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Abstract. Methods for nonlinear dimensionality reduction have been
widely used for different purposes, but they are constrained to single
manifold datasets. Considering that in real world applications, like video
and image analysis, datasets with multiple manifolds are common, we
propose a framework to find a low-dimensional embedding for data lying
on multiple manifolds. Our approach is inspired on the manifold learn-
ing algorithm Laplacian Eigenmaps - LEM, computing the relationships
among samples of different datasets based on an intra manifold compar-
ison to unfold properly the data underlying structure. According to the
results, our approach shows meaningful embeddings that outperform the
results obtained by the conventional LEM algorithm and a previous close
related work that analyzes multiple manifolds.

Keywords: Manifold learning, multiple manifolds, laplacian eigenmaps,
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1 Introduction

Often, in machine learning and pattern recognition literature, the nonlinear di-
mensionality reduction (NLDR) techniques are reviewed as learning methods
for discovering an underlying low-dimensional structure from a set of high-
dimensional input samples, that is, NLDR techniques unfold a non-linear man-
ifold embedded within a higher-dimensional space. Nevertheless, most of the
NLDR algorithms are constrained to deal with a single manifold, attaining un-
appropriate low-dimensional representations when input data lie on multiple
manifolds, because the inter-manifold distance is usually much larger than the
intra-manifold distance [1], moving apart each manifold from the others, regard-
less of whether the behavior among them is similar.

To our best knowledge, some few works [2,3,1] have proposed the application of
the NLDR techniques to the analysis of multiple manifold datasets. Particularly,
in [1] a framework to learn an embedded manifold representation from multiple
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data sets called Learning a Joint Manifold (LJM) is presented, which finds a
common manifold among the different data sets, without assuming some kind of
correspondence between the different manifolds. However, the main drawback of
this approach is that for obtaining suitable low dimensional representations, the
input samples must be similar in appearance. When the multiple manifolds do
not have a close resemblance among them, the LJM method fails to embed the
data. On the other hand, the approach presented in [3] actually requires the use
of correspondence labels among the samples in order align the data sets, in such
case the complexity of the challenge is lower than when no one correspondence
is assumed. A similar solution is proposed in [4].

Unlike these mentioned works for dealing with multiple manifolds, our work
makes possible to analyze dissimilar objects/subjects in appearance but with a
common behavior (similar motion), moreover our methodology allows to employ
objects/subjects with different input dimensions and number of samples among
manifolds. These features of our work are the major contribution to the state
of the art. Our approach is inspired on the manifold learning algorithm Lapla-
cian Eigenmaps - LEM [5], because its optimization problem has an analytic
solution avoiding local minima, and few free parameters need to be fixed by
user. Our approach can be employed to visually identify in a low-dimensional
space the dynamics of a given activity, learning it from a variety of datasets. We
test the method on two real-world databases, changing the number of samples
and input dimensions per manifold. Our proposal is compared against both the
conventional Laplacian Eigenmaps (LEM) [2] and the closest work found in the
state of the art for multiple-manifold learning (LJM) [1]. Overall, our methodol-
ogy achieves meaningful low dimensional representations, visually outperforming
the results obtained by the other methods. This work is organized as follows. In
Section 2, a brief description about LEM algorithm is presented. Section 3 intro-
duces the proposed methodology for multiple manifold dimensionality reduction.
In Section 4 the experimental results are described and discussed. Finally, in Sec-
tion 5, we conclude about the obtained results.

2 Laplacian Eigenmaps – LEM

Laplacian Eigenmaps (LEM) is a NLDR technique based on preserving the
intrinsic geometric structure of a manifold. Let X ∈ �n×p the input data ma-
trix with row vectors xi (i = 1, . . . , n). The LEM transformation finds a low-
dimensional Euclidean space Y ∈ �n×m, with row vectors yi (m � p). This
algorithm has three main steps. First, an undirected weighted graph G with n
nodes (one for each xi) is built. Nodes i and j are connected by an edge Eij = 1,
if i is one of the k nearest neighbors of j (or viceversa) according to the Euclidean
distance [2]. In the second step, a weight matrix W ∈ �n×n is calculated. For
this purpose two alternatives variants can be considered: heat kernel or sim-
ple minded. In the heat kernel variant, if nodes i and j are connected, then
Wij = κ (xi,xj), being κ (·, ·) a kernel function, otherwise, Wij = 0. For the
simple minded option, Wij = 1 if vertices i and j are connected by an edge, oth-
erwise, Wij = 0. Then, the L ∈ �n×n Laplacian graph is given by L = D−W,
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where D ∈ �n×n is a diagonal matrix with elements Dii =
∑

j Wji. In the third
step, the following objective function is minimized

∑

ij
(yi − yj)

2
Wij , (1)

which implies a penalty if neighboring points xi and xj are mapped far apart.
Finally, the LEM problem can be accomplished solving the generalized eigenvalue
problem LY:,l = λlDY:,l; where λl is the eigenvalue corresponding to the Y:,l

eigenvector, with l = 1, . . . , n. First eigenvector is the unit vector with all equal
components, while the remaining m eigenvectors form the embedded space.

