasible. Our approach builds on
their solution which involves a cost-benefit utility model that expresses the total
costs as a combination of communication and processing costs. Although the
approaches target a similar goal, we see some key differences between their and
our work. Firstly, their approach builds on hierarchical network partitions/clus-
ters, whereas WS-Aggregation is loosely coupled and collaborations are initiated
in an ad-hoc fashion. Secondly, their work does not tackle runtime migration
of query plans and deployments, which is a core focus in this paper. In fact,
WS-Aggregation implements the Monitor-Analyze-Plan-Execute (MAPE) loop
known from Autonomic Computing [16]. In that sense, the purpose of our opti-
mization algorithm is not to determine an optimal query deployment up front,
but to apply reconfigurations as the system involves. Chen et al. [9] describe a
way to offer continuous stream analytics as a cloud service using multiple en-
gines for providing scalability. Each engine is responsible for parts of the input
stream. The partitioning is based on the contents of the data, e.g., each engine
could be responsible for data generated in a certain geographical region.

Several previous publications have discussed issues and solutions related to
active queries for internet-scale content delivery. For instance, Li et al. [18]
presented the OpenCQ framework for continuous querying of data sources. In
OpenCQ a continuous query is a query enriched with a trigger condition and a
stop condition. Similarly, the NiagaraCQ system [8] implements internet-scale
continuous event processing. Wu et al. [32] present another approach to dealing
with high loads in event streams, tailored to the domain of real-time process-
ing of RFID data. Numerous contributions in the field of query processing over
data streams have been produced as part of the Stanford Stream Data Man-
ager (STREAM) project [21]. The most important ones range from a specialized
query language, to resource allocation in limited environments, to scheduling
algorithms for reducing inter-operator queuing. Their work largely focuses on
how to approximate query answers when high system load prohibits exact query
execution. Query approximation and load shedding under insufficient available
resources is also discussed in [3]. Our approach does not support approximation,
but exploits the advantages of Cloud Computing to allocate new resources for
dynamic migration of query processing elements.

454 W. Hummer et al.

Furthermore, database research has uncovered that special types of queries de-
serve special treatment and can be further optimized, such as k-nearest neighbor
queries [6] or queries over streams that adhere to certain patterns or constraints
[4]. WS-Aggregation also considers a special form of 3-way distributed query
optimization, which we have presented in earlier work [13].

3 Event-Based Continuous Queries in WS-Aggregation

In the following we establish the model for distributed processing of event-based
continuous queries that is applied in WS-Aggregation. The model serves as the
basis for the concepts discussed in the remainder of the paper. WS-Aggregation is
a distributed platform for large-scale aggregation of heterogeneous internet-based
data sources, which supports push-style updates using the notion of continuous
event queries on data sources. More information can be found in [13].

Table 1. Description of Symbols and Variables in Event-Based Query Model

Symbol Description

A = {a1, a2, . . . , an} Set of deployed aggregator nodes.

Q = {q1, q2, . . . , qm} Queries that are handled by the platform at some point in time.

I = {i1, i2, . . . , ik} Set of all inputs over all queries.

inputs : Q → P(I) Function that returns all inputs of a query.

deps : Q → P(I × I) Function that returns all data dependencies of a query.

S = {s1, s2, . . . , sl} Data sources that emit events over which queries are executed.

source : I → S Function to determine the data source targeted by an input.

query : I → Q Function to determine the query an input belongs to.

buf : A → P(S) Function to determine which data sources an aggregator buffers.

Table 1 summarizes the symbols and variables that are used in the formaliza-
tion. In our model, a number of aggregator nodes (A) are collectively responsi-
ble to execute multiple continuous user queries (Q). Each query processes one
or more inputs (I) from external data sources (S). The function inputs maps
queries to inputs (P(I) denotes the power set of I), and the function source
returns the data source targeted by an input. The actual processing logic of the
query is application specific and not directly relevant for our purpose. However,
we consider that a query q may contain data dependencies among any two of its
inputs ix, iy ∈ inputs(q), ix �= iy. A dependency (ix, iy) ∈ deps(q) means that
iy can only be processed after certain data from ix have been received, because
the data are required either 1) by the request to initiate the event stream from
the data source underlying iy, or 2) by a preprocessing query that prepares (e.g.,
groups, filters, aggregates) the incoming events for iy. Such dependencies are
often seen in continuous queries over multiple data streams [5], where subscrip-
tions are dynamically created (or destroyed) when a specific pattern or result is

Dynamic Migration of Processing Elements for Optimized Query Execution 455

produced by the currently active streams. An example could be a sensor emit-
ting temperature data in a smart home environment, which only gets activated
as soon as another sensor emits an event that a person has entered the room.

Although we use the terms service and data source interchangeably, strictly
speaking the notion of data source is narrower, because every entry in S is iden-
tified by a pair (epr, filter), where epr is the Endpoint Reference [28] (location)
of the service and the filter expression determines which types of events should
be returned. That is, different data sources may be accessed under the same
service endpoint. The filter may be empty, in which case events of all types are
returned.

The reason for abstracting inputs from data sources is that different queries
may require different data from one and the same source. As an example, assume
a data source which every second emits an event with the market price of two
stocks, and two queries which compute the Pearson correlation as well as the
Spearman correlation of the historical prices. This means that each of the inputs
needs to be processed (computed) separately, but the same underlying event
buffer can be used for both inputs. We use the function buf to determine the data
sources from which an aggregator “currently” (at some point in time) receives
and buffers events.

Fig. 1. Illustrative Instantiation of the Model for Distributed Event-Based Queries

The key aspects of the processing model are illustrated in Figure 1, which
depicts two aggregator nodes (a1,a2) executing two queries (q1,q2) consisting
of five inputs (i1,. . . ,i5) in total. The query execution happens in two steps:
firstly, the incoming events are buffered and preprocessed to become the actual
inputs (e.g., average value of previous stock prices), and secondly the inputs are
joined and combined as defined in the query specification. Dashed lines in the
figure indicate aggregator-internal data flow, whereas solid lines stand for data
exchanged with external machines. Aggregator a1 orchestrates the execution
of query q1 and notifies the client of new results. We hence denote a1 as the
master aggregator for q1 (analogously, a2 is the master of q2). The data source
s3 provides data for one single input (i5), whereas inputs i1/i3 and i2/i4 are based

456 W. Hummer et al.

on the events from s1 and s2, respectively. We observe that the events from s2 are
buffered both on a1 and on a2, which we denote buffer duplication. In Figure 1,
an arrow pointing from an input ix to iy indicates a data dependency, i.e., that ix
provides some data which are required by iy. In the case of i1 and i2, this passing
of data happens locally, whereas i3 and i4 are handled by different aggregators
and hence data are transmitted over the network. We see that assigning i3 to
node a1 has the advantage that the events from s1 are buffered only once (for
both i1 and i3), but is disadvantageous with respect to network traffic between
the two aggregators a1 and a2. Conversely, s2 is buffered on both aggregators,
reducing the network traffic but requiring more memory. Section 4 deals with
this tradeoff in more detail and further refines the optimization problem that we
strive to solve.

4 Problem Formulation

In this section we provide a detailed definition for the problem of finding an opti-
mal placement of processing elements in distributed event processing platforms.
The basis for optimization is the current assignment of inputs to aggregators at
some point in time, cur : I → P(A), where P(A) denotes the powerset of A. We
define that cur(i) = ∅ iff input i has not (yet) been assigned to any aggregator
node. For now, we assume that each input (as soon as it has been assigned) is
only handled by one aggregator, hence |cur(i)| ≤ 1, ∀i ∈ I, but in Section 4.3 we
will discuss the case that inputs are redundantly assigned to multiple aggregators
for fail-safety. The desired result is a new assignment new : I → P(A) in which
all inputs are assigned to some aggregator, |new(i)| = 1, ∀i ∈ I. The difference
between cur and new constitutes all inputs that need to be migrated from one
aggregator to another, denoted as M := {i ∈ I | cur(i) �= ∅ ∧ cur(i) �= new(i)}.

Migrating a query input may require to migrate/duplicate the event buffer
of the underlying data source, if such a buffer does not yet exist on the tar-
get aggregator. The technical procedure of migrating event buffers and sub-
scriptions is detailed in Section 6.1. The (computational) cost associated with
this operation is proportional to the size of the buffer in bytes, expressed as
size : S × (A ∪ {∅}) → N. For instance, the buffer size for a source s on an
aggregator a is referenced as size(s, a). If the aggregator is undefined (∅), then
the buffer size function returns zero: size(s, ∅) = 0, ∀s ∈ S. The costs for mi-
gration of an input i from its current aggregator to a new node (function migr)
only apply when the data source of i is not yet buffered on the new node, as
expressed in Equation 1.

migr(i) :=
{

size(source(i), cur(i)), if source(i) �∈ buf(new(i))
0, otherwise (1)

In order to decide on actions for load balancing, we need to introduce some
notion to express the current load of an aggregator node. In earlier work [14]
we observed that the main influencing factor for the aggregators’ workload in

Dynamic Migration of Processing Elements for Optimized Query Execution 457

WS-Aggregation is the number of inputs and the data transfer rate of the un-
derlying event streams. The transfer rate of data streams is therefore continu-
ously measured and averaged over a given time interval (e.g., 1 minute). Every
aggregator provides a metadata interface which can be used to retrieve this
monitoring information as a function rate : (S ∪ I) → R, measured in kilo-
bytes per second (kB/s). The rate(s) of a data stream s ∈ S is the trans-
fer rate of external events arriving at the platform, and rate(i) for an input
i ∈ I is the internal rate of events after the stream has passed the prepro-
cessor. Based on the data transfer rate, we define the load function for an
aggregator a ∈ A as load(a) :=

∑
s∈buf(a)

∑
i∈Is

rate(s) · c(i), where Is de-
notes the set of all inputs targeting s, i.e., Is := {i ∈ I | source(i) = s}, and
c : I → R is an indicator for the computational overhead of the preprocessing
operation that transforms the data source s into the input i. The computational
overhead depends on the processing logic and can be determined by monitor-
ing. If no information on the running time of a processing step is available
then c(i) defaults to 1. For simplification, the assumption here is that n data
streams with a rate of m kB/s generate the same load as a single data stream
with a rate of n ∗ m kB/s. We denote the minimum load of all aggregators as
minload := min(

⋃
a∈A load(a)), and the difference between minload and the

load of an aggregator a as ldiff(a) := load(a) − minload.
To obtain a notion of the data flow, in particular the network traffic caused by

external data flow between aggregator nodes (see Figure 1), Equation 2 defines
the flow between two inputs i1, i2 ∈ I. If the inputs are not dependent from
each other or if both inputs are handled by the same aggregator, the flow is 0.
Otherwise, flow amounts to the data transfer rate (rate(i1)), measured in kB/s.

flow(i1, i2) :=
{

rate(i1), if (i1, i2) ∈ deps(query(i1)) ∧ new(i1) �= new(i2)
0, otherwise (2)

Finally, Equation 3 introduces dupl to express buffer duplication. The idea is
that each data source s ∈ S needs to be buffered by at least one aggregator,
but additional aggregators may also buffer events from the same source (see
Figure 1). The function dupl(s) hence subtracts 1 from the total number of
aggregators buffering events from s.

dupl(s) := |{a ∈ A | s ∈ buf(a)}| − 1 (3)

4.1 Optimization Target

We now combine the information given so far in a single target function to ob-
tain a measure for the costs of the current system configuration and the potential
benefits of moving to a new configuration. Overall, we strive to achieve a trade-
off between three dimensions: balancing the load among aggregator nodes (L),
avoiding duplicate buffering of events (D), while at the same time minimizing

458 W. Hummer et al.

the data transfer between nodes (T). The goal of L is to keep each node respon-
sive and to account for fluctuations in the frequency and size of incoming event
data. The D dimension attempts to minimize the globally consumed memory,
and T aims at a reduction of the time and resources used for marshalling/trans-
mitting/unmarshalling of data.

Fig. 2. Relationship between Optimization Targets

Figure 2 illustrates the tradeoff relationship as a “Magic Triangle”: each pair
of goals can be fulfilled separately, but the three goals cannot fully be satisfied in
combination. For instance, a way to achieve a balanced load for all aggregators
(L) in combination with no duplicate data source buffers (D) is to assign each
source to a single aggregator. However, if a single query contains several inter-
dependent data sources on different aggregators (which is likely to occur in this
case), the aggregators possibly need to frequently transmit data. Conversely, to
achieve load distribution (L) together with low data transfer (T), each query
with all its inputs could be assigned to a single aggregator, but we observe that
duplicate buffers come into existence if any two queries on different aggregators
use the same underlying data source. Finally, to achieve both T and D at the
same time, all requests could be assigned to one single aggregator. As indicated
by the brackets in Figure 2, this possibility is generally excluded since we are
striving for a distributed and scalable solution.

The function F ′ in Equation 4 contains the three components that are to be
minimized. We observe that the three parts have different value ranges. There-
fore, the target function includes user-defined weights (wL,wT ,wD) to offset the
differences of the value ranges and to specify which of the parts should have
more impact on the target function.

F ′ := wL ∗
∑
a∈A

ldiff(a) + wT ∗
∑

i1,i2∈I

flow(i1, i2) + wD ∗
∑
s∈S

dupl(s) → min! (4)

We observe that the optimization target in Equation 4 only considers how good
a new system configuration (i.e., assignment of inputs to aggregators) is, but not
how (computationally) expensive it is to reach the new setup. To account for the
costs of migrating query inputs, we make use of the migr function defined earlier
in Section 4 and use a weight parameter wM to determine its influence. The final

Dynamic Migration of Processing Elements for Optimized Query Execution 459

target function F is printed in Equation 5. Note that the additional one-time
costs for migration in F are conceptually different from the cost components in
F ′ which apply continuously during the lifetime of the queries.

F := F ′ + wM ∗
∑
i∈M

migr(i) → min! (5)

4.2 Elastic Scaling Using Cloud Computing

The premise for being able to change the current system configuration (moving
from cur to new) as defined in the optimization target in Section 4.1 is that there
are enough resources globally available to execute the migration tasks. To ensure
that the resources are sufficient, we take advantage of Cloud Computing [2]
techniques to elastically scale the platform up and down. To that end, each
aggregator exposes metadata about the current stress level of the machine it
is running on, and new machines are requested if all nodes are fully loaded.
Conversely, if the nodes operate below a certain stress threshold, the queries can
be rearranged to release machines back to the Cloud. For more details about
elastic scaling in WS-Aggregation we refer to [13].

The notion of stress level is quite broad - it may include CPU and memory
usage, list of open files and sockets, length of request queues, number of threads
and other metrics. For simplification, we assume that the individual parts of
the stress level function are added up and normalized, resulting in a function
stress : A → [0, 1]. Every aggregator provides a metadata interface which can
be used to retrieve monitoring information and performance characteristics of
the underlying physical machine. We use the upper bound of the stress level
(value 1) to express that an aggregator is currently working at its limit and
cannot be assigned additional tasks.

During the optimization procedure, the nodes’ stress levels are continuously
monitored. To determine whether a reconfiguration can be applied, it must be
ensured that ∀a∈A : (stress(a) > λ) =⇒ ∀i∈I(cur(i) = a ∨ new(i) �= a), for
a configurable stress level λ (e.g., λ = 0.9). This criterion allows inputs to be
removed from machines with high stress level, but prohibits the assignment of
new query inputs. If the algorithm fails to find a valid solution under the given
constraints, a new machine is requested from the Cloud environment and the
optimization is restarted.

4.3 Extension: Robustness by Redundancy

So far, this paper has considered the case that each query input is handled by
a single node. While this may be sufficient for most applications, in a safety-
critical system it may be required to process inputs redundantly in order to
mitigate the impact of machine outages. Our query optimization model there-
fore maps inputs to sets of aggregators (cur : I → P(A)), as defined in Sec-
tion 4. As part of the specification of a query q, users define the required level of

460 W. Hummer et al.

redundancy, red(q) ∈ {1, 2, . . . , |A|}. The platform then duplicates the instanti-
ation of the query, ensuring that each input is assigned to multiple aggregators,
∀i ∈ inputs(q) : |cur(i)| ≥ red(q). If, for any input i ∈ I, one of the aggregators
a ∈ cur(i) goes down, the event buffer migration technique allows to select a
replacement aggregator for a and to copy the state from one of the replicated
“backup” nodes cur(i)\{a}.

5 Optimization Algorithm

The problem of finding an optimal input-to-aggregator assignment introduced in
Section 4 is a hard computational problem, and the search space under the given
constraints is prohibitively large (for a large number of inputs and many aggrega-
tors) and prohibits to compute exact solutions in feasible time. A formal proof of
the problem’s intractability is out of the scope of this paper, but we observe the
combinatorial explosion as the algorithm needs to evaluate O(|A||I|∗redmax) solu-
tions (redmax := max(

⋃
q∈Q red(q)) denotes the maximum level of redundancy),

each of which may potentially be optimal with respect to the target function F .
In particular, pruning the solution space is hard to apply because during the
search no solution can be easily identified as being suboptimal no matter what
other solutions are derived from it. We therefore apply a metaheuristic and use
Variable Neighborhood Search (VNS) [12] to approximate a near-optimal solu-
tion. The basic principle of VNS is to keep track of the best recorded solution x
and to iterate over a predefined set of neighborhood structures which generate
new solutions that are similar to x (for more details, see [12]). VNS has been
successfully applied in a vast field of problem domains; one example is the mul-
tiplayer scheduling problem with communication delays [12], which has strong
similarities to our problem. Figure 3 illustrates the encoding of a solution with
3 queries, 10 inputs and a maximum redundancy level of redmax = 2.

Fig. 3. Example of Solution Encoding in Optimization Algorithm with redmax = 2

5.1 Search Neighborhoods

The definition of neighborhoods in the VNS algorithm allows to guide the
search through the space of possible solutions. In the following list of neigh-
borhoods (NH), temp : I → A denotes the input-to-aggregator assignment of
a temporary solution which is evaluated by the algorithm, and temp′ : I → A
denotes a solution which has been derived from temp as specified by the NH.

Dynamic Migration of Processing Elements for Optimized Query Execution 461

– avoid duplicate buffers NH: This NH takes a random data source s ∈ S,
determines all its inputs Is := {i ∈ I | source(i) = s} and the aggregators
responsible for them, As :=

⋃
i∈Is

temp(i). The NH then generates |As| new
solutions, in which all inputs in Is are assigned to one of the responsible
aggregators: |⋃i∈Is

temp′(i)| = 1 ∧ ∀i ∈ Is : temp′(i) ∈ As. When this
neighborhood gets applied, the newly generated solutions will by tendency
have less duplicate buffers.

– bundle dependent inputs NH: This NH selects a random query q ∈ Q
and generates new solutions in which all interdependent inputs of q are placed
on the same aggregator node. More specifically, for each newly generated so-
lution temp′ the following holds: ∀(i1, i2) ∈ deps(q) : temp′(i1) = temp′(i2).
Note that also transitive dependencies are affected by this criterion. The
effect of this neighborhood is a reduced data traffic between aggregators.

– equal data load per aggregator NH: This NH selects the two aggregators
amax, amin ∈ A with load(amax) = max(

⋃
a∈A load(a)) and load(amin) =

min(
⋃

a∈A load(a)), and generates a new solution by moving the input with
the smallest data rate from amax to amin. More formally, let Imax := {i ∈
I | temp(i) = amax} denote the set of inputs that are assigned to aggregator
amax in the temp solution, then the following holds in every solution derived
from it: temp′(arg mini∈Imax rate(i)) = amin.

– random aggregator swap NH: This NH simply selects a random subset
of inputs Ix ⊆ I and assigns a new aggregator to each of these inputs,
∀i ∈ Ix : temp′(i) �= temp(i). The purpose of this NH is to perform jumps
in the search space to escape from local optima.

VNS continuously considers neighborhood solutions to improve the current best
solution until a termination criterion is reached. The criterion is either based
on running time or solution quality. Furthermore, the algorithm only considers
valid solutions with respect to the hard constraints (e.g., minimum level of re-
dundancy as defined in Section 4.3). If a better solution than the current setting
is found, the required reconfiguration steps are executed. The system thereby
stays responsive and continues to execute the affected event-based queries.

6 Implementation

In the following we first briefly discuss how continuous queries are expressed
and executed in WS-Aggregation, and then focus on implementation aspects
concerning the migration of event buffers and subscriptions.

WS-Aggregation is implemented in Java using Web services [31] technology,
and largely builds on WS-Eventing [29] as a standardized means to manage
subscriptions for event notification messages. The platform is designed for loose
coupling – aggregators may dynamically join and leave the system, and col-
laborative query execution across multiple aggregators is initiated in an ad-hoc
manner. The endpoint references of currently available aggregator nodes are
deployed in a service registry. WS-Aggregation employs a specialized query lan-
guage named WAQL (Web services Aggregation Query Language), which is built

462 W. Hummer et al.

on XQuery 3.0 [30] and adds some convenience extensions, e.g., to express data
dependencies between query inputs. For the actual XQuery processing, we use
the light-weight and high-performance MXQuery engine (http://mxquery.org/).
More details can be found in [13,14].

6.1 Migration of Event Buffers and Subscriptions

One of the technical challenges in our prototype is the implementation of event
buffer migration, which becomes necessarywhen the result of the optimization (see
Section 4) mandates that certain query inputs be moved between aggregators.The
challenge is that transmitting the contents of a buffer over the network is a time-
consuming operation, and new events for this buffer may arrive while the trans-
mission is still active. At this point, it must be ensured that the arriving events are
temporarily buffered and later forwarded to the target aggregatornode. Therefore,
transactionally migrating an event buffer while keeping the buffer state consistent
at both the sending and the receiving node is a non-trivial task.

Fig. 4. Procedure for Migrating Buffer and Event Subscription between Aggregators

Figure 4 contains a UML sequence diagram which highlights the key aspects of
our solution. It involves the optimizer component which instructs an aggregator
a1 to inherit (become the new owner of) the event subscription for data source
s together with the previously buffered events from aggregator a2 (point (1)
in the figure). Data source d continuously sends events to the currently active
subscriber. Before requesting transmission of the buffer contents from a2 (3), a1
creates a temporary buffer (2). Depending on the buffer size, the transmission
may consume a considerable amount of time, and the events arriving at a2 are
now forwarded to a1 and stored in the temporary buffer. The next step is to
update the event subscription with the new receiver a1 (4). Depending on the
capabilities of the data source (e.g., a WS-Eventing service), this can either be
achieved by a single renew operation, or by a combination of an unsubscribe
and a subscribe invocation. However, the prerequisite for keeping the event data
consistent is that this operation executes atomically, i.e., at no point in time both
a1 and a2 may receive the events. Finally, after the transmission has finished,

Dynamic Migration of Processing Elements for Optimized Query Execution 463

the received buffer b is merged with the temporary buffer (5). If the execution
fails at some point, e.g., due to connectivity problems, a rollback procedure is
initiated and the process can be repeated.

7 Evaluation

To evaluate the performance effects that can be achieved with the proposed ap-
proach, we have set up an experimental evaluation in a private Cloud Computing
environment with multiple virtual machines (VM), managed by an installation
of Eucalyptus1. Each VM is equipped with 2GB memory and 1 virtual CPU core
with 2.33 GHz (comparable to the small instance type in Amazon EC22). Our
experiments focus on three aspects: firstly, the time required to migrate event
buffers and subscriptions between aggregators (Section 7.1); secondly, evolu-
tion of the network topology for different optimization parameters (Section 7.2);
thirdly, performance characteristics of optimization weights (Section 7.3).

7.1 Migration of Event Buffers and Subscriptions

We first evaluate the effort required to switch from the current configuration to a
new (optimized) configuration. For each input i ∈ I there are three possibilities:

1. If new(i) = cur(i) then there is nothing to do.
2. If new(i) �= cur(i) ∧ source(i) ∈ buf(new(i)) then the new aggregator a =

new(i) needs to be instructed to handle input i, but no migration is required
because the target buffer already exists on a.

3. If new(i) �= cur(i) ∧ source(i) �∈ buf(new(i)) then we need to perform full
migration (or duplication) of the event buffer and subscription.

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 0 500 1000 1500 2000 2500 3000

D
ur

at
io

n
(s

ec
)

Event Buffer Size (KB)

Migration Duration
Linear Regression

Fig. 5. Duration for Migrating Event Subscriptions for Different Buffer Sizes

Obviously, the most time-consuming and resource-intensive possibility in the
list above is point 3. To measure the actually required time, we have executed var-
ious buffer migrations with different buffer sizes. Each data point in the scatter
1 http://www.eucalyptus.com/
2 http://aws.amazon.com/ec2

464 W. Hummer et al.

plot in Figure 5 represents a combination of buffer size and migration duration.
The duration measures the gross time needed for the old aggregator a1 to con-
tact the new aggregator a2, transmitting the buffer, feeding the buffer contents
into the query engine on a2, and freeing the resources on a1. A linear regression
curve is also plotted, which shows an approximate trendline (variance of resid-
uals was 0.2735). Note that the numbers in the figure represent the net buffer
size, that is, the actual accumulated size of the events as they were transported
over the network (serialized as XML). The gross buffer size, which we evaluate
in Section 7.3, is the amount of Java heap space that is consumed by the objects
representing the buffer, plus any auxiliary objects (e.g., indexes for fast access).

7.2 Evolution of Network Topology

The effect of applying the optimization is that the network topology (i.e., connec-
tions between aggregators and data sources) evolves according to the parameter
weights. In our second experiment, we deployed 10 data sources (each emitting 1
event per second with an XML payload size of 250 bytes) and 7 aggregator nodes,
and started 30 eventing queries in 3 consecutive steps (in each step, 10 queries
are added). Each query instantiation has the following processing logic:

∗ Each query q consists of 3 inputs (i1q,i
2
q,i

3
q). The inputs’ underlying data

sources are selected in round robin order. That is, starting with the fourth
query, some inputs target the same data source (because in total 10 data
sources are available) and the buffer can therefore be shared.

∗ The events arriving from the data sources are preprocessed in a way that each
group of 10 events is aggregated. The contents of these 10 events collectively
form the input that becomes available to the query.

∗ Since we are interested in inter-aggregator traffic, each instance of the test
query contains a data dependency between the inputs i1q and i2q. This means
that, if these two inputs are handled by different nodes, the results from i1q
are forwarded over the network to the node responsible for i2q.

∗ Finally, the query simply combines the preprocessed inputs into a single
document, and the client continuously receives the new data.

Figure 6 graphically illustrates how the network topology evolves over time
for different parameter settings. Each of the subfigures ((a),(b),(c)) contains six
snapshots of the system configuration: for each of the 3 steps in the execution
(10/20/30 queries), we record a snapshot of the system configuration before and
after the optimization has been applied. In each step, the optimization algorithm
runs for 30 seconds, and the best found solution is applied. Data sources are de-
picted as circles, aggregators are represented by triangles, and the nodes with
data flow are connected by a line. The size of the nodes and lines determines
the load: the bigger a circle, the more event subscriptions are executed on this
data source; the bigger a triangle, the more data this aggregator is buffering; the
thicker a line, the more data is transferred over the link. Furthermore, the aggre-
gators’ colors determine the stress level (green-yellow-red for low-medium-high).

Dynamic Migration of Processing Elements for Optimized Query Execution 465

(a) wD = 1, wL = 0, wT = 0

(b) wD = 0, wL = 1, wT = 0

(c) wD = 0, wL = 0, wT = 1

(d) wD = 1, wL = 1, wT = 1; wM = 1

Fig. 6. Effect of Optimization With Different Weights

We can see clearly that different optimization weights result in very distinct
topological patterns. A characteristic outcome of emphasizing the wD parameter
(Figure 6(a)) is that few aggregators handle many event subscriptions and are
hence loaded with a high data transfer rate. If the goal of preventing duplicate
buffering is fully achieved, then there are at most |S| active aggregators (and
possibly less, as in Figure 6(a)), however, there is usually some inter-aggregator
traffic required. In Figure 6(b) only the weight wL is activated, which results in
a more dense network graph. The inputs are spread over the aggregators, and
in many cases multiple aggregators are subscribed with the same event source.
Also in the case where wT is set to 1, the resulting network graph becomes very
dense. We observe that in Figure 6(c) there are no inter-aggregator connections,
i.e., this setting tends to turn the network topology into a bipartite graph with
the data sources in one set and the aggregator nodes in the second set. Finally,
in Figure 6(c) all weights, including the penalty weight for migration (wM) are
set to 1. Note that the weights are subject to further customization, because
setting equal weights favors parameters that have higher absolute values. In our
future work, we plan to evaluate the effect of automatically setting the weights
and normalizing the units of the optimization dimensions (D,L,T,M).

466 W. Hummer et al.

7.3 Performance Characteristics of Optimization Parameters

We now use the same experiment setup as in Section 7.2 and evaluate in more de-
tail how the platform’s performance characteristics evolve over time when opti-
mization is applied. Again, 10 data sources and 7 aggregator nodes were deployed
and queries were successively added to the platform. This time we took a snapshot
30 seconds after each query has been added for execution. The 4 subplots in Fig-
ure 7 illustrate the test results as a trendline over the number of active queries (x
axis). To slightly flatten the curves, each experiment has been executed in 5 itera-
tions and the numbers in the figures are mean values. The gross heap size of event
buffer objects (Figure 7(a)) is determined using the Java instrumentation toolkit
(java.lang.instrument) by recursively following all object references.

Figure 7(a) shows that the global memory usage is particularly high (up to
600MB for 20 queries) for wL = 1 and also for wT = 1. Figure 7(b) depicts the
inter-aggregator transfer, which in our experiments was quite high for wD = 1,
and near zero for the other configurations. The box plots in Figure 7(c) show
the minimum and maximum event rates over all aggregators. We see that the
absolute values and the range difference are high for wD = 1 and wT = 1, but, as
expected, considerably lower for the load difference minimizing setting wL = 1.
Finally, the combined event frequency of all aggregators is plotted in Figure 7(d).

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18 20

M
eg

ab
yt

es

Nr. of Active Queries

wD=1,wL=0,wT=0
wD=0,wL=1,wT=0
wD=0,wL=0,wT=1
wD=1,wL=1,wT=1

(a) Global Size of All Event Buffers

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

K
ilo

by
te

s/
S

ec
on

d

Nr. of Active Queries

wD=1,wL=0,wT=0
wD=0,wL=1,wT=0
wD=0,wL=0,wT=1
wD=1,wL=1,wT=1

(b) Inter-Aggregator Data Transfer

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

K
ilo

by
te

s/
S

ec
on

d

Nr. of Active Queries

wD=1,wL=0,wT=0
wD=0,wL=1,wT=0
wD=0,wL=0,wT=1
wD=1,wL=1,wT=1

(c) Minimum/Maximum Event Data Rates

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16 18 20

E
ve

nt
s/

M
in

ut
e

Nr. of Active Queries

wD=1,wL=0,wT=0
wD=0,wL=1,wT=0
wD=0,wL=0,wT=1
wD=1,wL=1,wT=1

(d) Global Event Frequency

Fig. 7. Performance Characteristics in Different Settings

8 Conclusions

The placement of event processing elements plays a key role for the performance
of query processing in distributed event-based systems. We have proposed an

Dynamic Migration of Processing Elements for Optimized Query Execution 467

approach that performs dynamic migration of event buffers and subscriptions
to optimize the global resource usage within such platforms. The core idea is
that event buffers can be reused if multiple query inputs operate on the same
data stream. We identified a non-trivial tradeoff that can be expressed as a
“magic triangle” with three optimization dimensions: balanced load distribution
among the processing nodes, minimal network traffic, and avoidance of event
buffer duplication. Variable Neighborhood Search (VNS) has proven effective
for exploring the search space and generating possible solutions.

We have exemplified our solution on the basis of several experiments car-
ried out with the WS-Aggregation framework. The platform integrates well with
the Cloud Computing paradigm and allows for elastic scaling based on the cur-
rent system load and event data frequency. Our evaluation has illustrated how
different optimization parameters can be applied to influence the evolution of
the network topology over time. Furthermore, we have evaluated how different
performance characteristics evolve in different settings. The experience we have
gained in the various experiments conducted has shown that the (short-term)
costs of migration or duplication are often outweighed by the (long-term) bene-
fits gained in performance and robustness. As part of our ongoing work we are
experimenting with very high-frequency event streams that cannot be handled
by a single node. We envision an extension of the current query processing model
to allow splitting up such streams to multiple aggregators. Furthermore, we are
investigating Machine Learning techniques to automatically derive reasonable
optimization parameters for the target function based on prior knowledge.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme [FP7/2007-
2013] under grant agreement 257483 (Indenica).

References

1. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient Pattern Matching
Over Event Streams. In: SIGMOD Int. Conference on Management of Data (2008)

2. Armbrust, M., et al.: Above the clouds: A berkeley view of cloud computing. Tech.
Rep. UCB/EECS-2009-28, University of California at Berkeley (2009)

3. Ayad, A., Naughton, J.: Static optimization of conjunctive queries with sliding
win- dows over infinite streams. In: SIGMOD Int. Conf. on Management of Data
(2004)

4. Babu, S., Srivastava, U., Widom, J.: Exploiting k-constraints to reduce memory
overhead in continuous queries over data streams. ACM Transactions on Database
Systems 29, 545–580 (2004)

5. Babu, S., Widom, J.: Continuous queries over data streams. In: ACM SIGMOD
International Conference on Management of Data, vol. 30, pp. 109–120 (2001)

6. Böhm, C., Ooi, B.C., Plant, C., Yan, Y.: Efficiently processing continuous k-nn
queries on data streams. In: Int. Conf. on Data Engineering, pp. 156–165 (2007)

7. Bonfils, B.J., Bonnet, P.: Adaptive and decentralized operator placement for in-
network query processing. Telecommunication Systems 26, 389–409 (2004)

468 W. Hummer et al.

8. Chen, J., DeWitt, D., Tian, F., Wang, Y.: NiagaraCQ: a scalable continuous query
system for Internet databases. In: ACM SIGMOD International Conference on
Management of Data, pp. 379–390 (2000)

9. Chen, Q., Hsu, M.: Data stream analytics as cloud service for mobile applications.
In: Int. Symp. on Distributed Objects, Middleware, and Applications, DOA (2010)

10. Cugola, G., Margara, A.: TESLA: a Formally Defined Event Specification Lan-
guage. In: International Conference on Distributed Event-Based Systems (2010)

11. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications (2010)
12. Hansen, P., Mladenović, N.: Handbook of metaheuristics. Springer, Heidelberg

(2003)
13. Hummer, W., Leitner, P., Dustdar, S.: WS-Aggregation: Distributed Aggregation

of Web Services Data. In: ACM Symposium on Applied Computing (2011)
14. Hummer, W., Satzger, B., Leitner, P., Inzinger, C., Dustdar, S.: Distributed Con-

tinuous Queries Over Web Service Event Streams. In: 7th IEEE International Con-
ference on Next Generation Web Services Practices (2011)

15. Ioannidis, Y.E.: Query optimization. ACM Computing Surveys 28, 121–123 (1996)
16. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1) (2003)
17. Li, X., Agrawal, G.: Efficient evaluation of XQuery over streaming data. In:

International Conference on Very Large Data Bases, pp. 265–276 (2005)
18. Liu, L., Pu, C., Tang, W.: Continual queries for Internet scale event-driven infor-

mation delivery. IEEE Trans. on Knowledge and Data Engineering 11(4) (1999)
19. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-

ing in Distributed Enterprise Systems. Addison-Wesley Longman (2001)
20. Maybury, M.T.: Generating Summaries From Event Data. International Journal

on Information Processing and Management 31, 735–751 (1995)
21. Motwani, R., et al.: Query processing, approximation, and resource management

in a data stream management system. In: Conference on Innovative Data Systems
Research, CIDR (2003)

22. Mühl, G., Fiege, L., Pietzuch, P.: Distributed event-based systems. Springer, Hei-
delberg (2006)

23. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: International
Conference on Data Engineering, ICDE (2006)

24. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms
for multi query optimization. In: ACM SIGMOD International Conference on Man-
agement of Data, pp. 249–260 (2000)

25. Seshadri, S., Kumar, V., Cooper, B.: Optimizing multiple queries in distributed
data stream systems. In: Int. Conference on Data Engineering, Workshops (2006)

26. Seshadri, S., Kumar, V., Cooper, B., Liu, L.: Optimizing multiple distributed
stream queries using hierarchical network partitions. In: IEEE International Par-
allel and Distributed Processing Symposium, pp. 1–10 (2007)

27. Vitria: Complex Event Processing for Operational Intelligence (2010),
http://www.club-bpm.com/Documentos/DocProd00015.pdf

28. W3C: Web Services Addressing, http://www.w3.org/Submission/WS-Addressing/
29. W3C: Web Services Eventing, http://www.w3.org/Submission/WS-Eventing/
30. W3C: XQuery 3.0: An XML Query Language, http://www.w3.org/TR/xquery-30/
31. W3C: Web Services Activity (2002), http://www.w3.org/2002/ws/
32. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over

streams. In: SIGMOD International Conference on Management of Data (2006)
33. Zhu, Y., Rundensteiner, E., Heineman, G.: Dynamic plan migration for continuous

queries over data streams. In: SIGMOD Int. Conf. on Management of Data (2004)

http://www.club-bpm.com/Documentos/DocProd00015.pdf
http://www.w3.org/Submission/WS-Addressing/
http://www.w3.org/Submission/WS-Eventing/
http://www.w3.org/TR/xquery-30/
http://www.w3.org/2002/ws/

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 469–477, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Survey on SLA and Performance Measurement
in Cloud Computing

Mohammed Alhamad, Tharam Dillon, and Elizabeth Chang

Curtin University, Australia
Mohammed.Alhamad@postgrad.curtin.edu.au,

{Tharam.Dillon,Elizabeth.Chang}@cbs.curtin.edu.au

Abstract. Cloud computing has changed the strategy used for providing
distributed services to many business and government agents. Cloud computing
delivers scalable and on-demand services to most users in different domains.
However, this new technology has also created many challenges for service
providers and customers, especially for those users who already own
complicated legacy systems. This paper reviews the challenges related to the
concepts of trust, SLA management, and cloud computing. We begin with a
survey of cloud computing architecture. Then, we discuss existing frameworks
of service level agreements in different domains such as web services and grid
computing. In the last section, we discuss the advantages and limitations of
current performance measurement models for SOA, distributed systems, grid
computing, and cloud services. Finally, we summarize and conclude our work.

Keywords: SLA, Measurement, Cloud computing.

1 Introduction

Cloud computing has been the focus of active and extensive research since late 2007.
Before the term ‘cloud’ was coined, there was grid technology. Now, the hot topic of
research is cloud and more proposed frameworks and models of various solutions for
the new technology have started to be applied to the cloud architecture. In this
section, we survey the literature in order to determine the most appropriate definition
of “cloud computing”. Also, we review the different architectural frameworks and the
common challenges that may present major problems for providers and customers
who are interested in understanding this type of distributed computing.

2 Definition

Experts and developers who investigate issues and standards related to cloud
computing do not necessarily have the same technology background. In research
projects, professionals from grid technology, SOA, business, and other domains of
technology and management have proposed several concepts to define cloud
computing. These definitions of cloud computing still need to be presented in a

470 M. Alhamad, T. Dillon, and E. Chang

common standard to cover most technology and aspects of cloud computing. In the
context of networking and communication, the term “cloud” is a metaphor for the
common internet concept [1]. The cloud symbol is also used to present the meaning of
network connection and the way that the cloud technology is provided by internet
infrastructure. “Computing” in the context of the cloud domain refers to the
technology and applications that are implemented in the cloud data centers [2]. In [3],
Vaquero et al. comment on the lack of a common definition of cloud computing.

 In this paper, we adopted and considered the definition provided by U.S. NIST
(National Institute of Standards and Technology) [4], according to which “Cloud
computing is a model for enabling convenient, on demand network access to a share
pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management afford or service provider interaction” [4].

Shortcomings of the proposed definitions of cloud computing are as follows

1. None of the definitions consider cloud computing from the technical and
business perspectives. This would cause confusion to decision makers in large
organizations, especially when they want to define the parameters of a costing
model of cloud services.

2. Existing cloud definitions do not specify the onus of responsibility in cases of
poor QoS delivery.

3. Most of the proposed definitions consider specific types of cloud services,
whereas a comprehensive definition of cloud should clearly define all classes
of cloud services.

4. The proposed definitions do not consider a definition of cloud users.

3 Service Level Agreements

A service level agreement is a document that includes a description of the agreed
service, service level parameters, guarantees, and actions for all cases of violation.
The SLA is very important as a contract between consumer and provider. The main
idea of SLAs is to give a clear definition of the formal agreements about service terms
like performance, availability and billing. It is important that the SLA include the
obligations and the actions that will be taken in the event of any violation, with
clearly expressed and shared semantics between each party involved in the online
contract.

This section discusses works related to SLAs in three domains of distributed
services. Firstly, we discuss the proposed SLAs structure for web services. Secondly,
the frameworks of SLAs designed to grid computing are reviewed; thirdly, we discuss
the main works that specifically focus on cloud computing. Finally, we include in this
section the main shortcomings of these SLA frameworks.

 A Survey on SLA and Performance Measurement in Cloud Computing 471

A) SLAs for Web Services

Several specifications for defining SLAs have been proposed for web services.
WSLA language [5] introduces a mechanism to help users of web services to
configure and control their resources in order to meet the service level. Also, the
service users can monitor SLA parameters at run time and report any violation of the
service. WSLA was developed to describe services under three categories: 1) Parties:
in this section, information about service consumers, service providers, and agents are
described. 2) SLA parameters: in this section the main parameters which are
measurable parameters are presented in two types of metrics. The first is resource
metrics, a type of metrics used to describe a service provider’s resources as row
information. The second one is composite metrics. This metrics is used to calculate
the combination of information about a service provider’s resources. The final section
of the WSAL specification is Service Level Objective (SLO). This section is used to
specify the obligations and all actions when service consumers or service providers do
not comply with the guarantees of services. The WSLA provides an adequate level of
online monitoring and contracting, but does not clearly specify when and how a level
of service can be considered a violation. WSOL [6] is a service level specification
designed mainly to specify different objectives of web services. Defining concepts of
service management, cost and other objectives of services can be presented in WSOL.
However, WSOL cannot adequately meet the objectives of the new paradigm of cloud
computing.

WS-Agreement [7] is created by an Open Grid Forum (OGF) in order to create an
official contract between service consumers and service providers. This contract
should specify the guarantees, the obligations and penalties in the case of violations.
Also, the functional requirements and other specifications of services can be included
in the SLA. The WS-Agreement has three main sections: name, context, and terms. A
unique ID and optional names of services are included in the name section. The
information about service consumer and service provider, domain of service, and
other specifications of service are presented in the context section. Terms of services
and guarantees are described in greater detail in the terms section. These types of
online agreements were developed for use with general services. For cloud
computing, service consumers need more specific solutions for SLAs in order to
reflect the main parameters of the visualization environment; at the same time, these
SLA solutions should be dynamically integrated with the business rules of cloud
consumers.

The primary shortcomings of these approaches is that they do not provide for
dynamic negotiation, and various types of cloud consumers need a different structure
for the implementation of SLAs to integrate their own business rules with the
guarantees that are presented in the targeted SLA.

B) SLAs for Grid Computing

In the context of grid computing, there are a number of proposed specifications which
have been developed especially to improve security and trust for grid services. In [8],

472 M. Alhamad, T. Dillon, and E. Chang

an SLA-based knowledge domain has been proposed by Sahai to represent the
measurable metrics for business relationships between all parties involved in the
transaction of grid services. Also, the author proposed a framework to evaluate the
management proprieties of grid services in the lifecycle. In this work, business
metrics and a management evaluation framework are combined to produce an
estimated cost model for grid services. In our research, we extend this approach in
order to build a general costing model based on the technical and business metrics of
the cloud domain. The framework proposed in this work lacks a dynamic monitoring
technique to help service customers know who takes responsibility when a service
level is not provided as specified in SLA documents. Leff [9] conducted a study of the
main requirements to define and implement SLAs for the grid community. The author
provides an ontology and a detailed definition of grid computing. Then, a scientific
discussion is presented about the requirements that can help developers and decision
makers to deploy trusted SLAs in a grid community. A basic prototype was
implemented in order to validate the use of SLAs as a reliable technique when the
grid service provider and customer need to build a trusting relationship. The
implementation of the framework in this study does not consider important aspects of
security and trust management in grid computing. Keung [10] proposed an SLA-
based performance prediction tool to analyse the performance of grid services. Keung
uses two sources of information as the main inputs for the proposed model. The
source code information and hardware modelling are used to predict the value of
performance metrics for grid services. The model proposed by Keung can be used in
other types of distributed computing. But in the cloud environment, this model cannot
be integrated with a dynamic price model of cloud services. It needs to be improved
by using different metrics for cost parameters to reflect the actual price of cloud
services. The system proposed by Padget in [11] considers the response time of
applications in the grid systems. The main advantage of the proposed system is that it
can predict the CPU time for any node in the grid network before conducting the
execution. When Padget tested the adaptation SLA model using a real experiment on
the grid, the prediction system produced values for response time close to the values
obtained when users executed the same application on the grid. Noticing the delay
recorded for the large size of executed files, the author claims that the reason for this
delay is the external infrastructure such as internet connections. The author also
discusses the impact of the time delay caused by external parties to the reputation of
service providers when using SLA management systems. Although the author
provides a good method for calculating the response time for grid resources, other
metrics such as security and management metrics, are absent in this work.

C) SLAs for Cloud Computing

The context of this research is the management of service level agreements in cloud
communities. In the sections above, we presented the frameworks and models in the
current literature that are designed mainly for managing SLAs in traditional
distributed systems. In this section, SLAs and approaches to agreement negotiations
in the cloud community are presented.

 A Survey on SLA and Performance Measurement in Cloud Computing 473

Valdimir [12] describes the quality of services related to cloud services and
different approaches applied to map SLA to the QoS. Services ontology for cloud
computing is presented in order to define service capabilities and the cost of service
for building a general SLAs framework. The proposed framework does not consider
all types of cloud services; it is general and was tested on the Amazone EC2 only. It
also needs to consider other types of cloud providers such as PaaS, DaaS, and SaaS.
Our framework in this research considers this issue in the validation phase of
the research. The framework developed by Hsien [13] focuses on software as a
service model of delivery in cloud computing. More details are provided on how the
services can be integrated to support the concept of stability of cloud community
especially for SaaS.

Shortcomings of the Proposals for SLAs in the Context of Distributed Services

The frameworks and structures that were discussed in previous sections have the
following problems:

1. The existing frameworks focus more on the technical attributes than on the
security and management aspects of services.

2. The proposed structures of SLAs in the above domains do not include a clear
definition of the relationship between levels of violation and the cost of
services.

3. Most of the above studies do not integrate a framework of trust management
of the service provider with the collected data from monitoring systems of
SLAs.

4. The concepts and definitions of service objectives and service descriptions
included in SLAs are not easy to understand, especially for business decision
makers.

5. The proposed works for cloud environments focus more on the evaluation of
virtualization machines on local servers than on existing cloud service
providers.

6. Most of the proposed structures of SLAs are defined by technical experts.

4 Performance Measurements Models

Cloud providers have been increased to deliver different models of services. These
services are provided at different levels of quality of services. Cloud customers need
to have a reliable mechanism to measure the trust level of a given service provider.
Trust models can be implemented with various measurement models of services. As a
part of this research, we investigate the use of a measurement approach in order to
develop a general trust model for cloud community. In this section, the measurement
model of SOA, distributed, and grid services will be reviewed.

474 M. Alhamad, T. Dillon, and E. Chang

A) SOA Performance Models

Kounev et al. in [14] propose an analytical approach to modelling performance
problems in SOA-based applications. The authors discuss the different realistic J2EE
applications for large systems of SOA architecture. A validated approach has been
tested for capacity planning of the organizations that use distributed services as an
outsourcing infrastructure. The advantage of the proposed method is its ability to
predict the number of application servers based on the collected information of SLA
metrics. Walter et al. [15] implemented a simulation tool to analyse the performance
of composite services. Authors used an online book store as a case study to simulate
experiment scenarios. They focus on measuring communication latency and
transaction completion time. Real data sets were compared with the simulation
results. The authors state that the simulation tool presents results that approximate
those of the real data. This type of simulation can be extended and applied to other
distributed services. For cloud computing, more efforts is required to make this
technique compatible with existing interfaces of cloud providers. Rud et al. in [16]
use the WS-BPEL composition approach to evaluate the performance of utilization
and throughput of SOA-based systems in large organizations. They developed the
proposed methodology using a mathematical model in order to improve the processes
of service level agreements in the SOA environment. The main focus of Rud’s
method is on the management aspects of services. However, this approach does not
consider performance issues of response time, data storage, and other metrics of
technical infrastructure. For the optimization of total execution time and minimization
of business processes cost, Menasce in [17] provides an optimized methodology
based on the comparison of performance metrics of SOA-based services. In this
study, Menasce developed the proposed method to estimate the cost level of all
services which are registered in the SOA directory under medium sized organizations.
Then, the cost metric is compared to the real performance of services. The parameters
of the performance metrics can be selected by service customers. So, the proposed
model can be used for different types of services. Although, the proposed method
produces a high level of reliability and usability, issues such as risk management, and
trust mechanisms of the relationship between service providers and service customers
are not discussed in more details.

B) Distributed Systems Performance Models

Kalepu et al. [18] propose a QoS-based attribute model to define the non-functional
metrics of distributed services. Availability, reliability, throughput, and cost attributes
are used in their work to define performance of resources of a given service provider.
Two approaches of resources are used to calculate the final value of reputation. The
first resource is the local rating record. Ratings of services which are invoked by local
customers are stored in this record. In the second resource, global ratings of all
services that are executed on resources of a given service provider are stored.
Although, Kalepu et al. discuss the need to use SLA parameters to calculate the value
of performance metrics, they do not explain how these parameters can be linked to the

 A Survey on SLA and Performance Measurement in Cloud Computing 475

local global resources of a rating system. In [19], Yeom et al. provide a monitoring
methodology of the performance parameters of service. The proposed methodology
uses the broker monitoring systems to evaluate the performance of resources of a
service provider. Collected data of performance metrics are not maintained on the
service consumer database. This method incurs low cost in terms of implementing
measurement architecture but more risk in terms of privacy, availability of data, and
security. Such risks are not easy to control, especially in the case of multi tenant
distributed systems. Kim et al. in [20] analyse the quality factors of performance level
of services and propose a methodology to assign priorities message processing of
distributed web services based on the quality factors of services. This assigning aspect
of their framework is a dynamic process in different service domains. They claim that
their framework satisfies the agreement regarding service level in web services. The
validation methodology of the proposed work lacks a clear definition of the
evaluation criteria and a description of the way in which the experiment was
conducted to produce the claimed results. The work proposed by Guster et al. in [21]
provides an evaluation methodology for distributed parallel processing. In the
proposed method, authors use a parallel virtual machine (PVM) and real hosting
servers to compare the results of their experiments. The efficiency of the evaluation
method performed better in PVM for the processing time. In the real server
environment, the experiments presented better performance in terms of
communication time. The evaluation of this work does not include the
implementation processes and the experiment results are not clearly explained.

C) Cloud Computing Performance Models

Several studies already exist on the scalability of virtual machines. Most of these
studies considered the measurement of performance metrics on the local machines.
The background loads of tested machines are controlled to compare the results of
performance with a different scale of loads. Evangelinos and Hill [22] evaluated the
performance of Amazon EC2 to host High Performance Computing (HPC). They use
a 32-bit architecture for only two types of Amazon instances. In our study, we run
various experiments on most types of Amazon EC2 instances. These instances are:
small, large, extra large, high CPU, medium, and high CPU extra large instance.
Jureta, and Herssens [23] propose a model called QVDP which has three functions:
specifying the quality level, determining the dependency value, and ranking the
quality priority. These functions consider the quality of services from the customers’
perspective. However, the performance issues related to cloud resources are not
discussed and details are missing regarding the correlation of the quality model with
the costing model of services. Cherkasova and Gardner [24] use a performance
benchmark to analyse the scalability of disk storage and CPU capacity with Xen
Virtual Machine Monitors. They measure the performance parameters of visualization
infrastructure that are already deployed in most data centres. But they do not measure
the scalability of cloud providers using the visualization resources. However, our
proposed work profiles the performance of virtualization resources that are already
running on the infrastructure of existing cloud providers.

476 M. Alhamad, T. Dillon, and E. Chang

The Shortcomings of the Proposed Works for Above Performance models

1. The above proposed models for evaluating the virtualization services focus on
how to measure the performance of virtual machines using local experiments.
However, the techniques used for measuring the actual resources of cloud
providers need further refinement in order to ensure some level of trust
between service providers and the customers.

2. Most of the proposed works on performance evaluation do not allow service
customers to specify the parameters of performance metrics. In cloud
computing, service customers need a more flexible and dynamic approach to
modify the parameters of performance metrics in order to solve the problem of
dynamic changes of service requirements and business models of customers.

3. The experiments using the above proposed models do not specify the
benchmarks for the performance evaluation.

4. In cloud computing architecture, the relationship between performance
monitoring and costing metric is very important. The proposed models do not
link the results of performance monitoring with the actual cost metric of
services. So, service customers are not able to build a trust relationship with
service providers without having a real cost model of services

5 Conclusions

The above discussions have highlighted many issues both in the development of
SLAs and Performance Models for Cloud Computing which constitute rich fields for
future research.

References

[1] Katzan Jr., H.: On An Ontological View of Cloud Computing. Journal of Service Science
(JSS) 3 (2011)

[2] Wyld, D.C.: Moving to the cloud: An intro. to cloud computing in government. IBM
Center for the Bus. of Government (2009)

[3] Vaquero, L.M., et al.: A break in the clouds: towards a cloud defin. ACM SIGCOMM
Comp. Comm. Rev. 39, 50–55 (2008)

[4] Mell, P., Grance, T.: Draft nist working definition of cloud computing (referenced on June
3, 2009)

[5] Ludwig, H., et al.: Web service level agreement (WSLA) language specification. IBM
Corporation (2003)

[6] Tosic, V.: WSOL Version 1.2: Carleton Univ., Dept. of Systems and Comp. Eng. (2004)
[7] Andrieux, A., et al.: Web services agree. spec. (WS-Agreement) (2004)
[8] Sahai, A., et al.: Specifying and monitoring guarantees in commercial grids through SLA

(2003)
[9] Leff, A., et al.: Service-level agreements and commercial grids. IEEE Internet

Computing 7, 44–50 (2003)
[10] Keung, H.N.L.C., et al.: Self-adaptive and self-optimising resource monitoring for

dynamic grid environ., pp. 689–693 (2004)

 A Survey on SLA and Performance Measurement in Cloud Computing 477

[11] Padgett, J., et al.: Predictive adaptation for service level agreements on the grid.
International Journal of Simulation: Systems, Science and Technology 7, 29–42 (2006)

[12] Stantchev, V., et al.: Neg. and enforcing qos and slas in grid and cloud comp. Adv. in Grid
and Perv. Comp., 25–35 (2009)

[13] Wen, C.H., et al.: A SLA-based dynamically integrating services Saas framework, pp.
306–311

[14] Kounev, S., Buchmann, A.: Performance modeling and evaluation of large-scale J2EE
applications, pp. 273–284 (2003)

[15] Walter, A., Potter, D.: Compos., Performance Analy. and Simulation of Web Services
(2007)

[16] Rud, D., et al.: Performance modeling of ws-bpel-based web service compositions, pp.
140–147 (2006)

[17] Menascé, D.A., et al.: A heuristic approach to optimal service selection in service oriented
architectures, pp. 13–24 (2008)

[18] Kalepu, S., et al.: Verity: a QoS metric for selecting Web services and providers, pp. 131–
139 (2003)

[19] Yeom, G., Min, D.: Design and implementation of web services qos broker (2005)
[20] Kim, D., et al.: Improving Web services performance using priority allocation method

(2005)
[21] Guster, D., et al.: Computing and netw. Perform. of a distr. parallel processing environ.

using MPI and PVM commun. methods. J. Computing Sci. in Colleges 18, 246–253
(2003)

[22] Evangelinos, C., et al.: Cloud Comput. for paral. Sci. HPC Applic. Feasib. of run. Coup.
Atmos. Ocean Climate Models on Amazon’s EC2. Ratio 2, 2.34 (2008)

[23] Jureta, I., et al.: A comprehensive quality model for service-oriented systems. Software
Qual. Journal 17, 65–98 (2009)

[24] Cherkasova, L., Gardner, R.: Measur. CPU overhead for I/O processing in the Xen virtual
machine monitor, p. 24 (2005)

Experiences with Service-Oriented Middleware

for Dynamic Instrumentation
of Enterprise DRE Systems

James H. Hill1 and Douglas C. Schmidt2

1 Indiana University/Purdue University at Indianapolis
Indianapolis, IN, USA
hillj@cs.iupui.edu

2 Carnegie Mellon University
Pittsburgh, PA USA

dschmidt@sei.cmu.edu

Abstract. This paper describes our experiences applying a test and
evaluation (T&E) service-oriented middleware framework called the
Open-source Architecture for Software Instrumentation Systems (OASIS)
to the Unified SHIP platform, which is a representative system for next-
generation shipboard computing systems. The OASIS service-oriented
middleware framework discussed in this paper enables instrumenting
distributed software systems, such as enterprise distributed real-time
and embedded (DRE) systems, to collect and extract metrics without
a priori knowledge of the metrics collected. The flexibility of OASIS’s
metametrics-driven approach to instrumentation and data collection in-
creased developer and tester knowledge and analytical capabilities of
end-to-end QoS in shipboard computing systems. This paper also dis-
cusses our strategy for deploying OASIS in a cloud environment.

1 Introduction

Shipboard computing systems are a class of enterprise distributed real-time and
embedded (DRE) systems with stringent quality-of-service (QoS) requirements
(such as latency, response time, and scalability) that must be met in addition to
functional requirements [24]. To ensure QoS requirements of such DRE systems,
developers must analyze and optimize end-to-end performance throughout the
software lifecycle. Ideally, this test and evaluation (T&E) [8] process should start
in the architectural design phase of shipboard computing, as opposed to waiting
until final system integration later in the lifecycle when it is more expensive to
fix problems.

T&E of shipboard computing system QoS requirements typically employs soft-
ware instrumentation techniques [22,3,18,24] that collect metrics of interest (e.g.,
CPU utilization, memory usage, response of received events, and heartbeat of an
application) while the system executes in its target environment. Performance
analysis tools then evaluate the collected metrics and inform system develop-
ers and testers whether the system meets its QoS requirements. These tools can

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 478–497, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Experiences with Service-Oriented Middleware 479

also identify bottlenecks in system and application components that exhibit high
and/or unpredictable resource usage [21, 11].

Although software instrumentation facilitates T&E of shipboard computing
system QoS requirements, conventional techniques for collecting metrics are typ-
ically highly-coupled to the system’s implementation [27, 24, 8]. For example,
shipboard computing developers often decide during the system design phase
what metrics to collect for T&E, as shown in Figure 1. Developers then incorpo-
rate into the system’s design the necessary probes to collect these metrics from
the distributed environment.

Fig. 1. Conventional Way to Instrument Shipboard Computing Systems

The drawback with a tightly-coupled approach is that shipboard computing
developers must either (1) redesign the system to incorporate the new/different
metrics or (2) use ad hoc techniques, such as augmenting existing code with the
necessary interfaces without understanding its impact to the overall system’s
design and maintainability, to collect such metrics. Developers therefore need
better techniques to simplify instrumenting shipboard computing systems for
collecting and extracting metrics—especially when the desired metrics are not
known a priori.

The Embedded Instrumentation Systems Architecture (EISA) [26] initiative
defines a service-oriented metadata-driven method for heterogeneous data col-
lection and aggregation in a synchronized and time-correlated fashion [26], as
opposed to an interface-centric method [15] used in conventional DRE systems.
Instead of integrating many interfaces and methods to extract and collect met-
rics into the system’s design, EISA treats all metrics as arbitrary data that flows
over a common reusable channel and discoverable via metametrics.1 EISA thus
helps reduce the coupling between system design and instrumentation logic in-
curred with the conventional T&E techniques described above [23], as shown in
Figure 2.

Initial implementations of the EISA standard focused mainly on hardware
instrumentation. To apply the EISA standard in the software domain, we de-
veloped the Open-source Architecture for Software Instrumentation of Systems
1 Metametrics are metadata that describe metrics collected at runtime without know-

ing its structure and quantity a priori.

480 J.H. Hill and D.C. Schmidt

Fig. 2. Conventional Approach vs. EISA’s Approach to T&E

(OASIS). OASIS is a service-oriented middleware framework that enables
lightweight dynamic instrumentation. This paper discusses our insights and
lessons learned while developing and applying OASIS to a representative ship-
board computing project. This paper extends prior research efforts on OASIS [7]
as follows:

– It discusses of design choices made while designing and implementing OASIS
service-oriented middleware and framework;

– It analysis of current limitations of the OASIS service-oriented architecture,
as well as insights on how such limitations can be addressed; and

– It discusses a strategy for using OASIS in cloud computing environments.

Our experiences gained from developing and applying OASIS to shipboard com-
puting show that EISA’s metadata-driven approach to instrumentation and data
collection provides flexibility that can increase enterprise DRE system develop-
ers and tester’s knowledge base and analytical capabilities of end-to-end QoS.
OASIS also provides a solid foundation for addressing open problems associated
with instrumenting enterprise DRE systems.

Paper organization. The remainder of this paper is organized as follows: Sec-
tion 2 provides an overview the representative shipboard computing system we
use as a case study for our work, and of OASIS focusing on key instrumentation
challenges; Section 3 describes how OASIS addresses these challenges; Section 4
discusses OASIS’s applicability to cloud computing environments; Section 5 com-
pares OASIS with related work; and Section 6 presents concluding remarks.

2 Case Study: The Unified SHIP Platform

EISA-based tools have primarily been used to instrument DRE system hardware
components (e.g., sensor hardware components) [26]. These systems, however,
are composed of both hardware and software components. Ideally, end-to-end
QoS evaluation of shipboard computing systems should employ performance
analysis of both hardware and software components.

To help evaluate EISA in a representative enterprise DRE system, we cre-
ated the Unified Software/Hardware Instrumentation Proof-of-concept (Unified
SHIP) platform, which provides a representative environment for investigating

Experiences with Service-Oriented Middleware 481

technical challenges of next-generation shipboard computing systems.
The Unified SHIP platform contains software components (i.e., the rectangles in
Figure 3) implemented using the Component Integrated ACE ORB
(www.dre.vanderbilt.edu/CIAO), which is a C++ implementation of the
Lightweight CORBA Component Model [13]. Likewise, performance analysis
tools are implemented using a variety of programming languages, such as C++,
C#, and Java.

Operational scenario

(software)

Fig. 3. Overview of the Unified SHIP Platform

Figure 3 also shows how the Unified SHIP platform consists of EISA-compliant
sensor hardware components and a collection of software components that per-
form the following operational capabilities for shipboard computing systems: 4
components are trackers that monitor events in the operational environment,
3 components are planners that process data from the sensor components, 1
component performs configuration of the effectors, 3 components are effectors
that react to commands from the configuration component, 3 components allow
operators to send commands to the planner components, and 1 component is a
gateway that authenticates login credentials from the operator components.

The directed line between each component in Figure 3 represents
inter-component communication, such as sending an event between two different
components. The hardware components of the Unified SHIP platform run in a
conventional data center environment consisting of networked computers that
run either Linux, Solaris, or Windows operating systems. The software compo-
nents are thus bound to a particular set of hardware components.

Existing techniques for instrumenting shipboard computing systems assume
software instrumentation concerns (e.g., what metrics to collect and how to ex-
tract metrics from the system) are incorporated into the system’s design. Since
the Unified SHIP platform consists of hardware and software components at
various degrees of maturity and deployment, it is hard to use existing instru-
mentation techniques to collect and extract metrics for QoS evaluation during

www.dre.vanderbilt.edu/CIAO)

482 J.H. Hill and D.C. Schmidt

early phases of the software lifecycle. In particular, developers and testers of the
Unified SHIP platform faced the following challenges:

– Challenge 1: Describing metametrics in a platform- and language-
independent manner. The heterogeity of the Unified SHIP platform’s
software and hardware components makes it undesirable to tightly couple
performance analysis tools to the target platform and language of software
and hardware components to collect and analyze metrics. Platform- and
language-independent techniques and tools are therefore needed that will
enable description of metrics collected from hardware and software compo-
nents.

– Challenge 2: Collecting metrics without a priori knowledge of its
structure and quantity. Metrics collected via instrumentation in the Uni-
fied SHIP platform come from heterogenous sources, which make it tedious
and error-prone for system developers and testers to tightly couple the sys-
tems implementation to understand each metric and technology a priori.
Techniques are therefore needed that will enable the collection of metrics
from the Unified SHIP platform for QoS evaluation without a priori knowl-
edge of which metrics are collected.

The remainder of this paper discusses how different design choices in OASIS en-
abled us to address these two challenges in context of the Unified SHIP platform.

3 Experiences Applying OASIS to the Unified SHIP
Platform

This section codifies our experiences applying OASIS to the Unified SHIP Plat-
form introduced in Section 2. For each experience discussed below we first in-
troduce the topic and then provide a detailed account of our experience—both
positive and negative when applicable.

3.1 Overview of OASIS

OASIS is dynamic instrumentation service-oriented middleware for DRE systems
that uses a metametics-driven design integrated with loosely coupled data collec-
tion facilities. Metametrics are defined as software probes, which are autonomous
agents that collect both system and application-level metrics. Listing 1.1 high-
lights an example software probe—written in OASIS’s Probe Definition Language
(PDL)—that collects memory statistics.
1 [uuid (ed970279 −247d−42ca−aeaa−bef0239ca3b3) ; v e r s i on (1 . 0)]
2 probe MemoryProbe {
3 u int64 ava i l phys i ca l memory ;
4 u int64 tota l phys i ca l memory ;
5 u int64 ava i l v i r tua l memory ;
6 u int64 to ta l v i r tua l memory ;
7 u int64 cache ;
8 u int64 commit l imi t ;
9 u int64 commit tota l ;

10 } ;

Listing 1.1. Definition of a Memory Probe in OASIS

Experiences with Service-Oriented Middleware 483

OASIS’s PDL compiler uses such definitions to generate a stub, skeleton, and
base implementation for the target programming language, and a XML Schema
Definition (XSD) file that details the structure of a memory probe’s data.

1 class MEMORYPROBE STUB Export MemoryProbe :
2 public virtual : : OASIS : : Software Probe {
3 public :
4 /// The sof tware probe ’ s XML Schema Def in i t ion .
5 stat ic const char ∗ s chema ;
6
7 /// The metadata for the sof tware probe .
8 stat ic const : : OASIS : : Software Probe Metadata metadata ;
9

10 MemoryProbe (void) ;
11 virtual ˜MemoryProbe (void) ;
12
13 /// Package the sof tware probe ’ s data .
14 virtual int package data (: : OASIS : : Software Probe Data Packager & p) ;
15
16 /// Recal l the sof tware probe ’ s data .
17 virtual int r e c a l l (const char ∗ data , s i z e t length , int byte o rde r) ;
18
19 protected :
20 int package data (: : OASIS : : Software Probe Data Packager & p , bool owner) ;
21 int r e c a l l (ACE InputCDR & input , bool owner) ;
22
23 public :
24 // Se t t e r and ge t t e r methods for avai l physica l memory
25 void ava i l phys i ca l memory (ACE UINT64 ava i l phys i ca l memory) ;
26 ACE UINT64 ava i l phys i ca l memory (void) const ;
27
28 // Se t t e r and ge t t e r methods for tota l phys ica l memory
29 void tota l phys i ca l memory (ACE UINT64 tota l phys i ca l memory) ;
30 ACE UINT64 tota l phys i ca l memory (void) const ;
31
32 // remaining s e t t e r / g e t t e r methods for probe .
33
34 protected :
35 ACE UINT64 ava i l phys i ca l memory ;
36 ACE UINT64 tota l phys i ca l memory ;
37
38 // remaining member va r i a b l e s . .
39 } ;

Listing 1.2. Code Snippet of the Memory Software Probe’s Stub

Listing 1.2 shows a portion of the stub file generated from the memory probe
PDL file in Listing 1.1. Likewise, Listing 1.3 shows a snippet of the memory
software probe’s skeleton, which is automatically generated from the PDL file.

1 class MEMORYPROBE STUB Export MemoryProbe Impl :
2 public : : OASIS : : Software Probe Impl T <MemoryProbe> {
3 public :
4 /// Defaul t constructor
5 MemoryProbe Impl (void) ;
6
7 /// Destructor
8 virtual ˜MemoryProbe Impl (void) ;
9

10 /// Flush the contents .
11 virtual int f l u s h (void) ;
12 } ;

Listing 1.3. Code Snippet of the Memory Software Probe’s Skeleton

484 J.H. Hill and D.C. Schmidt

Finally, Figure 4 shows an overview of the process for generating source files
from the a PDL file. The stub is used in the Performance Analysis Tool (shown
as PAT in Figure 4) to recall data, the skeleton and base implementation are
used in the instrumented application (App. in Figure 4) to collect metrics, and
the XSD file is used for dynamic discovery of metrics.

Fig. 4. Overview of Files Generated from a PDL Probe by OASIS

Figure 5 shows a high-level diagram of OASIS architecture and data collection
facilities. As shown in this figure, this portion of OASIS consists of the following
entities:

Fig. 5. Architectural Overview of the OASIS Middleware

– Embedded instrumentation node (EINode), which is responsible for
receiving metrics from software probes. OASIS has one EINode per
application-context, which is a domain of commonly related data. Exam-
ples of an application-context include a single component, an executable,
or a single host in the target environment. The application-context for an
EINode, however, is locality constrained to ensure data transmission from a
software probe to an EINode need not cross network boundaries, only pro-
cess boundaries. Moreover, the EINode controls the flow of data it receives
from software probes and submits to the data and acquisition controller de-
scribed next. Each EINode is distinguished by a unique user-defined UUID
and corresponding human-readable name.

Experiences with Service-Oriented Middleware 485

– Data acquisition and controller (DAC), which is a service that receives
data from an EINode and archives it for acquisition by performance analysis
tools, such as querying the performance of the latest state of component
collected by a application-level software probe. The DAC is a persistent
database with a consistent location in the target environment that can be
located via a naming service. This design decouples an EINode from a DAC
and enables an EINode to dynamically discover at creation time which DAC
it will submit data. Moreover, if a DAC fails during at runtime the EINode
can (re)discover a new DAC to submit data. The DAC registers itself when
the test and evaluation manager (see below) when it is created and is iden-
tifiable by a unique user-defined UUID and corresponding human-readable
name.

– Test and Evaluation (T&E) manager , which is a service that acts as
the main entry point for user applications (see below) into OASIS. The T&E
manager gathers data from each DAC that has registered with it. The T&E
manager also enables user applications to send signals to each software probe
in the system at runtime to alter its behavior, e.g., by decreasing/increasing
the hertz of the heartbeat software probe in the Unified SHIP platform
scenario. This dynamic behavior is possible because the T&E manager is
aware of all its DACs in the system, the DACs are aware of all its EINodes,
and the EINodes are aware of all their registered software probes.

– Performance analysis tools, such as distributed resource managers and
real-time monitoring and display consoles from the Unified SHIP platform,
that interact with OASIS by requesting metrics collected from different soft-
ware probes via the T&E manager. Tools can also send signals/commands
to software probes to alter their behavior at runtime. This design enables
system developers and testers and performance analysis tools to control the
effects of software instrumentation at runtime and minimize the affects on
overall system performance.

Figure 6 shows the integration of OASIS with the Unified SHIP platform. Each
hardware and software component is associated with an EINode that contains a
set of software probes (or instruments in the case of hardware components [23])
that collect and submit metrics for extraction from the system. When an EINode
receives metrics from a software probe (or instrument), it sends it to a DAC
for storage and on-demand retrieval. Performance analysis tools then request
collected metrics via the T&E manager, which locates the appropriate metrics
in a DAC.

Using this architecture, it is possible for the OASIS middleware framework to
collect and analyze metrics without a priori knowledge of either the structure
and complexity. The remainder of this section discusses how different design
choices have impacted our experience using OASIS on the Unified SHIP Plat-
form.

486 J.H. Hill and D.C. Schmidt

Operational scenario

(software)

Fig. 6. Integration of OASIS with the Unified SHIP Platform

Experience 1: On Separating Metrics from Metametrics

In OASIS, metrics are separated from metametrics (i.e., information that de-
scribes the metric’s structure and types). The metametics are defined using XML
Schema Definition (XSD) (see Listing 1.4 for an example), whereas metrics are
packaged as blobs of data. As shown in Figure 7, the software probes package the
data, prepend a header, and pass the metrics to the EINode. The EINode then
prepends its header information and forwards it to the DAC. During this packag-
ing process, however, no metametrics are stored with the actual metrics. Instead,
the metametrics are sent to the DAC for storage when an EINode registers itself
with a DAC.

Fig. 7. The Metric Collection and Packaging Process in OASIS

Based on our experience applying OASIS to the Unified SHIP platform, we
learned that separating metrics from metametics has the following advantages:

A1. Portability across different architectures. For example, the Unified
SHIP platform consists of many different middleware technologies, such as the
Common Object Request Broker Architecture (CORBA) [15, 16, 17], the Data
Distribution Services [14], and Microsoft .NET [12]. None of these technologies,
however, provide a straightforward or standard method for discovering metamet-
rics that is portable across programming languages, middleware technologies,
and platforms.

Experiences with Service-Oriented Middleware 487

Moreover, the technologies used in the Unified SHIP platform assume that
communication occurs between two strongly-typed endpoints. For example, in
CORBA the client and server use strongly-typed interfaces that know what
data types are sent across the network. The CORBA::Any element type is used
in CORBA to send data without a priori knowledge. This element type knows
the data type (e.g., tk long, tk short, and tk boolean). It does not, however,
know the structure of complex types (e.g., tk struct), which makes it hard for
the DAC to store metrics in its database.

For example, there is no standard method for discovering a metrics structure
or serializing it to a blob of data using the generic CORBA::Any type. In some pro-
gramming languages, such as Java and C#, it is possible to use reflection to support
this requirement.This approach is only possible, however, becausemetametrics are
built into the programming language. The serialization problem can also be solved
by forcing the DAC to know each kind of metrics collected by a software probe.
When a new metric arrives at the DAC, the DAC locates a corresponding software
probe stub that can serialize data contained in the generic type. This approach,
however, requires the DAC to know a priori all the software probes used in the
Unified SHIP platform, which is not possible since developers can add new probes
as they identify more data types to instrument and collect.

A2. Self-containment for offline analysis. Another advantage of separating
metrics from metametrics is self-contained storage for offline analysis of data
since the DAC stores both metametrics and metrics for a given execution of the
Unified SHIP platform in a single database. This database can then be archived
and recalled later to compare results of different test executions of the Unified
SHIP platform. Moreover, developers can create new analysis tools at later dates
to analyze different aspects of the data.

When applying OASIS to the Unified SHIP platform we have not yet found
any disadvantages to separating metrics and metametrics. Its self-contained and
standard method for storing and recalling metrics is platform-, language-, and
technology-independent.

Experience 2: On Using XML Schema Definition to Describe
Metametrics

Metametrics in OASIS are defined using XSD files (as shown in Listing 1.4).
When an EINode registers itself with the DAC, this information is sent to the

DAC. The use of XSD to describe metametrics has the following advantage:

A3. GUI support. The main motivation for using XSD files to define metamet-
ics in OASIS is that there are existing tools that can create a graphical user
interface (GUI) from a XSD file [19], which made it easier for Unified SHIP
platform developers to visualize collected metrics as new software probes were
added to the system. XSD is a verbose language since it is based on XML, e.g.,
the metametrics in Listing 1.4 is approximately 300 bytes of data just to describe
the metric’s type name and its structure.

Using XSD to describe metametrics, however, has the following disadvantage:

488 J.H. Hill and D.C. Schmidt

1 <?xml version=’ 1 .0 ’ ?>
2 <xsd:schema>
3 <xsd :e l ement name=’ probeMetadata ’ type=’ stateType ’ />
4 <xsd:complexType name=’ stateType ’>
5 <xsd : sequence>
6 <xsd :e l ement name=’ component ’ type=’ x s d : s t r i n g ’ />
7 <xsd :e l ement name=’ s t a t e ’ type=’ x s d : i n t e g e r ’ />
8 </ xsd : sequence>
9 </xsd:complexType>

10 </xsd:schema>

Listing 1.4. An Example XML Schema Definition that Describes Component State
Metrics Collected by a Software Probe

D1. High processing overhead. Processing XSD files, which are XML files,
can have high overhead and impact real-time performance. In OASIS, however,
we do not process XSD files in real-time. Instead, they are processed at initializa-
tion time or when new metric types are discovered. Based on our experience with
the Unified SHIP platform, the rate of discovering new metrics is not frequent
enough to warrant using a less verbose method for defining metametrics—even
when implementing generic performance analysis tools.

Experience 3: On Software Probe Definition and Stucture

Software probes in OASIS are defined using PDL. Developers define the metrics
collected by a software probe, as shown in Listing 1.1 in the overview of OASIS.
The OASIS compiler then generates the appropriate stubs and skeletons for using
the software probe for instrumentation. The current implementation of OASIS
does not support hierarchical software probe definitions, which means that each
software probe definition is its own entity. This design choice, however, presented
the following disadvantage:

D2. Lack of hierarchy increases instrumentation complexity. Based on
our experience applying OASIS to the Unified SHIP platform, the lack of hierar-
chical software probe definitions increases the complexity of instrumenting such
systems since developers must either (1) define a software probe such that it is
too broad in scope, (2) define a software probe that is too narrow in scope, or
(3) create separate software probes that collect similar information with slight
differences.

The problem with broad software probes is that they collect more information
than needed, i.e., have fields with no data on different platforms. Likewise, narrow
software probes must sacrifice data in certain situations, such as not collecting a
specific metric on Linux since there is no equivalent metrics on Windows.

For example, in the Unified SHIP platform, software components execute
on either a Windows or Linux platform. If developers want to collect memory
metrics from either platform they would have to decide either to implement
a broad or narrow software probe since each platform provides different infor-
mation about memory usage, as shown in Table 1. If a broad software probe
were implemented the Unified SHIP platform developers would have to ensure

Experiences with Service-Oriented Middleware 489

Table 1. Comparison of Memory Metrics Collected on Linux vs. Windows

Linux
(/proc/meminfo)

Windows (MPI) Description

MemTotal PhysicalTotal Total amount of memory (avail. + used)
MemFree PhysicalAvail Total amount of memory free
Buffers Amount of physical RAM used for file

buffers
Cached SystemCache Amount of physical RAM used as cache

memory
SwapCache Amount of Swap used as cache memory
InActive Total amt of buffer or page cache memory

avail.
Active Total amt of buffer or page cache memory
HighTotal Total amt of memory in the high region
LowTotal Total amt of non-highmem memory
LowFree Amount of free memory of the low memory

region
KernelTotal Sum of memory in paged and nonpaged ker-

nel pools
KernelPaged Memory currently in paged kernel pool, in

pages
KernelNonpaged Memory currently in nonpaged kernel pool,

in pages
PageSize Size of a page, in bytes

SwapTotal Total amt of physical swap memory
SwapFree Total amt of swap memory free
Dirty Total amt of memory waiting to be written

back to the disk
WriteBack Total amt of memory being written back to

the disk
CommitPeak Max number of pages simultaneously in

committed state
CommittedLimit CommitLimit Max memory available without extending

paging files
Committed AS CommitTotal Number of pages currently committed by

the system
VmallocTotal TotalVirtual Total size of vmalloc memory area
VmallocUsed TotalVirtual - Avail-

Virtual
Amount of virtual memory used

VmallocTotal -
VmallocUsed

AvailVirtual Amount of virtual memory available for al-
location

VmallocChunk Largest contiguous block of virtual memory
that is free

that all metrics in Table 1 were covered. If a narrow software probe were im-
plemented, conversely, they would only cover 8 common memory metrics (i.e.,
MemTotal, MemFree, Cached, CommittedLimit, Committed AS, VmallocTotal,
VmallocUsed, and AvailVirtual), which also fails to account for mapping similar
metrics to a common name and unit in the software probe’s implementation.

490 J.H. Hill and D.C. Schmidt

Fig. 8. An Example of Hierarchically Defining the Memory Software Probe in OASIS

Ideally, it should be possible for Unified SHIP platform developers to define hi-
erarchical software probes to show relations between them. For example, Unified
SHIP platform developers should be able to define a MemoryProbe that contains
all metrics common across all platforms, as shown in Figure 8.

Each specific platform-specific memory probe (e.g., LinuxMemoryProbe and
WindowsMemoryProbe) then extends the MemoryProbe definition, as needed.

Based on our needs, we have realized that supporting hierarchical software
probe definitions, however, has the following advantages:

A4. Metric reuse. When software probes are defined hierarchically in object-
oriented programming languages, such as C++, C#, and Java, similar software
probes can reuse metric definitions. Unified SHIP Platform developers therefore
need not make critical decisions as to whether they should implement broad or
narrow software probes.

A5. Platform-specific vs. general-purpose performance analysis tools.
OASIS allows performance analysis tools to request real-time updates when new
data arrives. The hierarchical software probe definitions give performance anal-
ysis tools greater flexibility when registering for real-time updates. For example,
they can request general memory probe data, i.e., data collected by a probe of
type MemoryProbe, or specific memory probe data, i.e., either
WindowsMemoryProbe or LinuxMemoryProbe data. The Unified SHIP platform
developers can therefore implement general-purpose performance analysis tools
or platform-specific performance analysis tools.

Experience 4: Observing Other Roles of the T&E Manager

The T&E Manager is a service that acts as the main entry point into the OA-
SIS architecture for performance analysis tools, as described in Section 2. This
manager assists with gathering and correlating data requested by performance
analysis tools. It also routes commands to software probes—via the DAC and
EINode—to enable dynamic runtime behavior modifications, such as reducing

Experiences with Service-Oriented Middleware 491

its data collection frequency. Based on our experience applying OASIS to the
Unified SHIP Platform, the T&E Manager has the following advantages:

A6. Domain-specific naming service. Based on our experience applying
OASIS to the Unified SHIP platform, the T&E Manager is also a domain-specific
naming service that keeps track of available DACs since the T&E manager must
know all DACs available in test execution. Otherwise, it is hard for performance
analysis tools to send commands to software probes. In addition, it is hard for
performance analysis tools to register for real-time updates, which must be done
by first locating an appropriate DACs via the T&E manager.

A7. Gateway and policy manager. Another role of the T&E Manager that
we learned is that it can be a gateway/policy manager. In the Unified SHIP
platform, some metrics collected by software probes should not be available
to all performance analysis tools. For example, software metrics that would be
considered sensitive metrics should not be available to performance analysis tools
that do not have the correct privileges. The T&E Manager can therefore enforce
such policies. Realizing this role of the T&E Manager also requires security
enhancements at the DAC since metrics are stored in a database therefore for
offline processing.

There is, however, the disadvantage to observing other roles of the T&E
manager:

D3. The “god” T&E manager. If done incorrectly, the T&E manager could
become a “god’ T&E manager.2 This superordination occurs when all roles of
the T&E manager are condensed into a single entity, instead of decomposing it
into distinct entities. We can overcome this design challenge via the Component
Configurator [20] pattern, where each role is realized as a dynamically loadable
component. The T&E manager then loads different components/roles as needed,
ensuring the T&E manager is as lightweight as possible.

4 Towards Using OASIS in Cloud Computing
Environments

This section evaluates OASIS’s ability to support dynamic software instrumen-
tation of applications in a cloud computing environments, such as Emulab [28],
Amazon EC2 [25], and Microsoft Azure [4].

4.1 Motivation and Challenges of Instrumentation in Cloud
Computing Environments

The previous sections provided an overview of OASIS and experiences gained
from applying OASIS to the Unified SHIP platform. This platform is based on a
2 This name is derived from the “god” class [21] software performance antipattern

where a single class contains all functionality, instead of modularizing it into a family
of related classes.

492 J.H. Hill and D.C. Schmidt

conventional data center architecture where software components are bound to
their hardware components, as discussed in Section 2. While conventional data
center architectures are common for today’s enterprise DRE systems, we expect
many types of these systems will migrate to cloud computing environments as
its technology matures.

Several implementation and research challenges related to performance,
scalability, data security, and data integrity will arise when deploying OASIS
in a cloud environment. Key research challenges include transparently instru-
menting an application in the on-demand without impacting its quality, evaluat-
ing different distributed middleware technologies and architectures for collecting
and extracting metrics from cloud applications, investigating policy management
mechanisms that control how collected metrics are accessed and used in anal-
ysis (both offline and online), merging and understanding data collected from
many different sources, and enabling QoS-aware applications through real-time
feedback.

4.2 A Strategy for Bringing OASIS to the Cloud

To enable OASIS to support deployment in a cloud, we are using an Emu-
lab [28] environment (www.isislab.vanderbilt.edu) that enables us to con-
struct clouds having different network characteristics for realistic experimenta-
tion purposes. Figure 9 shows how we are extending OASIS to operate in a
cloud environment. As shown in this figure, software applications can run within
a standard cloud computing environment. Within the cloud computing environ-
ment, portions of the OASIS service-oriented middleware and framework will
already be executing. In particular, there are a number of DACs responsible for
collecting information from different hosts and software applications. The loca-
tion of the DAC responsible for collecting information, however, is unknown to
software applications.

Each installment of an application in the cloud provides a T&E Manager.
Only this Manager knows the location of the DACs, which are configured at

Fig. 9. Deploying OASIS in a Cloud Computing Environment

www.isislab.vanderbilt.edu

Experiences with Service-Oriented Middleware 493

installation time. The T&E Manager accesses the different software probes ex-
ecuting on each host via the DAC. Applications can write custom PATs, which
can be deployed into the cloud (if necessary). There is also a standard PAT that
provides a view of all software probes (both active and inactive) in the software
installment—similar to a web portal. This design enables users to manually con-
trol the behavior of software probes to (1) collect needed information and (2)
minimize the impact on applications being instrumented.

The deployment of OASIS into the cloud computing environment is still a
work-in-progress. When complete, it will provide a foundation for addressing
the key research challenges outlined above, which must be resolved without any
application awareness. As explained above, applications are not physically aware
of the location for any OASIS entities operating in the cloud. The planned de-
ployment of OASIS is therefore congruent with the transparency requirement
for addressing key research challenges in cloud computing environments.

5 Related Work

This section compares our work on OASIS with related work.

Dynamic binary instrumentation (DBI) frameworks. Pin [10] and Dy-
namoRIO [2] are examples of DBI frameworks. Unlike OASIS, both Pin and
DynamoRIO do not require modification of existing source code to enable in-
strumentation. Instead, software developers use Pin to execute the application,
and during the process Pin inserts points of instrumentation based on C/C++
user-created instrumentation tools—similar to performance analysis tools in OA-
SIS. Although DBI frameworks address different problems, we believe they can
work together in that software probes can be implemented as third-party anal-
ysis tools for DBI frameworks. This combination would allow OASIS to collect
instrumentation information from the DBI framework that instruments a DRE
system in real-time without modifying any of the existing source code—as done
traditionally with OASIS.

DTrace [3] is another DBI framework. Unlike Pin and DynamoRIO, DTrace
provides a scripting language for writing performance analysis tools. DTrace also
has the ability to write custom software probes, which can be easily integrated
into DTrace’s collection facilities. DTrace’s software probe design is therefore
similar to OASIS in that it is extensible without a priori knowledge. It differs in
that software metrics cannot be extracted from the host machine where software
instrumentation is taking place.

Distributed data collection. Distributed Data Collector (DDC) [6] is a frame-
work for collecting resource metrics, such as CPU and disk usage, from Windows
personal computers (PCs). In DDC, software probe metrics are collected from
PCs and stored in a central location. Unlike OASIS, each software probe’s metrics
are stored its own file, which is then parsed by analysis tools. OASIS improves
upon this design by storing all metrics in a single database, instead of separate
files. Likewise, OASIS’s data collection framework is platform-, language-, and

494 J.H. Hill and D.C. Schmidt

architecture-independent (i.e., not bound to only Windows PCs and Windows-
specific software probes).

General-purpose middleware solutions can be used for distributed data col-
lection. For example, the DDS is an event-based middleware specification that
treats data as first-class entities. This concept is similar to OASIS in that events
are similar to software probe metrics. The main difference is that DDS is a
strongly-typed middleware solution in that both endpoints know the data type
a priori. Moreover, there is not standard way to serialize the data in a DDS
event. This therefore makes it hard to store metrics in the DAC’s database.

6 Concluding Remarks

The test and evaluation (T&E) of enterprise DRE system QoS during early
phases of the lifecycle helps increase confidence that the system being developed
will meet it functional and QoS requirements. Conventional T&E instrumen-
tation mechanisms, however, are tightly coupled with the system’s design and
implementation. This paper therefore described how design choices in OASIS’s
implementation of the EISA standard helped reduced these coupling concerns.
In addition, it also highlighted several observations about different design choices
that are being addressed in the OASIS service-oriented middleware framework.

Based on our experience with OASIS, we found the following open research
challenges, which extend the research directions presented in [7], remain when
instrumenting enterprise DRE systems:

Complex event processing. Complex event processing [5] involves processing
many different events and streams of data, across all layers of a domain, identi-
fying meaningful events, and determining their impact on a given concern, such
as performance, functionality, and scalability. Each software probe in OASIS can
be viewed as stream of data and the DAC can be viewed as a data source with
historical records. Likewise, performance analysis tools can register for real-time
delivery of software probe data.

Our future research is therefore focusing on implementing complex event pro-
cessing support in OASIS. Adding this support will be hard because the tra-
ditional use of complex event processing engines involves viewing results via a
graphical user interface, which is considered one form of a performance analysis
tool in OASIS. In reality, many different performance analysis tools (such as
real-time monitoring and feedback performance analysis tools) should be able to
leverage complex event processing support. Likewise, complex event processing
has not been applied to general-purpose instrumentation middleware for enter-
prise DRE systems.

Data fusion and data integration. Data fusion [1] is the process of combining
data from multiple sources for inference. The motivation for data fusion is that
multiple data sources will be more accurate that a single data source. Although
data fusion can be used to support complex event processing, it is a separate

Experiences with Service-Oriented Middleware 495

research area. Data integration [9], however, is the process of combining data
from different sources to provide a unified view.

When we examine the OASIS middleware framework—and each of its enti-
ties that play a major role in collecting and storing data (e.g., software probe,
EINode, and DAC)—it is clear that data fusion and data integration techniques
can be applied readily. The challenge, however, is understanding how both data
fusion and data integration can be integrated with the real-time aspects of OA-
SIS. Our future research is therefore focusing on addressing these challenges in
OASIS to provide a general-purpose middleware solution for data fusion and
data integration in OASIS.

Cloud computing environments. Cloud computing environments will even-
tually become the norm for enterprise DRE systems, as they are in the process
of becoming for standard enterprise applications. Unfortunately, cloud comput-
ing environments do not provide dynamic instrumentation capabilities. Instead,
cloud computing environment users only see metrics (such as CPU, disk, and
network usage) that the cloud computing environment can collect. We outline
several key research challenges in Section 4 for migrating OASIS to a cloud
computing environment, which will enhance the instrumentation capabilities of
cloud computing environment. Our future work will investigate these research
challenges.

As we apply OASIS to other application domains, such as resource-constrained
embedded systems, mobile devices, and cloud computing environments, we will
continue identifying new research challenges. Since OASIS is an open-source mid-
dleware framework, it provides an effective foundation for ensuring that solutions
to these open research challenges will be available to the T&E community.

OASIS is currently integrated into CUTS and is freely available for download
in open-source format from cuts.cs.iupui.edu.

References

1. Bleiholder, J., Naumann, F.: Data Fusion. ACM Computing Surveys 41, 1:1–1:41
(2009), http://doi.acm.org/10.1145/1456650.1456651

2. Bruening, D., Garnett, T., Amarasinghe, S.: An Infrastructure for Adaptive Dy-
namic Optimization. In: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and Runtime Optimization,
CGO 2003, pp. 265–275. IEEE Computer Society, Washington, DC, USA (2003),
http://portal.acm.org/citation.cfm?id=776261.776290

3. Cantrill, B., Shapiro, M.W., Leventhal, A.H.: Dynamic Instrumentation of Pro-
duction Systems. In: Proceedings of the General Track: 2004 USENIX Annual
Technical Conference, pp. 15–28 (June 2004)

4. Chappell, D.: Introducing the windows azure platform (2009) (retrieved May 30,
2010)

5. Dekkers, P.: Complex Event Processing. Master’s thesis, Radboud University Ni-
jmegen, Nijmegen, Netherlands (October 2007)

6. Domingues, P., Marques, P., Silva, L.: Distributed Data Collection through Remote
Probing in Windows Environments. In: 13th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, PDP 2005, pp. 59–65. IEEE (2005)

cuts.cs.iupui.edu
http://doi.acm.org/10.1145/1456650.1456651
http://portal.acm.org/citation.cfm?id=776261.776290

496 J.H. Hill and D.C. Schmidt

7. Hill, J.H., Sutherland, H., Staudinger, P., Silveria, T., Schmidt, D.C., Slaby, J.M.,
Visnevski, N.: OASIS: An Architecture for Dynamic Instrumentation of Enterprise
Distributed Real-time and Embedded Systems. International Journal of Computer
Systems Science and Engineering, Special Issue: Real-time Systems (April 2011)

8. Hudgins, G., Poch, K., Secondine, J.: The Test and Training Enabling Architecture
(TENA) Enabling Technology For The Joint Mission Environment Test Capability
(JMETC) and Other Emerging Range Systems. In: Proceeding of U.S. Air Force
T&E Days (2009)

9. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proceedings
of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems PODS 2002, pp. 233–246. ACM, New York (2002),
http://doi.acm.org/10.1145/543613.543644

10. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. SIGPLAN Notes 40, 190–200 (2005)

11. Menasce, D.A., Dowdy, L.W., Almeida, V.A.F.: Performance by Design: Computer
Capacity Planning By Example. Prentice Hall PTR, Upper Saddle River (2004)

12. Microsoft Corporation: Microsoft.NET Framework 3.0 Community (2007),
http://www.netfx3.com

13. Object Management Group: Light Weight CORBA Component Model Revised
Submission, OMG Document realtime/03-05-05 edn. (May 2003)

14. Object Management Group: Data Distribution Service for Real-time Systems Spec-
ification, 1.2 edn. (January 2007)

15. Object Management Group: The Common Object Request Broker: Architec-
ture and Specification Version 3.1, Part 1: CORBA Interfaces, OMG Document
formal/2008-01-04 edn. (January 2008)

16. Object Management Group: The Common Object Request Broker: Architecture
and Specification Version 3.1, Part 2: CORBA Interoperability, OMG Document
formal/2008-01-07 edn. (January 2008)

17. Object Management Group: The Common Object Request Broker: Architecture
and Specification Version 3.1, Part 3: CORBA Component Model, OMG Document
formal/2008-01-08 edn. (January 2008)

18. O’Hair, K.: The JVMPI Transition to JVMTI (2006),
http://java.sun.com/developer/technicalArticles/Programming/

jvmpitransition

19. Radha, V., Ramakrishna, S., kumar, N.P.: Generic XML Schema Definition (XSD)
to GUI Translator. In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp.
290–296. Springer, Heidelberg (2005)

20. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, vol. 2. Wiley &
Sons, New York (2000)

21. Smith, C., Williams, L.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley Professional, Boston (2001)

22. Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Program
Analysis Tools. In: PLDI 1994: Proceedings of the ACM SIGPLAN 1994 Conference
on Programming Language Design and Implementation, pp. 196–205 (1994)

23. Stefani, A., Xenos, M.N.: Meta-metric Evaluation of E-Commerce-related Metrics.
Electronic Notes in Theoretical Computer Science (ENTCS) 233, 59–72 (2009)

24. Tan, Z., Leal, W., Welch, L.: Verification of Instrumentation Techniques for Re-
source Management of Real-time Systems. J. Syst. Softw. 80(7), 1015–1022 (2007)

http://doi.acm.org/10.1145/543613.543644
http://www.netfx3.com
http://java.sun.com/developer/technicalArticles/Programming/jvmpitransition
http://java.sun.com/developer/technicalArticles/Programming/jvmpitransition

Experiences with Service-Oriented Middleware 497

25. Varia, J.: Cloud architectures. White Paper of Amazon, jineshvaria. s3. amazonaws.
com/public/cloudarchitectures-varia. pdf (2008)

26. Visnevski, N.: Embedded Instrumentation Systems Architecture. In: Proceedings
of IEEE International Instrumentation and Measurement Technology Conference
(May 2008)

27. Waddington, D.G., Roy, N., Schmidt, D.C.: Dynamic Analysis and Profiling of
Multi-threaded Systems. In: Tiako, P.F. (ed.) Designing Software-Intensive Sys-
tems: Methods and Principles, Idea Group (2007)

28. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Proc. of the Fifth Symposium on Operating Systems
Design and Implementation, pp. 255–270. USENIX Association, Boston (2002)

Dynamic Event-Based Monitoring in a SOA

Environment

Fabio Souza1, Danilo Lopes1, Kiev Gama2, Nelson Rosa1, and Ricardo Lima1

1 Federal University of Pernambuco, Center of Informatics
{fns,dvl,nsr,rmfl}@cin.ufpe.br

2 University of Grenoble, LIG laboratory, ADELE team
kiev.gama@imag.fr

Abstract. There is an increasing need to monitor quality attributes
(e.g., performance and availability) in SOA environments. Existing ap-
proaches to monitor these attributes (commonly referred to as QoS at-
tributes) do not allow reconfiguration while services are in execution.
This paper presents a generic QoS-aware SOA mechanism able to
monitor runtime quality attributes of services. The solution is dynamic,
event-based, extensible, transparent and lightweight in such way that
the performance impact on the application is minimal and the overall
mechanism is easily reconfigurable. To validate our solution, we propose
a typical SOA scenario and evaluate its impact on the performance of
the service execution.

Keywords: SOA, QoS, monitoring, events.

1 Introduction

Service-Oriented Computing (SOC) [5] proposes the utilization of loosely cou-
pled entities (services) as first-class elements. Services are published in a registry
where they can be dynamically discovered, selected and bound by service con-
sumers. Providers, consumers and registry compose the traditional “triangle”
which is central to the architectural style referred to as Service-Oriented Archi-
tecture (SOA).

In SOA, applications are developed as service compositions in which ser-
vices are selected based on contracts defining their functional interface and
non-functional attributes. Different QoS attributes can be considered in SOA
environments. According to their nature, these attributes can be classified as
deterministic (e.g., price) or non-deterministic (e.g., response time, throughput,
availability).

The dynamic and distributed nature of SOA environments and the intrin-
sic characteristics of non-deterministic QoS attributes suggest the need for a
continuous monitoring system, which checks whether a service is providing the
expected level of quality.

Despite the increasing demand for continuous monitoring systems, their de-
velopment is complex. Key concerns are the number of quality attributes and

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 498–506, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Dynamic Event-Based Monitoring in a SOA Environment 499

the costs related to monitoring them. In fact, a monitoring system can hamper
the overall performance of a system and negatively impact the availability of
monitored services. Another aspect is how to introduce new and not foreseen
quality attributes to be monitored, without interrupting service execution.

This paper proposes a dynamic, event-based, extensible, non-obtrusive and
lightweight QoS monitoring system that supports continuous monitoring of non-
deterministic attributes in SOA environments. The solution is dynamic be-
cause it can be enabled, disabled or reconfigured (e.g. changing the set of QoS
attributes) at runtime without impacting the availability of services. It is event-
based because its components interact by sending and receiving event notifica-
tions. It is extensible because the support for monitoring unforeseen attributes
is provided using documented extension points. It is non-obtrusive because ser-
vices are not aware of monitoring tasks. Finally, it is lightweight because the
impact on performance is minimized by splitting data gathering and processing
in asynchronous phases.

The rest of this paper is organized as follows: Section 2 presents the proposed
mechanism in details, whilst Section 3 presents its experimental evaluation. Re-
lated work is presented in Section 4, followed by the conclusions and future work
in Section 5.

2 Monitoring System

A monitoring system dynamically gathers, interprets and acts on data concerning
an application while it executes. Monitoring systems can be used in different
contexts such as security monitoring, correctness checking and debugging.

Monitoring systems are configured through some kind of requirement specifi-
cation that defines the target entities and the properties (or attributes) they are
expected to observe. To collect data, a monitoring system attaches some sensors,
which are triggered by the occurrence of events (e.g. the arrival of a message).
The collected data are sent to an analyzer, which will evaluate them and even-
tually notify some handlers. Event handlers are responsible for the monitor’s
reaction and can perform simple activities such as logging or take sophisticated
decisions such as starting a reconfiguration process.

Figure 1 presents a high-level view of the proposed monitoring system’s archi-
tecture, which is composed by three modules: management agent,data gathering
center and data processing center. To promote loose-coupling, the communica-
tion between these modules is based on internal services and events.

The proposed monitoring system has been implemented atop of an OSGi
environment. This technology was selected because it has some very distinc-
tive characteristics: it provides an inherently dynamic and modular platform,
allowing loose coupling between modules thanks to a Service-Oriented Architec-
ture. The OSGi specification defines a framework that leverages Java’s dynamic
class loading feature for enhancing modularization and also introduces a run-
time where modules can be installed, started, stopped, updated or uninstalled
without stopping the application.

500 F. Souza et al.

Simple

Event Handler

Composite

Event Handler

Data Gathering Center

Data Processing Center

Service Provider

Metric

Computing Agents

TOPIC

TOPIC

Single

event

Composite

event

Management Agent

Monitor

Monitoring

Services

Management Flow

Request/Response Flow

Monitoring

Configuration

Agent

XML

Monitoring

Configuration

XML

XML

Fig. 1. High level representathion of the QoS monitoring system

2.1 Management Agent

The management agent is responsible for providing management interfaces that
can be accessed through a local or remote management console. These interfaces
support suspension and resumption of the monitoring system as well as the
definition of the monitoring configurations, which define the target services and
the quality attributes that are expected to be monitored.

When a monitoring configuration is defined, the management agent verifies
whether there are monitoring services (see section 2.2) responsible for dealing
with the corresponding quality attributes. If this condition is satisfied, the mon-
itoring activity starts with the agent notifying the data gathering and the Data
Processing centers. Otherwise, the monitoring configuration is marked as pend-
ing, being reanalyzed when the agent is notified about the registration of new
monitoring services.

2.2 Data Gathering Center

The data gathering center uses the Invocation Interceptor pattern to intercept
requests and replies exchanged between consumers and providers. It collects QoS-
related data and wraps them in simple events that are asynchronously sent to
the data processing center, reducing the impact of the monitoring activities since
the aggregated metrics (e.g. average response time) are computed in parallel.
This computed data can then be stored in a service registry enabling QoS-based
service selection.

The data gathering center is composed of two kinds of components: moni-
toring services and simple event handlers. Essentially, a monitoring service is

Dynamic Event-Based Monitoring in a SOA Environment 501

responsible for collecting data required to compute metrics related to a partic-
ular QoS attribute, e.g., response time. To perform this task, it uses sensors,
which are implemented as QoS interceptors dynamically (at runtime) interposed
between consumers and providers.

To connect the QoS interceptors to a service, we developed a chainer in-
terceptor, which is added to the beginning of each service’s chain when it is
published (this is done through middleware configuration and is transparent to
the developer). This interceptor modifies the chain by adding the QoS intercep-
tors provided by the monitoring services. To select the QoS interceptors to be
included, the chainer must know what QoS attributes are configured for the ser-
vice. This information is in the monitoring configurations related to the service,
so the chainer is notified each time one of these configurations is defined. In
summary, based on the QoS attributes defined in the configurations, the chainer
discovers the monitoring services that it has to interact with in order to obtain
the QoS interceptors (sensors) that ought to be plugged in the chain.

In order to support an extensible collection of QoS attributes, our monitoring
system should be able to dynamically support new QoS interceptors. As these
interceptors are provided by the monitoring services, our monitoring system
must dynamically discover when a new monitoring service is available. To cope
with this requirement, we use a service registry that triggers an event each time
a new monitoring service is published. When our management agent is notified
about the occurrence of this event, it realizes that it must allow the definition
of monitoring configurations that enable the monitoring the corresponding QoS
attribute.

Another key component in our solution is the publisher, which should be
added as one of the last interceptors in the chains. Its purpose is to forward the
collected data to the components responsible for processing them (simple event
handlers). The communication between publisher and handlers is asynchronous.
In fact, we adopt an event-based solution built atop of a publish/subscribe com-
munication model. Simple event handlers can be used, for example, to keep his-
torical data. In our solution, the event handlers are services that are dynamically
discovered. This design decision enables defining alternative ways to handle QoS
data at runtime. In fact, our monitoring mechanism includes a default handler
implementation that forwards monitoring events to the Data Processing Center
where the aggregated QoS metrics are computed.

