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Preface

Nowadays, pattern recognition is a discipline that involves several areas of
computer sciences such as: signal and image processing and analysis, computer
vision, data mining, neural networks, artificial intelligence, clustering, statistical
approaches, as well as their applications in areas like robotics, health, telecom-
munication, document analysis, speech processing, and natural language among
others.

The Iberoamerican Congress on Pattern Recognition (CIARP) series have
a relatively long tradition in the Iberoamerican research community, and have
had participants from all over the world. CIARP 2011 was held in Pucón, Chile,
during November 15–18, and received contributions by authors from Algeria,
Argentina, Austria, Brazil, Canada, Chile, Colombia, Cuba, France, Germany,
Hungary, Iran, Italy, Republic of Korea, Mexico, The Netherlands, New Zealand,
Poland, Portugal, Romania, Russian Federation, Spain, Sweden, Switzerland,
Tunisia, UK, USA, and Uruguay.

Previous versions of CIARP were held in Cuba in 1995, 1997, 1999, 2003,
2005, and 2008, Mexico in 1998, 2002, 2004, 2006, 2009, Portugal in 2000, Chile in
2007, and Brazil in 2001 and 2010. The conferences held in Portugal, Brazil, Cuba
2003/2005, Mexico 2004/2006/2008, Chile 2007, and Brazil 2010 were sponsored
by IAPR. From the 2003 conference, the proceedings have been published by
Springer in its Lecture Notes in Computer Science series.

The Organizing Committee of this version hopes that all scientists, researchers,
engineers, and students enjoyed the conference, increased their experience and
knowledge in pattern recognition fields and also enjoyed the magical environment
and welcome offered by Pucón city and its people.

November 2011 César San Mart́ın
Sang-Woon Kim
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Describing When and Where in Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Walter G. Kropatsch, Adrian Ion, and Nicole M. Artner

Applications of Multilevel Thresholding Algorithms to Transcriptomics
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Luis Rueda and Iman Rezaeian

Image Processing, Restoration and Segmentation

Unsupervised Fingerprint Segmentation Based on Multiscale
Directional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Raoni F.S. Teixeira and Neucimar J. Leite

Thermal Noise Estimation and Removal in MRI: A Noise Cancellation
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Miguel E. Soto, Jorge E. Pezoa, and Sergio N. Torres

Spectral Model for Fixed-Pattern-Noise in Infrared Focal-Plane
Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Jorge E. Pezoa and Osvaldo J. Medina

Blotch Detection for Film Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Alvaro Pardo

Rapid Cut Detection on Compressed Video . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Jurandy Almeida, Neucimar J. Leite, and Ricardo da S. Torres

Local Quality Method for the Iris Image Pattern . . . . . . . . . . . . . . . . . . . . . 79
Luis Miguel Zamudio-Fuentes, Mireya S. Garćıa-Vázquez, and
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Héctor Allende-Cid

Teaching a Robot to Perform Task through Imitation and On-line
Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

Adrián León, Eduardo F. Morales, Leopoldo Altamirano, and
Jaime R. Ruiz

Improvements on Automatic Speech Segmentation at the Phonetic
Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
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Abstract. The patterns in collections of real world objects are often not
based on a limited set of isolated properties such as features. Instead, the
totality of their appearance constitutes the basis of the human recog-
nition of patterns. Structural pattern recognition aims to find explicit
procedures that mimic the learning and classification made by human
experts in well-defined and restricted areas of application. This is often
done by defining dissimilarity measures between objects and measuring
them between training examples and new objects to be recognized.

The dissimilarity representation offers the possibility to apply the
tools developed in machine learning and statistical pattern recognition to
learn from structural object representations such as graphs and strings.
These procedures are also applicable to the recognition of histograms,
spectra, images and time sequences taking into account the connectivity
of samples (bins, wavelengths, pixels or time samples).

The topic of dissimilarity representation is related to the field of non-
Mercer kernels in machine learning but it covers a wider set of classifiers
and applications. Recently much progress has been made in this area and
many interesting applications have been studied in medical diagnosis,
seismic and hyperspectral imaging, chemometrics and computer vision.
This review paper offers an introduction to this field and presents a
number of real world applications1.

1 Introduction

In the totality of the world around us we are able to recognize events or objects
as separate items distinguished from their surroundings. We recognize the song
of a bird in the noise of the wind, an individual tree in the wood, a cup on the
table, a face in the crowd or a word in the newspaper. Two steps can now be
distinguished. First, the objects are detected in their totality. Second, the isolated

1 We acknowledge financial support from the FET program within the EU FP7, under
the SIMBAD project (contract 213250) as well as the Engineering and Physical
Sciences Research Council in the UK.

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 1–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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object is recognized. These two steps are strongly interconnected and verified by
each other. Only after a satisfactory recognition the detection takes place. It
may even be questioned whether it is not artificial to make a distinction of these
processes in the human recognition of interesting items in the surrounding world.

It is common to separate the two processes in the design of artificial recogni-
tion systems. This is possible and fruitful as it is known what type of objects are
considered in most applications. For example, we know that the system under
construction has to recognize faces and is not intended to recognize characters
or objects such as cups. The detection step is thereby simplified to selectively
focus on faces only, on characters only or on cups only. The recognition step,
however, may now lack important information from the context: the recognition
of an isolated character is more difficult than its recognition given the entire
word. Recognition systems that take the context into account can become more
accurate, albeit at the price of a higher complexity.

On the level of the recognition of a single object a similar observation can
made. In the traditional pattern recognition approaches this is mainly done by
describing objects by isolated features. These are object properties that are ap-
propriate locally, at some position on the object, e.g. the sharpness of a corner,
or by global properties that describe just a single aspect such as the weight or
size of the object. After these features are determined in a first step, the class or
the name of the object is determined: it is a cup and not an ashtray, or it is the
character ’C’ out of the character set in the alphabet. Again it can be doubted
whether these steps reflect the human recognition process.

Is it really true that we consciously observe a set of features before we come
to a decision? Can we really name well-defined properties that distinguish a cup
from an ashtray, or John from Peter? Some experts who have thought this over
for their field of expertise may come a long way. Many people, however, can
perfectly perform a recognition task, but can hardly name specific features that
served the purpose. It is only under pressure when they mention some features.

In general, the process of human decision making may not be based on clear
arguments but on an unconscious intuition, instead. Arguments or justifications
may be generated afterwards. They may even be disputed and refuted without
changing the decision. This points in the direction that human recognition and
decision making are global processes. These processes take the entire object or
situation into account and a specification into isolated observations and argu-
ments becomes difficult.

The above reasoning raises the question whether it is possible to constitute
an automatic pattern recognition procedure that is based on the totality of an
object. In this paper some steps in this direction are formulated on the basis of
the dissimilarity representation. A review will be given of the research that is
done by the authors and their colleagues. Although many papers and experiments
will be mentioned that describe their work, it should be emphasized that the
context of the research has been of significant importance. The publications and
remarks by researchers such as Goldfarb [29], Bunke [44], Hancock and Wilson
[40,63], Buhman and Roth [36], Haasdonk [30], Mottle [41], Edelman [25] and
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Vapnik [58] have been a significant source of inspiration on this topic. It is
however the aim of this paper to sketch our own line of reasoning in such a way
that it may serve as inspiration for newcomers in this area. We will therefore
restrict this paper to an intuitive explanation illustrated by some examples. More
details can be found in the references. Parts of this paper have been extracted
from a recent journal paper [20] which deals with the same topic but which is
more dedicated to research results and in which less effort has been made to
introduce ideas and concepts carefully.

A global description of objects, which takes their totality into account, should
be based on knowledge of how all aspects of the object contribute to the way it
appears to the observer. To make this knowledge explicit some structural model
may be used, e.g. based on graphs. This is not a simple task and usually demands
much more background knowledge of the application area than the definition of
some local properties such as features. The feature-based approach is mainly an
effort in measuring the properties of interest in the observations as presented
by the sensors. As features describe objects just partially, objects belonging to
different classes may share the same feature vectors. This overlap has to be solved
by a statistical analysis. The two approaches, mentioned above, are linked to the
two subfields: structural and statistical pattern recognition.

The possibility to merge the two fields has intrigued various researchers over
the decades. Thereby, it has been a research topic from the early days of pat-
tern recognition. Originally, most attempts have been made by modifying the
structural approach. Watanabe [59] and especially Fu [26] pointed to several
possibilities using information theoretic considerations and stochastic syntacti-
cal descriptions. In spite of their inspiring research efforts, it hardly resulted
in practical applications. Around 1985 Goldfarb [29] proposed to unify the two
directions by replacing the feature-based representation of individual objects by
distances between structural object models. As this proposal hardly requires a
change of the existing structural recognition procedures, it may be considered
as an attempt to bridge the gap between the two fields by approaching it from
the statistical side. Existing statistical tools might thereby become available in
the domain of structural pattern recognition. This idea did not attract much
attention as it was hardly recognized as a profitable approach.

After 1995, the authors of this paper started to study this proposal further.
They called it the dissimilarity representation as it allows various non-metric,
indefinite or even asymmetric measures. The first experiences were published in
a monograph in 2005, [49]. An inspiration for this approach was also the above
explained observation that a human observer is primary triggered by object dif-
ferences (and later similarities) and that the description by features and models
comes second; see [25]. The analysis of dissimilarities, mainly for visualization,
was already studied in the domain of psychonomy in the 1960s, e.g. by Shepard
[54] and Kruskal [35]. The emphasis of the renewed interest in dissimilarities in
pattern recognition, however, was in the construction of vector spaces that are
suitable for training classifiers using the extensive toolboxes available in multi-
variate statistics, machine learning and pattern recognition. The significance for
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the accessibility of these tools in structural object recognition was recognized by
Bunke [55,44] and others such as Hancock and Wilson [64] and Mottle [42,41].

Before introducing the further contents, let us first summarize key advantages
and drawbacks of using the dissimilarity representation in statistical learning:

– Powerful statistical pattern recognition approaches become available for
structural object descriptions.

– It enables the application expert to use model knowledge in a statistical
setting.

– As dissimilarities can be computed on top of a feature-based description,
the dissimilarity approach may also be used to design classifiers in a feature
space. These classifiers perform very well in comparative studies [23].

– As a result, structural and feature-based information can be combined.
– Insufficient performance can often be improved by more observations without

changing the dissimilarity measure.
– The computational complexity during execution, i.e. the time spent on the

classification of new objects, is adjustable.
– The original representation can be large and computationally complex as

dissimilarities between all object pairs may have to be computed. There are
ways to reduce this problem [48,39,13].

In this paper we present an intuitive introduction to dissimilarities (Sec. 2), ways
to use them for representation (Sec. 3), the computation of classifiers (Sec. 4),
the use of multiple dissimilarities (Sec. 5) and some applications (Sec. 6). The
paper is concluded with a discussion of problems under research.

2 Dissimilarities

Suppose we are given an object to be recognized. That means: can we name it,
or can we determine a class of objects of which it belongs to? Some representa-
tion is needed if we want to feed it to a computer for an automatic recognition.
Recognition is based on a comparison with previous observations of objects like
the one we have now. So, we have to search through some memory. It would
be great if an identical object could be found there. Usually, an exact match is
impossible. New objects or their observations are often at least slightly different
from the ones previously seen. And this is the challenge of pattern recognition:
can we recognize objects that are at most similar to the examples that we have
been given before? This implies that we need at least the possibility to express
the similarity between objects in a quantitative way. In addition, it is not always
advantageous to look for an individual match. The generalization of classes of
objects to a ’concept’, or a distinction which can be expressed in a simple classi-
fication rule is often faster, demands less memory and/or can be more accurate.

It has been observed before [25], and it is in line with the above discussions,
that in human recognition processes it is more natural to rely on similarities
or dissimilarities between objects than to find explicit features of the objects
that are used in the recognition. This points to a representation of objects based



The Dissimilarity Representation for Structural Pattern Recognition 5

on a pairwise comparison of the new examples with examples that are already
collected. This differs from the feature-based representations that constitute the
basis of the traditional approaches to pattern recognition described in the well-
known textbooks by Fukunaga [27], Duda, Hart and Stork [17], Devijver and
Kittler [16], Ripley [53], Bishop [7],Webb [60] and Theodorides [56]. We want
to point out that although the pairwise dissimilarity representation presented
here is different in its foundation from the feature-based representation, many
procedures described in the textbooks can be applied in a fruitful way.

We will now assume that a human recognizer, preferably an expert w.r.t. the
objects of interest, is able to formulate a dissimilarity measure between objects
that reflects his own perception of object differences (for now we will stick to
dissimilarity measures). A dissimilarity measure d(oi, oj) between two objects oi

and oj out of a training set of n objects may have one or more of the following
properties for all i, j, k ≤ n.

– Non-negativity: d(oi, oj) ≥ 0.
– Identity of indiscernibles: d(oi, oj) = 0 if and only if oi ≡ oj .
– Symmetry: d(oi, oj) = d(oj , oi).
– Triangle inequality: d(oi, oj) + d(oj , ok) ≥ d(oi, ok).
– Euclidean: An n × n dissimilarity matrix D is Euclidean if there exists

an isometric Euclidean embedding into a Euclidean space. In other words, a
Euclidean space with n vectors can be found such that the pairwise Euclidean
distances between these vectors are equal to the original distances in D.

– Compactness: A dissimilarity measure is defined here as compact if a suf-
ficiently small perturbation of an object (from a set of allowed transforma-
tions) leads to an arbitrary small dissimilarity value between the disturbed
object and its original. We call such a measure compact because it results in
compact class descriptions for which sufficiently small disturbances will not
change the class membership of objects. Note that this definition is different
than compactness discussed in topological spaces.

The first two properties together produce positive definite dissimilarity measures.
The first four properties coincide with the mathematical definition of a metric
distance measure.

Non-negativity and symmetry seem to be obvious properties, but sometimes
dissimilarity measures are defined otherwise. E.g. if we define the distance to a
city as the distance to the border of that city, then a car that reaches the border
from outside has a distance zero. When the car drives further into the city the
distance may be counted as negative in order to keep consistency. An example
of an asymmetric distance measure is the directed Hausdorff distance between
two sets of points A and B: dH(A,B) = maxx{miny{d(x, y), x ∈ A, y ∈ B}}.

An important consequence of using positive definite dissimilarity measures is
that classes are separable for unambiguously labeled objects (identical objects
belong to the same class). This directly follows from the fact that if two objects
have a distance zero they should be identical and as a consequence they belong
to the same class. For such classes a zero-error classifier exists (but may still be
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difficult to find). See [49]. This is only true if the dissimilarity measure reflects all
object differences. Dissimilarity measures based on graphs, histograms, features
or other derived measurements may not be positive definite as different objects
may still be described by the same graph (or histogram, or sequence) and thereby
have a zero dissimilarity.

The main property is the Euclidean property. A metric distance measure in
fact states that the Euclidean property holds for every set of three points while
the first two properties (positive definiteness) state that the dissimilarity of every
pair of points is Euclidean.

We may distinguish the properties of the dissimilarity measure itself and the
way it works out for a set of objects. The first should be analyzed mathematically
from the definition of the measure and the known properties of the objects. The
second can be checked numerically from a given n × n dissimilarity matrix D.
There might be a discrepancy between what is observed in a finite data matrix
and the definition of the measure. It may occur for instance that the matrix D for
a given training set of objects is perfectly Euclidean but that the dissimilarities
for new objects behave differently.

The concept of compactness is important for pattern recognition. It was first
used in the Russian literature around 1965, e.g. see Arkedev and Braverman [3],
and also [18]. We define here that a compact class of objects consists of a finite
number of subsets, such that in each subset every object can be continuously
transformed (morphed) into every other object of that subset without passing
through objects outside the subset. This property of compactness is slightly dif-
ferent from the original concept defined in [3] where it is used as a hypothesis on
which classifiers are defined. It is related to the compactness used in topology.
Compactness is a basis for generalization from examples. Without proof we state
here that for compact classes the consequence of the no-free-lunch theorem [65]
(every classifier is as good as any other classifier unless we use additional knowl-
edge) is avoided: compactness pays the lunch. The prospect is that for the case
of positive definite dissimilarity measures and unambiguously labeled objects,
the classes can be separated perfectly by classifiers of a finite complexity.

3 Representation

A representation of real world objects is needed in order to be able to relate to them.
It prepares the generalization step by which new, unseen objects are classified. So,
the better the representation, the more accurate classifiers can be trained. The tra-
ditional representation is defined by numerical features. The use of dissimilarities
is an attractive alternative, for which arguments were given in Introduction. This
section provides more details by focussing on the object structure.

3.1 Structural Representations

The concept of structure is ill defined. It is related to the global connectivity of
all parts of the object. An image can be described by a set of pixels organized in
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a square grid. This grid may be considered as the structure of the image. It is,
however, independent of the content of the image. If this is taken into account
then the connectivity between the pixels may be captured by weights, e.g. related
to the intensity values of the neighboring pixels. We may also forget that there
are pixels and determine regions in the image by a segmentation procedure. The
structure may then be represented by a graph in which every node is related
to an image segment and the graph edges correspond to neighboring segments.
Nodes and edges may have attributes that describe properties of the segments
and the borders between them.

A simpler example of a structure is the contour of an image segment or a
blob: its shape. The concept of shape leads to a structure, but shapes are also
characterized by features, e.g. the number of extremes or a set of moments. A
structural representation of a shape is a string. This is a sequence of symbols
representing small shape elements, such as straight lines (in some direction) or
curves with predefined curvatures. Shapes are also found in spectra, histograms
and time signals. The movement of an object or a human body may be described
as a set of coordinates in a high-dimensional space as a function of time. This
multi-dimensional trajectory has a shape and may be considered as a structure.

The above examples indicate that structures also have some (local) properties
that are needed for their characterization. Examples of pure structures without
attributes can hardly be found. Certainly, if we want to represent them in a way
that facilitates comparisons, we will use attributes and relations (connections).
The structural representations used here will be restricted to attributed graphs
and sequences.

3.2 The Dissimilarity Representation

Dissimilarities themselves have been discussed in Sec. 2. Three sets of objects
may be distinguished for constructing a representation:

– A representation set R = {r1, . . . , rk}. These are the objects we refer to.
The dissimilarities to the representation set have to be computed for training
objects as well as for test objects used for evaluation, or any objects to be
classified later. Sometimes the objects in the set R are called prototypes.
This word may suggest that these objects are in some way typical examples
of the classes. That can be the case but it is not necessary. So prototypes
may be used for representation, but the representation set may also consist
of other objects.

– A training set T = {o1, . . . , on}. These are the objects that are used to
train classifiers. In many applications we use T := R, but R may also be just
a (small) subset of T , or be entirely different from T .

– A test set S. These are the objects that are used to evaluate classification
procedure. They should be representative for the target objects for which
the classification procedure is built.

After determining these three sets of objects the dissimilarity matrices D(T,R)
and D(S,R) have to be computed. Sometimes also D(T, T ) is needed, e.g. when
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the representation set R ⊂ T has to be determined by a specific algorithm. The
next problem is how to use these two or three matrices for training and testing.
Three procedures are usually considered:

– The k-nearest neighbor classifier. This is the traditional way to classify
new objects in the field of structural pattern recognition: assign new objects
to the (majority) class of its (k) nearest neighbor(s). This procedure can
directly by applied to D(S, T ). The dissimilarities inside the training set,
D(T, T ) or D(T,R) are not used.

– Embedded space. Here a vector space and a metric (usually Euclidean) are
determined from D(T, T ) containing n = |T | vectors, such that the distances
between these vectors are equal to the given dissimilarities. See Sec. 3.3 for
more details.

– The dissimilarity space. This space is postulated as a Euclidean vector
space defined by the dissimilarity vectors d(·, R) = [d(·, r1), . . . , d(·, rk)]T

computed to the representation set R as dimensions. Effectively, the dissim-
ilarity vectors are used as numerical features. See Sec. 3.4.

3.3 Embedding of Dissimilarities

The topic of embedding dissimilarity matrices has been studied for a long time.
As mentioned in the introduction (Sec. 1), it was originally used for visualiz-
ing the results of psychonomic experiments and other experiments representing
data in pairwise object comparisons [54,35]. In such visualization tasks, a reli-
able, usually 2D map of the data structure is of primary importance. Various
nonlinear procedures have been developed over the years under the name of
multi-dimensional scaling (MDS) [9].

It is difficult to reliably project new data to an existing embedded space
resulting from a nonlinear embedding. Therefore, such embeddings are unsuitable
for pattern recognition purposes in which a classifier trained in the embedded
space needs to be applied to new objects. A second, more important drawback
of the use of nonlinear MDS for embedding is that the resulting space does not
reflect the original distances anymore. It usually focusses either on local or global
object relations to force a 2D (or other low-dimensional) result.

For the purpose of generalization a restriction to low-dimensional spaces is
not needed. Moreover, for the purpose of the projection of new objects linear
procedures are preferred. Therefore, the linear MDS embedding has been studied,
also known as classical scaling [9]. As the resulting Euclidean space is by its
very nature not able to perfectly represent non-Euclidean dissimilarity data, see
Sec. 2, a compromise has to be made. The linear Euclidean embedding procedure
is based on an eigenvalue decomposition of the Gram matrix derived from the
given n×n dissimilarity matrix D, see [29,49], in which some eigenvalues become
negative for non-Euclidean dissimilarities. This conflicts with the construction of
a Euclidean space as these eigenvalues are related to variances of the extracted
features, which should be positive. This is solved in classical scaling by neglecting
all ’negative’ directions. The distances in this embedded space may thereby be
entirely different from the original dissimilarity matrix D.



The Dissimilarity Representation for Structural Pattern Recognition 9

The approach followed by the pseudo-Euclidean embedding is to construct
a vector space [49] in which the metric is adjusted such that the squared dis-
tance contributions of the ’negative’ eigenvectors are counted as negative. The
resulting pseudo-Euclidean space thereby consists out of two orthogonal Eu-
clidean spaces of which the distances are not added (in the squared sense) but
subtracted. Distances computed in this way are exactly equal to the original dis-
similarities, provided that they are symmetric and self-dissimilarity is zero. Such
an embedding is therefor an isometric mapping of the original D into a suitable
pseudo-Euclidean space, which is an inner product space with an indefinite inner
product.

The perfect representation of D in a pseudo-Euclidean embedded space is an
interesting proposal, but it is not free from some disadvantages:

– Embedding relies on a square dissimilarity matrix, usually D(T, T ). The dis-
similarities between all pairs of training objects should be taken into account.
The computation of this matrix as well as the embedding procedure itself
may thereby be time and memory demanding operations.

– Classifiers that obey the specific metric of the Pseudo-Euclidean space are dif-
ficult to construct or not yet well defined. Some have been studied [32,50,21],
but many problems remain. For instance, it is not clear how to define a normal
distribution in a pseudo-Euclidean space. Also the computation of SVM may
be in trouble as the related kernel is indefinite, in general [31]. Solutions are
available for specific cases. See also Sec. 4.

– There is a difficulty in a meaningful projection of new objects to an existing
pseudo-Euclidean embedded space. The straightforward projection opera-
tions are simple and linear, but they may yield solutions with negative dis-
tances to other objects even though the original distances are non-negative.
This usually happens when a test object is either an outlier or not well rep-
resented in the training set T (which served to define the embedded space).
A possible solution is to include such objects in the embedding procedure
and retrain the classifier for the new objects. For test objects this implies
that they will participate in the representation. Classification may thereby
improve at the cost of the retraining. This approach is also known as trans-
ductive learning [58].

– The fact that embedding strictly obeys the given dissimilarities is not al-
ways an advantage. All types of noise and approximations related to the
computation of dissimilarities are expressed in the result. It may thereby be
questioned whether all non-Euclidean aspects of the data are informative. In
[19] it is shown that there are problems for which this is really the case.

In order to define a proper topology and metric, mathematical texts, ↪e.g. [8],
propose to work with the associated Euclidean space instead of the pseudo-
Euclidean space. In this approach all ’negative’ directions are treated as ’positive’
ones. As a result, one can freely use all traditional classifiers in such a space.
The information extracted from the dissimilarity matrix is used but the original
distance information is not preserved and may even be significantly distorted.
Whether this is beneficial for statistical learning depends on the problem.
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3.4 The Dissimilarity Space

The dissimilarity space [46,49] postulates a Euclidean vector space defined by
the dissimilarity vectors. The elements of these vectors are dissimilarities from
a given object to the objects in the representation set R. The dissimilarity vec-
tors serve as features for the objects in the training set. Consequently, such a
space overcomes all problems that usually arise with the non-Euclidean dissim-
ilarity measures, simply by neglecting the character of the dissimilarity. This
approach is at least locally consistent for metric distance measures: distances
in the dissimilarity space between pairs of objects characterized by small dis-
similarities d(oi, oj) will also have a small distance as their dissimilarity vectors
d(oi, R) = [d(oi, r1), . . . , d(oi, rk)]T and d(oj , R) = [d(oj , r1), . . . , d(oj , rk)]T will
be about equal. This may serve as a proof that the topology of a set of objects
with given dissimilarities {d(oi, oj)}i,j=1:n is identical to the topology of this set
of objects in the dissimilarity space {dE(d(oi, R), d(oj , R))}i,j=1:nprovided that
R is sufficiently large (to avoid that different objects have, by accident, a zero
distance in the dissimilarity space).

If all training objects are used for representation, the dimension of the dis-
similarity space is equal to |T |. Although, in principle, any classifier defined for
a feature space may be applied to the dissimilarity space, some of them will
be ill-defined or overtrained for such a large representation set. Dimension re-
duction, e.g. by prototype selection may thereby be an important issue in this
approach [48,39,13]. Fortunately, these studies show that if the reduction is not
put to the extreme, a randomly selected representation set may do well. Here
the dissimilarity space is essentially different from a traditional feature space:
features may be entirely different in their nature. A random selection of R may
exclude a few significant examples. The objects in a training set, however, will
in expectation include many similar ones. So, a random selection is expected to
sample all possible aspects of the training set, provided that the training set T
as well as the selected R are sufficiently large.

If a representation set R is a subset of T and we use the complete set T in
training, the resulting representation D(T,R) contains some zero dissimilarities
to objects in R. This is not expected to be the case for new test objects. In
that sense the training objects that participate in the representation set are not
representative for test objects. It might be better to exclude them. In all our
experiments however we found just minor differences in the results if we used
D(T \R,R) instead of D(T,R).

Although any feature-based classifier can be used in a dissimilarity space,
some fit more naturally than others. For that reason we report a number of
experiments and their findings in Sec. 4.

4 Classifiers

We will discuss here a few well-known classifiers and their behavior in various
spaces. This is a summary of our experiences in many studies and applications.
See [49] and its references.
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In making a choice between embedding and the dissimilarity space for train-
ing a classifier one should take into account the essential differences between
these spaces. As already stated, embedding strictly obeys the distance charac-
teristics of the given dissimilarities, while the dissimilarity spaces neglects this.
In addition, there is a nonlinear transformation between these spaces: by com-
puting the distances to the representation objects in the embedded space the
dissimilarity space can be defined. As a consequence, a linear classifier in the
embedded space is a nonlinear classifier in the dissimilarity space, and the other
way around. Comparing linear classifiers computed in these spaces is thereby
comparing linear and nonlinear classifiers.

It is outside the scope of this paper, but the following observation might be
helpful for some readers. If the dissimilarities are not constructed by a procedure
on a structural representation of objects, but are derived as Euclidean distances
in a feature space, then the pseudo-Euclidean embedding effectively reconstructs
the original Euclidean feature space (except for orthonormal transformations).
So in that case a linear classifier in the dissimilarity space is a nonlinear classifier
in the embedded space, which is the same nonlinear classifier in the feature space.
Such a classifier, computed in a dissimilarity space, can perform very well [23].

4.1 Nearest Neighbor Classifier

The k-nearest neighbor (k-NN) classifier in an embedded (pseudo-)Euclidean
space is based on the distances computed in this space. By definition these are
the original dissimilarities (provided that the test examples are embedded to-
gether with the training objects). So without the process of embedding this clas-
sifier, can directly be applied to a given dissimilarity matrix. This is the classifier
traditionally used by many researchers in the area of structural pattern recog-
nition. The study of the dissimilarity representation arose because this classifier
does not make use of the given dissimilarities in the training set. Classification is
entirely based on the dissimilarities of a test object to the objects in the training
(or representation) set only.

The k-NN rule computed in the dissimilarity space relies on a Euclidean dis-
tance between the dissimilarity vectors, hence the nearest neighbors are deter-
mined by using all dissimilarities of a given object to the representation objects.
As explained in Sec. 3.4 for the metric case and for large sets it is expected
that the distances between similar objects are small for the two spaces. So, it is
expected that learning curves are asymptotically identical, but for small training
sets the dissimilarity space works better as it uses more information.

4.2 Parzen Density Classifiers

The class densities computed by the Parzen kernel density procedure are based
on pairwise distance computations between objects. The applicability of this
classifier as well as its performance is thereby related to those of the k-NN rule.
Differences are that this classifier is more smooth, depending on the choice of
the smoothing parameter (kernel) and that its optimization involves the entire
training set.



12 R.P.W. Duin and E. P ↪ekalska

4.3 Normal Density Bayes Classifiers

Bayes classifiers assume that classes can be described by probability density
functions. Using class priors and Bayes’ rule the expected classification error is
minimized. In case of normal density function either a linear classifier (Linear
Discriminant Analysis, LDA) arises on the basis of equal class covariances, or
a quadratic classifier is obtained for the general case (Quadratic Discriminant
Analysis, QDA). These two classifiers belong to best possible in case of (close
to) normal class distributions and a sufficiently large training set. As mean vec-
tors and covariance matrices can be computed in a pseudo-Euclidean space, see
[29,49], these classifiers exist there as well if we forget the starting point of nor-
mal distributions. The reason is that normal distributions are not well defined
in pseudo-Euclidean spaces; it is not clear what a normal distribution is unless
we refer to associated Euclidean spaces.

In a dissimilarity space the assumption of normal distributions works often
very well. This is due to the fact that many cases dissimilarity measures are
based on, or related to sums of numerical differences. Under certain conditions
large sums of random variables tend to be normally distributed. It is not per-
fectly true for distances as we often get Weibull [12] or χ2 distributions, but the
approximations are sufficient for a good performance of LDA and QDA. The
effect is emphasized if the classification procedure involves the computation of
linear subspaces, e.g. by PCA. Thanks to projections normality is emphasized
even more.

4.4 Fisher’s Linear Discriminant

In a Euclidean space the Fisher linear discriminant (FLD) is defined as the linear
classifier that maximizes the Fisher criterion, i.e. the ratio of the between-class
variance to the within-class variance. For a two-class problem, the solution is
equivalent to LDA (up to an added constant), even though no assumption is
made about normal distributions. Since variance and covariance matrices are
well defined in pseudo-Euclidean spaces, the Fisher criterion can be used to
derive the FLD classifier there. Interestingly, FLD in a pseudo-Euclidean space
coincides with FLD in the associated Euclidean space. FLD is a linear classifier
in a pseudo-Euclidean space, but can be rewritten to FLD in the associated
space; see also [50,32].

In a dissimilarity space, which is Euclidean by definition, FLD coincides with
LDA for a two-class problem. The performance of these classifiers may differ
for multi-class problems as the implementations of FLD and LDA will usually
vary then. Nevertheless, FLD performs very well. Due to the nonlinearity of the
dissimilarity measure, FLD in a dissimilarity space corresponds to a nonlinear
classifier in the embedded pseudo-Euclidean space.

4.5 Logistic Classifier

The logistic classifier is based on a model of the class posterior probabilities as a
function of the distance to the classifier [1]. The distance between a vector and a
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linear hyperplane in a pseudo-Euclidean space however is an unsuitable concept
for classification as it can have any value (−∞,∞) for vectors on the same side of
this hyperplane. We are not aware of a definition and an implementation of the
logistic classifier for pseudo-Euclidean spaces. Alternatively, the logistic classifier
can be constructed in the associated Euclidean space.

In a dissimilarity space, the logistic classifier performs well, although normal
density based classifiers work often better. It relaxes the demands for normality
as made by LDA. It is also more robust in case of high-dimensional spaces.

4.6 Support Vector Machine (SVM)

The linear kernel in a pseudo-Euclidean space is indefinite (non-Mercer). The
quadratic optimization procedure used to optimize a linear SVM may thereby
fail [30]. SVM can however be constructed if the contribution of the positive
subspace of the Euclidean space is much stronger than that of the negative
subspace. Mathematically, it means that the measure is slightly deviating from
the Euclidean behavior and the solution of SVM optimization is found in the
positive definite neighborhood. Various researchers have reported good results in
applying this classifier, e.g. see [11]. Although the solution is not guaranteed and
the algorithm (in this case LIBSVM, [14]) does not stop in a global optimum, a
good classifier can be obtained.

In case of a dissimilarity space the (linear) SVM is particularly useful for com-
puting classifiers in the complete space for which R := T . The given training set
defines therefore a separable problem. The SVM does not or just hardly over-
train in this case. The advantage of this procedure is that it does not demand a
reduction of the representation set. A linear SVM is well defined. By normaliz-
ing the dissimilarity matrix (such that the average dissimilarity is one) we found
stable and good results in many applications by setting the trade-off parameter
C in the SVM procedure [15] to C = 100. Hereby, additional cross-validation
loops are avoided to optimize this parameter. As a result, in an application one
can focus on optimizing the dissimilarity measure.

4.7 Combining Classifiers

In the area of dissimilarity representations many approaches can be considered.
Various strategies can be applied for the choice of the representation set, either
embedded or dissimilarity spaces can be used, and various modifications can be
considered, e.g. refinements or correction procedures for these spaces; see [24,21].
Instead of selecting one of the approaches, classifier combining may provide an
additional value. However, as all these classifiers are based on the same dissimi-
larities they do not provide any additional or valuable information. Effectively,
just additional procedures are considered that encode different nonlinearities. As
the given square dissimilarity matrix D describes an already linearly separable
set of objects (under the assumption of the positive definite dissimilarity) we
do not expect that in general much can be gained by combining, although an
occasional success is possible in particular problems.
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5 Multiple Dissimilarities

Instead of generating sets of classifiers defined on the same dissimilarity rep-
resentation also modifications of the dissimilarity measure may be considered.
Another measure can emphasize other aspects of the objects. The resulting dis-
similarity matrices cannot be derived from each other, in general. Consequently,
they are chosen to encode different information. Combining various dissimilarity
representations or classifiers derived from them is now much more of interest.
These types of studies are closely related to the studies on kernel metric learning
[61,68,66]. An important difference is that the study of kernels is often focussed
on the use of SVM for classification, and consequently positive definite kernels
obeying the Mercer conditions are the key. As the dissimilarity representation
permits many classifiers this point is not relevant for dissimilarity measures.
On the contrary, the unrestricted use of dissimilarity definitions is of particular
significance for structural pattern recognition as there non-Euclidean measures
naturally arise. See also [22].

There are a number of reasons why a set of different dissimilarities between
objects arises. A few examples are:

– The same set of objects is observed multiple times under different conditions.
– The dissimilarities are computed on different samplings from the original

signals (multi-scale approach).
– Different dissimilarity measures are used on the same signals.

A very interesting observation that can be made from various studies such as
[33,57] is that a simple element-wise averaging of dissimilarity matrices defined
by different measures often leads to a significant improvement of the classification
error over the best individual measure. Attempts to improve this further by a
weighted averaging is sometimes successful but often appears not to be useful.
The precise value of the weights does not seem to be very significant, either.

6 Application Examples

In this section we will discuss a few examples that are typical for the possibilities
of the use of dissimilarities in structural pattern recognition problems. Some have
been published by us before [22] for another readership. They are repeated here
as they may serve well as an illustration in this paper.

6.1 Shapes

A simple and clear example of a structural pattern recognition problem is the
recognition of blobs: 2D binary structures. An example is given in Fig. 1. It is
an object out of the five-class chickenpieces dataset consisting of 445 images [2].
One of the best structural recognition procedure uses a string representation
of the contour described by a set of segments of the same length [10]. The
string elements are the consecutive angles of these segments. The weighted edit
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Fig. 1. Left: some examples of the chickenpieces dataset. Right: the error curves as a
function of the segment length L.

distances between all pairs of contours are used to compute dissimilarities. This
measure is non-Euclidean. A (γ, �L) family of problems is considered depending
on the specific choice for the cost of one editing operation γ as well as for the
segment’s length L used in the contour description. As a result, the classification
performance depends on the parameters used, as shown in Fig 1, right. 10-fold
cross-validation errors are shown there for the 1-NN rule directly applied on the
dissimilarities as well as the results for the linear SVM computed by LIBSVM,
[14], in the dissimilarity space. In addition the results are shown for the average
of the 11 dissimilarity matrices. It is clearly observed that the linear classifier in
the dissimilarity space (SVM-1) improves the traditional 1-NN results and that
combining the dissimilarities improves the results further on.

6.2 Histograms and Spectra

Histograms and spectra offer very simple examples of data representations that
are judged by human experts on their shape. In addition, also the sampling of the
bins or wavelengths may serve as a useful vector representation for an automatic
analysis. This is thanks to the fact that the domain is bounded and that spectra
are often aligned. Below we give an example in which the dissimilarity represen-
tation outperforms the straightforward vector representation based on sampling
because the first can correct for a wrong calibration (resulting in an imperfect
alignment) in a pairwise fashion. Another reason to prefer dissimilarities for his-
tograms and spectra over sampled vectorial data is that a dissimilarity measure
encodes shape information. For examples see the papers by Porro [52,51].

We will consider now a dataset of 612 FL3-A DNA flow cytometer histograms
from breast cancer tissues in a resolution of 256 bins. The initial data were
acquired by M. Nap and N. van Rodijnen of the Atrium Medical Center in
Heerlen, The Netherlands, during 2000-2004, using the four tubes 3-6 of a DACO
Galaxy flow cytometer. Histograms are labeled into three classes: aneuploid (335
patients), diploid (131) and tetraploid (146). We averaged the histograms of the
four tubes thereby covering the DNA contents of about 80000 cells per patient.
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Fig. 2. Examples of some flow cytometer histograms: aneuploid, diploid and tetraploid.
Bottom right shows the learning curves.

We removed the first and the last bin of every histogram as here outliers are
collected, thereby obtaining 254 bins per histogram. Examples of histograms are
shown in Fig. 2. The following representations are used:

Histograms. Objects (patients) are represented by the normalized values of
the histograms (summed to one) described by a 254-dimensional vector. This
representation is similar to the pixel representation used for images as it is
based on just a sampling of the measurements.

Euclidean distances. These dissimilarities are computed as the Euclidean
distances in the vector space mentioned above. Every object is represented
by by a vector of distances to the objects in the training set.

Calibrated distances. As the histograms may suffer from an incorrect cali-
bration in the horizontal direction (DNA content) for every pairwise dissim-
ilarity we compute the multiplicative correction factor for the bin positions
that minimizes their dissimilarity. Here we used the �1 distance. This repre-
sentation makes use of the shape structure of the histograms and removes
an invariant (the wrong original calibration).

A linear SVM with a fixed trade-off parameter C is used in learning. The learning
curves for the three representations are shown in the bottom right of Fig. 2. They
clearly illustrate how for this classifier the dissimilarity representation leads to
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Fig. 3. Left: examples of the images used for the digit recognition experiment. Right:
the learning curves.

better results than the vector representation based on the histogram sampling.
The use of the background knowledge in the definition of the dissimilarity mea-
sure improves the results further.

6.3 Images

The recognition of objects on the basis of the entire image can only be done
if these images are aligned. Otherwise, earlier pre-procession or segmentation is
necessary. This problem is thereby a 2-dimensional extension of the histogram
and spectra recognition task. We will show an example of digit recognition by
using a part of the classic NIST database of handwritten numbers [62] on the
basis of random subsets of 500 digits for the ten classes 0-9. The images were
resampled to 32 × 32 pixels in such a way that the digits fit either horizontally
or vertically. Fig. 3 shows a few examples: black is ’1’ and white is ’0’. The
dataset is repeatedly split into training and test sets and hold-out classification
is applied. In every split the ten classes are evenly represented.
The following representations are used:

Features. We used 10 moments: the seven rotations invariant moments and
the moments [00], [01], [10], measuring the total number of black pixels and
the centers of gravity in the horizontal and vertical directions.

Pixels. Every digit is represented by a vector of the intensity values in 32∗32 =
1024 dimensional vector space.

Dissimilarities to the training object. Every object is represented by the
Euclidean distances to all objects in the training set.

Dissimilarities to blurred digits in the training set. As the pixels in the
digit images are spatially connected blurring may emphasize this. In this
way the distances between slightly rotated, shifted or locally transformed
but otherwise identical digits becomes small.

The results are shown in Fig. 3 on the right. They show that the pixel rep-
resentation is superior for large training sets. This is to be expected as this
representation stores asymptotically the universe of possible digits. For small
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training sets a suitable set of features may perform better. The moments we use
here are very general features. Better ones can be found for digit description.
As explained before a feature-based description reduces the (information on the)
object: it may be insensitive for some object modifications. For sufficiently large
representation sets the dissimilarity representation may see all object differences
and may thereby perform better.

6.4 Sequences

The recognition of sequences of observations is in particular difficult if the se-
quences of a given class vary in length, but capture the same ’story’ (information)
from the beginning to the end. Some may run faster, or even run faster over just
a part of the story and slow down elsewhere. A possible solution is to rely on
Dynamic Time Warping (DTW) that relates the sequences in a nonlinear way,
yet obeys the order of the events. Once two sequences are optimally aligned, the
distance between them may be computed.

An example in which the above has been applied successfully is the recognition
of 3-dimensional gestures from the sign language [38] based on an statistically
optimized DTW procedure [4]. We took a part of a dataset of this study: the 20
classes (signs) that were most frequently available. Each of these classes has 75
examples. The entire dataset thereby consists of a 1500× 1500 matrix of DTW-
based dissimilarities. The leave-one-out 1-NN error for this dataset is 0.041,
which is based on the computation of 1499 DTW dissimilarities per test object.
In Fig. 4, left, a scatterplot is shown of the first two PCA components showing
that some classes can already be distinguished with these two features (linear
combinations of dissimilarities).

We studied dissimilarity representations consisting of just one randomly drawn
example per class. The resulting dissimilarity spacehas thereby20dimensions. New
objects have to be compared with just these 20 objects. This space is now filled
with randomly selected training sets of containing between 2 and 50 objects per
class. Remaining objects are used for testing. Two classifiers are studied, the linear
SVM (using the LIBSVM package [14]) with a fixed trade-off parameter C = 100
(we used normalized dissimilarity matrices with average dissimilarities of 100) and
LDA. The experiment was repeated 25 times and the results averaged out. The
learning curves in Fig. 4, right, show the constant value of the 1-NN classifier per-
formance using the dissimilarities to the single training examples per class only, and
the increasing performances of the two classifiers for a growing number of training
objects. Their average errors for 50 training objects per class is 0.07. Recall that
this is still based on the computation of just 20 DTW dissimilarities per object as
we work in the related 20-dimensional dissimilarity space. Our experiments show
that LDA reaches an error of 0.035 for a representation set of three objects per class,
i.e. 60 objects in total. Again, the training set size is 50 examples per class, i.e. 1000
examples in total. For testing new objects one needs to compute a weighted sum
(linear combination) of 60 dissimilarity values giving the error of 0.035 instead of
computing and ordering 1500 dissimilarities to all training objects for the 1-NN
classifier leading to an error of 0.041.
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Fig. 4. PCA and learning curves for the 20-class Delft Gesture Dataset

6.5 Graphs

Graphs2 are the main representation for describing structure in observed objects.
In order to classify new objects, the pairwise differences between graphs have to
be computed by using a graph matching technique. The resulting dissimilarities
are usually related to the cost of matching and may be used to define a dis-
similarity representation. We present here classification results obtained with a
simple set of graphs describing four objects in the Coil database [43] described by
72 images for every object. The graphs are the Delaunay triangulations derived
from corner points found in these images; see [67]. They are unattributed. Hence,
the graphs describe the structure only. We used three dissimilarity measures:

CoilDelftSame. Dissimilarities are found in a 5D space of eigenvectors derived
from the two graphs by the JoEig approach; see [37]

CoilDelftDiff. Graphs are compared in the eigenspace with a dimensionality
determined by the smallest graph in every pairwise comparison by the JoEig
approach; see [37]

CoilYork. Dissimilarities are found by graph matching, using the algorithm of
Gold and Ranguranjan; [28]

All dissimilarity matrices are normalized such that the average dissimilarity is
1. In addition to the three dissimilarity datasets we used also their averaged
dissimilarity matrix.

In a 10-fold cross-validation experiment, with R := T , we use four classifiers:
the 1-NN rule on the given dissimilarities and the 1-NN rule in the dissimilarity
space (listed as 1-NND in Table 6.5), LDA on a PCA-derived subspace covering
99% of the variance and the linear SVM with a fixed trade-off parameter C = 1.
All experiments are repeated 25 times. Table 6.5 reports the mean classification
errors and the standard deviations of these means in between brackets. Some
interesting observations are:
2 Results presented in this section are based on joint research with Prof. Richard

Wilson, University of York, UK, and Dr. Wan-Jui Lee, Delft University of Technol-
ogy, The Netherlands.
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Table 1. 10-fold cross-validation errors averaged over 25 repetitions

dataset 1-NN 1-NND PCA-LDA SVM-1

CoilDelftDiff 0.477 (0.002) 0.441 (0.003) 0.403 (0.003) 0.395 (0.003)
CoilDelftSame 0.646 (0.002) 0.406 (0.003) 0.423 (0.003) 0.387 (0.003)
CoilYork 0.252 (0.003) 0.368 (0.004) 0.310 (0.004) 0.326 (0.003)
Averaged 0.373 (0.002) 0.217 (0.003) 0.264 (0.003) 0.238 (0.002)

– The CoilYork dissimilarity measure is apparently much better than the two
CoilDelft measures.

– The classifiers in the dissimilarity space however are not useful for the
CoilYork measure, but they are for the CoilDelft measures. Apparently these
two ways of computing dissimilarities are essentially different.

– Averaging all three measures significantly improves the classifier performance
in the resulting dissimilarity space, even outperforming the original best
CoilYork result. It is striking that this does not hold for the 1-NN rule
applied to the original dissimilarities.

7 Discussion

In this paper we have given a review of the arguments why the dissimilarity
representation is useful for applications in structural pattern recognition. This
has been illustrated by a set of examples on real world data. This all shows that
using the collective information from all other objects and relating them to each
other on the top of the given pairwise dissimilarities (either in the dissimilarity
or embedded space), reveals an additional source of information that is otherwise
unexplored.

The dissimilarity representation makes the statistical pattern recognition tools
available for structural data. In addition, features are given the use of combiners
may be considered or the features may be included in the dissimilarity measure.
If either the chosen or optimized dissimilarity measure covers all relevant aspects
of the data, then a zero dissimilarity arises if and only if the objects are identical.
In that case the classes are separable in a sufficiently large dissimilarity space.
Traditional statistical classification tools are designed for overlapping classes.
They may still be applied, but the topic of designing proper generalization tools
may be reconsidered for the case of high-dimensional separable classes. For in-
stance, the demand that a training set should be representative for the future
data to be classified in the statistical sense (i.e. they are generated from the same
distributions) is not necessary anymore. These sets should just cover the same
domain.

A result, not emphasized in this paper, is that for positive definite dissim-
ilarity measures, see Sec. 2, and sufficiently complex classifiers, any measure
asymptotically (for increasing training and representation sets) reaches a zero-
error classifier. So, a poorly discriminative dissimilarity measure can be com-
pensated by a large training set as long as the measure is positive definite.
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An interesting experimental observation is that if several of these measures are
given the average of the dissimilarity matrix offers a better representation than
any of them separable. Apparently, the asymptotic convergence speeds (almost)
always contribute in combinations and do not disturb each other.

One may wonder whether the dissimilarity measures used in Sec. 6 are all
have the positive definite property. However, entirely different objects may be
described by identical histograms or graphs. So, the users should analyze, if they
need this property and whether an expert is able to label the objects unambigu-
ously on the basis of histograms or graphs only. If not, as a way to attain a better
generalization, he may try to extend the distance measure with some features,
or simply add another, possibly bad measure, which is positive definite.

They area of dissimilarity representations is conceptually closely related to
kernel design and kernel classifiers. It is, however, more general as it allows
for indefinite measures and makes no restrictions w.r.t. the classifier [47,50]. The
dissimilarity representation is essentially different from kernel design in the sense
that the dissimilarity matrix is not necessarily square. This has not only strong
computational advantages, but also paves the way to the use of various classifiers.
As pointed out in Sec. 3.4, systematic prototype selection is mainly relevant to
obtain low-dimensional dissimilarity spaces defined by a small set of prototypes.
Another way to reach this goal, not discussed here due to space limit, is the use
of out-of-the training set prototypes or the so-called generalized dissimilarity
representation. Here prototypes are replaced by sets of prototypes, by models
based on such sets, or by artificially constructed prototypes; see [5,6,45,34].

For future research in this field we recommend the study of dissimilarity mea-
sures for sets of applications such as spectra, images, etcetera. In every individual
application measures may be optimized for the specific usage, but the availability
of sets of measures for a broader field of structural applications may, according
to our intuition, be most profitable for the field of structural pattern recognition.
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space classification. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) ICPR 2010. LNCS,
vol. 6388, pp. 46–55. Springer, Heidelberg (2010)

24. Duin, R., P ↪ekalska, E.: On refining dissimilarity matrices for an improved nn learn-
ing. In: ICPR, pp. 1–4 (2008)

25. Edelman, S.: Representation and Recognition in Vision. MIT Press, Cambridge
(1999)

26. Fu, K.: Syntactic Pattern Recognition and Applications. Prentice-Hall (1982)

http://www.csie.ntu.edu.tw/~cjlin/libsvm


The Dissimilarity Representation for Structural Pattern Recognition 23

27. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic
Press (1990)

28. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching.
IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

29. Goldfarb, L.: A new approach to pattern recognition. In: Kanal, L., Rosenfeld, A.
(eds.) Progress in Pattern Recognition, vol. 2, pp. 241–402. Elsevier (1985)

30. Haasdonk, B.: Feature space interpretation of SVMs with indefinite kernels. IEEE
TPAMI 25(5), 482–492 (2005)

31. Haasdonk, B., Burkhardt, H.: Invariant kernel functions for pattern analysis and
machine learning. Machine Learning 68(1), 35–61 (2007)

32. Haasdonk, B., P ↪ekalska, E.: Indefinite kernel fisher discriminant. In: ICPR, pp. 1–4
(2008)

33. Ibba, A., Duin, R.P.W., Lee, W.J.: A study on combining sets of differently mea-
sured dissimilarities. In: ICPR, pp. 3360–3363. IEEE (2010)

34. Kim, S.W., Duin, R.P.W.: On improving dissimilarity-based classifications using
a statistical similarity measure. In: Bloch, I., Cesar Jr., R.M. (eds.) CIARP 2010.
LNCS, vol. 6419, pp. 418–425. Springer, Heidelberg (2010)

35. Kruskal, J.: Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika 29, 1–27 (1964)

36. Laub, J., Roth, V., Buhmann, J.M., Müller, K.R.: On the information and repre-
sentation of non-euclidean pairwise data. Pattern Recognition 39(10), 1815–1826
(2006)

37. Lee, W.J., Duin, R.P.W.: An inexact graph comparison approach in joint
eigenspace. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopou-
los, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342,
pp. 35–44. Springer, Heidelberg (2008)

38. Lichtenauer, J.F., Hendriks, E.A., Reinders, M.J.T.: Sign language recognition by
combining statistical DTW and independent classification. IEEE Trans. Pattern
Analysis and Machine Intelligence 30(11), 2040–2046 (2008)

39. Lozano, M., Sotoca, J.M., Sánchez, J.S., Pla, F., P ↪ekalska, E., Duin, R.P.W.: Ex-
perimental study on prototype optimisation algorithms for prototype-based classi-
fication in vector spaces. Pattern Recognition 39(10), 1827–1838 (2006)

40. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern
Recognition 36(10), 2213–2230 (2003)

41. Mottl, V., Seredin, O., Dvoenko, S., Kulikowski, C.A., Muchnik, I.B.: Featureless
pattern recognition in an imaginary hilbert space. In: ICPR, vol. 2, pp. 88–91
(2002)

42. Mottl, V., Dvoenko, S., Seredin, O., Kulikowski, C., Muchnik, I.: Featureless pat-
tern recognition in an imaginary Hilbert space and its application to protein fold
classification. In: Perner, P. (ed.) MLDM 2001. LNCS (LNAI), vol. 2123, pp. 322–
336. Springer, Heidelberg (2001)

43. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (COIL-100),
Columbia University (1996)

44. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and
Kernel Machines. World Scientific (2007)

45. Orozco-Alzate, M., Duin, R.P.W., Castellanos-Domı́nguez, G.: A generalization of
dissimilarity representations using feature lines and feature planes. Pattern Recog-
nition Letters 30(3), 242–254 (2009)

46. P ↪ekalska, E., Duin, R.P.W.: Dissimilarity representations allow for building good
classifiers. Pattern Recognition Letters 23(8), 943–956 (2002)



24 R.P.W. Duin and E. P ↪ekalska

47. P ↪ekalska, E., Duin, R.P.W.: Beyond traditional kernels: Classification in two
dissimilarity-based representation spaces. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews 38(6), 729–744 (2008)
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Abstract. Different from the what and where pathways in the orga-
nization of the visual system, we address representations that describe
dynamic visual events in a unified way.

Representations are an essential tool for any kind of process that op-
erates on data, as they provide a language to describe, store and re-
trieve that data. They define the possible properties and aspects that
are stored, and govern the levels of abstraction at which the respective
properties are described. In the case of visual computing (computer vi-
sion, image processing), a representation is used to describe information
obtained from visual input (e.g. an image or image sequence and the
objects it may contain) as well as related prior knowledge (experience).

The ultimate goal, to make applications of visual computing be part
of our daily life, requires that vision systems operate reliably, nearly
anytime and anywhere. Therefore, the research community aims to solve
increasingly more complex scenarios. Vision both in humans and com-
puters is a dynamic process, thus variations (change) always appear in
the spatial and the temporal dimensions. Nowadays significant research
efforts are undertaken to represent variable shape and appearance, how-
ever, joint representation and processing of spatial and temporal do-
mains is not a well-investigated topic yet. Visual computing tasks are
mostly solved by a two-stage approach of frame-based processing and
subsequent temporal processing. Unfortunately, this approach reaches
its limits in scenes with high complexity or difficult tasks e.g. action
recognition. Therefore, we focus our research on representations which
jointly describe information in space and time and allow to process data
of space-time volumes (several consecutive frames).

In this keynote we relate our own experience and motivations, to the
current state of the art of representations of shape, of appearance, of
structure, and of motion. Challenges for such representations are in ap-
plications like multiple object tracking, tracking non-rigid objects and
human action recognition.
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Abstract. Microarrays are one of the methods for analyzing the expression lev-
els of genes in a massive and parallel way. Since any errors in early stages of
the analysis affect subsequent stages, leading to possibly erroneous biological
conclusions, finding the correct location of the spots in the images is extremely
important for subsequent steps that include segmentation, quantification, normal-
ization and clustering. On the other hand, genome-wide profiling of DNA-binding
proteins using ChIP-seq and RNA-seq has emerged as an alternative to ChIP-chip
methods. Due to the large amounts of data produced by next generation sequenc-
ing technology, ChIPseq and RNA-seq offer much higher resolution, less noise
and greater coverage than its predecessor, the ChIPchip array.

Multilevel thresholding algorithms have been applied to many problems in
image and signal processing. We show that these algorithms can be used for tran-
scriptomics and genomics data analysis such as sub-grid and spot detection in
DNA microarrays, and also for detecting significant regions based on next gen-
eration sequencing data. We show the advantages and disadvantages of using
multilevel thresholding and other algorithms in these two applications, as well
as an overview of numerical and visual results used to validate the power of the
thresholding methods based on previously published data.

Keywords: microarray image gridding, image analysis, multi level thresholding,
transcriptomics.

1 Introduction

Among other components, the genome contains a set of genes required for an organism
to function and evolve. However, the genome is only a source of information and in
order to function, the genes express themselves into proteins. The transcription of genes
to produce RNA is the first stage of gene expression. The transcriptome can be seen as
the complete set of RNA transcripts produced by the genome. Unlike the genome, the
transcriptome is very dynamic. Despite having the same genome regardless of the type
of cell or environmental conditions, the transcriptome varies considerably in differing
circumstances because of the different ways the genes may express.

Transcriptomics, the field that studies the role of the transcriptome, provides a rich
source of data suitable for pattern discovery and analysis. The quantity and size of these
data may vary based on the model and underlying methods used for analysis. In gene
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expression microarrays, the raw data are represented in terms of images, typically in
TIFF format which are approximately 20-30MB per array. These TIFF files are pro-
cessed and transformed into quantified data used for posterior analysis. In contrast,
high throughput sequencing methods (e.g. ChIP-seq and RNA-seq) generate more than
1TB of data, while the sequence files (approximately 20-30GB) are typically used as a
starting point for analysis [16]. Clearly, these sequence files are an order of magnitude
larger than those from arrays.

1.1 DNA Microarray Image Gridding

Various technologies have been developed to measure the transcriptome, including hy-
bridization or sequence-based approaches. Hybridization-based approaches typically
involve processing fluorescently labeled DNA microarrays. Microarrays are one of the
most important technologies used in molecular biology to massively explore the abil-
ities of the genes to express themselves into proteins and other molecular machines
responsible for different functions in an organism. These expressions are monitored
in cells and organisms under specific conditions, and are present in many applications
in medical diagnosis, pharmacology, disease treatment, among others. If we consider
DNA microarrays, scanning the slides at a very high resolution produces images com-
posed of sub-grids of spots. Image processing and analysis are two important aspects of
microarrays, and involve various steps. The first task is gridding, which is quite impor-
tant as errors are propagated to subsequent steps. Roughly speaking, gridding consists
of determining the spot locations in a microarray image (typically, in a sub-grid). The
gridding process requires the knowledge of the sub-girds in advance in order to proceed,
which is not necessarily available in advance.

Many approaches have been proposed for microarray image gridding and spot de-
tection, being the most widely known the following. The Markov random field (MRF)
is one of them, which applies specific constraints and heuristic criteria [15]. Other
gridding methods used for gridding include mathematical morphology [8], Bayesian
model-based algorithms [1,6], the hill-climbing approach [13], a Gaussian mixture
model approach [18], Radon-transform-based method [11], a genetic algorithm for sep-
arating sub-grids and spots [5], and the recently introduced maximum margin method
[4]. A method that we have proposed and has been successfully used in microarray
gridding is the multilevel thresholding algorithm [21], which is discussed in more de-
tail later in the paper.

1.2 ChIP-Seq and RNA-Seq Peak Finding

Hybridization-based approaches are high throughput and relatively inexpensive, except
for high-resolution tiling arrays that interrogate large genomes. However, these meth-
ods have several limitations, which include reliance upon existing knowledge about the
genome, high background levels owing to cross-hybridization, and a limited dynamic
range of detection owing to both background and saturation of signals [16,26]. More-
over, comparing expression levels across different experiments is often difficult and can
require complicated normalization methods.
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Recently, the development of novel high-throughput DNA sequencing methods has
provided a new method for both mapping and quantifying transcriptomes. These meth-
ods, termed ChIP-seq (ChIP sequencing) and RNA-seq (RNA sequencing), have clear
advantages over existing approaches and are emerging in such a way that eukaryotic
transcriptomes are to be analyzed in a high-throughput and more efficient manner [26].

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)
is a technique that provides quantitative, genome-wide mapping of target protein bind-
ing events [2,17]. In ChIP-seq, a protein is first cross-linked to DNA and the fragments
subsequently sheared. Following a size selection step that enriches for fragments of
specified lengths, the fragments ends are sequenced, and the resulting reads are aligned
to the genome. Detecting protein binding sites from massive sequence-based datasets
with millions of short reads represents a truly bioinformatics challenge that has required
considerable computational innovation in spite of the availability of programs for ChIP-
chip analysis [3,9,18,19].

With the increasing popularity of ChIP-seq technology, a demand for peak finding
methods has emerged and it causes developing new algorithms. Although due to map-
ping challenges and biases in various aspects of existing protocols, identifying peaks is
not a straightforward task.

Different approaches have been proposed for detecting peaks based ChIP-seq/RNA-
seq mapped reads so far. Zhang et al. presents a Model-based Analysis of ChIP-seq
data (MACS), which analyzes data generated by short read sequencers [28]. It models
the shift size of ChIP-seq tags, and uses it to improve the spatial resolution of predicted
binding sites. A two-pass strategy called PeakSeq has been presented in [20]. This strat-
egy compensates for signal caused by open chromatin, as revealed by the inclusion of
the controls. The first pass identifies putative binding sites and compensates for genomic
variation in mapping the sequences. The second pass filters out sites not significantly
enriched compared to the normalized control, computing precise enrichments and sig-
nificance. A statistical approach for calling peaks has been recently proposed in [7],
which is based on evaluating the significance of a robust statistical test that measures
the extent of pile-up reads. Specifically, the shapes of putative peaks are defined and
evaluated to differentiate between random and non-random fragment placements on the
genome. Another algorithm for identification of binding sites is site identification from
paired-end sequencing (SIPeS) [25], which can be used for identification of binding
sites from short reads generated from paired-end solexa ChIP-seq technology.

In this paper, we review the application of optimal multilevel thresholding (OMT) to
gridding and peak finding problems in transcriptomics. Moreover, a conceptual and prac-
tical comparison between OMT and other state-of-the-art approaches is also presented.

2 Optimal Multilevel Thresholding

Multilevel thresholding is one of the most widely-used techniques in different aspects of
signal and image processing, including segmentation, classification and object discrimi-
nation. Given a histogram with frequencies or probabilities for each bin, the
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aim of multilevel thresholding is to divide the histogram into a number of groups (or
classes) of contiguous bins in such a way that a criterion is optimized. In microarray
image gridding, we compute vertical (or horizontal) running sums of pixel intensities,
obtaining histograms in which each bin represents one column (or row respectively),
and the running sum of intensities corresponds to the frequency of that bin. The fre-
quencies are then normalized in order to be considered as probabilities. Each histogram
is then processed (see below) to obtain the optimal thresholding that will determine the
locations of the separating lines.

Consider a histogram H , an ordered set {1, 2, . . . , n − 1, n}, where the ith value
corresponds to the ith bin and has a probability, pi. Given an image, A = {aij} , H
can be obtained by means of the horizontal (vertical) running sum as follows: pi =∑m

j=1 aij (pj =
∑n

i=1 aij). We also consider a threshold set T , defined as an ordered
set T = {t0, t1, . . . , tk, tk+1}, where 0 = t0 < t1 < . . . < tk < tk+1 = n and
ti ∈ {0} ∪ H . The problem of multilevel thresholding consists of finding a threshold
set, T ∗, in such a way that a function f : Hk× [0, 1]n → �

+ is maximized/minimized.
Using this threshold set,H is divided into k+1 classes: ζ1 = {1, 2, . . . , t1}, ζ2 = {t1+
1, t1+2, . . . , t2}, . . ., ζk = {tk−1+1, tk−1+2, . . . , tk}, ζk+1 = {tk+1, tk+2, . . . , n}.
The most important criteria for multilevel thresholding are the following [12]:

Between class variance:

ΨBC(T ) =
k+1∑
j=1

ωjμ
2
j (1)

where ωj =
∑tj

i=tj−1+1 pi , μj = 1
ωj

∑tj

i=tj−1+1 ipi;
Entropy-based:

ΨH(T ) =
k+1∑
j=1

Hj (2)

where Hj = −
∑tj

i=tj−1+1
pi

ωj
log pi

ωj
;

Minimum error:

ΨME(T ) = 1 + 2
k+1∑
j=1

ωj(log σj − logωj) (3)

where σ2
j =

∑tj

i=tj−1+1
pi(i−μj)

2

ωj
.

