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Abstract. Among the applications of a radar system, target classifica-
tion for ground surveillance is one of the most widely used. This pa-
per deals with micro-Doppler Signature (u-DS) based radar Automatic
Target Recognition (ATR). The main goal for performing p-DS clas-
sification using speech processing tools was to investigate whether au-
tomatic speech recognition (ASR) techniques are suitable methods for
radar ATR. In this work, extracted features from micro-Doppler echoes
signal, using MFCC, LPC and LPCC, are used to estimate models for
target classification. In classification stage, two parametric models based
on Gaussian Mixture Model (GMM) and Greedy GMM were successively
investigated for echo target modeling. Maximum a posteriori (MAP)
and Majority-voting post-processing (MV) decision schemes are applied.
Thus, ASR techniques based on GMM and GMM Greedy classifiers have
been successfully used to distinguish different classes of targets echoes
(humans, truck, vehicle and clutter) recorded by a low-resolution ground
surveillance Doppler radar. Experimental results show that MV post
processing improves target recognition and the performances reach to
99, 08% correct classification on the testing set.

Keywords: Automatic Target Recognition (ATR), micro-Doppler Sig-
natures (p-DS), Automatic Speech Recognition (ASR), Gaussian Mixture
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1 Introduction

Target classification using radar signatures has potential applications in air/
marine traffic and ground surveillance radar. The goal for any target recognition
system is to give the most accurate interpretation of what a target is at any given
point in time. ATR is a crucial task for both military and civil applications.
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In the acquisition stage, each target is illuminated with a frequency stepped
signal and the returned echoes are then received. The radar operator identifies
targets from the audio representation of the echoes signal. Mechanical vibration
or rotation of a target may induce additional frequency modulations on the
returned radar signal. This phenomenon, known as the micro-Doppler effect,
generates sidebands at the target Doppler frequency.

Techniques based on micro-Doppler signatures [1], [2] are used to divide tar-
gets into several macro groups such as aircrafts, vehicles, creatures, etc. An
effective tool to extract information from this signature is the time-frequency
transform [3]. The time-varying trajectories of the different micro-Doppler com-
ponents are quite revealing, especially when viewed in the joint time-frequency
space [4]. Anderson [5] used micro-Doppler features to distinguish among hu-
mans, animals and vehicles. In [6], analysis of radar micro-Doppler signature with
time-frequency transform was discussed. The time-frequency signature of the
micro-Doppler provides additional time information and shows micro-Doppler
frequency variations. Thus, additional information about vibration rate or ro-
tation rate is available for target recognition. Gaussian mixture model (GMM)-
based classification methods are widely applied to automatic speech and speaker
recognition [7]. Mixture models form a common technique for probability den-
sity estimation. In [8], it was proved that any density can be estimated using
finite Gaussian mixture. A Greedy learning of GMM based target classification
for ground surveillance Doppler radar, recently proposed in [9], overcomes the
drawbacks of the Expectation Minimization (EM) algorithm. The greedy learn-
ing algorithm does not require prior knowledge of the number of components in
the mixture, because it inherently estimates the model order.

In this paper, we investigate the micro-Doppler radar signatures in order to
obtain best classification performances. The classification algorithms are im-
plemented using three kinds of features; Mel-Frequency Cepstral Coefficients
(MFCC), Linear Prediction Coding (LPC) and Cepstrum Coefficient feature sets
(LPCC), extracted from echoes signals recorded by Doppler radar. These features
are fed respectively to GMM and greedy GMM parametric and statistical clas-
sifier approaches for multi-hypotheses problem. The classification tasks include
the determination of the statistical modeling of extracted features distribution
and the application of Maximum a posteriori (MAP) rule. As a post-processing
enhancement method, a majority vote technique is proposed.

This paper is organized as follows: in section 2, features extractions and classi-
fication schemes are presented. In Section 3, we describe the experimental frame-
work including the data collection. Experimental results are drawn in section 4.

2 Classification Scheme

In this paper, a supervised classification process was performed and two decision
methods were implemented.
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2.1 Feature Extraction

In practical case, a human operator listen to the audio Doppler output from
the surveillance radar for detecting and may be identifying targets. In fact,
human operators classify the targets using an audio representation of the micro-
Doppler effect, caused by the target motion. As in speech processing a set of
operations are taken during pre-processing step to take in count the human
ear characteristics. Features are numerical measurements used in computation
to discriminate between classes. In this work, we investigated three classes of
features namely, LPC, LPCC, and MFCC.

