
L. Aroyo et al. (Eds.): ISWC 2011, Part II, LNCS 7032, pp. 144–156, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Leveraging Community-Built Knowledge for Type
Coercion in Question Answering

Aditya Kalyanpur, J. William Murdock, James Fan, and Christopher Welty

IBM Research, 19 Skyline Drive, Hawthorne NY 10532
{adityakal,murdockj,fanj,welty}@us.ibm.com

Abstract. Watson, the winner of the Jeopardy! challenge, is a state-of-the-art
open-domain Question Answering system that tackles the fundamental issue of
answer typing by using a novel type coercion (TyCor) framework, where can-
didate answers are initially produced without considering type information, and
subsequent stages check whether the candidate can be coerced into the expected
answer type. In this paper, we provide a high-level overview of the TyCor
framework and discuss how it is integrated in Watson, focusing on and evaluat-
ing three TyCor components that leverage the community built semi-structured
and structured knowledge resources -- DBpedia (in conjunction with the YAGO
ontology), Wikipedia Categories and Lists. These resources complement each
other well in terms of precision and granularity of type information, and
through links to Wikipedia, provide coverage for a large set of instances.

Keywords: Question Answering, Type Checking, Ontologies, Linked Data.

1 Introduction

Typing, the task of recognizing whether a given entity is a member of a given class, is
a fundamental problem in many AI areas. We focus on the typing problem where both
the entity and type are expressed lexically (as strings), which is typically the case in
open-domain Question Answering (QA), and present a solution that leverages com-
munity-built web knowledge resources.

Many traditional QA systems have relied on a notion of Predictive Annotation [10]
in which a fixed set of expected answer types are identified through manual analysis
of a domain, and a background corpus is automatically annotated with possible men-
tions of these types before answering questions. These systems then analyze incoming
questions for the expected answer type, mapping it into the fixed set used to annotate
the corpus, and restrict candidate answers retrieved from the corpus to those that
match this answer type using semantic search (IR search augmented with search for
words tagged with some type).

This approach suffers from several problems. First, restricting the answer types to a
fixed and typically small set of concepts makes the QA system brittle and narrow in
its applicability and scope. Such a closed-typing approach does not work well when
answer types in questions span a broad range of topics, are expressed using a variety
of lexical expressions. Second, the QA system performance is highly dependent on
the precision and recall of the predictive annotation software used, which acts as a
candidate selection filter.

 Leveraging Community-Built Knowledge for Type Coercion in Question Answering 145

In contrast to this type-and-generate approach, we consider a generate and type
framework, in which candidate answers are initially produced without use of answer
type information, and subsequent stages check whether the candidate answer’s type
can be coerced into the Lexical Answer Type (LAT) of the question. The framework
is based loosely on the notion of Type Coercion [11] (TyCor). The most notable as-
pects of the approach are: it does not rely on a fixed type system, however it does not
discard one when available and useful; it is a multi-strategy and multi-source ap-
proach, gathering and evaluating evidence in a generative way rather than a predictive
one; it is not part of candidate generation, rather it is simply another way of analyzing
and scoring candidate answers; it is not a hard filter, producing for each candidate
answer a probability that it is (or is not) of the right type.

In this paper, we provide a high-level architecture of the TyCor framework and
discuss how it is integrated into Watson. We present three TyCor components that
leverage community built semi-structured and structured knowledge resources, in-
cluding DBpedia [2] (in conjunction with YAGO [13]), Wikipedia Categories and
Lists.

2 Background: Open Domain Question Answering

Watson is a QA system capable of rivaling expert human performance on answering
open-domain questions on the challenging TV quiz show Jeopardy!, whose questions
cover a wide range of topics and are expressed using rich, complex natural language
expressions. The typing problem for historical Jeopardy! questions is not trivial, as
our analysis reveals that nearly any word in the English language can be used as an
answer type in Jeopardy! questions, as shown in Table 1.