A dynamic programming algorithm for optimal multilevel thresholding was pro-
posed in our previous work [12], which is an extension for irregularly sampled his-
tograms. For this, the criterion has to be decomposed as a sum of terms as follows:

Ψ(T0,m) = Ψ({t0, t1, . . . , tm}) �
m∑

j=1

ψtj−1+1,tj , (4)

where 1 ≤ m ≤ k + 1 and the function ψl,r , where l ≤ r, is a real, positive func-
tion of pl, pl+1, . . . , pr, ψl,r : H2 × [0, 1]l−r+1 → �

+ ∪ {0}. If m = 0, then
Ψ ({t0}) = ψt0,t0 = ψ0,0 = 0. The thresholding algorithm can be found in [12]. In
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the algorithm, a table C is filled in, where C(tj , j) contains the optimal solution for
T0,j = t0, t1, . . . , tj , Ψ∗(T0,j), which is found from min{tj} ≤ tj ≤ max{tj}. An-
other table, D(tj , j), contains the value of tj−1 for which Ψ∗(T0,j) is optimal. The
algorithm runs in O(kn2), and has been further improved to achieve linear complexity,
i.e. O(kn), by following the approach of [14].

2.1 Using Multi-level Thresholding for Gridding DNA Microarray Images

A DNA microarray image contains spots arranged into sub-grids. The image contains
various sub-grids as well, which are found in the first stage. Once the sub-grids are
found, the spots centers are to be identified. A microarray image can be considered
as a matrix A = {ai,j}, i = 1, ...., n and j = 1, ....,m, where aij ∈ Z+, and A is
a sub-grid of a DNA microarray image. The aim of sub-gridding is to obtain vectors,
namely h = [h1, ...hp−1]t and v = [v1, ...vq−1]t, that separate the sub-grids. Finding
the spot locations is done analogously – more details of this, as well as those of the
whole process can be found in [21]. The aim of gridding is to find the corresponding
spot locations given by the horizontal and vertical adjacent vectors. Post-processing or
refinement allows us to find a spot region for each spot, which is enclosed by four lines.

When producing the microarrays, based on the layout of the printer pins, the number
of sub-grids or spots is known. But due to misalignments, deformations, artifacts or
noise during producing the microarray images, these numbers may not be available.
Thus, it is important that the gridding algorithm allows some flexibility in finding these
parameters, as well as avoiding the use of other user-defined parameters. This is what
the thresholding methods endeavor to do, by automatically finding the best number of
thresholds (sub-grids or spots) – more details in the next section.

2.2 Using Multi-level Thresholding for Analyzing ChIP-Seq/RNA-Seq Data

In ChIP-seq and RNA-seq analysis, a protein is first cross-linked to DNA and the frag-
ments subsequently pruned. Then, the fragments ends are sequenced, and the resulting
reads are aligned to the genome. The result of read alignments produces a histogram in
such a way that the x axis represents the genome coordinate and the y axis the frequency
of the aligned reads in each genome coordinate. The aim is to find the significant peaks
corresponding to enriched regions. For this reason, a non-overlapping moving window
is used. By starting from the beginning, a dynamic window of minimum size t is being
applied to the histogram and each window that could be analyzed separately. The size
of the window could be different for each window to prevent truncating a peak before
its end. Thus, for each window a minimum number of t bins is used and, by starting
from the end of previous window, the size of window is increased until a zero value in
the histogram is reached.

The aim is to obtain vectors Cwi = [c1wi
, ...cnwi

]t, where wi is the ith window and
Cwi is the vector that contains n threshold coordinates which correspond to the ith

window. Figure 1 depicts the process of finding the peaks corresponding to the regions
of interest for the specified protein. The input to the algorithm includes the reads and
the output of the whole process is the location of the detected significant peaks by using
optimal multilevel thresholding combined with our recently proposed α index.
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Fig. 1. Schematic representation of the process for finding significant peaks

3 Automatic Detection of the Number of Clusters

Finding the correct number of clusters (number of sub-grids or spots or the number of
regions in each window in ChIP-seq/RNA-seq analysis) is one of the most challenging
issues. This stage is crucial in order to fully automate the whole process. For this, we
need to determine the correct number clusters or thresholds prior to applying multi-level
thresholding methods. This is found by applying an index of validity (derived from clus-
tering techniques) and testing over all possible number of clusters (or thresholds) from
2 to
√
n, where n is the number of bins in the histogram. We have recently proposed the

α(x) index, which is the result of a combination of a simple index and the well-known
I index [23] as follows:

α(K) =
√
K
I(K)
A(K)

=

(
E1
EK
×DK

)2

√
KΣK

i=1p(ti)
. (5)

For maximizing I(K) and minimizingA(K), the value ofα(K) must be maximized.
Thus, the best number of thresholdsK∗ based on the α index is given by:

K∗ = argmax
1≤K≤δ

α(K) = argmax
1≤K≤δ

(
E1
EK
×DK

)2

√
KΣK

i=1p(ti)
. (6)
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4 Comparison of Transcriptomics Data Analysis Algorithms

4.1 DNA Microarray Image Gridding Algorithms Comparison

A conceptual comparison of microarray image gridding methods based on their fea-
tures is shown in Table 1. The methods included in the comparison are the following: (i)
Radon transform sub-gridding (RTSG) [11], (ii) Bayesian simulated annealing gridding
(BSAG) [1], (iii) genetic-algorithm-based gridding (GABG) [5], (iv) hill-climbing grid-
ding (HCG) [13], (v) maximum margin microarray gridding (M3G) [4], and the optimal
multilevel thresholding algorithm for gridding (OMT) [21]. As shown in the table, OMT
does not need any number-based parameter, and hence making it much more powerful
than the other methods. Although the index or thresholding criterion can be considered
as a “parameter”, this can be fixed by using the between class criterion. In a previous
work, we have “fixed” the index of validity to the α index and the between class as the
thresholding criterion. As can also be observed in the table, most algorithms and meth-
ods require the use of user-defined and subjectively fixed parameters. One example is the
GABG, which needs to adjust the mutation and crossover rates, probability of maximum
and minimum thresholds, among others. It is critical then to adjust these parameters for
specific data, and variations may occur across images of different characteristics.

Table 1. Conceptual comparison of recently proposed DNA microarray gridding methods

Method Parameters

Sub-
grid
Detec-
tion

Spot
Detec-
tion

Automatic De-
tection No. of
Spots

Rotation

Rueda07 n: Number of sub-grids
√ × × √

Antoniol04
α ,β: Parameters for balancing prior
and posterior probability rates

×
√ √ √

Zacharia08

μ , c :Mutation and Crossover rates,
pmax: probability of maximum thresh-
old, plow: probability of minimum
threshold, fmax : percentage of line
with low probability to be a part of grid,
Tp: Refinement threshold

√ √ √ √

Rueda06 λ , σ: Distribution parameters × √ √ ×
Bariamis10 c: Cost parameter × √ √ √

OMT None1 √ √ √ √

1 The only parameters that would be needed in the proposed method are the “thresholding crite-
rion” and the “index of validity”. These two “parameters” are methodological, not number-based,
and hence making OMT less dependent on parameters.

4.2 Comparison of Algorithms for ChIP-Seq and RNA-Seq Analysis

A conceptual comparison between thresholding algorithms and other ChIP and RNA-
Seq methods based on their features is shown in Table 2. The methods included in the
comparison are the following: (i) GLobal Identifier of Target Regions (CLITR) [22], (ii)



Applications of Multilevel Thresholding Algorithms to Transcriptomics Data 33

Table 2. Conceptual comparison of recently proposed methods for ChIP-seq and RNA-seq data

Method Peak selection criteria Peak ranking Parameters

GLITR
n: Classification by height and
relative enrichment

Peak height and
fold enrichment

Target FDR, number nearest
neighbors for clustering

MACS
v1.3.5

Local region Poisson p value p value
p-value threshold, tag length,
m-fold for shift estimate

PeakSeq Local region binomial p value q value Target FDR

Quest v2.3
height threshold, background
ratio

q value
KDE bandwidth, peaks height,
sub-peak valley depth, ratio to
background

SICER
v1.02

p value from random back-
ground model, enrichment rel-
ative to control

q value
Window length, gap size, FDR
(with control) or E-Value (no
control)

SiSSRs
v1.4

N+ − N− sign change, N+ +
N− threshold in region

p value FDR, N+ + N− threshold

T-PIC Local height threshold p value
Average fragment length, sig-
nificance p value, minimum
length of interval

OMT
number of ChIP reads minus
control reads in window

volume Average fragment length

Model-based Analysis of ChIP-seq (MACS)[28], (iii) PeakSeq [20], (iv) quantitative
enrichment of sequence tags (Quest) [24], (v) SICER [27], (vi) Site Identification from
Short Sequence Reads (SiSSRs) [10], (vii) Tree shape Peak Identification for ChIP-seq
(T-PIC) [7], and (viii) the optimal multilevel thresholding algorithm, OMT. As shown
in the table, all algorithms require some parameters to be set by the user based on the
particular data to be processed, including p-values, FDR, number os nearest neighbors,
peak height, valley depth, window length, gap size, among others. OMT is the algorithm
that requires almost no parameter at all. Only the average fragment length is needed, but
this parameter can be easily estimated from the underlying data. In practice, if enough
computational resources are available, the fragment length would not be needed, since
the OMT algorithm could be run directly on the whole histogram.

5 Experimental Analysis

This section is necessarily brief and reviews some experimental results as presented
in [21]. For the experiments, two different kinds of DNA microarray images have been
used, which were obtained from the Stanford Microarray Database (SMD) the Gene Ex-
pression Omnibus (GEO). The images have different resolutions, number of sub-grids
and spots. We have used the between-class variance as the thresholding criteria, since
it is the one that delivers the best results. All the sub-grids in each image are detected
with a 100% accuracy, and also spot locations in each sub-grid can be detected effi-
ciently with an average accuracy of 96.2% for SMD dataset and 96% for GEO dataset.
Figure 2 shows the detected sub-grids from the AT-20387-ch2 image (left) and the de-
tected spots in one of sub-grids (right). As shown in the figure, the proposed method
precisely detects the sub-grids location at first, and in the next stage, each sub-grid is
divided precisely into the corresponding spots with the same method.
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Fig. 2. Detected sub-grids in AT-20387-ch2 microarray image (left) and detected spots in one of
sub-grids (right)

In addition to this, some experimental, preliminary results for testing performance of
the OMT algorithm on ChIP/RNA-seq data are shown here. We have used the FoxA1
dataset [28], which contains experiment and control samples of 24 chromosomes. The
experiment and control histogram were generated separately by extending each mapped
position (read) into an appropriately oriented fragment, and then joining the fragments
based on their genome coordinates. The final histogram was generated by subtract-
ing the control from the experiment histogram. To find significant peaks, we used a
non-overlapping window with the initial size of 3000bp. To avoid truncating peaks in
boundaries, each window is extended until the value of the histogram at the end of the
window becomes zero. Figure 3 shows three detected regions for chromosomes 9 and 17
and their corresponding base pair coordinates. It clear from the pictures that the peaks
contain a very high number of reads, and then these regions are quite likely to repre-
sent binding sites, open reading frames or other bio-markers. A biological assessment
of these bio-markers can corroborate this.
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Fig. 3. Three detected regions from FoxA1 data for chromosomes 9 and 17. The x axis corre-
sponds to the genome position in bp and the y axis corresponds to the number of reads.

6 Discussion and Conclusion

Transcriptomics provide a rich source of data suitable for pattern analysis. We have
shown how multilevel thresholding algorithms can be applied to an efficient analysis
of transcriptomics and genomics data by finding sub-grids and spots in microarray im-
ages, as well as significant peaks in high-throughput next generation sequencing data.
OMT can be applied to a wide range of data from different sources and with different
characteristics, and allows data analysis such as sub-grid and spot detection in DNA mi-
croarray image gridding and also for detecting significant regions on ChIP and RNA-seq
data. OMT has been shown to be statistically sound and robust to noise in experiments
and it is able to use on different approaches with a little change – this is one the most
important features of this algorithm.

Thresholding algorithms, though shown to be quite useful for transcriptomics and ge-
nomics data analysis, are still emerging tools in these areas, and open the possibility
for further advancement. One of the problems that deserves attention is the use of other
thresholding criteria, including minimum error, entropy-based and others. For these two
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criteria the algorithm still runs in quadratic orn-logarithmic complexity, and which make
the whole process sluggish. Processing a whole genome or even a chromosome for find-
ing peaks in ChIP or RNA-seq is still a challenge, since it involves histograms with several
million bins. This makes it virtually impossible to process a histogram at once, and so
it has to be divided into several fragments. Processing the whole histograms at once is
one of the open and challenging problems that deserve more investigation. Next genera-
tion sequence data analysis is an emerging and promising area for pattern discovery and
analysis, which deserve the attention of the research community in the field.
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Sciences and Engineering Research Council of Canada.
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Abstract. The segmentation task is an important step in automatic
fingerprint classification and recognition. In this context, the term refers
to splitting the image into two regions, namely, foreground and back-
ground. In this paper, we introduce a novel segmentation approach de-
signed to deal with fingerprint images originated from different sensors.
The method considers a multiscale directional operator and a scale-space
toggle mapping used to estimate the image background information. We
evaluate our approach on images of different databases, and show its
improvements when compared against other well-known state-of-the-art
segmentation methods discussed in literature.

Keywords: fingerprint segmentation, biometrics, mathematical mor-
phology, scale-space image simplification.

1 Introduction

In fingerprint context, the term segmentation usually indicates the separation of
the fingerprint area (also known as foreground) from the image background [9].
This is illustrated in Fig. 1 which shows a fingerprint image (Fig. 1a), and a
boundary separating the foreground from the background (Fig. 1b) in the original
image.

Fig. 1. Segmentation example of a fingerprint image

This task is a very important step in automatic fingerprint classification and
recognition, since many methods for extractions features depend naturally on
it. For example, in Ref. [3] the segmentation is used to dismiss singular points
detected in the background and in Ref. [12] it is used to reduce the search space
in the minutiae detection.
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In this paper, we present an unsupervised fingerprint segmentation algorithm
which explores the simplification properties of a scale-space toggle operator [4]
and a multi-scale directional operator [11]. As we will see elsewhere, unlike the
well-known approach in [2], which considers a supervised technique based on
a learning of specific parameters for each fingerprint sensor, our unsupervised
method is quite simple, general and leads to segmentation results comparable
with the accurate segmentations obtained in the aforementioned work.

The rest of this paper is organized as follows. Section 2 briefly reviews some
fingerprint segmentation approaches found in literature. Section 3 and 4 intro-
duce, respectively, the morphological transformations and the directional field
estimation considered in this work. Section 5 describes the proposed segmen-
tation method and Section 6 presents some experimental results. Finally, some
conclusions are drawn in Section 7.

2 Related Work

Due to its importance, several approaches for fingerprint image segmentation can
be found in the literature (for a review, see, for example, [9]). Generally, these
approaches can be broadly classified as supervised and unsupervised, depending
on the training or execution parameters specification.

The work in Ref. [12] introduces an unsupervised approach where each block
of an image is classified as background and foreground, according to the variance
of the image gray levels, in a direction orthogonal to the ridge orientation com-
puted by a gradient-based method. Another unsupervised approach is proposed
in Ref. [13], which considers the foreground segmentation through a convolution
of each image block with a set of eight Gabor filters [7]. In [15], an unsupervised
algorithm for rolled fingerprint is presented. The algorithm first binarizes the
fingerprint image and then computes three iterations of morphological erosion
to preserve only the connected components with the largest number of pixels.

The supervised approach described in [16] considers 11 image features and
uses a neural network to learn the correctness of the estimated gradient-based
orientation of the different blocks in a fingerprint image.

Finally, the method defined in [2] computes three pixel features (coherence,
mean and variance) and uses a linear classifier to label the corresponding pixels
as background or foreground. A supervised approach is used to train the linear
classifier and a final morphological post-processing is performed to eliminate
holes and regularize the external silhouette of the fingerprint area. Due to its
specificity with respect to the considered database (sensor), this approach yields
very accurate segmentation results and is the basis of many techniques, discussed
in the literature, for fingerprint image enhancement and analysis [9,5].

3 Mathematical Morphology

The segmentation introduced here is based mainly on mathematical morpholog-
ical transformations, briefly discussed in this section, and on a directional field
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estimation approach presented in Section 4. The morphological transformations
try to extract relevant structures of an image, by taking into account a small
signal named structuring function [14].

Let f : D ⊂ Z2 → Z be an image function and g : G ⊂ Z2 → Z be this struc-
turing function. The two fundamental morphological transformations, erosion
and dilation, are:

Dilation : The dilation of a function f(x, y) by a structuring function g(a, b),
[δg(f)](x, y), is given by: [δg(f)](x, y) = maxa,b∈G{f(x + a, y + b) + g(a, b)}.
Erosion : The erosion of the function f(x, y) by a structuring function g(a, b),
[εg(f)](x, y), is given by: [εg(f)](x, y) = mina,b∈G{f(x+ a, y + b)− g(a, b)}.

3.1 Multi-scale Morphological Transformations

The notion of scale (size) is related to the way we observe the physical world,
where different features can be made explicit at different scales. In multiscale
morphology, the notion of scale is achieved by scaling the structuring function
gσ : G ⊂ Z2 → Z, such that [6]

gσ(a, b) =| σ | g(σ−1a, σ−1b) a, b ∈ G, ∀σ = 0, (1)

where σ conveys the notion of scale.
In this work, we consider the pyramidal structuring function, given by g(a, b) =

max{| a |, | b |}, whose scaled version is gσ(a, b) = −σ−1max{| a |, | b |}.
Specifically, here we use a small 3 × 3 structuring function, where gσ is zero

at position (0, 0) and −σ−1 otherwise. As explored in [6] and [1], this non-flat
structuring function possesses interesting image simplification properties includ-
ing, for example, a monotonic filtering of the image extrema (its regional maxima
and minima).

4 Directional Field Estimation

The directional field [9] is related to the global shape of a fingerprint and de-
scribes the local directions of the segment lines represented by a ridge-valley
pattern. In this work, we use a multi-scale directional operator for estimating
these patterns’ orientation.

4.1 Multi-scale Directional Operator

The multi-scale directional operator [11] can be regarded as a generalization of
the method presented in [10]. It is based on the observation that, in fingerprint
images, the contrast between the direction following a ridge-valley pattern and
its orthogonal orientation is greater than the contrast achieved for any other
pair of directions.

Shortly, the multiscale operator estimates the orientation of each pixel (x, y)
by dividing the semicircle in D discrete directions and computing the standard
deviation (std) of the gray values for the set of line segments along each direction.
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The coordinates (x, y) of the points in a discrete line segment with length n
and direction α are computed by considering a sliding window Γ of size n× n,
such that

x = xcenter + p× cos(α)
y = ycenter + p× sin(α), (2)

for all p such that −n/2 ≤ p ≥ n/2. xcenter and ycenter are the coordinates of
the point containing the sliding window Γ centered in this location.

The set sn
i of D discrete lines with length n and discrete direction i is com-

puted by repeating this procedure for all D directions (i ∈ {0, 1, ...D − 1}),
by respectively changing the value of α accordingly (α = 0, 1 × 180/D, 2 ×
180/D, ..., (D − 1) × 180/D). The directional image d′ at a finer scale is then
computed as follows:

d′(x, y) =

⎧⎨⎩
i, if std(sn

i ) < std(sn
⊥(i))

⊥ (i), if std(sn
i ) > std(sn

⊥(i))
v, otherwise

(3)

where i and ⊥ (i) corresponds to the pair of orthogonal directions exhibiting the
highest contrast (e.g, maxj∈{0,...,D/2−1}{std(j)− std(⊥ (j))}) and v is a special
differentiable value representing the result of the function in a homogeneous
region, i.e., region which does not have dominant direction. In our experiments,
we consider D = 8 and n = 35 in the definition of the image given by Eq. 3.

Finally, the directional field image d is obtained by considering a window
Ω : D ⊂ Z2 → Z (also known as smoothing window) centered at each pixel on
the d′ image, according to the following equation.

d(x, y) = modea,b∈D{d′(x + a, y + b)}, (4)

where D corresponds to the domain of the smoothing window and mode stands
for the statistical mode which, in this case, computes the most frequent direction
in Ω.

Note that the size of this smoothing window constitutes a scale factor in the
sense that a small window yields a finer representation of the corresponding
directional field, while a large one defines a coarser representation.

5 Proposed Approach

The segmentation method proposed in this paper consists of the following steps,
as shows the flowchart in Fig. 2.

The Finer directional field detection block computes the orientation of the
input image by considering the multi-scale directional operator (Section 4) with
a small smoothing window, Ωs, of size 5 × 5. This smoothing operation defines
an orientation image w representing a fine scale of the directional field. This
fine representation preserves important orientation details used in the following
algorithm step, namely Background subtraction, which performs a subtraction
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of the background from the original fingerprint image. This operation separates
the ridge-valley foreground regions from the rest of the image, as follows

f ′(x, y) = f(x, y)− b(x, y), (5)

where f ′ stands for the foreground image conveying the papillary information, f
indicates the original input image, and b, an estimate of the background region.

To obtain this background estimation, we define a mapping that explores
some simplification properties of a scale-space toggle operation. These properties
include, for example, suppression of the image extrema (regional maxima and
minima) in a monotonic way, i.e, without creation of new extrema [4]. The toggle
transformation corresponding to the estimation b is given by

b(x, y) =
{
f(x, y), if φk

1(x, y)− f(x, y) <= φk
2(x, y)− f(x, y),

φ3(x, y), otherwise, (6)

where, again, f corresponds to the input image, φk
1 = [δgσ (f)]k and φk

2 =
[εgσ (f)]k are, respectively, the dilation and erosion of f with the scaled structur-
ing function gσ, k times, and φ3 = [δg⊥w(f)] corresponds to the linear dilation of
f in the orthogonal direction of the orientation indicated by the finer directional
field image w, at each location (x, y).

Informally, the toggle mapping in Eq. 6 defines as estimate for b the pixels
converging to the regional maxima in a uniform or quasi-uniform region, based
on the proximity of f(x, y) with the dilation φk

1(x, y), and in the regions convey-
ing papillary information, represented by the directional dilation φ3(x, y) which
takes into account the orientation of the ridges in the original image f . Fig. 3 il-
lustrates the above transformations for a noisy image of the FCV2000 database.
This figure corresponds to the background subtraction given by Eq. 5. It is worth
noting that regions corresponding to the image background and valleys (with-
out papillary information) converged to the regional maxima of these regions
represented here in white.

Finally, the Coarser directional field detection block in Fig. 2 considers a
large smoothing window, Ωl, of size 45 × 45, in order to regionally define the
dominant direction of the ridges in the foreground image f ′. The outermost lines
of the regions, containing the same directional field, constitute the fingerprint
segmentation result depicted by the silhouettes in Fig. 4.

Fig. 2. Flowchart of the proposed segmentation method
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Fig. 3. Segmentation example for an FCV2000 database image

Fig. 4. Segmentation examples of different FVC database images

6 Experimental Results

In order to demonstrate the effectiveness of our approach, we compare it against
two state-of-the-art methods, namely, the Bazen and Gerez’s segmentation algo-
rithm, and the one proposed by the NIST (National Institute of Standard and
Technology) biometric system [15]. To do this, we consider two experiments. In
the first, we take into account a set of images, typical of different types of sensors
(optical, capacitive, thermal, etc), and obtained from the FVC (Fingerprint Ver-
ification Competition) databases [8]. In the second experiment, we work with the
rolled fingerprint images provided by NIST and scanned from the FBI database.
In the following results, the ground truth was obtained by a manual extraction
of the fingerprint regions and the accuracy of the segmentation was established
based on the F-measure defined as 2×Precision×Recall

Precision+Recall , where Precision = tp
tp+fp

and Recall = tp
tp+fn , fp, fn and tp correspond to false positives, false negatives

and true positives, respectively.

6.1 FVC Databases

In this first experiment, we take into account 778 images originated from differ-
ent sensors and belonging to the FVC2000 (DB1 and DB4) and FVC2002 and
FVC2004 (DB1, DB2, DB3 and DB4) databases. We compare our segmentation
results against the ones given by the Bazen and Gerez’s algorithm, one of the
most accurate method described in literature [2]. The values in Table 1 show the
equivalence of our results with those of Bazen and Gerez’s algorithm. Note that
our approach does not suffer from the interoperability problem in the sense that
it does not need any particular training related to different sensors or databases.
Indeed, our method does not include any specific training and was designed to
be robust enough to deal with images obtained from a variety of sensors, which
means with data of different quality, resolution or gray-level.
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Table 1. F-measure values for the segmentation of the FVC database images

Databases Bazen and Gerez [2] Our Approach

2000-DB3 0.93048 0.96165
2000-DB4 0.97909 0.95933
2002-DB1 0.96828 0.98211
2002-DB2 0.93827 0.95757
2002-DB3 0.97411 0.96044
2002-DB4 0.98215 0.97939
2004-DB1 0.98347 0.98812
2004-DB2 0.92180 0.90778
2004-DB3 0.96060 0.97837
2004-DB4 0.97727 0.96519

6.2 NIST Database

In the second experiment, we consider a set of images from the NIST database
and compare the results obtained by considering the segmentation approach
of the NIST system, Bazen and Gerez’s algorithm, and our proposed method.
These results are indicated in Table 2, which shows a better performance of our
approach with respect to the baseline algorithms.

Table 2. F-measure values for the methods considered with the NIST Database

Bazen and Gerez [2] NIST Our Approach

0.94193 0.95565 0.95602

Finally, note that for each database we trained the linear classifier used in [2]
by considering 20 images and taking into account the following parameters:
epochs = 104, η0 = 10−4, τ = 104 and Gaussian window with σ = 9. The
fixed parameters obtained through experimental tests, concerned with Eq. 6,
and related to our approach are as follows: number of iterations k = 15, scale
σ = 25 of the morphological transformations (dilation and erosion), and length
|g| = 17 of the linear structuring element of the orthogonal dilation given by Φ3.
Fig. 5 shows a segmentation example of an image of the NIST database.

Fig. 5. Segmentation examples of NIST, Bazen and Gerez and Our Approach
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7 Conclusions and Future Works

In this paper, we introduced a novel segmentation method designed to deal with
fingerprint images captured from different sensors. To assess the method, we
have performed experiments with more than 800 images of different databases.
These experiments show that the proposed method yields accurate and robust
segmentation results with the great advantage of being, unlike other approaches,
independent from the type of the different available sensors. Indeed, it is worth
noting that most existing fingerprint segmentation algorithms are based on a
prior classification of the images foreground and background, according to a
certain knowledge. Further, thresholding or training techniques are used in the
segmentation process, which algorithmically imply a lack of sensor interoperabil-
ity. In our case, we avoid this aspect by taking into account global characteristics
of a fingerprint image explored here by means of its multiscale representation
and the directional field inherent to its basic structure.
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Abstract. In this work a closed-form, maximum-likelihood (ML) es-
timator for the variance of the thermal noise in magnetic resonance
imaging (MRI) systems has been developed. The ML estimator was, in
turn, used as a priori information for devising a single dimensional noise-
cancellation–based image restoration algorithm. The performance of the
estimator was assessed theoretically by means of the Crámer-Rao lower
bound, and the effect of selecting an appropriate set of no-signal pixels
on estimating the noise variance was also investigated. The effectivity of
the noise-cancellation–based image restoration algorithm in compensat-
ing for the thermal noise in MRI was also evaluated. Actual MRI data
from the LONI database was employed to assess the performance of both
the ML estimator and the image restoration algorithm.

1 Introduction

Several methods for thermal noise variance estimation in magnetic resonance
(MR) imagery have been proposed in the literature. A simple taxonomy clas-
sifies the methods in temporal, spatial, and spatio-temporal. On one hand, the
temporal methods exploit the information of the same voxel at different frames
in order to estimate and compensate for the noise. On the other hand, spatial
methods utilize a single image and attempt to exploit the fact that uniform
features must yield uniform regions in the acquired image.

Temporal filtering techniques have the advantage of not comprising the spatial
resolution of the images; however, the main disadvantage of such methods is the
necessity of acquiring more than one image per slice of tissue under analysis [1].
Spatial filtering techniques have the main advantage of being simple, because
they exploit heuristics such as the large number of pixels that receive no signal
at all, hence their output signal must be uniformly zero; the thermal noise or
some statistics of it may be estimated from such no signal pixels. The main dis-
advantage of spatial filtering is the reduction of spatial resolution in the filtered
� Authors acknowledge the support of CEFOP and Grant CONICYT PFB-0824. Data

used in this article were obtained from the ADNI database (adni.loni.ucla.edu). As
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images. Examples of spatial approaches are maximum-likelihood (ML) estima-
tors [2,3], histogram-based estimators [4], and spatial filters such as Gaussian or
Hanning masks [5].

In this paper a closed-form, ML estimator for the variance of thermal noise
in magnetic resonance imaging (MRI) systems has been derived by means of
an algebraic trick and the knowledge on the distribution of the noise process.
The estimator has been compared theoretically to other well-known noise vari-
ance estimators by means of the fundamental result called the Crámer-Rao lower
bound (CRLB). The performance of the estimator has been also tested exper-
imentally using simulated and actual MRI data, which was obtained from the
Alzheimer’s disease neuroimaging initiative (ADNI) project’s database. Addi-
tionally, the ML estimator developed here was employed used as a priori infor-
mation for developing a noise-cancellation–based image restoration algorithm,
meaning that the images are be regarded as one dimensional signals for their
processing. The image restoration algorithm is shown to be effective in render-
ing good-quality filtered images from a set of noisy MR data. Finally, it must
be commented that the study conducted here is restricted only to the case of
having: (i) magnitude-only MR images; and (ii) a single MR image.

The rest of this paper is organized as follows: in Section 2 images rendered by
MRI systems are mathematically modeled and a ML estimator for the thermal
additive noise corrupting the images is derived. In Section 2.4 the performance of
ML estimator is assessed and compared to other classical estimator. In Section 3
an image restoration procedure based upon the technique of noise cancellation
is presented as well. Finally, in Section 4 our conclusions are stated.

2 Estimation of the Noise Variance

2.1 Thermal Noise in MRI

The complex MR image, Xr(m,n), rendered by an MRI system is modeled by:

Xr(m,n) = x(m,n) +N(m,n) , (1)

where x(m,n) and N(m,n) are the magnetization distribution and the noisy
component of the reconstructed signal, respectively. N(m,n) is considered a
complex white random process, whose real and imaginary parts are pairwise
independent Gaussian random variables (r.v.s) with zero mean and variance σ2.
To avoid the phase errors of MRI systems or simply because the complex image
may not be available to the users, the so-called magnitude image is obtained
after taking the magnitude of Xr(m,n), [6]. Therefore, the typical model for a
pixel in an MR image is given by:

S(m,n) =
(
(xR(m,n) +NR(m,n))2 + (xI(m,n) +NI(m,n))2

)1/2
, (2)

where the sub indexes R and I denotes the real and imaginary parts, respectively.
Equation (2) shows that S(m,n) corresponds to a function of two r.v.s normally
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distributed. It is not hard to show that each pixel of the magnitude image is
a r.v. following a Rician distribution with parameters ax(m,n) = |xr(m,n)| =√
x2

R(m,n) + x2
I(m,n) and σ2, [6, 7, 4, 8]. Note that when no signal is present,

i.e. x(m,n) = 0, S(m,n) follows a Rayleigh distribution [6].

2.2 Related Work: Some Thermal Noise Variance Estimators

Noise variance estimation in MRI is performed using both the uniform regions
of the noisy image and heuristics on the underlying probability density function
(pdf) of the noisy data. Some commonly used variance estimators are:

1. Histrogram’s maximum of background noise (HMBN) estimator [9]: Derived
based upon the fact that the maximum value of the Rayleigh distribution is
attained when s(m,n) = σ. If we consider that the histogram is an estimate of the
actual pdf, then the HMBN estimator is given by σ̂2

HMBN = argmax f̂S(m,n)(s),
with f̂S(m,n)(s) an estimated pdf yielded using the uniform regions of an image.

2. Total least-squares error (TLSE) of pdf fitting estimator [10]: Derived based
on minimizing the TLSE of fitting the partial histogram of a noisy image with
a (scaled) Rayleigh pdf, i.e. f̃Y (m,n)(y) = K exp (−λy), with λ � (2σ2)−1 and
K � kλ a scaling factor. Clearly the resulting estimator is σ̂2

LS = (2λ)−1 .
3. Conventional estimator. Derived exploiting the second moment of the

Rayleigh pdf. The second moment of S(m,n) when no signal is present is E{S2(m,
n)} = 2σ2. So, if it is estimated using the sample second moment of S(m,n) over
a set of � independent samples of S(m,n), then σ̂2

c = 1
2�

∑�
i=1 s

2
i (m,n).

2.3 A Closed-Form ML Estimator for Thermal Noise in MRI
Systems

In order to obtain a closed-form ML estimator for thermal noise in MRI systems
we apply an algebraic trick which simplifies the derivation process. Let us define
a new r.v. representing the magnitude squared of Xr(m,n), i.e., Y (m,n) �
S(m,n)2. Since Xr(m,n) follows a Rayleigh distribution (when no signal is
present), then Y (m,n) follows an exponential distribution with parameter σ2.
From estimation theory, a closed-form ML estimator for an exponential distri-
bution can be obtained in a straightforward manner, [11]. More precisely, the
resulting estimator is σ̂2

ML = 1
2�

∑�
i=1 yi(m,n), which is identical to the conven-

tional estimator. From estimation theory, when ML estimator exists then it is
unbiased and asymptotically minimum variance, thereby asymptotically achiev-
ing the CRLB, i.e., it attains asymptotically the best performance.

2.4 Performance Assessment of the ML Estimator

Under the simulation scenario, the precision and accuracy of the aforementioned
estimators will be assessed drawing samples from Rayleigh r.v.s with known
variances. In addition, the performance will be evaluated using real MRI data.
The MR data was obtained from ADNI database and comprises a sequence of



50 M.E. Soto, J.E. Pezoa, and S.N. Torres

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

σ2

E
[E

st
. σ

2 ]

 

 

HMBN

LSF

C/ML

(a)

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6
x 10

4

σ2

V
ar

[E
st

. σ
2 ]

 

 

HMBN

LSF

C/ML

(b)

Fig. 1. Noise estimation σ̂2 using simulated data at different values of σ2: (a) average,
(b) variance

166 proton-density–weighted images, each of them of size 256×256 pixels. The
parameters used to acquire the images are: TE=1.29 s, TR=3.3 s, flip angle=2
degrees, slice thickness=1.2 mm, quantized in 12 unsigned bits. The Laboratory
of Neuro Imaging (LONI) identifier of the data is 002 S 1018. From now on, we
refer to the data as 002 S 1018.

Scenario 1: Simulations. We have conducted an experiment considering ten dif-
ferent (true) values for σ2, namely, σ2 =

{
20, 21, 22, . . . , 210

}
. We have created,

for each value of σ2, a vector with 216 realizations of independent and identically
distributed (iid) Rayleigh r.v.s. Such an experiment was repeated 5000 times so
that we can compute both the average and the variance of the estimated noise
variance. Results obtained are depicted in Fig. 1, where it can be observed that
the ML estimator yields, as expected, an unbiased estimate with the minimum
variance. The estimator based upon the maximum value of the histogram is un-
biased; however, the variance of the estimation increases as σ2 does it. Also, the
TLSE-based estimator is a biased estimator, whose bias increases as σ2 does. In
terms of accuracy, the TLSE achieves the minimum variance.

Scenario 2: Real data no-signal images. Here we have taken the first ten images
from 002 S 1018. The first eight images contain slices of air, while the last two
contain small areas with human body tissue. Notice that the slice thickness
was taken fairly thin, so that the noise in the images was accentuated. Fig. 2
shows three images from 002 S 1018. Fig. 2(a) shows an no-signal image, and
its histogram clearly shows the shape of a Rayleigh distribution. Fig. 2(b) shows
almost the same phenomenon, where the small white circle at the lower center of
the image represents pixels with some signal values. Due to the number of pixels
having signal is small as compared with the no-signal pixels, we can say that
the distribution of the image is approximately Rayleigh. Clearly, when tissue
is present such as in Fig. 2(c) the assumption on a Rayleigh distribution is
violated. In order to test if the parameters of the Rayleigh distribution for the
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Fig. 2. Sample images and their corresponding histogram from 002 S 1018. Image: (a)
1, (b) 10 and (c) 88. Image Histogram: (d) 1, (e) 10 and (f) 88.

thermal noise are stationary during the acquisition process, the noise variance is
estimated at every image of the first ten images of 002 S 1018. Fig. 3a shows the
results of the estimation process. In light of these results, it can be concluded
that: (i) the statistics of the thermal noise does not change during the acquisition
process; and (ii) the estimate of the ML estimator appears to be consistent along
the images, while the other two estimates do not.

Scenario 3: Real data noisy images. The image shown in Fig. 2(c) will be em-
ployed to estimate the noise variance. Since signal and noise are both present in
the image, first we have to carefully select no-signal regions. In order to perform
an automated estimation procedure we have adjusted a threshold value, τ , for
the intensities in order to discriminate no-signal pixels. A priori, by inspecting
the histogram the value τ = 300 seems to be an accurate value for no-signal
pixels. The results obtained for this scenario are shown in Fig. 3b. Clearly, the
selection of a right τ value is crucial for achieving estimation performance. No-
tice that after a certain value for τ the estimate achieved by the maximum of
the histogram estimator is the same. Such situation is easily explained because
increasing τ introduces in the histogram pixel values with less number of counts,
hence the maximum value remains the same. Note also that the results given by
the TLSE fit estimator are the worst in terms of precision. Moreover, if we do not
properly select τ then estimated values can be totally wrong such as the negative
value for the noise variance estimated when τ < 250. This is attributable to the
fact that as τ increases the histogram departs from the shape of a Rayleigh pdf.
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Fig. 3. The estimated noise variance, σ̂2: (a) at the first 10 images of the 002 S 1018
LONI data (Scenario 2 ) and (b) as a function of the threshold value τ , using the
no-signal pixels of the image in Fig. 2c) (Scenario 3 )

Notice that the estimated values disagree with those obtained using a no-
signal image. This is because some pixels with small signal values are regarded
as no-signal pixels, and their inclusion in the histogram degrade the estimation
process. To counteract for such problem, a region-of-interest–based estimation
was performed. We have selected four squared regions outside of the patients
head, corresponding to a 21% of the total number of pixels. Using such values
the estimated noise variances are: σ̂2

HMBN = 5788, σ̂2
LS = 16634, and σ̂2

ML =
11040. Note now that those values are consistent with the ones computed using
the image in Fig. 2(a) and (b).

3 Image Restoration

Typically, when the noise variance of the thermal noise is available, signal esti-
mators can be constructed to render restored images. A common signal estimator
is obtained exploiting the second moment of a Rician distribution, [4]:

âx(m,n) =
(
N−1

∑N
i=1 yi(m,n)− 2σ̂2

)1/2
. (3)

Such estimator is valid for local regions where a common signal value was cor-
rupted by the thermal noise.

Here, we propose a new signal estimator based upon the technique of noise
cancellation, which is commonly used in signal processing when one desires to
recover signals corrupted by additive noise, [12]. The main motivation for imple-
menting image restoration via a noise cancellation is that the whole processing
it is performed in a pixel-by-pixel basis; no spatial resolution is compromised.

From (2) we have that:

Y (m,n) = â2
x(m,n) + Z(m,n) , (4)
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(a) (b) (c) (d)

Fig. 4. A sample image from the 002 S 1018: (a) noisy image; and (b) restored version.
The difference image between: (c) the squares of the noisy image and the restored image;
and (d) the noisy image and the restored image.

where â2
x(m,n) � a2

x(m,n) + 2xR(m,n)NR(m,n) + 2xI(m,n)NI(m,n) and
Z(m,n) � N2

R(m,n) +N2
I (m,n).

The rationale behind a noise-cancellation system is the following: If by de-
signing an filter we are capable of producing Ẑ(m,n), a fairly good approx-
imation of Z(m,n), then e(m,n) � Y (m,n) − Ẑ(m,n) ≈ â2

x(m,n), which
corresponds to a fairly good estimate of a2

x(m,n). Suppose that an finite im-
pulse response (FIR) filter with L coefficients, denoted as h0, h1, . . . , hL−1, is
designed to obtain Ẑ(m,n). Suppose also that independent samples of an ex-
ponential distribution, with parameter (2σ̂2)−1 are available as well, and let us
denote them as W (m,n). Given that the image processing will be conducted
as a single-dimensional signal processing, then Y and W correspond to stacked
versions of the images Y (m,n) and W (m,n). Thus, according to least squares
theory we calculate the mean square error (MSE) of the estimate of a2

x as:
MSE = E

[
e2
]

= φY Y [0]−2
∑L−1

i=0 hiφWY [i]+
∑L−1

i=0

∑L−1
j=0 hihjφWW [i−j], where

φY Y [n] and φWW [n] are the autocorrelation sequences of Y and W , respectively,
and φWY [n] is the cross-correlation sequence between W and Y . By minimiz-
ing the MSE with respect to the design parameters h0, . . . , hL−1 produces the
system of linear equations ΦWW hL =ΦWY , whose solution is h∗

L =Φ−1
WW ΦWY ,

and provides the filter coefficients hi that minimize the estimation error of a2
x.

Restoration of noisy images: In the restoration process, the estimated value for
σ given by the ML estimator we is fed to the noise-cancellation filter, so that a
sequence of iid r.v.s exponentially distributed with parameter λ = (2σ̂2

ML)−1 =
4.55 · 10−5 is drawn. The single parameter that needs to be adjusted in the
image restoration method is the number of filter coefficients L. Typically, such
parameter is determined after some training procedure. In our case, the best
results were achieved for L = 10, where by best results we mean that the quality
of the images seems to be the best to the naked eye. It must be noted that such
subjective assessment is employed only due to the absence of reference or clean
images. In Fig. 4 we show a sample original image, its restored version using
the proposed method as well as the difference image between the noisy and the
restored image. We clearly see that the noise level in the restored image has
decreased at expense of producing a low contrast image. From the difference
image we can infer that no structure should be visible when we subtract the
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square of the magnitude of the noisy image to the square of the magnitude of the
restored image. This is expected because the noise canceling system was designed
to fulfill this criterion. However, for the difference of magnitudes considerable
image structure is not captured by the whole filtering process.

4 Conclusions

Thermal noise variance estimation in MRI is commonly performed using heuris-
tics about the presence or absence of MR signal, and next, using some simple
generic estimator. Among all the estimators, the closed-form ML estimator de-
veloped here is the best choice because of both its statistical efficiency and its
simple implementation. In MRI working with the magnitude squared of the data
greatly simplifies the algebraic manipulation of the models. Moreover, working
with the magnitude squared of the signal creates a simple framework to simu-
late thermal noise in MRI when solely magnitude images are available. However,
such algebraic manipulation cannot eliminate the inherent non-linear behavior
the magnitude images, ultimately leading to restored images of reduced perfor-
mance compared to those achieved when data is squared.

References

1. Vovk, U., et al.: A review of methods for correction of intensity inhomogeneity in
MRI. IEEE Trans. on Medical Imaging 26(3), 405–421 (2007)

2. Sijbers, J., et al.: Maximum-likelihood estimation of rician distribution parameters.
IEEE Trans. on Medical Imaging 17(3), 357–361 (1998)

3. Aja-Fernandez, S., et al.: Noise and signal estimation in magnitude MRI and rician
distributed images: A lmmse approach. IEEE Trans. on Image Proc. 17(8), 1383–
1398 (2008)

4. Sijbers, J., et al.: Automatic estimation of the noise variance from the histogram of
a magnetic resonance image. Physics Medicine & Biology 52(5), 1335–1348 (2007)

5. Kruggel, F., et al.: Comparison of filtering methods for fMRI datasets. NeuroIm-
age 10, 530–543 (1999)

6. Nowak, R.D.: Wavelet-based rician noise removal for magnetic resonance imaging.
IEEE Trans. on Image Processing 8(10), 1408–1419 (1999)

7. Kisner, S.J., Talavage, T.M.: Testing the distribution of nonstationary mri data.
Eng. in Medicine & Biology Soc. 3, 1888–1891 (2004)

8. Xu, Y., et al.: COmplex-Model-Based Estimation of thermal noise for fMRI data
in the presence of artifacts. Mag. Resonance Imaging 25, 1079–1088 (2007)

9. van Kempen, G., van Vliet, L.: The influence of the background estimation on the
superresolution properties of non-linear image restoration algorithms. In: Proc.
SPIE Progress Biomedical Optics, vol. 3605, pp. 179–189 (1999)

10. Brummer, M.E., et al.: Automatic detection of brain contours in MRI data sets.
IEEE Trans. Medical Imaging 12, 153–168 (1993)

11. Poor, H.V.: An Introduction to Signal Detection and Estimation, 2nd edn.
Springer, Heidelberg (1994)

12. Proakis, J.G., Manolakis, D.G.: Digital signal processing: principles, algorithms,
and applications, 4th edn. Prentice-Hall, Inc. (2006)



Spectral Model for Fixed-Pattern-Noise in

Infrared Focal-Plane Arrays�

Jorge E. Pezoa and Osvaldo J. Medina
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Abstract. In this paper a novel and more realistic analytical model for
the fixed-pattern noise present in infrared focal plane arrays is developed.
The model captures, in the frequency domain, the spatial structure of the
fixed-pattern noise yielding a suitable input/output representation for an
infrared focal plane array. The theoretical and practical applicability the
model is illustrated by both synthesizing fixed-pattern noise from three
different infrared cameras and improving the performance of a previously
reported fixed-pattern noise compensation algorithm.

1 Introduction

Infrared cameras are being used in a wide range of applications such as tem-
perature measurement, spectral-signature analysis, night vision, and predictive
machinery maintenance. Infrared cameras collect the spectral information by
means of imaging sensing devices called infrared focal plane arrays (FPAs). An
infrared FPA is an integrated circuit composed of either a linear or a matrix of
infrared photodetectors. An image is created after reading and properly assem-
bling the infrared information collected by all the photodetectors in the array [1].
In theory, all the photodetectors in the FPA respond in exactly the same manner
when a spatially uniform spectral object is placed in front of the array. Unfor-
tunately practical FPA do not respond in such a way when a flat infrared input
impinges the array.

The fixed-pattern noise (FPN) in infrared FPAs is the nonuniform spatial
response of the FPA when a spatially uniform stimulus is used as an input. The
FPN is a quasy-stationary, spatially structured type of noise, which produces
a grid-like pattern on top of the true images. The FPN is attributed to device
manufacturing mismatches and parameter variations across the FPA, such as
photodetector area and dark current [2, 3]. Since the grid-like pattern severely
degrades the true images, it is mandatory to compensate for the FPN before
using the imagery acquired by an infrared camera equipped with an FPA.

Surprisingly, the spatial structure of the FPN is oversimplified in the literature
under the assumption that the FPN is spatially independent [4, 5, 6]. Only few
� Authors acknowledge the support of CEFOP and Grant CONICYT PFB-0824.
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papers have considered the existence of spatial structure in the FPN [7,8]; how-
ever, in none of these works specific models for the FPN have been developed.
To the best of our knowledge, the work [9] by El Gamal et al. is the only paper
available where a model for the FPN has been developed. Such a model was
developed in the spatial domain by means of random fields and was specifically
developed for modeling noise in CMOS sensors.

In this work we have tackled the necessity of supplying appropriate theoretical
models for FPN. To do so, we have developed a novel analytical model for the
spatial structure of FPN. The model has been developed in the frequency domain
after experimentally characterizing the spectrum of several infrared FPAs. The
analytic characterization models the magnitude of the FPN using a linear combi-
nation of unidimensional second-order exponential functions, while the phase of
the FPN is assumed to be random and uniformly distributed. The analytic model
is completed by deriving a total least-squares estimator for the FPN parame-
ters. The main advantage of the model presented here is that it yields a more
realistic input/output representation for an entire infrared FPA. The theoretical
and practical applicability of our model is illustrated by both synthesizing FPN
from three different IR cameras and improving the performance of a previously
reported FPN compensation algorithm.

The rest of this paper is organized as follows. Section 2 presents the spectral
analysis of FPN conducted using experimental data. In the same section, an
analytical model for the FPN in the frequency domain is developed using simple
mathematical expressions with a small number of parameters. The ability of the
analytical model developed in Section 2.2 to represent the FPN is verified in
Section 3 by means of simulations and experimental data. Finally, in Section 4
the conclusions of our work are outlined.

2 Analytical Model of FPN

2.1 Spectral Analysis

Theoretically speaking, the spatial output of an ideal infrared FPA to a flat input
should be flat; in the frequency domain, such ideal response should be observed as
a delta function. However, when an actual infrared FPA is illuminated by a black-
body source, the observed output is not flat and in the spatial frequency domain
a specific shape is observed. By assuming that the FPN has only an additive
component, [10, 4, 5, 6], the shape observed in the frequency domain is precisely
the frequency-domain representation of the FPN. To obtain a realistic model, an
experimental spectral analysis of the FPN has been conducted by collecting data
from different infrared cameras illuminated with black-body radiator sources.

For instance, Fig. 1(a) shows an actual sample-frame taken with a CEDIP
brand infrared camera. The size of the frame is 240×320 pixels and a black-body
source at a temperature of 20◦C was employed as an input. Note that, a grid-like
pattern is observed instead of a flat image. Note also that, from basic Fourier
theory, a grid-like FPN should be represented in the Fourier domain by a cross-
like shape. Figure 1(b) shows the magnitude of the fast Fourier transform (FFT)
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of the sample frame shown in Fig. 1(a). In this figure the magnitude of the Fourier
transform of both the flat input and the FPN can be observed. In the Fourier
domain, the flat input corresponds to the impulse at the center of the spectrum,
while the FPN has a clearly defined structure with one vertical spectral band and
one horizontal spectral band. Regarding the phase representation of the FPN,
in our analysis we have observed a lack of structure in the phase. Such behavior
can be justified by the isotropic behavior of the FPN.

(a) (b)

Fig. 1. (a) Sample frame of FPN. (b) Magnitude of the FFT of the sample frame.

Finally, our experience a grid-like pattern is a very common type of FPN in
practical devices. Consequently, for the remaining of this paper we will assume
that the FPN is in fact represented, in the Fourier domain, by one vertical and
one horizontal band as those shown in Fig. 1(b). With this, we can introduce a
precise analytical model for the class of all infrared sensors whose FPN manifests
itself as a pattern of vertical and horizontal lines.

2.2 Spectral Analytical Model

From the analysis presented in the previous subsection we state that the mag-
nitude of the FPN can be modeled as a lineal combination of two independent
second-order exponential functions, each one of them having three parameters:
the location parameter, the amplitude parameter, and the scale parameter. Re-
garding the phase, here we have assumed that it can be modeled as a white
noise process, with uniform distribution in [−π, π]. Thus, given an FPA of size
2M + 1 × 2N + 1 pixels, the magnitude and phase of the FPN can be mathe-
matically modeled as:

|Y (u, v)| = Bu exp

(
−(u− u0)2

2σ2
u

)
+Bv exp

(
−(v − v0)2

2σ2
v

)
, (1)

∠Y (u, v) ∼ U [−π, π], (2)

where u = −M, . . . ,M , v = −N, . . . , N , and Y (u, v) is the two-dimensional
Fourier transform of the FPN. The parameters u0, Bu, and σu (correspondingly,
v0, Bv, and σv) are the location, the amplitude, and the scale, respectively, of
the horizontal (correspondingly, vertical) band.
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(a) (b) (c)

Fig. 2. Synthetic versions of the FPN shown in Fig. 1: (a) Magnitude spectrum, and
(b) Spatially structured. (c) Sample frame of spatially unstructured fixed-pattern noise.

For completeness, we have developed also in this paper parameter estimators
for (1). We provide only formulae for estimating u0, Bu, and σu. Estimators for
v0, Bv, and σv can be obtained mutatis mutandis. First, note that the location
parameter for the second-order exponential functions must be zero due to the
geometry of the FPN, i.e. u0 = 0. Next, by exploiting the total least-squares
error principle and parameter estimators for Bu and σu are given by the following
non-linear system of equations:

(2M + 1) ln B̂u −
∑M

u=−M

(
ln(Y (u)) + (2σ̂2

u)−1(u − u0)2
)

= 0, (3)∑M
u=−M (u− u0)4 − 2σ̂2

u

∑M
u=−M (u − u0)2(ln B̂u − ln(Y (u))) = 0. (4)

3 Results

The ability of the analytical model to represent the FPN is verified in this section.
We have synthesized FPN using the traditional approach taken in the literature,
that is, samples of FPN are drawn from a white spatial process following an uni-
form distribution supported on the same dynamical range as the raw data. Such
samples of unstructured FPN are compared to synthetic, spatially structured
FPN generated using the model (1) and (2).

First, we aim to mimic the actual FPN of the CEDIP camera shown in Fig. 1.
To do so, we use (3) and (4) and estimate thatBu ≈ B̂u = 5.2 and σu ≈ σ̂u = 2.5,
and employed these values to plot the magnitude spectrum shown in Fig. 2(a).
Next, we used (1) and (2) to render samples of synthetic FPN. One of such
samples is shown in Fig. 2(b). A naked-eye inspection to Figs. 2(b) and (c)
shows that: (i) the synthetic FPN resembles the actual FPN shown in Fig. 1(a);
and (ii) the unstructured (spatially white) noise in Fig. 2(c) is clearly not a valid
representation of the FPN.

Second, we objectively compare samples of actual FPN to both unstructured
synthetic FPN and synthetic FPN generated using our model. The comparison
has been made by means of the root mean-squared error (RMSE) between actual
and synthetic samples of FPN. Figures 3(a) to (c) show samples of actual FPN
from three infrared cameras. Note that in these cameras the FPN is exhibited as a
horizontal and/or vertical regular pattern. Table 1 lists the RMSE in synthesizing
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FPN in both the spatial and the frequency domain. These results clearly indicate
that the RMSE for the structured synthetic FPN is always lower than the RMSE
of the unstructured synthetic FPN. In Figs. 3(d) to (f) the magnitude spectrum
of the FPN shown in Figs. 3(a) to (c) have been plotted, while in Figs. 3(g) to
(h) samples of synthetic FPN, drawn the proposed model, are shown. Clearly,
the spatial structure of the actual FPN can be observed in the synthetic versions
of the noise.

(a) (b) (c)
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Fig. 3. FPN from different infrared cameras: (a) CEDIP. (b) Amber. (c) Quantum
Dots. Magnitude spectrum of FPN: (d) CEDIP. (e) Amber. (f) Quantum Dots. A
sample of ynthetic FPN: (g) CEDIP. (h) Amber. (i) Quantum Dots.

Third, in hyperspectral push-broom cameras (where a scanning procedure
must be employed to create infrared images) the FPN observed as a striping pat-
tern [11,12,13]. A sample of striping FPN in hyperspectral push-broom cameras
is shown in Fig. 4(a) and its magnitude spectrum is shown in Fig. 4(b). We note
that the striping noise can be considered a special case of the model for the grid-
like FPN we have introduced here. In particular, the mathematical expression for
the magnitude of the striping noise reduces to: |Y (u, v)| = Bu exp

(−(u−u0)
2

2σ2
u

)
.



60 J.E. Pezoa and O.J. Medina

(a) (b) (c) (d)

Fig. 4. (a) Actual sample of striping noise; and its (b) Magnitude spectrum. (c) Syn-
thetic sample of striping noise; and its (d) Magnitude spectrum.

Figures 4(c) and (d) show, respectively, a sample of synthetic striping noise in
the spatial domain and the magnitude spectrum of synthetic FPN.

Fourth, as a final application of our model, we have supplemented the noise-
cancellation–based non-uniformity correction (NUC) algorithm developed by
Godoy et al. in [10] with our analytical model, thereby obtaining an enhanced
version of such NUC algorithm. In [10], Godoy et al. employed spatially white
FPN as the required source of correlated noise which is essential to any noise-
cancellation system. Here, we have replaced such noise source by our model of
spatially structured FPN. Intuitively speaking, if the noise source is replaced by a
proper FPN model, the performance of the NUC algorithm should be improved.

Figures 5(a) and (d) correspond to raw frames acquired using the Amber in-
frared camera. Figures 5(b) and (e) correspond to corrected versions of the raw
frames obtained when the unstructured FPN is used as the source of correlated
noise in the noise-cancellation–based NUC method, while Figs. 5(c) and (f) cor-
respond to corrected versions of the raw frames obtained when the structured
FPN is employed as the source of correlated noise. It can be observed from the
figures that corrected frames obtained using the spatially structured FPN look
better than those obtained using the unstructured FPN. This result is important
because it confirms the intuition that, only by substituting the source of FPN the
performance of the noise-cancellation–based NUC algorithm can be improved.

In addition to the subjective evaluation, a quantitative performance analysis
between the original and the enhanced versions of the NUC algorithm was con-
ducted by means of the so-called roughness metric. The roughness metric is em-
ployed to assess NUC methods when no reference images are available. The metric
is a combination of high-pass spatial filters aiming to measure the sharp changes in

Table 1. RMSE in synthesizing FPN for different cameras

Spatial domain Spectral domain
Structured Unstructured Structured Unstructured

CEDIP 0.3180 0.4248 8.6782 19.8853
Amber 0.1378 0.3028 11.0094 23.5877
Quantum Dots 0.3746 0.4485 11.3907 22.9642
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) and (d) Sample frames corrupted by FPN. (b) and (e) Corrected versions of
previous frames when unstructured FPN is employed. (c) Corrected versions of previous
frames when spatially structured FPN is employed.

both the horizontal and the vertical directions. By definition, the roughness metric
achieves only non-negative values, a better the performance is mapped onto val-
ues for roughness closer to zero. (The mathematical definition of the metric can be
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Fig. 6. Roughness comparison. RAW: Noisy frame. TPC: Two-point calibration. NC:
Noise-cancellation algorithm. ENC: Noise-cancellation algorithm with structured FPN.
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found elsewhere [10].) Figure 6 shows the results of the assessment. For compari-
son in Fig. 6 we have plotted also the worst-case scenario, labeled as RAW, corre-
sponding to the roughness metric of the noisy images, and the best-case scenario,
labeled as TPC, corresponding to a laboratory calibration [2,10]. In Fig. 6 can be
observed that the FPN compensation using spatially structured noise, labeled as
ENC, is indeed better than the correction obtained using unstructured FPN, la-
beled as NC. The improved performance is attributed to the spatially structured
noise source supplied by our model.

4 Conclusions

In this work, the spatial structure of the FPN corrupting infrared FPAs has been
analytically modeled in the frequency domain. Our model represents the FPN in
the frequency domain by means of two components: a deterministic part, which
defines the spatial structure, and a random part, which characterizes the phase.
Our results have shown that: (i) samples of synthetic FPN can be easily drawn by
using our model; (ii) the synthetic FPN rendered by our abstraction is objectively
and subjectively a proper approximation to the actual FPN observed in infrared
FPAs. Also, we have presented two interesting applications of our model: (i)
striping noise in hyperspectral cameras can be regarded as a special case of our
model, and (ii) a previously reported NUC method has been enhanced by simply
employing our model for FPN.
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Abstract. Blotches are one of the most common film degradations that
must be detected and corrected in the process of film restoration. In this
work we will address the problem of blotch detection in the context of
digital film restoration. Although there are several methods for blotch
detection, in the literature their evaluation is usually subjective. In this
work we propose a new method for blotch detection and an objective
methodology to evaluate its performance. We show that the proposed
method outperforms other existing methods while using this objective
metric.

1 Introduction

Digital Film Restoration is a relevant problem that has attracted the atten-
tion of the digital image processing community. Due to aging, films undergo
several degradation processes, some natural and others linked to poor storing
conditions or careless manipulation. The principal defects in degraded films are:
dirt-dust (noise), scratches, blotches, lost or degradation of color, film grain,
missing frames, etc. For details we refer to [4] and [6].

In this work we will address the problem of blotch detection. Blotches are
one of the most common film degradations. They are caused by the loss of film
covering (white blotches) or dirt covering (dark blotches) the surface of the film.
They are localized in a frame and produce temporal discontinuities. As we will
see later, blotches can be modeled as a random process.

The main goals of this paper are the following. Firstly, we propose a blotch
detection method that outperforms the previous ones using an objective method-
ology here proposed. Second, we also propose an objective methodology to evalu-
ate the performance of blotch detection methods. The evaluation of our proposed
method will be done against a traditional method [7] and a recently proposed
one [2].

The outline of the paper is as follows. In Section 2 we review the related
methods in the literature and concentrate ourselves in the two methods that will
be evaluated and compared with our approach. Then in Section 3 we present our
proposal for blotch detection. In Section 4 we discuss the evaluation setting and
present the obtained results and finally in Section 5 we conclude and discuss the
results.
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2 Related Methods

Since blotches are localized temporal discontinuities most existing methods in
the literature rely on motion compensation and frame differencing to detect pix-
els with large differences. Although most existing algorithms propose motion
compensation without further consideration, it must be noted that motion com-
pensation in noisy sequences is not an easy task. In this work we will assume that
motion estimation and compensation can be performed. As we will see later, in
our proposal we specially consider the fact that motion estimation can fail.

SROD [7] is a classical method for blotch detection which is very attractive
for its simplicity and efficiency. Given the current frame, Fn(x, y), the method
computes pixel-wise differences with previous and next motion compensated
frames, F c

n−1(x, y) and F c
n+1(x, y) respectively. Let (r1, r2, r3) be the pixel values

(F c
n−1(x, y − 1), F c

n−1(x, y), F c
n−1(x, y + 1)). Similarly (r4, r5, r6) are the pixel

values in a column centered at F c
n+1(x, y). The SROD declares the pixel (x, y)

as part of a blotch if:

Fn(x, y)−max{r1, ..., r6} > T or Fn(x, y)−min{r1, ..., r6} < −T,

where T is the detection threshold of the algorithm.
In [2] the authors proposed a blotch detection method that follows the a

contrario methodology [3]. Not only they present a method to detect the blotches
candidates but also they embed in the same method a validation step. The
Adaptive Spike Detection Index (ASDI) is defined as:

ASDI(x, y) = max{Fx(Dx−), Fx(Dx+)}sign(Dx+.Dx−),

where Dx+ and Dx− are the average of pixel differences between the current
frame and previous and next motion compensated ones across a neighborhoodN
centered at (x, y). Fx(q) is the tail of the Gaussian distribution, N (0, σ2

x/|N |),
|N | is the area of the neighborhood N and σx is the local standard devia-
tion of the frame differences. For the simulations N is set as in [2] as a 3 × 3
neighborhood.

A pixel (x, y) is validated as a blotch if 0 ≤ ASDI(x, y) ≤ ε/|Ω|, where |Ω|
is the size of the frame.

3 Proposed Method

As we already mentioned, motion compensation is a challenging task in the
case of noisy sequences. For degraded films the problem can be even worst due
to the blotches themselves, the scratches, film grain, etc. For this reason in
our method, after motion estimation and compensation, we allow some local
adaptation during blotch detection.