Linear Prediction Coding (LPC). Linear prediction is the process of pre-
dicting future sample values of a digital signal from a linear system. It is therefore
about predicting the signal z(n) at instant n from p previous samples as in (1).

z(n) = apz(n — k) +e(n) (1)
k=1

So the coding by linear prediction consists in determining coefficients ay that
minimize the error e(n). LPC are expected to give very accurate formant infor-
mation of acoustic signals. We considered the LPC up to the 16! order (exclud-
ing the zero coefficient) and applied it directly to the radar signal.

Cepstral Linear Prediction Coding (LPCC). The cepstrum coefficients

{cepsq}qQZO can be estimated from the LPC coefficients {a,}}_; using a recursion
procedure:
ln(G)v q=0
1 kb
cepsy = { g+ Yy “ Tarcepsy—k, 1<q<p (2)
k—
k=1 g aKCepsq_k, p <a<Q

Where G is the gain term in the LPC model, p the LPC model order, and @ + 1
the number of cepstrum coefficients.

Mel Frequency Cepstral Coefficients (MFCC). The most commonly used
feature vector in speech recognition is composed of Mel-Frequency Cepstral Co-
efficients (MFCC). Fig.1 is a block diagram of the MFCC generation process
from micro-Doppler signal. The MFCC extraction is done in three steps:

1. Step 1-a: Cut up the signal in several overlapping windows;

2. Step 1-b: To decrease the spectral distortion a Hamming windowing is ap-
plied to signal frames;

2mn

W(n) = 0.54 — 0.46 * cos(N 1

) 3)

Where N is the window size.
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Fig. 1. MFCC generation

3. Step 2-a: Apply the FFT ;

4. Step 2-b: The Mel-frequency scale is applied to obtain an appropriate signal
representation In fact psychophysical studies have shown that human per-
ception of the frequency content of sounds does not follow a linear scale. The
recognition model thus reflects the behaviour of the brain in this respect and
is equally applicable to both speech and radar Doppler. We use the following
transformation formula;

f
700

5. Step 2-c: Apply the logarithm after the Mel scale;

mel(f) = 2595 % logl0(1 + _7 ) (4)

6. Step 3: Finally, obtain the discrete cosine transform (DCT) of the output
signal.

2.2 Modelisation

In the present work, each target class is represented by two parametric models;
GMM and Greedy GMM.

Gaussian mixture model (GMM). Gaussian mixture model (GMM) is a
mixture of several Gaussian distributions. The probability density function is
defined as a weighted sum of Gaussians:

C
p(@:0) = > acN(w; pe, 2e) ()

c=1

Where a. is the weight of the component ¢, 0 < o, < 1 for all components, and
> 41 Qe = 1. pc is the mean of components and X is the covariance matrix.
We define the parameter vector 6:

0= {a17/’[/17217~"7aC7/J/C72C} (6)

Estimating the Gaussian mixture parameters for one class can be considered as
an unsupervised learning in the case where samples are generated by individual
components of the mixture distribution. The expectation maximization (EM)
algorithm is an iterative method for calculating maximum likelihood distribution
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parameter. This algorithm starts from an initial guess 6% for the distribution
parameters and the log-likelihood is guaranteed to increase at each iteration
until it converges. The initialization is one of the crucial problems of the EM
algorithm. The selection of #° determines where the algorithm converges or hits
the boundary of the parameter space producing singular, meaningless results. An
elegant solution for the initialization problem is provided by the greedy learning
of GMM [10].

Greedy Gaussian mixture model (Greedy GMM). The greedy algorithm
starts with a single component and then adds components into the mixture
one by one. The optimal starting component for a Gaussian mixture is trivially
computed, optimal meaning the highest training data likelihood. The algorithm
repeats two steps: insert a component into the mixture, and run EM until conver-
gence. Inserting a component that increases the likelihood the most is thought to
be an easier problem than initializing a whole near-optimal distribution. Com-
ponent insertion involves searching for the parameters for only one component
at a time. Recall that EM finds a local optimum for the distribution parame-
ters, not necessarily the global optimum which makes it initialization dependent
method [10].

2.3 Classifiers

A classifier is a function that defines the decision boundary between different
patterns (classes). Each classifier must be trained with a training dataset before
being used to recognize new patterns, such that it generalizes training dataset
into classification rules. Two decision methods were examined. The first one
suggests the maximum a posteriori probability (MAP) and the second uses the
majority vote (MV) post-processing after classifier decision.