In summary, the architecture of the Data Gathering Center is quite flexible
once it does not prescribe what QoS attributes can be monitored, or how the
collected data should be processed. In fact, it allows the definition, design and
deployment of new monitoring services which can be dynamically plugged into
the proposed monitoring system, providing support for the monitoring of un-
foreseen QoS attributes without impacting running services. New simple event
handlers can also be independently deployed, defining alternative ways to deal
with the monitored data. In fact, this architecture supports the subscription of
various simple event handlers simultaneously, each one of them manipulating
the same data in a different manner.

502 F. Souza et al.

2.3 Data Processing Center

To compute aggregated QoS metrics, different design alternatives can be consid-
ered. A usual solution is to store simple events containing QoS related data in
a database and process them a posteriori. This approach is directly supported
by our monitoring mechanism through the development of a simple event han-
dler that stores simple events in a database. This database is processed by a
background task that computes the metrics.

That approach has some important drawbacks. As mentioned before, sup-
porting dynamic service composition requires runtime monitoring. At runtime a
monitoring system can produce a huge volume of primitive events. Storing these
events in a database forces frequent I/O operations and imposes unlimited stor-
age demands. Besides, extracting valuable information from such volume of data
is expensive and time-consuming. So, the capacity of taking real-time decisions
based on events is clearly affected. To perform online monitoring, we usually
need to process a continuous flow of events that is constantly changing, i.e., an
event stream. In such situations, the use of an Event Stream Processing (ESP)
engine is recommended.

In our context, the monitoring events generated by the data gathering center
compose event streams that are forwarded to the data processing center. The
core component of this center is the Esper engine, which computes aggregated
metrics defined through queries provided by a set of metric computing agents.
These agents are build dynamically (at runtime) when the data processing center
is notified that there is a new monitoring configuration available. In fact, it is
important to mention that, besides the data concerning the target service and
the QoS attribute, a monitoring configuration defines which statistical operator
should be used to calculate the aggregated QoS metric. It also contains infor-
mation concerning the interval (in terms of time or number of events) that the
agents will use to define their queries.

Aggregated metrics are wrapped in composite events which are forwarded to
a collection of composite event handlers that have subscribed to receive metrics
computation results. These handlers analyze the metrics using embedded rules
and take the necessary actions. In order to dynamically support new ways of
dealing with aggregated metrics, our composite event handlers are designed as
services and are dynamically discovered from the service registry.

Different composite event handlers can be realized in a SOA environment. An
example is a composite event handler that verifies SLA contracts and notifies
parties when violations are detected [4]. Although our monitoring mechanism
does not deal with SLA verification, it includes a handler that updates our QoS-
aware service registry based on the aggregated metrics enabling the proposition
of a QoS-aware composition layer.

3 Experimental Evaluation

To validate the monitoring system, some experiments were performed on a
controlled environment. The validation scenario consists of service consumers

Dynamic Event-Based Monitoring in a SOA Environment 503

periodically invoking a service provider to get the price of stocks. To evaluate
the impact of the monitoring system, two performance metrics were considered,
namely “throughput” and “response time”. Both metrics were measured from
the consumer’s point of view. We use these metrics to evaluate the behavior of
the system with and without monitoring.

The experiments were performed on an isolated network composed by 3 hosts:
1 Pentium dual-core with 3GB running a CXF DOSGi environment that sup-
ports the service provider; 1 Pentium dual-core with 2GB emulating the service
consumers modeled as threads in a test plan; and 1 Pentium dual-core with
1 GB running an Apache Derby database (storage of the stock prices) and a
Zookeeper-based service registry.

Different workloads were designed by varying the number of simultaneous
consumers. Experiments containing 1, 25, 50, 75, 100, 125 and 150 consumers
(submitting 1 request/second) were performed on two different configurations:
1) monitoring mechanism enabled; 2) monitoring mechanism disabled. Each user
submits 1.000 requests.

For the purpose of the experiments, the data gathering center includes a single
monitoring service measuring the time required to process each request at the
service provider side. The monitoring mechanism wraps the measured time in a
primitive monitoring event that is sent to a monitoring topic to which a single
primitive event handler is subscribed. This handler forwards each received event
to the data processing center.

To compute the aggregated metrics, the data processing center uses a collec-
tion of queries provided by agents defined through the monitoring configurations.
In our experiments, they define queries that compute maximum, minimum, and
average processing time over windows composed of collections of 500 events.
These metrics are wrapped in derived events that are forwarded to derived event
handlers. In our environment, just one handler is subscribed to receive the events.
It reads the metrics and updates our QoS-aware service registry.

Figure 2 shows the throughput with and without enabling the monitoring
mechanism. Despite the increasing number of consumers, these measures are very
close. The greatest difference is around 1.3% (at 100 users). This is an indication
that the monitoring infrastructure has a low impact on the performance.

The response time measures are presented in Figure 3. It shows that the
measures with and without monitoring are close. In fact, the greatest difference
is around 6% (at 50 simultaneous users). According to Figures 2 and 3, we
can infer some information concerning the system’s operation status that is not
related to monitoring itself. Figure 2 shows that the throughput varies linearly
with the workload. Furthermore, regardless of the submitted load, the system’s
throughput is reasonably close to its nominal value, meaning that the system can
process requests at a rate close to that demanded by the users. As an example, a
demand equivalent to 150 simultaneous users, each one operating at 1 request/s,
is 150 requests/s. The measured throughput (with and without monitoring) is
around 133 requests/s, i.e., around 89% of the users’ demand. Figure 3 shows
that the response time also varies linearly with the workload.

504 F. Souza et al.

Fig. 2. Throughput on the consumers’ side

Fig. 3. Response time on the consumers’ side

4 Related Work

Several researches in academia and industry discuss the importance of monitor-
ing QoS attributes in SOA environments [5], although there is neither a standard
QoS model for services nor a standard way to use QoS data. For instance, Baresi
and Guinea [2] propose an extension to a BPEL engine using aspects, allowing
the definition of self-supervising BPEL processes enhanced by supervision rules
(e.g., declarative monitoring directives, recovery strategies). However, the rules
are static and after compiled they cannot be changed dynamically.

A monitoring specification language called SECMOL [3] is used for specify-
ing functional requirements and QoS constraints in BPEL processes. It allows
splitting activities of data collection, aggregation and computation, but lacks
the capacity of dealing with unforeseen QoS attributes at runtime.

Dynamic Event-Based Monitoring in a SOA Environment 505

A probing tool for client-side monitoring called QUATSCH [6] generates stubs,
based on WSDL files, in which performance code is woven. These stubs are used
to submit requests to the web services and collect QoS data, which are combined
with information obtained through low level sniffing in order to infer server side
performance data. This is a non-invasive approach that captures QoS as seen by
the client. However, it is not ”live data” and may not represent the current state
of the service provider.

A QoS monitoring mechanism proposed in [4] collects data from both client
and server sides. The client-side monitoring is based on QUATSCH [6], and
server-side monitoring is based on Windows Performance Counters (WPC) and
processes real service invocations. Besides monitoring, this paper proposes a
SLA validation mechanism which is supported by an event stream processor.
This solution, however, is not able to dynamically support unforeseen QoS re-
quirements.

A discussion [7] of possible approaches to enable monitoring QoS on the client
and server sides includes: performing low-level package sniffing, interposing a
proxy between consumers and providers, and modifying a SOAP engine. They
chose this last option in order to enable intercepting consumer and provider
exchanges. They implemented a prototype using Apache Axis arguing that the
impacts in terms of memory and time were not significant. However their solution
is not easily extensible, and cannot cope with new QoS requirements without
modifying its code.

Finally, a complete approach for enabling end-to-end support of non-functional
properties in web services scenarios is presented in [1]. They define a repre-
sentation of those properties, an architecture for measuring and updating QoS
data, and an implementation based on Axis. Like our solution, they also use in-
terceptors for supporting data collection. However, their interceptors cannot be
changed dynamically and new metrics can only be supported through a redeploy.

5 Conclusion and Future Directions

QoS monitoring in Service-Oriented Architectures allows verifying quality at-
tributes (e.g., availability, performance) of services at runtime. Monitoring these
attributes is fundamental for implementing QoS-aware service compositions, as
well as for validating Service-Level Agreements. Although there is no consen-
sus on which and how QoS attributes should be monitored, there are different
researches and industrial efforts that already collect and analyze QoS data in
non-standardized ways. Existing mechanisms lack flexibility concerning on-the-
fly reconfiguration of QoS monitoring and data analysis. In this paper, we pro-
posed an extensible, dynamic, event-based, flexible, lightweight and transparent
monitoring mechanism for continuous monitoring QoS observable attributes in a
non-obtrusive way. This mechanism was implemented atop of CXF/DOSGi and
validated using a typical SOA scenario.

For future work we plan to enhance our monitoring events with semantic
information in order to enable the development of an autonomic management
infrastructure and to use it for validating SLAs and for detecting SLA violations.

506 F. Souza et al.

References

1. Agarwal, V., Jalote, P.: Enabling end-to-end support for non-functional properties
in web services. In: Service-Oriented Computing and Applications (SOCA), pp. 1–8
(2009)

2. Baresi, L., Guinea, S.: Self-supervising BPEL processes. IEEE Transactions on Soft-
ware Engineering 37(2), 247–263 (2011)

3. Guinea, S., Baresi, L., Spanoudakis, G., Nano, O.: Comprehensive monitoring of
BPEL processes. IEEE Internet Computing PP(99), 1 (2009)

4. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: Comprehensive qos moni-
toring of web services and event-based sla violation detection. In: Proc. of the 4th
International Workshop on Middleware for Service Oriented Computing, pp. 1–6.
ACM, New York (2009)

5. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing:
State of the art and research challenges. Computer 40(11), 38–45 (2007)

6. Rosenberg, F., Platzer, C., Dustdar, S.: Bootstrapping performance and depend-
ability attributes ofweb services. In: Proc. of the IEEE International Conference on
Web Services, pp. 205–212. IEEE Computer Society, Washington, DC, USA (2006)

7. Thio, N., Karunasekera, S.: Automatic measurement of a qos metric for web service
recommendation. In: Proc. of the 2005 Australian conference on Software Engineer-
ing, pp. 202–211. IEEE Computer Society, Washington, DC, USA (2005)

A SIP-Based Network QoS Provisioning

Framework for Cloud-Hosted DDS Applications

Akram Hakiri1, Aniruddha Gokhale2, Douglas C. Schmidt2, Berthou Pascal1,
Joe Hoffert2, and Gayraud Thierry1

1 CNRS; LAAS, 7, avenue du Colonel Roche,
Universit de Toulouse; UPS, INSA, INP, ISAE; LAAS;

F-31077 Toulouse, France
2 Institute for Software Integrated Systems, Dept of EECS

Vanderbilt University, Nashville, TN 37212, USA
{Hakiri,Berthou,Gayraud}@laas.fr,

{a.gokhale,d.schmidt,jhoffert}@vanderbilt.edu

Abstract. The growing trend towards running publish/subscribe
(pub/sub)-based distributed real-time and embedded (DRE) systems in
cloud environments motivates the need to achieve end-to-end quality-of-
service (QoS) over wide-area networks (WANs). The OMG Data Distri-
bution Service (DDS) is a data-centric middleware that provides fast,
scalable and predictable distribution of real-time critical data. The DDS
standard, however, provides QoS control mechanisms that are confined
only to the middleware residing at end-systems, which makes it hard
to support DRE pub/sub systems over WANs. A promising solution to
this problem is to integrate DDS with the Session Initiation Protocol
(SIP), which is an IP-based signaling protocol that supports real-time
applications involving voice, video, and multimedia sessions via the QoS
mechanisms in IP networks.

This paper describes our approach to bridge the SIP protocol and
DDS to realize DDS-based applications over QoS-enabled IP WANs by
overcoming both inherent and accidental complexities in their integra-
tion. An exemplar of the proposed approach for IP DiffServ networks is
described, which uses the Common Open Policy Server (COPS) protocol
to assure QoS for cloud-hosted DRE pub/sub applications. To distinguish
the DDS traffic from other best-effort traffic in the cloud environment,
our approach uses the COPS-DRA protocol as a generic protocol for au-
tomatic service-level negotiation and the integration of this protocol in
an overall QoS management architecture to manage service levels over
multiple domains deploying different QoS technologies.

Keywords: Cloud, End-to-End QoS, DDS, SIP, COPS, DiffServ.

1 Introduction

Many publish/subscribe (pub/sub)-based distributed real-time and embedded
(DRE) systems operate in heterogeneous environments that receive data from

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 507–524, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

508 A. Hakiri et al.

a large number of sensors and multimedia sources and stream it in real-time
to remote entities. Examples of such DRE systems include unmanned air vehi-
cles, video surveillance, on-demand video transmission, online stock trading, air
traffic management, power grid control, shipboard computing environments, and
weather monitoring. These types of DRE systems often typically optimize the
performance and scalability of applications and provision/control key network
resources [18].

The Object Management Group (OMG)’s Data Distribution Service (DDS)
[14] is a data-centric pub/sub middleware that simplifies application develop-
ment, deployment, and evolution for DRE systems. DDS delivers needed capa-
bilities of DRE systems via powerful quality-of-service (QoS) policies that enable
applications to control data delivery properties at each distributed node. In ad-
dition, DDS supports fast and predictable distribution of real-time critical data
over heterogeneous networks.

Most applications of DDS in pub/sub DRE systems either use stable networks,
such as local area networks, or networks whose scale is small and whose properties
are controllable. With a growing trend [1] towards supporting pub/sub DRE sys-
tems in the cloud, however, it becomes necessary to realize the QoS mechanisms
for pub/sub DRE systems in wide-area networks (WANs) that are characteris-
tic of cloud environments. The DDS specification, however, does not currently
support key QoS properties of pub/sub DRE systems over WANs because the
DDS middleware resides on end-systems and thus defines only mechanisms that
control end-system properties, such as OS-level parameters and tuning network
parameters for the connecting link.

For example, DDS provides no mechanisms for provisioning/controlling end-
to-end QoS over WANS. The lack of these mechanisms makes it hard to use DDS
to assure end-to-end QoS for large-scale DRE systems running in clouds. Key
challenges required to support cloud-based DDS applications include optimizing
the performance and scalability of WAN deployment over fixed and wireless
access technologies while also providing network-centric QoS provisioning.

A promising approach to address these challenges is to integrate DDS with the
Session Initiation Protocol (SIP) [16] and Session Description Protocol (SDP)
[17]. Together, SIP and SDP provide a powerful capability to convey new en-
hanced services. Examples of such services include disseminating information
about end-systems, identifying the originator of a session, and identifying multi-
media content in a session initiation request that might contain pictures, signals
from sensors, or a personalized ring-tone.

Despite the strengths of SIP/SDP, they do not take into account the appli-
cation needs of pub/sub DRE systems. In particular, the desired QoS policies
of pub/sub DRE systems cannot be seamlessly supported today both by DDS
middleware on end-systems and SIP/SDP mechanisms in WANs. To bridge the
gap between DDS and SIP/SDP, therefore, this paper describes a SIP-based
QoS management architecture using a proxy SIP QoS module, which imple-
ments both DDS QoS policies and standardized QoS mechanisms. Our approach
defines a new SIP Signaling Class of Service (S-CoS) for transferring signaling

A SIP-Based Network QoS Provisioning Framework 509

messages for sessions whose characteristics are specified in extensions we defined
for SDP messages. A key benefit of our approach is that it require no modifica-
tions to applications, which can continue to use standard DDS QoS policy and
programming interfaces.

To demonstrate our approach, we have prototyped our QoS-enabled SIP proxy
for cloud environments using DiffServ IP networks, which makes it possible for
interworking DDS sessions with QoS-enabled IP networks by integrating it with
DiffServ mechanisms such as the Common Open Policy Server (COPS) [10]
protocol. COPS aims to exchange policy information between a policy server
(Policy Decision Point or PDP) and its clients (Policy Enforcement Points or
PEPs), using TCP transport protocol for reliable exchange of messages between
PEPs and PDPs. In our case, therefore, COPS acts as the protocol for QoS
requests and for admission control to achieve the desired QoS for DDS traffic
over DiffServ IP networks.

The remainder of this paper is organized as follows: Section 2 describes how we
integrated DDS with SIP/SDP to support pub/sub-based DRE systems in cloud
environments; Section 3 showcases our integrated solution in a DiffServ network,
focusing on the signaling procedure and QoS provisioning; Section 4 compares
our research with related work; and Section 5 presents concluding remarks.

2 Supporting DDS in Cloud Environments Using
SIP/SDP

This section describes the SIP/SDP-based framework we developed to support
DDS session in cloud environments, which comprise WANs. To better understand
our solution, we first explain how applications use DDS and provide an overview
of the SIP/SDP protocols. We then describe the enhancements we made for
SIP/SDP media description to support DDS sessions over WANs.

2.1 Overview of Underlying Technologies

This section summarizes the DDS, SIP, and SDP technologies.

DDS and DDS sessions. DDS is a middleware standard for distributed
real-time application that simplifies application development, deployment and
maintenance and provides fast, predictable distribution of real-time critical data
over heterogeneous networks. The DDS architecture consists of two layers. The
Data-Centric Publish Subscribe (DCPS) layer provides efficient, scalable, pre-
dictable, and resource-aware data distribution. The Data Local Reconstruction
Layer (DLRL) provides an object-oriented facade atop the DCPS so that appli-
cations can access object fields rather than data and defines navigable associa-
tions between objects.

The DCPS DDS entities include topics, which describe the type of data to read
or write, data readers, which subscribe to the values or instances of particular
topics, and data writers, which publish values or instances for particular topics.
Properties of these entities can be configured using combinations of the DDS
QoS policies.

510 A. Hakiri et al.

SIP and SDP. The Session Initiation Protocol (SIP) is an IP-based application-
level signaling protocol defined by the IETF in RFC3261 [16]. It plays a major
role in establishing, maintaining, modifying, and tearing-down multimedia ses-
sions between two distributed end-points. SIP focuses on IP core networks for all
services: mobility, scalability, multimedia services, high bit rate, and dissemina-
tion of call/service control and user data. From the service plane (application sig-
naling) point of view, SIP simplifies the network operation and management by
automating the QoS provisioning, and providing the level of QoS by facilitating
admission control with the network QoS negotiation mechanisms.

Multimedia sessions can be described using the Session Description Proto-
col (SDP) [12]. Information in the session defines a syntax to characterize the
multimedia session, such as the types of media in the session, the available sup-
port for each of the media types, the contact information (IP address (IP/port)
where packets should be sent) and bandwidth requirements for receiving the
session. SDP is therefore decomposed into three main descriptors: (1) session-
level descriptions, which describe characteristics of the whole session; (2) time
descriptions, which indicate time-related aspects of the session, and (3) media
descriptions, which characterize the different media present in the session.

2.2 SIP/SDP Enhancements for Cloud-Based DDS

Section 1 alluded to the limitations in realizing cloud-based DDS applications.
We present our SIP/SDP enhancements to support cloud-based DDS applica-
tions as shown in Figure 1. Cloud-based DDS applications are expected to be
located at the access network. Specifically, SIP is used with the discovery proto-
col to discover end-systems while SDP is used to encapsulate DDS QoS policies.

We propose to let SIP messages carry DDS QoS policies, which in turn are
used in reserving the required network resources. The signaling part of SIP is
therefore independent of the session being established and of the mechanism
used to describe it. This approach provides the way to distribute this information
between potential participants in the session, i.e., the QoS information exchange
is made transparent to the DDS clients. The proxy SIP negotiates on behalf of

Fig. 1. A SIP-based, DDS-enabled QoS Support Architecture

A SIP-Based Network QoS Provisioning Framework 511

the clients with the network QoS mechanisms. The DDS QoS policies are mapped
into SIP/SDP messages, and carried within a new SDP media session description
attribute we added to the SIP protocol stack, and used by the Proxy SIP server.

2.3 End-System Architecture

Figure 2 presents an architectural view of interfaces and functional entities that
comprise our QoS support architecture, which is located both at the sender and
the receiver sides.

To establish a communication between SIP applications (without DDS) and
DDS applications attached to SIP entities, the following entities are required:
(1) The SIP User Agent (UA) acts as an interface between the QoS-enhanced
SIP Proxy (Q-SIP) and DDS application, (2) SIP Proxy which maintains me-
dia session between DDS pub/sub participants. The remainder of this section
describes the specifics of the SIP Proxy and the new SDP attributes we added.

Fig. 2. DDS Mapping Interface with a SIP Stack

DDS application. DDS application are not integrated within the SIP-based
environment, as shown in Figure 2. Indeed, because these applications contain
a rich set of domain users, it was less convenient to implement them within
the SIP interface. Moreover, for extensibility reasons, to make use of general
SIP applications like IMS applications, we determined the application to remain
independent of the SIP/DDS implementation.

SIP user agent (UA). The UA is not integrated within the application. The
UA acts as an interface between the Proxy SIP and DDS application. This
approach preserves interoperability properties since any SIP-based application
can communicate with a DDS-based application.

Proxy server. The goal of the proxy server architecture is to support both wired
and wireless communication between DDS-based pub/sub system and other wire-
less access points. Moreover, DDS application can access a network via a mobile
client. The Proxy SIP is considered as a network element. Hence it is included
in the network vision to allow the session management.

512 A. Hakiri et al.

The proxy SIP is present in all phases of the SIP-based communication in-
cluding registration (to access to the registrar server matching two SIP-UA re-
quests), establishment (forcing all SIP and SDP messages to pass across it with
the header “record route”), and it is able to understand the information about
the session. The memory footprint of the proxy SIP implementation is low.

2.4 Proxy SIP Signaling Mechanism

The proxy SIP receives SIP requests/responses and forwards them through the
network on behalf of the user agent. Proxies are essentially routers that are also
capable of generating requests and responses. Two key types of SIP proxies are
supported:

– Inbound proxies, which handle incoming requests for an administrative
domain and also routes incoming requests to the appropriate UA within the
domain it is responsible for.

– Outbound proxies, which help the UAs to route outgoing requests. UAs
are usually configured to route all their requests to an outbound proxy,
which will route the requests for them. Since outbound proxies include all
the capabilities of inbound proxies, in the rest of this paper we focus only
on outbound proxies.

2.5 SDP Extensions

We extended SDP messages to support the media description of the DDS session.
The new SDP attributes deal with the session management and are used by the
SIP User Agent (UA) that we collocate with both the sender and the receiver
to indicate how the QoS may be achieved. An SDP message consists of a set of
lines of text of the form:

< attribute >=< value >

The offer/answer [17] model for SDP assumes that endpoints somehow establish
the QoS required for the media streams they establish. For DDS session, however,
more than one QoS service is available, which requires the capability to negotiate
which QoS mechanism to use for a particular media stream. We therefore created
new DDS QoS attributes and syntax to incorporate the signaling procedure.

Table 1 and 2 describe the enhancements to the SIP/SDP header and the new
attributes we added to support the specific DDS QoS requirements to be assured
by cloud environments. The caller and callee terminals exchange SIP messages
that include the resource reservation demands and the current status to support
the QoS demands in each direction.

The ”qos-dds” token identifies a QoS mechanism that is supported by the
entity generating the session description. A token that appears in a ”qos-dds-
send” attribute identifies DDS QoS policies supported by the DataWriters to
assist the resource reservation for traffic sent by the publisher generating SDP

A SIP-Based Network QoS Provisioning Framework 513

Table 1. Description of the DDS QoS policy Attributes

attribute Description

Deadline DataReader expects a new sample updating the value of each instance at
least once every deadline period. DataWriter indicates that the application
commits to write new value for each instance managed by this DW at least
once every deadline period. The Deadline is a duration ”0 0”.

Latency The delay from data writing until its delivery is inserted in the receiver’s
application cache and the receiving application is notified of the fact.
The Latency Budget is duration ”0 0”.

Reliability Is the reliability of the service. Could be Reliable ”R” or Best Effort ”BE”.

Priority The Transport Priority is a hint to the infrastructure used to set the priority
of the underlying transport used to send data in the DSCP field for DiffServ.
This is presented as an integer value.

Table 2. New SDP Attributes for DDS-based QoS Support

attribute value

”qos-dds” Deadline Latency Reliability Priority

messages. A token that appears in a ”qos-dds-recv” attribute identifies the DDS
QoS policies that can be supported by the DataReader to reserve the resources
for traffic coming from the DDS publisher.

For example, the SDP session description presented in Table 3 offers video
communication requesting a total bandwidth of 64 kilobits per second as de-
scribed in line ”b” with qos-dds-send and qos-dds-recv attributes.

2.6 Semantics of SIP/SDP Extensions

Offer/answer behavior. When using qos-dds-send and qos-dds-recv attributes,
an offer/answer negotiation is done between the publisher and the subscriber to
allow endpoints to load a list of QoS mechanisms. The participants negotiate the
direction in which the QoS mechanisms are exchanged with respect to both pre-
conditions [2] and DDS changeable table parameters [14]. Participants may also
use other QoS parameters (such as those described in [8]) to allow bandwidth,
jitter, and delay parameters to be negotiated at the same time with per-flow re-
sources reservation for IntServ/RSVP, and per-Class for DiffServ infrastructure.

Offer behavior. Publishers include qos-dds-send flow in the publication direc-
tion to inform subscribers about the QoS parameters supported by the sender.
Similarly, a participant can use qos-dds-recv attributes to specify which kind of
QoS policies can be supported at the receive direction.

Answer behavior. After receiving an offer from remote participant user agent
with the qos-dds-send attributes (in the Invite message), the proxy SIP forwards
them to the COPS-PEP for translation into network QoS query to reserve net-
work resources in the edge router. In the receive direction, those attributes cor-
respond to the QoS query a participant uses in a qos-dds-recv attributes in the
answer. When a participant receives an offer with qos-dds-recv attributes, the

514 A. Hakiri et al.

Table 3. Example of an m Line with ”qos-dds” Attributes

v = 0
o = alice 2890844526 2890842807 IN IP4 1.2.3.4
s =
c = IN IP4 1.2.3.4
t = 0 0
m = video 51372 RTP/AVP 31
b = AS:64
a=qos-dds-send: 0 0 0 0 R 12
a=qos-dds-recv: 0 50 0 5 R 12

proxy SIP uses the corresponding QoS translation mechanisms it supports in the
send direction, and then includes them in a qos-dds-send attributes.

In all the cases described above—and once the offer/answer exchange
completes—both sender and receiver use the attributes embedded in the SDP
messages to perform resource reservation. If a participant does not succeed in
using the mechanism in qos-dds attributes, it should use default QoS settings
defined in [14]. If a participant unsuccessfully tries all the common QoS mech-
anisms in the qos-dds attributes for a given direction, there may be network
entities (such as Proxy SIP entities) that cannot process the message.

2.7 Integrating All the Pieces Together

Having described the architectural pieces of our solution above, we now describe
how we integrated these pieces and show the interactions among the entities that
help realize cloud-based DDS applications. The specific DDS–SIP/SDP interac-
tions that take place in our solution are summarized below and illustrated in
Figure 3.

– DDS entities interested in publishing data specify the DDS media description
by sending a SIP control message to the core network. If the network core
accepts the query for resources the required resources are allocated, at which
point the application can securely and reliably exchange data. When a call
setup is initiated, the caller application calls the SIP session setup through
the proxy SIP. The proxy SIP encountering the caller message starts the
QoS session to interact with the remote Proxy SIP and the QoS mechanisms
in the edge router.

– When the host application specifies or modifies its QoS requirements, it sends
an INVITE message to the proxy SIP which intercepts it and redirects to
the destination for notification (offer/response contract). Subsequently, the
receiver node adapts its DDS QoS policies with those notifications and sends
a response to its proxy SIP, which notifies the COPS Policy Enforcement
Point (PEP) with the new QoS requirements.

– In the discovery phase, DDS entities (DomainParticipant, DataWriters and
DataReaders) in distributed nodes find out about each other using the de-
fault EndPoint Simple Discovery Protocol (ESDP) [9]. During this process

A SIP-Based Network QoS Provisioning Framework 515

Fig. 3. Architecture of the Signaling Flow Description

the DomainParticipant details are communicated automatically to all other
DomainParticipants in the same Domain by sending/receiving discovery
messages—also known as participant DATA messages. The discovery phase
integrates the SIP service to enable the communication between SIP and non
SIP applications, that is, it assesses the interoperability between distributed
applications that are intended to share data with DDS applications.

– The transport phase actually sends and receives messages over the underly-
ing network. This phase integrates the network QoS services, e.g., resource
reservations.

3 Realizing Cloud-Based DDS on DiffServ IP Networks

This section describes a concrete realization of our cloud-based DDS solution
using SIP/SDP for DiffServ IP networks.

3.1 Implementation Overview

Below we describe how we implemented key elements of our architecture shown
in Figure 1.

SIP proxy. In our implementation, we modified the JAIN SIP Presence Proxy [6]
to support the DDS QoS policies as described by the SIP standard: we added
those policies as new attributes in the Jain SIP Stack [7], and modified the proxy
to support the communication with COPS-DRA server (explained below) which
we created for this purpose. In fact, the QoS requests are handled by the edge
router, Juniper Mi7 in our case, which implements all mechanisms to perform
the admission control decision with the help of the COPS-DRA server.

516 A. Hakiri et al.

COPS-DRA. The COPS-DRA is used on the interface between the edge router
and the Bandwidth Broker (BB). The BB is the COPS-PDP entity in charge of
controlling the provisioning of resources for the network. It offers the capability
of provisioning resources to the local DDS client and eases requesting the update
of allocated resources.

Edge router. We used Juniper M7i, which is a multi-service edge router that
incorporates network backbones needing reliable, secure and high-performance
IP WAN connectivity, Internet access and services. It delivers rich Layer 3 ser-
vices including granular per logical interface QoS, hardware-based IPv6, and
multicast.

To describe the new offer/answer extension to support signaling for DiffServ
infrastructure, we used the attributes shown in Table 4, which are defined in [8]
and developed them using the same JAIN SIP Stack.

Table 4. SDP Attribute Values for Cloud-based DDS QoS in DiffServ Networks

attribute =/ qos-dds-send-attr
attribute =/ qos-dds-recv-attr
qos-dds-send-attr=’qos-dds-send’ ’:’[[SP]qos-dds*(qos-dds))]
qos-dds-recv-attr=’qos-dds-send’ ’:’[[SP]qos-dds*(qos-dds))]
qos-dds = ’0 20’ ’0 10’ ’R’ ’12’
qos-dds = ’0 0’ ’0 50’ ’U’ ’20’
qos-dds = ’0 0’ ’0 0’ ’U’ ’46’

3.2 Signaling Procedure

We now describe how the DDS and SIP/SDP mechanism are integrated in the
context of DiffServ networks and demonstrate the QoS provisioning capabilities
provided with the help of the COPS-DRA bandwidth broker (called also COPS
Server) for pub/sub DDS sessions in cloud environments.

Contemporary DDS implementations contain a set of commonly used trans-
port plug-ins (such as UDPv4 and UDPv6), as well as extensible transports
(such as Secure WAN Transport). The DDS transport priority QoS describes
the DSCP Field used by the DiffServ edge router classification. Packet classifi-
cation features provide the capability to partition the DDS traffic into multiple
priority levels. During packet classification, the DDS client performs a lookup
and assigns a QoS label to the packet. The QoS label identifies all QoS actions
to be performed on the packet and from which queue the packet is sent. The
QoS label is based on the DSCP value in the packet and decides the queuing
and scheduling actions to perform on the packet.

In our architecture, the DDS transport priority QoS policy is encoded within
SIP/SDP messages, and partitioned into 4 Classes of Service (CoS) in the context
of COPS-DRA-based network: Real Time (RT), Non Real Time 1 (NRT-1), Non
Real Time 2 (NRT-2) and Standard (STD) as shown in Table 5.

A SIP-Based Network QoS Provisioning Framework 517

Table 5. DDS Class of Service in the DSCP Field

PHB CoS dropping probability DSCP

Binary Decimal

EF RT 101110 46

AF1 NRT1 Low 010100 20

AF2 NRT2 Medium 001100 12

BE STD High 000000 0

Each edge router applies the following DiffServ concept: packets belonging
to real-time streams are handled in the router according to the same Per Hop
Behavior (PHB) defined for the RT CoS, and packets belonging to near real-time
streaming and High Throughput Data are handled in the router according to
the PHBs defined for the NRT-1 CoS and NRT-2 CoS, respectively.

QoS policies mapped into SIP messages are used by the Proxy SIP. When the
host changes its QoS requirements, therefore, the SIP message is intercepted by
the proxy SIP to be redirected to the destination for notification (offer/response
contract). The receiver node then adapts its DDS QoS policies with those no-
tifications and sends a response back to its proxy, which notifies the PEP with
the new QoS requirements to adapt its class of service (CoS).

3.3 Session Management and QoS Setup for DDS on the Cloud
Network

After the SIP UA is configured to make and receive calls, the processing starts
with the registration phase in the “Registrar” (user registration within the SIP
location database) to make all users accessible from all other SIP Servers: the
Proxy SIP delivers SIP REGISTER request from UA to the “Registrar” to
check the authentication, authorization and accounting using the authentication
headers [16]. The scenario shown in Figure 4 presents a detailed description of
the signaling procedure and all mechanisms included in the QoS reservation.

The signaling procedure shown in Figure 4 comprises the exchange of messages
from DDS-SIP (i.e., Start DDS session, Invite, 183 Progress, Prack, 200 OK
Prack, 200 OK and Ack) and the messages from COPS protocols (i.e., Decision,
Report, Reserve and Response). This procedure is started when a caller (user
A) sends a standard SIP Invite message and is completed upon receiving a
corresponding standard SIP ACK message. The 200 OK message that reaches
the callee (user B) already informs it about successful connection establishment.
Accordingly, the setup duration is given by the time elapsed between the moment
of sending Invite and receiving 200 OK message.

The following example shown in Table 6 describes an IP communication
session described with SDP. This corresponds to a classical usage of SDP mes-
sage to convey real-time media component including audio and video trans-
ported over RTP and including the PCM codec used for the audio (payload
type=0), and also a media line for video with the H.261 codec (payload type=31).

518 A. Hakiri et al.

Fig. 4. QoS Support and Session Establishment for DiffServ

The bandwidth requirements are included in line ’b’, the QoS requirements in
the sending direction are included within the ’qos-dds-send’, that is, the ap-
plication requires low latency, minimum deadline, reliable transport (reliability
in DDS means using NAck requests of the reliable multicast protocol) and its
required PHB behavior (AF) is fixed to 12. With respect to Table 5, this appli-
cation has medium dropping probability. The DiffServ mechanisms in the edge
router (classification, policing, shaping, dropping) take those parameters from
the COPS-DRA server and process packets with respect to this query.

Session setup. Participants exchange INVITE and Session in Progress mes-
sages to negotiate the media description and the QoS setting that the ses-
sion should fulfill: An INVITE message is sent with all information about the

Table 6. Body SDP Carried Within the SIP Invite Message

v = 0
o = alice 2890844526 2890844526 IN IP4 host.ocean.com
s = -
c = IN IP4 ahkiri.laas.fr
t = 0 0
m = audio 49170 RTP/AVP 0
a = rtpmap:0 PCMU/8000
m = video 51372 RTP/AVP 31
a = rtpmap:31 H261/90000
b = AS:512
a=qos-dds-send: 0 0 0 0 R 12
a=qos-dds-recv: 0 50 0 5 R 12

A SIP-Based Network QoS Provisioning Framework 519

participant (IP address, port number, QoS attributes, CoS description, media
description) to establish the session between the publisher and the subscriber.
The Proxy SIP “A” then adds the address of record to attract all other messages
to pass through. Since the destination address is found in the local database,
the message will be redirected to the destination, precisely to the remote SIP
UA which starts the Session in Progress message with its media description.
After the session description attributes, e.g., QoS attributes, are known, the QoS
negotiation for resource reservation begins.

The Invite message carries the caller URI within the SIP header and the ses-
sion specification within the body SDP (session description, media description,
source port, codec, DDS-QoS) as shown in Table 6. The proxy SIP intercepts
the invite message, and on the basis of the information given in the body SDP
decides whether to start a QoS session or not. If so, it inserts the required de-
scriptors within the Invite message and forwards it to the callee.

The message can also be intercepted by any other SIP server encountered
in its destination or any QoS-aware SIP proxy (since DDS QoS attributes are
not recognized by classical SIP server, they are just ignored when it processes
the Invite message). Hence, the Proxy SIP is present during all steps of SIP-
based communication described below, including the registration (to access to
the registrar server matching two SIP-UA requests) and the session establish-
ment (forcing all SIP and SDP messages to pass across it with the header “record
route”).

Since the proxy SIP has all required information to request the QoS reserva-
tion to the edge router for the SIP UA (B), it sends a request to the COPS-DRA
server (Bandwidth Broker or BB) to translate the media description fields into
a QoS specification understandable by the edge router. BB is in charge of au-
tomating the QoS resource reservation process. It sends QoS requests to the
router to install them (DEC or Decision, RPT or Report, REQ or Request).

At the same time, the QoS information is sent within the SIP 183 Session
Progress message to the other proxy SIP at the border of the access network
of the SIP UA (A). Similarly, this information is stored by the SIP Proxy to
maintain a trace of the current session, called QoS State. Consequently, it sends
a QoS request to the COPS-PDP in its domain to claim the QoS reservation at
the edge of the network. The PDP connected to the edge router has to automate
the QoS reservation process based on the QoS information it has received from
the proxy SIP.

At this point, the caller UA (A) sends a Prack (Reliability of Provisional
Responses in SIP) message to confirm the 183 Session Progress message has
been received and waits for the 200 Ok Prack message sent by the caller UA (B)
to notify the session setup. Moreover, the caller proxy SIP inserts the Caller ER
field into its message including the IP address of the caller endpoint. The caller
proxy SIP uses this field to specify the remote address of the endpoint where
the reservation request have to be send to QoS provider.

The caller proxy SIP adds its VIA field to the message intercepted from the
sender UA (A) in which it adds some specific information (IP address, source

520 A. Hakiri et al.

port, caller address) to maintain trace of the QoS State. Finally, the session es-
tablishment is confirmed when both caller and caller Proxy SIP exchange 200 OK
and ACK SIP messages. The sender application performs the data delivery to the
remote participants, since the signaling path is established as described herein,
the data path is taken by the data packets according this signaling process.

QoS negotiation. The RT CoS covers the requirements to offer strict QoS
assurance of low packet delay, low packet losses, and low jitter. As a consequence,
we focus on admission control methods that support such assurance. The NRT-1
CoS covers the requirements to offer strict QoS assurance of low packet losses
and medium packet delay. In NRT-2 CoS for inter-domain link, we follow the
QoS requirements related to the High Throughput Data end-to-end CoS that are
expressed by the assurance of minimum throughput Rmin. We do not consider
any QoS assurance support for STD CoS, though an amount of inter-domain
link capacity and buffer must be dedicated to this CoS, as well.

Moreover, since DDS is based on Offer/Request contract between distributed
entities, this model can be used to enhance adaptivity and robustness of commu-
nication. For example, consider user agent A in Figure 4 that is responsible for
the resource allocation. In this case Proxy A follows the “183 session progress”
and performs the translation of the “qos-dds” attributes included within the
media information to QoS requirements.

The “qos-dds” attributes include the DiffServ Code Point (DSCP) priority
that the DDS application adds to SIP/SDP signaling messages. The PEP uses
this value for traffic classification in each border router. Moreover, QoS settings
(such as latency budget, deadline in the “a” line in Table 3) are translated into
bandwidth, latency, and jitter. The PEP then sends the “REQ” message to
the PDP in its domain to perform the resource reservation using the message
context with the appropriate identification and authorization of the participant.
As a result, the PDP analyzes the request (consults its database for verification),
performs the DiffServ resource allocation using COPS Provisioning mechanisms,
and sends a decision “DEC” to the PEP including the DSCP value for the media
stream which generates a report message “RPT” to indicate the success of the
decision.

The “183 session progress” message is also sent to proxy A to indicate suc-
cessful resource allocation in its direction. The DDS discovery protocol performs
at both direction endpoints discovery from the information given by its near
proxy and registrar to connect different DDS domains. The rest of the process
is performed as described above and the DDS streams are exchanged between
participants. After a pair of remote participants have discovered each other,
they can move on to the Endpoint Discovery phase, which is how DataWriters
and DataReaders find each other. During this phase DDS matches DataWrit-
ers and DataReaders by sending publication/subscription declarations in DATA
messages including information (Globally Unique ID or GIU, QoS) about the
application.

A SIP-Based Network QoS Provisioning Framework 521

Terminating the session and releasing the resources. DiffServ entities
should release the allocated resources after the session termination. The proxy
SIP therefore performs the resource liberation from the PEP and the PDP.
In particular, the “uninstall” message is sent to perform this operation and a
negotiation process executed by PDP and PEP.

4 Related Work

This section compares our work on DDS Middleware-based QoS provisioning
with related research on pub/sub capabilities over WANs, which are an impor-
tant part of cloud environments. We therefore focus on related work comprising
pub/sub efforts for WANs.

QoS management in content-based pub/sub middleware: QoS
management in content-based pub/sub middleware includes the Publish/
Subscribe Applied to Distributed Resource Scheduling (PADRES) [15]. PADRES
allows powerful content-based routing mechanism based on the message content
instead of IP-based routing. For example, a mechanism for congestion avoidance
to optimize the network resource usage in Content-Based Routing Networks is
presented in [4]. Despite this advantage, in practice core network resource allo-
cation algorithms need to know more about an application and how to process
its QoS requirements within the core routers.

In our approach, DDS provides the DCPS services described in Section 2.1.
These services make it possible to pub/sub-structured data as a portion of dis-
tributed relational information model. Moreover, our approach focuses on how
to use existing middleware and mapping it to provide the QoS for existing ap-
plications.

Network QoS broker in middleware: Related work in this area focuses on
integrating the signaling process into the QoS provisioning mechanisms. For
example, message-based signaling middleware for the control plane to offer per-
class QoS is described in [21]. In practice, however, it is insufficient to deploy
routers to assure the QoS between two hosts at the control plane. Likewise, a
network communication broker to provide per-class QoS for multimedia collab-
orative applications is presented in [5]. This work, however, supports neither
mobility service management nor scalability since it adds an interface to the
application and middleware for QoS notification when an event occurs in the
network and the application should adapt to this modification.

In contrast, our approach uses a SIP framework to manage sessions in the
service plane. This framework provides interoperability and network QoS ne-
gotiation with the help of COPS-DRA Bandwidth Broker for adaptability and
robustness. Our solution therefore requires no modifications to applications.

Network QoS management: Most related work on DRE system QoS sup-
port focuses on solving QoS-constrained routing problems separately from the
middleware QoS policies. There have been several efforts, however, to bring

522 A. Hakiri et al.

the SIP protocol into the existing IP architecture. Current research includes
adaptive and reflective middleware, and middleware for mobile and ubiquitous
systems. For example, a programmable networking approach to provide QoS as
component-based architecture is described in [3]. The authors in [13] designed a
basic DDS/SIP Gateway to connect remote DDS domains, though they do not
focus on the core network behavior and how resources are managed. The Com-
mon Open Policy Service (COPS) was extended in [11] to support SIP signaling
over wide area networks, but COPS/SIP has not yet been integrated with DDS.

Despite the promise held by the COPS extensions, it does not account for
the application needs of pub/sub DRE systems. Moreover, there is no straight-
forward approach to integrate SIP/SDP with DDS. Similarly, [20] is a mobility
service proxy that deals with media session management for DDS mobile nodes.

Consequently, to bridge the gap between DDS and SIP/SDP so that the de-
sired QoS policies are supported both by the end-system middleware and the
network, we defined a new SIP Signaling Class of Service (S-CoS) for trans-
ferring signaling messages. Our approach does not underutilize the resources
because it reserves only the required resources, which performs packet classifi-
cation, policing, and traffic shaping in the edge router. For RT CoS and NRT
CoS, our approach does not use all the resources since 80% of them are used by
Best Effort traffic.

Table 7 compares the related work presented in this Section with our approach.
R1 refers to the QoS management in content-based publish subscribe middleware
and R2 refers to the Network QoS broker in middleware. The adaptive and
reflective approaches in R1 and R2 work well today when they receive all the
resources required. Other research has shown, however, that over provisioning
resources has several drawbacks in scalability and can fail completely under the
slightest anomaly [19]. Our approach therefore provides an adaptive framework
that enables the end-to-end QoS provisioning over multi-domains independently
of the underlying transports.

Table 7. Comparing the Various Approaches

Features R1 R2 Our approach
Content-based pub/sub middleware * *
QoS specification * * *
Resource allocation * *
QoS assurance *

5 Concluding Remarks

Despite the powerful QoS mechanisms provided by pub/sub middleware, such as
OMG’sDataDistribution Service (DDS), these technologies are currently confined
to end-systems, so they canonly control local resources inDREsystems.To support
end-to-end QoS in clouds, therefore, pub/sub DRE systems require an approach
that enables resource reservation over wide area networks, yet is transparent to
application logic.This paper addresses these requirements and describes a solution
that seamlessly integrates DDS with SIP/SDP over clouds as follows:

A SIP-Based Network QoS Provisioning Framework 523

– At the service plane, DDS applications use SIP signaling messages that allow
senders to contact receivers to obtain their IP addresses and to agree the
media description and “qos-dds” attributes.

– At the control plane, the network QoS provisioning mechanism provided by
the COPS-DRA entities encodes application QoS requirements embedded
within the SDP messages supplied to the network elements. The COPS pro-
tocol is chosen as common signaling mechanism to enforce the policy control
mechanisms (e.g., QoS negotiation, coordinate the data path and signaling
path management, performs resource reservation, etc.).

We use DDS latency, transport priority, and bandwidth QoS settings to map
them to signaling class of service (S-CoS) that allows DDS applications to control
the data delivery in the access and core network for resource provisioning. To
help preserve compatibility with existing DDS applications, we impose minimum
requirements on the set of QoS policies that are compatible with most deployed
DRE systems. Our future work will focus on extending the set of supported DDS
QoS policies using the Next Steps In Signaling (NSIS) protocol and extensive
empirical measurements to validate our approach.

References

1. Birman, K., Chockler, G., van Renesse, R.: Toward a Cloud Computing Research
Agenda. SIGACT News 40(2), 68–80 (2009)

2. Rosenberg, J.: Integration of Resource Management and Session Initiation Protocol
(SIP). In: Camarillo, G., Marshall, W. (eds.) RFC 3312 (October 2002)

3. Capra, L., Emmerich, W., Mascolo, C.: Reflective Middleware Solutions for
Context-Aware Applications. In: Matsuoka, S. (ed.) Reflection 2001. LNCS,
vol. 2192, pp. 126–133. Springer, Heidelberg (2001)

4. Chen, M., Hu, S., Muthusamy, V., Jacobsen, H.A.: Congestion Avoidance with
Selective Filter Aggregation in Content-Based Routing Networks. Middleware Sys-
tems Research Group (November 2010)

5. Chi, Z., Sadjadi, M., Weixiang, S., Raju, R., Yi, D.: A user-centric network com-
munication broker for multimedia collaborative computing. In: International Con-
ference on Collaborative Computing: Networking, Applications and Worksharing,
CollaborateCom 2006, November 7-20, pp. 1–5 (2006)

6. JAIN-SIP-PRESENCE-PROXY,
snad.ncsl.nist.gov/proj/iptel/nist-sip-downloads.html

7. NIST-SIP, snad.ncsl.nist.gov/proj/iptel/
8. Cho, E.-H., Shin, K.-S., Yoo, S.-J.: SIP-based Qos support architecture and session

management in a combined IntServ and DiffServ networks. Journal of Computer
Communications 29(15) (September 2006)

9. Data Distribution Service Interoperability Wire-Protocol Specification. DDSI v2.1,
www.omg.org/spec/DDSI/2.1/

10. Durham, D., et al. (eds.): The COPS (Common Open Policy Service) Protocol
Status of, RFC2748 (January 2000)

11. Gross, G., et al.: COPS Usage for SIP, draft-gross-cops-sip-01.txt, IETF Draft
12. Handley, M., Jacobson, V., Perkins, C.: SDP: Session Description Protocol, RFC

4566 (July 2006)

snad.ncsl.nist.gov/proj/iptel/nist-sip-downloads.html
snad.ncsl.nist.gov/proj/iptel/
www.omg.org/spec/DDSI/2.1/

524 A. Hakiri et al.

13. López, J.M., et al.: DDS/SIP Interworking: A DDS-SIP Gateway. In: OMG Work-
shop on Real-time, Embedded and Enterprise-Scale Time-Critical Systems, May
24-26. Westin Arlington Gateway, Arlington (2010)

14. OMG-DDS, Data Distribution Service for Real-Time Systems Specification.
DDSv1.2, www.omg.org/spec/DDS/1.2/

15. PADRES, padres.msrg.toronto.edu/Padres/WebHome
16. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,

R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol, RFC 3261 (June
2002)

17. Rosenberg, J., Schulzrinne, H.: An Offer/Answer Model with Session Description
Protocol (SDP), RFC 3264 (June 2002)

18. Schmidt, D.C., et al.: Middleware R&D Challenges for Distributed Real-time and
Embedded Systems. ACM SIGBED 1(1) (April 2004)

19. Huang, Y., Guerin, R.: Does Over-Provisioning Become More or Less Efficient as
Networks Grow Larger? In: Proceedings of the 13TH IEEE International Confer-
ence on Network Protocols, pp. 225–235 (2005)

20. Kwon, K.-J., Park, C.-B., Choi, H.: A Proxy-based Approach for Mobility Support
in the DDS System. In: 6th IEEE International Conference on Industrial Informat-
ics, INDIN 2008 (2008)

21. Teodora, G., et al.: A Session Initiation Protocol based Middleware for Multi-
Application Management. In: IEEE International Conference on Communications
- ICC, Multimedia Communications & Home Services Symposium, Glassgow, UK
(June 24-27, 2007)

www.omg.org/spec/DDS/1.2/
padres.msrg.toronto.edu/Padres/WebHome

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 525–541, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Continuous Access to Cloud Event Services
with Event Pipe Queries

Qiming Chen and Meichun Hsu

HP Labs
Palo Alto, California, USA

Hewlett Packard Co.
{qiming.chen,meichun.hsu}@hp.com

Abstract. When cloud services become popular, how to consume a cloud ser-
vice efficiently by an enterprise application, as the client of the cloud service ei-
ther on a device or on the application tier of the enterprise software stack, is an
important issue. Focusing on the consumption of the real-time events service, in
this work we extend the Data Access Object (DAO) pattern of enterprise appli-
cations for on-demand access and analysis of real-time events.

We introduce the notion of Operational Event Pipe for caching the most
recent events delivered by an event service, and the on-demand data analysis
pattern based on this notion. We implemented the operational event pipe as a
special kind of continuous query referred to as Event Pipe Query (EPQ). An
EPQ is a long-standing SQL query with User Defined Functions (UDFs) that
provides a pipe for the stream data to be buffered and to flow continuously in
the boundary of a sliding window; when not requested, the EPQ just maintains
and updates the buffer but returns noting, once requested, it returns the query
processing results on the selected part of the sliding window buffer, under the
request-and-rewind mechanism. Integrating event buffering and analysis in a
single continuous query leverages the SQL expressive power and the query en-
gine’s data processing capability, and reduces the data movement overhead.

By extending the PostgreSQL query engine, we implement this operation
pattern as the Continuous Data Access Object (CDAO) – an extension to the
J2EE DAO. While DAO provides static data access interfaces, CDAO adds
dynamic event processing interfaces with one or more EPQs.

1 Introduction

Due to the growing data volume and the pressing need for low latency, event service-
has become a new kind of cloud data services [8]. Commonly, the event server (e.g.
NYSE, Yahoo Finance, Twitter, GPS servers) sends events to its subscribers on the
fly, as well as stores them in a data warehouse with certain latency. A client applica-
tion retrieves real-time events or stored data when needed.

When cloud services become popular, how to consume these services efficiently by
an enterprise or consumer application, as the client of the cloud services, is an impor-
tant issue. In this work we focus on the consumption of the real-time event service,

526 Q. Chen and M. Hsu

and extend the Data Access Object (DAO) pattern of data access applications for
integrating the continuous caching and the on-demand analysis of real-time events.

As shown in Fig. 1, conventionally a data-intensive application interacts with the
shared data sources through a Data Access Object (DAO) [11-13], a system compo-
nent that deals with database connections through JDBC, maintains the prepared
(compiled) SQL queries required by the application, launches these queries on-
demand, interprets the results and delivers them to the application. The use of DAO
allows all the data accesses to be made through a single entry efficiently, and allows
the application and the database access to be developed and optimized independently.
A DAO may be initially generated from specifications by the J2EE container.

Cloud Service

DW

Cloud service side

Client side

Application

One-time query query

JDBC query

query DAO

Fig. 1. Data Access Object (DAO) interfaces an enterprise application and databases

In this work we propose an extension to the J2EE DAO design pattern for consum-
ing cloud event services efficiently by the cloud clients.

1.1 Support Continuous Data Access Pattern

We introduce the Continuous Data Access Object (CDAO) for accessing the real-time
events and the warehoused events provided by cloud data services. Since the most
recent events, such as the current readings of sensors, the trading prices of a stock in
the last 10 minutes, the traffic volume in the past 5 minutes, etc, are frequently ac-
cessed by the client applications, we focus on the efficient event access pattern for
using the cloud event service.

We introduce the notion of Operational Event Pipes, for buffering and analyzing
the most recent events falling in the specified sliding time windows (Fig. 2).

The traditional DAO functionality is retained in the CDAO. An information re-
quest may be fulfilled by merging the event access result and the data warehouse
access result.

 Continuous Access to Cloud Event Services with Event Pipe Queries 527

access

Sliding window event
pipe - most recent events

Events stream

Older events no longer
buffered on the client

(sink)

Application

Cloud
Service

Fig. 2. Event pipe for holding the most recent events falling in a sliding window boundary

1.2 Prior Art

Compared with the efforts for supporting real-time applications by ODS (Operational
Data Store), we focus on continuous stream analytics [1,2,8-10].

Compared with the current generation of Complex Event Processing (CEP)
systems and the Data Stream Management System (DSMS) [1,2,9], we focus on leve-
raging the SQL’s expressive power and extending an existing query engines without
requiring a separate data management technology. We reported our experience in
using the query engine for stream processing as a server-side solution [5] but in this
work our focus is placed on providing the operational event pipe as a client-site
solution.

In the specific context of the Java programming language, DAO[11-13] as a design
concept can be implemented in a number of ways. Commercial products like TopLink
are available based on Object-relational mapping. Popular open source ORM products
include Hibernate, pureQuery, iBATIS and Apache OpenJPA. We adopt DAO - the
relatively simple and rigorous separation between two important parts of an
application which can and should know almost nothing of each other, and which can
be expected to evolve independently. However, beyond DAO, CDAO supports
dynamic event access.

Finally, as described below, the unique feature of our approach lies in the
integration of event caching and stream analytics, which is also in line with the prin-
ciple of combining the data analytics layer with the data buffering layer for fast data
access and reduced data move [3,4,7].

1.3 Our Solution

Motivated by integrated real-time event caching and analysis on the client application,
in this work we propose a special kind of continuous query, referred to as Event Pipe
Query (EPQ). An EPQ is capable of (a) piping event streams, (b) maintaining sliding
window containers for the latest events, and (c) delivering sliding-window oriented
analytical query results on-demand. With these capabilities, the introduction of EPQ

528 Q. Chen and M. Hsu

allows us to integrate event caching and on-demand analysis within a single conti-
nuous SQL query.

A CDAO contains multiple EPQs as pre-prepared stream access queries.A capa-
bility is added for merging the query results on the piped events retrieved from the
cloud event service, together with the required historical events retrieved from the
cloud data warehousing service (Fig. 3). Like a DAO, a CDAO is private to a client
application.

Note this solution is not about cloud service provisioning, but cloud service con-
sumption, which we believe is an equally important issue.

An EPQ is a long-standing SQL query that updates the sliding window-based event
pipe continuously; it generates query result once requested, but returns nothing if not
requested. An EPQ has three basic components.

Application

CDAO

JDBC

CQ

CQ

query

Client side

Local
Query
Engine

Cloud Event Service

Cloud DW
Service

Fig. 3. CDAO for accessing event stream and data warehouse

• Streaming Capture Function (SCF) that reads the events from the subscribed event
source, as well as receives information request (info-req) from the application to
trigger the EPQ to deliver the designated window query results.

• Sliding Window Functions (SWF) that buffers the most recent events falling in a
sliding window and continuously updates the buffer. Upon receipt of an info-req
(passed to it from the SCF), this SWF returns the selected tuples from its buffer, as
the local data source to the upstream query; otherwise it keeps updating the buffer
but returns nothing.

• Stream Window Query (SWQ) that applies to the result set of the above SWF; it
generates query result on the event pipe once requested.

We propose the request-and-rewind mechanism to support data supply punctuation,
on-demand query evaluation and continuous query instance. Under this approach, the
SCF, upon receipt of the info-req, punctuates the input data and signals the query

 Continuous Access to Cloud Event Services with Event Pipe Queries 529

engine to terminate and commit the current query execution, and then to rewind the
query instance for serving the next request. This ensures the continuity of the EPQ
instance without being shutting down, thus allows the sliding window content to be
maintained continuously regardless of the query runs cycle by cycle.

The proposed EPQ approach leverages the SQL’s expressive power and the query
engine’s data processing capability, and provides a tight integration of querying and
data buffering which reduces the data movement overhead.

We have extended the open-sourced PostgreSQL query engine to support the pro-
posed EPQ. We generalized the table UDF data buffering mechanism for supporting
SCF and SWF, and extended the query engine to handle request-and-rewind. Our
experience shows the potential of the EPQ approach in integrating real-time data buf-
fering and querying for efficient and low-latency event analytics.

In the rest of this paper we will refine the proposed approach step by step.
Section 2 gives an overview to the Continuous Data Access Object (CDAO) pattern;
Section 3 describes the special kind of continuous query, EPQ, as the structure for
CDAO; Section 4 focuses on the necessary extension of the query engine and the
UDF framework for supporting EPQ; Section 5 illustrates with an example and some
experimental results; Section 6 concludes the paper.

2 Data Access Pattern of CDAO

While a DAO provides static data access interfaces, a CDAO adds dynamic event
processing interfaces for a complex enterprise application, e.g. a J2EE application. It
buffers the most recent events on the fly and analyzes these events on-demand.

2.1 Operational Event Pipe

A CDAO is provided with one or more event pipes as the event flow channels. Each
event pipe buffers the most recent events falling in a sliding window boundary, and
serves as the data container of on-demand event analytics. The events are subscribed
from the cloud event service.

The operational event pipes are implemented in terms of special kind of continuous
queries, Event Pipe Queries (EPQs). An EPQ integrates event buffering and analysis
in a single query.

The events held in an EPQ is maintained and updated on the fly. Without being re-
quested by the application, it does not return any actual result; upon receipt of an info-
req from the application, the query operations are performed on the buffered data to
return a result.

2.2 Combination of Stream and Static Data Access

As mentioned above, CDAO is an extension to DAO where the event streams can be
accessed using EPQs, and the stored historical events can be accessed in the regular
way as supported by the conventional DAO facility.

530 Q. Chen and M. Hsu

Let us consider the following scenario: a CDAO represents a client of a cloud data
service; it subscribes to the event service for providing the latest events to the applica-
tion on-demand; it also subscribes to the data warehouse service where the past events
are stored.

For low latency data access, the application’s information request is fulfilled using
the data buffered in the event pipe as the first priority. Since only the most recent
events are kept in the event pipe, older data, if required, are still retrieved from the
data warehouse. In this case the CDAO must be aware the boundary of the data avail-
able in the data warehouse and in the event pipe. Let us consider the following time
marks (Fig 4):

• The Water Level (WL), tWL, of the stored events in the database table is the time-
stamp of the latest events that are available for accessing.

• The High Water Mark (HWM), tHWR, of the event pipe is the timestamp of the
latest event in the event pipe.

• The Low Water Mark (LWM), tLWR, of the event pipe is the timestamp of the earli-
est event in the event pipe.

• We ensure tHWR > tWL > tLWM.

to event pipe

Query 1

Query

Query to DW
union

HWMLWM

Query to
event pipe

Client side

Cloud DW
Service

Cloud Event Service

Fig. 4. Integrating stream access and data warehouse access

Then given the current timestamp t,

• The events with timestamps later than tLWR can be accessed from the event pipe; in
the range those earlier than tWL can be accessed from the data warehouse; other-
wise they are accessible from either stores. ;

• A query for accessing events in a given time range may be rewritten into two que-
ries, one for accessing from the pipe and the other for accessing from the data
warehouse; the results will be merged before returning to the caller.

• As mentioned above, the content of the event pipe is continuously inserted into the
data warehouse. Whenever possible the event pipe is chosen for low latency When
no new event shows up for a while, the whole event pipe may become “under
water”.

 Continuous Access to Cloud Event Services with Event Pipe Queries 531

2.3 On-Demand Query Evaluation

An enterprise application with a CDAO may have multiple modules which retrieve
and analyze event data in multiple ways, and the CDAO may be provided with mul-
tiple parameterized queries for retrieving and analyzing the warehoused events, as
well as multiple EPQs for retrieving and analyzing the piped, most recent events. A
special EPQ, called ID-EPQ is provided that simply returns the events in the given
range on-demand, with a dummy query operation (i.e. just SELECT *).

The application makes a request through passing the CDAO a “query object” that
contains the query ID, the time range of the queries events, and other parameters.
Based on the query object the CDAO determines which query and EPQ to use. There
exist three EPQ use cases.

• Only the events kept in the EPQ’s event pipe are requested: This is the primary
use of the EPQ. In this case the CDAO sends an info-req to the EPQ as a special
event (not a parameter since EPQ is a continuous query), to trigger the EPQ to de-
liver event analysis result on-demand.

• Only the past events stored in the data warehouse are requested: In this case the
CDAO launches the corresponding query with the actual parameters extracted
from the query object.

• The requested events are kept in both the event table and the event pipe: In this
case the CDAO launches a query and triggers an EPQ, and conceptually union the
two results. Composing queries and merging results are rule based (e.g. union
SUM and COUNT for deriving AVG). If the CDAO cannot ensure the correctness
of result union (e.g. the query involves a UDF) the ID-EPQ will be used to merge
the data at the source layer rather than at the query result layer.

It is worth noting that we use the query engine as the “streaming executor” to support
EPQ, which is orthogonal to data warehousing.

2.4 Cloud Event Service Consumer

Analogous to a DAO, a CDAO is a component of an enterprise application, rather
than a public data service such as the stock quote service provided by Yahoo; it is
private to the supported enterprise application or application suite, although the appli-
cation may have multiple building blocks.

• A CDAO, on the client side, handles the most recent events subscribed from event
services, but not responsible for the overall event management such as event wa-
rehousing, fault-tolerance, etc.

• A CDAO may hold multiple EPQs on the same event stream but with different
query constructs expressing different event analysis functionalities, and with dif-
ferent sliding window coverage.

• An EPQ is provided with the option to continuously and automatically output
events one by one, or by time intervals, without explicitly receiving requests from
applications. The stream data “chunking criterion” is specified as a parameter of
the Streaming Capture Function SCF. The details are described in the next section.

532 Q. Chen and M. Hsu

3 Event Pipe Query

Introducing EPQ aims at integrating real-time event buffering and on-demand analy-
sis using continuous query model.

3.1 EPQ Constructs

An EPQ typically has three components, for catching the events, maintaining the most
recent events falling in a sliding window time range, and querying the content of the
sliding window buffer on-demand. When not requested, the EPQ acts as an event
flow pipe. When requested, it returns the query result on the event pipe.

For example, the EPQ for caching and delivering the most recent stock market
trades may be expressed as below.

SELECT (s).symbol, (s).order_type, SUM((s).volume), MAX((s).price), MIN((s).price) FROM

 (SELECT sliding_window_swf(1800,t.symbol,t.price,t.volume,t.order_type,t.time,t.low,t.high) as s

 FROM stream_reader_scf (“daily_stock_exchange_stream”) t

) sw

GROUP BY (s).symbol, (s).order_type;

The stream source, “daily_stock_exchange_stream”, has attributes

[time, symbol, price, volume, order_type]

where time is the timestamp in second, order_type can be “buy” or “sell”.

Below we describe the three components of the above EPQ (Fig. 5).
• stream_reader_scf () is a Streaming Capture Function (SCF) for (a) getting input

data, and (b) receiving info-req from the application. It is a table function (i.e. a
function returns a set of tuples) with result set schema

[symbol, price, time, volume, order_type, low, high]

where low, high mark the range of the sliding window content to be queried; when
not requested, both low and high are NULL (0); when high represents the latest
time, it is set to 0. For instance, <36000, 0> stands for the time period from 10AM
to now in a day; <36000, 36010> for the range from the 10:00AM to 10:10AM <0,
0> means not requested.

• sliding_window_swf () is a Sliding Window Functions (SWF) for maintaining the
most recent stream elements falling in the sliding window boundary of 1800
seconds (30 minutes); it receives data tuple by tuple from the SCF,
stream_reader_scf (), for maintaining and updating the sliding window state. This
function is also a table function. When not requested, i.e. the values of the
attributes low and high of the input tuple is NULL (0), it returns NULL; otherwise
it returns tuples in the requested range with schema

[symbol, price, volume, order_type, time]

 Continuous Access to Cloud Event Services with Event Pipe Queries 533

• A Sliding Window Query (SWQ) that applies to the tuples returned from the SWF,
if any. In the above EPQ, the SWQ is applied to the result of the sub-query with
alias sw (i.e. the result of the SWF), as

SELECT (s).symbol, (s).order_type, SUM((s).volume), MAX((s).price), MIN((s).price) FROM sw

GROUP BY (s).symbol, (s).order_type;

The SWQ has no effect with NULL input, and is evaluated based on the query
logic otherwise.

SCF SWF
Query on sliding
window content Data stream

Event Pipe Query

Info-request

Fig. 5. Event Pipe Query (EPQ) constructs

The notions of SCF, SWF and SWQ can be described more generally as follows.

Streaming Capture Function (SCF). An EPQ is running continuously with stream
data as its input; thus the query’s access method is to receive the stream element on
the fly, e.g. read from a socket or a log-file. At the bottom of the query tree, the regu-
lar table-scan is replaced by function-scan with which is a kind of table function. An
SCF has two input channels (not parameters), one for reading event data, turning them
to tuples and feed to the SWF; the other for receiving the info-req from the J2EE ap-
plication to trigger the EPQ to deliver the designated window query results. The trig-
gering is actually made by sending the “end-of-data” signal to the query engine to
have the query engine “complete” the query evaluation on the sliding window con-
tent, and then rewind for other request in the next “execution cycle”.

The above stream punctuation, or data chunking, can also be made continuous and
automatic without explicit requests from applications, for processing events one by
one or by time intervals (e.g. minute by minute). The “chunking criterion” is specified
as a parameter of the SCF. In the per-event (per-tuple) processing case, dividing query
execution into cycles is unnecessary. This mechanism is similar to the one we re-
ported in [5].

Sliding Window Function (SWF). A SWF is a kind of table function for buffering
and continuously maintaining the latest events, or the data derived from them, falling
in a sliding window boundary. In an EPQ, the SWF is the actual data source of the
SWQ operation. It acts in the following way.

• It continuously maintains and updates the sliding window buffer by appending new
elements and removing the older ones.

• The info-req received by the SCF is embedded into the next tuple feed in the SWF.

534 Q. Chen and M. Hsu

• When not requested it simply returns NULL resulting in no data fed into SWQ and
thus no result returned from the EPQ. The whole EPQ just provides a pipe for the
events to pass.

• Once requested, the current sliding window content will become the local data
source of the SWQ; as mentioned above, the current query execution will be com-
pleted with result returned. However, since the query instance is just rewound
without shutting down, the buffered events will not be lost.

Sliding Window Query (SWQ). While the SCF is used for data capturing, SWF for
data buffering, SWQ is used for data analysis. It is a continuous query operation de-
fined on the results of the sub-query, i.e. the result returned from the SWF. As indi-
cated above, the SWQ is evaluated continuously as far as the EPQ execution is not
terminated. Without info-req the SWQ behaves like a dummy function since there is
no input from SWF. When an info-req from the application is passed through the SCF
to the SWF, the SWF returns the selected events to feed into the SWQ.

3.2 EPQ Execution Pattern

The query results of an EPQ are generated on-demand and only on the events kept in
the event pipe. EPQ must satisfy several requirements: first, after receiving the info-
req the incoming event stream to the buffer must be cut to allow the query to apply to
the existing content of the buffer. Next, the query execution must be completed and
terminated in a regular way, in order to return query result; finally, the query instance
must be kept alive for holding the sliding window state continuously across requests,
but rewound for processing the next request.

Request-Rewind. To meet the above requirements, we propose the EPQ execution
model, referred to as the request-rewind model. Based on this model, the EPQ does
not return any result without being requested, but upon receipt of an info-req by the
SCF, that info-req is embedded into the next event tuple passed to the SWF to instruct
the SWF to return the buffered events for the SWQ to process. The SCF also signifies
the query engine with “end-of-data” to allow the current cycle of query evaluation to
commit and to terminate in the regular way, thus making the query results accessible.
After that, the EPQ instance rewinds but is kept alive. During this process, the input
events are continuously received and buffered by the SCF; after this process, these
events are piped into SWF.

This mechanism allows the EPQ to apply the query to the event pipe on-demand,
rewind for servingthe next request, and keep a live instance for retaining the event
pipe content.

3.3 The Conceptual Model of EPQ

Conceptually, an EPQ is an object with <S, Q, fe, fq> where

• S is the state of a sliding window buffer object which we call event pipe;
• Q is a query object as described by the SWQ construct above;

 Continuous Access to Cloud Event Services with Event Pipe Queries 535

• fe : <S, e> S is a core function for maintaining the sliding window buffer; upon
receipt of an event e, it updates the state S;

• fq : <S, r> Q(S) is a core function that, upon receipt of a request r, applies Q to
S, i.e. applies the SWQ to the content held in the sliding window buffer.

Note that S and Q are themselves objects with their own constructs (e.g. S is a sub-
class of a queue object with a time boundary).

Besides the above explicit semantics, it is implied that

• fe : <S, e> S has no side effect to the SWQ query operation (if not requested).
This expresses the semantics that without a request, the EPQ serves as the event
pipe to continuously buffer the events that flow by.

• fq : <S, r> Q(S) has no side effect to the state of the event pipe. This expresses
the semantics that once requested, a query result on the buffered events is generat-
ed but the buffer is continuously retained without interruption. This semantics is
guaranteed by implementing EPQ as a long-standing, continuous query, and by the
request-rewind mechanism for keeping the query instance alive all the time.

The proposed EPQ approach supports all the above semantic features using a single
continuous query which leverages the SQL expressive power and the query engines
data processing capability. It provides a tight integration of querying and data buffer-
ing which reduces the data movement overhead in serving continous query results.

To gain the above benefits we have proposed solutions for problems such as how
to allow a continuous query to generate results on a particular set of data, and how to
make query evaluation on-demand. The proposed request-rewind approach provides a
simple, effective and efficient solution.

4 Supporting Continuous EPQ

To support the proposed EPQ, technically it is necessary to extend the query
engine and the UDF framework for handling SCF, SWF and the on-demand query
execution.

4.1 Replace Table Scan by Stream Capture Function Execution

We start with providing unbounded relation data to feed queries continuously. The
first step is to replace the database table, which contains a set of tuples on disk, by the
table function Stream Capture Function (SCF) that returns a sequence of tuples with-
out first storing them on disk. An SCF can listen or read a data/event sequence and
generate stream elements. An info-req from the application, as a particular event,
instructs the SCF to signal end-of-data to the query engine to commit and terminate
the current query execution and deliver the query result on-demand.

Conventionally, a table function first materializes its result set and then sends its
content to the upstream query tuple by tuple. For streaming purpose we eliminate the
materialization phase of SCF.

536 Q. Chen and M. Hsu

The function scan is supported at two levels, the SCF level and the query executor
level. A data structure containing the function call information bridges these two le-
vels; it is initiated by the query executor and passed to the SCF for exchanging func-
tion invocation related information. We use this mechanism for minimizing the code
change while maximizing the extensibility of the query engine.

4.2 Extend UDF Data Buffering Mechanism to Support Sliding Window
Function

As described earlier, a Sliding Window Function (SWF) buffers the events across
multiple input tuples, and returns a set of tuples on demand.

The current generation of SQL systems offers scalar, aggregate and table functions
as UDFs. The input of a scalar or table function is bound to the attribute values of a
single tuple, where an aggregate function is actually evaluated incrementally tuple-by-
tuple. A scalar or aggregate function can maintain a data buffer across multiple input
tuple, but since it cannot return a set out of a single input, it is not suitable for our
purpose; instead we have to use the table function with set return. However, a table
function cannot buffer data across multiple input tuples, and therefore we need to
extend it to satisfy the requirements for SWF.

The extension primarily focuses on the UDF buffer management. A SQL query is
evaluated tuple by tuple on its input, and therefore a function, including a UDF, is
called multiple times by the host query. Accordingly, a UDF is optionally coded with
three code sections: the init-section, the regular-section and the final-section. The data
buffer and the application state are initiated in the first call of the function, which can
be retained across multiple calls; the regular-section deals with the application logic;
the final-section is executed last for cleanup purpose. We refer to this as the multi-call
cycle.

The multi-call cycles of a scalar/aggregate function and of a table function are dif-
ferent – the former spans all the input tuples; the latter is only associated with the
multiple returns out of one input tuple, which means a table function lacks the capa-
bility of buffering data across multiple input tuples. We have extended the query
engine and UDF framework as the technical backbone to allow a table UDF to retain
a data buffer across input tuples.

The “top-level” memory context of a table function is local to one input tuple only.
To buffer multiple input data, an additional level of memory context, or buffer type,
must be provided. With such an extension, three types of states can be maintained
during the query processing:

• the state relating to the function invocations throughout the query, i.e. wrt all the
input tuples;

• the state relating to processing one input tuple which may involve multiple calls to
deliver multiple returns; and

• the state relating to the handling of one return tuple.

 Continuous Access to Cloud Event Services with Event Pipe Queries 537

We have extended the query executor to support all these memory contexts. The ex-
tension starts from the function node in the query tree and then goes to the system
handles for managing function invocation. New data structures and switching me-
chanisms are added for extending buffers. Accordingly new APIs for creating data
buffer for each of these three contexts are implemented. In general, the buffers of a
UDF at all levels are linked to the system handle for function invocation, and accessi-
ble through system APIs.
 Further, since the EPQ instance is always alive and never shut down, the SWF
buffer can be retained continuously across the EPQ execution cycles.

4.3 Extend Query Engine to Support Request-and-Rewind

An EPQ buffers the most recent events falling in a sliding window, and acts as a da-
taflow pipe no matter the contents of the sliding windows are queried or not. The
query results are generated on demand.

Request. When a client requests the real-time events or event processing results, it
sends an info-req to the SCF, which has the following effects.

• The request is embedded in the next event fed to the SWF, to instruct it to return
the requested events from the event pipe, to be evaluated by the SWQ.

• Then the SCF signals end-of-data to the query engine through setting a flag
on the function call handle, resulting in the completion and termination of the cur-
rent query execution cycle in the regular way, and allowing the query results ac-
cessible.

Rewind. Upon termination of an SWQ execution cycle, the query engine does not
shut down the query instance but rewinds it for continuously piping vents and serving
requests. During termination-rewind period, the upcoming events, if any, are buffered
by the SCF to be processed in the next cycle.

Rewinding a query is a top-down process along the query plan instance tree, with
specific treatment on each node type. In general, the intermediate results of the stan-
dard SQL operators (associated with the current chunk of data) are discarded but the
application context kept in the SWF is retained. The query will not be re-parsed, re-
planned or re-initiated.

Note that rewinding the query plan instance aims to pipe new events and to serve
new request, rather than re-deliver the current query result; therefore it is different
from “rewinding a query cursor” for re-delivering the current result set from the be-
ginning.

The proposed request-rewind approach has the ability to keep the continuity of the
query instance over the entire stream, and therefore to integrate sliding window based
stream buffering and querying for low latency analysis.

538 Q. Chen and M. Hsu

5 Examples and Experiments

5.1 A Data Retrieval Example

To illustrate how the streaming data and the warehoused data are queried in combina-
tion through CDAO, let us consider an application request for the summary of stock
market trades, with parameters < Qa, t1, t2> where Qa is treated as an “abstract query”
to be applied to the data in the time range of < t1, t2>.

[Abstract Query: Qa]

SELECT (s).symbol, (s).order_type, SUM((s).volume), MAX((s).price), MIN((s).price)

FROM daily_stock_exchange

GROUP BY (s).symbol, (s).order_type;

where “daily_stock_exchange” is an “abstract data source” that can be specialized to
the stored table, “daily_stock_exchange_table”, and the event pipe, “dai-
ly_stock_exchange_stream”. For simplicity, we count the timestamps only for the
current day starting from 0 (second) at 0:00 AM. The event pipe keeps the transac-
tions in the latest 30 minutes. We also assume the events loaded to the table are made
accessible within 10 minutes; then the event table and the event type have overlapped
coverage.

In this example, the request is given at 10:30 AM, for the stock market summary
from 9:00 AM to the current time. Based on the above settings, the CDAO specializes
the abstract query, Qa, as follows.

• It launches a “table query” for retrieving the stored events with timestamps from
9:00AM to 10:15 AM; and

• It sends an info-req to the corresponding EPQ to trigger it to deliver the event
processing result in the time range from 10:15AM to now.

The “table query” is listed below.

[Table Query: Qtb]

SELECT (s).symbol, (s).order_type, SUM((s).volume), MAX((s).price), MIN((s).price)

FROM daily_stock_exchange_table

where time >= 32400 /* starting from 9:00AM */

and time < 36900 /* to 10:15AM */

GROUP BY (s).symbol, (s).order_type;

The EPQ, Qepq, is the same as shown before in Section 3.1. Note that the time range
(from 10:15 to now) is not a parameter of the query (since the query is continuously
running); instead, it is read-in by the SCF, “stream_reader_scf()” as a special event.

 Continuous Access to Cloud Event Services with Event Pipe Queries 539

[EPQ: Qepq]

SELECT (s).symbol, (s).order_type, SUM((s).volume), MAX((s).price), MIN((s).price) FROM

 (SELECT sliding_window_swf(1800,t.symbol,t.price,t.volume,t.order_type,t.time,t.low,t.high) as s

 FROM stream_reader_scf (“daily_stock_exchange_stream”) t

) sw

GROUP BY (s).symbol, (s).order_type;

5.2 EPQ Performance

The primary goal of introducing EPQ is to support low latency event analysis by
means of in-memory data access and continuous querying, reducing the overhead of
disk I/O as well as query parsing, planning, optimizing and launching. These advan-
tages can be illustrated by our experiments.

We measured the response time of the EPQ, Qepq, using a set of synthetic stock ex-
change data covering 3000 stocks. The buffer sizes of the EPQ event pipe, by the
number of transactions, are set to 10K, 50K, 100K, 250K, 500K, 750K and 1M re-
spectively. The experimental results are measured on a laptop, HP EliteBook 8350
with 2 x Intel Xeon E54102 2.33 Ghz CPUs and 4 GB RAM, running Windows Vista
(x86_32) and PostgreSQL 9.0.3.

The impact of the sliding window buffer size on query response time is illustrated
by Fig. 6, where the query operation (SWQ) is applied to the whole content of the
buffer.

We also compared the data access time based on the EPQ mechanism and the store-
first-query-later mechanism. Using EPQ, the stream elements are captured on the fly
and buffered in the event pipe. Under the store-first-query-later mechanism, the data
are first inserted in the data warehouse table and then queried. The sizes of the data
sets are also set to 10K, 50K, 100K, 250K, 500K, 750K and 1M respectively. The
comparison results are shown below and also illustrated in Fig. 7.

EPQ Response Time

0

100

200

300

400

10K 50K 100K 250K 500K 750K 1000K

of buffered tuples in event pipe

E
P
Q
 r
es

p
tim

e
(m

s)

Fig. 6. EPQ response time

540 Q. Chen and M. Hsu

buffered
tuples

10K 50K 100K 250K 500K 750K 1M

EPQ resp
time (sec)

0.031 0.040 0.052 0.101 0.169 0.212 0.361

Store-query
time (sec)

0.119 0.371 0.892 2.853 4.748 7.713 8.993

It can be seen that the EPQ approach significantly outperforms the store-first-
analyze-later approach. When the event pipe buffer size is set to 1M, querying EPQ is
25X faster than querying from the data warehouse.

Stream Analysis vs. Store-then-Analysis

0
2,000
4,000
6,000
8,000

10,000

10K 50K 100K 250K 500K 750K 1000K

Data Chunk Size

R
es

p
o
n
se

 T
im

e

(m
s)

EPQ resp Time Store-Query Time

Fig. 7. Data access latency comparison: EPQ vs. store-then-query

6 Conclusions

In many enterprise and consumer applications, real-time events and historical data are
used in combination. In this work we focus on how to efficiently consume cloud data
services that offer both real-time streaming events and warehoused historical data.

We introduced the continuous data access object (CDAO) pattern as the extension to
the data access object (DAO) pattern used in developing data access clients, for on-
demand access and analysis of real-time events provided by cloud event service. We
introduced the notion of Operational Event Pipe for keeping the most recent events in a
sliding time window, and for analyzing the events in the pipe, as the basic construct for
CDAO. We implemented the operational event pipe as a form of continuous query re-
ferred to as Event Pipe Query (EPQ) and developed the request-and-rewind mechanism
for retrieving and analyzing the piped events on demand. An EPQ is a long-standing
SQL query that updates the event pipe continuously, generates query result once re-
quested, but returns nothing if not requested. We use the request-and-rewind mechan-
ism to support the data supply punctuation, on-demand query evaluation and continuous
query instance. Although the EPQ runs cycle by cycle, the query instance is never shut
down, allowing the sliding window buffer to be maintained continuously.

As a client of cloud data service, a CDAO is private to one (or a suite) application,
and it can contain multiple EPQs.

 Continuous Access to Cloud Event Services with Event Pipe Queries 541

The proposed EPQ approach leverages the SQL’s expressive power and the query
engine’s data processing capability, and provides a tight integration of querying and
data buffering which reduces the data movement overhead between the server (the
stream source and the data warehouse) and the client (the application that responds to
data access calls on a device or from another application).

We have implemented CDAO using the open-sourced PostgreSQL query engine,
and extended it to support the continuous data buffering of table UDFs and the re-
quest-and-rewind query execution model. Our experience shows its merit in efficient
and low-latency real-time data buffering and retrieval.

References

[1] Arasu, A., Babu, S., Widom, J.: The CQL Continuous Query Language: Semantic Foun-
dations and Query Execution. VLDB Journal 2(15) (June 2006)

[2] Abadi, D.J., et al.: The Design of the Borealis Stream Processing Engine. In: CIDR (2005)
[3] Bryant, R.E.: Data-Intensive Supercomputing: The case for DISC, CMU-CS-07-128

(2007)
[4] Chaiken, Jenkins, B., Larson, P-Å., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:

SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. In: VLDB 2008
(2008)

[5] Chen, Q., Hsu, M., Zeller, H.: Experience in Continuous analytics as a Service. In: EDBT
2011 (2011)

[6] Chen, Q., Hsu, M.: Cooperating SQL Dataflow Processes for In-DB Analytics. In: Proc.
17th International Conference on Cooperative Information Systems, CoopIS (2009)

[7] DeWitt, D.J., Paulson, E., Robinson, E., Naughton, J., Royalty, J., Shankar, S., Krioukov,
A.: Clustera: An Integrated Computation And Data Management System. In: VLDB 2008
(2008)

[8] Franklin, M.J., et al.: Continuous Analytics: Rethinking Query Processing in a Networ-
kEffect World. In: CIDR 2009 (2009)

[9] Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., Doo, M.C.: SPADE: The System S Declara-
tive Stream Processing Engine. In: ACM SIGMOD 2008 (2008)

[10] Liarou E., et al.: Exploiting the Power of Relational Databases for Efficient Stream
Processing. In: EDBT 2009 (2009)

[11] Core J2EE Patterns - Data Access Objects. Sun Microsystems Inc. (2007),
http://java.sun.com/blueprints/corej2eepatterns/Patterns/Dat
aAccessObject.html

[12] IBM pureQuery: A high-performance data access platform,
http://www-01.ibm.com/software/data/optim/purequery-
platform/

[13] JingDAO, http://jingdao.sourceforge.net/

QoS-Enabled Distributed Mutual Exclusion

in Public Clouds

James Edmondson, Doug Schmidt, and Aniruddha Gokhale

Dept. of EECS, Vanderbilt University, Nashville, TN 37212, USA
{james.r.edmondson,doug.schmidt,a.gokhale}@vanderbilt.edu

Abstract. Popular public cloud infrastructures tend to feature central-
ized, mutual exclusion models for distributed resources, such as file sys-
tems. The result of using such centralized solutions in the Google File
System (GFS), for instance, reduces scalability, increases latency, creates
a single point of failure, and tightly couples applications with the under-
lying services. In addition to these quality-of-service (QoS) and design
problems, the GFS methodology does not support generic priority pref-
erence or pay-differentiated services for cloud applications, which public
cloud providers may require under heavy loads.

This paper presents a distributed mutual exclusion algorithm called
Prioritizable Adaptive Distributed Mutual Exclusion (PADME) that we
designed to meet the need for differentiated services between applications
for file systems and other shared resources in a public cloud. We analyze
the fault tolerance and performance of PADME and show how it helps
cloud infrastructure providers expose differentiated, reliable services that
scale. Results of experiments with a prototype of PADME indicate that it
supports service differentiation by providing priority preference to cloud
applications, while also ensuring high throughput.

Keywords: mutual exclusion, public cloud, QoS, file systems.

1 Introduction

The Google File System (GFS) was designed to support the sustained file
throughput capacities of the Google search engine [1,2,3]. GFS provides high
throughput in a single cluster of thousands of computers, each servicing the
Google search engine. Although the GFS scaled well to hundreds of terabytes
and a few million files in append-mode (GFS does not support overwriting a
file), other quality-of-service (QoS) properties (e.g., latency, throughput of small
files—which is common in many applications, and differentation amongst appli-
cations) were not the focus of its initial design.

Scalability problems with GFS began appearing when the centralized master
server was forced to process tens of petabytes worth of data requests and ap-
pends [2]. As a short-term solution, Google engineers used a centralized master
server to manage a cell of the overall cluster. Although this approach provided
some fault tolerance against the single master failing, some failures still occurred,
and throughput and scalability suffered [1].

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 542–559, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 543

As Google grew, so did its list of services and applications. Since GFS focused on
throughput rather than latency and scalability, performance issues appeared with
certain applications, such as GMail, Youtube, and Hadoop [1]. Google’s temporary
solution to overcome this problem was the BigTable application, which was layered
atop GFS and packed small files into the large 64 MB file metadata that had been
in place since their Internet crawler was first deployed [1,2].

For cloud applications (such as Youtube) that can be buffered, the latency of
the GFS system has mostly been acceptable. For applications with file accesses
and writes on the cloud, however, Google is looking into replacements for GFS
that provide better QoS [1]. Deferring these changes can be costly for applications
that have a GFS-like interface or these applications face mounting integration
issues.

Figure 1 shows the scalability problems of a centralized server for reading
and writing to a segregated file system. In this figure, the light-shaded lines rep-
resent the computational and bandwidth resources that are utilized and dark
represents the wasted resources. According to Google network engineers, the
major bottlenecks of the GFS system include the inability to provide native
overwrite operations (GFS supports only append mode and applications have
to work around this), the 64 MB metadata for even small files, and the central-
ized master controller that every request and write goes through in each cluster
cell. The centralized master controller provides mutual exclusion for read-write
operations, garbage collection, and replication and persistence. Even with ex-
tra computing resources, this controller reduces scalability and throughput, and
significantly increases latency due to queuing [1].

In addition to the latency bottleneck, reduced overall throughput, and lack of
fault tolerance, GFS’s centralized architecture also treats all application requests
equally. Applying this system to cloud providers with scarce resources and steady
client application deployments means there is no built-in differentiation between
client priorities according to their payscale or other factors.

Fig. 1. GFS Centralized Master Controller

544 J. Edmondson, D. Schmidt, and A. Gokhale

In general, a cloud file system should address the following challenges:

1. Avoid centralized bottlenecks, such as a master controller which restricts
file throughput, and increases latency due to queuing and limited bandwidth
through a single host.

2. Handle failures of nodes and applications, e.g., GFS requires that
master controllers be manually reset by an engineer when they fail [1].

3. Support aggregated priorities, e.g., based on expected cost, payment,
etc. of cloud applications.

This paper presents a distributed mutual exclusion algorithm called Prioritizable
Adaptive Distributed Mutual Exclusion (PADME) that can be used to address
these challenges in cloud file systems by decentralizing the mutual exclusion
problem, as shown in Figure 2. As with Figure 1, the decentralized PADME
algorithm still has a certain amount of overhead (shown in dark) due to the
replicas and clients working together and coming to a consensus. In contrast,
however, the overall capacity of the decentralized PADME approach scales with
the number of participating nodes, rather than being limited by a single master
controller.

Fig. 2. Scalability of a Decentralized Methodology

The remainder of this paper is organized as follows: Section 2 describes the de-
sign and capabilities of of PADME algorithm; Section 3 evaluates results from ex-
periments conducted on a simulated message-oriented prototype of the PADME
algorithm over shared memory; Section 4 compares our work on PADME with
related research; and Section 5 presents concluding remarks and lessons learned.

2 Distributed Mutual Exclusion in Public Clouds

This section presents an algorithm called Prioritizable Adaptive Distributed Mu-
tual Exclusion (PADME) that we developed to meet the cloud file system chal-
lenges described in Section 1. The PADME algorithm performs two main
operations:

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 545

1. It maintains a spanning tree of the participants (e.g., applications, cus-
tomers, or anything that wants access to the file system) in the network.
The spanning tree is based upon the customer or application priorities and
the root of the spanning tree will be the highest priority entity in the sys-
tem. Depending on the network topology and customer demands this root
can and will change during runtime operations.

2. It enforces mutual exclusion according to user-specified models and prefer-
ences for messaging behavior. The models supported by the PADME algo-
rithm include priority differentiation and special privileges for intermediate
nodes in the spanning tree (intermediate nodes are nodes between requesting
nodes). Each model may be changed during runtime if required by the cloud
provider, applications, or users.

Below we describe the PADME algorithm and show how it can be implemented
efficiently in cloud middleware platforms or cloud applications, wherever the
distributed mutual exclusion is appropriate.

2.1 Building the Logical Spanning Tree

PADME builds a logical spanning tree by informing a cloud participant (e.g., an
application that is using the cloud infrastructure to manage the file system) of
its parent. Under ideal circumstances, all the spanning tree construction should
be performed in the cloud infrastructure without affecting user applications.

A participant need not be informed of its children as they will eventually try
to contact their parent, establishing connections on-demand. PADME uses this
same mechanism to reorder the tree when optimizing certain high priority par-
ticipants. Each participant is responsible for reconnecting to its parent through
the cloud API, middleware, or however the cloud offers file system services.

To establish which parent to connect to, PADME’s joining process multicasts
its priority and waits for responses during a (configurable) timeout period. The
closest priority above the joining process becomes the parent. The process can
arbitrarily connect to a different parent later, in which case the parent will need
to remove pending requests from the child. This step can be postponed until the
file access permission returns to this node for the specific requester to eliminate
the need for a parent to care about children moving to other parents. If the
connection no longer exists the token is sent back up to higher priority processes
in the logical spanning tree of cloud participants.

Cloud middleware developers could decide to let each cluster form its own
priority-based spanning tree and connect roots of each tree to form the cloud file
system mutual exclusion tree. The PADME algorithm presented in Section 2.2
will work with any spanning tree as long as connected nodes can communicate.
Section 2.3 covers PADME’s fault tolerance support. Figure 3 shows the con-
struction of such a spanning tree out of priority information. In this case, the
tree is balanced, though it need not be. During runtime, an application or user
may add or remove a participant, rename participants, or conduct other such
operations to organize the intended tree and dynamically respond to changes in
request load or priority changes.

546 J. Edmondson, D. Schmidt, and A. Gokhale

Fig. 3. Building a Balanced Spanning Tree

PADME’s tree building phase requires updating affected participants with
parent information (i.e., informing them of the direction of the logical root of
the tree). The messaging overhead of maintaining a logical spanning tree is not
included in our algorithm details because cloud providers can simply build a
spanning tree once manually if desired. For example, the cloud provider may
know that the application deployments are static, or the provider is anticipating
a specific scenario like spikes of file access during a major sporting event and
wants to give preference to this activity during the championship match.

Even in statically assigned spanning trees, higher priority cloud participants
should be pushed towards the root to give them preferential service. The logical
token will be passed back to the root of the tree before continuing on to the next
participant in our algorithm. Participants at higher levels of the tree experi-
ence lower message complexity, faster synchronization delay, better throughput,
and even higher QoS for the target system and a preference for high priority
customers, as shown in Section 2.3.

2.2 Models and Algorithm for Distributed Mutual Exclusion

Before accounting for faults, PADME requires just three types of messages: Re-
quest, Reply, and Release. A Request message is made by a participant that
wants to acquire a shared resource, such as cloud file system access. A Request
message traverses up the spanning tree from the participant node to the root via
its parent and ancestor nodes. A Reply message is generated by the root after
access to the resource is granted. The Reply message traverses from the root to
the requesting participant node. The Release message traverses up the tree from
the node that holds the shared resource towards the root once the node is ready
to release the resource. The interaction of these messages is shown in Figure 4.

PADME supports four models (Priority Model, Request Model, Reply Model,
and Release model) that describe the semantics of actions performed by any par-
ticipant in the spanning tree that receives one of the three types of messages, as

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 547

Fig. 4. PADME Messages for Mutual Exclusion

well as QoS differentiation that must be supported. The latter three models are
named according to whether an intermediate participant can enter its own crit-
ical section, i.e., exclusive access to the cloud’s distributed file system resource,
upon receipt of the message type. These models stem from our approach to
distributed mutual exclusion and optimizations that allow shorter synchroniza-
tion delay between critical section entries and improved QoS via user-specified
requirements to middleware.

The configurations of the Request, Reply, and Release models may be changed
at runtime to yield different QoS, including

– Higher critical section throughput – i.e., the number of file accesses
possible to the cloud’s distributed file system,

– Changes in fairness – e.g., going from preferring higher priority partici-
pants to giving everyone a chance at the critical section – a requirement of
our motivating scenario in Section 1,

– Fewer priority inversions – i.e., alleviating the situation where a low
priority participant gets a critical section entry before a high priority partic-
ipant, even though a critical section request from a higher priority participant
exists, and

– Lower average message complexity – i.e., fewer messages being required
per critical section entry.

These four models are described below and each are integral components in the
algorithm that may be tweaked to affect performance, usually at the cost of
possible priority inversions.

Request Models. PADME provides two Request Models: Forward and Re-
place. The Forward Request Model requires a parent to immediately forward
all requests to its own parent. The Replace Request Model requires a parent to
maintain a priority queue of child requests, which should have the same Priority
Model as the root participant. Under the Replace Request Model, a node only
sends a Request to its parent if there are no Request messages in its priority

548 J. Edmondson, D. Schmidt, and A. Gokhale

queue, or if the new Request is of higher priority than the last one that was
sent. The Replace Request Model is slightly harder to implement, but it results
in messages only being sent when appropriate and may alleviate strain on the
root node. It also will result in less message resends if a parent node fails.

Reply Models. PADME provides two Reply Models: Forward and Use. The
Forward Reply Model requires a parent to immediately forward a reply to its
child without entering its own critical section, regardless of whether or not it has
a request pending. The Use Reply Model allows a parent Pc to enter its critical
section upon receiving a Reply message from its parent Pp, if Pc currently has a
Request message outstanding.

Release Models. PADME provides two Release Models: Forward and Use. The
Forward Release Model requires a participant to immediately forward a Release
message to its parent without entering its own critical section, regardless of
whether it has a request pending. The Use Release Model allows a participant
to enter its critical section when it receives a Release message from one of its
children, if the participant has an outstanding Request pending.

When applying the Use model, the participant must append its identifier
onto the Release message if it entered its critical section (as shown in Figure 5,
where each participant appends their release information to their parents when
the critical sections have already been entered), which may result in a Release
message containing multiple instances of the participant identifier. Consequently,
appropriate data structures should be used to allow for these duplicates (e.g.,
multisets). These duplicates enable proper bookkeeping along the token path
since up to two Request messages may require removal from each affected priority
queue.

Fig. 5. Appending Identifier to Release Message

Priority Models. PADME provides two Priority Models: Level and Fair.
The Level Priority Model means that one Request of the tuple form Request
< Im, Pm, Cm > should be serviced before Request < In, Pn, Cn > if Pm < Pn.
Px stands for the priority of the participant identified by Ix, and Cx refers to the
request id or clock. If a tie occurs, the clocks Cx are compared first and then the
identifiers. This ordering does not guarantee the absence of priority inversions,
and priority inversions may happen when the token is in play (walking up or
down the tree).

The Fair Priority Model means that one Request of the form Request <
Im, Pm, Cm > should be serviced before Request < In, Pn, Cn > if Cm < Cn.

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 549

Upon a tie, the priority levels are compared, followed by the identifiers. The
Fair Priority Model will result in all participants eventually being allowed into a
critical section (assuming bounded critical section time and finite time message
delivery), whereas the Level Priority Model makes no such guarantees.

Overview of PADME’s Mutual Exclusion Algorithm. When a partici-
pant needs to enter its critical section (e.g. an agent is requesting exclusive access
for writing to a cloud file system), it sends a Request message to its parent, who
then forwards this Request up to its parent, until eventually reaching the root
node. The Request message is a tuple of the form Request < I, P, C, D >, where
I is the identifier of the requesting participant, P is the priority level (level),
C is a timer or request id, and D is a user data structure that indicates the
shared resource id (e.g., the name of the file that will be accessed in the cloud
file system) and any other data relevant to business logic. There is no reason
that any of these variables be limited only to integers. For more information on
the election of cloud entity and volume identifiers that may be useful for a cloud
file system implementation, please see the Renaming Problem [4].

The choice of a timer mechanism (also known as a request id) may result
in varying ramifications on the Fair Priority Model, discussed in Section 2.3.
A timer should be updated (1) only when sending a Request or (2) any time
a Request, Reply, or Release message with the highest time that of the agent
who is receiving message or the time indicated in the message sent. The latter
method will result in time synchronization across agents which can be helpful
in synchronizing fairness in late joining agents or when switching from Level
Priority Model to Fair Priority Model. Resending a Request does not increase
the local request count. A Request may be resent if the parent participant faults
or dies to ensure that a Request is serviced eventually by the root.

The root participant decides which Request to service according to a priority
mechanism. After determining who gets to enter their critical section next, a
Reply message is sent of the form Reply < I, C > or < I, C, D > where I is once
again the identifier of the requesting participant, C is the count of the Request,
and D is an optional parameter that may indicate business logic information, e.g.,
the name of the file to be overwritten. Once a Reply message reaches the intended
requesting participant, the requesting participant enters its critical section.

Upon exiting the critical section, the requesting participant must send a Re-
lease message to its parent participant, who forwards this Release message to
its parent until the root receives the message. Release messages have the form
Release < I0, I1, . . . In > or < I0, D0, I1, D1, . . . In, Dn > where I0, I1, . . . In is
a list of participant identifiers that used their critical section along this token
path, and D0, D1, . . . Dn is a parameter that may indicate business logic infor-
mation e.g., the frequency that is being released. The root participant and any
participant along the token path should remove the first entry of each identi-
fier in< I0, I1, . . . In > before forwarding the Release to its parent for proper
bookkeeping.

550 J. Edmondson, D. Schmidt, and A. Gokhale

2.3 QoS Properties of the PADME Algorithm

PADME’s Request, Reply, Release, and Priority Models described in Section 2.2
are orthogonal and may be interchanged by the user to accomplish different QoS,
higher fault tolerance, reduced message complexity at key contention points, or
critical section throughput during runtime. Each combination has certain QoS
properties that may fit an application’s needs better than the others, e.g., each
has certain synchronization delay characteristics, throughput, and even message
complexity differences during fault tolerance. To simplify understanding of the
different combinations of these models, we created a system of model combina-
tions that we call Request-Grant-Release settings that codify these combinations.

Non-fault Tolerance Case. PADME’s most robust Request-Reply-Release
setting is the Replace-Use-Use model, which corresponds to the Replace Re-
quest Model, Use Reply Model, and Use Release Model. The Replace-Use-Use
setting requires each participant to keep a priority queue for child Requests (de-
scribed further in Section 2.2), but its primary purpose is to limit the number
of message resends during participant failures or general faults to only the most
important Requests in the queue. Replace-Use-Use is consequently very useful
when reducing the number of messages in the network is a high priority.

PADME’s Use Reply Model of the Replace-Use-Use combination allows a
participant to enter its critical section before forwarding on a Reply message
to an appropriate child. The Use Release Model allows a similar mechanism
in the opposite direction, on the way back to root. Both of these use models
work well in conjunction with the Fair Priority Model to not only decrease
synchronization delay (and thus increase critical section throughput) but also
favor higher priority participants, as those higher priority participants will be
closer to root and may have up to two chances of entering a critical section along
a token path from root to a requestor and back to root.

Even when the Forward-Forward-Forward combination is used, the higher
priority participants closer to root will still have lower message complexity and
lower average synchronization delay than lower priority participants (e.g., leaf
nodes). This results from the token path being longer from the leaf nodes to root.
Consequently, placing frequently requesting participants closer to the root node
in the logical routing network can result in increased performance (Section 2.3
analyzes message complexity and synchronization delay).

All ofPADME’sFair PriorityModel-based settings inherentlymay lead to prior-
ity inversions.PADME’sLevelPriorityModel by itself, however, does not eliminate
priority inversions. To eliminate priority inversions from occuring in PADME, the
Level Priority Model must be used in combination with *-Forward-Forward.

If the settings contain Use Models for either the Reply or Release Models
when the virtual token progresses towards an entity, it is possible that a higher
priority request may be delayed at the root node that arrived after permission
was granted to a lower priority entity. In practice, completely eliminating prior-
ity inversions is typically not as important as throughput. Settings that enable
the Use Model for both Reply and Release models therefore have much higher
throughput proportional to the depth of the spanning tree.

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 551

Fault Tolerance Case. There are several options for fault tolerance that can be
supported by PADME, but we focus on the most straightforward to implement
and still be robust to failures. We use a classic approach called a Byzantine view
change [5] whenever a root node faults (i.e., becomes unavailable). A Byzantine
view change is a type of consensus that requires a majority agreement for electing
a primary node. The only time this would be initiated would be when a non-root
participant detects that its parent is unresponsive, attempts to connect to a new
parent using the protocol discussed in Section 2.1, and receives no response from
a higher priority entity.

Upon electing a new root node, the children of former root push all pending
requests up to the new root, and the system resumes operation. When a token is
believed to be lost by the root node, e.g., after a configurable timeout based on
a query of the participants for any outstanding tokens, a new token is generated.

If the root did not die—but believes a token has been lost—it can either mul-
ticast a query for the outstanding tokens and regenerate, or it can use targeted
messages along the path the token took. In the latter case, the token will either
pass normally with a release message or the root will have to regenerate a token.
This process is shown in Figure 6. The root participant knows it sent a permis-
sion token to D and that it went through child B to get there. There is no reason
to send a recovery message to anyone other than B and let it percolate down to
D unless multicast or broadcast is being used and the operation is inexpensive
for the network.

Fig. 6. Targeted Recovery of an Outstanding Token

Any time a parent connection is lost, the orphaned child establishes a new
parent with the protocol outlined in Section 2.1 and resends all pending requests
from itself and its children.

3 Evaluating the PADME Algorithm

This section evaluates results from experiments conducted on a simulated
message-oriented prototype of the PADME algorithm over shared memory. We
simulate critical section time (the time a participant uses its critical section),

552 J. Edmondson, D. Schmidt, and A. Gokhale

message transmission time between participants (the time it takes to send a Re-
quest, Reply, or Release message between neighboring cloud participants in the
spanning tree), and critical section request frequency (how often a participant
will request a critical section if it is not already in a critical section or blocking
on a request for a critical section). Our experiments focus on the following goals:

1. Quantifying the degree of QoS differentiation. The goal of these ex-
periments is to gauge whether or not the PADME algorithm provides QoS
differentiation for participants in a public cloud (see Section 1) and whether
or not the Request-Reply-Release models described in Section 2.2 have any
tangible effects on QoS differentiation and throughput. Our hypothesis is
that the PADME algorithm will provide significant differentiation based on
proximity to the root participant.