Given the pixel (x, y) we consider a search window W centered at this pixel
to define the proposed detection as:

D(x, y) = min
{
|Fn(x, y) − F c

n−1(x′, y′)|, |Fn(x, y)− F c
n+1(x′, y′)|/(x′, y′) ∈W

}
.
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The underlying idea behind this definition is to look for the most similar pixel
in an extended search windowW . In this way we can cope with errors in the steps
of motion estimation and compensation. Although we use pixel-wise differences
the idea can be extended to compute the differences using neighborhoods around
each pixel, i.e. block based distances. This is in fact the idea applied in [2].

In order to detect the blotch candidates we threshold D(x, y) and compute
B(x, y) = D(x, y) > Td. We choose a simple threshold Td ≥ 1 and complement
the detection with a validation step. Therefore, in the thresholding step we over
detect to then, in the second step, validate the detections.

Our validation step is similar as the one proposed in [2] due to its proba-
bilistic nature. However, in contrast with the validation step in [2] we validate
blotches candidates and not pixels. For every connected component in the image
B(x, y) we compute its probability given the empirical distribution of the values
in D(x, y).

For every connected component C of B(x, y) we compute the minimum of
D(x, y) for pixels in C. Let’s call this value

dmin = min{D(x, y)/(x, y) ∈ C}.

Then, using the empirical distribution of values in D(x, y) we define

p = Probability(D(x, y) > dmin).

Assuming that pixels are independent1 we define the probability of observing
the connected component C as:

Probability(C) = p|C|

where |C| is the area of the connected component C.
We declare a blotch as valid if its probability of occurrence, given the back-

ground model obtained as the empirical distribution of values of D(x, y), is very
small. To do that we use a logarithmic scale and declare a connected component
C as a blotch if log(Probability(C)) = |C| log p < p∗. In all the experiments we
set p∗ = −100.

The previous validation step favors large connected components and small
well contrasted ones. In the first case, since the size of the connected component
C is used as an exponent, the larger C the smaller the probability. On the other
hand, if the C is well defined, i.e. large differences D(x, y), its probability is also
small. Both cases are the most distinguishable types of blotches as they strike
from spatial and temporal neighboring pixels.

It is important to note that the only parameter in our method is the threshold,
p∗, used to validate the connected components.

4 Evaluation

Although there exists an extensive literature about blotch detection the evalu-
ation of the different proposals is usually performed in a subjective manner or
1 This is in some way a naive assumption.
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using a limited number of labeled frames used as ground truth. This makes it
very difficult to compare different methods in an objective way. Hence we propose
a method to simulate blotches and a set of scores to compare the performance
of each method.

4.1 Blotch Simulation

As stated in the introduction blotches are localized regions of temporal discon-
tinuity. The size and shape of these regions can vary and the probability of
observing a blotch in one frame does not constrain the same the observation
in other frames. Based on these considerations we devised a simple method to
artificially create blotches.

We start generating an image with Gaussian noise of zero mean and variance
σ. Then we filter this image with an box filter of size 5× 5 and then threshold
it at σ/4. The result is an image with some connected components of pixels
with varying size and shape. Now we have to simulate the random nature of the
blotch observation and its random intensity. For that we first randomly select the
blotches using an uniform distribution and then randomly select the grey level of
the blotch in [gmin, gmax]. We simulate only dark blotches but the generation
of bright ones is straight forward. Finally, once we have the image of blotches
we filter with a Gaussian window to smooth its borders. In Figure 4.3 we show
a sample realization of this proposal.

4.2 Evaluation Scores

For the objective evaluation we propose two set of scores; one set to measure the
performance of the detection at the pixel level and the other one at the blotch
level. In all cases we assume to know the number of blotches and their positions
in the frame as a result of the simulation process described in previous section.

We define the following scores:

– FNp:= Number of False Negative pixels,
– FPp:= Number of False Positive pixels,
– FN:= Number of False Negative Blotches,
– FP:= Number of False Positive Blotches,
– P:= Precision at pixel level,
– R:= Recall at pixel level.

The figures in Table 1 are the average for 10 trials with different blotch simula-
tions. To compare all the methods in equal basis in each case we report the best
results with respect to the F1 score. This score measure the method accuracy
averaging with the same weights precision and recall.

The best results of SROD were obtained with the parameter T = 2. For ASDI,
as noted by the authors, we observed little differences for values of parameter ε in
the range [10−8, 10−2]. For our proposed method the threshold was set between
1 and 3 with best results obtained for Td = 1.
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Table 1. Evalaution Scores for the three evaluated methods. The figures were obtained
averaging 10 trials with different blotch simulations.

SROD Proposed ASDI

FNp 323 122 119
FPp 5 86 1447
FN 0 0 0
FP 0 1 544
P 0,930 0,894 0,397
R 0,744 0,911 0,914
F1 0,850 0,886 0,532

In all cases the motion estimation and compensation was performed with the
Lucas-Kanade approach [5]. We used a pyramidal implementation developed by
Bouguet [1].

4.3 Results

From the results summarized in Table 1 we can conclude the following. No
method outperforms the other two in all scores. The proposed method is the
one with best balance between FPp and FNp and precision very close to the one
obtained by ASDI. This leads to the best F1 score among the three evaluated
methods. On the other hand, the reduction of FNp comes at the expense of
increasing the number of FPp. For this reason SROD gives the best result in
terms of FPp but the worst in terms of FNp. ASDI suffers from a large number
of FPp and FP due to the detection of a large collection of small false blotches.
The FP in our method correspond to a false detection due to an error in the
motion estimation-compensation step, see Figure 4.3.

Now we are going to discuss the results from the point of view of the final
application. While performing film restoration we want a low number of FP. If
the restoration will be assisted by a technician it is very cumbersome to have
a large number of false positive. If the restoration is to some extent automatic,
a large number of false positive blotches may produce the modification of the
frame in too many places increasing the chances of observing the corrections in
the restored film. Also, this will produce an increase in the computation cost of
the restoration. Based on these considerations the best two methods are SROD
and the proposed one. ASI should be improved to reduce the large number of
FPp and FP. We believe this can be implemented using a post-processing step.

Regarding the quality of the blotch detection, a useful method should pro-
duce the smallest number of FNp. In this way, the restoration after detection
is simplified and the chances of an undetectable restoration are increased. FNp
usually concentrate at the borders of the blotches which may deteriorate the
restorations steps which usually involve some kind of inpanting procedure. From
this point of view the best methods are ASDI and the proposed one.
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If we take all the previous comments into consideration we conclude the fol-
lowing. Although none of the methods clearly outperforms the other two, the
proposed method is the one with highest F1 score while achieving a FNp rate
close to the best obtained by ASDI. Furthermore, the FPp and FP scores of the
proposed method are clearly better than ASDI. When comparing our method
with SROD we can see that we reduced the number of FNp increasing the num-
ber of FPp. It must be noted that this increase is due to only one blotch (FP)
produced by our method. Hence, from the application point of view our method
is a good balance between SROD and ASDI. Since, all methods have their strong
and weak points a combination of them could lead to a better performance. This
will be part of our future work.

Fig. 1. Left: Results with SROD. Middle: Proposed Method. Right: ASDI.

Fig. 2. Sample of simmulated blotches

5 Conclusions

In this paper we addressed the problem of blotch detection in the context of digi-
tal film restoration. A new method for blotch detection together with an objective
evaluation methodology of the detection performance was proposed. Based on
this objective methodology we compared our proposed method for blotch detec-
tion with two other references from the literature, a classical method [7] and a
recently introduced one [2]. We showed that the proposed method outperforms
in some of the scores proposed the other two. Also, we argued that from an
application point of view our proposed method has clear benefits. Finally, since
none of the three methods outperforms the other two in all scores we believe
there is room for improvement via the combination of the three methods. This
will be part of our future work.
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Abstract. The temporal segmentation of a video sequence is one of the
most important aspects for video processing, analysis, indexing, and re-
trieval. Most of existing techniques to address the problem of identifying
the boundary between consecutive shots have focused on the uncom-
pressed domain. However, decoding and analyzing of a video sequence
are two extremely time-consuming tasks. Since video data are usually
available in compressed form, it is desirable to directly process video
material without decoding. In this paper, we present a novel approach
for video cut detection that works in the compressed domain. The pro-
posed method is based on both exploiting visual features extracted from
the video stream and on using a simple and fast algorithm to detect the
video transitions. Experiments on a real-world video dataset with sev-
eral genres show that our approach presents high accuracy relative to
the state-of-the-art solutions and in a computational time that makes it
suitable for online usage.

Keywords: video analysis, temporal segmentation, shot boundary, cut
detection, compressed domain.

1 Introduction

Recent advances in technology have increased the availability of video data,
creating a strong requirement for efficient systems to manage those materials.

Making efficient use of video information requires that the data be stored in
an organized way. For this, it must be divided into a set of meaningful and man-
ageable units, so that the video content remains consistent in terms of camera
operations and visual events. This has been the goal of a well-known research
area, called video segmentation [9].

Different techniques have been proposed in the literature to address the tem-
poral segmentation of video sequences [5, 7, 10, 12–16]. Many of those research
works have focused on the uncompressed domain. Although existing methods
provide a high quality, they are extremely time-consuming and require a huge
amount of space.

In this paper, we present a novel approach for temporal segmentation of video
sequences that operates directly in the compressed domain. It relies on exploiting
visual features extracted from the video stream and on a simple and fast algo-
rithm to detect the video transitions. The improvement of the computational
efficiency makes our technique suitable for online tasks.
� Thanks to Brazilian agencies FAPESP, CNPq, and CAPES for funding.
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We evaluate the proposed algorithm on a real-world video dataset with differ-
ent video genres and compare our technique with the state-of-the-art approaches
for temporal video segmentation. Results from an experimental evaluation over
several types of video transitions show that our method presents high accuracy
and computational speed.

The remainder of this paper is organized as follows. Section 2 describes related
work. Section 3 presents our approach and shows how to apply it to segment a
video sequence. Section 4 reports the results of our experiments and compares our
technique with other methods. Finally, we offer our conclusions and directions
for future work in Section 5.

2 Basic Concepts and Related Work

A video shot is a series of inter-related frames captured from a single camera.
In the editing stage of video production, video shots are joined together to form
the complete sequence. They represent a continuous action in time and space,
where no changes in scene content can be perceived [8].

There are two different types of transitions that can occur between shots:
abrupt (discontinuous) transitions, also referred as cuts; and gradual (continu-
ous) transitions, which include camera movements (e.g., panning, tilting, zoom-
ing) and video editing effects (e.g., fade-in, fade-out, dissolving, wiping) [9].

A comprehensive review of methods to address the problem of identifying the
boundary between consecutive shots can be found in [9, 11]. Most of existing
research works have focused on the uncompressed domain. Although those tech-
niques provide a high quality, they spend lots of time and space for decoding
and analyzing a video sequence. For this reason, such approaches are unsuitable
for online tasks.

The most common approach relies on the definition of similarity metrics be-
tween consecutive frames. Usual metrics are based on pixel-wise differences [16]
and color histograms [13]. Tracking of image features (e.g., edges [14]) can also
be used to detect the shot boundary, since they tend to disappear in a cut. In
a different approach, patterns are detected in a bi-dimensional subsampling of
the video, called video slice or visual rhythm [5, 7].

Since video data are usually available in compressed form, it is desirable to
directly process the compressed video without decoding. It allows us to save high
computational load in full decoding the video stream.

Several methods for video segmentation that directly manipulate compressed
have been proposed for specific domains, such as sports, music, and news [10, 12,
15]. Focusing on a particular domain helps to reduce levels of ambiguity when
analysing the content of a video by applying prior knowledge of the domain
during the analysis process [9].

Different from all of the previous techniques which operate directly in the
compressed domain, our approach is designed to segment generic videos and,
hence, it does not use any specific information beyond the video content.
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3 Our Approach

Video data have a lot of redundant information. For saving computational time,
the video stream is divided into a set of meaningful and manageable units. Most
video codecs (e.g., MPEG-1/2/4) are based on GOPs as basic units. The I-frame
contains enough information to characterize the content of the whole GOP.

The compression of the I-frames of a MPEG video is carried out by dividing
the original image into 8x8 pixel blocks and transforming the pixels values of
each block into 64 DCT coefficients. The DC term c(0, 0) is related to the pixel
values f(i, j) via the following equation [15]:

c(0, 0) =
1
8

7∑
x=0

7∑
y=0

f(x, y).

In other words, the value of the DC term is 8 times the average intensity of
the pixel block. If we extract the DC term of all the pixel blocks, we can use
those values to form a reduced version of the original image. This smaller image
is known as the DC image [15]. Fig. 1 illustrates an original image of size 384 ×
288 and its DC image with 48 × 36.

Fig. 1. Original image at 384 × 288 and its DC image at 48 × 36. Frame extracted
from the video I of the test set.

Initially, we discard a lot of GOPs by computing the pairwise dissimilarity of
consecutive I-frames. For this, we convert each DC image to a 256-dimensional
feature vector by computing a color histogram. It is extracted as follows: the
YCbCr color space is divided into 256 subspaces (colors), using 16 ranges of Y,
4 ranges of Cb, and 4 ranges of Cr. The value for each dimension of the feature
vector is the density of each color in the entire DC image.

Let Hi be the i-th bin of the color histogram H. We measure the dissimilarity
between the I-frames by using the well-known histogram intersection, which is
define as

d(Ht1 ,Ht2) =
∑

i min(Hi
t1 ,Hi

t2)∑
iHi

t1

,

where Ht1 and Ht2 are the color histograms extracted from the I-frames taken
at the times t1 and t2, respectively. This function returns a real value ranging
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Fig. 2. Pairwise dissimilarities of between frames of the video I of the test set

from 0 for situations in which those histograms are not similar at all, to 1 for
situations in which they are identical.

Fig. 2 shows an example of how those values are distributed along time. It
can be observed that there are instants of time in which the dissimilarity value
varies considerably (corresponding to peaks), while there are longer periods in
which the variance is small (corresponding to very dense regions). Usually, peaks
correspond to sudden movements in the video or to shot boundaries.

We analyze only the GOPs for which the histogram intersection is below
0.85. If they are completely intra-coded (i.e., only I-frames), we compute the
normalized pixel-wise difference of the luminance (Y) between the DC-images.
Then, an abrupt cut is declared every time the dissimilarity value is greater than
0.3 and the normalized pixel-wise difference is greater than 0.1. The choice of
those values is detailed in Section 4.

Otherwise, we exploit the motion compensation algorithm to detect shot
boundaries. For this, we examine the number of inter-coded macroblocks inside
each P or B-frame. The main idea is that the motion compensation algorithm
cannot find a good match in the nearest past and/or future I and/or P-frames
if the GOP are in the shot boundary.

This causes most of the macroblocks of the P-frames to be intra-coded instead
of inter-coded. If the ratio of the number of intra-coded macroblocks to the total
number of macroblocks is greater than 0.1, there is a high probability to exist a
cut in the neighborhood of this P-frame. In this case, we analyze its precedent
B-frames to detect both type and location of this video transition. For GOPs
that do not contain B-frames, an abrupt cut is declared if the percentage of
intra-coded macroblocks in this P-frame is greater than 60%.

Three possible behaviours for the macroblocks of the B-frames are shown in
Fig. 3. The width of the arrows indicate the dominant direction for the motion
compensation. In this work, a B-frame has a dominant direction if the number
of macroblocks with motion compensation in a given direction is the double of
that in the opposite direction.

If most of the B-frames are encoded with forward motion compensation, an
abrupt transition is detected between the last B-frame and its subsequent anchor
frame (I or P). On the other hand, if most of the B-frames are encoded with
backward motion compensation an abrupt transition is detected between the
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Fig. 3. The possible behaviours for the macroblocks of the B-frames

first B-frame and its precedent anchor frame (I or P). Finally, if the forward
direction is dominant in the first half of the B-frames and the backward direction
is dominant the last half of the B-frames, then an abrupt cut is detected in the
middle of those sequence. In order to avoid false alarms, a video transition is
declared only if the percentage of intra-coded macroblocks in such B-frames is
greater than 50%.

If none of the above conditions is satisfied, we check if there exists a possi-
ble gradual transition. For this, we examine the variation of the percentage of
inter-coded macroblocks with forward motion compensation along the frames of
the GOP. In the case of gradual transitions, those values form a plateau (i.e.,
an isosceles trapezoid), as first observed by Yeo and Liu [15]. Since a gradual
transition has a certain duration, at least 7 frames should be involved to declare
a shot boundary.

4 Experiments and Results

Experiments were carried out on a real-world video dataset with known ground-
truth data. For benchmarking purposes, we used the test set1 presented in [14].
This benchmark contains 10 video sequences, including a variety of genres and
quality levels, as shown in Table 1.

For selecting the threshold values used to detect video transitions, we com-
puted the pairwise similarities of consecutive frames. Remember that the simi-
larity value between the I-frames is measured using the histogram intersection,
whereas for P- or B-frames the similarity value relies on the ratio of the number
of inter-coded macroblocks to the total number of macroblocks.

Fig. 4 presents the probability density function (PDF) for the distribution of
the similarity value of sequential and transitional frames. Notice that the PDF
curves for the different types of video frames are well-separated, evidencing the
high discriminating capability of our strategy.
1 All the video sequences and the ground-truth data are available at
http://www.site.uottawa.ca/~laganier/videoseg/

(last accessed on 20 July 2011).

http://www.site.uottawa.ca/~laganier/videoseg/


76 J. Almeida, N.J. Leite, and R. da S. Torres

Table 1. The main characteristics of each video sequence in test set

Video Genre Dur. (s) Dim. GOP size # Frames
A cartoon (low quality) 21 192 × 144 6 650
B action (motion) 38 320 × 142 6 959
C horror (black/white) 53 384 × 288 2 1619
D drama (high quality) 105 336 × 272 15 2632
E science-fiction 17 384 × 288 2 536
F commercial (effects) 7 160 × 112 15 236
G commercial 16 384 × 288 1 500
H comedy 205 352 × 240 12 5133
I news 15 384 × 288 1 479
J action 36 240 × 180 12 873
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Fig. 4. The probability density function (PDF) for the distribution of the similarity
value of different types of video frame

We assess the effectiveness of the proposed method using the metrics of pre-
cision and recall. Precision (P ) is the ratio of the number of temporal positions
correctly identified as cuts to the total number of temporal positions identified as
cuts. Recall (R) is the ratio of the number of temporal positions correctly iden-
tified as cuts to the total number of cuts in the video sequence. However, there
is a trade-off between precision and recall. Greater precision decreases recall and
greater recall leads to decreased precision. So, we also employ the F-measure for
assessing the quality of the temporal segmentation. The F-measure (F ) combines
both precision and recall into a single measure by a harmonic mean:

F =
2× P ×R
P +R

.

The experiments were performed on a machine equipped with an Intel Core 2
Quad Q6600 processor (four cores running at 2.4 GHz) and 2 GBytes of DDR3-
memory. The machine run Ubuntu Linux (2.6.31 kernel) and the ext3 file system.

Table 2 compares our technique with four different approaches: (1) histogram-
based method [13], (2) feature-based method with automatic threshold selec-
tion [14], (3) visual rhythm with longest common subsequence (LCS) [5], and
(4) visual rhythm with clustering by k-means [7]. The average rates of each qual-
ity measure correspond to the weighted mean of individual results, whose weights
are the total number of cuts in each video. In addition, the weighted standard
deviations reveal the amount of dispersion with respect to those values.
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Table 2. Comparison of precision (P ), recall (R), and F-measure (F ) achieved by
different approaches for each video of the test set

Our proposal Visual rhythm Visual rhythm Feature tracking Histogram
(compressed) with k-means [7] with LCS [5] method [14] (MOCA) [13]Video
P R F P R F P R F P R F P R F

A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.857 0.923 1.000 1.000 1.000 1.000 1.000 1.000
B 1.000 1.000 1.000 0.500 1.000 0.667 0.096 1.000 0.176 1.000 1.000 1.000 1.000 0.375 0.545
C 0.891 0.907 0.899 0.662 0.907 0.766 0.635 0.870 0.734 0.595 0.870 0.707 0.936 0.536 0.682
D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.971 0.985 1.000 1.000 1.000 1.000 0.941 0.969
E 0.815 0.786 0.800 0.828 0.857 0.842 0.676 0.821 0.742 0.938 1.000 0.968 0.955 0.700 0.808
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G 0.938 0.833 0.882 0.950 1.000 0.974 1.000 0.842 0.914 0.810 0.944 0.872 1.000 0.667 0.800
H 0.974 0.949 0.961 0.949 0.974 0.961 0.943 0.868 0.904 0.895 0.895 0.895 0.971 0.895 0.932
I 1.000 1.000 1.000 1.000 1.000 1.000 0.667 0.500 0.571 1.000 1.000 1.000 1.000 0.500 0.667
J 0.776 0.506 0.612 0.683 0.869 0.765 0.639 0.885 0.742 0.497 0.897 0.637 0.850 0.395 0.540

Avg. 0.882 0.786 0.825 0.793 0.923 0.848 0.745 0.878 0.789 0.730 0.924 0.803 0.932 0.621 0.730
Dev. 0.095 0.213 0.164 0.156 0.061 0.111 0.205 0.067 0.153 0.220 0.054 0.157 0.063 0.229 0.178

The results indicate that the proposed method is robust to several conditions
(e.g., frame rate, frame size, total duration, etc.), showing high accuracy com-
pared to the state-of-the-art solutions. Notice that our approach provides the
best achievable F-measure for the majority of the video sequences (7 of 10).

The key advantage of our technique is its computational efficiency. Since the
time required to segment video sequences is hardware dependent (with faster
hardware the computational speed increases and the production time decreases)
and the source codes of all the compared methods are not available, it is impos-
sible to perform a fair comparison of performance in relation to our technique.

In order to evaluate the efficiency of our approach, we analyze the time per
frame spent for processing all the steps of our algorithm, excluding the time for
the partial decoding of each frame. We performed 10 replications for each video
in order to guarantee statistically sound results.

According to those experiments, all the steps of our technique takes a mean
time equals to 112 ± 38 microseconds per frame (confidence higher than 99.9%).
For online usage, by considering a maximum waiting time of 39 seconds [6], the
proposed method can be used for videos up to 349515 frames (about 194 minutes
at 29.97 frames per second). It is important to recall that those values depend
on the computational power of the employed hardware.

5 Conclusions

In this paper, we have presented a novel approach for video cut detection that
works in the compressed domain. Our technique relies on exploiting visual fea-
tures extracted from the video stream and on using a simple and fast algorithm
to detect the video transitions. Such combination makes our technique suitable
for online usage.

We have validated our technique using a real-world video dataset with dif-
ferent video genres and compared our technique with the state-of-the-art ap-
proaches for temporal video segmentation. Results from an experimental evalu-
ation over several types of video transitions show that our method presents high
accuracy and computational speed.
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Future work includes the evaluation of other visual features and similarity
metrics. In addition, the proposed method can be augmented to consider local
features [4] and/or motion analysis [2, 3]. Finally, we want to investigate the ef-
fects of integrating our technique into a complete system for search-and-retrieval
of video sequences [1].
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Abstract. Recent researches on iris recognition without user cooperation have 
introduced video-based iris capturing approach. Indeed, it provides more 
information and more flexibility in the image acquisition stage for non-
cooperative iris recognition systems. However, a video sequence can contain 
images with different level of quality. Therefore, it is necessary to select the 
highest quality images from each video to improve iris recognition performance. 
In this paper, we propose as part of a video quality assessment module, a new 
local quality iris image method based on spectral energy analysis. This approach 
does not require the iris region segmentation to determine the quality of the 
image such as most of existing approaches. In contrast to other methods, the 
proposed algorithm uses a significant portion of the iris region to measure the 
quality in that area. This method evaluates the energy of 1000 images which 
were extracted from 200 iris videos from the MBGC NIR video database. The 
results show that the proposed method is very effective to assess the quality of 
the iris information. It obtains the highest 2 images energies as the best 2 images 
from each video in 226 milliseconds. 

Keywords: Iris recognition, biometrics, video, quality assessment. 

1   Introduction 

According to the literature, considerable improvement in recognition performance is 
possible when poor quality images are removed using image quality assessment stage 
in an automated biometric system [1]. Motivated by this idea, we propose as part of a 
video quality assessment module that our research group is currently developing [2-4, 
7], a new local quality iris image method based on spectral energy analysis. The 
figure 1 shows how the iris video sequence is first globally analyzed to quickly 
determine the quality of the whole image and obtain a small quality image set [4]. 
Secondly, the images resulting from that analysis are used for local quality assessment 
to obtain the best two images from a video that are optimal to continue with the 
recognition module. 

Existing approaches about local iris quality measures consist of extracting the iris 
region from the image based on segmentation algorithm, and then evaluate the quality 
of this area using different bands of the Mexican hat wavelet [5]. Similarly, after 
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2   Local Quality Stage  

The main features of the iris information are located near to the boundary of the pupil. 
Therefore, it is important in all iris recognition systems to ensure the biometric 
information quality in that region. According to [7], the iris image quality is 
determinate by two factors: defocus and blur. These factors are considered visually 
similar. However, they differ in how they are generated. Defocus is an optic 
aberration in which an image is simply out of focus. On the other hand, blur is 
produced by the relative displacement between the object and the camera. These 
factors can be analyzed and detected through a kernel that measures the image energy. 
The energy of a defocused or blurred image concentrates on the lower frequency part. 
Hence, spectral analysis of the frequency suggests that an effective way to estimate 
the degree of focus is measuring its total energy at higher spatial frequencies. The 
quality assessment in our system begins with a global analysis of all images in an iris 
video, in which the whole image is evaluated with a kernel to rapidly select a set of 
high quality images as it is described by Colores et al in [7]. It is important to note 
that the global stage provides a rough good quality images. Nevertheless, in some 
regions of the iris texture can remain important imperfections such as blur, defocus, 
reflection, etc. To ensure that the iris region is free of imperfections, this paper 
proposes to add the stage of local quality to the image quality assessment module. In 
this stage, all images coming from the global stage are processed.  

2a   Pupil Region of Interest Localization 

During the video acquisition, the position of the pupil may differ from one image to 
other. For that reason, it is important to dynamically localize the PROI in the image. 
This region is used to make different processes in iris images like: to detect and 
eliminate the pupil, to localize and extract the iris region and particularly local 
quality assessment. As it is known, the intensity of the pupil is close to zero in a 
grayscale [10]. Using this principle, we developed a basic histogram analysis 
method of grayscale levels to find the maximum and minimum intensity values. 
This simple method shows information about how the intensities are distributed 
around the image. 

To dynamically determine the pupil region of interest we propose the following 
algorithm, which localizes the minimum and maximum values over the histogram. 
First, a histogram is obtained using the intensities of each image resulting from the 
global quality analysis (Figure 2a). Secondly, an average filter is applied to smooth 
the curve generated; this is in order to eliminate false peaks and valleys (Figure 2b). 
Thirdly the slopes of the curve are calculated to determine any positive to negative 
change and vice versa. The observed changes are used to locate and determine the 
position of the lobes or peaks and valleys of the histograms (Figure 2c).  

 



82 L.M. Zamudio-Fuentes, M.S. García-Vázquez, and A.A. Ramírez-Acosta 

 
a)                                                  b) 

 
c) 

Fig. 2. Histogram analysis 

The position of the first peak value is considered as the intensity value of the pupil. 
To dynamically determine the PROI, the following inequality is evaluated to localize 
the positions of the pixels belonging to the pupil,  

                           

 , 255, ,, , .                            (1) 

 
where ,  is the resulting image, ,  is the intensity value of each pixel of the 
image and   is the value of the first peak encountered in the implementation of the 
algorithm. The next step is to extract all ,  positions from the pixels that changed its 
intensity to 255. To calculate the pseudo-center of the PROI, we obtain the average 
positions of x and y using equation 2, 

 1 , 1           2  

 
where posx(i) and posy(i) are the x, y positions and k is the total number of pixels that 
changed the intensity value. Once the pseudo-center is calculated, the algorithm 
determines a square area of size 160x160 pixels called square region of interest 
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(SROI). Figure 3 shows, two examples of this region. After localizing the dynamic 
search area, the next step is the assessment of the local quality with spectral analysis, 
which is described in the next section. 

 
 

 

Fig. 3. Square region of interest (SROI) 

2b   Local Quality Evaluation with Spectral Analysis 

Once the SROI is obtained, this area is convolved with a kernel to evaluate the focus 
degree existing in that region. There are many kernels to perform this evaluation, the 
kernel of Daugman [11], Byung et al, and Kang et al [1, 8, 9]. However, to carry out 
the local quality assessment a Kang’s kernel is conducted (Figure 4). This election 
was done after analyzing the results presented by Colores et al [7]. In this work, it was 
shown that Kang’s kernel takes less time that the Daugman’s kernel. 
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 a)                                                            b)    

Fig. 4. a) 5x5 Kang’s kernel. b) The frequency response of the kernel (Fourier spectrum). 

To perform the local quality assessment, this kernel is convolved with the SROI 
according to the following equation in the space domain: 
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where ,  is the filtered image, ,  is the square region of interest, ,  is Kang’s kernel. According to the convolution theorem [12], the convolution 
product reduces in the frequency domain to a simple product, as is shown in equation 4: 

 , , · ,     (4) 
 
The filtered image ,  is obtained by multiplying the square region 

of interest ,  and Kang’s kernel ,  [1, 8-9] to estimate the degree of 
focus. As a result of using the mentioned theorem, the computation time is reduced in 
the frequency domain. After multiplication, the inverse Fourier transform is 
calculated and the energy of the image through Parseval’s theorem using the 
equations 5 and 6 to obtain the spectral energy density [13] (energy). Finally, a 
threshold is applied to determine the quality of the square region of interest (eq.7), 

 , ,                                        (5) | |                                               (6) 
                                                           (7) 

  
ene is the energy of the ,  and T is the threshold applied to determine the 
quality of the SROI.  

3   Implementation and Results 

The local quality assessment method is tested with 1000 images of 200 videos from 
the MBGC NIR video database [14]. The data set selected were acquired using an 
Iridian LG EOU 2200 camera. Each video consist of 300 to 400 eye frames with a 
resolution of 480 by 640 pixels in 8 bits-grayscale space (intensity values ranging 
from 0 to 255) at 30 frames per second (fps). For each video, 5 images are extracted 
using the global quality assessment image set of our previous work [2, 4, 7] (see fig. 
1). These 5 images are randomly chosen by making a subset from the image quality 
set, and then one of these is selected for each subset.  

The following describes the algorithm developed for the local quality assessment:  

• Locate the pupil region of interest for the five images from each video.  
• Determine the square region of interest SROI. 
• Take the intensities values of the SROI and obtain the corresponding values in the 

frequency domain as the result of the DFT (Discrete Fourier Transform).  
• Calculate the Kang’s kernel value in the frequency domain using the DFT.  
• Perform the convolution operation between the SROI and K, using the convolution 

theorem of Fourier transforms (Eq. 4). 
• Use Equation 5 and calculate the inverse Discrete Fourier Transform to obtain its 

value in the space domain of the result IMFILTER.  
• Calculate the energy of the result using the equation 6.  
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• Evaluate the inequality of equation 7 and select the highest two energies from the 
five energies, which are highest quality images of the video. Then continue with 
the pre-processing stage of the recognition system [2].  

 
After computing the algorithm, the results are concentrated in Table 1. It shows the 
energy obtained in the local quality assessment for the first 30 videos of the 200 
videos from the MBGC used in this evaluation. The table has twelve columns, from 
left to right the first column represents the video number and the next five columns 
are the energies by image from the first fifteen videos. The next six rows represent the 
rest energies of the other videos. It is observed that the majority of the energies are 
around 90 and 120 J/Hz that means the photon flux [15]. However, this method 
obtains the highest two energies which are highlighted in Table 1 to identify the best 
images from a video sequence. On the other hand, most of the highest energies are 
among images 3, 4 and 5. All results are available upon request. 

Table 1. Spectral energy density for each video 

 Energy  Energy 
Video im1 im2 im3 im4 im5 Video im1 im2 im3 im4 im5 

1 103.17 109.61 110.23 113.07 113.85 16 116.31 115.09 120.11 116.34 111.45 
2 80.16 89.18 98.41 93.79 103.38 17 99.30 92.99 92.44 92.58 88.60 
3 101.16 109.79 111.32 113.70 109.05 18 105.63 100.80 101.05 98.16 101.79 
4 77.20 95.13 93.88 91.42 94.27 19 96.06 91.95 110.94 112.16 91.04 
5 95.47 97.50 107.14 106.15 110.44 20 111.53 114.78 89.74 107.95 104.94 
6 87.18 96.46 98.36 96.65 100.48 21 109.95 113.07 111.99 108.71 105.60 
7 99.77 96.00 108.07 101.68 100.93 22 97.23 104.02 103.39 111.56 107.58 
8 91.92 91.78 105.82 90.13 88.03 23 149.80 136.59 140.43 149.84 124.70 
9 103.96 107.79 111.56 114.42 113.20 24 124.37 142.21 156.35 152.38 103.39 

10 98.86 113.16 104.10 111.15 109.69 25 98.84 101.68 104.27 103.78 91.15 
11 92.15 99.36 100.24 96.26 103.57 26 106.33 113.84 110.79 109.67 106.16 
12 102.72 96.99 106.62 108.29 102.81 27 120.18 124.08 114.04 111.64 118.90 
13 108.78 100.70 111.80 99.36 98.37 28 109.61 114.71 97.37 102.58 115.37 
14 111.37 112.65 111.61 109.39 108.15 29 90.20 101.27 108.74 104.03 110.98 
15 91.45 100.73 91.98 88.49 93.45 30 143.73 110.40 126.62 114.30 106.33 

 
To illustrate an example of this assessment, the video number 23 or 05303d273  

as is label in the MBGC is used in Figure 5. Image 1 and image 4 show a sharp and 
distinguishable iris pattern. In contrast, in the images 2 and 3 the iris is not 
distinguishable and image 5 is not sharp enough. 

In Table 2 important differences between the proposed and the existing approaches 
[5, 6] are pointed out. For instance, the iris information used in the existing 
approaches came from CASIA [16] iris database, which is acquired under controlled 
environment. The subject is steady at the acquisition time and the quality of the 
images is optimal for recognition. While in the proposed method, the iris information 
is extracted from the MBGC NIR video database, which is provided as a challenge, 
since it was acquired under unconstraint environment and the subjects were walking 
at the acquisition time. The proposed method uses a significant number of iris pixels 
to assess the local quality, in average 200% more iris texture information than Yi 
Chen, Yi Huang et al [5, 6], and  in contrast to them, it doesn’t need iris segmentation. 
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Table 2. Comparison between the proposed method and existing approaches 

 Proposed Yi Chen et al [5] Yi Huang et al [6] 
Iris information from Video  Images Image sequence 
Database MBGC[14] CASIA[16] CASIA[16] 
Resolution 640x480 320x280 320x280 
Energy evaluation Park’s Kernel Mexican Hat Continuous Wavelets transform 
Number of iris pixels evaluated ~ 21252 Not specified 6144 
Iris segmentation No Yes Yes  
# video 200 No 300 
# images 1000 2608 3600 
Quality assess time 226 ms Not specified Not specified 
Inaccuracy when Bad SROI  

selection 
Bad iris  
segmentation 

Spectacled iris images,  
Iris affected by pained 
eyelashes or eyelid  

Platform  Matlab 
R2008b 

Not specified Matlab 7.0ï

 
The proposed method was tested using Matlab R2008b in a 2.2 Ghz Pentium dual 

core computer with 3 Gb of ram. In addition, it is not optimized to work in real time. 
However, the computing time that will take to assess the local quality for video 
sequence is in average 226 milliseconds. Therefore, it could be optimized for real 
time automatic iris recognition systems.  

4   Conclusions 

In this paper, we propose and evaluate an algorithm for local quality assessment as 
part of a video quality assessment module. In contrast to other methods, it uses 
approximately 200% more significant portion of the iris region to determine the 
quality in that area. This method does not need the segmentation of the iris region to 
determine the quality of the image. In addition, the proposed method is suitable for 
real time optimization in automatic iris recognition systems. It takes just only 226 ms 
to access the local quality for each video sequence. In the MBGC video database, 
according Table 1, most of the highest energies are among images 3, 4 and 5. It means 
that in the acquisition step, the first images that were acquired are not in the focus 
plane. The results showed that the proposed algorithm is fast and very effective to 
identify whether the iris region is out of focus or not. Furthermore, it obtains two 
images of the highest quality from a video sequence. These two images provide more 
reliable information which is useful to further stage of the recognition system. With 
the conjunction of the video quality assessment module through the global and the 
local quality assessment we are ensuring that the iris region is focused. Consequently, 
the accuracy and the robustness of the system will increase by minimizing the false 
reject rate (FRR) and false acceptation rate (FAR). On the other hand, the accuracy  
of this method depends on the automatically selection of the SROI. For future 
improvement, we are going to analyze other quality factor as pupil dilatation, 
segmentation accuracy, iris information ratio and obtain the relation between FRR 
and FAR. 
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Abstract. Stack filters are a special case of non-linear filters. They have
a good performance for filtering images with different types of noise while
preserving edges and details. A stack filter decomposes an input image
into several binary images according to a set of thresholds. Each binary
image is then filtered by a Boolean function, which characterizes the
filter. Adaptive stack filters can be designed to be optimal; they are
computed from a pair of images consisting of an ideal noiseless image
and its noisy version. In this work we study the performance of adaptive
stack filters when they are applied to Synthetic Aperture Radar (SAR)
images. This is done by evaluating the quality of the filtered images
through the use of suitable image quality indexes and by measuring the
classification accuracy of the resulting images.

Keywords: Non-linear filters, speckle noise, stack filters, SAR image
filtering.

1 Introduction

SAR images are generated by a coherent illumination system and are affected
by the coherent interference of the signal from the terrain [1]. This interference
causes fluctuations of the detected intensity which varies from pixel to pixel, an
effect called speckle noise, that also appears in ultrasound-B, laser and sonar
imagery. Speckle noise, unlike noise in optical images, is neither Gaussian nor
additive; it follows other distributions and is multiplicative. Classical techniques,
therefore, lead to suboptimal results when applied to this kind of imagery. The
physics of image formation leads to the following model: the observed data can
be described by the random field Z, defined as the product of two independent
random fields: X , the backscatter, and Y , the speckle noise. The backscatter is
a physical magnitude that depends on the geometry and water content of the
surface being imaged, as well as on the angle of incidence, frequency and po-
larization of the electromagnetic radiation emitted by the radar. It is the main
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source of information sought in SAR data. Different statistical distributions have
been proposed in the literature for describing speckled data. In this work, since
we are dealing with intensity format, we use the Gamma distribution, denoted
by Γ , for the speckle, and the reciprocal of Gamma distribution, denoted by
Γ−1, for the backscatter. These assumptions, and the independence between the
fields, result in the intensity G0 law for the return [2]. This family of distributions
is indexed by three parameters: roughness α, scale γ, and the number of looks
n, and it has been validated as an universal model for several types of targets.
Speckle has a major impact on the accuracy of classification procedures, since
it introduces a low signal-to-noise ratio. The effectiveness of techniques for com-
bating speckle can be measured, among other quantities, through the accuracy
of simple classification methods. The most widespread statistical classification
technique is the Gaussian maximum likelihood classifator. Stack filters are a spe-
cial case of non-linear filters. They have a good performance for filtering images
with different types of noise while preserving edges and details. Some authors
have studied these filters, and many methods have been developed for their con-
struction and applicaton as in [3]. These filters decompose the input image, by
thresholds, in binary slices. Each binary image is then filtered using a Boolean
function evaluated on a sliding window. The resulting image is obtained sum-
ming up all the filtered binary images. The main drawback in using stack filters
is the need to compute optimal Boolean functions. Direct computation on the
set of all Boolean functions is unfeasible, so most techniques rely on the use of a
pair of images: the ideal and corrupted one. The functions are sought to provide
the best estimator of the former using the latter as input. The stack filter design
method used in this work is based on an algorithm proposed by Yoo et al. [4].

We study the application of this type of filter to SAR images, assessing its
performance by evaluating the quality of the filtered images through the use of
image quality indexes like the universal image quality index and the correlation
measure index and by measuring the classification accuracy of the resulting
images using maximum likelihood Gaussian classification.

The structure of this paper is as follows: In Section 2 we summarise the G0

model for speckled data. Section 3 gives an introduction to stack filters, and
describes the filter design method used in this work. In Section 4 we discuss
the results of filtering through image quality assesment and classification perfor-
mance. Finally, in Section 5 we present the conclusions.

2 The Multiplicative Model

Following [5], we will only present the univariate intensity case. Other formats
(amplitude and complex) are treated in detail in [2].

The intensity G0 distribution that describes speckled return is characterized
by the following density:

f(z) =
LLΓ (L− α)
γαΓ (L)Γ (−α)

zL−1

(γ + Lz)L−α
,

where −α, γ, z > 0, L ≥ 1, denoted G0(α, γ, L).
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The α parameter corresponds to image roughness (or heterogenity). It adopts
negative values, varying from −∞ to 0. If α is near 0, then the image data are
extremely heterogeneous (for example: urban areas), and if α is far from the
origin then the data correspond to a homogeneous region (for example: pasture
areas). The values for forests lay in-between.

Many filters have been proposed in the literature for combating speckle noise,
among them the ones by Lee and by Frost. These filters will be applied to speck-
led data, along with the filter proposed in this work. For quality performance
the comparision will be done between the stack filter and the Lee filter. Classi-
fication performance will be assessed by classifying data filtered with the Lee,
Frost and stack filters using a Gaussian maximum likelihood approach.

3 Stack Filters

This section is dedicated to a brief synthesis of stack filter definitions and design.
For more details on this subject, see [4,6,7].

Consider images of the form X : S → {0, . . . ,M}, with S the support and
{0, . . . ,M} the set of admissible values. The threshold is the set of operators
Tm : {0, . . . ,M} → {0, 1} given by

Tm(x) =
{

1 if x ≥ m,
0 if x < m.

We will use the notation Xm = Tm(x). According to this definition, the value of
a non-negative integer number x ∈ {0, . . . ,M} can be reconstructed making the
summation of its thresholded values between 0 and M . Let X = (x0, . . . , xn−1)
and Y = (y0, . . . , yn−1) be binary vectors of length n, define an order relation
given by X ≤ Y if and only if holds that xi ≤ yi for every i. This relation is
reflexive, anti-symmetric and transitive, generating therefore a partial ordering
on the set of binary vectors of fixed length. A boolean function f : {0, 1}n →
{0, 1}, where n is the length of the input vectors, has the stacking property if
and only if

∀X,Y ∈ {0, 1}n, X ≤ Y ⇒ f(X) ≤ f(Y ).

We say that f is a positive boolean function if and only if it can be written by
means of an expression that contains only non-complemented input variables.
That is, f(x1, x2, . . . , xn) =

∨K
i=1

∧
j∈Pi

xj , where n is the number of arguments
of the function, K is the number of terms of the expression and Pi is a subset of
the interval {1, . . . , N}. ‘

∨
’ and ‘

∧
’ are the AND and OR Boolean operators. It

is possible to proof that this type of functions has the stacking property.
A stack filter is defined by the function Sf : {0, . . . ,M}n → {0, . . . ,M}, cor-

responding to the Positive Boolean function f(x1, x2, . . . , xn) expressed in the
given form by (3). The function Sf can be expressed by means of Sf (X) =∑M

m=1 f(Tm(X)).
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In this work we applied the stack filter generated with the fast algorithm
described in [4].

Stack filters are built by a training process that generates a positive boolean
function that preserves the stacking property. Originally, this training is per-
formed providing two complete images on S, one degraded and one noiseless.
The algorithm seeks the operator that best estimates the later using the former
as input, and as a means of measuring error.

The implementation developed for this work supports the application of the
stack filter many times. Our approach consists of using a set of regions of interest,
much smaller than the whole data set, and relying on the analysis the user makes
of these information. Graphical and quantitative analyses are presented. The user
is prompted with the mean value of each region as the default desired value, but
he/she can choose other from a menu (including the median, the lower and
upper quartiles and a free specification). This freedom of choice is particularly
useful when dealing with non-Gaussian degradation as is the case of, for instance,
impulsive noise.

4 Results

In this section, we present the results of building stack filters by training. These
filters are applied to both simulated and real data. The stack filters obtained are
compared to SAR image filters. This comparision is done by assessing smooth-
ing and edge preservation through image quality indexes and by evaluating the
influence of filtering on classification performance.

4.1 Image Quality Assesment

The indexes used to evaluate the quality of the filtered images are the universal
image quality index [8] and the correlation measure β. The universal image
quality index Q is given byequation (1)

Q =
σXY

σXσY

2XY

X
2

+ Y
2

2σXσY

σ2
X + σ2

Y

, (1)

where σ2
X = (N − 1)−1ΣN

i=1(Xi − X)2, σ2
Y = (N − 1)−1ΣN

i=1(Yi − Y )2, X =
N−1ΣN

i=1Xi and Y = N−1ΣN
i=1Yi. The dynamic range of index Q is [−1, 1],

being 1 the best value. To evaluate the index of the whole image, local indexes
Qi are calculated for each pixel using a suitable square window, and then these
results are averaged to yield the total image quality Q. The correlation measure
is given by

β =
σ∇2X∇2Y

σ2
∇2Xσ

2
∇2Y

, (2)

where ∇2X and ∇2Y are the Laplacians of images X and Y , respectively.
In Table 1 the correlation measure β and the quality index Q are shown. The

comparison is made between Lee filtered and stack filtered SAR images. To this
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Table 1. Statistics from image quality indexes

β index Q index

Stack filter Lee filter Stack filter Lee filter

contrast β sβ β sβ Q sQ Q sQ

10:1 0.1245 0.0156 0.0833 0.0086 0.0159 0.0005 0.0156 0.0004
10:2 0.0964 0.0151 0.0663 0.0079 0.0154 0.0005 0.0148 0.0004
10:4 0.0267 0.0119 0.0421 0.0064 0.0124 0.0008 0.0120 0.0006
10:8 −0.0008 0.0099 0.0124 0.0064 0.0041 0.0013 0.0021 0.0006

end, a Monte Carlo experiment was performed, generating 1000 independent
replications of synthetic 1-look SAR images for each of four contrast ratios. The
generated images consist of two regions separated by a vertical straight border.
Each sample corresponds to a different contrast ratio, wich ranges from 10:1
to 10:8. This was done in order to study the effect of the contrast ratio in the
quality indexes considered.

It can be seen that, according to the results obtained for the β index, the
stack filter exhibits a better performance at high contrast ratios, namely 10:1
and 10:2, while the Lee filter shows the opposite behavior. The results for the Q
index show slightly better results for the stack filter all over the range of contrast
ratios. It is remarkable the small variance of these estimations, compared to the
mean values obtained.

Fig. 1 shows the boxplots of the observations summarized in Table 1. From
the plots for the β index, it can be seen that, the Lee filter has a lower degree of
variability with contrast and that both are almost symmetric. The plots of the
Q index show a better performance for the stack filter for all the contrast ratios
considered.

4.2 Classification Performance

The quality of the classification results are obtained by calculating the confusion
matrix, after Gaussian Maximum Likelihood Classification (GMLC).

Fig. 2(a), left, presents an image 128×128 pixels, simulated with two regions:
samples from the G0(−1.5, γ∗−1.5,1, 1) and from the G0(−10, γ∗−10,1, 1) laws form
the left and right halves, respectively, where γ∗α,n denotes the scale parameter
that, for a given roghness α and number of looks n yields an unitary mean
law. In this manner, Fig. 2(a) presents data that are hard to classify: extremely
heterogeneous and homogeneous areas with the same mean, with the lowest
possible signal-to-noise ratio (n = 1). The mean value of the dashed area was
used as the “ideal” image. Fig. 2(b) and 2(c), left, show the result of applying
the resulting filter once and 95 times, respectively. The right side of Fig. 2(a),
Fig. 2(b) and Fig. 2(c) present the GMLC of each image. Not only the pointwise
improvement is notorious, but the edge presevation is also noteworthy, specially
in Fig. 2(c), right, where the straight border has been completely retrieved.
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Fig. 1. Boxplots of the quality indexes

Fig. 3 compares the performance of the proposed stack filter with respect to
two widely used SAR filters: Lee and Kuan. Fig. 3(a) presents the original data,
and the regions of interest used for estimating the Boolean function. In this case,
again, the mean on each region was used as the ‘ideal’ image. Fig. 3(b), Fig.3(c)
and Fig. 3(d) present the result of applying the Frost, Lee and Stack filters (one
and 22 iterations) to the original SAR data. The right side of previous figures
present the corresponding GMLC. The stack filter produces better results than
classical despeckling techniques.

Table 2 presents the main results from the confusion matrices of all the GMLC,
including the results presented in [9] which used the classical stack filter estima-
tion with whole images. It shows the percentage of pixels that was labeled by the
user as from region Ri that was correctly classified as belonging to region Ri, for
1 ≤ i ≤ 3. “None” denotes the results on the original, unfiltered, data, “Sample
Stack k” denotes our proposal of building stack filters with samples, applied
k times, “Stack k” the classical construction applied k times, and “Frost” and
“Lee” the classical speckle reduction filters.
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(a) Simulated image and
GMLC

(b) One iteration and
GMLC

(c) 95 iterations and
GMLC

Fig. 2. Training by region of interest: simulated data

(a) Image, samples and
GMLC

(b) Frost and GMLC (c) Lee and GMLC

(d) Stack Filter 20 and
GMLC

Fig. 3. Training by region of interest: real image

Table 2. Statistics from the confusion matrices

Filter R1/R1 R2/R2 R3/R3

None 13.40 48.16 88.90

Sample Stack 1 9.38 65.00 93.19
Sample Stack 22 63.52 74.87 96.5

Stack 1 14.35 64.65 90.86
Stack 40 62.81 89.09 94.11
Stack 95 63.01 93.20 94.04

Frost 16.55 55.54 90.17
Lee 16.38 52.72 89.21

It is clear the superior performance of stack filters (both classical and by
training) over speckle filters, though the stack filter by training requires more
than a single iteration to outperform the last ones.

Stack filters by training require about two orders of time less than classical
stack filters to be built, and they produce comparable results. Using regions of
interest is, therefore, a competitive approach.
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5 Conclusions

In this work, the effect of adaptive stack filtering on SAR images was assessed.
Two viewpoints were considered: a classification performance viewpoint and a
quality perception viewpoint. For the first approach, the Frost and Lee filters
were compared with the iterated stack filter using a metric extracted from the
confusion matrix. A real SAR image was used in this case. For the second ap-
proach, a Monte Carlo experience was carried out in which 1-look synthetic SAR,
i.e., the noisiest images, were generated. In this case, the Lee filter and a one
pass stack filter were compared for various degrees of contrast. The β and the Q
indexes were used as measures of perceptual quality. The results of the β index
shows that the stack filter performs better in cases of high contrast. The results
of the Q index show slightly better performance of the stack filter over the Lee
filter. This quality assessment is not conclusive but indicates the potential of
stack filters in SAR image processing for visual analysis. The classification re-
sults and the quality perception results suggest that stack filters are promising
tools in SAR image processing and analysis.
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Céline Falip2, and Catherine Adamsbaum2,3

1 Telecom ParisTech, CNRS LTCI, and Whist Lab, Paris, France
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Abstract. In this paper, we propose a new method to segment the sub-
cutaneous adipose tissue (SAT) in whole-body (WB) magnetic resonance
images of children. The method is based on an automated learning of ra-
diometric characteristics, which is adaptive for each individual case, a
decomposition of the body according to its main parts, and a minimal
surface approach. The method aims at contributing to the creation of
WB anatomical models of children, for applications such as numerical
dosimetry simulations or medical applications such as obesity follow-up.
Promising results are obtained on data from 20 children at various ages.
Segmentations are validated with 4 manual segmentations.

1 Introduction

This paper is a first step towards the development of semi-automatic approaches
for WB magnetic resonance images (MRI) segmentation and designing 3D mod-
els of the anatomy of children. These models are meant for dosimetry studies, to
assess the children exposure to electromagnetic fields. We propose to build a set
of models representing children at different ages, and suitable for deformations in
order to test different postures during dosimetry studies, and hence generating
a larger set of models from an existing set.

Our purpose is thus the realistic modeling of the human body in a semi-
automatic way, since manual processing of the data is time consuming and cannot
ensure to obtain topologically correct and smooth structures due to slice by
slice processing. The process relies first on identifying the main body subparts
by analyzing the body silhouette. Then, we propose to decompose the subject
anatomy by segmenting SAT, the muscles and the bones, which represent about
80% of the subject body mass. In this article we describe the first step of this
approach and SAT segmentation. In the context of realistic modeling, accuracy
is not the main expected feature of the method since the segmentation is not
aimed at providing an exact individual model of each patient. What is important
is that the fat is well located, topologically correct, and approximately fits the
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actual thickness (an approximate thickness is sufficient, since it will be prone to
modifications during deformations).

WB MRI consists of an important amount of data and semi-automated seg-
mentation methods are desirable to process them. However, only few works have
been dedicated to this task since it is an emerging modality. Most approaches
rely on low level methods and were developed for adults’ images. For instance,
T1-weighted MRI data are thresholded, and SAT is identified through region
growing in the early work presented in [3]. A fuzzy c-means following intensity
correction is used in [10] to identified AT and an active contour model allows
to separate SAT and VAT (visceral adipose tissues) afterwards. Data acquired
with the DIXON sequence are processed by means of thresholding, mathematical
morphology tools and connected component extraction in [9]. The most sophis-
ticated method is proposed in [6], where anatomical landmarks such as the spine
are identified to constrain the segmentation of both SAT and VAT. However,
this work only focuses on the abdominal region of the subject’s anatomy. This
approach has later been adapted to the case of children (5 years old) in [7] where
the reduced amount of fat is challenging. Whole-body images are considered but
only the abdominal region is segmented.

Here a patient-adaptive method for the WB SAT segmentation is proposed.
Our contribution is to propose a method to segment SAT in the whole-body at
once. Furthermore, the proposed approach does not require data homogenization
thanks to the regularization. The study concerns images of children between 10
and 17 years old and the proposed method is therefore the first one dealing with
SAT in WB children images.

2 MRI Database

Fig. 1. Slices of WB im-
ages of two patients

WB MRI images of children have been acquired thanks
to collaborating hospital, within protocols dedicated
to the exploration of suspected autoinflammatory dis-
eases such as chronic recurrent multifocal osteomyelitis
(CRMO). These acquisitions are emerging thanks to
shorter sequence durations. A set of 20 images has been
acquired with the same Siemens scanner (1.5T) using
T1 (TR = 675ms, TE = 11ms) sequence, using multi-
ple coils. Examples of images are displayed in Figure 1.
The table stops at each station. Depending on the pa-
tient, around 32 coronal slices are acquired with a slice
thickness of 6mm. The reconstructed voxel size for all
images is 1.3 × 1.3 × 7.2 mm3. The total scan time is
97s for T 1 acquisitions. Due to the strong anisotropy,

the data exhibit a lot of partial volume effect. Due to the use of multiple coils,
images actually result from the composition of 4 or 5 images (depending on the
patient height), and some artifacts may appear such as missing parts due to field
size or lower intensity at the transition between two images. An example of the
latter can be seen at the arms level in Figure 1 on the left.
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3 SAT Segmentation

The proposed method for SAT segmentation is based on a minimal surface ap-
proach. To make the method automatically adaptive to each patient, the grey
level histogram is first analyzed to separate the background. Then a key feature
of the method consists in using prior spatial information on the SAT location
to define two regions, included in SAT and in the rest of the body, respectively:
each voxel on the surface of the body is considered as fat and each voxel far
enough from the surface is considered as belonging to the other class. A minimal
surface approach is finally applied to estimate the best boundary between these
two initial regions. Note that the hypothesis that the fat is the first tissue on
the surface of the body is an approximation which is justified by the resolution
of the images and their anisotropy, which make the skin not visible (its 1mm
thickness cannot be properly imaged with a voxel of 1.3× 1.3× 7.2mm3).

3.1 Identification of the Body Silhouette

Figure 2(a) presents the histogram of the image displayed in Figure 1(a). Simi-
lar histograms are observed on the whole database. Values corresponding to the
background form a peak which decreases quickly. A second peak corresponds
to the intensities of the muscles and the soft tissues (such as abdominal or-
gans). The background mask is obtained by thresholding the original image.
The selected threshold corresponds to the lowest value between the two iden-
tified peaks, and is determined automatically as the first valley of a filtered
version of the histogram. The result (Figure 2(b)) separates the body from the
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Fig. 2. Automatic method to extract the body silhouette. The threshold is obtained
from histogram analysis. (a) Histogram of a WB T1 MRI and threshold value (in
red). (b) The thresholding result separates the background and some internal parts
of the body, such as air-filled organs like lungs (in white). (c) Identification of the
body silhouette. (d) The remaining dark components in the body. (e) Analysis of the
silhouette of the body from the head to the feet: Each point represents the surface of
the corresponding axial slice of the binary mask. The marked points correspond to the
neck, the armpit, the waist and the hips.



100 G. Fouquier et al.

background, except components filled with air, liquid, or bones corticals (LCR,
cortical bones, airways, lungs, part of the stomach, the heart and the intestine).
A hole filling applied to the body allows us to add some of these components
but a few others such as airways are directly connected to the background and
thus cannot be filled. These components are disconnected using a morphological
closing of the body component. A result is presented in Figure 2(c). The radius
of the structuring element has been manually set and the same value is used for
all images (5mm). This operation adds unwanted parts in the mask such as fine
space between the arms and the abdomen. Among the remaining components
in the body (Figure 2(d)), the lungs may be identified as the biggest one (both
lungs are generally connected in these images).

3.2 Separation of the Main Parts of the Body

As mentioned above, it is possible to consider that each voxel on the surface of
the body belongs to SAT. To identify the body surface, the body mask alone is
not sufficient since during the acquisitions the patient’s hands lie on the thighs,
the arms are sometimes in contact with the abdomen, and thigh fat may be
in contact. Therefore, we propose to roughly separate the body into its main
parts, namely head, thorax, abdomen, shoulders, arms, forearms, hips, thighs
and legs. This identification allows us to cope with unwanted connections and
to guarantee that different parts that should be separated are actually so.

The information on the image orientation is used to analyze the silhouette
of the body, following a central axis from the top of the head to the feet. For
each axial slice orthogonal to this axis, the area inside the body is computed.
Figure 2.e presents the curve of these values. Reference points are then identified:
the first peak corresponds to the middle of the head, the first valley to the neck.
The shoulders (second peak), the hips (highest remaining peak) and the waist
(lowest valley between shoulder and hips) are also identified. Peaks and valleys
are detected on a filtered version of the curve (using a simple median filter). The
curve is similar for all images in our database, which allows us to automate this
step for all images.

A first automatic body parts identification is achieved using these reference
points and results in a labeling of the main body parts illustrated in Figure 3(b).
The shoulders region labeling also uses the segmentation of the lungs and more
local analysis of the body mask. The initial labeling is then manually corrected
to separate the arms from the abdomen and the thighs (see Figure 3(c,d)). Other
errors are corrected at the same time. This connection step is the only manual
step in our approach.

3.3 Initialization of SAT Segmentation

The minimal surface approach used for the final segmentation is optimized using
a graph-cut method, and is based on two hard constraining regions, one included
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a) b) c) d)
e)

Fig. 3. (a) A slice of an image. (b) Automatic labeling: the arms have the same label
as the thorax and the abdomen. The hands have the labels of hips. (c) Separation of
the hands from the thighs. (d) Corrected labeling. Each forearm (including the hand)
has its own label. (e) Connections between body parts.

a)

c)

b)

d) e)

Fig. 4. Initialization derived from the labeling. Each
voxel on the surface of the body is marked as SAT. Vox-
els far enough from the surface are marked as non-fat.
(a) Here the arms are in contact with the abdomen. Each
body part given by the previous step is processed inde-
pendently. (b) The abdomen is merged with anatomically
neighboring body parts (such as thorax or hips, but not
arms). (c) Distance map from the background. (d) Ex-
traction of border and inside classes for the selected body
part. (e) Results from each part are merged to provide the
initialization: each voxel in green belongs surely to SAT
while each voxel in brown belongs to the inside class. The
remaining voxels (in red) are not classified yet.

in SAT and one included
in non-fat regions, called
“inside region”. These
two regions will be the
seeds of the graph model
and constitute the initial-
ization of segmentation.

For SAT, each bound-
ary voxel of the body
is considered as part of
it, as explained before.
The previous body part
identification allows us
to detect the body sur-
face by considering each
part independently. For
each voxel of the bor-
der of a region, there are
three possibilities: (i) it
has a neighbor in the
background, (ii) it is con-
nected to an authorized
label and thus the voxel
is considered inside the
body, (iii) it is connected

to a non-authorized label and thus the voxel is on the surface of the body. For
example a voxel which is in the arm and neighbor of a background voxel is
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always on the surface of the body. If a voxel of the arm is neighbor of an ab-
domen voxel, then this voxel is also on the surface of the body. But if a voxel of
the arm is neighbor of a shoulder voxel, then it is not on the surface of the body.

For the inside class, each region is considered again and merged with the
neighbor regions having an authorized connection (as defined above). Figure 4(b)
shows the merging of the abdomen and its neighbors (thorax and hips). A dis-
tance map to the background is computed (Figure 4(c)) and used to perform an
erosion whose size depends on the body part: sequential erosions are performed
with an unitary ball until a given ratio of the initial body part volume is kept.
For elongated body parts such as legs, the structuring element is a disk in the
axial plane and not a ball. The eroded region is then masked by the original
region mask to provide the inside class (for the abdomen in our example). This
is repeated for each body part. The obtained initialization is illustrated in Fig-
ure 4(e) where voxels in green belong surely to fat and voxels in light brown
belong to the inside class. Voxels in red are not assigned yet to any class, and
the aim of the segmentation will be to find the best segmentation surface within
this red region.

3.4 Segmentation by Minimal-Surface Approach

The final segmentation is performed using a minimal-surface method, minimizing
the following energy function: E(l) =

∑
pD(p, lp) + β

∑
p,q V (p, q) with p and

q two points, lp a label, D() a data fidelity term, β a fixed coefficient and V
a regularization term. The data fidelity term is defined for each voxel except
for the background using the a priori information previously defined. For each
unclassified voxel, the probability for this voxel to belong to each class is given
by a Gaussian distribution of the intensity of each class (muscles and tissues
on the one hand, AT and bone narrow on the other hand) previously computed
on the whole image. The minimal surface is computed generally between these
two classes and the regularization allows us to separate SAT from other AT
or bones.

The regularization term is defined as follows: V (p, q) = 1
max{(1.0−gradpq),ε} |lp−

lq| with gradpq an estimation of the normalized gradient between p and q which
takes into account the image anisotropy. The parameter ε is set to 10−6 in our
experiments. The parameter β is also fixed in our experiments and the same
value is used for all images (0.75).

This energy is minimized using the graph-cut approach described in [1,5,2]
using the α-expansion algorithm until convergence.

