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Abstract. The segmentation task is an important step in automatic
fingerprint classification and recognition. In this context, the term refers
to splitting the image into two regions, namely, foreground and back-
ground. In this paper, we introduce a novel segmentation approach de-
signed to deal with fingerprint images originated from different sensors.
The method considers a multiscale directional operator and a scale-space
toggle mapping used to estimate the image background information. We
evaluate our approach on images of different databases, and show its
improvements when compared against other well-known state-of-the-art
segmentation methods discussed in literature.
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1 Introduction

In fingerprint context, the term segmentation usually indicates the separation of
the fingerprint area (also known as foreground) from the image background [9].
This is illustrated in Fig. [l which shows a fingerprint image (Fig. [[h), and a
boundary separating the foreground from the background (Fig.[db) in the original
image.

Fig. 1. Segmentation example of a fingerprint image

This task is a very important step in automatic fingerprint classification and
recognition, since many methods for extractions features depend naturally on
it. For example, in Ref. [3] the segmentation is used to dismiss singular points
detected in the background and in Ref. [12] it is used to reduce the search space
in the minutiae detection.
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In this paper, we present an unsupervised fingerprint segmentation algorithm
which explores the simplification properties of a scale-space toggle operator [4]
and a multi-scale directional operator [11]. As we will see elsewhere, unlike the
well-known approach in [2], which considers a supervised technique based on
a learning of specific parameters for each fingerprint sensor, our unsupervised
method is quite simple, general and leads to segmentation results comparable
with the accurate segmentations obtained in the aforementioned work.

The rest of this paper is organized as follows. Section 2 briefly reviews some
fingerprint segmentation approaches found in literature. Section 3 and 4 intro-
duce, respectively, the morphological transformations and the directional field
estimation considered in this work. Section 5 describes the proposed segmen-
tation method and Section 6 presents some experimental results. Finally, some
conclusions are drawn in Section 7.

2 Related Work

Due to its importance, several approaches for fingerprint image segmentation can
be found in the literature (for a review, see, for example, [9]). Generally, these
approaches can be broadly classified as supervised and unsupervised, depending
on the training or execution parameters specification.

The work in Ref. [I2] introduces an unsupervised approach where each block
of an image is classified as background and foreground, according to the variance
of the image gray levels, in a direction orthogonal to the ridge orientation com-
puted by a gradient-based method. Another unsupervised approach is proposed
in Ref. [13], which considers the foreground segmentation through a convolution
of each image block with a set of eight Gabor filters [7]. In [15], an unsupervised
algorithm for rolled fingerprint is presented. The algorithm first binarizes the
fingerprint image and then computes three iterations of morphological erosion
to preserve only the connected components with the largest number of pixels.

The supervised approach described in [I6] considers 11 image features and
uses a neural network to learn the correctness of the estimated gradient-based
orientation of the different blocks in a fingerprint image.

Finally, the method defined in [2] computes three pixel features (coherence,
mean and variance) and uses a linear classifier to label the corresponding pixels
as background or foreground. A supervised approach is used to train the linear
classifier and a final morphological post-processing is performed to eliminate
holes and regularize the external silhouette of the fingerprint area. Due to its
specificity with respect to the considered database (sensor), this approach yields
very accurate segmentation results and is the basis of many techniques, discussed
in the literature, for fingerprint image enhancement and analysis [9/5].

3 Mathematical Morphology

The segmentation introduced here is based mainly on mathematical morpholog-
ical transformations, briefly discussed in this section, and on a directional field
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estimation approach presented in Section 4l The morphological transformations
try to extract relevant structures of an image, by taking into account a small
signal named structuring function [14].

Let f: D C Z?> — Z be an image function and g : G C Z? — Z be this struc-
turing function. The two fundamental morphological transformations, erosion
and dilation, are:

Dilation : The dilation of a function f(z,y) by a structuring function g(a, b),
[0g())(z,y), is given by: [64(f)](z,y) = maxepeg{f(z + a,y +b) + g(a,b)}.
Erosion : The erosion of the function f(z,y) by a structuring function g(a,b),

[eg(f)](, y), is given by: [e,(f)](z,y) = ming peg{f(z +a,y +b) — g(a, b)}.

3.1 Multi-scale Morphological Transformations

The notion of scale (size) is related to the way we observe the physical world,
where different features can be made explicit at different scales. In multiscale
morphology, the notion of scale is achieved by scaling the structuring function
g0 : G C Z% — Z, such that [6]

go(a,b) =| o | g(ofla,aflb) a,be G,Vo #£0, (1)

where o conveys the notion of scale.

In this work, we consider the pyramidal structuring function, given by g(a, b) =
max{| a|,| b |}, whose scaled version is g, (a,b) = —o " *maz{| a |,| b|}.

