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Abstract. Curve skeletons are used for linear representation of 3D ob-
jects in a wide variety of engineering and medical applications. The
outstandingly robust and flexible curve skeleton extraction algorithm,
based on generalized potential fields, suffers from seriously heavy com-
putational burden. In this paper we propose and evaluate a hierarchical
formulation of the algorithm, which reduces the space where the skele-
ton is searched, by excluding areas that are unlikely to contain relevant
skeleton branches. The algorithm was evaluated using dozens of object
volumes. Tests revealed that the computational load of the skeleton ex-
traction can be reduced up to 100 times, while the accuracy doesn’t suffer
relevant damage.
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1 Introduction

In the two dimensional case, the medial axis of an object is the collection of
points that have at least two closest points to the boundary of the object. On
the other hand, the skeleton is defined as the locus of centers of maximal circles
inscribed within the object. A circle C is considered maximal, if there is no other
circle inscribed in the object that entirely contains C. In two dimensions, the
medial axis and the skeleton are practically the same.

In three dimensions, the medial surface is the term that corresponds to 2D
medial axis. The medial surface also contains linear curves in places where there
are at least three surfaces at the same distance. Figure 1(left) shows the medial
surface of an object. There are several 3D computer graphics applications, where
3D objects are desired to be represented as a collection of linear curves. For
example, the inverse kinematics, which is very practical and thus quite popular
in animations, demands such a representation. However, the 3D skeleton of an
object does not have a mathematical definition. We could say that the 3D curve
skeleton (3DCS) is a subset of the medial surface, a collection of curves which is
centered within the object, but that is not a rigorous definition. Figure 1(right)
the desired shape of the 3DCS of an object.
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There are several 3DCS extraction algorithms, which approximate this curve
collection based on different physical approaches. All of them give an approxi-
mation of the 3DCS. As we will see later, the segments of the skeleton shown in
Fig. 1(right) will be slightly bent in the proximity of bifurcation points.

Fig. 1. Medial surface (left) and 3D curve skeleton (right) of a deformed cube

The most important properties the 3DCSs share are:

1. Homotopic: the curve skeleton is required to be topologically equivalent to
the original object, that is, the number of connected components, tunnels
and cavities should be the same [11].

2. Invariant to isometric transformations: this is important in applications
where the skeleton is used as shape descriptor.

3. Thin: curve skeletons are one dimensional. In discrete applications they can
be either single voxel wide lines, or zero width lines described by points
having real valued coordinates.

4. Centered: the curve skeleton lays within the medial surface of the objects,
and is centered within the surface patches it belongs to [12].

5. Curve skeletons are reliable if all surface points are visible from some place
on the skeleton [9].

6. A curve skeleton extraction method is robust, if the resulting skeleton is not
sensitive to small variations of the boundary.

In the discrete case, 2D skeleton extraction is traditionally performed by thinning
via hit-or-miss transform, by applying the L mask family from Golay’s alphabet.
Most of the algorithms developed for 3DCS extraction also work in 2D. They will
be enumerated in the followings. The literature of 3D curve skeleton extraction
consists of several various approaches:

1. Thinning and boundary propagation methods iteratively remove so-called
simple points from the objects, which by definition, do not influence the
topology of the object [3]. Methods vary according to the criteria they apply
to find simple points.

2. Distance field based methods apply the distance transform with a selected
chamfer metric, for each internal point of the object, and extract the skeleton
from the distance field data [4].

3. Geometric methods are generally applied to objects described as triangular
or polygonal meshes. The most popular algorithmic scheme in this family is
mesh contraction [2].
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4. General field based methods were first introduced in 2D formulation [1,8]. 3D
solutions use potential fields [5,6], repulsive force fields [13,14], or radial basis
functions [10] to create a general field. The skeleton is extracted afterwards
based on some special points (complete extinguishment and saddle points)
within the field.

2 Generalized Potential Field

According to the theory of electrostatics, every electrical charge generates a
potential field. This means that whenever another charged object approaches
the initial one, it will be attracted or repelled according to the sign of both
charges. The magnitude of the force is computed as: F = kq1q2/d2, where k is a
constant, d is the distance between the two charged objects, while qA an qB are
the two charges. In case of the generalized potential field applied in computer
graphics, the constant k is neglected, the charges are considered unitary and of
same polarity, while the distance is treated in a generalized way, in the sense that
the magnitude of the force is equal to the −α’th power of the distance: F = d−α.
In other words, the force vector that applies to charged object B, because of the
presence of charged object A, is: F = dAB|dAB |−(α+1), where dAB represents
the distance vector between the objects. Expressed in 3D Euclidean coordinates,
the components of the above force vectors are:

Fx =
xB − xA

|dAB|α+1
Fy =

yB − yA

|dAB |α+1
Fz =

zB − zA

|dAB|α+1
, (1)

where A and B represent the points where the charges are placed, and the length
of the vector dAB is |dAB| =

√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2.