4 Results and Discussion

Experiments have been conducted on our MRI database. Figure 5 present results
on three cases, where the manual segmentation appears in green, the SAT seg-
mentation appears in blue, and 3D reconstructions of the two classes are shown
as well. The first patient is a 10 year old girl, the second one a 13 year old
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Fig. 5. Manual segmentation (in green), SAT segmentation (in blue): 10 year old girl
(left) and overweighted 13 year old girl (right)

overweighted girl. The last one is a 17 year boy with very little fat. The results
have been reviewed by radiologists, who confirmed their good quality, and the
correct detection of all SAT locations. Moreover, the obtained results answer
the needs raised by the foreseen applications: SAT is generally well recognized,
it has the required topology (by construction, since the approach guarantees the
topology of an empty sphere), and the fat thickness is approximately preserved.
Some errors are inherent to the method: each voxel on the surface of the body
is marked as fat, therefore small extremities such as fingers or ears are entirely
considered as fat. Note that this will be corrected in a further step, since a
skin layer will then be introduced on higher resolution reconstructions, before
dosimetry simulations. Other errors are due to the poor resolution of the images
in the coronal direction, making the transition between fat and bone sometimes
unclear. Therefore some parts of the tibias are often marked as fat. Parts of the
clavicles are also often classified as fat.

Fig. 6. 14 years
old girl model

A quantitative evaluation of the segmentation was achieved
thanks to 4 manual segmentations of SAT on the whole-body,
including the 3 cases presented in Figure 5. Each segmentation
has been achieved by an expert user and takes approximately
4h per image. Manual segmentations have been reviewed by
other radiologists. Table 1 presents the mean distance between
the automated segmentation and the manual one for each of
the 4 cases, as well as the similarity index. The best results
are for the over-weight girl and the lowest for the skinny boy.
The very low amount of fat in this case along with the par-
tial volume effect make the manual segmentation challenging
even for an expert. The resulting segmentation guarantees the
topology, even if there is no fat to show. This may be a lim-
itation of the method. When considering only the abdomen
and the hips, results are better. The results on the 16 other
images of our database show a similar quality, according to a
visual inspection performed by medical experts.
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Table 1. Automated segmentation vs manual segmentation for 4 cases

details Whole Body SAT Abdominal SAT

Corpulence Age Mean dist (vox) Similarity Mean Dist (vox) Similarity

p1 normal 13 1.18 87.40% 0.99 92.67%
p12 over-weight 13 1.28 88.11% 1.06 92.71%
p15 skinny 17 1.94 65.44% 1.22 77.42%
p16 normal 10 1.12 82.46% 1.54 88.14%

These results are a useful first step towards the design of realistic WB models
of children for numerical dosimetry simulations. Future work aims at segment-
ing more tissues and organs to complete these models. An illustration of one
of these models is presented in Figure 6. Beside the primary goal of dosimetry
simulations, interesting medical outcome could be derived from this segmenta-
tion. As pointed out in [4], the body fat distribution could be studied to analyze
the body mass index and monitor therapy for obesity, or evaluate its change
according to pathologies. Differentiating SAT from VAT is then important. Also
body fat automatic segmentation allows fat distributions comparison in studies
such as in [8].
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Abstract. Infrared (IR) Focal plane array (IRFPA) cameras are nowa-
days both, more accessible and with a broad variety in terms of detectors
design. In many cases, the IRFPA characterization is not completely
given by the manufacturer. In this paper a long wave 8-12 [μm] mi-
crobolometer IRFPA is characterized by means of calculating the Noise
Equivalent Temperature Difference (NETD) and the Correctability per-
formance parameters. The Correctability parameter has been evaluated
by using a black body radiator and Two-Points calibration technique.
Also, the Transfer Function of the microbolometer IR camera has been
experimentally obtained as well as the NETD by the evaluation of ra-
diometric data from a blackbody radiator. The obtained parameters are
the key for any successful application of IR imaging pattern recognition.

1 Introduction

Currently, the development of IR imaging sensors have been such that the market
has been flooded with different types of IR cameras, each one with different
features as presented in [1]. The main difference between these cameras is in the
sensor type used for detecting the infrared radiation.

Depending on the interaction nature between the detector material and the
IR radiation, the photo-detectors are classified on intrinsic, extrinsic, photo-
emissive, and quantum well detectors [2]. The second class of IR detectors is
composed by thermal detectors, where the incident radiation is absorbed and it
changes the material temperature, that change modifies some physical properties
as resistivity to generate an electrical signal output.

In contrast to photo-detectors, the thermal detectors typically operate at room
temperature. One of the most popular thermal detectors is the amorphous silicon
(a-Si) microbolometer as presented in [3] and as any detector, they are affected
by many type of noise sources.

In spite of the the first bolometer was designed in 1880, according to [4], the
development release to this technology was under classify military contacts, so
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the public according to this in 1992 were surprising in the worldwide infrared
community, and they are still object to several research.

To apply a IR microbolometer camera to IR imaging application a fully char-
acterization of the detector noise is needed. Inherent to this kind of equipments
is the Fixed Pattern Noise (FPN); it can be defined as a fixed noise superim-
posed over the IR image. The FPN is generated by the nonuniform response of
the neighbors detectors for the same integrated IR irradiance. Several methods
have been developed to eliminate this undesired effect, with different results and
operations conditions, some of them are compared in [5].

In [6] and [7] it is shown the importance to have a good understanding of
the detectors response. This can be achieve by using a thermal reference known
as a blackbody [8], which is a laboratory equipment capable of delivering a
flat input temperature. Having this in consideration, many FPA parameter such
that radiometric curves, NETD, Correctability, etc., can be calculated using this
equipment, as it is presented in [9] and [10].

The present study deals with three laboratory characterization parameters
evaluated for a CEDIP Jade Uncooled (UC) camera, long wave 8-12 [μm] mi-
crobolometer IRFPA. This paper is organized as follows: In section 2, the ra-
diometric curve, the NETD, and the Correctability parameters are defined. In
section 3 the experimental technique to perform an evaluation of such param-
eters is described and the main results are shown. Finally, the most important
conclusions are detailed on section 4.

2 Parameters

In this section, the three parameters under analysis are presented. They are able
to represent different characteristics of an IR imaging system. Note that they
are interdependent, because as it will be shown, the radiometric analysis gives
the basis to perform the NETD and the Correctability analysis.

2.1 Radiometric Transfer Function

For measurements of radiometric parameters, the experimental setup use a black-
body calibration source, whose temperatures radiance can be accurately calcu-
lated, and the IRFPA imaging system to be evaluated. The blackbody is com-
posed by a plate with a roughened surface covered with a high emissivity paint-
ing. The uniform temperature surface can be stabilized in a time lower than 10
minutes with an emissivity average of 0.95.

This equipment is essential to perform the IRFPA System Transfer Function
(SiTF). It is estimated by the measure of several flat inputs at different tempera-
ture radiation, which are controlled by the blackbody source. The data acquired
can be represented as a Data Cube, because there exists information on three
dimensions, two spatial axes and one temporal axe. The measures resulted must
be averaged, and then the SiTF is determined [11]. It is typically represented
in response units of voltage, digital counts, etc. vs units of the source such as



Infrared Focal Plane Array Imaging System Characterization 107

temperature, flux, etc. Therefore, any digital value can be associated to a specific
input temperature.

According to this behavior, at a frame nth, a general model for each ij detector
in the FPA is often described by a linear relationship between the incoming
irradiance Xi,j(n) and the readout data Yi,j(n) as follows:

Yi,j = Ai,jXi,j +Bi,j (1)

The SiTF, can be used also to determine how is increased the signal detected
regarding the input, and to determine the sections in which it can be approached
to the first order model described in the equation 1. In a Two-Point or Multipoint
correction method, this is particularly important because it will indicate the
range for which the method is more accurate to apply.

2.2 Noise Equivalent Temperature Difference, NETD

The NETD is a performance metrics to measure the IRFPA thermal resolution,
as it is mentioned in [12], it is the smallest difference in a uniform tempera-
ture scene that the FPA can detect. According to [13], the typical value for a
microbolometer is on the order of 100 [mK]. Note that the knowledge of such
parameter is crucial for IR pattern recognition. Further, the NETD parameter
measures the system’s ability to perceive targets with a low thermal contrast
with the imaging background. It can be defined as the ratio between the noise
rms inherent on the system and the SiTF, then:

NETD =
Nrms[volts]

SITFSlope[volts/K]
(2)

2.3 Correctability

There are several methods to calibrate IR imaging system. The foregoing, has
generated the need of IR image quality indexes to evaluate the quality of the
applied correction method.

The Correctability figure of merit is based on the use of a thermal reference
(blackbody source). Further, the Correctability is able to evaluate the mitigation
of the FPN after calibration. Moreover this parameter magnitude is proportional
to the rate within the total noise and the temporal noise. Mathematically, it is
defined by:

c =

√
σ2

total

σ2
v

− 1 (3)

where σ2
total is the spatial variance given by:

σ2
total =

∑n
j=1(Y c

j − Y )2

n− 1
(4)
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Y c
j is the jth corrected pixel value, Y is the spatial sample mean of the un-

corrected frame, and n is the number of pixels on the FPA.
Note that a Correctability value c = 0 indicates that the FPN has been

completely removed, which is highly desired. If the value is c = 1, the FPN after
the correction equals the temporal noise. When the level of correction is poor,
the residual FPN exceeds the values of the temporal noise, achieving c values
greater than 1.

3 Experimental Setup and Data Processing

To measure, experimentally, the IR imaging parameters outlined above, a labora-
tory set up has been implemented. This is composed by a CEDIP Jade UC FPA
Camera with a spatial resolution of 240×320 pixels, a spectral response between
8-12 [μm], 14 bits digital output. Further, detector material is an uncooled a-Si
microbolometer. For this system, the manufacturer guaranties a NETD lower
than 100 [mK]. The reference IR source used is a blackbody radiator, which
operates between 0-150 [◦C] and with a thermal resolution of 0.1 [◦C].

Fig. 1. Laboratory Setup

3.1 Radiometric Procedure

To measure the SiTF, 300 IR imaging frames where captured for each blackbody
setup temperature. Furthermore, the integration time of the IR imaging system
is fixed at 60 μs. Therefore, the dimensions for each data cube are 240×320×300.
In this case, there have been implemented measures between 0 and 150[◦C] with
5◦[C] incremental between the IR imaging frames. The average of each data cube
was plotted and it is represented by the Fig. 2.

Note that on Fig. 2 the standard deviation of each data cube decreases as
long as the temperature increases.

With the experimental data a linear regression, in the least squares sense, was
performed over all the image’s dynamic range. However because of the nonlinear-
ity of the imaging system response to the blackbody radiator, a linear regression
by sections is required. Further, the dynamic range has been separated on three
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Fig. 3. SiTF Linear regression

sections representing the low, medium and high temperature values. The above
procedure can be seen in Fig. 3.

It can be seen in Table 1 the First-Order parameter obtained after the linear
regression for each range. Note that the slope is growing from the first section
to the third one.

Table 1. First-Order parameter of the radiometric procedure

[T. Range [oC] Ai,j [ADU/oC] Bi,j [ADU]

[10 , 40] 39.1 6973.7

[40 , 100] 57.5 6128.8

[100 , 120] 72.7 4741.3

3.2 NETD Experimental Procedure

The NETD must be calculated at different levels of temperature, because the
slope obtained by linear regression is growing along with the temperature levels.
Therefore, the steps to perform the NETD can be numbered as follows:

1. A temporal noise estimation is calculated for each specific temperature in
the linear range.
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2. A temporal IR imaging frame average at each temperature is calculated.
3. To isolate the temporal component in one frame, the difference between the

particular frame and the previous averaged frame is obtained. This procedure
is repeated for each frame in the chosen data cube.

4. Now it is calculated the rms value of the previous obtained frame.
5. Calculate the standard deviation for each pixel along the temporal axis and

then the final frame is averaged, see Fig. 4 for a best understanding.

Fig. 4. Temporal Noise Procedure

The results are detailed on Table 2. It is appreciated a NETD value decrease as
the temperature is higher. Furthermore, it shows that the NETD is not constant
for all the temperatures. According to this, it is possible to say that the thermal
resolution is better when the target temperature is higher.

Table 2. NETD experimental result at different temperature ranges

T. Range [oC] T. Selected [oC] SiTF [a.u/mK] N(rms)[a.u.] NETD [mK]

[10 , 40] 20 39.1 3.71 95.0

[40 , 100] 70 57.5 4.08 70.9

[100 , 120] 110 72.7 4.77 65.6

3.3 Correctability Experimental Procedure

To evaluate the Correctability IR imaging performance parameter, it is neces-
sary to perform a FPN correction on the raw IR imaging obtained by using the
experimental setup shown in Fig. 1. A Two-Point correction has been imple-
mented, retrieving the correction parameters for different ranges of temperature
[Tmin, Tmax]. The corrupted video set is selected by taking a temperature image
between the [Tmin, Tmax].

The procedure steps to calculate the Correctability can be enumerated as
follow:
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1. Select the raw IR frame and its corresponding calibrated frame over which
the Correctability will be calculated.

2. Calculate the spatial sample variance σ2
total, given by the equation 4, over

the two previous frames.
3. Calculate the temporal variance σ2

v .
4. Finally, apply the equation 3 to evaluate the Correctability parameter.

Note that this steps can be replicated to any FPN calibration method. The re-
sults shown in Table 3 indicate that the correction with the poorest performance
happened for the widest temperature range. This result is expected due to the
low accuracy of the linear approximation in broad ranges.

Table 3. Correctability performance parameters at six different temperatures, each
one tested with a different Two-Point correction

[Tmin, Tmax]oC at T oC Correctability

[25 , 45] measured at 35 0.6581

[60 , 80] measured at 70 0.6733

[95 , 115] measured at 105 23.4465

[20 , 30] measured at 25 0.5858

[10 , 140] measured at 75 94.2718

4 Conclusions

In this paper, three IR imaging system parameters have been analyzed by means
of a laboratory characterization. This has been achieved by using a CEDIP Jade
UC IRFPA camera and a Mikron blackbody radiator.

The radiometric transfer function coming out to be nonlinear up to 100 [oC]
and down to 20 [oC]. Further, the linear operation range was determined to be
between the previous values. Such linear range justifies the potential to apply
the JADE camera to most of the imaging applications in the field of human
biometrics.

The calculated NETD values are consistences with the ones delivered by the
manufacturer. Further, the best NETD obtained was 65 [mK], which is a accept-
able value for human biometrics IR pattern recognition.

Finally, the IR Correctability performance values obtained for two-points cor-
rection method, corroborate the figure of merit behavior according to the ac-
curacy of the correction. The best value obtained was 0.59, which represent a
correction below the electronic temporal noise.

As a general conclusion, it is necessary to say that the IR microbolometer
technology is very noisy for IR pattern recognition and special performance
parameters computations are necessary for any particular application.
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Abstract. In this paper an interactive, semiautomatic image segmentation me-
thod is presented which, processes the color information of each pixel as a unit, 
thus avoiding color information scattering. The process has only two steps: 1) 
The manual selection of few sample pixels of the color to be segmented in the 
image; and 2) The automatic generation of the so called Color Similarity Image 
(CSI), which is just a gray level image with all the tonalities of the selected col-
ors. The color information of every pixel is integrated in the segmented image 
by an adaptive color similarity function designed for direct color comparisons. 
The color integrating technique is direct, simple, and computationally inexpen-
sive and it has also good performance in gray level and low contrast images.  

Keywords: Color image segmentation, Adaptive color similarity function, HSI 
parameter distances.  

1   Introduction  

Image segmentation consists of partitioning an entire image into different regions, 
which are similar in some preestablished manner. Segmentation is an important fea-
ture of human visual perception, which manifests itself spontaneously and naturally. It 
is also one of the most important and difficult tasks in image analysis and processing. 
All subsequent steps, such as feature extraction and objects recognition depend on the 
quality of segmentation. Without a good segmentation algorithm, objects of interest in 
a complex image are difficult (often impossible) to recognize using automated tech-
niques. At present, several segmentation techniques are available for color images, 
but most of them are just monochromatic methods applied on the individual planes in 
different color spaces where the results are combined later in different ways [5]. A 
common problem arises when the color components of a particular pixel are 
processed separately; the color information is so scattered in its components and most 
of the color information is lost [2] [5] [7].  

In this work, an interactive, semiautomatic image segmentation method is pre-
sented which uses the color information for each pixel as a whole, thus avoiding color 
information scattering. In our method, the three color components (RGB) of every 
pixel transformed to the HSI color model are integrated in two steps: in the definitions 
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of distances in hue, saturation and intensity planes ],,[ ish ΔΔΔ  and in the construc-

tion of an adaptive color similarity function that combines these three distances as-
suming normal probability distributions. 

To obtain a consistent color model for direct color comparisons, some simple but 
important modifications to the classical HSI color space were necessary. These mod-
ifications eliminated the discontinuities occurring in the red hue (in 0 and 360 de-
grees) and all the problems associated with them.  

The segmentation method proposed basically relies on the calculation of an adap-
tive color similarity function for every pixel in a RGB 24-bit true color image. As the 
results in Section 4 show, the method offers a useful and efficient alternative for the 
segmentation of objects with different colors in relatively complex color images with 
good performance in the presence of the unavoidable additive noise. It has also good 
performance in gray level and low contrast images. 

2   Previous Work 

There has been a considerable amount of research dedicated to the problem of color 
image segmentation due to its importance and potential, and because color is an effec-
tive and robust visual cue for differentiating between objects in an image. The current 
available techniques and approaches vary widely from extensions of classical mo-
nochromatic techniques to mathematical morphology [2], clustering schemes [4] [10], 
wavelets [3] and quaternions [9], among others. Until recently, the majority of pub-
lished approaches were based on monochromatic techniques applied to each color 
component image in different color spaces, and in different ways to produce a color 
composite [5]. 

Some color similarity measures and distances are presented in [8]. All these meas-
ures compare color pixels as units. They are all based in three dimensional vector 
representations of color in which each vector component corresponds to the RGB 
color channels components. 

A technique that combines geometrical and color features for segmentation extend-
ing concepts of mathematical morphology (for gray images) is developed in [2] to 
process color images. The final segmentation is obtained by fusing a hierarchical 
partition image and a text/graphic finely detailed image. In [7], the authors argue that 
the common polar color spaces such as HLS, HSV, HSI, and so on are unsuited to 
image processing and analysis tasks. After presenting three prerequisites for 3D-polar 
coordinate color spaces well-suited to image processing, they derive a coordinate 
representation which satisfies their prerequisites that they called Improved HLS 
(IHLS) space. In the technique presented in [9] the color information for every pixel 
is represented and analyzed as a unit in the form of quaternions for which every com-
ponent of the RGB color pixel corresponds to the ji,  and k  imaginary bases accor-

dingly. This representation of color is shown to be effective only in the context of 
segmenting color images into regions of similar color texture. 

The CIE L*a*b* and the CIE L*u*v* color spaces were developed expressly to 
represent perceptual uniformity and therefore meet the psychophysical need for a 
human observer. The difference between two colors can be calculated as the Euclidian 



 An Adaptive Color Similarity Function for Color Image Segmentation 115 

 

distance between two color points in these spaces, an important characteristic in im-
age segmentation [5] [8].  

3   Description of the Method 

The method basically relies on the calculation of a color similarity function for every 
pixel in a RGB 24-bit true color image to form what we call a Color Similarity Image 
(CSI), which is a gray level image. A true color image usually contains millions of 
colors and many thousands of them represent the same perceived color of a single 
object due to the presence of additive noise, lack of definition between color borders 
and regions, shadows in the scene, etc. [1] [6] [8]. The color similarity function al-
lows the clustering of the many thousands colors representing the same perceived 
color in a single gray output image. The generation of a CSI image only requires 
calculating Eq. 1 for every pixel in the RGB input image. Thus the complexity is 
linear with respect to the number of pixels of the source image. 

Firstly, we compute the color centroid and color standard deviation of a small sam-
ple consisting of few pixels. The computed centroid represents the desired color to be 
segmented using the technique we designed for that purpose.  

Then, our color similarity function uses the color standard deviation calculated 
from the pixel sample to adapt the level of color scattering in the comparisons [13]. 
The result of a particular similarity function calculation for every pixel and the color 
centroid (meaning the similarity measure between the pixel and the color representa-
tive value) generates the CSI. The generation of this image is the basis of our method 
and preserves the information of the color selected from the original color image. This 
CSI is a digital representation of a continuous function ∈[0 - 1] extended to the range 
of [0 - 255] which can also be viewed as a fuzzy variable of the membership function 
of every pixel related to a given selected color. In CSI is possible to appreciate not 
only the color after segmentation but also all the minimal variations in its tonalities 
when it is multiplied by the original image. 

As can be visually observed from the experiments of section 4, the majority of CSI 
contain some information that is lost during the thresholding step.  

The CSI can be thresholded with any non supervised method like Otsu’s [11], 
which was the method used to obtain the results presented in this work.  

To generate a CSI we need: (1) a color image in RGB 24-bit true color format and 
(2) a small set of arbitrarily located pixels forming a sample of the color desired to be 
segmented. From this sample of pixels we calculate the statistical indicators according 
to our HSI modified color model [13]. This information is necessary to adapt the color 
similarity function in order to obtain good results. To obtain the CSI we calculate for 
every pixel ( )ji,  in the image the following color similarity function S : 
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where hΔ is the hue distance between ( )jihue ,  and the hueaverage _ ; sΔ  is the 

saturation distance between ( )jisaturation ,  and the saturationaverage_ ; iΔ  is the 

intensity distance between ( )jintensityi ,  and the ntensityiaverage_ ; hσ  is the hue 

standard deviation of the sample; sσ  is the Saturation standard deviation of the sam-

ple; iσ  is the Intensity standard deviation of the sample. In Eq. (1) the color informa-

tion is integrated giving high importance to perceptual small changes in hue, as well 
as giving wide or narrow tolerance to the intensity and saturation values depending on 
the initial sample, which is representative to the desired color to be segmented.  

 The common disadvantages attributed to the cylindrical color spaces such as the ir-
removable singularities of hue in very low saturations or in its periodical nature [5] 
(which is lost in its standard representation as an [ ]°°∈ 360,0angle ) are overcome in 

our technique using vector representation in 2ℜ , in the separation of chromatic and 
achromatic regions, and in the definition of the sh ΔΔ , and iΔ  distances. 

 Among the different options using the same hue and saturation attributes common 
in the cylindrical spaces like HSI, HSV, HLS, IHLS, etc., we use the intensity value 
but this choice is of minor importance because the achromatic information is much 
less important to discriminate colors than the chromatic one (mainly the hue). So the 
use of all this different spaces should give approximately the same results. The use of 
Gaussians in the definition of jiS ,  (Eq. 1) reflects our belief that the color model 

modifications proposed in this paper takes into account normal distributions of the 
color attributes in the modified HSI space. 

3.1   Pixel Sample Selection 

The pixel sample is a representation of the desired color(s) to be segmented from a 
color image. From this pixel sample we obtain two necessary values to feed our seg-
mentation algorithm: the color centroid and a measure of the dispersion from this 
centroid, in our case the standard deviation. These two values are represented accor-
dingly to our modified HSI model.  

If we take only one pixel, its color would represent the color centroid, and would 
produce dispersion equal to zero, giving in the calculation of Eq. (1) a Dirac delta. 
This means that the similarity function would be strictly discriminative to the pixel 
color. This is not the general intention of segmenting color images where usually a lot 
of colors are present in the image, many thousands of them representing the same 
perceived color of a single object or region due to additive noise.  

If we additionally take another pixel, we obtain then the centroid from both and the 
standard deviation of each one of them to feed our algorithm. So when we look for 
this additional pixel, we should take it from a region which was not (or poorly) seg-
mented when we used only the first pixel.  

If we continue adding more and more pixels to the sample we find that the corres-
ponding centroid of the area to be segmented increases in accuracy. Here we may 
have a relatively minimum representative sample of the color area to segment. 
Beyond this point, increasing the number of pixels does not affect sensibly the  
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segmentation quality because adding more pixels to the sample of the same perceived 
color does not affect the statistical estimators to feed the algorithm. 

3.2   The Achromatic Zone G  

The achromatic zone G  is the region in the HSI color space where no hue is per-
ceived. This means that color is perceived only as a gray level because the color satu-
ration is very low or intensity is either too low or too high. 

Given the three-dimensional HSI color space, we define the achromatic zone G  as 

the union of the points inside the cylinder defined by %10<Saturation  of MAX and 

the two cones %10<Intensity  of MAX and %90>Intensity  of MAX, were MAX is the 
maximum possible value as presented in [8]. Pixels inside this region are perceived as 
gray levels. 

3.3   Calculating the Average Hue 

In order to obtain the average of the hue ( mH ) of several pixels from a sample, we 

take advantage of the vector representation in 2ℜ . Vectors that represent the hue 
values of individual pixels are combined using vector addition. From the resulting 
vector we obtain the average hue corresponding to the angle of this vector with re-
spect to the red axis. Thus mH  is calculated in the following manner: 

 For every pixel ( )yxP ,  in the sample the following 3ℜ  to 2ℜ  transformation is 

applied: 
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where ( )PV  is the normalized projection of the RGB coordinates of the pixel P  to 

the perpendicular plane to the Intensity axis of the RGB cube when the x  axis is 
collinear to the Red axis of the chromatic circle. On the other hand G  (see Section 
3.2) represents the achromatic zone in the HSI space and [RGB]t is a vector with the 
color components of the pixel in the RGB color space. 

3.4   Calculating the Hue Distance hΔ  

Using the vector representation of Hue obtained by the 3ℜ  to 2ℜ  transformation of 
RGB space points expressed in Eq. (2), we can calculate the hue distance hΔ  between 

two colors pixels or color centroids 1C  and 2C , as follows: 



118 R. Alvarado-Cervantes and E.M. Felipe-Riveron 

 

2121 ),( VVCCh −=Δ  If 1C  and GC ∉2  

0=   If 1C  or GC ∈2  

where G  is the achromatic region, and 1V  and 2V  are the vectors in 2ℜ  calculated 

with the transformation on 1C  and 2C  given in Eq. (2). 

3.5   Saturation Distance and Intensity Distance 

We can calculate them by using the standard conversions for saturation and intensity 
from RGB to HIS space [8], normalized in the range [0, 1]: 
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In expression (3), we defined the saturation equal zero in case of the black color. 
We use the Euclidean distance to define saturation distance sΔ  and intensity dis-

tance iΔ  between two pixels or color centroids. 

 The CSI is a gray level image, so it can be dealt with any mathematical morpholo-
gy technique used for gray level images. Filters, operators, thresholds, etc. can be 
applied directly to the CSI when geometrical characteristics are considered. The 
common intensity image can be processed too as a complementary information 
source. The generation of a CSI only requires calculating Eq. 1 for every pixel in the 
RGB input image. Thus the complexity is linear with respect to the number of pixels 
of the source image. 

4   Results and Discussion 

In this section we present the results of our segmentation method applied to three 
difficult to segment images: a classical complex color image, a gray level infrared 
image and a low contrast color image. These experiments consisted of segmentation 
color regions according to the following two steps: 

1) Selection of the pixel sample. This is the only step to be left up to the user. In 
order to have a helping direction for this task the following considerations may 
be useful to select the number of pixels of the sample: If the color of the desired 
area to segment is solid (without additive noise) it is only necessary to have one 
pixel sample from the desired area. However, if we want to take in account the 
color lack of definition happening in the borders, we have to take a sample of 
the new colors that appear in that area due to the above condition. The pixels of 
the samples from the original images can be selected arbitrarily, that is, in any 
order, in any number and physically adjacent or not. 
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2) CSI calculation. This step is automatic; its output is a gray image showing the 
similarity of each pixel of the RGB true color image to the color centroid 
formed with the chosen pixel sample taken from the region of interest to be 
segmented, being white for 100% of similarity and black for 0%. 

The user can threshold now the CSI. This step could be necessary to obtain a template 
for a final segmentation of the desired color from the region of interest; it could be 
arranged as an automatic step by using, for example, the non-supervised Otsu’s thre-
sholding method [11]. This guarantees than the colors segmented be the real ones. 
During the thresholding of the CSI some information may be lost what could not be 
convenient. If the CSI itself is used as a template, then we get better segmented areas 
(without loss of pixels), one for each selected color, but then they are altered in some 
measure due to the intrinsically gray levels that conform the CSI.  

Figure 1 shows an RGB color image (sized 301 x 226 pixels and 27146 different 
colors) of tissue stained with hemotoxylin and eosin (H&E), which is a very popular 
staining method in histology and the most widely used stain in medical diagnosis. 
This staining method helps pathologists to distinguish different tissue types [12]. 

 

Fig. 1. Stained tissue Fig. 2. Sample composed by 4 pixels located in 
two zones with blue color 

In this image we can see three main hues of colors despite the thousands (more 
than 27,000 colors) of actual RGB values to represent them: blue, pink and white. 
Different pixel tonalities in the image depend on their particular saturation and on the 
unavoidable presence of additive noise. The proposed color segmentation method is 
practically immune to these conditions, although obviously some solutions could be 
used to improve the quality of the segmented regions, as for example, preprocessing 
the image for smoothing noises of different types, applying some morphological me-
thod to reduce objects with given characteristics, and so on.  

In this experiment we took a sample composed by 4 pixels located in two zones 
with blue color. They are selected from an enlarged 21 x 21 pixels region as shown in 
Fig. 2. 

From this sample we calculated the color centroid and the standard deviation in our 
modified HSI space; with these two values we use the Eq. 1 to calculate for every 
pixel the pixel values of the CSI shown in Fig. 3. 
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Fig. 3. The Color Similarity Image (CSI) of 
blue 

Fig. 4. Zones of the segmented blue color 

After applying Otsu’s thresholding method we obtained the color segmentation 
shown in Fig. 4.  

For the pink area we repeated the same process. Figure 5 shows the pixels sample 
(from 4 pixels), its corresponding CSI is shown in Fig. 6 and the final segmentation of 
the pink zone is shown in Fig. 7. 

 

   

Fig. 5. Pixels sample of 4 points for the pink color 

 

Fig. 6. CSI of the pink color Fig. 7. Zones of the segmented pink color 

Repeating the above process in Fig. 8 we show the pixel sample and in Fig. 9 the 
CSI (left) and the final segmentation of white color areas (right).  

In Figure 10 (right) we show a composite image of Fig. 4, Fig. 7, and Fig. 9 (right) 
using consecutively the logical XOR operation. We use this operation instead of the 
OR one to guarantee that in the composite image a given pixel appear only in one 
color segmented zone, as it is expected in all segmentation task. The black pixels 
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Fig. 8. Pixel sample for 
the white color  

Fig. 9. CSI of the white color (left) and zones of the segmented 
white color (right) 

represent those colors that were not segmented by any of the three color choices or, 
on the contrary, when the pixel appeared with the same value (1 or 0) in two binary 
images (they were made black by the consecutive XOR operation). In this example, 
non-segmented pixels were 4546 pixels from a total of 68026 pixels, which is only 
6.6% (4546/68026) of the total number of pixels of the original image. It can be ob-
served in Fig 10 (right) that a good amount of the black pixels belongs to borders 
between regions of different colors where they are clearly undefined.  
 

  
 

Fig. 10. Original image (left) and composite image (right) 

 
Comparing both images in Fig. 10 demonstrates the accuracy of the blue, pink and 

white segmented zones obtained by the method, not only from the point of view of the 
number of segmented pixels but from the point of view also of the quality of the tonali-
ties of the colors that appear in the original image. These results were obtained with as 
few as only 12 pixels belonging to only three samples, one associated to each color blue, 
pink and white. The composite image shown in Fig. 10 (right) was created through the 
selection of samples with a maximum of 4 pixels for each color considered to be seg-
mented. The size and/or shape of the segmented regions of different colors depend on 
the number, the distribution and quantity of pixels that makes up each sample, as well as 
if two or more samples have pixels with the same or very similar color. With samples 
well selected the method guarantee very good color segmentation.  

It is possible with the proposed color segmentation method to divide a region hav-
ing a particular color (i. e. blue region in Fig. 4) in two or more sub-regions having 
the same basic color (blue) but having two different saturation (darker nuclei with 
clearer zones surrounding them). Figure 11 shows the seven pixels sample selected 
from two different zones belonging to the darker blue nuclei. 
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Fig. 11. Sample of 7 pixels corresponding to the blue nuclei 

Figure 12 shows the CSI of dark blue nuclei, and Fig. 13 shows the final seg-
mented image. Figure 14 shows the well-differentiated nuclei (colored in green) sur-
rounded by clearer blue zones. The possibilities of the method are many, requiring 
only a few well-selected samples from well-distributed zones and having the suitable 
number of pixels each. 

  

Fig. 12. CSI of blue nuclei Fig. 13. Segmented darker 
blue nuclei 

Fig. 14. Well differentiated 
green nuclei surrounded by 
clearer blue zones 

We will show the good results obtained by our method applied to gray images and 
low contrast color images in the following two examples. Figure 15 shows a gray 
level image obtained with an infrared camera; we took a small pixel sample (of 4 
pixels) from the face area and obtain its correspondent CSI shown in Figure 16. The 
segmented face appears in figure 17 after thresholding with Otsu method.  

In Figure 18 a fossil inserted in a rock is shown, we took a small pixel sample of 
the fossil area from which we obtained its corresponding CSI (Fig 19). Figure 20 
shows the resulting image after thresholding with Otsu method.  

  

Fig. 15. Infrared image Fig. 16. CSI of face Fig. 17. Segmented face 
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Fig. 18. Leaf fossil in rock Fig. 19. CSI of fossil Fig. 20. Threshold by Otsu 

5   Conclusions  

The results in the previous section demonstrate that the color segmentation method 
presented in this paper offers a useful and efficient alternative for the segmentation of 
objects with different colors in relatively complex color images with good perfor-
mance in the presence of the unavoidable additive noise, in images with low contrast 
and also in gray level images. 

The steps required to obtain a good segmentation of regions with different colors 
by using the proposed methodology are usually straightforward, simple and repetitive. 
If color (or a given gray level) is a discriminative characteristic, only the selection of 
a given threshold to the color similarity function CSI is needed to obtain a good seg-
mentation result. From many experiments we have observed that colors were obtained 
in a straightforward way only by thresholding the Color Similarity Image. 

In our method, the three RGB color components of every pixel transformed to the 
HSI color model are integrated in two steps: in the definitions of distances 
[ ish ΔΔΔ ,, ] in hue, saturation and intensity planes and in the construction of an adap-

tive color similarity function that combines these three distances assuming normal 
probability distributions. Thus the complexity is linear ( [ ]nO ) with respect to the 

number of pixels n  of the source image. The method discriminates whichever type of 
different color objects independently on their shapes and tonalities in a very 
straightforward way. 
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Abstract. Level set methods are effective for image segmentation prob-
lems. However, the methods suffer from limitations such as slow conver-
gence and leaking problems. As such, over the past two decades, the
original level set method has been evolved in many directions, including
integration of prior shape models into the segmentation framework. In
this paper, we introduce a new prior shape model for level set segmen-
tation. With a shape model represented implicitly by a signed distance
function, we incorporate a local shape parameter to the shape model.
This parameter helps to regulate the model fitting process. Based on
this local parameter of the shape model, we define a shape energy to
drive the level set evolution for image segmentation. The shape energy
is coupled with a Gaussian kernel, which acts as a weight distribution on
the shape model. This Gaussian effect not only allows evolution of level
set to deform around the shape model, but also provides a smoothing ef-
fect along the edges. Our approach presents a new dimension to extract
local shape parameter directly from the shape model, which is differ-
ent from previous work that focused on an indirect manner of feature
extractions. Experimental results on synthetic, optical and MR images
demonstrate the feasibility of this new shape model and shape energy.

Keywords: image segmentation, level set method, prior shape model,
shape energy.

1 Introduction

Image segmentation is fundamental to image understanding. Although region
and boundary-based segmentation methods have been implemented successfully
in many physical applications, these classical methods still not fully utilize the
image information to achieve their purposes, for example, in clinical applications.
Since its introduction by Osher and Sethian [10], the level set methods have been
widely used for image segmentation. For highly challenging segmentation tasks
such as tracking moving objects, segmenting occluded scenes and objects of
interest from medical images, level set methods have achieved promising results
when coupled with prior knowledge or prior shape models [6],[7],[12],[14],[16].
When information such as gradient is missing from images, the prior shape
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helps level set evolve toward the desired region of interest. The segmentation is
determined by a dissimilarity measure between the evolving level set function
and the prior shape. Different shape models and shape representations have
been proposed to couple with the level set methods over the past 10 years. For
example, Leventon et al. [9] suggested the representation of a set of training
shapes by the principal component of their signed distance function; Tsai [16]
proposed to carry out optimization directly within the subspace of the first
few eigenmodes. Other examples of shape models for level set can be found in
Rousson and Paragios [12],[13]. However, these models suffer from shortcomings
such as the predefined statistical data distribution might be invalid because it
differs from the actual data distribution [5], or modeling non-linear variability of
the data with linear methods may not be admissible etc. A more comprehensive
review on statistical approaches on integrating shape for level set segmentation
is discussed by Cremer et al [8].

In this paper, we introduce a new shape model and an associated shape en-
ergy for level set segmentation. Our inspirations come from the work presented
by Rousson and Paragios [14]. While Rousson introduces a confidence map to
identify the reliability of shape fitting process during level set evolution, we focus
on extracting local statistical properties from the shape model to enhance the
level set evolution. Our segmentation framework consists of two new features: a
local shape variance and a kernel weighted functional.

2 The Segmentation Framework

2.1 Level Set Method

The level set technique, also known as the implicit deformable model, is by em-
bedding the interface in a higher dimensional scalar function. The interface is
represented implicitly as a level set (usually the zero-th level set) of the intro-
duced scalar function. The rest of the scalar function is defined as the signed
distance function from the interface, i.e., the level set.

Suppose that the level set φ(x) is evolving in time, i.e., φ(x(t), t) = 0. Taking
derivative of the last equation with respect to t yields

∂φ

∂t
+∇φ(x(t), t) · x′(t) = 0.

As the rate of change of x(t) is in the normal direction of the surface, n = ∇φ
|∇φ| ,

one can rewrite the equation as

∂φ

∂t
+ F |∇φ| = 0,

where F = x′(t) · ∇φ
|∇φ| represents the speed function. In recent development

of level set function, the “variational level set method” is introduced: An en-
ergy E(φ) is defined in relation to the the speed function. The minimization of
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such energy which generates the Euler-Lagrange equation, provides the evolution
equation through the calculus of variation:

∂φ

∂t
= −∂E(φ)

∂φ
.

Our purpose is to integrate shape energy into this evolution equation, i.e., to
define a speed function for level set evolution with the introduction of local
parameter from a shape model.

2.2 Prior Shape Model

Inspired by Rousson and Paragios [14], our prior shape model is constructed
from a set of training samples represented implicitly by signed distance functions
{φ1, φ2, . . . , φN}. An initial shape model is obtained by taking the average from
these signed distance functions. A re-initialization algorithm [15] is then applied
to this initial shape model to approximate a signed distance function, φm, which
becomes the shape model. In our case, φm forms a global parameter of the shape
model. In order to better represent the local information of the shape model,
we use a locally enhance, neighboring dependent variance to capture the local
shape features:

σ2
l =

∑
x∈{φ=0}

∑
xi∈Ux

(φm(xi)− φm(x))2

|Ux|
,

where Ux ⊂ φm is a local window surrounding x. This local shape parameter
not only maintains the smoothness of the shape model, but also incorporates
the local features of the shape. The local variance taken around a pixel-wise
neighborhood in the shape model provides an insight into the localized proper-
ties on the signed distance function: larger variance indicates a larger average
distance difference, i.e., a steeper change in the level set function. This has a bet-
ter physical representation in comparison to the variance obtained for voxel-wise
approach in the training samples.

2.3 The Shape Energy

Global variance and variance for shape model were used in various work in
the past. However, these variances might not reflect the desired shape model
information accurately due to variations such as ill alignment of the training
samples, wide range of scaling etc. Under certain extreme circumstances, such
variations might jeopardize the accuracy of level set evolution. Bear in mind of
these limitations, we propose a regularized factor to accompany the energy that
incorporates local statistical features. This regularized term is extracted from the
prior shape model by taking into account the local average of signed distance
function. To achieve our purpose, we use a pixel-wise local statistical variance
from the shape model, σ2

l . This is in line with the localization of the shape model
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whereby information is integrating from local neighborhood. The localization
along the level set shall enhance the control of the edge based stopping functional.

To formulate the shapeenergy,weadopt the symmetricdissimilaritymeasurebe-
tweentwoshapesproposedbyChanandZhu[3],Riklin-Raviv[11],Charpiat[4]:

D(φ, φm) =
∫

Ω

1
2

(H(φ)−H(φm))2 dx,

where H(φ) is the Heaviside function. This is then incorporated with an external
energy that drive the zero level set towards the object boundary [1]:

E1(φ) =λ
∫

Ω

gδ(φ)|∇φ| dx,

where g is the edge indicator function g = 1
1+|∇Gσ∗I|2 , and Gσ is the Gaussian

kernel with standard deviation σ.
The total energy is thus

E(φ) =D(φ, φm) + E1(φ)

=
∫

Ω

1
2

(H(φ)−H(φm))2 dx + λ

∫
Ω

gδ(φ)|∇φ| dx.

By taking the Gâteaux derivative of E(φ), followed by the gradient decent flow
that minimizes the functional

∂φ

∂t
= −∂E

∂φ
,

we obtain the standard evolution equation

∂φ

∂t
=− (H(φ)−H(φm)) δ(φ) − λδ(φ)div

(
g
∇φ
|∇φ|

)
.

Now, to incorporate the regularizing effect from shape model’s local parame-
ter into the level set evolution, we consider a variation of the above evolution
equation by multiplying it with a weighted constraint:

w(φ) =
1

2σ2
l

e−(H(φ)−H(φm))2/2σ2
l ,

where σ2
l is the local variance along the level set. Note that w(φ) acts as a

“weighing” function giving the evolution term (H(φ)−H(φm)) δ(φ) higher in-
fluence when the difference between the level set and the shape model is larger.
Hence, our level set evolution equation is

∂φ

∂t
=− 1

2σ2
l

e−(H(φ)−H(φm))2/2σ2
l

(
(H(φ)−H(φm)) δ(φ) + λδ(φ)div

(
g
∇φ
|∇φ|

))
.
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3 Experimental Results

We implement the proposed framework on synthetic noisy images and optical
images with partial blurring effect as well as MR images of spine. For synthetic
images, we created five synthetic images of various sizes and aspect ratios as
training samples while for optical and MR images, we use four and six training
samples respectively. The classical edge based [1] and region based methods [2]
are used to compare and to highlight the effectiveness of our approach.

In Fig. 1, we show the shape model and local shape variance of the sample
images. The zero level set or shape contour are outlined from the signed distance
function images to show the shape model used in our experiments. The contour
of training samples are plotted on the extracted local shape parameter images.
Images of voxel-wise variance on the shape models are illustrated here for the
purpose of comparison with our proposed local variance information. Unlike the

Fig. 1. The shape model is outlined in red while the training samples are outlined in
blue. (a) The shape model and (b) variance local used in our proposed prior shape model
for synthetic image (top), optical image (middle) and MR image of spine (bottom)
respectively. (c) The voxel-wise variance are shown as comparison to our proposed
local shape parameter.
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voxel-wise variance, this local shape parameter highlights the local variations
of shape model without creating unwanted excessive variation effects outside
the shape model neighborhoods, which happens to the voxel-wise variance. The
absence of these excessive side effect helps to ensure the stability of this local
shape parameter when applying to level set evolutions.

Fig. 2 demonstrates results obtained from the edge based, region based and
shape based approaches respectively. A well known fact on the edge based ap-
proach is its sensitivity to initial contour placement, this can be observed from
the MR image sample, where part of the image contour is badly located when
the initial contour is placed across the edge of region of interest. In addition,
even when the initial contour is placed inside the region of interest, the segmen-
tation result is still not as accurate comparing to the results from our proposed
shape based approach. Obviously the segmentation for synthetic and optical
images by edge based method are not effective because the method cannot han-
dle blurring edges. Although the region based is not sensitive to initial contour
placement, the inhomogeneity of image intensities has caused the mal perfor-
mance of the method on MR image and it is not accurate on blurring edges, as

Fig. 2. (a) The initial contour placement used by all the methods for segmentation.
Results obtained by (b) edge based method, (c) region based method and (d) our
proposed shape prior based method for synthetic image (top), optical image (middle)
and MR image of spine (bottom).
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seen on synthetic and optical images. Whereas results from our shape based ap-
proach clearly highlight the region of interest in all sample images and achieved
an average accuracy of 93% when tested on fifteen sample images.

4 Conclusion

We have proposed a new image segmentation framework encompassing area dis-
similarity, shape model and local variance. Our shape model guides the level set
evolution through the introduction of a local shape parameter, together with a
new shape energy. The shape parameter provides localized information that acts
as a moderator for the shape model and in the level set evolution process. Al-
though our work is inspired by by Rousson and Paragios [14], we take a different
path in our approach. Unlike their work whereby emphasis is on capturing the
shape model reliability and alignment during level set evolution, we look closer
into the local property of shape model and to incorporate it into the segmenta-
tion process. In particular, we focus on integrating the local variance of shape
model into the level set evolution for regularizing purposes. The proposed seg-
mentation framework has been tested on synthetic images with added noise and
blurring effect, as well as on MR images of spine. Experimental results on these
images are promising. We merely use one local feature for this work, i.e., the
local variance of shape model. Future work is to explore and encompass more
information from the shape model, for example, the local geometrical features
and to couple it into the level set segmentation framework. Although similar
work has been carried out in the past, somehow the information is extracted
in an indirect manner, i.e., through the principal component analysis of shape
model, and the extracted information are mostly in global sense. With a more
direct approach in acquiring information from shape model, we anticipate to
obtain better shape parameters for level set segmentation.

Acknowledgments. The authors would like to thank Professor Jayaram K.
Udupa of Department of Radiology, University of Pennsylvania for the medical
data and advice.
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Abstract. Curve skeletons are used for linear representation of 3D ob-
jects in a wide variety of engineering and medical applications. The
outstandingly robust and flexible curve skeleton extraction algorithm,
based on generalized potential fields, suffers from seriously heavy com-
putational burden. In this paper we propose and evaluate a hierarchical
formulation of the algorithm, which reduces the space where the skele-
ton is searched, by excluding areas that are unlikely to contain relevant
skeleton branches. The algorithm was evaluated using dozens of object
volumes. Tests revealed that the computational load of the skeleton ex-
traction can be reduced up to 100 times, while the accuracy doesn’t suffer
relevant damage.

Keywords: 3D curve skeleton, potential fields, hierarchical algorithm,
parallel computation, graphical processing units.

1 Introduction

In the two dimensional case, the medial axis of an object is the collection of
points that have at least two closest points to the boundary of the object. On
the other hand, the skeleton is defined as the locus of centers of maximal circles
inscribed within the object. A circle C is considered maximal, if there is no other
circle inscribed in the object that entirely contains C. In two dimensions, the
medial axis and the skeleton are practically the same.

In three dimensions, the medial surface is the term that corresponds to 2D
medial axis. The medial surface also contains linear curves in places where there
are at least three surfaces at the same distance. Figure 1(left) shows the medial
surface of an object. There are several 3D computer graphics applications, where
3D objects are desired to be represented as a collection of linear curves. For
example, the inverse kinematics, which is very practical and thus quite popular
in animations, demands such a representation. However, the 3D skeleton of an
object does not have a mathematical definition. We could say that the 3D curve
skeleton (3DCS) is a subset of the medial surface, a collection of curves which is
centered within the object, but that is not a rigorous definition. Figure 1(right)
the desired shape of the 3DCS of an object.
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There are several 3DCS extraction algorithms, which approximate this curve
collection based on different physical approaches. All of them give an approxi-
mation of the 3DCS. As we will see later, the segments of the skeleton shown in
Fig. 1(right) will be slightly bent in the proximity of bifurcation points.

Fig. 1. Medial surface (left) and 3D curve skeleton (right) of a deformed cube

The most important properties the 3DCSs share are:

1. Homotopic: the curve skeleton is required to be topologically equivalent to
the original object, that is, the number of connected components, tunnels
and cavities should be the same [11].

2. Invariant to isometric transformations: this is important in applications
where the skeleton is used as shape descriptor.

3. Thin: curve skeletons are one dimensional. In discrete applications they can
be either single voxel wide lines, or zero width lines described by points
having real valued coordinates.

4. Centered: the curve skeleton lays within the medial surface of the objects,
and is centered within the surface patches it belongs to [12].

5. Curve skeletons are reliable if all surface points are visible from some place
on the skeleton [9].

6. A curve skeleton extraction method is robust, if the resulting skeleton is not
sensitive to small variations of the boundary.

In the discrete case, 2D skeleton extraction is traditionally performed by thinning
via hit-or-miss transform, by applying the L mask family from Golay’s alphabet.
Most of the algorithms developed for 3DCS extraction also work in 2D. They will
be enumerated in the followings. The literature of 3D curve skeleton extraction
consists of several various approaches:

1. Thinning and boundary propagation methods iteratively remove so-called
simple points from the objects, which by definition, do not influence the
topology of the object [3]. Methods vary according to the criteria they apply
to find simple points.

2. Distance field based methods apply the distance transform with a selected
chamfer metric, for each internal point of the object, and extract the skeleton
from the distance field data [4].

3. Geometric methods are generally applied to objects described as triangular
or polygonal meshes. The most popular algorithmic scheme in this family is
mesh contraction [2].
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4. General field based methods were first introduced in 2D formulation [1,8]. 3D
solutions use potential fields [5,6], repulsive force fields [13,14], or radial basis
functions [10] to create a general field. The skeleton is extracted afterwards
based on some special points (complete extinguishment and saddle points)
within the field.

2 Generalized Potential Field

According to the theory of electrostatics, every electrical charge generates a
potential field. This means that whenever another charged object approaches
the initial one, it will be attracted or repelled according to the sign of both
charges. The magnitude of the force is computed as: F = kq1q2/d

2, where k is a
constant, d is the distance between the two charged objects, while qA an qB are
the two charges. In case of the generalized potential field applied in computer
graphics, the constant k is neglected, the charges are considered unitary and of
same polarity, while the distance is treated in a generalized way, in the sense that
the magnitude of the force is equal to the −α’th power of the distance: F = d−α.
In other words, the force vector that applies to charged object B, because of the
presence of charged object A, is: F = dAB|dAB |−(α+1), where dAB represents
the distance vector between the objects. Expressed in 3D Euclidean coordinates,
the components of the above force vectors are:

Fx =
xB − xA

|dAB|α+1
Fy =

yB − yA

|dAB |α+1
Fz =

zB − zA

|dAB|α+1
, (1)

where A and B represent the points where the charges are placed, and the length
of the vector dAB is |dAB| =

√
(xB − xA)2 + (yB − yA)2 + (zB − zA)2.

The generalized potential field is applied as follows. At first, electrical charge
is placed and uniformly distributed upon the outer surface of the object. In the
following step, the generalized potential field is computed in every internal grid
point of the object. Or in other words, a small object with unit charge virtually
marches over every internal grid point, and the electrostatic force vector that
applies to the object is computed for each position.

The formula of the GPF is deduced by summing all its components. All exter-
nal point charges may have their effect to the electrostatic field in any internal
point, so we need to sum up all vectors:

F(I) =
∑
P∈Ω

Fx(I, P )× i +
∑
P∈Ω

Fy(I, P )× j +
∑
P∈Ω

Fz(I, P )× k , (2)

where i, j, k represent the unit vectors in the three main axial directions, and
Ω is the set of surface points that hold the external charges. The above formula
is a good approximation of the GPF in internal point I, but is not exact. As
it was already pointed out (but not applied) in [7], only those external points
should be included in Ω, from which the internal point I is visible. Visibility can
be described mathematically with the following expression:

I is visible from P ⇔ λI + (1− λ)P is an internal point ∀0 < λ ≤ 1 . (3)
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The identification of the curve skeleton from the computed GPF is produced in
several steps:

1. Find the critical points, where GPF is a zero vector. These will generally be
points where two or more branches of the skeleton meet, or in other words,
points where the skeleton bifurcates. They usually will not fall in exact grid
points, but we can easily locate the unit sized cube volume where they are
situated. We need to look for those cubes where all three vector components
Fx, Fy, and Fz change their sign.

2. At the time when critical points are located, we can also check, which are the
cubes where not all three, but at least one of the three components change
their sign. These cubes will contain so-called saddle points, which will also
contribute to the curve skeleton.

3. Compute the exact coordinates of critical points using trilinear interpolation.
4. Locate the segments of the first order curve skeleton. Each such segment

must have critical points at both ends, and all such segment should cross
only such cubes where saddle points are located. The segments are identified
using a backtracking algorithm. The small number of possible ways assures
the quick performance of the backtracking algorithm.

5. The exact coordinates of saddle points participating in the skeleton are es-
tablished along the following two considerations. Those components that
change their sign within the saddle point’s cube, precisely define one or two
exact coordinates via linear or bilinear interpolation. The other coordinates
can be established such a way, that saddle points are uniformly distributed
along the skeleton, and the curve of the skeleton remains smooth.

6. The second order curve skeleton will additionally contain branches, which
connect critical points with high curvature surface points of the object. In
this order, a set of high curvature surface points is searched for. Curvature
is easily represented by the number of inner neighbors of the surface point.
The less inner neighbors a surface point has, the higher its curvature value is.
Further on, only those high curvature points are kept within the set, which
have a locally maximal curvature value.

7. Secondary branches of the curve skeleton are located again using backtrack-
ing, crossing only cubes that contain saddle points.

8. The GPF based curve skeleton extraction algorithm also gives the possibility
to neglect some of the irrelevant secondary branches. This is performed via
ordering the branches according their divergence, and keeping only those
which have a lower value than a predefined threshold, or keeping a predefined
percentage that have low divergence values.

3 The Proposed Hierarchical Approach

The GPF based curve skeleton extraction algorithm given in [6] reports a very
long execution time in case of objects containing over N = 105 voxels. The
approximate length of such an object is of n = 3

√
N units.
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The most time consuming part of the algorithm is the computation of the GPF
in each grid point, as each couple formed by an internal point and a surface point
has to be taken into consideration. As the number of internal points has the order
of O(n3), and the surface points count up to the order of O(n2), the complexity
of GPF computation will be of order O(n5). This is an enormous load in case of
large objects.

Cornea tried to reduce the duration of GPF computation by suppressing the
set of external points considered for each internal point. Those external points
were neglected, which according to their z coordinate, were guaranteed to be
too far from the currently processed internal point. This modification reduces
some of the computational complexity, but also may cause deformations of the
skeleton. In this paper we propose a hierarchical approach for 3DCS extraction
of large objects. The general idea is to reduce the number of internal points
where the GPF is computed. This is achieved along the following terms:

Let us resize the object, reduce its size μ times in every direction. For the case
of simplicity, let us consider now μ = 2. This practically reduces the number of
internal voxels μ3 times and the number of surface voxels μ2 times. If we extract
the skeleton of this reduced object, it will have approximately the same shape as
the skeleton of the original, large object, just it will be reduced in size μ times.

Now let us turn back to the original large object. We magnify the skeleton of
the small object μ times and place it into the large object. Only those internal
voxels, which are situated closer to the magnified skeleton, than a predefined
threshold distance δ will be considered for the time consuming process of GPF
computation. Such a way, the O(n5)-complexity operation is executed with a
μ times smaller n, while in the big object, GPF computation will have the
complexity of O(n3).

This hierarchical size reduction can be performed in more than one steps,
too, achieving thus μ2 or μ3 times size reduction, and an even more convenient
computational load.

The reduction of the object can be performed as long as it does not influence
the topology of the object. Further on, it is limited by the fact, that the reduced
object must be at least two pixels wide everywhere. The recommended threshold
value is: δ = (1.5− 2.0)μ voxels.

4 Efficient Implementation Using GPU

Modern GPU’s can efficiently handle large matrices and can perform quick com-
putations on large amounts of data. That is why, if we wish to accelerate the
computation of GPF using a GPU, we need to organize our data into matrices.
Let us write the coordinates of surface points into a matrix denoted by S:

S =

⎛⎜⎜⎝
x1 y1 z1
x2 y2 z2
. . . . . . . . .
xω yω zω

⎞⎟⎟⎠ ,
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Fig. 2. Hierarchical size reduction exhibited in 2D, in two steps. Red lines indicate the
extracted skeleton, while gray areas are the regions where the skeleton is looked for.
White areas are excluded from the computations as they are not likely to contain any
part of the skeleton.

Fig. 3. Some examples of extracted skeletons

Fig. 4. Execution times for various object volumes, obtained by the original GPF-based
skeleton extraction method, and the proposed hierarchical approaches
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where ω represents the cardinality of the set of surface points Ω. We keep the
coordinates of the current internal point in a vector I = [xI , yI , zI ]. We need
to perform the following steps. First, we subtract I from each row of S, and
compute the square of each element in the matrix. Compute the sum of the
three columns of the matrix, and denote this single column by D. Raise each
element of D to the power (1 + α)/2. Use an odd integer for α to make the
exponent an integer. Build an ω-row 3-column matrix M by placing ω identical
rows [xI , yI , zI ] under each other. Subtract the original S from this matrix M ,
and denote the result by Q. Divide each row of Q with the corresponding element
inD, and finally sum up all columns of the matrix. The resulting 3-element vector
will contain the three directional components of the GPF in the point I, namely
[Fx(I),Fy(I),Fz(I)]. In a GPU, the above computations can be organized to
perform the above operations on several internal points in parallel.

5 Results and Discussion

The algorithm has been implemented in c++ programming language, using the
JAMA and TNT packages for matrix operations. GPU implementation relies on
AMD’s FireStream SDK, and an ATI HD 5750 video card.

Several tests have been performed using artificially created object volumes
of different sizes. The main evaluation criteria were: accuracy – how much the
hierarchical formulation influences the correctness of the extracted skeleton, and
efficiency – how many times quicker the proposed approach extracts the skeleton,
compared to the speed of the original formulation.

The most simple skeleton extracted by the GPF based algorithms is the core
skeleton, which is formed of critical points and first order branches only. The
presence of secondary branches is controlled by the divergence threshold. These
secondary branches are rarely useful in computer graphics applications, so the
divergence threshold has to be kept at a low value. Another reason for this low
threshold value could be the possible sensitivity to the noise present on the
boundary of the object.

Parameter α controls the variation of the potential field’s strength with dis-
tance. The optimal value of this parameter we found α = 5: this assures good
stability of the algorithm, while the computational load is not raised too high.

The hierarchical size reduction of the object has a damaging effect upon ac-
curacy only if the size reduction changes the object’s topology. The preservation
of topology should limit the maximum applied size reduction factor.

From the point of view of efficiency, we found that the proposed approach can
reduce the computational load of the algorithm 5− 50 times, depending on the
chosen size reduction ratio. Figure 4 shows some execution times obtained on
various object volumes. At the skeleton extraction of larger objects, it is more
likely to obtain a higher speedup ratios. Involving a GPU for GPF computation
can produce a further speedup factor of 2 to 5.
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6 Conclusions and Future Work

In this paper we have proposed a hierarchical formulation of the general potential
field based 3D curve skeleton extraction algorithm. The proposed method proved
accurate as long as the executed size reduction did not change the topology of
the object. The computational efficiency of the proposed method is outstanding,
a 5-50 times speedup ratio is achievable, depending on the size of the object. Im-
plementing the proposed hierarchical formulation of GPU’s can rise the speedup
factor well above 100.

As a future work, we would like to implement a different computation method
of the GPF field, which will take into consideration the visibility problem, thus
improving the accuracy as well.
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Abstract. One of the challenges of computer vision is to improve the
automatic systems for the recognition and tracking of objects in a set of
images. One approach that has recently gained importance is based on
extracting descriptors, such as the covariance descriptor, because they
manage to remain invariant in the regions of these images despite changes
of translation, rotation and scale. In this work we propose, using the
Covariance Descriptor, a novel saliency system able to find the most
relevant regions in an image, which can be used for recognition and
tracking objects. Our method is based on the amount of information from
each point in the image, and allows us to adapt the regions to maximize
the difference of information between the region and its environment. The
results show that this tool’s improvements can boost trackers precision
up to 90% (with initial precision of 50%) without compromising the
recall.

Keywords: Saliency, Edge Detector, Tracking, Object Recognition,
Covariance Descriptor.

1 Introduction

When recognizing objects in an image there are several approaches to define
them. It can be done by: points of interest, descriptors with relevant informa-
tion [9]; bags of words, areas that define the object [10]; features of a region,
variance of the features of the region [11]; local appearence, attention operators
based on symetry [7]; among others. One of the methods that has shown good re-
sults in object recognition and tracking is based on regions characterized by the
covariance descriptor proposed by Porikli et al. [11]. This descriptor represents
a region or window by a covariance matrix formed from the image’s features.
Our approach was inspired by the good results obtained in different applications
that use this descriptor [2], [12], [14].

One of the problems from tracking algorithms that use one of the descrip-
tors previously described, is chosing the correct window that gives sgnificant
information for the recognition. To determine this region, one has to take into
consideration the final use of the system. By example, for people tracking, one
would choose a face detector such as Voila-Jones [13] or a people detector such
as Felzenszwalb [5]. Several trackers and detectors use a rectangular region,
from which arises the problem that within the chosen region is the described
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object and also the background of the image. This causes that a large amount
of information of the region is not from the object, causing a low performance
of the tracker. Therefore if the object has little significant infomation and the
background has many, the trackers will get confused by considering that the
background is more important than the object.

We searched to solve this problem through the quantification of the image’s
information. This would be acheived by adapting the target region to reduce the
noise caused by the background, maximizing the information’s contrast between
the window and its neighborhood. Currently, to determine if an area or a point
contains relevant information, we use saliency systems. Itti et al. [6] present
a model for saliency detection, which searches for saliencies in three diferents
layers: a color layer, an intensity layer and an orientation layer. Then it linearly
combines the zones found by the three layers to obtain the saliency map of the
image. On the other hand, Achanta et al [1] present a method to determine
salient regions in images using low-level features of luminance and color.

Our saliency method, unlike the method of Itti et al. [6], searches for saliency
zones by integrating the color, intensity and orientation layers, and evaluating
their covariance on a point through its neighborhood. With this information,
we quantify the amount of variation in a pixel allowing us to form a system of
saliency. From this we retrieve the saliency map and we define a better region
to initialize the tracker, obtaining a high improvement in the precision, from a
50% to a 90%.

In this paper, we present a novel system for the improvement of recognition
and tracking algorithms through the quantification of a pixel’s information. It’s
simple and fast. Using the properties of the covariance descriptor to establish
the variance of diferents features in a pixel, we found the areas containing the
largest amount of information. This article is organized as follows: in section 2
we present the mathematical bases, the hypothesis and the implementation of
the problem; in section 3, we present the methodology and the results; finally,
in section 4 we present the conclusions and future works.

2 Proposed Method

2.1 Covariance Descriptor

The covariance descriptor for one point proposed by Porikli et al. [11], is formally
defined as:

F (x, y, i) = φi(I, x, y) (1)

where: I is an image which can be in RGB, grayscale, infrared, etc.; x and y are
ther coordinates of a pixel; F is a W ×H×d matrix, where W is the width of the
image, H the height and d is the number of features used; and φi is the function
that relates the image to the i-th feature; i.e. the function to get the i-th feature
from de image I. The proposed method uses a 11 characteristic tensor F , which
is defined by:

F (x, y, i) = [x y R G B |Ix| |Iy |
√
|Ix|2 + |Iy |2 |Ixx| |Iyy|

√
|Ixx|2 + |Iyy|2] (2)
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For further analysis in the selection of features for the covariance descriptor and
the method of calculation of the covariance matrix, we encourage the reader to
take a look on the work of Cortez et al. [4].

