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Abstract. Microarrays are one of the methods for analyzing the expression lev-
els of genes in a massive and parallel way. Since any errors in early stages of
the analysis affect subsequent stages, leading to possibly erroneous biological
conclusions, finding the correct location of the spots in the images is extremely
important for subsequent steps that include segmentation, quantification, normal-
ization and clustering. On the other hand, genome-wide profiling of DNA-binding
proteins using ChIP-seq and RNA-seq has emerged as an alternative to ChIP-chip
methods. Due to the large amounts of data produced by next generation sequenc-
ing technology, ChIPseq and RNA-seq offer much higher resolution, less noise
and greater coverage than its predecessor, the ChIPchip array.

Multilevel thresholding algorithms have been applied to many problems in
image and signal processing. We show that these algorithms can be used for tran-
scriptomics and genomics data analysis such as sub-grid and spot detection in
DNA microarrays, and also for detecting significant regions based on next gen-
eration sequencing data. We show the advantages and disadvantages of using
multilevel thresholding and other algorithms in these two applications, as well
as an overview of numerical and visual results used to validate the power of the
thresholding methods based on previously published data.

Keywords: microarray image gridding, image analysis, multi level thresholding,
transcriptomics.

1 Introduction

Among other components, the genome contains a set of genes required for an organism
to function and evolve. However, the genome is only a source of information and in
order to function, the genes express themselves into proteins. The transcription of genes
to produce RNA is the first stage of gene expression. The transcriptome can be seen as
the complete set of RNA transcripts produced by the genome. Unlike the genome, the
transcriptome is very dynamic. Despite having the same genome regardless of the type
of cell or environmental conditions, the transcriptome varies considerably in differing
circumstances because of the different ways the genes may express.

Transcriptomics, the field that studies the role of the transcriptome, provides a rich
source of data suitable for pattern discovery and analysis. The quantity and size of these
data may vary based on the model and underlying methods used for analysis. In gene
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expression microarrays, the raw data are represented in terms of images, typically in
TIFF format which are approximately 20-30MB per array. These TIFF files are pro-
cessed and transformed into quantified data used for posterior analysis. In contrast,
high throughput sequencing methods (e.g. ChIP-seq and RNA-seq) generate more than
1TB of data, while the sequence files (approximately 20-30GB) are typically used as a
starting point for analysis [16]]. Clearly, these sequence files are an order of magnitude
larger than those from arrays.

1.1 DNA Microarray Image Gridding

Various technologies have been developed to measure the transcriptome, including hy-
bridization or sequence-based approaches. Hybridization-based approaches typically
involve processing fluorescently labeled DNA microarrays. Microarrays are one of the
most important technologies used in molecular biology to massively explore the abil-
ities of the genes to express themselves into proteins and other molecular machines
responsible for different functions in an organism. These expressions are monitored
in cells and organisms under specific conditions, and are present in many applications
in medical diagnosis, pharmacology, disease treatment, among others. If we consider
DNA microarrays, scanning the slides at a very high resolution produces images com-
posed of sub-grids of spots. Image processing and analysis are two important aspects of
microarrays, and involve various steps. The first task is gridding, which is quite impor-
tant as errors are propagated to subsequent steps. Roughly speaking, gridding consists
of determining the spot locations in a microarray image (typically, in a sub-grid). The
gridding process requires the knowledge of the sub-girds in advance in order to proceed,
which is not necessarily available in advance.

Many approaches have been proposed for microarray image gridding and spot de-
tection, being the most widely known the following. The Markov random field (MRF)
is one of them, which applies specific constraints and heuristic criteria [[15]. Other
gridding methods used for gridding include mathematical morphology [8], Bayesian
model-based algorithms [1L6], the hill-climbing approach [13]], a Gaussian mixture
model approach 18], Radon-transform-based method [[11]], a genetic algorithm for sep-
arating sub-grids and spots [3], and the recently introduced maximum margin method
[4]. A method that we have proposed and has been successfully used in microarray
gridding is the multilevel thresholding algorithm [21]], which is discussed in more de-
tail later in the paper.