Specifically, here we use a small 3 x 3 structuring function, where g, is zero
at position (0,0) and —o~! otherwise. As explored in [6] and [I], this non-flat
structuring function possesses interesting image simplification properties includ-
ing, for example, a monotonic filtering of the image extrema (its regional maxima
and minima).

4 Directional Field Estimation

The directional field [9] is related to the global shape of a fingerprint and de-
scribes the local directions of the segment lines represented by a ridge-valley
pattern. In this work, we use a multi-scale directional operator for estimating
these patterns’ orientation.

4.1 Multi-scale Directional Operator

The multi-scale directional operator [I1] can be regarded as a generalization of
the method presented in [I0]. It is based on the observation that, in fingerprint
images, the contrast between the direction following a ridge-valley pattern and
its orthogonal orientation is greater than the contrast achieved for any other
pair of directions.

Shortly, the multiscale operator estimates the orientation of each pixel (z,y)
by dividing the semicircle in D discrete directions and computing the standard
deviation (std) of the gray values for the set of line segments along each direction.
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The coordinates (z,y) of the points in a discrete line segment with length n
and direction a are computed by considering a sliding window I" of size n X n,
such that

T = Teenter + P X cos(a) @)
Y = Yeenter + P X sin(a),

for all p such that —n/2 < p > n/2. Teenter a0 Yeenter are the coordinates of
the point containing the sliding window I centered in this location.

The set si* of D discrete lines with length n and discrete direction ¢ is com-
puted by repeating this procedure for all D directions (i € {0,1,...D — 1}),
by respectively changing the value of a accordingly (o« = 0, 1 x 180/D, 2 x
180/D,...,(D — 1) x 180/D). The directional image d’ at a finer scale is then
computed as follows:

i, if std(s)) < std(s'} ;)
d'(z,y) = L (i), if std(s}) > std(s} ;) (3)
v, otherwise

where ¢ and L (i) corresponds to the pair of orthogonal directions exhibiting the
highest contrast (e.g, mazjeyo,... p/2—1315td(j) — std(L (j))}) and v is a special
differentiable value representing the result of the function in a homogeneous
region, i.e., region which does not have dominant direction. In our experiments,
we consider D = 8 and n = 35 in the definition of the image given by Eq. Bl

Finally, the directional field image d is obtained by considering a window
2:D C Z?> — Z (also known as smoothing window) centered at each pixel on
the d’ image, according to the following equation.

d(z,y) = modeq pep{d (x +a,y +b)}, (4)

where D corresponds to the domain of the smoothing window and mode stands
for the statistical mode which, in this case, computes the most frequent direction
in 2.

Note that the size of this smoothing window constitutes a scale factor in the
sense that a small window yields a finer representation of the corresponding
directional field, while a large one defines a coarser representation.

5 Proposed Approach

The segmentation method proposed in this paper consists of the following steps,
as shows the flowchart in Fig. 2l

The Finer directional field detection block computes the orientation of the
input image by considering the multi-scale directional operator (Section M) with
a small smoothing window, {2, of size 5 x 5. This smoothing operation defines
an orientation image w representing a fine scale of the directional field. This
fine representation preserves important orientation details used in the following
algorithm step, namely Background subtraction, which performs a subtraction
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of the background from the original fingerprint image. This operation separates
the ridge-valley foreground regions from the rest of the image, as follows

f,(‘ray) = f(xvy) - b(l’7y), (5)

where f’ stands for the foreground image conveying the papillary information, f
indicates the original input image, and b, an estimate of the background region.

To obtain this background estimation, we define a mapping that explores
some simplification properties of a scale-space toggle operation. These properties
include, for example, suppression of the image extrema (regional maxima and
minima) in a monotonic way, i.e, without creation of new extrema [4]. The toggle
transformation corresponding to the estimation b is given by

b, y) = {f(:v,y% if ¢ (z,y) — fz,y) <= dk(z,y) — f(z,y), "

o3(x,y), otherwise,

where, again, f corresponds to the input image, ¢} = [0, (f)]* and ¢§ =
[, (f)]* are, respectively, the dilation and erosion of f with the scaled structur-
ing function g, k times, and ¢3 = [04.1.(f)] corresponds to the linear dilation of
f in the orthogonal direction of the orientation indicated by the finer directional
field image w, at each location (z,y).

Informally, the toggle mapping in Eq. [0l defines as estimate for b the pixels
converging to the regional maxima in a uniform or quasi-uniform region, based
on the proximity of f(z,y) with the dilation ¢¥(x, ), and in the regions convey-
ing papillary information, represented by the directional dilation ¢3(x,y) which
takes into account the orientation of the ridges in the original image f. Fig. Blil-
lustrates the above transformations for a noisy image of the FCV2000 database.
This figure corresponds to the background subtraction given by Eq.[Bl It is worth
noting that regions corresponding to the image background and valleys (with-
out papillary information) converged to the regional maxima of these regions
represented here in white.