2. Measuring critical section throughput. The goal of these experiments
is to measure the critical section throughput of the PADME algorithm. Our
hypothesis is that the PADME algorithm will provide nearly optimal critical
section throughput for a distributed system, which is the situation where
synchronization delay is tm—the time it takes to deliver one message to
another participant.

We created a simulator that allowed us to configure the Priority, Reply, and
Release Models for several runs of 360 seconds. The experiments ran on a 2.16
GHZ Intel Core Duo 32 bit processor system with 4 GB RAM. The experiments
were conducted on a complete binary tree with seven participants and a depth
of 3 on a simulated network of seven participants: one high importance, two
medium importance, and four low importance.

3.1 Quantifying the Degree of QoS Differentiation

The QoS Differentiation experiments quantified the ability of the PADME algo-
rithm to differentiate between cloud customers and applications based on their
priority—a derived metric that may directly correlate to money paid by the users
of the system or a service’s importance in serving cloud customers. We present
the results as they relate to algorithm configurations and the tradeoffs between
reducing priority inversions and increasing file access throughput.

Setup. Two experiments are presented here. The first has a message transmit
time of 1 sec and a critical section entry time of 1 sec. The second experiment
has a transmit time (tm) of 0.5 sec and a critical section entry time of 1 sec.
The latter experiment more accurately emulates network and Internet traffic
since transmit time is rarely 1 sec. We use a convention of referencing models
as Priority-Request-Reply-Release when describing PADME settings for brevity.
Our PADME prototype does not yet include the Replace Request Model, so no
configurations with the Replace Request Model are included in this section. We
expect, however, that throughput and latency for this model should be identical
to the Forward Request Model.

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 553

Analysis of Results. Figure 8 and Figure 7 outline the results for this test.
The root participant had high priority, the participants on the second level had
medium priority, and the leaf nodes on the third level had low priority.

In the analysis below we reference the PADME model configurations as
Priority-Request-Reply-Release for brevity. Differentiation increases under cer-
tain models as the message time is decreased. This result appears to occur in
Fair-Forward-Forward-Use, but is likely true of Forward-Use-Forward. Of the
Request-Reply-Release combinations that appear to show the best differentia-
tion amongst priority levels, those with Level Priority Model differentiate the
best. Those with any type of Level Priority Model differentiate according to
priority levels, which makes sense.

More interesting, however, is how the Fair-Forward-Use-Use, Fair-Forward-
Forward-Use, and Fair-Forward-Use-Forward model combinations allow for bet-
ter QoS in comparison to Fair-Forward-Forward-Forward. Although we are being
fair in priority policy, this policy shows favoritism to the lower priority levels,
which have more participants, and consequently get more critical section en-
tries under a fair priority policy. Forward-Use-Use, Forward-Forward-Use, and
Forward-Use-Forward offset these policy decisions by allowing critical section
entries as the Reply and Release messages pass through participants, to allow
for higher critical section entries than would have been possible with the more
intuitive Forward-Forward-Forward. If we increased the number of high prior-
ity and medium priority participants, we would have even better differentiation
during Fair Priority Policy because less time is spent in pure overhead states
where the token is percolating back up the tree and not being used.

Fig. 7. Priority Differentiation with CS time of 1s and Message latency of 1ms

554 J. Edmondson, D. Schmidt, and A. Gokhale

Fig. 8. Priority Differentiation with CS time of 0.5s and Message latency of 0.5ms

3.2 Measuring Critical Section Throughput

Differentiation can be useful, but if the system becomes so bogged down with mes-
saging or algorithmoverhead thatfile systemor other shared resource throughput is
greatly reduced, then no real benefits are available in the system. The experiments
in this section guage the performance of the PADME algorithm in delivering file
system access to customers, cloud applications, or persistent services.

Setup. Two experiments are presented here. The first experiment sets the mes-
sage transmission time (tm) to 1 ms, critical section usage time to 1 s, and we
generate a new request once every 1 ms (when not using or blocking on a critical
section request). The second experiment has a fast message transmission time of
0.5 ms (i.e., more in line with a local area network transmit for a cluster within
a cloud) and generates a new request every 0.5 ms (unless blocking on or using
a critical section).

Our PADME prototype does not yet include the Replace Request Model, so no
configurations with the Replace Request Model are included in this section. We
expect, however, that throughput and latency for this model should be identical
to the Forward Request Model.

Analysis of Results. Figure 9 and 10 show the results for these tests. These
results are above our proposed theoretical max where synchronization delay =
tm, because participants are able to enter their critical sections (e.g., access a
file) both on a release and reply using the Use models.

Each model equals or outperforms a centralized solution. A centralized so-
lution would have required a critical section entry (1 sec) plus two message
transmissions—Release (1 sec) and Reply (1 sec)—per access resulting in only
120 critical section entries in a 360s test. The only configuration that performs
worse than this one is the Fair-Forward-Forward-Forward combination. A cen-
tralized solution would have required a critical section entry (1 sec) plus two

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 555

Fig. 9. Throughput with CS time of 1s and Message latency of 1ms

message transmissions—Release (0.5 sec) and Reply (0.5 sec)—per access result-
ing in just 170 critical section entries in a 360 sec test. Every model outperforms
or equals a centralized solution in this scenario.

Some settings of the Priority-Request-Reply-Release models allow for the root
participant (the highest priority participant) and medium priority participants
to enter a critical section twice upon Reply or Release messages. This feature
causes an additional critical section entry being possible during Use-Release with
a synchronization delay = 0. This result occurs when a new request occurs in

Fig. 10. Throughput with CS time of 0.5s and Message latency of 0.5ms

556 J. Edmondson, D. Schmidt, and A. Gokhale

cloud applications on the root during or just after the root participant is servicing
a separate request.

4 Related Work

This section compares our work on PADME with key types of mutual exclusion
solutions in networks, grids, and clouds. We begin with discussions on central
token authorities and end with descriptions of distributed techniques in clouds.

A basic form of mutual exclusion is a central authority that delegates resources
based on priority or clock-based mechanisms. When a participant needs a shared
resource, it sends a request with a priority or local timestamp to this central
authority, and the central authority will queue up requests and service them
according to some fairness or priority-based scheme. The Google File System
(GFS) [2] uses such central authorities (called masters) and has tried to address
these issues by creating a master per cell (i.e., cluster). The GFS approach only
masks the problems with the centralized model, however, and has a history of
scaling problems [1].

The Lithium file system [13] uses a fork-consistency model with partial order-
ing and access tokens to synchronize writes to file meta data. These access tokens
require a primary replica (centralized token generator) to control a branching
system for volume ownership. Recovery of access tokens when primary replicas
die requires a Byzantine view change of O(n) messages before another access
token can be generated, and this can be initiated by almost anyone. In PADME,
the view change should only be requested by someone along the token path.
When the root node dies with a token still in it, the immediate children of the
root would be in the token path and could request a view change. If there are no
pending writes or reads, no change may even be necessary, and the root could
resolve its fault and continue operations.

Distributed mutual exclusion algorithms have been presented throughout the
past five decades and have included token and message passing paridigms. Among
the more widely studied early distributed algorithms are Lamport [6] and Ricart-
Agrawala [7], which both require O(n2) messages, and Singhal [8], which uses
hotspots and inquire lists to localize mutual exclusion access to processes that
frequently enter critical sections. These algorithms are not applicable to cloud
computing, where faults are expected. Singhal’s algorithm also does not differ-
entiate between priorities since it prefers frequent accessors (which might be free
or reduced-payment deployments).

Message complexity has been further reduced via quorum-based approaches.
In quorum-based approaches, no central authority exists and the application pro-
grammer is responsible for creating sets of participants that must be requested
and approved for the critical section to be granted. For the Maekawa quorum
scheme to function [9], each set must overlap each other set or it will be possible
for multiple participants to be granted a critical section at the same time. If
the sets are constructed correctly, each participant has a different quorum set
to get permission from, and mutual exclusion is guaranteed. The problem is au-
tomatable and involves finding the finite projection plane of N points, but suffers

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 557

performance and starvation problems (potentially of high priority participant)
with faults.

More recently, a distributed mutual exclusion algorithm was presented by Cao
et. al. [10]. This algorithm requires consensus voting and has a message com-
plexity of O(n) for normal operation (i.e., no faults). In contrast, our PADME
algorithm requires O(d) where d is tree depth—O(logbn) where b is the branch-
ing factor of the spanning tree discussed in Section 3. The Cao et. al. algorithm
also appears to require a fully connected graph to achieve consensus, and does
not support configurable settings for emulating many of PADME’s QoS modes
(such as low response time for high priority participants).

Housni and Trehel [11] presented a grid-specialized token-based distributed
mutual exclusion technique that forms logical roots in local cluster trees, which
connect to other clusters via routers. Each router maintains a global request
queue to try to solve priority conflicts. Bertier et. al. [12] improved upon Housni
and Trehel’s work by moving the root within local clusters according to the
last critical section entry. This improvement, however, could result in additional
overhead from competing hot spots, where two or more processes constantly
compete for critical sections. Both algorithms treat all nodes and accesses as
equals and are susceptible to the problems in Singhal [8] and consequently are
non-trivial to implement for a public cloud where paying customers should have
differentiation. Moreover, tokens can become trapped in a cluster indefinitely.

5 Concluding Remarks

This paper presented an algorithm called Prioritizeable Adaptive Distributed
Mutual Exclusion (PADME) that addresses the need to provide differentiation
in resource acquisition in distributed computing scenarios. We demonstrated
its usefulness in cloud computing environments without requiring a centralized
controller. Although we motivated PADME in the context of cloud file systems,
it can be used for any shared cloud resource.

The following are lessons learned from the development of this mutual exclu-
sion algorithm:

1. High critical section throughput with differentiation is possible.
PADME provides differentiation based on participant priority levels and prox-
imity to the logical root participant of the network. It also provides cloud ap-
plication developers with four orthogonal models for variety and tighter control
of critical section entry. The benefits of the PADME algorithm are high criti-
cal section throughput and low synchronization delay between critical section
entries, especially when there is high contention for a shared resource.

2. The cost of differentiation is felt by those farthest from the root.
In certain settings of the PADME algorithm—especially those using a Level
Priority Model—the wait for access to the file system or shared resource could be
indefinite. This situation will occur when the cloud is under heavy stress loads,

558 J. Edmondson, D. Schmidt, and A. Gokhale

and there is high contention for the shared resource, e.g., when high priority
cloud users or applications are constantly accessing the system.

3. Fault tolerance should be built-in. Retrofitting fault tolerance into a
complex distributed system is hard. The Google File System attempted to solve
this with redundant master controllers, but this caused the issue with faulty
cloud hardware to just be harder to deal with. Building fault tolerance into a
cloud solution from the inception helps reduce time and effort across the lifecycle.

4. Distributed mutual exclusion is still an important topic in Com-
puter Science. We presented results and analysis that show clear differentiation
based on priority level and high critical section throughput. Additional research
challenges remain, however, including priority differentiation during tree rebuild-
ing in heavy fault scenarios, reducing message complexity during root consensus
changes, virtual overlay networks for individual resources or high priority file
system volumes, and secure information flow across the spanning tree to prevent
applications or users from snooping file information.

Our ongoing work is empirically evaluating PADME in the context of real pub-
lic cloud platforms, such as Amazon EC2 and off-the-shelf hypervisors. We are
also considering new Request, Reply, and Release Models, as well as more fault
tolerance options, to PADME. The open-source PADME algorithm Java code
and tests/simulator used in Section 3 are available for download at
qosmutex.googlecode.com.

References

1. McKusick, M.K., Quinlan, S.: Gfs: Evolution on fast-forward. Queue 7, 10:1–10:20
(2009)

2. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP 2003,
pp. 29–43. ACM, New York (2003)

3. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. SIGOPS Oper.
Syst. Rev. 37, 29–43 (2003)

4. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems, 1st edn. Cambridge University Press, New York (2008)

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Third Symposium
on Operating Systems Design and Implementation (OSDI). USENIX Association,
Co-sponsored by IEEE TCOS and ACM SIGOPS, New Orleans, Louisiana (1999)

6. Lamport, L.: Ti clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21, 558–565 (1978)

7. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24, 9–17 (1981)

8. Singhal, M.: A dynamic information-structure mutual exclusion algorithm for dis-
tributed systems. IEEE Trans. Parallel Distrib. Syst. 3, 121–125 (1992)

9. Maekawa, M.: An algorithm for mutual exclusion in decentralized systems. ACM
Trans. Comput. Syst. 3, 145–159 (1985)

10. Cao, J., Zhou, J., Chen, D., Wu, J.: An efficient distributed mutual exclusion algo-
rithm based on relative consensus voting. In: International Symposium on Parallel
and Distributed Processing, vol. 1, p. 51b (2004)

qosmutex.googlecode.com

QoS-Enabled Distributed Mutual Exclusion in Public Clouds 559

11. Housni, A., Trehel, M.: Distributed mutual exclusion token-permission based by
prioritized groups. In: Proceedings of the ACS/IEEE International Conference on
Computer Systems and Applications, p. 253. IEEE Computer Society, Washington,
DC, USA (2001)

12. Bertier, M., Arantes, L., Sens, P.: Distributed mutual exclusion algorithms for grid
applications: A hierarchical approach. J. Parallel Distrib. Comput. 66, 128–144
(2006)

13. Hansen, J.G., Jul, E.: Lithium: virtual machine storage for the cloud. In: Proceed-
ings of the 1st ACM Symposium on Cloud Computing, SoCC 2010, pp. 15–26.
ACM, New York (2010)

Towards Pattern-Based Reliability Certification

of Services

Ingrid Buckley1, Eduardo B. Fernandez1, Marco Anisetti2,
Claudio A. Ardagna2, Masoud Sadjadi3, and Ernesto Damiani2

1 Department of Electrical Engineering and Computer Science
Florida Atlantic University

777 Glades Road, Boca Raton, Florida, USA
ibuckley@fau.edu,ed@cse.fau.edu

2 Dipartimento di Tecnologie dell’Informazione
Università degli Studi di Milano

Via Bramante 65, 26013 Crema (CR), Italy
firstname.lastname@unimi.it

3 School of Computing and Information Sciences
Florida International University

University Park, 11200 SW 8th St., Miami, Florida, USA
sadjadi@cs.fiu.edu

Abstract. On Service-Oriented Architectures (SOAs), the mechanism
for run-time discovery and selection of services may conflict with the
need to make sure that business process instances satisfy their reliability
requirements. In this paper we describe a certification scheme based on
machine-readable reliability certificates that will enable run-time negoti-
ation. Service reliability is afforded by means of reliability patterns. Our
certificates describe the reliability mechanism implemented by a service
and the reliability pattern used to implement such a mechanism. Digital
signature is used to associate the reliability claim contained in each cer-
tificate with the party (service supplier or accredited third-party) taking
responsibility for it.

1 Introduction

When Service-Oriented Architectures (SOA) came of age, no specific reliability
technology for Web services was available; reliability mechanisms designed for
Web servers, such as server redundancy, were used in its stead. Later, standards
for reliable service invocation like WS-Reliability and WS-ReliableMessaging
emerged [4], but the problem of achieving reliability of SOA-based Web services
remains unsolved.

When trying to address the problem of Web service reliability, one has to
recognize that many of the features that make SOAs attractive, such as run-time
service recruitment and composition, conflict with traditional reliability models
and solutions. Reliability relates to a system’s ability to function correctly in the
presence of faults, errors, and failures. This ability is traditionally achieved at

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 560–576, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Towards Pattern-Based Reliability Certification of Services 561

system design time; but on a SOA – especially one hosted on a virtual execution
environment like a cloud – the “system” that will execute a given business process
instance is put together run-time via service discovery and selection. How can
we ensure that the overall reliability requirements will be met? Our proposal
to answer this question is a scheme for the reliability certification of services
using reliability patterns. In our approach, a Web Service reliability certificate
is a machine-readable representation of the reasons why a given service claims
to be reliable, including the reliability mechanism the service relies on and the
reliability pattern used to implement it.

As we shall see in the following, we use a POSA format for reliability pat-
terns that provide a concise yet expressive way to specify how a given reliability
mechanism is implemented by a service. Like other certification schemes, we
envision that the party taking responsibility for a reliability claim will digitally
sign the corresponding reliability certificate. Depending on the business scenario,
the signing party can be the service supplier itself, or a third party accredited in
the framework of a regulated certification process, as the ones adopted for life-
or mission-critical applications [10]. Such certificates can then be used at ser-
vice discovery time to make sure that the reliability requirements of a business
process are met by all the services recruited to execute it.

A major difference between our reliability certificates and other types of Ser-
vice Level Agreement-style metadata is runtime monitoring of reliability using
reliability patterns [1,10,21]. Indeed, the SOA framework makes it possible to
instrument Web services for monitoring the reliability mechanism implemented
by the pattern mentioned in the certificate. At service discovery time, monitor-
ing rules can be evaluated to check whether the certificate is still valid or not
for a specific process execution, without requiring re-certification.

In the remainder of the paper we describe the building blocks of our proposal
and how they can be put together to obtain a full scheme for the reliability
certification of SOA Web services. Namely, in Section 2, we present the concept of
pattern for improving system reliability. In Section 3, we describe how reliability
patterns can be used to validate the reliability of services. In Section 4, we present
our certification scheme, illustrating our machine-readable certificate format and
a first solution to the integration of SOA and reliability certification. Finally, in
Section 5, we present our related work and, in Section 6, we give our conclusions.

2 Using Patterns for Improving Reliability

The widespread diffusion of Web services and SOA is raising the interest for
SOA-based implementation of life- and mission-critical applications for which
reliability is a crucial requirement.

Often, in a traditional component-oriented scenario, reliability is added to
the systems after the implementation phase, but experience has shown that
this is not the most effective way to implement reliable services [13,20]. In this
paper, we aim to define an approach for building reliable services that involves
incorporating reliability in every phase of the system design and throughout

562 I. Buckley et al.

the entire software development life cycle [5,27]. There are five major reliability
techniques that are used to handle failures and their consequences in a system
[23] as follows.

– Detection. Detecting the occurrence of an error.
– Diagnostic. Locating the unit or component where the error has occurred.
– Masking. Masking errors so as to prevent malfunctioning of the system if a

fault occurs.
– Containment. Confining or delimiting the effects of the error.
– Recovery. Reconfiguring the system to remove the faulty unit and erasing

the effects of the error.

These five techniques can be implemented using the following reliability
mechanisms:

1. Redundancy. The duplication of critical components in a system with the
intention of increasing the reliability of the system. This mechanism is often
applied to chemical, power, nuclear, and aerospace applications.

2. Diversity. Requires having several different implementations of software or
hardware specifications, running in parallel to cope with errors or failures
that could arise directly from a specific implementation or design.

3. Graceful degradation. This mechanism is essential in systems where, in the
event of a failure, a system crash is highly unacceptable. Instead, some func-
tionality should remain in the event of a failure. If the operating quality of
the system decreases, the decrease should be proportional to the severity of
the failure.

4. Checking and monitoring. Constant checking of the state of a system to
ensure that specifications are being met is critical in detecting a fault. This
mechanism, while very simple, plays a key role in obtaining a fault tolerant
system.

5. Containment. Faults are contained within some specific execution domain,
which prevents error propagation across system boundaries.

Challenges in software reliability not only stem from the size, complexity, diffi-
culty, and novelty of software applications in various domains, but also relate to
the knowledge, training, and experience of the software engineers involved. Our
approach is based on the notion of reliability patterns [23,24]. A pattern is an en-
capsulated solution to recurrent software or system problems in a given context,
and it can be described using UML diagrams [28]. Reliability patterns support
widespread application of best practices and best solutions, and offer an effective
guideline for software developers that may not have expert knowledge and ex-
perience in reliable system development. Specifically, a reliability pattern [23,24]
consists of several parts which provide a detailed description of the patterns’ ob-
jective, and serves as a tangible reference for an effective reliability solution. We
utilize the POSA template (see Table 1) to describe reliability patterns, mainly
because it provides a complete encapsulation of a solution to a given problem.
Additionally the POSA template is a widely accepted format that sufficiently

Towards Pattern-Based Reliability Certification of Services 563

Table 1. POSA template

Intent
Example
Context
Problem and forces
Solution
Implementation
Example resolved
Known uses
Consequences
Related patterns

describes a reliability pattern. Reliability patterns described using the POSA
template provide class and sequence diagrams that can be used to help generate
monitoring rules consistent with the reliability aspect being sought.

3 Certifying Services Built Using Reliability Patterns

Once a system is built using some methodology that uses reliability patterns,
we need a way to show it has reached a given level of reliability. In a SOA
environment we can go even further; we can certify that the services satisfy
some standards of reliability making digitally signed information available at
runtime, that is, in SOA-based business process enactment. In our approach, this
information includes the reliability pattern used in the service implementation.
Therefore, we start by looking at some patterns to ascertain their effect on the
reliability of a service.

3.1 A Reliability Pattern Solution

A reliability pattern includes a section which describes its solution (see Figure 1).
This section includes a class diagram illustrating the structure of the solution
and showing the class functions, and their relationships. Figure 1(a) depicts an
example of a class diagram for the well-known Acknowledgment pattern whose
intent is “to detect errors in a system by acknowledging the reception of an
input within a specified time interval”. In the Acknowledgment pattern, the
Sender in conjunction with the Timer constitute the Monitoring System, and the
Receiver in conjunction with the Acknowledger entity constitute the Monitored
System. In particular, the Sender is responsible for contacting the Monitored
System. Whenever the Sender has sent the input to the Receiver, the Timer,
that is responsible for counting down the timeout period every time an input
is provided to the Monitored System, is activated. Upon receiving an input by
the Sender, the Receiver notifies the Acknowledger. The Acknowledger is then
responsible for sending an acknowledgment to the Timer for the received input.
If the timeout period of the Timer expires for N consecutive times without

564 I. Buckley et al.

(a)

(b)

Fig. 1. Class diagram (a) and sequence diagram (b) for the Acknowledgment pattern

receiving an acknowledgment from the Monitored System, the Timer detects an
error on the Monitored System and notifies the Sender.

The sequence diagram in Figure 1(b) provides the dynamics of one of the use
cases of the pattern’s solution. The two diagrams can be evaluated by transform-
ing them to a formal representation and conducting some model checking to test
that they perform some reliability function, that is, they avoid some failure.

3.2 A Priori Validation of Reliability Patterns

A priori validation of reliability patterns provides an estimation of the level
of reliability that can be achieved before the actual system is implemented. A
priori validation can be performed using the consequences and the failure/fault
coverage of a reliability pattern.

Towards Pattern-Based Reliability Certification of Services 565

The consequences of a reliability pattern describe the advantages and disad-
vantages of using the pattern. This information can be used a priori to compare
patterns. A widely used criterion is the amount of computational resources re-
quired by the pattern.

The failure/fault coverage of a pattern, instead, is described as the number
of failures that can be identified, masked, contained, or recovered with its use.
This information can also be used for a priori selection of a pattern. For instance,
the Dual Modular Redundancy (DMR) pattern can detect one fault but does
not mask any faults; the Triple Modular Redundancy (TMR) pattern can detect
two faults and mask one; the N-Modular Redundancy (NMR) pattern can detect
(N-1) faults and mask (N-2) faults. Thus, the DMR pattern provides a lower level
of reliability than the TMR pattern. Similarly, NMR provides a higher level of
reliability than TMR. Figure 2 illustrates the structure of DMR, TMR, and
NMR.

The evaluation of pattern consequences and coverage can permit to compare
functionally equivalent services a priori (i.e., before they are invoked) on the
basis of the level of reliability provided by the corresponding patterns. In this
paper, however, we will focus on a posteriori reliability certificate checking.

3.3 A Posteriori Validation of Service Reliability

A posteriori validation of service reliability is an evaluation of the level of reli-
ability provided by a given service implementation. We can assess the level of
reliability in an implemented system that was built with the use of reliability
patterns by evaluating different reliability metrics. There are many metrics in
the literature [3,16,17,22,27,28] that can be used to calculate the reliability using
data collected by monitoring an implemented system. We have selected some re-
liability metrics from the literature and proposed some of our own. Metrics (see
Tables 2 and 3) are classified based on time- and cardinality-related failures.
Such metrics correspond to the five reliability mechanisms discussed earlier in
Section 2. Additionally, the metrics in Table 2 and Table 3 are easily measurable
in a SOA environment, using available logging services and toolkits [7,18].

The metrics and related monitoring features can be used to enhance a priori
comparison of services by taking into account the service implementation.

4 Machine Readable Certificates for Reliable Services

Current software certification schemes for security and dependability (e.g., Com-
mon Criteria [12]) provide human-readable, system-wide assurance certificates
to be used at deployment and installation time. This type of certificates does
not match the requirements introduced by a SOA in terms of runtime selection
and composition of services. A solution providing machine-readable certificates
is therefore required. Similarly to the definition of security property in [1], here
we define a concrete specialization of the reliability property as the one that pro-
vides enough information to support monitoring procedures aiming to establish

566 I. Buckley et al.

Fig. 2. Class diagram for DMR, TMR, and NMR patterns

Towards Pattern-Based Reliability Certification of Services 567

Table 2. Time-related reliability metrics

Reliability Mechanism Time-Related
Metric

Description

Redundancy - Invokes one or more
copy of the same mechanism

Time-to-Failure
(TTF)

The time the service runs before failing

Time-of-Failure
(TF)

The time at which a failure occurs

Mean Time to Fail
(MTTF)

The average time it takes for the system
to fail

Failure Occurrence
Rate (FOR)

The rate at which failures occur when the
system is active

Mean Time Between
Failures (MTBF)

The average time before a failure occurs
in the system

Diversity - Invokes one or more copy
of a particular mechanism that per-
forms the same function

Time-to-Failure
(TTF)

The amount of time the service runs be-
fore failing

Time-of-Failure
(TF)

The time at which the failure occurred

Monitoring - Checks the system con-
tinuously to identify failures and
sends alerts

Response-Time
(RT)

The amount of time it takes to send an
alert

Time-to-Identify-
Failure (TIF)

The time it takes to identify that a failure
has occurred in the system

Time-to-Failure
(TTF)

The time the service runs before failing

Diagnosis - Identifies the source of
failure

Investigation-Time
(IT)

The time it takes to identify the unit that
has failed

Mean-time-to-
Investigate (MTTA)

The average time it takes to investigate
a failure

Masking - Hides the effects of a fail-
ure

Time-to-Replace-
Failed-Component
(TRFC)

The time it takes to replace a failed com-
ponent

Containment - confines a failure to
stop its propagation

Time-of-Failure-
Arrest (TFA)

The time at which the failure was con-
fined

Time-to-Arrest-
Failure (TAF)

Time it takes to confine the failure so
that it does not propagate throughout
the system

Recovery - Erases failure and re-
stores normally

System-Recovery-
Time (SRT)

The time needed for the system to recov-
ery from a failure and return to a failure-
free operational state

Time-to-Recover
(TTR)

The time needed to repair and restore
service after a failure

if the property holds or not. In other words, a concrete definition of reliability
specifies the mechanism in place to assert it (e.g., a redundancy mechanism) and
the faults/failures the property is meant to support (e.g., loss of service failure).
This information is represented as a set of class attributes specifying the mech-
anisms and/or the faults/failures. For instance, we can define a specialization
of the reliability property whose class attributes are: mechanism=redundancy,
level=4, swapping time=10ms, and failure=loss of service failure.

Besides the mechanisms and faults used to assert reliability, our machine-
readable certificate includes all the other information in the reliability pattern
used in service implementation and any available evidence supporting reliability.
Our certificates are designed to be checked a posteriori, that is, on a working
implementation of a service (Section 3). As we shall see, our evidence consists
of a set of metrics that must be continuously monitored and updated using
monitoring rules.

More in details, our machine-readable certificates for reliability include the
following information:

568 I. Buckley et al.

Table 3. Cardinality-related reliability metrics

Reliability Mechanism Cardinality-
Related Metric

Description

Redundancy - Invokes one or more
copy of the same mechanism

Number-of-
Simultaneous-
Failure (NSF)

The number of failures occurring at the
same time

Number-of-
Invocation(NI)

Total number of calls made to a service

Number-of-Failure
(NF)

Total number of failures that occurred in
the system

Number-of-
Expected-Failures
(NEF)

The expected number of failures over a
time interval

Diversity - Invokes one or more copy
of a particular mechanism that per-
forms the same function

Number-of-
Simultaneous-
Failure (NSF)

The number of failures occurring at the
same time

Number-of-
Invocation(NI)

Total number of calls made to a service

Number-of-Failure
(NF)

Total number of failures that occurred in
the system

Number-of-
Expected-Failures
(NEF)

The expected number of failures over a
specified time interval

Monitoring - Checks the system con-
tinuously to identify failures and
sends alerts

Number-of-Failure-
Alerts (NFA)

The total number of failure alerts sent

Number-of-
Successful-
Acknowledgments
(NSA)

The total number of successful acknowl-
edgments sent

Diagnosis - Identifies the source of
failure

Number-of-
successful-
Investigations
(NSI)

The total number of times when the
source of a failure is identified

Number-of-
Unsuccessful-
Investigations
(NUI)

The total number of times when the
source of a failure is not identified

Masking - Hides the effects of a fail-
ure

Number-of-Failed-
Components-
Replaced (NFCR)

The total number of times a failed com-
ponent is replaced

Containment - confines a failure to
stop its propagation

Number-of-
Confinement-
Attempts (NUA)

The total number of times a confinement
attempt is made

Number-of-
Resource-Needed-
to-Contain-Failure
(RNCF)

The percentage of system resources that
was needed to prevent the failure from
propagating throughout the system

Number-of-
Successful-Failure-
Arrest (NSFA)

The total number of times a failure was
detained

Number-of-
Unsuccessful-
Failure-Arrest
(NUFA)

The number of times a failure was not
detained

Recovery - Erases failure and re-
stores normally

Number-of-
Successful-Recovery
(NSR)

The total number of successful recoveries

Number-of-
Unsuccessful-
Recovery (NUR)

The total number of failed or aborted re-
covery attempts

Mean-time-to-
Recover (MTTR)

The average time it takes to recover from
a failure in the system

Towards Pattern-Based Reliability Certification of Services 569

– Reliability property: a description of the concrete reliability property includ-
ing class attributes with reference to mechanisms/faults used to assess it.

– Reliability pattern: a concise description of the reliability solution. We adopt
the POSA template to describe reliability patterns.

– Evidence: a set of elements that specify the metrics and monitoring rules
used for supporting the reliability in the certificate as follows.
• Set of metrics : the metrics used to verify that a given property holds.

For each metric, we define the expected value that is requested for the
metric.

• Monitoring rules: the rules used for monitoring the metrics in the evi-
dence. Each rule contains a human-readable description and a reference
to a standard toolkit for reliability monitoring on SOAs that permits to
do the measurements of the corresponding metrics.1 A violation of the
monitoring rules produces a runtime revocation of the certificate.

Figure 3 shows our XML schema of the reliability certificate, which includes all
information explained above. We note that the certificate contains the link to
the certified service (ServiceBinding element), the reliability property (Property
element), and the pattern used for the implementation (Pattern element). Then,
it contains the evidence composed by a set of monitoring rules (MonitoringRules
element) and a set of metrics (Metrics element). The MonitoringRules element
includes a set of rule groups (RuleGroup element) that in turn contain a set
of rules each one with an ID attribute. The Metrics element contains a set of
metrics each one specifying the id of the rule to which the metric refers (RuleID
attribute), the runtime and expected values for the metric, and an operator that
specifies how to compare the two values. The runtime validity of the certificate
is obtained by monitoring each rule in the evidence and comparing the metric
runtime values with the expected values. This comparison can be simple (e.g.,
equality or inequality) or complex (e.g., including tolerance, bounding values).

When we come to the evaluation of the validity of the certificate for the service,
we have to consider that all rules assume a boolean value at each time instant.
A rule assumes value true if and only if all metric elements that refer to it are
satisfied (i.e., the runtime value is compatible with the expected value). Rules
in the RuleGroup element are then ANDed, while different RuleGroup elements
are ORed, finally producing a boolean value for the MonitoringRules evidence.
If it is true, the certificate is valid, otherwise it is revoked.

We now provide two examples of XML-based certificate for the service Voter
(see Figure 2) implementing TMR and DMR patterns, respectively.

Example 1. Figure 4 shows an example of an XML-based certificate that proves
the property Reliability for a Voter service available at the endpoint http://
www.acme.com/wsdl/voter.wsdl. The Voter implementation follows the TMR
pattern and includes a single RuleGroup element with two rules. The TMR
requires software redundancy including at least three parallel instances of the
1 Several commercial products are available, including the Microsoft Reliability

Monitor [18].

570 I. Buckley et al.

Fig. 3. XML schema of the reliability certificate

service. The first rule (rule 1) requires to continuously count all available service
instances, using a toolkit function called CountingRedundancy(). The second rule
(rule 2) requires that in case of an instance failure, the recovery time is mea-
sured. This measure is done via a function called EvaluateRecoveryTime(). The
number of available instances and the recovery time are used in the Number-of-
Simultaneous-Failure (NSF) and Time-to-Recover (TTR) metrics, respectively.
In particular, the expected value for the number of available instances (or in
other words the number of simultaneous failures the system can manage) is
three, while the recovery time is 1 minute. The operators used in the compar-
ison are both ≥. Since the runtime values of the metrics in the certificate are
equal to/greater than the expected values, the certificate is valid.

Example 2. Figure 5 shows an example of XML-based certificate that does not
prove the property Reliability for the Voter service available at the endpoint

Towards Pattern-Based Reliability Certification of Services 571

<Cert i f icate xsi :noNamespaceSchemaLocation=” . . . ” xmlns : xsi=” . . . ”>
<ServiceBinding>http ://www. acme . com/wsdl/ voter . wsdl</ServiceBinding>
<Property>

<PropertyName>http ://www. acme . com/ r e l i a b i l i t y / Re l i a b i l i t y</PropertyName>
<ClassAttribute>

<Name>mechanism</Name>
<Value>redundancy</Value>

</ClassAttribute>
<ClassAttribute>

<Name> l e v e l</Name>
<Value>3</Value>

</ClassAttribute>
<ClassAttribute>

<Name> f a i l u r e</Name>
<Value> l o s s o f s e r v i c e f a i l u r e</Value>

</ClassAttribute>
</Property>
<Pattern>TMR</Pattern>
<Evidence>

<MonitoringRules>
<RuleGroup>

<Rule ID=”1”>
<Description>Count a l l a v a i l ab l e s e r v i c e i n s t ance s</Description>
<Function>CountingRedundancy ()</Function>

</Rule>
<Rule ID=”2”>

<Description>
In case o f an in s tance f a i l u r e , measure the r ecove ry time

</Description>
<Function>EvaluatingRecoveryTime ()</Function>

</Rule>
</RuleGroup>

</MonitoringRules>
<Metrics>

<Metric Name=”NSF” RuleID=”1” >
<RuntimeValue>4</RuntimeValue>
<Operator>greaterThan/equalTo</Operator>
<ExpectedValue>3</ExpectedValue>

</Metric>
<Metric Name=”TTR” RuleID=”2”>

<RuntimeValue>1m</RuntimeValue>
<Operator>greaterThan/equalTo</Operator>
<ExpectedValue>1m</ExpectedValue>

</Metric>
</Metrics>

</Evidence>
</Cert i f icate>

Fig. 4. An example of valid certificate

http://www.acme.com/wsdl/voter.wsdl. This Voter implementation follows the
DMR pattern. The monitoring rules and metrics are the same as the ones in
Example 2, except for the expected value of Number-of-Simultaneous-Failure
(NSF) metric that is equal to two. Since the runtime value of the redundancy
metric is less than the expected value for the metric, the monitoring rule rule 1
is not satisfied and the certificate is revoked.

A final aspect to consider is the integration of the reliability certification process
and metadata within the SOA infrastructure. We need to provide a solution that
allows clients to select the service that best fits their reliability requirements at
runtime, on the basis of the information specified in the reliability certificate.
This selection is performed by matching client requirements with service certifi-
cates.

4.1 An Architecture for Reliability Certificates Checking

Let us consider an enhanced SOA infrastructure composed by the following
main parties. i) Client (c), the entity that needs to select or integrate a remote
service based on its reliability requirements. ii) Service provider (sp), the entity
implementing remote services accessed by c. iii) Certification Authority (CA),

572 I. Buckley et al.

<Cert i f icate xsi :noNamespaceSchemaLocation=” . . . ” xmlns : xsi=” . . . ”>
<ServiceBinding>http ://www. acme . com/wsdl/ voter . wsdl</ServiceBinding>
<Property>

<PropertyName>http ://www. acme . com/ r e l i a b i l i t y / Re l i a b i l i t y</PropertyName>
<ClassAttribute>

<Name>mechanism</Name>
<Value>redundancy</Value>

</ClassAttribute>
<ClassAttribute>

<Name> l e v e l</Name>
<Value>4</Value>

</ClassAttribute>
<ClassAttribute>

<Name> f a i l u r e</Name>
<Value> l o s s o f s e r v i c e f a i l u r e</Value>

</ClassAttribute>
</Property>
<Pattern>TMR</Pattern>
<Evidence>

<MonitoringRules>
<RuleGroup>

<Rule ID=”1”>
<Description>Count a l l a v a i l ab l e s e r v i c e i n s t ance s</Description>
<Function>CountingRedundancy ()</Function>

</Rule>
<Rule ID=”2”>

<Description>
In case o f an in s tance f a i l u r e , measure the r ecove ry time

</Description>
<Function>EvaluatingRecoveryTime ()</Function>

</Rule>
</RuleGroup>

</MonitoringRules>
<Metrics>

<Metric Name=”NSF” RuleID=”1” >
<RuntimeValue>1</RuntimeValue>
<Operator>greaterThan/equalTo</Operator>
<ExpectedValue>2</ExpectedValue>

</Metric>
<Metric Name=”TTR” RuleID=”2”>

<RuntimeValue>1m</RuntimeValue>
<Operator>greaterThan/equalTo</Operator>
<ExpectedValue>1m</ExpectedValue>

</Metric>
</Metrics>

</Evidence>
</Cert i f icate>

Fig. 5. An example of revoked certificate

an entity trusted by one or more users to assign certificates. iv) Evaluation Body
(EB), an independent, trusted component carrying out monitoring activities. EB
is trusted by both c and sp to correctly check the certificate validity on the basis
of the monitoring rules and metrics. v) Service Discovery (UDDI), a registry
of services (e.g., [26]) enhanced with the support for reliability certificates and
requirements.

Our service invocation process enhanced with reliability certification is com-
posed by two main stages (Figure 6). In the first stage (Steps 1-2), CA grants a
reliability certificate to a service provider sp based on a service implementation
s and a reliability pattern. In the second stage (Steps 3-9), upon receiving the
certificate for the service s, sp publishes the certificate together with the ser-
vice interface in a service registry. Then the client c searches the registry and
compares the reliability certificates of the available services. Once the client has
chosen a certificate, it will ask to the trusted component EB to confirm its va-
lidity. EB checks that the corresponding monitoring rules hold and returns a
result to c. If the result is positive c proceeds to call the service.

Towards Pattern-Based Reliability Certification of Services 573

Fig. 6. A SOA enhanced with reliability certification

5 Related Work

Many approaches to software reliability have been proposed in the past and are
presented in the following.

Becker et al. [2] proposed the Palladio Component Model (PCM) as a meta-
model for the description of component-based software architectures with a
special focus on the prediction of QoS attributes, especially performance and
reliability. Spanoudakis et al. [25] proposed a tool called SERENITY which pro-
vides dynamic configuration and assembly of both security and dependability
at runtime. Here, patterns are incorporated to realize the properties of security
through location-based access control and dependability through monitoring and
diagnostics. Monitoring and diagnostics are achieved with the use of a runtime
framework called Everest. Everest employs event calculus to detect threats and
failures in the system. The proposed solution also provides a monitoring frame-
work for runtime checks of conditions related to the correct operation of security
and dependability patterns. These conditions are specified as monitoring rules
in Event Calculus.

Bernardi et al. [3] proposed an approach called MARTE-DAM for depend-
ability modeling and analysis using UML. MARTE-DAM extends UML and
includes features for the modeling, evaluation, and analysis of real-time systems.
The authors first created a domain model that considers the main dependability
concepts and organized them into top- and low-level packages. These packages
include attribute descriptions and their relationships with each other. After the
packages are defined they are stereotyped or mapped to a concrete profile. The
packages usually contain dependability stereotypes and attributes called tags.
They used a library of defined non-functional dependability types to measure
different dependability metrics. They conducted a case study using a Message
Redundancy Service (MRS) which is described using sequence diagrams. They
then annotated the MRS with dependability properties using MARTE-DAM.
They conducted an analysis and assessment of MARTE-DAM by transforming
the MRS case into a Deterministic and Stochastic Petri Nets (DSPN). The DSPN

574 I. Buckley et al.

model was then simulated to measure its dependability and performance. Simi-
larly the work by Koopman [15] proposed the Ballista approach to quantitatively
assess fault tolerance, quality assurance and computer security. Ballista can be
used for robustness testing in operating systems. The aim is to use Ballista as a
quality check for software assurance, by measuring generic robustness for fault
tolerance and transforming security aspects into analogs of Ballista data types.
Ballista uses both software testing and fault injection to test robustness.

Lastly, Mustafiz et al. [20] proposed a model-based approach for developers
to analyze the dependability of systems whose requirements are described as use
cases, and to help identify reliable and safe ways of designing the interactions in a
system. They introduced probabilities at each step of the use case; this probabil-
ity represents the success of that step. They utilized a probabilistic extension of
state charts which are deterministic finite state automata to formally model the
interaction requirements defined in the use cases. AToM3, a tool used for formal
modeling, was used to model the state charts. An analytical evaluation of the
formal model is then carried out based on the success and failure probabilities
of events in the environment.

Several other approaches adopted a Markovian approach to evaluate system
reliability (e.g., [14,19]). Most of the above approaches produce model-based
reliability evidence. However, experience with security certification suggests that
the integration in our reliability certification scheme is not unfeasible.

Other works focused on evaluating dependability and reliability of services in
a SOA environment. Cardellini et al. [6] proposed a model-based approach to the
realization of self-adaptable SOA systems with the goal of addressing depend-
ability requirements. The authors introduced a SLA (System Level Agreement)
Monitor for monitoring aspects of the services agreed in SLA. According to
their definition of SLA, the proposed solution includes a large set of parame-
ters for different kinds of functional and non-functional service attributes, as
well as for different ways of measuring them. In our vision, this type of SLA
monitoring can be responsible for doing the measurements of the monitoring
rules specified in the service certificate. Cortellessa and Grassi [9] analyzed the
problem of reliability in SOA environments with focus on the composition and
on mathematical aspects of the reliability modeling. They define a generic set
of information to support SOA reliability analysis that can be monitored also
in the case of composed services. Grassi and Patella [11] presented a reliability
evaluation algorithm for SOA services. The algorithm uses the flow graph as-
sociated with a service to compute its reliability. Finally, Challagulla et al. [8]
proposed a solution based on AI reasoning techniques for assessing the reliability
of SOA-based systems based on dynamic collection of failure data for services
and random testing. Again, failure data could be integrated as evidence in our
reliability certificates.

6 Conclusions

Reliability is a key concern in most systems today. The SOA paradigm, which
supports runtime selection and composition of services, makes it difficult to

Towards Pattern-Based Reliability Certification of Services 575

guarantee a priori the reliability of a process instance. In this paper, we presented
a technique based on machine-readable reliability certificates using reliability
pattern. In our work, we used the certificates to conduct a posteriori evaluation
of reliable services. We are currently extending our approach to support a wider
number of reliability patterns. Also, we are working on the integration of other
types of dependability evidence.

Acknowledgements. This work was partly funded by the European Commis-
sion under the project ASSERT4SOA (contract n. FP7-257351). This material
is based upon work supported by the National Science Foundation under Grant
No. OISE-0730065.

References

1. Anisetti, M., Ardagna, C.A., Damiani, E.: Fine-grained modeling of web services
for test-based security certification. In: Proc. of the 8th International Conference
on Service Computing (SCC 2011), Washington, DC, USA (July 2011)

2. Becker, S., Koziolek, K., Reussner, R.: The palladio component model for model-
driven performance prediction. Journal of Systems and Software (JSS) 82(1), 3–22
(2009)

3. Bernardi, S., Merseguer, J., Petriu, D.: A dependability profile within marte. Jour-
nal of Software and Systems Modeling 10(3), 313–336 (2009)

4. Buckley, I., Fernandez, E., Rossi, G., Sadjadi, M.: Web services reliability pat-
terns. In: Proc. of the 21st International Conference on Software Engineering and
Knowledge Engineering (SEKE 2009), Boston, MA, USA (July 2009), short paper

5. Buckley, I., Fernandez, E.: Three patterns for fault tolerance. In: Proc. of the
International Workshop OOPSLA MiniPLoP, Orlando, FL, USA (October 2009)

6. Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L., Mirandola, R.: Towards
self-adaptation for dependable service-oriented systems. In: Proc. of the Workshop
on Architecting Dependable Systems (WADS 2008), Anchorage, AK, USA (June
2009)

7. Challagulla, V., Bastani, F., Paul, R., Tsai, W., Yinong Chen, Y.: A machine
learning-based reliability assessment model for critical software systems. In: Proc.
of the 31st Annual International Computer Software and Applications Conference
(COMPSAC), Beijing, China (July 2007)

8. Challagulla, V., Bastani, F., Yen, I.L.: High-confidence compositional reliability
assessment of soa-based systems using machine learning techniques. In: Tsai, J.,
Yu, P. (eds.) Machine Learning in Cyber Trust: Reliability, Security, Privacy, pp.
279–322. Springer, Heidelberg (2009)

9. Cortellessa, V., Grassi, V.: Test and analysis of web services. In: Baresi, L. (ed.)
Reliability Modeling and Analysis of Service-Oriented Architectures, vol. 154, pp.
339–362. Springer, Heidelberg (2007)

10. Damiani, E., Ardagna, C.A., El Ioini, N.: Open source systems security certifica-
tion. Springer, New York (2009)

11. Grassi, V., Patella, S.: Reliability prediction for service-oriented computing envi-
ronments. IEEE Internet Computing 10(3), 43–49 (2006)

12. Herrmann, D.: Using the Common Criteria for IT security evaluation. Auerbach
Publications (2002)

576 I. Buckley et al.

13. Holzmann, G.J., Joshi, R.: Reliable Software Systems Design: Defect Prevention,
Detection, and Containment. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005.
LNCS, vol. 4171, pp. 237–244. Springer, Heidelberg (2008)

14. Iyer, S., Nakayama, M., Gerbessiotis, A.: A markovian dependability model with
cascading failures. IEEE Transactions on Computers 58(9), 1238–1249 (2009)

15. Koopman, P.: Toward a scalable method for quantifying aspects of fault tolerance,
software assurance, and computer security. In: Proc. of the Computer Security,
Dependability, and Assurance: From Needs to Solutions (CSDA 1998), York, U.K
(July 1998)

16. Kopp, C.: System reliability and metrics of reliability,
http://www.ausairpower.net/Reliability-PHA.pdf (accessed in date July 2011)

17. Lyu, M.: Handbook of Software Reliability Engineering. McGraw-Hill (1995)
18. Microsoft: Using Reliability Monitor,

http://technet.microsoft.com/en-us/library/cc722107(WS.10).aspx

(accessed in date July 2011)
19. Muppala, J., Malhotra, M., Trivedi, K.: Markov dependability models of complex

systems: Analysis techniques. In: Ozekici, S. (ed.) Reliability and Maintenance of
Complex Systems. NATO ASI Series F: Computer and Systems Sciences, vol. 154,
pp. 442–486. Springer, Berlin (1996)

20. Mustafiz, S., Sun, X., Kienzle, J., Vangheluwe, H.: Model-driven assessment of
system dependability. Journal of Software and Systems Modeling 7(4), 487–502
(2008)

21. O’Brien, L., Merson, P., Bass, L.: Quality attributes for service-oriented architec-
tures. In: Proc. of the IEEE International Workshop on Systems Development in
SOA Environments (SDSOA 2007), Minneapolis, MN, USA (June 2007)

22. Pan, J.: Software reliability.18-849b dependable embedded systems. Tech.
rep., Carnegie Mellon University, http://www.ece.cmu.edu/~koopman/des s99/

sw reliability/ (accessed in date July 2011)
23. Saridakis, T.: A system of patterns for fault tolerance. In: Proc. of the EuroPLoP

Conference, Kloster Irsee, Germany (2002)
24. Saridakis, T.: Design patterns for fault containment. In: Proc. of the EuroPLoP

Conference, Kloster Irsee, Germany (2003)
25. Spanoudakis, G., Kloukinas, C., Mahbub, K.: The serenity runtime monitoring

framework. In: Spanoudakis, G., Kokolakis, S. (eds.) Security and Dependability
for Ambient Intelligence, pp. 213–238. Springer, Heidelberg (2009)

26. Tsai, W., Paul, R., Cao, Z., Yu, L., Saimi, A., Xiao, B.: Verification of Web services
using an enhanced UDDI server. In: Proc. of the 8th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS 2003), Guadalajara,
Mexico (January 2003)

27. Walter, M., Schneeweiss, W.: The modeling world of reliabiliy of reliability/safety
engineering. LiLoLe Verlag (2005)

28. Walter, M., Trinitis, C.: Automatic generation of state-based dependability models:
from availability to safety. In: Proc. of the 20th International Conference Architec-
ture of Computing Systems (ARCS 2007), Zurich, Switzerland (March 2007)

http://www.ausairpower.net/Reliability-PHA.pdf
http://technet.microsoft.com/en-us/library/cc722107(WS.10).aspx
http://www.ece.cmu.edu/~{}koopman/des_s99/sw_reliability/
http://www.ece.cmu.edu/~{}koopman/des_s99/sw_reliability/

Direct Anonymous Attestation: Enhancing

Cloud Service User Privacy

Ulrich Greveler, Benjamin Justus, and Dennis Loehr

Computer Security Lab
Münster University of Applied Sciences

D-48565 Steinfurt, Germany
{greveler,benjamin.justus,loehr}@fh-muenster.de

Abstract. We introduce a privacy enhancing cloud service architecture
based on the Direct Anonymous Attestation (DAA) scheme. In order to
protect user data, the architecture provides cloud users with the abilities
of controlling the extent of data sharing among their service accounts. A
user is then enabled to link Cloud Service applications in such a way, that
his/her personal data are shared only among designated applications.
The anonymity of the platform identity is preserved while the integrity of
the hardware platform (represented by Trusted Computing configuration
register values) is proven to the remote servers. Moreover, the cloud
service provider can assess user account activities, which leads to efficient
security enforcement measures.

Keywords: Trusted Management, Privacy Enhancing, Direct Anony-
mous Attestation, Cloud Services.

1 Introduction

1.1 Cloud Services

Cloud Services are becoming ever more popular because they offer users mobil-
ity, scalability and reliability. For instances, users are able to access computer
systems using a web browser regardless of their locations or what devices they
are using. And as the cloud infrastructure is off-site (typically offered by the
third party), it drastically reduces the operational expenditure of a business.

Google is currently one of the most popular Cloud Service providers. The
Google business model is likely to set a trend for future Cloud Service providers.
Under a Google account, a user is able to access his registered services offered
by Google. This includes the popular Gmail, Picasa Web Album, and Google
Talk. Google offers other tools, we shall name a few more as they pertain to the
privacy discussion in the next section. Google Buzz [2] is a social networking
and messaging tool integrated with Gmail. Google Latitude [3] is a geo-location
tool that allows friends to know where the user is via Google Map (Figure 1).
The tool has a “Location History” feature which stores and analyzes a user’s
location (via user’s mobile phone) over time, and it also attempts algorithmically
to determine where a person lives and works and other information relating to
a person’s profile [23].

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 577–587, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

578 U. Greveler, B. Justus, and D. Loehr

Fig. 1. Location History feature in Google Latitude

1.2 Privacy Concerns

Cloud Services often use a centralized approach when it comes to data storage of
an individual’s user account. For example, Google Dashboard 1 is a place where
a user can login and view data that Google services have collected about the
user. This includes user-provided information (names, addresses, profiles), and
data contained in each of the service accounts (emails in Gmail, events in Google
Calendar, photos in Picasa).

Some of the Google services have already drawn criticisms [22,7] because of
privacy concerns. As Cloud Services such as Google collect more and more per-
sonal data and store them in a centralized manner, the consequence of exposing
or leaking an account’s information could be nightmarish. Just imagine someone
taps into your account, can by clicking mouse a few times, discover who you are
(name in the profile), where you live (home address), where you work (working
address), who your friends are (mail contacts or Google Buzz), what your habits
are (Google Latitude), and your financial data(Google Checkout). Such a scenario
is not fiction-writing. According to Google [21] and its transparency report [4],
the company receives constant requests from governments around the world to
provide information on Google Service users. It is desirable that some measures
of data control are available on the part of users.

1.3 Trusted Computing Background

The Trusted Computing Group (TCG) is an industry standards body formed
to develop and promote specifications for trusted computing and security tech-
nologies. Trusted Platform Module (TPM) is a hardware chip embedded in plat-
forms that can carry out various cryptographic functions. TPM has a set of

1 www.google.com/dashboard

Direct Anonymous Attestation: Enhancing Cloud Service User Privacy 579

special volatile registers called platform configuration registers (PCRs). These
160-bit long registers are used to keeping track of the integrity information dur-
ing a bootstrap process. The TCPA specification defines a set of functions for
reporting PCR values [19,20]. When the TPM reports the values of the integrity
metrics that it has stored, the TPM signs those values using a TPM identity.

The process of reporting the integrity of a platform is known as remote at-
testation. To achieve the goals of remote attestation, TCG has introduced in
version 1.1 specifications the concept of privacy certification authority (Privacy
CA) [19]. It works briefly as follows. Each TPM is equipped with an RSA key
pair called an Endorsement Key (EK). The Privacy CA is assumed to know the
Endorsement Keys of all valid TPMs. Now, when TPM needs to authenticate
itself to a verifier, it generates a second pair of RSA key called an Attestation
Identity Key (AIK), it sends the AIK public key to the Privacy CA, and authen-
ticates this public key w.r.t the EK. The Privacy CA will check whether it finds
the EK in its list and, if so, issues a certificate to the TPM’s AIK key. The TPM
can then forward this certificate to the verifier and authenticate itself w.r.t. this
AIK. A user may lose his anonymity in this scheme if the privacy CA and the
verifier collude.

As discussed by Brickell, Camenisch and Chen [10], version 1.2 of the TCG
specifications incorporate the Direct Anonymous Attestation (DAA) protocol.
This protocol is designed to address anonymity issues of remote attestation. In
such a scenario, the server only learns that the platform is trusted, but not the
identity of the platform. The DAA protocol offers user-controlled linkability.

1.4 Contribution

We introduce in this paper a Cloud Service Architecture based on the Direct
Anonymous Attestation Scheme. The key features of the proposed service archi-
tecture are:

– A user is able to link Cloud Service applications in such a way, that his/her
personal data are shared only among the designated application group.

– The service provider has better assessment and control of a user’s accounts,
which leads to efficient security enforcement measures.

The plan of the paper is as follows. Section 2.1 - 2.2 presents a high-level descrip-
tion of the Direct Anonymous Attestation (DAA) scheme. Some of the technical
features of DAA are explained in section 2.3 - 2.5. The DAA-enabled Cloud
Service Architecture is presented in section 3. Section 3.1 - 3.4 explains the
components of this architecture and related implementation issues.

2 DAA Protocol Overview

The Direct Anonymous Attestation (DAA) scheme [10] draws upon techniques
from the Camenisch-Lysyanskaya (CL) signature scheme [13], identity escrow

580 U. Greveler, B. Justus, and D. Loehr

and credential systems. The protocol allows remote attestation of a trusted plat-
form while preserving the privacy of the system user. We outline below the im-
portant features of the DAA protocol. A more comprehensive description of the
DAA scheme can be found in [20,10].

The DAA scheme is made up of two sub-protocols: DAA join and DAA sign.

2.1 DAA Join Protocol

The Join protocol enables the Host/TPM to obtain a DAA certificate from the
DAA issuer.

Let (n, S, Z, R) be the DAA issuer public key, where n is an RSA modulus, and
S, Z, R are integers modulo n. We assume that the platform (TPM) is already
authenticated to the DAA issuer via its Endorsement Key, EK.

The TPM first generates a secret value f , and constructs the blind message
U := RfSν′

mod n where ν′ is a “blinding” value chosen randomly. The TPM
also computes NI = ζf

I , where ζI = (hash(1||bsnI))(Γ−1)/ρ (mod Γ), and Γ, ρ
are components of DAA issuer’s public key. The TPM then sends (U, NI) to the
DAA issuer, and convinces the DAA issuer that U and NI are correctly formed
(using zero knowledge proof). If the DAA issuer accepts the proof, it will sign the

blind message U , by computing A =
(

Z
USν′′

)1/e

mod n, where ν′′ is a random
integer, and e is a random prime. The DAA issuer then sends the TPM the triple
(A, e, ν′′), and proves that A was computed correctly. The DAA certificate is the
then (A, e, ν = ν′ + ν′′).

2.2 DAA Sign Protocol

The sign protocol allows a platform to prove to a verifier that it possesses a DAA
certificate, and at the same time, to sign and authenticate messages. The TPM
signs a message m using its DAA secret f , its DAA certificate, and the public
parameters of the system. The message m may be an Attestation Identity Key
(AIK) generated by TPM, or an arbitrary message. If m is an AIK, the key can
be later used to sign PCR data or to certify a non-migratable key. In addition,
the TPM computes NV := ζf mod Γ where ζ is random or derived from the
DAA verifier’s basename depending on the anonymity requirement (see section
2.3). The value NV allows for rogue tagging. The output of the sign protocol is
known as the DAA Signature, σ.

The verifier verifies the DAA signature σ. The verifier needs to be convinced
that the TPM has a DAA certificate (A, e, ν) from a specific DAA issuer. This is
accomplished by a zero-knowledge proof of knowledge of a set of values f, A, e,
and ν such AeRfSν ≡ Z (mod n). Further it needs to be shown that a message
m is signed by the TPM using its DAA secret f , where f is the same value in
the DAA certificate.

2.3 Variable Anonymity

The DAA protocol provides user-controlled anonymity and linkability. Precisely,
a platform/TPM can achieve the following two statuses: 1. verifier linkable trans-

Direct Anonymous Attestation: Enhancing Cloud Service User Privacy 581

action 2. verifier non-linkable transaction. The statuses are controlled by the pa-
rameter: ζ. If non-linkable transactions are desired, a different and random value
of ζ should be used for every interaction with a verifier. If linkable transactions
are desired, ζ should be selected from a static basename based on the verifier,
e.g ζ = (hash(1||bsnV))(Γ−1)/ρ (mod Γ).

2.4 Rogue Tagging

The DAA protocol has a built-in rogue tagging capability. A rogue TPM is
defined when its secret value f has been extracted. Once a rogue TPM is dis-
covered, the secret f values are distributed to all potential issuers/verifiers who
add the value to their rogue-list. Upon receiving NV , the verifier can check if
NV is equal to ζ f̃ for all f̃ stemming from rogue TPMs, and hence tag the TPM
if necessary.

2.5 A Privacy Flaw Involving Corrupt Administrators

It is shown in [26] that an issuer and verifier can collude to break the anonymity
of the user when linkable transactions are used. This privacy violation relies
on the assumption that an issuer and a verifier share the same basename (i.e.
bsnI = bsnV). The authors in the same paper suggest the following security
fix. In the Join Protocol, compute ζI = (hash(0||bsnV))(Γ−1)/ρ (mod Γ). And
in the Sign Protocol, compute ζ = (hash(1||bsnV))(Γ−1)/ρ (mod Γ). Now this
leads to NI �= NV regardless bsnI = bsnV . So the issuer and the verifier can not
identify the user by matching the values NI and NV .

3 DAA-Based Cloud Service Architecture

The proposed Cloud Service Architecture is displayed in Figure 2. For simplicity,
our discussion is restricted to a single Cloud Service provider who acts both as
an issuer and verifier. The user-privacy is preserved even when the Cloud Service

Fig. 2. Privacy-Enhanced Cloud Service Architecture

582 U. Greveler, B. Justus, and D. Loehr

decides to employ another service for issuing DAA certificates (see section 2.5). A
DAA certificate is issued when a user registers/login an account. The credential
of the user is checked at this stage following the DAA Join protocol. After the
login, a user is able to set linkability options (section 3.2) among the services
offered by the Cloud. When a user requests the usage of a particular service, the
permission is granted (or denied) by the Cloud Service acting as a verifier after
further security analyses (see section 3.4). We discuss below in details the various
components of this architecture and some involved implementation issues.

3.1 Service Login

A user is required to login in order to use the services offered by the Cloud. A
successful login provides the user a one-time DAA certificate, so that the user can
proceed to request further services. Figure 3 shows the behind-scene of a login
session for a TPM based platform. The user login session is implemented based
on the DAA Join protocol, and since ζI is constant (derived from the Cloud
Service basename), a rogue-list can be computed and kept afresh at desired time
interval. As soon as a TPM is compromised and its secret key f distributed,
the service provider can tag the rogue TPM by augmenting the rogue-list. The
tagged TPM will not be able to access the account at next login session.

Fig. 3. Cloud Service Login for a TPM

3.2 User-Controlled Linkablility

Upon a successful login, a user is allowed to set linking options among the
application services offered by the Cloud. By Linkable Applications, we mean
that given two or more of service requests/usages originating from the same user,
the cloud service is not able to link them and conclude they originate from the

Direct Anonymous Attestation: Enhancing Cloud Service User Privacy 583

same user. Of course, linkbility has meaning only when anonymity is achieved.
Anonymous attestation is achieved at the Service Login stage as explained in the
previous section. There are three service link-statuses. Figure 4 shows a typical
application linking scenario.

1. Non-linkable Application. Service is not able to link a user’s transactions
2. Single Application Linkability. Service is able to link a user’s transac-

tions and data in a single application
3. Multiple Applications Linkability. Service is able to link a user’s trans-

actions and data across the application group

The linkability mechanism hinges upon how a basename is selected (see sec-
tion 2.3). For non-linkable applications, a random basename (random ζ) is used
during the service transactions. Typical non-linkable applications could be ar-
eas where a user performs web searches/browsing, and the user wishes to keep
anonymous his search content and also his search history non-linkable. Linkable
applications employ a static basename. In particular, each application group
(services a user wishes to link) employs a basename which should reflect the
service content of the application group (see section 3.3).

The decision as to what service applications to link is of course a personal one.
For example, some users may prefer to link services that contain their financial
data (credit card number, investment portfolio, etc.). Some limited service users
may choose not to link any of the registered services. A Cloud Service should be
able to track a user’s activities in particular accounts. The history information
contained in an account is necessary for purposes such as billing, or further

Fig. 4. User-Controlled Linkable Cloud Service Applications

584 U. Greveler, B. Justus, and D. Loehr

service upgrading. On the other hand, by restricting information sharing among
the service accounts, a user can be assured his/her information when divulged
will only contain those parts of the profile.

3.3 Selecting a Basename

The linkable applications share a common basename. The basenames must be
available as soon as a user sets the linking configuration, and before requesting
service usages. The current DAA scheme does not provide protocol procedures
specifying how basenames should be generated. One possible solution is to pre-
generate a list of basenames containing all possible combinations of linkable
applications. This list is stored on the server and becomes available once a user
sets a particular linking configuration. However, this solution may become im-
practical as the number of services increases (leads to an exponential growth of
options). A more efficient solution might be to create a basename generating
program. Whenever a user sets the linking configuration, suitable basenames
can be generated and saved on the servers. Smyth et als. [26] discussed some
alternative approaches in constructing and managing the basename lists.

3.4 Account Suspension/Closing

DAA rogue tagging capability allows Cloud Service providers to suspend or close
a user’s account when they see suspicious behavior on the part of a user. The
specifics of the rogue behavior is of course application dependent. For example,
in an application involving software download/upgrade, the Cloud Service may
require that remote platform to prove its trustworthiness by providing the plat-
form’s PCR values. The failure of compliance or unsatisfactory reporting results
on the user part may lead to a rogue status. Other suspicious behavior could
be: above-normal usage of a particular account, repeated account creation and
deletion, and any other discretionary rules decided by the verifier.

Also since a common basename (constant ζ) is used among linked-applications,
the Cloud Service (as a verifier) is able to update the rogue list regularly. The
DAA Sign protocol can be efficiently carried out using batch proof and verifica-
tion techniques [14,8]. In fact, Chen’s asymmetric pairing based Sign Protocol
[14] is extremely computationally efficient. For each signing process, the TPM is
only required to compute one exponentiation if linkability is not required, and
two exponentiations when linkability is required. The efficiency of this scheme
comes from an ingenious use of a batch proof and verification scheme in proving
the discrete logarithmic equality between two group elements y1 and y2 to two
bases g1 and g2 respectively (i.e. logg1

y1 = logg2
y2) .

4 Related Work

The DAA scheme is introduced in the seminal paper [10]. The DAA protocol
is designed to address anonymity issues of remote attestation. Privacy flaws

Direct Anonymous Attestation: Enhancing Cloud Service User Privacy 585

were found after the introduction of the original protocol [25,26] and the cor-
responding security fixes are suggested in [24,26]. There have been work done
to enhance capabilities of the original DAA scheme. Camenisch [12] suggested
a hybrid anonymous attestation scheme which combines the DAA and the pri-
vacy CA approaches. Brickell and Li [11] introduced a new DAA scheme called
Enhanced Privacy ID. The new DAA scheme while providing non-linkability, is
capable of revoking a TPM even if the TPM private key is unknown.

Data security and privacy is one of the biggest challenges in Cloud Comput-
ing. Cloud data must be protected not only against external attackers, but also
corrupt insiders (administrators). The information-centric approach [5,17] aims
to make cloud data self-intelligent. In this approach, cloud data are encrypted
and packaged with a usage policy. The data when accessed will consult its policy,
create a virtualization environment, and attempt to assess the trustworthiness
of the data environment (using Trusted Computing).

Applied Cryptography offers tools to address privacy and security questions
related to cloud data. Recent advances in cryptography allow remote opera-
tions, manipulations and computations on encrypted cloud data. The predicate
encryption scheme [27,9] allows cloud based searches on encrypted documents.
Homomorphic encryption [18,28] and Private Information Retrieval (PIR) [15]
can perform computations on encrypted data without decrypting.

To make cloud services more secure and reliable, Google has launched a pro-
totype hardware Cr-48, which is tailor-designed to run the Google Chrome Op-
erating System [1]. The prototype hardware is shipped with Trusted Platform
Modules. About 60,000 Cr-48s were manufactured and distributed to testers and
reviewers in early December 2010. Reviews published in mid-December 2010 in-
dicated that while the project holds promise, it is still not market-ready [29]. In
the EU framework, PrimeLife [6] is an ongoing research project funded by the
European Commission. The main objective of the project is to bring sustainable
privacy and identity management to future networks and cloud services.

5 Conclusion

Cloud Service is clearly becoming one of today’s most popular Internet-based
services, due to its cost-efficiency and flexibility. The future development of
Cloud Services relies on mature technology deployment in areas, such as hard-
ware/software security, data provision infrastructure, and reliable Third-party
data control [16].

To better protect user data, we have in this paper introduced a cloud service
architecture based on the Direct Anonymous Attestation scheme as outlined
in the Trust Computing Group specification [20]. The theoretical DAA-based
architecture provides cloud users the abilities of controlling the extent of data
sharing among his service accounts, proving the integrity of his platform (PCR
values) to remote servers, and the most important of all, preserving anonymity
of the platform identity.

586 U. Greveler, B. Justus, and D. Loehr

Acknowledgements. Many thanks go to the anonymous reviewers who pro-
vided detailed and insightful commentary on this paper.

References

1. Chrome Notebook, http://www.google.com/chromeos/pilot-program-cr48.html

2. Google Buzz, http://www.google.com/buzz

3. Google Latitude, http://www.google.com/latitude

4. Google Transparency Report,
http://www.google.com/transparencyreport/governmentrequests/

5. An information-centric approach to information security,
http://virtulization.sys-con.com/node/171199

6. The Primelife Project, http://www.primelife.eu/

7. Warning: Google buzz has a huge privacy flaw (February 2010),
http://www.businessinsider.com/warning-google-buzz-has-a-huge

-privacy-flaw-2010-2

8. Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponen-
tiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS,
vol. 1403, pp. 236–250. Springer, Heidelberg (1998)

9. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

10. Brickell, E.F., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: ACM
Conference on Computer and Communications Security, pp. 132–145 (2004)

11. Brickell, E., Li, J.: Enhanced Privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. In: WPES, pp. 21–30 (2007)

12. Camenisch, J.: Better Privacy for Trusted Computing Platforms (Extended Ab-
stract). In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS
2004. LNCS, vol. 3193, pp. 73–88. Springer, Heidelberg (2004)

13. Camenisch, J.L., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols.
In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp.
268–289. Springer, Heidelberg (2003)

14. Chen, L.: A DAA Scheme Using Batch Proof and Verification. In: Acquisti, A.,
Smith, S.W., Sadeghi, A.-R. (eds.) TRUST 2010. LNCS, vol. 6101, pp. 166–180.
Springer, Heidelberg (2010)

15. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

16. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina,
J.: Controlling data in the cloud: outsourcing computation without outsourcing
control. In: Proceedings of the 2009 ACM Workshop on Cloud Computing Security,
CCSW 2009, pp. 85–90. ACM, New York (2009)

17. EMC. Information-centric security,
http://www.idc.pt/resources/PPTs/2007/IT\&Internet_Security/12.EMC.pdf

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pp. 169–178. ACM
(2009)

19. Trusted Computing Group. Trusted computing platform alliance (TCPA) main
specification, version 1.1b (2001), www.trustedcomputing.org

http://www.google.com/chromeos/pilot-program-cr48.html
http://www.google.com/buzz
http://www.google.com/latitude
http://www.google.com/transparencyreport/governmentrequests/
http://virtulization.sys-con.com/node/171199
http://www.primelife.eu/
http://www.businessinsider.com/warning-google-buzz-has-a-huge-privacy-flaw-2010-2
http://www.businessinsider.com/warning-google-buzz-has-a-huge-privacy-flaw-2010-2
http://www.idc.pt/resources/PPTs/2007/IT\&Internet_Security/12.EMC.pdf
www.trustedcomputing.org

Direct Anonymous Attestation: Enhancing Cloud Service User Privacy 587

20. Trusted Computing Group. Trusted computing platform alliance (TCPA) main
specification, version 1.2 (2003), www.trustedcomputing.org

21. Privacy International. An interview with google on government access to personal
information,
https://www.privacyinternational.org/article/interview-google-

government-access-personal-information

22. Privacy International. Privacy international identifies major security flaw in
google’s global phone tracking system,
https://www.privacyinternational.org/article/privacy-international-

identifies-major-security-flaw-google’s-global-phone-tracking-system

23. Lambert, C.: Google latitude, now with location history and alerts (Novem-
ber 2009), http://googlemobile.blogspot.com/2009/11/google-latitude-now

-with-location.html

24. Leung, A., Chen, L., Mitchell, C.J.: On a Possible Privacy Flaw in Direct Anony-
mous Attestation (DAA). In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust
2008. LNCS, vol. 4968, pp. 179–190. Springer, Heidelberg (2008)

25. Rudolph, C.: Covert Identity Information in Direct Anonymous Attestation
(DAA). In: SEC, pp. 443–448 (2007)

26. Smyth, B., Ryan, M., Chen, L.: Direct Anonymous Attestation (DAA): Ensuring
Privacy with Corrupt Administrators. In: Stajano, F., Meadows, C., Capkun, S.,
Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 218–231. Springer, Heidelberg
(2007)

27. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

28. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption Over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

29. Wolfgang, G.: Chrome OS is ahead of its time (December 2010),
http://www.conceivablytech.com/4624/products/

chrome-os-is-ahead-of-its-time

 www.trustedcomputing.org
https://www.privacyinternational.org/article/interview-google-government-access-personal-information
https://www.privacyinternational.org/article/interview-google-government-access-personal-information
https://www.privacyinternational.org/article/privacy-international-identifies-major-security-flaw-google's-global-phone-tracking-system
https://www.privacyinternational.org/article/privacy-international-identifies-major-security-flaw-google's-global-phone-tracking-system
http://googlemobile.blogspot.com/2009/11/google-latitude-now-with-location.html
http://googlemobile.blogspot.com/2009/11/google-latitude-now-with-location.html
http://www.conceivablytech.com/4624/products/chrome-os-is-ahead-of-its-time
http://www.conceivablytech.com/4624/products/chrome-os-is-ahead-of-its-time

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 588–604, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Trust Management Languages and Complexity

Krzysztof Sacha

Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warszawa, Poland
k.sacha@ia.pw.edu.pl

Abstract. Trust management is a concept of automatic verification of access
rights against distributed security policies. A policy is described by a set of cre-
dentials that define membership of roles and delegation of authority over a re-
source between the members of roles. Making an access control decision is
equivalent to resolving a credential chain between the requester and the role,
which members are authorized to use a resource. A credential is an electronic
document, formulated using a trust management language. This way, trust man-
agement languages are a tool for describing credentials and specifying access
control policies in a flexible and modifiable way. This paper discusses the ex-
pressive power of trust management languages, describes a new extension to
Role-based Trust Managements language RTT, and evaluates the complexity of
algorithm that is used for answering security queries.

Keywords: Access control, trust management, role-based trust management
language, credential graph, credential chain.

1 Introduction

The traditional access control mechanism assigns to each protected resource an access
control list (ACL), which enumerates the entities that have permissions to access the
resource [1]. A decision on whether to allow or to deny access to a resource is based
on a verification of identity of the requester. If the number of entities is big and many
entities may have the same access rights with respect to resources, then assigning
access rights to roles, i.e. sets of entities, rather than to individual entities, can help in
reducing the size of the access control problem [2]. Such a schema can easily be im-
plemented in such a system, in which the identity of entities that can make requests
for resources is known in advance, e.g. in the form of user accounts that are created
before the access to resources is really requested.

Quite another approach to access control is needed in open environments, in which
the identity of potential users is not known in advance. For example, the users are
identified by public keys and no user accounts are required. Trust management is a
concept of decentralized access control, in which the decisions are based on creden-
tials presented by the requesters, regardless of their identity. A credential is an elec-
tronic document, which describes a delegation of access rights from one entity (the
issuer) to another entity or a group of entities. Such an approach separates a symbolic
representation of trust (credentials) from the identity of users.

 Trust Management Languages and Complexity 589

A set of credentials describes a security policy in terms of roles, role membership
and delegation of authority between the members of roles. A security policy can be
decentralized, if the members of particular roles may issue the credentials locally.
Making an access control decision is equivalent to resolving a credential chain be-
tween the requester and the role, which is authorized to use the resource. This way,
trust management becomes a concept of automatic verification of access rights against
security policies [3]. The policies are created externally to the applications, and can be
modified without the need to modify the executable program code of the application.

Credentials are implemented as electronic documents, composed of statements in a
trust management language. Several languages to describe credentials and security
policies have been developed and described in the literature. The goal of this research
is to look at syntax, semantics and the expressive power of these languages, make
some extensions to a Role-based Trust Managements language RTT, and evaluate the
complexity of an algorithm that is used for answering security queries.

The remaining part of the paper is organized as follows. Related work is described
in Section 2. Trust management languages are summarized in Section 3. A motivating
example of a policy-based access control system in an open SOA environment is pre-
sented in Section 4. Possible system architecture is discussed in Section 5, and an
extension to RTT is described in Section 6. An algorithm for resolving a set of RTT
credentials that define a policy and an evaluation of computational complexity are
given in Section 7. The conclusions and plans for further research are in Section 8.

2 Related Work

There can be many independent entities in distributed computing environments, such
as SOA systems, with authority to control access to a variety of system resources.
Moreover, there can be a need of multiple entities to have input to the access control
policy for a single resource. A secure implementation of such a distributed access
control mechanism can be based on credentials that convey authorization to use a
resource from one entity to another. A credential is a digitally signed certificate,
which provides a copy of the public key of the issuer, the receiver and a description of
the authority that is delegated from the issuer to the receiver of this credential.

A few such distributed authorization environments have been implemented and de-
scribed in the literature. Examples are PolicyMaker [3], KeyNote [4], SPKI/SDSI [5]
and Akenti [6]. All those systems use languages that allow assigning privileges to
entities and use credentials to delegate permissions from their issuers to subjects.

In SPKI/SDSI (Simple Public Key Infrastructure/Simple Distributed Security In-
frastructure) a concept of distributed name space was introduced, according to which
an entity could define a local name, related to certain privileges with respect to system
resources, and then define members of the local name space or delegate responsibility
for the name space membership to another entities. The definition of names and dele-
gation of responsibility was expressed by means of credentials. An algorithm for
building the semantics of a given set of credentials was defined with efficiency of
order O(n3l), where n was the number of certificates and l was the length of ‘hops’ in
the longest responsibility delegation chain [5].

590 K. Sacha

The concept of distributed name space was moved at a higher level of abstraction
by the introduction of roles and Role-based Trust management languages [7-9].

There is a family of RT languages, with varying expressive power and complexity.
The basic language RT0 allows describing roles and role membership, delegation of
authority over roles and role intersection. The issuers as well as the members of roles
are entities, and no means for expressing complex security policies, such as threshold
policy, exists in this language.

RTT extends the expressive power of RT0 significantly, by adding manifold roles
and providing extensions to express threshold and separation of duties policies. A
manifold role is a role that can be satisfied only by a group of cooperating entities. A
threshold policy requires a specified minimum number of entities to agree before
access is granted. Separation of duties policy requires that different entities must hold
the conflicting roles. If a cooperation of these roles is required before access is
granted, then a set of entities is needed, each of which fulfils only one of these con-
flicting roles. Both of these two policies mean that some roles cannot be fulfilled by a
single entity and a group of entities must cooperate in order to satisfy these roles.

Apart of an informal interpretation, a formal definition of the language semantics,
which gives meaning to a set of credentials in the application domain, has been pro-
vided. In [8], constraint DATALOG was used as the semantic foundation for the RT
language family. According to this approach, credentials in RT were translated into
DATALOG rules. This way, the semantics was defined in an algorithmically tractable
way. A strict, set theoretic semantics of RT0 was defined in [9] and of RTT in [10,11].
An important difference between the two (RT0 and RTT) is such that RT0 supports
singleton roles only, and the meaning of a role is a set of entities, each of which can
fulfill this role, while RTT supports manifold roles, and the meaning of a role is a set
of groups of entities that fulfill the role.

Security queries can be resolved with respect to a set of credentials that define the
security policy within a system, by means of a credential graph, which is described in
Section 7. The nodes of this graph are roles and groups of entities, which define the
meaning of roles. Making a decision on the membership of a group of entities in a
given role is equivalent to checking whether a path from this group to the role exists
in the graph. An algorithm to construct a credential graph of a set of RT0 credentials
was introduced in [8]. An early version of the algorithm to construct a credential
graph of RTT credentials was described in [11], however, without an estimation of
computational complexity. An improved algorithm to construct a credential graph of
extended RTT is presented in Section 7, together with an evaluation of complexity.

3 Trust Management Languages

All RT languages are built upon a set of three basic notions: Entities, role names and
roles. An entity is someone who can participate in issuing certificates, making re-
quests to access a resource, or both. An entity can, e.g., be a person or a program
identified by a public key within a computer system. A role name represents access
rights with respect to system resources, similar to Admin, Guest or Simple user in
Windows operating system, granted by an entity. A role represents groups of entities

 Trust Management Languages and Complexity 591

(may be singletons) that have access rights related to a certain role name and granted
by the role issuer. Credentials are statements in a RT language, which are used for
describing access control policies, assigning entities to roles and delegating authority
to the members of other roles.

In this paper, we use nouns beginning with a capital letter or just capital letters, e.g.
A, B, C, to denote groups of entities. Role names are denoted as identifiers beginning
with a small letter or just small letters, e.g. r, s, t. Roles take the form of a group of
entities (role issuer) followed by a role name separated by a dot, e.g. A.r. A credential
consists of a role, left arrow symbol and a valid role expression, e.g. A.r ← B.s.

BNF specification of the RTT syntax can be written as follows.

<credential> ::= <role> ← <role-expression>
<role> ::= <entity-set> . <role-name>
<role-expression> ::= <entity-set>

| <role>
| <role> . <role-name>
| <role> ∩ <role
| <role> ⊕ <role>
| <role> ⊗ <role>

There are six types of role expressions, according to this specification, and six types
of credentials in RTT, which are interpreted in the following way:

A.r ← B – simple membership: a group of entities B can satisfy role A.r.

A.r ← B.s – simple inclusion: role A.r includes all members of role B.s. This is
a delegation of authority over r from A to B, as B may cause new
groups of entities to become members of role A.r by issuing cre-
dentials that define B.s.

A.r ← B.s.t – linking inclusion: role A.r includes role C.t for each C, which is a
member of role B.s. This is a delegation of authority over r from A
to all the members of role B.s.

A.r ← B.s ∩ C.t – intersection inclusion: role A.r includes all the groups of entities
that are members of both roles B.s as well as C.t. This is a partial
delegation from A to B and C.

A.r ← B.s ⊕ C.t – role product: A.r is a manifold role that can be satisfied by a union
set of one member of role B.s and one member of role C.t. How-
ever, the same person can play both of these roles.

A.r ← B.s ⊗ C.t – disjoint role product: A.r is a manifold role that can be satisfied by
a union set of one member of role B.s and one member of role C.t,
where both members are disjoint.

This allows expressing separation of duties policy, in which
different entities must hold the conflicting roles B.s and C.t.

In case when the roles are identical, e.g. A.r ← B.s ⊗ B.s, the
credential can express threshold policy in which two (or more, if
we use more credentials) members of B.s can jointly fulfill A.r.

592 K. Sacha

The syntax of a language describes the rules for constructing language expressions,
such as credentials in RTT. The semantics of a language describes the meaning of
expressions in the application domain. Such a definition consists of two parts [12]: A
definition of a semantic domain, which gives meaning to the language expressions,
and a semantic mapping from the syntax to the semantic domain. A set theoretic se-
mantics is the one that takes sets or power sets of entities as the semantic domain. If
singleton roles are considered, the meaning of a role can be a set of entities that fulfill
this role. If manifold roles are taken into account, the meaning of a role is a set of
groups (sets) of entities that fulfill the role.

Let E be a set of entities and R be a set of role names. Denote the power set of enti-
ties by F = 2E. Each element in F is a set of entities from E. Each element in 2F is a
set, composed of sets of entities from E. The semantic mapping can now be described
as a function:

Ŝ : 2E × R → 2F

that maps each role from 2E × R to a set of all such sets of entities, which are members
of this role. Such a mapping from the set of RTT roles to the power set of entities can
be defined formally in the language of first-order logic as shown in Table 1, where A,
B, C, X, Y are groups of entities, r, s, t are role names, A.r, B.s, C.t are roles, and
Ŝ (A.r) denotes the semantics of role A.r.

Table 1. The interpretation of first-order formulas in RTT

RTT credential Meaning of the credential

A.r ← B B ∈ Ŝ(A.r)

A.r ← B.s (∀x) (x ∈ Ŝ(B.s) x ∈ Ŝ(A.r))

A.r ← B.s.t (∀x) (∀y) (y ∈ Ŝ(B.s) ∧ x ∈ Ŝ(y.t) x ∈ Ŝ(A.r))

A.r ← B.s ∩ C.t (∀x) (x ∈ Ŝ(B.s) ∧ x ∈ Ŝ(C.t) x ∈ Ŝ(A.r))

A.r ← B.s ⊕ C.t (∀x) (∀y) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(C.t) x∪y ∈ Ŝ(A.r))

A.r ← B.s ⊗ C.t (∀x) (∀y) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(C.t) ∧ x∩y=φ x∪y ∈ Ŝ(A.r))

SPKI/SDSI allows the first three types of credentials only. However, linking inclu-

sion of arbitrary length is allowed. This does not increase the expressive power of the
language, because a linking inclusion of arbitrary length, e.g. A.r ← B.s…t.u, can
always be substituted by a pair of credentials C.v ← B.s…t and A.r ← C.v.u. This way
linking inclusion of length l can always be substituted by a set of l credentials with
linking inclusions of length 2. Therefore, the complexity O(n3l) of the algorithm for
building the semantics of a given set of SPKI/SDSI credentials can, in fact, be consi-
dered as equal to O(n4) in terms of the number n of RT credentials.

The language RT0 allows the first four types of credentials, and supports singleton
roles only. The language RTT allows all six types of credentials and supports manifold
roles. The use of manifold roles is inevitable, because the members of roles defined
by the last two credentials are always groups rather than single entities.

 Trust Management Languages and Complexity 593

4 Motivating Example

Consider a student management system of a university composed of a set of nearly
independent faculties. The system offers a set of services for the university and for the
faculties, according to the concept of service-oriented architecture (SOA). The facul-
ties administer particular instances of each service separately. No centralized security
policy for the system exists. Instead, the service owner defines a security policy for
each service independently.

The university, the library, each faculty and each student has a public key and is an
entity, which can participate in issuing credentials and requesting services from the
system. The university defined a role that reflected the university structure and issued
the following set of credentials:

{University}.faculty ← {IT} // faculty of Information Technology
{University}.faculty ← {Chemistry} // faculty of Chemistry
............ // other faculties of the university

Each faculty of the university defined a set of roles that reflected the main actors of
the didactic process and issued a set of credentials:

{IT}.student ← {A} // A is an IT student
{IT}.teacher ← {X} // X is an IT staff member
{IT}.supervisor ← {X} // staff X can supervise students
............ // other entities within IT faculty

The following types of services were identified for the first release of this system.

1. Library Service. Offered full on-line access to the library resources. The owner of
the service was the university, which applied the following security policy: Access
was granted to all the students and teachers of all faculties of this university. The
access control list for the service contained a role {University}.library. Security poli-
cy was described by a set of two credentials:

{University}.library ← {University}.faculty.student
{University}.library ← {University}.faculty.teacher

2. Grade Book. A complex service with two separate entry points: For students – to
read the grades, and for teachers – to add new grades. Particular faculties of the uni-
versity owned separate instances of this service.

(a) The service offered the requesting student read access to all the grades for the
requester. Security policy for each instance of the service was defined by each owner.
Chemistry decided that access was granted to the students only, and no delegation of
the access rights was allowed. The access control list for the service contained a role
{Chemistry}.gradeVisitor. Security policy was described by a single credential:

{Chemistry}.gradeVisitor ← {Chemistry}.student

594 K. Sacha

IT faculty selected another policy. Access was granted to students, who could dele-
gate permission to another people, and these people could pass the delegation again.
Such a policy was described by the following credentials:

{IT}. gradeVisitor ← {IT}.student
{IT}. gradeVisitor ← {IT}. gradeVisitor.friend

IT student A could now delegate permission to read his or her grades to another per-
son, e.g. B, by issuing a new credential:

{A}.friend ← {B}

Because a member of role {A}.friend became also a member of {IT}.gradeVisitor,
then B could pass the delegation again to C:

{B}.friend ← {C}

It is important to note that the permission for delegation of access rights was an indi-
vidual decision of IT faculty, and other faculties could decide differently. Such a deci-
sion can be changed at any time by simply changing the set of existing credentials –
in this case, by removing the credential:

{IT}. gradeVisitor ← {IT}. gradeVisitor.friend.

If IT faculty removes this credential, then it will implement the same policy as Che-
mistry. No need for removing all the student’s “friend” credentials exists.

(b) Teacher’s entry point represented in fact a set of services to manipulate grades
received by students in particular courses. Only the teachers (one or more) assigned to
a course could add or change a grade. Therefore, there was a separate access control
list maintained for each course, which was identified by a course number NN.

IT faculty decided that an assigned teacher could delegate access to another teacher
(an assistant), but the delegates could not pass the permissions again. Such a policy
was implemented at IT for a course NN by an access control list that contained a role
{IT}.grade_NN and the following set of credentials:

{IT}.grade_01 ← {IT}.teacher_01
{IT}.grade_01 ← {IT}.teacher_01.assistant ∩ {IT}.teacher
{IT}.teacher_01 ← {X}
............ // the same for courses 02, 03,…

IT teacher X assigned to a course number 01 could now delegate permission to mani-
pulate grades in the course to another person, e.g. Y, by issuing a new credential:

{X}.assistant ← {Y}

The delegation was effective only when the delegate was an IT teacher. The delegate
could not pass the permission to another person.

3. Supervisor Assignment. The service allowed registering assignment of a student
to the selected supervisor. Separate instances of this service were owned by particular
faculties of the university. Security policy for each instance of the service was defined

 Trust Management Languages and Complexity 595

by the owner. IT faculty decided that the assignment was registered if the student as
well as the teacher agreed on this fact. The access control list for the service contained
a manifold role {IT}.assignment. Security policy was described by a single credential:

{IT}.assignment ← {IT}.student ⊗ {IT}.supervizor

Successful registration of student A to supervisor X resulted in adding the pair of enti-
ties {A, X} to role {IT}.superStudent, which was done by issuing a new credential by
the service:

{IT}.superStudent ← {A, X}

4. Course Registration. The service allowed a student to register for optional pro-
gram. The owner of the service was a faculty, which defined the security policy for
the service: The registration was valid when it was signed jointly by a supervisor and
the assigned student. The access control list for the service contained manifold role
{IT}.superStudent issued by the previous service (Supervisor assignment).

5 System Architecture

An SOA system consists of a number of services that can be located within multiple
separate systems from several business and administration domains, interconnected
by a computer network. For example, particular instances of the services described in
the previous section can be deployed to local servers, and administered by particular
faculties of the university. Service clients, i.e. students and teachers, can invoke the
services from remote, e.g. personal, computers.

Access rights to services established by the service owners can vary from one ser-
vice instance to another. If the access rights are expressed through policies and de-
scribed by sets of credentials, then those credentials must be stored somewhere in the
network and presented for verification, at each invocation of a service. The verifica-
tion of the access rights requires finding a credential chain, which confirms the mem-
bership of the requester in the role placed in the access control list of the service. This
is a complex process, which can be performed by a special service, called trust man-
agement (TM) service, and invoked as part of the client’s invocation. A general archi-
tecture of the system is shown in Fig. 1.

An important decision to make is to find the right place to store credentials. In
practice, credentials can be stored by requesters, by issuers or in a known place in the
network. SPKI/SDSI [5] as well as Akenti [6] assumes that credentials are presented
by the application, i.e. by the invoked service in Fig. 1. One another possibility is to

Fig. 1. Services and trust management servers in a SOA system

TM_service Client Service_1 Service_N

invocation access

…

control query

596 K. Sacha

store at least part of credentials by a TM-service located in the administration domain.
For example, each faculty can have a TM-service, which stores credentials issued by
this faculty. However, credentials acting as personal certificates that define the
attributes of particular entities can be stored by those entities, e.g., a credential:

{IT}.student ← {A}

can function as a student card, which is owned by the student. Credentials issued by
particular entities, i.e. students and teachers in our example, to delegate permissions,
can be stored by the subject entities.

After logging to a service, the client presents all the credentials, which are in his or
her possession, and the service passes those credentials to the TM-service and asks for
permission. TM-service builds the credential graph and resolves the query, using the
presented credentials as well as the credentials stored in a local memory. TM-service
can also look through the network in order to find other credentials.

Decentralized storage of credentials looks attractive, because it fits nicely into the
general ideas of distribution and loose coupling that stand behind service-oriented
architecture. However, the lack of control over the set of certificates exposes the sys-
tem on a danger of inconsistency and raises the questions of certificate revocation,
validity periods, etc. Neither of these questions can be answered by an analysis of the

credential graph. Therefore, the validity of certificates need to be assessed externally
to the authorization logic [13]. Such a solution splits the process of resolving security
queries into two separate layers, shown in Fig. 2, of the authorization logic, which
performs a credential graph analysis, and the certificate validation, which searches
through certificate revocation lists and verifies the validity periods with respect to the
local time. This way, TM-service plays a part of a local certification authority, with
the authority to decide, which credentials are taken into account, and which are not.

Single Sign-On. Consider another example adapted from [14]. There is a set of coo-
perating services (web sites), e.g. airline ticket reservation, car rental and hotel reser-
vation. The users are identified on these sites by means of user accounts that contain
access control data, such as user name and password, and other data, e.g. credit card

Remote Certificates

Local Certificates

Authorization Query

Credential graph Validation

Decision

TM service

Fig. 2. The structure of a trust management (TM) service

 Trust Management Languages and Complexity 597

numbers. When a user requests access to more than one service, the authentication of
his or her identity can be done separately on each site, or on one site that asserts the
user status to the other services. The latter possibility, which permits the user to enter
one name and password in order to use multiple services, is called a single sign-on
property of the access control system. It is convenient to the user, who need not repeat
a login procedure many times in sequence. The implementation of a single sign-on is
among the main goals of Security Assertion Markup Language (SAML 2.0), an
OASIS standard [14], which defines a language and a protocol to create, request and
pass the identity assertions between the interrelated services.

Trust management is quite another concept, in which the access control data is dis-
tributed among credentials, and no user accounts and no login procedure are used.
Instead, a user must present a set of credentials when invoking a service. Single sign-
on can mean in this case, that the user is not forced to resend the same certificates
many times in sequence, when invoking more than one service. The existence of a
trust management service can help in solving this problem. When a user accesses the
first service, the necessary certificates are sent to TM service. The certificates and the
credential graph that is built in the memory of TM service are valid for a predefined
period of time, and can be used within this period to resolve queries issued by another
services. For example, a teacher at IT, in the previous example, who gained access to
the grade book, need not resend {IT}.teacher ← {X} credential to access the library.

6 Local Certification Authority

Supervisor Assignment service, described in Section 4, acts as a centralized issuer of
the membership credentials for role {IT}.superStudent, which controls access to
Course Registration service. Each member of this role is a pair composed of a student
and the assigned supervisor. A decentralized approach to supervisor assignment could
relay on credentials issued by supervisors to students, without any contribution of the
faculty. For example, if supervisor X agrees to supervise students A and B, then he or
she may issue the following credentials to confirm the assignment:

{X}.myStudent ← {A}
{X}.myStudent ← {B}

The faculty may also decentralize decision-making on who can deputize X, if X is
temporarily unable to perform supervisory duties. To do this, new role {X}.supervisor
can be introduced, with the membership defined by means of credentials, like:

{X}.supervisor ← {X}
{X}.supervisor ← {Y}

If a faculty accepts such a decentralized approach to supervisor assignment, then Su-
pervisor Assignment service becomes useless, and role {IT}.superStudent, which
controls access to Course Registration service, can be defined by a credential:

{IT}.superStudent ← {IT}.supervisor.(supervisor ⊗ myStudent)

598 K. Sacha

Table 2. The meaning of new credentials in extended RTT

Extensions to RTT Meaning of the credential

A.r ← B.s(t ⊕ u) (∀x) (∀y) (∀z) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(x.t) ∧ z ∈ Ŝ(x.u)
 y∪z ∈ Ŝ(A.r))

A.r ← B.s(t ⊗ u) (∀x) (∀y) (∀z) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(x.t) ∧ z ∈ Ŝ(x.u) ∧ y∩z=φ y∪z
∈ Ŝ(A.r))

A.r ← B.s(t ∩ u) (∀x) (∀y) (x ∈ Ŝ(B.s) ∧ y ∈ Ŝ(x.t) ∧ y ∈ Ŝ(x.u) y ∈ Ŝ(A.r))

Credentials of this type, which join linking inclusion with other operators in a sin-
gle role expression, do not exist in RTT or any other Role based Trust management
language. However, they can easily be added to the language with the semantics given
by first-order formulae shown in Table 2.

The new types of credentials do not increase the expressive power of the language,
however, they can help in reducing the number of roles and the number of credentials
that are necessary to define a security policy. An equivalent definition of role
{IT}.superStudent in RTT requires introduction of a new role and two credentials:

{X}superStudent ← {X}.supervisor ⊗ {X}.myStudent
{IT}.superStudent ← {IT}.supervisor.superStudent
Decentralized approach to supervisor assignment raises a practical problem of re-

solving a conflict between two different teachers, say X and Y, who can independently
agree to supervise a student, e.g. A, and issue credentials:

{X}.myStudent ← {A}
{Y}.myStudent ← {A}

Who of the two: X or Y is in this case responsible for signing course registration for
student A? The problem can be solved if the supervisor assignment credentials are
stored by TM-service (Fig. 1), which decides on the validity of credentials. Layered
architecture of the access control mechanism resembles slightly a layered framework
for modeling software and security policies introduced in [15].

7 Credential Graph

The semantics of a set P of credentials that define the security policy within a system
can be represented by a credential graph. The nodes of this graph are role expressions,
which are present in credentials, and the directed edges reflect inclusion of sets of
groups of entities, which define the meaning of those expressions. Making a decision
on the membership of a group X of entities in role A.r is equivalent to checking
whether a path from X to A.r exists in the graph.

Let P be a set of extended RTT credentials over a set E of entities and a set R of
role names. A credential graph of P is defined in the following way.

Definition (Extended RTT Credential Graph). Credential graph of a set P of ex-
tended RTT credentials is a pair GP = (NP , EP) comprising a set NP of nodes, which
are role expressions that appear in credentials from P and groups of entities from E,

 Trust Management Languages and Complexity 599

and a set EP of directed edges, which are ordered pairs of nodes from NP. The sets NP
and EP are the smallest sets that are closed with respect to the following properties:

1) If A.r ← e, where e is a role expression, belongs to P, then the nodes A.r and e
belong to NP and a credential edge (e, A.r) belongs to EP.

2) If role expressions B.s.t and B.s belong to NP, then for each X ⊆ E, such that X.t
belongs to NP and a path from X to B.s exists in GP, a derived edge (X.t, B.s.t) be-
longs to EP.

3) If role expressions B.s ∩ C.t, B.s, and C.t belong to NP, then for each X ⊆ E, such
that paths from X to B.s and from X to C.t exist in GP, a derived edge
(X, B.s ∩ C.t) belongs to EP.

4) If role expressions B.s ⊕ C.t, B.s and C.t belong to NP, then for each X, Y ⊆ E, such
that paths from X to B.s and from Y to C.t exist in GP, a derived node X∪Y belongs
to NP and a derived edge (X∪Y, B.s ⊕ C.t) belongs to EP.

5) If role expressions B.s ⊗ C.t, B.s and C.t belong to NP, then for each X, Y ⊆ E, such
that X∩Y=φ and paths from X to B.s and from Y to C.t exist in GP, a derived node
X∪Y belongs to NP and a derived edge (X∪Y, B.s ⊗ C.t) belongs to EP.

6) If role expressions B.s.(t ⊕ u) and B.s belong to NP, then for each X ⊆ E, such that
X.t and X.u belong to NP, node X.t ⊕ X.u belongs to NP. If a path from X to B.s ex-
ists in GP, then a derived edge (X.t ⊕ X.u, B.s.(t ⊕ u)) belongs to EP.

7) If role expressions B.s.(t ⊗ u) and B.s belong to NP, then for each X ⊆ E, such that
X.t and X.u belong to NP, node X.t ⊗ X.u belongs to NP. If a path from X to B.s ex-
ists in GP, and a derived edge (X.t ⊗ X.u, B.s.(t ⊗ u)) belongs to EP.

8) If role expressions B.s.(t ∩ u) and B.s belong to NP, then for each X ⊆ E, such that
X.t and X.u belong to NP, node X.t ∩ X.u belongs to NP. If a path from X to B.s ex-
ists in GP, then a derived edge (X.t ∩ X.u, B.s.(t ∩ u)) belongs to EP.

Credential graph GP of a set P of credentials consists of nodes and edges. Part of the
nodes can be defined by a static analysis of credentials from P. These nodes, called
static nodes, are roles, which stand at the left hand side of symbol ←, and role expres-
sions, which appear in credentials at the right hand side of symbol ←. Nodes that are
added according to properties 6 through 8 are counted as static nodes. Other nodes are
created dynamically in the process of building the graph, by repetitive scanning
through the set of credentials and executing role expressions with operators ⊕ and ⊗.
These additional nodes are union sets of entities, added to the graph according to
properties 4 and 5. Credential edges (property 1) are defined statically, while derived
edges (properties 2 through 8) are added dynamically.

One can note that dynamically added nodes can be connected directly only to role
expressions of type B.s ⊕ C.t, B.s ⊗ C.t and B.s ∩ C.t. In order to enhance the effi-
ciency of the graph building algorithm, the necessary search for paths within the
graph will be restricted to a subgraph composed of static nodes and all the edges be-
tween these nodes. If a path from a node of type B.s ⊕ C.t, B.s ⊗ C.t or B.s ∩ C.t to a

600 K. Sacha

certain node N is found, then paths from all groups of entities that are direct predeces-
sors of this node to N are also considered.

Example. To observe the construction of a credential graph, assume that the creden-
tials listed in Sections 4, excluding those related to Supervisor Assignment service,
and the credentials listed in Section 6 have been issued, and an IT student A tries to
register for an optional program.

To do this, A invokes Course Registration service of IT and presents a request
signed jointly by A and Y. The access control list of the service contains a manifold
role {IT}.superStudent, hence, the membership of pair {A, Y} in this role must be
verified. The service calls TM-server, which looks through the accessible credentials
and finds the following ones that are significant for resolving the query:

{IT}.superStudent ← {IT}.supervisor.superStudent
{IT}.supervisor ← {X}
{X}.supervisor ← {Y}
{X}.myStudent ← {A}

The authorization logic of the server builds a credential graph shown in Fig. 3. Small
circled numbers placed near the edges of the graph refer to the numbers of properties
in the definition of credential graph given above. After building the graph, TM-
service verifies that a path from {A, Y} to {IT}.superStudent exists, and confirms
authorization of A for registering for an optional course.

The complexity of the algorithm for building the credential graph of a set P of ex-
tended RTT credentials can be evaluated with respect to the number of credentials in P
(the cardinality of P), which is considered the input size of the problem. The method
of evaluation is by assessing the complexity of each step of the algorithm and then
counting the number of repetitions of particular steps. We assume that Dijkstra’s algo-

Fig. 3. Credential graph of the Course Registration service

{IT}.superStudent

{IT}.supervisor {IT}.supervisor.(supervisor ⊗ myStudent)

1

{X}

{A, Y}

IT Course Registration service

{X}.supervisor {Y}

{X}.myStudent {A}

{X}.supervisor ⊗ {X}.myStudent)

1

1

1

7

5

 Trust Management Languages and Complexity 601

rithm is used for finding paths between two nodes in the graph [16]. The complexity
of this algorithm is O(v2), where v is the number of nodes.

Let n be the number of credentials in P and m be the number of role expressions
other than roles and groups of entities in credentials in P. Obviously m ≤ n. Moreover,
let A, B, C, D, E, X, Y denote groups of entities from E.

The Algorithm (Creation of the Credential Graph)

1) For each credential A.r ← e in P, add nodes A.r and e to NP and add an edge
(e, A.r) to EP.

Remark. There are 2n nodes in the graph that has been built in step 1. The complexity
of step 1 is of order O(n).

2) For each node B.s(t ⊕ u), B.s(t ⊗ u) and B.s.(t ∩ u) in NP, if there exist a pair of
nodes X.t and X.u in NP, where X is an arbitrary group of entities, then add node
X.t ⊕ X.u, X.t ⊗ X.u or X.t ∩ X.u, respectively, to NP.

Remark. The number of nodes B.s(t ⊕ u), B.s(t ⊗ u), B.s.(t ∩ u) is not greater than m.
Hence, a search through NP in order to find pairs of nodes X.t and X.u is repeated at
most m times. The complexity of step 2 is of order O(n2).

The number of static nodes in NP is not greater than 3n.
Loop through the steps 3 through 6:

3) For each node B.s.t find all the reverse paths (i.e. paths that start in B.s and move
along edges in the backward direction) from B.s to the other nodes of the graph.
- If a reverse path exists from B.s to X and role X.t belongs to NP, then add an

edge (X.t, B.s.t) to EP.
- If a reverse path exists from B.s to e, where e equals D.u ⊕ E.v, D.u ⊗ E.y or

D.u ∩ E.v, then for each group X of entities, such that X is a direct predecessor
of e and role X.t belongs to NP, add an edge (X.t, B.s.t) to EP.

Remark. The number of nodes B.s, which are the initial nodes in searching for paths,
is not greater than the number m of role expressions B.s.t. Hence, the search for paths
is repeated at most m times.

4) For each node B.s ∩ C.t find all the reverse paths from B.s and from C.t to the other
nodes of the graph.
- If a reverse path exists from B.s to X and from C.t to X, then add an edge

(X, B.s ∩ C.t) to EP.
- If a reverse paths exist from B.s to e1 and from C.t to e2, where e1 as well as e2

are or role expressions of type D.u ⊕ E.v, D.u ⊗ E.v or D.u ∩ E.v, then select all
groups of entities X that are direct predecessors of e1 as well as of e2 and add an
edge (X, B.s ∩ C.t) to EP.