Given this variability, one of the intuitive problems with predictive annotation is
that we cannot reliably predict what types there are going to be and what their in-
stances are. We need to be open and flexible about types, treating them as a property of
a question and answer combined. In other words, instead of finding candidates of the
right type, we want to find candidates (in some way) and judge whether each one is of
the right type by examining it in context with the answer type from the question. Fur-
thermore, we need to accommodate as many sources as possible that reflect the same
descriptive diversity as these questions. Furthermore, by not relying on a fixed type
system, it is imperative to develop a system that has wide coverage for rare types.

Table 1. Sample Jeopardy! Questions showing variability in answer types

Jeopardy! Question Answer
Invented in the 1500s to speed up the game, this maneuver involves
2 pieces of the same color

Castling

The first known airmail service took place in Paris in 1870 by this
conveyance

Hot-air bal-
loon

When hit by electrons, a phosphor gives off electromagnetic energy
in this form

Light

A 1968 scarefest: The title character made it a family of 3 for the
Woodhouses

Rosemary’s
Baby

146 A. Kalyanpur et al.

2.1 DeepQA

Underlying the Watson system is DeepQA, a massively parallel probabilistic evi-
dence-based architecture designed to answer open domain natural language questions.
It consists of the following major stages (more details can be found in [4]):

Question Analysis: The first stage of processing performs a detailed analysis to iden-
tify key characteristics of the question (such as focus, lexical answer type, question
class, etc.) used by later stages. The focus is the part of the question that refers to the
answer, and typically encompasses the string representing the lexical answer type
(LAT). The system employs various lexico-syntactic rules for focus and LAT detec-
tion, and also uses a statistical machine-learning model to refine the LAT(s). Like all
parts of our system, LAT detection includes a confidence, and all type scores are
combined with LAT confidence.

Hypothesis (Candidate) Generation: For the candidate generation step, the system
issues queries derived from question analysis to search its background information
(corpora, data- and knowledge-bases) for relevant content, and uses a variety of can-
didate generators to produce a list of potential answers.

Hypothesis and Evidence Scoring: Answer scoring is the step in which all candi-
dates, regardless of how they were generated, are evaluated. During this phase, many
different algorithms and sources are use to collect and score evidence for each candi-
date answer. Type information is just one kind of evidence that is used for scoring,
other dimensions of evidence include temporal/spatial constraints, n-grams, populari-
ty, source-reliability, skip-bigrams, substitutability, etc.

Candidate Ranking: Finally, machine-learning models are used to weigh the ana-
lyzed evidence and rank the answer candidates and produce a confidence. The models
generate a confidence that each answer candidate is the correct answer to the given
question, and the system answers with the top-ranked candidate. The system can also
choose to refrain from answering if it has a low confidence in all of its candidates.

2.2 Type Coercion (TyCor)

The TyCor framework is part of Hypothesis and Evidence scoring, and consists of a
suite of answer scoring components that each take a Lexical Answer Type (LAT) and
a candidate answer, and return a probability that the candidate’s type is the LAT.
Each TyCor component uses a source of typing information and performs four steps,
each of which is capable of error that impacts its confidence:

Entity Disambiguation and Matching (EDM): The most obvious, and most error-
prone, step in using an existing source of typing information is to find the entity in
that source that corresponds to the candidate answer. Since the candidate is just a
string, this step must account for both polysemy (the same name may refer to many
entities) and synonymy (the same entity may have multiple names). Each source may
require its own special EDM implementations that exploit properties of the source, for
example DBpedia encodes useful naming information in the entity URI. EDM im-
plementations typically try to use some context for the answer, but in purely struc-
tured sources this context may be difficult to exploit.

 Leveraging Community-Built Knowledge for Type Coercion in Question Answering 147

Predicate Disambiguation and Matching (PDM): Similar to EDM, the type in the
source that corresponds to the LAT must be found. In some sources this is the same
algorithm as EDM, in others, type looking requires special treatment. In a few, espe-
cially those using unstructured information as a source, the PDM step just returns the
LAT itself. In type-and-generate, this step corresponds to producing a semantic an-
swer type (SAT) from the question. PDM corresponds strongly to notions of word
sense disambiguation with respect to a specific source.

Type Retrieval (TR): After EDM, the types of the retrieved entity must be them-
selves be retrieved. For some TyCors, like those using structured sources, this step
exercises the primary function of the source and is simple. In others, like unstructured
sources, this may require parsing or other semantic processing of some small snippet
of natural language.