The generalized potential field is applied as follows. At first, electrical charge
is placed and uniformly distributed upon the outer surface of the object. In the
following step, the generalized potential field is computed in every internal grid
point of the object. Or in other words, a small object with unit charge virtually
marches over every internal grid point, and the electrostatic force vector that
applies to the object is computed for each position.

The formula of the GPF is deduced by summing all its components. All exter-
nal point charges may have their effect to the electrostatic field in any internal
point, so we need to sum up all vectors:

F(I) =
∑

P∈Ω

Fx(I, P ) × i +
∑

P∈Ω

Fy(I, P ) × j +
∑

P∈Ω

Fz(I, P ) × k , (2)

where i, j, k represent the unit vectors in the three main axial directions, and
Ω is the set of surface points that hold the external charges. The above formula
is a good approximation of the GPF in internal point I, but is not exact. As
it was already pointed out (but not applied) in [7], only those external points
should be included in Ω, from which the internal point I is visible. Visibility can
be described mathematically with the following expression:

I is visible from P ⇔ λI + (1 − λ)P is an internal point ∀0 < λ ≤ 1 . (3)
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The identification of the curve skeleton from the computed GPF is produced in
several steps:

1. Find the critical points, where GPF is a zero vector. These will generally be
points where two or more branches of the skeleton meet, or in other words,
points where the skeleton bifurcates. They usually will not fall in exact grid
points, but we can easily locate the unit sized cube volume where they are
situated. We need to look for those cubes where all three vector components
Fx, Fy, and Fz change their sign.

2. At the time when critical points are located, we can also check, which are the
cubes where not all three, but at least one of the three components change
their sign. These cubes will contain so-called saddle points, which will also
contribute to the curve skeleton.

3. Compute the exact coordinates of critical points using trilinear interpolation.
4. Locate the segments of the first order curve skeleton. Each such segment

must have critical points at both ends, and all such segment should cross
only such cubes where saddle points are located. The segments are identified
using a backtracking algorithm. The small number of possible ways assures
the quick performance of the backtracking algorithm.

5. The exact coordinates of saddle points participating in the skeleton are es-
tablished along the following two considerations. Those components that
change their sign within the saddle point’s cube, precisely define one or two
exact coordinates via linear or bilinear interpolation. The other coordinates
can be established such a way, that saddle points are uniformly distributed
along the skeleton, and the curve of the skeleton remains smooth.

6. The second order curve skeleton will additionally contain branches, which
connect critical points with high curvature surface points of the object. In
this order, a set of high curvature surface points is searched for. Curvature
is easily represented by the number of inner neighbors of the surface point.
The less inner neighbors a surface point has, the higher its curvature value is.
Further on, only those high curvature points are kept within the set, which
have a locally maximal curvature value.

7. Secondary branches of the curve skeleton are located again using backtrack-
ing, crossing only cubes that contain saddle points.

8. The GPF based curve skeleton extraction algorithm also gives the possibility
to neglect some of the irrelevant secondary branches. This is performed via
ordering the branches according their divergence, and keeping only those
which have a lower value than a predefined threshold, or keeping a predefined
percentage that have low divergence values.

3 The Proposed Hierarchical Approach

The GPF based curve skeleton extraction algorithm given in [6] reports a very
long execution time in case of objects containing over N = 105 voxels. The
approximate length of such an object is of n = 3

√
N units.
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The most time consuming part of the algorithm is the computation of the GPF
in each grid point, as each couple formed by an internal point and a surface point
has to be taken into consideration. As the number of internal points has the order
of O(n3), and the surface points count up to the order of O(n2), the complexity
of GPF computation will be of order O(n5). This is an enormous load in case of
large objects.

Cornea tried to reduce the duration of GPF computation by suppressing the
set of external points considered for each internal point. Those external points
were neglected, which according to their z coordinate, were guaranteed to be
too far from the currently processed internal point. This modification reduces
some of the computational complexity, but also may cause deformations of the
skeleton. In this paper we propose a hierarchical approach for 3DCS extraction
of large objects. The general idea is to reduce the number of internal points
where the GPF is computed. This is achieved along the following terms:

Let us resize the object, reduce its size μ times in every direction. For the case
of simplicity, let us consider now μ = 2. This practically reduces the number of
internal voxels μ3 times and the number of surface voxels μ2 times. If we extract
the skeleton of this reduced object, it will have approximately the same shape as
the skeleton of the original, large object, just it will be reduced in size μ times.