Remark. The number of nodes B.s and C.t, which are the initial nodes in searching for
paths, is not greater than 2m, hence, the search is repeated not more than 2m times.

5) For each node B.s ⊕ C.t and B.s ⊗ C.t find all the reverse paths from B.s and from
C.t to the other nodes of the graph. Select all the pairs of nodes e1, e2, such that

602 K. Sacha

paths from B.s to e1 and from C.t to e2 exist, and e1 as well as e2 are groups of enti-
ties or role expressions of type D.u ⊕ E.v, D.u ⊗ E.v or D.u ∩ E.v.

In case of expression B.s ⊗ C.t, in the following three points take into account
only those pairs X, Y, for which X ∩ Y = φ.

- If both nodes e1 and e2 are groups X and Y of entities, then add node X∪Y to NP
and add an edge (X∪Y, B.s ⊕ C.t) or (X∪Y, B.s ⊗ C.t), respectively, to EP.

- If one node, e1 or e2, is a group X of entities, while the other node is an expres-
sion e, where e equals D.u ⊕ E.v, D.u ⊗ E.v or D.u ∩ E.v, then select all the di-
rect predecessors of e that are groups of entities. For each such group Y add
node X∪Y to NP and add an edge (X∪Y, B.s ⊕ C.t) or (X∪Y, B.s ⊗ C.t), respec-
tively, to EP.

- If both nodes e1 and e2 are expressions of type D.u ⊕ E.v, D.u ⊗ E.v or
D.u ∩ E.v, then select all pairs X, Y of the direct predecessors: X of e1 and Y of
e2, which are groups of entities. For each of such pair add node X∪Y to NP and
add an edge (X∪Y, B.s ⊕ C.t) or (X∪Y, B.s ⊗ C.t), respectively, to EP.

Remark. The number of nodes B.s and C.t, which are the initial nodes in searching for
paths, is not greater than 2m, hence, the search is repeated not more than 2m times.

6) For each node B.s.(t ⊕ u) and B.s.(t ⊗ u) find all the reverse paths from B.s to the
other nodes of the graph.
- If a reverse path exists from B.s to X and roles X.t and X.u exist in NP, then add

an edge (X.t ⊕ X.u, B.s.(t ⊕ u)) or (X.t ⊗ X.u, B.s.(t ⊗ u)), respectively, to EP.
- If a reverse path exists from B.s to e, where e equals D.u ⊕ E.v, D.u ⊗ E.y or

D.u ∩ E.v, then for each group X of entities, such that X is a direct predecessor
of e and roles X.t and X.u exist in NP, add an edge (X.t ⊕ X.u, B.s.(t ⊕ u)) or
(X.t ⊗ X.u, B.s.(t ⊗ u)), respectively, to EP.

Remark. The number of nodes B.s, which are the initial nodes in searching for paths,
is not greater than m, hence, the search is repeated not more than m times.

The number of static nodes is not greater than 3n in a graph that is searched for paths
in steps 3 through 6 of the above algorithm. Therefore, the complexity of finding the
paths that begin in a given node is of order O(n2). The total number of nodes, which
are the initial nodes in searching for paths in steps 3 through 6 is also not greater than
2n. Hence, the search is repeated not more than 2n times, and the complexity of a
single pass through the loop (steps 3 through 6) is of order O(n3).

A single pass through the loop corresponds to a single search through the set of n
credentials. Each pass adds edges to the static part of the graph. The possibility of
adding an edge depends on the existence of certain paths in the graph, which means
that it depends on the sequence in which the credentials are processed. Repeating the
loop n times guaranties that all the possible sequences of credentials have been exer-
cised. Therefore, the complexity of the entire algorithm is of order O(n4).

 Trust Management Languages and Complexity 603

8 Conclusions

The main issue of public key infrastructure has been to provide secure means of au-
thentication entities, based on cryptographic methods and techniques. The next step in
developing an approach to the application security could be a research on politics and
procedures for authorizing the entities. Trust management is an attempt to define se-
curity policies in a decentralized way, based on a delegation of authority. This paper
describes a set of trust management languages, discusses their expressive power, sug-
gests an extension to Role-based Trust Managements language RTT and evaluates the
complexity of algorithm that is used for answering security queries in RTT.

Trust management languages SPKI/SDSI, RT0, RTT and extended RTT are built
upon the same set of basic operators for role membership, role inclusion, linking in-
clusion and role intersection. SPKI/SDSI allows linking inclusion of arbitrary length,
while the other languages allow linking inclusion of length two. This is not a signifi-
cant difference, because a credential with linking inclusion of length n can easily be
converted into n−1 credentials with the length of linking inclusion not greater than
two.

RTT and extended RTT support manifold roles and role product operators that are
not present in the other languages. This is a significant difference, because the added
features allow expressing threshold and separation of duties policies. Extended RTT
allows symmetrical superposition of the linking operator and the other operators of
role intersection and role product. This does not increase the expressive power of RTT
and is a ‘syntactic sugar’ that can help in reducing the number of credentials and thus
the size of the access control problem. The selected features of the four trust man-
agement languages are shown in Table 3.

Table 3. Roles and role expressions in the four trust management languages and SAML

Language Roles Manifold roles Symmetric linking

SPKI/SDSI no no no

RT0 yes no no

RTT yes yes no

Extended RTT yes yes yes

SAML 2.0 no no no

The security queries are resolved in trust management languages by building a cre-

dential graph and searching for a path within this graph. The complexity of building
the graph has been proved polynomial of order O(n4), with respect to the number n of
credentials at hand. It is interesting to observe that the order of complexity is the same
for extended RTT credential graph and for much simpler language used in SPKI/SDSI
environment.

Our plans for further research include implementation of a prototype of a trust
management service outlined in Section 5.

604 K. Sacha

Acknowledgments. This research was supported in part by the Ministry of Science
and Higher Education under the grant number 5321/B/T02/2010/39.

References

1. A guide to understanding discretionary access control in trusted systems. National Com-
puter Security Center, NCSC-TG-003, Maryland (1987)

2. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-Based Access Control Models.
IEEE Computer (2), 38–47 (1996)

3. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: 17th IEEE
Symposium on Security and Privacy, pp. 164–173. IEEE Computer Society Press (1996)

4. Blaze, M., Feigenbaum, J., Ioannidis, J.: The KeyNote Trust Management System Version
2. Internet Society, Network Working Group, RFC 2704 (1999)

5. Clarke, D., Elien, J.-E., Ellison, C., Fredette, M., Morcos, A., Rivest, R.L.: Certificate
chain discovery in SPKI/SDSI. J. Computer Security 9, 285–322 (2001)

6. Thompson, M.R., Essiari, A., Mudumbai, S.: Certificate-Based Authorization Policy in a
PKI Environment. ACM Trans. Information and System Security 6(4), 566–588 (2003)

7. Li, N., Mitchell, J.: RT: A Role-Based Trust-Management Framework. In: 3rd DARPA In-
formation Survivability Conference and Exposition, pp. 201–212. IEEE Computer Society
Press (2003)

8. Li, N., Winsborough, W., Mitchell, J.: Distributed Credential Chain Discovery in Trust
Management. J. Computer Security 1, 35–86 (2003)

9. Czenko, M., Etalle, S., Li, D., Winsborough, W.: An Introduction to the Role Based Trust
Management Framework RT. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2007. LNCS,
vol. 4677, pp. 246–281. Springer, Heidelberg (2007)

10. Felkner, A., Sacha, K.: The Semantics of Role-Based Trust Management Languages. In:
4th IFIP Central and East European Conference on Software Engineering Techniques, pp.
195–206 (2009)

11. Sacha, K.: Credential Chain Discovery in RTT Trust Management Language. In: Kotenko,
I., Skormin, V. (eds.) MMM-ACNS 2010. LNCS, vol. 6258, pp. 195–208. Springer, Hei-
delberg (2010)

12. Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff, Part I:
The Basic Stuff. Weizmann Science Press of Israel, Jerusalem (2000)

13. Chapin, P., Skalka, C., Wang, X.: Authorization in Trust Management: Features and
Foundations. ACM Comput. Survey 3, 1–48 (2008)

14. Ragouzis N. et al. (eds.) Security Assertion Markup Language (SAML) V2.0 Technical
Overview. OASIS Committee Draft, March 2008. Document ID sstc-saml-tech-overview-
2.0-cd-02 (2008),
http://www.oasis-open.org/committees/download.php/27819/

15. Reith, M., Niu, J., Winsborough, W.: Engineering Trust Management into Software Mod-
els. In: International Workshop on Modeling in Software Engineering. IEEE Computer
Society (2007)

16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT
Press and McGraw-Hill (2001)

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 605–616, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Ontology-Based Matching of Security Attributes
for Personal Data Access in e-Health

Ioana Ciuciu1, Brecht Claerhout2, Louis Schilders2, and Robert Meersman1

1 Semantics Technology and Applications Research Laboratory, Vrije Universiteit Brussel,
Pleinlaan 2, B-1050 Brussels, Belgium

2 Custodix
Kortrijksesteenweg 214 b3 Sint-Martens-Latem Belgium 9830

{iciuciu,meersman}@vub.ac.be
{louis.schilders,brecht.claerhout}@custodix.com

Abstract. This paper discusses an interoperability solution (tool) for the
internal management of a policy decision engine located at the level of the au-
thorization layer of a service oriented environment. The tool aims to support
federated access control in the context of distributed architectures, in which a
local authorization policy is not able to recognize all the attributes in the
authorization decision requests. The approach is based on an ontology-based
interoperation service (OBIS) whose role is to translate security attributes
(name-value pairs) from local security vocabularies into the attributes
recognized by the central (Master Policy Decision Point) vocabulary based on a
security ontology and its domain-specific extensions which provides semantic
reasoning services. The approach is validated in an e-Health scenario for the
access of patient data for diabetes patient monitoring and disease management.

Keywords: Authentication, Authorization, Security Policies, Ontology, Ontol-
ogy-based Data Matching, e-Health.

1 Introduction and Motivation

Among the challenges of the Trusted Architecture for Securely Shared Services
(TAS3)1 project is the interoperability of different access control policies in the con-
text of unified distributed architectures. In this setting, every stakeholder organization
describes its authorization policy using its organization-specific vocabulary, and when
a policy engine receives an authorization request containing unknown terms, it se-
mantically matches these with the ones locally known by the authorization policy.

In our previous work we have proposed an ontology-based interoperation service
(OBIS [1]) which calculates the matching of security concepts extracted from access
requests and local authorization policies. This study extends OBIS by proposing a
method for mapping the security attributes (name-value pairs specifying the subject,
resource and action) corresponding to a local security vocabulary into security

1 http://tas3.eu/

606 I. Ciuciu et al.

attributes recognized by the central Policy Decision Point (PDP) using a policy on-
tology and ontology-based matching strategies. The extension of OBIS is called OBIS
Domain Mapper. The ontology is grounded in natural language, which enables indi-
viduals from different organizations to express their security policies in an intelligible
way, thus enforcing the user-centricity.

The proposed method is illustrated on the ontological representation of XACML
policies, but the approach applies to other policy languages.

The use case is created with one of the TAS3 test beds, the Custodix Healthcare
demonstrator [2].

The rest of the paper is organized as follows: Section II describes related work;
Section III provides background information on the technology being used. The re-
quirements and use case are presented in Section IV. Section V proposes a method for
attribute mapping based on ontology-based data matching techniques. Section VI
presents our conclusion and suggestions for future work.

2 Related Work

Several approaches exist which aim at resolving semantic access control.
The Semantic Access Control (SAC) Model [3] was specifically designed to en-

force ABAC policies in heterogeneous and distributed environments. It maps policies
to resources dynamically based on the semantics of policies and resources. The Se-
mantic Access Control Enabler (SACE) [4] was developed to enforce Role-Based
Access Control (RBAC) when accessing heterogeneous data from databases.

Verma [5] presents a semantic policy matchmaking for web service policies specified
across multiple domains (e.g. security, privacy, trust). KAoS [6] is a semantic policy
language and a framework for the specification, management and enforcement of poli-
cies within different security domains. A similar approach is presented in [7], concerned
with the meaning of contexts to be used directly in an access control policy.

Several approaches propose [8,9,10] semantic reasoning services for policy man-
agement based on Semantic Web technologies.

Our approach is slightly different, proposing its own paradigm for semantic reason-
ing based on an ontology grounded in natural language and on ontology-based data
matching strategies.

3 Background

In this section we provide relevant background knowledge related to our approach,
namely the knowledge and constraints representation and the policy language used.

3.1 DOGMA Approach for Ontology Engineering

The common understanding of security policies in this study is based on the Delevop-
ing Ontology Grounded Methodology and Applications (DOGMA, [11]). DOGMA is

Ontology-Based Matching of Security Attributes for Personal Data Access in e-Health 607

a formal ontology engineering framework applying the principles of database design
methodology (NIAM/ORM2, [12]) to ontology engineering. DOGMA ontology is
grounded in natural language and based on the double articulation principle [13],
which makes the ontology two layered:

1. The lexon base layer, containing a set of simple binary facts, called lexons,
which are expressed in semi-natural language;

2. The commitment layer that formally defines rules and constraints by which
applications may make use of the lexons from the lexon base.

A lexon is defined as a quintuple ‹γ, t1, r1, r2, t2› representing a fact type. γ is a context
identifier that points to a context where two terms, t1, t2 are originally defined and
disambiguated. r1, r2 are two roles that characterize the relationship between t1 and t2.
For example, ‹ABAC, Subject, performs, performed by, Action› is a lexon which
means “in the context of ABAC, a Subject performs and Action and an Action is per-
formed by a Subject”. Table 1 illustrates high level concepts of an ABAC (Attribute
Based Access Control) policy represented with lexons.

Table 1. Lexon representation of Subject, Action and Target in the ABAC model

ABAC Policy
Head term Role Co-role Tail term
SecurityPolicy controls controlled by Action
SecurityPolicy has of Target
SecurityPolicy written by writes Subject
Action performed by performs Subject
Action performed on under Resource

A commitment contains a constraint on a (set of) lexon(s). For instance, we can

apply the cardinality constraint on the above lexon, − “only one value is allowed for
the action attribute”. The commitment language needs to be specified in a language
such as OWL2 or SDRule language [14].

The lexons together with the commitments can be further converted to RDF3 and
OWL in order to make the ontology processable by other applications and by widely
adopted semantic reasoners (e.g. Pellet [15]).

3.2 XACML

The eXtensible Control Markup Language (XACML [16]) is an OASIS standard lan-
guage and architecture for the expression and exchange of access control policies,
decision requests and responses.

The XACML policy language is structured in three levels of elements: policyset, pol-
icy and rule. A policyset comprises a set of policysets and/or policies, a target, obliga-
tions and a policy combining algorithm identifier. A policy comprises a set of rules, a
target, obligations and a rule combining algorithm identifier. Finally a rule comprises a

2 http://www.w3.org/TR/owl-ref/
3 http://www.w3.org/RDF/

608 I. Ciuciu et al.

condition, a target and an effect. The target component found in each element type iden-
tifies the set of subjects, resources, actions and environments to which it applies.

As illustrated in Table 1, a subject (e.g. physician) requests permission to perform
an action (e.g. read) on a resource (e.g. medical diary). A rule is a mapping from a
target to a decision, whose value can be either Permit or Deny. A rule combining
algorithm is used to resolve conflicts among all the rules which are applicable and
which have different effects.

An attribute is the basic unit of an XACML policy. Attributes are characteristics of
the subject, resource, action or environment of the access request. An XACML access
request therefore consists of a list of attributes-value pairs. The mappings in this study
are done between attribute-value pairs in a request (at the level of the central PDP) to
attribute-value pairs in the local authorization policy.

4 Requirements and Use Case

4.1 Health Information Network Requirements

The present study is done in the context of the TAS3 authorization architecture. TAS3
is a framework for protecting personal data in service oriented environments. It focus-
es on interoperability and aims to deliver a generic solution useful in a wide range of
application domains. At the level of the authorization layer this translates into seman-
tic support for different policy decision engines and policy languages.

TAS3 primarily puts people into control over their personal data in a service
oriented architecture. The e-Health pilot demonstrates how TAS3 accomplishes this
objective in the highly regulated e-health environment, where user centric personal
data management translates into:

(1) The possibility for patients to adjust the default e-health domain policies de-
termined by legislation and ethical guidelines, so that their personal data is
protected according to their personal preferences on data protection;

• For example: a patient should have the option not to disclose mental
health related information from a replacement physician (out-of-
office hours).

• However, in a highly regulated environment such as healthcare, per-
sonal freedom to hide or disclose health information has its bounda-
ries (e.g. where hiding it could result in bad treatment or damage the
treating healthcare professionals). These need to be taken into ac-
count.

(2) The possibility for data users to query patients for specific (extraordinary)
access requests for data processing (e-consent).

• For example: a patient could be invited to share existing data into a
clinical study.

4.2 Use Case: Federated Data Access

The demonstration environment (Fig. 1) was modeled according to the “distributed
health repositories with central access” concept, which forms the basis of many

Ontology-Based Matching of Security Attributes for Personal Data Access in e-Health 609

e-health information sharing initiatives in the EU and the US. In particular, the use
case was staged in a Belgian setting.

Central to the system is the Patient Information Location Service (PILS [2]) which
is used by professionals (e.g. medical doctors, researchers) to find patient information
in distributed repositories. Two types of repositories have been connected in this de-
monstrator: (1) hospital results servers and (2) summary record repositories, as illu-
strated in Fig. 1.

Multiple Identity Providers (IdP) exist in the trial, all of which are authoritative
with respect to unique user identities and to unique healthcare professional identifiers
(similar to the actual situation in Belgium). Finally, there is a privacy management
center where patients can set access policies on their personal data.

In the privacy center, patients can specify their personal privacy preferences which
are then to be enforced over the health information sharing network for health profes-
sionals. The preferences set by the individual patients are translated into XACML
policies which are loaded into a central Policy Decision Point (PDP). Service provid-
ers participating in the health network are required to forward access requests to that
central PDP (if they involve resources covered by the central PDP policies).

Apart from the differences in authorization frameworks, different service providers
use different security vocabularies (attribute-value pairs describing the subject, re-
source and action). In the demonstrator, the OBIS Domain Mapper service instances
are responsible for translating local security vocabularies (name value pairs) into the
“domain” vocabulary, used in by the central PDP.

Fig. 1. Health Care use case scenario

Table 2 exemplifies request content of an access request to the central (Master)
PDP in the first scenario.

610 I. Ciuciu et al.

Table 2. Example of content of an access request to the central PDP

Request Decision

Subject Action Resource

Subject_type = GP Action_type = Read Resource_type = labresult Permit

Subject_type = GP Action_type =
Create

Resource_type = document Permit

Any Any Any Deny

5 Ontology-Based Attribute Matching for Access Control

Here we explain how we extend our previous ontology-based interoperation service to
support mappings between the attributes in a decision request and the attributes from
the access control rules in a local access policy. The method, the tools and the under-
lying technologies are presented.

5.1 Ontology-Based Interoperation Service (OBIS)

OBIS was initially designed as a web service located in the authorization architecture
of TAS3. It provides an interface to perform relation lookups between two terms
represented as URIs, corresponding to the Service Requestor (SR) and to the Service
Provider (SP) respectively, in order to determine the level of dominance between
them.

Given e.g. a name of a resource, OBIS semantically infers the object class of the
resource and computes how the authorization propagates in the (role/attribute/action)
inheritance hierarchy, while enforcing the constraints in the ontological commitments.

This study proposes an extension of the OBIS service, called OBIS Domain Map-
per, which translates the security attributes in the local PDPs into attributes recog-
nized by the central (master) PDP in the TAS3 authorization architecture. The main
difference between the original OBIS service and the one proposed in this paper is
that the first one only returns a code indicating the domination relation between two
security concepts originating from different policy languages, while with the second
approach the mapping between the two security domains (languages) is also provided.
This approach is described in the next section.

5.2 Security Attributes Mapping

A method is proposed here for the mapping of security attributes using the Ω-RIDL
Mapping Generator tool [17,18]. Ω-RIDL takes in input an XML file representing the
access decision request and an ontology file (lexons and commitments) representing
the access control policy ontology and returns a Ω-RIDL mapping file which maps
the security attributes to concepts in the ontology.

Ontology-Based Matching of Security Attributes for Personal Data Access in e-Health 611

Fig. 2. Ω-RIDL mapping generator architecture

The Ω-RIDL mappings are obtained by applying ontology-based data matching
strategies at (1) string level (fuzzy literal similarity, e.g. JaroWinkler); (2) lexical
level (synonymous similarity, e.g. based on WordNet4) and (3) ontology (lexon
graph) level (semantic similarity) in this order (refer to [19] for details on ontology-
based data matching strategies).

Ω-RIDL is designed as a web service which is called by the OBIS Domain Mapper
service in order to infer the mapping of security attributes between two domains.
OBIS Domain Mapper sends a bag of security attributes (name-value pairs
representing the subject, resource and action) corresponding to a domain Dom1 in
input to Ω-RIDL which performs semantic inference and ontology-based data match-
ing operations and returns another bag of attributes corresponding to another domain,
Dom2, as shown in Fig. 3. Previous to calling Ω-RIDL, OBIS performs an explicit
translation (mapping) from the local terminology (Dom1, Dom2) to the core ontology
(lexon graph), based on the user-defined dictionaries. Then Ω-RIDL performs seman-
tic inference operations on the ontology graph in order to infer the mappings from
Dom1 to Dom2. For the moment being we only consider one-to-one mapping of
attribute-value pairs. The one-to-many and many-to-one mappings of attribute-value
pairs are ongoing work.

Fig. 3. Ω-RIDL invocation

4 http://wordnet.princeton.edu/

612 I. Ciuciu et al.

Below we provide an example of a XACML policy rule that returns Permit for
access requests that have value physician for attribute subject, value read for
attribute action and value summary information for attribute resource
(see example from Table 2).

<Target>
 <Resources>
 <Resource>
 <ResourceMatch
 MatchId="function:string-equal">
 <AttributeValue
 DataType="#string">summary_information
 </AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="…information-class "
 DataType="#string" />
 </ResourceMatch>
 </Resource>
 </Resources>

 <Actions>
 <Action>
 <ActionMatch
 MatchId="function:string-equal">
 <AttributeValue
 DataType=="#string">read
 </AttributeValue>
 <ActionAttributeDesignator
 AttributeId="…action"
 DataType="#string" />
 </ActionMatch>
 </Action>
 </Actions>
</Target>

<Rule RuleId="SenderIsPhysician" Effect="Permit">
 <Description>Physicians can create new documents
 </Description>
 <Condition>
 <Apply>
 FunctionId="function:string-is-in"
 <AttributeValue>
 DataType="#string">physician
 </AttributeValue>
 <SubjectAttributeDesignator
 DataType="#string"
 AttributeId="hcp-type"/>

Ontology-Based Matching of Security Attributes for Personal Data Access in e-Health 613

 </Apply>
 </Condition>
</Rule>

When a physician tries to view a vaccination fiche in one of the repositories
through the health information sharing infrastructure, the following happens: Inside
the contacted repository an access control request for a read action on a vaccina-
tion fiche (resource) is triggered (to eventually determine if the vaccination
fiche can be shown to the physician). This request is to be evaluated by a local
access control decision engine according to locally formulated policies (which do e.g.
also deal with access rules for “locally originated” requests). However, for this type of
access through the health information network, also the central PDP needs to be que-
ried (access control decisions by different engines are eventually to be combined).

The security vocabulary used in the local repository (which is typically implemen-
tation specific) is not aligned with the more generic security vocabulary used in the
wider health domain (used in the policies handled by the central PDP). The local
access control request can thus not be evaluated as such by the central PDP.

A generic approach to translation of access requests from one domain vocabulary
to another is provided by the OBIS Domain Mapper. This component translates
attributes (e.g. XACML name value pairs) from one security domain to another (here
from a “local” repository into the vocabulary used as reference in the distributed envi-
ronment).

More specifically, in the described example, the OBIS Domain Mapper will look
into the ontology hierarchy and constraints via the Ω-RIDL mappings and will infer
that a vaccination fiche document (as known in the repository) classifies as
summary information according to the central policy vocabulary.

5.3 Access Control Policy Ontology

Fig. 4 illustrates the access policy ontology used in the e-Health scenario. The focus
in the figure is on the “target” concept, showing its constituents hierarchically (see the
circles). The semantic relations are of the type ‘part-of’ and ‘is-a’ (which grow or
shrink a set), indicating the (security-specific) domination relation between the con-
cepts. OBIS computes the domination relation between two concepts in the ontology
using AND/OR graphs. The figure includes core concepts from the TAS3 security
ontology (e.g. ‘subject’, ‘action’, ‘resource’) linked to application-specific concepts
derived from the e-Health scenario (e.g. ‘patient-id’, ‘hcp-type’).

Every component in the above described scenario commits to this ontology. Every
stakeholder organization (or department), must provide a mapping file between its
own terminology and the core ontology. This task is the responsibility of the security
officer of every participant organization. The mapping files will serve to translate the
local concepts to central ones as a preliminary step before performing the ontology-
based data matching (inference) with Ω-RIDL.

Table 3 shows mappings between the local policies of the Hospital data repository
and the central ontology. The first mapping concerns a subject mapping from the local

614 I. Ciuciu et al.

hospital repository A, where the subject attributes are expressed as name = em-
ployee_type and value = nurse, to the central vocabulary used by the Master
PDP, where name(employee_type) maps to hcp-type and value (nurse)
maps to nurse.

The second row shows a resource attribute mapping from the local vocabulary of
hospital repository A, where the resource name = file_type and the resource
value = vaccination type, to the central vocabulary where name maps to
document-type and value maps to summary information.

Table 3. Mappings between the local (organization-specific) terminology and the core ontology

Repository Term Concept in the ontology
Hosp. RepositoryA employee_type = nurse hcp-type = nurse
Hosp. RepositoryA file_type = vaccination fiche document-type = summary information
HIV Center Doc-type = medication fiche

Location = Brussels
Patient-Name = Herve

Sensitivity-indicator = HIV

Fig. 4. The “Target” concept in the access control policy ontology

Ontology-Based Matching of Security Attributes for Personal Data Access in e-Health 615

6 Conclusion and Future Work

The paper presents an extension, OBIS Domain Mapper, of a previously proposed on-
tology-based interoperation service which enables attribute mappings between local and
central security vocabularies for the internal management of a policy decision engine in
the context of service oriented architectures. The approach is based on the DOGMA
ontology which enables semantic reasoning and on the Ω-RIDL mapping generator
which performs the mapping based on ontology-based data matching strategies.

The OBIS service is (1) user-centric, enabling end-users to manage and protect
their personal data through the creation of control access policies, without needing to
know specific details about the security domains of remote service providers; (2) based
on a security policy ontology grounded in natural language; (3) automated, through an
integrated architecture which ensures OBIS is called by credential validation services
and policy decision points; (4) autonomous, being designed as a web service to operate
in an open, distributed and dynamic environment; and (5) secure, enabling query-only
requests via SSL/TLS links.

Future work will involve the implementation of more sophisticated Ω-RIDL map-
pings by introducing additional constraints and evolving the ontology with more so-
phisticated authorization policies, including concepts such as obligations, delegation of
authority, and separation of duty. The evaluation of the results with the ODMF (Ontol-
ogy-based Data Matching Framework) evaluation benchmark is also planned as future
work.

Additional functions, which extend the xacml rule engine by reasoning functions,
are ongoing work.

Acknowledgments. This paper is supported by the EC FP7 TAS3 (Trusted Architec-
ture for Securely Shared Services) project. The authors would like to thank all TAS3
project partners for their contribution to the research.

References

1. Ciuciu, I., Zhao, G., Chadwick, D.W., Reul, Q., Meersman, R., Vasquez, C., Hibbert, M.,
Winfield, S., Kirkham, T.: Ontology-based Interoperation for Securely Shared Services.
In: Proc. IEEE Int. Conf. on New Technologies, Mobility and Security (NTMS 2011), Par-
is, France (2011)

2. Claerhout, B., Carlton, D., Kunst, C., Polman, L., Pruis, D., Schilders, L., Winfield, S.:
Pilots Specifications and Use Case Scenarios, TAS3, Deliverable D9.1, Trusted Architec-
ture for Securely Shared Services (2010), http://tas3.eu/

3. Yague, M., Gallardo, M., Mana, A.: Semantic access control model: a formal specification.
In: Proc. 10th European Symposium on Research in Computer Security, pp. 23–24 (2005)

4. Mitra, P., Liu, P.: Semantic access control for information interoperation. In: Proc. 11th
ACM Symposium on Access Control Models and Technologies, pp. 237–246 (2006)

5. Verma, K., Akkiraju, R., Goodwin, R.: Semantic matching of web service policies. In:
Proc. 2nd Int. Workshop on Semantic and Dynamic Web Processes, pp. 79–90 (2005)

616 I. Ciuciu et al.

6. Uszok, A., Bradshaw, J.M., Lott, J., Breedy, M.R., Bunch, L., Feltovich, P.J., Johnson, M.,
Jung, H.: New developments in ontology-based policy management: Increasing the practi-
cality and comprehensiveness of KAoS. In: Proc. IEEE Workshop on Policies for Distri-
buted Systems and Networks, pp. 145–152 (2008)

7. Dersingh, A., Liscano, R., Jost, A., Finnson, J., Senthilnathan, R.: Utilizing semantic
knowledge for access control in pervasive and ubiquitous systems. Mobile Netw. Appl. 15,
267–282 (2010)

8. Damiani, E., De Capitani di Vimercati, S., Fugazza, C., Samarati, P.: Extending Policy
Languages to the Semantic Web. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE
2004. LNCS, vol. 3140, pp. 330–343. Springer, Heidelberg (2004)

9. Smith, M., Schain, A., Clark, K., Griffey, A., Kolovski, V.: Mother, May I? OWL-based
Policy Management at NASA. In: OWLED (2007)

10. Ferrini, R., Bertino, E.: Supporting RBAC with XACML+OWL. In: SACMAT, pp. 145–
154 (2009)

11. Spyns, P., Tang, Y., Meersman, R.: An Ontology Engineering Methodology for DOGMA.
J. of App. Ontology 3(1-2), 13–39 (2008)

12. Halpin, T.: Information Modeling and Relational Databases: From Conceptual Analysis to
Logical Design. Morgan Kaufmann, San Francisco (2001)

13. Spyns, P., Meersman, R., Jarrar, M.: Data Modeling Versus Ontology Engineering.
SIGMOD Record: Special Issue on Semantic Web and Data Management 31(4) (2002)

14. Tang, Y., Meersman, R.: SDRule Markup Language: Towards Modeling and Interchang-
ing Ontological Commitments for Semantic Decision Making. In: Handbook of Research
on Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches.
IGI Publishing, USA (2009) ISBN: 1-60566-402-2

15. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soned. J. of Web Semantics (2007)

16. OASIS “eXtensible Access Control Markup Language” (XACML) Version 2.0 OASIS
Standard (2005)

17. Trog, D., Tang, Y., Meersman, R.: Towards Ontological Commitments with Ω-RIDL
Markup Language. In: Ontologies, Databases and Applications of Semantics, Villamoura,
Portugal (2007)

18. Verheyden, P., De Bo, J., Meersman, R.: Semantically Unlocking Database Content
Through Ontology-Based Mediation. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.)
SWDB 2004. LNCS, vol. 3372, pp. 109–126. Springer, Heidelberg (2005)

19. Tang, Y., De Baer, P., Zhao, G., Meersman, R., Pudkey, K.: Towards a Pattern-Driven
Topical Ontology Modeling Methodology in Elderly Care Homes. In: Meersman, R.,
Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 514–523.
Springer, Heidelberg (2009)

A Unified Ontology for the Virtualization
Domain�

Jacopo Silvestro, Daniele Canavese, Emanuele Cesena, and Paolo Smiraglia

Politecnico di Torino, Dip. di Automatica e Informatica, Italy
first.last@polito.it

Abstract. This paper presents an ontology of virtual appliances and
networks along with an ontology-based approach for the automatic as-
sessment of a virtualized computer network configuration. The ontology
is inspired by the Libvirt XML format, based on the formal logic struc-
tures provided by the OWL language and enriched with logic rules ex-
pressed in SWRL. It can be used as a general taxonomy of the virtualized
resources. We demonstrate the validity of our solution by showing the
results of several analyses performed on a test system using a standard
OWL-DL reasoner.

1 Introduction

The emerging paradigm of cloud computing is grounded on a massive use of
virtual appliances. To automatize the management of a virtualized system it is
necessary to describe it in a coherent and centralized way [1].

In the last decade, Libvirt has emerged as a hypervisor-agnostic solution for
the configuration of a virtual environment. Libvirt is considered the standard
de facto solution and it is used by most cloud management platforms, including
OpenStack1 and OpenNebula2 (see also [2] for a detailed discussion).

Within Libvirt, all virtual appliance settings are described by using XML and
this information is stored locally on the physical host. Whenever many hosts are
in place, e.g., in a cloud data center, each host only has a partial view of the
whole environment, limited to the virtual appliances it owns. Cloud management
platforms usually devote a management node to keep the “big picture” and to
guarantee that the configuration of each host is consistent with the others.

In this setting, a common knowledge base to collect data from all the physical
hosts and to enable system verification and analysis is of primary importance.
An ontology is more appropriate than XML as it allows automatic reasoning and
enables reuse of virtual machine knowledge [3], so ontologies describing different
virtual machines can be easily integrated.

� The extended version of the paper is available at http://security.polito.it/
ontology

1 http://www.openstack.org
2 http://www.opennebula.org

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 617–624, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://security.polito.it/ontology
http://security.polito.it/ontology
http://www.openstack.org
http://www.opennebula.org

618 J. Silvestro et al.

Nowadays, an ontology able to describe a virtual environment is apparently
not yet available. In [4], Youseff et al. proposed an ontology for the entire cloud
computing environment, mentioning virtualization in their Software Kernel layer
at an high level of abstraction, thus lacking details. Dastjerdi et al. [5] proposed
an ontology based on the Open Virtualization Format (OVF) format [6]. The
focus of their work is very similar to ours, however their description contains few
details about the actual ontology and it is not publicly available.

We propose an ontology that describes the virtual appliances and the virtual
networks inspired by the Libvirt XML format. The ontology concepts have been
related in a coherent way, resorting to the formal logic structures provided by
the OWL language and enriched with several logic rules expressed in SWRL.

The whole ontology consists of 272 classes, 74 object properties and 102 data
properties. The most important class is VirtualDomain, which is related to
other 18 classes and is referenced in 34% of the properties. The ontology is
publicly available for download at http://security.polito.it/ontology, as
well the extended version of this paper, which includes several additional scenario
analyses performed by automatically importing into our ontology the Libvirt
configurations through a custom tool.

While designing our ontology we considered using OVF as a basis, similarly
to [5]. However, three considerations make us choose Libvirt. First, Libvirt is
widely used and freely available, while OVF is only supported by few commercial
products. Second, the semantics of the virtual objects is very similar in the two
formats (in fact, tools exist to convert OVF into Libvirt format3). And finally,
Libvirt, at least for our purposes, is more expressive than OVF, as it describes,
for instance, CPU features. We are keeping track of several proposals to enhance
the OVF standard and we will consider updating our ontology accordingly.

The remainder of the paper is structured as follows: in Section 2 we illustrate
the application fields and the scope of our work, in Section 3 we provide a detailed
description of our ontology, in Section 4 we propose several advanced uses of the
ontology, and in Section 5 we summarize our findings and discuss future work.

2 Application Field and Scope of the Ontology

We propose a novel ontology for describing and analyzing virtualized environ-
ments, with the added benefit of using solely standard languages and reasoners.

Before starting the description of our ontology we introduce the terminology
used through the remaining sections. The hypervisor is the core of a virtualiza-
tion system; its role is to logically multiplex a number of physical resources. A
hypervisor is a software running on a physical system called a host. A host can
contain zero or more domains, or virtual machines, that are computing machines
that use the virtualized components made available by a hypervisor. Within each
domain, an operating system, the guest OS, runs.

Our ontology-driven approach is motivated by the need for a coherent de-
scription of both a virtual environment and the underlying physical system. It
3 http://thincrust.org/tooling-conversion.html

http://security.polito.it/ontology
http://thincrust.org/tooling-conversion.html

A Unified Ontology for the Virtualization Domain 619

allows the extraction of additional information, such as the topology of the ex-
isting virtual networks. Our ontology also enables a range of analyses, including
the discovery of relationships between the physical hardware and virtualized
elements. Knowing these relationships is particularly relevant for management
purposes, to guarantee a proper allocation of the physical resources as well as to
assess the effect of physical on the virtual world (cf., e.g., [1]).

To achieve these goals we have organized our ontology into three main cate-
gories, called layers. These are briefly introduced below and detailed in Section 3.

Starting from the Libvirt XML format, we have identified several classes which
map the objects virtualized by a hypervisor. This brought us to the creation of
the virtual layer, which contains the domain and virtual devices concepts.

One of the major limitations of the Libvirt XML format is the lack of a
representation for the physical hardware. To bridge this gap, we have built the
physical layer using the same base structure as its counterpart, the virtual layer.
This layer is only intended to provide the minimum set of classes necessary for
reasoning, and it is not a comprehensive ontology of the physical hardware.

During the ontology creation process we have frequently encountered several
“concepts”, e.g., bus addresses, that do not fit exactly into the virtual or physical
worlds. For the sake of modularity, all these concepts were classified into an ad-
hoc layer, the logical layer. Its heterogeneous content will be discussed further.

3 Description of the Ontology

In this section we discuss in detail the structure of our ontology and the rela-
tionships among its classes. Figure 1 presents a bird’s eye view of the ontology
using the UML class diagram notation.

Logical notions are represented by the descendants of the Logical class while
the Virtual and Physical class hierarchies respectively contain all the virtual
and physical related objects.

3.1 Logical Layer

Since both the virtual and the physical entities make an extensive use of logical
notions, their description is provided first. The logical layer contains concepts
used to describe several characteristics of physical and virtual resources together
with elements used to establish relationships between the other two layers. This
layer consists of several classes, but the most distinctive ones are discussed below.

The actions, represented by the Action class hierarchy, are entities used to
define what the system must perform when a particular event occurs. On the
other hand, the mechanisms, modeled by the Mechanism class hierarchy, specify
how a particular goal should be accomplished. Both actions and mechanisms
describe how to perform a job, but the first are event-driven, whereas the latter
are event-independent.

The features, mapped to the Feature class hierarchy, are used to model the
characteristics of a physical or virtual object. More specifically, features are

620 J. Silvestro et al.

Physical

PhysicalMachine PhysicalCPU PhysicalDevice

PhysicalDisk PhysicalInterface

Virtual

VirtualDomain VirtualCPU VirtuallDevice

VirtuallDisk VirtuallInterface

Logical

Mechanism Action Feature Identifier LogicalBridge

BootingMechanism MaintenanceAction CPUFeature FilePath

hostsVirtualDomain

*

hasPhysicalCPU

1..*

hasPhysicalDevice
*

hasVirtualCPU

1..*

hasVirtualDevice
*

hasSource

1

1

hasCPUFeature

*

*

hasBootingMechanism
1

*

performsOnReboot

*

1

isBoundToLogicalBridge

0..1

*

isBoundToLogicalBridge

0..1

*

Fig. 1. The ontology UML class diagram

used to declare what a physical component supports and what a virtual entity
requires. For example, the CPUFeature class is used to describe what a physical
processor offers and, on the other hand, what a virtual processor needs.

The identifiers, depicted by the Identifier class hierarchy, are named tokens
that uniquely designate an object. Figure 1 displays, as an exemplification, the
FilePath class that models a file pathname, a concept used for several purposes,
such as to specify an image file for a virtual disk.

The logical layer also consists of the LogicalBridge class, which represents
the concept of logical bridge, an entity used to create virtual networks, linking
physical and virtual NICs. Several objects can use the isBoundToLogicalBridge
property to explicitly state their connection with a specific bridge.

Most of the virtual and physical classes are strongly dependent on the logical
layer through several properties such as the hasAddress property that specifies
the address owned by an entity, e.g., the IP address of a network interface.
Furthermore, several virtual devices can have the hasSource and the hasTarget
properties, which respectively define the data-source (e.g., a path to an image
file) and the location where a guest OS will find this data (e.g., the hda disk).

For a more detailed discussion of the logical layer, see the extended paper
available at http://security.polito.it/ontology.

http://security.polito.it/ontology

A Unified Ontology for the Virtualization Domain 621

3.2 Virtual Layer

The virtual layer consists of all the components that are virtualized by a generic
hypervisor, i.e., the virtualized hardware and the domain concept.

One of the fundamental concepts is the notion of domain, that is represented
by the VirtualDomain class. Since this class plays such a key role, a great number
of properties can be attached to it, thus linking virtual machines to other virtual
or physical resources, relying on the objects provided by the logical layer.

Every domain has a set of virtual CPUs, mapped to the VirtualCPU class
hierarchy. Virtual CPUs can be described in detail, for instance using the prop-
erty hasCPUFeature that uses the CPUFeature class individuals to define the
requirements needed by a particular virtual processor.

Similarly to virtual CPUs, virtual devices are modeled by the VirtualDevice
class hierarchy which represents all the virtual hardware with the exception of
the processors. Virtual devices are virtual peripherals such as disks, sound and
video cards, and everything that can be connected to a virtual bus (PCI, USB,
and so on). The virtual device structure is vast and heterogeneous since every
hardware is extremely specialized. Figure 1 displays the VirtualInterface class
which models all the virtual NICs. It has several descendants that specialize the
network interfaces, e.g., the VirtualBridgeInterface class represents a virtual
NIC connected to a logical bridge. Figure 1 depicts also the VirtualDisk class
which models the virtual disks, i.e., hard disks, CD-ROM and floppy drives. This
class has a special property called reachesSource that relates a device to its
real data source; in Section 4 we show how to automatically infer this property.

Another representative entity is the VirtualPool class, which describes the
storage pools. A storage pool is a set of volumes, e.g., disk images, that can be
used to implement several advanced storage techniques such as remote disks.

Since VirtualDomain is the core class of our ontology, we briefly introduce sev-
eral properties that are used to connect it to other concepts. The
hasVirtualDevice and hasVirtualCPU properties are used to specify a set of
virtualized CPUs and devices of a domain. These properties also have a number
of sub-properties like hasVirtualInterface and hasVirtualDisk, that respec-
tively specify the virtual NICs and disks owned by a domain. Additionally, the
hasHypervisorType property is used to refine the domain type, by defining the
compatibility between a virtual machine and a specific hypervisor.

3.3 Physical Layer

The physical layer consists of all the tangible hardware. Libvirt does not provide
a model of the real world, since this is outside its scope, but we felt that creating
an ontology solely describing the virtual realm would not be very useful. In fact
the virtualized hardware is strongly related to the real hardware, so the lack of
a physical layer will severely limit the ontology usability. Therefore we created a
hierarchical structure for the physical world, similar to the one described in Sec-
tion 3.2 for the virtual layer. Since its internal architecture closely resembles the
virtual layer one, we briefly discuss a selection of the most distinctive subclasses.

622 J. Silvestro et al.

The PhysicalMachine class represents the physical machines, i.e., the hosts.
It is the physical counterpart of VirtualDomain and, in a similar way, several
object and data properties can be assigned to it in order to describe its configura-
tion in detail, ranging from the owned hardware to the hosted virtual machines.

The PhysicalCPU class models the physical CPUs, i.e., the real processors.
The supported features of the physical CPUs are specified using the property
hasCPUFeature that points to the desired CPUFeature class individuals.

The PhysicalDevice class hierarchy maps all the physical devices apart from
the processors. Figure 1 depicts the PhysicalDisk and PhysicalInterface
classes which respectively represent the physical disks and NICs. The latter pos-
sesses an object property named isPhysicallyLinked that is used to represent
a physical connection, e.g., a cable, between two physical network interfaces.

A physical machine can contain a set of physical processors and devices.
This is described by the properties hasPhysicalCPU and hasPhysicalDevice
which in turn have several sub-properties such as hasPhysicalInterface and
hasPhysicalDisk, that are used to define the NICs and disks owned by a host.
The physical machines have also the hostsVirtualDomainproperty which repre-
sents its hosted domains. This property is important because it links the physical
layer to the virtual world.

4 Refinement of the Core Ontology

So far, we have discussed the structure of our ontology, the type of concepts
it contains and their relations. Here we show how this ontology can be used
to simplify the management of a virtual infrastructure and how the reasoning
facilities provided by an OWL-DL reasoner can be exploited to this end.

The concepts defined in this section are included as children of the class
ExampleViews in the ontology. All the listings use the Manchester OWL syntax.

For instance, we defined the concept MultiConnectedDomain (Listing 1.1)
that gathers all the domains which have more than one network interface and
the DomainWithRemoteDisk (Listing 1.2) which describes all the domains that
are connected to a remote disk, i.e. a disk shared through a virtual pool.

� �

VirtualDomain and (hasVirtualDevice min 2 VirtualInterface)
� �

Listing 1.1. MultiConnectedDomain definition

We added a number of properties to increase the expressiveness of several
concepts, such as the isLinked relation, which is as a symmetric and transitive
super-property of isBoundToLogicalBridge. In this way we can assert that if
a NIC is bound to a logical bridge then it is linked to that bridge and vice-versa
and that all the NICs bounded to the same bridge are linked to each other.

A Unified Ontology for the Virtualization Domain 623

� �

VirtualDomain and (hasVirtualDevice some
(VirtualDisk and (hasSource some

(FilePath and (inverse (hasTarget) some
VirtualPool))))))

� �

Listing 1.2. DomainWithRemoteDisk definition

By adding a property chain (Listing 1.3), we show how it is possible to infer
the connection among domains starting from their description, which includes
their virtual NICs, and the description of the logical bridges of a host.

� �

hasVirtualInterface o isLinked o inverse
(hasVirtualInterface) ->

isConnectedToDomain
� �

Listing 1.3. isConnectedToDomain property chain

Given this property chain, if there are two different domains each having a
virtual NIC linked among them, then the two domains are connected. In this case
we assume that each domain works as a hub, forwarding the traffic coming from
each interface to all the others. Verifying such a property would require analyzing
the internal network of each domain and since this task is not handled by Libvirt,
this is out of the scope of this work. So we decided to be conservative from a
security point of view, therefore considering this kind of connection possible.

By adding some rules in SWRL [7], it is possible to infer additional infor-
mation. For instance, when considering a NAS, it is interesting to verify if the
domain using it is able to access the network address to which the storage is
attached. This can be achieved by defining the rule shown in Listing 1.4.

� �

hostsVirtualDomain (?mac , ?dom), hasVirtualDisk (?dom ,
?vdisk), hasSource (?vdisk , ?file), hasTarget (?pool ,
?file), VirtualPool (?pool), hasSource (?pool , ?nas),
hasAddress (?nas , ?ip), hasAddress (?pint2 , ?ip),
hasPhysicalInterface (?mac , ?pint1),
isPhysicallyLinked (?pint1 , ?pint2) ->
reachesSource (?vdisk , ?pint2)

� �

Listing 1.4. SWRL rule 2, reachesSource definition

The rule works in the following way. We consider a physical machine mac that
hosts the domain dom which is using a remote disk vdisk. vdisk has as source
the file with pathname file which is the target of a virtual pool pool. We check
if mac is connected, through a network connection, to the machine nas which
is the source of pool. We made some simplifications, since reaching the NIC of

624 J. Silvestro et al.

the machine to which the disk is attached is not sufficient to state that the disk
is working properly, but it is a necessary condition. A more accurate analysis
would require checking the internal configuration of the physical machine.

5 Conclusion and Future Work

To automatize the management of virtualized systems it is necessary to describe
them in a centralized and univocal way, but such taxonomy is not yet available.

We proposed an ontology that is able to describe virtual appliances and net-
works inspired by the Libvirt format. The ontology concepts were related in a
coherent way, resorting to the formal logic structures provided by the OWL lan-
guage. We made the ontology freely available and we showed how to extend it
by defining new concepts and rules, to enrich the taxonomy or perform more
complex reasonings. Users can download our ontology and edit it as they like,
or integrate it with any existing ontology through aligning and merging.

To demonstrate the effectiveness of our solution, we designed and implemented
different scenarios related to network connectivity and remote storage. The re-
sults inferred by the reasoner match the behavior of the real system, showing that
the proposed approach can effectively assist a system administrator in assessing
the configuration of a virtualized environment.

In this work we made some assumptions about the physical infrastructure
and the internal configuration of the domains and hosts, since this information
is not handled by Libvirt. Future work will address the description of the entire
physical network with an ontology and its relation to the one presented here.

References
1. Bolte, M., Sievers, M., Birkenheuer, G., Niehörster, O., Brinkmann, A.: Non-

intrusive virtualization management using libvirt. In: Proc. of the Conference on
Design, Automation and Test in Europe, DATE 2010, Dresden, Germany, pp. 574–
579 (2010)

2. Cerbelaud, D., Garg, S., Huylebroeck, J.: Opening the clouds: qualitative overview
of the state-of-the-art open source VM-based cloud management platforms. In: Mid-
dleware 2009 Proceedings of the 10th ACM/IFIP/USENIX International Conference
on Middleware, Urbana Champaign, USA, pp. 22:1–22:8 (2009)

3. Noy, N.F., Mcguinness, D.L.: Ontology Development 101: A Guide to Creating Your
First Ontology. Technical report, Sanford University (2001)

4. Youseff, L., Butrico, M., Silva, D.D.: Towards a Unified Ontology of Cloud Comput-
ing. In: Grid Computing Environments, GCE 2008, Austin, USA, pp. 1–10 (2008)

5. Dastjerdi, A.V., Tabatabaei, S.G.H., Buyya, R.: An Effective Architecture for Auto-
mated Appliance Management System Applying Ontology-Based Cloud Discovery.
In: Proceedings of the 2010 10th IEEE/ACM International Conference on Clus-
ter, Cloud and Grid Computing, CCGRID 2010, Melbourne, Australia, Melbourne,
Australia, pp. 104–112 (2010)

6. DMTF: Open Virtualization Format Specification. Technical report, DMTF (2010)
7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:

SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Techni-
cal report, World Wide Web Consortium (2004)

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 625–634, 2011.
© Springer-Verlag Berlin Heidelberg 2011

2PSIM: Two Phase Service Identifying Method

Ali Nikravesh, Fereidoon Shams, Soodeh Farokhi, and Amir Ghaffari

Electrical and Computer Engineering Faculty
Shahid Beheshti University GC, Evin, Tehran, Iran
{a_nikravesh,f_shams}@sbu.ac.ir,

{so.farokhi,ar.ghaffari}@mail.sbu.ac.ir

Abstract. Service identification - as the first step of service-oriented modeling -
holds the main emphasis on the modeling process and has a broad influence on
the system development. Selecting appropriate service identification method is
essential for prosperity of any service-oriented architecture project. Automa-
tion, utilizing middle-out strategy, and quality assess of services, are three im-
portant criteria in evaluation of service identification methods. Existing me-
thods mostly ignore automation principles. Meanwhile a few automated and
semi-automated methods use top-down strategy to identify services and ignore
existing assets of enterprise. Moreover these methods do not take all the quality
metrics into account. This paper proposes a novel semi-automated method
called 2PSIM (Two-Phase Service Identification Method) which uses graph
partitioning algorithm to identify services based on enterprise business
processes as well business entity models. 2PSIM utilizes middle-out strategy
and tries to identify reusable services with proper granularity and acceptable
level of cohesion and coupling.

Keywords: Service-Oriented Architecture, Service-Oriented Modeling, Service
Identification, Graph partitioning algorithms.

1 Introduction

Frequent changes in business environment and user demands are two important chal-
lenges in developing large-scale software systems. Service-Oriented Architecture
(SOA) is one of the promising methods to address these challenges [1]. SOA embrac-
es vast and enormous concepts and technologies. In this paper, we focus on the first
phase of constructing service-oriented solutions, named service-oriented modeling. In
the service-oriented modeling, the main emphasis is on the identification of the right
architectural elements followed by their specification and realization [2].

In this phase, extant service identification methods should be evaluated and the
most comprehensive one should be utilized by enterprise. Thus, the first goal of the
current paper is to assess proposed academic and industrial methods for service iden-
tification and specify strength and weakness of each of them. Then, as the second
goal, we will propose a novel service identification method based on the specified
shortcomings.

626 A. Nikravesh et al.

In the current paper we have considered three important criteria to assess existing
identification methods, namely: automation, service quality evaluation, and delivery
strategy. Identification methods can be classified into three categories based on the
automation point of view: prescriptive, semi-automated, and full-automated. Because
SOA practically is utilized to develop large-scale software systems, hence, using pre-
scriptive methods may lead to low quality of the identified architectural elements as
well as being costly and timely. Moreover, their utilization efficiency depends on the
architect’s experiences [3]. On the other hand, full-automated methods suffer from
lack of human supervision; therefore, they may lead to services with inappropriate
granularity and low quality level.

In addition to automation issues, the proposed identification methods can be eva-
luated based on their delivery strategy. There are three delivery strategies to identify
services: top-down, bottom-up, and middle-out [4]. In top-down strategy services are
derived based on the analysis of business requirements. Bottom-up strategy focuses
on derivation of services based on the existing assets of enterprise, and the middle-out
strategy combines the other two strategies [5]. All of the full-automated and semi-
automated methods use top-down strategy and ignore existing assets of enterprise in
their identification process.

Another important criterion in assessing identification methods is quality of the
identified services. Being autonomous, loose coupling, high cohesion, composability,
discoverability, statelessness, and reusability are some important quality factors of an
ideal business service [6], but in the service identification phase only some of them
can be assessed, which are reusability, high cohesion, and low coupling [6].

Based on the mentioned points, we have set the following objective for the re-
search reported in the present paper:

To propose a semi-automated method to identify business services which takes reusa-
bility, low coupling, and high cohesion into consideration, and utilizes middle-out
strategy during identification process.

Existing methods only consider some aspects of our objective and none of them
takes all of the specified criteria into account. To reach this objective, we have pro-
posed a novel method, called 2PSIM, which uses graph partitioning algorithms to
identify services. 2PSIM embraces a two phased process. In the first phase, it tries to
identify services with the highest level of reusability by using business entity models
of the enterprise. Because identified services in the first phase have fine granularity,
in the second phase, 2PSIM tries to merge them together to identify composite servic-
es with high level of cohesion and low coupling.

The rest of this paper is organized as follows. Section two introduces some related
work in the service identification area and evaluates them against our objective. In
section three our method will be introduced, then it will be evaluated by performing a
case study in the fourth section. Finally, the last section is dedicated to the conclusion
of our work and the future works in this field.

 2PSIM: Two Phase Service Identifying Method 627

2 Related Work

A great number of service identification methods have been proposed in the recent
years. In this section we review some of the leading works in this field and analyze
them against the objectives of our research, which are: automation, identification
strategy, and service quality evaluation.

Table 1 represents the reviewed methods and their characteristics. In the following
table each method has been evaluated against the mentioned criteria. Different values
of the specified criteria are as follows:

• Identification Strategy: top-down(T), bottom-up(B), middle-out(M)
• Quality Evaluation: the method evaluates quality levels of the identified

services (+), the method doesn't evaluates quality levels of the identified ser-
vices (-)

• Automation: Prescriptive(-), semi-automated(+), fully-automated(++)

Table 1. Related Work

Automation Quality
Evaluation

Identification
Strategy

Name

- + M SOMA [4]
- + M Kohlborn [5]
- + T SOAD [7]
- - T Amsden [8]
 - - T Ren [9]
+ + T MOGA-WSI [10]
+ + T Zhang [11]
+ + T Strosnider [12]

++ + T ASIM [13],[3]

3 The Proposed Method

Business service layer abstraction leads to the creation of two business service mod-
els: task-centric and entity-centric [6]. Although task-centric models are more popular
than entity-centric ones, entity-centric services are more useful for creating highly
reusable and business process-agnostic services [6]. On the other hand, focusing on
business entities may lead to ignore semantic integrity of business elements [13].
Therefore, 2PSIM focuses on both entity-centric and task-centric models by running a
two-phase process which is illustrated in Fig. 1. In the first phase, 2PSIM tries to
identify entity-centric services by focusing on business entity models of the enter-
prise. We will refer to these services as Elementary Services (ES). The elementary
services have high level of reusability as well as fine granularity.

628 A. Nikravesh et al.

Fig. 1. 2PSIM Process

Because fine granular services have inappropriate effects on performance and
complexity of the final system, 2PSIM tries to merge elementary services together in
the second phase of its process. In this phase the decision about how to compose ele-
mentary services will be made based on business process models. These composed
services will be called as Business Aligned Services (BAS).

3.1 Lunch Input

2PSIM adopts business process model and business entity model as input. In order to
identify entity-centric services, a model which demonstrates relationships between
business entities and business activities is needed. 2PSIM uses the presented method
in [14] to create the model. This method receives task-centric business processes and
business entities as input and creates entity-centric business process model. After
creating entity-centric business process a bipartite graph will be created which its
vertices are business entities and business activities and each edge indicates a rela-
tionship between a business entity and a business activity. Fig 2 demonstrates this
bipartite graph.

Fig. 2. The Bipartite Graph

3.2 Identification of Elementary Services

In order to identify entity-centric services, each business entity and its related activi-
ties should be exposed as an elementary service. Because elementary services should
not be overlapped, each business activity should be only in one of the elementary

 2PSIM: Two Phase Service Identifying Method 629

services. Thus, we have assigned a weight ranging from one to four to each edge of
the graph and edges with higher weights demonstrate more intense relationships be-
tween nodes of the graph. After specifying weight of each edge, 2PSIM identifies
elementary services by running a partitioning algorithm on the bipartite graph. Fig 3
depicts the identified elementary services of the Fig 2. Details of elementary service
identification algorithms fall beyond the scope of the current paper.

Fig. 3. Identified Elementary Services

3.3 Verification of the Elementary Services

After identifying elementary services, business analyst verifies each elementary ser-
vice and assesses its business value. In addition, software architect evaluates each
elementary service and verifies if the service can be mapped to existing assets of the
enterprise.

3.4 Storage of Elementary Services

In the fourth and the final step of the first phase, identified elementary services will be
added to a central service repository. Performing this step helps software architects to
discover and reuse these services in the future service oriented projects.

3.5 Identification of Business Aligned Services

Since elementary services have fine granularity, utilizing them to develop software
systems will have inappropriate effects on the performance and complexity of the
final system. Therefore, in the second phase of 2PSIM, elementary services should be
composed together. This composition is performed based on the enterprise business
processes and the results are called “Business Aligned Services” (BAS). In order to
identify BASs, a graph called “elementary service graph” is created. Its nodes
represent elementary services that were identified in the first phase, and its edges
demonstrate relationships between two elementary services. To discover relationships
between elementary services, a new format of business process model is created, in

630 A. Nikravesh et al.

which each business activity is substituted with its containing elementary service.
This new format of business process model illustrates relationships between subse-
quent elementary services. Fig. 4 depicts two business processes and the new format
of them.

Fig. 4. New format of business process

It should be considered that relationships between elementary services in the new
format of business process model do not have equal weights. We have considered the
following formula to calculate cohesion of elementary services [15]:

a. If A and B be two consecutive elementary services then the cohesion value be-
tween them equals one unit.

b. If A and B are two elementary services that are connected via a condition in
the business process model, then the cohesion value between them equals
1/(number of branches) unit.

Fig. 5. Elementary services cohesion calculation

For example, in the depicted process of the Fig. 5,

a. ES1 is connected to ES2 via a condition with three branches, therefore the cohe-
sion value between ES1 and ES2 is 1/3

 2PSIM: Two Phase Service Identifying Method 631

b. ES1 is connected to ES3 via a condition with three branches, therefore the cohe-
sion value between ES1 and ES3 is 1/3

c. ES1 is connected to itself via a condition with three branches and a direct con-
nection, therefore the cohesion value between ES1 and ES1 is 1+1/3= 4/3

By summing up all the cohesion values between elementary services, the total cohe-
sion value between each pair of elementary services is assigned to the relevant edge
of the elementary service graph. A sample elementary service graph is depicted in
Fig. 6.

Fig. 6. A sample elementary service graph

Finally, 2PSIM partitions elementary service graph and promotes each partition as
a business aligned service. 2PSIM tries to maximize the sum of intra-partition weights
as well as minimizing the sum of inter-partition weights. Fig7 illustrates the identified
business aligned services of the mentioned case study. The details of graph partition-
ing algorithm fall beyond the scope of this paper.

Fig. 7. Identified Business Aligned Services

3.6 Verification of the Business Aligned Services

After identification of business aligned services, in the final step of 2PSIM, software
architect evaluates them and removes architectural incompetency. Furthermore
software architect determines about how to fit each BAS to the existing enterprise
applications.

4 Evaluation

In this section the users' evaluation of our method is presented. To this end we have
taken advantage of Sol [16] methodology framework. Because the focus of this paper

632 A. Nikravesh et al.

is on service-oriented modeling phase, the framework is used only for capability clas-
sification of different aspects of our proposed process, and then used these capabilities
to design questionnaires for conducting users’ evaluation of our process [3].

The users’ evaluation of our method was collected through a survey with the aim
of gathering independent evaluation of the method from its future potential users. The
survey participants were asked about general capabilities of our proposed method.

We had 9 participants in our survey and all of them had rich experience in software
development as well as suitable knowledge of service-oriented modeling. The ques-
tions had been organized into three categories regarding to inputs, outputs, and our
identification process. The participants could answer a question based on a four-point
scale ranging from (1) disagree, (2) neutral, (3) agree, to (4) strongly agree. In the
following table, np expresses number of positive responses, i.e. responses 3 or 4, m
represents average of the given grades and sd denotes the standard deviation.

Table 2. Experts’ evaluation of the method

sd M np 4 3 2 1 Capabilities Scope of
capabilities

0.6 3.2 8 3 5 1 0 Preparation of the inputs didn’t have
any difficulties

Input
0.5 3.5 9 5 4 0 0 The inputs of 2PSIM was enough for

service identification
0.7 2.6 6 2 4 2 1 2PSIM was practical in the scope of

enterprise

Process

0.8 3 6 3 3 3 0 2PSIM was simple
0.4 2.8 7 1 6 2 0 2PSIM was flexible
0.4 3.6 9 6 3 0 0 Using the method facilitated service

identification
0.7 3.1 7 3 4 2 0 The method had a suitable level of

automation
0.5 3.5 9 5 4 0 0 The identified services were accepta-

ble in the cohesion point of view

Result

0.6 3.3 8 4 4 1 0 The identified services were accepta-
ble in the coupling point of view

0.7 2.4 5 1 4 3 1 The identified services were accepta-
ble in the granularity point of view

0.7 3.1 7 3 4 2 0 The identified services were reusable
0.4 3.4 9 4 5 0 0 The identified services had accepta-

ble map to existing enterprise assets

5 Conclusion and Future Work

In this paper a novel service identification method called 2PSIM was proposed. This
method adopts business process and business entity models of an enterprise as input
and identifies services by running graph partitioning algorithms. Usability of 2PSIM

 2PSIM: Two Phase Service Identifying Method 633

was evaluated through applying it to development of a real world software system.
Furthermore, experts’ evaluation of 2PSIM and its eminency over existing methods
have been gathered through a survey.

Refining the method and strengthen it, is our main future work. We aim to excel
our algorithm in order to identify services with better quality level as well as improv-
ing their granularity. Moreover, extending 2PSIM to cover service specification and
realization as the succeeding steps of service modeling phase, is considered to be our
future work.

Acknowledgement. This work was supported by Iran Telecommunication Research
Center under Contract No. 20294/500.

References

1. Sunate, K., Minseong, K., Sooyang, P.: Service Identification Using Goal and Scenario in
Service Oriented Architecture. In: 15th Asia Pacific Software Engineering Conference
(2008)

2. Bieberstein, N., Laird, R.G., Jones, K., Mitra, T.: Executing SOA: a practical guide for the
service-oriented architect. IBM Press (2008)

3. Jamshidi, P., Sharifi, M., Mansour, S.: To Establish Enterprise Service Model from Enter-
prise Business Model. In: Proc. of IEEE International Conference on Services Computing
(2008)

4. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, H.: SOMA: A
method for developing service-oriented solutions. IBM Systems Journal 47(3) (2008)

5. Kohlborn, T., Korthaus, A., Chan, T., Rosemann, T.: Identification and Analysis of Busi-
ness and Software Services – A Consolidated Approach. IEEE Transactions on Service
Computing 2(1), 50–64 (2009)

6. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design, 5th edn. Pren-
tice Hall PTR (2005)

7. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of Service-Oriented Analysis and De-
sign. IBM developerWorks (2004),
http://www.ibm.com/developerworks/webservices/library/ws-
soad1/index.html

8. Amsden, J.: Modeling SOA: Part 1. Service identification. IBM developerWorks (2007)
9. Ren, M., Wang, Y.: Rule Based Business Service Identification Using UML analysis. In:

IEEE International Conference on Information Management and Engineering (ICIME
2010) (2010)

10. Jain, H., Zhao, H., Chinta, N.R.: A Spanning Tree Based Approach to Identifying Web
Services. International Journal of Web Services Research 1(1), 1–20 (2004)

11. Zhang, L.J., Zhou, N., Chee, Y.M., Jalaldeen, A., Ponnalagu, K., Sindhgatta, R.R.,
Arsanjani, A., Bernardini, F.: SOMA-ME: A platform for the model-driven design of SOA
solutions. IBM Systems Journal 47(3) (2008)

12. Strosnider, J.K., Nandi, P., Kumaran, S., Ghosh, S., Arsanjani, A.: Model-driven synthesis
of SOA solutions. IBM Systems Journal 47(3) (2008)

13. Jamshidi, P., Mansour, S.: ASIM: Toward Automatic Transformation of Enterprise Busi-
ness Model to Service Model. IEEE Transactions on Service Computing (under review)

634 A. Nikravesh et al.

14. Kumaran, S., Liu, R., Wu, F.Y.: On the Duality of Information-Centric and Activity-
Centric Models of Business Processes. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 32–47. Springer, Heidelberg (2008)

15. Khoshkbarforoushha, A., Jamshidi, P., Nikravesh, A., Khoshnevis, S., Shams, F.: A Metric
for Measuring BPEL Process Context-Independency. In: IEEE International Conference on
Service-Oriented Computing and Applications (SOCA 2009) (2009)

16. Sol, H.G: Information System Development: A Problem Solving Approach. In:
International Symposiom on System Development Methodologies (1990)

Automated Statistical Approach for Memory

Leak Detection: Case Studies

Vladimir Šor1,2, Nikita Salnikov-Tarnovski2, and Satish Narayana Srirama1

1 Institute of Computer Science, University of Tartu
J. Liivi 2, Tartu, Estonia
{volli,srirama}@ut.ee

2 AS Webmedia R&D, Raatuse 20, Tartu, Estonia
{volli,nikita}@webmedia.ee

Abstract. Applications written in JavaTMlanguage, and in other pro-
gramming languages running on JavaTMVirtual Machine (JVM) are
widely used in cloud environments. Although JVM features garbage col-
lection, memory leaks can still happen in these applications. Current
solutions for finding memory leaks have several drawbacks which be-
come critical when deployed in distributed and dynamic environments
like cloud. Statistical approach for memory leak detection gives good
results in terms of false positives and we have implemented automatic
statistical approach for memory leak detection in JavaTMapplications. To
test its correctness and performance we have conducted several experi-
ments by finding memory leaks in a large web-application and searching
for related bugs in open source projects from Apache Software Founda-
tion. This paper presents the results of these experiments and concludes
that automated statistical method for memory leak detection is efficient
and can be used also in production systems to find hardly reproducible
leaks.

Keywords: Memory leak, troubleshooting, JavaTM, cloud computing.

1 Introduction

Existing solutions for finding memory leaks in applications running in Java Vir-
tual Machine (JVM) have several drawbacks even on single JVM and these
drawbacks become critical when deployed in distributed and dynamic environ-
ments like cloud [7]. One of the main issues with existing solutions is the amount
of qualified manual labor required to get to the right conclusions, i.e. find the
real source of the leak. In cloud environment more intelligent troubleshooting
tools are needed.

The statistical method for memory leak detection in garbage collected lan-
guages, e.g., Java, relies on the analysis of distribution of ages of live objects.
If the number of different ages constantly grow, then these objects are created,
but not reclaimed. This points to a potential memory leak. [17]

Although input data for the statistical method can be collected using a pro-
filer (for example, NetBeans profiler [14] allows monitoring ages of objects), the

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 635–642, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

636 V. Šor, N. Salnikov-Tarnovski, and S.N. Srirama

analysis should be still done manually. In case of distributed or cloud applica-
tions, data has to be aggregated from different sources which further increases
the complexity of the task. Moreover, the performance overhead that profilers
impose does not allow using them in the production environments.

Rapid troubleshooting becomes important when transitioning from traditional
approach to IT to Cloud ([11], p. 107). Dynamically scaling environments can pro-
duce vast amount of logging and monitoring data. The better tools for gathering
suchdataget, themoredataandwith less overheadtheywill collect.Butall thisvast
amount of monitoring and logging data has little value without proper algorithms
that will help analyze the data and will aid to get faster to the problem resolution.

To use benefits of the statistical method and overcome aforementioned prob-
lems, we implemented automated statistical leak detection algorithm for Java
applications using agents for JVM. Current implementation is autonomous and
if memory leak is detected it just reports the results as an aggregate report.

To test correctness and performance of our tool we have conducted several
experiments by finding known memory leak bugs in open source projects. Fur-
ther analysis was conducted with a large web-application with a known memory
leak. This paper presents short results of these experiments and concludes that
automated statistical method for memory leak detection is efficient and can be
used also in production systems to find hardly reproducible leaks.

The paper is organized as follows. In section 2 is given general overview of
the automated statistical approach. In section 3 the general considerations of
the case studies are given. Following sections (4 and 5) describe selected case
studies. Section 6 discusses the related work and section 7 concludes the paper
with directions for further research.

2 Automated Statistical Approach for Memory Leak
Detection

Current implementation of the approach consists of two Java virtual machine
agents: Java agent and native agent.

Java agent maintains required statistical metrics and performs concurrent
statistical analysis after full garbage collection cycles. If statistical analysis con-
cludes that objects of certain class are leaked, Java agent initiates further analysis
to reveal reference path from leaking objects to garbage collection roots.

Native agent is required because not all required monitoring information is
available through Java APIs. Thus native agent is responsible for gathering low
level information, e.g., garbage collection and object freeing events, which are
collected using JVM Tooling Interface (JVMTI, [15]) callbacks. Another respon-
sibility of the native agent is to gather references between objects which are
required by Java agent to find paths to garbage collection roots.

Agents operate together in following workflow:

1. track allocation of objects using byte code instrumentation;
2. analyze object age distribution according to statistical method for memory

leak detection;

Automated Statistical Approach for Memory Leak Detection: Case Studies 637

3. if instances of some classes reach predefined age distribution thresholds, then
these classes are reported as leak candidates;

4. if previous step has identified a set of leak candidates, reference dump is cap-
tured and begins graph analysis to find shortest paths from leaking objects
to garbage collection roots;

5. report is being generated.

There are certain nuances in searching for the path from leak to garbage col-
lection roots. One of them is that objects usually leak in clusters – there is one
main composite object which is actually leaking, but all object’s fields are also
leaked with the object. If object graph is more complex then even more classes
are reported as leak suspects (which they actually are), but for the final report
we must find that main object. This is the reason why objects are not reported
and analyzed one by one, but are at first gathered and then analyzed at once to
produce meaningful report.

It may happen that analysis and report generation must be performed in a
very memory-limited environment – memory leak is eating up free heap space
on one side and our analysis also requires some heap for the analysis on the
other side. This may lead to a situation where JVM runs out of heap before
analysis ends. To mitigate this situation the tool stores reference dump file and
accompanying metadata so that analysis also can be performed offline. However,
some runtime information will not be available in the report.

Such hybrid approach combines benefits of both online (e.g., profilers which
monitor live data, having access to required reflection and behaviour informa-
tion) and offline (heap dump analysis in separate environment) memory leak
detection approaches. There is no need to wait for next leak to show itself to try
to do the analysis online again, but rather do remaining analysis offline, which
can be done much faster.

3 Case Studies

To evaluate the performance and precision of the implementation of automated
statistical approach for memory leak detection we conducted several case study
experiments. For these experiments we had to find known memory leak bugs
to see if our tool could find the right reason of the leak. For that we searched
the issue tracker of the Apache Software Foundation [4] for memory leak bugs
in Java based projects. Among these we chose the ones that we were able to
reproduce. In addition to these open source projects we also looked for known
bugs in business web applications with closed source developed at AS Webmedia.
Every case study followed the same workflow.

As a first step baseline was recorded – run every case study without our agents
and record time to crash with OutOfMemoryError and memory usage during
the course of run. Next, the case was run with troubleshooting agents attached.
In addition to the baseline metrics (time to crash and memory usage) we were
interested in the following information: whether our agent will find the leak, if

638 V. Šor, N. Salnikov-Tarnovski, and S.N. Srirama

there will be any false positive alerts, how fast will the agent be able to spot the
leak and produce a report.

Experiments were conducted in the Amazon EC2 cloud [2], using Standard
Large instance running 64bit Ubuntu Linux and Oracle JavaTMHotSpotTM

1.6.0 24 64-Bit Server VM (build 19.1-b02, mixed mode). As of moment of writ-
ing, standard large instance has following characteristics: 7.5 GB memory, 4
EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each), 850 GB
instance storage, 64-bit platform.

In total we have conducted 6 different experiments (bug reports) with 4 dif-
ferent projects from Apache Software Foundation (Velocity, Xalan, Derby and
ActiveMQ) among which we have chosen ActiveMQ [1] for presentation in this
article. In addition to that case study with closed source eHealth web-application
are also presented in following sections.

4 Case Study: Apache ActiveMQ

Apache ActiveMQ [3] is an open source message broker which fully implements
the Java Message Service 1.1 (JMS) specification. The subject of this case study
was a bug, reported to Apache ActiveMQ project’s issue tracker [1].

Two parties, a server, called broker, and a client, participate in communica-
tions using ActiveMQ infrastructure. Client opens a connection to the broker,
and then, in violation of the ActiveMQ protocol, just drops it. This can take place
either due to buggy client code or due to network problems. The result of such
dropped connection is that the instance of object, representing the client who
has initiated this connection, remains in the broker’s memory. If many clients
repeatedly create new connections to the same broker and at some point in the
future just drop this connection without closing it this may result in many ob-
jects accumulating on the broker side. Connection objects are held by the broker
until broker’s memory is depleted which results in OutOfMemoryError.

In order to reproduce reported bug in our environment a sample client spawned
a number of threads, each opening new connection to the broker and then
abruptly closing this connection. This process was run repeatedly, simulating
network problems over time. ActiveMQ broker was run with default settings as
provided in default start-up scripts with the distribution.

For the baseline it was recorded that broker run for 1 hour and 17 minutes
before the crash and its memory usage is depicted on the fig. 1.

With troubleshooting agents attached leak was spotted after 35 minutes since
the application start. The agent was able to successfully find the correct source
of leaking objects. No false positives were reported. Broker ran for 1 hour and
15 minutes before crash.

Comparison of memory usage graphs (fig. 1 and 2) shows that no significant
memory overhead was created by troubleshooting agents. However, some slight
increase in the frequency of full garbage collector runs can be seen (large drops
in heap usage indicate full garbage collection).

Such memory leak can be easily exploited against the service provider who
uses ActiveMQ to create Denial of Service (DoS) type attack. In case of elastic

Automated Statistical Approach for Memory Leak Detection: Case Studies 639

 0

 10

 20

 30

 40

 50

 60

 70

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20

M
B

Time (hour:minute)

Total Heap

Used Heap

Fig. 1. ActiveMQ memory usage baseline

 0

 10

 20

 30

 40

 50

 60

 70

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20

M
B

Time (hour:minute)

Total heap

Used heap

Time of leak detection

Fig. 2. ActiveMQ with agents

cloud computing environment with dynamic resource allocation provider could
be attacked to allocate new instances to serve more and more non-existing clients
and by that cause financial damage by forcing to pay for the allocated resources.

5 Case study: eHealth Web Application

This case study focuses on a large enterprise application (ca. 1 million lines of
code) with web front-end – eHealth web-portal including patient record handling
and many other health-care related functions. At some point development team
has started to receive reports that application crashes in production environment
every few days with java.lang.OutOfMemoryError. As a temporary workaround
client’s IT operations team had to restart application servers every other night
in order to prevent crash. It must be noted that such solution is not uncommon.

At first we manually found the source of the leak by analyzing heap dumps.
Then we wrote automatic test-case with Apache JMeter [5] to stress-test the
memory leak in the application. Next we attached agents to application server
in test environment and ran recorded stress-test until application crashed.

When the memory usage was first recorded we noted that without the agent
memory consumption grows even faster than with agents (fig. 3 and 4). As
memory consumption is closely related to the amount of requests performed by
the application we also added number of performed requests to the picture.

As a baseline it was recorded that the application ran for 2h 30min before
crash. Memory usage with number of the requests sent is depicted on the fig. 3.

With troubleshooting agents leak was spotted after 2h 30min since the appli-
cation start. The agent was able to successfully find the correct source of leaking
objects without false positives. Application run for about 6h before crash. Mem-
ory usage and number of requests are depicted on the fig. 4.

On both of the figures we see a rapid degradation of the application perfor-
mance after about half an hour after beginning. This degradation can be easily
explained by taking into account the amount of the free memory available to the
application. As it decreases, JVM Garbage Collector starts to run more and more
often and to take more and more time. Which in turn leaves less opportunities

640 V. Šor, N. Salnikov-Tarnovski, and S.N. Srirama

 0

 100

 200

 300

 400

 500

 600

00:00 00:15 00:30 00:45 01:00 01:15 01:30 01:45 02:00 02:15 02:30

Time (hour:minute)

Total heap

Used heap in MBytes

Total number of requests x100

Fig. 3. eHealth application baseline

 0

 100

 200

 300

 400

 500

 600

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00

Time (hour:minute)

Total heap

Used heap in MBytes

Total number of requests x100

Time of leak detection

Fig. 4. eHealth application with agents

for the application to serve incoming requests. Hence performance degradation
and, as a result, a slower increase in memory used. So, in case of memory leak
situation, not only overall performance of the application, but the speed of the
leak as well decreases significantly over time.

Comparing first 30 minutes of running the stress-test with and without the
agent, we can estimate the overhead of running an application with our agent
to about 35%. Which is quite large and certainly needs to be improved.

We also got one counter-intuitive result of the application running longer with
the agents than without them. This can be attributed to the fact, that due to
agents’ performance overhead, less requests were served during this time, and as
a result memory leak was consuming memory at a much slower pace.

From fig. 3 we can see that when amount of free memory in Java application
reaches the limit, application is still running and garbage collector tries to free
memory but the performance of the application is dramatically decreased. In
current case clients would be experiencing long response times and timeout errors
for 2 hours before the application would actually crash.

6 Related Work

Memory leaks have been studied in the industry and in research community
extensively and currently there are several approaches for finding memory leaks
in Java applications. These approaches can be divided in two large groups –
offline and online analysis.

For offline analysis the heap dump is taken and then analyzed outside of the
running JVM. There are several algorithms to analyze heap dumps to detect pos-
sible leaking objects. For example [13] shows usage of graph mining algorithms
for this purpose. Eclipse Memory Analyzer or MAT [16] is an open source heap
dump analysis software. Drawback of the offline analysis is the static nature of
the memory dump – there is no information regarding the source of allocation
of the objects, so finding the code responsible for memory leak is a separate task
from just finding leaked objects.

Automated Statistical Approach for Memory Leak Detection: Case Studies 641

Online analysis is done by monitoring live application. One widely used ap-
proach is to monitor certain collection classes for unlimited growth. This tech-
nique is also used in several Application Performance Monitoring (APM) suites.
For example, CA Wily Introscope R© LeakHunterTM [8] and AppDynamics [6].
Another similar solution is described in [18].

FindLeaks tool is using AspectJ pointcuts to analyze references between ob-
jects and find out leaking objects together with the sites of allocation [9].

Profilers are another type of tools often used in development to find memory
leaks. Major disadvantage of the profilers is the need for qualified and experi-
enced operator who can find the actual leaking code.

In addition to different instrumentation and byte code modification techniques
there are several research projects applying different statistical methods for an-
alyzing unnecessary references between objects: Cork [12], and stale objects:
SWAT [10]. SWAT however, is not Java based.

7 Conclusions and Future Work

From the conducted case studies some areas which require further attention can
be summarized as follows.

One of the focus areas for further development is the CPU overhead made
by our agent. CPU overhead influences the number of requests application can
serve per time unit. In case study of eHealth web-application (section 5) we
saw a 35% degradation of the application performance measured in requests per
second. This is too big overhead and certainly is unacceptable for production
environments. Though it may be good enough for testing environments in order
to reproduce and pin-point memory leak bug previously found in production.

No significant problems with memory overhead when using our agent were
found during case studies. As graph analysis can be performed offline, as de-
scribed in 2 memory overhead can be lowered even more.

It is our opinion that more effort should be put into researching if it is pos-
sible to deduct the user experience degradation due to memory problems on
the server side based on the memory metrics that can be collected in the JVM.
E.g., time spent in GC, GC frequency, ratio of fast GC to full GC etc. This way
smarter monitoring applications and utilities can be developed, which give the
application owner IT operations feedback based on the performance of the ap-
plication as perceived by the clients. Combining this with the auto-scaling capa-
bilities of cloud-based application will give the application owner finer and much
more efficient control over application infrastructure without compromising users
satisfaction.

To integrate with cloud infrastructure providers dashboards and other cloud
monitoring software data collection and aggregation framework must be added
to the memory troubleshooting tool. The preliminary idea of the agent based
framework using collectD system statistic collection daemon is addressed in [17].

Acknowledgments. This research is part of the EUREKAProject 4989 (SITIO)
co-funded by the European Regional Development Funds via Enterprise Estonia.

642 V. Šor, N. Salnikov-Tarnovski, and S.N. Srirama

References

1. Active mq issue tracker, ticket 3021 (2011),
https://issues.apache.org/jira/browse/AMQ-3021

2. Amazon Inc.: Elastic Compute Cloud (EC2) (2011),
http://aws.amazon.com/ec2/

3. Apache Software Foundation: ActiveMQ (2011), http://activemq.apache.org/
4. Apache Software Foundation: Apache Software Foundation issue tracker (2011),

https://issues.apache.org/bugzilla/

5. Apache Software Foundation: JMeter (2011),
http://jakarta.apache.org/jmeter/

6. AppDynamics: home page (2011), http://www.appdynamics.com/
7. Armbrust, M., et al.: Above the Clouds, A Berkeley View of Cloud Computing.

Technical report UCB/EECS-2009-28, University of California (February 2009)
8. CA Wily Introscope: Home page (2010),

http://www.ca.com/us/application-management.aspx

9. Chen, K., Chen, J.B.: Aspect-based instrumentation for locating memory leaks in
java programs. In: 31st Annual International Computer Software and Applications
Conference, COMPSAC 2007, vol. 2, pp. 23–28 (July 2007)

10. Chilimbi, T.M., Hauswirth, M.: Low-overhead memory leak detection using adap-
tive statistical profiling. In: 11th Int. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, pp. 156–164 (2004)

11. Ellahi, T., Hudzia, B., Li, H., Lindner, M.A., Robinson, P.: The Enterprise Cloud
Computing Paradigm. In: Cloud Computing: Principles and Paradigms. John Wi-
ley & Sons, Inc. (2011)

12. Jump, M., McKinley, K.S.: Cork: dynamic memory leak detection for garbage-
collected languages. In: 34th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2007), pp. 31–38. ACM (2007)

13. Maxwell, E.K.: Graph Mining Algorithms for Memory Leak Diagnosis and Biolog-
ical Database Clustering. Master’s thesis, Virginia Polytechnic Institute and State
University (2010)

14. netbeans.org: NetBeans profiler (2011), http://profiler.netbeans.org/
15. Sun Microsystems Inc.: JvmTM tool interface (2006),

http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html

16. The Eclipse Foundation: Memory analyzer (2011), http://www.eclipse.org/mat/
17. Šor, V., Srirama, S.N.: A statistical approach for identifying memory leaks in cloud

applications. In: First International Conference on Cloud Computing and Services
Science (CLOSER 2011), pp. 623–628. SciTePress (May 2011)

18. Xu, G., Rountev, A.: Precise memory leak detection for java software using con-
tainer profiling. In: ACM/IEEE 30th International Conference on Software Engi-
neering, ICSE 2008, pp. 151–160 (May 2008)

https://issues.apache.org/jira/browse/AMQ-3021
http://aws.amazon.com/ec2/
http://activemq.apache.org/
https://issues.apache.org/bugzilla/
http://jakarta.apache.org/jmeter/
http://www.appdynamics.com/
http://www.ca.com/us/application-management.aspx
http://profiler.netbeans.org/
http://download.oracle.com/javase/6/docs/platform/jvmti/jvmti.html
http://www.eclipse.org/mat/

ODBASE 2011 PC Co-chairs’ Message

We are happy to present the papers of the 10th International Conference on
Ontologies DataBases, and Applications of Semantics, ODBASE 2011, held in
Heraklion, Crete (Greece), in October 2011. The ODBASE conference series pro-
vides a forum for research on the use of ontologies and data semantics in novel
applications, and continues to draw a highly diverse body of researchers and
practitioners by being part of the federated conferences event ”On the Move to
Meaningful Internet Systems (OnTheMove)” that co-locates three conferences:
ODBASE, DOA-SVI (International Symposium on Secure Virtual Infrastruc-
tures), and CoopIS (International Conference on Cooperative Information Sys-
tems), and this was also done in 2011.

We received 29 paper submissions which were subjected to rigorous reviews
and discussions among the PC members. We eventually accepted nine submis-
sions as full papers, for an acceptance rate of 31%, and an additional four sub-
missions as short papers and five papers as posters in the workshop proceedings.

ODBASE 2011 continued its traditional focus on work which bridges tradi-
tional boundaries between disciplines. We believe that this emphasis on inter-
disciplinarity is highly valuable for the community, and provides a necessary
stimulus for the future development of Semantic Web research and practice.

August 2011 Manfred Hauswirth
Pascal Hitzler

Mukesh Mohania

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, p. 643, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

RDFa Based Annotation of Web Pages through

Keyphrases Extraction

Roberto De Virgilio

Dipartimento di Informatica e Automazione
Universitá Roma Tre, Rome, Italy

dvr@dia.uniroma3.it

Abstract. The goal of the Semantic Web is the creation of a linked mesh
of information that is easily processable by machines, on a global scale.
The process of upgrading current Web pages to machine-understandable
units of information relies on semantic annotation. A typical process
of semantic annotation includes three main tasks: (i) the identification
of an ontology describing the domain of interest, (ii) the discovering
of the concepts of the ontology in the target Web pages, and (iii) the
annotations of each page with links to Web resources describing the
content of the page. The goal is to support an ontology-aware agent in the
interpretation of target documents. In this paper, we present an approach
to the automatic annotation of Web pages. Exploiting a data reverse
engineering technique, our approach is capable of: recognizing entities in
Web pages, extracting keyphrases from them, and annotating such pages
with RDFa tags that map discovered entities to Linked data repositories
matching the extracted keyphrases. We have implemented the approach
and evaluated its accuracy of on real Web sites for e-commerce.

1 Introduction

The Semantic Web [1] is an extension to the World Wide Web in which in-
formation is defined semantically in terms of concepts with meaning, with the
goal of matching requests of people and machines in a more accurate way. Ever
since Tim Berners Lee presented, in 2006, the design principles of Linked Open
Data1, the public availability of Semantic-Web data has grown rapidly. Today,
many practitioners, organizations and universities are contributing to the this
trend by publishing on the Web repositories of data expressed in RDF, the basic
technology underlying the Semantic Web. In addition, ontology languages such
as RDFS and OWL are also often adopted as a means to annotate Web data,
since they enable various forms of reasoning. Unfortunately however, although
the Semantic Web can provide exciting new functionality involving finding, shar-
ing, and combining available information, a wide adoption of this extension of
the Web is yet to be waited for. In this framework, one of the major research
issue is the automatic annotation of Web pages with semantic tags.

1 http://linkeddata.org/

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 644–661, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://linkeddata.org/

RDFa Based Annotation of Web Pages through Keyphrases Extraction 645

A typical process of semantic annotation can be decomposed in three phases.
First, an ontology describing the domain of interest is chosen. Then, instances
of concepts in the ontology are identified in the target Web pages using a knowl-
edge discovery technique. Finally, Web pages are annotated by associating Web
resources with terms in the documents by means of semantic links. Such anno-
tations can be then used by an ontology-aware agent to interpret the content of
target documents.

Steps 2 and 3 of the process above involve two main tasks. First, the identifi-
cation of candidate terms for adding links: typically they denote concepts of the
ontology that can be of interest for the user. Second, the identification of a Web
resource to associate with candidate terms. The first task can be done by adopt-
ing an information extraction technique. Two major sub-problems here are the
decision on whether a term should be linked or not (to avoid overlinking), and
the disambiguation of concepts to associate with candidate terms, since terms
can have different meanings and consequently can demand different disclosures.
The second task requires an external source of knowledge, which can be a pre-
defined knowledge base (e.g. Wikipedia) or a distributed and wider data space
such as Linked Open Data. The latter approach requires also a pre-selection of
the sources to be considered, since only a few sources in the whole data space
can contain relevant knowledge in the domain of interest.

Although several solutions are being proposed to automatically add semantic
links to Web pages (e.g. [2,3,4,5,6,7]), they mainly adopt semi-automatic ap-
proaches and are ad-hoc implementations depending on the selected knowledge
base (e.g. Wikipedia). Then usually such proposals do not obtain optimal values
for both accuracy and efficiency.

In this paper, we propose a technique to the automatic annotation of existing
Web pages with the necessary RDFa [8] attributes, a W3C Recommendation that
provides a method for embedding rich metadata within HTML Web documents
using a set of predefined attributes. Our approach relies on recent techniques for
extracting information from the Web [9]. As in the case of most of these pro-
posals, we start from the observation that data published in the pages of large
Web sites usually (i) come from a back-end database and (ii) are embedded
within shared HTML templates. Therefore the extraction process can be based
on the inference of a description of the shared templates. Though this approach
is applicable on Web documents, it does not exploit the hypertext structure of
Web documents. Our work focuses on discovering this structure as well. Some
research efforts have shown that users always expect that certain functional part
of a Web page (e.g., navigational links, advertisement bar and so on) appears at
certain position of a page2. Additionally, there exist blocks of information that
involve frequent HTML elements and have a higher coherence. That it to say, in
Web pages there are many unique information features that can be used to help
the extraction of blocks involving homogeneous information. To this aim we have

2 For more details see http://www.surl.org/

http://www.surl.org/

646 R. De Virgilio

developed a data reverse engineering algorithm [10] to extract semantic blocks
carrying information candidate for annotation. Then, a keyphrases algorithm [11]
and a keyword search approach [12] allow us to extract the most meaningful key-
terms from the Web page and to discover the concepts of a semantic knowledge
base (e.g DBPedia) that best captures their semantics. Finally, Web pages are
annotated, using the RDFa mechanism, linking terms to the selected semantic
concepts.

The remainder of this paper is organized as follows. Section 2 introduces
related work. Section 3 illustrates an architecture of reference that provides
a functional global view of the approach. Section 4 describes step-by-step the
annotation process. Section 5 discusses the implementation of our framework
and evaluates the performance of our technique. Finally, in Section 6 we sketch
conclusions and future work.

2 Related Work

Main efforts to annotation of Web pages can be classified with respect to the
degree of automation of the entire process. In particular we distinguish manual
and automatic approaches.

Manual Annotation. Manual annotation research focuses more on how to rep-
resent the annotation and on developing user-friendly interfaces to support the
user to write down their annotation. The most representative manually anno-
tating tool is Annotea [13]. Annotea describes annotations by an RDF-schema
and uses XPointer to allocate them into the annotated document. Based on An-
notea, there are several manual annotation tools that could potentially be used
for semantically annotating the Web, which include but are not limited to: An-
notator, CritLink, CoNote, ComMentor and ThirdVoice.

Automated Annotation. Research about automated annotation tools focuses
more on how to create annotations according to specied domain ontologies. Most
automatic semantic annotation tools exploit ontology-based Information Extrac-
tion (IE) to extract information (semantics) and compose the annotation result-
ing by matching the extracted information with a given pre-constructed domain
ontology (i.e. in according to the Linked Data philosophy).

Ont-O-Mat [5] is the implementation of a framework (S-CREAM) supporting
both manual and semi-automatic annotation of Web pages. Ont-O-Mat adopts
automated data extraction technique from Amilcare [14], which is an adaptive
IE system designed for supporting active annotation of documents. Ont-O-Mat
implements different heuristics for post-processing and mapping of IE results
to an ontology. Ont-O-Mat allows to access ontologies described in different
markup formats (e.g. RDF and DAML+OIL), but the system can access to only
one ontology per time. Ont-O-Mat provides a storage system for pages annotated
in DAML+OIL using OntoBroker3 as an annotation server [15]. Finally the tool
3 http://ontobroker.semanticWeb.org/

http://ontobroker.semanticWeb.org/

RDFa Based Annotation of Web Pages through Keyphrases Extraction 647

exposes crawlers that can search the Web for annotated Web pages to add to its
internal knowledge base.

MnM [6] is quite closed to Ont-O-Mat. It provides both automated and semi-
automated annotation support. MnM implements an ontology editor, integrating
it with a Web browser. Similar to Ont-O-Mat, MnM allows to access ontologies
specified in different markup formats throw open APIs (e.g. OKBC4), that link
to ontology servers and integrating IE tools. Differently from Ont-O-Mat, MnM
can access multiple ontologies at the same time. Beyond this, MnM shares almost
all the other features as for Ont-O-Mat. As stated by the authors, the difference
between the two systems is their philosophies. While Ont-O-Mat adopts the
philosophy that the markups should be included as part of the resources, MnM
stores their annotations both as markups on a Web page and as items in a
knowledge base.

In [16] the authors provide the KIM platform: it consists of a formal ontol-
ogy, a knowledge base, a Server (with an API for remote access or embedding),
and different user-interfaces to access to the functionality of the platform. The
ontology is a light-weight upper level ontology, defining classes and relations
of interest. The representation language is RDF-Schema. The knowledge base
contains the entity description information for annotation purposes. During the
annotation process, KIM combines NLP and IE techniques, integrating GATE5

(General Architecture of Text Engineering), to extract, index, and annotate
data instances. The KIM Server coordinates multiple units in the general plat-
form. The annotated information is stored inside the Web pages. KIM front-ends
provide a browser plug-in so that people can view graphically through different
highlighted colors in regular Web browsers such as Microsoft’s Internet Explorer.

Finally SemTag [7] is the largest scale and most popular semantic tagging tool.
SemTag uses the TAP6 ontology to define annotation classes. The TAP ontology
is very similar in size and structure to the KIM ontology and knowledge base.
SemTag uses a vector-space model to assign the correct ontological class or to
determine that a concept does not correspond to a class in TAP. The SemTag
system is implemented on a high-performance parallel architecture: the final
system results very efficient and provide high accuracy of annotation.

3 Architecture of Reference

Our main focus is to add semantic annotations to existing Web pages given as
input in an automatic way. For instance let us consider an e-commerce Web site
(e.g. eBay). Fig. 1 shows a snapshot of a list of Motorcycle items.

In particular the page illustrates different items of Harley-Davidson motor-
cycles. In the following we show the corresponding HTML code referring to the
first item

4 http://www.ai.sri.com/~okbc/
5 http://gate.ac.uk/
6 http://tap.stanford.edu

http://www.ai.sri.com/~okbc/
http://gate.ac.uk/
http://tap.stanford.edu

648 R. De Virgilio

Fig. 1. An eBay example page

...
 <div class="description">
<h1>Harley-Davidson: Touring FLHRSEI</h1>

2002 ROAD KING CVO SCREAMIN EAGLE MINT CONDITION

...

</div>
...

Our framework for automatically adding semantic annotations to a Web page
(as the above illustrated) is composed of a number of stages. Fig. 2 sketches the
main steps of our framework and their interdependencies.

The process starts selecting the parts of a Web page to investigate. Require-
ments to the selection are a high sensitivity (low false negative rate), good speci-
ficity (low false positive rate), and reasonable robustness (i.e. the ability to be

Fig. 2. Annotation process

RDFa Based Annotation of Web Pages through Keyphrases Extraction 649

used on a variety of Web pages that do not match the trained set). Therefore
the Entity Extraction step identifies the so-called semantic blocks that are
the areas of a page most likely to be a place of interest (e.g a document section
containing information to annotate). To determine such blocks, we exploit the
segmentation algorithm provided in [10] supported by a Web data model [17] to
describe abstract structural features of HTML pages. Combining cognitive visual
analysis and hierarchy-based algorithms, they identify blocks grouping semanti-
cally related objects occurring in Web pages, and generate a logical schema of
a Web site. In the Keyphrase Extraction step, we extract keyphrases from
the individuates blocks coming from the previous step. This step is supported
by KEA [11], an algorithm for extracting keyphrases from text documents. It
can be either used for free indexing or for indexing with a controlled vocabulary.
The third step is the Keyword Search that processes a keyword search query
with the keywords resulting from the Keyphrase Extraction on a Semantic

Knowledge Base. This step individuates the semantic concepts best matching
the query: we employ the algorithm in [12]. Finally the Annotation takes place
supported by RDFa format to model the annotations in the page.

In the following section we will describe in detail the entire process.

4 Automatic Annotation of Web Pages

4.1 Semantic Block Identification

Following the approach in [10], we have to select portions of an HTML pages
and map them to constructs of the Web Site Model (WSM) [17]. WSM defines
a conceptual modeling of the main structures occurring into a Web page. More
precisely, it organizes a page in a set of meta containers related by links. A
metacontainer is atomic if it represents an atomic portion of a linked page and
includes a direct reference to the elements of a content from which it takes data.
It can be basic if it shows information about a single object (e.g. an instance of an
entity) or multi if it shows information about a set of objects. A metacontainer is
a linker if it contains an anchor between containers. Otherwise a metacontainer
is complex if it is articulated in other containers (atomic, complex or linker).
So a page represents a complex container. We can surf the containers through
several navigational structures such as Indexes to show a list of objects without
presenting the detailed information of each one, Guided Tours to show commands
for accessing the elements of an ordered set of objects, and Entries to show edit
field for inputting values used for searching within a set of objects meeting
a condition. For instance, Fig. 3 shows a commercial Web site about several
discounted items grouped in categories, represented in the WSM model. In the
Figure, Home and Detail correspond to complex metacontainers. In particular
Home describes different discounted items as basic containers (i.e. discount) that
can be navigated by an Index structure (i.e. Discounts).

Implementing the segmentation algorithm of [10], we determine several blocks
into a Web page identified by the HTML tags pattern to reach them. As in [10],
the idea is to identify a set of container tags representing candidates to be

650 R. De Virgilio

Fig. 3. The WSM representation of a commercial Web Site

mapped. In particular we refer to HTML tags that bring to information content
in a Web page such as UL, TABLE, DIV, BODY, We call non informative tags
HTML tags that don’t bring to informative content (such as SPAN, B and so on).
Each pattern rooted in a tag container will be translated into a metacontainer
using a particular navigational structure (Index, Guided Tour or Entry). Let’s
consider to define a target pattern t for each construct. For instance the Index
navigational structure presents UL-LI-A as target pattern tIndex. If we want to
map a source pattern s to tIndex we have to find an alignment between s and
tIndex. To this aim we will use the dynamic programming algorithm to calculate
the optimal score and to find the optimal alignment between two patterns (i.e.
alignment between two strings) [18].

First, we will compute the optimal alignment for every substring and save
those scores in a matrix. For two strings, s of length m and t of length n, D[i, j]
is defined to be the best score of aligning the two substrings s[1 . . . j] and t[1 . . . i].
A scoring matrix for scoring substitutions, matches, and gap creation is needed.
The score is 2 for a match, 1 for a partial match and -1 for a mismatch. The
match is based on tags comparison between patterns. A match (mismatch) is
between container tags while a partial match is between a container tag and
a non informative tag. Then we will consider global alignments: the conditions
are set such that we compute the best score and find the best alignment of two
complete strings. Therefore the best score for the alignment is precisely D[m, n],
the last value in the table. We will compute D[m, n] by computing D[i, j] for all
values of i and j where i ranges from 0 to m and j ranges from 0 to n. These
scores, the D[i, j] are the optimal scores for aligning every substring, s[1 . . . j]
and t[1 . . . i].

In general, dynamic programming has two phases: the forward phase and the
backward phase. In the forward phase, we compute the optimal cost for each
subproblem. In the backward phase, we reconstruct the solution that gives the
optimal cost. For our string matching problem, specifically, we will: (i) use the
recurrence relation to do the tabular computation of all D[i, j] (forward phase),
and (ii) do a traceback to find the optimal alignment.

The recurrence relation establishes a relationship between D[i, j] and values
of D with indices smaller than i and j. When there are no smaller values of i

RDFa Based Annotation of Web Pages through Keyphrases Extraction 651

and j then the values of D[i, j] must be stated explicitly in the base conditions.
The base conditions are used to calculate the scores in the first row and column
where there are no matrix elements above and to the left. This corresponds to
aligning with strings of gaps. After the base conditions have been established,
the recurrence relation is used to compute all values of D[i, j] in the table. The
recurrence relation is:

D[i, j] = max{D[i − 1, j − 1] + sim mat[s[j], t[i]], D[i − 1, j] + gap score, D[i, j − 1] + gap score}

In other words, if you have an optimal alignment up to D[i − 1, j − 1] there are
only three possibilities of what could happen next: (1) the characters for s[i] and
t[j] match, (2) a gap is introduced in t and (3) a gap is introduced in s. It is not
possible to add a gap to both substrings. The maximum of the three scores will
be chosen as the optimal score and is written in matrix element D[i, j].

The second phase is to construct the optimal alignment by tracing back in
the matrix any path from D[m, n] to D[0, 0] that led to the highest score. More
than one possibility can exist because it is possible that there are more than one
ways of achieving the optimal score in each matrix element D[i, j]. In our case
we have to select the target pattern that presents the best scoring matrix (i.e.
the best alignment with the source pattern s).

For instance consider the pattern s, that is UL-LI-DIV-A. We have to map s
into a metaconstruct of WSM. We have to find an alignment between s and a
target pattern t. The best alignment is with the target pattern UL-LI-A. To this
aim, we obtain the following scoring matrix.

t/s UL LI DIV A

UL 2 -1 1 -1

LI -1 2 1 -1

A -1 -1 1 2

The best alignment is UL-LI-#-A, therefore we will map the pattern s with
an Index structure of WSM.

Referring to the example of Fig. 1, we have a list of items that is represented in
WSM as an Index Structure (i.e. the list of tags <a>) linked to a basic container
(i.e. the targets of href in the tags <a>), as shown in Fig. 4.

Fig. 4. The Entity Extraction result

652 R. De Virgilio

4.2 Keyphrase Extraction

Each semantic block has to be analyzed by the KEA algorithm to extract the
keyphrases. KEA provides semantic metadata that summarize and characterize
blocks. The algorithm identifies candidate keyphrases using lexical methods (i.e.
TD/IDF), calculates feature values for each candidate, and uses a machine-
learning approach to predict which candidates are good keyphrases. Referring
to the example of Fig. 1, it is straightforward that the extracted keyphrase is
Harley Davidson, since Harley and Davidson are the most frequent terms. In
this case we have a map M where the keys are the keywords extracted (i.e. in this
case Harley and Davidson), and the values are the semantic blocks containing
such keywords (i.e. the Index Structure).

Fig. 5. Search over the Semantic Knowledge Base

4.3 Keyword Search

Once extracted the most meaningful keywords from the semantic block, we re-
duce the problem to submit a keyword search query to a semantic knowledge
base. Fig. 5 illustrates the process, referring to our example. We employ the
technique in [12], where a novel approach to keyword search over semantic data
combines a solution building algorithm and a ranking technique with the goal
of generating the best results in the first retrieved answers. In our case we re-
trieve only the top solution: the result is the RDF graph that best combines
the keywords extracted by the KEA algorithm. As we will illustrate in the next
section, we use DBPedia

7 as Semantic Knowledge Base. However our tech-
nique is independent from the particular semantic dataset. Once we obtained the
7 http://dbpedia.org/

http://dbpedia.org/

RDFa Based Annotation of Web Pages through Keyphrases Extraction 653

RDF graph, we select the nodes that exactly match the keywords and all the
properties directly connected. For instance, considering again our example, given
the query Harley Davidson, the Keyword Search returns the following RDF
graph (i.e. expressed in NTRIPLE)

<dbp:Harley_Davidson> <rdf:type> <dbp:Motorcycle>
<dbp:Harley_Davidson> <rdfs:label> "Harley Davidson"
...