3 Multiple Manifold Learning – MML

The NLDR techniques based on manifold learning fail when they look for a
common low-dimensional representation for data lying on multiple manifolds. In
this sense, we propose relate each input sample xi with C different manifolds that
share a similar underlying structure. Let ΨΨΨ = {Xc}C

c=1 an input manifold set,
where Xc ∈ �nc×pc . Our goal is to find a mapping from ΨΨΨ to a low-dimensional
space Y ∈ �n×m (with m � pc, and n =

∑C
c=1 nc), which reveals both the

intra manifold structure (relationships within manifold), and the inter manifold
structure (relationships among manifolds). Consequently, a weight matrix A,
that takes into account both structures, can be computed as

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W1 M12 · · · M1c · · · M1C

M21 W2 · · · M2c · · · M2C

...
...

. . .
...

. . .
...

Mc1 Mc2 · · · Wc · · · McC

...
...

. . .
...

. . .
...

MC1 MC2 · · · MCc · · · WC

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2)

where each Wc ∈ �nc×nc is the traditional LEM intra manifold weight matrix
for each Xc [1]. Furthermore, each Mcb ∈ �nc×nb (b = 1, . . . , C) block is a soft
correspondence matrix between Xc and Xb.

In [1] a methodology called Learning a Joint Manifold Representation (LJM) is
proposed to unfold the data underlying structure from multiple manifolds, which
calculates the matrix A (equation (2)), computing the intra manifold structure
matrices Wc as in traditional LEM, and the inter manifold structure matrices
Mcb by solving a permutation matrix P, which allows to find a maximum weight
matching by permuting the rows of Ucb ∈ �

nc×nb , U cb
qr = κ (xq,xr), xq ∈

Xc, and xr ∈ Xb (q = 1, . . . , nc; r = 1, . . . , nb ). Nonetheless, LJM is quite
sensitive to feature variability between samples of different manifolds, due to Ucb

is inferred in the high-dimensional space. Moreover, LJM is limited to analyze
input matrices Xc which belong to the same input dimension (p1 = p2 = · · · =
pc = · · · = pC), as can be seen in the calculation of each Ucb.
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In this work, we propose to identify the correspondence among data points
from different manifolds without making a high-dimensional sample comparison.
In other words, the similarities among observations of different manifolds are
not directly calculated in each pair Xc and Xb. Therefore, we compute each soft
correspondence matrix Mcb in (2) as

M cb
qr =

〈
wc

q,w
b
r

〉

∥
∥wc

q

∥
∥ ‖wb

r‖
, (3)

where wc
q ∈ �1×nc and wb

r ∈ �1×nb are row vectors of Wc and Wb, respec-
tively. It is important to note that equation (3) is not well defined when nc �= nb,
thereby, we use a conventional interpolation method based on cubic splines for
oversampling the lowest size vector to properly compute the inner product be-
tween wc

q and wb
r. Our approach for Multiple Manifold Learning (MML) aims to

calculate the relationships among samples of different manifolds, comparing the
intra manifold similarities contained in each Wc (equation (3)). Finally, given
the weight matrix A, we minimize the following objective function

∑

ij
(yi − yj)

2 Aij . (4)

Solving equation (4) as in traditional LEM algorithm allows us to find a low-
dimensional space Y for data lying on multiple manifolds.

4 Experimental Results

We tested the conventional LEM algorithm [2], the LJM technique [1], and our
proposed methodology MML on two real-world databases, in order to find a 2D
low-dimensional representation (m = 2) for data lying on multiple manifolds.
The first database, the Columbia Object Image Library (COIL-100) [6], contains
72 RGB-color images, for each one of the 100 objects, in PNG format, which were
taken at pose intervals of 5 degrees while the object is rotated 360 degrees. In
this work, the following objects are used: Car, Frog and Duck. The image size is
128×128, which are transformed to gray scale. The second database is the CMU
motion of body (Mobo) [7], which holds 25 individuals walking a treadmill. All
subjects are captured using six high resolution color cameras distributed evenly
around the treadmill. For concrete testing, we used the silhouette sequences of
one gait cycle for slow walk of three persons, which are captured from a side view.
The images are resized to 80 × 61. The Figure 1 shows some images samples of
COIL-100 and Mobo databases.