Now let us turn back to the original large object. We magnify the skeleton of
the small object μ times and place it into the large object. Only those internal
voxels, which are situated closer to the magnified skeleton, than a predefined
threshold distance δ will be considered for the time consuming process of GPF
computation. Such a way, the O(n5)-complexity operation is executed with a
μ times smaller n, while in the big object, GPF computation will have the
complexity of O(n3).

This hierarchical size reduction can be performed in more than one steps,
too, achieving thus μ2 or μ3 times size reduction, and an even more convenient
computational load.

The reduction of the object can be performed as long as it does not influence
the topology of the object. Further on, it is limited by the fact, that the reduced
object must be at least two pixels wide everywhere. The recommended threshold
value is: δ = (1.5 − 2.0)μ voxels.

4 Efficient Implementation Using GPU

Modern GPU’s can efficiently handle large matrices and can perform quick com-
putations on large amounts of data. That is why, if we wish to accelerate the
computation of GPF using a GPU, we need to organize our data into matrices.
Let us write the coordinates of surface points into a matrix denoted by S:

S =

⎛

⎜
⎜
⎝

x1 y1 z1

x2 y2 z2

. . . . . . . . .
xω yω zω

⎞

⎟
⎟
⎠ ,
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Fig. 2. Hierarchical size reduction exhibited in 2D, in two steps. Red lines indicate the
extracted skeleton, while gray areas are the regions where the skeleton is looked for.
White areas are excluded from the computations as they are not likely to contain any
part of the skeleton.

Fig. 3. Some examples of extracted skeletons

Fig. 4. Execution times for various object volumes, obtained by the original GPF-based
skeleton extraction method, and the proposed hierarchical approaches
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where ω represents the cardinality of the set of surface points Ω. We keep the
coordinates of the current internal point in a vector I = [xI , yI , zI ]. We need
to perform the following steps. First, we subtract I from each row of S, and
compute the square of each element in the matrix. Compute the sum of the
three columns of the matrix, and denote this single column by D. Raise each
element of D to the power (1 + α)/2. Use an odd integer for α to make the
exponent an integer. Build an ω-row 3-column matrix M by placing ω identical
rows [xI , yI , zI ] under each other. Subtract the original S from this matrix M ,
and denote the result by Q. Divide each row of Q with the corresponding element
in D, and finally sum up all columns of the matrix. The resulting 3-element vector
will contain the three directional components of the GPF in the point I, namely
[Fx(I),Fy(I),Fz(I)]. In a GPU, the above computations can be organized to
perform the above operations on several internal points in parallel.

5 Results and Discussion

The algorithm has been implemented in c++ programming language, using the
JAMA and TNT packages for matrix operations. GPU implementation relies on
AMD’s FireStream SDK, and an ATI HD 5750 video card.

Several tests have been performed using artificially created object volumes
of different sizes. The main evaluation criteria were: accuracy – how much the
hierarchical formulation influences the correctness of the extracted skeleton, and
efficiency – how many times quicker the proposed approach extracts the skeleton,
compared to the speed of the original formulation.

The most simple skeleton extracted by the GPF based algorithms is the core
skeleton, which is formed of critical points and first order branches only. The
presence of secondary branches is controlled by the divergence threshold. These
secondary branches are rarely useful in computer graphics applications, so the
divergence threshold has to be kept at a low value. Another reason for this low
threshold value could be the possible sensitivity to the noise present on the
boundary of the object.

Parameter α controls the variation of the potential field’s strength with dis-
tance. The optimal value of this parameter we found α = 5: this assures good
stability of the algorithm, while the computational load is not raised too high.

The hierarchical size reduction of the object has a damaging effect upon ac-
curacy only if the size reduction changes the object’s topology. The preservation
of topology should limit the maximum applied size reduction factor.

From the point of view of efficiency, we found that the proposed approach can
reduce the computational load of the algorithm 5 − 50 times, depending on the
chosen size reduction ratio. Figure 4 shows some execution times obtained on
various object volumes. At the skeleton extraction of larger objects, it is more
likely to obtain a higher speedup ratios. Involving a GPU for GPF computation
can produce a further speedup factor of 2 to 5.
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6 Conclusions and Future Work

In this paper we have proposed a hierarchical formulation of the general potential
field based 3D curve skeleton extraction algorithm. The proposed method proved
accurate as long as the executed size reduction did not change the topology of
the object. The computational efficiency of the proposed method is outstanding,
a 5-50 times speedup ratio is achievable, depending on the size of the object. Im-
plementing the proposed hierarchical formulation of GPU’s can rise the speedup
factor well above 100.

As a future work, we would like to implement a different computation method
of the GPF field, which will take into consideration the visibility problem, thus
improving the accuracy as well.
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