For the sake of simplicity we reported only the most interesting semantic in-
formation and we used the namespaces dbp (http://dbpedia.org/resource/),
rdf (http://www.w3.org/1999/02/22-rdf-syntax-ns#) and rdfs (http://www.w3.
org/2000/01/rdf-schema#) instead of verbose URIs.

4.4 Annotation

The final step is to generate the annotated Web pages introducing the seman-
tic information retrieved in the previous steps. The most popular annotation
styles are RDFa [8] and Microformats8. The simpler Microformats style uses
HTML class attributes populated with conventional names for certain prop-
erties, which has the advantage of being usable for Web page formatting and
easy to write for humans. However, these advantages are largely irrelevant for
our purpose. RDFa benefits from RDF, the W3C’s standard for interoperable
machine-readable data. RDFa is considered more flexible and semantically rich
than Microformats [19]. Therefore RDFa is a better choice for meta-data anno-
tation than Microformats.

In addition to RDFa, it is possible to use standardized vocabulary for the
specific domain to annotate. In particular we used the e-commerce as specific
domain. To this aim we employ GoodRelations9. GoodRelations is a standardized
vocabulary for product, price, and company data that (1) can be embedded into
existing static and dynamic Web pages and that (2) can be processed by other
computers. This increases the visibility of products and services in the latest
generation of search engines, recommender systems, and novel mobile or social
applications. Let us remind Google is now officially recommending GoodRela-
tions for Rich Snippets10.

Referring to our example, given the semantic information about Harley
Davidson, we introduce them into an RDFa document, based on the GoodRela-
tions vocabulary, as follows

<ul xmlns="http://www.w3.org/1999/xhtml"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

8 http://microformats.org/about
9 http://www.heppnetz.de/projects/goodrelations/

10 http://googlewebmastercentral.blogspot.com/2009/05/introducing-

rich-snippets.html

http://dbpedia.org/resource/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2000/01/rdf-schema
http://microformats.org/about
http://www.heppnetz.de/projects/goodrelations/
http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html
http://googlewebmastercentral.blogspot.com/2009/05/introducing-rich-snippets.html

654 R. De Virgilio

xmlns:gr="http://purl.org/goodrelations/v1#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#">

...
 <div class="description"

about="ProductOrServicesSomeInstancesPlaceholder_1"
typeof="gr:ProductOrServicesSomeInstancesPlaceholder">

<div rel="rdf:type"
resource="http://dbpedia.org/resource/Motorcycle"/>

<div property="rdfs:label"
content="Harley-Davidson" xml:lang="en"/>

<h1>Harley-Davidson: Touring FLHRSEI</h1>

2002 ROAD KING CVO SCREAMIN EAGLE MINT CONDITION

...

</div>
...

5 Experimental Results

On the basis of the methodologies and techniques above described, we have
designed a Java tool to the automatic annotation of existing Web pages with
the necessary RDFa attributes. Referring to the architecture illustrated in Fig. 2,
each step is implemented in a separate module. The Entity Extraction mod-
ule integrates an optimized version of the ReverseWeb tool illustrated in [10].
The Keyphrase Extraction module employes the Java implementation of
KEA11 while the Keyword Search module the Yaanii tool [12]. We used
DBPedia as Semantic Knowledge Base. Finally the Annotation module
takes as input the RDF graphs returned by Yaanii and produces RDFa docu-
ments, on the basis of the GoodRelations vocabulary.

In our experiments we evaluated both the efficiency and the effectiveness.
These experiments rely on crawling and annotating 100.000 pages for three pop-
ular e-commerce Web sites: eBay12, buy13 and bestbuy14. In particular we com-
pared our system with SemTag [7]. In the following we omit results for bestbuy,
since they are quite similar to buy.

Experiments were conducted on a dual core 2.66GHz Intel Xeon, running
Linux RedHat, with 4 GB of memory, 6 MB cache, and a 2-disk 1Tbyte striped
RAID array.

11 Available at http://www.nzdl.org/Kea/
12 www.ebay.com
13 www.buy.com
14 www.bestbuy.com

http://www.nzdl.org/Kea/
www.ebay.com
www.buy.com
www.bestbuy.com

RDFa Based Annotation of Web Pages through Keyphrases Extraction 655

(a)

(b)

Fig. 6. Efficiency of our approach

5.1 Efficiency Evaluation

We measured the average elapsed time to produce an annotated page. Fig. 6
shows the results for our system. The diagram illustrates the average elapsed
time (msec) with respect to the increasing number of DOM nodes in a Web page
for the Web sites eBay (Fig. 6.(a)) and buy (Fig. 6.(b)). The Figure shows the
efficient trend for both Web sites. Since eBay presents a more variable structure
of pages with respect to buy, the corresponding diagram presents an increasing
trend of elapsed times. A more significant result is the speed-up between our
system and SemTag. We computed the speed-up with respect to the size (i.e.
number of DOM nodes) of a page as the ratio between the average execution
time (i.e. to annotate a page) of SemTag (tSemTag), and that of our approach
town, or briefly tSemTag

town
, as shown in Table 1. In general, our system performs

very well with respect to SemTag in any case: of course the size of the page
increases the complexity of the Entity Extraction reducing the speed-up.

656 R. De Virgilio

Table 1. Speed-up

500 1000 1500 2000 2500 3000 3500 4000 4500

eBay 20 20 18 16 12 11 9 7 6

buy 18 17 15 11 8 5 3 2 2

5.2 Effectiveness Evaluation

Then, we define the precision of an annotated Web page

precision (P) =
|SC ∩ SC′|

|SC|
where SC is the set of concepts retrieved by the annotation process to annotate
a Web page while SC′ the set of correct concepts to insert into the annotation. It
compares the number (size) of the expected (correct) semantic concepts to insert
into the annotation with the real number of retrieved concepts. This coefficient
is in a range [0,1]. If the precision is too close to zero, this means that the system
was not able to identify significant terms in the knowledge base. Conversely, if
the precision is more close to one, the system best fitted the semantic of the Web
page (i.e. the noise is well reduced).

Fig. 7 illustrates the precision for eBay (Fig. 7.(a)) and buy (Fig. 7.(b)).
In particular we measured the average precision of the annotation of a Web
page (for each Web site) with respect to the increasing size of the page (i.e.
the number of DOM nodes). Both the diagrams show a reasonable and effective
quality trend. An interesting result is that the precision trend of eBay is better
than that of buy. This is due to the more heterogeneity of Web content and
structure of eBay with respect to buy. Such heterogeneity supports the KEA
algorithm to distinguish key-terms. Moreover the more diffusion and popularity
of eBay favors the lexical matching of key-terms with the knowledge base (i.e.
DBPedia). As for the efficiency evaluation, we use a similar comparison with
SemTag. In this case we measure the ratio between the precision of our system
(Pown) and that of SemTag (PSemTag) with respect to the number of DOM
nodes in a page. Briefly, we have Pown

PSemTag
. Table 2 illustrates the final results.

Also in this case, our system is better than SemTag. In particular the preci-
sion grows with the increasing of the size of the page. While SemTag introduces
noise (i.e. no meaningful concepts) due to the significant size of the page, our
system improves the concept discovery due to both the KEA algorithm and the
keyword search technique.

Then, we define the recall of an annotated Web page

recall (R) =
|SC ∩ SC′|

|SC′|
where SC is the set of concepts retrieved by the annotation process to annotate
a Web page and SC′ the set of correct concepts to insert into the annotation.

RDFa Based Annotation of Web Pages through Keyphrases Extraction 657

(a)

(b)

Fig. 7. Precision of our approach

It compares the number (size) of the expected (correct) semantic concepts to
insert into the annotation with the real number of retrieved correct concepts.
This coefficient is in a range [0,1]. As for the precision, if the recall is too close to
zero, this means that the system identify false positive terms in the knowledge
base. Conversely, if the recall is more close to one, the system best fitted the
semantic of the Web page.

Fig. 8 illustrates the recall for eBay (Fig. 8.(a)) and buy (Fig. 8.(b)). Both
the diagrams show a more reasonable and effective quality trend with respect to
the precision. As for the precision, the recall trend of eBay is better than that

Table 2. Precision comparison

500 1000 1500 2000 2500 3000 3500 4000 4500

eBay 1 1 1,8 1,7 1,7 2 2,5 3,2 3,2

buy 1 1,5 1,6 1,8 1,8 2,1 2,2 2,3 2,5

658 R. De Virgilio

(a)

(b)

Fig. 8. Recall of our approach

of buy, since eBay presents a more heterogeneity of Web content and structure
with respect to buy. Also in this case we compare our approach with SemTag.
In this case we measure the ratio between the recall of our system (Rown) and
that of SemTag (RSemTag) with respect to the number of DOM nodes in a
page. Briefly, we have Rown

RSemT ag
. Table 3 illustrates the final results.

Finally, we define the F-measure of an annotated Web page

F -measure (F) = 2 · P · R
P + R

Table 3. Recall comparison

500 1000 1500 2000 2500 3000 3500 4000 4500

eBay 1 1,2 1,8 2,1 2,9 3,2 3,5 3,9 4,1

buy 2 2 1,5 1,8 1,8 2,1 2,1 2,1 2,1

RDFa Based Annotation of Web Pages through Keyphrases Extraction 659

Table 4. F-measure comparison

500 1000 1500 2000 2500 3000 3500 4000 4500

eBay 1 1,1 1,8 1,9 2,1 2,5 2,9 3,5 3,6

buy 1,3 1,7 1,5 1,8 1,8 2,1 2,1 2,2 2,3

it is a measure of a test’s accuracy. This coefficient compares the number (size)
of true positives (tp) (i.e. P · R) with the total (retrived and expected) number
(size) of results, true positives, false positive (fp) and false negative (fn), that
is tp+fp+fn ((i.e. P+R)). This coefficient is in a range [0,1]. If the accuracy is
too close to zero, this means that the system was completely not able to identify
significant concepts, otherwise if the accuracy is more close to one, the system
perfectly fitted the semantic of the Web page.

Fig. 9 illustrates the F-measure for eBay (Fig. 9.(a)) and buy (Fig. 9.(b)).
Both the diagrams show a reasonable and effective quality trend with respect

(a)

(b)

Fig. 9. F-measure of our approach

660 R. De Virgilio

to the F-measure. Also in this case we compare our approach with SemTag. In
this case we measure the ratio between the recall of our system (Fown) and that
of SemTag (FSemTag) with respect to the number of DOM nodes in a page.
Briefly, we have Fown

FSemTag
. Table 4 illustrates the final results.

6 Conclusion and Future Work

The Semantic Web promises exciting new functionality involving finding, shar-
ing, and combining available information, but a wide adoption of this extension
of the Web is still in its infancy. Although many practitioners, organizations and
universities are publishing on the Web repositories of data expressed in ontology
languages such as RDFS and OWL, there is a demanding need for techniques
capable of enriching, in an automatic way, traditional Web pages with seman-
tic information. In order to provide a contribution in this direction, we have
presented in this paper a novel approach to the automatic annotation of Web
pages with semantic tags. Our technique relies on a data reverse engineering
technique and is capable of: (i) recognizing entities in Web pages, (ii) extracting
keyphrases from them, and (iii) annotating such pages with RDFa tags that map
the extracted keyphrases to entities occurring in Linked data repositories. We
have implemented the approach and evaluated its accuracy of on real Web sites
for e-commerce. In addition, we have compared the performance of our system
with competing frameworks: it turns out that our system behaves very well with
respect to them, exhibiting significant speed-up and accuracy.

Future directions includes practical and theoretical studies. From a theoretical
point of view, we are investigating new algorithms to keyphrase extraction aimed
at minimizing the best meaningful set of key-terms. From a practical point of
view, we are developing optimization techniques of the entire process and a
mechanism to automatically select the semantic knowledge bases of interest (e.g.
exploiting the Linked Data technology) and to infer new concepts from them.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001)

2. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge.
In: CIKM, pp. 233–242 (2007)

3. Milne, D.N., Witten, I.H.: Learning to link with wikipedia. In: CIKM, pp. 509–518
(2008)

4. Gardner, J.J., Xiong, L.: Automatic link detection: a sequence labeling approach.
In: CIKM, pp. 1701–1704 (2009)

5. Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM – Semi-Automatic Creation
of Metadata. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS
(LNAI), vol. 2473, pp. 358–372. Springer, Heidelberg (2002)

6. Vargas-Vera, M., Motta, E., Domingue, J., Lanzoni, M., Stutt, A., Ciravegna,
F.: MnM: Ontology Driven Semi-Automatic and Automatic Support for Semantic
Markup. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI),
vol. 2473, pp. 379–391. Springer, Heidelberg (2002)

RDFa Based Annotation of Web Pages through Keyphrases Extraction 661

7. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R.V., Jhingran, A., Kanungo, T.,
McCurley, K.S., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: A case for
automated large-scale semantic annotation. J. Web Sem. 1(1), 115–132 (2003)

8. Adida, B., Birbeck M.: RDFa Primer: Bridging the Human and Data Webs (2008),
http://www.w3.org/TR/xhtml-rdfa-primer/

9. Laender, A., Ribeiro-Neto, B., Silva, A.D., Teixeira, J.S.: A brief survey of web
data extraction tools. ACM SIGMOD Record 31(2), 84–93 (2002)

10. De Virgilio, R., Torlone, R.: A Structured Approach to Data Reverse Engineering
of Web Applications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE 2009.
LNCS, vol. 5648, pp. 91–105. Springer, Heidelberg (2009)

11. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: Kea:
Practical automatic keyphrase extraction. In: ACM DL, pp. 254–255 (1999)

12. De Virgilio, R., Cappellari, P., Miscione, M.: Cluster-Based Exploration for Effec-
tive Keyword Search Over Semantic Datasets. In: Laender, A.H.F., Castano, S.,
Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
205–218. Springer, Heidelberg (2009)

13. Kahan, J., Koivunen, M.R., Prud’hommeaux, E., Swick, R.R.: Annotea: an open
rdf infrastructure for shared web annotations. Computer Networks 39(5), 589–608
(2002)

14. Ciravegna, F., Dingli, A., Wilks, Y., Petrelli, D.: Amilcare: adaptive information
extraction for document annotation. In: SIGIR, pp. 367–368 (2002)

15. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based ac-
cess to distributed and semi-structured information. In: Proceedings of the IFIP
TC2/WG2.6 Eighth Working Conference on Database Semantics- Semantic Issues
in Multimedia Systems, vol. DS-8, pp. 351–369 (1998)

16. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annota-
tion, indexing, and retrieval. J. Web Sem. 2(1), 49–79 (2004)

17. De Virgilio, R., Torlone, R.: A Meta-Model Approach to the Management of Hy-
pertexts in Web Information Systems. In: Song, I.-Y., Piattini, M., Chen, Y.-P.P.,
Hartmann, S., Grandi, F., Trujillo, J., Opdahl, A.L., Ferri, F., Grifoni, P., Caschera,
M.C., Rolland, C., Woo, C., Salinesi, C., Zimányi, E., Claramunt, C., Frasincar,
F., Houben, G.-J., Thiran, P. (eds.) ER Workshops 2008. LNCS, vol. 5232, pp.
416–425. Springer, Heidelberg (2008)

18. Allison, L., Wallace, C.S., Yee, C.N.: When is a string like a string? AI & Maths
(1990)

19. Tomberg, V., Laanpere, M.: RDFa versus Microformats: Exploring the Potential for
Semantic Interoperability of Mash-up Personal Learning Environments. In: Second
International Workshop on Mashup Personal Learning Environments, M. Jeusfeld
c/o Redaktion Sun SITE, Informatik V, RWTH Aachen, pp. 102–109 (2009)

http://www.w3.org/TR/xhtml-rdfa-primer/

An Ontological and Terminological Resource for

n-ary Relation Annotation in Web Data Tables

Rim Touhami1,3, Patrice Buche1,2,
Juliette Dibie-Barthélemy3, and Liliana Ibănescu3

1 INRA - UMR IATE, 2, place Pierre Viala, F-34060 Montpellier Cedex 2, France
2 LIRMM, Montpellier, France

3 INRA - Mét@risk & AgroParisTech, 16 rue Claude Bernard, F-75231 Paris
Cedex 5, France

Patrice.Buche@supagro.inra.fr,

{rim.touhami,Juliette.Dibie,Liliana.Ibanescu}@agroparistech.fr

Abstract. We propose, in this paper, a model for an Ontological and
Terminological Resource (OTR) dedicated to the task of n-ary relations
annotation in Web data tables. This task relies on the identification of
the symbolic concepts and the quantities, defined in the OTR, which are
represented in the tables’ columns. We propose to guide the annotation
by an OTR because it allows a separation between the terminological
and conceptual components and allows dealing with abbreviations and
synonyms which could denote the same concept in a multilingual context.
The OTR is composed of a generic part to represent the structure of
the ontology dedicated to the task of n-ary relations annotation in data
tables for any application and of a specific part to represent a particular
domain of interest. We present the model of our OTR and its use in an
existing method for semantic annotation and querying of Web tables.

Keywords: Semantic integration, semantic data model, ontology
engineering.

1 Introduction

Today’s Web is not only a set of semi-structured documents interconnected via
hyper-links. A huge amount of technical and scientific documents, available on
the Web or the hidden Web (digital libraries, ...), include data tables. They rep-
resent a very interesting potential external source for loading a data warehouse
dedicated to a given domain of application. They can be used to enrich local
data sources or to compare local data with external ones. In order to integrate
data, a preliminary step consists in harmonizing external data with local ones,
i.e. external data must be expressed with the same vocabulary, generally repre-
sented by an ontology, as the one used to index the local data. Ontology is a
key notion in the Semantic Web and in data integration researches. According
to [1], ”Ontologies are part of the W3C standards stack for the Semantic Web,
in which they are used to specify standard conceptual vocabularies in which to

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 662–679, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An OTR for n-ary Relation Annotation 663

exchange data among systems, provide services for answering queries, publish
reusable knowledge bases, and offer services to facilitate interoperability across
multiple, heterogeneous systems and databases”.

In [2,3,4,5,6] ontologies are associated with terminological and/or linguistic
objects. In [2] authors motivate why it is crucial to associate linguistic infor-
mation (part-of-speech, inflection, decomposition, etc.) with ontology elements
(concepts, relations, individuals, etc.) and they introduce LexInfo, an ontology-
lexicon model, implemented as an OWL1 ontology. Adapting LexInfo, [3] presents
a model called lemon (Lexicon Model for Ontologies) that supports the sharing of
terminological and lexicon resources on the Semantic Web as well as their linking
to the existing semantic representations provided by ontologies. The CTL model
from [4] is a model for the integration of conceptual, terminological and linguis-
tic objects in ontologies. In [5] a meta-model for ontological and terminological
resources in OWL DL is presented, called an Ontological and Terminological Re-
source (OTR), extended afterward in [7] in order to be used for ontology based
information retrieval applied to automotive diagnosis.

In the same trend as in [5], we present in this paper an Ontological and
Terminological Resource (OTR) dedicated to the task of data tables integration.
An Ontological and Terminological Resource (OTR) [6,5] is a model allowing
joint representation of an ontology and its associated terminology. According
to [5], the OTR structuring can be guided by three factors: the task to realize,
the domain of interest and the application. In this paper, the domain of interest
is the food safety but the OTR structure we propose is generic enough to be
applied to many other domains. The application is the construction of a data
warehouse opened on the Web. We are interested in loading our data warehouse
with data coming from external sources such as scientific papers, international
reports or Web pages and in its querying.

In previous works [8,9], we proposed a data tables semantic annotation method
guided by an ontology, but we did not especially pay attention to the ontology
modeling and only use a preliminary version built from scratch by domain ontol-
ogists. Nevertheless, since our ontology is at the heart of our method, it appears
that its modeling is essential to the sustainability of our approach and more
generally to the data tables semantic annotation task. Like in [10,11], we are
addressing the situation when data tables consist of a header row that repre-
sents semantic relationships between concepts which may be symbolic concepts
or quantities associated with units. [10] proposes a method to discover semantic
relations between concepts. Our purpose is different: the semantic annotation of
a data table consists in (i) recognizing the semantic relations defined in the OTR
and represented in the data table; (ii) instantiating each recognized relation in
each row of the data table, that is identifying their values in each row. Our fi-
nal objective is to integrate in the same ‘schema’, Web data tables. The work
of [11] can be considered as a sub-task of ours as they focus on the recognition
of quantities in columns of the tables.

1 http://www.w3.org/TR/2004/REC-owl-features-20040210/

664 R. Touhami et al.

The model of an OTR proposed in this paper is dedicated to the task of
n-ary relations annotation in Web data tables. In the OTR, a clear separation
is done between conceptual aspects and terminological ones. The conceptual
part represents the semantic expressed by concepts while the terminological part
allows one to define the terminology and its variations (multilingual, synonyms,
abbreviations) denoting the concepts. The terminological part of the OTR allows
one to improve the semantic annotation of data tables in a multilingual context
thanks to the synonyms and abbreviations management. Moreover, this clear
distinction between conceptual and terminological aspects and the management
of unit conversions allow one to improve the querying of the data warehouse. As
a matter of fact, since the data are annotated with concepts of the OTR, their
querying can also be performed thanks to these concepts without worrying about
the terminological variations and unit conversions (see [12,13] for preliminary
works).

The structure of this paper is as follows. We first present the OTR in Section 2,
with its conceptual and terminological parts. Then, in Section 3 a semantic
annotation method of data tables guided by this OTR is presented. We finally
conclude and present our future work in Section 4.

2 Modeling of the Ontological and Terminological
Resource (OTR)

Since the modeling of the OTR is dedicated to the task of n-ary relations an-
notation in Web data tables, we present in Figure 1 an example of a semantic
annotation of a Web data table extracted from a scientific paper in food science.

Cells of a data table contain terms (e.g. MFC film A) denoting symbolic con-
cepts (e.g. Packaging Material) or numerical values (e.g. 3), often followed by a
unit of measurement (e.g. ml m-2 day-1). Usually a data table represents seman-
tic relationships between concepts which may be symbolic concepts or quantities

Fig. 1. Example of a Web data table

An OTR for n-ary Relation Annotation 665

characterized by units. The semantic annotation of a data table consists in rec-
ognizing the relations represented by the data table, which suppose to recognize
symbolic concepts but also quantities and units. In the data table from Fig-
ure 1, the semantic relation O2Permeability Relation which represents oxygen
permeability for a food packaging material given its thickness, temperature and
humidity has been partially recognized: the symbolic concept Packaging has been
recognized in the first column, the quantity Thickness in the third column and
the quantity O2Permeability in the last column, but the quantities Temperature
and Relative Humidity have not been recognized.

The OTR used for the semantic annotation of data tables should contain
symbolic concepts, quantities and associated units, semantic relations linking
symbolic concepts and quantities. Figure 2 presents an excerpt of our OTR
in food science domain: it has a conceptual component, the ontology, and a
terminological component, the terminology. We first present, in Subsection 2.1,
the conceptual component of the OTR and, in Subsection 2.2, its terminological
component. We modeled the conceptual and the terminological component of
our OTR using the OWL2-DL2 model.

Fig. 2. An excerpt of the OTR in food science domain

2.1 Conceptual Component of the OTR

The conceptual component of the OTR is composed of two main parts: on the one
hand, a generic part, commonly called core ontology, which allows the representa-
tion of the structure of the ontology and is dedicated to the n-ary relations anno-
tation task in data tables and, on the other hand, a specific part, commonly called
domain ontology, which depends on the domain of interest. Our OTR is generic be-
cause it allows n-ary relation to be instantiated in data tables for any application.
2 http://www.w3.org/TR/owl2-overview/

666 R. Touhami et al.

Figure 3 presents the generic part of our OTR which does not depend on a
domain of interest. There are three categories of generic concept: Dimension,
T Concept and UM Concept. The generic concept Dimension represents dimen-
sions that allow quantities and unit concepts (e.g. Temperature, Length, Time) to
be classified. The generic concept T Concept contains concepts to be recognized
in data tables (in their cells, columns and rows) and are of three kinds: Relation,
Simple Concept or Unit Concept. It is called T Concept for Terminological Con-
cept, because as detailed in Subsection 2.2, it contains concepts having one or
several associated terms from the terminological component. The generic concept
UM Concept contains concepts which are used to manage units of measurement,
especially conversions between units of measurement.

Fig. 3. The generic part of the OTR

The specific part of the OTR allows the representation of all concepts which
are specific to a domain of interest. They appear in the OTR as sub concepts
of the generic concepts. In OWL, all the concepts are represented by OWL
classes, which are hierarchically organized by the subClassOf relationship and
are pairwise disjoints.

We detail below the three kinds of the generic concept T Concept with an
example of specific sub concepts in food science domain and we present the
management of conversions between units of measurement.

Generic concept Simple Concept: Simple concepts include symbolic con-
cepts (Symbolic Concept) and quantities (Quantity).

1. Symbolic Concept: A symbolic concept is characterized by its label (i.e. a
term composed of one or more words), defined in the terminological part of
the OTR, and by its hierarchy of possible values.

An OTR for n-ary Relation Annotation 667

Example 1. Figure 4 presents an excerpt of the symbolic concepts hierarchy
in food science domain. The specific symbolic concepts are sub-concepts of
the generic concept Symbolic Concept. For example, Food Product and Cereal
are two specific symbolic concepts, Cereal is a kind of Food Product. The
food science domain OTR contains 4 distinct hierarchies of specific symbolic
concepts:
– Food Product which has more than 500 sub concepts,
– Microorganism which has more than 150 sub concepts,
– Packaging which has more than 150 sub concepts, and
– Response which has three sub concepts: growth, absence of growth and

death, which represent possible responses of a micro-organism to a treat-
ment.

Let us notice that we could not reuse pre-existing terminologies for food
products as AGROVOC3 (from FAO - Food and Agriculture Organisation
of the United Nations) or Gems-Food4 (from WHO - World Health Organi-
sation), because those terminologies are not specific enough compared to the
one founded in our corpus in food science (respectively only 20% and 34%
of common words).

2. Quantity: A quantity is characterized by its label, defined in the termino-
logical part of the OTR, a set of units, which are sub concepts of the unit
concept Unit Concept, a dimension, which is sub concept of the dimension
concept Dimension, and eventually a numerical range. An OWL object prop-
erty hasUnitConcept associates a quantity with a set of unit concepts: it has
for domain the generic concept Quantity and for range the generic concept
Unit Concept. An OWL object property hasDimension associates a quan-
tity with a dimension: it has for domain the generic concept Quantity and
for range the generic concept Dimension. We use the numerical restrictions
of OWL2 (i.e. minInclusive and maxInclusive) to represent the maximal and
minimal values associated with a quantity.

Example 2. Figure 5 presents an excerpt of quantities in food science do-
main. The specific quantities, such as PH, Permeability or Relative Humidity,
are sub-concepts of the generic concept Quantity. The food science domain
OTR contains 22 quantities. Figure 6 shows that the specific quantity Rel-
ative Humidity can be expressed using the unit Percent or the unit One,
which indicates dimensionless quantity, and it is restricted to the numerical
range [0, 100].

Generic concept Unit concept: A unit concept represents a unit of measure-
ment. It is characterized by its label, defined in the terminological part of the
OTR, a dimension and eventually by conversions. Our units classification relies
on the International System of Units5. There exist several ontologies dedicated
3 http://aims.fao.org/website/AGROVOC-Thesaurus
4 http://www.who.int/foodsafety/chem/gems/en/
5 http://www.bipm.org/en/si/

668 R. Touhami et al.

Fig. 4. An excerpt of the symbolic concepts hierarchy in food science domain

Fig. 5. An excerpt of the quantities in food science domain

An OTR for n-ary Relation Annotation 669

Fig. 6. The specific quantity Relative Humidity

to quantities and associated units (OM6, OBOE7, QUDT8, QUOMOS, . . .). We
learned from these ontologies how to structure units into the ontological compo-
nent of the OTR, then we added their associated terms into the terminological
component, and, finally, we defined some specific units for our domain of inter-
est. For instance, in food science domain, the ontologist has added units such as
ppm9 or CFU/g10.

Example 3. Figure 7 presents an excerpt of the unit concepts hierarchy in food
science domain. Specific concepts, such as Day (d), Square Metre (m2), Mi-
crometre (µm) or Cubic Centimetre By 25 Micrometre Per Square Metre Per
Day Per Atmosphere (cm325 µm/m2/d/atm) appear as sub concepts of one of
the generic concepts Singular Unit, Unit Exponentiation, Unit Multiple Or Sub-
multiple or Unit Division Or Multiplication. The concept Measure is used to rep-
resent components of units of measurement which are written in the form of a
constant multiplied by a unit (e.g. 25 µm). The concept Prefix is used to represent
constant values defined in the International System of Units (e.g. Micro(µ)).

Generic concept Relation: The concept Relation allows a n-ary relationship
between simple concepts to be represented. A relation is characterized by its
label, defined in the terminological part of the OTR, and by its signature (i.e.
the set of simple concepts which are linked by the relation). The signature of a
relation is defined by a domain and a range. The range is limited to only one
simple concept, called result concept, while the domain contains one or several
simple concepts, called access concepts. The restriction of the range to only one
result concept is justified by the fact that, in a data table, a relation often
represents a semantic n-ary relationship between simple concepts with only one
6 http://www.wurvoc.org/vocabularies/om-1.8/
7 http://marinemetadata.org/references/oboeontology
8 http://www.qudt.org/
9 Parts per million. ppm is a unit of concentration often used when measuring levels

of pollutants in air, water, body fluids, etc.
10 Colony-forming units per gram. Colony-forming units (CFU) is a measure of viable

bacterial or fungal numbers in microbiology.

670 R. Touhami et al.

Fig. 7. An excerpt of the unit concepts hierarchy in food science domain

result, such as an experimental result with several measured parameters. If a
data table contains several result columns, it is then represented by as many
relations as it has results. As suggested in [14], a n-ary relation is represented
in OWL by a class associated with the access concepts of its signature via the
OWL object property AccessConcept and the result concept of its signature via
the OWL functional object property ResultConcept.

Example 4. Figure 8 presents the specific relation O2Permeability Relation which
has for access concepts the specific symbolic concepts : Packaging, Relative Humi-
dity, Temperature and Thickness and for result concept the specific quantity
O2Permeability. It represents oxygen permeability for a packaging material given
its thickness, temperature and humidity. The food science domain OTR contains
16 relations.

Management of conversions between units of measurement : As pointed
out in Section 1 the modeling of our OTR, dedicated to the task of data tables
integration, has been guided by the construction of a data warehouse opened on
the Web. In order to load and query the data warehouse and to be able to use
data in decision models, we will need to automatically convert numerical data.
We define the generic concept Conversion, sub concept of the generic concept
UM Conversion (see Figure 3), which is associated with units of measurement
through the property hasConversion.

In this paper, we consider conversions between units of measurement which
can be modeled by the following equation: vt = (vs + o) ∗ s, where vt is the
value expressed in the target unit, vs is a value expressed in a source unit, o is

An OTR for n-ary Relation Annotation 671

Fig. 8. The specific relation O2Permeability Relation

the offset, and s is the scale. A lot of conversions between units of measurement
can be done using a conversion factor (the scale) as those published by the US
National Institute of Standards and Technology11. Conversions between units of
measurement for temperatures require to introduce an additional offset (see for
instance http://en.wikipedia.org/wiki/Fahrenheit).

Let us illustrate the management of conversions between units of measurement
through one example.

Example 5. To convert a temperature value expressed in Fahrenheit into Cel-
sius, we use the following formula: v◦C = (v◦F−32)× 5

9 . To do this, we define the
class FahrenheitToCelsius, detailed in Figure 9, as a subclass of the class Con-
version, where the class Degree Fahrenheit is a subclass of the generic concept
Singular unit.

2.2 Terminological Component of the OTR

The terminological component represents the terminology of the OTR: it con-
tains the set of terms of the domain of interest. As mentioned in Section 2.1,
at least one term of the terminological component is associated with each sub
concept of the generic concept T Concept; for example the term Ethylene vinyl
alcohol is associated with the concept Ethylene Vinyl Alcohol. Each sub concept
of T Concept has one associated label (i.e. a sequence of words defined in a given
language) called preferred label, in a given language, but it may also be charac-
terized by alternate labels, which correspond to synonyms or abbreviations, this
in different languages. Those labels associated with a given concept are used
in the semantic annotation of data tables: they are compared with the terms

11 http://ts.nist.gov/WeightsAndMeasures/Publications/appxc.cfm

672 R. Touhami et al.

Fig. 9. An example of conversion for temperature

present in the data tables (in their cells, columns’ titles, table title) in order to
be able to recognize the concepts of the OTR (more precisely the sub concepts
of T Concept) that the data tables represent.

We propose to associate labels with each sub concept of T Concept using the
labeling properties of SKOS12 (Simple Knowledge Organization Scheme) which
is a W3C recommendation and is based on RDF language. Using the meta-
modeling from OWL2-DL, each sub concept of T Concept is defined at the same
time as an OWL class and as an instance of the class OWL SKOS : Concept
(see the example from Figure 2). More precisely, the same identifier (URI) is
associated with its OWL class representation and its individual representation,
using the punning13 metamodeling capabilities available in OWL2-DL. There-
fore, each sub concept of T Concept is defined, on the one hand, as an OWL
class in order to be instantiated in rows of a data table and, on the other hand,
as an instance in order to allow one to compare its associated labels with the
terms present in the data tables.

Example 6. In food science OTR, the symbolic concept Ethylene Vinyl Alcohol
was defined both as an OWL class in order to be able to instantiate it in a data
table, and as an instance of the class OWL SKOS : Concept allowing to represent
its terminological characteristics by using the labeling properties prefLabel and
altLabel of SKOS. The concept Ethylene Vinyl Alcohol is then defined as follows:

<owl:Class rdf:ID="Ethylene Vinyl Alcohol">

<rdfs:subClassOf rdf:resource="#Packaging"/>

<rdf:type rdf:resource="http://www.w3.org/2004/02/skos/core#Concept"/>

<skos:prefLabel xml:lang="en">Ethylene vinyl alcohol</skos:prefLabel>

<skos:altLabel xml:lang="en">EVOH</skos:altLabel>

<skos:prefLabel xml:lang="fr">Ethylène alcool vinylique</skos:prefLabel>

<skos:altLabel xml:lang="fr">EVOH</skos:altLabel>

</owl:Class>

12 http://www.w3.org/TR/skos-reference/
13 http://www.w3.org/TR/owl2-new-features/#F12: Punning

An OTR for n-ary Relation Annotation 673

3 Using the OTR to Annotate and Query Data Tables

We propose to illustrate the relevance of our modeling choices made in our OTR,
by using it in the semantic annotation method of Web data tables proposed in [9].
We briefly present, in this section, the main steps of this method (see Figure 10)
and its adaptation to our OTR through an example: the annotation of the data
table from Figure 1.

Fig. 10. The main steps of the semantic annotation method of a table driven by an
OTR

Distinction between symbolic and numerical Columns. The first step of
the semantic annotation method is to distinguish between symbolic and numer-
ical columns, by counting occurrences of numerical values and terms found in
each column and by using some of the knowledge described in the OTR (e.g.
terms denoted unit concepts are accepted in numerical columns).

Example 7. In Table 1 from Figure 1 the first column is identified as a symbolic
column: it contains only terms. The other columns are identified as numerical
ones: they contain only numerical values or ranges of numerical values (e.g.
21 ± 1).

Columns annotation by simple concepts. Once a column has been classified
as a symbolic column or as a numerical one, this step identifies which simple
concept of the domain OTR corresponds to the column. In order to annotate a
column col with a simple concept c, two scores are combined: the score of the
simple concept c for the column col according to the column title, and the score
of the simple concept c for the column col according to the column content.
Because the main objective of the semantic annotation method is to identify

674 R. Touhami et al.

which relations of the OTR are represented in a Web data table, only the simple
concepts of the OTR which appear in the signatures of the relations of the OTR
are considered; those simple concepts are called simple target concepts.

Example 8. The domain of food science is composed of four symbolic target
concepts : Food Product, Microorganism, Packaging and Response (see Figure 4),
and it is composed of 22 target quantities of which an excerpt is presented in
Figure 5.

Identification of the simple target concept represented by a symbolic
column. The annotation of a symbolic column by a symbolic target concept
relies on a comparison between the terms present in each cell of the column and
the list of preferred and alternative labels associated with the concepts which
belong to the hierarchy of each symbolic target concept of the OTR. We use
the cosine similarity measure [15] to compare terms which have been previously
transformed into a vector of lemmatized words using WordNet.

Example 9. Let us consider the first column of Table 1 which was identified as a
symbolic column. The following steps allows to annotate this first column with
the symbolic target concept Packaging.

– The second cell of the first column which contains the term EVOH is anno-
tated with the symbolic target concept Packaging because this term is among
the labels denoting the symbolic concept Ethylene Vinyl Alcohol, which is a
sub concept of the symbolic target concept Packaging (see Example 6 and
Figure 2). The score of a symbolic target concept TC for a cell cell is com-
puted as the maximum for all the cosine similarity measures between the
terms ti denoting TC or one of its sub concepts in the OTR and the term
contained into the cell:

scoreCell(cell, TC) = maxisim(ti, content(cell)).

Then the score of the symbolic target concept Packaging for the second cell of
the first column is 1: scoreCell(cell21, Packaging) = maxisim(ti, EV OH) =
1.

– The scores of the symbolic target concept Packaging for the other cells (i.e.
MFC film A and Cellophane) of this column are also computed and are equal
to 1.

– The score of a symbolic target concept TC for a column col according to the
column content is

scoreContentCol(col, TC) =
#(cells of col annotated by TC)

#(cells of col)
.

Then the score of the symbolic target concept Packaging according to the
content of the first column is scoreContentCol(col1, Packaging) = 3

3 = 1.
– In the same way, the scores of the others target concepts of the food science

OTR for the first column according to its content are computed and are
equal to 0.

An OTR for n-ary Relation Annotation 675

– Furthermore, the score of a symbolic target concept TC for a column col
according to the column title is

scoreTitleCol(col, TC) = maxisim(ti, content(title(col)))

where terms ti denote TC and content(title(col)) is the content of the title
of the column. scoreTitleCol(col1, Packaging) = maxisim(ti, Sample) = 0
because the symbolic target concept Packaging is not denoted by a label
syntactically close to the term Sample.

– The final score of a symbolic target concept TC for a column col is defined
by

scoreCol(col, TC) =

= 1 − (1 − scoreTitleCol(col, TC))(1 − scoreContentCol(col, TC)).

Therefore the final score of the symbolic target concept Packaging for the first
column of Table 1 is : scoreCol(col1, Packaging) = 1−(1−scoreTitleCol(col1,
Packaging))(1− scoreContentCol(col1, Packaging)) = 1− (1− 0)(1− 1) = 1.
Since all the others symbolic target concepts have a null final score for the
first column, the first column of Table 1 is annotated by the symbolic target
concept Packaging.

Identification of the simple target concept represented by a numeri-
cal column. The annotation of a numerical column ncol by a target quantity
(called TQ in the following) relies on the units present in the column and its
numerical values, which must be compatible with the numerical range of the
target quantity.

Example 10. Let us consider the last column of Table 1 which was identified as a
numerical column. The following steps allows to annotate this last column with
the target quantity O2Permeability:

– First the annotation method identifies in the column the unit concept Millil-
itre Per Square Metre Per Day because the label ml m-2 day-1 is an alter-
native label for this concept. In food science OTR, this unit concept is only
associated with the quantity O2Permeability. As the score for a unit unit is
defined by:

scoreUnit(unit) =
1

#{TQ|unit ∈ hasUnitConcept(TQ)}
then, scoreUnit(Millilitre Per Square Metre Per Day) = 1

1 = 1.
– As ml m-2 day-1 is the only unit in the last column and the target quantity

O2Permeability has no numerical range defined in the OTR, then the score of
the target quantity O2Permeability for this column according to its content
is : scoreContentNCol(col5, O2Permeability) = 1.

– In the same way, the scores of the other target quantities of the food science
OTR for the column according to the column content are computed and are
equal to 0.

676 R. Touhami et al.

– Furthermore, the score of a target quantity TQ for a column ncol according
to the column title is

scoreTitleNCol(ncol, TQ) = maxisim(ti, content(title(ncol)))

where terms ti denote TQ and content(title(ncol)) is the content of the title
of the column.
scoreTitleNCol(col5, O2Permeability) = maxisim(ti, Oxygen permeability
in the material) = sim(Oxygen permeability, Oxygen permeability in the
material) = 0.816 because the target quantity O2Permeability is, in partic-
ular, denoted by the English preferred label Oxygen permeability.
Besides, the score of the target quantity CO2Permeability for the column ac-
cording to the column title is also computed as follows: scoreTitleNCol(col5,
CO2Permeability) = sim(Carbon Dioxide permeability, Oxygen permeabil-
ity in the material) = 0.408.

– The final score of a target quantity TQ for a column ncol is

scoreNCol(ncol, TQ) =

= 1 − (1 − scoreTitleNCol(ncol, TQ))(1 − scoreContentNCol(ncol, TQ)).

Therefore, the final scores of the target quantities O2Permeability and CO2-
Permeability for the last column of Table 1 are:
scoreNCol(col5, O2Permeability) = 1 − (1 − 0.816)(1− 1) = 1,
scoreNCol(col5, CO2Permeability) = 1 − (1 − 0.408)(1 − 0) = 0.408.
Since all the others target quantities have a null final score for the last
column, the last column of Table 1 is annotated by the target quantity
O2Permeability which has the best score.

Using the same method, we also determine that the third column of Table 1
is annotated by the target quantity Thickness. Furthermore, since no target
quantity from the OTR has been identified to annotate the second and the
fourth column of Table 1, they are annotated by the generic concept Quantity.

Identification of the relations. Once all the columns of a data table have been
annotated by concepts of the domain OTR, the fourth step of the annotation
method consists in identifying which relations of the OTR are represented in
the data table. In order to annotate a data table by a relation, two scores are
combined: the score of the relation for the data table according to the data table
title and the score of the relation for the data table according to the data table
content. This second score depends on the proportion of simple concepts in the
relation’s signature which were represented by columns of the data table, the
result concept recognition being required. Let us notice that a data table can be
annotated by several relations.

Example 11. According to Examples 9 and 10, the first column of Table 1
has been annotated by the symbolic target concept Packaging, the third col-
umn by the target quantity Thickness, the last column by the target quantity

An OTR for n-ary Relation Annotation 677

O2Permeability and the second and fourth columns by the generic concept Quan-
tity. The data table can be annotated by the relation O2Permeability Relation
of the OTR, which has the target quantity O2Permeability as result concept.
The score of a relation Rel according to its signature is:

scoreSignature(table, Rel) =
#(recognized concept in Rel signature)

#(concepts in Rel signature)
.

The score of the relation O2Permeability Relation for Table 1 according to its sig-
nature (see Example 4) is: scoreSignature(Table1, O2Permeability Relation) =
3
5 = 0.6.

The score of a relation Rel for the data table table according to the data table
title is computed as the maximum cosine similarity measure between the terms
ti denoting Rel in the OTR and the data table title.

scoreTitleTable(table, Rel) = maxisim(ti, content(title(table))).

As the title of Table 1 is Permeabilities of MFC films and literature values for
films of synthetic polymers and cellophane, the score of relation O2Permeabili-
ty Relation is: scoreTitleTable(Table1, O2Permeability Relation) = 0.35.

The final score of a relation Rel for a data table table is

scoreTable(table, Rel) =

= 1 − (1 − scoreTitleTable(table, Rel))(1− scoreSignature(table, Rel)).

Therefore, the final score of the relation O2Permeability Relation for the data ta-
ble Table 1 is: scoreTable(Table1, O2Permeability Relation) = 1−(1−0.35)(1−
0.6) = 0.74.

Since no other relation of the OTR has the target quantity O2Permeability
as result concept, Table 1 is annotated by the relation O2Permeability Relation.

Instantiation of the relations: The fifth and last step of the annotation
method (see Figure 10) is the instantiation of each identified relation for each
row of the considered data table. The instantiation of a relation relies on the
instantiation of the symbolic target concepts and the target quantities which be-
long to its signature and were represented by columns of the data table (see [9]
where this step of the annotation method is detailed, but where an ad-hoc on-
tology is used).

Example 12. The instantiation of the relation O2Permeability Relation for the
second row of Table 1 is represented by the set of pairs {(original value, recog-
nized simple target concept : (annotation values14))} :
{(EVOH, Packaging: (Ethylene Vinyl Alcohol)), (25 μm, Thickness: (value: 25,
unit concept: Micrometre)), (3-5 ml m-2 day-1, O2Permeability : (interval of
values: [3, 5], unit concept: Millilitre Per Square Metre Per Day)) }.
14 See [9] for more detail

678 R. Touhami et al.

4 Conclusion

We have proposed, in this paper, a model for an Ontological and Terminological
Resource (OTR) dedicated to the task of n-ary relations annotation in Web data
tables. In this OTR, a special effort has been made to distinguish the generic
part (core ontology) dedicated to the n-ary relation annotation task for any
application from the specific part dedicated to a given application domain. The
OTR is implemented using the latest W3C recommendations (OWL2-DL and
SKOS). We have demonstrated the relevance of this model by applying it in a
semantic annotation method of Web data tables proposed in [9]. Consequently,
the OTR model can be reused for any application domain, redefining only its
specific part, to annotate n-ary relations from Web data tables. Since the data
are annotated with concepts of the OTR, their querying can also be performed
using these concepts without worrying about the terminological variations and
unit conversions.

As future work we want to explore three directions: i) Concerning the imple-
mentation issue, we need first to upgrade our hole system, as shown in Section 3
for the annotation module, allowing then to perform new experimental results.
It suppose: to transform our 3 ad-hoc ontologies into 3 OTR, and to add syn-
onyms and terms in other languages into theirs terminological parts, to add new
data tables in other languages into the corpora of data tables to be annotated,
and to adapt the reference set for new evaluations. ii) An other short term per-
spective is to propose a method for the management of the OTR evolution in
order to improve the quality of the annotation of Web data tables. This method
should be able to take into account different types of changes: changes explicitly
required by ontologists, changes due to an alignment with external ontologies,
changes required after analyzing of the OTR to fulfill ontology quality assurance
criteria and changes required after manual validation of new annotations. iii) A
long term exciting perspective is to extend our model to be able to annotate
n-ary relations not only in data tables extracted from Web documents but also
using the information available in the plain text of those documents.

Acknowledgments. Financial support from the French National Research
Agency (ANR) for the project Map’OPT is gratefully acknowledged.

References

1. Gruber, T.: Ontology. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database
Systems, pp. 1963–1965. Springer, US (2009)

2. Cimiano, P., Buitelaar, P., McCrae, J., Sintek, M.: Lexinfo: A declarative model
for the lexicon-ontology interface. J. Web Sem. 9(1), 29–51 (2011)

3. McCrae, J., Spohr, D., Cimiano, P.: Linking Lexical Resources and Ontologies
on the Semantic Web with Lemon. In: Antoniou, G., Grobelnik, M., Simperl, E.,
Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I.
LNCS, vol. 6643, pp. 245–259. Springer, Heidelberg (2011)

An OTR for n-ary Relation Annotation 679

4. Declerck, T., Lendvai, P.: Towards a standardized linguistic annotation of the tex-
tual content of labels in knowledge representation systems. In: LREC, European
Language Resources Association (2010)

5. Reymonet, A., Thomas, J., Aussenac-Gilles, N.: Modelling ontological and termi-
nological resources in OWL DL. In: OntoLex 2007, ISWC Workshop (2007)

6. Roche, C., Calberg-Challot, M., Damas, L., Rouard, P.: Ontoterminology - a new
paradigm for terminology. In: Dietz, J.L.G. (ed.) KEOD, pp. 321–326. INSTICC
Press (2009)

7. Reymonet, A., Thomas, J., Aussenac-Gilles, N.: Ontology based information re-
trieval: an application to automotive diagnosis. In: International Workshop on
Principles of Diagnosis (DX 2009), pp. 9–14 (2009)

8. Hignette, G., Buche, P., Dibie-Barthélemy, J., Haemmerlé, O.: An Ontology-Driven
Annotation of Data Tables. In: Weske, M., Hacid, M.-S., Godart, C. (eds.) WISE
Workshops 2007. LNCS, vol. 4832, pp. 29–40. Springer, Heidelberg (2007)

9. Hignette, G., Buche, P., Dibie-Barthélemy, J., Haemmerlé, O.: Fuzzy Annotation
of Web Data Tables Driven by a Domain Ontology. In: Aroyo, L., Traverso, P.,
Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E.,
Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 638–653. Springer,
Heidelberg (2009)

10. Lynn, S., Embley, D.W.: Semantically Conceptualizing and Annotating Tables. In:
Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 345–359.
Springer, Heidelberg (2008)

11. van Assem, M., Rijgersberg, H., Wigham, M., Top, J.: Converting and Annotating
Quantitative Data Tables. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 16–31. Springer, Heidelberg (2010)

12. Buche, P., Haemmerlé, O.: Towards a Unified Querying System of Both Structured
and Semi-Structured Imprecise Data Using Fuzzy View. In: Ganter, B., Mineau,
G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 207–220. Springer, Heidelberg (2000)

13. Buche, P., Dibie-Barthélemy, J., Chebil, H.: Flexible Sparql Querying of Web
Data Tables Driven by an Ontology. In: Andreasen, T., Yager, R.R., Bulskov, H.,
Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 345–357.
Springer, Heidelberg (2009)

14. Noy, N., Rector, A., Hayes, P., Welty, C.: Defining n-ary relations on the semantic
web. W3C working group note, http://www.w3.org/TR/swbp-n-aryRelations

15. van Rijsbergen, C.J.: Information Retrieval. Butterworth (1979)

http://www.w3.org/TR/swbp-n-aryRelations

Inductive Learning of Disjointness Axioms

Daniel Fleischhacker and Johanna Völker�

KR & KM Research Group, University of Mannheim, Germany

{daniel,johanna}@informatik.uni-mannheim.de

Abstract. The tremendous amounts of linked data available on the web are a
valuable resource for a variety of semantic applications. However, these applica-
tions often need to face the challenges posed by flawed or underspecified repre-
sentations. The sheer size of these data sets, being one of their most appealing
features, is at the same time a hurdle on the way towards more accurate data be-
cause this size and the dynamics of the data often hinder manual maintenance
and quality assurance. Schemas or ontologies constraining, e.g., the possible in-
stantiations of classes and properties, could facilitate the automated detection of
undesired usage patterns or incorrect assertions, but only few knowledge reposi-
tories feature schema-level knowledge of sufficient expressivity. In this paper, we
present several approaches to enriching learned or manually engineered ontolo-
gies with disjointness axioms, an important prerequisite for the applicability of
logical approaches to knowledge base debugging. We describe the strengths and
weaknesses of these approaches and report on a detailed evaluation based on the
DBpedia dataset.

Keywords: Linked Data, Ontology Learning, OWL, Data Mining.

1 Motivation

The success of the Open Linked Data initiative and the fast growing number of knowl-
edge repositories on the web have paved the way for the development of various se-
mantic mashups and applications. However, these applications often need to face the
challenges posed by flawed or underspecified knowledge representations. While the
redundancy of structured data on the web can help to compensate for many of those
problems, even applications based on lightweight knowledge representations benefit
from more accurate semantic data in repositories such as DBpedia, Freebase as well as
in other, domain-specific knowledge bases.

Ontologies, or generally speaking schemas, constraining the possible instantiations
of classes and properties are a valuable means to improve the quality of linked data
sets. They can enable the automated detection of undesired usage patterns or incorrect
assertions. However, only few knowledge repositories feature schema-level knowledge
of sufficient expressivity, and thus Auer and Lehmann [3] demanded that “algorithms
and tools have to be developed for improving the structure, semantic richness and qual-
ity of Linked Data”. In particular, disjointness axioms would be useful to enable more

� Johanna Völker is financed by a Margarete-von-Wrangell scholarship of the European Social
Fund (ESF) and the Ministry of Science, Research and the Arts Baden-Württemberg.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 680–697, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Inductive Learning of Disjointness Axioms 681

expressive query answering as well as the detection of logical inconsistencies indicating
potential modeling errors. Hitzler and van Harmelen [13] point out, for instance, that
annotating linked data with ontologies that include class disjointness can help to solve
the object reconciliation problem, i.e., the discovery of identical individuals across data
sets. The following example taken from the DBpedia data set illustrates further benefits
potentially provided by the addition of disjointness axioms:1

Dirk Bouts dbo:nationality Netherland
Netherland rdf:type dbo:Book

dbo:nationality rdfs:domain dbo:Person

Considering these RDF triples, we find the dbo:nationality relation linking Dirk Bouts
to the DBpedia resource Netherland, which is explicit asserted to be of type dbo:Book
in DBpedia. This error stems from a spelling mistake in the Wikipedia infobox of
the article about Dirk Bouts, as the value of the nationality property is given as
[[Netherland]] and thus points to the wrong Wikipedia article. Note that detecting
the error by logical means would not only require a properly specified range restriction
of the dbo:nationality relation,2 but it would also demand for the existence of a dis-
jointness axiom:

dbo:nationality rdfs:range dbo:Country
dbo:Country owl:disjointWith dbo:Book

These two statements would allow us to infer that Netherland must be a country, and
hence can not be a book since dbo:Book and dbo:Country are declared disjoint. This
would be a logical contradiction to the previous rdf:type assertion. Since such logical
contradictions can be spotted by automated means [21,18], such a manual or automatic
enrichment of ontologies with further axioms can provide the maintainers of a knowl-
edge base with valuable pointers to potential problems. In practice, of course, it will not
always be clear whether the newly added or any of the existing statements are incorrect
and thus should be removed – especially, if the former were generated automatically
they should therefore be associated with provenance information such as certainty val-
ues to increase the efficiency of manual or automated debugging (e.g., [19]).

In this paper, we present a set of novel inductive methods for automatically enrich-
ing ontologies with disjointness axioms which could be used to extend previous ap-
proaches to inducing schema-level knowledge from knowledge bases. These methods
exhibit three characteristics that we consider essential, especially for ontology genera-
tion from linked data: They are scalable enough to work on large RDF repositories such

1 For the sake of brevity, we assume http://dbpedia.org/resource/ to be the de-
fault namespace and use the prefix dbo: for abbreviating the URI of the DBpedia ontology
(http://dbpedia.org/ontology/).

2 There are several approaches to the automatic acquisition of domain or range restrictions from
text or linked data including, for example, early work by Mädche and Staab [16]. Note that
it is also possible to induce these types of axioms from linked data, e.g., by association rule
mining [25]. For a comprehensive overview of approaches to mining structured web data, see
Stumme et al. [23].

http://dbpedia.org/resource/
http://dbpedia.org/ontology/

682 D. Fleischhacker and J. Völker

as DBpedia, and robust insofar as they can tolerate a certain number of incorrect as-
sertions. Moreover, these methods provide users and applications with a certainty value
for each of the generated disjointness axioms.

The remainder of this paper is structured as follows. After giving a brief overview
of related work (cf. Section 2), we describe the three approaches that we developed
in order to enrich ontologies with disjointness axioms (Section 3), including statistical
correlation analysis as well as two algorithms for mining association rules. In Section 4,
we report on a comparative evaluation of these approaches, before concluding with a
summary and an outlook to future work (cf. Section 5).

2 Related Work

The work presented in this paper relates to previous approaches in the field of ontology
learning and the automated generation of disjointness axioms. It also follows a vari-
ety of automated approaches supporting the evaluation and maintenance of knowledge
bases on the web.

Early work on learning class disjointness has been done by Haase and Völker [11],
who suggested an unsupervised method for mining disjointness axioms from natural
language text. Their method based on lexico-syntactic patterns was later incorporated
into the LeDA framework for acquiring disjointness by supervised machine learning
[26]. Unlike the approaches suggested by this paper, LeDA does not crucially hinge on
the existence of class membership assertions. However, the learning algorithm needs to
be trained on a manually created set of disjointness axioms and requires various kinds
of background knowledge, whose fit to the data set at hand can be assumed to have a
huge impact on the quality of the generated disjointness axioms.

Disjointness axioms are also generated by more general ontology learning ap-
proaches. Especially, inductive methods based on inductive logic programming [14]
or formal concept analysis [4] are applicable to the task at hand, but so far none of them
has been evaluated with regard to the quality of acquired disjointness axioms. This
also holds for methods based on association rule mining as proposed, e.g., by Völker
and Niepert [25]. Their approach referred to as statistical schema induction is comple-
mented by a simple heuristic for introducing disjointness axioms into schemas automat-
ically generated from RDF data, that assumes non-overlapping classes with more than
a hundred individuals to be disjoint – a rough rule of thumb that cannot be expected to
work in the general case.

A more well-known heuristic for introducing disjointness axioms into existing on-
tologies has been proposed by Schlobach [20]. His approach known as semantic clar-
ification aims to make logical debugging techniques applicable to lightweight ontolo-
gies. It relies on the “strong disjointness assumption” [9], which postulates disjointness
among sibling classes, as well as on the pinpointing technique for discovering and fix-
ing the causes of logical incoherence. A similar strategy was later adopted by Meilicke
et al. [17], who showed that automatically generated disjointness axioms can facili-
tate the detection of incorrect correspondences between classes in different lightweight
ontologies.

Particularly related to our approaches is recent work by Lehmann and Bühmann
[15], who developed ORE, a tool for repairing different types of modeling errors in

Inductive Learning of Disjointness Axioms 683

ontologies. It uses the DL-Learner framework [14], which has been shown to scale up
to large knowledge bases [12], in order to enrich ontologies by class expressions auto-
matically induced from existing instance data. Inconsistencies or incoherences result-
ing from this enrichment serve as indicators for modeling flaws in the knowledge base.
While their approach does not focus on disjointness axioms, they emphasize the useful-
ness of negation in debugging knowledge bases, it would be worthwhile investigating
ways to integrate our methods into ORE.

In Section 4, we will take a closer look at LeDA as well as the strong disjointness
assumption and how their performance compares to the methods presented in this paper.

3 Methods for Learning Disjointness

In this section, we present three approaches to enriching the schemas of large knowl-
edge repositories with disjointness axioms. First, after briefly introducing the syntax
and semantics of disjointness axioms in the Web Ontology Language OWL, we de-
scribe an approach that is based on statistical correlation analysis (cf. Section 3.1). We
then elaborate on the use of association rule mining techniques for learning disjoint-
ness, and outline the ideas underlying two alternative methods supporting the discovery
of negative association rules (see Section 3.2). For a detailed comparison of these meth-
ods with state-of-the-art approaches to generating disjointness axioms, see Section 4.

Both RDF Schema3 and the Web Ontology Language (OWL)4 are standards pro-
posed by the W3C for expressing schema-level knowledge on the web. RDFS allows
for modeling lightweight schemas consisting of classes (or concepts), individuals (or
instances), as well as properties (or relations) connecting these individuals. It also pro-
vides means to express class subsumption, domain and range restrictions of properties,
and equality of individuals, for example, but the RDFS standard does not contain a
negation operator or other means to model negative knowledge. Additional expressiv-
ity required, e.g., by reasoning-based applications, is offered by OWL, which extends
RDFS by additional constructs, such as class and property disjointness.5 Note that there
is an RDF-based serialization for every OWL ontology. For the sake of brevity, how-
ever, we will henceforth use the description logic notation for talking about disjointness
axioms.

Using class disjointness, it is possible to state that two classes cannot have any com-
mon individuals according to their intended interpretation, i.e., that the intersection of
these classes is necessarily empty in all possible worlds. For example, the OWL axiom

Person 	 ¬Plant

or equivalently, Person
Plant 	 ⊥, expresses the fact that nothing can be both a person
and a plant, as the intersection of these classes is subsumed by ⊥ and hence necessarily
empty. This does not imply, however, that if two classes do not have any common

3 http://www.w3.org/TR/rdf-schema/
4 http://www.w3.org/TR/owl2-overview/
5 Property disjointness has been added as part of OWL 2 which has become a W3C recommen-

dation on October 27, 2009.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl2-overview/

684 D. Fleischhacker and J. Völker

individuals in a particular knowledge base, they are meant to be disjoint. This is because
of the Open World Assumption holding in OWL as well as in RDFS, which states that
knowledge not explicitly (or implicitly) said to be true is not treated as being false,
but as being unknown. For this reason, the assertions Person(Tom) and Plant(Tom)
would not cause a logical contradiction, and thus would not necessarily be recognized as
a modeling error by a mere reasoning-based approach, unless we add an axiom stating
that Person and Plant are disjoint classes.

Ontologies using disjointness may exhibit two kinds of logical contradiction: inco-
herence and inconsistency. An ontology is incoherent if it contains a class C which
is not satisfiable, i.e., which is empty according to every possible interpretation. An
incoherent class could be introduced in an ontology by the following axioms.

Human 	 Animal

Human ≡ Person

Person 	 ¬Animal

Since all humans are defined to be animals and the classes Person and Human are
defined to be equivalent, the disjointness between Person and Animal renders the class
Person unsatisfiable. Incoherences are rarely introduced on purpose, since in most real-
world application scenarios there is little reason for creating a named class that is not
intended to contain individuals. When it comes to logical inference over an ontology,
incoherent classes mainly have a local effect as they are subsumed by and at the same
time disjoint to all other classes.

Inconsistency usually has a more significant impact on the practical usefulness of
an ontology for reasoning-based applications. An ontology being inconsistent means
that there is no model for this ontology which, e.g., could be caused by an individual
belonging to a non-satisfiable class. Since a fact can be inferred from an ontology iff
it is valid in all models of the ontology (and this trivially holds if no model exists),
inconsistencies prevent most standard reasoners from performing meaningful inference.
In an ontology containing the axioms from our incoherence example, the axiom

Person(Kim)

would lead to an inconsistent ontology because the unsatisfiable class Person is as-
signed the instance Kim .

Both inconsistencies and incoherences can be detected by automated means for in-
consistency diagnosis. Often, the results of a diagnosis, a set of axioms that together
cause a logical contradiction, indicate some kind of modeling error in the knowledge
base, that might have remained unnoticed if the ontology had not turned inconsistent.
For this reason, a certain level of logical expressivity introduced, e.g., by axioms con-
taining negation operators, is desirable as it facilitates the occurrence of logical con-
tradictions whenever classes, individuals or properties are not used in agreement with
their intended semantics. However, many of the available linked data repositories such
as DBpedia only use lightweight schemas – either in formats not supporting class dis-
jointness, like RDFS, or just not stating disjointness though possible format-wise. Thus,
it is not possible to apply logical debugging methods to these semantic resources. To en-

Inductive Learning of Disjointness Axioms 685

able more elaborate maintenance and quality assurance on linked data, we thus explored
different ways to automatically enrich lightweight schemas by disjointness axioms.

For all approaches which we present in the following, we assume the data to be
represented as depicted in Table 1. In this case, we have one row per instance contained
in the data set and one column per class mentioned in the dataset resp. the corresponding
ontology. For each instance, all existing rdf:type assertions are marked by a 1 in the
corresponding column while 0 means that the instance is not assigned to a certain class.
This table is a structured representation of a so-called transaction database which we
will introduce more formally later-on in Section 3.2.

Table 1. Excerpt from a transaction database for the DBpedia dataset

IRI Place City Person OfficeHolder

Berlin 1 1 0 0
Charles Darwin 0 0 1 0

Eiffel Tower 1 0 0 0
John F . Kennedy 0 0 1 1

Golden Gate Bridge 1 0 0 0

The approaches that we present in the remainder of this section are based on the
paradigm of statistical inductive learning, i.e., they are based on the assumption that
schema-level knowledge can be derived from an analysis of existing class membership
(or rdf:type) assertions – either by association rule mining or the computation of sta-
tistical correlation values. In this respect, our approaches bear some resemblance with
previous work on concept learning in description logics [14]. Even several features used
in the LeDA framework, including the taxonomic overlap in terms of existing or auto-
matically acquired individuals, can be considered inductive or extensional. In Section
4, we will take a closer look at LeDA as the only existing framework for learning dis-
jointness, and how it compares to the new, purely inductive methods.

3.1 Correlation

The first approach we applied for generating disjointness axioms is measuring the cor-
relation between class rdf:type assertions. Correlation coefficients are commonly used
to rate the strength of linear relationships between two value sequences. One widely
known correlation coefficient is Pearson’s correlation coefficient which is also used in
a similar fashion by Antonie and Zaı̈ane [2] who combine it with association rules and
use it for filtering.

For our experiments, the values we consider for computing the correlation coefficient
are the values stating which instances belong to a given class. Given two classes C1

and C2, we take the sequences formed by the appropriate columns of our transaction
database and compute the correlation between these two sequences. For each instance,
there exist four possibilities of class combinations which are shown in the following
table, e.g., n10 is the number of transactions containing class C1 but not class C2.

686 D. Fleischhacker and J. Völker

C1 ¬C1

C2 n11 n01 n∗1
¬C2 n10 n00 n∗0

n1∗ n0∗

For this specific variant, the Pearson correlation coefficient can be reduced to the so-
called φ-coefficient given by

φ =
n11n00 − n10n01√

n1∗n0∗n∗0n∗1

Given the resulting correlation coefficient, we can assess the strength of the correla-
tion between the occurrences of the classes. According to Cohen [8] the results of the
Pearson correlation coefficient can be coarsely divided into the categories of strong cor-
relation for absolute values larger than 0.5, medium correlation for absolute values in
the range from 0.3 to 0.5 and small correlation for absolute values from 0.1 to 0.3.
Absolute values of less than 0.1 are inexpressive.

Since disjointness of two classes means that both classes must not have any common
instantiations, classes being clearly disjoint would lead to φ = −1.0. In contrast, a φ-
value of 1.0 would show two perfectly equivalent classes based on the set of instances.
Thus, negative correlation values having a high absolute value give the most evidence
for both classes being disjoint and can be considered as a confidence value for the
validity of the corresponding disjointness axiom.

For the transaction database shown in Table 1 and the classes Place and OfficeHolder,
we would get φ = −3√

24
= −0.61. From this strong negative correlation the correlation-

based algorithm could propose a disjointness axiom between both classes using the
absolute correlation value as confidence.

3.2 Association Rule Mining

The other two approaches, we evaluated for inductively learning disjointness are based
on association rules. Association rules are implication patterns originally developed
for large and sparse datasets such as transaction databases of international supermarket
chains. A typical dataset in such a setting can have up to 1010 transactions (rows) and
106 attributes (columns). Hence, the mining algorithms developed for these applica-
tions are also applicable to the large data repositories in the open Linked Data cloud.
Formally, the transaction database D = (t1, t2, . . . , tn) contains transactions tj ⊆ I
where I = {i1, i2, . . . } is the set of all possible items. As already described, each indi-
vidual in the data set has a corresponding transaction which contains items representing
classes the individual belongs to.

To mine association rules from such a transaction database the first step is to generate
frequent itemsets contained in this database. For this purpose, there are multiple algo-
rithms, the Apriori algorithm [1] being the most commonly used one. Frequent itemsets
are thereby identified by having a support value greater than a specified minimum sup-
port threshold whereas support is defined as

supp(X) = |{ti ∈ D : X ⊆ ti}|

Inductive Learning of Disjointness Axioms 687

In some cases, the support value is also defined relatively to the number of transactions
contained in the database. Given these frequent itemsets, it is possible to generate as-
sociation rules of the form A ⇒ B where A ⊆ I and B ⊆ I are both itemsets. The
confidence for a certain association rule is given by

conf(A → B) =
supp(A ∪ B)

supp(A)

Thus, it shows the conditional probability of an itemset B occurring in a transaction
given the occurrence of an itemset A.

In this work, we do not want to generate rules like A → B, which would to a degree
resemble subsumption and equivalence relations in ontologies, but negative association
rules where either A or B is negated like A → ¬B. It is important to note that negative
association rules, despite being similar to logical implications, do not capture the same
logical meaning of implication or, in our special case, of disjointness. Association rules
are not definitive rules but there may be some transactions which violate their propo-
sition. This fact is partly represented by the confidence values which incorporate the
fraction of transactions transgressing the association rule.

Naı̈ve Negative Association Rule Mining. Mining negative association rules poses dif-
ferent requirements to the association rule mining algorithms since typically there are
many more items not contained in an itemset than items contained in it. In the typical
problem domain of association rules, the number of possible items is too large to apply
regular algorithms on the data set. However, our problem has a much more limited prob-
lem space. In our domain, we usually have to deal with a few hundreds or thousands of
items (i.e., classes defined in the provided schema) whereas a typical association rule
application deals with itemset sizes of up to 106. Therefore, we are able to apply stan-
dard algorithms to our problem of mining negative association rules sometimes referred
to as the naı̈ve approach of mining negative association rules [2, 24]. To do this, for all
classes the corresponding complements are also added to the transaction database and
all instances not belonging to a class are marked as belonging to its respective comple-
ments. Applying this transformation to the transaction database depicted in Table 1, we
get a the transaction database shown in Table 2. Using this approach, the standard asso-
ciation rule mining methods generate not only positive items but also negative ones and
thus negative association rules. The example transaction database also illustrates one
major shortcoming of this approach. Because of the addition of complement classes,
we lose much of the original database’s sparsity which greatly increases the space re-
quired to store such a transformed database.

Table 2. Transaction database containing materialized class complements

IRI Place City Person OfficeHolder ¬Place ¬City ¬Person ¬OfficeHolder

Berlin 1 1 0 0 0 0 1 1
Charles Darwin 0 0 1 0 1 1 0 1

Eiffel Tower 1 0 0 0 0 1 1 1
John F . Kennedy 0 0 1 1 1 1 0 0

Golden Gate Bridge 1 0 0 0 0 1 1 1

688 D. Fleischhacker and J. Völker

As an example, we consider the itemset {Place,¬OfficeHolder} which reaches
a support value of 3 because these items are contained in the transactions for
Berlin , Eiffel Tower and Golden Gate Bridge . For the negative association rule
Place → ¬OfficeHolder, we thus get a confidence value of

supp(Place,¬OfficeHolder)
supp(Place)

=
3
3

= 1

Negative Association Rule Mining. Typically, the datasets association rule mining is
performed on are much larger than the ones used in our case. The number of items
contained in one transaction is much smaller than the number of items not contained
in a transaction and thus the number of frequent itemsets gets an enormous boost by
such a naı̈ve transformation of the transaction database. Since this greatly reduces the
usefulness of standard positive association rules mining algorithms for mining negative
association rules, there are several works regarding the development of special negative
association rule mining algorithms [2]. In this work, we apply the negative association
rule algorithm proposed by Zhang and Zhang [28]. Because of the complexity of this
algorithm, we only give a short overview on it.

The negative association rule mining approach does not rely on materializing the
item complements but instead searches for infrequent positive itemsets. Because of the
sparsity of the original transaction database there is an almost exponential number of
such infrequent positive itemsets. To reach a well enough performance for such an ap-
proach, pruning the search space is an important concern. After generating infrequent
itemsets, Zhang and Zhang prune those itemsets which are not considered interesting
given the minimum interest level. In this context, an itemsets is called interesting if its
support exceeds the expected level of support. Based on the remaining negative item-
sets, they define an approach to create all possible negative association rules using the
probability ratio of each association rule as the corresponding confidence.

4 Experiments

The three approaches described in Section 3 are expected to perform differently on
the task of generating disjointness axioms. Thus, in order to assess the quality of the
produced disjointness axioms, we did an extensive comparison. As a state of the art ap-
proach for creating this type of axioms, we also included the LeDA framework [26] into
our comparison which implements a supervised machine learning approach to acquir-
ing disjointness axioms. Additionally, we compared the results to the heuristic proposed
by Schlobach [20] (cf. Section 2). All of these methods have been tested against a gold
standard of manually created disjointness axioms.

4.1 Setting

For our experiments,6 we used the data set provided by the DBpedia project [5]. We
applied the aforementioned approaches to a set of transaction tables containing the

6 All data used in our experiments is available from
http://code.google.com/p/gold-miner/.

http://code.google.com/p/gold-miner/

Inductive Learning of Disjointness Axioms 689

DBpedia data as of December 2010. In addition, we used the DBpedia ontology7 ver-
sion 3.5.1.

Implementation. The values for the correlation-based approach were computed by our
own implementation that determines the Pearson correlation coefficient as described
in Section 3.1 for each pair of two classes that are stated to be of the types of some
resources in DBpedia. The resulting correlation coefficients were used as confidence
values for the corresponding disjointness axioms.

For mining the association rules, we used the Apriori miner system version 5.39 by
Borgelt and Kruse [6], while the transaction tables for the naı̈ve way of mining were
generated by our own implementation. It is worthwhile mentioning that the material-
ization of the transaction database with representations for the respective complements
of all contained classes, increased the size of the transaction data file from 13 MB to
about 1.7 GB. On this materialized data file, we did multiple runs of Apriori miner with
different settings for minimum support, minimum confidence and minimum interest. In
addition, to actually make the amount of data manageable for the mining system, we
had to limit the computation of frequent itemsets to sets consisting of two elements –
no real limitation as we anyway only consider disjointness axioms relating two atomic
classes.

Since we were unable to find a publicly available implementation of negative associ-
ation rule mining suitable for our experiments, we implemented the algorithm described
by Zhang and Zhang [28] ourselves and used it in the experiments described in the fol-
lowing.8 This mining approach is also influenced by the parameters minimum support,
minimum confidence and minimum interest.

Configuration of LeDA. In order to evaluate our methods against LeDA [26], a state-
of-the-art framework for learning disjointness axioms from heterogeneous sources of
evidence, we updated the latest LeDA release as follows. We replaced the original
KAON2-based implementation of the ontology backend by a version that uses Pellet
and the Manchester OWL API. For our experiments, we used the set of features that
performed well in recent experiments by Meilicke et al. [17]. These features are listed
in Table 3. The naive bayes classifier of LeDA was trained on the upper module of the
PROTON ontology9 using the partial disjointness gold standard created by Völker et al.
After this training phase, we applied the resulting classifier to the DBpedia ontology.

The background ontologies for the respective features have been automatically gen-
erated by using the Text2Onto tool [7]. We extracted these ontologies from a corpus
of Wikipedia articles which we automatically assembled by downloading the articles
corresponding to the class names contained in the ontologies. During this process only
an automatic transformation from the camel-case naming style used in the ontologies
to a sequence of single words has been done but no further disambiguation steps were
applied. Ontologies automatically generated by Text2Onto contain instances and thus
provide LeDA with a limited amount of instance data, e.g., for determining the in-

7 http://dbpedia.org/Ontology
8 The negative association rule mining system is integrated into the gold-miner system available

from http://code.google.com/p/gold-miner/.
9 http://proton.semanticweb.org/

http://dbpedia.org/Ontology
http://code.google.com/p/gold-miner/
http://proton.semanticweb.org/

690 D. Fleischhacker and J. Völker

stance overlap of two classes. Since the PROTON ontology used during training does
not contain instance data, the instance-based features of LeDA could only be applied to
the background ontologies but not to the original ontologies, which also resembles the
setup employed by Meilicke et al.

Table 3. Features of the classification model used by LeDA [26]

Feature Description

fdoc Lexical context similarity (Wikipedia)
fjaro−winkler Label similarity (JaroWinkler)
flevenshtein Label similarity (Levenshtein)
foverlapc Taxonomic overlap wrt. subclasses
fb

overlapc
Taxonomic overlap wrt. subclasses (learned ontology)

fb
overlapi

Taxonomic overlap wrt. instances (learned ontology)
fpath Semantic distance
fb

path Semantic distance (learned ontology)
fprop Object properties
fqgrams Label similarity (QGrams)
fsub Subsumption
fb

sub Subsumption (learned ontology)
fwn1 WordNet similarity (Patwardhan-Pedersen v1)
fwn2 WordNet similarity (Patwardhan-Pedersen v2)

Thresholds. For the association rule mining approaches, we chose an absolute support
value of 10 transactions and a confidence value of 0.8 for both approaches. We did not
set an interest threshold, i.e., our minimum interest value was 0. For LeDA we just used
the default thresholds given by the type of classifier and thus considered those classes
as being disjoint for which the disjointness has been determined with a confidence of
at least 0.5. On the correlation approach, we applied the threshold values 0.05 and
0.005. Even if these values are both beneath the limits for meaningful correlations we
nevertheless chose these after some first experiments since the results seemed to be
promising.

Baselines. In addition to these automatic approaches, we considered two more baselines
and a gold standard of disjointness axioms manually added to the DBpedia ontology.
For our gold standard, we asked several experienced ontology engineers to collabora-
tively enrich the DBpedia ontology with a full set of disjointness axioms. The first base-
line approach is based on the strong disjointness assumption [9] used by Schlobach, thus
it considers all siblings as being disjoint. This baseline approach reaches an accuracy
of 92% with respect to our gold standard. The second baseline approach is a simple
majority approach. Since the vast majority of all possible class pairs is considered as
disjoint in the gold standard, the majority vote would be setting all pairs to disjoint.
Regarding our gold standard, this method would reach an accuracy of 91%.

4.2 Handling Logical Inconsistency and Incoherence

After generating the list of disjointness axioms, we ordered the axioms by descending
confidences and enriched the DBpedia ontology incrementally always adding the axiom

Inductive Learning of Disjointness Axioms 691

with the highest confidence to the ontology. After each addition, the ontology is checked
for coherence and, by also considering the instances contained in the DBpedia dataset,
for consistency. If an incoherence or inconsistency is detected the lastly added axiom is
removed from the ontology and pruned from the axiom list.

Note that checking for consistency and coherence is a non-trivial task. Due to the
high number of instances contained in the DBpedia dataset it was not possible to use
standard OWL reasoners like Pellet [22] which are not suited for such large reposito-
ries. Therefore, we applied a two-step approach regarding the detection of incoherence
and inconsistence in the enriched ontology. Incoherence of a class means that this class
is not satisfiable, i.e., it has to be empty to conform to the schema. Incoherence is not
directly related to the actual existence of instances asserted to this or any other class.
Thus, it is sufficient to only consider the raw schema and ignore the instance data which
allows to query Pellet for satisfiability of each single class with good performance. To
also preserve consistency, instances have to be considered either way. To do this, we
combined results returned by the Pellet reasoner and from SPARQL queries sent to a
Virtuoso RDF database containing the instances for the DBpedia ontology. We iden-
tified three different cases which he had to deal with to catch possible inconsistencies
while enriching the ontology. We present these three cases in the following, all of them
are checked after adding a new disjointness axiom to the ontology.

The most obvious case of inconsistency is caused by individuals assigned to the
classes defined to be disjoint. This type of inconsistency is detectable by a non-empty
result set for the SPARQL query10

SELECT ?x WHERE { ?x a <ClassURI1> . ?x a <ClassURI2> . }
Furthermore, the ontology is inconsistent if the SPARQL query

SELECT ?x WHERE { ?x a <ClassURI1> . ?x <PropURI> ?y . }
returns a non-empty result while the ontology entails
< ClassURI2 > rdf : domain < PropURI >. Eventually, the third type of incon-
sistencies is detected if there are individuals fulfilling the query

SELECT ?x WHERE { ?x a <ClassURI1> . ?y <PropURI> ?x . }
while the ontology entails < ClassURI2 > rdf : range < PropURI >. It is worth noting
that these patterns should be able to detect most inconsistencies which can occur in the
DBpedia ontology by adding disjointness axioms. This is caused by the fact that the
ontology only employs a limited set of the features provided by OWL, e.g., it does not
contain cardinality restrictions.

4.3 Creation of a Gold Standard

We created a gold standard of disjointness axioms on the DBpedia ontology for our ex-
periments. During its manual creation the human ontology engineers came across some
points which led to discussions. In the following, we describe some of these problems.

10 < ClassURI1 > resp. < ClassURI2 > are used as placeholders for the actual URIs of the
classes the disjointness is stated for.

692 D. Fleischhacker and J. Völker

Table 4. Statistics for automatically generated axioms without materialization (compared to ma-
terialized gold standard)

Total Axioms over Threshold Correct Axioms Precision

LeDA 62,115 57,422 0.92
Correlation (0.005) 10,218 9,562 0.94
Correlation (0.05) 424 418 0.99
Naive ARM 14,994 13,623 0.91
Negative ARM 58 58 1.00

One point which turned out to be problematic is the distinction between different
functions of buildings, e.g., shopping mall and airport. Since there are several airport
buildings which also include shopping malls, it would be reasonable not to set both
classes as disjoint. On the other side, the actual functions of buildings are intensionally
disjoint because the airport functionality has no relation to the shopping mall function.
In this specific case, the way of modeling used in the DBpedia ontology favors the first
interpretation because the building may at the same time serve both functions, airport
and shopping mall, without the possibility to divide both parts. Thus, the subclasses of
building have been modeled to be pairwise disjoint.

Many problems during the creation of the gold standard were similar to these ones.
Another example is the differentiation between continents and countries since there
is, e.g., Australia which could be considered to be both a continent and a country. In
this case, we opted for a way of modeling that takes into consideration the difference
between the continent being a landmass and a country being an organizational unit
possibly located at a landmass.

For some classes, their intension was not clear by just using the information available
from the ontology itself. In these cases, the contents of the corresponding Wikipedia
articles were used to clarify the respective notions and for some cases the extension of
the specific class, i.e., the DBpedia instances assigned to these classes, were considered
for clarification purposes.

4.4 Results and Discussion

Analysis of Inconsistencies. After creating the gold standard, we materialized all dis-
jointness axioms inferable from the gold standard. Based on this set of axioms, we
performed an analysis of all axioms contained in the different automatically generated
axiom lists. This way, we were able to compute a precision11 regarding the actually
inferable set of axioms in the gold standard. The results are shown in Table 4. For our
computations, we assumed our gold standard to be complete, i.e., classes not being im-
plicitly or explicitly stated as disjoint are considered not to be disjoint. Furthermore,
since it is not meaningful to compute recall and accuracy on this level without any
semantics of ontologies included, we left out these measures.

While enriching the DBpedia ontology with disjointness axioms our greedy approach
raised various inconsistency errors caused by instances explicitly or implicitly asserted
to both classes of a disjoint class pair. Usually, there are two sources of such errors. The

11 For definitions of precision, recall and accuracy, see [27].

Inductive Learning of Disjointness Axioms 693

Table 5. Incoherences and inconsistencies detected while adding axioms

Axioms Incoherences Inconsistencies: Total Range Conflict Domain Conflict

Gold Standard 59,914 0 1,412 1,365 47
LeDA 62,115 0 1,837 1,759 78
Correlation (0.005) 10,218 0 2,068 2,028 40
Correlation (0.05) 424 0 262 257 5
Naive ARM 14,994 230 1,025 980 45
Negative ARM 176 0 70 69 1

first one is simply that the disjointness axiom determined by the automatic learning pro-
cess is incorrect, the other one are incorrect, explicit or implicit rdf:type assertions. As
described in Section 4.2, we only apply a heuristic approach for inconsistency detection
which checks for three different kinds of inconsistencies. Table 5 shows the number of
the different contradiction types.

As we are able to see from the numbers, most errors are caused by range restrictions.
This means that the range assertion of a specific property allows to infer a class asser-
tion for an instance which conflicts with the generated disjointness axiom. According to
our exploration of the inconsistencies, the most common error type is a disambiguation
error. An example for this kind of error is revealed by the obviously correct disjointness
axiom between the classes Person and Plant raised by the naive association rule mining
approach. While adding this disjointness axiom to the DBpedia ontology, a range con-
flict for the property starring has been detected by our enriching process. A more elab-
orate examination of the DBpedia data showed that the range of starring is set to be the
class Person but there exists a property starring between the instances Flat! (which is an
Indian movie) and Hazel (the tree). This is caused by an incorrect cast reference in the
infobox of the corresponding Wikipedia page of Flat!.12 The correct reference would
point to the actress Hazel Crowney.13 Thus, the learned disjointness axiom helped to
detect an error in Wikipedia which led to a wrong DBpedia information.

Semantically Founded Evaluation. For the automatically generated axiom lists, we
not only computed the precision for the raw lists (see Table 4) but also the measures of
precision, recall and accuracy on their materializations. For this purpose, we enriched
the DBpedia ontology by the automatically generated disjointness axioms using our
greedy approach and afterwards computed a list of all disjointness axioms inferable
from the ontology. The most important results are shown in Table 6.

The best performance regarding the automatically generated disjointness axioms is
achieved by LeDA using the schema-based approach. Even if it did not reach the high-
est precision value, the recall and accuracy values are the highest of all automatic ap-
proaches. The precision with respect to the non-materialized list is at 0.92 which is
quite high, though not as high as the correlation-based approaches. The main advantage
of the correlation-based approaches is their high precision for certain thresholds but
they suffer from a relatively low recall. To have a more detailed insight into the good
performance of LeDA in this task, we also had a look at the feature usage by means of
gain ratio evaluation of Weka. According to this analysis, the classifier mostly uses the

12 http://en.wikipedia.org/w/index.php?title=
Flat!&oldid=409238040

13 http://en.wikipedia.org/wiki/Hazel_Crowney

http://en.wikipedia.org/w/index.php?title=Flat!\&oldid=409238040
http://en.wikipedia.org/w/index.php?title=Flat!\&oldid=409238040
http://en.wikipedia.org/wiki/Hazel_Crowney

694 D. Fleischhacker and J. Völker

Fig. 1. Disambiguation error in Wikipedia infobox for movie Flat!

features foverlapc (gain ratio of 0.59), fqgrams (0.11) and f b
overlapc

(0.11). The other
activated features only gave a maximum gain ratio of 0.02 or less. The negative asso-
ciation rule mining approach suffers from the same problem as the correlation-based
one with respect to recall but in exchange reaches 1.0 for precision which makes it very
suitable if high precision is more important than high recall.

Taking into consideration the feature usage of LeDA, we can conclude that it is very
dependent on the available training data and its similarity to the actual data which has
to be classified. This is the main advantage of the induction-based approaches and re-
garding the statistics both association rule mining approaches perform well putting their
specific emphasis either on precision or recall. Thus, if there is no appropriate training

Inductive Learning of Disjointness Axioms 695

Table 6. Evaluation of generated axioms14

Inferable Axioms Correct Decisions Correct Axioms Precision Recall Accuracy

Gold Standard 59,914 - - - - -
Schlobach 65,006 60,597 60,597 0.93 0.92 0.92
Majority 66,049 59,914 59,914 0.91 1.00 0.91
LeDA 60,314 57,557 55,868 0.93 0.85 0.87
Correlation (0.005) 41,786 43,049 39,350 0.94 0.60 0.65
Correlation (0.05) 3,246 9,381 3,246 1.00 0.05 0.14
Naive ARM 47,358 49,173 45,198 0.95 0.68 0.74
Negative ARM 10,790 16,925 10,790 1.00 0.16 0.26

data available, these association rule mining-based approaches should be considered
and chosen depending on the desired balance between precision and recall.

Regarding the baselines it is important to mention that while delivering some of the
best results regarding precision, recall and accuracy, they are not suited for being used
in general. For the majority approach, one has to determine first what is more common,
disjointness or non-disjointness, which means creating a disjointness gold standard for
the ontology. The strong disjointness assumption proposed by Schlobach is only this
successful because for the DBpedia ontology the majority of siblings is in fact disjoint
but in general there might be ontologies following other characteristics, e.g., for the
Person subtree of the DBpedia ontology the assumption does not hold.

5 Conclusion and Outlook

In this paper, we presented a set of inductive methods for generating disjointness axioms
from large knowledge repositories. We performed a comparative evaluation with the
most commonly used methods and heuristics for generating disjointness axioms, and
discussed the respective advantages of inductive, i.e. instance-based, and schema-based
methods for learning disjointness. Our experiments indicate that it is possible to induce
disjointness axioms from an existing knowledge base with an accuracy that is well
enough to help detecting inconsistencies in datasets. This is particularly true if there is
no appropriate training data available to use tools like LeDA. As we have also shown,
we were able to identify various problems in DBpedia by adding the automatically
generated axioms to the DBpedia ontology.

While further experiments with other data sets will be indispensable, we are confi-
dent that our methods will facilitate the development of more efficient means to sup-
porting users of large RDF repositories in detecting and fixing potential problems in the
data sets. Future work includes the integration of our methods with existing approaches
to acquiring schema-level knowledge from linked data, e.g., based on inductive log-
ical programming [12] or association rule mining [25]. The incremental induction of
schemas including disjointness axioms could facilitate, for example, an automated syn-
chronization of the DBpedia ontology with DBpedia Live15 and immediate diagnoses
whenever changes to the underlying Wikipedia articles are submitted. Logical inconsis-
tencies provoked by the enrichment of learned or manually engineered schemas would

14 Correct decisions = true positives + true negatives; correct axioms = true positives.
15 http://live.dbpedia.org

http://live.dbpedia.org

696 D. Fleischhacker and J. Völker

need to be resolved by methods for consistent ontology evolution [10]. Finally, we will
investigate the applicability of our approaches to the problem of learning property dis-
jointness.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of
the 20th International Conference on Very Large Data Bases (VLDB), pp. 487–499. Morgan
Kaufmann (1994)

2. Antonie, M.-L., Zaı̈ane, O.R.: Mining Positive and Negative Association Rules: An Ap-
proach for Confined Rules. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D.
(eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 27–38. Springer, Heidelberg (2004)

3. Auer, S., Lehmann, J.: Creating knowledge out of interlinked data. Semantic Web 1(1-2),
97–104 (2010)

4. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge
bases using formal concept analysis. In: Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 230–235. AAAI Press (2007)

5. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.:
DBpedia - a crystallization point for the web of data. Web Semantics 7(3), 154–165 (2009)

6. Borgelt, C., Kruse, R.: Induction of association rules: Apriori implementation. In: Proceed-
ings of the 15th Conference on Computational Statistics (COMPSTAT), pp. 395–400. Phys-
ica Verlag (2002)

7. Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB
2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

8. Cohen, J.: Statistical power analysis for the behavioral sciences, 2nd edn. Larwence Erlbaum,
New Jersey (1988)

9. Cornet, R., Abu-Hanna, A.: Usability of expressive description logics – a case study in
UMLS. In: Proceedings of the AMIA Annual Symposium, pp. 180–184 (2002)

10. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A Framework for
Handling Inconsistency in Changing Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–367. Springer, Heidelberg (2005)

11. Haase, P., Völker, J.: Ontology Learning and Reasoning — Dealing with Uncertainty and
Inconsistency. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J.,
Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327,
pp. 366–384. Springer, Heidelberg (2008)

12. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large
knowledge bases. International Journal on Semantic Web and Information Systems 5(2), 25–
48 (2009)

13. Hitzler, P., van Harmelen, F.: A reasonable semantic web. Journal of Semantic Web 1(1-2),
39–44 (2010)

14. Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learn-
ing Research (JMLR) 10, 2639–2642 (2009)

15. Lehmann, J., Bühmann, L.: ORE - A Tool for Repairing and Enriching Knowledge Bases. In:
Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm,
B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010)

16. Mädche, A., Staab, S.: Discovering conceptual relations from text. In: Proceedings of the
14th European Conference on Artificial Intelligence (ECAI), pp. 321–325. IOS Press (2000)

17. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning Disjointness for Debugging Mappings
Between Lightweight Ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS
(LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008)

Inductive Learning of Disjointness Axioms 697

18. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: Proceedings of the 14th
International Conference on World Wide Web (WWW), pp. 633–640. ACM (2005)

19. Qi, G., Haase, P., Huang, Z., Ji, Q., Pan, J.Z., Völker, J.: A Kernel Revision Operator for
Terminologies — Algorithms and Evaluation. In: Sheth, A.P., Staab, S., Dean, M., Paolucci,
M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 419–
434. Springer, Heidelberg (2008)

20. Schlobach, S.: Debugging and Semantic Clarification by Pinpointing. In: Gómez-Pérez, A.,
Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 226–240. Springer, Heidelberg (2005)

21. Schlobach, S.: Diagnosing terminologies. In: Proceedings of the 20th National Conference
on Artificial Intelligence (NCAI), vol. 2, pp. 670–675. AAAI Press (2005)

22. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl reasoner.
Web Semantics 5, 51–53 (2007)

23. Stumme, G., Hotho, A., Berendt, B.: Semantic web mining: State of the art and future direc-
tions. Journal of Web Semantics 4(2), 124–143 (2006)

24. Teng, W.G., Hsieh, M.J., Chen, M.S.: On the mining of substitution rules for statistically
dependent items. In: Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM), pp. 442–449. IEEE Computer Society (2002)

25. Völker, J., Niepert, M.: Statistical Schema Induction. In: Antoniou, G., Grobelnik, M., Sim-
perl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS,
vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

26. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Franconi, E., Kifer,
M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)

27. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann (2005)

28. Zhang, C., Zhang, S.: Association rule mining: models and algorithms. Springer, Heidelberg
(2002)

Breaking the Deadlock: Simultaneously

Discovering Attribute Matching and Cluster
Matching with Multi-Objective Simulated

Annealing

Haishan Liu and Dejing Dou

Computer and Information Science Department,
University of Oregon, Eugene, USA

Abstract. In this paper, we present a data mining approach to chal-
lenges in the matching and integration of heterogeneous datasets. In
particular, we propose solutions to two problems that arise in combining
information from different results of scientific research. The first problem,
attribute matching, involves discovery of correspondences among distinct
numeric-typed summary features (“attributes”) that are used to charac-
terize datasets that have been collected and analyzed in different research
labs. The second problem, cluster matching, involves discovery of match-
ings between patterns across datasets. We treat both of these problems
together as a multi-objective optimization problem. A multi-objective
simulated annealing algorithm is described to find the optimal solution.
The utility of this approach is demonstrated in a series of experiments
using synthetic and realistic datasets that are designed to simulate het-
erogeneous data from different sources.

Keywords: Multi-Objective Optimization, Cluster Matching, Attribute
Matching, Simulated Annealing.

1 Introduction

The presence of heterogeneity among schemas and ontologies supporting vast
amount of informational sources leads to one of the most important and tough-
est problems, that is, the semantic integration of heterogeneous data sources
to facilitate interoperability and reuse of the information. The difficulty is es-
pecially pronounced in many scientific domains where massive amount of data
are produced independently and thus each having their own data vocabulary.
While manual integration is time-consuming and requires expensive specialized
human capital, the development of automatic approaches becomes imminent to
aid inter-institute collaboration. One purpose of the present paper is to suggest
a method for solving a specific kind of ontology/schema matching problem un-
der some severe constraints that can cause traditional methods to be ineffective.
The constraints that we deal with are, namely, 1) little-to-no string-based or
linguistic similarity between terminologies, and 2) all numeric typed data in-
stances. This phenomenon is commonly seen in integrating scientific datasets

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 698–715, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Simultaneously Solving Cluster Matching and Attribute Matching 699

which involves discovery of correspondences among distinct numeric-typed sum-
mary features (“attributes”) that are used to characterize datasets that have
been collected and analyzed in different research labs. We call this the attribute
matching problem.

Another challenging task given multiple data sources is to carry out meaning-
ful meta-analysis that combines results of several studies on different datasets
to address a set of related research hypotheses. Finding correspondences among
distinct patterns that are observed in different scientific datasets is an example
of meta-analysis. Supposing the patterns are derived by clustering analysis, this
problem can be addressed by the application of cluster comparison (or cluster
matching) techniques. Clustering is an unsupervised data mining task widely
used to discover patterns and relationships in a variety of fields. The clustering
result provides a pattern characterization from a data-driven perspective. If sim-
ilar results are obtained across multiple datasets, this leads in turn to a revision
and refinement of existing domain knowledge, which is a central goal of meta-
analysis. However, there are noticeably few cluster comparison methods that are
able to compare two clusterings derived from different datasets. The difficulty
for the comparison is further exacerbated by the fact that the datasets may be
described by attributes from heterogeneous ontologies or schemas. Even those
methods that are able to measure clustering similarity across different datasets
(e.g., the ADCO [1] method) have to assume the homogeneous meta-data.

Given this situation, in order to carry out cluster comparison for meta-analysis,
researchers often need to perform ontology or schema matching first in order to
mitigate the meta-data gap. In previous work [11], we examine a practical at-
tribute matching problem on neuroscience data where schema elements from one
dataset share no lexical similarity with those from the other. Moreover, struc-
tural similarity is also limited. One can only resort to instance-based (exten-
sional) methods. However, since all attributes are numerical, information clues
available to an instance-level matcher is very restricted. Traditional instance-
based matchers typically make use of constraint-based characterization, such as
numerical value ranges and averages to determine correspondences. However,
this is often too rough in the case of all-numerical dataset. Two attributes may
have similar ranges and averages but totally different internal value distribu-
tions (an example is shown in Section 4.1). Given this, we propose to represent
the attribute value distribution at a finer granularity by partitioning the val-
ues into groups. To do this, clustering is performed, and resulting clusters are
then aligned across two datasets (assuming that the same pattern exists in both
datasets). In this way, each attribute can be characterized by, instead of a single
value, a vector of per-cluster statistical quantities (i.e., the segmented statistical
characterization). A distance function can then be applied based on this repre-
sentation. Table 1(A) shows an example distance table on the cross join of two
sets of attributes. To discover attribute matching from this table can be reduced
to solving a minimum assignment problem (assuming matching is bijective),
which is a classical combinatory optimization problem that has a polynomial
solution using the Hungarian Method [8].

700 H. Liu and D. Dou

Unfortunately, however, the above solution requires us to be able to align
clusters across datasets, which is a difficult problem in its own right. If fully au-
tomated, as mentioned above, methods such as ADCO adopt a so called density
profile [1] representation of clusters that requires homogeneous meta-data or a
priori knowledge about the attribute matching in heterogeneous scenarios. Then
the cluster matching can be carried out in a similar manner to the attribute
matching by casting to the assignment problem (see Table 1(B), for example).
This leads to a circular causality, or a deadlock, between the attribute matching
(under the segmented statistical characterization) and cluster matching (under
the density profile representation) problems—none of them can be solved auto-
matically without the other one being solved first.

Table 1. Example distance matrices between (A) two sets of attributes and (B) two
sets of clusters, respectively

a′
1 a′

2 · · · a′
m

a1 d11′ d12′ · · · d1m′

a2 d21′ d22′ d2m′
...

. . .

an dn1′ dn2′ dnm′

(A)

c′1 c′2 · · · c′n
c1 d11′ d12′ · · · d1n′

c2 d21′ d22′ d2n′
...

. . .

cn dn1′ dn2′ dnn′

(B)

To solve this difficulty, in the present paper, viewing the two matching prob-
lems as combinatorial optimization problems with distinct yet interrelated ob-
jective functions, we propose a novel approach using a multi-objective simulated
annealing (MOSA) to discover attribute matching and cluster matching simulta-
neously. The objectives in the optimization are to minimize distances of attribute
matching and cluster matching respectively.

The rest of this paper is organized as follows. We review the basics of
multi-objective optimization and describes the relationship between various
components of the proposed method and existing methods in Section 2. We present
detailed description of our method for simultaneously discovering attribute match-
ing and cluster matching in Section 3. We report experimental results in Section 4
and conclude the paper in Section 5.

2 Background and Related Work

2.1 The Multiobjective Optimization Problem and
Pareto-Optimality

Multi-objective optimization problem (also called multi-criteria,
multi-performance or vector optimization) can be defined mathematically as to
find the vector X = [x1, x2, . . . , xk]T which satisfies the following m inequality
constraints and l equality constraints:

gi(X) ≥ 0, i = 1, 2, . . . , m

hi(X) = 0, i = 1, 2, . . . , l

Simultaneously Solving Cluster Matching and Attribute Matching 701

and optimize the objective function vector

F (X) = [f1(X), f2(X), . . . , fN (X)]T

where X = [x1, x2, . . . , xk]T is called the decision variable vector.
Real-life problems require simultaneous optimization of several incommensu-

rable and often conflicting objectives. Usually, there is no single optimal solution,
but there is a set of alternative solutions. These solutions are optimal in the sense
that no other solutions in the search space are superior to each other when all the
objectives are considered [16]. They are known as Pareto-optimal solutions. To
define the concept of Pareto optimality, we take the example of a minimization
problem with two decision vectors a, b ∈ X . Vector a is said to dominate b if

∀i = {1, 2, . . . , N} : fi(a) ≤ fi(b)
and

∃j = {1, 2, . . . , N} : fj(a) < fj(b)

When the objectives associated with any pair of non-dominated solutions are
compared, it is found that each solution is superior with respect to at least one
objective. The set of non-dominated solutions to a multi-objective optimization
problem is known as the Pareto-optimal set (Pareto front) [17].

2.2 Simulated Annealing in Multi-Objective Optimization

Simulated annealing (SA) is based on an analogy of thermodynamics with the
way metals cool and anneal. It has been proved to be a compact and robust
technique, which provides excellent solutions to single and multiple objective
optimization problems with a substantial reduction in computation time. It is
a method to obtain an optimal solution of a single objective optimization prob-
lem and to obtain a Pareto set of solutions for a multi-objective optimization
problem. Simulated Annealing was started as a method or tool for solving sin-
gle objective combinatorial problems, these days it has been applied to solve
single as well as multiple objective optimization problems in various fields. A
comprehensive survey can be found in [16].

2.3 The Schema Matching Problem

Our study of matching alternative attribute sets is closely related to the schema
matching problem. According to the type of instance value, various instance-
based approaches have been developed in previous research. For example, for
textual attributes, a linguistic characterization based on information retrieval
techniques can be applied [12]; for nominal attributes, evaluation of the degree
of overlap of instance values is a preferred approach. Larson et al. [9] and Sheth
et al. [14] discussed how relationships and entity sets could be integrated pri-
marily based on their domain relationships. Similarity of partially overlapped in-
stance set can be also calculated based on measures such as Hamming distance

702 H. Liu and D. Dou

and Jaccard coefficient; for numeric attributes, most methods use aggregated
statistics to characterize the attributes, e.g., ‘SSN’ and ‘PhonNo’ can be distin-
guished based on their respective patterns [12]. Hybrid systems that combine
several approaches to determine matching often achieve better performance. For
example, SemInt [10] is a comprehensive matching prototype exploiting up to
15 constraint-based and 5 content-based matching criteria. The LSD (Learning
Source Descriptions) [4] system uses several instance-level matchers (learners)
that are trained during a preprocessing step. The iMAP [2] system uses multiple
basic matchers, called searches, e.g., text, numeric, category, unit conversion,
each of which addresses a particular subset of the match space.

Due to the nature of many scientific datasets, we face several unique chal-
lenges. First, the data under study are semi-structured, thus invalidating those
matching methods that presume a complete, known-in-advance schematic struc-
ture. In addition, totally different labels (usually acronyms or pseudowords) are
widely adopted for the same or similar metrics, rendering lexical similarity-based
methods unsuitable. Moreover, an important limitation of previous instance-
based matching methods is their inability to handle numerical instances ap-
propriately in certain domain applications. They use statistical characterization
extracted from the numerical instances, such as range, mean and standard de-
viation, to determine match. However such information is too rough to capture
patterns in data that are crucial in determining the correspondence.

2.4 The Cluster Matching Problem

The cluster matching (cluster comparison) problem is related to the cluster va-
lidity problem, especially the technique of external/relative indexing that aims at
comparing two different clustering results. Popular methods in this field, includ-
ing the Rand index [13], Jaccard index [7], normalized mutual information [5],
etc., are mostly based on examining membership of points to clusters. However,
the basis of these methods is the comparison of different clustering schema on
the same dataset.

By contrast, in the present case we are aiming to match clusters across
datasets that contain non-overlapping observations. Thus, membership-based
cluster validity criteria are unsuitable. A recent clustering similarity index known
as ADCO (Attribute Distribution Clustering Orthogonality) proposed by Bae
et al. [1] can match clusterings from non-overlapping datasets. The ADCO mea-
sure determines the similarity between two clusterings based on their density
profiles, which incorporate distribution information of data points along each
attribute. The density profile representation of clusters are defined as follows.

Density Profile: To represent clusters using density profiles, the attribute’s range
in each cluster is first discretized into a number of bins, and the similarity be-
tween two clusters corresponds to the number of points of each cluster falling
within these bins. The formal definition for this number of points is the density of
an attribute-bin region for cluster ck in clustering C, denoted as densC(k, i, j).
It refers to the number of points in the region (i, j)—the j-th bin of the i-th

Simultaneously Solving Cluster Matching and Attribute Matching 703

attribute—that belongs to the cluster ck of clustering C. For example, for clus-
tering C in Fig. 1, densC(1, 1, 1) = 8, because there are 8 data points in region
(1, 1)—the first bin of the first attribute x—that belongs to the first cluster c1.

The density profile vector VC for a clustering C is formally defined as an
ordered tuple:

VC =
[
densC(1, 1, 1), densC(1, 1, 2), . . . , densC(1, 1, Q), densC(1, 2, 1),

. . . , densC(1, M, Q), densC(2, 1, 1), . . . , densC(N, M, Q)
]

, (1)

where Q is the number of bins in each of the M attributes, and K is the number
of clusters in C.