Decision. If we have a group of targets represented by the GMM models:
AL, A2, ..., Ag, The classification decision is done using the posteriori probability
(MAP):

$ = arg € maxp(As| X) (7)
According to Bayesian rule:

o p(X|>‘s)p(/\s)
S = argmax p(X)

(®)

X: is the observed sequence.

Assuming that each class has the same a priori probability (p(As) = 1/€)
and the probability of apparition of the sequence is the same for all targets the
classification rule of Bayes becomes:

S = argmax p(X|\;) (9)
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Fig. 2. Majority vote post-processing after classifier decision

Majority Vote. The majority vote (MV) post-processing can be employed after
classifier decision. It uses the current classification result, along with the previous
classification results and makes a classification decision based on the class that
appears most often. A plot of the classification by MV (post-processing) after
classifier decision is shown in Fig.2.

3 Measurements and Data Collection

Data were obtained using records of a low-resolution ground surveillance radar.
The target was detected and tracked automatically by the radar, allowing contin-
uous target echo records from the following targets: 1, 2, and 3 persons, vehicle,
truck and clutter. We first collected the Doppler signatures from the echoes of
six different targets in movements namely, one, two, and three persons, vehicle,
truck and vegetation clutter. The target was detected and tracked automatically
by a low-power Doppler radar operating at 9.72 GHz, sweep in azimuth 30 at
270 and emission power is 100mW. When the radar transmits an electromag-
netic signal in the surveillance area, this signal interacts with the target and
then returns to the radar. After demodulation and analog to digital conversion,
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Fig. 4. Radar echo samples and the typical spectrograms of three moving targets; a)
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the received echoes are recorded in wav audio format; each record has a dura-
tion of 10 seconds. By taking the Fourier transform of the recorded signal, the
micro-Doppler frequency shift may be observed in the frequency domain. An
illustration of a measurement and its spectrum is shown in Fig.3. The change
of the properties of the returned signal reflects the characteristics of the tar-
get. When the target is moving, the carrier frequency of the returned signal will
be shifted due to Doppler effect. The Doppler frequency shift can be used to
determine the radial velocity of the moving target. If the target or any struc-
ture on the target is vibrating or rotating in addition to target translation,
it will induce frequency modulation on the returned signal that generates side-
bands about the target’s Doppler frequency. This modulation is called the micro-
Doppler (u-DS) phenomenon. The p-DS phenomenon can be regarded as a char-
acteristic of the interaction between the vibrating or rotating structures and the
target body. Fig.4 (a)-(c) show the temporal representation and the typical spec-
trograms of three targets for two persons, clutter and truck. Each target class
has unique time-frequency characteristic which can be used for classification.
These particular plots are obtained by taking a succession of FFTs and using a
sampling rate of 8 KHz, FFT size of 256 points, overlap of 128, and a hamming
window.

4 Results

In this work, target class pdfs were modeled by GMMs using both greedy and
EM estimation algorithms. MFCC, LPCC and LPC coefficients were used as
classification features. The MAP and the majority voting decision concepts were

Table 1. Confusion matrix of Greedy GMM-based classifier with MFCC coefficients
and MV post-processing after MAP decision rule for six-class problem

Class / Decision  1Person 2Persons 3Persoms Vehicle Truck Clutter

1Person 96.30 1.85 0 1.85 0 0

2Persons 0 100 0 0 0 0

3Persons 0 0 100 0 0 0
Vehicle 1.85 0 0 08.15 0 0
Truck 0 0 0 0 100 0
Clutter 0 0 0 0 0 100
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examined. Table 1 presents the confusion matrix of Greedy GMM based clas-
sifier with MFCC coefficients and MV post-processing after MAP decision for
six class problem. Greedy GMM outperform GMM classifier. To improve classi-
fication accuracy, majority vote post-processing can be employed. The resulting
effect is a smooth operation that removes spurious misclassification. Indeed, the
classification rate improves to 99.08% for Greedy GMM after MAP decision
following majority vote post-processing, 97.93% for GMM after MV decision.

5 Conclusion

Acoustics features like LPC, LPCC and MFCC are used to exploit the micro-
Doppler signatures issued from moving target in order to provide separation
among the target classes like humans, vehicles, trucks and clutter. Speech recog-
nition techniques, using GMM and Greedy GMM including the MAP decision
rules, have been successfully applied for ground surveillance radar. Experimental
results show that the Greedy GMM using MFCC features gives the best classifi-
cation performances. However, it fails to avoid all classification errors, which we
are bound to eradicate through MV-post processing which guarantees a 99.08%
classification rate for six-class problem presented in this work.
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