1.2 ChIP-Seq and RNA-Seq Peak Finding

Hybridization-based approaches are high throughput and relatively inexpensive, except
for high-resolution tiling arrays that interrogate large genomes. However, these meth-
ods have several limitations, which include reliance upon existing knowledge about the
genome, high background levels owing to cross-hybridization, and a limited dynamic
range of detection owing to both background and saturation of signals [16/26]]. More-
over, comparing expression levels across different experiments is often difficult and can
require complicated normalization methods.
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Recently, the development of novel high-throughput DNA sequencing methods has
provided a new method for both mapping and quantifying transcriptomes. These meth-
ods, termed ChIP-seq (ChIP sequencing) and RNA-seq (RNA sequencing), have clear
advantages over existing approaches and are emerging in such a way that eukaryotic
transcriptomes are to be analyzed in a high-throughput and more efficient manner [26].

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)
is a technique that provides quantitative, genome-wide mapping of target protein bind-
ing events [2{17]]. In ChIP-seq, a protein is first cross-linked to DNA and the fragments
subsequently sheared. Following a size selection step that enriches for fragments of
specified lengths, the fragments ends are sequenced, and the resulting reads are aligned
to the genome. Detecting protein binding sites from massive sequence-based datasets
with millions of short reads represents a truly bioinformatics challenge that has required
considerable computational innovation in spite of the availability of programs for ChIP-
chip analysis [319.18119].

With the increasing popularity of ChIP-seq technology, a demand for peak finding
methods has emerged and it causes developing new algorithms. Although due to map-
ping challenges and biases in various aspects of existing protocols, identifying peaks is
not a straightforward task.

Different approaches have been proposed for detecting peaks based ChIP-seq/RNA-
seq mapped reads so far. Zhang et al. presents a Model-based Analysis of ChIP-seq
data (MACS), which analyzes data generated by short read sequencers [28]. It models
the shift size of ChIP-seq tags, and uses it to improve the spatial resolution of predicted
binding sites. A two-pass strategy called PeakSeq has been presented in [20]. This strat-
egy compensates for signal caused by open chromatin, as revealed by the inclusion of
the controls. The first pass identifies putative binding sites and compensates for genomic
variation in mapping the sequences. The second pass filters out sites not significantly
enriched compared to the normalized control, computing precise enrichments and sig-
nificance. A statistical approach for calling peaks has been recently proposed in [7],
which is based on evaluating the significance of a robust statistical test that measures
the extent of pile-up reads. Specifically, the shapes of putative peaks are defined and
evaluated to differentiate between random and non-random fragment placements on the
genome. Another algorithm for identification of binding sites is site identification from
paired-end sequencing (SIPeS) [23], which can be used for identification of binding
sites from short reads generated from paired-end solexa ChIP-seq technology.

In this paper, we review the application of optimal multilevel thresholding (OMT) to
gridding and peak finding problems in transcriptomics. Moreover, a conceptual and prac-
tical comparison between OMT and other state-of-the-art approaches is also presented.

2 Optimal Multilevel Thresholding

Multilevel thresholding is one of the most widely-used techniques in different aspects of
signal and image processing, including segmentation, classification and object discrimi-
nation. Given a histogram with frequencies or probabilities for each bin, the
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aim of multilevel thresholding is to divide the histogram into a number of groups (or
classes) of contiguous bins in such a way that a criterion is optimized. In microarray
image gridding, we compute vertical (or horizontal) running sums of pixel intensities,
obtaining histograms in which each bin represents one column (or row respectively),
and the running sum of intensities corresponds to the frequency of that bin. The fre-
quencies are then normalized in order to be considered as probabilities. Each histogram
is then processed (see below) to obtain the optimal thresholding that will determine the
locations of the separating lines.

Consider a histogram H, an ordered set {1,2,...,n — 1,n}, where the ith value
corresponds to the ¢th bin and has a probability, p;. Given an image, A = {a;;} , H
can be obtained by means of the horizontal (vertical) running sum as follows: p; =
E;"Zl a;j (pj = Z?Zl ai;). We also consider a threshold set T', defined as an ordered
set T = {to,t1,...,tk,tht1}, Where 0 = to < t1 < ... < t < tp41 = n and
t; € {0} U H. The problem of multilevel thresholding consists of finding a threshold
set, 7™, in such a way that a function f : H k% [0,1]" — R is maximized/minimized.
Using this threshold set, H is divided into k+1 classes: (1 = {1,2,...,t1}, (o = {t1+
Liti4+2,.. o ta}, oo G = {th—1 1, b1 42, .otk ), CGegr = {te+ 1, 86 +2, ..., 0}
The most important criteria for multilevel thresholding are the following [12]]:

Between class variance:
k+1

Tpo(T) = 3 wjid? (1)
j=1

R w7 ) 1 tj o
where w; = Zi:tﬁlﬂ Pis Hj = Zi:tj,lﬂ tPis
Entropy-based:

k+1
Uy (T) = Z H; @
j=1
t; i i
where Hj = =322, 4 gj log 51
Minimum error:
k41
Up(T) =1+2 Z wj(logj —logw;) @
j:l

t; i (i—pi)?
where g2 = Y2, PO
A dynamic programming algorithm for optimal multilevel thresholding was pro-
posed in our previous work [[12], which is an extension for irregularly sampled his-
tograms. For this, the criterion has to be decomposed as a sum of terms as follows:

U (Tom) = T({to, 1, bm}) 2D Wi, 11, 5 )
j=1

where 1 < m < k + 1 and the function %); ,, where [ < r, is a real, positive func-
tion of Py, Prsts-- -, Prs Yrp o H? x [0,1)77H1 — R*T U {0}. If m = 0, then
U ({to}) = Yty,to = %o,0 = 0. The thresholding algorithm can be found in [12]]. In
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the algorithm, a table C' is filled in, where C(tj, j) contains the optimal solution for
TO,j = to, tl, PN ,tj, " (ToJ), which is found from mln{tj} S tj S maX{tj}. An-
other table, D(t;, ), contains the value of ¢;_; for which ¥* (T ;) is optimal. The
algorithm runs in O(kn?), and has been further improved to achieve linear complexity,
i.e. O(kn), by following the approach of [[14].

2.1 Using Multi-level Thresholding for Gridding DNA Microarray Images

A DNA microarray image contains spots arranged into sub-grids. The image contains
various sub-grids as well, which are found in the first stage. Once the sub-grids are
found, the spots centers are to be identified. A microarray image can be considered
as a matrix A = {a;;},i = 1,...,nand j = 1,...,m, where a;; € Z", and A is
a sub-grid of a DNA microarray image. The aim of sub-gridding is to obtain vectors,
namely h = [hy,...hp—1]" and v = [v1,...v4_1]%, that separate the sub-grids. Finding
the spot locations is done analogously — more details of this, as well as those of the
whole process can be found in [21]. The aim of gridding is to find the corresponding
spot locations given by the horizontal and vertical adjacent vectors. Post-processing or
refinement allows us to find a spot region for each spot, which is enclosed by four lines.

When producing the microarrays, based on the layout of the printer pins, the number
of sub-grids or spots is known. But due to misalignments, deformations, artifacts or
noise during producing the microarray images, these numbers may not be available.
Thus, it is important that the gridding algorithm allows some flexibility in finding these
parameters, as well as avoiding the use of other user-defined parameters. This is what
the thresholding methods endeavor to do, by automatically finding the best number of
thresholds (sub-grids or spots) — more details in the next section.

2.2 Using Multi-level Thresholding for Analyzing ChIP-Seq/RNA-Seq Data

In ChIP-seq and RNA-seq analysis, a protein is first cross-linked to DNA and the frag-
ments subsequently pruned. Then, the fragments ends are sequenced, and the resulting
reads are aligned to the genome. The result of read alignments produces a histogram in
such a way that the x axis represents the genome coordinate and the y axis the frequency
of the aligned reads in each genome coordinate. The aim is to find the significant peaks
corresponding to enriched regions. For this reason, a non-overlapping moving window
is used. By starting from the beginning, a dynamic window of minimum size ¢ is being
applied to the histogram and each window that could be analyzed separately. The size
of the window could be different for each window to prevent truncating a peak before
its end. Thus, for each window a minimum number of ¢ bins is used and, by starting
from the end of previous window, the size of window is increased until a zero value in
the histogram is reached.

The aim is to obtain vectors Cy,, = [cl, ,...c% ], where w; is the i'" window and
Cy,; is the vector that contains n threshold coordinates which correspond to the "
window. Figure [[] depicts the process of finding the peaks corresponding to the regions
of interest for the specified protein. The input to the algorithm includes the reads and
the output of the whole process is the location of the detected significant peaks by using
optimal multilevel thresholding combined with our recently proposed « index.
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Fig. 1. Schematic representation of the process for finding significant peaks