Type Alignment: The results of the PDM and TR steps must then be compared to
determine the degree of match. In sources containing e.g. a type taxonomy, this in-
cludes checking the taxonomy for subsumption, disjointness, etc. For other sources,
alignments utilize resources like WordNet for finding synonyms, hypernyms, etc.
between the types.

Each of the steps above generates a score reflecting the accuracy of its operation,
taking into account the uncertainty of the entity mapping or information retrieval
process. The final score produced by each TyCor component is a combination of the
four step scores and the confidence in the LAT.

3 Acquiring Community-Built Knowledge for TyCor

We wanted to determine if community-built knowledge resources could be effectively
(and cheaply) used to bootstrap a dynamic open-domain typing system, as well as
deal with the very long tail of answer types. For this reason, we acquired a broad do-
main structured knowledge base (DBpedia) and ontology (YAGO), and semi-
structured folksonomies with wide topical coverage (Wikipedia Categories and Lists).

3.1 DBpedia and YAGO

The DBpedia knowledge base contains relational information found in the info-boxes
of Wikipedia pages. A one-to-one correspondence between all Wikipedia pages and
DBpedia entries maps the two resource names (or URIs): e.g., the DBpedia page with
URI http://dbpedia.org/resource/IBM corresponds to the Wikipedia
page titled “IBM” with relational facts (triples) captured from the infobox.

Additionally, DBpedia has type assertions for many instance objects. The types
are assigned from a collection of ontologies, including YAGO, a large taxonomy of
more than 100K types. Crucially, the YAGO ontology has mappings to WordNet [7]:
every YAGO type corresponding to a WordNet concept has the associated 9-digit
WordNet sense id appended to its name/id. Thus the YAGO type “Plant100017222”
links to the WordNet concept plant (living organism), while the type
“Plant103956922” corresponds to the concept of an industrial plant or factory.

148 A. Kalyanpur et al.

YAGO types are arranged in a hierarchy, and DBpedia instances are often assigned
several low-level types corresponding to Wikipedia categories (e.g. “CompaniesEs-
tablishedIn1896”). For these, navigation up the YAGO type tree leads to more gener-
al and normalized (via sense-encoding) YAGO WN concepts.

These design points of DBpedia and YAGO enable us to obtain precise type in-
formation for many instances, given Wikipedia domain coverage and YAGO-
WordNet type/sense coverage.

One downside is that the YAGO ontology does not handle mutually exclusive (dis-
joint) types – ones that do not share instances. For example, Country and Person
types are logically disjoint: no given instance can be both a Country and a Person; on
the other hand, Painter and Musician are not disjoint. Type disjointness is useful for
QA, to rule out candidate answers with types incompatible with the question LAT.
For this reason, we decided to add disjointness relations between YAGO types. Giv-
en the size of YAGO ontology (> 100K types), manually asserting such relations
between all applicable type pairs is infeasible. Instead, we only specify disjointness
between prominent top-level types of the YAGO hierarchy, and use a logical reason-
ing mechanism to propagate the disjointness to lower subclasses. For example, it
follows logically that if the Person and GeoPoliticalEntity are disjoint, then every
subclass of Person is disjoint with every subclass of GeoPoliticalEntity (e.g. Musician
is disjoint with Country). Our additions to the YAGO Type system comprise approx-
imately 200 explicit disjoint relations, which translate through inference to more than
100K disjoint relations.

3.2 Wikipedia-Based Folksonomies

For the purposes of this paper, we consider Wikipedia Categories and Lists to be folk-
sonomies. Wikipedia categories are true tags that are applied to articles by Wikipedia
users without very much centralized control, and new categories can be invented as
desired. The categories have some explicit structure, in that category pages can them-
selves be put into categories.

One may reasonably argue that Wikipedia lists are not true tags, as they are as-
signed in a more middle-out and sometimes top-down method than bottom up. Lists
are generally created and then populated with articles, and frequently one cannot
access the lists an article is in from the article. We ignore this difference and treat
Wikipedia lists as the same kind of resource as categories.