The ADCO measure: After the density profile vectors of two clusterings C and
C′ are obtained, the degree of similarity between C and C′ can be determined
by calculating the dot product of the density profile vectors:

sim(C, C′) = VC · VC′ .

Given a permutation π under which the similarity function sim(C, π(C′))
is maximized, an ADCO measure is calculated using a normalization factor
(NF) corresponding to the maximum achievable similarity of the clusterings:
NF (C, C′) = max

[
sim(C, C), sim(C′, C′)

]
. The ADCO(C, C′) measure is de-

fined as follows:

ADCO(C, C′) =
sim(C, C′)
NF (C, C′)

.

Fig. 1. Two clusterings C = {c1, c2} and C′ = {c′1, c′2}. Two attributes X (attribute
1) and Y (attribute 2) are discretized into 2 bins each. See [1] for details.

704 H. Liu and D. Dou

3 Method

3.1 The Multi-Objective Simulated Annealing Framework

To solve the dual matching problems, we adopt a strategy of multi-objective sim-
ulated annealing described in [15], in which the acceptance criterion in the sim-
ulated annealing process is established based on the idea of Pareto-domination
based fitness. Fitness of a solution is defined as one plus the number of dominat-
ing solutions in Pareto-optimal set. The larger the value of fitness, the worse is
the solution. Initially, fitness difference between the current and the generated
solution is less and the temperature is high so any move is accepted due to both
of them. This gives a way to explore the full solution space. As the number
of iterations increases, temperature decreases and fitness difference between the
current and generated solutions may increase. Both of them make the accep-
tance move more selective and it results in a well-diversified solution in true
Pareto-optimal solutions. Details of our adaptation of the above multi-objective
simulated annealing framework is outlined in Algorithm 1.

Algorithm 1. Multi-Objective Simulated Annealing
Input: Empty Pareto-optimal set of solutions Σ
Input: Empty current decision vector X = [xa, xc]
Input: Initial temperature T

count = 0
while T > threshold do

initialize(X)
Put X in Σ
X′ = generate solution(X)
SX′ = evaluate solution(X′)
ΔS = SX′ − SX

if r = rand(0, 1) < exp(−ΔS
T

) then
X = X′

SX = SX′

end if
//Periodically restart
if count == restart limit then

X = select random from Pareto(Σ)
continue

end if
reduce temperature(T)

end while

Mathematically, the processes involved in the proposed multi-objective simu-
lated annealing framework can be defined as follows.

Simultaneously Solving Cluster Matching and Attribute Matching 705

X = [xa, xc]
F = [fa, fc]

Pa([x(n−1)
a , x(n−1)

c]) = [x(n)
a , x(n−1)

c]

Pc([x(n−1)
a , x(n−1)

c]) = [x(n−1)
a , x(n)

c]

Gc|a([x(n)
a , x(n−1)

c]) = [x(n)
a , x(n)

c]

Ga|c([x(n−1)
a , x(n)

c]) = [x(n)
a , x(n)

c]

G ◦ P ([x(n−1)
a , x(n−1)

c]) = [x(n)
a , x(n)

c]

X is the decision vector that contains two variables for attribute matching, xa,
and cluster matching, xc, respectively (details in Section 3.2). F is the objective
function vector that contains two criterion functions (fa and fc) to evaluate
attribute matching and cluster matching decisions (details in Section 3.4). P
is the random perturbation function that takes a decision vector in the (n −
1)th iteration and partially advances it to the nth iteration (we use Pa or Pc

to distinguish between the random selections). The partial candidate decision
generation function G takes the output of P and fully generate a decision vector
for the nth iteration (by advancing the left-out variable in P to its nth iteration).
Thus, the compound function G◦P fulfils the task of generating an nth-iteration
candidate decision vector given the (n − 1)th one (details in Section 3.5).

3.2 Decision Variable

The domains of the decision variables in the matching problems take values on
a permutation space. In other word, by formalizing the problem of finding cor-
respondent elements of two sets S and S′ of cardinality n as an optimization
problem, the solution is completely specified by determining an optimal permu-
tation of 1, . . . , n. For instance, for two sets of three elements, their indexes range
over {0, 1, 2}. Applying a permutation π = {2, 0, 1} ∈ S3 on S′ can be viewed as
creating a mapping (bijection) from elements on the new positions of S′ to ele-
ments on the corresponding positions in S. In this example, the permutation π
on S′ specifies the following correspondences: S0 ↔ S′

2, S1 ↔ S′
0, and S2 ↔ S′

1.
Formally, let Pn (n ∈ N) be the symmetric group of all permutations of the set

{1, 2, . . . , n}. Given two sets S and S′ with the same cardinality of n, performing
identity permutation on one set and an arbitrary permutation π ∈ Sn on the
other specifies a matching (or mathematically speaking, mapping) between the
two sets. In the multi-objective optimization formalism for solving attribute
matching and cluster matching problems, the decision vector has two variables:
X = [xa, xc]. If we have M attributes and N clusters to match respectively, then
xa ∈ PM and xc ∈ PN .

3.3 Data Representation

The central objects of interest in our study, namely, the numeric-typed attributes
and clusters, need to be represented in ways that meaningful quantities can

706 H. Liu and D. Dou

be defined to measure the “goodness” of a matching decision. To this end, we
propose to use the segmented statistical characterization to represent attributes,
and the density profiles to represent clusters. Details of these representations are
described below.

Representation of Attributes: Numeric-typed attributes can be represented
by the segmented statistical characterization, in which data instances are first
partitioned into groups (e.g., through unsupervised clustering) and then charac-
terized by a vector of indicators, each denoting a statistical characterization of
the corresponding group. For example, if values of an attribute A are clustered
into n groups, then it can be represented by a vector of segmented statistical
characterization as follows:

VA =
[
μ1, μ2, . . . , μn

]
,

where we choose the mean value μi for cluster i as the statistical indicator in
our implementation.

Representation of Clusters: Clusters can be represented using density pro-
files [1] as described in Section 2. The attribute’s range in each cluster is first
discretized into a number of bins, and the similarity between two clusters corre-
sponds to the number of points (i.e. density) of each cluster falling within these
bins. Given this, density profile vector VC for a clustering C is formally defined
as an ordered tuple by Equation 1 and is repeated here:

VC =
[
densC(1, 1, 1), densC(1, 1, 2), . . . , densC(1, 1, Q), densC(1, 2, 1),

. . . , densC(1, M, Q), densC(2, 1, 1), . . . , densC(N, M, Q)
]

,

where Q is the number of bins in each of the M attributes, N is the number
of clusters in C, and densC(k, i, j) refers to the number of points in the re-
gion (i, j)—the j-th bin of the i-th attribute—that belongs to the cluster ck of
clustering C.

3.4 Objective Functions

The objective functions in the attribute matching and cluster matching prob-
lems are criteria to evaluate the “goodness” of matchings. We use the sum of
pair-wise distances between matched elements (see Figure 1 for example) as
the objective function. Given this, to determine the form of objective functions
amounts to defining proper pair-wise distance measures for the attribute and
cluster matching problems respectively, as detailed in the following.

Distance function between two attributes. The pairwise distance between
two attributes are defined as the Euclidean distance between their segmented

Simultaneously Solving Cluster Matching and Attribute Matching 707

statistical characterization vectors, and fa calculates the sum of pair-wise dis-
tances under the attribute matching specified by xa:

fa(xa) =
M∑

k=1

L
(

(Va)k, (V ′
a)xa(k)

)

=
M∑

k=1

√√√√ N∑
i=1

(
μk

i − (μ′)xa(k)
i

)2

, (2)

where xa ∈ PM .

Distance function between two clusters. The ADCO similarity described
in Section 2.4 can be transformed to a distance defined as follows [1]:

DADCO(C, C′) =
{

2 − ADCO(C, C′) , if C �= C′ (VC �= VC′)
0 , otherwise

(3)

We use DADCO as the pair-wise distance between two clusters under the density
profile representation, and fc calculates the sum of pair-wise distances under the
cluster matching specified by xc

fc(xc) =
N∑

k=1

DADCO

(
(Vc)k, (V ′

c)xc(k)

)

=
N∑

k=1

(
2 −

M∑
i=1

Q∑
j=1

(
dens(k, i, j) × dens(xc(k), i, j)

)

max
[M∑

i=1

Q∑
j=1

dens(k, i, j)2 ,

M∑
i=1

Q∑
j=1

dens(xc(k), i, j)2
]
)

,

(4)

where xc ∈ PN .

3.5 Generation of New Solution

In each iteration of the simulated annealing process, we randomly generate can-
didate decision in the neighborhood of the last-iteration decision by applying two
consecutive processes, namely, the random perturbation and the partial candi-
date decision generation, as described below.

Random Perturbation: In each iteration, we select at random one variable
(either xa or xc) in the decision vector and perturb it by randomly swapping two
positions in the selected variable. This advances that variable from (n−1)th it-
eration to nth iteration. Then the following partial candidate generation process
is carried out to bring the other variable also to nth iteration.

708 H. Liu and D. Dou

Partial candidate decision generation
Given x

(n)
c , derive x

(n)
a :

xn
a = arg min

π
fa(π, x(n)

c) = argmin
π

M∑
k=1

L
(

(Va)k, (V ′
a)π(k)

)

= arg min
π

M∑
k=1

√√√√ N∑
i=1

(
μk

i − (μ′)π(k)

x
(n)
c (i)

)2

(5)

Given x
(n)
a , derive x

(n)
c :

xn
c = argmin

π
fc(π, x(n)

a) = arg min
π

N∑
k=1

DADCO

(
(Vc)k, (V ′

c)π(k)

)

= arg min
π

N∑
k=1

(
2 −

M∑
i=1

Q∑
j=1

(
dens(k, i, j) × dens(π(k), x(n)

a (i), j)

)

max

[M∑
i=1

Q∑
j=1

dens(k, i, j)2 ,

M∑
i=1

Q∑
j=1

dens(π(k), x(n)
a (i), j)2

]
)

(6)

To calculate π that satisfies equations 5 and 6, rather than iterating through
all possible permutations, we can consider the equation as a minimum-cost as-
signment problem. Table 1(A), for example, illustrates a distance table between
two attribute sets A and A′. Matching of the two sets can be considered as an
assignment problem where the goal is to find an assignment of elements in {Ai}
to those in {A′

i} that yields the minimum total distance without assigning each
Ai more than once. This problem can be efficiently solved by the Hungarian
Method in polynomial time of O(K3

min) [8]. It is worth noting that by formulat-
ing the problem as the assignment problem, we assume the matching between
two sets to be a one-to-one function.

4 Experiment

Because we are interested in understanding the property of the Pareto front ob-
tained by our method, we conducted a series of experiments to highlight tradeoffs
of the objectives functions. First, to illustrate the proposed method is indeed ca-
pable of determining matching between numeric-typed attributes and clusters,
we synthesized a dataset simulating some extreme conditions under which pre-
vious methods are ineffective. Also, from the results obtained on the synthetic
dataset, we empirically study tradeoffs between the two objective functions.
Then, to evaluate the scalability of the method, we carry out a series of tests
on a set of data with varied sizes. Finally, encouraged by these results, we ap-
plied our methods to actual neuroscience ERP (event-related potentials) data to
highlight the applicability of our method to the neuroscience domain.

Simultaneously Solving Cluster Matching and Attribute Matching 709

4.1 Synthetic Dataset

Data Generation: In the synthetic dataset, we generated values for each at-
tribute in such a way that each attribute can be divided into several clusters,
and each cluster corresponds to a Gaussian distribution with different mean and
standard deviation, but the overall mean and standard deviation of values from
all clusters in one attribute are made very close to those in other attributes. For
example, Figure 2 illustrates the value distributions of three attributes (a1, a2,
and a3) from one dataset and their corresponding counterparts (a′

1, a
′
2, and a′

3)
from another. It shows that the overall means and standard deviations for these
six attributes are almost indistinguishable, and their ranges are similar as well.
Previous methods using these whole-attribute-wise quantities as statistical char-
acterization of attributes would have a hard time determining the matchings.
However, as mentioned above and illustrated in the figure, the individual dis-
tributions underlying clusters in these attributes are distinct and, by using the
segmented statistical characterization of attributes, the difference is significant
enough to differentiate and identify matchings between attributes.

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−5

0

5

0 20 40 60 80 100
−5

0

5

a1 — range: [-4.74, 4.74] a3 — range: [-4.61, 4.61] a2 — range: [-4.02, 4.02]
μ: 0, σ:2.26 μ: 0, σ:2.30 μ: 0, σ:2.18

0 20 40 60 80 100

−5

0

5

0 20 40 60 80 100

−5

0

5

0 20 40 60 80 100

−5

0

5

a′
1 — range: [-5.72, 5.72] a′

3 — range: [-5.24, 5.24] a′
2 — range: [-4.25, 4.25]

μ: 0, σ:2.20 μ: 0, σ:2.35 μ: 0, σ:2.15

Fig. 2. Scatter plots of data instances from three sample attributes in one synthetic
dataset (upper frame) and those of their corresponding attributes from another (lower
frame) are illustrated to show their respective value distributions

Results: Figure 3 illustrates the Pareto front obtained from matching two syn-
thetic datasets, each having 20 attributes and 5 clusters. Most notably, the gold
standard results for both attribute matching and cluster matching are obtained
from the left-most point on the Pareto front. In other words, given the decision
variables (X) corresponding to that point, we obtained 100% correct match-
ing results. We further observed that in our subsequent tests on other synthetic
datasets with varied number of attributes and clusters, the derived Pareto fronts
all contain gold standard result, and the point corresponding to the gold stan-
dard can always be found towards the minimum end of fa. Given this, we propose

710 H. Liu and D. Dou

Fig. 3. An example Pareto front obtained from matching two synthetic datasets with
20 attributes and 5 clusters

the following method to reduce the Pareto-optimal set to a single point corre-
sponding to the most favored choice (X∗) in the decision space. The idea is to
find the decision with the minimum weighted sum of objective values in the ob-
tained Pareto-optimal set, i.e., X∗ = argmin

X

[
αfa(X) + βfc(X)

]
, where α and

β are weights. We first conducted preliminary experiments to determine the best
values for α and β (0.8 and 0.2 respectively) and used them in all subsequent
experiments. This method works markedly well on the synthetic datasets. For
all the tests described in Table 2, 100% correct results for both attribute and
cluster matchings are obtained (hence we omit the precision in the table).

Running Time: We systematically altered the number of attributes and clus-
ters present in the data and conducted a series of tests to show the scalability
of the proposed method. The running time under different configurations is re-
ported in Table 2. The time is calculated by averaging over 5 runs of each test
(on a 2.53GHz dual-core CPU with 4 gigabytes memory), each run having 1000
iterations in the simulated annealing process. The main computationally expen-
sive part of the annealing process is the generation of new candidate solution
phase (function G) in which an assignment problem is solved using the Hungar-
ian method. The complexity of the Hungarian method is cubic and is already the
most efficient algorithm for solving the assignment problem (a brute force algo-
rithm has a factorial complexity). Fortunately, rarely is the case that the number
of attributes or clusters is large in real-world scenarios where the proposed tech-
nique is needed. For reasonable configurations in most practical applications, the
computation time is within a tractable range as shown in table 2.

4.2 Neuroscience Dataset

Data Acquisition: To address the problems of attribute and cluster matching
in a real-world neuroscience application, we used a set of realistic simulated ERP
(event-related potentials) datasets, which were designed to support evaluation
of ERP analysis methods [6]. The datasets were specifically designed to simulate
heterogeneous data from different groups of subjects under different conditions
(via distinct simulated brain activities), as well as distinct measurement methods

Simultaneously Solving Cluster Matching and Attribute Matching 711

Table 2. Running time of the annealing process on synthetic datasets with varied
configurations of attribute and cluster sizes. The time is obtained by averaging over
results of 5 runs of each test.

attributes # clusters time (sec)

5 20 0.28
20 20 1.81
20 40 7.04
20 60 17.80
40 20 4.66
40 40 11.74
40 60 25.93
60 20 10.95
60 40 20.70
60 60 37.35

100 100 172.23

(spatial and temporal metrics) and distinct patterns (reflecting two different
pattern decomposition techniques). Real ERP data arise from superposition of
latent scalp-surface electrophysiological patterns, each reflecting the activity of a
distinct cortical network that cannot be reconstructed from the scalp-measured
data with any certainty. Thus, real ERP data are not appropriate for evaluation
of ERP pattern mapping. By contrast, simulated ERP data are derived from
known source patterns and therefore provide the necessary gold standard for
evaluation of our proposed methods.

The raw data for this study consist of 80 simulated event-related potentials
(ERPs), in which each ERP comprises simulated measurement data for a par-
ticular subject (n = 40). The 40 simulated subjects are randomly divided into
two 20-subject groups, SG1 and SG2, each containing 40 ERPs (20 subjects
in 2 experimental conditions). Each ERP consists of a superposition of 5 la-
tent varying spatiotemporal patterns. These patterns were extracted from the
two datasets, SG1 and SG2, using two techniques: temporal Principal Compo-
nents Analysis (tPCA) and spatial Independent Components Analysis (sICA),
two data decomposition techniques widely used in ERP research [3]. To quan-
tify the spatiotemporal characteristics of the extracted patterns, two alternative
metric sets, m1 and m2, were applied to the two tPCA and the two sICA de-
rived datasets. For a complete explanation of these alternative metrics, please
see Appendix in [6].

In summary, the simulated ERP data generation process yielded eight test
datasets in total, reflecting a 2 (attribute sets) × 2 (subject groups) × 2 (de-
composition methods) factorial design. Therefore, for each attribute sets there
are 4 datasets generated from different combinations of subject groups and de-
composition methods, resulting 4 × 4 = 16 cases for the studies of attribute
matching and cluster matching. The reason to include such variabilities was to
test the robustness of our matching method to different sources of heterogene-
ity across the different datasets. Within all test datasets, 5 major ERP spa-
tiotemporal patterns are present. They are P100, N100, N3, MFN, and P300.

712 H. Liu and D. Dou

Fig. 4. Pareto fronts obtained from the 16 test cases of the neuroscience dataset

These patterns can be identified in the datasets by clustering analysis. Pretend-
ing that the latent patterns underlying discovered clusters are unknown, we hope
to match clusters across datasets to recover the fact that the same patterns are
present in all datasets.

Results: Figure 4 illustrates the Pareto fronts derived by the proposed method
on each of the 16 test cases. We applied the weighted sum method to determine
the most favored choice from the Pareto fronts using the parameters (α and β)
discovered in the preliminary experiments on synthetic datasets (cf. Section 4.1).
The accuracy of attribute matching and cluster matching along with the number
of points in the Pareto front are listed in Table 3 (all these results are obtained
by taking average from 5 runs for each test case).

It canbe observed from the results in Table 3 thatmore different factors involved
in the acquisition of the two datasets for matching can negatively affect the match-
ing performance. For example, in test case 1, the two datasets are drawn from the
same subject group (SG1) and preprocessedusing the same decompositionmethod
(sICA); whereas in test case 4, the subject groups and decomposition methods are
all different, resulting in greater variability and hence the performance is less sat-
isfactory. However, it is worth noting that our method greatly outperforms tra-
ditional whole-attribute-based statistic characterization, as is shown in Table 5.
In this table we also demonstrate the accuracy of the segmented statistics charac-
terization with expert-labeled patterns, meaning that the data is partitioned and
aligned in the most accurate way, which marks the best achievable attribute match-
ing performance.But it is not feasible because, asmentioned in Section 1, manually
recognizing patterns (partitioning data) and aligning themacross datasets requires

Simultaneously Solving Cluster Matching and Attribute Matching 713

Fig. 5. A comparison of the attribute matching accuracy of three methods on the 16
test cases of the neuroscience dataset. The three methods being compared are matching
based on whole-attribute statistics (WS), segmented attribute statistics without know-
ing a priori cluster matching (SS-u), and segmented attribute statistics with expert-
aligned clusterings (SS).

a priori knowledge of attributes in the datasetswhich is exactlywhat the problemof
attribute matching tries to discover (the circular causality problem). On the other
hand, our method does not require human involvement (except the specification of
the number of clusters (patterns) present in the data in order to run the clustering
analysis) in determining both the attribute matching and cluster matching and is
able to achieve close-to-optimal results.

Table 3. Matching performance of the proposed method on the 16 test cases from
the neuroscience dataset. The source and target parameter configuration of the data
acquisition process of each test case are shown. Pa and Pc denote the accuracy of
attribute matching and cluster matching respectively. Σ is the number of points in the
obtained Pareto-front. The quantities listed in the table are obtained by averaging over
5 runs of each test.

Test case Source params Target params Pa Pc |Σ|
1 〈 SG1, sICA, m1 〉 〈 SG1, sICA, m2 〉 13/13 5/5 5
2 〈 SG1, sICA, m1 〉 〈 SG2, sICA, m2 〉 13/13 5/5 6
3 〈 SG1, sICA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 5/5 6
4 〈 SG1, sICA, m1 〉 〈 SG2, tPCA, m2 〉 7/13 3/5 8
5 〈 SG2, sICA, m1 〉 〈 SG1, sICA, m2 〉 11/13 3/5 7
6 〈 SG2, sICA, m1 〉 〈 SG2, sICA, m2 〉 13/13 5/5 7
7 〈 SG2, sICA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 5/5 6
8 〈 SG2, sICA, m1 〉 〈 SG2, tPCA, m2 〉 9/13 2/5 8
9 〈 SG1, tPCA, m1 〉 〈 SG1, sICA, m2 〉 7/13 5/5 4
10 〈 SG1, tPCA, m1 〉 〈 SG2, sICA, m2 〉 8/13 5/5 6
11 〈 SG1, tPCA, m1 〉 〈 SG1, tPCA, m2 〉 11/13 5/5 6
12 〈 SG1, tPCA, m1 〉 〈 SG2, tPCA, m2 〉 7/13 3/5 5
13 〈 SG2, tPCA, m1 〉 〈 SG1, sICA, m2 〉 7/13 3/5 5
14 〈 SG2, tPCA, m1 〉 〈 SG2, sICA, m2 〉 9/13 5/5 6
15 〈 SG2, tPCA, m1 〉 〈 SG1, tPCA, m2 〉 10/13 3/5 8
16 〈 SG2, tPCA, m1 〉 〈 SG2, tPCA, m2 〉 8/13 3/5 8

714 H. Liu and D. Dou

5 Conclusion

In this paper, we have presented a data mining approach to challenges in the
matching and integration of heterogeneous datasets. In particular, we have pro-
posed solutions to two problems that arise in combining information from differ-
ent results of scientific research. The first problem, attribute matching, involves
discovery of correspondences among distinct numeric-typed summary features
(“attributes”) that are used to characterize datasets that have been collected
and analyzed in different research labs. The second problem, cluster matching,
involves discovery of matchings between patterns across datasets.

We have treated both of these problems together as an multi-objective op-
timization problem. We developed a segmented statistics characterization to
represent numeric-typed attributes and adapted the density profile to represent
clusters. Based on these representations, we proposed objective functions that
best define the criteria for selecting matching decisions. A multi-objective simu-
lated annealing algorithm was described to find the optimal decision. The utility
of this approach was demonstrated in a series of experiments using synthetic
and realistic datasets that were designed to simulate heterogeneous data from
different sources.

Acknowledgement. This work is supported by the NIH/NIBIB with Grant
No. R01EB007684.

References

1. Bae, E., Bailey, J., Dong, G.: A Clustering Comparison Measure Using Density
Profiles and Its Application to The Discovery tf Alternate Clusterings. Data Min.
Knowl. Discov. 21, 427–471 (2010),
http://dx.doi.org/10.1007/s10618-009-0164-z

2. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering
Complex Semantic Matches between Database Schemas. In: Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data. ACM
Press (2004)

3. Dien, J.: The ERP PCA Toolkit: An Open Source Program for Advanced
Statistical Analysis of Event-Related Potential Data. Journal of Neuroscience
Methods 187(1), 138–145 (2010),
http://www.sciencedirect.com/science/article/B6T04-4Y0KWB2-4/2/

3c0e7b36b475b8d0e9a72c7b868a7dcd

4. Doan, A., Domingos, P., Levy, A.Y.: Learning Source Description for Data Inte-
gration. In: WebDB (Informal Proceedings), pp. 81–86 (2000),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.9378

5. Fred, A.L., Jain, A.K.: Robust Data Clustering. In: IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, vol. 2, p. 128 (2003)

6. Frishkoff, G.A., Frank, R.M., Rong, J., Dou, D., Dien, J., Halderman, L.K.: A
Framework to Support Automated Classification and Labeling of Brain Electro-
magnetic Patterns. Computational Intelligence and Neuroscience (CIN), Special
Issue, EEG/MEG Analysis and Signal Processing 7(3), 1–13 (2007)

http://dx.doi.org/10.1007/s10618-009-0164-z
http://www.sciencedirect.com/science/article/B6T04-4Y0KWB2-4/2/3c0e7b36b475b8d0e9a72c7b868a7dcd
http://www.sciencedirect.com/science/article/B6T04-4Y0KWB2-4/2/3c0e7b36b475b8d0e9a72c7b868a7dcd
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.9378

Simultaneously Solving Cluster Matching and Attribute Matching 715

7. Hamers, L., Hemeryck, Y., Herweyers, G., Janssen, M., Keters, H., Rousseau, R.,
Vanhoutte, A.: Similarity Measures In Scientometric Research: The Jaccard In-
dex Versus Salton’s Cosine Formula. Inf. Process. Manage. 25, 315–318 (1989),
http://portal.acm.org/citation.cfm?id=67223.67231

8. Kuhn, H.W.: The Hungarian Method for The Assignment Problem. Naval Research
Logistic Quarterly 2, 83–97 (1955)

9. Larson, J.A., Navathe, S.B., Elmasri, R.: A Theory of Attributed Equivalence in
Databases with Application to Schema Integration. IEEE Trans. Softw. Eng. 15,
449–463 (1989), http://portal.acm.org/citation.cfm?id=63379.63387

10. Li, W.S., Clifton, C.: Semint: A Tool for Identifying Attribute Correspondences in
Heterogeneous Databases Using Neural Networks (2000)

11. Liu, H., Frishkoff, G., Frank, R., Dou, D.: Ontology-Based Mining of Brainwaves: A
Sequence Similarity Technique for Mapping Alternative Features in Event-Related
Potentials (ERP) Data. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.)
PAKDD 2010. LNCS, vol. 6119, pp. 43–54. Springer, Heidelberg (2010)

12. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. VLDB Journal 10 (2001)

13. Rand, W.M.: Objective Criteria for the Evaluation of Clustering Methods.
Journal of the American Statistical Association 66(336), 846–850 (1971),
http://dx.doi.org/10.2307/2284239

14. Sheth, A.P., Larson, J.A., Cornelio, A., Navathe, S.B.: A Tool for Integrating Con-
ceptual Schemas and User Views. In: Proceedings of the Fourth International Con-
ference on Data Engineering, pp. 176–183. IEEE Computer Society, Washington,
DC, USA (1988), http://portal.acm.org/citation.cfm?id=645473.653395

15. Suman, B.: Simulated annealing based multiobjective algorithm and their applica-
tion for system reliability. Engin. Optim., 391–416 (2003)

16. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single!‘/b?‘
and multiobjective optimization. Journal of the Operational Research Society 57,
1143–1160 (2006)

17. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Case Study, pp. 292–301. Springer, Heidelberg (1998)

http://portal.acm.org/citation.cfm?id=67223.67231
http://portal.acm.org/citation.cfm?id=63379.63387
http://dx.doi.org/10.2307/2284239
http://portal.acm.org/citation.cfm?id=645473.653395

To Cache or Not To Cache: The E�ects of Warming
Cache in Complex SPARQL Queries

Tomas Lampo1, Marı́a-Esther Vidal2, Juan Danilow2, and Edna Ruckhaus2

1 University of Maryland, College Park, USA
��������	
���
��

2 Universidad Simón Bolı́var, Caracas, Venezuela
������������������������	�����
�	�
�

Abstract. Existing RDF engines have developed caching techniques able to
store intermediate results and reuse them in further steps of the query execution
process; thus, execution time is speeded up by avoiding repeated computation of
the same results. Although these techniques can be beneficial for many real-world
queries, the same e�ects may not be observed in complex queries. Particularly,
queries comprised of a large number of graph patterns that require the compu-
tation of large sets of intermediate results that cannot be reused, or queries that
require complex computations to produce small amounts of data, may require fur-
ther re-orderings or groupings in order to make an e�ective usage of the cache.
In this paper, we address the problem of determining a type of SPARQL queries
that can benefit from caching data during query execution or warming up cache.
We report on experimental results that show that complex queries can take ad-
vantage of the cache, if they are reordered and grouped according to small-sized
star-shaped groups; complex queries are not only comprised of a large number
of patterns, but they may also produce a large number of intermediate results.
Although the results are preliminary, they clearly show that star-shaped group
queries can speed up execution time by up to three orders of magnitude when
they are run in warm cache, while original queries may exhibit poor performance
in warm cache.

1 Introduction

SPARQL has been defined as a standard query language for RDF and several query
engines have been defined to store and retrieve RDF data [3,10,11,13,14,21,28,31]. The
majority of these approaches have implemented optimization techniques and eÆcient
physical operators able to speed up execution time [3,16,21,28]. Additionally, some
of these approaches have implemented structures to eÆciently store and access RDF
data, and have developed execution strategies able to reuse data previously stored in the
cache. In this paper we focus on the study of the benefits of this last feature supported
by RDF engines such as RDF-3X[22], BitMat [4], MonetDB[12], and RDFVector [19];
we study the types of queries that can benefit from caching intermediate results as well
as the benefits of maintaining them in cache, or warming up cache.

The Database community has extensively studied the benefits of caching techniques
to enhance the performance of queries by using recently accessed data [6,15,17,35]. On

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 716–733, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

To Cache or Not To Cache: The E�ects of Warming Cache 717

the other hand, in the context of the Semantic Web, recent publications have reported
great benefits of running queries in warm or hot caches, i.e., the e�ects of maintaining
the cache populated with valid data previously generated[4,19,22]; also, techniques to
cache the most useful previous computed results have been proposed [18,33,34]. Par-
ticularly, RDF-3X and MonetDB have been reported as engines with high performance
in warm cache. The behavior of RDF-3X is due to the fact that it has developed op-
timization and execution techniques, which in conjunction with compressed indexed
structures and caching techniques, provide the basis for eÆcient executions of a large
set of real-world SPARQL queries. In addition, these techniques benefit an eÆcient us-
age of previously loaded intermediate results in caches. However, as we will show in
this paper, there is a family of queries, comprised of small-sized star-shaped groups of
graph basic patterns, where further optimization and execution techniques have to be
performed in order to fully exploit the RDF-3X caching features. MonetDB[35] imple-
ments a column-based storage manager and lightweight data compression techniques
which provide high performance of query-intensive workloads. Additionally, MonetDB
o�ers sophisticated cache management techniques named in-cache processing, to eÆ-
ciently control previously cached data. Finally, MonetDB has developed a vectorized
execution model that contrary to the traditional pipeline iterator model, is able to pass
entire vectors of values through the pipeline and exploits the properties of the query
engine.

Motivated by these data management features and the results reported in the litera-
ture [4,21,35], we studied the impact of the shape of SPARQL queries on the perfor-
mance of RDF-3X and MonetDB, when queries are run in both cold and warm caches,
i.e., when intermediate results are maintained or not in cache. We show that if these
queries are rewritten as bushy plans 1 comprised of small-sized star-shaped groups, the
cold cache execution time can be reduced by up to three orders of magnitude when the
query is run in warm cache, while the performance of original queries may not follow
the same trend. Based on these results and the fact that the RDF-3X and MonetDB are
not tailored to identify or execute bushy plans comprised of small-sized star-shaped
groups, we have enabled both engines to support bushy plans. First, RDF-3X engine
was modified to accept plans of any shape and assign particular operators to join small-
sized sub-queries in a bushy plan; we call this new version GRDF-3X. Furthermore,
we implemented a translation schema to convert SPARQL bushy plans into nested SQL
queries, which enforces MonetDB to execute the plan in a bushy fashion. We will de-
scribe the optimization techniques [16] that benefit the generation of bushy plans, which
exploit the usage of previously cached intermediate results.

To summarize, the main contributions of this paper are the following:

– We define a family of queries that can benefit from caching intermediate results
or warming up cache. These queries reduce the number of intermediate results and
CPU processing, and can be rewritten as bushy plans comprised of small-sized star-
shaped groups.

– We describe GRDF-3X, an extension of the RDF-3X engine able to eÆciently eval-
uate bushy plans comprised of small-sized star-shaped groups.

1 A bushy plan corresponds to a query plan where operands of the join operators can be inter-
mediate results produced by other operators of the plan.

718 T. Lampo et al.

– We explain the schema translation of bushy plans into nested SQL queries that are
executed against vertical partitioned tables in MonetDB.

– We provide an empirical analysis of the performance of the RDF-3X, GRDF-3X
and MonetDB engines when queries are evaluated in both cold and warm caches.

This paper is comprised of five additional sections. Section 2 describes existing state-
of-the-art approaches in conjunction with an analysis of the advantages and limitations
of each approach. Section 3 illustrates a motivating example; section 4 presents the
main features that characterize the small-sized star-shaped group queries. Section 5
presents an experimental study where we report on the performance of the small-sized
star shaped group queries. Finally, we conclude in section 6 with an outlook to future
work.

2 Related Work

During the last years, several RDF stores have been developed [3,10,11,13,14,21,31].
Jena [13,32] provides a programmatic environment for SPARQL; it includes the ARQ
query engine and indices, which provide eÆcient access to large datasets.Tuple Database
or TDB [14] is a persistent graph storage layer for Jena; it works with the Jena SPARQL
query engine (ARQ) to support SPARQL together with a number of extensions (e.g.,
property functions, aggregates, arbitrary length property paths). Sesame [31] is an open
source Java framework for storing and querying RDF data; it supports SPARQL and
SeRQL queries. Additionally, di�erent storage and access structures have been pro-
posed to eÆciently retrieve RDF data [7,20,29,30]. Hexastore [30] is a main memory
indexing technique that exploits the role of the arguments of an RDF triple; six in-
dices are designed so that each one can eÆciently retrieve a di�erent access pattern; a
secondary-memory-based solution for Hexastore has been presented in [29]. Fletcher
et al. [7] propose indexing the universe of RDF resource identifiers, regardless of the
role played by the resource. Although all of the former approaches propose di�erent
strategies to speed up the execution time of RDF queries, none of them provide tech-
niques to manage the cache or to load RDF data into resident memory which allow the
observation of di�erences between cold and warm cache execution times.

Additionally, MacGlothlin et al. [19] propose an index-based representation for RDF
documents that materializes the results for subject-subject joins, object-object joins and
subject-object joins. This approach has been implemented on top of MonetDB [12] and
it can exploit the Monet DB cache management system. Abadi et al. [1,2] and Sidirour-
gos et al. [27] propose di�erent RDF store schemas to implement an RDF management
system on top of a relational database system. They empirically show that a physical
implementation of vertical partitioned RDF tables may outperform the traditional phys-
ical schema of RDF tables. In addition, any of these solutions can exploit the properties
of the database manager to eÆciently manage the cache.

Recently, Atre et al. [4] proposed the BitMat approach which is supported on a fully
inverted index structure that implements a compressed bit-matrix structure of the RDF
data. An RDF engine has been developed on top of this bit-based structure, which ex-
ploits the properties of this structure and avoids the storage of intermediate results gen-
erated during query execution. Although BitMat does not use cache techniques, it has

To Cache or Not To Cache: The E�ects of Warming Cache 719

been shown that its performance is competitive with existing RDF engines that provide
eÆcient cache management. Finally, RDF-3X [21] focuses on an index system, and has
implemented optimization and execution techniques that support eÆcient and scalable
execution of RDF queries. In addition, RDF-3X makes use of the Linux ���� system
call, to load in resident memory portions of data, and thus, di�erences between execu-
tion time in both cold and warm caches can be observed for certain types of queries.
In this paper we show how cache data management features implemented by RDF-3X
and MonetDB, can be better exploited if queries are executed in a way that intermediate
results are minimized.

3 Motivating Example

In this section we illustrate how the shape of a query plan can a�ect the performance of a
SPARQL query when it is run in both cold and warm caches. SPARQL syntax resembles
SQL queries where the ����� clause is comprised of Basic Graph Patterns connected
by diverse operators, e.g., join, optional, or union. Consider the RDF dataset YAGO
(Yet Another Great Ontology)2 that publishes information about people, organizations
and cities around the world. Suppose a user is interested in finding groups of at most
two artists who are influenced by at least one person. Figure 1 presents a SPARQL
query against YAGO; the query is composed of 8 basic graph patterns connected by the
join operator denoted by a “.”; suppose the RDF-3X engine is used to run the query.

PREFIX rdf: �����������
��
�������������� ��! 	"���# �	�
PREFIX yago:������������
��"�����	�����"����
SELECT ?A1 ?A2 WHERE

�?A1 yago:hasFamilyName ?fn1.
?A1 yago:hasGivenName ?gn1 .
?person1 yago:influences ?A1.
?A2 yago:hasFamilyName ?fn2 .
?A2 yago:hasGivenName ?gn2 .
?person1 yago:influences ?A2.
?A1 rdf:type yago:wordnet artist 109812338.
?A2 rdf:type yago:wordnet artist 109812338.�

Fig. 1. SPARQL Query

Table 1 reports on the time spent by RDF-3X in a Sun Fire X4100 M2 machine with
two AMD Opteron 2000 Series processors, 1MB of cache per core and 8GB RAM,
running a 64-bit Linux CentOS 5.5 kernel. We can see that RDF-3X consumes 2.220
secs to evaluate the query in cold cache while the time is reduced to 0.11 secs by warm-
ing up the cache; this reduction represents 95% of the cold cache execution time, i.e.,
when the query is run and no data have been loaded in cache. This number is consistent
with the results recently reported in the literature, where query execution time in warm
cache can be reduced up to one order of magnitude with respect to cold cache execution
time [4,19,22].

2 Ontology available for download at http:��www.mpi-inf.mpg.de�yago-naga�yago�

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://mpii.de/yago/resource/yago

720 T. Lampo et al.

Table 1. Run-Time Cold and Warm Cache (secs)

Cold Cache Warm Cache
Mean Standard Deviation Geometric Mean

2.220 0.112 0.004 0.112

Additionally, let’s consider a complex version of this query, where the user is inter-
ested in groups of at most six artists that are influenced by at least one person (Figure
2(a)). For this complex query, the behavior of the RDF-3X engine is di�erent; the query
execution time is 850.24 secs in cold cache while during warm cache, the time is re-
duced to 836.09 secs; thus, the savings are less than 2%. However, one can observe that
almost 96% of the query execution time corresponds to optimization time in both cold
and warm caches, i.e., the time to generate the plan presented in Figure 2(b).

In this plan, internal nodes correspond to the physical operator �	
� ���. The
leaves correspond to star-shaped groups that share exactly one variable; the �����

��� physical operator is used to evaluate each of the stars in the query. We denote
by Stari the star-shaped group comprised of the basic graph triple patterns presented in
Figure 3(a); the plan produced by RDF-3X is reported in Figure 3(b). First, the merge
join is used to evaluate the join between the basic graph triple patterns; the index scan
is used to access RDF-3X to recover the instantiations of the variables in the query.

Clearly, if the plan is created in way that the first pattern in the star is very selective,
then the number of matched triples is reduced and the chances to locate intermediate
results in cache increase. RDF-3X executes this physical plan in 48.51 secs in cold
cache and 40.60 secs in warm cache; thus, if only the plan execution time is measured,
then the observed savings increase to 16.30%; however, this improvement is still low.
The poor performance of the RDF-3X engine in this plan can be a consequence of

SELECT ?A1 ?A2 ?A3 ?A4 ?A5 ?A6 WHERE
�?A1 yago:hasFamilyName ?fn1. ?A1 yago:hasGivenName ?gn1 .
?person1 yago:influences ?A1.?A2 yago:hasFamilyName ?fn2 .
?A2 yago:hasGivenName ?gn2 . ?person1 yago:influences ?A2.
?A3 yago:hasFamilyName ?fn3. ?A3 yago:hasGivenName ?gn3 .
?person1 yago:influences ?A3.?A4 yago:hasFamilyName ?fn4 .
?A4 yago:hasGivenName ?gn4 . ?person1 yago:influences ?A4.
?A5 yago:hasFamilyName ?fn5. ?A5 yago:hasGivenName ?gn5 .
?person1 yago:influences ?A5.?A6 yago:hasFamilyName ?fn6 .
?A6 yago:hasGivenName ?gn6 . ?person1 yago:influences ?A6.
?A1 rdf:type yago:wordnet artist 109812338.
?A2 rdf:type yago:wordnet artist 109812338.
?A3 rdf:type yago:wordnet artist 109812338.
?A4 rdf:type yago:wordnet artist 109812338.
?A5 rdf:type yago:wordnet artist 109812338.
?A6 rdf:type yago:wordnet artist 109812338.�

(a) SPARQL Query

Star1 Star2

Star3

Star4

Star5

Star6

HASHJOIN

HASHJOIN

HASHJOIN

HASHJOIN

A:1,022

B:3,122

D:87,750

C:14,714

572,042

HASHJOIN

(b) RDF-3X Plan

Fig. 2. SPARQL Query and RDF-3X Plan

To Cache or Not To Cache: The E�ects of Warming Cache 721

�?Ai yago:hasFamilyName ?fni.
?Ai yago:hasGivenName ?gni .
?person1 yago:influences ?Ai.
?Ai rdf:type yago:wordnet artist 109812338.�

(a) Star-shaped group Stari

?A1 yago:hasFamilyName ?fn1.

?A1 yago:hasGivenName ?gn1 .

?person1 yago:influences ?A1.

?A1 rdf:type yago:wordnet_artist_109812338.

IndexScan PredicateSubjectObject

IndexScan ObjectPredicateSubject

IndexScan PredicateObjectSubject
MergeJoin

IndexScan PredicateSubjectObject
MergeJoin

MergeJoin

Stari
?A1

(b) RDF-3X Plan for a star-shaped group

Fig. 3. Star-Shaped Group and an RDF-3X Plan for a Star

the way this plan is evaluated. The plan is a left linear plan and generates 106,608
intermediate result triples. Particularly, the sub-plan surrounded by the circle produces
87,750 triples that may cause page faults, which degrades the performance of the RDF-
3X engine.

On the other hand, if the query had been evaluated in a di�erent fashion, the number
of intermediate results could be reduced. For example, consider the plans presented
in Figure 4. These plans are bushy and are comprised of star-shaped groups of small
cardinality. The number of intermediate triples in any of these plans is only 17,780.

Given that any of these bushy plans maintains less triples in cache during execution
time, cold cache execution time can be reduced, and the performance in warm cache is
improved. The cold cache execution time for the plan in Figure 4(a) is 26.82 secs, while

Star1 Star2 Star3 Star4 Star5 Star6

HASHJOIN HASHJOIN HASHJOIN

HASHJOIN

HASHJOIN

A:1,022
B:1,022 D:1,022

C:14,714

572,042

(a) Bushy Plan 1

Star1 Star2 Star3 Star4 Star5 Star6

HASHJOIN HASHJOIN HASHJOIN

HASHJOIN

HASHJOIN

A:1022
B:1022 C:1022

D:14,714

572,042

(b) Bushy Plan 2

Fig. 4. Di�erent Bushy Plans

722 T. Lampo et al.

it consumes 14.03 secs in warm cache. Similarly, the plan in Figure 4(b) runs in 19.07
secs in cold cache and in 13.60 secs in warm cache; thus, the savings in warm cache are
47.68% and 28.68%, respectively. In this paper we illustrate the benefits of executing
bushy trees in both cold and warm caches.

4 Star-Shaped Group Queries

We have developed optimization and execution techniques to support the execution of
complex SPARQL queries that can be decomposed in small-sized star-shaped queries
[16,28]. A star-shaped query is the join of multiple basic graph patterns that share ex-
actly one variable or a star-shaped basic graph pattern w.r.t. ?X (?X��BGP) . This type
of query is very likely to be found in real-world scenarios and can be formally defined
as follows:

Definition 1 (Star-Shaped Basic Graph Pattern w.r.t. ?X, ?X� � BGP [28]). Each
triple pattern �?X p o � or �s p ?X � such that s � ?X, p � ?X and o � ?X, is a star-
shaped basic graph pattern w.r.t. ?X denoted by ?X�-BGP. Let P and P� be ?X�-BGPs
such that, var(P)� var(P�) � �?X� then, P� P� is star-shaped basic graph pattern w.r.t.
?X, i.e., an ?X�-BGP.

Star-shaped basic graph patterns in Figure 3(a) correspond a ?A1�-BGP.
We have developed four di�erent strategies (operators) that are used to retrieve and

combine intermediate generated RDF triples of small-sized star shaped groups.

1. Index Nested-Loop Join (njoin): For each matching triple in the first pattern, we
retrieve the matching triples in the second pattern, i.e., the join arguments3 are in-
stantiated in the second pattern through the sideways passing of variable bindings.
When the data is indexed, the operator can exploit these indices with the instan-
tiations of the second pattern to speed up the execution task. Time complexity in
terms of I�O’s of the njoin between sub-queries A and B on join variables JV , is
expressed by the following formula:

Costn join(A� B� JV) � Cost(A) � #Instantiations(JV) �Cost(B)

The first term of the formula represents the cost of evaluating the outer sub-query of
the join, while the second term counts the cost of executing B for each instantiation
of the join variables JV . If tuples of B in the instantiations of JV that satisfy A can
be maintained in cache, the number of I�O’s will be reduced and in consequence,
the cost of the operator will be reduced. So, the optimizer should try to select this
operator, only when the number of instantiations of JV is small.

2. Group Join (gjoin): Given two groups, each of them is independently evaluated,
and the results are combined to match the compatible mappings. The gjoin operator
can take advantage of the cache, because intermediate results previously loaded in
cache can be reused without the need to execute the operations required to compute
them; however, the size of the results should be small to avoid page faults. Time

3 The join arguments are the common variables in the two predicates that represent the patterns.

To Cache or Not To Cache: The E�ects of Warming Cache 723

complexity in terms of I�O’s of the gjoin between sub-queries A and B on join
variables JV , is expressed by the following formula:

Costg join(A� B� JV) � Cost(A) �Cost(B) � 2 � (Card(A) �Card(B))

The first and second terms of the formula represent the cost of evaluating the outer
and inner sub-queries of the join. The third term counts the cost of storing and
retrieving from disk the intermediate results produced by A and B, assuming the
worst case when matches are done in hash tables previously flushed to secondary
memory. In case cardinalities of A and B are minimized, results produced by A and
B can be retained in cache, avoiding the cost of storing and retrieving intermediate
results from disk.

3. Star-Shaped Group Evaluation (sgroup): the main idea is to evaluate the first pat-
tern in the star-shaped group and identify the bindings�instantiations of the shared
variable. These instantiations are used to bind the rest of the patterns in the group.
This operator can be very eÆcient if the first pattern in the group is very selective,
i.e., there are only few valid instantiations of the shared variable, and the rest of the
patterns are indexed by these instantiations.
Time complexity in terms of I�O’s of the sgroup between basic graph triple patterns
A1, A2, A3, ..., An on shared variable JV , is expressed by the following formula:

Costsgroup(A1� (A2����� An)� JV)�Cost(A1)�#Instantiations(JV)�Cost((A2� ���� An))

The first term of the formula represents the cost of evaluating the first basic graph
triple pattern; the second corresponds to the cost of executing the rest of the ba-
sic graph triple patterns with the instantiations produced by the execution of the
first. The third term counts the cost of storing and retrieving from disk the interme-
diate results produced by executing each graph basic pattern, assuming the worst
case when matches have been flushed to secondary memory. In case the number
of instantiations of the shared variable JV is minimized, results produced by the
execution of the rest of the basic graph patterns can be retained in cache, avoiding
the cost of storing and retrieving intermediate results from disk.

4. Index Star-Shaped Group Evaluation (isgroup): In the case that all of the patterns in
the group are indexed, the valid instantiations of each pattern can be independently
retrieved and merged together to produce the output. For example, in the plan in
Figure 4(a),
���� could be evaluated by searching the instantiations of the variable
�	� that correspond to artists influenced by at least one person, the instantiations
that have a given name, and the ones that have a given last name. These sets of
instantiations are merged to produce the star-shaped group answer. This operator
can benefit from running in warm cache if the number of valid instantiations to
be merged, is small because computations of the join between the two basic graph
patterns could be stored in cache, and reused to compute the join with the third
basic graph pattern.

Time complexity in terms of I�O’s of the isgroup between basic graph triple
patterns A1, A2, A3, ..., An on shared variable JV , is expressed by the following
formula:

724 T. Lampo et al.

Costisgroup(A1� (A2� ���� An)� JV) � Cost(A1) �Cost(A2) � ��� � Cost(An)�

2 � (Card(A1) �Card(A2) � ��� � Card(An))

The first n terms of the formula represent the cost of evaluating the basic graph
triple patterns. The last term counts the cost of storing and retrieving from disk the
intermediate results produced by evaluating the basic graph triple patterns, assum-
ing the worst case when matches are flushed to secondary memory. In case car-
dinalities of the instantiations of A1� A2� ���� An are minimized, intermediate results
can be retained in cache, avoiding the cost of storing and retrieving intermediate
results from disk.

We have implemented these four operators in our own RDF engine named OneQL [16].
Although execution time and memory usage are reduced, OneQL is implemented in
Prolog and its performance cannot compete with state-of-the-art RDF engines such as
RDF-3X. To fairly compare the performance of the plans comprised of these operators,
we have extended the RDF-3X engine and called it GRDF-3X.

First, we modified the RDF-3X parser to consider all given plans; the original RDF-
3X parser completely ignores groups and parentheses, and it flattens any input plan.
Additionally, GRDF-3X exclusively assigns the RDF-3X �	
� ��� operator to eval-
uate gjoin, while njoin, isgroup and sgroup are evaluated with ����� ���s; each
basic graph pattern is evaluated by using ����
�	�. GRDF-3X reorders the pat-
terns in a star-shaped group, but no star-groups are further identified. Based on these
extensions, GRDF-3X can evaluate the plans presented in Figures 2(b) and 4, and it ex-
ploits the properties of these plans that were illustrated in Section 2. In case star-shaped
groups are small-sized, the performance of RDF-3X in warm caches can be improved
in several orders of magnitude.

Furthermore, we followed the vertical partitioning approach [1] to implement an
RDF dataset as a relational database in MonetDB. For each property P, a table of two
columns is defined; the first column stores the values of the subjects associated with
P, while the second column stores the object values; indices are created on the two
columns. A dictionary encoding is used to store integer keys instead of the string values
of the subjects, properties, and objects. A table ������������� �!" maintains the
encodings. SPARQL queries are translated into SQL by evaluating each triple pattern �#
$ �� in a SPARQL query as conditions $%
 or $%� in the SQL query. These conditions
can be placed in the ����� clause or
�!��� clause depending on the values of #
or �. If # (res, �) is a constant, then the condition $%
&�'�#" (res, $%�&�'��") is
added to the ����� clause, where �'�#" represents the encoding of #. If # (res, �)
is a variable that also appears in another triple pattern, say, �# $� �(�, and they are
connected through the SPARQL operator 	��, then the condition $%
&$�%
 is added
to the ����� clause; similarly, if both patterns are connected by an �$)��	*, a left
outer join relates the conditions $%
 and P1.S. Thus, the SPARQL operators 	�� and
�$)��	* are translated into a relational join and a left outer join, respectively. Finally,
if both triple patterns are related through +���, the condition $%
 (res, $%�) is added
to the
�!��� clause; the SPARQL operator +��� is expressed as a SQL ,����. In
case the SPARQL query corresponds to a bushy plan, we follow the same translation

To Cache or Not To Cache: The E�ects of Warming Cache 725

schema for each star-shaped group of triple patterns. For a gjoin between sub-queries
S 1 and S 2, a SQL query is created by adding to the -��� clause of the query, the SQL
sub-queries that result from translating S 1 and S 2 with the alias s1 and s2; if the gjoin
condition �. is on the variables A1� ���� An, the conditions s1�A1&s2�A2 	�� %%%% 	��

s1�An&s2�An are added to the ����� condition of the SQL query; the njoin is translated
as the SQL join. Figure 5 illustrates the proposed translation schema.

SELECT ?A1 ?A2 where
��?A1 yago:hasFamilyName ?fn1.
?A1 yago:hasGivenName ?gn1 .�
GJOIN
�?A2 yago:hasFamilyName ?fn2 .
?A2 yago:hasGivenName ?gn2 .��

(a) SPARQL Bushy Plan

SELECT s1.A1, s2.A2
FROM

(Select HFN.S as A1
from hasFamilyName as HFN, hasGivenName as HGN
where HFN.S=HGN.S) as s1,
(Select HFN.S as A2
from hasFamilyName as HFN, hasGivenName as HGN
where HFN.S=HGN.S) as s2

WHERE s1.A1=s2.A2
(b) SQL Query

Fig. 5. Translation Schema-SPARQL into SQL

Finally, we have developed query optimization techniques able to identify query
plans comprised of small-sized star-shaped groups. These techniques have been devel-
oped in the OneQL System on top of the following two sub-components [16,23,24,25]:
(a) a hybrid cost model that estimates the cardinality and execution cost of execution
plans, (b) optimization strategies to identify plans comprised of small-sized star-shaped
groups. The proposed optimization techniques are based on a cost model that estimates
the execution time of intermediate RDF triples generated during query execution, and
are able to identify execution plans of any shape. Re-orderings and groupings of the
basic graph patterns are performed to identify star-shaped groups of small size. In ad-
dition, physical operators are also assigned to each join and star-shaped group. The
optimizer is implemented as a Simulated Annealing randomized algorithm which per-
forms random walks over the search space of bushy query execution plans. Random
walks are performed in stages, where each stage consists of an initial plan generation
step followed by one or more plan transformation steps. An equilibrium condition or a
number of iterations determines the number of transformation steps. At the beginning
of each stage, a query execution plan is randomly created in the plan generation step.
Then, successive plan transformations are applied to the query execution plan in order
to obtain new plans. The probability of transforming a current plan p into a new plan p�

is specified by an acceptance probability function P(p� p�
� T) that depends on a global

time-varying parameter T called the temperature; it reflects the number of stages to be
executed. The function P may be nonzero when cost(p�) � cost(p), meaning that the
optimizer can produce a new plan even when it is worse than the current one, i.e., it
has a higher cost. This feature prevents the optimizer from becoming stuck in a local
minimum. Temperature T is decreased during each stage and the optimizer concludes
when T � 0. Transformation rules applied to the plan during the random walks cor-
respond to the SPARQL axioms of the physical operators implemented by the query
engine. The axioms state properties such as: commutativity, associativity, distributivity

726 T. Lampo et al.

of gjoins over njoins, and folding and unfolding of star-shaped groups. These trans-
formation rules are fired according to probabilities that benefit the generation of bushy
plans comprised of small-sized star-shaped groups [28]. These plans usually reduce
intermediate results as well as the execution time in both cold and warm caches.

5 Experimental Study

We conducted an experimental study to empirically analyze the e�ects of caching in-
termediate results during the execution of simple and complex SPARQL queries. We
report on the execution time of MonetDB Apr2011 release, RDF-3X version 0.3.4 and
GRDF-3X built on top of RDF-3X version 0.3.4. Particularly, we analyze the impact
on the execution time performance of running bushy plans comprised of small-sized
star-shaped groups in both cold and warm caches.

Benchmarking has motivated the evaluation of these query engines, and contributed
to improve scalability and performance [9]. Among the most used benchmarks, we
can mention: LUBM [8], the Berlin SPARQL Benchmark [5], the RDF Store Bench-
marks with DBpedia4, and the SP2Bench SPARQL benchmark [26]. Similarly to exist-
ing benchmarks, we tailored a family of queries that allow us to reveal the performance
of a state-of-the-art RDF engine, and we focus on illustrating the impact of the shape
of query plans on the performance of the query engine in warm caches. During the
definition of our benchmarks of queries, query shape, number of basic graph patterns,
selectivity of the instantiations, and size of intermediate results were taken into account.

Datasets and Query Benchmark: We used the real-world ontology YAGO which is
comprised of around 44,000,000 RDF triples. We developed two sets of queries5:

– Benchmark 1 has 9 simple queries, which are comprised of between 3 and 5
basic patterns (Figure 6(a)).

– Benchmark 2 has 9 queries, which are comprised of between 17 and 26 basic
patterns (Figure 6(b)).

Additionally, we consider the LinkedCT dataset6 which exports information of clin-
ical trials conducted around the world; this dataset is composed of 9,809,330 RDF
triples. We define a benchmark 3 comprised of 10 queries over LinkedCT; queries
are composed of between 13 and 17 patterns. 7

Evaluation Metrics: We report on runtime performance that corresponds to the real
time produced by the time command of the Linux operation system. Runtime repre-
sents the elapsed time between the submission of the query and the output of the an-
swer; optimization time just considers the time elapsed between the submission of
the query and the output of the query physical plan. Experiments were run on a Sun
Fire X4100 M2 machine with two AMD Opteron 2000 Series processors, 1MB of
cache per core and 8GB RAM, running a 64-bit Linux CentOS 5.5 kernel. Queries
in benchmark 1, 2 and 3 were run in cold cache and warm cache. To run cold cache,

4 http:��www4.wiwiss.fu-berlin.de�benchmarks-200801�
5 http:��www.ldc.usb.ve�˜mvidal�OneQL�datasets�queries�YAGO�
6 http:��LinkedCT.org
7 http:��www.ldc.usb.ve�˜mvidal�OneQL�datasets�queries�LinkedCT�

To Cache or Not To Cache: The E�ects of Warming Cache 727

we cleared the cache before running each query by performing the command #� /�

0#��� 1 ���� 2 � 3����3#�#3 �3'��� �����#0. To run on warm cache, we
executed the same query five times by dropping the cache just before running the
first iteration of the query; thus, data temporally stored in cache during the execu-
tion of iteration i could be used in iteration i � 1. Additionally, the machine was
dedicated exclusively to run these experiments.

query #patterns answer size
q1 4 10
q2 3 1
q3 3 4
q4 5 6
q5 3 2,356
q6 3 1,027
q7 3 5,683
q8 3 46
q9 3 1

(a) Benchmark 1

query #patterns answer size
q1 17 1,170
q2 21 4,264
q3 26 22,434
q4 17 238
q5 21 516
q6 26 1,348
q7 17 342
q8 21 1,220
q9 26 5,718

(b) Benchmark 2

Fig. 6. Query Benchmark Description

5.1 Performance of Star-Shaped Groups in Cold and Warm Cache

In attempting to identify the types of queries that can benefit from running in warm
cache, we ran queries of Benchmark 1 in both cold and warm caches. These queries are
comprised of a simple star-shaped group and were executed in RDF-3X and MonetDB.
Table 2 reports on the execution time of cold cache, and the minimum value observed
during the execution in warm cache; it also reports on the geometric means. We can
see that both engines were able to improve performance if valid data is already loaded
in cache. RDF-3X is able to improve cold cache execution times by a factor of 35 in
the geometric mean when the queries are run in warm cache. MonetDB improves cold
cache execution time by a factor of 31 in the geometric mean. Optimization time is
negligible because the optimizer only has to reorder the patterns of the stars in each
query. Additionally, the time to translate SPARQL queries into the MonetDB represen-
tation is not considered. In both cases, the majority of the execution time in warm cache
was dominated by recovering the instantiations of shared variables of the star-shaped
groups, that were maintained in memory during warm cache.

Then, we studied the performance of queries in Benchmark 2, which can be rewrit-
ten as bushy trees comprised of several small-sized star-shaped groups. Tables 3 and
4 report on cold cache execution times, the minimum value observed during the exe-
cution in warm cache, and the geometric means. Similarly to the previous experiment,
queries were run in RDF-3X and MonetDB. Additionally, three optimized versions of
the queries were run in GRDF-3X; one was created by hand, the other was generated
by our OneQL query optimizer [16], and the last one was generated by RDF-3X. Fur-
thermore, bushy plans that correspond to the hand-created plans were translated in SQL
nested queries following the translation schema presented in the previous section.

728 T. Lampo et al.

Table 2. Benchmark 1-Run-Time RDF-3X and MonetDB in Cold and Warm Cache (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

RDF-3X 0.53 0.22 0.25 0.20 3.57 2.25 5.01 0.61 0.29 0.70
MonetDB 0.88 0.45 0.64 0.51 0.76 0.59 0.98 0.46 0.67 0.63

Warm Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

RDF-3X 0.012 0.042 0.012 0.015 0.095 0.058 0.150 0.012 0.011 0.02
MonetDB 0.01 0.01 0.02 0.02 0.04 0.08 0.05 0.01 0.01 0.02

For queries in Benchmark 2, we could observe that RDF-3X performs poorly in
warm cache; cold cache times improve by nearly a factor of 1.2 in the geometric means.
This behavior of the RDF-3X engine may be because the execution time of queries in
Benchmark 2 is dominated by CPU-intensive processing that consumed up to 98% of
the CPU time. Additionally, a large portion of the execution time was spent in query
optimization and the generation of the physical plan. The reason for this is that the
RDF-3X optimizer relies on a dynamic-based programming algorithm that is not able
to eÆciently scale up to complex queries. Finally, although plans generated by RDF-
3X were comprised of small-sized star-shaped groups, they were shaped as left-linear
plans, which generate a large number of intermediate results that may produce page
faults.

On the other hand, we evaluated three optimized versions of the queries in Bench-
mark 2 in GRDF-3X: (1) optimal plans that were generated by hand; (2) OneQL plans
that were produced by the OneQL optimizer; (3) plans generated by RDF-3X. The two
first groups of optimized queries were shaped as bushy trees comprised of small-sized
star-shaped groups, and ran in GRDF-3X in a bushy fashion such that the number of
intermediate results was minimized. The plans generated by RDF-3X were also com-
posed of small-sized star-shaped but combined in a left-linear tree fashion in which
intermediate results were not minimal; execution times of these plans allow to illustrate
RDF-3X execution time without considering optimization time. First, we could observe
that the execution of the two first types of queries consumed up to 25% of the CPU time
when they were run in GRDF-3X; the execution time in both cold and warm caches was
reduced by up to five orders of magnitude. Also, the optimization time was negligible
because GRDF-3X respected the groups in the input plan, and it only had to reorder
the patterns of the stars in each query. Finally, because these two groups of plans were
bushy trees comprised of small-sized star-shaped groups, the number of intermediate
results was smaller; thus, intermediate results could be maintained in resident memory
and used in further iterations. The GRDF-3X performance in warm cache was consis-
tently good for hand-optimized queries; it could reduce the cold cache run time by a
factor of 5 in the geometric means. For OneQL query plans, GRDF-3X reduced the
cold cache run time by nearly a factor of 2.7 in the geometric means. Finally, RDF-3X
generated plans exhibit a performance in warm cache that reduces execution time in
cold cache by a factor of 1.88.

Furthermore, we can observe that MonetDB also performs poorly when the original
query is executed in warm cache; cold cache times are improved by nearly a factor
of 1.06 in the geometric means; Table 4 reports on MonetDB runtime. This observed

To Cache or Not To Cache: The E�ects of Warming Cache 729

Table 3. Benchmark 2- RDF-3X Run-Time Cold and Warm Cache (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

RDF-3X 62.30 84.87 100,657.34 85.95 61.2 188,909.69 0.14 1.47 827.75 166.03
GRDF-3X

(Optimal Plan) 1.60 1.80 2.34 1.22 1.38 1.36 0.99 1.05 1.75 1.45
GRDF-3X

(OneQL Plan) 1.64 10.85 3.8 1.28 9.2 3.8 1.18 2.62 3,57 3.18
GRDF-3X

(RDF-3X Plan) 60.92 56.16 93,010.25 60.35 59.93 183,291.76 1.34 1.7 2.64 102.68
Warm Caches

q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean
RDF-3X 58.21 59.54 72,584.71 58.52 59.73 175,909.80 0.14 1.46 808.77 144.13

GRDF-3X
(Optimal Plan) 0.34 0.26 0.93 0.14 0.31 0.17 0.12 0.31 0.69 0.29

GRDF-3X
(OneQL Plan) 0.40 7.08 2.18 0.36 7.6 1.52 0.18 0.93 1.64 1.22

GRDF-3X
(RDF-3X Plan) 54.42 55.42 71,231.74 58.52 50.33 140,822.38 0.25 0.29 0.64 54.34

behavior reinforces our assumption about the performance of RDF-3X in this set of
queries, which are dominated by CPU-intensive processing and generate a large number
of intermediate results that may produce page faults. Table 5 reports on the size in bytes
of the intermediate results produced during the execution of these queries in MonetDB;
these values were reported by the MonetDB tool ��!����. The original version of q3
could not be executed in ��!����, and the size of intermediate memory could not be
computed. We can observe that optimized queries reduce the size of intermediate results
by a factor of 81.24 (q3 is not considered). Additionally, we can observe that MonetDB
performs very well executing the optimized queries; runtime was reduced by a factor
of 1,196.76. The observed performance supports our hypothesis that optimized queries
better exploit the features of both MonetDB and RDF-3X.

Finally, we conducted a similar experiment and ran queries in benchmark 3 against
LinkedCT; as in previous experiments, we built an optimal bushy plan by hand, each
optimal plan was comprised of small-sized sub-queries. In GDRF-3X sub-queries in
the optimized plans were executed using the gjoin operator implemented in GRDF-

Table 4. Benchmark 2-MonetDB Run-Time Cold and Warm Cache (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

Original
Query 485.30 2,993.14 3,727.33 128.57 213.03 1,751.56 576.06 3,757.61 2,622.82 1044.10
Opt
Plan 0.81 0.80 1.37 0.75 1.17 0.68 0.81 0.65 1.05 0.87

Warm Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean

Orig
Plan 496.71 2,593.59 3,710.13 135.74 205.25 1,536.79 461.82 4,280.02 2,027.63 978.21

Optimal
Plan 0.14 0.20 0.54 0.13 0.14 0.17 0.13 0.15 0.24 0.18

730 T. Lampo et al.

Table 5. Benchmark 2-MonetDB Size of Intermediate Results (Bytes)

q1 q2 q3 q4 q5 q6 q7 q8 q9 Geom. Mean
Original
Query 1.13E�11 2.66E�11 N�R 4.22E�10 5.57E�10 2.89E�11 7.12E�10 1.60E�11 3.24E�11 1.28E�11

Optimal
Plan 1.38E�9 1.63E�9 1.99E�9 1.38E�9 1.63E�9 1.88E�9 1.37E�9 1.61E�9 1.87E�9 1.58E�9

Table 6. Benchmark 3-Execution RDF-3X Time Cold and Warm Caches (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom. Mean

RDF-3X 6.35 3.55 4.13 1,543.82 3.71 4.36 1,381.9 2.75 3.83 0.51 10.62
GRDF-3X 0.76 0.59 0.51 0.52 0.80 0.73 0.71 0.59 0.51 0.52 0.61

Warm Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom. Mean

RDF-3X 2.44 2.28 2.41 1,385.09 2.71 1.75 1,321.05 1.74 1.73 0.14 5.87
GRDF-3X 0.14 0.14 0.14 0.18 0.18 0.18 0.18 0.18 0.17 0.18 0.16

3X; SQL nested queries against vertical partitioned tables were generated to be run in
MonetDB. Original queries were run in both cold and warm caches. Table 6 reports on
cold cache execution times, minimum values observed during the execution in warm
cache, and geometric means for RDF-3X and GRDF-3X executions; Table 7 reports on
execution times for MonetDB.

We can observe that RDF-3X is able to improve cold cache execution time by a factor
of 1.8 in the geometric mean when queries are run in warm cache. However, GRDF-3X
performance in warm cache was consistently good for hand-optimized queries; it could
reduce the cold cache run time by a factor of 3.81 in the geometric mean when the
queries are run in warm cache. In addition, GRDF-3X execution times were reduced
by up to four orders of magnitude in both cold and warm caches (queries q4 and q7)
compared to the original query. This is because the plans were bushy trees comprised
of small-sized star-shaped sub-queries, where the number of intermediate results was
smaller than the original queries. Thus, intermediate results could be maintained in
resident memory and used in further iterations.

Finally, we also ran these queries against MonetDB and the results are reported in
Table 7; the no optimized version of q10 could not be executed because MonetDB ran
out of memory. Similarly to RDF-3X, MonetDB is able to improve cold cache execution
time by a factor of 1.28 in the geometric mean when the original queries are run in warm
cache. However, the performance in warm cache is very good for optimized queries; the
runtime is reduced by a factor of 11.65. Additionally, we can observe that optimized
queries reduce runtime of original queries by a factor of 15.24.

These results provide an empirical evidence about the benefits on warm cache per-
formance of the shape and characteristics of the plans. For simple queries, these two
engines are certainly able to benefit from warming up cache; however, for queries with
several star-shaped groups, the optimizers generate left-linear plans that may produce a
large number of intermediate results or require CPU-intensive processing that degrades
the query engine performance in both cold and warm caches. Contrary, if these queries
are rewritten as bushy plans, the number of intermediate results and the CPU process-

To Cache or Not To Cache: The E�ects of Warming Cache 731

Table 7. Benchmark 3-Execution MonetDB Time Cold and Warm Caches (secs)

Cold Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom. Mean

Original
Query 3.86 4.43 4.82 13.58 13.62 6.04 12.82 13.4 13.17 N�R 8.40

Optimized
Plan 2.74 2.68 2.74 11.77 11.87 4.55 11.87 11.87 11.87 N�R 6.52

Warm Caches
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom. Mean

Original
Query 0.66 0.57 0.52 0.49 0.58 0.52 0.59 0.5 0.55 0.5 0.55

Optimized
Plan 0.04 0.04 0.04 0.05 0.05 0.06 0.05 0.05 0.05 0.04 0.047

ing can be reduced and the performance improves. Thus, the shape of a query plan can
impact on the benefits of caching intermediate results.

6 Conclusions

We have reported experimental results suggesting that the benefits of running in warm
cache depend on the shape of executed queries. For simple queries, RDF-3X and Mon-
etDB are certainly able to benefit from warming up cache; however, for complex
queries, some plans may produce a large number of intermediate results or require
CPU-intensive processing that degrades the query engine performance in both cold and
warm caches. We have presented a type of bushy queries comprised of small-sized star-
groups that reduce the number of intermediate results and the CPU processing. In this
type of queries the performance of RDF-3X and MonetDB is clearly better. These re-
sults encouraged us to extend RDF-3X with the functionality of evaluating bushy plans
comprised of small-sized star-groups, and to define a translation schema to enforce
MonetDB to execute queries in a bushy fashion. In the future, we plan to incorporate
our optimization techniques in existing RDF engines.

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically partitioned
DBMS for Semantic Web data management. VLDB Journal 18(2), 385–406 (2009)

2. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data Man-
agement Using Vertical Partitioning. In: Proceedings of the International Conference on Very
Large Data Bases (VLDB), pp. 411–422 (2007)

3. AllegroGraph (2009), ����������
!���$
�����������������������
4. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix ”Bit” loaded: a scalable lightweight

join query processor for RDF data. In: Proceedings of the WWW, pp. 41–50 (2010)
5. Bizer, C., Schultz, A.: The berlin sparql benchmark. Int. J. Semantic Web Inf. Syst. 5(2),

1–24 (2009)

http://www.franz.com/agraph/allegrograph/

732 T. Lampo et al.

6. Bornhövd, C., Altinel, M., Mohan, C., Pirahesh, H., Reinwald, B.: Adaptive database caching
with dbcache. IEEE Data Eng. Bull. 27(2), 11–18 (2004)

7. Fletcher, G., Beck, P.: Scalable Indexing of RDF Graph for EÆcient Join Processing. In:
CIKM (2009)

8. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for owl knowledge base systems. J. Web
Sem. 3(2-3), 158–182 (2005)

9. Guo, Y., Qasem, A., Pan, Z., Heflin, J.: A requirements driven framework for benchmark-
ing semantic web knowledge base systems. IEEE Trans. Knowl. Data Eng. 19(2), 297–309
(2007)

10. Harth, A., Umbrich, J., Hogan, A., Decker, S.: A Federated Repository for Querying Graph
Structured Data from the Web. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-
I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 211–224. Springer,
Heidelberg (2007)

11. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A Rule System for Querying Persistent
RDFS Data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E.,
Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp.
857–862. Springer, Heidelberg (2009)

12. Idreos, S., Kersten, M.L., Manegold, S.: Self-organizing tuple reconstruction in column-
stores. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data, pp. 297–308 (2009)

13. Jena Ontology Api (2009), ����������
	����!���
����������"����#
����
14. Jena TDB (2009), ����������
���
��
���������%&'
15. Kim, S.-K., Min, S.L., Ha, R.: EÆcient worst case timing analysis of data caching. In: IEEE

Real Time Technology and Applications Symposium, pp. 230–240 (1996)
16. Lampo, T., Ruckhaus, E., Sierra, J., Vidal, M.-E., Martinez, A.: OneQL: An Ontology-based

Architecture to EÆciently Query Resources on the Semantic Web. In: The 5th International
Workshop on Scalable Semantic Web Knowledge Base Systems at the International Semantic
Web Conference, ISWC (2009)

17. Malik, T., Wang, X., Burns, R.C., Dash, D., Ailamaki, A.: Automated physical design in
database caches. In: ICDE Workshops, pp. 27–34 (2008)

18. Martin, M., Unbehauen, J., Auer, S.: Improving the Performance of Semantic Web Applica-
tions with SPARQL Query Caching. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089,
pp. 304–318. Springer, Heidelberg (2010)

19. McGlothlin, J.: RDFVector: An EÆcient and Scalable Schema for Semantic Web Knowledge
Bases. In: Proceedings of the PhD Symposium ESWC (2010)

20. McGlothlin, J., Khan, L.: RDFJoin: A Scalable of Data Model for Persistence and EÆcient
Querying of RDF Dataasets. In: Proceedings of the International Conference on Very Large
Data Bases, VLDB (2009)

21. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1), 647–659
(2008)

22. Neumann, T., Weikum, G.: Scalable join processing on very large rdf graphs. In: Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, pp. 627–640
(2009)

23. Ruckhaus, E., Ruiz, E., Vidal, M.: Query Evaluation and Optimization in the Semantic Web.
In: Proceedings ALPSWS 2006: 2nd International Workshop on Applications of Logic Pro-
gramming to the Semantic Web and Semantic Web Services (2006)

24. Ruckhaus, E., Ruiz, E., Vidal, M.: OnEQL: An Ontology EÆcient Query Language Engine
for the Semantic Web. In: Proceedings ALPSWS (2007)

http://jena.sourceforge.net/ontology/index.html
http://jena.hpl.hp.com/wiki/TDB

To Cache or Not To Cache: The E�ects of Warming Cache 733

25. Ruckhaus, E., Ruiz, E., Vidal, M.: Query Evaluation and Optimization in the Semantic Web.
In: TPLP (2008)

26. Schmidt, M., Hornung, T., Küchlin, N., Lausen, G., Pinkel, C.: An Experimental Compari-
son of RDF Data Management Approaches in a SPARQL Benchmark Scenario. In: Sheth,
A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.)
ISWC 2008. LNCS, vol. 5318, pp. 82–97. Springer, Heidelberg (2008)

27. Sidirourgos, L., Goncalves, R., Kersten, M.L., Nes, N., Manegold, S.: Column-store support
for RDF data management: not all swans are white. PVLDB 1(2), 1553–1563 (2008)

28. Vidal, M.-E., Ruckhaus, E., Lampo, T., Martı́nez, A., Sierra, J., Polleres, A.: EÆciently Join-
ing Group Patterns in SPARQL Queries. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije,
A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6088, pp.
228–242. Springer, Heidelberg (2010)

29. Weiss, C., Bernstein, A.: On-disk storage techniques for semantic web data are b-trees al-
ways the optimal solution? In: The 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems at the International Semantic Web Conference, ISWC (2009)

30. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data
management. PVLDB 1(1), 1008–1019 (2008)

31. Wielemaker, J.: An Optimised Semantic Web Query Language Implementation in Prolog.
In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 128–142. Springer,
Heidelberg (2005)

32. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: EÆcient RDF Storage and Retrieval in
Jena2. Exploiting Hyperlinks 349, 35–43 (2003)

33. Williams, G.T., Weaver, J.: Enabling fine-grained http caching of sparql query results. Ac-
cepted ISWC (2011)

34. Yang, M., Wu, G.: Caching intermediate result of sparql queries. In: WWW (Companion
Volume), pp. 159–160 (2011)

35. Zukowski, M., Boncz, P.A., Nes, N., Héman, S.: Monetdb�x100 - a dbms in the cpu cache.
IEEE Data Eng. Bull. 28(2), 17–22 (2005)

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 734–746, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Implementation of Updateable Object Views in the
ODRA OODBMS

Radosław Adamus, Tomasz Marek Kowalski, and Jacek Wiślicki

Computer Engineering Department, Technical University of Lodz, Poland
{radamus,tkowals,jacenty}@kis.p.lodz.pl

Abstract. The paper describes results of the research effort related to the im-
plementation of the idea of Updateable Object Views for the ODRA project.
ODRA (Object Database for Rapid Application development) is a prototype ob-
ject-oriented database management system based on Stack Based Architecture
(SBA) and Stack Based Query Language (SBQL). The updateable object views
are one of the main features of the system that has great impact on its features.
The paper focuses on the issues connected with views implementation related to
external type system and optimization module.

Keywords: updateable views, OODBMS, compilers, optimizers.

1 Introduction

The goal of the paper is to describe the implementation of updateable object views
that was made for the ODRA (Object Database for Rapid Application development)
project [3]. ODRA is a prototype object-oriented database management system based
on Stack Based Architecture (SBA) and Stack Based Query Language (SBQL) [1].
The main goal of the ODRA project is to develop new paradigms of database applica-
tion development mainly through increasing the level of abstraction at which the
programmer works. In ODRA this is achieved by introducing a new, universal, dec-
larative programming language, together with distributed, database-oriented and ob-
ject-oriented execution environment. One of the main features provided by the ODRA
environment is the ability to define arbitrarily updateable object oriented views. Such
a powerful tool allows for creating arbitrary complex transformation of data stored in
the database to adapt the data interface to specific business needs or to integrate local
data according to some external schemas in context of distribute processing. Lack of
view update constraints cause that such views become also a background for many
interesting researches [2][10][13][18] that results were (or going to be) introduced
into the ODRA prototype implementation.

Views update problem has been widely studied in the context of relational and
XML databases. The series of papers [4][15] propose a formal treatment of relational
view update problem that is based on the concept of a view complement, yet it can be
applied to very limited number of relatively simple views, e.g. views providing
an aggregate value cannot have an appropriate complement defined. In [11] authors

 Implementation of Updateable Object Views in the ODRA OODBMS 735

proposed a novel approach for separating the data instance into a logical and a physi-
cal level in order to solve a problem of translating view updates in a side-effect free
manner. Nevertheless, the designed framework does not include views with aggrega-
tions and set operators. In the series of papers Elke Rundensteiner et al. [14][19]
address the problem of how to maintain the consistency of materialized relational
views under update operations and solution for problems addressing the XML view
update specified over relational databases.

It should be emphasized that the paper is not devoted to a problem of updating data
tables through relational view. Our researches concentrate on object oriented databases
and object oriented views. Although some work in the field of relational views update
may appear similar to the SBA Updateable Views. Especially the proposals called bi-
directional languages and relational lenses [7]. In this approach every program denotes a
pair of functions—one for extracting a view of some complex data structure, and anoth-
er for putting back an updated view into the original structure. In other words it the
update semantics can explicitly introduced by the view definer. Other works extends
this to more complicated formations (e.g. aligments) [5]. Our approach is much more
general and orthogonal (does not introduces any special semantics that can be used only
in limited scope). But the work on relational lenses and our researches [2][10][13] show
that the problem of a view update can be solved only through allowing the view design-
er introducing the definition of view update semantics.

The paper focuses on the updateable views implementation issues connected with
type control and view invocation optimization. The rest of it is organized as follows:
Section 2 shortly describe the basis of Stack Based Architecture. Section 3 introduces
the idea of Updateable Object Views in the SBA. Section 4 describes implementation
of Updateable Object Views in the context of ODRA type system. Section 5 presents
view rewrite algorithm designed for the ODRA static optimization module. Section 6
focuses on the future of the ODRA system and the research ideas concerning views.
Section 7 concludes.

2 Stack-Based Architecture

The Stack-Based Architecture (SBA)[1] is a formal methodology concerning the con-
struction and semantics of database query languages, especially object-oriented. In
SBA query languages’ concepts are reconstructed from the point of view of pro-
gramming languages (PLs). The main SBA idea is that there is no clear and final
boundary between programming languages and query languages. Therefore, there
should arise a theory consistently describing both aspects. SBA offers a complete
conceptual and semantic foundation for querying and programming with queries,
including programmes with abstractions (e.g., procedures, functions, classes, types,
methods, views).

SBA assumes a semantic specification method that is referred to as abstract im-
plementation. It is a kind of operational semantics where one has to determine pre-
cisely on an abstract level a query (and program) execution machine. It involves all
the data structures that participate in query/program processing and then, specifies the

736 R. Adamus, T.M. Kowalski, and J. Wiślicki

semantics of all the languages’ operators in terms of actions on these structures. SBA
introduces three such structures that are well-known in the specification of PLs: an
object store, an environment stack, and a query result stack (thus the stack-based ar-
chitecture). Query operators, such as selection, projection, joins and quantifiers, can
be precisely specified using the above three abstract structures.

SBA introduces a model query and programming language SBQL (Stack-Based
Query Language). SBQL plays the same role as relational algebra for the relational
model. The power of SBQL concerns a wide spectrum of data structures that it is able
to serve and complete algorithmic power of querying and manipulation capabilities.
At the same time, SBQL is fully precise with respect to the specification of semantics.
SBQL has been carefully designed from the pragmatic (practical) point of view. The
quality of SBQL is achieved by orthogonality of introduced data/object constructors,
orthogonality of all the language constructs, object relativism, orthogonal persistence,
typing safety, introducing all the classical and some new programming abstractions
(procedures, functions, modules, types, classes, methods, views, etc.) and following
commonly accepted programming languages’ principles.

The functionality of SBQL includes all well-known query operators (selection, pro-
jection, navigation, path expressions, join, quantifiers, etc.), some less known operators
(transitive closures, fixed-point equations, etc.), imperative (updating) statements inte-
grated with queries, modules, procedures, functions and methods (with parameters be-
ing queries and recursive). SBQL deals with static strong type checking and with query
optimization methods based on indices, rewriting rules and other techniques.

3 Updateable Object Views

A database view is an image of data stored in a database. Depending on the image re-
presentation views divide into materialized and virtual. Materialized view representing
selected data in the materialized form (i.e. copy of the data). In contrary a virtual view
does not store data directly. Typically a view definition is a procedure that can be in-
voked in queries. The most important property of views is transparency. The user for-
mulating the query needs not to distinguish between stored and virtual data.

The idea of updateable object views [13][2] relies in augmenting the definition of a
view with the information on users’ intents with respect to updating operations. Only
the view definer is able to express the semantics of view updating. To achieve it, a
view definition is divided in two parts – seed of virtual object generator and virtual
object operators.

The first part is the functional procedure, which maps stored objects into virtual
ones (similarly to SQL). The result of this procedure is a bag of so called seeds. Each
seed contains the data required to execute the required update operation on the virtual
object or to generate, on demand, virtual sub-object. Thanks to this, only those parts
of a virtual object will be materialized that are used in the query.

The second part of a view definition contains procedures that define operations that
can be performed on virtual objects. Those procedures express the users’ intents with

 Implementation of Updateable Object Views in the ODRA OODBMS 737

Fig. 1. Sample virtual object lifecycle

respect to update, delete, insert and retrieve (i.e. dereference) operations performed on
virtual objects (the number of available operands can be extended according to a do-
main needs). The seed of a virtual object is an implicit argument passed to a view
operator procedures. Figure 1 depicts sample lifecycle of the virtual object.

A view definition usually contains definitions of sub-views, which are defined on
the same rule, according to the relativism principle. Because a view definition is a
regular complex object, it may also contain other elements, such as procedures, func-
tions, state objects, etc.

4 Updateable Object Views and the ODRA Type System

4.1 ODRA Type Control System

ODRA query/program evaluation involves compile-time type checking [1]. The type-
checker is based on the original strong typing theory[16] distinguishing internal and
external type systems. The internal type system reflects the behavior of the type
checking mechanism, while the external type system is used by the programmer. A
static strong type checking mechanism simulates run-time computations during com-
pile time by reflecting the run-time semantics with the precision that is available at
the compile time [1]. As the runtime elements are database, environment stack and
query result stack, the compiler works on corresponding structures: meta-base, static
environment stack and static result stack respectively. From the evaluation point of
view runtime stacks process query results (including values, structures, database ob-
jects identifiers, binders etc.) and the compile-time stacks process type signatures –
typing counterparts of corresponding runtime entities.

Externally the ODRA introduces schema definition language that allows to define
database schema. The internal representation of the schema is stored in meta-base and
use to type-check queries and programs. Schema language allows to define modules

738 R. Adamus, T.M. Kowalski, and J. Wiślicki

that are database units storing other database elements. Module stores data as well as
meta-data for them. Elements (i.e. objects, according to object relativism principle)
that can be stored inside modules includes: data objects, classes, procedures, views
definitions, indexes, database links, etc. From the point of view of the programmer the
process of module data definition involves the definition of object types, classes, pro-
cedures and class methods. Important part of this process is the definition of data
objects. In ODRA this definition is equivalent to definition of variable (known from
programming languages). The definition includes variable name, type and cardinality
(specified in square brackets). The variable name defines the name for the objects, the
type defines type of the objects, the cardinality of the variable defines the minimal
and maximal number of objects that can appear in place where the declaration was
introduced. Comparing it to relational databases, ODRA variable can be seen as coun-
terpart of a table declaration. Below the syntax of sample module definition, including
classes and variables, is presented:

module sample {

// classes definitions
class PersonClass {
 instance Person {
 name: string;
 }
}
class EmpClass extends PersonClass{
 instance Emp{
 deptName: string;
 salary: real;
 worksIn: ref Dept;
 }
 riseSalary(increaseValue:real) {
 self.salary := self.salary + increaseValue;
 }
}

 class DeptClass {
 instance Dept {
 name: string;
 location: string;
 }
}

// variables declarations
Emp: EmpType [0..*];
Dept: DeptType [0..*];
}

Above schema of module sample contains definition of three classes and declaration
of two module level variables.

 Implementation of Updateable Object Views in the ODRA OODBMS 739

4.2 First Approach to Views Implementation

One of the most challenging elements of the Updateable Object Views implementa-
tion in the ODRA system was the type control extension towards view definition and
view invocation type-checking. First implementation of updateable object views in
ODRA introduces definitions that, from the syntactic point of view introduced the
view definition following the syntax proposed in [13]. It introduced seed of virtual
objects generator in form of the procedure called virtual objects and four operators for
redefinition of operations performed on virtual objects: on_retrieve – for dereference
of virtual identifier, on_update for updating virtual objects, on_delete – for definition
of the operations that should be performed in response to virtual object delete request
and on_new - for creating virtual object operation. The lack of a given operator in the
view definition means that this operation is forbidden for a virtual objects defined by
the view. Finally, the definition of sub-views can be added (in the same manner). As
an addition the original declaration, the possibility of declaring types was introduced.
Below code shows the syntax of the first version of a view definition in ODRA with
underlined elements introduced according to type system requirement.

view [managerial view name] {
 virtual objects name: type[cardinality] proc_body
//view operators definitions
 [on_retrieve:type proc_body]
 [on_update(name:type) proc_body]
 [on_delete proc_body]
 [on_new(name:type) proc_body]
// sub-views definitions
 [view ...]
}

As can be seen each of the view procedures (seed generator and operators definition)
had to have the type declared separately and there was no control over the consistency
of e.g. return type for on_retrieve operator defining procedure and the on_update
parameter type. The biggest problem, that often leads to misunderstandings lays in the
type of virtual objects procedure that, in fact, does not define the type of defined vir-
tual object. Instead, it defines type of the virtual object seed. From the point of view
of virtual object user, the seed is a transparent part of the view implementation. It is
defined by a view programmer to transfer the required data to view operators proce-
dures (for which is an implicit argument) and sub-views seed generators. The type of
a virtual object itself was implicitly defined by the type of view operators what made
it illegible. Additionally, for each operator programmer was able to declare different
type. For example the type of result of dereference operation could be set as string
and the type of an update operator could be defines as integer. Instead of homogenous
(according to its type) virtual object the implementation allows for defining virtual
objects that were able to change its types depending on the operation that was per-
forming on them. Moreover the types of virtual objects (i.e. attributes of the main
virtual object) defined by sub-views could also have nothing in common with the type

740 R. Adamus, T.M. Kowalski, and J. Wiślicki

of the external virtual object. In cannot be excluded that, in some situations, it could
be an interesting feature (expression flexibility connected with type control), but the
usability and readability of the solution was, to put it mildly, slightly uncomfortable.
Nevertheless, it is worth mention that this version of “a heterogeneously typed virtual
objects” was successfully implemented in the ODRA type control system.

4.3 Modification of Views Implementation

An initial implementation has revealed some drawbacks of the approach to view syn-
tax and view type description. Thus the goals of next approach was assumed as fol-
lows:

• Introduce explicitly the virtual object declaration and make it similar to ODRA
variable declaration. It should strengthen the impression concerning similarity be-
tween variable and virtual object declaration.

• Separate the type of a view seed as internal view .
• Introduce the control over the types of view operator procedures.
• Introduce the control over the types of virtual objects defined by sub-views.

New version of view definition achieves above goals by introducing the following
syntax of a view definition:

view [managerial view name] {
 virtual name: type[cardinality];
 seed : type[cardinality] proc_body
//view operators definitions
 [on_retrieve proc_body]
 [on_update proc_body]
 [on_delete proc_body]
 [on_new proc_body]
// sub-views definitions
 [view …]
}

The first part of a view definition is a declaration of a virtual object name and type.
The declaration is similar to ordinal ODRA variable declaration preceded with key-
word virtual. The procedure that defines the seeds of virtual objects is now separated
and renamed to seed. The return type of the seed functional procedure defines the type
of seeds. The cardinality (by default equals 1) informs about the possible number of
seeds (and thus virtual objects). Finally definition of view operators does not include
type declaration. It is implicitly assumed that the type is equal to the type of a virtual
object. For on_update operator it is the type of return value. For operators on_update
and on_new it is the type of the procedure argument (by default the name that can be
used inside those procedure to access the argument is value). Fragment of a definition
of the simple view that is based on the sample module schema from section 4.1 is
presented below.

 Implementation of Updateable Object Views in the ODRA OODBMS 741

view RichEmpDef {
 virtual RichEmp:record {name:string;}[0..*];
 seed: record{ e:ref Emp [0..*]} {
 return Emp where salary > 10000 as e;
 }
 on_retrieve {return deref(e);}
 on_update {
 if(value.salary > 10000) {
 e := value;
 } else {
 Exception exc;
 exc.message :=
 “decreasing salary below 10000 is forbidden”;
 throw exc;
 }

 // sample nested sub-view definition
 view nameDef {
 virtual name:string;
 seed : record{ n:ref Emp.name} {
 return e.name as n;
 }
 on_retrieve { return deref(n);}
 }
}

Above simple view defines virtual objects named RichEmp with single attribute name
representing those employees that are rich (i.e. earns more than 10000). The definition
allows for performing dereference and update operation on virtual object RichEmp
and only dereference for its virtual attribute name.

4.4 Virtual Pointer Objects

In SBA and thus in ODRA that implements the approach objects are divided into three
categories according to the type of value it stores: simple, complex and pointer. Up to
now virtual objects can be perceived by the user as simple objects (defined by the view
without nested sub-views) or complex objects (defined by the view with nested sub-
views describing attributes). For completeness of the transparency the ODRA imple-
mentation introduces virtual entities that can be perceived as pointer objects.

A pointer object allows to navigate in an object graph. The unique property of
SBQL is that the environment of a pointer object is represented by the binder named
with the name of pointed object; thus, navigation through the pointer object requires
typing the name of the target object. This property allows us to separate the reference
to pointer itself and the reference to pointed object. For example if we assume that
friend is a pointer sub-object of Person object the query:

(Person where name = “Kim”).friend

returns the reference (bag of references) of pointer object named friend. Such refer-
ence can be the subject of imperative operations (e.g. updated, deleted). To return the
references to objects pointed by the friend objects one must write:

742 R. Adamus, T.M. Kowalski, and J. Wiślicki

(Person where name = “Kim”).friend.Person

To define a virtual pointer with analogous semantics the implementation of views in
ODRA introduced a new operator called on_navigate. As other view operators, the
operator is defined as a functional procedure. The constraint is that it must return a
reference (or a virtual reference) of a “virtually” pointed object. As for the other oper-
ators theirs return type implicitly corresponds to the declared type of a virtual object.
These two assumptions enforce that only those virtual objects that return reference to
the other objects can possess on_navigate operator and be perceived as (virtual) poin-
ters.

5 Updateable Object Views and the ODRA Optimizer

One of the most important modules of the ODRA system is the static optimizer that
implements optimization methods based on modifications of the query syntactic tree
(AST). The methods include factoring out independent and weakly dependent sub-
queries [17][6], rules based on the distributivity property [17], removing dead sub-
queries [17], methods based on indices [12], methods based on query caching [8].

The views implementation enforce the implementation of another static optimiza-
tion module - view rewriter. If the virtual object is processed by the query the view
rewriter module can rewrite the query into the semantically equivalent form where
view invocations are replaced by the code contained inside the view procedures. The
view invocation is performed in two cases. First case is the moment in the query
processing where exists explicit call to virtual object name. Second case is connected
with operations that are performed on the virtual identifiers. Implemented algorithm
allows for rewriting of all view operators (if appropriate conditions are met). The
rewrite procedure takes as input the syntax tree representation that is already type-
checked to assure type correctness and to supplement the AST nodes information with
type signatures. Next section describes implemented view rewrite algorithm.

5.1 View Rewrite Procedure

The rewrite algorithm consists of the three general phases: query analyze, query re-
write and query configuration.

To exemplify the rewrite algorithm consider the following simple query based on
the view sample from section 4.3.

deref(RichEmp where name = “Smith”);

The query returns information about rich employee named Smith. It contains calls to
two virtual objects RichEmp and its virtual attribute name. It also contains two derefe-
rence operators call. First one, explicit, concerns RichEmp virtual object. Second one,
implicit, concerns virtual attribute name and is enforced by the comparison operator.
The rewrite algorithm implemented in ODRA is able to rewrite the query to the fol-
lowing form:

 Implementation of Updateable Object Views in the ODRA OODBMS 743

deref ((Emp where salary > 10000 as e) where ((e.name
as n).deref(n)) = “Smith”);

This form is then processed by the auxiliary names remover optimization module that
is able to remove auxiliary names that are not required (‘e’ and ‘n’ in the above ex-
ample):

deref ((Emp where salary > 10000) where (deref(name) =
“Smith”));

The final form can be a subject to another optimizations like factoring out indepen-
dent sub-queries and/or removing dead sub-queries.

Query Analyze Phase

The goal of the query analyze phase is to analyze the AST of a subject query and to
collect all the data required for view rewrite. The phase consists of the following
steps:

1. For each AST name nodes that result signatures represent virtual identifiers and the
name is not an auxiliary name:

Save the mode together with the replacement AST taken from seed procedure
contained inside the owner view definition (for potential replacement). If the pro-
cedure is not possible to rewrite1 - mark the node as non-rewritable.

2. For each AST node representing operators (dereference, update, create, delete) if
the operand sub-node result signature represents virtual identifier.
Save the operator node together with AST taken from appropriate operator proce-
dure. If the procedure is not possible to rewrite2 - mark the node as non-rewritable.

3. If there was no node collected the rewrite procedure ended.
4. If at least one node was collected - For each collected name node:

Determine the dependency: name node representing view invocation <‒> name
node representing sub-view invocation.
In result the independent view invocation chains are created reflecting view aggre-
gation in the context of a processed query.

5. For each collected operator node:
Determine the dependency name node representing view invocation <‒> operator
node representing operation on the corresponding virtual object.

6. For each collected name node check if all dependent elements determined in step 4
and step 5 can be rewritten.

7. If yes start the rewrite procedure, else: end rewrite process.

1 Current algorithm implementation constraint the rewrite only to the single expression/query

procedure bodies (or the single return statement). If operator or seed implementation proce-
dure has more than one expression/query, rewrite of the view invocation is not possible.

2 Current algorithm implementation constraint the rewrite only to the single expression/query
procedure bodies (or the single return statement). If operator or seed implementation proce-
dure has more than one expression/query, rewrite of the view invocation is not possible.

744 R. Adamus, T.M. Kowalski, and J. Wiślicki

Query Rewrite Phase

The goal of the query rewrite phase is to rewrite the AST by replacing view related
nodes with view definition queries. Query rewrite execution consists of the following
steps:

For each view invocation chains repeat steps 1-4:

1. Set first view in the view invocation chain as current view.
2. Rewrite name nodes that invoke the current view. Rewrite procedure causes the

name node being replaced with the query from the current view seed procedure.
3. Rewrite operator nodes concerning current view. Rewrite procedure is similar for

three operators: dereference, update and delete. Operator node representation is re-
placed with a dot (navigation) non-algebraic operator. Inserted operator left sub-
node is set to the operand node of the operator node being replaced. And its right
sub-node is set to the query taken from appropriate view operator procedure (one
depending on the operator type (one of: on_retrieve, on_update, on_delete). Create
operator requires different approach and has to be rewritten separately.

4. Set next view in the chain as current view. Repeat steps 2-4.
5. Rewrite each create operator. This operator procedure differs from described pro-

cedure in step 3 and has to be performed separately. This is due to the fact that se-
mantically, on_new procedure is not called in the context of virtual identifier. Its
role is to transform some query result into a virtual object. Thus the result of create
operator is pass to a on_new operator procedure as an argument. Rewrite procedure
simulates this behavior. The create operator node is replaced with the query from
on_new procedure joined with create operator node sub-tree to calculate argument
value.

6. Algorithm proceeds to phase: query configuration.

Query Configuration Phase

The query configuration phase passes the rewritten query through the type control
module to regenerate type signatures. Finally, the rewrite procedure is restarted from
the query analyze phase. The algorithm is restarted because it is possible that after the
rewrite new view invocation appears. According to transparency of views there is
constraint on using calls to virtual objects inside the view definition3.

6 Future Development Ideas

Currently ODRA prototype is the subject to architecture redesign process for purpose
of complete redefinition of its internal structure. The work is based on the existing
implementation experience. Future system versions are going to be more stable and

3 Problematic situation appears when a view implicitly make recursive calls on itself. This

situation has to be detected and the rewrite has to be stopped. This case needs further re-
search in the more general context of recursive views.

 Implementation of Updateable Object Views in the ODRA OODBMS 745

structuralized. It is also planned to equip it with many features that are inherent ele-
ments of commercial database system, and which were not introduced into the proto-
type due to less scientific significance.

However, as a scientific project, ODRA will be still used to develop new interest-
ing features. In the area of updateable views it is planned to research the dependences
between object classes and object views and for example allow the view to inherits
from the class. There is also a need to do more research in the field of views defining
virtual pointers. Current researches are also focused on using updateable views as
tools for web application implementation. Such views could serve as RESTfull [9]
web services interfaces to data stored in the database or be a key elements in frame-
work that allow for scaffolding data with the web user interface.

7 Summary

The paper focuses on chosen issues and features of the implementation of Updateable
Object Views in the ODRA system. Updateable views become not only a feature for
ODRA users, but also determine the existence of many system features that could not
be realized without their existence. This refers especially to the implementation of the
generic wrapper to relational databases [18]. Relational data are available through
(automatically generated) views. Internally the views refers to wrapper managed
structures used to replace the SBQL query` fragments with wrapper execution of SQL
queries.

ODRA views facility also supports the process of data integration into the virtual
repository [12]. Thanks to an update capability they can map local data onto some
global representation and, inversely, map global updates onto local operations.

Finally, the prototype implementation opens many new research fields in the con-
text of views semantics and views usability.

Acknowledgments. This research work is funded from the Polish Ministry of Science
and Higher Education finances in years 2010-2012 as a research project nr N N516
423438.

References

1. Adamus, R., Habela, P., Kaczmarski, K., Lentner, M., Stencel, K., Subieta, K.: Stack-
Based Architecture and Stack-Based Query Language. In: Proceedings of the First Interna-
tional Conference On Object Databases ICOODB, Berlin, Tribun EU, pp. 77–96 (2008)

2. Adamus, R., Kaczmarski, K., Stencel, K., Subieta, K.: SBQL Object Views - Unlimited
Mapping and Updatability. In: Proceedings of the First International Conference On Ob-
ject Databases ICOODB, Berlin, Tribun EU, pp. 119–141 (2008)

3. Adamus, R., Kowalski, T.M., Subieta, K., Wiślicki, J., Stencel, K., Letner, M., Habela, P.,
Daczkowski, M., Pieciukiewicz, T., Trzaska, M., Wardziak, T.: Overview of the Project
ODRA. In: Proceedings of the First International Conference On Object Databases
ICOODB, Berlin, Tribun EU, pp. 179–197 (2008)

746 R. Adamus, T.M. Kowalski, and J. Wiślicki

4. Bancilhon, F., Spyratos, N.: Update Semantics of Relational Views. ACM Trans. Database
Syst. 6(4), 557–575 (1981)

5. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching Lenses:
Alignment and View Update. In: ACM SIGPLAN International Conference on Functional
Programming (ICFP), pp. 193–204. ACM, USA (2010)

6. Bleja, M., Kowalski, T.M., Adamus, R., Subieta, K.: Optimization of Object-Oriented
Queries Involving Weakly Dependent Subqueries. In: Norrie, M.C., Grossniklaus, M.
(eds.) ICOODB 2009. LNCS, vol. 5936, pp. 77–94. Springer, Heidelberg (2010)

7. Bohannon, A., Vaughan, J.A., Pierce, B.C.: Relational Lenses: A Language for Updateable
Views. In: Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems (PODS), pp. 338–347. ACM, USA (2006)

8. Cybula, P., Subieta, K.: Query Optimization through Cached Queries for Object-Oriented
Query Language SBQL. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe,
B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 308–320. Springer, Heidelberg (2010)

9. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures, PhD Thesis University of California at Irvine 2000 (2000),
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

10. Habela, P., Kaczmarski, K., Kozankiewicz, H., Subieta, K.: Modeling Data Integration
with Updateable Object Views. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O.
(eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 188–198. Springer, Heidelberg (2005)

11. Kotidis, Y., Srivastava, D., Velegrakis, Y.: Updates Through Views: A New Hope. In:
Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006. IEEE
Computer Society (2006)

12. Kowalski, T., Wiślicki, J., Kuliberda, K., Adamus, R., Subieta, K.: Optimization by Indic-
es in ODRA. In: Proceedings of the First International Conference On Object Databases
ICOODB, Berlin, Tribun EU, pp. 97–117 (2008)

13. Kozankiewicz, H.: Updateable Object Views. PhD Thesis, Institute of Computer Science,
Polish Academy of Sciences (2005), http://www.sbql.pl/phds

14. Kuno, H.A., Rundensteiner, E.A.: Using Object-Oriented Principles to Optimize Update
Propagation to Materialized Views. In: Proc of the IEEE Int. Conf. on Data Engineering
(ICDE-12), pp. 310–317. IEEE Computer Society (1996)

15. Lechtenbörger, J., Vossen, G.: On the Computation of Relational View Complements. In:
Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Database Systems, pp. 142–149. ACM, USA (2002)

16. Lentner, M., Stencel, K., Subieta, K.: Semi-Strong Static Type Checking of Object-
Oriented Query Languages. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M.,
Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 399–408. Springer, Heidelberg
(2006)

17. Płodzień, J.: Optimization Methods in Object Query Languages. PhD Thesis, Institute of
Computer Science, Polish Academy of Sciences (2001), http://www.sbql.pl/phds

18. Wiślicki, J.: An object-oriented wrapper to relational databases with query optimization,
PhD Thesis, Computer Engineering Department, Technical University of Lodz (2008),
http://www.sbql.pl/phds

19. Wang, L., Jiang, M., Rundensteiner, E.A., Mani, M.: An Optimized Two-Step Solution for
Updating XML Views. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008.
LNCS, vol. 4947, pp. 19–34. Springer, Heidelberg (2008)

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 747–762, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Domain Expert Centered Ontology Reuse
for Conceptual Models

Christian Kop

Alpen-Adria-Universitaet Klagenfurt
Unversitaetsstrasse 65 – 67, Klagenfurt

christian.kop@aau.at

Abstract. Generating a project specific domain model for the database of an in-
formation system is a critical task. The notions and structure must be well cho-
sen since the application relies on that. With the Semantic Web, many notions
and structures of certain domains already exist as a shared knowledge. Hence, it
seems that the designer of an information system just has to take an ontology
and reuse it for the information system. However, this strategy must be applied
carefully since an ontology might have a different focus and purpose with re-
spect to the intended conceptual database model. Nevertheless, it is worth to
examine an ontology for elements which can be reused. Research results al-
ready exist for this question but these research approaches focus on ontology
engineers or conceptual modelers who are able to analyze the ontology. Al-
though these persons are necessary, they are not the only ones who usually must
be involved in such a process! What about the domain experts, who do not have
the skills to read and understand an ontology? They must be also involved in a
good process. The approach presented here, focuses on the domain experts. It
will be described how domain experts can be supported and involved in the
process. With respect to the ontology language, this approach focuses on OWL.