3 Automatic Detection of the Number of Clusters

Finding the correct number of clusters (number of sub-grids or spots or the number of
regions in each window in ChIP-seq/RNA-seq analysis) is one of the most challenging
issues. This stage is crucial in order to fully automate the whole process. For this, we
need to determine the correct number clusters or thresholds prior to applying multi-level
thresholding methods. This is found by applying an index of validity (derived from clus-
tering techniques) and testing over all possible number of clusters (or thresholds) from
2 to y/n, where n is the number of bins in the histogram. We have recently proposed the
a(z) index, which is the result of a combination of a simple index and the well-known
I index [23] as follows:

) (Boxo)

) =VE y(10) = RS i)

&)

For maximizing 7 (K') and minimizing A(K), the value of a(K') must be maximized.
Thus, the best number of thresholds K* based on the « index is given by:

2
(£ = Dx)
* K
K* = argmax a(K) = argmax

. (6)
1<K<$ 1<x<s VEXE p(t;)
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4 Comparison of Transcriptomics Data Analysis Algorithms
4.1 DNA Microarray Image Gridding Algorithms Comparison

A conceptual comparison of microarray image gridding methods based on their fea-
tures is shown in Table[Il The methods included in the comparison are the following: (i)
Radon transform sub-gridding (RTSG) [[L1], (ii) Bayesian simulated annealing gridding
(BSAG) [, (iii) genetic-algorithm-based gridding (GABG) [5]], (iv) hill-climbing grid-
ding (HCG) [13]], (v) maximum margin microarray gridding (M 3@) [4], and the optimal
multilevel thresholding algorithm for gridding (OMT) [21]. As shown in the table, OMT
does not need any number-based parameter, and hence making it much more powerful
than the other methods. Although the index or thresholding criterion can be considered
as a “parameter”, this can be fixed by using the between class criterion. In a previous
work, we have “fixed” the index of validity to the « index and the between class as the
thresholding criterion. As can also be observed in the table, most algorithms and meth-
ods require the use of user-defined and subjectively fixed parameters. One example is the
GABG, which needs to adjust the mutation and crossover rates, probability of maximum
and minimum thresholds, among others. It is critical then to adjust these parameters for
specific data, and variations may occur across images of different characteristics.

Table 1. Conceptual comparison of recently proposed DNA microarray gridding methods

Su.z- Spot  Automatic De-
Method Parameters gDr::tec Detec- tection No. of Rotation
. tion Spots
tion
Rueda07  n: Number of sub-grids vV X X Vv
. « ,[3: Parameters for balancing prior
Antoniol04 andﬁposterior probability rates e P X % v %
u , ¢ :Mutation and Crossover rates,
Pmaz: probability of maximum thresh-
. old, piow: probability of minimum
Zacharia08 threshlcj)ld, ffmz : pezcentage of line v v v v
with low probability to be a part of grid,
T’: Refinement threshold
Rueda06 X, o: Distribution parameters X Vv Vv X
Bariamis10 c: Cost parameter X Vv V4 Vv
OMT Nond] v v v v

! The only parameters that would be needed in the proposed method are the “thresholding crite-
rion” and the “index of validity”. These two “parameters” are methodological, not number-based,
and hence making OMT less dependent on parameters.

4.2 Comparison of Algorithms for ChIP-Seq and RNA-Seq Analysis

A conceptual comparison between thresholding algorithms and other ChIP and RNA-
Seq methods based on their features is shown in Table 2l The methods included in the
comparison are the following: (i) GLobal Identifier of Target Regions (CLITR) [22]], (ii)
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Table 2. Conceptual comparison of recently proposed methods for ChIP-seq and RNA-seq data

Method Peak selection criteria Peak ranking  Parameters

n: Classification by height and Peak height and Target FDR, number nearest
GLITR . . . . .

relative enrichment fold enrichment neighbors for clustering
MACS p-value threshold, tag length,

Local region Poisson p value  p value

v1.3.5 m-fold for shift estimate
PeakSeq  Local region binomial p value ¢ value Target FDR
height threshold, background KDE bandwidth, peaks he.lght,
Quest v2.3 ratio q value sub-peak valley depth, ratio to
background
SICER p value from random back- Window length, gap size, FDR
v1.02 ground model, enrichment rel- g value (with control) or E-Value (no
’ ative to control control)
. + — . +
N thr]e\ihoiigil:lcrz?g?fr? N value FDR, N* + N~ threshold