4 TyCor Algorithms

In this section, we describe the algorithms underlying the three TyCor components
that use YAGO (through DBpedia), Wikipedia Categories and Lists respectively as a
source of type information.

4.1 Shared EDM Algorithm

The three TyCors described here share one EDM algorithm, that takes as input the
candidate answer string and a corresponding context – the question text and (optional-
ly) a text passage containing the candidate – and returns a ranked list of Wikipedia

 Leveraging Community-Built Knowledge for Type Coercion in Question Answering 149

page URIs that match the candidate, with associated match scores. The match scores
are computed based on five heuristics:

• Direct Contextual Match. In some cases the Wikipedia URI of the candidate is
known, and EDM is not performed. For example, if the candidate answer was
generated from the title of a Wikipedia page, or if the candidate mention itself is
hyper-linked to another Wikipedia page, we store that information in our candi-
date answer object and use it as the result of our EDM step with a score of 1.0.

• Title Match. When there is an exact string match between the candidate string
and the title of a Wikipedia page, the URI is returned with a score of 1.0.

• Redirect Match. When the candidate string matches the name of a redirect page,
the redirect destination URI is returned with a score of 1.0. There are some noisy
redirects in Wikipedia, e.g. Eliza Doolittle (character) redirects to Pygmalion
(play), but in general we have observed the redirects to be reliable.

• Disambiguation Match. When the candidate string matches the title of a Wiki-
pedia disambiguation page all the disambiguation URIs are returned with a score
of 1/(the number of disambiguations).

• Anchor-Link Match. When a candidate string matches one or more anchor text
strings in Wikipedia, all the URIs pointed to by those anchors are returned with a
score for each based on the conditional probability of the link pointer given the
anchor text (ie how often does the anchor text point to the URI).

• DBpedia name properties. DBpedia includes over 100 name properties, proper-
ties whose objects are some form of name string (firstName, lastName, etc).
When a candidate string matches one of these, the triple subject is returned with a
score of 1/(number of URIs returned).

The EDM algorithm also contains an optional parameter to rank the results based on
the popularity of the corresponding Wikipedia page, overriding the confidence set by
the heuristics. Popularity is computed using information such as page-rank and IDF of
the title string.

4.2 YAGO TyCor

The YAGO TyCor uses the EDM step described above, and transforms the Wikipedia
page URLs returned at the end of the step to corresponding DBpedia URIs.

Type Retrieval Using DBpedia. The TR algorithm produces a set of URIs for the
Yago types of the candidate entity (the result of the EDM step). DBpedia contains
type information for a vast number of Wikipedia entities, represented by the rdf:type
relation, that come from several ontologies; the largest is YAGO. In many cases, the
explicitly assigned type for an entity is a low-level (and highly-specific) type in the
YAGO ontology, such as yago:CompaniesEstablishedIn1898 (typically derived from
Wikipedia Categories). We generalize this type by navigating up the hierarchy till we
reach a Yago type that has a WordNet sense id associated with it (e.g. ya-
go:Company108058098). This generalization helps type alignment (when aligning
with types derived from the LAT) and improves the coverage of the TyCor.

PDM in YAGO. The PDM algorithm produces a set of URIs for the Yago types that
match the LAT, by matching the LAT to the labels or IDs of Yago types. We then

150 A. Kalyanpur et al.

score the matches based on a weighted combination of its WordNet sense rank, and
the number of instances of the concept in DBpedia. The latter is an approximation of
type popularity, and has performed well in our experiments.

There are two additional features of our PDM algorithm that help improve its pre-
cision and recall respectively. The first is the notion of a domain-specific type-
mapping file that is optionally input to the algorithm. For example, based on analysis
of Jeopardy! question data, we found the LAT “star” refers to the sense of star as a
movie star roughly 75% of the time, with the remaining cases referring to the astro-
nomical object.

The second heuristic we use in PDM helps improve its recall. We estimate a statis-
tical relatedness between two types by computing the conditional probability that an
instance with type A also has type B, using the metric: NI (A and B) / NI (A), where
NI is the number of instances of the concept in DBpedia (including instances of its
subtypes). In PDM, if the lexical type matches some YAGO type, we expand it to
include related types based on their conditional probabilities exceeding an empirically
determined threshold (0.5).