2.2 Saliency Model

In order to establish the amount of information contained in a pixel, we build
the matrix F from (1). The idea is to get the amount of information for a pixel,
that’s why we define the region of the descriptor as the neighborhood of the pixel.
But we need a metric to evaluate the covariance matrix. In our experiments we
tested with the largest singular value, with the infinity norm, the determinant
and the logarithm of the absolute value of the determinant. The latter gave the
best results. Therefore, we define the magnitude of the obtained matrix CR as
the logarithm of the absolute value of the determinant of the matrix. Thus, we
define the amount of information I for a pixel (x, y) with a neigborhood N as:

S(x, y) = log(| det(CR(N))|+ 1) (3)

2.3 Saliency Region Detector

With the saliency map already obtained, we determined the window where the
higher amount of information was concentrated. For this we created an algo-
rithm that reduces the size of a window to maximize the information within
it. For a fast calculation we used the same method to calculate the covariance
matrix: first, we created the integral matrix of the saliency map IS ; and then,
we calculated the information in a region with:

IS(R) = IS(x, y) + IS(x′, y′)− IS(x′, y)− IS(x, y′) (4)

We defined a line as a rectangle with a side of one pixel long. Then we set the
window as the entire image and begun to reduce it. We set a stopping point:
defining what percentage of the image’s information we wanted to be inside the
window. Then, for each side, we calculated how much information they gave. The
one that gave less information was reduced, and so on until the region contained
the percentage of information previously defined.

2.4 Effectiveness Score

To evaluate tracking algorithms there are two widely used metrics: precision and
recall. But having two scores that are almost as important, is a problem. Here
is where an other score is needed, that combines both metrics, as it does the
F -score. However, for a further analysis on the tracked path, the precision is
more important than the recall, so a F0.5-score is advised. Using a variable pa-
rameter tends to cause conflict because of the variability of the results when the
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parameter is altered. So to measure the performance of the tracking algorithms
we propose a new score called effective score defined as:

E − score = 3
√
precision2 ∗ recall (5)

This new score gives us a powerfull tool for choosing the best percentage of
information taking into account the precision and the recall. This score was not
used to compare us with other methods, but to determine the best percentage
for a set of images.

2.5 Automatic Determination of the Percentage of Information

We have discussed an algorithm to choose a better initial region, however, we
have to set the parameter of the percentage of information. If we want this to
work automatically then we have to establish a method that sets the value of
the parameter. For this task we have chosen a bayesian network where the set of
variables are: the percentage of information (Ai); the training videos (Bk); the
most similar training video (C); and the success for tracking (E). From the joint
distribution we have:

arg max
i

P (E|AiC) (6)

After a few arithmetics operations and considering the law of total probabilty
we have:

arg max
i

m∑
k=1

[P (E|AiBk)P (Bk)]
n∑

j=1

[P (E|AjC)] (7)

where: Ai is a given percentage; and Bk is a video of the training set, where
P (Bk) is the probability of the test region to be like the training region given
theirs covariance matrices similarities.

3 Experiments and Results

The aim of the experiments described below is to show the main aspects of
our method and then to show a successful application for the improvement of
monitoring systems.

3.1 Saliency Region Detector

The goal of this algorithm is to determine if a point is salient or not. For each
point of the image, we assign the square region of five pixels as its neighborhood.
From this we obtain a map of saliency using the variation of the features that
form the covariance matrix. In comparison with other algorithms, our map is
much more visually understandable, since the saliency is for each point and not
for an area (Figure 1).
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(a) (b) (c)

Fig. 1. Example of the saliency map obtained through the Covariance matrix: (a)
original image; (b) our proposed saliency map; (c) Itti’s saliency map [6]

In reality, indoor backgrounds are complex and have too much information.
That’s why we use a similar process, minimizing the information within the
window. Thus, we leave most of the background information outside, which pro-
duces noise and errors when tracking. By eliminating the sides that contain
higher amount of information we reduce the window, which decreases the infor-
mation within it and maximises the contrast of information between the region
and its neighborhood (Figure 2).

(a) (b) (c)

Fig. 2. Example of windows obtained removing sides that contain higher amount of
information and leaving 66 percent of it within de window: (a) region obtained from
full image; (b) region obtained from image cropped whith a pedestrian detector [5]; (c)
region obtained from image cropped whith a face detector [13]

3.2 Improvement of Tracking Algorithms

The application to which we tested our saliency model was tracking algorithms.
We experimented with twenty videos obtained from a supermarket, hoping to
verify if there was an improvement by applying it at the beginning of a tracking
system. In scenarios like the supermarket, where everything is done to attract
the customer’s attention, the saliency algorithms select the background as points
of interest and not the person, who tends to have more uniform colors.

As tracking algortihms we used two state of the art methods: the on-line naive
bayes nearest neighbor (ONBNN) for covariance descriptors [3], and the TLD real-
time algorithm [8]. As initial region we used two different methods: ground truth
of a person, to analyse how important is a small amount of background for a track-
ing system; and a people detector [5], to determine the benefits of the method in
a full tracking system. Finally, as saliency algorithms we used three methods: our
method, center surround by Achante et al. [1] and Itti et Al algorithm [6].
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Fig. 3. Results obtained on images with lots of information in the background. First
row corresponds to the reference result obtained using the ONBNN [3]. The second
row is the result where the initial region was modified with our algorithm.

Table 1. Average percentage from twenty videos with initial region ground truth and
a people detector, after using a saliency model to adapt the region (100 % means no
saliency algorithm was used and auto the autoselection of percentage using the E-Score
as the tracking success).

(%) Ground Truth Felzenszwalb

Tracker ONBNN LTD ONBNN LTD

Saliency Us C.S. Itti’s Us C.S. Itti’s Us C.S. Itti’s Us C.S. Itti’s

10 95.6 85.9 5.9 46.2 39.6 0.0 84.7 82.6 8.7 12.8 15.7 0.0

20 92.9 91.8 10.6 43.7 51.0 0.0 90.4 91.1 14.0 25.2 19.9 0.0

30 94.3 92.6 24.7 64.4 52.7 5.9 88.0 79.0 22.5 25.8 27.1 0.0

40 89.0 92.5 44.8 68.7 51.5 2.2 86.6 78.1 31.8 26.6 58.6 0.0

50 88.5 87.5 53.4 67.1 68.4 18.0 74.4 79.2 45.5 23.3 63.4 0.0

Precision 60 85.2 87.0 58.7 65.6 67.5 22.3 72.0 66.1 50.0 22.6 65.1 0.0

70 87.7 76.7 73.5 62.5 61.3 27.2 70.3 71.9 67.7 42.2 69.2 0.0

80 76.3 74.6 82.5 54.7 61.5 28.8 65.4 67.8 79.7 57.9 64.2 0.0

90 78.1 76.1 84.5 59.0 59.1 31.9 65.4 62.8 88.8 64.8 57.7 0.0

100 57.1 51.3 60.4 59.2

Auto 94.4 - - 79.6 - - 85.7 - - 72.9 - -

10 21.2 16.0 0.0 15.4 9.8 0.0 18.3 16.7 0.0 4.8 3.4 0.0

20 26.4 21.7 0.7 16.0 17.5 0.0 26.2 24.5 0.1 9.6 6.1 0.0

30 34.0 30.4 1.2 25.5 19.2 0.0 31.9 30.1 0.5 9.4 10.6 0.0

40 38.7 37.6 2.0 30.2 24.5 0.1 37.0 34.7 0.9 13.2 18.6 0.0

50 44.1 39.2 3.4 30.9 28.0 1.4 38.4 38.7 1.8 13.7 26.7 0.0

Recall 60 43.8 45.2 6.3 34.3 36.8 2.4 40.6 36.5 3.1 19.6 28.8 0.0

70 47.9 43.5 8.1 33.5 33.0 3.1 41.7 41.7 5.5 28.9 32.8 0.0

80 45.3 46.7 12.7 34.8 32.7 3.1 41.5 43.3 8.2 41.1 33.4 0.0

90 49.1 48.2 16.2 34.4 32.7 3.7 44.2 41.3 12.8 52.3 32.5 0.0

100 45.9 38.1 45.6 48.2

Auto 50.4 - - 40.2 - - 52.4 - - 42.2 - -
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Table 2. Average percentage using the bayesian network to automatically select the
best percentage of information. We compare the use of Precision, Recall, F-Score and
E-Score as succes of the ONBNN tracker using ground truth for initial region.

Ground Truth Felzenszwalb

Precision Recall F-Score E-Score Precision Recall F-Score E-Score

Normal 57.1 45.9 50.0 52.2 60.4 45.6 55.9 54.5

Precision 98.2 29.0 61.3 62.9 92.9 27.8 61.0 61.1

Recall 85.2 56.5 74.1 72.5 81.3 54.4 72.3 70.2

F-Score 95.0 49.2 78.1 75.3 85.7 52.4 74.2 71.8

E-Score 94.4 50.4 77.9 75.4 85.7 52.4 74.2 71.8

The results show that saliency algorithms increase the precision of tracking
algorithms, however, in some cases, they tend to sacrifice the recall (Table 1). Our
method gets higher results in precision without compromising to much recall,
or even increasing it. This allows us to obtain better F-Score and E-Score and
through an analysis of these scores, we found that better results for ground truth
are found using a 70% of the information and for felzenszwalb are found using a
40% of the information. Using better regions, we can prevent that a region gets
stuck in the initial position because it doesn’t get confused with the background
(Figure 3).

Finally, using our bayesian network and choosing the precision as the success
of the tracker, we can improve the precision of the ONBNN tracker from a
57.1% to a 98.2% but decreasing the recall. Inversely, if we choose the recall as
the success of the tracker we can improve it from a 45.9% to a 56.5% while also
increasing the precision to 85.2 %. However, using a Score as the success, we
increase the precision to an average of 97.7% while increasing the recall to an
average of 49.8% (Table 2). This shows that scores give us powerful information
for the improvement of tracking algoritms. They improve the precision and the
recall at the same time, reaching high precision levels.

4 Conclusions

To improve the tracking systems we have developed a novel saliency model
that uses the covariance descriptor. This saliency system allows us to determine
whether an object will be easy or difficult to follow in a video, given that the
background contains more- or less- information than the object, and to extract
enough information to improve recognition and tracking systems.

We could also improve the initial regions coming from detectors, thus reduc-
ing the noise produced by the backgrounds. Although we do not always see
improvements in the tracking systems, we could improve the results in cases
where they may have failed, keeping the same performance in other cases.

We also propose the use of a bayesian network to efficiently select the best
initial region. This allows us to choose if we use, or not, saliency to improve
the tracker. We noticed, that bigger regions have less problems to be tracked so,
it’s more efficient not to use the saliency. However, smaller regions has several
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problems to be tracked so, it’s highly recommended to perform our saliency
algorithm to improve the tracking results.
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Algorithm for Accurate Text Localization
in Images
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Abstract. Text information in images and videos is frequently a key
factor for information indexing and retrieval systems. However, text de-
tection in images is a difficult task since it is often embedded in com-
plex backgrounds. In this paper, we propose an accurate text detection
and localization method in images based on stroke information and the
Adaptive Run Lenght Smoothing Algorithm. Experimental results show
that the proposed approach is accurate, has high recall and is robust to
various text sizes, fonts, colors and languages.

1 Introduction

The tremendous increase of multimedia content has raised the need for automatic
semantic information indexing and retrieval systems. Text information present
in images and videos are an important source of high-level semantics.

Large variations in text fonts, colors, styles, and sizes, as well as the low
contrast between the text and the often complicated background, make text
detection and localization extremely challenging. Frequently, image compression
tends to deteriorate image quality resulting in even harder to recognize texts.

Textual information extraction (TIE) is usually split into five steps: detection,
localization, verification, segmentation and recognition. Text detection is used to
separate text regions from non-text regions. Text localization is used to localize
text lines using rectangular bounding boxes (BBs). During text verification,
all localized text lines are verified in order to eliminate false positives. Text
segmentation is performed to compute the foreground of the text and finally,
text recognition is where the detected text image is converted into plain text.

In this work, we present a method that accurately detects, localizes and ver-
ifies text in images and video frames. Inspired by [7], stroke information and
a machine learning approach is used to detect text with high recall rates and
very good precision. To obtain the initial bounding boxes (BBs), we propose a
combined Adaptive Run Lenght Smoothing Algorithm (ARLSA) and Connected
Components Analysis (CCA) based algorithm that localizes text more accurately
than Li et al [7]. After a refinement phase, an innovative ARLSA-based verifica-
tion is proposed followed by a final SVM verification step using its output scores
to further check results.
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This paper is organized as follows: In section 2 we present current state-of-
the-art methods, in section 3 our method will be described in detail, in section 4
we will discuss about experimental results and finally, in section 5 we will draw
our conclusions regarding this topic.

2 Related Work

Text detection and localization methods are usually clasified into four distinct
categories. The first category uses connected component analysis (CCA) [14]
in which regions with maximum homogeneity are obtained from an image and
then non-text connected components (CCs) are filtered out based on geometrical
constrains. CCA-based methods are robust against font size, however, they are
sensible to noise and tend to fail when texts are not homogeneous. The second
category uses an edge-based approach to detect and localize text [9]. Techniques
within this category detect text based on strength, density or distribution infor-
mation from edges, and assumes high contrast differences between the text and
the background. Edge-based methods are fast and have high recall rates, how-
ever, the large amount of false alarms is usually its main problem. Also, it fails
when text is not contrasted enough with the background. The third category is
based on textures [11], and makes use of the fact that texts have specific texture
patterns that allows us to distinguish them from the background. Texture-based
methods are robust to noise and low quality images, however they are time-
consuming and tend to fail when the background is cluttered with text. Recently,
pattern clasiffication methods have been addressed to detect and localize text in
images based on elaborately selected features [3]. For more information about
textual information extraction in videos and images, the reader should refer to
the survey paper [5].

Using stroke information to detect and localize text was first introduced by
[8]. Since then, several text localization methods have used stroke information to
detect and localize text in images such as [7]. In those works, it has been proven
that stroke information can be used to succesfully detect and localize text in
images since it captures the intrinsic characteristics of text itself.

3 Methodology

As shown in Fig. 1, the proposed algorithm has three distinct stages for text lo-
calization: coarse text detection, a refinement stage followed by text verification.

During the Coarse Text Detection stage, we perform a fast morphology-based
coarse text detection using a Multi-Scale Wavelet edge map. Then, stroke filter
is performed over the original image using the results from the first detection
as a mask to improve performance. We later apply a sliding window algorithm
in which we perform SVM classification to generate the initial bounding boxes
based on the Adaptive Run Length Smoothing Algorithm (ARLSA) [10].

During the refinement stage, we first apply a Zero Crossing projection profile
technique to split multiple line bounding boxes, followed by an Expand method
to improve precission.
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Fig. 1. Flowchart of the proposed algorithm

Finally, in the verification stage, we introduce an ARLSA-based filtering
method followed by an SVM verification to further improve precission.

3.1 Coarse Text Detection

Wavelet Multi-Scale Edge Detection. We use the method in [6] for fast
multi-scale edge detection. The scale of the method controls the threshold for
which edges are detected. A large scale tends to remove small signal fluctuations,
filtering background edges from the results. However, text edges with small signal
fluctuations may also be removed if the scale is too large. In our work, we use 3
as the scale of the algorithm.

Initial text region detection. We first convert the input image into grayscale.
Then we calculate stroke information using the stroke filter from [8] but only on
text areas from the morphology-based text detection. Using the stroke informa-
tion, we employ the sliding window algorithm from [7] to detect text regions.

A Support Vector Machine (SVM) [2] classifier is used in this work since,
as stated in [12], compared with other classifiers such as neural networks and
decision trees, SVM is easier to train, needs fewer training samples and has
better generalization ability. The SVM was trained on a dataset containing 368
text samples and 611 non-text samples using the same feature set as [7]. The
sliding window in this case moves W/4 horizontally and H/4 vertically. Fig. 3b
gives an example of the output result after the stage.

CC Analysis and ARLSA. The authors of [7] used a fixed set of computation
steps that heuristically obtain initial bounding boxes partitioning the connected
polygons that result from the sliding window procedure mentioned above. How-
ever this have several drawbacks, specially the fact that it frequently split text
lines in two bounding boxes as in Fig. 2b.

Because of this, we take a new and more effective way in order to obtain
the initial bounding boxes. We first calculate a saliency map as in [1]. For every
window that is classified as a text line, all the values of its pixels are incremented
in the saliency map by one. Meanwhile, we calculate another map that represents
the number of visits by a sliding window for each pixel. After the whole image
is classified and the sliding window algorithm is over, we use this second map
to normalize the saliency map from 0 to 1. The results of this can be seen in
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(a) Original Image (b) Li et al. method (c) Our method

Fig. 2. Initial Bounding Boxes comparison

the Fig. 3b. Then, we generate a binary detection map using the method in [1].
Example of the binary detection map is shown in the Fig. 3c.

We later use this binary detection as a mask for the edges map, removing
all edges that are not text-related. We use this new map as the input of the
horizontal ARLSA algorithm detailed in [10] generating what can be seen in
Fig. 3d. The purpose of the ARLSA algorithm, as used in [13], is to join all
characters among the same line, implying that all isolated edges cannot belong
to text so we remove them by performing a morphological opening leading to Fig.
3e. Then, we generate the bounding boxes based on the connected components as
in Fig. 3f. Finally, we put together all pairs of rectangles based on the following
conditions:

– The relation between their heights is lower than a certain threshold Theight.
– Their vertical distance is lower than a certain threshold Tvdist.
– Their horizontal distance is lower than a certain threshold Thdist.

In this paper, we set Theight = 2.5, Tvdist as the maximum of both heights
divided by 2 and Thdist as the minimum of both heights. This will lead to Fig.
3g and Fig. 3h.

3.2 Localization

After we obtain the initial BBs, a text line refinement is performed. First, a
projection profiles based method is used to split BBs with more than one line
and shrink them to better adapt to text areas. This is followed by an expand
method to further improve precission of the algorithm.

Zero Crossing and Projection Profiles refinement. We use the zero cross-
ing technique from [11] to refine text BBs.

After applying this method, we perform a conventional vertical projection
profile method. For each column, the pixel values are summed and if the sum
is lower than a certain threshold, the column is deleted. In order to avoid split-
ting two words of the same text line, we require that the number of concurrent
columns marked to be deleted equals a certain threshold.

In our work, both methods are applied sequentially, and will be repeated until
no further changes are made to the bounding boxes after an iteration.
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(a) Original Image (b) Sliding Window
Result

(c) After CCA &
tresholding

(d) ARLSA results

(e) Morphological
Opening

(f) Initial Bound-
ing Boxes

(g) Text Line Join (h) Final Bounding
Boxes

Fig. 3. ARLSA-based bounding boxes calculation

Expand. It may happen that the Zero Crossing technique shrinks a BB su-
pressing any of both horizontal borders of a text region (top or bottom). Also,
it could happen that during the coarse detection, a BB missed any border of a
text region. Thus, it is neccesary to expand the BBs in order to obtain better
localization recall and precission.

For this purpose, we multiply the image resulting from the sliding window
such as Fig. 3b by the multi-scale wavelet edge detection and we use this image
as the input of our expand procedure.

To expand, we first take the next horizontal line above the top edge of the BB
and calculate its sum. We expand bounding boxB horizontally until threshold Th

is not met. We do the same with the next horizontal line below the bottom edge.
We then make the same procedure vertically until treshold Tv is not verified.
Treshold Th is obtained in the following way:

Th(B) = (Avgh(B)−Minh(B)) ∗ ke (1)

where ke is a constant and

Avgh(B) =
1
H

H∑
i

W∑
j

B(j, i) (2)

and Minh(B) stands for the minimum value of the horizontal projection profiles
of the bounding box B while W and H are their respectives width and height.
ke = 0.75 is used for this work. The vertical treshold Tv is obtained the same as
Th but vertically.
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3.3 Verification

Once the localization stage has refined the rectangles, some false positives bound-
ing boxes may still be part of the answer. Therefore, we first apply an innovative
ARLSA-based verification procedure followed by a combined SVM approach that
uses SVM output scores to verify candidate bounding boxes.

ARLSA-based verification. To eliminate false positive, we perform an
ARLSA-based filtering. For each bounding box, we calculate the ratio of ones
among the bounding box on the ARLSA image, such as in Fig. 3d. If this ratio is
below a certain treshold kARLSA, we will classify the bounding box as non-text
and remove it. For this work, we used kARLSA = 0.7.

SVM-based verification. In order to perform an SVM-based verification, we
employ two SVMs. Our first SVM is trained using the same feature set as in
the text detection stage, but in this case, using variable sized bounding boxes.
We consider the prediction score obtained from this SVM and if it is within a
predefined range [-kSV M , kSV M ] where kSV M ≤ 1, it implies that the prediction
is not certain. Thus, in those cases, we further verify the bounding box using a
third SVM. The feature set used in this case includes the 6 features used in the
second SVM of [7] plus one new feature to achieve better recognition accuracy.
The new feature introduced is the mean of the image map that results from the
ARLSA algorithm in the bounding box. This is discriminative since, as shown in
Fig. 3d, the ARLSA map of a text region must have most of their pixels marked.

4 Results

In order to detect bigger font sizes, we employ a multiresolution approach per-
forming our three stages of textual information extraction to an image in different
resolutions and finally results are combined to the original resolution. To avoid
combining overlapping bounding boxes of different resolutions, the approach
from [1] is used eliminating the edges in the current resolution of the already
detected characters in the previous resolutions.

As explained in [1], most authors use box-based or pixel-based recall, precis-
sion and accuracy measures that in general, fail to reflect the true quality of the
results. Very few works deal with the problem of evaluation methods.

Our evaluation method was proposed in Anthimopoulos et al. [1], and is char-
acter oriented, meaning it will base its results on the quantity of characters
recognized/missed. They conclude that the number of characters in a text line
is proportional to its ratio width to height. Based on that, let GBi be the ith
ground truth bounding box with 1 ≤ i ≤ N and hgi its height while DBj be the
jth detected bounding box with 1 ≤ j ≤M and hdj its height, they propose to
calculate the recall and precision as:

Recall =

∑N
i=1

|GDIi|
hg2

i∑N
i=1

|GBi|
hg2

i

(3)
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Precision =

∑M
i=1

|DGIi|
hd2

i∑M
i=1

|DBi|
hd2

i

(4)

where GDIi and DGIi are the corresponding intersections:

GDIi =

⎧⎨⎩GBi, if
GBi∩(⋃M

i=1 DBi)
GBi

≥ th
GBi ∩

(⋃M
i=1DBi

)
, otherwise

(5)

DGIi =

⎧⎨⎩DBi, if
DBi∩(⋃N

i=1 GBi)
DBi

≥ th
DBi ∩

(⋃N
i=1GBi

)
, otherwise

(6)

and th = 0.75 is a treshold that avoids penalizing minor inconsistencies.
To test our algorithm, we used the Microsoft common test set from [4]. As

can be seen in Table 1, our method outperforms previous methods. Some sample
results are shown in Fig. 4.

Table 1. Performance Comparison

Method Recall Precision F-Measure
(%) (%) (%)

Our approach 93.34% 96.7% 94.99%
Li et al. [7] 91.1% 95.8% 93.39%

Liu et al. [8]1 91.3% 92.4% 91.85%
Ye et al. [12]1 90.8% 90.3% 90.55%

(a) (b) (c)

Fig. 4. Sample text localization results using the proposed method

5 Conclusion

In this paper, we proposed an effective text detection and localization method
based on stroke information. To overcome speed issues, we first perform a fast
morphological text detection that we later use as a mask for calculating the
stroke filter. We then detect text using a machine-learning approach and obtain
1 As reported in [7].
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initial bounding boxes by a mixed CCA and an ARLSA approach. To further
refine the bounding boxes, we employ a zero-crossing projection profile technique
followed by a expand technique to gain better recall. Finally, the text regions
are verified by an SVM approach using their output scores to further check the
results.

Experimental results show that the proposed text detection and localization
method is robust to noise, text size, color and text language. It does also out-
perform other stroke-based methods such as [7].
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Abstract. Text detection in images has been studied and improved for
decades. There are many works that extend the existing methods for
analyzing videos, however, few of them create or adapt approaches that
consider inherent characteristics of videos, such as temporal information.
This work proposes a very fast method for identifying video frames that
contain text through a special data structure called visual rhythm. The
method is robust to detect video captions with respect to font styles, color
intensity, and text orientation. A data set was built in our experiments
to compare and evaluate the effectiveness of the proposed method.

1 Introduction

Several video-based applications are becoming more common, driven by fac-
tors such as popularization of digital television, increase of bandwidth for data
transmission via Internet, evolution of augmented reality research, and the de-
velopment of mobile equipments for multimedia purpose.

Texts in video provide relevant information of a scene content. For instance,
a portion of the video is commonly used in news to exhibit information such as
weather forecast, sport scores, text alerts, financial market overview. Captions
are employed in TV documentaries to describe a location, a person, a title or
an event. Almost all commercials use a certain type of subtitle to provide more
information of products, since their exhibition time is restricted to only few
seconds. In movies, subtitles are used to inform their cast and credits, or an
introductory story. Systems have also become more practical for text translation,
navigation based on textual content, indexing of multimedia libraries, detection
of events such as appearance of commercials, blocks of news, among others.

Since videos concentrate a large amount of information, their analysis is a task
of high computational cost. A way to speed up the caption detection process is
to eliminate frames that certainly are not subtitled.

This paper describes and evaluates a fast method for detecting video frames
containing captions based on a data structure called visual rhythm. The captions
can be written in different languages and orientations. The visual rhythm can
be generated in multiple scales by means of a space-filling curve. Regions of
interest are segmented from the visual rhythm and then classified as captions or
non-captions according to a small number of rules.
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The text is organized as follows. Section 2 describes some related work avail-
able in the literature. The definitions of visual rhythm and video caption are
introduced in Sections 3 and 4, respectively. In Section 5, the proposed method
is presented and discussed. Experimental results obtained are shown in Section 6.
Finally, Section 7 concludes with some final remarks.

2 Related Work

Most works related to caption detection are based on approaches used to identify
texts in still images, where temporal information is also considered.

Some works consider the pre-calculated MPEG DCT coefficients to speed up
the detection process. The work in [2] performs the closed caption detection
in sports videos by filtering group of images not supposed to have subtitles.
In [12], DCT coefficients are taken into account to extract contrast and regularity
information, which can be used to detect the existence of captions in video
frames. Both considered only the I-frames in MPEG video streams. The work
in [13] also detects captions on the I-frames of a MPEG sequence. In this case,
the DCT coefficients are filtered based on texture analysis. These three strategies
fail to detect the exact frames from the beginning and end of the subtitle.

The work in [5] considers an SVM classifier in the discrimination of features
derived from a wavelet transform. The frame rate is reduced to 1 fps to speed
up the method, so it cannot precisely define the range of frames conveying the
corresponding caption information.

A set of morphological operators is used in [10] to detect candidate regions
in each frame. Further, statistical moment and linear projections are considered
in the textual classification of the image components. In order to emphasize
contrast, a convolution filter is introduced in [1], followed by the analysis of edge
density and connected components in each sub-region of a frame. Both works
perform a frame-by-frame detection, showing that they are costly operations.

In [3], the authors consider the visual rhythm to locate potential frames with
subtitles. A Prewitt filter is used to extract horizontal edges. Each edge, after a
size filtering, is considered a potential caption. This strategy proved to generate
many false positives. The used visual rhythm corresponds to the union of the
vertical, diagonal, and reverse diagonal lines.

Finally, the work in [6] analyzes an initial set of frames and try to refine the
obtained results, for the next frames, through the assumption that the previously
detected captions should last for a certain period of time.

3 Visual Rhythm

A video slice is defined as a set of pixels of an image linearly arranged in a 1D
signal. The visual rhythm is then represented by the slices of all frames of a video
sequence, kept together in a certain manner. Equation 1 defines a 1D slice, f , of
a frame F with M rows and N columns.
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f [i] =
k+j∑

p=k−j

αpF (i, p) (1)

where 0 ≤ i < M , 0 ≤ p < M , k = M/2, and
∑
αp = 1. When j = 0, pixels

in the middle column of F are taken to form the corresponding slice. Here, to
guarantee a certain contrast homogeneity of the slices we consider j = 1 and
perform a maximum filter in Equation 1, such that

f [i] = max [αp−1F (i, p− 1), αpF (i, p), αp+1F (i, p+ 1)] (2)

By putting these slides together over time, we define a 2D image which con-
stitutes the visual rhythm representation [8]. Independently from the way the
slices are formed, each slice is disposed vertically to generate the corresponding
visual rhythm whose width depends on the number of frames in the whole video.

Figure 1 shows the visual rhythm for a sequence of captioned frames in a
video. Several features can be clearly observed from the figure, such as scene
transitions. The captions, in particular, are easily identifiable, represented by
the white rectangular bands in the lower image area.

Fig. 1. Visual rhythm generated from captioned video frames

To improve the caption detection process, more detailed curves can be used to
extract pixels more evenly distributed along the frames compared to a vertical
slice, as defined in Equation 1. Although the use of space-filling curves [9], such
as Hilbert, Peano, or zig-zag scans, increases the visual rhythm height and,
consequently, execution time, the results of the caption detection process are
more precise, as reported in Section 6.

4 Caption Features

In this work, we consider the following basic aspects of the subtitled texts in a
video sequence: (i) they are superimposed to the images by an editing technique,
and (ii) there is no caption motion during a certain range of time.

The work in [4] describes important features related to subtitling practices in
image sequences, which include duration and height of captions. Some of these
issues are taken into account in our work to establish some caption filters. One
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of them considers that, except for extreme cases, the lowest line of the caption
should be at least 1/12 of the screen height just above the bottom of the screen.

According to the aforementioned work, the minimum duration of a single-word
subtitle should be 3/2 seconds. For the spectator to clearly perceive a caption
transition, at least 1/4 of a second needs to be inserted between two consecutive
subtitles.

5 Proposed Methodology

The main steps of the proposed methodology are illustrated in Figure 2, which
are described in more details in the following subsections.

visual rhythm
computation(RGB) (HSV)

zig−zag curve caption rules

classificationsegmentation
(channel V)

threshold

video regions
x

non−caption

caption

Fig. 2. Diagram of the proposed method

5.1 Visual Rhythm Calculation

Initially, each frame of the video sequence, in RGB format, is scanned by a certain
curve to produce a slice. The zig-zag curve, shown in Figure 3, was chosen since
it is simple and capable of passing across captions in arbitrary orientations. This
curve can be parameterized at multiple scales by varying its number of diagonal
lines. The greater the curve length, the larger the size of the visual rhythm,
such that a proper scale should be obtained to balance efficiency and accuracy.
Results are shown in Section 6.

To avoid a caption not being detected during the curve traversal by passing,
for instance, exactly between two words, a morphological dilation operation is
applied to each color band of the original frame. A way of speeding up this
process is to apply the dilation only to pixels passing through the curve. Each
frame can also be partitioned into a number of blocks with uniform size. For

(a) (b) (c)

Fig. 3. Examples of zig-zag curves in three different scales
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instance, when frames are divided into 5 × 5 blocks, coarser or finer scale curves
could be used in each block to produce portions of slices. The resulting visual
rhythm is obtained by the union of these 25 partial slices and converted into
HSV color space.

The proposed segmentation and classification approaches are described in the
following subsections, as shown in Figure 2. These two steps should be quite
simple in order to improve computational time.

5.2 Segmentation

The visual rhythm segmentation is basically the extraction of candidate caption
regions in the V channel of HSV format. A threshold is applied to the visual
rhythm image to separate the regions from the background. It is worth mention-
ing that captions are embedded into the video frames, assuring a proper contrast
with the foreground.

As a result of the segmentation process, connected regions are formed by a
set of pixels with low gradient. Figure 4 gives an example of segmented image
from a portion of the visual rhythm shown in Figure 1.

Fig. 4. Result of segmentation process for a portion of the visual rhythm shown in
Figure 1

5.3 Classification

The classification step labels the segmented regions as caption or non-captions.
As mentioned before, captions will form rectangular areas. Ideally, each caption
in the visual rhythm generates a single connected region after the segmentation.

The classification has three steps. Initially, regions that do not meet certain
requirements for caption dimensions are discarded. Captions should be at least
45 pixels wide and at most 1/12 of the frame height, as discussed in Section 4.
Second, a measure of rectangularity, defined as the ratio between the area of a
segmented region and the area of its bounding box, should be within a tolerance
value. Third, a thinning algorithm [11] is applied to each region, which will
generate a horizontal line if the region is a rectangle. Regions that do not form
horizontal lines are discarded.
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6 Results

Results for a number of video sequences are reported in this section. The data
set is formed by a collection of videos of various categories, containing captions
in different languages (western, eastern and middle eastern) and orientations.
Due to the difficulty in finding videos with captions in any orientation, subtitles
rotated by 10oand 20owere embedded into some videos. The beginning and end
frame numbers in which captions appear in the tested videos were manually
identified to be used as ground truth. All videos are in a resolution of about
480 × 270 pixels. The data set used in our experiments is available in [7]. The
method has been implemented in C++ on a PC with 2.3 GHz Pentium IV CPU
and 1GB RAM memory.

The visual rhythm was adequately generated by using a zig-zag curve with
three lines. Each frame can be partitioned into 3× 3 regions. A threshold value of
40 was used to separate the candidate caption regions, whereas a rectangularity
measure of 0.95 was used to classify the regions as captions or non-captions.

The proposed methodology was applied to the video sequences and compared
against three different approaches. The F-measure, computed through precision
and recall rates, as well as the number of frames per second during the execution,
are used to evaluate the performance of our method. The F-measure is defined
as

F-Measure = 2 ∗ precision ∗ recall
precision + recall

(3)

where precision =
tp

tp + fp
, recall =

tp
tp + fn

, and fp, fn and tp correspond to

false positives, false negatives and true positives, respectively.
Table 1 presents the results obtained with the tested methods. Even with

simple segmentation and classification approaches, it is possible to see that the
proposed method produces superior results for the majority of the video se-
quences, including captions written in Japanese and Arabic languages, as well
as rotated captions.

Table 2 shows the average number of video frames analyzed per second (FPS).
It can be observed that the use of visual rhythm is much faster than the frame-by-
frame approaches. Although the proposed method slightly looses in performance
when compared with [3], it is possible to speed up the process in detriment of
certain accuracy level.

The plot, shown in Figure 5, presents the F-measure for the proposed method,
varying the number of frame partitions (1 × 1, 3 × 3 or 5 × 5 blocks) and the
number of diagonal lines (1, 3, 5 or 7) used to build the zig-zag curve. It can
be observed that it is not advantageous to divide the video frames into 5 × 5
blocks. The best result was obtained when no fragmentation (1×1) was applied,
however, this requires a more detailed curve (5 lines), costing more processing
time. On the other hand, the video fragmentation into 3× 3 blocks and the use
of 3 lines produce a nearly identical result, justifying the choice of this setting
in our experiments. A very detailed curve (7 lines) has a significant drop in the
plot due to the increase of the number of false positives.
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Table 1. Video data sets and performance of the tested approaches

Data Sets

Method Measures (%) News Movies Commercial Japanese Arabic Rotated

Proposed Precision 76.7 78.5 79.0 94.7 96.6 79.6
Recall 97.6 93.8 100.0 99.7 95.8 99.6
F-Measure 85.9 84.7 88.2 97.1 96.2 88.5

Wu et al. [10] Precision 73.5 77.4 61.4 88.0 69.0 65.4
Recall 99.5 94.8 98.5 99.5 99.0 100.0
F-Measure 84.6 85.0 75.7 93.4 81.3 79.1

Agnihotri and Precision 90.0 85.3 65.5 79.6 68.0 75.1
Dimitrova [1] Recall 73.6 66.7 57.1 33.3 18.0 56.3

F-Measure 81.0 74.8 61.0 46.9 28.5 64.3

Chun et al. [3] Precision 41.7 33.8 73.1 24.8 14.0 73.9
Recall 99.8 88.3 92.9 94.1 92.1 60.4
F-Measure 58.9 47.4 81.8 39.2 24.3 66.4

Number of frames 6285 15589 900 11140 6875 650

Table 2. Average number of frames analyzed per second for each tested approach

Method FPS

Proposed 93.10

Wu et al. [10] 0.84

Agnihotri and Dimitrova [1] 2.52

Chun et al. [3] 109.24

 0.78
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Fig. 5. Results for F-Measure obtained by varying the number of diagonal lines in the
zig-zag curve and the number of frame blocks for the proposed method

7 Conclusions and Future Work

A new video caption detection method is described in this work. A data struc-
ture, called visual rhythm, is created by sub-sampling each video frame with a
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multi-scale curve. The captions are detected from the visual rhythm through a
set of simple rules.

The method is robust to detect captions located in any position and orien-
tation in the video frames, as well as unknown text layout common in different
languages. Experimental results demonstrated the effectiveness of the proposed
method compared to three other approaches.

As future work, we plan to investigate more effective techniques for segmenting
and classifying the visual rhythm, which may significantly improve the results
of the proposed method in terms of precision and recall rates.

Acknowledgments. The authors are thankful to FAPESP, CNPq and CAPES
for the financial support.
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Abstract. Local primitives and their spatial relationships are useful in
the analysis, recognition and retrieval of document and patent binary im-
ages. In this paper, a morphology based approach is proposed to establish
the connections between the local primitives found at the optimally de-
tected junction points and end points. The grayscale geodesic dilation
is employed as the basic technique by taking a marker image with gray
values at the local primitives and the skeleton of the original image as
the mask image. The geodesic paths along the skeleton between the lo-
cal primitives are traversed and their points of contact are protected
by updating the mask image after each geodesic dilation iteration. By
scanning the final marker image for the contact points of the traversed
geodesic paths, connections between the local primitives are established.
The proposed approach is robust and scale invariant.

Keywords: local primitives, spatial relationships, grayscale geodesic
dilation.

1 Introduction

Binary images such as technical drawings, diagrams, flowcharts etc. are found in
patents and scientific documents. They are composed of lines intersecting each
other in different directions. The local pattern formed by the composition of
intersecting or crossing lines at a junction point and end point of lines is called
a local primitive. Local primitives and their spatial arrangement are useful in
the analysis, recognition and retrieval of binary images. To capture the content
of binary images found in patents, different geometric shapes and their spatial
relationships have been the target information to be explored in the literature.

In an attempt to capture the topological information in drawings, the spatial
relationships between shape primitives have been modeled at inclusion, adja-
cency and disjoint levels in [8] and at inclusion and adjacency levels in [14].
� This research work was supported by Higher Education Commission (HEC) Pakistan

under the “Pakistan Overseas Scholarship Program for PhD in Selected Fields”.
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Targeting the retrieval of hand drawn sketches, Leung et al. [12] and Parker
et al. [15] estimate shape types from each stroke using heuristics and exploit
spatial relationship at only inclusion level with the geometrical relationship be-
tween multiple strokes. Fonseca et al. [7] capture the topological information
of the drawing by isolating polygons and modeling the spatial relationships of
polygons in the form of a topology graph. Liu et al. [13] detect the lines and
curves in a line drawing and capture the local neighborhood structure of a local
patch in the drawing by considering a primitive as a reference and using four ge-
ometric cues such as relative minimum distance (the minimum distance between
the neighbor and the reference primitives divided by the length of the refer-
ence), relative distance, relative length and relative angle to describe the spatial
relationships between the reference and neighboring primitives. Huet et al. [11]
extract line patterns in skeleton images obtained by Voronoi Skeletonization of
patent images and create line segments from the extracted line patterns by a
polygonization technique. The relational features of a line segment in relation
to another line segment such as relational angle and relational position are used
to capture the geometric structure of the image. In an attempt to generate an
approximate formal ground truth similar to the ground truth binary map (sil-
houette) created by a human from the input map of an image, Bergevin et al.
[2] use six criteria for grouping the constant-curvature contour primitives in a
pairwise fashion based on the Gestalt grouping laws [6]. A grouping criterion is
decided based upon the distance of the two primitives in pixels. Santosh et al. [16]
presented an approach to unify the topological and spatial relations between two
objects by finding a unique reference point set based on their minimum bound-
ing rectangle topology. Forstner [9] emphasizes that the neighborhood relations
derived from a Voronoi diagram exhibit uncertainty when the common sides of
two Voronoi cells are comparably short. The author proposed the concept of
fuzzy Delaunay triangulation which takes into account the uncertainty in neigh-
borhood relations between point fields based on a Voronoi diagram or planar
Delaunay triangulation [18].

For the natural images, the local features lying at an arbitrary distance (Eu-
clidean) to a specific local feature inside its circular neighborhood of arbitrary
radius are assumed to be spatially related to each other [1], [3]. In binary line
drawing images, the technique of an arbitrary circular neighborhood around a
local primitive establishes the spatial relationship between two local primitives
which may not be geodesically related to each other. In a line drawing image,
two local primitives with a geodesic path (skeletal line connection) between them
that does not pass through any other primitives are said to have a geodesic spatial
neighborhood relationship.

To establish the geodesic spatial relationships between the local primitives, a
novel mathematical morphology based approach is proposed in this paper. The
main contributions are: (1) establishment of connections between local primi-
tives based on the geodesic paths (skeletal line connections between them), (2)
adaptation of the mask image after each geodesic dilation iteration to protect the
points of contact of the traversed geodesic paths between the local primitives, (3)
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extraction of adjacency relations (connections) between local primitives based
on the image generated by infinite geodesic dilations by the proposed algorithm.
The proposed approach is robust in establishing the spatial relationships be-
tween all the local primitives found in a line drawing image and is explained
in Section 3. The detection and classification of local primitives is explained in
Section 2. The results for the proposed approach are presented and discussed in
Section 4 and a conclusion is drawn in Section 5.

2 Detection and Classification of Local Primitives

At first, a homotopic skeleton of the original image is obtained by performing
a series of sequential morphological thinning operations [17]. Template based
matching [17] is used to detect junction points and end points in the homotopic
skeleton which gives rise to false detections due to the false skeletal lines intro-
duced during the thinning process of the image as can be seen in Figure 1(a). A
morphological spurring operation [17] removes the parasitic skeletal lines in the
skeleton image by the number of iterations it is performed. An intersection of the
skeleton image containing detections with an iteratively morphological spurred
image eradicates the false detections. To determine an optimum number of it-
erations for the morphological spurring operation, the proposed approach takes
into account the average thickness of lines Lth obtained by taking a weighted
average of the pattern spectrum [17] PSk (I) obtained from the granulometry of
the original image, given as:

Lth =
∑

k PSk (I) ∗ k∑
k PSk (I)

(1)

where PSk (I) is the value of bin k of the PSk (I) and is obtained by taking the
discrete derivative of the granulometric curve of the original image. To remove
the noisy detections, an optimum number of spurring iterations for EPs are
computed as GIEP = �Lth/2� and for JPs as GIJP = �Lth� (the values for Lth

obtained are floating point) [5]. An optimum detection for JPs and EPs is shown
in the Figures 1(b) and 1(c) respectively. The combined optimum detection of
EPs and JPs is shown in Figure 2(l) superimposed as green plus marks on the
ground truth marked as red.

The local primitives (EPPs and JPPs) are classified into primitive classes by
taking into account their composition in an 8-directional space using a distance
based approach [4]. Lines in regions around junction and end points are quantized
into 8 directions, which are represented in a binary vector similar to the approach
used in the Local Binary Pattern (LBP) [10]. There are 8 end point primitive
classes and 244 junction point primitive classes (not 248 because the junction
point primitives composed of lines having an angular difference of exactly 180o

with each other do not fulfill the definition of a junction point primitive and
would be 4 in number in 8-directional space). As a result of this process, each
EPP and JPP has a class number associated with it. It is also possible to quantize
into 4 directions instead of 8, resulting in only 14 classes (4 for EPPs and 10 for
JPPs).
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(a) (b) (c)
Fig. 1. (a) Noisy thinned image with JPs and EPs detected (b) The GIJP times spurred
skeletal image with JPs detection.(c) EPs detection in GIEP times spurred skeletal
image.

3 Geodesic Spatial Relationships between Local
Primitives

To establish the geodesic spatial neighborhood relationship between such local
primitives, the proposed approach intends to traverse the existing geodesic path
between them. By establishing the geodesic spatial relationships between the
local primitives found in a line drawing, the pair-wise co-occurrence of local
primitives can be captured. To traverse the geodesic paths between all the local
primitives, the proposed approach constructs a gray scale image G by placing
unique gray value pixels at the positions of the local primitives and a gray scale
skeleton image S by assigning a gray value Gm = max(G) + 1 to the non-
zero pixels in the binary skeleton image obtained by GIEP spurring iterations
in Section 2. To establish the geodesic spatial relationships between the local
primitives, a morphology based approach using successive gray scale geodesic
dilations is adopted. Considering S as the mask image and G as the marker
image, the proposed approach performs successive gray scale geodesic dilations
[17]. At the nth grayscale geodesic dilation, a grayscale marker image Idn and
the grayscale mask image Imn are obtained by:

Idn = δ
(
Idn−1

)
∧ Imn−1 (2)

Imn = Imn−1 ∧ f0→Gm (Idn) (3)

where n = 1, 2, ... and Id0 = G, Im0 = S are the initial grayscale marker and
mask images as shown in Figures 2 (a) and (d) respectively for an example
image. The function f0→Gm converts all zero-pixels in Idn to Gm. Successive
gray scale geodesic dilations are performed until Idn = Idn−1 where each dilation
operation δ is performed by a unit structuring element. When applying the above
process, at each successive geodesic dilation operation, geodesic paths emerging
from each local primitive towards their spatially connected local primitives are
traversed by converting one non-zero pixel of each geodesic path (skeletal line
connection) to the corresponding gray value of the local primitive. A geodesic
path consisting of n pixels between two local primitives takes n/2 successive
dilation operations to be traversed from each local primitive. In this way, geodesic
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(a) Id0 (b) Id1 (c) Id2

(d) Im0 (e) Im1 (f) Im2

(g) Id3 (h) Id4 (i) Id5

(j) Im3 (k) Im4 (l)

Fig. 2. (a)-(c) and (g)-(i) show the successive grayscale marker images at each succes-
sive grayscale geodesic dilation. Id0 = G is the initial gray scale marker image and Id5

is the final grayscale image for the example image containing points of contact shown
with blue asterisk marks and locations of local primitives with green plus marks. (d)-
(f) and (j), (k) show the corresponding grayscale mask images at successive geodesic
dilation. Im0 = S is the initial mask image obtained by assigning gray value Gm to
non-zero pixels to the skeleton image SSIGIEP . The original example image with red
ground truth for JPs and EPs, superimposed detection of JPs and EPs in green plus
marks and their contact points for geodesic spatial relationships in blue asterisk marks
determined by the proposed method is shown in (l).

paths of short length are traversed before than the long ones. Continuing the
path traversing procedure overruns the contact points of already traversed paths
of short lengths. To protect the contact points, the mask image Imn is updated
after each successive dilation operation as given by Equation 3. The successive
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Fig. 3. One of the ten images with ground truth points (red) and superimposed de-
tected EPs and JPs (green) with contact points of traversed geodesic paths (blue)

steps involved in the establishment of geodesic spatial relationships between local
primitives by the proposed approach are shown visually for an example image
in the Figure 2. Figures 2 (b), (c), (g), (h) and (i) show the images obtained by
the successive gray scale geodesic dilation operations given by Equation 2. The
corresponding Imn mask images for the Idn marker images are shown in Figures
2 (d), (e), (f), (j) and (k).

The final gray scale image Idn contains all the traversed geodesic paths with
their contact points which consist of two neighboring pixels with different gray
values indicating the spatially connected local primitives. Local primitives which
have geodesic spatial relationships between them are found by scanning Idn for
the neighboring different gray value pixels and their neighborhood relations are
established by locating their corresponding locations in the original image using
the initial grayscale image e.g. the neighboring pixels at a contact point of the
traversed geodesic path between a JP with gray value 3 and an EP with gray
value 20 indicates that JP 3 is spatially connected to EP 20 and the geodesic

Fig. 4. One of the ten images with ground truth points (red) and superimposed de-
tected EPs and JPs (green) with contact points of traversed geodesic paths (blue)
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spatial relationship between the corresponding local primitives of these gray val-
ues is established in the original image. The established geodesic spatial relation-
ships between the local primitives (EPPs and JPPs) by the proposed approach
are shown superimposed on the final Idn (which is Id5 for this image) and orig-
inal example image with ground truth of junction and end points (marked as
red) in Figures 2 (i) and (l). The green points mark the JPs and EPs and the
blue points mark the contact points of the geodesic paths traversed from each
point towards other neighboring points.

4 Results and Discussion

To evaluate the performance of the proposed approach ten images are selected
from a publically available patent image database1. The visual results for two
out of the ten selected images are shown in Figures 3 and 4. It can be seen that
the proposed approach successfully establishes the geodesic spatial relationships
between all the local primitives found at the detected junction and end points.
Having established the geodesic neighborhood relations of the local primitives
by the developed method, the pairwise co-occurrences of the local primitives in
addition to their independent occurrences can be captured. In an occurrence his-
togram each bin represents the occurrence frequency of a local primitive, whereas
each bin of co-occurrence histogram represents the occurrence frequency of a
pair of local primitives. The representation of line drawing images in terms of
the occurrence and co-occurrence histograms of local primitives are useful in the
recognition, analysis and retrieval of these images. It is noted that the estab-
lishment of geodesic spatial relationships is highly dependent on the detection of
EPs and JPs which is a first step in the proposed approach. Due to the false EPs
and JPs detections, geodesic spatial relationships can be established between a
true and a false local primitive, which can be overcome by eradicating the false
detections. The proposed approach takes n/2 iterations to establish the spatial
relationships between two primitives which are n pixels apart. So, the computa-
tional complexity of the approach depends upon the longest distance (in terms
of pixels) of any two primitives in an image and scale of the image as well.

5 Conclusion

A novel mathematical morphology based approach employing the grayscale
geodesic dilation is proposed to establish the spatial relationships between the
local primitives found at the junction and end points in binary line drawing im-
ages. The proposed approach is robust and successfully established the geodesic
spatial relationships between all the local primitives. As the detection and classi-
fication of local primitives found at the junction points and end points is the first
step, the establishment of geodesic spatial relationships depends upon the detec-
tion of these points. By establishing the geodesic spatial relationships between
1 http://mklab.iti.gr/content/patent-database
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local primitives, their pairwise co-occurrences in addition to the independent
occurrences can be captured in the form of histograms which are useful in the
recognition, retrieval and classification of drawing images.
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Abstract. In this paper, a star-skeleton-based methodology is described
for analyzing the motion of a human target in a video sequence. Star
skeleton is a fast skeletonization technique by connecting centroid of
target object to its contour extremes. We represent the skeleton as a
five-dimensional vector, which includes information about the positions
of head and four limbs of a human shape in a given frame. In this manner,
an action is composed of a sequence of star skeletons. With the purpose
of use an HMM which allows model the actions, a posture codebook is
built integrating star skeleton and motion information. With this last in-
formation we can distinct better between actions. Supervised (manual)
and No-supervised methods (clustering-based methodology) have been
used to create the posture codebook. The codebook is dependently of
the actions to represent (We choose four actions as example: walk, jump,
wave and jack). Obtained results show, firstly, including motion informa-
tion is important to get a correctly differentiation between actions. On
the other hand, using a clustering methodology to create the codebook
causes a substantial improvement in results.

Keywords: Human action recognition, Star skeleton, Clustering,
Hidden Markov Models.

1 Introduction

Vision-based human action recognition is currently a significant research topic,
since it can be useful for a wide variety of applications, such as video indexing
and browsing, virtual or augmented reality.

Several human action recognition methods were proposed in the past few
years: model-based methods, eigenspace technique and Hidden Markov Model.
HMM has been used successfully in speech recognition and is a training based
recognition technique. HMM transforms the problem of action recognition into
the problem of pattern recognition. Yamato et al. [6] are the first researchers
who applied HMM for action recognition. Some of the recent works [1], [2], [4]
and [7] have shown that HMM performs well in human action recognition as
well.

This paper [1] proposes an action recognition method based on HMM using
star skeleton as the recognition feature, with a symbol codebook built using

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 173–180, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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clustering-based methodology, in an automatic way. In addition, each symbol of
our codebook includes information of the motion direction of the target in order
to consider dynamic information.

The paper is organized as follows. In section 2, we make a review of the sys-
tem proposed by [1] and [2]. In section 3 we introduce the automatic generation
of the codebook. We also introduce the need of including dynamic information
(direction vector) in the posture of a human in base to complete the description
of each symbol and improve the action recognition. Section 4 shows some ex-
perimental results and, finally, section 5 offers final conclusions and future work
discussion.

2 Action Recognition Using Star Skeletonization

The system architecture consists of three parts: feature extraction, mapping
features to symbols and action recognition.

A frame is processed to extract the contours from a human silhouette. Then,
the associated star skeleton is obtained according to a distance defined in the
skeleton space. A posture codebook is built containing representative star skele-
tons (symbols) of each action. When the system gets a new star skeleton, it is
mapped to the most similar symbol in the codebook. HMMs are used to model
the different actions. They receive a symbol sequence and give a probability
value associated to the action each HMM is trained for.

2.1 Feature Extraction

Obviously, there is no perfect motion detection algorithm. In this approach, a
very simple method is used: background subtraction. There will be spurious
pixels detected and other anomalies, so a preprocessing step is needed. The
difference between the background image and the current frame is binarized and
morphological dilation and erosion are used to extract a high quality border
contour.

The method proposed by [2] provides a real-time method for detecting ex-
tremal points on the boundary of the target to get the star skeleton. This struc-
ture consists of the head and four limbs of a human joined to its centroid. This
is described as follows:

– Considering (xi, yi) points from border contour and Nb the total number of
these points, the centroid (xc, yc) of the target is determined by:

xc =
1
Nb

Nb∑
i=1

xi yc =
1
Nb

Nb∑
i=1

yi (1)

– The distances di (di is expressed as a one dimensional signal d(i) = di) from
each border point to centroid are calculated:

di =
√

(xi − xc)2 + (yi − yc)2 (2)
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– di is smoothed (d′i) to reduce noise using a smoothing filter.
– The extremal points come by the local maxima of (d′i). The star structure

is built connecting them to the target centroid.
– In order to make the process valid independently of the person characteris-

tics, normalization should be made to get relative distribution of the feature
vectors. This is achieved dividing vectors by human dimensions (width and
height).

Figure 1 shows examples of different skeletons obtained from person contours.

Fig. 1. Star skeletons obtained for distinct human targets

2.2 Mapping Features to Symbols

Once we have the star skeleton, we must define the concept of distance between
feature vectors. The star skeleton is made up of five sub-vectors, so star distance
between two feature vectors U and V (d∗(U, V )) could be defined as the sum of
the Euclidean distances of the five sub-vectors.

d∗(U, V ) =
5∑

i=1

||Ui − Vi|| (3)

However, it is necessary to consider that the particular position of each human
extremal is unknown, so a greedy mapping is needed to compare two feature
vectors. The star distance is defined by minimal sum of the five sub-vectors in U
in all permutations, where K is the total number of possible permutations and
Up

i is the sub-vector i in the permutation p in the feature vector U :

d∗(U, V ) = arg min
p

5∑
i=1

||Up
i − Vi|| p ∈ 1..K (4)

With the star distance defined, we can build a codebook with the most repre-
sentative star skeletons for all the actions considered. Star skeletons obtained
of each frame will be mapped to a symbol in the codebook to make the action
recognition possible. Using a finite set of symbols the codebook is built manually:
they choose subjectively symbols are subjectively chosen to be representative in
a visual way.

2.3 Action Recognition

In order to achieve the action recognition, one HMM is designed for each action
to be considered. The number of states was empirically determined. Once we
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have each action model trained (with symbols from the codebook), we calculate
the probability of each model of generate the observation posture sequence.
Considering the set of h HMMs of the model (where Pi is the HMM for action
i) and a given symbol sequence s, the action associated to s will be calculated
as:

arg max
i
Pi(s), i = 1..h (5)

where Pi(s) is the probability of s in Pi. Also, it is required that the given
sequence ends in a final state of Pi

3 Automatic Generation of Codebook

The process of constructing the codebook is manual in the current model. It
carries some disadvantages, such as the subjective selection of symbols by a
human, as well as the fact that symbols may not be representative enough in
the codebook. Also, in a manual selection the time of the processing is high and
tedious.

All these limitations can be improved choosing the most representative star
skeletons, using an automatic method. In this paper we propose a way of build-
ing the codebook using a clustering-based method to automatically select the
components in the codebook.

The method used to get the codebook symbols is the K-means, where the
number of clusters is prefixed before the clustering. This number was chosen
in base of the number of symbols used by [1] and considering a sufficient num-
ber to modeling the actions successfully. However, K-means algorithm has some
limitations. In this case, the main inconvenient is the initialization-dependency
inherent to the algorithm. This may lead to bad results, because in the training
set there could be symbols more frequent than others. If in the initialization step,
many clusters are assigned to very similar symbols, at the end of the process,
some clusters will not have any symbol of the training set assigned. In addition,
the rest of the clusters will not represent successfully all the possible symbols.

In order to find a solution for the problem of the K-means initialization, we
introduce a modification at this point. First clusters must be really representative
of the training set. The variance in the group is considered in order to extract
the most different symbols from the set, so clusters are initialized as follows:

1. We choose cluster c as the symbol from the training set which minimizes the
variance in the symbols group G− c:

arg min
c

Var(G− c), c ∈ G (6)

2. We compare each symbol in the training set with the first cluster using (4).
Symbols c′ ∈ G too similar to the first cluster (up to a threshold λ, i.e.
|c− c′| ≤ λ) are eliminated from the training set: G′ = G− c′.

3. If |C ∪ c| < n and |G′| > 0 then G = G′ and go to step 1; else n = |C|.
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Fig. 2. 17-cluster codebook generated using manual method (above) and K-means
algorithm (below) with initial n = 20 and λ = 0.95

Fig. 3. Sequence of star skeletons for action walk (left) and jump (right)

The main problem in this step is choose λ to discriminate the similarity between
symbols. λ was selected empirically. High values of λ make elimination process
too aggressive, leaving some clusters with no symbols assigned. This situation
is also possible if the variance between symbols is very low. In these cases, the
final number of clusters is automatically reduced by K-means. Figure 2 shows
examples of codebooks, manual and K-means-generated by. Pattern recognition
techniques present problems to distinguish very similar patterns. In our case,
some symbols in the codebook are shared by many actions; even a sequence of
an action can be a subsequence in another one, as Figure 3 shows. If we want
to differentiate them, it is necessary to represent them in a different way. Using
position of each human extremal to represent a posture is not enough, so we add
dynamic information to the symbols in the codebook. This information includes
the direction of motion of the human target between consecutive frames. In this
way, we can know if the star skeleton calculated in a frame is displaced respect
the star skeleton in the previous.

The most important is to know the variation respect Y-axis: this can be a
difference between the symbols in jump and walk sequence. It is also important
know if the human target is still or moving, but system must work independently
if he is moving left or right in the scene. Motions are accordingly transformed
from left to right in any case.

The displacement of a human target is defined as the variation of the center
of human target in the Y-axis over the X-axis during a sequence of frames. For
an easier processing, we work with the angle of variation (measured in degrees)
to evaluate the magnitude and direction of motion. This angle α of motion in
the frame i respect to previous frame is computed as:

α = arctan((yi − yi−1)/(xi − xi−1)) (7)

Where xi and yi are the pixels representing the mean point of human target
dimensions in the frame i. The motion direction in function of α is shown in
Figure 4. A color-coding is used to represent it in the skeleton figures. This
dynamic component must be added to each symbol in the codebook, so the final
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Fig. 4. Left: Diagram with the different types of possible direction in motion sequences.
Right: Coding of the different directions of motion.

codebook will be the Cartesian product of the star skeletons (symbols obtained
by K-means method) with all possible directions of displacement A calculated
as (7) shows. A symbol s in the codebook is now defined as (8). When a new
star skeleton comes we look for the most similar symbol in the new codebook,
which is now a Cartesian product of skeleton symbols and direction symbols.

s = (c, α) c ∈ C,α ∈ A (8)

4 Results

Video sequences used in training and test phases have been token from [8]
database, some frames of them are shown as example in Figure 5. Many se-
quences are extracted from each video and The number of sequences in the
training set for each considered action is 206 (walk), 172 (jump), 98 (wave) and
104 (jack). Table 1 shows the confusion matrix of testing data. The left side is
the ground truth of action types and the upper side is the recognition action
types. It is possible to know in which type of action the system misclassifies
sequences. From Table 1, left and center, we can see that a 91% of sequences are
classified successfully with the manual method, while, with the K-means-based
methodology this rate is over 97%. K-means achieved a significant improvement.

Empirically, we observed that if a sequence mapped to codebook symbols
has an odd or not frequent symbol, the associated HMM can produce a high
probability but, in some cases, it does not have to finish in a Markov final state.
If the rest HMMs produce very low probability, we can use a threshold t to
discriminate when it is neccesary to take the HMM with highest probability
even if it had not finished in a final state. Thus, we follow the criterion given by
(5) but introducing a new constraint: even in the case that model Pi does not
end processing the sequence in a final state, the sequence is assigned to Pi if

Pi(s) ≥ P
′

i (s) + t i = 1..h, t ∈ [0 , 1] (9)

Fig. 5. Examples of action video sequences from used database
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Table 1. Confusion matrix for recognition of testing data using manual codebook (left)
and K-means codebook (center). Confusion matrix for recognition of testing data using
K-means codebook and HMMs with t = 0.65 (right).

Walk Jump Wave Jack

Walk 27 1 0 3

Jump 0 26 0 0

Wave 0 7 63 0

Jack 0 2 0 20

Walk Jump Wave Jack

Walk 28 2 0 1

Jump 0 26 0 0

Wave 0 0 70 0

Jack 0 1 0 21

Walk Jump Wave Jack

Walk 30 1 0 0

Jump 0 26 0 0

Wave 0 0 70 0

Jack 0 0 0 22

Fig. 6. Stars skeleton mapped to walk, jump, wave and jack action sequences

Adding this constraint improves the performance rendered by our HMMs, as
shown in table 1, right. Finally, Figure 6 presents examples of sequences for dif-
ferent actions. It shows the contour of human targets and the symbols in the
codebook matched with them. The direction obtained is also indicated in the
skeletons with the color coding shown in Figure 4. It is simple to see that, al-
though the sequences share many symbols, specially jump ones, the direction
associated is different in each action and problems of shared symbols and sub-
sequences are solved.

5 Conclusions and Future Work

In this paper improvements on action recognition based in star skeleton has been
presented. Codebook selection is fully automatic, avoiding human intervention
and its subjectivity. In addition, manual method chooses clusters among a finite
symbols set, while the proposed clustering-based methodology chooses a optimal
representation of the symbols, independently of set size and its variety.

K-means-method chooses initial clusters considering the variance in the sym-
bols set, so the symbols chosen are the most representative. The number of
clusters is enough to represent successfully all the actions presented as example.

Other methodologies can also be used to build the codebook in an automatic
fashion, as Neural Networks. With this methodology more complex actions than
those presented here could be considered. For more realistic applications it would
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be possible the continued recognition of successive sequences with different ac-
tions using dynamic HMM.
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Abstract. Appearing as an important task in computer vision, pedes-
trian detection has been widely investigated in the recent years. To design
a robust detector, we propose a feature descriptor called Local Response
Context (LRC). This descriptor captures discriminative information re-
garding the surrounding of the person’s location by sampling the re-
sponse map obtained by a generic sliding window detector. A partial least
squares regression model using LRC descriptors is learned and employed
as a second classification stage (after the execution of the generic detector
to obtain the response map). Experiments based on the ETHZ pedes-
trian dataset show that the proposed approach improves significantly the
results achieved by the generic detector alone and is comparable to the
state-of-the-art methods.