1 Introduction

Generating an application specific domain model (e.g., the conceptual database model
of an information system) is a critical task. The notions of the domain must be well
chosen and related, such that the information system can fulfill the needs of the end
users. There are several techniques to gather notions and functional requirements.
Among these techniques, document analysis can be used, if the designer is aware of
its risks (i.e., parts of the document might be out of date; it was generated for another
purpose). If such documents are found, then parts of these documents can be used for
the conceptual database model. With the Semantic Web, these documents are easily
available. Many ontologies are already built and can be reused. Especially, OWL has
become a well known language to specify ontologies. Therefore, OWL is used as the
language for ontologies that are taken for reuse.

The literature focusing on the reuse of ontologies shows that the selection step is
the critical and important step. It influences later steps of reuse. The selection step is

748 C. Kop

the phase, where the needed concepts for the target model are chosen carefully from
the original source ontology.

All these approaches also have in common, that a computer scientist, which has at
least skills in conceptual modeling is necessary in the selection process. However, a
domain model should not be based only on the skills of a computer scientist. What
about the “domain experts” (e.g., the users of the information system)? How can they
be involved in this process if they do not understand more formal languages of com-
puter scientists? Of course, a computer scientist can try to translate and explain every-
thing to the domain expert – but this would not be an efficient communication
process.

Therefore, the approach, explained here, focuses on a more domain expert centered
strategy for reusing concepts of an ontology. It is novel since it uses and combines
different techniques of natural language processing and adopts them for ontology
reuse. For instance, instead of reading the OWL specifications, the approach verbaliz-
es important ontology elements (i.e., OWL classes, object properties, and some
restriction patterns). Verbalization itself is a technique, which translates a formal on-
tology description to a controlled natural language. This is a language with a re-
stricted grammar and/or a restricted lexicon to avoid ambiguities [47]. The controlled
natural language is then the basis and input for the mapping process to a conceptual
database model (see Figure 1). There are two advantages for doing this:

• A domain expert with no skills in ontology languages and conceptual modeling can
understand the verbalized parts of the ontology.

• Once the candidates for reusable elements are known according to their natural
language representation, the mapping to the conceptual database model is based on
well known transformation guidelines from controlled natural language to a con-
ceptual model.

OWL
Draft version of conceptual model
(e.g., specified in UML)

Read
verbalized
OWL

Take verbalizations as
hints and reuse necessary
element for the
conceptual model

!
Discussion

X

i.e., translation to
controlled natural
language

Conceptual
modeler

Domain expert

OWL
Draft version of conceptual model
(e.g., specified in UML)

Read
verbalized
OWL

Take verbalizations as
hints and reuse necessary
element for the
conceptual model

!
DiscussionDiscussion

X

i.e., translation to
controlled natural
language

Conceptual
modeler

Domain expert

Fig. 1. Strategy of ontology reuse

 Domain Expert Centered Ontology Reuse for Conceptual Models 749

Finally, the aim of the presented approach is also a computer supported selection
mechanism of ontology elements, which considers a domain expert readable format
too. Here, the term “computer supported” means, that a tool should provide proposals
but the final decision making is done by the human stakeholders. Since a conceptual
database model itself has the aim to be a basis for data retrieval and manipulation,
natural language queries are chosen as the computer supported selection mechanism.

Thus, the paper is structured as follows: In the next section the related work is pre-
sented. Section 3 explains verbalization strategies in the context of ontology reuse and
shows how the verbalized ontology elements can be transformed into a conceptual
database model. Section 4 describes the selection mechanism. Section 5 describes the
tests for verbalization and natural language query processing. Furthermore, an over-
view of the prototype is given. Section 6 summarizes the approach and gives an out-
look to future work.

2 Related Work

2.1 OWL Ontologies versus Conceptual Models

OWL ontologies differ from conceptual database models since they have another
purpose. OWL ontologies aim at providing knowledge that can be shared. From facts
and data specified in the ontology, new facts can be derived using reasoning. Concep-
tual database models in the field of information systems on the other hand are mainly
built to describe how data is structured and related for a certain application.

Due to their different aims, the content of an ontology can differ from the content
of a conceptual database model. For instance, concepts that are modeled as classes in
an OWL ontology might be modeled as the value of a category in a conceptual data-
base model or they might be even ignored. It is also possible that individuals of an
OWL ontology are modeled as classes (entity types) in a conceptual database model.

Beside the differences in the purpose and content, ontologies languages differ from
a conceptual modeling language also in their structure. Baclawski et al. [32] and Hart
et al. [37] describe structural differences between the conceptual modeling language
UML and the ontology language OWL. These differences are:

• Different modeling elements in OWL,
• Independence of object properties,
• Different modeling of cardinalities.

OWL has many modeling elements, which cannot be found in conceptual modeling
languages (e.g. intersectionOf, unionOf, complementOf, hasValue, allValuesFrom
etc.). For these elements Brockmans et al. [39] and Gasevic et al. [38] use UML with
a profile and stereotypes to visualize them. Since the aim of such a resulting UML
diagram is on visualization of the ontology, this diagram cannot be used as a concep-
tual database model.

In OWL, object properties are independent modeling elements, which are
not bounded to specific classes. If no domain and range are given, then “Thing” is

750 C. Kop

implicitly the domain and/or the range. This is different to the modeling language
concepts “association” in UML or “relationship type” in entity relationship diagrams.
They are always bounded to UML classes or entity types respectively.

The cardinality specification in OWL restricts the minimum and/or maximum car-
dinality of the object property from the domain (where it is specified) to the range, but
not vice versa. It is also possible, that a cardinality restriction for a class and an ob-
ject property is specified, though the object property does not have concrete involved
classes (independent object property). Furthermore, cardinality specifications are
separated from the core object property definitions. They only reference the object
property definitions. In conceptual modeling languages, cardinalities must be defined
on both sides of an association and relationship type respectively. They are also im-
portant parts of the association or relationship type.

2.2 Usage of Ontologies for Information Systems

Despite the differences, many authors agree to use the shared knowledge of an ontol-
ogy for application specific purposes. Guarino [36] highlighted the impact of ontolo-
gies for databases as well as for user interfaces and the application components of
information systems. The research results presented by Sugumaran et al. [33], [34]
showed, that a domain ontology can be used for conceptual model generation as well
as for conceptual model validation. For the generation of a conceptual model, five
steps are proposed, namely: identification of initial terms, mapping to domain terms,
consistency checking, ER model generation and relational model generation. An on-
tology is involved in the second step. The terms derived from natural language re-
quirements are checked with an ontology and if necessary the terms are expanded (i.e.
new terms are derived).

In another approach rules for automatic transformations from an ontology to a con-
ceptual model are proposed [35]. There, ontology elements are either transformed into
conceptual model elements (e.g. classes, associations, attributes) or transformed into
constraints.

Conesa et al. [40] proposed to use a large ontology for application specific purpos-
es by firstly refining the ontology. Afterwards the needed elements of an ontology are
selected. The ontology is pruned. Finally the resulting ontology or conceptual model
must be refactored and refined. The selection of ontology elements is seen as an im-
portant step. This selection can be done with the support of specific requirements
profiles for the target model [41]. Alani et al, [42] proposes to use RDQL queries.

A more general approach providing linguistically motivated guidelines to extract
domain concepts and relationships from social tagged web sites is proposed in [43].

The above research shows, that there is a need to reuse ontologies. The process of
selecting and reusing OWL ontology elements is currently managed mainly by ontol-
ogy engineers or conceptual modelers. In fact, they should not be left alone. There
must be a feedback and discussion process with the domain experts. Since domain
experts normally do not understand OWL, the content must be translated to a human
readable format. Also the very important selection process should be supported with a
more human centered mechanism. Natural language queries, verbalization and the

 Domain Expert Centered Ontology Reuse for Conceptual Models 751

transformation of verbalized content to a conceptual model can help. In the next sub
sections related work on these topics will be discussed.

2.3 Natural Language Queries

Ideas, techniques and problems of natural language querying are described in [1], [4],
[12], [15], [16], [13], [14]. Some operate on a relational database model, others on a
knowledge base or on a conceptual model. Some use additional information derived
from linguistic lexicons or ontologies. In addition machine learning approaches are
used [17], [19], [20], [21]. The main objective of all of these approaches is to support
the retrieval of data or the generation of a more formal query language (e.g. SQL),
which can then be executed on the data or knowledge base. This also holds for
visual query tools described in [2], [10], [11] and form based query languages [5],
[18]. Visual query languages produce SQL statements by navigating through the
conceptual model.

In this paper, natural language queries are not used to retrieve data or to generate
SQL statements. Instead, natural language queries are used as functional requirements
for the database of an information system under development. In this role, they are
applied on ontologies in order to find and select reusable OWL elements. Particularly,
from the natural language queries, query notions are extracted that can be compared
with ontology elements. According to the results, needed elements can be selected.

2.4 Verbalization

Strategies to verbalize ontologies are described in Fuchs et al. [8] and Hewlett et
al.[9]. Information of individuals is verbalized in the research work of Bontcheva [3].
The verbalization of OWL keywords (subClassOf, intersectionOf, unionOf, hasValue,
cardinality restrictions etc.) works very well. The problems of verbalization are the
names (i.e., IRIs) of OWL classes and object properties. There is much freedom in the
naming conventions. Therefore in [6] linguistically driven OWL class and object
property naming guidelines are presented.

The verbalization approach presented here is a refinement of the work in [6]. It
concentrates on a good verbalization of the class and object property names and
represents them in a way which is understandable for the domain expert and suppor-
tive for the mapping to the conceptual model. Due to this special purpose, it does not
try to exactly represent all the logical specifications in an OWL ontology like other
verbalization approaches. Instead, it focuses on classes, object properties and some
restriction patterns from which reusable information for conceptual database models
can be derived.

2.5 Mapping from Controlled Natural Language to a Conceptual Model

The idea behind mapping of natural language to conceptual modeling elements was
introduced in the 80’s of the last century. In the beginnings, researchers gave guide-
lines how to manually

752 C. Kop

• Derive entity relationship diagram patterns from structured sentences [23]
• Derive program specification patterns from the appearance of certain word catego-

ries or combination of word categories in texts [28]
• Derive fact based conceptual model patterns from exemplary sentences [31]

For a better understanding of his Entity Relationship (ER) approach, Chen [23] pro-
posed 11 heuristics to map sentences to an equivalent ER model. He used 11 struc-
tured English sentences and showed on the basis of their structure how each of the
sentences and their elements can be mapped to elements of an ER model (i.e., entity
types, relationship types or attributes). Abbott proposed heuristics for object oriented
programming. Nijssen et al. [31] introduced a fact oriented modeling approach since
this is much closer to natural language descriptions.

Other research results (e.g., [7], [22], [24], [25], [26], [27], [29], [30]) continued
and refined these initial results. Moreno et al. showed similarities between conceptual
models and controlled natural language sentences using formal instruments. Tjoa et
al. [26] and Buchholz et al. [22] provided automatic transformation from controlled
language sentences using parsers.

To summarize, once a controlled natural language sentence is available, it can be
transformed to conceptual model elements.

2.6 Summary of Related Work

The related work shows, ontologies can be used as a basis for designing conceptual
models if the differences of the ontologies and conceptual models in the scope and
structure are considered. Therefore the approach described here, does not have the
aim to automatically derive conceptual models. Instead, a feedback and discussion
process must be established where the domain expert is strongly involved. The
process of selecting ontology elements must be transparent to the domain expert. Par-
ticularly, the process consists of three domain expert centered steps:

• Selection step based on natural language queries, which are treated as explicit re-
quirements statements for the database model under development,

• Verbalization step, which presents necessary parts of an ontology in a domain ex-
pert friendlier way,

• Transformation step, which helps to map the selected and verbalized ontology
statements into conceptual modeling elements in a concise way.

With these steps, techniques and approaches are combined, which where used inde-
pendently and for other reasons in previous work (i.e., natural language querying,
verbalization, natural language analysis for conceptual modeling). These approaches
and techniques are the basis for a domain expert centered reuse strategy as outlined in
the Introduction Section (see Figure 1). Hence, reusing ontologies more becomes a
communication task between domain experts and conceptual modelers.

In the succeeding Sections 3 and 4, the above mentioned steps will be described in
more detail.

 Domain Expert Centered Ontology Reuse for Conceptual Models 753

3 Verbalization and Transformation

For a better understanding of the output of the selection step this section describes this
output and how it can be mapped to a conceptual model. Hence, the verbalization of
ontology elements and their transformation to conceptual model elements are
explained.

3.1 Verbalization

As mentioned in Section 2.4 the possible name variations of OWL classes and object
properties can cause problems for verbalization. In order to produce better results and
give ontology designers more freedom of defining the names, the following must be
done:

(1) Separation of artificially connected terms
(2) More detailed verbalization of OWL object properties
(3) Adding extra information to complement verbalization

In the first step (1) different separation strategies are detected (e.g., Vegetarian_Pizza
versus VegetarianPizza, has_Topping versus hasTopping etc.). The term is then trans-
formed to a more natural and “normalized form” (e.g., vegetarian pizza). This step is
also important for the second step. Instead of examining one name, different words
can now be examined independently.

Whereas OWL classes can be already verbalized by the fist step, more has to be
done for object properties. The example “hasTopping” gives the reason. In a natural
language sentence, noun phrases are related with a verb. In an ontology specification
you cannot always follow this natural way of expressing relationships. Most often, the
name of an object property is a combination of a verb with a noun (“verb/noun”). In
some cases a combination “noun/verb/noun” was found. If the nouns represent the
domain and range of an object property, then they must be reduced since they are
redundant. Sometimes, only a noun appears as a descriptor for an object property. If
there are some additional patterns from which it can be concluded that the name of the
object property is only a noun, then this can be transformed into a natural language
sentence with a main verb. Often, in a verb/noun combination, the noun is neither the
domain nor it is the range. However, in the ontologies, which were studied, it turned
out, that the noun specified in the object property can be treated as a subset of the
range or it is at least the role, which the range plays in the context of this object prop-
erty. The second step gives some support in these cases.

The aim of the third step is to add extra information to make the resulting sentence
of the verbalization more natural. An article is added to the involved nouns. In some
cases, it turned out that an OWL range class is not a noun but an adjective. Of course,
in such a case no article is added. In the cases, where the noun named in the object
property is a subset of the range or the role of the range class within the object proper-
ty, then the phrase “which is“ is used to combine the information given with the do-
main class, the object property and the range.

754 C. Kop

Since cardinality restriction and value restriction (e.g., hasValue, some-
ValuesFrom, allValuesFrom) references to OWL object properties, the verbalization
can be applied also on these restrictions. In one ontology, allValuesFrom were used to
define a mapping between concepts and simple data types (e.g., OWL class “person”
with an allValuesFrom-Restriction on the object property “first name” with the OWL
class “string”). In this case the third step adds a “has” before the noun “first name”.
The phrase “with data type” denotes that a data type is used. In more detail, let

N … be a descriptor for a noun or a compound noun or adjective + noun or adjective
+ compound noun

A … be an adjective only
V … be the verbal part (verb or verb + preposition)
c … be a numerical constant >= 0 (i.e., 0, 1, 2, … k)
D … be a simple data type (e.g., String)
N1, N2, N3 … be a N at position 1, 2 or 3 within the resulting sentence pattern

then, depending on the underlying information stored in the OWL model, the follow-
ing controlled natural language sentence patterns can be generated:

An OWL class can be transformed to the pattern N or A.
An OWL object property can be transformed to one of the following sentence

patterns1:

• N1 V a N2
• Anything V Anything
• N1 V N2 which is a N3
• Anything V N2 which is Anything

An OWL subclassOf definition can be transformed to

• N1 is a N2

Cardinality restrictions can be transformed to one of the following sentence patterns

• N1 V exactly c N2
• N1 V at least c N2
• N1 V maximal c N2
• N1 V between cmin and cmax N2

A value restriction (hasValue, allValuesFrom, someValuesFrom) can be transformed
to one of the following reduced sentence patterns.

• N1 V N2
• N1 V N2 which is a N3
• N1 V N2 which is A
• N1 V N2 with data type D

1 Underlined words are keywords. For instance, a represents the indefinite article “a”, “an”

respectively. Anything stand fort he ontology root class „Thing“. The pattern Anything V
Anything is derived if the object property is indipendent from a concrete OWL class.

 Domain Expert Centered Ontology Reuse for Conceptual Models 755

3.2 Transformation and Reuse

Once the classes, object properties, value and cardinality restrictions are verbalized,
the stakeholders have a set of natural language sentence patterns. Domain experts can
be involved. They better get hints what the ontology describes. Another advantage is:
Transformation heuristics, which are transparent to both, domain experts and design-
ers can be applied to transform these sentence patterns to a conceptual model. Particu-
larly, nouns, which were only implicitly mentioned within an object property (e.g.,
hasDrink) and which were not explicitly mentioned as OWL classes can now also be
treated as conceptual model classes (e.g., UML classes).

The following table presents the transformations from sentence patterns to concep-
tual model patterns. Sentence patterns with “Anything” resulting from independent
object properties do not appear in this table. These patterns must be refined. A com-
puter supported search for more concrete restrictions based on these independent ob-
ject properties can be executed. The conceptual modeling pattern of course must be
integrated to an already existing work in progress conceptual database model. In cas-
es, where one sentence pattern can lead to more than one conceptual modeling pat-
tern, a decision from the stakeholders is necessary.

Table 1. Transformation from sentence patterns to conceptual model patterns

 Sentence pattern Conceptual model pattern
1 N1 V a N2

N1 N2
VN1N1 N2N2
V

2

N1 V N2 which is a N3
(N1 <> N3)

N1 N2
V N3N1N1 N2N2
V N3N3

N1 N3
V N2N1N1 N3N3
V N2

N1 N3
VN2N1N1 N3N3
VN2

3 N1 V N2 which is a N3
(N1 = N3)

N1

VN2

N1N1

VN2

4 N1 V N3 which is A

N1

N2

N1

N2

5 N1 V N2 with data type D

N1

N2 : D

N1

N2 : D

756 C. Kop

Table.1. (Continued)

6 N1 V exactly c N2
 N1 N2

V c..cN1N1 N2N2
V c..c

7 N1 V between cmin and
cmax N2

N1 N2V cmin..cmaxN1N1 N2N2V cmin..cmax

8 N1 V at least c N2
 N1 N2

V c..*N1N1 N2N2
V c..*

N1 N2

V c..?N1N1 N2N2
V c..?

9 N1 V maximal c N2
N1 N2

V 0..cN1 N2
V 0..c

N1 N2

V ?..cN1N1 N2N2
V ?..c

10 N1 is a N2 N1 N2N1N1 N2N2

4 Selection

Besides browsing the OWL class list in the ontology, classes can also be selected by
requirements. Natural language queries processing is proposed here as a helpful in-
strument. The strategy has the advantage that also domain experts with no knowledge
of query languages can understand such queries.

4.1 Linguistic Instruments for Natural Language Queries

In order to achieve this, natural language query processing is build on the following
steps:

• Tagging
• Chunking

For the linguistic analysis the Stanford Tagger [44] is used. A tagger is a tool, which
takes as input a text and returns a list of sentences with tagged (categorized) words
(i.e., words categorized as noun, verb, adjective etc.). The chosen tagger categorizes
the words according to the Penn-Treebank tagset [45]. In this tagset the word catego-
ries together with some important syntactical features of a word are encoded. For

 Domain Expert Centered Ontology Reuse for Conceptual Models 757

instance, if a noun is in plural then the category NNS is chosen. If a proper noun is
detected then NNP is used. The tag JJ is one possibility to define Adjectives. Verbs
are annotated with tags like VB, VBZ. Also here the specific tag (e.g., VB, VBZ)
depends on the special usage of the verb in the sentence.

On top of the tagging module the chunking module clusters a set of words that be-
long together to chunks. The chunker module clusters nouns (e.g., customer number)
as well as word categories strongly related to nouns (e.g., articles, adjectives) to a
noun phrase (e.g., the customer number). It subsumes verbs and word categories,
which are strongly related to a verb (e.g., adverb, verb particle) to a verb phrase. For
natural language query sentences, an exception was introduced. If “many” or “much”
follows the word “how” (e.g., “how many persons”) then “how” and “many” are
combined to one chunk. The chunking output is forwarded to the interpreter.

4.2 Selection of Classes and Relationships

The query interpreter extracts all the noun phrases from the query. These extracted
query notions are compared with verbalized OWL classes and individuals of the on-
tology. If there is a match, then the OWL class is treated as a selected concept. An
individual is traced back to the class to which it belongs. This class is then treated as a
selected concept.

For a concept (OWL class) the relationships (object properties, value restrictions,
cardinality restrictions) are presented in the verbalized form described in the previous
section. In order to give the stake holders the freedom to select those relationships that
are really relevant they are provided with relationships in which the selected concepts
are directly involved or inherited from their super classes. From these presented and
verbalized relationships, the stake holders can freely choose the needed relationships.

If all the possible relationships of a selected concept “c” are needed, then the fol-
lowing is presented:

• The verbalized concept “c’.
• All the verbalized object properties, in which c is involved.
• All the verbalized cardinality restrictions, in which c is involved.
• All the verbalized value restrictions (hasValue, someValuesFrom, allValuesFrom)

in which c is involved.
• The set of super classes SC of c.
Furthermore, for each s œ SC the following is presented
• All the verbalized object properties, in which the concept s is involved.
• All the verbalized cardinality restrictions in which the concept s is involved.
• All the verbalized value restrictions (hasValue, someValuesFrom, allValuesFrom)

in which the concept s is involved.

In the selection process, the resulting conceptual model elements that are proposed by
the system are close to their origins if several mapping strategies exist. For instance,
for the three mapping strategies of the pattern “N1 V N2 which is a N3”, the one is
chosen where V and N2 together names the association.

758 C. Kop

5 Tests and Tool

5.1 Tests of Tool Components

Some of the OWL documents from [48] and [49], specifying domain ontologies, were
examined to get a good impression how ontologies are specified and which natural
language pattern can be applied for verbalization of relationship candidates. There is a
restriction for verbalization. This restriction appears if the object property name does
not contain a verb but only a noun. If from the examination of the object property and
its involved domain and range it cannot be concluded, that the noun mentioned in the
object property is the role or the subset of the range then it is treated incorrectly as a
verb.

For a better understanding which kind of database queries are generated, the natural
language query processing component was tested with the Geo query corpus [46].
This corpus contains about 880 query statements. In addition, also queries found in
literature were used as test cases. Examples for such queries are “which states have a
major city named Austin” (from Geo Query corpus), “Tell me the order items that
belong to Order 123”. It is also possible to combine more than one sentence to one
query.

5.2 Tool

The tool is implemented in Java. Figure 2 shows a screen shot of the tool.

Fig. 2. Tool Screenshot

For reading and parsing OWL documents, the Jena API2 is used.
The tool consists of three areas. In the left upper corner, the original ontology can be

imported. The user can see the ontology with different views. One of these views is a

2 Jena Semantic Web Framework Project: http://jena.sourceforge.net/

 Domain Expert Centered Ontology Reuse for Conceptual Models 759

list of OWL classes together with some statistics (e.g., appearance in the subclass
hierarchy, number of children, number of object properties, number of instances and
number of restrictions). It is possible to sort the list according to one of these statistical
columns. Doing this, the user gets a quick overview of the “structural importance” of a
class. Hence, he can even make some first selections according to these sorted lists.

As an alternative, queries can be used as described in Section 4. Once, the needed
classes are known, the possible relationship candidates of these classes can be pre-
sented in the upper right area after pressing the “magnifying glass” button. In the
resulting controlled sentences for the relationships, involved concepts are firstly
treated equally (i.e., no distinction between a class and attribute is made). There are
three views in this area. The first view shows only the relationships, which can be
derived from the object properties and restrictions in which the selected concept is
directly involved. The second view shows the relationship candidates that can be in-
herited from super classes. In this view, instead of the super class the selected concept
is now involved. As a reason for this step, suppose that in a conceptual model a super
class might not be important. However, it is important to present the structure of the
selected concept, even if it is inherited. The last view shows the “automatic proposal”
of the tool. According to Section 4.2, the relationships are shown, in which the con-
cept is directly involved. Afterwards, all the super classes of the concept are pre-
sented. Finally the super classes involved in their relationships (object properties and
restrictions) are presented.

If the user finally decides to take the selected concepts and (some of) their relation-
ships for his conceptual model, he can do it with the shopping cart button. The se-
lected concept and relationships then are reused and also appear in the bottom area.
The content of this “basket” can be stored into a XML file, which then can be im-
ported into a conceptual modeling editor for further usage in a succeeding phase (i.e.,
refinement and integration of the chosen elements in order to generate and complete
the conceptual database model).

6 Conclusion and Future Work

In order to reuse parts of ontologies for database models of information systems, the
approach described in this paper focuses on a domain expert centered presentation
and selection of OWL ontology elements. Verbalization is used as the presentation
strategy. Natural language queries are used for initial selection of concepts. Candi-
dates for relationships, which can be mapped to UML associations, were derived from
verbalized object properties, value restrictions and cardinality restrictions.

In future, additional ontology elements will be examined for their usage in concep-
tual models. Up to now for example, a value restriction only makes sense for a
conceptual model if the “range” of this restriction is a named OWL class. If it is a
compound ontology concept (e.g., union of …), currently it is not considered for con-
ceptual modeling. Furthermore, OWL datatype properties will be examined for the
described ontology reuse approach. It is also planned to study if verbs found in que-
ries can be used for matching with concepts in the ontology.

760 C. Kop

References

1. Berger, H., Dittenbach, M., Merkl, D.: Quering Tourism Information Systems in Natural
Language. In: Godlevsky, M., Liddle, S., Mayr, H.C. (eds.) Informaton Systems Technol-
ogy and its Applications – Proceedings of the 2nd Conference ISTA 2003. GI Lecture
Notes in Informatics, vol. p-30, pp. 153–165. Koellen Verlag, Bonn (2003)

2. Bloesch, A.C., Halpin, T.A.: ConQuer: A Conceptual Query Language. In: Thalheim, B.
(ed.) ER 1996. LNCS, vol. 1157, pp. 121–133. Springer, Heidelberg (1996)

3. Bontcheva, K.: Generating Tailored Textual Summaries from Ontologies. In: Gómez-
Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 531–545. Springer, Hei-
delberg (2005)

4. ter Hofstede, A.H.M., Proper, H.A., van der Weide, T.P.: Exploring Fact Verbalizations
for Conceptual Query Formulation. In: van de Riet, R.P., Burg, J.F.M., van der Vos, A.J.
(eds.) Proceedings of the Second International Workshop on Applications of Natural Lan-
guage to Information Systems, pp. 40–51. IOS Press, Amsterdam (1996)

5. Embley, D.W.: NFQL: The Natural Forms Query Language. ACM Transactions on Data-
base Systems 14(2), 168–211 (1989)

6. Fliedl, G., Kop, C., Vöhringer, J.: From OWL Class and Property Labels to Human Un-
Derstandable Natural Language. In: Kedad, Z., Lammari, N., Métais, E., Meziane, F.,
Rezgui, Y. (eds.) NLDB 2007. LNCS, vol. 4592, pp. 156–167. Springer, Heidelberg
(2007)

7. Fliedl, G., Kop, C., Mayr, H.C., Salbrechter, A., Vöhringer, J., Weber, G., Winkler, C.:
Deriving Static and Dynamic Concepts from Software Requirements using Sophisticated
Tagging. Data and Knowledge Engineering 61(3), 433–448 (2007)

8. Fuchs, N.E., Höfler, S., Kaljurand, K., Rinaldi, F., Schneider, G.: Attempto Controlled
English: A Knowledge Representation Language Readable by Humans and Machines. In:
Eisinger, N., Małuszyński, J. (eds.) Reasoning Web. LNCS, vol. 3564, pp. 213–250.
Springer, Heidelberg (2005)

9. Hewlett, D., Kalyanpur, A., Kolovski, V., Halaschek-Wiener, C.: Effective Natural Lan-
guage Paraphrasing of Ontologies on the Semantic Web. In: End User Semantic Web In-
teraction Workshop. CEUR-WS Proceedings, vol. 172 (2005),
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/

10. Jaakkola, H., Thalheim, B.: Visual SQL – High-Quality ER-Based Query Treatment. In:
Jeusfeld, M.A., Pastor, Ó. (eds.) ER Workshops 2003. LNCS, vol. 2814, pp. 129–139.
Springer, Heidelberg (2003)

11. Järvelin, K., Niemi, T., Salminen, A.: The visual query language CQL for transitive and
relational computation. In. Data & Knowledge Engineering 35, 39–51 (2000)

12. Kardkovács, Z.T.: On the Transformation of Sentences with Genitive Relations to SQL
Queries. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp.
10–20. Springer, Heidelberg (2005)

13. Owei, V., Rhee, H.-S., Navathe, S.: Natural Language Query Filtration in the Conceptual
Query Language. In: Proceedings of the 30th Hawaii International Conference on System
Science, vol. 3, pp. 539–550. IEEE Press, New York (1997)

14. Stratica, N., Kosseim, L., Desai, B.C.: Using semantic templates for a natural language in-
terface to the CINDI virtual library. Data & Knowledge Engineering 55, 4–19 (2005)

15. Kapetainos, E., Baer, D., Groenewoud, P.: Simplifying syntactic and semantic parsing of
NL-based queries in adavanced application domains. Data & Knowledge Engineering
Journal 55, 38–58 (2005)

 Domain Expert Centered Ontology Reuse for Conceptual Models 761

16. Kao, M., Cercone, N., Luk, W.-S.: Providing quality responses with natural language inter-
faces: thenull value problem. IEEE Transactions on Software Engineering 14(7), 959–984
(1988)

17. Tang, L.R., Mooney, R.J.: Using Multiple Clause Constructors in Inductive Logic Pro-
gramming for Semantic Parsing. In: Proceedings of the 12th European Conference on Ma-
chine Learning (ECML 2001), pp. 466–477 (2001)

18. Terwillinger, J.F., Delcambre, L.M., Logan, J.: Querying through a user interface. Data
Knowledge Engineering 63, 774–794 (2007)

19. Kate, R.J., Mooney, R.J.: Using String-Kernels for Learning Semantic Parsers. In:
COLING/ACL Proceedings, Sydney, pp. 913–920 (2006)

20. Ge, R., Mooney, R.J.: A Statistical Semantic Parser that Integrates Syntax and Se-mantics.
In: Proceedings of the Ninth Conference on Computational Natural Language Learning,
Ann Arbor, MI, pp. 9–16 (2005)

21. Wong, Y.W., Mooney, R.J.: Learning for Semantic Parsing with Statistical Machine
Translation. In: Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics (HLT/NAACL 2006),
New York, pp. 439–446 (2006)

22. Buchholz, E., Cyriaks, H., Düsterhöft, A., Mehlan, H., Thalheim, B.: Applying a Natural
Language Dialog Tool for Designing Databases. In: Proc. International Workshop on Ap-
plications of Natural Language to Databases (NLDB 1995), pp. 119–133 (1995)

23. Chen, P.P.: English Sentence Structure and Entity Relationship Diagrams. Int. Journal of
Information Sciences 29, 127–149 (1983)

24. Moreno, A.M., Juristo, N., van de Riet, R.P.: Formal Justification in object-oriented mod-
eling: A linguistic approach. Data & Knowledge Engineering 33, 25–47 (2000)

25. Rolland, C.: An Information System Methodology Supported by an Expert Design Tool.
In: Pirow, P.C., Duffy, N.M., Ford, J.C. (eds.) Proceedings of the IFIP TC8 International
Symposium on Information Systems, pp. 189–201. North Holland Publ. Company (1987)

26. Tjoa, A.M., Berger, L.: Transformation of Requirement Specification Expressed in Natu-
ral Language into an EER Model. In: Elmasri, R.A., Kouramajian, V., Thalheim, B. (eds.)
ER 1993. LNCS, vol. 823, pp. 127–149. Springer, Heidelberg (1994)

27. Vadera, S., Meziane, V.: From English to Formal Specifications. The Computer Jour-
nal 37(9), 753–763 (1994)

28. Abbott, R.J.: Program Design by Informal English Descriptions. Communication of the
ACM 26(11), 882–894 (1983)

29. Burg, J.F.M.: Linguistic Instruments in Requirements Engineering. IOS Press, Amsterdam
(1997)

30. Dignum, F., Riet van de, R.P.: Knowledge base modeling based on linguistic and founded
in logic. Data & Knowledge Engineering 7, 1–34 (1991)

31. Nijssen, G.M., Halpin, T.A.: Conceptual Schema and Relational Database Design – A fact
oriented approach. Prentice Hall Publishing Company (1989)

32. Baclawski, K., Koka, M.K., Kogut, P.A., Hart, L., Smith, J., Holmes, W.S., Letkowski, J.,
Aronson, M.L., Emery, P.: Extending the Unified Modeling Language for Ontology De-
velopment. Journal of Software and System Modeling (sosym) 1(2), 142–156 (2002)

33. Sugumaran, V., Storey, V.: The Role of Domain Ontologies in Database Design: An On-
tology Management and Conceptual Modeling Environment. ACM Transaction on Data-
base Systems 31(3), 1064–1094 (2006)

34. Sugumaran, V., Storey, V.: Ontologies for conceptual modeling: their creation, use and
management. Data & Knowledge Engineering 42, 251–271 (2002)

762 C. Kop

35. Vasilecas, O., Bugaite, D.: Ontology-Based Elicitation of Business Rules. In: Nilsson,
A.G., Gustas, R., Wojtkowski, W.G., Wojtkowski, W., Wrycza, S., Zupancic, J. (eds.) Ad-
vances in Information Systems Development: Bridging the Gap between Academia & In-
dustry, vol. 2, pp. 795–805. Springer, Heidelberg (2005)

36. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of FOIS 1998,
pp. 3–15. IOS Pess, Amsterdam (1998)

37. Hart, L., Emery P., Colomb B., Raymond, K., Taraporewalla, S., Chang, D., Ye, Y., Ken-
dall, E., Dutra, M.: OWL Full and UML 2.0 Compared, Version 2.4 (2004),
http://www.itee.uq.edu.au/~colomb/Papers/UML-
OWLont04.03.01.pdf

38. Gasevic, D., Djuric, D., Devedzic, V., Damjanovic, V.: Converting UML to OWL Ontolo-
gies. In: ACM Proceedings of the 13th International World Wide Web Conference on Al-
ternate Track Papers & Posters, pp. 488–489. ACM Press (2004)

39. Brockmans, S., Haase, P., Hitzler, P., Studer, R.: A Metamodel and UML Profile for Rule-
Extended OWL DL Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 303–316. Springer, Heidelberg (2006)

40. Conesa, J., Olivé, À.: Pruning Ontologies in the Development of Conceptual Schemas of
Information Systems. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER
2004. LNCS, vol. 3288, pp. 122–135. Springer, Heidelberg (2004)

41. Bhatt, M., Rahayu, W., Prakash, S., Wouters, C.: OntoMove: A Knowledge Based Frame-
work For Semantic Requirement Profiling and Resource Acquistion. In: Proceedings of the
Australian Software Engineering Conference (ASWEC 2007), pp. 137–146 (2007)

42. Alani, H., Harris, S., O’Neill, B.: Ontology Winnowing: A Case Study on the AKT Refer-
ence Ontology. In: International CIMCA/IAWTIC Conference, pp. 710–715. IEEE Press
(2005)

43. Sugumaran, V., Purao, S., Storey, V., Conesa, J.: On-Demand Extraction of Domain Con-
cepts and Relationships from Social Tagging Websites. In: Hopfe, C.J., Rezgui, Y.,
Métais, E., Preece, A., Li, H. (eds.) NLDB 2010. LNCS, vol. 6177, pp. 224–232. Springer,
Heidelberg (2010)

44. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature rich part-of speech tagging
with a cyclic dependency network. In: Proceedings of HLT-NAACL, pp. 252–259 (2003)

45. Penn-Treebank TagSet, http://www.cis.upenn.edu/~treebank (last access:
August 19, 2011)

46. Geo Query Project, http://www.cs.utexas.edu/users/ml/geo.html (last
access: August 19, 2011)

47. Controlled Natural Language,
http://sites.google.com/site/controllednaturallanguage/
(last access: August 19, 2011)

48. http://krono.act.uji.es/Links/ontologies (last access: August 19, 2011)
49. Ontology Designpatterns.org (ODB),

http://www.ontologydesignpatterns.org/ (last access: August 19, 2011)

Semantic Invalidation of Annotations Due

to Ontology Evolution

Julius Köpke and Johann Eder

Department of Informatics-Systems, University of Klagenfurt, Austria
firstname.lastname@aau.at

http://isys.uni-klu.ac.at

Abstract. Semantic annotations assign concepts of a reference ontology
to artifacts like documents, web-pages, schemas, or web-services. When
an ontology changes, these annotations have probably to be maintained
as well. We present an approach for automatically checking whether an
annotation is invalidated by a change in the reference ontology. The
approach is based on annotation paths and on the explicit definition of
change-dependencies between ontology artifacts. Ontology change-logs
and change dependencies are then exploited to identify those annotation
paths which require maintenance.

Keywords: Semantic annotation, ontology evolution, annotation main-
tenance, semantic invalidation, semantic dependencies.

1 Introduction

Semantic annotations were developed to assign semantics to various documents,
e.g. XML-Schemas, XML documents, web-pages, or web-services by linking el-
ements of these documents to elements of a reference ontology [20],[13]. When
the reference ontology evolves, these annotations might have to be maintained
as well. To ease the maintenance effort it is highly desirable to identify those
annotations which have to be maintained in contrast to those which are invari-
ant to the changes. So the goal of the research reported here1 was to develop a
technique to automatically identify those annotations which need attention as
a consequence of a given set of ontology changes. The method should deliver
all annotations where the annotations itself or instance data (might) need to
be changed and it should return the smallest possible set of annotations (no
false negatives and as little false positives as possible). Furthermore, the anal-
ysis of the necessity of maintenance should also deliver strategies for changing
the annotation, if possible.

The proposal is based on annotation path expressions [14] as a method for
semantic annotations. Annotations consists of paths of concepts and properties
of the reference ontology. These annotation paths were developed to grasp the
1 This work was partially supported by the Austrian Ministry of Science and Research;

program GEN-AU, project GATIB.

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 763–780, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://isys.uni-klu.ac.at

764 J. Köpke and J. Eder

semantics more precisely and to provide a pure declarative representation of
the semantics opposed to the more procedural lifting and lowering scripts of
traditional XML-Schema annotation [13] methods. These annotation paths can
automatically be transformed to ontology concepts. The ontology concepts can
then be used to create semantic matchings between annotated elements from
different schemas or different versions of the same schema. An example for an
annotation is /invoice/hasDeliveryAddress/Address/hasZipCode which could be
used to annotate a zip-code element in an XML-Schema for invoices. The example
assumes that invoice and address are concepts of the reference ontology and
hasDeliveryAddress is an object-property and hasZipcode is a datatype-property.
Another motivation for the development of annotation paths was to provide a
better basis for maintaining annotations when the reference ontology is changed.
In [14] we have introduced different types of invalidations of the annotations
when the ontology changes:

– Structural invalidation: An annotation path references concepts and prop-
erties of the reference ontology. All referenced concepts and properties must
exist in the ontology and basic structural requirements must be met. For ex-
ample /invoice/hasDeliveryAddress/Address/hasZipCode gets invalid if the
concept Address is removed from the reference ontology.

– Semantic invalidation: An annotation path is invalid if its semantic repre-
sentation (an ontology concept) imposes contradictions to the reference on-
tology. For example /invoice/hasDeliveryAddress/Address/hasZipCode gets
semantically invalid if the domain of hasDeliveryAddress is changed to order
and invoice is defined to be disjoint from order.

These types of invalidations can be tracked by structural checks and simple
reasoning over the ontology representation of the annotation path. When an
annotation got invalid it needs to be repaired. Thus, evolution-strategies [19]
are required in order to maintain the annotations. For example, if a referenced
concept is removed we may use the super-concept for the annotation instead. If
it was renamed we need to rename the element in the annotation paths as well.
In this paper we will focus on another kind of invalidation: Changes of the
semantics of the annotations which lead to a misinterpretation of annotated
data without invalidating the annotation structurally or semantically. We will
describe this problem in the following section with an illustrative example. We
will first present the notion of semantic changes and discuss if such changes to the
semantics of an annotation can, still, be derived from the plain ontology in section
2 and describe and define the explicit dependency definitions in section 3 and 4.
In section 5 we show how the explicit definitions can be used to track semantic
changes. In section 6 we present a prototype-implementation of the approach.
Section 7 gives an overview about the related work. The paper concludes in
section 8.

Semantic Invalidation of Annotations Due to Ontology Evolution 765

2 Semantic Changes and Their Automatic Detection

Semantic changes are consequences of changes in the reference ontology which
do not invalidate the annotation semantically or structurally, but might lead
to misinterpretations. We illustrate such semantic changes with the following
example:

Fig. 1. Example Ontology

In figure 1 an example ontology2 that represents parts of the European Union
is depicted. We now assume that we have an annotation of an XML-Schema-
element with the annotation path /EU/hasPopulation. Some changes were made
to the ontology: Slovenia was added as an additional MemberCountry and an
additional Commissioner -instance was added and persons now have the prop-
erty hasBirthdate. The differences between the old and the new ontology ver-
sion are marked in dark-grey. Now obviously the semantics of an annotation
/EU/hasPopulation of some element in an XML Schema are changed because
the parts of the European union were changed. This change does not influence
the validity of the annotation itself - but the semantics of the annotation has
changed. Documents that were annotated with the old ontology version will have
a lower population number than documents of the current version. This imposes
problems because it leads to the misinterpretation of the data. For example a
human reader might come to the conclusion that the EU has a higher birthrate

2 The member countries are modeled in form of concepts and specific commissioners
as instances in order to show problems that may occur when concepts or instances
evolve.

766 J. Köpke and J. Eder

after the change. The goal of this paper is the automatic generation of warnings
for such changes.

Since an ontology is used to express the semantics of a domain it should be
possible to derive the changes of the semantics of annotations automatically.
To avoid that each annotation has to be checked, if any ontology element has
changed, we need to reduce the set of ontology elements which might invalidate
a specific annotation. Ontology views [16] are methods to reduce the size of an
ontology. Ontology module extraction [7] techniques can be applied for the same
purpose. These methods generate a sub-ontology that only contains relevant
elements for a given starting point (set of concepts). The starting point in our
case is the semantic representation of an annotation path expression. When such
sub-ontologies are created for the old and the new ontology version we can check,
if there were changes between the sub-ontology versions. Since the sub-ontologies
only contain elements that are relevant for the annotation in question we should
be able to significantly reduce the number of false-positives.

Typical methods for the generation of sub-ontologies begin with a concept in
question and then add more and more concepts that are related. The relation
is expressed in form of sub/superclass relations or object-properties. We will
illustrate the general idea of the generation of a sub-ontology with an example:

– The starting point is EU/hasPopulation
– This leads the inclusion of the concept EU
– The consistsOf property on EU requires the addition of MemberCountry
– MemberCountry requires the addition of its super-concept: Country with the

property hasInhabitants
– MemberCountry requires the addition of Slovenia, Austria, Germany, ...

When we now compare the view of the old and the new ontology version we
can figure out that Slovenia was added. We would throw a warning that the
semantics of EU/hasPopulation was possibly changed. In this example we have
assumed that we include all datatype-properties of a concept in the view and all
concepts that are in the range of the object properties of the included concepts.
In addition, all super- and sub-concepts as well as individuals of the included
concepts are added. Unfortunately, such an algorithm would thus, include much
more concepts:

– The hasCommission property of EU requires the addition of EUCommission
– The hasPresident property of EUCommision requires the addition of Presi-

dent.
– The hasMember property of EUCommision requires the addition of Com-

missioner.
– The Commissioner concept requires the addition of its instances.
–

At the end the entire ontology would be included in the view. Thus, all changes
that happened between the old and the new ontology version are assumed to
be relevant for EU/hasPopulation. This is certainly not true. In order to avoid

Semantic Invalidation of Annotations Due to Ontology Evolution 767

this behavior the set of properties that are followed to build the view needs
to be much smaller. Thus, strategies are required to choose the proper object-
properties that should be followed. But where is the difference between consistsOf
and hasCommission? From where can we know that if we want to build the view
for EU/hasPopulation we need to follow the consistsOf property and that if we
want to create the view for EU/numberOfCommissioners we need to follow the
hasCommision property?

Thus, strategies are required in order to keep the view small and meaningful.

3 Requirements for Explicit Dependency-Definitions

As shown in the last section there is typically no knowledge about what may
be invalidated semantically by changes since this is not an invalidation of the
logical theory (which could be calculated) but a change of the semantics of
the annotations. The reason for this is that the ontology does not fully specify
the real-world domain. Therefore, a straight forward solution is the addition of
the missing knowledge to the ontology. This means sentences like ”The population
of the EU is changed when the MemberCountries change” should be added to
the ontology. Obviously this a very wide definition because we have not stated
anything about the types of relevant changes. Is it changed when the name
of a country changes or only if a specific attribute changes? In general which
operations may invalidate our value? The examples of the population of the EU
can be described as the aggregation of the population of the member countries.
Thus, we need a way to describe such functions. These observations lead to the
following requirements for change-dependency definitions:

1. The change-dependent concept or property must be described including the
context. For example hasPopulation of EU and hasPopulation of City might
depend on a different set of ontology elements.

2. The definition of the change-dependency should allow fine grained defini-
tions of dependencies. For example it should be possible to define that EU-
/hasPopulation is dependent on the population of the MemberCountries. It
would not be sufficient to state that it is dependent on population in general.

3. It should be possible to define that one artifact is dependent on a set of other
artifacts.

4. Multiple dependencies should be possible for one change-dependent concept
or property.

According to the first requirement the dependent artifact needs to be specified
precisely. This can be realized with the annotation path syntax. Therefore, the
path EU/hasPopulation defines that the hasPopulation property on the concept
EU is the subject of a dependency definition. The second requirement supposes
that not only the subject should be described via path expressions but also the
object of a change-definition should be described in terms of path expressions.
Unfortunately, the plain annotation path syntax does not fulfill the third re-
quirement. It, therefore, needs to be enhanced with expressions to address sets.

768 J. Köpke and J. Eder

Dependencies on Sets and Aggregations: Some ontology artifact may be change-
dependent on a set of other artifacts. In our running example the population
of the EU depends on the set of MemberCountries. More precisely it is not
dependent on the set of MemberCountries in general but on the sum of the
hasInhabitants property of each MemberCountry. In general, there are different
kinds of sets in an ontology: subclasses, sub-properties and instances. Therefore,
all those must be expressible. The sum function is only one aggregation function.
Typical other aggregation functions are are min, max, count, and avg. In addition
to aggregation functions another kind of function over sets is of interest: The
value function. It can be used to state than one artifact is directly dependent on
the values of a set of other artifacts. The subclasses and instances operator can
be used in a path wherever a concept is allowed and the sub-properties operator
can be used wherever a property-step is allowed. We will illustrate the ideas with
examples:

1. EU/hasPopulation is dependent on
/EU/consistsOf/sum(subclasses(MemberCountry))/hasInhabitants.

2. EU/numberOfCommissioners is dependent on /EU/hasCommission/
EUCommission/hasMember/count(instances(Commissioner)).

3. MemberCountry/hasInhabitants is dependent on
MemberCountry/subproperties(hasInhabitants).

4. /city is dependent on value(subclasses(city))

The first example calculates the sum of all hasInhabitants properties of all sub-
classes of member − countries, while the second one just counts the number
of commissioner instances. The first example defines an abstract sum because
the ontology cannot contain any information about the number of inhabitants on
class level. It only defines that the value becomes invalid if the ontology structure
changes in a way that the function would operate on a changed-set of ontology
artifacts. In contrast the second example can return a defined number because it
is a simple count operation. In addition, it defines the change-dependency over
instances. In this case the ontology may contain instance data. In the third exam-
ple it is assumed that the hasInhabitants property has sub-properties and that
a change of the sub-properties will also invalidate EU/hasPopulation. Examples
for sub-properties could be hasMalePopulation and hasFemalePopulation.

The last example shows the value function. It defines that elements that are
annotated with /city are change-dependent on all the subclasses of city. There-
fore, a rename of a subclass of city requires a rename of the specific city-element
in XML-documents as well.

4 Definition of Change-Dependencies

In order to introduce the proposed change-dependency definitions we will first
define our ontology model. We use an abstract ontology model which can be com-
pared to RDFS[2] shown graphically in figure 2. It contains the relevant aspects

Semantic Invalidation of Annotations Due to Ontology Evolution 769

of typical ontology languages. Basically an ontology consists of concepts, proper-
ties and individuals. Concepts and properties are hierarchically structured. An
individual is an instance of a set of concepts. A property has a domain that
defines the set of classes that have this property. Properties are divided into
object-properties and datatype-properties. Object-properties form relationships
between classes and, therefore, have a range that defines the set of classes which
are targets of the property. Datatype-properties have a definition of the data
type. Properties are modeled on the class level while an instantiation of a prop-
erty is done on instance-level using property assertions. Concepts may restrict
the usage of properties. A restriction has a type and a value. The type can be
a typical OWL [1] cardinality- or value- restriction. The type indicates the type
of restriction (min, max, value) the value indicates the value that is attached to
this restriction. Individuals can have propertyAssertions that indicate that an
individual instantiates some property. In case of an object-property the target
of a propertyAssertion is another individual. In case of datatype-properties it
is some data-value. This abstract ontology model covers the important concepts
of most ontology languages. By using this abstract model we can apply the work
on different ontology formalisms that can be transformed to our representation.
This does not require to transform the whole ontologies to our ontology model.
It is sufficient to formulate the changes that occur to the ontology in terms of
our ontology-model. Depending on the used ontology formalism reasoning may
induce additional changes that we can simply also add to our change-log by
comparing the materialized ontology version before and after the change.

Based on this ontology model we define annotation paths that are used to an-
notate artifacts of an XML-Schema with a reference ontology. Both annotation
path and dependency-definitions are modeled in the meta-model in figure 3. An
AnnotationPath consists of a sequence of AnnotationPathSteps. Each step has

Fig. 2. Ontology Meta-Model

770 J. Köpke and J. Eder

a position and a uri that points to some property or concept of the reference on-
tology. According to the referenced ontology artifact an AnnotationPathStep is
either a conceptStep or a propertyStep with the subclasses objectPropertyStep
and dataTypepropertyStep. Each step except the last step has a succeeding step.
Each step except the first step has a previous step. An annotation path has a
defined first and a defined last-step.

A DependencyDefinition has one hasSubject relation to an AnnotationPath
and one or more hasObject relations to dependencyDefinitionPath. Each de-
pendencyDefinitionPath consists of a number of DependencyPathSteps. A Depen-
dencyPathStep is a subclass of an annotationPathStep which is extended with
an optional setExpression. The setExpression has a type (subclasses, subprop-
erties, instances) and an optional function which has a type that can be value,
min, max, avg, count. Each DependencyDefinitionPath has a hasAnnotation-
Path relation to one AnnotationPath. This specific annotationPath is created by
casting all steps to standard AnnotationPathSteps. An annotationPath can be
represented in form of an ontology concept. This concept can be obtained with
the method getConcept().

In order to meet the requirements that were introduced in the last section some
integrity constraints on AnnotationPath and DependencyDefinitionpath are
required. We refer the interested reader for the complete definition of annotation
Path to [14].

4.1 Integrity Constraints on AnnotationPath

1. The first step must be a ConceptStep.
2. An AnnotationPath must not contain DependencyPathSteps.
3. The last step must be a ConceptStep or a dataTypePropertyStep.
4. When a conceptStep has a previous step then the previous step must be an

ObjectPropertyStep.
5. The next step of a ConceptStep must be an ObjectPropertyStep or a

DataTypePropertyStep.
6. A DataTypePropertyStep can only exist as the last-step.
7. A ConceptStep must not reference to another AnnotationPath.

4.2 Integrity Constraints on DependencyDefinitionPath

1. All integrity constraints of standard steps except (2) and (7) also apply on
DependencyDefinitionPath.

2. Only the last two steps may have a setExpression including a function.
3. The setExpression of type subclasses is only allowed for conceptSteps.
4. The setExpression of type instances is only allowed for conceptSteps.
5. The setExpression of type subproperties is only allowed for propertySteps.

Semantic Invalidation of Annotations Due to Ontology Evolution 771

Fig. 3. Meta-Model of the Change-Dependency Definitions

5 Detection of Semantic Changes

In order to detect if the semantics of an annotation path got invalid by a change
we first introduce the change-model for our ontology-model. The changes are
stored in a change-log and the detection of relevant changes is realized by rules
that operate on the statements of the change-log and the old and the new on-
tology versions.

5.1 Change-Log

The change-log consists of a set of changes C. Each change c ∈ C is a tuple
c = (op, tid, p1, ...pn). Where op defines the kind of change, tid is a unique
identifier of a change and also creates an order over the changes. A change
with a lower tid was made before a change with a higher tid. The parameters
p1 .. pn are parameters for the change. A multi-version ontology O has differ-
ent versions O1...On. Each version has a timestamp tid that uniquely identifies
the version and also creates an order over the different versions. The set of
changes that were made between two ontology versions On and On+1 is denoted
Changes(On, On+1, C).

Changes(On, On+1, C) = {∀c ∈ C|c.tid ≥ On.tid ∧ c.tid ≤ On+1.tid}

There are different change operations. We will discuss the different operations
in the next section. For readability reasons we present the changes in form of
predicates. Thus, c.op is the name of the predicate. In addition each change
has an inverse change c−1 that compensates the change-effect of the change c.
We assume that the changes in Changes(On, On+1, C) are free of redundancies

772 J. Köpke and J. Eder

between On and On+1 such that no change is compensated by an inverse change
in the change-log.

Global Atomic Changes: Atomic changes are basic changes that add or
remove concepts, properties or instances. It must be ensured by the ontology
management system that a removal of a concept, property or instance is only
possible when the artifact is not, still, referenced. The table shows the basic
add-operations and their inverse delete operations.

c c−1

addConcept(tid,uri) delConcept(tid,uri)
addOProp(tid,uri) delOProp(tid,uri)
addDProp(tid,uri) delDProp(tid,uri)
addInstance(tid,uri) delInstance(tid,uri)

Hierarchy Changes: In addition to theses basic operations the following op-
erations that maintain the hierarchy of the artifacts are required. They are used
to express changes in the concept- or property-hierarchy.

c c−1

addChildC(tid,childUri,parentUri) remChildC(tid,childUri,parentUri)
addChildOProp(tid,childUri,parentUri) remChildOProp(tid,childUri,parentUri)
addChildDProp(tid,childUri,parentUri) remChildDProp(tid,childUri,parentUri)
addInstToC(tid,instanceUri,conceptUri) remInstToC(tid,instanceUri,conceptUri)

Update Changes: Update changes are used to modify the domain and range
of properties as well as to maintain restrictions over properties on concepts and
to modify property assertions on individuals. The rename operations change the
URI of a specific concept, property or individual. We assume that these opera-
tions are global in the sense that every usage of the URI is changed automati-
cally. In addition we assume that these operations are added to the change-log
as atomic operations. Therefore, a rename does only show up as a rename but
not as a delete and subsequent insert in the change-log. The inverse operations
of update-changes are update operations of the same type but with swapped
parameters.

– updateRestriction(tid, conceptUri, propertyUri, oldValue, oldType,
newValue, newType)

– updateDomain(tid, propertyUri, {oldConceptUri}, {newConceptUri})
– updateRange(tid, propertyUri, {oldconceptUri}, {newconceptUri})
– updateType(tid, propertyUri, oldDataType, newDataType)
– updatePropertyAssertion(tid, instanceUri, propertyUri, oldValue, newValue)
– renameConcept(tid, oldUri, newUri)
– renameProperty(tid, oldUri, newUri)
– renameIndividual(tid, oldUri, newUri)

Semantic Invalidation of Annotations Due to Ontology Evolution 773

Composite Changes: In addition to the basic operations a set of composite
operations is of interest. A merge operation merges a a set of concepts, properties
or instances to one single concept, property or instance. The inverse operation
of a merge is a split.

c c−1

mergeC(tid,{conceptUri},conceptUri) splitC(tid,conceptUri,{conceptUri})
mergeP(tid,{propertyUri},propertyUri) splitP(tid,propertyUri,{propertyUri})
mergeI(tid,{instanceUri},instanceUri) splitI(tid,instanceUri,{instanceUri})
A composite operation is reflected as a sequence of other change-operations. In
order to specify that an explicit change-operation is part of a composite change
the atomic operation is annotated with the tid of the corresponding composite
change with statements of the form:
ChangeAnnotation(tidOfCompositeChange, tidOfAtomicChange)

5.2 Implicit Changes

In addition to explicit changes there are implicit changes. These changes can di-
rectly be caused by explicit changes or by classification according to the source
ontology language. For direct explicit changes we except the following implicit
changes to be automatically included in the change-log by the ontology manage-
ment system.

– If a concept is added or removed as a child of an existing concept and the
existing concept or one of its parents has a restriction on a property then a
restriction change is made on the added or removed concept implicitly.

– If a property is added or removed as a child of another property then the
domain and range of the added or removed property is changed implicitly.

– If an individual is added or removed to/from a concept then it is added/re-
moved to all its super-concepts implicitly.

The implicit changes as shown above and additional changes that can be derived
by comparing the materialized ontology versions of the ontology before and after
each change are stored in the change-log. The comparison algorithm can benefit
from the fact that the change-log contains information about renames, additions
and removes. Therefore, the complexity is strongly reduced since each element
from the source and target ontology can directly be mapped. In order to trace
which change caused the addition of these implicit changes the implicit changes
are annotated with predicates of the form causedBy(impl tid, tid). This allows
to keep the change-log clean of redundant implicit changes if the change that
caused the implicit changes is compensated by an inverse operation.

5.3 Detection of Semantically Invalid Annotation Paths

Now we define semantic invalidation as a change affecting the semantics of an
annotion path as follows.

774 J. Köpke and J. Eder

The predicate subClassOf(subc, superc, On) states that subc is a subclass of the
superclass superc according to the ontology version On. As an equivalent class is
logically defined as being sub- and superclass at the same time we assume that ev-
ery class is a subclass of itself. The predicate subPropertyOf(subp, superp, On)
expresses the sub-property-relationship analogously.

Definition 1. Semantic Invalidation of an Annotation-Path

Given an ontology version On, a succeeding ontology version On+1, a set of
changes Changes(On, On+1) abbreviated by C, a set of explicit dependency-
definitions DEP , and a set of XML-Schema-annotations A. An annotation path
a ∈ A is semantically invalid if:

semInvalid(a, C, DEP, On, On+1) ← InvalidByDep �= {}

RelevantDependencies is the set of definitions where the corresponding sub-
ject is an equivalent- or superclass of the annotation path a:
RelevantDependencies = {∀dep ∈ DEP |subClassOf(a, dep.subject, On)}
InvalidByDep is the set of change-dependency definitions where one of the ob-
jects got invalid because it contains a step that is invalid or if the semantics of
the annotation path of the object itself got changed.

InvalidByDep = {∀dep ∈ RelevantDependencies|(hasObject(dep, obj)
∧ isInvalid(obj)) ∨ (hasAnnotationPath(obj, annotationPathObject)
∧ semInvalid(annotationPathObject, C, DEP, On, On+1))}

Thus, dependency-definitions are transitive. If a depends on b and b depends
on c then a is invalid when c is invalid.

A DependencyDefinitionPath is invalid if at least one of its steps is invalid:
isInvalid(obj) ← ∃step ∈ obj.steps ∧ InvalidStep(step)
When a step is invalid is described in the next subsections.

Rules for the Invalidation of Steps: For the sake of simplicity we will define
the invalidation of steps in form of rules omitting quantifiers. In addition all
rules operate on the change-set defined by Changes(On, On+1, C). Rules for the
detection of additions operate on On+1 while rules for the detection of removals
operate on On−1. The rules 1-3, 6, 8, 10 create possible invalidations, while
the others create invalidations. Possible invalidations are invalidations where an
invalidation may have taken place but additional review by the user is required.

1. A PropertyStep gets possibly invalid, if the domain of the property or of a
super-property has changed.
PropertyStep(?step) ∧ subPropertyOf(?step.uri, ?superProperty,
On+1) ∧ updateDomain(, ?superProperty, ,)
⇒ InvalidStep(?step,′ DomainOfPropertyChanged′)

Semantic Invalidation of Annotations Due to Ontology Evolution 775

2. A property-step is possibly invalid, if the range of the property or a super-
property has changed.
ObjectT ypePropertyStep(?step)∧ subPropertyOf(?step.uri, ?
superProperty, On+1) ∧ updateRange(, ?superProperty, ,)
⇒ InvalidStep(?step,′ RangeOfPropertyChanged′)
The same holds for the change of the data type of a datatype-property
analogously.

3. A concept-step gets possibly invalid, if a restriction on the property of the
next step has changed.
ConceptStep(?step) ∧ isSubConceptOf(?step.uri, ?superuri, On+1) ∧
hasNextStep(?step, ?next) ∧ subPropertyOf(?next.uri, ?supernexturi,
On+1) ∧ updateRestriction(, ?superuri, ?supernexturi, , , ,)
⇒ InvalidStep(?step,′ RestrictionOnNexStepChanged′)

4. A set expression over subclasses without a function becomes invalid, if a
subclass is added.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp,) ∧ equals(?exp.type,′ subclasses′) ∧
subConceptOf(?suburi, ?step.uri, On+1) ∧ addChildC(, ?newc, ?suburi)
⇒ Invalid(?step,′ SubclassAdded′)

5. A set expression over subclasses without a function becomes invalid, if a
subclass is removed.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp,) ∧ equals(?exp.type,′ subclasses′) ∧
subConceptOf(?suburi, ?step.uri, On) ∧ remChildC(, ?newc, ?suburi)
⇒ Invalid(?step,′ SubclassRemoved′)

6. A set expression over subclasses without a function becomes possibly invalid,
if a restriction on the property of the next step is changed in one of the sub-
concepts.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp,) ∧ equals(?exp.type,′ subclasses′)
∧ subConceptOf(?suburi, ?step.uri, On+1) ∧ hasNextStep(?step, ?next)
∧ subPropertyOf(?nextpropuri, ?next.uri, On+1) ∧
updateRestriction(, ?suburi, ?nextpropuri, , , ,)
⇒ Invalid(?step.′RestrictionOnSubclassChanged′)

7. A set expression over instances without a function becomes invalid, if in-
stances are added or removed to/from the specified concept or one of its
subconcepts. We will only depict the rule for the addition here.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp,) ∧ equals(?exp.type,′ instances′) ∧
subConceptOf(?conceptUri, ?step.uri, On+1)
∧ addInstT oC(, , ?conceptUri) ⇒ Invalid(?step,′ InstancedAdded′)

776 J. Köpke and J. Eder

8. A set expression over instances becomes possibly invalid, if the succeeding-
step is a property-step and property assertions on instances for that property
are modified.
ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp,) ∧ equals(?exp.type,′ instances′) ∧
subConceptOf(?conceptUri, ?step.uri, On+1)∧hasNextStep(?step, ?next)∧
PropertyStep(?next) ∧ instanceOf(?insturi, ?conceptUri) ∧
updatePropertyAssertion(, ?insturi, ?next.uri, ,)
⇒ Invalid(?step,′ PropertyAssertionChanged′)

9. A set expression over sub-properties becomes invalid, if a sub-property is
added or removed. We will only depict the rule for the addition here.
PropertyStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp,) ∧ equals(?exp.type,′ subproperties′) ∧
subPropertyOf(?suburi, ?step.uri, On+1)
∧(addChildOProp(, ?newc, ?suburi)∨(addChildDProp(, ?newc, ?suburi))
⇒ Invalid(?step,′ SubpropertyAdded′)

10. A set expression over sub-properties becomes possibly invalid, if the domain
or range of a sub-property is changed. uDomainOrRange is the superclass
of updateDomain and updateRange
PropertyStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
!hasFunction(?exp,) ∧ equals(?exp.type,′ subproperties′)
∧ subPropertyOf(?suburi, ?step.uri, On+1) ∧
uDomainOrRange(, ?suburi, ,)
⇒ Invalid(?step,′ DomainOrRangeOfSubpropertyChanged′)

Functions on Set Expressions: The rules in the last section excluded the
existence of functions over setExpressions. Therefore, any change that has conse-
quences for the setExpression is considered to invalidate the step.Whena function
is given then the problematic change-operations depend on the used function and,
therefore, additional rules are required. The sum-function is vulnerable to add and
delete operations but is resistent to local merge or split operations. All other ag-
gregation functions are vulnerable to add, del, split, andmerge. The value function
is vulnerable to renames of sub-concepts or sub-properties as well as to delete, split
and merge operations. Therefore, specific rules for the different kinds of functions
are required. Since merge and split are complex change-operations the rules need
to operate on theannotationof the changes (ChangeAnnotation(...)).Due to space
limitations we will only provide rules for sum-functions with added sub-concepts
and value-functions with renames.

1. A concept-step with a sum-function over sub-concepts gets invalid, if sub-
concepts are added or removed and the add and remove operations are not
linked to local split or merge operations. A non-local split operation hap-
pens when the source concept was a sub-concept of the step and one of the
new concepts is not, still, a sub-concept of the step according to the current

Semantic Invalidation of Annotations Due to Ontology Evolution 777

ontology version. The following rule represents the case of the addition of
sub-concepts.

ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
hasFunction(?exp, ?fu) ∧ equals(?fu.type,′ sum′) ∧
subConceptOf(?suburi, ?step.uri, On+1)∧addChildC(?tid, ?newc, ?suburi)
∧!(splitC(?stid, ?source, ?suburi) ∧ ChangeAnnotation(?stid, ?tid)
∧ subConceptOf(?source, ?step.uri, On) ∧
!(splitC(?stid, ?source, ?otherSplitUri)∧notequals(?otherSplitUri, ?newc)
∧ addChildC(?tid, ?otherSplitUri, ?otherAddUri)
subClassOf(?otherAddUri, ?step.uri, On+1)))
⇒ Invalid(?step,′ SubclassAdded′)

2. A concept-step with a value-function gets invalid if one of the sub-concepts
is renamed or deleted. We will show the rule for the renames here.

ConceptStep(?step) ∧ hasSetExpression(?step, ?exp) ∧
hasFunction(?exp, ?fu) ∧ equals(?fu.type,′ value′) ∧
subConceptOf(?oldUri, ?step.uri, On+1) ∧
renameConcept(, ?oldUri, ?newUri)
⇒ Invalid(?step,′ V alue − Changed′)

6 Proof of Concept Implementation

We have implemented this approach for computing semantic invalidations of an-
notation paths using the Jena API3 and the pellet4 reasoner. The input for the
algorithm consists of a set of annotation paths, a set of dependency-definition
paths, and information about renames, splits and merges. The output is a sub-
set of the input annotation path where the semantics has (possibly) changed.
Additionally, explanations for the semantic invalidations are provided. The sys-
tem transforms the materialized source and target ontology to instances of our
ontology-meta-model as shown in figure 2. In a next step SPARQL5 queries
are used to generate the change-log. Each log-entry is an individual of a change-
ontology. The change ontology is a representation of the change-hierarchy defined
in section 5.1.

The rules as proposed in section 5.3 are implemented in form of SPARQL
queries that operate on instances of the change-log and the instances of the
meta-ontology. The required negation is implemented in form of SPARQL filters.

The special property subClassOf(c1, c2, ?v) (and subpropertyOf(p1, p2, ?v)
analogously) is realized in form of two distinct properties subClassOfOld(c1, c2)
and subClassofNew(c1, c2) that are added to the instances of the source and
target ontology version of the ontology meta-model. Most invalidation rules can
3 http://jena.sourceforge.net/
4 http://clarkparsia.com/pellet/
5 http://www.w3.org/TR/rdf-sparql-query/

778 J. Köpke and J. Eder

directly be represented in SPARQL, while some more complex queries need
additional post-processing. The prototype demonstrated the feasibility of our
approach.

7 Related Work

In [10] the consistent evolution of OWL ontologies is addressed. The authors de-
scribe structural, logical and user-defined consistency requirements. While the
structural and logical requirements are directly defined by the used ontology
formalism the user-defined requirements describe additional requirements from
the application domain that cannot be expressed with the underlying ontology
language. The authors do not make any suggestion on how these requirements
should be expressed. Therefore, our approach can be seen as one specific form of
user-defined-consistency requirements. The main difference is that in our case the
artifact that becomes inconsistent if a user-defined consistency-definition is vio-
lated is not the ontology itself but instance-data in XML-documents. In [4] func-
tional dependencies over Aboxes (individuals) are addressed. The dependencies
are formulated in the form antecedent, consequent and an optional determinis-
tic function. The antecedent and consequent are formulated via path expressions
which can be compared to our approach. The dependencies are directly trans-
formed to SWRL-rules. Therefore, the functional dependencies directly operate
on the individuals (Abox) and additional knowledge can be added to the Abox.
In addition, data that does not comply with the rules can be marked as in-
consistent. In contrast to our approach, the approach is limited to the instance
layer which makes it unusable for our scenario where instance-data from XML-
documents is never added to the Abox. Therefore, knowledge about changes
needs to be evaluated in order to predict semantic-changes of the semantics of
instance-data.

In [18] the validity of data-instances after ontology evolution is evaluated.
An algorithm is proposed that takes a number of explicit changes as input and
calculates the implicit changes that are induced by the explicit changes. These
explicit and implicit changes can then be used to track the validity of data-
instances. The general idea of the approach is that if an artifact gets more
restricted existing instances are invalidated. Since the approach only takes into
account implicit changes that can be computed based on explicit changes it does
not support the explicit definition of change-dependencies.

Our work heavily depends on the existence of an expressive change-log be-
tween two versions of an ontology. The automatic detection of changes that
happened between two versions of an ontology are covered with approaches like
[15], [9] or [11]. If a change-log exists this can also be used as a basis to generate
more expressive changes as required by our approach. Approaches that operate
on a change-log in order to generate additional changes are [12], [17]. Methods to
efficiently store and manage different ontology versions are presented in [8],[5].

While there is only limited work on dependencies in the field of ontologies it
is traditionally broadly studied in the database community. Recent and related

Semantic Invalidation of Annotations Due to Ontology Evolution 779

research in this field is for example [3] and [6]. In [3] a model and system is
presented that keeps track of the provenance of data that is copied from different
(possibly curated) databases to some curated database. Changes in the source
databases may influence the data in the target databases. Therefore, provenance
information is required to track those changes. In [6] the problem of provenance in
databases is formalized with an approach that is inspired by dependency analysis
techniques known from program analysis or slicing techniques. In contrast to our
approach both provenance approaches cope with changes of instance data and
do not address changes of schema/meta-data.

8 Conclusion

In this paper we have addressed the problem of semantic changes of annotations
that occur due to the evolution of their reference ontologies. As ontologies have
to keep up with changes in the modeled domain (the real world) such changes
occur frequently. Unrecognized semantic changes (may) lead to incorrect results
for document transformations, semantic queries, statistics etc. based on semantic
annotations. So there is an urgent necessity to maintain semantic annotations
when a reference ontology changes. As experience shows, high maintenance costs
are a severe obstacle against wide adoption of techniques. We presented a tech-
nique to identify those annotations which have to be considered for maintenance
due to changes in the reference ontology. This should ease the burden of main-
tenance considerably.

References

1. OWL web ontology language reference. W3C recommendation, W3C (February
2004), http://www.w3.org/TR/owl-ref/

2. RDF vocabulary description language 1.0: RDF Schema. W3C recommendation,
W3C (February 2004), http://www.w3.org/TR/rdf-schema/

3. Buneman, P., Chapman, A.P., Cheney, J.: Provenance management in curated
databases. In: Proc. of SIGMOD 2006, pp. 539–550. ACM (2006)

4. Calbimonte, J.-P., Porto, F., Maria Keet, C.: Functional dependencies in owl abox.
In: Brayner, A. (ed.) Proc. of SBBD 2009, pp. 16–30. SBC (2009)

5. Chen, C., Matthews, M.M.: A new approach to managing the evolution of owl
ontologies. In: Arabnia, H.R., Marsh, A. (eds.) Proc. of SWWS 2008, pp. 57–63.
CSREA Press (2008)

6. Cheney, J., Ahmed, A., Acar, U.A.: Provenance as Dependency Analysis. In: Are-
nas, M. (ed.) DBPL 2007. LNCS, vol. 4797, pp. 138–152. Springer, Heidelberg
(2007)

7. d’Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M.: Ontology Modulariza-
tion for Knowledge Selection: Experiments and Evaluations. In: Wagner, R., Revell,
N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 874–883. Springer, Heidel-
berg (2007)

8. Eder, J., Koncilia, C.: Modelling Changes in Ontologies. In: Meersman, R., Tari,
Z., Corsaro, A. (eds.) OTM-WS 2004. LNCS, vol. 3292, pp. 662–673. Springer,
Heidelberg (2004)

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-schema/

780 J. Köpke and J. Eder

9. Eder, J., Wiggisser, K.: Change Detection in Ontologies Using DAG Comparison.
In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS,
vol. 4495, pp. 21–35. Springer, Heidelberg (2007)

10. Haase, P., Stojanovic, L.: Consistent Evolution of OWL Ontologies. In: Gómez-
Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 182–197. Springer,
Heidelberg (2005)

11. Hartung, M., Gross, A., Rahm, E.: Rule-based generation of diff evolution map-
pings between ontology versions. CoRR, abs/1010.0122 (2010)

12. Khattak, A.M., Latif, K., Han, M., Lee, S., Lee, Y.-K., Kim Il, H.: Change tracer:
Tracking changes in web ontologies. In: Proc. of ICTAI 2009, pp. 449–456. IEEE
Computer Society (2009)

13. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for
wsdl and xml schema. IEEE I.C. 6, 60–67 (2007)

14. Köpke, J., Eder, J.: Semantic Annotation of XML-Schema for Document Trans-
formations. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS,
vol. 6428, pp. 219–228. Springer, Heidelberg (2010)

15. Noy, N.F., Musen, M.A.: Promptdiff: a fixed-point algorithm for comparing ontol-
ogy versions. In: Proc. of AAAI 2002, pp. 744–750. AAAI (2002)

16. Noy, N.F., Musen, M.A.: Specifying Ontology Views by Traversal. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
713–725. Springer, Heidelberg (2004)

17. Plessers, P., De Troyer, O.: Ontology Change Detection Using a Version Log.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 578–592. Springer, Heidelberg (2005)

18. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology evo-
lution over the semantic web. Inf. Softw. Technol. 51, 83–97 (2009)

19. Stojanovic, L., Maedche, A., Motik, B., Stojanovic, N.: User-Driven Ontology Evo-
lution Management. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002.
LNCS (LNAI), vol. 2473, pp. 285–300. Springer, Heidelberg (2002)

20. Uren, V., Cimiano, P., Iria, J., et al.: Semantic annotation for knowledge manage-
ment: Requirements and a survey of the state of the art. Web Semantics: Science,
Services and Agents on the World Wide Web 4(1), 14–28 (2006)

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 781–799, 2011.
© Springer-Verlag Berlin Heidelberg 2011

The Role of Constraints in Linked Data

Marco Antonio Casanova1, Karin Koogan Beitman1, Antonio Luz Furtado1,
Vania M.P. Vidal2, José A.F. Macedo2, Raphael Valle A. Gomes1,

and Percy E. Rivera Salas1

1 Department of Informatics – PUC-Rio – Rio de Janeiro, RJ – Brazil
{casanova,karin,furtado,rgomes,psalas}@inf.puc-rio.br

2 Department of Computing, Federal University of Ceará – Fortaleza, CE – Brazil
{vvidal,jose.macedo}@lia.ufc.br

Abstract. The paper argues that a Linked Data source should publish an appli-
cation ontology that includes a set of constraints that capture the semantics of
the classes and properties used to model the data. Furthermore, if the Linked
Data source publishes a mapping between its vocabulary and the vocabulary of
a domain ontology, then it has to specify the application ontology constraints so
that they are consistent with those of the domain ontology. The main contribu-
tions of the paper are methods for constructing the constraints of the application
ontology of a Linked Data source, defined as fragments of domain ontologies.
The methods assume that the ontologies are written in an expressive family of
attributive languages and depend on a procedure to test logical implication,
which explores the structure of sets of constraints.

Keywords: constraints, application ontology, Linked Data.

1 Introduction

The term Linked Data refers to a set of best practices for publishing and connecting
structured data on the Web [4]. A Linked Data source may publish an application ontol-
ogy that models the exported data and a mapping between the application ontology voca-
bulary and a domain ontology vocabulary (or several such vocabularies). The mapping
may be expressed as a set of RDF triples that link classes and properties in one vocabu-
lary to those in another, or it may be defined using a schema mapping language.

In this paper, we argue that a Linked Data source should include, in the definition
of the application ontology, a set of constraints that capture the semantics of the
classes and properties used to model the data. Furthermore, if the Linked Data source
publishes a mapping between its vocabulary and the vocabulary of the domain ontol-
ogy, then it has to specify the application ontology constraints so that they are consis-
tent with those of the domain ontology.

More precisely, an ontology is a pair O=(VO,CO), where VO is a vocabulary and CO
is a set of constraints over VO. A domain ontology D=(VD,CD) models the application
domain. In fact, D may be a combination of ontologies covering distinct domains. An
application ontology A=(VA,CA) models the data exported by a Linked Data source.

782 M.A. Casanova et al.

The problem we address can be formulated as follows: “Given that VA is a subset of
VD, how to derive CA from CD”. We offer two alternative answers to this question,
depending on what we require from the data exported by the data source.

Suppose first that we require that the data exported by the Linked Data source must
satisfy CA, and that CA must logically imply all constraints that can be derived from
CD and that use only symbols in VA. In this case, we say that the application ontology
is an open fragment of the domain ontology. Section 4 formulates these requirements
in detail and describes a method to derive CA.

Suppose now that we require that the data exported by the Linked Data source
must satisfy CD, when all classes and properties in VD, but not in VA, are taken as the
empty set (when the source data is published). In this case, we say that the application
ontology is a closed fragment of the domain ontology. Section 5 addresses this case.

Applications may benefit from these concepts as follows. Consider a Linked Data
source S whose data is published according to an application ontology A. Suppose
first that A is designed as an open fragment of D. Then, in general, any application
that processes data modeled according to D and that uses only the classes and proper-
ties in the vocabulary of A will also be able to process data published by S (since the
application expects data consistent with the constraints derived from CD that apply to
the classes and properties in the vocabulary of A). Now, suppose that A is designed
as a closed fragment of D. Then, any application that processes data modeled accord-
ing to D will also be able to process data published by S (since the application ex-
pects data consistent with the constraints in CD).

In particular, consider a query optimizer that wishes to submit a query Q to the data
source S. Again, suppose first that A is designed as an open fragment of D. Then, if
Q uses only the classes and properties in the vocabulary of A, the optimizer needs to
consider only the constraints derived from CD that apply to the classes and properties
in the vocabulary of A. Indeed, any data from S will satisfy such constraints since A
was designed as an open fragment of D. Any other constraint derived from CD will be
irrelevant to the process. Suppose now that A is designed as a closed fragment of D.
Then, the optimizer needs to consider the constraints in CD, but it may also assume
that any class or property not in the vocabulary of A is empty (by definition of closed
fragment). This opens new opportunities for relatively straightforward optimizations.

The main contributions of the paper are methods for constructing application on-
tology constraints when the application ontology is an open or a closed fragment of
the domain ontology. The methods assume that the ontologies are written in an ex-
pressive family of attributive languages and depend on a procedure to test logical
implication, which explores the structure of sets of constraints, captured as constraint
graphs [7]. The methods are also useful in other application domains, such as data
integration and data mashups, where a set of constraints have to be constructed from
other sets of constraints.

The paper is organized as follows. Section 2 further discusses the motivation for
the paper. Section 3 presents the formal framework adopted in the paper. Section 4
focuses on how to construct open fragments of the domain ontology. Section 5
analyses the case of closed fragments. Section 6 summarizes related work. Finally,
Section 7 contains the conclusions.

 The Role of Constraints in Linked Data 783

2 An Informal Example

The ‘Linked Data Principles’ [2] provide a basic recipe for publishing and connecting
data using the infrastructure of the Web. From an application development perspec-
tive, Linked Data has the following characteristics [5]:

1. Data is strictly separated from formatting and presentational aspects.
2. Data is self-describing. If an application consuming Linked Data encounters

data described with an unfamiliar vocabulary, the application can dereference
the URIs that identify vocabulary terms in order to find their definition.

3. The use of HTTP as a standardized data access mechanism and RDF as a stan-
dardized data model simplifies data access compared to Web APIs, which rely
on heterogeneous data models and access interfaces.

4. The Web of Data is open, meaning that applications do not have to be imple-
mented against a fixed set of data sources, but they can discover new data
sources at run-time by following RDF links.

We are particularly interested in the second characteristic. The definition of vocabu-
lary terms ultimately includes a set of constraints that capture the semantics of the
terms. Therefore, when publishing Linked Data, we argue that the designer should go
further and analyze the constraints of the ontology from which he is drawing the
terms to construct his vocabulary. We further motivate this argument with the help of
examples, adopting the Music Ontology (MO) [17] as the domain ontology.

The Music Ontology is used by several Linked Data sources, including Music-
Brainz and BBC Music. The Music Ontology RDF schema uses terms from the
FRBR [14], FOAF [6] and the XML Schema vocabularies. We adopt the prefixes
“mo:”, “frbr:”, “foaf:” and “xsd:” to respectively refer to the MO, FRBR, FOAF and
XML Schema vocabularies.

Fig. 1 shows the class hierarchies of MO rooted at classes event:Event and
frbr:Expression. Fig. 2 shows the class hierarchies of MO rooted at classes foaf:Agent
and foaf:Person.

Suppose that the designer wants to publish a dataset, using MO as the domain
ontology. He then proceeds to define an application ontology, which we call Signal
ontology (SGL). As the first step, he selects classes and properties from the MO vo-
cabulary to create the SGL vocabulary. Assume that he selects classes mo:Signal,
mo:DigitalSignal and mo:analogSignal, the datatype property mo:isrc and the object prop-
erty mo:sampled_version to form the SGL vocabulary (all shown in Fig. 1).

Usually, strategies to publish Linked Data treat domain ontology vocabularies only
up to this stage. We argue that the strategies should go further and include an analysis
of the constraints of the domain ontology that apply to the data being published.

By observing the MO constraints (informally depicted in Fig. 1), the designer may
directly derive the following constraints for the application ontology SGL:

• mo:DigitalSignal and mo:analogSignal are subclasses of mo:Signal
• mo:DigitalSignal and mo:analogSignal are disjoint classes
• the domain and range of mo:sampled_version are mo:analogSignal and

mo:DigitalSignal, respectively
• the domain and range of mo:isrc are mo:Signal and xsd:String, respectively

784 M.A. Casanova et al.

Fig. 1. The class hierarchies of MO rooted at classes event:Event and frbr:Expression

The constraints of the application ontology SGL were straightforward to obtain be-
cause they were exactly the constraints of MO that involve the classes and properties
in the SGL vocabulary. Hence, if the designer publishes his data source so that the set
of triples satisfies the SGL constraints, then any Web application that processes data
modeled according to MO and that uses only the classes and properties in the SGL
vocabulary will also be able to process the triples published by the data source. This
follows because the application expects data consistent with the MO constraints that
apply to the classes and properties it uses.

Suppose that the designer wants to publish a second dataset, again using MO as the
domain ontology. He proceeds to define an application ontology, which we call Artist
Contract (AC). Assume that he selects classes mo:SoloMusicArtist, mo:MusicGroup and
mo:label, and the object property mo:member_of to create the AC vocabulary (all shown
in Fig. 2).

The derivation of the AC constraints is not as straightforward as before since MO
has no constraints involving just the terms in the AC vocabulary. However, observe
from Fig. 2 that foaf:Person and foaf:Organization are disjoint classes. Therefore, the
designer may infer that their subclasses, mo:SoloMusicArtist and mo:Label, respectively,
are also disjoint. This constraint must therefore be in the set of AC constraints. Note
that this constraint is inferred from, but not a member of the set of MO constraints.

disjoint
mo:sampled_version

subClass Class

Domain Range
property

Notational convention

frbr:Expression

mo:Lyrics

mo:Libretto

mo:Signal

xsd:String mo:produced_signal mo:isrc

owl:disjointWith

mo:AnalogSignal mo:DigitalSignal

event:Event

mo:Festival

mo:Sound mo:Recording

mo:Arrrangement

mo:Score

mo:MusicalExpression

mo:Orchestration mo:Instrumentation

mo:Performance mo:Composition

mo:Show

Class Class

 The Role of Constraints in Linked Data 785

Fig. 2. The class hierarchies of MO rooted at classes foaf:Agent and foaf:Person

The question of including mo:member_of in the AC vocabulary, without including
the original classes foaf:Person and mo:Group used to define its domain and range,
raises a different question. One alternative is to ignore domain and range constraints
when designing the AC constraints. A second alternative is to inform the designer that
he should also include foaf:Person and mo:Group in the AC vocabulary. Sections 4 and
5 discuss these two alternatives in depth.

These informal examples illustrate that the domain ontology constraints play an es-
sential role when designing the application ontology since they carry the semantics of
the terms in the domain ontology vocabulary. They also raise the question that the
design process cannot be reduced to merely copying the constraints from the domain
ontology to the application ontology. We must take into account constraints derived
from those of the domain ontology. This point is addressed in the rest of the paper.

3 A Formal Framework

3.1 A Brief Review of Attributive Languages

The reader may wish to skip this section on a first reading and go directly to Section
3.2 that introduces the notion of extralite ontologies and that has an informal descrip-
tion of the constraint semantics.

We adopt a family of attributive languages [1] defined as follows. A language L in
the family is characterized by an alphabet A, consisting of a set of atomic concepts, a

set of atomic roles, the universal concept ⊤ and the bottom concept ⊥. The set of role
descriptions and the set of concept descriptions of L (or in A) are defined as follows:

• An atomic concept, and the universal and bottom concepts are concept descrip-
tions, and an atomic role is a role description

foaf:Agent

mo:CorporateBody

mo:Label

mo:Group

mo:MusicGroup

foaf:Person
mo:member_of

owl:disjointWith

mo:SoloMusicArtist

mo:MusicArtist

foaf:Organization

786 M.A. Casanova et al.

• If e and f are concept descriptions and p is a role description, then ¬e (negation),

e ⊔ f (union), and (≥ n p) (at-least restriction) are concept descriptions, and p− (in-
verse) is a role description.

An interpretation s for A consists of a nonempty set Δs, the domain of s, whose ele-
ments are called individuals, and an interpretation function, also denoted s, where:

• s(⊥) = ∅ and s(⊤) = Δs
• s(A) ⊆ Δs, for each atomic concept A of A
• s(P) ⊆ Δs × Δs, for each atomic role P of A

The function s is extended to role and concept descriptions of L as follows:

• s(¬e) = Δs − s(e) (the complement of s(e) w.r.t. Δs)

• s(e ⊔ f) = s(e) ∪ s(f) (the union of s(e) and s(f))

• s(≥n p)={I∈Δs / |{J∈Δs / (I,J)∈s(p)}| ≥ n}
 (the set of individuals that s(p) relates to at least n distinct individuals)
• s(p−) = s(p)− (the inverse of s(p))

A formula of L (or in A) is an expression of the form u ⊑ v, called an inclusion, or of
the form u ≡ v, called an equivalence, where u and v are both concept descriptions or
they are both role descriptions of L. A definition is an equivalence of the form D ≡ e,
where D is an atomic concept and e is a concept description, or D is an atomic role
and e is a role description.

Let s be an interpretation for A, σ be a formula and Σ and Γ be sets of formulas of
L. We say that

• s satisfies u ⊑ v iff s(u) ⊆ s(v), and s satisfies u ≡ v iff s(u) = s(v)
• s is a model of Σ , denoted s ⊨ Σ, iff s satisfies all formulas in Σ
• Σ logically implies σ, denoted Σ ⊨ σ , iff any model of Σ satisfies σ
• Σ logically implies Γ, denoted Σ ⊨ Γ , iff any model of Σ is also a model of Γ

If B is a subset of A, then Σ / B denotes the set of formulas σ that use only symbols in
B and that are logically implied by Σ .

In the next sections we will also use the following abbreviations: “e ⊓ f ” (intersec-

tion) for “¬(¬e ⊔ ¬f)”, “∃p” (existential quantification) for “(≥ 1 p)”, “(≤ n p)” (at-
most restriction) for “¬(≥ n+1 p)” and “u | v” (disjunction) for “u ⊑ ¬v”.

3.2 Extralite Ontologies

We will work with extralite ontologies [7] that partially correspond to OWL Lite.

Definition 1

(a) A strict extralite ontology is a pair O=(VO ,CO) such that

 The Role of Constraints in Linked Data 787

(i) VO is a finite alphabet, called the vocabulary of O, whose atomic concepts
and atomic roles are called the classes and properties of O, respectively.

(ii) CO is a set of formulas in VO, called the constraints of O, which must be of
one the forms shown in Fig. 3.

(iii) For each property P in VO, there is at least one domain and one range con-
straint for P in CO.

(b) A non-strict extralite ontology is a pair O=(VO ,CO) that satisfies only conditions
(i) and (ii) above.

(c) An extralite ontology is either a strict or a non-strict extralite ontology.

Fig. 3 introduces the constraint types allowed in extralite ontologies and informally
defines their semantics, recalling that a class denotes a set of individuals and a proper-
ty denotes a set of pairs of individuals. Fig. 3 also shows the unabbreviated form of a
constraint. Note that a constraint and its unabbreviated form are equivalent. For ex-
ample, the unabbreviated form of “C | D” is “C ⊑ ¬D”.

Finally, a constraint expression is an expression that may occur on the right- or
left-hand sides of an unabbreviated constraint.

Fig. 3. Extralite constraints

3.3 Constraint Graphs

The notion of concept graphs captures the structure of sets of constraints and is essen-
tial to the constraint construction methods of Sections 4 and 5. Again, the reader may
wish to skip this section on a first reading and go directly to Section 3.4 that contains
self-contained examples of constraint graphs.

We say that the complement of a non-negated expression e is ¬e, and vice-versa;
the complement of ⊥ is ⊤, and vice-versa. If c is an expression, then denotes of
complement of c. Let Σ be a set of unabbreviated constraints and Ω be a set of con-
straint expressions.

O

Constraint
Type

Formalization Unabbreviated
form

Informal semantics

Domain
Constraint

P D (1 P) D property P has class D as domain, that is,
if (a,b) is a pair in P, then a is an individual in D

Range
Constraint

P R (1 P) R property P has class R as range, that is,
if (a,b) is a pair in P, then b is an individual in R

minCardinality
Constraint

C (k P) or
C (k P)

property P or its inverse P maps each individual
in class C to at least k distinct individuals

maxCardinality
Constraint

C (k P) or
C (k P)

C (k+1 P) or
C (k+1 P)

property P or its inverse P maps each individual
in class C to at most k distinct individuals

Subset
Constraint

E F each individual in E is also in F, that is,
class E denotes a subset of class F

Disjointness
Constraint

E | F C D no individual is in both E and F, that is,
classes E and F are disjoint

c

788 M.A. Casanova et al.

Definition 2. The labeled graph g(Σ,Ω)=(γ,δ,κ) that captures Σ and Ω, where κ labels
each node with an expression, is defined as follows:

(i) For each concept expression e that occurs on the right- or left-hand side of
an inclusion in Σ, or that occurs in Ω, there is exactly one node in γ labeled
with e. If necessary, the set of nodes is augmented with new nodes so that:
(a) For each atomic concept C, there is one node in γ labeled with C.
(b) For each atomic role P, there is one node in γ labeled with (≥1 P) and

one node labeled with (≥1 P−).
(ii) If there is a node in γ labeled with a concept expression e, then there must be

exactly one node in γ labeled with .
(iii) For each inclusion e ⊑ f in Σ, there is an arc (M,N) in δ, where M and N are

the nodes labeled with e and f, respectively.
(iv) If there are nodes M and N in γ labeled with (≥m p) and (≥n p), where p is ei-

ther P or P− and m<n, then there is an arc (N,M) in δ.
(v) If there is an arc (M,N) in δ, where M and N are the nodes labeled with e and

f respectively, then there is an arc (K,L) in δ, where K and L are the nodes

labeled with and , respectively.

(vi) These are the only nodes and arcs of g(Σ).

Definition 3. The labeled graph G(Σ,Ω)=(η,ε,λ) that represents Σ and Ω, where λ
labels each node with a set of expressions, is defined from g(Σ,Ω) by collapsing each
clique of g(Σ,Ω) into a single node labeled with the expressions that previously la-
beled the nodes in the clique. When Ω is the empty set, we simply write G(Σ) and say
that the graph represents Σ.

If a node K of G(Σ,Ω) is labeled with an expression e, then denotes the node la-

beled with (which may be K itself). We use K→M to indicate that there is a path in
G(Σ,Ω) from K to M.

Definition 4. Let G(Σ,Ω)=(η,ε,λ) be the labeled graph that represents Σ and Ω. We
say that a node K of G(Σ,Ω) is a ⊥-node with level n, for a non-negative integer n, iff
one of the following conditions holds:

(i) K is is a ⊥-node with level 0 iff

a. K is labeled with ⊥, or

b. there are nodes M and N, not necessarily distinct from K, and a non-
negated concept expression h such that M and N are labeled with h and

¬h, and K→M and K→N.

(ii) K is is a ⊥-node with level n+1 iff
a. There is a ⊥-node M of level n, distinct from K, such that K→M, and M

is the ⊥-node with the smallest level such that K→M, or
b. K is labeled with a minCardinality constraint of the form (≥1 P) (or of

the form (≥1 P−)) and there is a ⊥-node M of level n, distinct from K,
such that M is labeled with (≥1 P−) (or with (≥1 P)), and M is the
⊥-node with the smallest level labeled with (≥1 P−) or (≥1 P).

e

f e

K
e

 The Role of Constraints in Linked Data 789

Definition 5. Let G(Σ,Ω)=(η,ε,λ) be the labeled graph that represents Σ and Ω. Let K
be a node of G(Σ,Ω). We say that K is a ⊥-node iff K is a ⊥-node with level n, for

some non-negative integer n. We also say that K is a ⊤-node iff is a ⊥-node.

Finally, we introduce the IMPLIES procedure (in Fig. 4) to test logical implication
for extralite ontologies, whose soundness and completeness is established in [7].

Fig. 4. The IMPLIES procedure

3.4 Examples of Extralite Ontologies

The following example illustrates the concepts introduced thus far, using those parts
of the Music Ontology introduced in Section 2 (to save space, examples throughout
the text use only some parts of the Music Ontology).

Example 1. Let AGL = (VAGL , CAGL) be the ontology that corresponds to the part of
the Music Ontology shown in Fig. 2. Fig. 5 formalizes the set CAGL of constraints and
Fig. 6 depicts the graph G(CAGL) that represents CAGL (using unabbreviated con-
straints). Each constraint e ⊑ f in Fig. 5 corresponds to two arcs in Fig. 6: the arc from
the node labeled with e to the node labeled with f, and the arc from the node labeled

with to the node labeled with (where denotes of complement of c). Note that,

in the constraint graph of Fig. 6, there is a path from mo:Label to ¬mo:SoloMusicArtist,
which indicate that CAGL logically implies mo:Label ⊑ ¬mo:SoloMusicArtist. That is,
CAGL logically implies that these two classes are disjoint.

Example 2. Let SGL = (VSGL , CSGL) be the ontology that corresponds to the mo:Signal
class, its subclasses and properties, shown on the bottom-left of Fig. 1. Fig. 7 forma-
lizes the set of constraints CSGL and Fig. 8 contains the graph G(CSGL) that represents
CGGL (using unabbreviated constraints). G(CSGL) is constructed as the graph in Fig. 6.
In particular, note that there is a path in G(CSGL) from (≥2 mo:sampled_version) to

K

IMPLIES(, e f)
input: a set of unabbreviated constraints and an unabbreviated constraint e f
output: “YES - logically implies e f ”

 “NO - does not logically imply e f ”
begin Construct G(, {e, f}), the representation graph for and {e, f};

 if the node of G(, {e, f}) labeled with e is a -node, or
 the node of G(, {e, f}) labeled with f is a ⊤-node, or

 there is a path in G(,{e, f}) from the node labeled with e
 to the node labeled with f,

then return “YES - logically implies e f ”;
else return “NO - does not logically imply e f ”;

end

f e c

790 M.A. Casanova et al.

Fig. 5. Constraints of AGL (unabbreviated form)

¬(≥2 mo:sampled_version). This means that CSGL logically implies that
(≥2 mo:sampled_version) ⊑ ¬(≥2 mo:sampled_version) or, equivalently, CSGL logically
implies that (≥2 mo:sampled_version) ⊑ ⊥. Intuitively, the set of individuals that
mo:sampled_version maps to two or more individuals is empty, that is,
mo:sampled_version is a functional property. Similar remarks apply to mo:isrc−, imply-
ing that mo:isrc is an inverse functional property (i.e., a key).

Fig. 6. The graph G(CAGL) representing the constraints of AGL

Constraint Informal specification

(1 mo:member_of) foaf:Person
(1 mo:member_of) foaf:Group

The domain of mo:member_of is foaf:Person
The range of mo:member_of is foaf:Group

mo:MusicArtist foaf:Agent
foaf:Group foaf:Agent
foaf:Organization foaf:Agent
mo:SoloMusicArtist foaf:Person
mo:SoloMusicArtist mo:MusicArtist
mo:MusicGroup mo:MusicArtist
mo:MusicGroup foaf:Group
mo:CorporateBody foaf:Organization
mo:Label mo:CorporateBody

mo:MusicArtist is a subset of foaf:Agent
foaf:Group is a subset of foaf:Agent
foaf:Organization is a subset of foaf:Agent
mo:SoloMusicArtist is a subset of foaf:Person
mo:SoloMusicArtist is a subset of mo:MusicArtist
mo:MusicGroup is a subset of mo:MusicArtist
mo:MusicGroup is a subset of foaf:Group
mo:CorporateBody is a subset of foaf:Organization
mo:Label is a subset of mo:CorporateBody

foaf:Person foaf:Organization foaf:Person and foaf:Organization are disjoint

foaf:Person

foaf:Organization foaf:Group

(1 mo:member-of) (1 mo:member-of)

mo:MusicArtist

foaf:Person

foaf:Group

mo:SoloMusicArtist mo:SoloMusicArtist

(1 mo:member_of) (1 mo:member_of)

mo:MusicGroup mo:MusicGroup

mo:MusicArtist

foaf:Agent foaf:Agent

mo:CorporateBody

mo:Label

foaf:Organization

mo:CorporateBody

mo:Label

 The Role of Constraints in Linked Data 791

Fig. 7. Constraints of SGL (unabbreviated form)

Fig. 8. The graph G(CSGL) representing the constraints of SGL

4 Open Fragments of Domain Ontologies

Let D = (VD ,CD) denote the domain ontology, and A = (VA ,CA) denote the application
ontology. The design of the application ontology A depends on what requirements it
must satisfy, discussed in detail in this and the next sections.

Recall that CD /VA denotes the set of formulas σ using only symbols in VA such that
CD logically impliesσ. Consider the following set of requirements:

Constraint Informal specification

(1 mo:sampled_version) mo:AnalogSignal
(1 mo:sampled_version) mo:DigitalSignal
(1 mo:isrc) mo:Signal
(1 mo:isrc) xsd:String

The domain of mo:sampled_version is mo:AnalogSignal
The range of mo:sampled_version is mo:DigitalSignal
The domain of mo:isrc is mo:AnalogSignal
The range of mo:isrc is mo:DigitalSignal

mo:AnalogSignal (2 mo:sampled_version)

mo:String (2 mo:isrc)

mo:sampled_version maps each individual in
mo:AnalogSignal to at most one individual
mo:isrc maps each individual in mo:String to at most
one individual

mo:AnalogSignal mo:Signal
mo:DigitalSignal mo:Signal

mo:AnalogSignal is a subset of mo:Signal
mo:DigitalSignal is a subset of mo:Signal

mo:DigitalSignal mo:AnalogSignal mo:DigitalSignal and mo:AnalogSignal are disjoint

(-node) (⊤-node)

 mo:AnalogSignal

mo:DigitalSignal

(1 mo:sampled_version) (1 mo:sampled_version)

mo:AnalogSignal

 mo:DigitalSignal

(1 mo:isrc)

(1 mo:sampled_version) (1 mo: sampled_version)

 (1 mo:isrc) mo:Signal mo:Signal

(1 mo:isrc) xsd:String (1 mo:isrc) xsd:String

(2 mo:sampled_version) (2 mo: sampled_version)

(2 mo:isrc) (2 mo:isrc)

(-node) (⊤-node)

792 M.A. Casanova et al.

R0. VA is a subset of VD
R1. CA logically implies CD /VA
R2. Data exported by the data source satisfies CA

An application ontology A that satisfies R0 and R1 is called an open fragment of D.
Requirement R0 guarantees that the data is exported using a subset of the vocabulary
of the domain ontology. Requirements R1 and R2 indicate that the data published by
the data source will be consistent with all constraints that can be derived from CD and
that use only symbols in VA. Intuitively, Requirements R0, R1 and R2 imply that any
Web application that processes data modeled according to D and that uses only the
classes and properties in VA will also be able to process the data published by the data
source (since the application expects data consistent with CD /VA).

Assume that the designer has already created VA by selecting symbols from VD so
that R0 is trivially satisfied. Procedure OpenFragment (in Figure 9) generates CA so
that R1 is satisfied, based on the representation graph of CD. The procedure does not
guarantee, however, that A = (VA ,CA) is a strict extralite ontology since it does not try
to generate missing domain and range constraints.

Fig. 9. Procedure OpenFragment

OpenFragment is an almost direct variation of IMPLIES, introduced at the end
of Section 3.3. It generates all constraints that involve only symbols in VA and that are

logical consequences of CD. However, it avoids generating both e ⊑ f and ⊑ ,

which are equivalent. We note that OpenFragment is non-deterministic since the set
of constraints generated depends on the order that the for-loop selects pairs of nodes
of G(CD), which is not unique.

The above argument can be generalized into a correctness proof of the Open-
Fragment procedure, in the following sense:

OpenFragment(CD , VA ; CA)
input: the set CD of normalized constraints of the domain ontology
 the vocabulary VA of the application ontology
output: the set of constraints CA of the application ontology
begin Initialize CA = ;

Construct G(CD), the representation graph for CD;
Mark all nodes of G(CD) labeled with expressions that use only
 atomic concepts and atomic roles in VA;
for each pair of nodes M and N of G(CD)
 if M and N are marked and there is a path from M to N in G(CD)

 then add e to CA where
 e and f are expressions that label nodes M and N, respectively, and

 e and f are expression of VA, and
 e is an allowed constraint (in the sense of Section 2), and
 f e is not already in CA /* to avoid redundant constraints */
return CA

end

f e

 The Role of Constraints in Linked Data 793

Theorem 1. Let CD be the set of unabbreviated constraints of the domain ontology
and VA be the vocabulary of the application ontology. Let CA be the set of constraints
which OpenFragment outputs for CD and VA. Then, CA logically implies CD /VA.

We close this section with an example that illustrates how the OpenFragment proce-
dure operates.

Example 3. Assume that the domain ontology is AGL = (VAGL , CAGL), introduced in
Example 1, and that the designer wants to formally specify the Artist Contract applica-
tion ontology AC = (VAC , CAC), informally introduced in Section 2 as an open fragment
of MO. He starts by defining the vocabulary VAC by selecting symbols from VAGL:

(1) VAC = { mo:SoloMusicArtist, mo:MusicGroup, mo:label, mo:member_of }

Then, OpenFragment generates the following set of constraints CAC for AC:
(2) mo:SoloMusicArtist ⊑ ¬mo:Label
(3) mo:Label ⊑ ¬(≥1 mo:member_of)

Recall that Fig. 6 shows G(CAGL), the representation graph for CAGL. To help follow
this example, the thicker boxes in Fig. 6 indicate the marked nodes (that contain terms
in VAC) and the thicker lines indicate the paths between marked nodes.