YAGO Type Alignment. The type alignment algorithm produces a single score
based on the alignment of the instance types from the TR step, and the LAT types
from the PDM step. The algorithm uses these conditions:

• Equivalent/Subclass match. When the instance type and the LAT type are
equivalent (synonyms) in the YAGO ontology, or the instance type is a subclass
(hyponym) of the LAT type, a score of 1.0 is returned.

• Disjoint match. When the instance type and LAT type are found to be disjoint
(based on axioms added to YAGO, see Section 3.1) a score of -1.0 is returned.

• Sibling match. When the instance type and LAT type share the same parent con-
cept in the YAGO ontology, a score of 0.5 is returned. In this case, we exclude
cases in which parent classes’ depth < 6, since these high level types (like “Phys-
ical Entity”) tend to be less useful.

• Superclass match. When the instance type is a superclass (hypernym) of the
LAT type a score of 0.3 is returned. This may seem counter-intuitive since the
candidate answer is supposed to be an instance of the LAT and not vice versa,
however, we have seen cases where checking the type alignment in the opposite
direction helps, either due to inaccuracies in the EDM or PDM step, or due to
source errors, or the question itself asks for the type of a particular named entity.

• Statistical Relatedness. When the statistical type relatedness between the in-
stance type and LAT type, computed as described above, exceeds an empirically
determined threshold of 0.5, a score of 0.25 is returned.

• Lowest Common Ancestor (LCA). When the LCA of the instance type and
LAT type is deep in the taxonomy (we use a depth threshold of 6 in the Yago
taxonomy), a score of 0.25 is returned. This is based on the intuition that the
types are strongly related, even though they may not be a direct subclass or sibl-
ing relationship among them, if their LCA is not a very high level class.

The thresholds used in the type matching conditions above and the weights of the
respective rules are manually assigned based on an empirical evaluation, conducted

 Leveraging Community-Built Knowledge for Type Coercion in Question Answering 151

by running the algorithm on a large number of test cases. Since the TR phase may
produce multiple types per candidate, the maximum type alignment score is returned.

4.3 Wiki-Category and Wiki-List TyCors

The Wiki-Category and Wiki-List TyCors are fundamentally different from YAGO
TyCor because the types that they use are natural language strings and not types in a
formal ontology. The Wikipedia list pages do not have any explicit structure among
them. Wikipedia categories do have some hierarchical structure, but the Wiki-
Category TyCor does not use that structure as it is too unreliable.

Both of these TyCors use the same Entity Disambiguation and Matching com-
ponent as YAGO TyCor. They also both use a simple lookup in an RDF store for
Type Retrieval (we augmented DBpedia with list associations), that returns the cate-
gory (resp. list) names for the entity.

Wiki-Category and Wiki-List both have a trivial Predicate Disambiguation and
Matching step that simply returns the LAT itself.

Type Alignment is the most complex portion of these TyCors. It receives as input
a natural language LAT and a natural language type (from Type Retrieval) and tries to
determine if they are consistent. In both cases, Type Alignment divides this task in to
two distinct subtasks:

(1) Is the head word of the LAT consistent with the head word of the category or list
names,
(2) Are the modifiers of head word of the LAT consistent with the modifiers of the
category or list names.

In both cases, terms are matched using a variety of resources such as WordNet. For
example, given a list named “cities in Canada” and a question asking for a “Canadian
metropolis” (i.e., with a LAT “metropolis” that has a modifier “Canadian”), Type
Alignment will separately attempt to match “city” with “metropolis” and “Canada”
with “Canadian.” Type Alignment uses a variety of resources to do this matching; for
example, in WordNet the primary sense of “city” is synonymous with the primary
sense of “metropolis.” Wiki-Category and Wiki-List provide separate match scores
for the (head word) type match and the modifier match. Those separate scores are
used as features by the DeepQA Candidate Ranking mechanism.