Keywords: pedestrian detection, local response context, partial least
squares regression.

1 Introduction

Pedestrian detection is of fundamental importance in computer vision due to
the use of people’s location for tasks such as person recognition, tracking, pose
estimation, and action recognition. To reduce the amount of noise (false detec-
tions) input to these tasks, it is important to maintain a low miss-detection rate
while reducing as much as possible the number of false alarms, which can only
be achieved with the use of robust detection algorithms.

The main challenges faced to locate people in images are related to pose
variation, illumination changes, blur, and partial occlusions. To deal with such
conditions, most pedestrian detectors are either holistic or part-based [14]. While
the latter, which employs a generative process to combine detected parts to a
prior human model, is more suitable to handle conditions such as pose variation
and partial occlusions, the former is able to collect more discriminative informa-
tion by performing a statistical analysis to combine a set of low-level features
within a detection window due to the larger size of the whole body, compared
to the size of the parts.

To be able to locate all humans in an image, a holistic detector employs an
image sweeping based on a sliding window which considers multiple scales and
small strides. A consequence resulting of this approach is the existence of multiple
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decreasing responses around the person’s location. These multiple responses are
normally removed by non-maximum suppression.

The evaluation of the response provided by a single detection window (as
done when non-maximum suppression is applied) may generate ambiguities since
that peak response can be caused by false alarms such as trees or poles, which
present shapes similar to pedestrians. Nevertheless, the analysis of the spatial
distribution of responses around detection windows (context) might reduce or
even remove such ambiguities because the behavior of detector responses may
vary according to the type of object.

The contribution of the context around the person’s location for detection has
been observed in the work of Dalal and Triggs [2] with the addition of a number
of background pixels on the four sides of the detection window. Therefore, one
way of incorporating more context is to increase even more the detection window
size to add more background information. However, there is the consequence that
the feature space becomes extremely high dimensional since robust detection is
better achieved through feature combination [11].

The addition of more descriptors to capture extra background information,
besides increasing the feature space dimensionality, does not incorporate infor-
mation regarding the object being detected (pedestrians) because descriptors
are general and only add such information after a learning process. On the other
hand, if detection responses are considered, some information regarding the prob-
lems is already incorporated since the responses depend on the object class, and
the dimensionality of the feature space for the detector is not changed.

This work proposes the use of local response context to improve pedestrian
detection. The process works as follows. After the execution of a holistic detec-
tor and the composition of the response map for an image, responses around
each detection window are sampled to compose a feature vector, referred as to
Local Response Context (LRC). In the training phase, feature vectors located
around detection windows containing pedestrian and detection windows with
background are used to learn a regression model. Therefore, the responses are
used as a new set of descriptors. Finally, during the classification, LRC feature
vectors are projected onto the model and classified as pedestrian or background.

2 Related Work

Dalal and Triggs [2] proposed the use of histogram of oriented gradient (HOG) as
feature descriptor for human detection, whose results outperformed other fea-
tures. Zhu et al. [20] presented a method that significantly speeds up human
detection by combining HOG descriptors with a cascade of rejectors. Variable
size blocks are used in their method, such that larger blocks allow rejection of
the majority of detection windows in the early few stages of the cascade. Zhang
et al. [19] described a multiple resolution framework for object detection based
on HOG to reduce computational cost, where lower resolution features are firstly
used to reject most of the negative windows, then expensive higher resolution
features are used to obtain more precise detection. Begard et al. [1] developed
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two learning algorithms for real-time pedestrian detection using different imple-
mentations of AdaBoost to optimize the use of the local descriptors.

A human detection method using covariance matrices as feature descriptors and
a learning algorithm based on a Riemannian manifold was presented by Tuzel et
al. [15]. Their method produced superior results when compared with the meth-
ods proposed by Dalal and Triggs [2] and Zhu et al. [20]. Mu et al. [10] developed
a human detection method based on two variants of local binary patterns (LBP),
comparing the results against the use of covariance matrix and HOG descriptors.
Wu and Nevatia [17] proposed a cascade-based framework to integrate heteroge-
neous features for object detection, such as edgelet, HOG and covariance descrip-
tors. Maji et al. [8] proposed features based on a multi-level version of HOG and
histogram intersection kernel support vector machines (IKSVM) to obtain a good
balance between performance and accuracy in pedestrian detection.

Part-based representations have also been used for human detection. Shet
and Davis [13] employed a logical reasoning approach to utilizing contextual
information and knowledge about human interactions, extending the output of
different low-level detectors for human detection. Lin and Davis [7] proposed a
pose-invariant feature descriptor for human detection and pose segmentation.
Tran and Forsyth [14] developed a two-step pedestrian detection strategy, where
the configuration of the best person within each detection window is firstly esti-
mated, then features are extracted for each part resulting from this estimation
and passed to a support vector machine classifier to make the final decision.

Context information has been used to increase accuracy of the human de-
tection process. Gualdi et al. [6] exploited context information through a rele-
vance feedback strategy, which enhances the pedestrian detection step by using
training on positive and negative samples, and a weak scene calibration, which
estimates the scene perspective to discard outliers. Statistical relationship be-
tween objects and people, modeled by Markov logic networks, was used by Wu
et al. [18] to incorporate user activities as context information for object recogni-
tion. Morency [9] described co-occurrence graphs for modeling relations between
visual head gestures and contextual cues, such as spoken words or pauses, to
select relevant contextual features in multiparty interactions.

3 Proposed Method

In this section, we describe the proposed method for incorporating local re-
sponse context for pedestrian detection. Since the addition of feature descrip-
tors extracted from surrounding regions of a detection window would result in
an extremely high dimensional space (millions of descriptors to describe a single
detection window), we use detection responses of a local neighborhood to build
a new classifier to improve the discrimination between human and non-human
samples.

A holistic sliding-window detector (referred as to generic detector) extracts
feature descriptors for each detection window, then presents the resulting fea-
ture vector to a classification method, which results in a response value used as
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LRC feature vector

response

projection 

detection 

response map 

detection windows

Generic Detector

Addition of the Local Response Context (LRC)

non-maximum
suppression

PLS model

Fig. 1. Proposed method. The left-hand side shows the detection process performed
by a generic pedestrian detector. The right-hand side shows the incremented detection
process with the addition of the local response context descriptor. Using the resulting
response map, LRC descriptors are extracted for each detection window and projected
onto a PLS model, resulting in a more accurate classification between humans and
non-humans.

confidence to separate humans from background. A response map, R(x, y) with
the image size, is built using the resulting set of responses (a response is placed
at the centroid of the location of its corresponding detection window). Finally,
a non-maximum suppression procedure is executed to maintain only detection
windows with the highest responses. This process is illustrated on the left-hand
side of Figure 1.

In contrast to the generic detector, which applies the non-maximum suppres-
sion after building the response map, we use this map to sample responses in
the neighborhood of each detection window to extract the local response context
descriptor, which will be used for a second and more accurate detection pro-
cess, as illustrated on the right-hand side of Figure 1. The complete procedure
is composed of feature extraction, training and classification.

The feature extraction works as follows. Let di be a detection window with
centroid located at (x, y) and its local neighborhood defined by a square with
left-most corner at (x−Δ, y−Δ) and right-most corner (x+Δ, y+Δ), where Δ
is a value defined experimentally. The responses R(x′, y′) inside this region are
sampled and linearized to compose the feature vector vLRC, used to describe di

during its classification.
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For the training, a generic pedestrian detector is executed for a previously
labeled image sequence, resulting in a set of response maps. For each detection
window, a feature vector based on LRC is extracted. Then, the detection windows
are separated according to their classes (humans or non-humans) given by the
ground-truth locations. Finally, a Partial Least Squares (PLS) model [12] is built
to classify samples using labels +1 for human and −1 for non-human.

Partial least squares is a method for modeling relations between sets of ob-
served variables in a latent space. It constructs new predictors as linear combina-
tions of the original variables summarized in a matrix X of descriptor variables
(matrix with feature vectors) and a vector y of responses (class labels). PLS
decomposes the input variables as

X = TP T + E

y = UqT + f

where T and U are n × p matrices containing p extracted latent vectors, the
(m× p) matrix P and the (1× p) vector q represent the loadings and the n×m
matrix E and the n× 1 vector f are the residuals. The PLS method, using the
nonlinear iterative partial least squares (NIPALS) algorithm [16], constructs a
matrix of weights W indicating the importance of each descriptor. Using these
weights, the regression coefficients βm×1 can be estimated by

β = W (P T W )−1T T y. (1)

Then, the regression response, yv, for a feature vector vLRC is obtained by

yv = y + βT vLRC (2)

where y is the sample mean of y.
Once the PLS model has been estimated in the training process, it is stored

to be used during the classification, when test sequences are presented. The
classification is illustrated on the right-hand side of Figure 1 and works as follows.
First, for each image, a generic pedestrian detector is executed to obtain the
response map. Then, the feature vector vLRC is extracted for a detection window
di and projected onto the PLS model using Equation 2. The higher the response,
the more likely is that di contains a human (due to the class labeling used).
Finally, using the response map generated by this classification process, the
non-maximum suppression can be performed to locate pedestrians individually.

4 Experimental Results

This section presents and compares results obtained with local response context.
First, we present a brief summary of the human detector used to obtain the re-
sponse maps. Then, we describe the parameter choice considered and, finally, we
compare detection results achieved when LRC is incorporated to results obtained
by state-of-the-art approaches.
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The PLS Human Detector. As generic detector, used to obtain responses
for each detection window to build the response map, we employed the human
detection method proposed by Schwartz et al. [11], which is available for down-
load. This is a holistic detector based on a combination of descriptors focusing
on shape (histograms of oriented gradients), texture (co-occurrence matrices),
and color (color frequency) that uses PLS to reduce the dimensionality of the
feature space and provide discriminability between the two classes.

The detection is performed as follows. Each detection window is decomposed
into overlapping blocks and feature descriptors are extracted and concatenated
in a feature vector. This feature vector is then projected onto a PLS model and
the resulting latent variables are classified as either a human or non-human by
a quadratic classifier. Finally, a response map is output for each image.

Experimental Setup. To evaluate our method, we use the ETHZ pedestrian
dataset [3], which is composed of three video sequences collected from a moving
platform. These sequences contain frames of size 640 × 480 pixels. For all the
experiments, the detection is performed over 16 scales to consider humans with
heights between 60 and 500 pixels, with strides of 4 pixels in the x-axis and 8
pixels in the y-axis. This setup results in 64, 292 detection windows per frame.

To learn the PLS model with the local response context, the initial 50 frames of
the training sequence #0 from the ETHZ pedestrian dataset is used. From these
frames, 163 human exemplars and 750 counter-examples (15 per frame chosen
in decreasing order according to the response of the corresponding detection
windows) are sampled. The PLS model is built considering a latent space of 10
dimensions. In addition, Δ = 19 is used for the neighborhood, resulting in a
feature vector with 1521 descriptors. These parameters were chosen empirically
during the training and kept fixed during the classification stage.

Comparisons. Figure 2 shows curves comparing the proposed method (referred
as to local response context) in the three ETHZ sequences to other methods of
the literature. In these plots, the x-axis shows the number of false positive per
image (FPPI) and the y-axis shows the recall, which is the fraction of detected
pedestrian samples among all pedestrians in the video sequence.

Curves shown in Figure 2 compare our method to four state-of-the-art ap-
proaches in the literature. The most important comparison is to the PLS human
detector [11] since the proposed method uses the response map generated by
it. Therefore, any gain in performance compared to that method is due to the
addition of the LRC. The other approaches in the comparison were proposed by
Ess et al. [3,4,5]. These methods employ not only low-level descriptors, as in the
proposed method, but also scene information such as depth maps, ground-plane
estimation, occlusion reasoning, and tracking to detect pedestrians.

Discussion. According to the results displayed in Figure 2, there are significant
improvements on the recall when compared to the use of the the PLS human
detector [11], which shows a clear contribution of the LRC. In addition, even
though the other methods in the comparison use extra information, the proposed
method presents very similar or better results in all video sequences. Therefore,
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Fig. 2. Comparisons using three video sequences of the ETHZ pedestrian dataset. The
proposed method is referred as to local response context.

the use of extra information such as ground-plane estimation and tracking might
be exploited to achieve further improvements in the future.

One of the advantages of using LRC descriptors instead of considering low-
level descriptors extracted from the neighborhood is the fairly low dimensionality
of the feature vectors (1521 descriptors for a neighborhood with 19 pixels). If
the detection window of the PLS human detector [11] were increased to consider
a local neighborhood, the number of descriptors in the feature vector would be
easily higher than one million, which might prevent the method from running
due to the extremely high memory consumption and computation.

5 Conclusions

This work presented a pedestrian detection approach based on the local response
context. This method uses response maps computed by a generic pedestrian
detector (PLS Human Detector for this work) to extract feature descriptors that
are used to build a PLS model employed to classify detection windows as humans
or non-humans. Experimental results presented improvements on detection rates
on the ETHZ dataset when compared to the PLS Human Detector. In addition,
the proposed detector achieved results comparable to state-of-the-art methods.
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Abstract. In this paper we proposed a new segmentation method based Fast 
Finsler Active Contours (FFAC). The FFAC is formulated in the Total 
Variation (TV) framework incorporating both region and shape descriptors. In 
the Finsler metrics, the anisotropic boundary descriptor favorites strong edge 
locations and suitable directions aligned with dark to bright image gradients. 
Strong edges are not required everywhere along. We prove the existence of a 
solution to the new binary Finsler active contours model and we propose a fast 
and easy algorithm in characteristic function framework. Finally, we show 
results on some MR challenging images to illustrate accurate. 

Keywords: Finsler Active contours, Wulff Shape, characteristic function, 
Shape prior, Primal dual. 

1   Introduction 

The Finsler Active Contours (FAC) has been proposed as natural way for adding 
directionality to the Active Contours [1, 2, 10]. The utilization of general Finsler 
metrics instead of Riemannian metrics allows the boundary descriptor to favor 
appropriate locations and suitable directions [10, 12]. The boundary descriptor is 
weighted by some position and direction-dependent local image information. The 
local image information can be obtained from a direction-a learned dependent pattern 
detector. In order to obtain fast and optimal segmentation we proposed both to use 
local information such anisotropic boundary descriptor [11] and global information 
such as statistic and geometric shape prior knowledge in the formulation of FAC. The 
formulation of FAC in Total Variation framework [4, 7], allows the convert non-
convex segmentation problem into a convex problem segmentation. The goal is to use 
an anisotropic boundary descriptor that forces attracting AC at distinct specific 
positions with particular orientations. Integration position and orientation leads to TV 
primal dual formulation of segmentation problem. The formulation of the 
segmentation problem in the characteristic function leads to a fast globally 
segmentation procedure. We demonstrate the powerful of the proposed segmentation 
method on some challenging MR images. 
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2   Review of Finsler Active Contours 

In this work, we are interested in a fast segmentation based Finsler Active Contours 
(FAC) model. We proposed to reformulate traditional FAC in characteristic function 
framework( [ ]0,1χ ∈  )as combination of finsler, region and shape descriptors in Total 

variation framework:  
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where 1λ , 2λ are the calibration factors, bk is the boundary descriptor, rk is the regions 

descriptor defined in the same manner as in [9] and sk is the shape prior descriptor 

defined as in [13] and refΩ the reference shape. In Finsler metrics [10], the traditional 

isotropic descriptor ( )bk ⋅ is replaced by an anisotropic Finsler descriptor ( ),fk x p  by 

adding the directionality to the traditional boundary descriptor: 
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where
'1 2

|| || ||, =  p p p denote the tangential direction to the curve ∂Ω  and 
'1 2,⊥ ⊥ ⊥ =  p p p  denote the normal direction to the curve ∂Ω . Since the desired result 

is a curve in higher dimensions, a dynamic programming approach is used to 
determine the implicit convex minimizer of FAC energy [10].  In the next section we 
are interested in a definition of new convex Finsler descriptor in the TV framework 
ensuring a globally and optimal segmentation. When other convex or non-convex 
descriptors such as regions or shape prior descriptors are incorporated within Finsler 
descriptor, the solution is also implicitly convex.  

3   Finsler Active Contours in the Total Variation Framework 

In this section, we replace the isotropic boundary descriptor in (1) by anisotropic 
descriptor in TV framework [4, 6, 8, 12]. More formally, let ( )ψ

∈Ωx x
be a family of 

weighted anisotropic, positively 1-homogeneous functions, the segmentation problem 
can be formulated as: 
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Where ψ  is induced by potential shapes noted as Wulff shapes Wψ  [6, 8, 11].  

Definition 
Let 2:ψ →  be a convex, positively 1-homogeneous 

function ( ) ( )ψ λ χ λψ χ∇ = ∇ , for 0λ > .  

The Wulff shape Wψ  convex, bounded and closed set ( )0 Wψ∈ is defined as: 

( ){ }
{ }

( ) ( ) ( )

2 2, : ,

:

max , max ,
W W

W

such W W

and
ψ ψ

ψ

ψ ψ

χ χ ψ χ

ψ χ χ χ
∈− ∈

= ∀ ∈Ω ⊂ ∇ ∈ ∇ ≤ ∇

= − ∈

∇ = ∇ = − ∇
p p

x p

p p

p p

                     (4) 

where , denote the inner product in 2 . 

The nature of solution of (3) was already shown for the TV [4, 6, 11] by rewriting 
the anisotropic TV in terms of characteristic function and extended to general families 
Wulff shape. 
 
Lemma 
Letψ be a positively 1-homogeneous function, and the descriptors rk  and sk . Then 

any global minimizer of (3) can be considered as a global minimize. 
 
Proof: Assume [ ]* : 0,1χ Ω → is a global minimizer of (3). The corresponding 

characteristic function χ̂  is then defined as: 
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If ˆ 0χ∇ ≠  has the same direction as *χ∇ , then we can write *ˆ cχ χ∇ = ∇ , *c +∈ . The 

dual energy of (3) is given by: 

( ) ( ) ( ) ( )( )1 2min 0, , ,FAC r s refE div k k dλ λ
Ω

= + Ω + Ωp p x x x                        (6) 

which is maximized with respect to a vector field p subject to
x

Wψ− ∈p . By inserting 

the respective constraints on χ and p using the dirac functionδ , the primal (3) and 

dual (6) energies can be stated as: 
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and we can expressed the dual energy as: 

( ) ( ) ( )*
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(8) 

We use the Karush-Kuhn-Tucker (KKT) conditions to prove the optimality of χ̂ [3]. 

Let *p be the corresponding dual solution for *χ . The KKT conditions stated as: 
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Hence the KKT conditions can be applied point-wise. Therefore, ( )* *,χ p are 

minimizers of the primal energy (7) and its corresponding dual energy (8) if and only 
if: 
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Then, we established that χ̂∇ is sub gradient of ( )*
Wψ

δ −p : 
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Since * Wψ− ∈p and Wψ− ∈p  ( )* 0Wψδ − =p and ( ) 0Wψδ − =p and we can write:  
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We can establish that ( )*ˆ Wψ
χ δ∇ ∈ −p . 

To establish that ( )*div− p is sub gradient [3] in (12), we consider two cases. In the 

first case *χ is already either 0 or 1, then *χ̂ χ= . The second case *χ is in the open 

interval ] [0,1 , then [ ] ( )*
0,1 0δ χ∂ = , since [ ] ( )0,1δ ⋅  is constant in [ ]0,1 : 
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ˆ ˆ ˆ, ,r s refdiv k kλ χ λ χ δ χ− ∈ Ω + Ω +p x x , thus ( )*ˆ ,χ p also satisfies 

the KKT conditions and χ̂ is therefore a global binary minimizer. 

4   Finsler Active Contours in the TV Framework 

In this section, we consider that ( ) ( )max T

Wψ

ψ χ χ
∈

∇ = − ∇
p

p , the energy in (7) and (8) can 

be formulated in a primal-dual setting as: 



 Fast Finsler Active Contours and Shape Prior Descriptor 193 

( ) ( )
( )

( )
( ) ( )1

2

,
, max ,

,

r

W
s ref

k
E d d

kψ

ψ χ

λ
χ χ χ

λ− ∈
Ω Ω

 Ω  = ∇ +  
+ Ω  

 
x

p

x
p p x x x x

x
                 (14) 

and the respective gradient descent (for χ ) and ascent (for p ) equations are: 
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whereτ is an artificial time parameter, 0∂Ω is the initial contour curve. Enforcing the 

constraints on χ and p is both done by clamping [ ]0,1 , and reprojecting p onto the 

feasible setWψ x
.   

The Energy based region term is usually defined as a domain integral of the region 
descriptor rk  : 

 ( ) ( ) ( ), \data IE I p I p I d
Ω

Ω = Ω Ω Ω x                                   (16) 

Where the region descriptor based on  Bhattachryya distance [9] is calculated using 
the gradient shape tool [5]:  
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We therefore estimate density by Parzen kernel, which can better describe the regions. 
This method estimates the probability density function based on the histograms, using 
a smoothed Gaussian kernel: 
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Ω  x

                                       

(18) 

where Gσ denote the Gaussian kernel and 2σ  the variance.  

The shape prior descriptor is defined as the Euclidean distance between the 

evolving Legendre moment region ( )η Ω and the reference shapes{ }, 1,...,i
ref i Nχ = :  
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where the pqη are defined as follows, using the geometric moments pqM and the 

coefficients pqa of the Legendre polynomials [13]: 

( )( )
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p q
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p q
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=                                    (20) 

Where ( ) ( ) ( )2

2

1 p q

pq p q
M x x y y dxdyχ

χ
+ +

Ω

= − −  and ( ),x y are the shape barycenter 

coordinates. In the next section we established our based fast FAC segmentation 
method. 

5   Results  

5.1   Data  and Protocol 

In this section, we provide prostate segmentation results for two data sets obtained 
from Saint Philibert Hospital Lille France. The MR images are pre-processed through 
the following pipeline: 1) spatial registration, 2) noise removal and 3) intensity 
standardization. We use the T1 weighted and T2 weighted MR sequences. The image 
sizes are 256x256 pixels, each slice thickness is 3.5mm with spacing between slices 
of 3.9 mm. 

5.2   Finsler Shape Design 

There is a wide spread of the possibilities to designψ x .  In Fig. 1(a), the Wulff shape 

is composed by a half-circle with radius 1 and a circular segment combining gradient 
direction with gradient magnitude. Designing ψ x  in such manner allows 

straightforward reprojection for the vector field after the gradient ascent update (15). 

 
                                                   (a)                              (b) 

a) Wullf Shape for  TV FAC Wullf b) Shape for Traditional FAC 

Fig. 1. Construction of Wulff shape for Finsler Active Contours 

5.3   Learned Shapes 

The prostate learned shapes are designed by an expert using manual segmentation. In 
the figure 2, the object shape is segmented using 20 learned shapes and the 
segmentation is done using statistical and geometric shape prior. 
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…  

1
refχ ,

2
refχ ,..,

20
refχ  

Fig. 2. Construction of Wulff shape for Finsler Active Contours 

In the next section we introduced our interactive user term used to suitability 
segmentation method. 

5.4   Segmentation Results 

To quantify the accuracy of the segmentation, we measured the Dice Similarity 
Coefficient (DSC) between the manually segmented prostate and our segmentation 
method. We provide not only qualitative results (Fig. 3), but also give quantitative 
results in the form of the DSC to illustrate the viability of the proposed method in the 
context of prostate segmentation (see Table. 1).  

Table 1. Quantitative evaluation of the segmentation 

Patient no DSC of FAC  DSC of FAC TV 

Patient no 01 80,02% 85,63% 

Patient no 02 79,1% 82,69% 

Patient no 03 75,06% 79,23% 

Patient no 04 77,21% 79,75% 

Patient no 05 75,7% 79,30% 

 
To quantify the accuracy of the segmentation, we measured the overlap between 

the segmented prostate areas defined by manual segmentation and our segmentation 
method. 

 

Fig. 3. Segmentation by TV FAC.  In blue color traditional FAC, red color segmentation results 
of our method and in yellow color manual segmentation. 
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6   Conclusion 

We developed a fast globally segmentation based convex Finsler active contours 
model for binary segmentation in TV framework incorporating statistical and shape 
prior knowledge. The position and orientation are dependent on prior for the boundary 
segmentation in Finsler metrics. Finsler active contours provide an alternative 
approach to integrating image-based priors on the location and orientation of the 
traditional boundary descriptor. Future work will address extending other classes of 
energies [9] that can be optimized in TV framework.  
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Abstract. The representation and description of shapes or regions that
have been segmented out of an image are early steps in the operation
of most Computer vision systems; they serve as a precursor to several
possible higher level tasks such as object/character recognition. In this
context, skeletons have good properties for data reduction and represen-
tation. In this paper we present a novel shape representation scheme,
named ”NURBS Skeleton”, based on the thinning medial axis method,
the pruning process and the Non Uniform Rational B-Spline (NURBS)
curves approximation for the modeling step.

Keywords: Skeleton, shape description, Medial Axis Transform (MAT),
NURBS curves.

1 Introduction

Shape representation is one of the most important problems in pattern recogni-
tion and computer vision, and is an issue related to both data reduction and data
description. Skeletons or Medial Axis Transform (MAT), as the shape descriptor,
were described as having good properties for data reduction [1], [2].

There are two well-known paradigms for skeletonization methods: The first
is that of ”peeling an onion”, i.e. iterative thinning of the original image until
no pixel can be removed without altering the topological and morphological
properties of the shape [5]. These methods require only a small number of lines in
an image buffer at any time, which can be an advantage when dealing with large
images. But on the other hand, multiple passes are necessary before reaching
the final result, so that computation time may become quite high.

The second definition used for a skeleton is that of the ridge lines formed by
the centers of all maximal disks included in the original shape, connected to
preserve connectivity. This leads directly to the use of distance transforms or
similar measures [13], [14], [15], which can be computed in only two passes on
the image.

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 197–205, 2011.
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The main drawback of traditional skeletons is their high sensitivity to noise in
contour. Many methods have been proposed to stabilize the skeleton extraction,
mostly by pruning ”false” branches that are believed to be caused by noise in the
outline [3], [4]. A different approach based on self-similarity of a smooth outline
curve was presented in [9].

An efficient shape representation scheme using voronoi skeletons is described
in [10]. This scheme possesses the important properties of connectivity as well as
Euclidien metrics. Redundant skeletal edges are deleted in a pruning step which
guarantees that connectivity of the skeleton will be preserved.

According to OGNIEWICZ and KUBLER [11], a robust and time-efficient
skeletonization of a shape, which is connectivity preserving and based on Eu-
clidian metrics, can be achieved by first regularizing the voronoi diagram (VD) of
a shape’s boundary points, i.e. by removal of noise sensitive parts of the tessella-
tion and then by establishing a hierarchic organization of skeleton constituents.
Each component of the VD is attributed with a measure of prominence which
exhibits the expected invariance under geometric transformations and noise.

Couprie et al. [12], proposed a new definition and an algorithm for the discrete
bisector function, which is an important tool for analyzing and filtering Euclidian
skeletons. They introduced a new thinning algorithm which produces homotopic
discrete skeletons. These algorithms, which are valid both in 2D and 3D, are
integrated in a skeletonization method which is based on exact transformations
and allows the filtering of skeletons.

This paper is organized as follows. Section 2 presents NURBS curves. The
proposed ”NURBS Skeleton” is detailed in section 3. Working examples are
illustrated in section 4. Finally we summarize our research in Section 5.

2 NURBS Curves

We recall that a NURBS curve of degree p is defined by:

C(u) =
∑n

i=0Ni,p(u)wiPi∑n
i=0Ni,p(u)wi

(1)

Where {Pi} are control points, {wi} are the weights associated with these points.
Indeed, each wi determines the influence of point Pi on the curve. And the
{Ni,p(u)} are the B-spline basis functions of degree p defined on the non-periodic
and non-uniform knot vector U, recursively by:

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (2)

Where

Ni,0(u) =
{

1 si ui ≤ u < ui+1

0 sinon

The non-periodic knot vector is defined by U = {a, ..., a, up+1, ..., ump−1, b, ..., b}
with a multiplicity of a and b which is equal to the order of the curve. This
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constraint ensures the passage of the curve by the two endpoints. Throughout
this paper, we assume that the parameter lies in the range u ∈ [0, 1] and the
weight wi is set to 1. For a detailed presentation of NURBS and its properties,
we refer the reader to reference [6]. However, the main properties interesting for
us in NURBS curves can be summarized into four points:

– Interpolation of extreme points.
– Affine invariance (translation, rotation, homothety)
– Convex hull: curve is still in the convex hull of its control points.
– Local modification: if a parameter (point, weight) is changed, curve is changed

only within a certain interval.

3 NURBS Skeleton

3.1 Skeleton Extraction

The alternative approach we follow consists in creating a version of the object
that is as thin as possible, i.e. thinning the object to a set of idealized thin lines.
The resulting thin lines are called the skeleton or medial axis, of the input pattern
and they are the thinnest representation of the original object that preserves the
topology aiding synthesis and understanding. The methods to accomplish this,
are called thinning or skeletonization.

In this first phase of our approach, skeleton of the considered shape is ex-
tracted using the algorithm described in [5]. Fig. 1 shows the result after applying
skeleton’s extraction algorithm.

Fig. 1. (a) Initial shape. (b) Skeleton extraction.

3.2 Interest Points Detection

The detection of end points, junction points and curve points of medial axis is
important for a structural description that captures the topological information
embedded in the skeleton. The thin lines can be converted into a graph associ-
ating the curve points with the edges, the end and the junction points with the
vertices. Such a skeletal graph can then be used as an input to graph matching
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Fig. 2. SEs for the end points: the fundamental A and its rotations
(Θ1(A),Θ2(A),...,Θ7(A) in order

algorithms [7], [8]. In this paper, we introduce algorithms for detecting interest
points or skeletons characteristic points (see Fig. 4) (end points, junction points
and curve points) based on a morphological approach.Formally we define the
end points, the junction points as follows:

Definition 1: A point of one-pixel width digital curve is an end point if it
has a single pixel among its 3×3 neighborhood.

Definition 2: A point of one-pixel width digital curve is defined as a junction
point if it has more than two curve pixels among its 3×3 neighborhood.

We propose another, purely morphological, method to detect end points and
junction points from a skeleton as follows. To extract the end points, we perform
erosion transform with the complement of each SE defining an end point A, and
its rotations Θi(A). On the complement of X (X), we take the union of all the
results and then we intersect the union with X .

ENDPOINTS(X) =

[⋃
i

εΘi(A)(X)

]⋂
X (3)

where εΘi(A)(X) denotes the erosion of X by Θi(A).
According to the definition of junction points, only curve pixels are considered

in the neighboring configuration. In the eight-connected square grid, we can have
two fundamental configurations corresponding to a junction point, B and C, and
their seven rotations of 45 ◦ (Fig. 3). Thus, the extraction of the junction points
from a skeleton is obtained by performing erosion transforms with each SE(B, C)
and their rotations Θi(B) and Θi(C). and then taking the union of the results:

JUNCTIONPOINTS(X) =

[⋃
i

εΘi(B)(X)

]
∪
[⋃

i

εΘi(C)(X)

]
(4)

All the curve points are trivially obtained by removing the end points and the
junction points from the skeleton.

3.3 Edges Extraction and Pruning Process

Skeletal pixels are classified into three sets which are the junction set (JS),
the end set (ES) and the curve set (CS). Evidently, if S is the universal set
corresponding to the skeleton, then:
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Fig. 3. SEs for the junction points: B and its rotations (Θ1(B),Θ2(B),...,Θ7(B) and C
and its rotations (Θ1(C),Θ2(C),...,Θ7(C)

Fig. 4. Interest points detection

S = JS ⊕ ES ⊕ CS (5)

Considering these sets, skeleton can be converted into a graph associating the
curve points with the edges, the end and the junction points with the nodes.
Thus, an edge is defined as the set of adjacent pixels which is limited between
two nodes. Consequently, three types of edges can be considered, according to
the type of their extreme nodes. They are:

External edges: both extreme nodes are end nodes.
Internal edges: both extreme nodes are junction nodes.
Branches: one node is an end node and the other one is a junction node.

Following the edge definition, an automatic search of skeletal edges is exe-
cuted. Simultaneously, short skeletal branches which are not significant are re-
moved. This latter is called the pruning process. Hence, skeleton is reduced and
data is updated which requires to rerun the interest points detection process and
the edges extraction process in order to save only significant edges.

3.4 NURBS Curves Approximation

In the previous step, the skeleton of the shape is partitioned in edges. The goal of
this phase is to construct these objects by using NURBS curves approximation.
We recall that to construct a NURBS curve of degree p, it is necessary to define
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n+1 control points to approximate. Each point is identified by its coordinates in
the plane and by its weight.

Therefore, the selection of control points and the scheduling of these points
are inevitable to construct a NURBS curve. Our algorithm operates edge by
edge, according to the following instructions:

1. Selects an edge E.
2. Determines the controls points of E.
3. Sets the NURBS curve parameters (degree p, knot vector U, weights W).
4. Generates the corresponding NURBS curve.

Depending on the size of the considered edge, a threshold value has to be intro-
duced in order to subsample the edge’s pixels set. In fact, this value must be,
obviously, strictly less than the edge’s size.

More the threshold value decreases, more the number of subsampled values
increases. In our work, we set this value to 5 for the edges of sizes greater than
15. Otherwise, it is fixed at 2.

In addition to these subsampled values, edge’s extreme nodes are included in
the set of control points. This ensures the continuity between different edges.
Thus, for each edge, we define the set of controls points P as:

P = {ExtremeNodes}
⋃
{Subsampled V alues} (6)

4 Experimental Results

The experimental results of the NURBS Skeleton are shown in the following
figures. In fact our method produces smooth curves representing the shape’s
skeleton where non significant information is deleted unlike the Thinning medial
axis method [5] and the voronoi medial axis method [1].

In Fig. 7, the Fig. 7(a) presents the original binary image. Fig. 7(b) is the
skeleton obtained by the Thinning medial axis method and Fig. 7(c) is the result
of the NURBS Skeleton method. In this example five branches have been erased.

In Fig. 8, two branches have been erased. These latter corresponds to the
goat’s feet and are significant in this shape representation. Hence, by increasing
the threshold value for the pruning process, we risk losing useful information.
Nevertheless, the shape obtained by our method is more smooth with few inflec-
tion points.

Fig. 9 shows an example of an airplane with some small salient subparts. Fig.
9(b) is the skeleton generated by the Thinning medial axis method and does
not look like an airplane. Fig. 9(c) is the skeleton generated by our method that
some small subparts were removed. The skeleton can be recognized easily as an
airplane.

The experimental results are very promising both in shape representation and
shape reduction. In fact, Table. 1 presents reduction factors of tested shapes. This
factor is calculated as:

RF =
Interest points number obtained by ThinningMedialAxis

Interest points number obtained byNURBS Skeleton
(7)
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Fig. 5. Example of closed shape: (a) Original shape. (b) Thinning medial axis. (c)
NURBS Skeleton.

Fig. 6. Example of T shape: (a) Original shape. (b) Thinning medial axis. (c) NURBS
Skeleton.

Fig. 7. Example of Y shape: (a) Original shape. (b) Thinning medial axis. (c) NURBS
Skeleton.

Fig. 8. Example of a goat: (a) Original shape. (b) Thinning medial axis. (c) NURBS
Skeleton.
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Fig. 9. Example of an airplane: (a) Original shape. (b) Thinning medial axis. (c)
NURBS Skeleton.

Table 1. Interest points number and reduction factor

Images Thinning Medial Axis NURBS Skeleton Reduction factor (RF)

Closed shape 10 2 5

T shape 8 4 2

Y shape 14 4 3.5

Goat 16 12 1.3

Airplane 32 12 2.6

5 Conclusion

We describe in this paper a novel skeleton extraction algorithm in binary images
for shape representation. This algorithm named ”NURBS Skeleton” is based
on the thinning medial axis method, the pruning process and the Non Uniform
Rational B-Spline (NURBS) curves approximation for the modeling step. This
novel method has produced good results for data reduction by the use of prun-
ing process.However, increasing the threshold value for the pruning process may
cause losing useful information. Good results are also obtained for data repre-
sentation by emphasizing the wealth of NURBS modeling in the field of pattern
recognition.
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Abstract. Methods for nonlinear dimensionality reduction have been
widely used for different purposes, but they are constrained to single
manifold datasets. Considering that in real world applications, like video
and image analysis, datasets with multiple manifolds are common, we
propose a framework to find a low-dimensional embedding for data lying
on multiple manifolds. Our approach is inspired on the manifold learn-
ing algorithm Laplacian Eigenmaps - LEM, computing the relationships
among samples of different datasets based on an intra manifold compar-
ison to unfold properly the data underlying structure. According to the
results, our approach shows meaningful embeddings that outperform the
results obtained by the conventional LEM algorithm and a previous close
related work that analyzes multiple manifolds.

Keywords: Manifold learning, multiple manifolds, laplacian eigenmaps,
video analysis.

1 Introduction

Often, in machine learning and pattern recognition literature, the nonlinear di-
mensionality reduction (NLDR) techniques are reviewed as learning methods
for discovering an underlying low-dimensional structure from a set of high-
dimensional input samples, that is, NLDR techniques unfold a non-linear man-
ifold embedded within a higher-dimensional space. Nevertheless, most of the
NLDR algorithms are constrained to deal with a single manifold, attaining un-
appropriate low-dimensional representations when input data lie on multiple
manifolds, because the inter-manifold distance is usually much larger than the
intra-manifold distance [1], moving apart each manifold from the others, regard-
less of whether the behavior among them is similar.

To our best knowledge, some few works [2,3,1] have proposed the application of
the NLDR techniques to the analysis of multiple manifold datasets. Particularly,
in [1] a framework to learn an embedded manifold representation from multiple
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data sets called Learning a Joint Manifold (LJM) is presented, which finds a
common manifold among the different data sets, without assuming some kind of
correspondence between the different manifolds. However, the main drawback of
this approach is that for obtaining suitable low dimensional representations, the
input samples must be similar in appearance. When the multiple manifolds do
not have a close resemblance among them, the LJM method fails to embed the
data. On the other hand, the approach presented in [3] actually requires the use
of correspondence labels among the samples in order align the data sets, in such
case the complexity of the challenge is lower than when no one correspondence
is assumed. A similar solution is proposed in [4].

Unlike these mentioned works for dealing with multiple manifolds, our work
makes possible to analyze dissimilar objects/subjects in appearance but with a
common behavior (similar motion), moreover our methodology allows to employ
objects/subjects with different input dimensions and number of samples among
manifolds. These features of our work are the major contribution to the state
of the art. Our approach is inspired on the manifold learning algorithm Lapla-
cian Eigenmaps - LEM [5], because its optimization problem has an analytic
solution avoiding local minima, and few free parameters need to be fixed by
user. Our approach can be employed to visually identify in a low-dimensional
space the dynamics of a given activity, learning it from a variety of datasets. We
test the method on two real-world databases, changing the number of samples
and input dimensions per manifold. Our proposal is compared against both the
conventional Laplacian Eigenmaps (LEM) [2] and the closest work found in the
state of the art for multiple-manifold learning (LJM) [1]. Overall, our methodol-
ogy achieves meaningful low dimensional representations, visually outperforming
the results obtained by the other methods. This work is organized as follows. In
Section 2, a brief description about LEM algorithm is presented. Section 3 intro-
duces the proposed methodology for multiple manifold dimensionality reduction.
In Section 4 the experimental results are described and discussed. Finally, in Sec-
tion 5, we conclude about the obtained results.

2 Laplacian Eigenmaps – LEM

Laplacian Eigenmaps (LEM) is a NLDR technique based on preserving the
intrinsic geometric structure of a manifold. Let X ∈ �n×p the input data ma-
trix with row vectors xi (i = 1, . . . , n). The LEM transformation finds a low-
dimensional Euclidean space Y ∈ �n×m, with row vectors yi (m � p). This
algorithm has three main steps. First, an undirected weighted graph G with n
nodes (one for each xi) is built. Nodes i and j are connected by an edge Eij = 1,
if i is one of the k nearest neighbors of j (or viceversa) according to the Euclidean
distance [2]. In the second step, a weight matrix W ∈ �n×n is calculated. For
this purpose two alternatives variants can be considered: heat kernel or sim-
ple minded. In the heat kernel variant, if nodes i and j are connected, then
Wij = κ (xi,xj), being κ (·, ·) a kernel function, otherwise, Wij = 0. For the
simple minded option, Wij = 1 if vertices i and j are connected by an edge, oth-
erwise, Wij = 0. Then, the L ∈ �n×n Laplacian graph is given by L = D−W,
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where D ∈ �n×n is a diagonal matrix with elements Dii =
∑

j Wji. In the third
step, the following objective function is minimized∑

ij
(yi − yj)2Wij , (1)

which implies a penalty if neighboring points xi and xj are mapped far apart.
Finally, the LEM problem can be accomplished solving the generalized eigenvalue
problem LY:,l = λlDY:,l; where λl is the eigenvalue corresponding to the Y:,l

eigenvector, with l = 1, . . . , n. First eigenvector is the unit vector with all equal
components, while the remaining m eigenvectors form the embedded space.

3 Multiple Manifold Learning – MML

The NLDR techniques based on manifold learning fail when they look for a
common low-dimensional representation for data lying on multiple manifolds. In
this sense, we propose relate each input sample xi with C different manifolds that
share a similar underlying structure. Let ΨΨΨ = {Xc}Cc=1 an input manifold set,
where Xc ∈ �nc×pc . Our goal is to find a mapping from ΨΨΨ to a low-dimensional
space Y ∈ �n×m (with m � pc, and n =

∑C
c=1 nc), which reveals both the

intra manifold structure (relationships within manifold), and the inter manifold
structure (relationships among manifolds). Consequently, a weight matrix A,
that takes into account both structures, can be computed as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1 M12 · · · M1c · · · M1C

M21 W2 · · · M2c · · · M2C

...
...

. . .
...

. . .
...

Mc1 Mc2 · · · Wc · · · McC

...
...

. . .
...

. . .
...

MC1 MC2 · · · MCc · · · WC

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2)

where each Wc ∈ �nc×nc is the traditional LEM intra manifold weight matrix
for each Xc [1]. Furthermore, each Mcb ∈ �nc×nb (b = 1, . . . , C) block is a soft
correspondence matrix between Xc and Xb.

In [1] a methodology called Learning a Joint Manifold Representation (LJM) is
proposed to unfold the data underlying structure from multiple manifolds, which
calculates the matrix A (equation (2)), computing the intra manifold structure
matrices Wc as in traditional LEM, and the inter manifold structure matrices
Mcb by solving a permutation matrix P, which allows to find a maximum weight
matching by permuting the rows of Ucb ∈ �nc×nb , U cb

qr = κ (xq,xr), xq ∈
Xc, and xr ∈ Xb (q = 1, . . . , nc; r = 1, . . . , nb ). Nonetheless, LJM is quite
sensitive to feature variability between samples of different manifolds, due to Ucb

is inferred in the high-dimensional space. Moreover, LJM is limited to analyze
input matrices Xc which belong to the same input dimension (p1 = p2 = · · · =
pc = · · · = pC), as can be seen in the calculation of each Ucb.
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In this work, we propose to identify the correspondence among data points
from different manifolds without making a high-dimensional sample comparison.
In other words, the similarities among observations of different manifolds are
not directly calculated in each pair Xc and Xb. Therefore, we compute each soft
correspondence matrix Mcb in (2) as

M cb
qr =

〈
wc

q,w
b
r

〉∥∥wc
q

∥∥ ‖wb
r‖
, (3)

where wc
q ∈ �1×nc and wb

r ∈ �1×nb are row vectors of Wc and Wb, respec-
tively. It is important to note that equation (3) is not well defined when nc = nb,
thereby, we use a conventional interpolation method based on cubic splines for
oversampling the lowest size vector to properly compute the inner product be-
tween wc

q and wb
r. Our approach for Multiple Manifold Learning (MML) aims to

calculate the relationships among samples of different manifolds, comparing the
intra manifold similarities contained in each Wc (equation (3)). Finally, given
the weight matrix A, we minimize the following objective function∑

ij
(yi − yj)2Aij . (4)

Solving equation (4) as in traditional LEM algorithm allows us to find a low-
dimensional space Y for data lying on multiple manifolds.

4 Experimental Results

We tested the conventional LEM algorithm [2], the LJM technique [1], and our
proposed methodology MML on two real-world databases, in order to find a 2D
low-dimensional representation (m = 2) for data lying on multiple manifolds.
The first database, the Columbia Object Image Library (COIL-100) [6], contains
72 RGB-color images, for each one of the 100 objects, in PNG format, which were
taken at pose intervals of 5 degrees while the object is rotated 360 degrees. In
this work, the following objects are used: Car, Frog and Duck. The image size is
128×128, which are transformed to gray scale. The second database is the CMU
motion of body (Mobo) [7], which holds 25 individuals walking a treadmill. All
subjects are captured using six high resolution color cameras distributed evenly
around the treadmill. For concrete testing, we used the silhouette sequences of
one gait cycle for slow walk of three persons, which are captured from a side view.
The images are resized to 80× 61. The Figure 1 shows some images samples of
COIL-100 and Mobo databases.

Three types of experiments are performed. Firstly, we use the selected objects
of COIL-100 with a same amount of observations per set (n1 = n2 = n3 = 72),
and equal input dimensions (p1 = p2 = p3 = 16384). In this case, the number
of nearest neighbors is fixed as k = 3. For the second experiment, we use the
Mobo database, which leads input samples per manifold of different sizes: n1 =
36, n2 = 40, n3 = 38 and p1 = p2 = p3 = 4880. The number of neighbors
is set to k = 2. In order to test the algorithms on a dataset that contains
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Fig. 1. Databases examples

multiple manifolds with high-variability in the input sample sizes, we use the
COIL-100 but performing an uniform sampling of the observations, obtaining
input spaces with n1 = 72, n2 = 36, n3 = 18 and p1 = p2 = p3 = 16384. Here,
the number of nearest neighbors are fixed as k1 = 4, k2 = 2, k3 = 1. Finally,
the third experiment aims to validate the proposed methodology for analyzing
datasets with different amount of observations and input dimensions (image
resolution). For this purpose, we employ the COIL-100 performing an uniform
sampling of the observations, and resizing the images. Thence, the obtained
input spaces have the following characteristics: n1 = 72, n2 = 36, n3 = 18 and
p1 = 16384, p2 = 8100, p3 = 2784.

According to the results presented in Figures 2(a), 3(a) and 4(a), tradi-
tional LEM is not able to find the correspondence among different datasets
which are related to a common underlying data structure. For all the provided

Fig. 2. Three objects, equal amount of observations
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Fig. 3. Three objects, different amount of observations
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Fig. 5. Different amount of observations and input dimensions (image resolution)

experiments, LEM performs a clustering of points for each manifold. That algo-
rithm can not find a low-dimensional representation that unfolds the underlying
data structure from multiple manifolds, due to the weight matrix W in LEM is
computed only considering pixel intensity similarities among frames. Again, tak-
ing into the account the attained results with the LJM technique (Figures 2(b),
3(b), and 4(b)), it can be seen how it attempts to find a correspondence among
datasets but losing the intrinsic geometry data structure of the phenomenon
(object motion). More precisely, for the COIL-100 database, the dynamic of the
rotation is not reflected in the embedded space. Similar results are obtained for
gait analysis in the Mobo database, although LJM tries to reveal the elliptical
motion shape, it is not able to conserve a soft correspondence among samples.
Note that the application of LJM technique is limited to analyze frames of video
sharing a similar geometry, due to Ucb is inferred in the high-dimensional space
(pixels frame comparison). Overall, the LJM method can not properly learns the
relationships among objects performing the same activity, it just develops well
when the analyzed manifolds are similar in appearance.

Finally, the results obtained with the proposed methodology MML, demon-
strate that the computed low-dimensional space exhibits the appropriated dy-
namic of a given activity, learning it from multiple datasets. Figures 2(c), 3(c),
4(c), and 5(a) show how this method learns the relationships among frames
of videos related to a similar activity, unfolding the underlying data structure.
The low-dimensional representations found by MML reflects the activity dynam-
ics and the soft correspondence among points of different datasets. Furthermore,
our approach identifies a soft correspondence among videos even when they
do not share a common similarity appearance, number of observations, and/or
resolution. This can be explained because the relationships among samples of
different datasets are computed based on an intra manifold comparison (equa-
tion (3)) the samples are not directly compared on the high dimensional input
space, instead of that, the samples are compared by means of their own simi-
larity representations, which is the similarity between a sample an each one of
the other samples on the same manifold. The Figures 2(d), 3(d), 4(d), and 5(b)
confirm it.



Multiple Manifold Learning by Nonlinear Dimensionality Reduction 213

5 Conclusion

In this paper a new NLDR methodology for finding a common low-dimensional
representation from multiple datasets is presented. We proposed to calculate an
unique embedding space in order to visually identify the dynamics of a given
activity performed by a variety of objects/subjects. In other words, different
manifolds that share a similar underlying structure are mapped to the same
low-dimensional space. Our methodology is inspired on the manifold learning
algorithm LEM, computing the relationships among samples of different datasets
based on an intra manifold comparison to properly unfold the data underlying
structure. According to the obtained results, our approach outperformed the
original LEM method, and a previous similar work called LJM [1] that analyzes
multiple manifolds. The main advantage of this proposed methodology is the
possibility for analyzing dissimilar objects/subjects in appearance but with a
common behavior (similar motion). Moreover our methodology allows to employ
objects/subjects with different input dimensions and number of samples among
manifolds. As future work, we are interested in apply our methodology to support
human motion classification and identification of impairments, as well as for
computer animation.
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Abstract. Time of Flight (ToF) cameras capture the depth images based on a 
new sensor technology allowing them to process the whole 3D scenario at once. 
These cameras deliver the intensity as well as the amplitude information. Due to 
difference in travel time of the rays reaching the sensor array, the captured 
distance information is affected by non linearities. In this paper, the authors 
propose three models (the monostatic, bistatic and optimized) for correcting the 
distance non linearity. The thermal characteristic of the sensor is studied in real 
time and analysis for integration time offsets for different reflectivity boards are 
carried out. The correction results are demonstrated for different reflectivity 
targets based on our models and analyzed integration offsets. 

Keywords: Photonic-Mixer-Device, calibration, integration time, ToF camera, 
bistatic modeling, monostatic modeling. 

1   Introduction 

The PMD cameras work with the Time-of-Flight principle. A light source mounted on 
the camera emits modulated light that travels to the target. The reflected light travels 
back to the pixel array in the sensor, where it is correlated. The correlation result is a 
measure of the distance to the target. This distance measure is affected by non 
linearities due to different travel time of the rays. Ideally the travel time is 
approximated to be a constant in the measurement principle, but in practice this 
introduces distance non linearities in the captured image. Another major problem with 
the ToF cameras is that the amount of reflected light strongly depends on the 
reflectivity of the objects which leads to erroneous distance calculations. The exact 
reason is not discovered yet. A black target placed at the exactly the same distance to 
the camera as a white one shows differences in distance measurements dependent on 
integration time. In this paper, a method is proposed for correcting the distance non 
linearities as well as the integration time offsets for different reflectivity. Chapter 2 
outlines the experimental setup used for the measurements. Chapter 3 outlines the 
thermal characteristics of the camera and chapter 4 presents the three models 
proposed by the authors. Chapter 5 outlines the real test results carried out for black 
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and white boards for various integration times. Chapter 6 presents the non linear as 
well as integration time offset correction results for a checkered board. Finally chapter 
7 concludes this paper. 

2   Experimental Setup 

The setup consists on a CamCube 2.0 PMD camera from PMDTechnologies [1] 
mounted on a sled on a linear motion table allowing a perpendicular motion towards 
and away from a board on which the paper targets are fixed. The sled is driven by a 
stepper motor allowing a maximum travelling distance of 7800mm. The roll, pitch 
and yaw of the camera can be manually adjusted with the camera mount. To simplify 
the time-consuming measurements, the data acquisition was fully automated using a 
PC running Windows XP SP3. A Matlab script was used both to communicate with 
the motor controller as well as to acquire the data.  

 

Fig. 1. Experimental setup with a computer controlled motion table 

The measurements were done in the dark, with only the integrated LED-array as 
light source. To prevent the effects of unwanted reflection from objects near the setup, 
a zig-zag shader was built to cover the metal guide, as proposed by [2]. In the same 
manner a wall cardboard boxes was built along the side the linear motion table. All 
other exposed surfaces were covered with a low reflection black cloth. The 
experimental setup is shown in Figure 1. 

For the characterization measurements only the center pixel (103,103) of the sensor 
was used and the camera was held perpendicular to the target. To adjust the pitch and 
yaw, the camera was placed at 1000mm from the board and several measurements of 
the target board were performed and averaged. The pixel having the shortest distance 
was identified and the rotation of the camera adjusted in that direction. This procedure 
was repeated several times for the pitch and yaw until the center pixel showed the 
shortest average distance to the target.  
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3   Warm-Up Drift of the CamCube 2.0 

Thermal drift is a major issue with sensors, as it affects their measuring accuracy until 
the operating temperature is reached. PMD cameras face a similar problem. In this 
experiment the thermal drift was determined. For this, a white target was placed at 
3000 mm from the camera. After turn on readings were taken continuously for 8 
hours for different integration times (50ms, 25ms and 5ms). The warm-up curves for 
the different integration times can be seen in figure 2. During the initial minutes of 
operation an unsteady behavior is noticed and the measurements are stabilized after 
approximately 60 minutes. In order to avoid any deviation errors due to warm-up, all 
the experiments mentioned in this paper are taken after a safe 60 minutes capturing 
time. The statistics for the experiment is shown in Table 1. 

 

Fig. 2. Measured distances for a period of 8 hours of a white target placed at 3000mm 

Table 1. Mean and standard deviation of the measurements of Figure 2 

Integration time [ms] Mean [mm] Standard deviation [mm] 
5 2941.4 6.6 

25 3033.1 8.2 
50 3096.7 4.8 

4   Non Linear Distortion Modeling 

Since the source and the receiver are spatially separated due to structural reasons, 
most of the ToF cameras exhibit a bistatic constellation. A preliminary investigation 
into such a constellation is outlined in [3]. The distance formula for any ToF Camera 
is given by: 

D = c·td/2                                                               (1) 
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(where D – distance between the camera and the observation point, c – speed of light 
and td – the time of flight of the transmitted signal). This equation is an approximation 
as td is assumed to be constant and hence is only valid for larger distances between the 
camera and the observation point. In practice, distance information for each pixel is 
altered according to the travel time of the rays impinging on it. The strength of the 
received signal is affected by the level of backscattering as well as the losses inside 
the medium. Some signal distortion models have been presented in [4] and [5]. The 
bistatic constellation modifies the travel time for different rays which introduces a 
nonlinear distance variation throughout the distance image. This distance variation 
can often be seen as a curvature when imaging objects perpendicular to the camera. If 
not accounted, this imaging non linearity can affect the whole system calibration 
procedure and can even affect all the post processing stages. In this paper a solution is 
presented by modeling the traversal paths by initially employing an ideal monostatic 
approach and then extending it to the practical scenario of bistatic constellation.  

For our experiment, a plain perpendicular matted black board kept at 750 mm away 
is illuminated and imaged by the camera. The image formation is approximated to 
that of a pin hole camera model and the illustrations are shown in Figure 3. 

 

 Fig. 3. Monostatic and bistatic models for distance correction 

The distance measured by the PMD camera can be modeled as demonstrated in 
Figure 3. From the true monostatic model where the source and the receiver is at the 
same point, we introduce a small variation by assuming that the source is ideal 
rectangular and each imaging point on the 3D space is illuminated by a point source 
on x-y plane perpendicular to it. The light from the source hits the board at the point 
R, reflects back to the lens center at L and is focused on the sensor array. Ideally each 
light ray traverses a constant path length of Dled, variable path length of Dref as well as 
a variable path length P according to the field of view of the camera (related to θ) and 
the focusing angle α. But practically Dled varies for each 3D point due to the spherical 
wavefront and interference. For the bistatic model, we assume that the source is kept 
at Sb imaging the point R in 3D space with the ray path length Dreal making an angle β 
with the line parallel to z axis passing through Sb and perpendicular to x-y plane. Here 
the non linearities in the distance image are corrected by modeling the travel path of 
the reflected and transmitted rays. The correction required for each pixel is calculated 
by computing the true perpendicular distance Dper traversed by each ray from the 
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board to the lens. All the following discussion includes the sensor to camera 
coordinates back projection [6] to find the angles θ, α and β given by the equations  

x = f · Xc /Zc = (xim – Ox)Sx . (2)

 y = f · Yc/Zc  = (yim – Oy)Sy . (3)

(where x, y – coordinates of sensor array;  f – focal length ; Xc, Yc – coordinates of the 
board; Zc – distance from the camera to the board; Ox, Oy – principal point; xim, yim – 
image coordinates and Sx, Sy – size of the sensor pixel in both directions). Since the 
exact position of the board from the camera as well as the distance from the sensor 
array centre to the light source centre is known, the angles θ, α and β can be calculated 
geometrically. The CamCube 2.0 PMD camera has a focal length of 12.8mm and a 
pixel size of 40μm in both the sensor directions according to PMD Technologies [1]. 
Assuming that the indices (i,j,k) correspond to the coordinates of the imaged point R 
in 3D space, the measured distance Dmes can be rewritten from (1) as  

Dmes (i,j,k) = (Dled (i,j,k) + Dref (i,j,k) + P (i,j,k)) / 2 . (4)

From the mentioned monostatic model, the measured distance and the path length Dled 
can be approximated as  

Dmes (i,j,k) = (Dref (i,j,k) · cos (θ (i,j,k)) + f + Dref (i,j,k) + P (i,j,k)) /2 . (5)

Dled (i,j,k) = Dref (i,j,k) · cos (θ (i,j,k)) + f . (6)

The reflected ray is then given by (7). Hence the perpendicular distance to the lens 
from any imaged 3D point is given by (8) and thereby the corrected distance for 
monostatic model can be expressed as (9). 

Dref (i,j,k) = (2·Dmes (i,j,k) - f - P (i,j,k)) / (1 + cos (θ (i,j,k))) . (7)

Dper (i,j,k) = Dref (i,j,k) · cos (θ (i,j,k)) . (8)

 Dcor(i,j,k)  = Dper (i,j,k) + f . (9)

Modeling the bistatic constellation considering the angle β (from Figure 3), the 
reflected distance can be expressed similarly as  

Dref (i,j,k) = (2·Dmes (i,j,k) - (f /cos (β (i,j,k))) - P (i,j,k)) / (1 + (cos(θ (i,j,k))/ cos (β (i,j,k)))) . (10)

The bistatic model uses this reflected distance to calculate the correction results from 
(8) and (9). Now an optimization method is presented for the previous monostatic 
model considering the path length of the reflected ray obtained from (7). The 
perpendicular distance to each 3D point calculated from (8) is used to find the 
optimized angular path traversed by the rays from the source to the board with the 
knowledge of β (from Figure 3). This optimized angular path can be given by  

Dopt (i,j,k) = (Dper (i,j,k) + f ) / cos (β (i,j,k)) . (11)

The optimized path length is then applied in (4) to get the non linear correction from 
(7), (8) and (9). Results for the three approaches are presented in Figure 4 and 5. 
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Fig. 4. Results of the measurement of a white target at 750mm from the camera; left: 
uncorrected distances; right: corrected distances using the monostatic model 

 

Fig. 5. Results of the measurement of a white target at 750mm from the camera; left: correction 
using the bistatic model; right: correction using the optimized model 

5   Reflectivity Based Integration Time Offset Analysis  

Preliminary results for distance correction based on the amplitude images have been 
published in [7]. Here, the problem is extended for a wide range of integration time. The 
experiment consists of imaging a black as well as a white board kept at true distances 
from 500 to 7000mm. The camera is moved in steps of 500mm. Each step measures the 
distance and amplitude for 16 different integration times varying from 1 to 46ms in 
steps of 3ms each. 500 samples of each integration time corresponding to a true distance 
are averaged to analyze the distance and amplitude variation for the centre pixel. The 
obtained 3D curve for measured distance and that for measured amplitude is plotted in 
Figures 6 and 7. A difference in amplitude as well as measured distance between the  
 

 

Fig. 6. Measured distance for different true distances and integration times for black target 
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Fig. 7. Measured distance for different true distances and integration times for white target 

black and white targets is observed and it is attributed to the differences in reflectivity. 
Distance and amplitude deviations due to different reflectivity are currently under 
research and preliminary results have been published in [8]. 

6   Combined Distance Correction 

The black and white region can be clearly distinguished from the amplitude curves 
with respect to the integration time. Here an experimental demonstration is made 
for correcting a black and white checkered board based on both the prescribed non 
linear models as well as the integration time offsets. A multi dimensional LUT 
based approach is employed similar to [9] for distance offset correction. For the 
experiment, a black and white checkered board with a dimension of 420x297mm is 
mounted on the centre of an imaging board and is analyzed at a distance of 
1000mm. The pattern consists of 5 black and 4 white checks arranged alternately. 
The integration time of the camera is set at 7ms. The distance images captured by 
the camera are back projected from (2) and (3) in Figure 8. The distance non 
linearities are corrected according to the bistatic and the optimization models 
presented in chapter 4.  

A distance offset correction of 80mm is observed from the LUTs for the white 
board for the implemented integration time. The offset correction is done to the 
white checkered regions distinguished by the amplitude LUT. The final correction 
results are shown in Figure 9 and in Figure 10. Considerable improvements in  
the mean and standard deviation for a true distance of 1000mm were achieved 
(Table 2). 

Table 2. Mean and standard deviation for the correction results for a true distance of 1000mm 

Model  Mean  
[mm] 

Standard deviation 
[mm] 

Uncorrected 1046.6 27.5 
Bistatic with Offset Correction 1008.7 9.7 
Optimized with Offset    
Correction 

996.5 9.5 
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Fig. 8. Uncorrected distance measurement of a checkered target at a true distance of 1000mm 

 

Fig. 9. Corrected distance using the bistatic model and distance offset 

 

Fig. 10. Corrected distance using the optimized model and distance offset 
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7   Conclusion 

In this paper the nonlinearities in the captured distance information of CamCube 2.0 
is studied. Three models have been described in order to correct these non linear 
distance distortions. Characterization of the camera is performed and 60 minutes of 
warm up time is experimentally demonstrated. LUT based distance offset correction 
is demonstrated for different integration time and reflectivities. Finally the distance 
distortion in a black and white checkered pattern is corrected by combining the non 
linear distortion models as well as integration time offsets. 

Further work will be done in the correction of the distance using a bistatic model 
considering the interference of the light sources of the camera. Sensor response to 
targets other than black and white will be determined in order to improve the 
calibration method. 
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Abstract. The quantitative evaluation of disparity maps is based on
error measures. Among the existing measures, the percentage of Bad
Matched Pixels (BMP) is widely adopted. Nevertheless, the BMP does
not consider the magnitude of the errors and the inherent error of stereo
systems, in regard to the inverse relation between depth and disparity.
Consequently, different disparity maps, with quite similar percentages
of BMP, may produce 3D reconstructions of largely different qualities.
In this paper, a ground-truth based measure of errors in estimated dis-
parity maps is presented. It offers advantages over the BMP, since it
takes into account the magnitude of the errors and the inverse relation
between depth and disparity. Experimental validations of the proposed
measure are conducted by using two state-of-the-art quantitative evalua-
tion methodologies. Obtained results show that the proposed measure is
more suited than BMP to evaluate the depth accuracy of the estimated
disparity map.