Finally, the Coarser directional field detection block in Fig. Pl considers a
large smoothing window, (2;, of size 45 x 45, in order to regionally define the
dominant direction of the ridges in the foreground image f’. The outermost lines
of the regions, containing the same directional field, constitute the fingerprint
segmentation result depicted by the silhouettes in Fig. [l

~ - ~
Input e Y Coarser
image Background subtraction diractional field
! detection
I T —— . J
s ™y
Finer Bac?cgrm._lnd i
directional | estimation Segmented
image

| field detection |

Fig. 2. Flowchart of the proposed segmentation method
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i

Fig. 4. Segmentation examples of different FVC database images

6 Experimental Results

In order to demonstrate the effectiveness of our approach, we compare it against
two state-of-the-art methods, namely, the Bazen and Gerez’s segmentation algo-
rithm, and the one proposed by the NIST (National Institute of Standard and
Technology) biometric system [I5]. To do this, we consider two experiments. In
the first, we take into account a set of images, typical of different types of sensors
(optical, capacitive, thermal, etc), and obtained from the FVC (Fingerprint Ver-
ification Competition) databases []. In the second experiment, we work with the
rolled fingerprint images provided by NIST and scanned from the FBI database.
In the following results, the ground truth was obtained by a manual extraction
of the fingerprint regions and the accuracy of the segmentation was established

based on the F-measure defined as 2XFrecisionx Recall whare Precision = , P
Precision+Recall tp+fp
and Recall =

tpj_pfn, fp, fn and tp correspond to false positives, false negatives
and true positives, respectively.

6.1 FVC Databases

In this first experiment, we take into account 778 images originated from differ-
ent sensors and belonging to the FVC2000 (DB1 and DB4) and FVC2002 and
FVC2004 (DB1, DB2, DB3 and DB4) databases. We compare our segmentation
results against the ones given by the Bazen and Gerez’s algorithm, one of the
most accurate method described in literature [2]. The values in Table 1 show the
equivalence of our results with those of Bazen and Gerez’s algorithm. Note that
our approach does not suffer from the interoperability problem in the sense that
it does not need any particular training related to different sensors or databases.
Indeed, our method does not include any specific training and was designed to
be robust enough to deal with images obtained from a variety of sensors, which
means with data of different quality, resolution or gray-level.
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Table 1. F-measure values for the segmentation of the FVC database images

Databases Bazen and Gerez [2] Our Approach

2000-DB3 0.93048 0.96165
2000-DB4 0.97909 0.95933
2002-DB1 0.96828 0.98211
2002-DB2 0.93827 0.95757
2002-DB3 0.97411 0.96044
2002-DB4 0.98215 0.97939
2004-DB1 0.98347 0.98812
2004-DB2 0.92180 0.90778
2004-DB3 0.96060 0.97837
2004-DB4 0.97727 0.96519

6.2 NIST Database

In the second experiment, we consider a set of images from the NIST database
and compare the results obtained by considering the segmentation approach
of the NIST system, Bazen and Gerez’s algorithm, and our proposed method.
These results are indicated in Table 2, which shows a better performance of our
approach with respect to the baseline algorithms.

Table 2. F-measure values for the methods considered with the NIST Database

Bazen and Gerez [2] NIST Our Approach
0.94193 0.95565 0.95602

Finally, note that for each database we trained the linear classifier used in [2]
by considering 20 images and taking into account the following parameters:
epochs = 10%, 19 = 107%, 7 = 10* and Gaussian window with ¢ = 9. The
fixed parameters obtained through experimental tests, concerned with Eq. [6],
and related to our approach are as follows: number of iterations k = 15, scale
o = 25 of the morphological transformations (dilation and erosion), and length
|gl = 17 of the linear structuring element of the orthogonal dilation given by ®3.
Fig. Bl shows a segmentation example of an image of the NIST database.

Fig. 5. Segmentation examples of NIST, Bazen and Gerez and Our Approach
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7 Conclusions and Future Works

In this paper, we introduced a novel segmentation method designed to deal with
fingerprint images captured from different sensors. To assess the method, we
have performed experiments with more than 800 images of different databases.
These experiments show that the proposed method yields accurate and robust
segmentation results with the great advantage of being, unlike other approaches,
independent from the type of the different available sensors. Indeed, it is worth
noting that most existing fingerprint segmentation algorithms are based on a
prior classification of the images foreground and background, according to a
certain knowledge. Further, thresholding or training techniques are used in the
segmentation process, which algorithmically imply a lack of sensor interoperabil-
ity. In our case, we avoid this aspect by taking into account global characteristics
of a fingerprint image explored here by means of its multiscale representation
and the directional field inherent to its basic structure.
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