5 Experiments

All experiments were done on the March, 2010 version of Wikipedia, and used
DBpedia release 3.5. Wikipedia categories were obtained from DBpedia, Wiki lists
were scraped from Wikipedia.

5.1 Evaluating EDM on Wikipedia Link Anchors

We evaluated the performance of the EDM component on a Wikipedia link anchor data
set. This data set is comprised of 20,000 random pairs of Wikipedia anchor texts and
their destination links. Note that the destination of an anchor text is a Wikipedia article
whose title (string) may or may not explicitly match the anchor text. For example, the

152 A. Kalyanpur et al.

article Gulf of Thailand contains the following passage: “The boundary of the gulf is
defined by the line from Cape Bai Bung in southern Vietnam (just south of the mouth of
the Mekong river) to the city Kota Baru on the Malayian coast”. While anchors Mekong
and Kota Baru point to articles whose titles are exactly the same as the anchor text,
Cape Bai Bung’s link points to the article titled “Ca Mau Province”.

We use the anchor texts as inputs to EDM, and the destinations as ground truth for
evaluation, similar to [4]. The performance of the EDM is shown in Table 4 with
precision, recall (over all candidates returned) and the average number of candidates
returned. We tested four versions of EDM, with and without popularity ranking and
DBpedia name properties. Note that DBpedia names increase the number of candi-
dates without impacting precision or recall. This is partially a side-effect of the link-
anchor based evaluation, which skews the results to prefer alternate names that have
been used as link anchor texts, and thus does not really reflect a test of the data the
alternate names provide. However, from inspection we have seen the name properties
to be extremely noisy, for example finding DBpedia entities named “China” using the
name properties returns 1000 results. The TyCor experiments below, therefore, do not
use DBpedia name properties in the EDM step.

Table 4. EDM performance on 20,000 Wikipedia anchor texts

Ranking Names Precision Recall Avg. # of candi-
dates

No No 74.6% 94.3% 16.97
No Yes 74.7% 94.3% 13.02
Yes Yes 75.2% 94.3% 16.97
Yes No 75.7% 94.3% 13.02

5.2 Evaluating Typing on Ground Truth

Although the TyCor components’ impact on end-to-end QA performance can be
measured through ablation tests, they do not reflect how well the components do at
the task of type checking because wrong answers may also be instances of the LAT.
To measure the TyCor components performance on the task of entity-typing alone, we
manually annotated the top 10 candidate answer strings produced by Watson from
1,615 Jeopardy! questions, to see whether the candidate answer is of the same type as
the lexical answer type. Because some questions contain multiple LATs, the resulting
data set contains a total of 25,991 instances. Note that 17,384 (67%) of these are
negative, i.e. the candidate answer does not match the LAT.

Table 5. Evaluating TyCor Components on Entity-Type Ground Truth

Tycor Component Accuracy Precision Recall
Yago Tycor 76.9% 64.5% 67.0%
Wikipedia Category Tycor 76.1% 64.1% 62.9%
List Tycor 73.3% 71.9% 31.6%
All Three (Union) 73.5% 58.4% 69.5%

 Leveraging Community-Built Knowledge for Type Coercion in Question Answering 153

Table 5 shows the performance of the three TyCor components that use communi-
ty–built knowledge, by counting any candidate with a TyCor score > 0.0 to be a posi-
tive judgment; this is not the way the score is used in the end to end Watson system,
but gives a sense for how the different components perform. The “All Three” experi-
ment counts any candidate with at least one score from the three TyCors that is > 0.0
to be a positive judgment. The bump in recall shows that they can complement each
other, and in the end to end system experiments below, this is validated.

5.3 Impact on End-to-End Question Answering

Table 6 shows the accuracy of the end-to-end DeepQA question answering system
with different TyCor configurations.