Keywords: Computer vision, corresponding points, disparity maps,
quantitative evaluation, error measures.

1 Introduction

A stereo image set captures a 3D scene from slightly different viewpoints. A
disparity estimation algorithm takes as input a stereo image set, and produces
a set of disparity maps (DM) as output. Disparity is the shift between stereo
corresponding points. The 3D structure of the captured scene can be recovered
based on estimated disparities. The estimation of DM is a fundamental problem
in computer vision, which has to be addressed in several applications domains,
such as: robotics, unmanned vehicles, entertainment and telecommunications,
among others [6], [12], [16]. The evaluation of DM, in terms of estimation ac-
curacy, is quite important since small inaccuracies may have a large impact on
the results of the 3D final reconstruction. Moreover, the objective comparison of
different disparity estimation algorithms is based on the quantitative evaluation
of DM [10], [15]. This evaluation allows also for the tuning of parameters of an
algorithm within a particular context [7], determining the impact of specific com-
ponents and procedures [5], and decision taking for researchers and practitioners
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among others. In fact, a quantitative evaluation approach must be supported by
a quantitative evaluation methodology [2]. Among the different components that
a quantitative evaluation methodology may involve, the set of error measures is
a fundamental one.

In some scenarios, the quantitative evaluation of DM has to be conducted in
the absence of ground-truth data. In this case, a prediction error approach can
be used to perform the evaluation [14]. This approach consists in comparing a
set of third views of the scene, against a set of rendered views computed from
reference images and their associated DM.

Image quality measures such as the Mean Squared Error (MSE), the Root
Median Squared Error (RMSE), the Peak Signal-to-Noise Ratio (PSNR), and
the Structural Similarity Index Measure (SSIM) [19] can be used for quantita-
tive evaluation under a prediction error approach [15]. Although, the MSE, the
RMSE, and the PSNR are widely adopted and have a clear physical meaning,
they are not closely related to the perceived visual quality by the human visual
system [18], [19].

The disparity gradient and the disparity acceleration indices are presented
in [20] to measure the smoothness of the DM. These indices require the use of
thresholds. However, no information is provided about how the threshold can
be fixed. Moreover, the capability of these indices to distinguish between an
inaccurate estimation and a true depth discontinuity is not discussed. On the
other hand, the fact that the DM may vary smoothly but, at the same time,
they may be totally inaccurate is ignored.

The comparison of results using the SSIM and the PSNR measures on noisy
DM by adding salt and pepper is addressed in [13]. Although it is concluded
in [13] that obtained PSNR values are closer to the scores assigned by subjective
evaluation, this conclusion does not coincide with the well-known drawback of
the PSNR [18], [19]. Additionally, there is not a clear relation between the type
and the level of noise introduced, and the artifacts that a disparity estimation
algorithm may produce. Consequently, the considered evaluation scenario lacks
of realism.

Ground-truth based error measures can be computed by comparing estimated
DM against disparity ground-truth data. Measures such as, the Mean Absolute
Error (MAE), the MSE, and the RMSE are considered in [10], [16] for ground-
truth based evaluation. A modification of SSIM, termed R-SSIM, and designed
for range images, is proposed in [8]. The modification consists in the introduction
of the capability to handle missing data in both, the ground-truth disparity map,
and in the estimated DM. It is shown in [8] that there exists a strong linear
association between the BMP and the R-SSIM.

A modification of the Mean Absolute Percentage Error (MAPE) is presented
in [16]. The modification consists in the capability to handle the absence of
estimations in the evaluated DM. Although MAPE considers the inverse relation
between depth and disparity, it is designed in the context of forecasting [3].
Additionally, the use of the mean, which is sensitive to outliers, may introduce
bias in the evaluation.
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The BMP, was introduced in [10] as a component of the Middlebury’s evalu-
ation methodology [9], [11]. It is formulated in Equation (1).

BMP =
1
N

∑
(x,y)

ε(x,y); ε(x,y) =
{

1 if |Dtrue(x, y)−Destimated(x, y)| > δ
0 if |Dtrue(x, y)−Destimated(x, y)| ≤ δ ,(1)

where, Dtrue is the disparity ground-truth data, Destimated is the disparity map
under evaluation, and δ is the error tolerance threshold (commonly, δ = 1).

The error tolerance threshold δ is considered by the BMP in order to determine
if there is a disparity estimation error. The BMP can be gathered on different
image regions, related to different image phenomena, such as occluded, near to
depth discontinuities, and areas lacking of texture, among others [10].

Among the existing quantitative measures, the BMP is widely used. However,
it is a measure of the quantity of errors occurring in DM. Moreover, such a
quantity may do not indicate how accurately a particular disparity map fulfils
the task for which it was estimated: to recover the depth of the scene captured
in the stereo image set [4]. In fact, the BMP can be seen as a binary function by
the using of a threshold, which selection may impact on the evaluation results.

In this paper, a ground-truth based measure is presented. The proposed
measure is supported by the inverse relation between depth and disparity. It
computes a global error measure with a physical interpretation and without
thresholds intervention.

2 Problem Statement

The BMP is commonly used as a measure of disparity errors evaluation. Nev-
ertheless, in practice, the estimation of the DM is an intermediate step on a
process, which the ultimate goal is to achieve depth accuracy. In fact, the BMP
has drawbacks such as: it may be sensitive to the selection of δ, since small
changes on this value, may lead to obtain significantly different percentages.
Moreover, the magnitude of the difference between the estimated disparity and
the ground-truth value is ignored. Thus, the BMP may conceal disparity estima-
tion errors of large magnitude, and at the same time, it may penalise errors of
low impact on the final 3D reconstruction. On the other hand, disparity estima-
tion errors of the same magnitude may cause depth errors of different magnitude.
However, the BMP does not consider this fact. Consequently, the BMP measure
is not suited to measure the depth accuracy of a disparity estimation process.

The DM of the Tsukuba, Venus, Teddy and Cones stereo images [10], [11]
are used in Fig. 1 for illustrating the stated problem. These maps are varying
smoothly, and their percentages of BMP are equals to zero. However, Table 1
shows that the values of other ground-truth based measures, as well as image
quality values of rendered views, computed from the DM, are contradicting to
the values reported by the BMP. It can be observed, that although the BMP is
reporting a perfect accuracy on the entire image, the other ground-truth based
error measures, the MSE and the MAPE, are indicating error presence. Addi-
tionally, the MSSIM, the MSE and the PSNR of rendered views are indicating
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(a) Tsukuba (b) Venus (c) Teddy (d) Cones

Fig. 1. DM, varying smoothly but being totally wrong

Table 1. Obtained values of the BMP (δ = 1), the MSE, the MAPE, based on ground-
truth; and obtained values of the MSSIM, the MSE and the PSNR, based on rendered
views, by using the DM in Fig. 1

Disparity Map
BMP

all
MSE

all
MAPE

all
MSSIM MSE PSNR

Fig. 1(a) 0.000 1.000 16.474 0.758 187.091 25.410
Fig. 1(b) 0.000 1.000 14.316 0.792 173.636 25.734
Fig. 1(c) 0.000 1.000 4.117 0.831 128.543 27.040
Fig. 1(d) 0.000 1.000 3.380 0.744 184.313 25.475

a low quality. This exemplifies the sensitivity of the BMP to the selection of δ,
and the fact that obtaining a low percentage of BMP does not imply, necessarily,
that the DM under evaluation are accurate in terms of 3D scene reconstruction.

3 The Sigma-Z-Error

The proposed measure in this paper is termed Sigma-Z-Error (SZE). It is based
on the inverse relation between depth and disparity using the error magnitude.
In this sense, it aims to measure the final impact of a disparity estimation error,
which depends on the true distance between the stereo camera system and the
captured point, and on the disparity error magnitude. The SZE is described as
follows.

The distance between a point of the captured scene and the camera system
can be computed, without loss of generality, based on the information of the
stereo rig and the estimated disparity as is formulated in Equation (2).

Ztrue =
f ∗B
dtrue

, (2)

where f is the focal length in pixels, B is the baseline in meters (i.e. the distance
between optical centres), dtrue is the true disparity value in pixels, and Ztrue is
the distance along the camera Z axis in meters.
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However, in practice, an inaccurate Z distance is generated due to a disparity
estimation error, as is formulated in Equation (3).

Zfalse =
f ∗B
dfalse

, (3)

where Zfalse is the inaccurate distance estimation, and dfalse is the falsely esti-
mated disparity.

The proposed SZE measure consists in summing the difference between Ztrue

and Zfalse, over the entire estimated disparity map (or in a particular image
region) based on the information provided by disparity ground-truth data. The
SZE is formulated in Equation (4).

SZE =
∑
(x,y)

∣∣∣∣ f ∗B
Dtrue(x, y) + μ

− f ∗B
Destimated(x, y) + μ

∣∣∣∣ , (4)

where, μ is a small constant which avoids the instability caused by missing
disparity estimations. The SZE fulfils the properties of a metric. However, it is
unbounded.

Table 2 shows the values of the SZE and the BMP, as well as the PSNR and
the MSSIM of the rendered views using different DM (i.e. the ground-truth,
an inaccurate map varying smoothly, and a map containing streaking artefacts)
of the Cones stereo image. It can be observed that despite of the low values
of the MSSIM and the PSNR, the BMP values are indicating that there is no
estimation error.

Table 3 shows obtained values of the BMP, the MAE, the MSE, and the
MAPE, based on disparity ground-truth data by three different disparity esti-
mation algorithms [9], and using the Venus stereo image. It can be observed that
the values of the BMP are quite similar. On the other hand, the values of the
SZE and the MAPE are indicating that there exists a difference in the accuracy
of the considered algorithms.

Fig. 2 illustrates estimated DM calculated using the Tsukuba stereo image,
and four disparity estimation algorithms [9], which have similar results of the
percentage of the BMP on the non-occluded region. Table 4 shows obtained
values on the non-occluded region, in relation to DM in Fig. 2, of the SZE,
the BMP, the MAE, the MSE, and the MAPE, as well as the MSSIM using
rendered views. In this case, the obtained values of the SZE are consistent with

Table 2. Obtained ground-truth based error measures and rendered image quality
measures considering DM of the Cones stereo image

Disparity Map
SZE

nonocc
SZE
all

SZE
disc

BMP
nonocc

BMP
all

BMP
disc

PSNR MSSIM

Ground-truth 0.000 0.000 0.000 0.000 0.000 0.000 29.948 0.903
Inaccurate 193.703 218.905 66.945 0.000 0.000 0.000 25.475 0.774
Artefacts 11.088 11.800 3.524 0.000 0.000 0.000 24.639 0.729
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Table 3. Obtained values of the SZE, the BMP, the MAE, the MSE and the MAPE,
considering different algorithms, and using the Venus image

Algorithm
SZE
all

BMP
all

MAE
all

MSE
all

MAPE
all

CoopRegion 552.274 0.206 0.106 0.076 1.849
Undr+OvrSeg 735.384 0.224 0.199 0.097 2.815
AdaptingBP 929.368 0.212 0.165 0.104 3.069

(a) (b) (c) (d)

Fig. 2. Disparity maps of the Tsukuba image, estimated by: (a) DoubleBP, (b)
CoopRegion, (c) GlobalGCP, (d) OutlierConf

Table 4. Obtained ground-truth based error measures and rendered image quality
measures for disparity maps in Fig. 2

Algorithm
SZE

nonocc
BMP

nonocc
MAE

nonocc
MSE

nonocc
MAPE
nonocc

MSSIM

DoubleBP 658.867 0.880 0.223 0.475 3.764 0.908
CoopRegion 662.485 0.872 0.228 0.507 3.780 0.905
GlobalGCP 817.656 0.868 0.263 0.530 4.560 0.908
OutlierConf 915.254 0.879 0.284 0.550 4.921 0.908

the obtained values of the MAE, the MSE, and the MAPE, and contradictories
with the percentage of the BMP. On the other hand, the MSSIM values may be
indicating that the quality of the rendered views may appear quite similar for a
human observer.

4 Experimental Evaluation

In order to assess the impact of the proposal on evaluation results, the SZE and
the BMP are considered as the error measures during an evaluation process.
The top fifteen ranked algorithms in [9] (May, 2011) are selected as the algo-
rithms under evaluation, and Tsukuba, Venus, Teddy and Cones stereo images
are selected as the test-bed [11].

Two evaluation methodologies are used: the Middlebury methodology [9], [10],
[11], and the A∗ methodology [2]. The A∗ methodology is a non-linear evaluation
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Table 5. Quantitative evaluation of algorithms considering the SZE and the BMP as
error measures, using the Middlebury and the A∗ evaluation methodologies, respectively

Algorithm
SZE
Avg.
Rank

SZE
Rank

SZE
Algorithm ∈

A∗
(SZE)

BMP
Avg.
Rank

BMP
Rank

BMP
Algorithm ∈

A∗
(BMP)

GC+SegmBorder 1.17 1 Yes 9.58 11 Yes
SubPixDoubleBP 5.25 2 No 8.50 9 Yes
CoopRegion 5.92 3 No 5.33 3 Yes
SurfaceStereo 7.00 4 No 8.00 8 Yes
FeatureGC 7.67 5 Yes 8.75 10 Yes
CostFilter 7.83 6 No 11.25 15 No
ObjectStereo 8.08 7 No 7.92 7 Yes
AdaptingBP 8.42 8 No 4.83 2 Yes
Undr+OvrSeg 8.50 9 No 10.08 13 Yes
DoubleBP 8.83 10 Yes 6.33 4 Yes
WarpMat 9.75 11 No 9.75 12 Yes
GlobalGCP 9.83 12 No 10.92 14 Yes
OutlierConf 10.00 13 No 7.25 5 Yes
RDP 10.42 14 No 7.42 6 Yes
ADCensus 11.33 15 No 4.08 1 Yes

methodology. It computes the Pareto optimal set (denoted as A∗) from the set
of algorithms under evaluation (denoted as A), by considering vectors of error
measures [1], [17]. In this way, the setA∗ contains those algorithms of comparable
performance among them, and at the same time, of superior performance to
A\A∗.

Table 5 shows evaluation results of the error measures and the evaluation
methodologies considered. It can be observed that using the SZE the evaluation
results are significantly different, in both methodologies, to the results obtained
by using the BMP as the error measure. Moreover, the smaller cardinality of the
set A∗, when the SZE measure is used, can be attributed to a larger uniformity
in the error measurements.

5 Conclusions

In this paper, the SZE is introduced as a measure for evaluating quantitatively
estimated DM. It is based on the inverse relation between depth and disparity.
The SZE offers advantages over the BMP, since it is focused on the impact
of disparity estimation errors in terms of distance along the Z axis. In this
way, it is related to an error value with a physical interpretation and meaning.
Moreover, the SZE does not require the use of thresholds, which may introduce
bias to the evaluation results. The analysis of different estimated DM shows that,
under different circumstances, the BMP may not reflect properly the accuracy,
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in terms of depth, of the estimated disparity map. On the other hand, the SZE
is consistent with other measures.

Innovative results in relation to algorithms evaluation were obtained when
the SZE was used to support the quantitative evaluation, since it leads to a
different ranking, by using the Middlebury evaluation methodology and a differ-
ent composition of the set A∗ by using the A∗ evaluation methodology. Thus,
the algorithms that are reported as achieving the most accurate DM, based on
the BMP measure, may not necessarily correspond to those allowing the most
accurate 3D reconstruction.
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Abstract. Robust category-level object recognition is currently a major
goal for the Computer Vision community. Intra-class and pose variations,
as well as, background clutter and partial occlusions are some of the main
difficulties to achieve this goal. Contextual information in the form of ob-
ject co-ocurrences and spatial contraints has been successfully applied to
reduce the inherent uncertainty of the visual world. Recently, Choi et
al. [5] propose the use of a tree-structured graphical model to capture
contextual relations among objects. Under this model there is only one
possible fixed contextual relation among subsets of objects. In this work
we extent Choi et al. approach by using a mixture model to consider the
case that contextual relations among objects depend on scene type. Our
experiments highlight the advantages of our proposal, showing that the
adaptive specialization of contextual relations improves object recogni-
tion and object detection performances.

1 Introduction

Humans have the remarkable ability to quickly recognize objects in images even
though the objects might have different sizes, rotations, and poses. This abil-
ity is still a main challenge for artificial vision systems. In particular, several
works in robotics [2],[8] and [15] have shown the relevance of using visual object
recognition modules to interact with the world, but there is still a need for more
robust and flexible object recognition techniques.

In the literature of object recognition, there are significant milestones, such as
[16], which proposes a new feature that is invariant to rotation and scaling, and
[24], which proposes a real time object detector. Machine learning techniques
have also been successfully used in the computer vision area, such as [13], [11]
and [12]. In general, the most recent progress in the area of object recognition
has been closely related to the sinergistic combination of tool from computer
vision and machine learning.

Currently, object detectors are mainly trained using images from single object
categories, as we can see in datasets such as Pascal [10], Caltech [13] and MIT-
CSAIL [1]. As a consequence, typical approaches do not consider contextual
relations among objects and scenes. These types of relations are highly relevant
to reduce some of the ambiguities of the visual world. For example, in Figure 1,
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(a) Grass and building relations (b) Road and tree relations

Fig. 1. In real images, particular objects usually tend to co-occur and have positional
relationships among them

we can see cases of outdoor scenes where particular objects usually tend to co-
occur and have positional relationships among them.

An interesting option to improve the performance of single object detectors
is to include in the models contextual relations among objects [14], such as
co-ocurrences, or mutual spatial or scale constrains. In [19] spatial context is
modelled using a variant of a boosting algorithm. In a seminal work, [22] uses
contextual relations based on the statistics of low-level features in terms of the
global scene and the objects in it. Recently, Hoi et al. [5] model inter-object
relations using a tree-structured Bayesian network.

The works mentioned above assume that there is only one possible fixed con-
textual relation among objects. We believe that a richer representation should
include the typical variations that occur among object relationships under dif-
ferent scenarios. For example, if we analyze the relation between a person and a
dog, this is not fixed but it changes according to different scenarios. In the case
of a park scene, person and dog objects co-occurs frequently, but in an office
scene they hardly co-occur.

Our idea is to learn conditional relationships among objects according to each
latent scene. In particular, we present an extension to the work in [5], where we
use mixture models to capture a richer set of adaptive relations among objects
and scenes. This paper is organized as follows. Section 2 describes previous work.
Section 3 introduces the method proposed in this paper. Section 4 presents and
discusses our main results. Finally, Section 5 shows our main conclusions and
some future avenues of research.

2 Background

2.1 Related Work

In the case of object recognition considering context, we can divide the related
work in two levels: global and local context [14]. In the case of global context,
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most works exploit scene configuration as an complementary information source.
This configuration is represented using a statistics of the complete image. Ulrich
and Nourbakhsh introduce color histograms as the representation of an image
and a k-nearest neighbors scheme for classification [23]. They apply their method
to topological localization of an indoor mobile robot, but retraining is needed
for each specific indoor environment. Torralba proposes an image representation
based on global features that represent dimensions in a space that they call Gist
feature [22]. To construct it, an image is passed through a Gabor filter bank
using 4 scales and 8 orientations, then the image is divided into a 4x4 non-
overlapping grid, and finally the output energy of each filter is averaged within
each grid cell. Chang et al. use low-level global features that are used to estimat
a belief or confidence function over the available scene labels [3]. They build one
classifier for each available scene category.

In the case of local context, contextual information is derived from specific
blocks or local areas around object positions. Sinha and Torralba [20] improve
face detection using local contextual regions. Torralba et al. [21] introduce a
Boosting approach in combination with a Conditional Random Field (CRF) to
recognize objects. They apply their method to recognize objects and structures
in office and street scenes. Shotton et al. [19] combine layouts of textures and
context to recognize objects. He uses a CRF to learn model of objects and a
boosting algorithm to combine the texture information and the object model.
Galleguillos et al. [14] use a CRF to maximize the true labeling of objects inside
one scene constrained by co-ocurrence and location relations. Hoi et al. [5] model
inter-object relations using a tree-structured Bayesian network. By using a tree,
they avoid the combinatorial explosion in the number of possible relations. An-
other advantage of this tree-representation is the efficiency for making inference
over data. Aditionally, Rabinovich et al. [18] show that textual data from Web
is an useful source to estimate co-ocurrence between objects.

3 Our Model

We learn scene types using a classical clustering algorithm: K-Means. The use
of an unsupervised method to find scene types is due to the absence of scenes
labels. We execute the clustering on the space of the global feature Gist GG [5].
We use the clusters provided by K-Means to build a Gaussian Mixture Model
with variances and weigths of components equal to one. Accordingly, we modify
the graphical model proposed by Choi et al. [5] by adding a mixture element, as
shown in Figure 2. We describe next each of the elements of this model.

3.1 Specification of the Model

In what follows, the subindex i refers to object class i and the subindex k refers
to the ranking of the detection. This ranking comes from the order of the scores
of the multiple detections of the object detector of Felzenszwalb [12].
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Fig. 2. Proposed graphical model

Location of window (W). The location of a detection window wik = (Ly,
logLz), where Ly is the vertical location of the window and Lz is the scale of the
window. We model the location distribution as a Gaussian. It is conditional on
cik, a binary variable that indicates if a detection is correct, and also the expected
mean of the location of objects Li; where we consider the true appearances, Li,
and the false appearances, L̄i. The covariance for the true positive cases is given
by Λi and for the false positives by Λ̄i. We define (i) p(wik|cik = 1, Li) =
Normal(wik;Li, Λi) and (ii) p(wik|cik = 0, Li) = Normal(wik; L̆i, Λ̄i). In case
that there is not object, we assume a Uniform distribution.

Score (S). The score of classifier sik ∈ �. We model the score as a distribution
that depends on whether the window is a correct detection or a false positive.
Using Bayes rule, we have p(sik|cik) = p(cik|sik)p(sik)|p(cik). The logistic re-
gressors are used to model p(cik|sik). This allow us to increase robustness, since
there are few samples with cik = 1.

In the case that there is not a positive case in the partition, we add an artificial
detection with score slightly greater than the maximum value of the current
scores. This is because the logistic regresor requires at least two classes.

Correct detection (C). The correct detections cik ∈ 0, 1, where 0 means a false
positive and 1, a true positive. We model the correct detection as depending on
the presence of objects b: (i) p(cik = 1|bi = 1) equal to frequencies from training
set when object i appears; and (ii) p(cik = 1|bi = 0) equal to zero.

Parameter of location (L). We model the distribution of locations as de-
pending of presence of objects b: p(L|b) = p(Lroot|broot)

∏
i p(Li|Lpa(i), bi, bpa(i)),

where Li is the median of all instances of object i, and it is composed by
(Ly, logLz). Its components are Ly, the vertical position in the image, and Lz,
the scale of detection. The use of logarithm has been shown suitable in previous
work [5].

In the case of conditional components, we use Gaussians for the location of
object i, using the following expressions for the respectives cases: (i) if bi = 1
and bpa(i) = 1, we use the location of object pa(i); (ii) if bi = 1 and bpa(i) = 0,
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we use the location of object i; and finally (iii) if bi = 0, we use the location
of all objects in all images. In case of objects that do not appear in a partition,
again we use a Uniform distribution.

Presence of object (B). The presence of object bi ∈ 0, 1. We model object
presence as a function of the learned tree model and the partition z. We have:
p(b|z) = p(broot|z)

∏
i p(bi|bpa(i), z).

We learn the tree from data using the Chow-Liu algorithm on each partition
[6]. There is a restriction for the case of objects that do not appear in a particular
partition. For these objects we consider a mutual information equal to zero, and
we add them as children of the last added node to the tree. In this way, we
diminish the influence of these variables.

Global Gist (gG). We model the global Gist feature [22] as depending on
partition z, so we have p(gG = g|z) = Normal(g;uz, Σz). We consider the
variance and weights equal to one. It helps to simplify the distant metric.

In the model of Choi et al. [5], gG is used as a direct prior of the individual
objects. However, it is independent of the context-hierarchical model, as we want
to evaluate the goodness of the context model, we do not use this information
for both techniques in order to make a fair comparison.

Partition (z). The partition z ∈ 0, |Z|, where |Z| is the number of scences.
This partition represents the latent scenes for the database. In this case, we
obtain its value for a particular image according to the model of clustering.

It is important to mention that due to the computational complexity, we do
not apply a joint optimization over partitions and local models. Instead, we first
apply a clustering of images, and afterwards we learn the local models.

3.2 Inference

The inference is straightforward because we separate each tree in its own par-
tition. We make an inference using message passing algorithms for each tree
(p(b, c, L/g,W, s, z)) [17]. Then we obtain the final score by combining the scores
of each component with its respective parameters.

b̂, ĉ, L̂ = argmaxb,c,L

∑
z

p(z) ∗ p(b, c, L/g,W, s, z)

Similarly to [5], we use the following iterative procedure to detect objects: first
we make an inference without consider the locations (b̂0, ĉ0 ∝ p(b, c|g, s)) , then
we infer the locations (L̂ ∝ argmaxLp(L|b̂0, ĉ0,W )), and finally we infer the
presence of each object (b̂, ĉ ∝ p(b, c|s, g, L̂,W )).

4 Experiments

In our experiments, we use the dataset created by Choi et al. [4]. This dataset
has 111 classes, 4.367 training images, and 4.317 test images. In general, the
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Table 1. APR for Choi-database

Baseline Tree MT

#Trees - 1 2 3 4 5 6 7

Recognition 6.82 7.08 7.28 7.39 7.59 7.30 7.47 7.53

Detection 13.31 17.74 18.08 18.16 18.28 18.14 18.11 17.94

detection of the objects in these images is highly challenging, including a variety
of poses, scales, rotations, and scene types. As a baseline technique, we use
the object detector proposed by Felzenszwalb et al. [12], which is based on the
mixture of multiscale deformable part models and a variant of SVM. In average,
this detector provides approximately 500 detections for each image. We use as a
performance metric of our model the average precision-recall metric (APR) [7].
This metric corresponds to the area under the precision-recall curve.

In order to test the method, we define the detection and recognition tasks.
The detection for an object Γ is defined as the procedure where we determine
if the object Γ appears or not in the entire image; in this case, we only use the
detection for object Γ with top likelihood. In the recognition task for object Γ ,
we check if each detection of object Γ inside the image is a true positive.

Table 1 shows the results using the baseline technique [12] (BaseLine), the
method proposed by Choi et al. [5] based on a single tree (Tree), and our pro-
posed method based on a mixture model (MT ).

In table 1, we show the average of the APR for the 111 object categories.
We note that our method improves performance for both tasks, recognition and

Fig. 3. Sample detections for the proposed method
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detection. The best number of trees in this dataset is 4. When we compare this
result to [5], we find a favourable difference of 0.51 for APR recognition and 0.54
for APR detection.

Figure 3 shows the six most confident detections provided by the proposed
method for some test images1. As an example, we can see in the first figure of
the second row how our method correctly recognizes three cars, one person, one
tree, and the sky.

5 Conclusions

In this work, we present an extension of the model of Choi et al. based on a
mixture of trees that combines conditional contextual relations among objects.
Our experiments using a standard dataset indicate that the proposed model
improves the results of a state-of-art technique in terms of object detection and
recognition according to the APR metric. These improvements provide evidence
that an adaptive modelling of the interactions among object help recognition.

As future work, we plan to enhance our model using a more informative
clustering process, such as including explicit latent models or a discriminative
clustering technique. We also plan to include adaptive policies to control the
execution of object classifiers, such as the method proposed in [9].
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1095140.
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Abstract. This paper presents a new approach to encode spatial-
relationship information of visual words in the well-known visual dic-
tionary model. The current most popular approach to describe images
based on visual words is by means of bags-of-words which do not en-
code any spatial information. We propose a graceful way to capture
spatial-relationship information of visual words that encodes the spatial
arrangement of every visual word in an image. Our experiments show
the importance of the spatial information of visual words for image clas-
sification and show the gain in classification accuracy when using the
new method. The proposed approach creates opportunities for further
improvements in image description under the visual dictionary model.

Keywords: spatial-relationship, visual words, visual dictionaries.

1 Introduction

Automatically understanding the content of multimedia data has become very
important since there is an exponential growth of multimedia information avail-
able recently. The scientific and industrial communities have reached many ad-
vances in this field in the latest years. A very popular and effective technique
for multimedia information description is by using visual dictionaries [14], which
are mainly used in tasks of scene and object categorization.

The main idea of using visual dictionaries is to consider that the visual pat-
terns present in images are similar to textual words present in textual docu-
ments. Therefore, an image is composed by visual words as a textual document
is composed by textual words.

The process to generate visual dictionaries takes several steps. To obtain the
visual words of images, usually interest point detectors, like Hessian-Affine and
Harris-Laplace [9] detectors are used; the detected points are described by de-
scriptors like SIFT [8]; and the points in feature space are then clustered to
create the visual words. The words thus obtained are more general than the low
level descriptors, since the clustering step will tend to quantize the descriptor
space into “similar looking” regions.
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When the visual dictionary is created, an image can be described by their
visual patterns (visual words). The most traditional image descriptor based on
visual words is the bag-of-words. It is simply a histogram of the visual words in
the image. Therefore, when using visual dictionaries we can still have only one
feature vector per image, even capturing local information.

The use of visual dictionaries is very popular and new approaches for improv-
ing the use and generation of them constantly appear in the literature [1, 3, 12].
As the traditional bag-of-words descriptor does not encode spatial information
of images, some works try to overcome this weakness [2, 5, 7]

This paper presents an approach to encode the spatial information of visual
words into the feature vector. Our approach captures the spatial arrangement of
every visual word in an image. Its basic model is at the same time very simple
and easily adaptable, opening the opportunity for a whole family of methods to
represent the spatial relationship of visual words.

The remainder of the paper is organized as follows: Section 2 shows the im-
portance of spatial information of visual words for image description. Section 3
presents our approach to encode the spatial arrangement of visual words. Sec-
tion 4 shows the experiments and results. Section 5 concludes the paper.

2 Spatial-Relationship Information in Visual Dictionaries

Spatial information of visual words is very important for the characterization
of images and objects. Different objects and scenes may be composed by the
same visual appearances in different spatial compositions, making that spatial
distribution critical to their discrimination.

The traditional bag-of-words descriptor used to describe images based on vi-
sual words does not encode spatial information. The need to encode the spatial
information of visual words has motivated the creation of some new approaches
to tackle the problem. One of the most popular is the spatial pyramid [7] which
splits the image into hierarchical cells and computes bags-of-words for each cell,
concatenating the results at the end. Other approaches employ the co-occurrence
of pairs of visual words [14] or correlograms of visual words [13]. The method
presented in [2] proposes image splitting by linear and circular projections, gen-
erating one bag for each projection. Most of these approaches suffer from the
problem of generating huge amounts of data.

Although the spatial information of visual words is important for visual char-
acterization, their frequency of occurrence, which is captured by the bag, is also
very important, as observed in many applications [1, 6, 11]. Therefore, combin-
ing frequency of occurrence and spatial information of visual words should be a
promising direction for further improvements.

3 Proposed Approach

Our approach to encode spatial-relationship information of visual words is based
on the idea of dividing the image space into quadrants [10] using each point as
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Fig. 1. Example of partitioning and counting. The small circles are the detected points,
tagged by their associated visual words (wi’s). We start in (a), putting the quadrant’s
origin in p1 and counting in the visual word associated with each other point, where
it is in relation to p1. On the second step (b) the quadrant is at p2; we add again the
counters of the words associated with each other point in the position corresponding
to their position in relation to p2. We proceeded until the quadrant has visited every
point in the image. Final counter values are shown in (c).
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the origin of the quadrants and counting the number of words that appear in
each quadrant. We count how many times a visual word wi appears in each
quadrant in relation to all other points in an specific image. This counting will
tell us the spatial arrangement of the visual word wi. Intuitively, the counting
will measure the word’s positioning in relation to the other points in the image.
It reveals that a word wi tends to be below, at right, or surrounded by other
points, for example.

The image space is divided as follows: for each point pi detected in the image,
we divide the space into 4 quadrants, putting the point pi in the quadrant’s
origin; then, for every other detected point pj, we increment the counting of the
visual word associated with pj in the position that corresponds to the position of
pj in relation to pi. For example, if wj is the visual word associated with pj and
pj is at top-left from pi, the counter for top-left position of wj is incremented.
After all points are analyzed in relation to pi, the quadrant’s origin goes to the
next point pi+1, and the counting in relation to pi+1 begins. When all points
have already been the quadrant’s origin, the counting finishes. Figure 1 shows
an example of partitioning the image space and counting.

Every word will be associated with 4 numbers. Those numbers tell the spatial
arrangement of every visual word in the image. The same visual word can appear
in several different locations in an image, however, there is only one set of 4
counters associated with it. The complexity of this method is O(k2), while the
traditional bag is O(k), where k is the dictionary size.

When the counting is finished, each 4-tuple is normalized by its sum. If the
word wi has non-zero values only in its bottom-right counter, for instance, we
can say that wi is a bottom-right word, that is, it appears always at bottom-
right position in relation to other points. If wi has top-left and top-right counters
with high values, we can say that wi is a word that usually appears above other
points. If all counters of wi are equally distributed, wi is surrounded by other
points (middle-word) or it is a word that repeatedly surrounds other points
(border-word).

Another advantage of our method is that we do not need to tune parameters
for better performance, as no parametrization is necessary.

4 Experiments

The experiments were conducted on the challenging Caltech-256 database [4],
including the clutter class (257). The visual dictionary was generated using some
of the most common parameters in the literature [1]: Hessian-Affine detector,
SIFT descriptor, and 1000 aleatory centers. The visual words were hard assigned
to the detected points [1]. The training and classification was performed by SVM
with RBF kernel.

We compared our method with the traditional bag-of-words descriptor (BoW),
which has only the frequency of occurrence of the words in the image. Our
method is here called as WSA (words spatial arrangement). In our method,
the feature vector also contains the frequency of occurrence of the words in the
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image, like BoW. Therefore, the feature vector of WSA is composed by 5 values
per visual word. We also compared BoW to a variation of WSA that does not
contain the word frequency of occurrence (WSA-noBag).

The validation was performed by increasing the number of training samples
per class. The training samples were randomly selected. All samples that were
not in the training set were used in the testing set. Each experiment was repeated
10 times (varying randomly the training set). Figure 2 summarizes the results,
showing the average accuracies obtained.

The curves show that WSA is superior to BoW in classification accuracy.
This superiority is clear from training sets larger than 5 samples per class. The
larger the training set, the larger the difference in favor of WSA. This indicates
that the spatial arrangement of visual words aggregates important information
to distinguish images and object categories. The results for WSA-noBag are be-
low BoW showing that the frequency of occurrence of visual words is a little
more important than only their spatial arrangement. However, the spatial ar-
rangement is almost as discriminant as the frequency of occurrence of a visual
word, demonstrating the importance of encoding spatial information of visual
words. The superior performance of WSA indicates that combining frequency of
occurrence and spatial arrangement of visual words is effective.

To better understand how the spatial information affects recognition results,
we have performed a detailed (per class) analysis of classification accuracy con-
sidering a training set size of 30 samples per class. Table 4 shows the results
obtained for the classes where the differences between BoW and WSA is large
(greater than or equal to 0.1). Comparing BoW and WSA, we notice how promis-
ing is the use of spatial information together with frequency of occurrence infor-
mation. WSA is superior in most of the classes and, in some of them, the spatial
arrangement makes a large difference (more than 0.1 in absolute improvement
of classification rate).

It is worth noting that for a few classes the spatial information was so impor-
tant that even WSA-noBag (without frequency information) had performances
remarkably superior to BoW. It was the case, for example, of classes 15 (bonsai),
25 (cactus), 44 (comet), 137 (mars), 156 (paper-shredder), 234 (tweezer), and
252 (car-side). This shows, in itself, the discriminating power of words spatial
configurations.

For a few classes, interestingly, adding spatial information actually perturbs
the classification. Those classes were few enough to be enumerated: 3 (back-
pack), 20 (brain), 24 (butterfly), 26 (cake), 103 (hibiscus), 129 (leopards), 142
(microwave), 241 (waterfall) and 250 (zebra). We are still investigating this phe-
nomenon, but we believe that in some situations of very stereotyped textures
(waterfalls, leopards, zebras, butterflies) with lots of detected points, the spatial
configuration might confuse the descriptor.

In general, the spatial arrangement of visual words aggregates important dis-
criminant information to the traditional bag-of-words.
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Fig. 2. Overall classification accuracy of the methods in Caltech-256. Each data point
is the average for 10 runs, and the error bars are confidence intervals for alpha=0.05.

5 Discussion

This paper presents a simple and effective approach to encode spatial-
relationship information of visual words. Our approach is based on the partition
of the image space and in the counting of the occurrences of the visual words
in relation to the other visual words positions. It is able to capture the spatial
arrangement of every visual word in an image. Experiments show that aggre-
gating the spatial arrangement of visual words to the traditional bag-of-words
increases classification accuracy.

Our approach is also promising in the sense that the encoded information
can be used in different ways. In this paper we directly use the spatial arrange-
ment of words, however, more elaborated ideas can be applied over this spatial
information. For example, the encoded information can categorize visual words
spatially, like top-word, right-word, etc. The categorization can be used in many
different ways, like, for instance, computing one bag for each category of visual
word. We are already investigating the use of one bag for interior-words and
other for border-words.
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Table 1. Classes of Caltech-256 where the differences in accuracy between the different
methods tested were large

Class Class name WSA-noBag BoW WSA

2 american-flag 0.13 0.12 0.21

3 backpack 0.07 0.22 0.08

15 bonsai 0.25 0.15 0.25

20 brain 0.15 0.30 0.14

21 breadmaker 0.04 0.06 0.33

24 butterfly 0.19 0.39 0.20

25 cactus 0.27 0.09 0.18

26 cake 0.04 0.23 0.07

44 comet 0.53 0.33 0.48

53 desk-globe 0.13 0.10 0.26

67 eyeglasses 0.40 0.34 0.48

75 floppy-disk 0.18 0.13 0.36

100 hawksbill 0.24 0.16 0.30

103 hibiscus 0.20 0.42 0.22

112 human-skeleton 0.09 0.05 0.16

123 ketch 0.22 0.15 0.34

127 laptop 0.14 0.10 0.22

129 leopards 0.62 0.87 0.60

137 mars 0.56 0.46 0.61

142 microwave 0.07 0.23 0.08

146 mountain-bike 0.29 0.24 0.40

156 paper-shredder 0.25 0.06 0.22

177 saturn 0.47 0.52 0.62

182 self-p.lawn-mower 0.27 0.26 0.45

234 tweezer 0.86 0.38 0.54

238 video-projector 0.06 0.13 0.25

241 waterfall 0.08 0.38 0.17

248 yarmulke 0.04 0.15 0.26

250 zebra 0.09 0.25 0.15

251 airplanes 0.34 0.30 0.57

252 car-side 0.50 0.38 0.51

Other improvements in the encoding of the spatial arrangement are also under
investigation. A prior investigation is being made in the following scenario. We have
the same object in different locations in two different images with clutter back-
ground. As the current counting schema considers all points in the image, in this
case, the counting will change considerably from one image to another. To avoid
this, we are investigating the use of windows around the point when counting. Other
improvements are being tested, like a change in the partitioning schema. Instead of
using 4 quadrants, we are trying to partition the space horizontally and vertically
independently. This way of partitioning is more robust to rotation. Another possi-
bility of use of our approach is for segmentation purposes, like, for instance, using
the middle-words as seeds for some segmentation methods.
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Abstract. Despite the recent developments in spatiotemporal local fea-
tures for action recognition in video sequences, local color information
has so far been ignored. However, color has been proved an important
element to the success of automated recognition of objects and scenes.
In this paper we extend the space-time interest point descriptor STIP to
take into account the color information on the features’ neighborhood.
We compare the performance of our color-aware version of STIP (which
we have called HueSTIP) with the original one.

Keywords: Color invariance, spatiotemporal local features, human
action recognition.

1 Introduction

In this work we provide a discussion on the role of spatiotemporal color features
for human action recognition in realistic settings. Color is a prominent feature of
the real world scenes and objects. Not surprisingly, it has become a powerful tool
in automated object recognition [1] [2] [3]. However, color has not yet been given
its deserved importance in the universe of unconstrained action recognition.

Several spatiotemporal local feature descriptors and detectors have been pro-
posed and evaluated in action recognition. Detectors rely commonly on a mea-
sure function (or response function) to locate interest regions. Those local regions
(also called patches) can be described in terms, for example, of histograms of
gradient orientations and optical flow. Laptev [4] presented a spatiotemporal
extension of the Harris-Laplace corner detector proposed by Mikolajczyk and
Schmid [5]. Spatiotemporal corners are found when strong intensity variations
over the spatial and temporal domains occur simultaneously. This method has
proved efficient for action recognition in controlled datasets such as the KTH
dataset [6]. Dollár et al. [7] proposed a spatiotemporal detector based on tempo-
ral Gabor filters that considers only local variations having periodic frequency
components. Another spatiotemporal interest point detector was designed in [8]
by Willems et al. This detector uses the Hessian determinant as a saliency mea-
sure and 3D convolution approximations by box-filters in order to find regions
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of interest. Here we will only provide a formal discussion of the spatiotemporal
local feature detector used in this work, the one proposed in [4].

To improve the discriminative power and illumination invariance of local fea-
tures to object recognition and image categorization, a set of color descriptors
for spatial local features was proposed in [3] by van de Sande et al. for static im-
ages. The distictiveness of their color descriptors was evaluated experimentally
and their invariant properties under illuminations changes were analyzed. They
derived different color descriptors, including combinations with the intensity-
based shape descriptor SIFT [9]. Van de Weijer et al. [2] had already proposed
color histograms providing robustness to photometric and geometrical changes,
photometric stability and generality. Their work was the basis for some of the
descriptors developed in [3], including our own.

The most important contribution of this work is the combination of the work
by van de Weijer et al. [2] and Laptev [4] to propose the use of color descriptors
to describe local spatiotemporal interest points (features). To this end, we have
produced preliminary results on the matter, such that only information from the
hue channel (of the HSI color system) is evaluated as the source of color data
for the description of space-time interest points. The second contribution is an
analysis of the proposal on the prevailing application of automated recognition
of human actions (on a challenging dataset, the Hollywood2 [10]). We make a
performance comparison between which has been considered as standard in the
literature and our proposal. We then discuss the results clarifying the cases of
success and failure brought by the addition of color information.

The rest of this paper is organized as follows. In section 2 we are concerned
with the formal description of the spatiotemporal interest point detector used.
Further, the details on the color descriptors are presented in section 3. The
experiments and their results are discussed in section 4 and section 5 concludes
the work.

2 Spatiotemporal Interest Points

Laptev [4] proposed a differential operator that checks for local extremas over
spatial and temporal scales at the same time. Extrema in specific space-time
locations refer to particular patterns of events. This method is built on the Har-
ris [11] and Förstner [12] interest point operators, but extended to the temporal
space. Essentially, as a corner moves across an image sequence, at the change of
its direction an interest point is identified. Other typical situations are when im-
age structures are either split or unified. For being one of the major elements in
this work, a few details and mathematical considerations on the detector design
are presented next.

Many interest events in videos are characterized by motion variations of image
structures over time. In order to retain those important information, the con-
cept of spatial interest points is extended to the spatio-temporal domain. This
way, the local regions around the interest points are described with respect to
derivatives in both directions (space and time).
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At first, the selection of interest point in the spatial domain is described. The
linear scale-space representation of an image can be mathematically defined as
Lsp : R2×R+ �→ R, which is the convolution of fsp with gsp, where fsp : R2 �→ R
represents a simple model of an image and gsp is the Gaussian kernel of variance
σ2

l . Then,
Lsp(x, y;σ2

l ) = gsp(x, y;σ2
l ) ∗ fsp(x, y), (1)

and

gsp(x, y;σ2
l ) =

1
2πσ2

l

exp(−(x2 + y2)/2σ2
l ). (2)

Localizing interest points means to find strong variations of image intensities
along the two directions of the image. To determine those local regions, the
second moment matrix is integrated over a Gaussian window having variance
σ2

i , for different scales of observation σ2
l , which is written as the equation:

μsp(.;σ2
l , σ

2
i ) = gsp(.;σ2

i ) ∗ ((∇L(.;σ2
l ))(∇L(.;σ2

l ))T )

= gsp(.;σ2
i ) ∗

(
(Lsp

x )2 Lsp
x L

sp
y

Lsp
x L

sp
y (Lsp

y )2.

)
(3)

The descriptors of variations along the dimensions of fsp are the eigenvalues of
Equation 3: λ1 and λ2, with λ1 ≤ λ2. Higher values of those eigenvalues are
a sign of an interest point and generally lead to positive local maxima of the
Harris corner function, provided that the ratio α = λ2/λ1 is high and satisfies
the constraint k ≤ α/(1 + α)2:

Hsp = det(μsp)− k.trace2(μsp)
= λ1λ2 − k(λ1 + λ2)2. (4)

Analogously, the procedure to detect interest points in the scape-time domain
is derived by rewriting the equations to consider the temporal dimension. Thus,
having an image sequence modeled as f : R2 ×R �→ R, its linear representation
becomes L : R2×R×R2

+ �→ R, but over two independent variances σ2
l (spatial)

and τ2
l (temporal) using an anisotropic Gaussian kernel g(.;σ2

l , τ
2
l ). Therefore,

the complete set of equations for detecting interest points described in [4] is the
following.

L(.;σ2
l , τ

2
l ) = g(.;σ2

l , τ
2
l ) ∗ f(.), (5)

g(x, y, t;σ2
l , τ

2
l ) =

1√
(2π)3σ4

l τ
2
l

× exp(−(x2 + y2)/2σ2
l − t2/τ2

l ), (6)

μ = g(.;σ2
i , τ

2
i ) ∗

⎛⎝ L2
x LxLy LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t .

⎞⎠ (7)
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H = det(μ)− k.trace3(μ)
= λ1λ2λ3 − k(λ1 + λ2 + λ3)3, (8)

restricted to H ≥ 0, with α = λ2/λ1 and β = λ3/λ1, and subject to k ≤
αβ/(1 + α+ β)3

3 Local Features

Given a local interest region denoted by a spatiotemporal interest point, 3D
local features accounting for appearance (histograms of oriented gradient) and
motion (histograms of optical flow) are computed by using information from the
neighborhood at (x, y, t). A spatiotemporal volume is sliced into nx × ny × nt

3D cells, in particular, nx = ny = 3 and nt = 2. For each cell 4-bin histograms
of gradient orientations (HoG) and 5-bin histograms of optical flow (HoF) are
calculated, normalized and concatenated (HoGHoF, used by STIP [4]).

3.1 Color Descriptor

In this section, the hue histogram based color descriptor is roughly described.
From the work in [2], the hue calculation has the form:

hue = arctan (
√

3(R−G)
R +G− 2B

). (9)

It is known that, in the HSI color space, the hue value becomes unstable as it
approaches the grey axis. In attempt to atenuate this problem, van de Weijer
et al. [2] analyzed the error propagation in the hue transformation and verified
the inverse proportionality of the hue certainty to the saturation. This way, the
authors demonstrated that the hue color model achieves robustness by weighing
the hue sample by the corresponding saturation, which is given by Equation 10:

sat =

√
2(R2 +G2 +B2 −RG−RB −GB)

3
. (10)

To construct the hue histogram, we calculate the bin number to which the hue
value (of the spatiotemporal volume) belongs with bin = hue ∗ 36/2π. Then, at
the position bin of the histogram the saturation value is accumulated. Before
incrementing the histogram bin with a given amount of saturation, the satura-
tion is weighed by a corresponding value of a Gaussian mask having the size
of the spatiotemporal volume. The size and values forming the spatiotemporal
Gaussian mask will vary according to the spatial and temporal scales of the in-
terest point. The computed hue histogram will be further concatenated to the
HoGHoF feature vector and this combination will be called HueSTIP.

4 Experiments

In our experiments, we investigated the power of the spatiotemporal local fea-
tures containing color information for action recognition. This section describes
the experimental setup followed by the analysis of the obtained results.
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4.1 Dataset

We wanted to evaluate the performance of the descriptors for human action
recognition in natural scenarios. Therefore, the Hollywood2 dataset [10] was a
natural choice. This dataset is composed of 12 action classes: answering phone,
driving car, eating, fighting, getting out of the car, hand shaking, hugging, kiss-
ing, running, sitting down, sitting up, standing up (see Figure 1). Videos were
collected from a set of 69 different Hollywood movies, where 33 were used to
generate the training set and 36 the test set. Action video clips were divided
in three separate subsets, namely an automatic (noisy) training set, a (clean)
training set and the test set. We only used the clean training set containing 823
samples and the test set containing 884 samples.

Fig. 1. Illustration of the Hollywood2 dataset containing human action from Hollywood
movies

4.2 Bag-of-Features Video Representation

When spatiotemporal local features are extracted, they only provide a very lo-
cal and disconnected representation of the video clips. One way to give a more
meaningful representation is to use the bag-of-features (BoF) approach, which
has been successfully applied to many applications of video analysis [3] [13].
Using BoF requires the construction of a vocabulary of features (or visual vo-
cabulary). Although this is commonly accomplished by using k-means, it is well
known that for very high-dimensional spaces, simple clustering algorithms per-
form badly, and thus a reasonable and efficient choice is just to select a ran-
dom sample to form the visual vocabulary: this saves computational time and
achieves comparable results [14]. The vocabulary size was set to 4000 since this
number has empirically demonstrated good results and is consistent with the lit-
erature [13] [10]. At this point, spatiotemporal local features of a video clip are
assigned to the closest visual word of the vocabulary (we use Euclidean distance
function), producing a histogram of visual words. This histogram of visual word
frequencies now accounts for the new video representation.

4.3 Classification

To classify the videos, we have used Support Vector Machines (SVM), using the
LibSVM [15] implementation. Since our aim is to highlight the performance of
the descriptors, we have chosen to simplify the classifier by using linear kernels
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(experiments with more complex kernels were performed with comparable re-
sults). SVM being a binary classifier, LibSVM implements multi-classification
by the one-to-one method, which creates n(n− 1)/2 binary classifiers (where n
is the number of classes) and applies a majority voting scheme to assign the class
of an unknown element.

4.4 Experimental Protocol

1. Extract local features of the whole dataset (using both descriptors, HueSTIP
and STIP),

2. Build the visual vocabularies, one for each feature type (HueSTIP or STIP),
3. Assemble the histograms of visual words representing each video clips of the

dataset,
4. Learn the classifiers (one for each feature type) of the clean training set

using SVM, in which the training and test samples are already separately
available, as described in 4.1,

5. Classify the samples of the test dataset.

4.5 Results and Discussion

Table 1 evaluates the performance of both descriptors, STIP and HueSTIP, for
the human action recognition task. It shows that there exists a gain in using
color information for the classification of specific actions. Especially, half of the
classes had the best performance achieved by HueSTIP, namely AnswerPhone,
FightPerson, HugPerson, Run, SitDown, and StandUp. This increased perfor-
mance brought by HueSTIP may have come either from information retrieved
from parts of the objects of interest in the foreground or the background scenar-
ios that is usually ignored by traditional shape or motion descriptors but gains
meaning as the color description is considered.

Performance improvements achieved by HueSTIP for the AnswerPhone class
can be justified by the color information from the background describing the
indoor scenario in which this action usually takes place (see Figure 2 A) for an
illustration of this fact), which are very similar among videos of this type of
action. This is also the case for the SitDown class, as can be seen in Figure 2
B). For the FightPerson class, we have that in situations involving aggressive
behaviors, the presence of blood can be expected, which can be an important
aspect of the scene if color information is taken into account. Also, it is clear by
the images in Figure 2 C) that features extracted from the scenes of violence acts
where the camera mainly focuses on the abrupt moving of faces and arms of the
actors will hold information of skin color in their descriptions, which together
with features of optical flow and gradients may help to narrow the meaning
of fight video’s feature vectors. Regarding the class Run and StandUp, color
information from the outdoor scenario might be useful.

However, for many other classes, the addition of color information actually
results in losses. This is somewhat intuitive in DriveCar and GetOutCar, where
the color variablity of cars acts more as a confusion than a help. The huge loss in
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Fig. 2. Samples of scenes depicting situations that explain some of the results

Table 1. This table reports the accuracy rates given by each feature algorithm at the
recognition of the twelve human actions depicted by videos of the Hollywood2 dataset

Action HueSTIP STIP Action HueSTIP STIP

AnswerPhone 12.5% 9.4% HugPerson 18.2% 12.1%

DriveCar 71.6% 76.5% Kiss 38.8% 49.5%

Eat 45.5% 57.6% Run 58.9% 57.5%

FightPerson 68.6% 62.9% SitDown 45.4% 41.7%

GetOutCar 8.8% 19.3% SitUp 0.0% 0.0%

HandShake 6.7% 8.9% StandUp 54.1% 51.4%

performance in classes like Eat and Kiss, however was somewhat unexpected and
reveal the weakness of using the same neighborhood for extracting the optical
flow and color information. It is important to note that the lower performance
in those cases (using HueSTIP) might have been caused by the difference in the
density of points if compared with STIP, which had a greater number of points
extracted due to a different parametrization.

5 Conclusion

We consider that HueSTIP has shown promising results for a preliminary work:
the experiments show it can improve classification rates of actions, but that this
improvement tends to be very class-dependent.

We are currently working on some of its interesting issues, especially the
reasons why its performance is so unexpectedly low in a few classes. We suspect
that using the same feature detector for STIP and HueSTIP might give the
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former an unfair advantage for the classes where the interesting color phenomena
happens at different scales than interesting grayscale phenomena.

Acknowledgments. We would like to thank CNPq, CAPES, FAPEMIG and
FAPESP, Brazilian agencies, for the financial support to this work.
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Abstract. In this paper, the Maloney-Wandell and Imai-Berns recov-
ering spectrum techniques are evaluated to extract the continuous flame
spectrum, by using three principal components from training matrices
constructed from a flame’s spectrum database. Six different sizes of train-
ing matrices were considered in the evaluation. To simulate the Maloney-
Wandell and Imai-Bern methods, a commercial camera sensitivity was
used as a base in the extraction process. The GFC (Goodness-of-fit
coefficient) and RMSE (Root-mean-square error) quality metrics were
used to compare the performance in the recovering process. The simula-
tion results shown a better performance by using the Maloney-Wandell
method in the recovering process, with small sizes of training matrices.
The achieved results make of the recovering-spectral techniques a very
attractive tools for designing advanced monitoring strategies for combus-
tion processes.

Keywords: recovering techniques, flame spectrum, optical sensors.

1 Introduction

It is known that the flame spectrum conveys important information about the
combustion state. Thus, optical sensing of flame spectral emission by using non-
intrusive methods is nowadays an important field of development which has been
tackled by using several active/passive optical sensors (like lasers, CCD cameras,
photodiodes, photomultipliers, radiometers, among another) [1, 2].

However, the sensors/techniques mentioned above are limited in the extrac-
tion of spatial-spectral information from flames simultaneously. For example,
the use of CCD cameras in combustion process monitoring, is based mainly in
the correlation between spatial flame’s morphology with combustion parameters
like the air excess [3]. However, the spectral information of such flame it can
not be extracted, until now, with this device, due to the low spectral-resolution
(normally, three channels R, G and B).
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It is known that if we want to measure the spatial distribution along the
flame of such spectral information, it should be strictly necessary to use an hy-
perspectral camera system, because both the spatial and spectral information
are extracted simultaneously [4,5]. However, the main disadvantage of these sys-
tems is the low-time of image acquisition, making impossible to use this system
in sensing the spectral information in real-time from the flame.

In this paper a first approach in the continuous flame’s spectrum extraction
by using the sensitivity of a trichromatic RGB camera is evaluated by using
the Maloney-Wandell and Imai-Berns estimation methods [6, 7], owing to the
accurate results they provide. That is, the idea is to extract a high spectral res-
olution spectrum by using the data given by a low-spectral resolution sensor,
like a camera. These methods are based on a priori knowledge of the kind of
spectra we want to recover, which can be performed by using principal compo-
nents analysis (PCA), nonnegative matrix factorization (NMF) or independent
component analysis (ICA). This is accomplished through the construction of a
training matrix containing previously database spectral measurements, which
can be linearly combined to reconstruct an unknown spectrum from the sensor’s
array signals. That is, any spectrum can be expressed by:

EN×1 = VN×n · εn×1 (1)

where V is a matrix containing the n representative spectrums extracted from
the training matrix at N wavelengths and the vector ε contains the coefficient of
the linear combination. The n representative spectrums should maintain much
of the original information of the original spectrum. The recovering-spectrum
process start assuming that the optical sensor’s array have a linear response.
Thus, and in absent of noise, the optical sensor’s response can be modeled as:

ckk×1 = ωt
k×N · EN×1 (2)

where ck is the optical sensor response of the k channel (in a RGB camera, for
example, the array is composed by k = 1, 2 and 3), ωt is the transposed of the
matrix containing the spectral sensitivity (responsivity and filters transmissions)
of the sensors, and E is the spectrum impinging in the optical array. In the
following, a brief description of the below algorithms is given.

2 Brief Descriptions of Recovering-Spectrum Algorithms
to be Evaluated

In this section, a brief description of the Maloney-Wandell and Imai-Berns esti-
mation methods is given.

2.1 Maloney-Wandell Recovering-Method

The recovering process of E (that is Ê, at N wavelength samples) is achieved by
found a matrix which transform the sensor’s array responses ck in the coefficient
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of the linear combination, ε. This is performed by replacing the Eq. (1) into
Eq. (2):

ckk×1 = ωt
k×N · VN×n · εn×1 (3)

ckk×1 = Λk×n · εn×1 (4)

that is, the pseudoinverse of Λ (Λ+) directly transform the sensor’s array re-
sponse in the coefficient needed for the linear estimate of the spectrum from the
sensor’s response. Therefore, and replacing on Eq. (1), the estimated (recovered)
spectrum can be calculated as:

ÊN×1 = VN×n · Λ+
n×k · ckk×1 (5)

Note that the spectral-dimensionality (wavelength resolution) of the recovered
spectrum depends on the spectral-dimensionality of the training matrix. On the
other hand, the recovered spectrum directly depends on the spectral sensitivity
of the optical system (inserted on Λ+), and therefore the optimum spectral
characteristics of the optical system (i.e responsivity and filters transmission)
should be estimated at different applications.

2.2 Imai-Berns Recovering-Method

The main difference between this method versus the above described (Maloney-
Wandell) is which in this case it is not necessary to know the spectral responsivity
of the sensors, but sacrificing accuracy in the recovered process. This method is
based directly on found empirically a relationship between the sensor’s response
ck for each spectrum m contained in the training matrix and the coefficients ε
from the principal components. That is, for each m spectrum it is measured the
sensor’s responses, which can be combined with the respective coefficients like:

εn×m = Gn×k · ckk×m (6)

In this case, the information provided by the training matrix is included on
G. Therefore, by pseudoinverting the sensor’s response matrix (ck+

k×m) we can
found the matrix G which allow us to estimate (to recover) the spectrum from:

ÊN×1 = VN×n ·Gn×k · ckk×1 (7)

3 Metrics for Quality Evaluation in the Recovering
Spectrum Process

Different metrics to quantify the quality in the reconstruction process have
been traditionally used [8, 9], like the root-mean-square error (RMSE) and the
goodness-of-fit coefficient (GFC). The GFC metric is based on the Schwartz’s
inequality [10], and is defined as:

GFC =

∣∣∣∑j E (λj) Ê (λj)
∣∣∣[∣∣∣∑j [E (λj)]2

∣∣∣ ∣∣∣∣∑j

[
Ê (λj)

]2∣∣∣∣]1/2
(8)
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where E is the original measured sample data at the wavelength λj and Ê is
the recover spectrum at the wavelength λj . Accurate estimation require GFC>
0.995. GFC > 0.999 mean quite good spectral matches, and GFC> 0.9999 an
excellent spectral match.

4 Recovering Continuous Flame Spectrum Using
Simulated Camera Responses

Both, Maloney-Wandell and Imai-Berns recovering-methods have been imple-
mented to simulate a first approach in recover continuous flame spectrum, based
on a flame spectrum’s data base taken in our laboratories since 2005 with a pre-
viously calibrated USB2000 radiometer (with spectral resolution of 2048 from
339.38-1025.09 nm). Eight different training-matrices TM (with sizes of 4, 5,
6, 7, 8, 9, 20 and 40) have been constructed from where extract the respective
matrix V (Eq. (1)). In order to evaluate the differences on the recovered results,
the above described metrics GFC and RMSE have been calculated.

Like is mentioned in [11], three PCA basis vectors are enough to recover
skylight spectra with acceptable accuracy. Assuming that the continuous flame
spectrum have similar spectral-characteristics like skylight, three PCA has been
extracted from the training matrices. Therefore, three spectral sensitivities bases
have been selected, simulating the spectral response of a Basler A602-fc RGB
camera provided by the manufacturer (Fig. 1(a)) in order to construct the matrix
Λ+ (Eq. (4)). Five calibrated spectrums (test spectrums) measured at different
flame temperatures were used to be recovered (Fig. 1(b)) in the range 380-700nm.

4.1 Computational Results

In Fig. 2 it is depicted fourth different TM’s which have been used in the simula-
tion. From this TM’s are extracted the respective three PCA’s used to construct

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
am

er
a 

S
en

si
tiv

ity
 (

N
or

m
al

iz
ed

 p
.u

.)

Wavelength (nm)

(a)

400 450 500 550 600 650 700
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Wavelength (nm)

T
es

t S
pe

ct
ru

m
s 

(w
/c

m
2 *n

m
)

(b)

Fig. 1. (a) Spectral sensitivity of the Basler A602-fc camera, (b) Flame’s spectrums
samples at different temperatures measured with the USB2000 radiometer
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Fig. 2. Constructed training matrices TM and the respective three principal compo-
nents PC , considering (a) 4 samples, (b) 6 samples, (c) 8 samples and (d) 9 samples
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Fig. 3. Examples of recovered spectrum and the respective MSE by using Maloney-
Wandell method with (a) with 4 samples and (b) 9 samples in the TM and by using
the Imai-Bern method with (c) 4 samples and (d) 9 samples in the TM
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Fig. 4. Evolution of the mean values of GFC and RMSE quality metrics calculated
from 5 test samples, for different size of m (training matrix)

the respective matrix V. It can be observed with the 2 first PCA (PCA1 and
PCA2) exhibit a similar behavior when the size of the training matrix increase.
Therefore, it can be concluded that the third PCA (PCA3) not provide signi-
ficatively information from the constructed TM’s.

In Fig. 3 it is depicted the recovered spectrums and the calculated Mean-
Square Error (MSE) by using the Maloney-Wandell method (Fig. 4(a) and (b))
and the Imai-Bern method (Fig. 4(c) and (d)), by using a TM of 6 and 9. It
can be seen that the performance of Maloney-Wandell method in the recovering
process of the continuous flame spectrum is better than the Imai-Bern method.