Indeed, OpenFragment outputs:

• the constraint in (2) since there is a path from mo:SoloMusicArtist to ¬mo:Label,
which implies that (2) is a logical consequence of CAGL

• the constraint in (3) since there is a path from mo:Label to ¬(≥1 mo:member_of),
which implies that (3) is a logical consequence of CAGL. Note that this constraint
was not anticipated in the informal analysis at the end of Section 2 since it is not
an immediate, trivial consequence of the constraints in CAGL

In fact, constraints (2) and (3) use only symbols in VAC and they are logical conse-
quences of CAGL (albeit not necessarily in CAGL). They also meet Requirement R1 by
Theorem 1.

However, OpenFragment will not output, for example, the following formulas:

(4) (≥1 mo:member_of) ⊑ ¬mo:Label
(5) mo:Label ⊑ ¬mo:SoloMusicArtist

The procedure does not output (4) since this is not an allowed constraint, and it does
not output (5) because (2) is already in CAGL. However, since OpenFragment is non-
deterministic, it could have returned (5) instead of (2).

5 Closed Fragments of Domain Ontologies

Let D = (VD ,CD) be the domain ontology, and A = (VA ,CA) the application ontology.

Let be the set of constraints CA extended with new axioms of the form C ⊑ ⊥ (or

(≥ 1 P) ⊑ ⊥) that force each class C (or property P) in VD, but not in VA, to be the
empty set. We now consider a different set of requirements:

+
AC

794 M.A. Casanova et al.

R0. VA is a subset of VD

R1’. +
AC logically implies CD

R2’. Data exported by the data source satisfies +
AC

An application ontology A that satisfies R0 and R1’ is called a closed fragment of D.
Requirement R0 again guarantees that the data is exported in a subset of the vocabu-
lary of the domain ontology. Requirements R1’ and R2’ indicate that the data pub-
lished by the data source satisfies CD, when each class C (or property P) in VD, but not
in VA, is taken to be the empty set.

Fig. 10. Procedure ClosedFragment

ClosedFragment(CD , VA ; VA , CA, S)
input: the set CD of normalized constraints of the domain ontology
 the vocabulary VA of the application ontology
output: a new version of the vocabulary VA of the application ontology

the set of constraints CA of the application ontology
 a set S of suggested mapping definitions
begin Initialize CA = and S = ;

Construct G(CD), the constraint graph for CD;
/* Stage 1: Analyze nodes of G(CD) that contain expressions in VA */
Mark all nodes of G(CD) labeled with expressions that use only atomic concepts
 and atomic roles in VA;
Create a new graph GA by deleting any node N from G(CD) such that
 N is labeled with positive expressions and
 N has no antecedent which is marked and labeled with a positive expression, or
 N is labeled with negative expressions and
 N has no descendent which is marked and labeled with a negative expression;
/* Stage 2: Generate definitions for the classes and properties to be added to VA */
for each node N of GA, in topological reverse order (i.e., from sinks to sources) do
 begin if N is labeled with a class E not in VA
 then add E to VA;
 add “E s ⊔…⊔ sn” to S, where E labels a node M and
 s ,…, sn label nodes M1,…, Mn, and
 M1,…, Mn are all nodes such that (Mk ,M) is in GA ;
 if N is labeled with an expression involving a property P not in VA
 then add P to VA;
 add “Skolemize[P,GA]” to S ; /* (see explanation in the text) */
 end
/* Stage 3: Generate the constraints of the application ontology */
for each arc (M,N) of GA

 add e to CA where
 e and f are expressions that label nodes M and N, respectively, and

 e and f are expression of VA, and
 e is an allowed constraint (in the sense of Section 2), and
 f e is not already in CA ; /* to avoid redundant constraints */
return VA, CA, S

end

 The Role of Constraints in Linked Data 795

Intuitively, Requirements R0, R1’ and R2’ imply that any Web application that
processes data modeled according to D will also be able to process data published by
the data source, when each class C (or property P) in VD, but not in VA, is taken to be
the empty set.

Assume that the designer has already created VA by selecting symbols from VD so
that R0 is trivially satisfied. Procedure ClosedFragment (in Figure 10) extends VA
and creates CA so that R1’ is satisfied. Unlike OpenFragment, it guarantees that
A=(VA,CA) is a strict extralite ontology since it generates domain and range constraints
for all properties in VA.

ClosedFragment has three stages. The first stage is preparatory for the next stages
and analyzes which nodes of the constraint graph of CD have expressions using only
symbols in VA.

The second stage includes a class E in VA, if E is in VD, but not in VA, and there is
an expression si using only symbols in VA which the constraints in CD force to be a
non-empty subset of E. If this is the case, E cannot be forced to be always empty (by
an axiom of the form E ⊑ ⊥). The solution is to include E in VA and define E as the
union of all expression si using only symbols in VA such that there is a constraint of
the form si ⊑ E which is a logical consequence of CD. Note that, to be correct, this
stage has to process nodes in topological reverse order.

The second stage also adds properties to VA, if necessary. Let P be a property in VD,
but not in VA. Assume that there is an expression si using only symbols in VA which
the constraints in CD force to be a non-empty subset of an expression p involving
property P. If this is the case, P cannot be forced to be always empty (by an axiom of
the form (≥1 P) ⊑ ⊥). The solution is to include P in VA and define P as follows. Let s
be the union of all expression si using only symbols in VA such that there is a con-
straint of the form si ⊑ p which is a logical consequence of CD. Then, P is defined as
the set of all pairs of individuals (x,y) such that x is in the set denoted by s and y is one
or more new individuals introduced until p is satisfied. We denote by Skolemiza-
tion[P,GA] such definition for P, and note that it is not expressible in the attributive
languages of Section 3.1. The details of this construction and why it is always possi-
ble is outside the scope of this paper.

The third stage of ClosedFragment is a variation of IMPLIES. However, we note
that this stage also automatically generates missing domain and range constraints.
Indeed, assume that a property P is in VA and that (≥1 P) ⊑ E is the domain constraint
for P in CD. Then, the constraint graph for CD will have an arc from the node labeled
with (≥1 P) to the node labeled with E. Since P is in VA, the first stage will then add E
to VA, if E is not already in VA. Then, the third stage will add (≥1 P) ⊑ E to CA. An
entirely similar argument applies to range constraints.

The above argument can be generalized into a correctness proof of the Closed-
Fragment procedure, in the following sense:

Theorem 2. Let CD be the set of unabbreviated constraints of the domain ontology
and VA be the original vocabulary of the application ontology. Let AV and CA be the

vocabulary and the set of constraints that ClosedFragment outputs for CD and VA.

Then, +
AC logically implies CD, where +

AC is defined with respect to AV .

796 M.A. Casanova et al.

We conclude this section with an example that illustrates how the ClosedFragment
procedure operates.

Example 4. Let ME = (VME , CME) be an ontology that formalizes the class hierarchies
of the Music Ontology rooted at classes event:Event and frbr:Expression, informally
introduced in Fig. 1 of Section 2. The reader may verify that SGL = (VSGL , CSGL), the
Signal ontology defined in Example 2, is an open fragment of ME. The goal in this
example is to redefine SGL so that it becomes a closed fragment of ME, using the
ClosedFragment procedure.

Recall from Example 2 that VSGL is:

(1) VSGL = { mo:DigitalSignal, mo:analogSignal, mo:Signal, xsd:String,
 mo:sampled_version, mo:isrc }

Let SGLV be the new vocabulary, SGLC be the set of constraints and S be the set of

mapping definitions that ClosedFragment outputs, when given CME and VSGL as in-

put. To construct SGLV , SGLC and S, ClosedFragment uses the constraint graph of

CME , not shown here to save space (but the reader may observe Fig. 1 for an informal
description of CME).

Then, SGLV is the set:

(2) SGLV = { mo:DigitalSignal, mo:analogSignal, mo:Signal, xsd:String,

 mo:sampled_version, mo:isrc,

 mo:MusicalExpression, mo:Expression }

SGLC is shown in Fig. 11. Note that it includes two constraints not in CSGL:

(3) mo:Signal ⊑ mo:MusicalExpression
(4) mo:MusicalExpression ⊑ mo:Expression

S contains the mapping definitions:
(5) mo:MusicalExpression ≡ mo:Signal
(6) mo:Expression ≡ mo:MusicalExpression

In particular, we observe that the mapping definitions in (5) and (6) force classes
mo:MusicalExpression and mo:Expression to have the same set of individuals as
mo:Signal. The definitions in (5) and (6) indeed indicate that the data exported will
trivially satisfy the constraints in (3) and (4).

Finally, we note that, by definition of closed fragment, all classes and properties in

VME, but not in SGLV , will be empty.

Fig. 11. Constraints of SGL as a closed fragment of ME (unabbreviated form)

(1 mo:sampled_version)
 mo:AnalogSignal
(1 mo:sampled_version)
 mo:DigitalSignal
(1 mo:isrc) mo:Signal
(1 mo:isrc) xsd:String

mo:String (2 mo:isrc)
mo:AnalogSignal
 (2 mo:sampled_version)

mo:AnalogSignal mo:Signal
mo:DigitalSignal mo:Signal
mo:DigitalSignal mo:AnalogSignal
mo:Signal mo:MusicalExpression
mo:MusicalExpression mo:Expression

 The Role of Constraints in Linked Data 797

6 Related Work

The results reported in the paper cover a topic – the role that constraints play in the
design of Linked Data – that is much neglected in the literature. The question of
Linked Data semantics is not new, though. Recent investigation [11][12][15] in fact
questions the correct use of owl:sameAs to inter-link datasets.

The results contribute to the discussion on the mapping process from relational
databases (RDBs) to RDF [10]. Indeed, RDB-to-RDF tools (see [18] for a compre-
hensive survey) typically limit themselves to support vocabulary reuse, if at all. We
argued that RDB-to-RDF tools should go further and include an analysis of the con-
straints of the domain ontology that apply to the data being published since such con-
straints capture the semantics of the reused terms. We introduced the notions of open
and closed ontology fragments exactly to address this question. Such notions have no
parallel in the published literature.

We note that the problem we address cannot be reduced to a question of ontology
alignment in the context of Linked Data, addressed for example in [16][21]. Indeed,
we stress that the problem we focus on refers to bootstrapping an application ontology
(including constraints) as a fragment of a domain ontology.

The results in the paper also contribute to improving ontology browsing tools
based on the idea of focus+context [20], where the notion of focus would be carried
out by a vocabulary selection and the notion of context would be provided by the
constraints. The methods to construct fragments of the domain ontology would act as
a lens through which the user would browse the (large) domain ontology.

7 Conclusions

In this paper, we introduced automatic methods for constructing application ontology
constraints, when the application ontology is an open or a closed fragment of the do-
main ontology. The final set of constraints will have useful properties, as detailed in
Sections 4 and 5. The methods assume that the ontologies are written in an expressive
family of attributive languages and depend on a procedure to test logical implication,
based on constraint graphs.

The results in the paper are directly mapped to the RDF context and cover a topic –
the role that constraints play in the design of Linked Data – that is much neglected in
the literature.

As for current work, we are modifying an RDB-to-RDF tool [19] to generate appli-
cation ontology constraints, as described in the paper. We are also extending the strat-
egy to account for complex source-to-ontology mappings, using results from [13], to
other types of constraints, using the development reported in [9].

Acknowledgements. This work was partly supported by CNPq, under grants 473110/2008-3
and 557128/2009-9, by FAPERJ under grant E-26/170028/2008, and by CAPES under grant
NF 21/2009.

798 M.A. Casanova et al.

References

[1] Baader, F., Nutt, W.: Basic Description Logics. In: Baader, F., Calvanese, D., McGui-
ness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic Handbook:
Theory, Implementation and Applications, pp. 43–95. Cambridge U. Press, Cambridge
(2003)

[2] Berners-Lee, T.: Linked Data - Design Issues (2006),
http://www.w3.org/DesignIssues/LinkedData.html (retrieved July 23,
2006)

[3] Berrueta, D., Phipps, J.: Best Practice Recipes for Publishing RDF Vocabularies - W3C
Working Group Note, http://www.w3.org/TR/swbp-vocab-pub/ (accessed
June 14, 2009)

[4] Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked Data on the Web,
http://www4.wiwiss.fu-
berlin.de/bizer/pub/LinkedDataTutorial/ (accessed June 14, 2009)

[5] Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Int. Journal on
Semantic Web and Information Systems 5(3), 1–22 (2009)

[6] Brickley, D., Miller, L. FOAF Vocabulary Specification 0.98. Namespace Document
August 9, 2010 - Marco Polo edn., latest version
http://xmlns.com/foaf/spec/(rdf, wiki)

[7] Casanova, M.A., Lauschner, T., Leme, L.A.P.P., Breitman, K.K., Furtado, A.L., Vidal,
V.M.P.: Revising the Constraints of Lightweight Mediated Schemas. Data & Knowledge
Engineering 69, 1274–1301 (2010)

[8] Casanova, M.A., Breitman, K.K., Furtado, A.L., Vidal, V.M.P., Macêdo, J.A.F. The Role
of Constraints in Linked Data. MCC21/11, Dept. Informatics, PUC-Rio (April 2011)

[9] Casanova, M.A., Breitman, K.K., Furtado, A.L., Vidal, V.M.P., Macêdo, J.A.F.: An Effi-
cient Proof Procedure for a Family of Lightweight Database Schemas. In: Hinchey, M.G.
(ed.) Conquering Complexity (to appear)

[10] Das, S., Sundara, S., Cyganiak, R.: R2rml: RDB to RDF mapping language. W3C
RDB2RDF working group, http://www.w3.org/TR/r2rml/ (accessed December
15, 2010)

[11] Halpin, H., Hayes, P.J.: When owl:sameAs isn’t the same: An analysis of identity links
on the semantic web. In: Proc. Int’l. Workshop on Linked Data on the Web (2010)

[12] Jaffri, A., Glaser, H., Millard, I.: URI disambiguation in the context of linked data. In:
Proc. 1st Int’l. Workshop on Linked Data on the Web (2008)

[13] Lauschner, T., Casanova, M.A., Vidal, V.M.P., Macedo, J.A.F.: Efficient Decision Pro-
cedures for Query Containment and Related Problems. In: Proc. XXIV Brazilian Sympo-
sium on Databases (2009)

[14] Madison, O.: (Chair) Functional Requirements for Bibliographic Records - Final Report.
IFLA Study Group on the Functional Requirements for Bibliographic Records (February
2009), http://www.ifla.org/VII/s13/frbr/

[15] McCusker, J., McGuinness, D.L.: owl: sameAs considered harmful to provenance. In:
Proc. ISCB Conference on Semantics in Healthcare and Life Sciences (2010)

[16] Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology Alignment for Linked
Open Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Sprin-
ger, Heidelberg (2010)

 The Role of Constraints in Linked Data 799

[17] Raimond, Y., Giasson, F.: Music Ontology Specification. Specification Document (No-
vember 28, 2010), latest version
http://purl.org/ontology/mo/(RDF/XML, Turtle)

[18] Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda J.,
Ezzat, A.: A survey of current approaches for mapping of relational databases to rdf.
W3C RDB2RDF Incubator Group Report (2009)

[19] Salas, P.E., Breitman, K.K., Viterbo, J., Casanova, M.A.: Interoperability by Design Us-
ing the Std-Trip Tool: an a priori approach. In: Proc. 6th Int’l. Conf. on Semantic Sys-
tems (I-SEMANTICS 2010), Graz (2010)

[20] Villegas, A., Olivé, A.: A Method for Filtering Large Conceptual Schemas. In: Parsons,
J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 247–
260. Springer, Heidelberg (2010)

[21] Wang, Z., Zhang, X., Hou, L., Li, J.: RiMOM2: A Flexible Ontology Matching Frame-
work. In: Proc. ACM WebSci 2011, Koblenz, Germany, pp. 1–2 (2011)

A Generic Approach for Combining Linguistic

and Context Profile Metrics in Ontology
Matching�

DuyHoa Ngo, Zohra Bellahsene, and Remi Coletta

LIRMM, Univ. Montpellier 2
34392 Montpellier, France
firstname.name@lirmm.fr

Abstract. Ontology matching is needed in many application domains.
In this paper, we present a machine learning approach for combining
metrics, which exploits various linguistic and context profiles features
in order to discover mappings between entities of different ontologies.
Our approach has been implemented and the experimental results over
Benchmark and Conference test cases on OAEI 2010 campaign1 demon-
strate its effectiveness and efficiency in terms of quality of matching and
flexibility.

Keywords: Ontology matching, matcher combination, context profile,
linguistic metrics.

1 Introduction

Numerous similarity metrics have been proposed so far for ontology mapping.
According to [3], element metrics can be categorized in three groups: termino-
logical, structural and semantic matching-based techniques. Metrics in the first
group exploit text features such as name, labels and comments to calculate the
similarity score between entities; whereas metrics of the last two groups exploit
the hierarchy and semantic relations features.

Despite the fact that metrics in the first group are less semantic than that of
the second and third, they are widely used in most of the matchers. During the
matching process, mappings discovered by these metrics can be used as input
mappings to other metrics of the second and third groups. Obviously, the more
precise results terminological metrics are the more accurate results structural
and semantic metrics have. Therefore, the aim of designing a high performance
quality matcher exploiting terminological features becomes an importance task.

Due to the various types of heterogeneity of data sources, there is no single
best metric overall matching scenarios. It is beneficial and necessary to combine
several methods for improving matching quality. However, it is very difficult and
time consuming even for experts to find a good combination. Therefore, the use
� Supported by ANR DataRing ANR-08-VERSO-007-04.
1 http://oaei.ontologymatching.org

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 800–807, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Generic Approach for Combining Linguistic and Context Profile Metrics 801

of supervised and machine learning approache is a promising way in order to
reduce the required manual effort.

According to these necessity, we aim to build a high quality ontology matcher
which utilizes machine learning approach to combine terminological similarity
metrics. This matcher will be a premise for us to work in next step with structural
and semantic matching methods.

The main contributions of this paper are the following. (i) We propose metrics
dealing with terminological and context profile features of entities in ontology.
(ii) We propose to use decision tree model to combine similarity metrics and
strategies to select metrics and training data for the learning process. (iii) Ex-
perimental results performed on the benchmark and conference tests of OAEI
2010 campaign show that our system achieved stable and good results in com-
parison with other participants.

This paper is organized into 5 sections. Section 2 presents similarity metrics
working with terminological and context profile features. Next, Section 3 contains
our approach for combining similarity metrics. In Section 4 we describe the
setting of experiments and show experimental results. Finally, we conclude and
plan future work in Section 5.

2 Feature Extraction and Similarity Metrics

2.1 Similarity Metrics for Terminological Features

Terminological features of an entity consist of text information encoded in
itself in ontology such as entities’ URI(name space and local name), labels and
comments. Terminological metrics can be categorized in two main groups: string-
based and linguistic-based. String-based metrics take advantage of similar char-
acters from two strings, whereas, linguistic-based metrics compare the meaning
of strings.

Most of string-based metrics (e.g. Levenstein, SmithWaterman, JaroWikler,
Qgrams, MongeElkan, etc.) are taken from open-source libraries SeconString2

and SimMetric3. Additionally, we also implemented other string-based metrics
such as Equality, Prefix, Suffix, Longest Common SubString [3] and Stoilois [8].
To deal with linguistic features, we implemented Lin, JiangConrath and Wu-
Palmer [6] metrics working on WordNet4 dictionary.

Because ontologies are designed by different people, consequently, names or
labels indicating even to the same object or concept may be heterogeneous. For
example, “MscThesis“ and “Ms.dissertation“ are different but they both indi-
cate a master’s thesis. Due to the heterogeneity of naming convention, primitive
string-based or linguistic-based metrics mentioned above may be not sufficient.
In order to deal with the heterogeneity problem, we perform analyses on termi-
nological features of entities and propose solutions for each case.

2 http://secondstring.sourceforge.net
3 http://sourceforge.net/projects/simmetrics
4 http://wordnet.princeton.edu

802 D. Ngo, Z. Bellahsene, and R. Coletta

Firstly, labels and names of entities usually are compound of tokens. The
whole strings may be not matched but their tokens may be highly similar. There-
fore, a pre-processing procedure is needed to split a string into proper tokens.
Afterward, tokens can be compared by primitive string and linguistic metrics.

Secondly, tokens may exist in various types of morphological forms of a word.
To deal with this issue, we need a thesaurus or dictionary. In our system, we
propose a generic algorithm to combine string and linguistic metrics at token
level as follows:

In the Algorithm 1, function MorphologicalForms takes a token as input and
finds all possible senses and morphological forms of token existing in Word-
net dictionary. For example, MorphologicalForms(“published”) returns { verb:
“publish” , adjective: “published”}; MorphologicalForms(“publishing”) returns {
noun: “publishing”, verb: “publish”}. Because two obtained sets of senses have a
common {verb: “publish”}, therefore token “published” and token “publishing”
are similar.

Algorithm 1. Compute similarity between two tokens

Input: token1, token2 two tokens,
dictMetric a linguistic metric,
stringMetric a string metric
Output: score a numerical value

1 MF1 ← MorphologicalForms(token1)
2 MF2 ← MorphologicalForms(token2)
3 if (MF1 �= ∅) ∧ (MF2 �= ∅) then
4 score ← max(posi,sti)∈MF1,(posj,stj)∈MF2(dictMetric(sti, stj) | posi = posj)

5 else score ← stringMetric(token1, token2)

Next, similarity score between two set of tokens is computed by two modifi-
cations of MongeEklan algortihms. One is proposed in [5] and the second is our
proposal:

simm(a, b) =
1
|a|

|a|∑
i=1

(
sigmoid(max{sim(ai, bj)}|b|j=1)

)
(1)

Here, sigmoid(x) = 1
1+e−10×(x−0.5) is a promoted function which makes the higher

similar tokens is more informative than the lower ones. The idea and effectiveness
of using promoted function can be seen in [5] for more detail.

Thirdly, name of entity may be an abbreviation (e.g. “Misc.” instead “Mis-
cellaneous”), an acronym (e.g. “SW” instead “Semantic Web”) or even a se-
quence of symbols which is not understandable. To deal with these cases, we
expect that entities provide some human-readable labels in annotation informa-
tion. In our approach, a local name is treated as a label of entity. The similarity
measure between two entities based on their labels can be formulated as follows:

sim(ei, ej) = max(lp∈labels(ei), lq∈labels(ej))(sim(lp, lq)) (2)

A Generic Approach for Combining Linguistic and Context Profile Metrics 803

For example, class Chapter in ontology #101 and class dzqndbzq in ontology
#2015 have the same label “BookPart”. Therefore two classes are matched.

An entity may also have several comments. They usually consist of a long
descriptive text. Therefore, calculating similarity of two comments by comparing
word by word is not a good choice. In our approach, we use comments in building
text profile for each entity. Calculating similarity based on entities’ profiles are
explained in detail in the next section.

2.2 Similarity Metrics for Context Profile Features

In order to take advantage of relations information in ontology, we build variety
types of text profile for each entity from its context. We divide context profiles of
entities into three groups: IndividualProfile, SemanticProfile and ExternalProfile.
Let us demonstrate how to build these profiles following a fragment of ontology
in Fig.1

Fig. 1. Three types of context profile of class Book

The IndividualProfile of an entity is simply a string concatenation of its
local name, labels and comments. For example: Individual profile of class Book
is “Book Book A book that may be a monograph or a collection of written
texts”.

The SemanticProfile of an entity is an union of individual profiles of it-
self with individual profiles of its neighbors. Neighbors of a class consist of its
sub-classes and all restricted properties. Neighbors of a property consist of its
sub-properties, classes included in domain and range. For example: Semantic
profile of class Book is created from individual profiles of {Monograph, title,
publisher, author, edition}.

The ExternalProfile of an entity is created from texts taken from ontology
instances. An external profile of a class is a string concatenation of texts of all
instances belonging to either this class or its descendants. An external profile of
a property is a string concatenation of value data corresponding to this property
in all instances. For example: External profile of class Book is created from
text value of instance a108048723. Therefore, external profile of class Book is
“Object-oriented Data Modeling”.

5 http://oaei.ontologymatching.org

804 D. Ngo, Z. Bellahsene, and R. Coletta

Having context profile for every entity, a similar technique described in [7]
is used to compute similarity scores between entities. Let simIProfile(ei, ej),
simSProfile(ei, ej) and simEProfile(ei, ej) are similarity scores between entities
(ei, ej) calculated by IndividualProfile, SemanticProfile and ExternalProfile re-
spectively. To combine all of types of context profiles of entities, we propose the
following generic formula:

sim(ei, ej) = f (simIProfile(ei, ej), simSProfile(ei, ej), simEProfile(ei, ej)) (3)

Where f may be weighted average, max, etc. If the combination function returns
only similarity score achieved by SematicProfile, then our context profile metric
is similar to metrics used in [1,7]. If the combination function returns only sim-
ilarity score achieved by ExternalProfile, then our context profile is similar to
the instance-based metric. This property makes our context profile metric more
flexible.

3 Combining Similarity Metrics with Decision Tree
Model

We have implemented a system named YAM++ - an extension of [2], which is
based on decision tree model to combine our proposed similarity metrics above.
In our approach, a decision tree is a tree whose non-leaf nodes are the similarity
metrics, leaf nodes values are either 1.0 ore 0.0 indicating if there is a match or
not. At a non-leaf node, a similarity value of to-be-matched entities is computed
by the similarity metric in ongoing node. The returned value is compared with
condition values on outgoing edges from current node in order to decide which
child node will be reached. This process will start at root node and iterate until
a leaf node is reached. The value of destination leaf node indicates whether the
two entities should match or not. See [2] for more detail of the advantages of
using decision tree model.

4 Experiments and Evaluations

4.1 Selection of Metrics and Training Data

In our system, similarity metrics are divided in three main groups: (i) name
metrics exploit name feature; (ii) label metrics exploit label feature; (iii)
context metrics exploit different types of context profiles. The selection of the
most representative metrics for each group is based on the hypothesis “A good
feature subset is one that contains features highly correlated with the class”
[4]. The correlation value is calculated by Pearson’s formula6 between similarity
scores obtained by a metric and values provided by experts for each test in
Benchmark datasets. Finally, the similarity metrics having the highest average
values in each of three groups above are selected.
6 http://en.wikipedia.org/wiki/Correlation and dependence

A Generic Approach for Combining Linguistic and Context Profile Metrics 805

Next, training data for learning process are selected from Benchmark datasets.
It is based on our heuristic: a training data is representative with the respect
to a feature if this feature is highly correlated to the class. For each test in
Benchmark datasets, our system computes the average correlation coefficient for
all selected metrics above. Then, tests having the highest average of correlation
values are selected to build training data.

4.2 Experimental Evaluations

Two experiments were designed as follows: (i) The first experiment shows the ef-
fectiveness of our proposed metrics in different scenarios over Benchmark
datasets. (ii) The second experiment presents the performance quality of our
approach on Conference datasets and shows the comparison results with other
participants on OAEI 2010 campaign.

Result on Benchmark datasets. According to terminological features de-
scribed in Benchmark datasets, we select three representative groups of tests
as follows: (i) TestGroup1 contains various types of naming convention us-
ing in designing real ontologies. The typical selected tests are: #104 (identical
string), #204 (different naming conventions) and #205 (synonym words). (ii)
TestGroup2: Names and labels of entities in test ontologies of this group are
substituted by random meaningless strings. To discover mappings, we should
take advantage from other features. We select tests #201, #201-2, #201-4,
#201-6 and #201-8 for this group. Names and labels of entities in these tests
are replaced by random strings with proportion 100%, 20%, 40%, 60% and
80% respectively. However, they support annotation information and data in-
stances for entities. (iii) TestGroup3: Test ontologies in this group are similar
to ontologies in the second group except that they do not support annotation
information for entities. We select tests #202, #202-2, #202-4, #202-6 and
#202-8 for this group. Tests in the first group are suitable for name and label
metrics. Tests in the second and the third groups are suitable for context met-
rics. In order to see how our metrics are appropriate to these scenarios above, we
perform experiments on the following selected sets of similarity metrics: (i) Sim-
Set1: Only name metrics; (ii) SimSet2: adding label metrics to SimSet1; (iii)
SimSet3: adding Semantic context profile metric to SimSet2; (iv) SimSet4:

Fig. 2. H-mean of Precision and Recall on different scenarios

806 D. Ngo, Z. Bellahsene, and R. Coletta

adding full context profile metric (Semantic and External context profiles) to
SimSet2; After running 10 times with different selected training datasets, the
harmonic mean values of Precision and Recall for each scenario are shown in
Figure.2.

Generally, our system achieves very high precisions (≈1.0) in all scenarios
(Fig.2a). This trend is exactly what we expected because our similarity metrics
focus to high accuracy in calculating similarity scores between entities. Besides,
the recall increases step by step thanks to adding metrics exploiting new features
(Fig.2b). Now, we look at particular scenarios in detail.

In the TestGroup1, our string, linguistic and their combination metrics work
well. Based on these metrics, our system discovered most of commonly real
patterns used to name entities (e.g., synonym, different naming conventions).
However, there are other real patterns requiring more knowledge of domain, for
example (“Academic”, “StudentReport”), (“LectureNotes”, “CourseMaterial”).
That is why using only string and linguistic metrics (in SimSet1 and SimSet2)
our system obtained good recall (≈0.8) but not ideal (1.0). Thanks to context
metrics (in SimSet3 and SimSet4), more mappings have been discovered.

In the TestGroup2, with name metrics only, our system achieves 0.41 for
recall. Although this value is low but it is the expected number. Let see the
description on test ontologies in this group. The average number of altered names
of entities is (20% + 40% + 60% + 80% + 100%)/5 = 60%. It mean that the
maximum number of mappings found by name metrics is 100% − 60% = 40%.
This number is in line with the recall value (41%) obtained by our system.
Similarly to TestGroup1, by adding new metrics (labels, contexts), our system
discovered more mappings.

In the TestGroup3, recalls achieved by running with SimSet1, SimSet2 and
SimSet3 are the same (0.41). That is because the test ontologies in this group
do not support any annotation information. Only when running with SimSet4,
thanks to ExternalContext profile, our system discovered more mappings.

Results on Conference datasets. In order to evaluate the performance of
our approach with matching scenarios in another domain which is independent
with training data, we select Conference datasets for testing. After running 10

Fig. 3. Optimal results of participants in Conference track

A Generic Approach for Combining Linguistic and Context Profile Metrics 807

times with different selected training datasets, we obtain precision (0.75), recall
(0.52) and f-measure (0.61) in harmonic mean. Fig.3 shows the performance
quality of our system among participants in OAEI 2010 campaign.

Most of participants need to set a confidence threshold for finding mappings.
Threshold values in the Fig.3 are found for the optimal f-measure value for
matchers. Like CODI system, we do not need to set threshold to our system. We
obtain the second position (under CODI) in term of harmonic mean F-measure
among all participants in campaign OAEI 2010.

5 Conclusion and Future Work

In this paper, we have proposed new similarity metrics exploiting both ter-
minological and context profile features. We also proposed a machine learning
approach to combine these similarity metrics. Experiments over OAEI datasets
show that our proposed metrics work effectively. Our system achieved high posi-
tion among participants of OAEI 2010 campaign in Conference track. Addition-
ally, our combining approach is automatic, flexible and extensible. In the future
work, we plan to integrate structural and semantic methods to our system in
order to improve its performance.

References

1. Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: Efficient matching for large
real-world schemas and ontologies. Proceedings of The Vldb Endowment 2, 1586–
1589 (2009)

2. Duchateau, F., Bellahsene, Z., Coletta, R.: A flexible approach for planning schema
matching algorithms. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331,
pp. 249–264. Springer, Heidelberg (2008)

3. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
4. Hall, M.A.: Correlation-based feature selection for discrete and numeric class ma-

chine learning. In: ICML, pp. 359–366 (2000)
5. Jimenez, S., Becerra, C., Gelbukh, A., Gonzalez, F.: Generalized Mongue-Elkan

Method for Approximate Text String Comparison. In: Gelbukh, A. (ed.) CICLing
2009. LNCS, vol. 5449, pp. 559–570. Springer, Heidelberg (2009)

6. Lin, F., Sandkuhl, K.: A survey of exploiting wordnet in ontology matching. In:
IFIP AI, pp. 341–350 (2008)

7. Qu, Y., Hu, W., Cheng, G.: Constructing virtual documents for ontology matching.
World Wide Web Conference Series, pp. 23–31 (2006)

8. Stoilos, G., Stamou, G., Kollias, S.D.: A String Metric for Ontology Alignment.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 624–637. Springer, Heidelberg (2005)

ADERIS: An Adaptive Query Processor for

Joining Federated SPARQL Endpoints

Steven Lynden, Isao Kojima, Akiyoshi Matono, and Yusuke Tanimura

Information Technology Research Institute, National Institute of Advanced Industrial
Science and Technology (AIST) Tsukuba, Japan

{steven.lynden,a.matono,yusuke.tanimura}@aist.go.jp, kojima@ni.aist.go.jp

Abstract. Integrating distributed RDF data is facilitated by Linked
Data and shared ontologies, however joins over distributed SPARQL ser-
vices can be costly, time consuming operations. This paper describes the
design and implementation of ADERIS, a query processing system for
efficiently joining data from multiple distributed SPARQL endpoints.
ADERIS decomposes federated SPARQL queries into multiple source
queries and integrates the results utilising two techniques: adaptive join
reordering, for which a cost model is defined, and the optimisation of
subsequent queries to data sources to retrieve further data. The benefit
of the approach in terms of minimising response time is illustrated by
sample queries containing common SPARQL join patterns.

1 Introduction

As individuals and organisations begin to publish RDF data using autonomous
SPARQL services, more applications need to integrate RDF data from multi-
ple SPARQL service endpoints using distributed query processing. Distributed
query processing is facilitated by the adoption of common ontologies, for exam-
ple as promoted by the Linking Open Data Project [1]. The problem of querying
Semantic Web data is inherently a distributed one, as much of the data that
needs to be accessed to answer such queries is held at different locations and
is constantly updated. Issues related to scale, in terms of degree of distribution
and data volume, require federated queries to access data sources directly rather
than data warehouse-based solutions. This problem is well recognised, with fed-
erated extensions to the SPARQL query language in the pipeline for SPARQL
1.1 [2] and various distributed RDF query processing approaches.

In this paper, we demonstrate how adaptive query processing [3] can be used
to address the problem of querying distributed RDF data utilising a mediator-
based architecture, where it is assumed that a number of RDF data sources
supporting SPARQL exist and the user requires a federated SPARQL query to
be executed over these resources without specifying the details of how the query
is executed, i.e. all optimisation is to be carried out automatically. Our approach
presented in [4], which investigated the initial results of the application of adap-
tive query processing to joining data from RDF data sources is extended by

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 808–817, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

ADERIS: An Adaptive Query Processor 809

a non-materialised intermediate storage that allows bound values to be adap-
tively passed to some data sources, reducing the amount of data retrieved when
compared to materialising the full result set of a source query. Furthermore,
the architecture the ADERIS query processor is described and an adaptive cost
model is presented for optimisation query plans with the aim of adapting to ser-
vice response times and minimising data transfer to improve performance and
scalability.

2 Related Work

The Federated SPARQL extensions being developed for SPARQL 1.1 [2] include
features such as the SERVICE construct, to match graph patterns with specific
endpoints as part of a query, therefore providing support for distributed query
processing, and a BINDINGS construct, which allows variable bindings to be
specified in queries to control result sizes. A key difference in our approach is
that instead of requiring explicit specification in the query which services are
accessed using SERVICE/BINDINGS, our approach is completely declarative,
the user does not have to be aware of which data can be obtained from which
endpoint nor specify the details of how it should be retrieved. ADERIS adopts
the concept of variable bindings from SPARQL 1.1 when accessing data sources,
however to be compliant with existing SPARQL services they are translated into
FILTER expressions. One feature supported by ADERIS is the optimisation of
the number of bindings attached to source queries to reduce response times.
This kind of optimisation is closely related to the optimisation of other aspects
of inter-service communication such as data transfer rates and message sizes.
Extremum control, among other approaches, has been investigated as a means
of optimising block transfer for Web-services in [5].

ARQ [6] (the SPARQL query processor for the Jena [7] semantic web frame-
work) is an example of an implementation providing support for the SERVICE
construct, however, optimisation is generally left to the user or applications ex-
tending Jena, which must specify which services are queried with which triple
patterns and the order in which they are joined. SPARQL-DQP [8], as an imple-
mentation of the SPARQL 1.1. Federation extensions, also utilises the SERVICE
construct along with a set of re-write rules for optimisation.

ARQ is used to implement DARQ [9] (Distributed ARQ), an RDF distributed
query processor supporting fully declarative SPARQL with automatic optimisa-
tion. DARQ optimises queries using statistics provided by service descriptions,
a metadata format introduced in order to describe an RDF data source. The
statistics used include information such as cardinalities and predicate selectivity
values, and are utilised to generate a query plan, after which physical optimisa-
tion is implemented using iterative dynamic programming.

SemWIQ [10] is also implemented using ARQ, offering a similar approach
to DARQ, supporting RDF distributed queries optimised using statistics about
endpoints, in this case obtained by a monitoring component that sends SPARQL
queries to data sources in order to generate statistics. SemWIQ uses various

810 S. Lynden et al.

query optimisation strategies such as push-down of group patterns and join and
union ordering, however, as is the case with DARQ, optimisation is carried out
statically and requires comprehensive statistics about data sources.

A key difference when compared to much of the work described above is that
ADERIS aims to be functional when only minimal information is known about
the properties of the endpoints over which queries are executed. Although efforts
are being made to encourage people to publish information about datasets that
would be of aid to a distributed query processor, for example using the Vocab-
ulary of Interlinked Datasets (VoID) [11] or SPARQL 1.1. Service Descriptions,
it is not clear whether SPARQL service providers will use them to expose the
kind of detailed histograms etc. required by a static query planner. In addition
to the fact that services may behave unpredictably and service descriptions may
be inaccurate or out-of-date, we believe adaptive approaches, such as the one
described in this paper, can provide useful solutions.

3 The ADERIS Query Processor

The ADERIS system consists of a query processor that accepts a SPARQL query
executed over a set of distributed RDF data sources by decomposing the initial
query into a set of source queries that are sent to the individual RDF data
sources. The results of the source queries are then integrated to provide an an-
swer to the initial SPARQL query. An appropriate intermediate storage scheme
is required to hold the results of the source queries, to which relational operators
will be applied to produce a query result. The choice of storage scheme is influ-
enced by the properties of SPARQL queries, for which, generally, the following
observations made in [12] apply: the number of distinct predicate values is much
less than the number of distinct subjects or objects, and in queries, predicates
are usually specified as query constraints, whereas subjects and objects are more
likely to be variables. A natural way to retrieve and process data from the indi-
vidual RDF data sources is therefore to partition based on the predicate value
of each triple, corresponding to the vertical partitioning scheme for RDF that
has been investigated in [13], where each table is referred to as a predicate table.

When integrating data from SPARQL endpoints, optimising a static query
plan is problematic, with join ordering being particularly difficult without infor-
mation about join predicate selectivity values, table cardinalities etc. Work on
adaptive query processing in relational database systems is directly applicable
here, including recent work that has shown how join ordering can be changed
in pipelined query execution plans during execution without having to dupli-
cate the work performed by the plan before reordering took place. [14] presents
a technique for reordering pipelined index nested loop (INL) join-based query
plans during moments in which a sequence of joins is in a state whereby the join
order can be changed without throwing away results that have already been pro-
duced. This approach allows the integration of the vertically partitioned RDF
data to be done adaptively, as the tables are created. [4] presents in more detail
the method used to achieve this in addition to some example query plans to
further illustrate the approach.

ADERIS: An Adaptive Query Processor 811

Fig. 1. ADERIS Graphical User Interface

ADERIS (Adaptive Distributed Endpoint RDF Integration System for SPARQL)
is open-source software, available for download at:
http://code.google.com/p/sparql-aderis.

ADERIS provides a command-line, API and graphical user interface, which is
illustrated in Figure 1. The software is currently being using in a scientific datas-
pace application [15] where multiple RDF data sources storing metadata about
experiments must be integrated to provide scientists with up-to-date information
about experiments being performed at multiple locations.

4 Retrieving Data from SPARQL Endpoints

ADERIS is primarily an adaptive approach that functions without statistics
about the data in federated data sources, however a minimal set of information
is required for basic static optimisations. This section describes how metadata
is obtained from data sources to construct the source queries; the structure of
the intermediate data structure (predicate tables) used to process source query
results, and the decomposition of the federated query into source queries.

Given a federated SPARQL query over a set of data sources, it is necessary
to generate a set of source queries to retrieve the required RDF data needed to
answer the query. This is performed by mapping each triple pattern to a data

812 S. Lynden et al.

source, combining triple patterns into the same query where possible, and push-
ing down predicates where possible. To do this efficiently, some information is
required about the RDF triples contained within each data source, which should
be constructed during an initialisation/configuration step taking place before
any queries over the data sources can be executed. It is necessary to do this
within the capabilities of the SPARQL query language rather than rely on out-
of-band methods, e.g. as used in [9], therefore, the information assumed to be
available is limited to presence/absence of predicate values within each specific
data source. The set of distinct predicate values is usually straightforward to
obtain via a single SPARQL SELECT query (using the DISTINCT function to
select all unique predicate values), or alternatively a sequence of SPARQL ASK
queries concerning specific predicate values (e.g. obtained from relevant ontolo-
gies or a specific query). Once the set of distinct predicate values is known,
individual queries can use the COUNT function to retrieve the number of in-
stances of each distinct predicate value. Failures to execute some queries do not
prohibit the use of the corresponding endpoint during query processing, however
less efficient optimisations are probable.

A predicate table is a two-column table used to store RDF triples with the
same predicate value. The predicate value determines the table’s name and the
subject and object values of each triple determine the values of the attributes.
Depending on the query execution strategy being used, an index may need to
be constructed on predicate tables as they are formed using the results of source
queries. Created predicate tables may support sequential and index-based access
via the following operations:

1. getNext(N) - consume N tuples from the predicate table.
2. hasNext() - determine whether any more tuples can be consumed.
3. subjectLookup(<values>) - uses an index on the subject column to return all
matching values for a set of input values.
4. objectLookup(<values>) - uses an index on the object column to return all
matching values for a set of input values.

Operations 1 and 2 are used to support query processing based on a pipelined
iterator model [16] (when N=1), which allows each operator to read tuples from
its input one by one using getNext until hasNext returns false and the input
is exhausted. Determining which indexes to build depends upon the possible
joins that can be used to answer the query. Tables built without indexes do not
support operations 3 and 4. For the INL join-based query execution plans used
in this paper, at most one table can be constructed without an index, meaning
that this table must be the left input of the first INL join. Having an index on all
predicate tables is advantageous in some cases as it allows for the full space of
possible query plans to be explored. On the other hand, constructing one table
without an index also allows that predicate table to be incorporated into the
query plan before it has been fully materialised.

Triple patterns present in some source queries may return too many results
to be effectively processed in the manner described above. Furthermore, some

ADERIS: An Adaptive Query Processor 813

SPARQL endpoints may refuse to answer queries for which the estimated ex-
ecution time is above a specific threshold. Where this is the case, instead of
materialising the predicate tables that would be produced by such triple pat-
terns, they are represented as non-materialised tables. A non-materialised table
provides the subjectLookup and objectLookup operations but does not support
getNext and hasNext, therefore it can only be used as the right input to an INL
join. Non-materialised predicate tables implement getNext and hasNext by send-
ing a query to the data source with bindings for the subject/object values. This
is in essence a similar approach to the ‘bind join’ [17] approach as applied to
distributed RDF query processing in [9], and is a nested loop join where value
are passed in a sub-query to the other relation with join attribute values bound.

Source queries are compiled using metadata about data sources to assign
triple patterns in the federated query to data sources from which they may be
retrieved, as follows:

1: A set of source queries, S, are initialised.
2: All individual triple patterns are extracted from the federated query
3: The data sources in which each triple pattern can exist are determined (using
the data source metadata). Triple patterns are assigned to the sources queries
in S, using the SPARQL UNION operator to add the triple pattern to the cor-
responding source query.
4: FILTER predicates from the federated query are pushed down to the appro-
priate queries in S where possible.
5: Joins are pushed down to the source queries in S where possible.
6: The set of queries in S is examined and their cost estimated. Triple patterns
with a high estimated cost are replaced by non-materialised predicate tables.

The pushing down of predicates and joins are standard techniques employed by
many query processors, however the elimination of expensive triple patterns that
takes place in the last step is necessary because of the complications involved
in accessing SPARQL endpoints which may return too much data. The opti-
miser uses non-materialised predicate tables if the estimated result size from the
source query is not known or estimated to be relatively large, likely resulting in
inefficient query execution or failure of the endpoint to answer the query. If the
result size cannot be estimated due to a lack of available information about a
given data source, the optimiser will always attempt to use a non-materialised
predicate table assuming no FILTER predicates can be pushed down to limit
the expected result size. Naturally at least one source query must be issued (i.e.
not all predicate tables can be non-materialised) so the optimiser ensures that
this condition is not violated. Any source queries that fail (e.g. timeouts, refusal
of the service to execute the query) are replaced by non-materialised tables.
If no source queries are executable (i.e. all source queries are estimated to be
too expensive in step 6) or the binding strategy results in queries that are not
answered by any services, the federated query fails.

814 S. Lynden et al.

5 Optimisation

This section deals with the question of how to order joins, within the constraints
of the approach previously presented, and how to optimise certain aspects of
query execution, in particular when dealing with non-materialised predicate
tables. Each time the optimiser is invoked, join ordering is performed based
on a greedy algorithm that iteratively builds a left-deep query plan with the
aim of minimising the estimated result cardinality when choosing each join, as
described in [18]. In this work, all selectivity values are based on monitoring
operators as the query is executed, and cardinalities are known (for materi-
alised predicate tables) or roughly estimated for non-materialised tables. The
join ordering algorithm estimates cardinality at each stage using the following
function:

cardEst(t) = in card ∗ card(t) ∗ selectivity(t) (1)

where in card is the estimated input cardinality at each iteration; t denotes
the table to be joined, with card(t) being the cardinality of that table and
selectivity(t) being the monitored selectivity of the predicates applied when
joining table t. Join ordering is achieved using the following cost function:

cost(t) = in card ∗ lookupT ime(t) +
∑
i∈R

lookupT ime(i) ∗ cardEst(t) (2)

where lookupTime(t) returns the average time taken to probe a given table and
R denotes the remaining set of tables that need to be joined to the current
plan. This cost function takes into account both cardinality, selectivity and the
time taken to retrieve tuples using the indexes. Each input tuple needs to be
used as a key to probe table t, therefore the cardinality of t is multiplied by the
average lookup time per tuple for that table. Following this, the second part of
the function estimates the consequence of the change in cardinality. The cost of
the subsequent processing of the join result is roughly estimated by a summation
of the join’s result size multiplied by the lookup time of each of the remaining
tables R that need to be joined with the current plan. The use of this rough
estimate (independent of iterating possible subsequent join orders) corresponds
to a greedy heuristic, providing an optimisation approach potentially scalable to
a large number of joins.

Joins involving non-materialised predicate tables can be performed by pass-
ing multiple bound values within the same query, thereby reducing the over-
head per tuple incurred when querying a SPARQL service. In order to achieve
this, joins must consume multiple tuples before performing a lookup using the
non-materialised table, therefore becoming blocking operators rather than fully
pipelined. As a result of this, the query plan will enter states during which it
can adapt less frequently. A potential trade-off therefore exists and the number
of tuples consumed per iteration of each join with a non-materialised predicate
table is something that can be potentially optimised to improve performance.

ADERIS: An Adaptive Query Processor 815

The optimal number of bindings to send in each query is dependent on various
data source properties such as the number of triples in the data source and the
SPARQL query processor implementation. To allow the query processor to adapt
to the properties of the data source, a form of extremum control [19] is employed.
In order to find the optimal number of bindings to send with each source query,
it is assumed that there exists an unknown function rt = f(n) where, rt is
the source query response time per tuple sent to the data source and N is the
number of bindings sent in the source query. Assuming that source queries are
repeatedly issued in steps xk, xk+1, ..., an extremum controller attempts to find
optimal values for N using a control function that determines the value of N at
each step as follows:

Nk = Nk−1 − g ∗ sgn(Δrtk−1 ∗ Δnk−1) (3)

where g is the gain, a configurable parameter used to control the rate at which
N is explored (g = 0.5 and N is initialised to 1 in the results presented in this
paper) and sgn returns 1 if the argument is positive and 0 otherwise. As join
reordering requires a pipelined plan execution plan, when the query processor
stops the plan to analyse whether join reordering is beneficial or not, N is reduced
to 1 in all operators to force a state in which all operators have consumed their
inputs, produced their outputs, and join reordering can take place. After the
query processor analyses the plan in this state, and possibly reorders the joins,
values of N can be resumed to their previous values.

6 Performance

Figure 2 illustrates some of the performance benefits that can be achieved by
ADERIS when executing SPARQL queries involving joins over multiple end-
points. The figure shows an average of 10 warm runs for 4 different queries
utilising two different strategies:

– no-adapt: No adaptivity allowed, the query planner makes static decisions
on the join order and the number of bindings, N , is initialised to 1 and not
changed during query execution.

– adapt: Adaptivity allowed, i.e. the full technique desribed in this paper is
utilised. N is initialised to 1 but allowed to changed via extremum control.

SPARQL endpoints are implemented using the Jena framework’s Joseki module
(queries submitted via HTTP requests and results returned using XML) running
on 3GHz Intel Xeon machines with 1MB available memory for each Java Virtual
Machine providing the endpoint. 5 local data sources are deployed and connected
to the query processor via a 100Mbs Ethernet LAN; additionally the SPARQL
endpoint deployed by DBPedia is utilised in some of the queries. Figure 2 shows
that a considerable reduction in response time can be achieved by the proposed
technique.

816 S. Lynden et al.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4

Re
sp

on
se

 ti
m

e
(S

ec
on

ds
)

Query

no-adapt adapt

Query 1 (Result size = 150):
select * where {
?x dbp:reference ?ref . 777,679
?x rdf:comment ?comment . 10,000
?x skos:subject ?subj . 9971
?x foaf:page ?page . 10,000
?x rdf:type ?type . 800,000
FILTER (regex(str(?subj),"building"))
}
Query 2 (Result size = 8):
select * where {
?x dbp:reference ?ref . 777,679
?x rdf:comment ?comment . 10,000
?x skos:subject ?subj . 9971
?x foaf:page ?page . 10,000
?x rdf:type dbo:book 3105
}
Query 3 (Result size = 8):
select * where {
?x dbp:reference ?ref . 777,679
?x rdf:comment ?comment . 10,000
?x skos:subject ?subj . 9971
?x foaf:page ?page . 10,000
?x rdf:type dbo:book 3105
?x dbo:releaseDate ?date (DBP) 126,737
}

rdf: <http://www.w3.org/2000/01/rdf-schema#>
skos: <http://www.w3.org/2004/02/skos/core#>
foaf: <http://xmlns.com/foaf/0.1/>

dbo: <http://dbpedia.org/ontology/>
dbp: <http://dbpedia.org/property/>
owl: <http://www.w3.org/2002/07/owl#>

Query 4 (Result size = 13):
select * {
?book rdf:type dbo:Book . 3105
?book foaf:page ?p . 10,000
?book owl:sameAs ?link (DBP) 10,121,699
}

Fig. 2. This figure shows example performance benefits when executing queries over
Joseki endpoints with subsets of the DBPedia data. The number of triples matching
each triple pattern is annotated in bold-italics. In all cases, triples are fetched from
endpoints we deployed except for where denoted by (DBP), corresponding to the actual
DBPedia endpoint.

7 Conclusions and Future Work

An adaptive distributed query processor for joins over federated SPARQL queries
has been presented. The challenging aspect of this work is that accessing remote
SPARQL services complicates distributed query processing - detailed statistics
and often unavailable, query response times may be unpredictable and many
SPARQL services will not support queries for which the predicted execution
time or result size is above a certain threshold. The work presented in this
paper addresses these challenges by adaptively querying individual services and
adaptively processing the results using a relational approach supporting join
reordering. Advantages were shown by this approach over non-adaptive strategies
both in terms of join reordering and the optimisation of the source queries issued
to data sources.

Acknowledgment. This work is partly supported by the RENKEI project.
(http://www.e-sciren.org/index-e.html)

ADERIS: An Adaptive Query Processor 817

References

1. Linked Data - Connect Distributed Data across the Web, http://linkeddata.org/
2. SPARQL 1.1 Federation Extensions,

http://www.w3.org/2009/sparql/docs/fed/gen.html

3. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive query processing. Foundations
and Trends in Databases 1(1), 1–140 (2007)

4. Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: Adaptive Integration of Dis-
tributed Semantic Web Data. In: Kikuchi, S., Sachdeva, S., Bhalla, S. (eds.)
DNIS 2010. LNCS, vol. 5999, pp. 174–193. Springer, Heidelberg (2010)

5. Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M.D.: A control theoretical
approach to self-optimizing block transfer in web service grids. TAAS 3(2) (2008)

6. ARQ SPARQL query processing framework, http://jena.sourceforge.net/ARQ/
7. Carroll, J.J., Dickinson, I., Dollin, C., Seaborne, A., Wilkinson, K., Reynolds, D.,

Reynolds, D.: Jena: Implementing the semantic web recommendations. Technical
Report HPL-2003-146, Hewlett Packard Laboratories (2004)

8. Buil-Aranda, C., Arenas, M., Corcho, O.: Semantics and Optimization of the
SPARQL 1.1 Federation Extension. In: Antoniou, G., Grobelnik, M., Simperl, E.,
Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS,
vol. 6644, pp. 1–15. Springer, Heidelberg (2011)

9. Quilitz, B., Leser, U.: Querying Distributed RDF Data Sources with SPARQL. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

10. Langegger, A., Wöß, W., Blöchl, M.: A Semantic Web Middleware for Virtual
Data Integration on the Web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Hei-
delberg (2008)

11. Describing Linked Datasets with the VoID Vocabulary (W3C Interest Group Note
March 03, 2011), http://www.w3.org/TR/void/

12. Tanimura, Y., Matono, A., Kojima, I., Sekiguchi, S.: Storage Scheme for Parallel
RDF Database Processing Using Distributed File System and MapReduce. In: In-
ternational Conference on High Performance Computing in the Asia Pacific Region
(2009)

13. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically par-
titioned DBMS for Semantic Web data management. VLDB J. 18(2), 385–406
(2009)

14. Li, Q., Sha, M., Markl, V., Beyer, K., Colby, L., Lohman, G.: Adaptively Reorder-
ing Joins during Query Execution. In: Proc. ICDE, pp. 26–35. IEEE Computer
Society, Los Alamitos (2007)

15. Elsayed, I., Brezany, P.: Towards Large-Scale Scientific Dataspaces for e-Science
Applications. In: Yoshikawa, M., Meng, X., Yumoto, T., Ma, Q., Sun, L., Watanabe,
C. (eds.) DASFAA 2010. LNCS, vol. 6193, pp. 69–80. Springer, Heidelberg (2010)

16. Graefe, G.: Query evaluation techniques for large databases. ACM Comput.
Surv. 25(2), 73–170 (1993)

17. Haas, L.M., Kossmann, D., Wimmers, E.L., Yang, J.: Optimizing queries across
diverse data sources. In: 23rd Int. Conference on Very Large Data Bases, VLDB
(1997)

18. Garcia-Molina, H., Widom, J., Ullman, J.D.: Database System Implementation.
Prentice-Hall, Inc., Upper Saddle River (1999)

19. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley (1995)

http://linkeddata.org/
http://www.w3.org/2009/sparql/docs/fed/gen.html
http://jena.sourceforge.net/ARQ/
http://www.w3.org/TR/void/

Asynchronous Replication for Evolutionary

Database Development: A Design for the
Experimental Assessment of a Novel Approach

Helves Humberto Domingues, Fabio Kon, and João Eduardo Ferreira

Department of Computer Science
University of São Paulo, Brazil

{helves,fabio.kon,jef}@ime.usp.br

http://www.ime.usp.br

Abstract. Environments with frequent changes in application require-
ments demand an evolutionary approach for database modeling. The
challenge is greater when the database must support multiple applica-
tions simultaneously. An existing solution for database evolution is refac-
toring with a transition period. During this period, both the old and the
new database schemas coexist and data is replicated in a synchronous
process. This solution brings several difficulties, such as interference with
the operation of applications. To minimize these difficulties, in this paper
we present an asynchronous approach to keep these schemas updated.
This paper presents the design for an experimental assessment of this
novel approach for evolutionary database development.

Keywords: database evolution, asynchronous data replication, agile
methods, performance evaluation

1 Introduction

In the conventional approach for database modeling [9], the complete concep-
tual, logical, and physical models must be developed before starting to write the
application code. This method is often not effective to handle the complexity
of many application domains and the speed of changing business requirements.
An alternative is to use evolutionary modeling [1]: an iterative and incremen-
tal process to create the business data model. However, this modeling process
generates the need to work with evolutionary databases [2,10,13] and each data
modeling iteration has to deal with important production data, which must be
preserved. The evolutionary database must take into account this legacy and
allow controlled and organized changes with the data model.

There are studies that deal with schema evolution [4], not worrying about
existing data in the database. There are others concerned with the evolution of
applications that use this database [11]. When the database is object-oriented,
we can find an extensive literature [15,14] on this subject. However, studies about
evolutionary relational databases are rare. An exception is Ambler’s book, Refac-
toring Databases: Evolutionary Database Design [3], which addresses evolution-
ary relational databases using refactorings - small changes to improve the internal

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 818–825, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.ime.usp.br

Asynchronous Replication for Evolutionary Database Development 819

structure without adding new functionality. Database refactorings have a tran-
sition period in which the old and new schemas coexist, allowing the updated
applications and those still on maintenance, to work on the same database si-
multaneuously. To keep the data of the two schemas (new and old) it is necessary
to develop a support code. This code, as proposed by Ambler, is a synchronous
data replication process using triggers [9]. However, this synchronous process
of updating schemas presents several difficulties. First, the programmer must
write a specific trigger code for each refactoring; second, avoid ciclic sequences
of triggers; third, deal with the increase in the transactions response time due
to additional data replication code; and, finally, perform error handling.

Because of difficulties in writing the support code in the form of synchronous
triggers, an alternative is to organize and structure the support code in three
steps: collection, mapping, and execution. The first step is performed by triggers,
which are used only to collect all transaction information. The data replication
between the schema is performed by the execution step, following the mapping
defined in the second step and using the data collected in the first. These three
stages - collection, mapping, and execution - do all the work expected by the
support code. We call synchronous replication the case in which these three
steps are in the triggers, as proposed by Ambler. When only the data collection
is performed with the application transaction and the other steps are performed
later, we call it asynchronous replication. This new organization in three steps
allows the development of refactoring tools and thus decreases the difficulties in
evolving databases. This approach was presented by the authors, in Portuguese,
in the Brazilian Symposium on Databases [8].

The main objective of the current paper is to propose the design of experi-
ments to compare the current solution, synchronous replication, with the solution
we proposed, asynchronous replication. We present the system description, the
experiment hypothesis, the lab environment, and experimental scenarios.

Organization. First, Section 2 describes related works concerning refactoring
and asynchronous replication. Second, Section 3 describes the transition period
with the support code and, briefly, asynchronous replication on evolutionary
databases. We then present the organization of the experimental performance
evaluation (Section 4). Finally, we present our future works (Section 5).

2 Related Work

In this section, we discuss related work on refactoring and asynchronous repli-
cation that are necessary to understand our asynchronous replication approach.

Wiesmann et al. conceptually define five stages for the data replication pro-
tocol [18]:

1. Request: the client submits an operation to one or more replicas.
2. Coordination of servers: the servers, responsible for the replicas, commu-

nicate themselves to synchronize the transaction execution (ordering concur-
rent operations).

820 H.H. Domingues, F. Kon, and J.E. Ferreira

3. Implementation: the client-initiated operation is performed on the replica.
4. Response: the operation result is transmitted back to the client.
5. Run result: the servers communicate with each others to know the opera-

tion result.

According to Wiesmann et al., the protocols for data replication are different
in the organization of these five phases. The asynchronous replication is similar
to the delayed replication protocol, defined by Wiesmann et al. The advantage
of this replication model is the low response time to customers, but the disad-
vantage is an eventual reconciliation process that must be executed to resolve
conflicts. Comparing the asynchronous replication with this approach, we have
three different points. First, the nomenclature: we use the term asynchronous
model, not the deferred term. Second, we add the mapping phase to make the
necessary changes in the transaction before updating the replica. Finally, we
consider that the implementation phase is when the replicas are updated and
the reconciliation task, if necessary, is executed.

In recent works, we can find frameworks to assist the schema evolution in
temporal databases [6]. Curino et al. propose a framework named Panta Rhei
designed to (i) provide database administration tools to facilitate the schema
development, (ii) enable automatic old query rewrite to work in newer schemas,
(iii) allow efficient historical data and metadata archiving, and (iv) allow complex
temporal queries on such historical information. This framework is based on
the work on the PRISM system [12] that defines the schema change operators.
The asynchronous replication database has the same motivation reasons that
Curino et al. have. Information systems with many and frequent changes in
the database model need development tools to manage these changes. However,
while the proposal by Curino et al. is based on automatic query rewrite to allow
access to old schemas, our proposal uses asynchronous data replication during
the transition period.

3 The Asynchronous Replication Approach

Due to limitations of the support code implementation in the form of syn-
chronous triggers, an alternative is to reorganize the support code in three steps:
collection, mapping, and execution. In this section, we briefly describe this ap-
proach that was presented by the authors in SBBD [8].

The transition period, when the old and new schemas coexist in the
database, requires a support code to keep the two schemas synchronized. In
the simplest case – when data changes occur only in the old schema, and the
new one is used only for queries – we have a support code that must replicate all
the changes from the old model to the new one. Thus, the code support allows
applications not to be affected by the existence of two schemas – they always
access updated data. At the end of the transition period, when all the applica-
tions that access the database have adapted to the new schema, the old schema
and support code are destroyed. Because it is a code that will be used for a short
period, this code is expected to be easy, fast, and simple to write.

Asynchronous Replication for Evolutionary Database Development 821

The collection step is performed by a simple and generic trigger, called
collector trigger. This trigger is used for all types of existing refactorings, with
the goal of capturing all the transaction information. Captured information are
the operation type (insert, delete, or update) and the previous and new values in
the table. We do not use the database log to collect the transaction information
because we want to use any database management system that has triggers.
Database log files have different formats for each database management system.

The purpose of the mapping step is to define a mapping from the source to
the target table. Each map represents one database refactoring that needs data
replication.

In the execution step, the replication process is executed and the old and
the new schemas are updated. The goal is to consume the information collected
in the first step, following the mappings defined in the second one.

Figure 1 shows all asynchronous replication actions. The collector trigger
writes the transaction information from the source table (1). The replication
process reads the map (2), consumes the transaction information (3), and up-
dates the target table (4).

Fig. 1. Asynchronous replication approach

4 Proposed Experimental Assessment

To analyze the performance of the asynchronous alternative, we organized an
experiment to compare it with Ambler’s solution: the synchronous data repli-
cation for refactoring [3]. The comparison must be carried out by checking, at
various levels of database concurrency, the performance of both solutions. Be-
cause asynchronous data replication is delayed, the time required to process a
pending update must be measured to complete the assessment of the proposed
approach.

According to Wohlin et al. [19], the technique that is appropriate for compar-
ing the synchronous and asynchronous methods is the engineering experiment.
This kind of experiment is defined as the method that observes the solutions,
suggests the most appropriate solutions, develops, measures, analyzes, and re-
peats this process until no further improvement is possible.

822 H.H. Domingues, F. Kon, and J.E. Ferreira

4.1 System Description and Experiment Hypotheses

We designed the simplest and most representative environment to simulate one
database refactoring for performing the comparison between the two approaches.
For that, we used only one database table (meetings), which was the most
complex one found in a specific system for the healthcare domain [7] developed
by the authors. This table is the center of care modeling provided in public
health centers and contains 19 attributes to store the necessary information.

The aim of the experiment is to validate the following hypotheses:

– Hypothesis 1: the synchronous method generates many locks and the
amount is significantly greater than the one in the asynchronous method.

– Hypothesis 2: a system that updates the database with asynchronous repli-
cation has a better performance, measured in number of operations per sec-
ond, than when using the synchronous method.

– Hypothesis 3: The time to process a pending operation in the asynchronous
method is small and is on the order of tens of milliseconds.

Hypotheses 1 and 2 focuses on the comparison between synchronous and asyn-
chronous methods in terms of performance. The first one aims at analyzing the
amount of locks while the second considers the number of operations per second.
Hypothesis 3 deals with the period of inconsistency in the database table. There
will be no more inconsistency only after the execution of the replication process.
The average processing time of a pending operation will provide an estimate of
this inconsistency period.

4.2 The Laboratory Environment

In this section, we describe the virtual machine and the real machine created to
be the testbed environment that is as close as possible to a real environment.
The main elements of this laboratory environment are shown in Figure 2. The
use of a virtual machine in the lab environment is very useful since we can easily
manage all the resources of this machine. Below, we describe all parameters of
our lab environment.

Virtual machine - The virtual machine was created with the software VMware
Fusion [17], version 3.1.2, and has the following elements:

1. Resources: contains 1GB memory, 500GB hard disk with one of two pro-
cessor cores of Core 2 Duo 2.8Ghz.

2. Operating system: uses GNU/Linux distribution, Ubuntu 9.10 Server 64-
bit standard installation.

3. Database manager: PostgreSQL version 8.4, with a standard installation.
The only changed parameter was the maximum amount of connections. We
set the value to 200, due to the amount of virtual machine memory.

Asynchronous Replication for Evolutionary Database Development 823

Fig. 2. The lab environment

Real machine - The hardware is a MacBook Pro with the following elements:

1. Hardware: contains 7GB of memory, 20GB hard disk with Core 2 Duo
2.8Ghz.

2. Operating system: Mac OS X version 10.6.4 64 bit.
3. Concurrent operation generator: the Bristlecone Performance Test [5]

tool was used to generate a large volume of concurrent operations in the
database.

4. Java Virtual Machine: the JVM used is the SE Runtime Environment
1.6.0.22 [16]. Basically, the JVM was used to run the Bristlecone Perfor-
mance Test tool. All client processes that generate load on the environment
are actually Java threads.

Throughout the experiment, both the real machine and the virtual machine will
be monitored by operating system tools (Activity Monitor for Mac OS X and
top for GNU/Linux) to check for a lack of resources that could compromise the
experiment.

4.3 Scenarios

In this section, we present three experiment scenarios. All scenarios have the
same concurrent operation generator process. What differentiates each scenario
is the existence of triggers and their type: synchronous or asynchronous.

We set up two tables (meetings 0 and meetings 1) with the same structure
but with different names and will perform data replication between them. The
meetings 0 table will be the source and meetings 1 table, the target.

Below, we have the Figure 3 and the description of each scenario.

– Scenario 1 - no trigger: the two meetings tables do not have data repli-
cation, ie, there is no trigger associated with the two tables. This scenario
aims to be the baseline.

824 H.H. Domingues, F. Kon, and J.E. Ferreira

Fig. 3. Scenarios

– Scenario 2 - synchronous trigger: The purpose of this scenario is to
evaluate the performance of the current solution for database refactorings.
This trigger is as simple and efficient as possible: it only performs the update
to meetings 1 table from the meetings 0 table.

– Scenario 3 - asynchronous trigger: The purpose of this scenario is to
evaluate the asynchronous replication method. The asynchronous trigger
records data operations into a temporary table (temp) and the replication
process runs simultaneously with the concurrent operation generator process.

5 Future Works

Right after the first entry into database production, the user starts storing and
updating the data of its business. Then, for each change in the database, it is
necessary to address the existing data. The challenge to evolve one database is
even greater when the database is used by multiple applications simultaneously.
Each application will have different problems and will spend different times
to make the necessary adjustments. A transition period with the old and new
coexisting schemas is very useful, but requires a support code to maintain the
schemas updated.

The main objective of this paper was to organize an experimental performance
comparisonbetween the current solution, synchronous replication, and the solution
we proposed, asynchronous replication. We described the experiment objectives,
the lab environment, and the scenarios that define the structure of the experiment.
In a future paper we will describe the experiment execution and present its results,
the data analysis, and the interpretation of experimental results.

References

1. Ambler, S.W.: Agile modeling: effective practices for eXtreme programming and
the unified process. John Wiley and Sons (2002)

2. Ambler, S.W.: Agile Database Techniques. John Wiley & Sons Inc. (2003)

Asynchronous Replication for Evolutionary Database Development 825

3. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database De-
sign (Addison Wesley Signature Series). Addison-Wesley Professional (2006)

4. Balsters, H., de Brock, B., Conrad, S. (eds.): Database Schema Evolution and
Meta-Modeling. Springer, Heidelberg (2001)

5. Continuent: Bristlecone performance test,
http://www.continuent.com/community/lab-projects/bristlecone (last access
on February 18, 2011)

6. Curino, C., Moon, H.J., Zaniolo, C.: Managing the history of metadata in support
for db archiving and schema evolution. In: Fifth International Workshop on Evo-
lution and Change in Data Management, pp. 78–88. Springer, Heidelberg (2008)

7. Domingues, H., Correia, R., Kon, F., Kon, R., Ferreira, J.E.: Análise e modelagem
conceitual de um sistema de prontuário eletrônico para centros de saúde. In: SBC
- Workshop de Informática Médica, pp. 31–40. Belém, Brasil (2008)

8. Domingues, H., Kon, F., Ferreira, J.E.: Replicação asśıncrona em modelagem evo-
lutiva de banco de dados. In: SBBD - XXIV Simpósio Brasileiro de Banco de Dados
(Brazilian Symposium on Databases), pp. 121–135. Ceará, Brazil (2009)

9. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, quinta edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

10. Fowler, M.: Evolutionary database design (2003),
http://www.martinfowler.com/articles/evodb.html (last access on February
18, 2011)

11. Hick, J.-M., Hainaut, J.-L.: Database application evolution: A transformational
approach. Data & Knowledge Engineering 59(3), 534–558 (2006)

12. Moon, H.J., Curino, C.A., Deutsch, A., Hou, C.-Y., Zaniolo, C.: Managing and
querying transaction-time databases under schema evolution. Proceedings of the
VLDB Endowment 1(1), 882–895 (2008)

13. Oertly, F., Schiller, G.: Evolutionary database design. In: Fifth International Con-
ference on Data Engineering, pp. 618–624 (1989)

14. Rahm, E., Bernstein, P.A.: An online bibliography on schema evolution. SIGMOD
Rec. 35, 30–31 (2006), http://doi.acm.org/10.1145/1228268.1228273

15. Rashid, A., Sawyer, P.: A database evolution taxonomy for object-oriented
databases. Journal of Software Maintenance and Evolution: Research and Prac-
tice 17(2), 93–141 (2005)

16. Support, A.: Java for mac os x 10.5 update 8.
http://support.apple.com/kb/DL971 (last access on February 18, 2011)

17. VMware: Desktop products, vmware fusion 3,
http://www.vmware.com/products/fusion (last access on February 18, 2011)

18. Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., Alonso, G.: Understanding
replication in databases and distributed systems. In: Proceedings of ICDCS 2000,
pp. 264–274. IEEE Computer Society (2000)

19. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.:
Experimentation in Software Engineering: An Introduction. Kluwer (2000)

http://www.continuent.com/community/lab-projects/bristlecone
http://www.martinfowler.com/articles/evodb.html
http://doi.acm.org/10.1145/1228268.1228273
http://support.apple.com/kb/DL971
http://www.vmware.com/products/fusion

Improving the Accuracy of Ontology Alignment

through Ensemble Fuzzy Clustering

Nafisa Afrin Chowdhury and Dejing Dou

Department of Computer and Information Science,
University of Oregon, Eugene, OR 97403, USA

{nafisa,dou}@cs.uoregon.edu

Abstract. Automatic ontology alignment tools perform matching be-
tween the concepts of two ontologies and provide a similarity measure
for each pair of aligned concepts. However, none of the existing tools
are perfect and multiple alignment tools produce varying similarity mea-
sures for a certain alignment. Also, the similarity measures provided by
an alignment may not be helpful enough for indicating the degree of
reliability. While using a random alignment tool we noticed that some
quality alignments are given medium or even low similarity measures,
and that causes the user ignoring those alignments. In this study we
have proposed an ensemble model of ontology alignment that aggregates
multiple alignment tools with the help of Fuzzy C Means clustering and
Type 2 Fuzzy Membership Functions. We have shown that our approach
helps the user to choose the best alignment results which has not been
obtained by any other alignment tools we experimented with.

Keywords: ontology alignment, uncertainty, Fuzzy C Means clustering
(FCM), Interval Type 2 Fuzzy Membership Function, Ensemble Fuzzy
Clustering.

1 Introduction

Automatic ontology alignment tools reduce the tedious manual job of estab-
lishing the correspondences between two ontologies [1]. Most of the available
automatic tools provide a similarity metric (generally 0.0 - 1.0) associated with
the alignment based on the algorithm being used. The problem arises when a
user is looking for quality alignments in order to use in his application. It is
expected that an alignment with low similarity measure is not as helpful as an
alignment with higher value. However, there is no absolute threshold value that
can distinguish quality and poor alignments. We observed that the automatic
alignment tool Falcon AO [2] that uses an integrated alignment algorithm of
linguistic and graphical matcher, suffers this problem. When we applied two
ontologies of camera domain we found only nine alignments with similarity mea-
sure more than 0.7, as there was a default threshold value 0.7. However, when
we changed the threshold value to 0.1 in the source code, we found several
other quality alignments even though they had lower similarity measure. Having

R. Meersman, T. Dillon, and P. Herrero (Eds.): OTM 2011, Part II, LNCS 7045, pp. 826–833, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Uncertainty in Ontology Alignment 827

the discrete threshold of 0.7 obscured some of the alignments such as “lens”-
“lenGroup”, “PurchaseableItem”- “PurchasebleItem” etc. In our ensemble on-
tology alignment model we considered threshold value zero in order to obtain all
possible alignments from an alignment tool.

Another problem is, the alignment tools using different similarity algorithms
almost never agree to each other and this causes ambiguity of selecting the
“appropriate” tool. We observed running a pair of bibliographic ontologies in
three ontology alignment tools: Falcon AO [2], Anchor Flood [4] and OLA [5]. We
found most of the alignments received three different similarity measure values
from them. For example, an alignment “hasInstitution”-“institution” received
0.97, 1.0 and 0.33 from those tools respectively. Apparently this alignment is a
strong one according to first two of the tools but weak based on the judgment
of third the tool. Now, the question arises which similarity value is correct?

In order to address the issue of deciding the quality of an alignment our
Ensemble Fuzzy Clustering approach incorporated fuzzy membership functions.
Instead of specifying a discrete boundary of “quality” and “poor” alignments,
fuzzy membership functions specifies the possibility of an alignment to be a
member of certain class [3]. In most cases fuzzy membership functions are es-
tablished by human experts. However, as it is expensive to have human experts
we built membership functions automatically with the help of Fuzzy C Means
(FCM) clustering [7]. The reason of choosing FCM is that it provides us with
overlapping class boundaries, which is more likely a fuzzy membership function.
When we obtained membership functions automatically from multiple alignment
tools, we aggregated the results using Interval Type 2 Fuzzy Membership Func-
tions (IT2MF) [3]. IT2MF is described as a blurred type 1 fuzzy membership
function [3], where the degree of membership function will be represented as a
range of available membership grades.

The rest of this paper is organized as follows: we will study several other
research publications that expected to illuminate in related areas(section 2). In
section 3 we illustrated our own ensemble model of choosing the best alignments
in details. The section 4 demonstrates our experiments in two cases(bibliographic
text and family). In the last section we discussed our contributions in this paper
and future works.

2 Related Works

In order to address the problem of alignment tool selection Eckert et al [6] de-
veloped a framework using machine learning technique. This work was similar
to ours in the sense that it also tried to aggregate the results of the alignment
tools instead of using a single. The major difference with our approach is that,
in this work the authors used discrete values to evaluate an alignment and we
used floating point similarity measure values. Also, unlike our clustering the
authors of this paper assigned human specified class labels along with the align-
ments. However, this causes the same problem of discrete threshold values as we
described in the introduction.

828 N.A. Chowdhury and D. Dou

There are not many works had been accomplished that addressed uncertainty
in ontology alignment using fuzzy logic. Among the very few Niwattanakul et
al proposed an approach to classify an ontology similarity based on fuzzy mem-
bership function [8]. Here the authors divided the alignments into some classes
between most similar to least similar. In our approach we avoided using classi-
fication technique as our alignments did not have class labels.

Another work with slightly different objective proposed by Tordai et al studied
longer chains of mappings when more than two ontologies are aligned [10]. This
paper also tried to divide the alignments into several groups based on their
similarity. The authors used sampling methods for evaluating the alignments and
assign them into matching groups by human experts. Our approach outperforms
in this regard as there is no human expert intervention required. We used a Fuzzy
based clustering method that generates the grouping in membership function
automatically.

3 Methodology

In our Ensemble Fuzzy Clustering Approach, we hypothesized a fuzzy member-
ship function (MF) that will address the degree of uncertainty for all resultant
alignments. Here an alignment will have a membership value for each of the
classes and all the membership values of a particular alignment will be added up
to one, which indicates the valid existence of the alignment. Figure 1 portrays
our model of Ensemble Fuzzy Clustering.

In order to build MFs automatically clustering was more promising than clas-
sification methods, as there was no class labels associated with the alignments.
Also, MFs require fuzzy or overlapping class boundaries which is unavailable in
generic clustering methods (like K-means). We found Fuzzy C Means (FCM)
clustering [7] [11] provides overlapping class boundaries where a data instance
can belong to more than one clusters. We applied FCM on the similarity measure
values provided by the alignment tools and, obtained the membership values for
each of the alignments. We also obtained the center values of those clusters.
Figure 1 shows how the membership functions are being generated from n align-
ment tools. If there are three clusters, we can easily distinguish the cluster with
highest center value as the cluster of most quality alignments.

In figure 1 there are p membership functions generated from each of the
tools. For a particular cluster we can combine the n MFs generated from n
tools by applying the Interval Type 2 Fuzzy Logic theory. In our approach, for
a particular cluster we constructed an IT2MF, where the membership degree
interval of a single alignment was the interval of its observed maximum and
minimum membership values. We will see examples of constructing IT2MF in
the case studies section.

Now the question is how we can infer the best alignments from the IT2MF
we developed in Fig 1. An alignment having longer interval denotes that the
alignment tools did not agree upon its strength. So the alignment that has longer
interval is more uncertain than the alignment with shorter interval. This intuition

Uncertainty in Ontology Alignment 829

Fig. 1. Generating membership functions automatically by applying FCM on the
results of the alignment tools. Here n is the number of alignment tools, p is the number
of clusters or the membership functions. O1 and O2 are two ontologies being aligned.

gives us a way of comparing the alignments based on their uncertainties. Again,
the alignment that has higher interval mean is stronger as it denotes that most
of the alignment tools suggested this one higher similarity measure. So this
alignment is most likely to be a strong one. At this point we needed to develop
an equation that balances the two concepts of uncertainty(interval width) and
strength(interval mean). We introduced “potential” as a quality metric of an
alignment. The equation 1 is a weighted harmonic mean formula that provides
more emphasis on the interval mean than the interval (width). The reason of
using weighted harmonic mean instead of generic one is that, intuitively it is more
significant to have higher interval mean rather than having lower uncertainty. If
an alignment shows higher interval mean, it is more likely to be in the strong
cluster.

Pi = (1 + β2)
meani ∗ intervali

meani + β2intervali
(1)

Where, Pi is the potential of the alignment with index i. β is a constant.
Intervali is the interval of the ith alignment. Meani is the arithmetic mean
of Intervali. The potential value reflects both the uncertainty and the strength
of an alignment. Therefore, the best alignment has the highest mean and least
interval(width).

830 N.A. Chowdhury and D. Dou

Fig. 2. Alignments with their similarity measure values found after running three
ontology alignment tools for a pair of bibliographic text ontologies

4 Case Studies

4.1 Bibliographic Text Ontologies

We have experimented with a pair of ontologies in bibliographic text and three au-
tomatic alignment tools Falcon AO [2], Anchor Flood [4] and OLA [5]. Figure 2
shows the alignment results found after feeding the two OWL files of bibliographic
text to all three of the alignment tools. For simplicity we restricted ourselves con-
sidering only the 42 alignments found common in all three of the tools.According to
our methodologies we applied FCM. Fig. 3 shows the degree of membership values
found after applying FCM [11] on the similarity measure values of Falcon AO [2].
In this figure, if we draw a line connecting all the membership values of strong clus-
ter, we will obtain the membership function for this cluster. Similar membership
functions can be drawn for medium and weak clusters.

We performed similar operations on the alignment similarity measure values
obtained from other tools. As the tools did not agree upon the similarity measure
values of the alignments, for a particular cluster we obtained very different MFs
from them. In order to aggregate multiple alignment tools we applied IT2MF on
these MFs. We found alignment number 11 (“howPublished”-“howPublished”)
and alignment number 13 (“hasKey”-“key”) have membership degree interval
from 0.2 to 1.0 and 0.93 to 1.0 respectively. According to our methodology,
number 13 is stronger and less uncertain than number 11, as it has higher mean
and shorter interval width. For strong cluster figure 4 clearly shows how the

Uncertainty in Ontology Alignment 831

Fig. 3. Membership functions for three clusters: weak, medium and strong generated
after applying FCM on Falcon similarities

uncertainty range looks like for the 42 alignments we considered. We excluded
Anchor Flood [4], as it provided same membership degree for all the alignments
and this will moderate the actual potential value of an alignment.

In order to sort our alignments based on their strength and uncertainty we
calculated their potential values according to the equation 1. Here we have chosen
β = 10.0, as it distributes the potential value in a way that the interval mean
gets much higher emphasis than the interval (width). We found that alignments
with ambiguous similarity measure (very high in one tool and very low in other)
achieved a moderate potential value that respects all the algorithmic views of
those tools we considered.

Fig. 4. Interval type 2 membership function for strong cluster considering two align-
ment tools. As Anchor flood assigned 1.0 for all of the alignments we exclude this tool
here to clarify the necessity of considering mean in the selection criteria.

4.2 Family Ontologies

We performed another case study with a pair of ontologies in Family domain.
We obtained 14 alignments and their similarity values after running the three
alignment tools with these ontologies. We repeated our methodologies in the
same way as we performed in the case of bibliographic text. Unfortunately, these
two ontologies were similar enough to build a sparse membership function like

832 N.A. Chowdhury and D. Dou

bibliographic text. Most of the alignments received high range of uncertainty
(more than 0.6), because the similarity measures of the alignments were high
(more than 0.98) and we tried to divide them into three clusters in between 0.98
and 1.0. Therefore the centers of those clusters were close enough and this made
the clustering decision difficult.

We could not find any set of alignments that could be used as a golden stan-
dard for this pair of ontologies. As they were small enough we performed the
alignment ourselves and compared after sorting the alignments based on their
calculated potential values. We found no significant difference between our ap-
proach and other alignment tools for the case of family ontologies.

4.3 Results

In order to justify our theory of calculating potentials we compared our results
with the EON [12] ontology alignment contest results as our golden standard.
But the problem was all existing alignments in EON have similarity value 1.0,
whereas we have floating point similarity and potential values. For doing the
comparison we termed an alignment “wrong” if it does not exist in the EON
result. We sorted the 42 alignments (figure 2) based on their calculated potential
values and counted the number of “wrong” alignments. Table 4.3 summarizes
the results of comparing our method with other existing alignment tools. It
clearly shows that sorting the alignments based on their potential values provides
better results than all other alignment tools we considered, because the potential
value has been calculated by aggregating multiple alignment tools. We have not
included results of sorting the alignments based on Anchor Flood, as it assigns
same similarity measure(1.0) for all.

Table 1. Comparing the number of wrong alignments found after sorting the align-
ments in descending order based on different methods. The table reports the number
of wrong alignments present in the first 25.

Sorted based on Wrong Position

Potential 1 15th
Falcon similarity 2 2nd and 19th
OLA similarity 2 12th and 19th
Average of 3 tools 3 9th, 13th and 21st

5 Conclusion

Most of the alignment tools provide a similarity measure but it is hard to justify
the quality of an alignment only by looking at its similarity measure. Also this
similarity measure value is different in different alignment tools, that raises am-
biguity and uncertainty. This paper provides an ensemble model that aggregates
the results of multiple ontology alignment tools. As described in the methodolo-
gies section we applied Fuzzy C Means clustering and IT2MF in order to obtain

Uncertainty in Ontology Alignment 833

an aggregated fuzzy membership function that combines the results of all align-
ment tools we considered. Finally we introduced a formula for calculating the
potential of an alignment, where the potential addresses both the strength and
uncertainty of an alignment. We have also proved that if we sort the alignments
based on their potential it performs better than all other alignment tools. We
would like to extend this work by applying more ontology alignment tools in the
future.

References

1. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In: Proceedings of the National Conference on Artificial
Intelligence, pp. 450–455 (2000)

2. Jian, N., Hu, W., Cheng, G., Qu, Y.: Falcon-ao: Aligning ontologies with falcon.
In: K-Cap 2005 Workshop on Integrating Ontologies, pp. 87–93 (2005)

3. Mendel, J.M.: Uncertainty Rule-Based Fuzzy Logic Systems. Prentice Hall PTR,
Upper Saddle River (2001)

4. Seddiqui, M.H., Aono, M.: An effcient and scalable algorithm for segmented align-
ment of ontologies of arbitrary size. Web Semant. 7(4), 344–356 (2009)

5. Euzenat, J., Valtchev, P.: Similarity-Based Ontology Alignment in OWL-Lite. In:
ECAI 2004, pp. 333–337 (2004)

6. Eckert, K., Meilicke, C., Stuckenschmidt, H.: Improving Ontology Matching Us-
ing Meta-Level Learning. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P.,
Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 158–172. Springer, Heidelberg (2009)

7. Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Cluster. Cybernetics and Systems 3(3), 32–57 (1973)

8. Niwattanakul, S., Martin, P., Eboueya, M., Khaimook, K.: Ontology Mapping
based on Similarity Measure and Fuzzy Logic. In: Proceedings of World Confer-
ence on E-Learning in Corporate, Government, Healthcare, and Higher Education,
Quebec City, Canada, 2007, pp. 6383–6387 (2009)

9. Ding, Z., Peng, Y., Pan, R.: A Bayesian Approach to Uncertainty Modelling in
OWL Ontology. In: Proceedings of the International Conference on Advances in
Intelligent Systems - Theory and Applications, Luxembourg, Germany (2004)

10. Tordai, A., Ghazvinian, A., van Ossenbruggen, J., Musen, M.A., Noy, N.F.: Lost
in Translation? Empirical Analysis of Mapping Compositions for Large Ontolo-
gies. In: The Fifth International Workshop on Ontology Matching (OM 2010), at
ISWC 2010, Shanghai, China (2010)

11. Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means
algorithms. Pattern Recognition 22, 205–212 (1989)

12. EON Ontology Alignment Contest,
http://oaei.ontologymatching.org/2004/Contest/

http://oaei.ontologymatching.org/2004/Contest/

Author Index

Abbaci, Katia 38
Acar, Aybar C. 367
Adamus, Rados�law 734
Alhamad, Mohammed 469
Andreescu, Laura Maria 163
Anisetti, Marco 560
Ardagna, Claudio A. 560

Baumgrass, Anne 329
Beitman, Karin Koogan 781
Bellahsene, Zohra 421, 800
Bouzeghoub, Mokrane 38
Buche, Patrice 662
Buckley, Ingrid 560

Canavese, Daniele 617
Casanova, Marco Antonio 781
Cesena, Emanuele 617
Chang, Elizabeth 469
Chen, Qiming 403, 525
Chowdhury, Nafisa Afrin 826
Ciuciu, Ioana 605
Claerhout, Brecht 605
Coletta, Remi 421, 800
Conforti, Raffaele 100
Cruz Torres, Mario Henrique 155

Dadam, Peter 82
Damiani, Ernesto 560
Danilow, Juan 716
De Virgilio, Roberto 644
Dibie-Barthélemy, Juliette 662
Dillon, Tharam 469
Domingues, Helves Humberto 818
Dou, Dejing 698, 826
Dougherty, Brian 432
Duchateau, Fabien 421
Dustdar, Schahram 451

Eder, Johann 763
Edmondson, James 542
Ekanayake, Chathura C. 20
Eshuis, Rik 119

Farokhi, Soodeh 625
Fauvet, Marie-Christine 20

Fernandez, Eduardo B. 560
Ferreira, João Eduardo 818
Fleischhacker, Daniel 680
Fortino, Giancarlo 100
Furtado, Antonio Luz 781

Gal, Avigdor 2
Gama, Kiev 498
Ghaffari, Amir 625
Gokhale, Aniruddha 432, 507, 542
Gomes, Raphael Valle A. 781
Gorawski, Marcin 347
Grefen, Paul 119
Greveler, Ulrich 577
Grigori, Daniela 38

Hadjali, Allel 38
Hakiri, Akram 507
Herrmann, Klaus 236
Hill, James H. 478
Hoffert, Joe 507
Holvoet, Tom 155
Hsu, Meichun 403, 525
Hummer, Waldemar 451

Ibănescu, Liliana 662

Jin, Tao 56
Justus, Benjamin 577

Kang, Yong-Bin 218
Kegley, Russell 432
Knuplesch, David 82
Kojima, Isao 808
Kon, Fabio 818
Kop, Christian 747
Köpke, Julius 763
Koster, Andrew 182
Kowalski, Tomasz Marek 734
Krishnaswamy, Shonali 218

Lampo, Tomas 716
La Rosa, Marcello 20, 100
Leitner, Philipp 451
Lemos, Fernando 38

836 Author Index

Lemos, João 302
Lenhard, Jörg 137
Leone, Stefania 284
Liétard, Ludovic 38
Lima, Ricardo 498
Lincoln, Maya 2
Liu, Haishan 698
Liu, Xi 64
Loehr, Dennis 577
Lopes, Danilo 498
Ly, Linh Thao 82
Lynden, Steven 808

Macedo, José A.F. 781
Matono, Akiyoshi 808
Meersman, Robert 605
Mendling, Jan 329
Motro, Amihai 367

Naumann, Felix 412
Ngo, DuyHoa 800
Nikravesh, Ali 625
Norrie, Moira C. 284

Onaindia, Eva 200

Pajares Ferrando, Sergio 200
Pascal, Berthou 507
Preston, Jonathan 432

Ribe-Baumann, Liz 385
Ribeiro, J.T.S. 274
Rinderle-Ma, Stefanie 82
Rocacher, Daniel 38
Rosa, Nelson 498
Rothermel, Kurt 236
Ruckhaus, Edna 716

Sabater-Mir, Jordi 182
Sacha, Krzysztof 588
Sadjadi, Masoud 560
Salas, Percy E. Rivera 781
Salnikov-Tarnovski, Nikita 635
Satzger, Benjamin 451
Schefer, Sigrid 329
Schilders, Louis 605

Schmidt, Douglas C. 432, 478, 507, 542
Schönberger, Andreas 137
Schorlemmer, Marco 182
Shams, Fereidoon 625
Siedlecki, Zacheusz 347
Silvestro, Jacopo 617
Simão, José 302
Smiraglia, Paolo 617
Šor, Vladimir 635
Souza, Fabio 498
Srirama, Satish Narayana 635
Strembeck, Mark 329
Su, Jianwen 64, 256

Tanimura, Yusuke 808
ter Hofstede, Arthur H.M. 20, 100
Thierry, Gayraud 507
Torreño, Alejandro 200
Touhami, Rim 662
Tryfonopoulos, Christos 163

Veiga, Lúıs 302
Vidal, Maŕıa-Esther 716
Vidal, Vania M.P. 781
Vogel, Tobias 412
Völker, Johanna 680
Vonk, Jochem 119

Wang, Jianmin 56
Weijters, A.J.M.M. 274
Wen, Lijie 56
White, Jules 432
Wirtz, Guido 137
Wíslicki, Jacek 734
Wolf, Hannes 236

Xu, Lai 321
Xu, Wei 256

Yan, Zhimin 256
Yang, Jian 64, 256, 321

Zaslavsky, Arkady 218
Zhang, Liang 256
Zhao, Weiliang 321
Zhong, Youliang 321

	Title page
	General Co-chairs’ Message for OnTheMove 2011
	Organization
	Computing for Human Experience: Semantics Empowered Cyber-Physical, Social and Ubiquitous Computing beyond the Web
	Privacy and the Cloud
	The Social Compute Unit
	GENI - Global Environment for Network Innovations
	Table of Contents
	Distributed Objects and Applications and Secure Virtual Infrastructures (DOA-SVI) 2011
	DOA-SVI 2011 PC Co-chairs’ Message

	Performance Measurement and Optimization
	Optimizing Integrated Application Performance with Cache-Aware Metascheduling
	Introduction
	Integrated Avionics System Case Study
	Challenges of Analyzing and Optimizing Integrated Applications for Cache Effects
	Improving Cache Hit Rate via Cache-Aware Metascheduling
	Re-ordering Same-Rate Tasks with Cache-Aware Metascheduling
	Deciding between Multiple Metaschedules
	Using Cache-Half Life to Drive Cache-Aware Metascheduling

	Empirical Results
	Overview of the Hardware and Software Testbed
	Experiments: Determining the Impact of Cache-Aware Metascheduling on Cache Hit-Rate and Runtime Reductions

	Related Work
	Concluding Remarks
	References

	Dynamic Migration of Processing Elements for Optimized Query Execution in Event-Based Systems
	Introduction
	Related Work
	Event-Based Continuous Queries in WS-Aggregation
	Problem Formulation
	Optimization Target
	Elastic Scaling Using Cloud Computing
	Extension: Robustness by Redundancy

	Optimization Algorithm
	Search Neighborhoods

	Implementation
	Migration of Event Buffers and Subscriptions

	Evaluation
	Migration of Event Buffers and Subscriptions
	Evolution of Network Topology
	Performance Characteristics of Optimization Parameters

	Conclusions
	References

	A Survey on SLA and Performance Measurement in Cloud Computing
	Introduction
	Definition
	Service Level Agreements
	Performance Measurements Models
	Conclusions
	References

	Instrumentation, Monitoring, and Provisioning
	Experiences with Service-Oriented Middleware for Dynamic Instrumentation of Enterprise DRE Systems
	Introduction
	Case Study: The Unified SHIP Platform
	Experiences Applying OASIS to the Unified SHIP Platform
	Overview of OASIS

	Towards Using OASIS in Cloud Computing Environments
	Motivation and Challenges of Instrumentation in Cloud Computing Environments
	A Strategy for Bringing OASIS to the Cloud

	Related Work
	Concluding Remarks
	References

	Dynamic Event-Based Monitoring in a SOA Environment
	Introduction
	Monitoring System
	Management Agent
	Data Gathering Center
	Data Processing Center

	Experimental Evaluation
	Related Work
	Conclusion and Future Directions
	References

	A SIP-Based Network QoS Provisioning Framework for Cloud-Hosted DDS Applications
	Introduction
	Supporting DDS in Cloud Environments Using SIP/SDP
	Overview of Underlying Technologies
	SIP/SDP Enhancements for Cloud-Based DDS
	End-System Architecture
	Proxy SIP Signaling Mechanism
	SDP Extensions
	Semantics of SIP/SDP Extensions
	Integrating All the Pieces Together

	Realizing Cloud-Based DDS on DiffServ IP Networks
	Implementation Overview
	Signaling Procedure
	Session Management and QoS Setup for DDS on the Cloud Network

	Related Work
	Concluding Remarks
	References

	Quality of Service
	Continuous Access to Cloud Event Services with Event Pipe Queries
	Introduction
	Support Continuous Data Access Pattern
	Prior Art
	Our Solution

	Data Access Pattern of CDAO
	Operational Event Pipe
	Combination of Stream and Static Data Access
	On-Demand Query Evaluation
	Cloud Event Service Consumer

	Event Pipe Query
	EPQ Constructs
	EPQ Execution Pattern
	The Conceptual Model of EPQ

	Supporting Continuous EPQ
	Replace Table Scan by Stream Capture Function Execution
	Extend UDF Data Buffering Mechanism to Support Sliding Window Function
	Extend Query Engine to Support Request-and-Rewind

	Examples and Experiments
	A Data Retrieval Example
	EPQ Performance

	Conclusions
	References

	QoS-Enabled Distributed Mutual Exclusion in Public Clouds
	Introduction
	Distributed Mutual Exclusion in Public Clouds
	Building the Logical Spanning Tree
	Models and Algorithm for Distributed Mutual Exclusion
	QoS Properties of the PADME Algorithm

	Evaluating the PADME Algorithm
	Quantifying the Degree of QoS Differentiation
	Measuring Critical Section Throughput

	Related Work
	Concluding Remarks
	References

	Security and Privacy
	Towards Pattern-Based Reliability Certification of Services
	Introduction
	Using Patterns for Improving Reliability
	Certifying Services Built Using Reliability Patterns
	A Reliability Pattern Solution
	A Priori Validation of Reliability Patterns
	A Posteriori Validation of Service Reliability

	Machine Readable Certificates for Reliable Services
	An Architecture for Reliability Certificates Checking

	Related Work
	Conclusions
	References

	Direct Anonymous Attestation: Enhancing Cloud Service User Privacy
	Introduction
	Cloud Services
	Privacy Concerns
	Trusted Computing Background
	Contribution

	DAA Protocol Overview
	DAA Join Protocol
	DAA Sign Protocol
	Variable Anonymity
	Rogue Tagging
	A Privacy Flaw Involving Corrupt Administrators

	DAA-Based Cloud Service Architecture
	Service Login
	User-Controlled Linkablility
	Selecting a Basename
	Account Suspension/Closing

	Related Work
	Conclusion
	References

	Trust Management Languages and Complexity
	Introduction
	Related Work
	Trust Management Languages
	Motivating Example
	System Architecture
	Local Certification Authority
	Credential Graph
	Conclusions
	References

	Models and Methods
	Ontology-Based Matching of Security Attributes for Personal Data Access in e-Health
	Introduction and Motivation
	Related Work
	Background
	DOGMA Approach for Ontology Engineering
	XACML

	Requirements and Use Case
	Health Information Network Requirements
	Use Case: Federated Data Access

	Ontology-Based Attribute Matching for Access Control
	Ontology-Based Interoperation Service (OBIS)
	Security Attributes Mapping
	Access Control Policy Ontology

	Conclusion and Future Work
	References

	A Unified Ontology for the Virtualization Domain
	Introduction
	Application Field and Scope of the Ontology
	Description of the Ontology
	Logical Layer
	Virtual Layer
	Physical Layer

	Refinement of the Core Ontology
	Conclusion and Future Work
	References

	2PSIM: Two Phase Service Identifying Method
	Introduction
	Related Work
	The Proposed Method
	Lunch Input
	Identification of Elementary Services
	Verification of the Elementary Services
	Storage of Elementary Services
	Identification of Business Aligned Services
	Verification of the Business Aligned Services

	Evaluation
	Conclusion and Future Work
	References

	Automated Statistical Approach for Memory Leak Detection: Case Studies
	Introduction
	Automated Statistical Approach for Memory Leak Detection
	Case Studies
	Case Study: Apache ActiveMQ
	Case study: eHealth Web Application
	Related Work
	Conclusions and Future Work
	References

	Ontologies, DataBases, and Applications of Semantics (ODBASE) 2011
	ODBASE 2011 PC Co-chairs’ Message

	Acquisition of Semantic Information
	RDFa Based Annotation of Web Pages through Keyphrases Extraction
	Introduction
	Related Work
	Architecture of Reference
	Automatic Annotation of Web Pages
	Semantic Block Identification
	Keyphrase Extraction
	Keyword Search
	Annotation

	Experimental Results
	Efficiency Evaluation
	Effectiveness Evaluation

	Conclusion and Future Work
	References

	An Ontological and Terminological Resource for n-ary Relation Annotation in Web Data Tables
	Introduction
	Modeling of the Ontological and Terminological Resource (OTR)
	Conceptual Component of the OTR
	Terminological Component of the OTR

	Using the OTR to Annotate and Query Data Tables
	Conclusion
	References

	Inductive Learning of Disjointness Axioms
	Motivation
	Related Work
	Methods for Learning Disjointness
	Correlation
	Association Rule Mining

	Experiments
	Setting
	Handling Logical Inconsistency and Incoherence
	Creation of a Gold Standard
	Results and Discussion

	Conclusion and Outlook
	References

	Use of Semantic Information
	Breaking the Deadlock: Simultaneously Discovering Attribute Matching and Cluster Matching with Multi-Objective Simulated Annealing
	Introduction
	Background and Related Work
	The Multiobjective Optimization Problem and Pareto-Optimality
	Simulated Annealing in Multi-Objective Optimization
	The Schema Matching Problem
	The Cluster Matching Problem

	Method
	The Multi-Objective Simulated Annealing Framework
	Decision Variable
	Data Representation
	Objective Functions
	Generation of New Solution

	Experiment
	Synthetic Dataset
	Neuroscience Dataset

	Conclusion
	References

	To Cache or Not To Cache: The Effects of WarmingCache in Complex SPARQL Queries
	Introduction
	Related Work
	Motivating Example
	Star-Shaped Group Queries
	Experimental Study
	Performance of Star-Shaped Groups in Cold and Warm Cache

	Conclusions
	References

	Implementation of Updateable Object Views in the ODRA OODBMS
	Introduction
	Stack-Based Architecture
	Updateable Object Views
	Updateable Object Views and the ODRA Type System
	ODRA Type Control System
	First Approach to Views Implementation
	Modification of Views Implementation
	Virtual Pointer Objects

	Updateable Object Views and the ODRA Optimizer
	View Rewrite Procedure

	Future Development Ideas
	Summary
	References

	Reuse of Semantic Information
	Domain Expert Centered Ontology Reuse for Conceptual Models
	Introduction
	Related Work
	OWL Ontologies versus Conceptual Models
	Usage of Ontologies for Information Systems
	Natural Language Queries
	Verbalization
	Mapping from Controlled Natural Language to a Conceptual Model
	Summary of Related Work

	Verbalization and Transformation
	Verbalization
	Transformation and Reuse

	Selection
	Linguistic Instruments for Natural Language Queries
	Selection of Classes and Relationships

	Tests and Tool
	Tests of Tool Components
	Tool

	Conclusion and Future Work
	References

	Semantic Invalidation of Annotations Due to Ontology Evolution
	Introduction
	Semantic Changes and Their Automatic Detection
	Requirements for Explicit Dependency-Definitions
	Definition of Change-Dependencies
	Integrity Constraints on $Annotation Path$
	Integrity Constraints on $Dependency Definition Path$

	Detection of Semantic Changes
	Change-Log
	Implicit Changes
	Detection of Semantically Invalid Annotation Paths

	Proof of Concept Implementation
	Related Work
	Conclusion
	References

	The Role of Constraints in Linked Data
	Introduction
	An Informal Example
	A Formal Framework
	A Brief Review of Attributive Languages
	Extralite Ontologies
	Constraint Graphs
	Examples of Extralite Ontologies

	Open Fragments of Domain Ontologies
	Closed Fragments of Domain Ontologies
	Related Work
	Conclusions
	References

	ODBASE 2011 Short Papers
	A Generic Approach for Combining Linguistic and Context Profile Metrics in Ontology Matching
	Introduction
	Feature Extraction and Similarity Metrics
	Similarity Metrics for Terminological Features
	Similarity Metrics for Context Profile Features

	Combining Similarity Metrics with Decision Tree Model
	Experiments and Evaluations
	Selection of Metrics and Training Data
	Experimental Evaluations

	Conclusion and Future Work
	References

	ADERIS: An Adaptive Query Processor for Joining Federated SPARQL Endpoints
	Introduction
	Related Work
	The ADERIS Query Processor
	Retrieving Data from SPARQL Endpoints
	Optimisation
	Performance
	Conclusions and Future Work
	References

	Asynchronous Replication for Evolutionary Database Development: A Design for the Experimental Assessment of a Novel Approach
	Introduction
	Related Work
	The Asynchronous Replication Approach
	Proposed Experimental Assessment
	System Description and Experiment Hypotheses
	The Laboratory Environment
	Scenarios

	Future Works
	References

	Improving the Accuracy of Ontology Alignment through Ensemble Fuzzy Clustering
	Introduction
	Related Works
	Methodology
	Case Studies
	Bibliographic Text Ontologies
	Family Ontologies
	Results

	Conclusion
	References

	Author Index