Table 6. Accuracy on end-to-end question answering with only the TyCors specified in each
column

 No
TyCor

YAGO
TyCor

Wiki-
Category

TyCor

Wiki-
List

TyCor

All 3
TyCors

Baseline
Accuracy

50.1% 54.4%
(+4.3%)

54.7%
(+4.6%)

53.8%
(+3.7%)

56.5%
(+6.5%)

Watson
Accuracy

65.6% 68.6%
(+3.0%)

67.1%
(+1.5%)

67.4%
(+1.8%)

69.0%
(+3.4%)

The “Baseline Accuracy” shows the performance of a simple baseline DeepQA
configuration on a set of 3,508 previously unseen Jeopardy! questions. The baseline
configuration includes all of the standard DeepQA candidate generation components,
but no answer scoring components other than the TyCors listed in the column head-
ings. The baseline system with no TyCor components relies only on the candidate
generation features (e.g., rank and score from a search engine) to rank answers. The
subsequent columns show the performance of the system with only that component
added (the difference from No Tycor is show in parens), and the final column shows
the impact of combining these three TyCors.

The “Watson Accuracy” shows the accuracy of the complete Watson question
answering system except for the TyCor components. Again, the first column shows
the accuracy of the system with no TyCor components, and the next four columns
show distinct (not cumulative) additions, and the last column shows the accuracy with
all three combined. Again, each TyCor alone is better than no TyCor, and effectively
combining all three components is better than any one of them.

All the column-wise gains (from Baseline to Watson), and all the differences from
“No Tycor” shown in the table are statistically significant (significance assessed for p
< .05 using McNemar’s test with Yates’ correction for continuity). The “All-3 Ty-
cors” improvement is significant over the individuals in all cases except the Watson
Yago TyCor.

154 A. Kalyanpur et al.

6 Related Work

QUARTZ [12] is a QA System that uses a statistical mapping from LATs to WordNet
for PDM, and collocation counts for the candidate answer with synonyms of the
mapped type for Type Retrieval. In [6] the approach has been taken a step further by
combining correlation-based typing scores with type information from resources such
as Wikipedia, using a machine-learning based scheme to compute type validity. Both
[6] and [12] are similar to our TyCor approach in that they defer type-checking deci-
sions to later in the QA pipeline and use a collection of techniques and resources (in-
stead of relying on classical NERs) to check for a type match between the candidate
and the expected answer type in the question. However, the fundamental difference
with our approach is that the type match information is not used as a filter to throw
out candidate answers, instead, the individual TyCor scores are combined with other
answer scores using a weighted vector model. Also, our type-coercion is done within
a much more elaborate framework that separates out the various steps of EDM, PDM,
Type Retrieval and Alignment etc.

A similar approach to our combination of NED and WikiCat is presented in [3].
The traditional type-and-generate approach is used when question analysis can recog-
nize a semantic answer type in the question, and falls back to Wikipedia categories for
candidate generation, using it as a hard filter instead of predictive annotation. In our
approach we assume any component can fail, and we allow other evidence, from other
TyCor components or other answer scoring components, to override the failure of one
particular component when there is sufficient evidence.

An approach to overcoming problems of a-priori answer type systems in proposed
in [9], based on discriminative preference ranking of answers given the question focus
and other words from the question. This approach is actually quite similar in spirit to
other components of our TyCor suite that we did not discuss here. In other work we
have shown that techniques like this provide coverage for infrequent types that may
not have been accounted for in some ontology or type system, such as “scarefest” to
describe a horror movie, but do not perform nearly as well on the types known by the
ontology. Thus we found combining techniques like [9] with those that use structured
information provides the best overall performance.

A TyCor component that uses Linked Open Data (LoD), including DBpedia, geo-
Names, imdb, and MusicBrainz was presented in [8]. This TyCor component in-
cludes a special-purpose framework for scaling LoD type triple datasets combined
with latent semantic indexing to improve the matching steps (EDM and PDM), and an
intermediate ontology designed specifically for the Jeopardy! task. The approach is
evaluated on the classification task alone, as our question answering performance was
still confidential. The classification performance is considerably lower than shown
here, roughly 62% accuracy, though we expect it to improve as more LoD sources are
added. In internal experiments, it had no impact on Watson performance, and was not
used in the final fielded Watson system.

The idea of using Wikipedia link anchor text as a gold standard was presented in
[4], along with a word-sense disambiguation algorithm for EDM using context vec-
tors and Wikipedia categories. Our EDM results (see Table 4) are roughly the same,
as the 86-88% accuracy numbers reported in [4] do not include cases where recall

 Leveraging Community-Built Knowledge for Type Coercion in Question Answering 155

fails completely. In our experiments, we found popularity ranking of the results from
our heuristics performs just as well as the method in [4], and is significantly faster at
run-time.