Three types of experiments are performed. Firstly, we use the selected objects
of COIL-100 with a same amount of observations per set (n1 = n2 = n3 = 72),
and equal input dimensions (p1 = p2 = p3 = 16384). In this case, the number
of nearest neighbors is fixed as k = 3. For the second experiment, we use the
Mobo database, which leads input samples per manifold of different sizes: n1 =
36, n2 = 40, n3 = 38 and p1 = p2 = p3 = 4880. The number of neighbors
is set to k = 2. In order to test the algorithms on a dataset that contains
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Fig. 1. Databases examples

multiple manifolds with high-variability in the input sample sizes, we use the
COIL-100 but performing an uniform sampling of the observations, obtaining
input spaces with n1 = 72, n2 = 36, n3 = 18 and p1 = p2 = p3 = 16384. Here,
the number of nearest neighbors are fixed as k1 = 4, k2 = 2, k3 = 1. Finally,
the third experiment aims to validate the proposed methodology for analyzing
datasets with different amount of observations and input dimensions (image
resolution). For this purpose, we employ the COIL-100 performing an uniform
sampling of the observations, and resizing the images. Thence, the obtained
input spaces have the following characteristics: n1 = 72, n2 = 36, n3 = 18 and
p1 = 16384, p2 = 8100, p3 = 2784.

According to the results presented in Figures 2(a), 3(a) and 4(a), tradi-
tional LEM is not able to find the correspondence among different datasets
which are related to a common underlying data structure. For all the provided

Fig. 2. Three objects, equal amount of observations
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Fig. 3. Three objects, different amount of observations
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Fig. 5. Different amount of observations and input dimensions (image resolution)

experiments, LEM performs a clustering of points for each manifold. That algo-
rithm can not find a low-dimensional representation that unfolds the underlying
data structure from multiple manifolds, due to the weight matrix W in LEM is
computed only considering pixel intensity similarities among frames. Again, tak-
ing into the account the attained results with the LJM technique (Figures 2(b),
3(b), and 4(b)), it can be seen how it attempts to find a correspondence among
datasets but losing the intrinsic geometry data structure of the phenomenon
(object motion). More precisely, for the COIL-100 database, the dynamic of the
rotation is not reflected in the embedded space. Similar results are obtained for
gait analysis in the Mobo database, although LJM tries to reveal the elliptical
motion shape, it is not able to conserve a soft correspondence among samples.
Note that the application of LJM technique is limited to analyze frames of video
sharing a similar geometry, due to Ucb is inferred in the high-dimensional space
(pixels frame comparison). Overall, the LJM method can not properly learns the
relationships among objects performing the same activity, it just develops well
when the analyzed manifolds are similar in appearance.

Finally, the results obtained with the proposed methodology MML, demon-
strate that the computed low-dimensional space exhibits the appropriated dy-
namic of a given activity, learning it from multiple datasets. Figures 2(c), 3(c),
4(c), and 5(a) show how this method learns the relationships among frames
of videos related to a similar activity, unfolding the underlying data structure.
The low-dimensional representations found by MML reflects the activity dynam-
ics and the soft correspondence among points of different datasets. Furthermore,
our approach identifies a soft correspondence among videos even when they
do not share a common similarity appearance, number of observations, and/or
resolution. This can be explained because the relationships among samples of
different datasets are computed based on an intra manifold comparison (equa-
tion (3)) the samples are not directly compared on the high dimensional input
space, instead of that, the samples are compared by means of their own simi-
larity representations, which is the similarity between a sample an each one of
the other samples on the same manifold. The Figures 2(d), 3(d), 4(d), and 5(b)
confirm it.
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5 Conclusion

In this paper a new NLDR methodology for finding a common low-dimensional
representation from multiple datasets is presented. We proposed to calculate an
unique embedding space in order to visually identify the dynamics of a given
activity performed by a variety of objects/subjects. In other words, different
manifolds that share a similar underlying structure are mapped to the same
low-dimensional space. Our methodology is inspired on the manifold learning
algorithm LEM, computing the relationships among samples of different datasets
based on an intra manifold comparison to properly unfold the data underlying
structure. According to the obtained results, our approach outperformed the
original LEM method, and a previous similar work called LJM [1] that analyzes
multiple manifolds. The main advantage of this proposed methodology is the
possibility for analyzing dissimilar objects/subjects in appearance but with a
common behavior (similar motion). Moreover our methodology allows to employ
objects/subjects with different input dimensions and number of samples among
manifolds. As future work, we are interested in apply our methodology to support
human motion classification and identification of impairments, as well as for
computer animation.
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