Average fragment length, sig-
T-PIC Local height threshold p value nificance p value, minimum
length of interval
OMT number of C.hIP‘reads LS | olume Average fragment length
control reads in window
Model-based Analysis of ChIP-seq (MACS)[28], (iii) PeakSeq [20]], (iv) quantitative
enrichment of sequence tags (Quest) [24], (v) SICER [27], (vi) Site Identification from
Short Sequence Reads (SiSSRs) [[10], (vii) Tree shape Peak Identification for ChIP-seq
(T-PIC) [7]], and (viii) the optimal multilevel thresholding algorithm, OMT. As shown
in the table, all algorithms require some parameters to be set by the user based on the
particular data to be processed, including p-values, FDR, number os nearest neighbors,
peak height, valley depth, window length, gap size, among others. OMT is the algorithm
that requires almost no parameter at all. Only the average fragment length is needed, but
this parameter can be easily estimated from the underlying data. In practice, if enough
computational resources are available, the fragment length would not be needed, since
the OMT algorithm could be run directly on the whole histogram.

5 Experimental Analysis

This section is necessarily brief and reviews some experimental results as presented
in [21]]. For the experiments, two different kinds of DNA microarray images have been
used, which were obtained from the Stanford Microarray Database (SMD) the Gene Ex-
pression Omnibus (GEO). The images have different resolutions, number of sub-grids
and spots. We have used the between-class variance as the thresholding criteria, since
it is the one that delivers the best results. All the sub-grids in each image are detected
with a 100% accuracy, and also spot locations in each sub-grid can be detected effi-
ciently with an average accuracy of 96.2% for SMD dataset and 96% for GEO dataset.
Figure 2 shows the detected sub-grids from the AT-20387-ch2 image (left) and the de-
tected spots in one of sub-grids (right). As shown in the figure, the proposed method
precisely detects the sub-grids location at first, and in the next stage, each sub-grid is
divided precisely into the corresponding spots with the same method.
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Fig. 2. Detected sub-grids in AT-20387-ch2 microarray image (left) and detected spots in one of
sub-grids (right)

In addition to this, some experimental, preliminary results for testing performance of
the OMT algorithm on ChIP/RNA-seq data are shown here. We have used the FoxAl
dataset [28], which contains experiment and control samples of 24 chromosomes. The
experiment and control histogram were generated separately by extending each mapped
position (read) into an appropriately oriented fragment, and then joining the fragments
based on their genome coordinates. The final histogram was generated by subtract-
ing the control from the experiment histogram. To find significant peaks, we used a
non-overlapping window with the initial size of 3000bp. To avoid truncating peaks in
boundaries, each window is extended until the value of the histogram at the end of the
window becomes zero. Figure[3shows three detected regions for chromosomes 9 and 17
and their corresponding base pair coordinates. It clear from the pictures that the peaks
contain a very high number of reads, and then these regions are quite likely to repre-
sent binding sites, open reading frames or other bio-markers. A biological assessment
of these bio-markers can corroborate this.
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Fig. 3. Three detected regions from FoxA1 data for chromosomes 9 and 17. The x axis corre-
sponds to the genome position in bp and the y axis corresponds to the number of reads.

6 Discussion and Conclusion

Transcriptomics provide a rich source of data suitable for pattern analysis. We have
shown how multilevel thresholding algorithms can be applied to an efficient analysis
of transcriptomics and genomics data by finding sub-grids and spots in microarray im-
ages, as well as significant peaks in high-throughput next generation sequencing data.
OMT can be applied to a wide range of data from different sources and with different
characteristics, and allows data analysis such as sub-grid and spot detection in DNA mi-
croarray image gridding and also for detecting significant regions on ChIP and RNA-seq
data. OMT has been shown to be statistically sound and robust to noise in experiments
and it is able to use on different approaches with a little change — this is one the most
important features of this algorithm.

Thresholding algorithms, though shown to be quite useful for transcriptomics and ge-
nomics data analysis, are still emerging tools in these areas, and open the possibility
for further advancement. One of the problems that deserves attention is the use of other
thresholding criteria, including minimum error, entropy-based and others. For these two
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criteria the algorithm still runs in quadratic or n-logarithmic complexity, and which make
the whole process sluggish. Processing a whole genome or even a chromosome for find-
ing peaks in ChIP or RNA-seq is still achallenge, since it involves histograms with several
million bins. This makes it virtually impossible to process a histogram at once, and so
it has to be divided into several fragments. Processing the whole histograms at once is
one of the open and challenging problems that deserve more investigation. Next genera-
tion sequence data analysis is an emerging and promising area for pattern discovery and
analysis, which deserve the attention of the research community in the field.
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