7 Conclusion

We have presented a novel open-domain type coercion framework for QA that over-
comes the brittleness and coverage issues associated with Predictive Annotation
techniques. The TyCor framework consists of four key steps involving entity disam-
biguation and matching (EDM), predicate disambiguation and matching (PDM), type
retrieval and type alignment. We have shown how community-built knowledge re-
sources can be effectively integrated into this TyCor framework and provided corres-
ponding algorithms for the four TyCor steps. The algorithms exploit the structure and
semantics of the data, and in some cases, benefit from extensions made to existing
knowledge to add value (e.g. addition of disjoints to YAGO). Our results show that
the TyCors built using Web knowledge resources perform well on the EDM and enti-
ty typing tasks (both fundamental issues in NLP and Knowledge Acquisition), as well
significantly improving the end-to-end QA performance of the Watson system (which
uses machine learning to integrate TyCor) on rich and complex natural language
questions taken from Jeopardy!

References

1. Aktolga, E., Allan, J., Smith, D.A.: Passage Reranking for Question Answering Using
Syntactic Structures and Answer Types. In: Clough, P., Foley, C., Gurrin, C., Jones,
G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 617–628.
Springer, Heidelberg (2011)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A
Nucleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G.,
Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007)

3. Buscaldi, D., Rosso, P.: Mining Knowledge from Wikipedia for the Question Answering
task. In: Proceedings of the International Conference on Language Resources and Evalua-
tion (2006)

4. Cucerzan, S.: Large-Scale Named Entity Disambiguation Based on Wikipedia Data. In:
Proceedings of EMNLP 2007, Prague, pp. 708–716 (2007)

5. Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A.A., Lally, A.,
William Murdock, J., Nyberg, E., Prager, J., Schlaefer, N., Welty, C.: Building Watson:
An Overview of the DeepQA Project. AI Magazine (2010)

6. Grappy, A., Grau, B.: Answer type validation in question answering systems. In: Proceeding
RIAO 2010 Adaptivity, Personalization and Fusion of Heterogeneous Information (2010)

7. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

156 A. Kalyanpur et al.

8. Ni, Y., Zhang, L., Qiu, Z., Wang, C.: Enhancing the Open-Domain Classification of
Named Entity Using Linked Open Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mi-
ka, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS,
vol. 6496, pp. 566–581. Springer, Heidelberg (2010)

9. Pinchak, C., Lin, D., Rafiei, D.: Flexible Answer Typing with Discriminative Preference
Ranking. In: Proceedings of EACL 2009, pp. 666–674 (2009)

10. Prager, J.M., Brown, E.W., Coden, A., Radev, R.: Question-Answering by Predictive An-
notation. In: Proceedings of SIGIR 2000, Athens, Greece, pp. 184–191 (2000)

11. Pustejovsky, J.: Type Coercion and Lexical Selection. In: Pustejovsky, J. (ed.) Semantics
and the Lexicon. Kluwer Academic Publishers, Dordrecht (1993)

12. Schlobach, S., Ahn, D., de Rijke, M., Jijkoun, V.: Data-driven type checking in open do-
main question answering. J. Applied Logic 5(1), 121–143 (2007)

13. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge-
Unifying WordNet and Wikipedia. In: Proceedings WWW (2007)

	Leveraging Community-Built Knowledge for Type Coercion in Question Answering
	Introduction
	Background: Open Domain Question Answering
	DeepQA
	Type Coercion (TyCor)

	Acquiring Community-Built Knowledge for TyCor
	DBpedia and YAGO
	Wikipedia-Based Folksonomies

	TyCor Algorithms
	Shared EDM Algorithm
	YAGO TyCor
	Wiki-Category and Wiki-List TyCors

	Experiments
	Evaluating EDM on Wikipedia Link Anchors
	Evaluating Typing on Ground Truth
	Impact on End-to-End Question Answering

	Related Work
	Conclusion
	References