The evolution of the quality metrics GFC and RMSE, calculated as the mean
of the metrics calculated from the test spectrums (five spectrums) it is depicted
in Fig. 4 versus an increment in the size of the TM. It can be corroborated that
the Maloney-Wandell method exhibit an accurate results than the Imai-Bern
method, but however it can be seen that the GFC metric is not significatively
enhanced with an increment in the size of the training matrix. This result can
be explained because the third PCA3 tends to stabilization with an increment
of the TM (Fig. 2(c) and (d)).

5 Conclusion

We have shown the performance of the Maloney-Wandell and Imai-Bern methods
in the process of recover continuous flames spectrums by simulating the use of
a low-spectral resolution camera and a data base of flame’s spectrums. Three
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principal components were extracted from different computed training matrices,
where it has been observed with the 2 first PCA (PCA1 and PCA2) exhibit a
similar behavior when the size of the training matrix increase. The third PCA3
not provide significatively information from the constructed TM’s but however
tends to stabilization with an increment of the TM.

The Maloney-Wandell method has shown a better spectral recovering pro-
cess than the Imai-Bern method, by evaluating both, GFC and RMSE quality
metrics, but however the performance in the recovering process not depend sig-
nificatively on the size of the training matrix.

The performance achieved by using the Maloney-Wandell simulating the use
of a low-spectral resolution sensor and with an appropriated training matrix of
flame’s spectrums makes of these techniques a very attractive tools for designing
advanced monitoring strategies for combustion processes.

Acknowledgement. The authors thanks the support of Thermofluids labora-
tory, University of Concepcion and the Basal Project Found FB024.
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Abstract. Estimating human face demography from images is a prob-
lem that has recently been extensively studied because of its relevant
applications. We review state-of-the-art approaches to gender classifica-
tion and confirm that their performance drops significantly when classi-
fying young or elderly faces. We hypothesize that this is caused by the
existence of dependencies among the demographic variables that were
not considered in traditional gender classifiers. In the paper we confirm
experimentally the existence of such dependencies between age and gen-
der variables. We also prove that the performance of gender classifiers
can be improved by considering the dependencies with age in a multi-
dimensional approach. The performance improvement is most prominent
for young and elderly faces.

1 Introduction

By demographic classification we denote the problem of extracting personal
attributes from face images [2,9], voice [12], clothing [16], names [2] or even
gait [10]. This is a problem that has received very much attention recently be-
cause of its applications in human computer interaction, video indexing and
video analytics for business intelligence [9]. The main demographic variables are
gender, ethnicity and age. There is nevertheless a plethora of other interesting
variables such as hairstyle, hair color, facial expression, wear glasses or not, have
mustache or not, etc. We will concentrate on the gender attribute and its relation
with age on near frontal face images.

Gender is perhaps the most widely studied facial demographic attribute in
the Computer Vision field [14,3,11,4]. The state-of-the-art recognition rate in
the Color FERET database [15] involving frontal faces with frontal illumination
and 5 fold cross-validation is around 93% using either a Support Vector Machine
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with Radial Basis function [14], pair-wise comparison of pixel values within a
boosting framework [3] or linear discriminant techniques [4]. This performance
drops significantly if classifiers are trained and tested on different databases. For
example, if we train our classifier with the FERET database and test it with
images from PAL [13], the performance drops to roughly 70% success rate [4].
This is mainly due to the different demographic distributions in both databases.
FERET is a database with mostly Caucasian adult subjects whereas PAL in-
cludes people from more ethnic groups and with a broader range of ages. In
general, when a gender classifier is trained with a data set with limited demog-
raphy and tested with a data set with more general samples the classification rate
drops significantly. This suggest the existence of a dependency between gender
and other demographic variable.

In this paper we will study the dependencies between gender and age given the
facial appearance. Dependencies among demographic variables have also been
previously considered in the literature. Gao and Ai [19] showed experimentally
that by exploiting the relation between ethnicity and gender a boost of 4-5% in
gender classification accuracy can be obtained for mongoloid and African faces.
Guo and Mu [8], in experiments with the MORPH-II database, found that age
estimation can have large errors if the influence of gender and ethnicity is no
considered. Finally, Guo et al. [7] considered the dependencies between age and
gender. They found that gender recognition accuracy was 10% higher in adult
faces than in young and senior faces and studied the influence of different im-
age features (LBP, HOG and BIF) in estimating gender. In this paper we also
consider the influence of age in the estimation of gender, but from a completely
different perspective. We will study whether the accuracy in gender can be im-
proved by jointly estimating age and gender.

2 Exploiting the Dependencies between Gender and Age

In this section we study the dependencies between the age and gender demo-
graphic variables given the facial apperance. First we will prove experimentally
that those dependencies exist. Secondly we will exploit them to improve the
accuracy of gender classification.

2.1 Are There Any Dependencies between Age and Gender?

If we assume that in any age range there is equal number of men and women
and for any gender the distribution of population in ages is similar, then we are
implicitly assuming that age and gender demographic variables are statistically
independent. That is, P (A,G) = P (A)P (G), were A and G denote respectively
age and gender variables and P the probability of an event.

To confirm whether A and G are independent variables we have trained a gen-
der classifier as explained in Section 2.2 with the data in the GROUPS database
(see 3 for a description) and tested it on PAL. The classifier has been trained
with all men and women images in GROUPS but we compute the accuracy
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Table 1. Accuracy in GROUPS/PAL experiment. First row shows results for a gender
classifier trained with images from all age ranges. Second row displays results of four
gender classifiers each one trained only with face images from a given age range. First
four columns display results of four age ranges. Last column shows average results for
all age ranges.

Experiment/Age category 13-19 20-36 37-65 66+ Global

Gender 65.62% 75.56% 65.04% 64.53% 68.73
Gender | Age 65.62% 76.47% 73.98% 74.87% 74.78

stratified into four age groups. In the first row of Table 1 we show the results of
this experiment. Gender estimation for the range 20–36 are above the state-of-
the-art in [4] whereas the results for the other age ranges are clearly below. This
results indicates that the performance of the classifier depends on the age range.
Moreover, to confirm the existence of a dependency between age and gender we
have trained four gender classifiers, one per age range, in GROUPS and tested it
on data from the same age range in PAL. This experiment provides information
on the performance of a gender classifier that knows the age range of the subject.
As we can see in the second row in Table 1, the classifier performance increases,
most notably for elderly. This experiment clearly shows the existence of a depen-
dency between age, A and gender G, given the facial appearance, represented
by the classifier discriminating variables X .

In summary, if the appearance of a face, X , depends on the gender, G, and
age, A, of the subject, then age and gender are conditionally dependent, given
the appearance of the face X , i.e. P (A,G|X) = P (A|X)P (G|X).

2.2 Multi-dimensional Classification of Gender and Age

We will simultaneously estimate gender and age using a multi-dimensional ap-
proach. The term Multi-dimensional Classification was introduced first by Gaag
and Waal [5] to represent classification problems in which there are several class
variables. This problem is a generalization of the multi-label problem [1]. In the
multi-dimensional case each label is transformed into a dimension, which can
have more than two values, in opposition to a label, which can only have two
values.

Let be D = {d1, . . . , dM} the set of M dimensions of a given multi-dimensional
problem and let be Vi = {ci1, . . . , ciNi

} the set of possible values for dimension
di where Ni = |Vi|. Let be D× = V1 × V2 × . . . × Vd the Cartesian product
of all Vi dimension values sets. The output of a multi-dimensional classifier
for an input instance, x, is a vector z ∈ D×. In the demography classifica-
tion problem, one of the possible multi-dimensional formulations could be to
have three dimensions, D = {age, gender, ethnicity} and the corresponding val-
ues Vage = {young, adult, senior}, Vgender = {male, female} and Vethnicity =
{Caucasian,African,mongoloid}.
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One of the baseline approaches to multi-label classification is a problem trans-
formation method: Label Powerset (LP) [17]. The LP approach explores all
possible label combinations. LP interprets every possible subset of labels (a com-
bination of labels) appearing on the multi-label training set as a single class in
a multi-class problem. The Label Powerset (LP) approach has an extension for
the multi-dimensional case. The Dimension Powerset (DP) interprets every ele-
ment in D× as a single class in a multi-class classification problem. For each new
instance the DP classifier outputs the estimated class that in fact represents a
valid combination of dimensions values in the original multi-dimensional prob-
lem. The number of classes in the DP transformed problem is bounded by the
minimum of N , number of training samples, and |D×|. Learning is difficult on
the DP method with a low number of training samples in any combination of di-
mensions values (e.g. in demography classification the combination of Caucasian,
male and young). In our case, we have 2 gender values and seven age categories,
then we will have a 14 classes in the transformed (from a multi-dimensional one)
multi-class classification problem. As the number of dimensions grows, it is very
likely to find a combination of dimensions values with very low or no training
data at all. To avoid such a problem we remove classes with few data.

In our approach we train the multi-class classifier for D× in the PCA+LDA
transformed subspace (LDA after Principal Components Analysis projection). In
our experiments we use a K-Nearest Neighbor (KNN) classifier in the PCA+LDA
transformed subspace. However, any multi-class classifier could be used within
our framework. Depending on the amount of training data, the performance
of the classifier built on PCA+LDA subspace decreases when retaining all PCA
eigenvectors associated with non-zero eigenvalues. We select the dimension of the
subspace resulting from the PCA step. We sort PCA eigenvectors in descend-
ing eigenvalue order. We then perform cross-validation and select the dimension
with the best performance for the classification in the PCA+LDA subspace. This
cross-validation driven feature selection (wrapper) approach is essential to cor-
rectly train a PCA+LDA procedure [4]. In the same cross-validation procedure
we look for the dimension for the PCA initial step and the number of neighbors,
k, that accounts for the best performance.

3 Experiments

In this section we evaluate the performance of the multi-dimensional framework
estimating the combination of gender and age dimensions. We use the Images
of Groups Dataset [6] (GROUPS database) and the Productive Aging Lab Face
(PAL) database [13] for training and testing. We crop and re-size images to a base
size of 25×25 pixels using OpenCV’s1 2.1.0 face detector, which is based on [18].
Then we equalize the histogram to gain some independence from illumination
changes. Finally, we also apply an oval mask to prevent the background from
influencing our results.
1 http://opencv.willowgarage.com
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3.1 Face Databases

The Images of Groups Dataset2 (in the following GROUPS database), consists of
28,231 faces labeled with age and gender extracted from 5,800 pictures of people
groups. Most faces were automatically detected. The seven age categories used
are: 0-2, 3-7, 8-12, 13-19, 20-36, 37-65, and 66+. In this database age labels are
discrete. In our experiments we use those face detections from the GROUPS
database that have at least 60× 60 pixels (13,051 out of a total of 28,231 faces).
See Fig. 1 for some examples of faces from this database. In Table 2 we give
information on the number of images per age category.

Fig. 1. Some of the images from GROUPS database

The PAL Database consists of frontal pictures of 576 individuals. There is
only one frontal face image per subject although 3 individuals have two pictures
in the database. Therefore, we use 579 images in our PAL experiments. The right
profile and some facial expressions are also available for some subjects. There are
219 male and 357 female subjects divided into four groups depending on their
age. In this database, the actual continuous face age is available for each image.
In our experiments we only use frontal images and only one image per subject.
See some sample images in Fig. 2. Again, the number of images per age category
in this database is shown in Table 2.

Fig. 2. Some cropped images after face detection, from the PAL database

3.2 Gender Estimation Results

To evaluate the performance of a gender estimation algorithm we are interested
in the algorithm’s generalization capabilities. To this end we train our algo-
rithm using one database and test it on a different one. We train our algorithms
2 http://chenlab.ece.cornell.edu/people/Andy/ImagesOfGroups.html
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Table 2. Number of image per age category

Database/Age Range 0-2 3-7 8-12 13-19 20-36 37-65 66+ Total

GROUPS 460 807 368 777 6972 3109 558 13051
PAL - - - 32 221 123 203 579

Table 3. Multi-dimensional gender accuracy in GROUPS/PAL experiment

Experiment/Age category 13-19 20-36 37-65 66+ Global

Gender×Age 68.75% 76.01% 65.85% 71.92% 72.01%
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Fig. 3. GROUPS/PAL experiment comparison between uni-dimensional and multi-
dimensional approaches

with GROUPS and test them with PAL (GROUPS/PAL experiment). We use
GROUPS for training because it is large (≈13000 data) and it has a broad de-
mography with realistic acquisition conditions. On the other hand, we use PAL
for testing because it is a difficult database for gender recognition mostly due to
the broad demography [4].

As already said in Section 2 we use a PCA+LDA dimensionality reduction
procedure and a KNN classifier. We use a five-fold cross-validation scheme to
estimate the classifier parameters (number of retained eigenvectors and number
of neighbors in KNN). We have performed two experiments, one using only
the Gender dimension (see Table 1) and another using Gender×Age dimension
powerset (see Table 3). Note that in PAL there are no faces in the 0 to 12
years age ranges. The global accuracy (computed by weighted mean of the per
age category accuracy using the proportion of data on each category) of the
multi-dimensional approach (Gender×Age) is better than the uni-dimensional
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one (only Gender) by 3%. Most interestingly, the multi-dimensional approach
outperforms the uni-dimensional one in Table 1 for all age categories (see also
Fig. 3). Moreover, the most difficult categories for the uni-dimensional classifier,
13-19 and 66+, are those for which the improvement is highest, 3.13% and 7.39%
respectively. This shows that the multi-dimensional procedure is able to exploit
the dimension combination and improve the gender estimation accuracy.

4 Conclusions

In the paper we have reviewed the state-of-the-art in gender recognition from
near frontal face images. We have confirmed previous results reporting the ex-
istence of dependencies between age and gender. Our approach explores the
combination of various demographic variables and proves the interest of exploit-
ing variable combination to improve classifier performance. In future research
lines it would be interesting to use both better visual descriptors, as used in [7]
within the multi-dimensional approach.
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ish Ministerio de Ciencia e Innovación under contracts TIN2010-19654 and the
Consolider Ingenio program contract CSD2007-00018.
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Abstract. The proposed method for classifying clusters of patterns in
complex non-convex, disconnected domains using Radial Basis Func-
tion Neural Networks (RBFNNs) enhanced with the Rvachev Function
Method (RFM) is presented with numerical examples. R-functions are
used to construct complex pattern cluster domain, parameters of which
are applied to RBFNNs to establish boundaries for classification. The er-
ror functional is a convex quadratic one with respect to weight functions
which take weight values on the discrete connectors between neurons.
Activation function of neurons of RBFNNs is the sgn(·) function and,
therefore, the error function is non-smooth. The delta learning rule dur-
ing training phase is applied. The sub-gradient of the discretized error
function is used rather than its gradient, because it is not smooth. The
application of the RFM allows for the creation, implementation, and
resolution of large heterogeneous NNs capable to solving diverse sets of
classification problems with greater accuracy.

Keywords: Rvachev Function Method (RFM), clustering, classifica-
tion, Radial Basis Functions (RBFs), Artificial Neural Networks (ANNs).

1 Introduction

The Vector Quantization clustering method for classifying clusters of vectors uses
a covariance matrix and standard deviation or a Euclidian distance between the
cluster centroid and a tested vector for classifying the tested vector for inclu-
sion in that cluster [3,4]. This technique is applicable only to compact, simply
connected, convex domains. A more powerful and robust clustering method is
needed to classify vectors into pattern clusters in the more general types of
geometrical domains.

This paper describes a new method for pattern cluster classification applying
R-functions, developed by V.L.Rvachev in [8], and used in combination with
RBFNNs. These R-functions depict a cluster’s shell, i.e., boundaries of convex
as well as non-convex, and connected as well as disjoint domains in R

n in closed
functional form.
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The proposed method applies the R-functions as factors to the Radial Basis
Functions (RBFs) in RBFNNs that ensure improved cluster classification with,
consequently, improved accuracy of class representations and simplified NNs
cluster classification algorithms.

Support Vector Machines (SVMs) with Bayes decision rules are also used in
multi-category classification [5], but the statistics upon which these classifica-
tion methods are based does not support classification of clusters in a complex
domain.

RBFNNs are often used in the classification of scattered data because they can
describe cluster property of the data via parameters [2,3]. However, the descrip-
tion of data’s cluster properties can be improved using the Rvachev Function
Method (RFM) with parameterized R-functions. In addition, implementing the
RFM allows creating and applying large heterogeneous neural networks to di-
verse sets of classification problems with greater accuracy.

Traditional Neural Network techniques are also used in solving data classifi-
cation problems [4]. But, the acceptable results require large amounts of compu-
tational power and the classification accuracy is often insufficient for practical
applications. For example, it is impossible to classify clusters by a perceptron
whose inputs are taken from regions of limited diameter [7]. The proposed clus-
tering method, based upon the application of R-functions in the construction of
general type cluster domains together with the RBFNNs approach copes with
this constraint.

2 The Rvachev Function Method and R-Functions

R-functions possess the property of almost differentiability in R
n and inherit

some sort of boolean properties such as being positive or negative in some specific
regions according to the boolean functions from which they were constructed.
R-functions are composed from real almost differentiable functions by ”boolean
operators” represented by their counterparts of operators over real functions.
This means that for each ”boolean operation” over real functions, there is a
combination of functional operators over real functions. The resulting function
has a single analytical expression in the sense that it is represented by closed
form formulas of almost differentiable functions. An R-function is an implicit
real function whose sign is determined solely by the signs of its arguments [8].
An R-function and its arguments are real-valued, but by interpreting positive
values as true and negative values as false, an R-function is transformed into
equivalent boolean function. Boolean functions and corresponding R-functions
are termed ”friends”. An R-function is defined mathematically as a mapping
f(x) : Rn �→ B, where R

n is an n-dimensional space of real values and B is the
boolean bipolar space {−1, 1}. The function f(x) is implicitly defined in Rn as
almost differentiable a finite number of times.

For the purpose of demonstrating the strengths of boolean closed form implicit
real functions and the RFM, the examples of the constructed boolean closed form
implicit real function in 2-dimensional domains Ω are presented below.
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Fig. 1. i) R-function ”Drawing” given in work [8, page 77]. ii) R-function ”NAND”
given by (1). iii) R-function ”Rectangle + Half Circle” given in work [8, page 66].
iv) R-function ”Tic Tac Toe” given in work [8, page 71]. v) R-function ”XNOR”
given by (2).

1. Closed functional expression [8, page 77] for ”Drawing” domain shown on the
position (i) of Figure 1.
2. Closed functional expression for ”NAND” domain shown on the position (ii)
of Figure 1.

ω2(x, y) =
1
2
× (|y − x| − x− y) > 0. (1)

3. Closed functional expression [8, page 66] for ”Rectangle + Half Circle” domain
shown on the position (iii) of Figure 1.
4. Closed functional expression [8, page 71] for ”Tic Tac Toe” domain shown on
the position (iv) of Figure 1.
5. Closed functional expression for ”XNOR” domain shown on the position (v)
of Figure 1.

ω5(x, y) = xy > 0. (2)

Thus, this demonstrates capabilities of boolean analytical closed form functions
in construction of versatile geometrical objects.

3 Discrete-Continuous NNs and R-Functions

The application of NNs as classifiers has a sufficiently long history and many
established results reflected in articles and summarized in monographs [3,4].
Nonetheless, there are situations where the regular NN method does not work
well and may lead to errors in classification of patterns of clusters. To improve
and avoid such misclassifications many authors propose different types of com-
putationally complex techniques: additional layers of nodes, new activation func-
tions, changing network topology with connectors, modification of learning rules,
new target optimal functions, and then substantiate these techniques with nu-
merical experiments. For rigorous users these methods cause somewhat feelings
of dissatisfaction and lack of confidence in the results of these computational
experiments even though there are some asymptotical and probabilistic error
estimations of misclassification.

The approach presented here with applications of R-functions and NNs can
be viewed as a generalization or modification of Radial Basis Functions (RBFs)
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with NNs when optimizing parameters include not only weights of nodes’ con-
nectors but also parameters of outlining shells of clusters, and tends to increase
confidence in the numerical results.

At first, we describe regular NNs to be used for classification of clusters of
pattern and then we will show the proposed modification aimed to improve the
quality of classification even in difficult cases such as: non-convex, and disjoint
domains of clusters of patterns. In NNs literature this situation has been termed
meshed and/or general type domains [6].

For typical linear node of a NNs we have the activation function φ which
provides linear separation of clusters of patterns on scalar product of vectors of
weights wi and inputs xi.

y = φ

(
n∑
i

wixi − θ
)
, (3)

where wi are weights of connectors, xi are input values, φ(·) is an activation
function, which in this article particularly is sgn(·), and θ is the threshold.

We consider incoming into neuron values xi subject to Lebesgue - Stiltijes in-
tegration with integrand including an R-function ωi, and Radial Basis Functions
fi with a differential of Lebesgue measurable weight function W (s) in the field
S. We use the following definition of Radial Basis Function (RBF):
A function f : R

d → R is said to be radial if there exists a function ψ : [0,∞]→ R

such that f(x) = ψ(‖x‖2), ∀x ∈ R
d [9].

y = sgn
(∫

S

ω(x̄)(f(‖x̄− r̄‖2)− θ)dW (s)
)

(4)

=
{

sgn
(∫

S
ω(x̄)(f(‖x̄− r̄‖2)− θ)w(s)ds

)
if W (s) is Riemann integrable

sgn (
∑

i ω(x̄)(fi(‖x̄− r̄i‖2)− θ)wi) if W (s) is discrete.

Thus, we consider a neuron immersed into a continuous field with discrete con-
nectors between neurons. The continuous part of so called neuron field may
resemble any known physical field like electrical, gravitational, etc. Properties
of such field has to be defined phenomenologically. This functional may contain
aging and stochastic parameters. In the given form (4), it expresses energy of
stimulus factors x̄ on the density of a neuron field w(s). Based on the similarities
in operations between R-functions and traditional neurons: see section 2, (3),(4),
a heterogeneous NNs can be constructed whilst it is not exploring here.

4 Error Functions for Classification in RBFNNs Training

We consider Sum-of-Squares Error SSE function, which is given by a sum over
all patterns x̄ in the training set, over all k outputs of vector ȳ = (y1, y2, . . . , yk),
and a corresponding vector field of weights W̄, with a regularization factor λ in
the form

SSE(W̄) = ‖ȳ(x̄)− sgn
(∫

S

ω(x̄) (f(‖x̄− r̄‖2)− θ) dW̄(s)
)
‖22 + λ‖w̄‖22. (5)
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For only discrete connections between neurons, Lebesgue-Stiltijes integration is
converted from (5) into summation, shown in (6), over weighted wi connection
values for each output yj, j = 1, k. Thus, in the absence of a field of interactions,
and only for the discrete case we have for SSE

SSE(w̄) = ‖ȳ(x̄)− sgn

(
k∑

i=1

ω(x̄)(f(‖x̄− r̄‖2)− θ)wi

)
‖22 + λ‖w̄‖22. (6)

4.1 Problem Formulation

To solve classification problem of finding discriminant expression separating clus-
ters of different classes in a NNs form, we need to find

w∗ ∈W ∗ = argmin{SSE(w) : w ∈ W, |ω(x̄)| = 0}. (7)

It is assumed that the optimal set of weights W ∗ is not empty and is bounded.
To find a minimum of (7) the gradient method is used. Since the objective
function (7) is not everywhere differentiable and functionally complex, we use
finite differences. The calculation of finite differences can be done numerically by
perturbing each weight sequentially. Our activation function is the sgn (·) which
is differentiable only in a generalized sense and, therefore, can be estimated as
some value g(x̄k;wi) for error on the pattern x̄k. Thus, we have for the batch
learning delta rule

Δwi = −η
∑

k

wkj(y(x̄k)− o(x̄k))g(x̄k;wi). (8)

We denote o(x̄k) as vector node output corresponding to input vector pattern
x̄k, y(x̄k) as the target vector corresponding to the same input vector pattern,
g(x̄k;wi) as the sub-gradient of the optimization problem, and η as learning rate.

4.2 RBFs and R-Functions for Representation of Cluster of
Patterns

Radial Basis Functions (RBFs) are used widely in neural networks and it is
known that interpolating properties of RBFs are insensitive to their precise
form, but the quality of interpolation depends on parameters of interpolat-
ing RBFs. RBFs are smoothing and averaging outputs of noisy and scattered
data and, therefore, decently represent clusters of data (patterns). Mid-layer
of RBFNNs serves for unsupervised training to determine parameters for clus-
ter representation [1]. Adding to these functions a multiplier in the form of
R-functions we enhance the capability to describe clusters of patterns for
classification procedure.

Let ω(x, y) be an R-function which describes some domain of patterns. This
geometrical description might not precisely outline boundaries of clusters. Per-
forming some transformations, we can adjust the description of boundaries. We
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restrict ourselves only to linear transformation in order to substantiate concept
on numerical experiments, namely : translation, rotation, scaling, and shearing.

An R-function ω(x, y; a, b, θ, γ1, γ2, s1, s2) with transformational parameters
a, b, θ, γ1, γ2, s1, s2 can be adjusted to given clusters in such a way that the clus-
ters will fit better into the boundaries of domains. A general form of transfor-
mation including scaling, shearing, rotation, and translation has the expression

x′ = s1x cos θ − γ1y sin θ + a

y′ = γ2x sin θ + s2y cos θ + b, (9)

where a, b are components of a translational vector, s1, s2 are scaling parameters
in the direction of x, y respectively, γ1, γ2 are shearing parameters, and θ is the
rotational parameter.

5 Numerical Explorations: Substantiation of Concepts

To substantiate concepts of this new method for cluster classification, we select
clusters for numerical experiments shown in Figures 2 and 3.

For each form of clusters we present equation of boundary with transformational
parameters. For case ”STRIP” with transformational parameters a, b, γ1, γ2, θ

ωstrip(x, y) = 0.25− (s1x cos(θ) − γ1y sin(θ) − a)2. (10)

Fig. 2. i) RBFNNs training on 250 patterns in 2 clusters separated by (12). ii) Error
of testing 0.4% on 5000 patterns in 2 clusters separated by RBFNNs corresponding
to (12). iii) Error of training on 250 patterns in 2 clusters separated by (12). iv)
Weights after training on 250 patterns in 2 clusters separated by (12).

Fig. 3. i) RBFNNs training on 250 patterns in 2 clusters separated by (10). ii) Error
of testing 0.1% on 5000 patterns in 2 clusters separated by RBFNNs corresponding
to (10). iii) RBFNNs training on 250 patterns in 2 clusters separated by (11). iv)
Error of testing 0.32% on 5000 patterns in 2 clusters separated by RBFNNs corre-
sponding to (11).
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For case ”TRIANGLE”

ωtriangle(x, y) = 8.− γ2x sin(θ)− s2y cos(θ) + b−
8
3
× | − s1x cos(θ) + γ1y sin(θ) + a| − |8.− 3γ2x sin(θ) −

3s2y cos(θ) + 3b− 8
3
× | − s1x cos(θ) + γ1y sin(θ) + a||, (11)

and case ”LINE”

ωline(x, y) = 1.25s1x+ 1.25γ1y − 1.25a−
γ2x− s2y + b+ .5. (12)

As Radial Basis Functions for hidden layer in the RBFNNs we take system of
functions

ψj(x, y; rj1, rj2) = exp[−(x− rj1)2 − (y − rj2)2], j = 1, 2, 3. (13)

For the proposed numerical experiments, we construct perceptron with two input
nodes for patterns x, y, three nodes of hidden layer, and one output node in
output layer. Thus, our output function for classification has the form

z(x, y) = sgn

⎡⎣ 3∑
j=1

wjωcluster(x, y; aj , bj , γ1j , γ2j , θj , s1j, s2j)ψj(x, y; rj1, rj2)

⎤⎦.
For example, for clusters separated by a line ωline(x, y), we reached error of clas-
sification on 250 patterns equal to zero after 6000 iterations. RBFNNs weight
parameters stabilized, shown on Figure 2, and testing the trained RBFNN for
pattern classifications on 5000 patterns showed error of 0.4%. Analogous results
for clusters in cases: ”STRIP”, ”TRIANGLE” were received with the difference
found only with the values where error of classification tend to zero and pa-
rameters of RBFNNs become stabilized on 250 patterns. Results of checking of
classification of significantly bigger number of patterns (5000 patterns) shown
on the corresponding figures and further substantiate the concept of the new
method numerically.

6 Summary

The proposed method for classification of clusters of patterns enables classifica-
tion of pattern clusters in complex domains, such as: non-convex, non-connected
domains on presented numerical examples.
R-functions used to construct complex domain containing pattern clusters

perform clustering role together with RBFs in the RBFNNs method. Parameters
of RBFs define centers of pattern clusters and parameters of R-functions tune
clusters within their boundaries.
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The error functional is a convex quadratic one with respect to weight functions
which takes weighted values at the discrete connections between neurons. As a
generalization of traditional neural networks, a neuron continuous field can be
considered; and scalar product between the stimulus patterns and the weights
of connections represents energy delivered to a neuron.

The activation function of neurons is the sgn(·) function, and therefore, the
error functional is non-smooth. For numerical examples the continuous part of
neural fields is neglected and only the discrete part is used.

For neural networks learning, the delta rule is applied where instead of the
gradient factor, the sub-gradient of the discretized error function is used because
the error function is not smooth.

In case of multiple classes of pattern cluster classification, the RBFNNs to-
gether with R-functions must have k outputs such that this neural network can
distinguish up to 2k classes.

The application of the RFM allows for the creation, implementation, and reso-
lution of large heterogeneous NNs capable to solving diverse sets of classification
problems with greater accuracy in principle. In this case, the proposed clustering
method copes with the classification of clusters by a perceptron whose inputs
are taken from regions of limited diameter [7].
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Abstract. Among the applications of a radar system, target classifica-
tion for ground surveillance is one of the most widely used. This pa-
per deals with micro-Doppler Signature (μ-DS) based radar Automatic
Target Recognition (ATR). The main goal for performing μ-DS clas-
sification using speech processing tools was to investigate whether au-
tomatic speech recognition (ASR) techniques are suitable methods for
radar ATR. In this work, extracted features from micro-Doppler echoes
signal, using MFCC, LPC and LPCC, are used to estimate models for
target classification. In classification stage, two parametric models based
on Gaussian Mixture Model (GMM) and Greedy GMM were successively
investigated for echo target modeling. Maximum a posteriori (MAP)
and Majority-voting post-processing (MV) decision schemes are applied.
Thus, ASR techniques based on GMM and GMM Greedy classifiers have
been successfully used to distinguish different classes of targets echoes
(humans, truck, vehicle and clutter) recorded by a low-resolution ground
surveillance Doppler radar. Experimental results show that MV post
processing improves target recognition and the performances reach to
99, 08% correct classification on the testing set.

Keywords: Automatic Target Recognition (ATR), micro-Doppler Sig-
natures (μ-DS), Automatic Speech Recognition (ASR), Gaussian Mixture
Model (GMM), Greedy GMM, Maximum a Posteriori (MAP), Majority
Vote (MV).

1 Introduction

Target classification using radar signatures has potential applications in air/
marine traffic and ground surveillance radar. The goal for any target recognition
system is to give the most accurate interpretation of what a target is at any given
point in time. ATR is a crucial task for both military and civil applications.
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In the acquisition stage, each target is illuminated with a frequency stepped
signal and the returned echoes are then received. The radar operator identifies
targets from the audio representation of the echoes signal. Mechanical vibration
or rotation of a target may induce additional frequency modulations on the
returned radar signal. This phenomenon, known as the micro-Doppler effect,
generates sidebands at the target Doppler frequency.

Techniques based on micro-Doppler signatures [1], [2] are used to divide tar-
gets into several macro groups such as aircrafts, vehicles, creatures, etc. An
effective tool to extract information from this signature is the time-frequency
transform [3]. The time-varying trajectories of the different micro-Doppler com-
ponents are quite revealing, especially when viewed in the joint time-frequency
space [4]. Anderson [5] used micro-Doppler features to distinguish among hu-
mans, animals and vehicles. In [6], analysis of radar micro-Doppler signature with
time-frequency transform was discussed. The time-frequency signature of the
micro-Doppler provides additional time information and shows micro-Doppler
frequency variations. Thus, additional information about vibration rate or ro-
tation rate is available for target recognition. Gaussian mixture model (GMM)-
based classification methods are widely applied to automatic speech and speaker
recognition [7]. Mixture models form a common technique for probability den-
sity estimation. In [8], it was proved that any density can be estimated using
finite Gaussian mixture. A Greedy learning of GMM based target classification
for ground surveillance Doppler radar, recently proposed in [9], overcomes the
drawbacks of the Expectation Minimization (EM) algorithm. The greedy learn-
ing algorithm does not require prior knowledge of the number of components in
the mixture, because it inherently estimates the model order.

In this paper, we investigate the micro-Doppler radar signatures in order to
obtain best classification performances. The classification algorithms are im-
plemented using three kinds of features; Mel-Frequency Cepstral Coefficients
(MFCC), Linear Prediction Coding (LPC) and Cepstrum Coefficient feature sets
(LPCC), extracted from echoes signals recorded by Doppler radar. These features
are fed respectively to GMM and greedy GMM parametric and statistical clas-
sifier approaches for multi-hypotheses problem. The classification tasks include
the determination of the statistical modeling of extracted features distribution
and the application of Maximum a posteriori (MAP) rule. As a post-processing
enhancement method, a majority vote technique is proposed.

This paper is organized as follows: in section 2, features extractions and classi-
fication schemes are presented. In Section 3, we describe the experimental frame-
work including the data collection. Experimental results are drawn in section 4.

2 Classification Scheme

In this paper, a supervised classification process was performed and two decision
methods were implemented.
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2.1 Feature Extraction

In practical case, a human operator listen to the audio Doppler output from
the surveillance radar for detecting and may be identifying targets. In fact,
human operators classify the targets using an audio representation of the micro-
Doppler effect, caused by the target motion. As in speech processing a set of
operations are taken during pre-processing step to take in count the human
ear characteristics. Features are numerical measurements used in computation
to discriminate between classes. In this work, we investigated three classes of
features namely, LPC, LPCC, and MFCC.

Linear Prediction Coding (LPC). Linear prediction is the process of pre-
dicting future sample values of a digital signal from a linear system. It is therefore
about predicting the signal x(n) at instant n from p previous samples as in (1).

x(n) =
p∑

k=1

akx(n− k) + e(n) (1)

So the coding by linear prediction consists in determining coefficients ak that
minimize the error e(n). LPC are expected to give very accurate formant infor-
mation of acoustic signals. We considered the LPC up to the 16th order (exclud-
ing the zero coefficient) and applied it directly to the radar signal.

Cepstral Linear Prediction Coding (LPCC). The cepstrum coefficients
{cepsq}

Q
q=0 can be estimated from the LPC coefficients {aq}

p
q=1 using a recursion

procedure:

cepsq =

⎧⎪⎨⎪⎩
ln(G), q = 0
aq +

∑q−1
k=1

k−q
q akcepsq−k, 1 �q�p∑p

k=1
k−q

q akcepsq−k, p <q�Q
(2)

Where G is the gain term in the LPC model, p the LPC model order, and Q+ 1
the number of cepstrum coefficients.

Mel Frequency Cepstral Coefficients (MFCC). The most commonly used
feature vector in speech recognition is composed of Mel-Frequency Cepstral Co-
efficients (MFCC). Fig.1 is a block diagram of the MFCC generation process
from micro-Doppler signal. The MFCC extraction is done in three steps:

1. Step 1-a: Cut up the signal in several overlapping windows;

2. Step 1-b: To decrease the spectral distortion a Hamming windowing is ap-
plied to signal frames;

W (n) = 0.54− 0.46 ∗ cos( 2πn
N − 1

) (3)

Where N is the window size.
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Fig. 1. MFCC generation

3. Step 2-a: Apply the FFT ;

4. Step 2-b: The Mel-frequency scale is applied to obtain an appropriate signal
representation In fact psychophysical studies have shown that human per-
ception of the frequency content of sounds does not follow a linear scale. The
recognition model thus reflects the behaviour of the brain in this respect and
is equally applicable to both speech and radar Doppler. We use the following
transformation formula;

mel(f) = 2595 ∗ log10(1 +
f

700
) (4)

5. Step 2-c: Apply the logarithm after the Mel scale;

6. Step 3: Finally, obtain the discrete cosine transform (DCT) of the output
signal.

2.2 Modelisation

In the present work, each target class is represented by two parametric models;
GMM and Greedy GMM.

Gaussian mixture model (GMM). Gaussian mixture model (GMM) is a
mixture of several Gaussian distributions. The probability density function is
defined as a weighted sum of Gaussians:

p (x; θ) =
C∑

c=1

αcN(x;μc, Σc) (5)

Where αc is the weight of the component c, 0 < αc < 1 for all components, and∑C
c+1 αc = 1. μc is the mean of components and Σc is the covariance matrix.

We define the parameter vector θ:

θ = {α1, μ1, Σ1, ..., αc, μc, Σc} (6)

Estimating the Gaussian mixture parameters for one class can be considered as
an unsupervised learning in the case where samples are generated by individual
components of the mixture distribution. The expectation maximization (EM)
algorithm is an iterative method for calculating maximum likelihood distribution
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parameter. This algorithm starts from an initial guess θ0 for the distribution
parameters and the log-likelihood is guaranteed to increase at each iteration
until it converges. The initialization is one of the crucial problems of the EM
algorithm. The selection of θ0 determines where the algorithm converges or hits
the boundary of the parameter space producing singular, meaningless results. An
elegant solution for the initialization problem is provided by the greedy learning
of GMM [10].

Greedy Gaussian mixture model (Greedy GMM). The greedy algorithm
starts with a single component and then adds components into the mixture
one by one. The optimal starting component for a Gaussian mixture is trivially
computed, optimal meaning the highest training data likelihood. The algorithm
repeats two steps: insert a component into the mixture, and run EM until conver-
gence. Inserting a component that increases the likelihood the most is thought to
be an easier problem than initializing a whole near-optimal distribution. Com-
ponent insertion involves searching for the parameters for only one component
at a time. Recall that EM finds a local optimum for the distribution parame-
ters, not necessarily the global optimum which makes it initialization dependent
method [10].

2.3 Classifiers

A classifier is a function that defines the decision boundary between different
patterns (classes). Each classifier must be trained with a training dataset before
being used to recognize new patterns, such that it generalizes training dataset
into classification rules. Two decision methods were examined. The first one
suggests the maximum a posteriori probability (MAP) and the second uses the
majority vote (MV) post-processing after classifier decision.

Decision. If we have a group of targets represented by the GMM models:
λ1, λ2, ..., λξ, The classification decision is done using the posteriori probability
(MAP):

Ŝ = arg ξmax p(λs|X) (7)

According to Bayesian rule:

Ŝ = arg max
p(X |λs)p(λs)

p(X)
(8)

X : is the observed sequence.
Assuming that each class has the same a priori probability (p(λs) = 1/ξ)

and the probability of apparition of the sequence is the same for all targets the
classification rule of Bayes becomes:

Ŝ = arg max p(X |λs) (9)
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Fig. 2. Majority vote post-processing after classifier decision

Majority Vote. The majority vote (MV) post-processing can be employed after
classifier decision. It uses the current classification result, along with the previous
classification results and makes a classification decision based on the class that
appears most often. A plot of the classification by MV (post-processing) after
classifier decision is shown in Fig.2.

3 Measurements and Data Collection

Data were obtained using records of a low-resolution ground surveillance radar.
The target was detected and tracked automatically by the radar, allowing contin-
uous target echo records from the following targets: 1, 2, and 3 persons, vehicle,
truck and clutter. We first collected the Doppler signatures from the echoes of
six different targets in movements namely, one, two, and three persons, vehicle,
truck and vegetation clutter. The target was detected and tracked automatically
by a low-power Doppler radar operating at 9.72 GHz, sweep in azimuth 30 at
270 and emission power is 100mW. When the radar transmits an electromag-
netic signal in the surveillance area, this signal interacts with the target and
then returns to the radar. After demodulation and analog to digital conversion,

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Time [sec]
      (a)       

Am
pli

tud
e  

Returned signal from a truck

500 1000 1500 2000 2500 3000
0

1000

2000

3000

4000

5000

6000

7000

Frequency
     (b)      

Spectrum of the returned signal 

850 900 950 1000
0

1000

2000

3000

4000

5000

6000

7000

Am
pli

tud
e  

Frequency  
      (c)        

Zoom in the truck signal spectrum 

Micro−Doppler Truck body

Fig. 3. (a)Returned signal from a truck (b) Spectrum of the returned signal (c) Zoom
in the truck signal spectrum



286 D. Yessad et al.

Fig. 4. Radar echo samples and the typical spectrograms of three moving targets; a)
Two persons, b) Clutter, c) Truck

the received echoes are recorded in wav audio format; each record has a dura-
tion of 10 seconds. By taking the Fourier transform of the recorded signal, the
micro-Doppler frequency shift may be observed in the frequency domain. An
illustration of a measurement and its spectrum is shown in Fig.3. The change
of the properties of the returned signal reflects the characteristics of the tar-
get. When the target is moving, the carrier frequency of the returned signal will
be shifted due to Doppler effect. The Doppler frequency shift can be used to
determine the radial velocity of the moving target. If the target or any struc-
ture on the target is vibrating or rotating in addition to target translation,
it will induce frequency modulation on the returned signal that generates side-
bands about the target’s Doppler frequency. This modulation is called the micro-
Doppler (μ-DS) phenomenon. The μ-DS phenomenon can be regarded as a char-
acteristic of the interaction between the vibrating or rotating structures and the
target body. Fig.4 (a)-(c) show the temporal representation and the typical spec-
trograms of three targets for two persons, clutter and truck. Each target class
has unique time-frequency characteristic which can be used for classification.
These particular plots are obtained by taking a succession of FFTs and using a
sampling rate of 8 KHz, FFT size of 256 points, overlap of 128, and a hamming
window.

4 Results

In this work, target class pdfs were modeled by GMMs using both greedy and
EM estimation algorithms. MFCC, LPCC and LPC coefficients were used as
classification features. The MAP and the majority voting decision concepts were

Table 1. Confusion matrix of Greedy GMM-based classifier with MFCC coefficients
and MV post-processing after MAP decision rule for six-class problem
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examined. Table 1 presents the confusion matrix of Greedy GMM based clas-
sifier with MFCC coefficients and MV post-processing after MAP decision for
six class problem. Greedy GMM outperform GMM classifier. To improve classi-
fication accuracy, majority vote post-processing can be employed. The resulting
effect is a smooth operation that removes spurious misclassification. Indeed, the
classification rate improves to 99.08% for Greedy GMM after MAP decision
following majority vote post-processing, 97.93% for GMM after MV decision.

5 Conclusion

Acoustics features like LPC, LPCC and MFCC are used to exploit the micro-
Doppler signatures issued from moving target in order to provide separation
among the target classes like humans, vehicles, trucks and clutter. Speech recog-
nition techniques, using GMM and Greedy GMM including the MAP decision
rules, have been successfully applied for ground surveillance radar. Experimental
results show that the Greedy GMM using MFCC features gives the best classifi-
cation performances. However, it fails to avoid all classification errors, which we
are bound to eradicate through MV-post processing which guarantees a 99.08%
classification rate for six-class problem presented in this work.

References

1. Thayaparan, T., Abrol, S., Riseborough, E., Stankovic, L., Lamothe, D., Duff,
D.: Analysis of radar micro-Doppler signatures from experimental helicopter and
human data. IEE Proc. Radar Sonar Navigation 1(4), 288–299 (2007)

2. Natecz, M., Rytel-Andrianik, R., Wojtkiewicz, A.: Micro-Doppler analysis of signal
received by FMCW radar. In: International Radar Symposium, Germany (2003)

3. Boashash, B.: Time frequency signal analysis and processing, 1st edn. Elsevier Ltd.
(2003)

4. Chen, V.C., Ling, H.: Time frequency transforms for radar imaging and signal
analysis. Artech House, Boston (2002)

5. Anderson, M., Rogers, R.: Micro-Doppler analysis of multiple frequency continuous
wave radar signatures. In: SPIE Proc. Radar Sensor Technology, vol. 654 (2007)

6. Chen, V.C.: Analysis of radar micro-Doppler signature with time-frequency trans-
form. In: Proc. Tenth IEEE Workshop on Statistical Signal and Array Processing,
pp. 463–466 (2000)

7. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted
Gaussian mixture models. Digit. Signal Process. 10, 19–41 (2000)

8. Li, J.Q., Barron, A.R.: Mixture density estimation. In: Advances in Neural Infor-
mation Processing Systems, vol. 12. MIT Press, Cambridge (2000)

9. Bilik, I., Tabrikian, J., Cohen, A.: GMM-based target classification for ground
surveillance Doppler radar. IEEE Trans. on Aerospace and Electronic Sys-
tems 42(1), 267–278 (2006)

10. Verbeek, J.J., Vlassis, N., Krose, B.: Efficient greedy learning of Gaussian mixture
models. Neural Computation 5(2), 469–485 (2003)



Semantic Integration of Heterogeneous

Recognition Systems

Pawe�l L. Kaczmarek and Piotr Raszkowski
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Abstract. Computer perception of real-life situations is performed us-
ing a variety of recognition techniques, including video-based computer
vision, biometric systems, RFID devices and others. The proliferation
of recognition modules enables development of complex systems by in-
tegration of existing components, analogously to the Service Oriented
Architecture technology. In the paper, we propose a method that enables
integration of information from existing modules to calculate results that
are more accurate and complete. The method uses semantic description
of concepts and reasoning to manage syntactic differences between infor-
mation returned by modules. The semantic description is based on ex-
isting real-world concepts in video recognition and ubiquitous systems.
We propose helper functionalities such as: module credibility rating, con-
fidence level declaration and selection of communication protocol. Two
integration modes are defined: voting of matching concepts and aggre-
gation of complementing concepts.

Keywords: integration, ontology, computer perception, monitoring.

1 Introduction

Video-based computer vision is a typical method of computer perception of real-
life situations. In a wider context, computer perception may be realized using
biometric systems, RFID devices, environment condition sensors, and others.
The techniques differ in the contents of input data and recognition algorithms,
which determines their quality and the scope of application. Despite the differ-
ences, the systems have many similarities as all of them attempt to recognize
concepts encountered in real-life.

The proliferation of computer perception systems [13] [2] [11] results in their
overlapping functionality such as face recognition, people counting, car identifica-
tion and others. Consequently, there exist many alternative components realizing
similar functionality. It becomes possible to apply the Service Oriented Architec-
ture (SOA) approach in this area and develop complex systems by integration
of existing components. During the process, the developer selects from alter-
native components those that supply most desired attributes, for example low
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price, high accuracy and high performance. The approach reduces development
cost and time, but requires resolution of integration problems. The problems
cover all layer of computer system, from the communication layer to semantic
understanding of data [14] [6].

In the paper, we propose a method of integration of existing recognition mod-
ules in order to achieve results that are more accurate and more complete. We
assume, that different modules supply information about the same situation,
although the systems may recognize different elements of the situation and use
incompatible descriptions. Our method integrates results from different sources
and performs semantic reasoning to calculate a coherent description of a situa-
tion. We base our solution on ontological description of concepts that occur in
the environment and reasoning rules that are applied to input data.

We propose two alternative integration modes in the method: voting and
aggregation. The voting mode assumes that integrated modules recognize the
same concept and the calculation aims at achieving a more accurate result. The
aggregation mode, in turn, assumes that a complex information is composed
from partial information returned by modules. Fig. 1 shows a concept diagram
of integration by voting.

The rest of the paper is organized as follows. The next section describes re-
lated work and gives background about techniques used in our research. Sect. 3
describes main functionality of the solution. Sect. 4 describes system implemen-
tation. Finally, Sect. 5 concludes the paper.

Fig. 1. General overview of module integration using semantic reasoning

2 Background and Related Work

Ontologies and semantic description of concepts are commonly used in computer
vision systems in different aspects of the process. [8][5][10] propose ontology-
based image retrieval, in which ontologies are used to describe both low-level
visual properties, such as color, shape and texture, and high-level concepts re-
garding image contents, such as person, building and car. The SOUPA ontol-
ogy [4] is a mature ontology designed to describe situations in ubiquitous and
pervasive environments. The ontology contains concepts such as time, place,
person, which largely overlaps with concepts encountered in image recognition
systems.
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[1] describes VERL (A Video Event Representation Language) - a formal lan-
guage for describing an ontology of events that occur in real-life, and VEML
(Video Event Markup Language) - used to annotate instances of the events
described in VERL. The languages were designed as a part of the ARDA “Chal-
lenge Project on Video Event Taxonomy” project. The results supply formal
mechanisms to describe events that can be identified during video analysis. [3]
describes a similar approach, in which an ontology describes concepts related
to video events. Two main types of concepts are distinguished: physical objects
observed in a scene and video events occurring in a scene. In further work, we
use selected concepts from existing ontologies to uniformly describe information
retrieved by alternative modules.

Image retrieval is applied in a wide range of systems. For example, ubiqui-
tous systems augment reality with computer-driven intelligence that automates
every-day tasks and dynamically adapts to changing conditions [13]. The sys-
tems use devices and mechanisms of real-world perception such as move sensors,
biometric systems, RFID devices. Monitoring systems use image retrieval to
identify events that violate security restrictions and require appropriate actions.
The systems use both video-based computer vision and non-video sensors for
reality perception, analogously to ubiquitous environments [15] [9]. In our work,
we propose a method of integration of existing real-world perception systems,
rather than new methods of image and video processing.

Integration of components requires resolution of dependability and interoper-
ability issues. The work [7] describes problems encountered during development
of dependable applications out of undependable components. Authors propose a
classification of component attributes and their rating. Typically, dependability
is achieved using a variety of redundancy techniques [12]. The use of redundancy
seems especially suited for SOA-based development, as there exist many modules
supplying a similar functionality. Interoperability is another important issue in
SOA-based applications. [6,14] overview existing definitions and metrics of inter-
operability. Metrics describe various levels of module integration, ranging from
low-level communication protocol compatibility to high-level integration of in-
formation. Semantic understanding and ontological description of data concepts
are important elements of high-level interoperability.

3 System Infrastructure and Operation

The proposed method assumes that there exist alternative computer perception
modules supplying the same functionality. We integrate information from the
alternative modules and calculate aggregated results to increase recognition ac-
curacy and reliability. The method requires the following metadata information:

– A registry of integrated modules.
– An ontology of considered concepts.

The registry stores information about known recognition modules together with
their credibility rating. Credibility ratings (denoted cred) are defined by admin-
istrator on module registration and adjusted during system operation. Initially,
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system operator defines relative rating of modules that are integrated with the
system. During operation, the integration system monitors module results and
calculates simple correlation between data received from modules. If the corre-
lation of results for some modules fall below a specified threshold, the system
informs administrator. The administrator is expected to adjust the ratings either
manually or automatically by specifying feedback information about correctness
of results returned from modules.

The ontology contains concepts encountered in real-life situations, analogously
to ontologies like SOUPA [4], VERL [1] and WordNet. We anticipate confidence
level (denoted conf) for input information and for output results, which allows
application of fuzzy reasoning. Result confidence is calculated from confidence
of input and credibility of the sending module as described in detail later.

3.1 Reasoning Rules

The system uses two alternative modes for integration of knowledge from recog-
nition systems:

– voting mode,
– aggregation mode.

The voting mode attempts to detect a single concept and generate a result
with higher accuracy. It is assumed that recognition systems supply alternative
descriptions of the same situation, although they have limited functionality and
may return imprecise results. For example, results from different face recognition
systems are voted to determine the identity of a recognized person with higher
accuracy.

The aggregation mode attempts to reason about a complex situation on the
basis of detailed information. In this mode, we assume that integrated modules
recognize the same scene, although they have complementing (rather than alter-
native) functionality. For example, alternative image recognition systems detect
that a scene contains doors, windows and people, which enables us to reason that
the scene contains a building in a public place. The concepts are aggregated and
the system reasons about a possible complex situation.

The ontology is enriched with appropriate reasoning rules for both voting
and aggregation modes. The voting mode requires mainly processing of the class
structure to detect subclasses and superclasses of recognized concepts. The ag-
gregation mode, in turn, requires rather analysis of concept relationships, such
as “consists of”, “contains”, “stores”.

Although modules should send information compatible with concepts defined
in the common ontology, it may happen that unknown concepts are sent. In
this case, the system applies a simple syntactic comparison of input data. In
the approach, it is required that concepts supplied by different modules match
exactly, that is if two modules recognize the same concept, they use the same
word for description.
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3.2 Information Processing Steps

Assuming that appropriate metadata has been configured and integration mode
(voting, aggregation) has been selected, information processing in the system is
done in the following main steps as shown in Algorithm 1.

Algorithm 1. Main steps of information processing in the integration system
input: data (d) sent from recognition modules (R = (r1, r2, ..., rN ))
output: compound result
1: for all Received data do
2: Create appropriate object structure for SPARQL processing.
3: Search the ontology for received concepts.
4: if Received concepts (in d) are found in the ontology then
5: if There exist di, dj that contain syntactically different data then
6: Apply ontology-based reasoning
7: Calculate sums of cred ∗ conf for inputs that are syntactically identical

among R
8: Select a reference input Ref as the input with highest value of

∑
cred∗conf

9: Query ontology for semantic understanding of data (for example: Mr Smith,
Mr John)

10: Calculate a common base of concepts taking Ref as reference (for example:
person)

11: end if
12: Apply voting weighted with relative conficence (cred ∗ conf).
13: Calculate confidence level of the result from module credibility and input data

confidence.
14: Confidence =

∑
N cred∗conf∑

N cred

15: Calculate correlation of results from modules to adjust credibility rating.
16: else
17: Received concepts are not matched
18: Calculate relative confidence of each input cred ∗ conf .
19: Apply syntactic, majority voting weighted with relative confidence.
20: end if
21: Return compound result and confidence to the end user.
22: end for

4 System Implementation

As a part of the research, we develop a system that realizes the proposed method.
The system supplies a web-based user interface that enables initial configuration
and monitoring of operation. The current work covers registration of integrated
recognition modules together with their credibility description as a major element
of system configuration. Additionally, detailed configuration options are set, in-
cluding, among others, specification of: integration modes (aggregation, voting),
dictionary and ontology processing, time constraints for communication.
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Fig. 2. Exemplary screenshot of the implemented system

The system is implemented in the Java 6 EE language using NetBeans IDE
environment. We used the PrimeFaces Java framework to design a user-friendly
web-based interface. Glassfish v3 Application Server is used as the deployment
platform for the system MySQL 5 database is used as persistent storage. Fig. 2
shows an exemplary screenshot of the implemented system.

4.1 Ontology Processing in the System

We use Protégé as the editor for the ontology stored in the system. Our work
focuses on defining concepts related to office area. This includes classes such
as person, room, action, device, and appropriate individuals, for example Mr
Smith, Mr Jones, Room100, Room200 etc.

Runtime ontology processing is performed using Jena OWL API and the Sparql
processing engine. Sparql queries aim at retrieving information from the ontology
that will be useful for common understanding of received data. As as example, con-
sider the figure from the Introduction section (Fig. 1). The first module detected
that a person is walking (confidence 70%) and the person is Mr Smith (confidence
30%). The second module detected that a person has passed (confidence 70%).
The RFID system informs that is has not received any identification (confidence
90%). Therefore, we conclude that someone is walking the area, but it is not nec-
essarily Mr Smith. Therefore, the reasoning should return information that an
unknown person is walking the area, while the confidence of the information is
70%, assuming that modules have equal credibility.

4.2 Communication Protocol

The system requires that recognition modules send knowledge organized analo-
gously to N-triples, containing the subject, the predicate and the object.



294 P.L. Kaczmarek and P. Raszkowski

The communication format enables relatively simple processing on the recog-
nition module side. The communication protocol anticipates grouping of triples
into one logical set. In this case, a module needs to send a control triple in-
forming that following communication should be merged into one information.
Additionally, confidence level may be assigned to transmitted information.

Two concrete communication interfaces are supplied: the Web services inter-
face and the socket interface. The Web services interface defines the sendTriple
method for single communication and the registerResponse method for group-
ing following communication into one information. sendExtendedTriple enriches
data with the assigned confidence level. The socket interface supplies analogous
functionality using a lower level communication mechanism. The interface en-
ables transmission of integer operation codes and character arrays of information,
for example: 31 - start of triple, 32 - end of triple, 41 - start of extended triple.
The interface is anticipated for systems that focus on low-level solutions and are
difficult to integrate with Web services communication libraries.

5 Conclusions and Future Work

The proposed method intends to integrate information from independent recog-
nition modules in order to achieve more accurate and complete results. The
approach is driven by the SOA technology, in which applications are developed
from existing, alternative modules. The use of open communication standards
will promote interoperability and easy integration of modules. The current im-
plementation work enables us to refine and adjust the method to concrete cases.

Integration of concrete recognition modules will be the main scope of future
work. We plan to integrate both our proprietary implementations and existing
modules, which requires minor adjustment of modules to integration system re-
quirements. The adjustment covers two main areas: (i) implementation of appro-
priate network interface for data transmission and (ii) use of common concepts
for description of recognized elements. During method design, we intended to
minimize the work that is required to integrate recognition modules.

Adjustment of reasoning rules and ontological description of concepts is an-
other interesting area of future work, as currently we analyze a limited number
of rules and concepts. Extension of the knowledge base enables application of
the system in a wide range of areas. Existing knowledge bases, such as WordNet
or SOUPA ontology, supply virtually unlimited possibilities of concept definition
and processing. We hope that the method will increase accuracy of recognition
systems in the future and will promote application of existing systems in new
areas.
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Abstract. In this paper we introduce a new distributed approach for
image segmentation based on multi-agent systems. Several agents are
placed randomly in the image, then each of them starts a region grow-
ing around its position. Several agents can be within the same homo-
geneous region. So, they must exchange information to better labeling
pixels reached by these agents. Every labeled pixel is smoothed by re-
placing its parameters by those of the pixel in the center of the region
seed. A set of real range images from the ABW image base was used to
evaluate the proposed approach. Experimental results show the potential
of the approach to provide an accurate and efficient image segmentation.

Keywords: Image segmentation, Multi-agent systems, Region growing.

1 Introduction

Segmenting an image is necessary to perform several tasks in image analysis
and object recognition. Based on some similarity criterion, it consists in partic-
ipating pixels of an image in homogeneous and contiguous sets, called regions.
Mostly, image segmentation methods are divided in two categories: Edge-based
methods, and region-based methods. In the first category, pixels corresponding
to discontinuities in image information are selected [4,6]. After, the obtained
pixels are chained and partitioned into disjoint sets to form boundaries of im-
age regions. Edge-based methods are characterized by a low computational cost,
suitable for real-time applications. However, they are sensitive to noise and dis-
tortions in images. Region-based methods use some homogeneity creterion in
order to gather pixels in homogeneous and contiguous regions [3,1]. Contrary to
edge-based methods, region-based ones are time and memory costly, and their
performances depend on the selection of the region seeds. Nevertheless, they
provide better results even in presence of noise and distortions.

Most of authors having proposed multi-agent systems for image segmentation
have opted for supervised approaches [2,9,10,11,7], where the number or the
shape of the regions are beforehand fixed. So, these systems can be used only
with images for that they were conceived. We propose through this work an un-
supervised and distributed method, modeled as a multi-agent system, for image
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segmentation. We do not make any assumption on the number of the regions
in considered images. The principle of the system consists in placing randomly
in the image a high number of autonomous and situated agents. Each one of
them proceeds for a region growing from a given seed, selected according to a
quality criterion. So, many agents can coexist within the same region. In this
case, they must exchange some informations in order to better label shared pix-
els. A given image region is successively smoothed by several agents which are
situated within. This allow good surface fitting, that allow in its turn accurate
region extraction. Moreover, in our case agents are weakly coupled, allowing the
implementation of the proposed system on massively parallel computers.

The reminder of the paper is organized as follows: in Section 2 we start by
introducing how surfaces are modeled in range images. The reminder of the
Section 2 is devoted to the proposed approach. We introduce in this section the
principle of the multi-agent system, and agent behavior, modeled as an Alive
method within the agent. Experimental results and comparison are introduced
through Section 3, in which we show the parameter selection, and the obtained
results. Finally, a conclusion summarizes our paper, and underlines perspective
work.

2 Multi-agent Image Segmentation

2.1 Surface Modeling in Range Images

In this work we have used range images for experimental purpose. However, the
proposed approach can be used with any type of images, including 2-D and 3-D
images. In a range image, each pixel (x, y) memorizes the depth d(x, y) spacing
the range finder plane and the corresponding point of the scene. In order to define
a homogeneity criterion allowing region growing, we use a new representation
(d∗) of the row image, where d∗(x, y) represents the tangent plane to the surface
at (x, y). The tangent plane at (x, y) is obtained by the multiple regression
method using the set of neighboring pixels situated within a 3×3 window centred
at (x, y), and whose depths are close, according to a given threshold (Trh). The
plane equation in a 3-D coordinate system may be expressed as follows:

z = ax+ by + c (1)

where (a, b,−1)T is a normal vector to the plane, and |c|/
√
a2 + b2 + 1 is the

orthogonal distance between the plane and the coordinate origin. We consider
that a pixel belongs to a planar region, given its plane equation, if the distance
(h) between the respective planes is less than (Trh), and the angle (φ) between
the respective normals is less than Trφ, where Trh and Trφ are respectively
the distance and the angle thresholds. The quality of plane estimation q(x, y) at
(x, y) according to the regression model is also computed. The latter is used to
accept or reject a region seed when an agent is initialized at a random position
in the image.
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2.2 Agent Behavior

A population of 1500 situated agents are randomly placed in the image. Each
agent performs a region growing starting from its position. Contrary to classical
region growing, where pixels are labeled as certainly homogeneous pixels, each
pixel in our case is labeled as homogeneous pixel with certainly degree. This latter
is expressed by the angle between the normal vector at the pixel in question,
and the normal vector at the center of the region seed. The agent writes also its
identifier at the current pixel. So, each homogenous pixel memorizes the identifier
of the last agent having included the pixel into its homogeneous region.

At the creation of an agent, this latter examines its neighborhood in order
to decides if it can be a region seed, from where it starts a region growing. For
this, the agent calculates the estimation quality (q) according to the multiple
regression model.

q =
∑

i∈Seed (ẑi − z)2∑
i∈Seed (zi − z)2

(2)

where ẑi and zi are respectively the estimated and the measured range value of
the pixel i in the seed.

If the estimation quality q is greater than a given threshold Q, the agent
performs a region growing from the given seed, by iteratively including the ho-
mogeneous pixels at the current borders of the region in growth. At each homo-
geneous reached pixels which is not yet labeled (by any other agent), the agent
writes its identifier, the angle φ between the normal vector to the surface at the
current pixel and the normal vector to the surface at the seed center. However,
if the reached pixel has been labeled before, the agent, lets called A, initiates a
communication with the agent, lets called B, whom has last labeled the pixel.
The agent A requests needed informations form the agent B in order decide if
the label of the pixel must be set, or left as it is (Fig. 1). The information needed
consists in the size of the region corresponding to the agent B.

The agent A makes decision according to several parameters which are : sizes
of the two regions (SizeA, SizeB) and the angles between respectively the normal
surface vectors at the pixel and the region seeds (φA, φB). So, the label which it
was (B) is set to (A) if :

φA + η × SizeA < φB + η × SizeB (3)

with η a constant parameter set at the parameter selection (see Section 3.1). In
this case the angle φB , memorized at the position of the pixel, is set to φA.

At each reached homogeneous pixel, the image is smoothed by replacing the
parameters (a, b, c) of the plane at the pixel with those of the region seed center.

The method Alive, introduced below, represents the behavior of a given agent.
The job on an agent can be interrupted by an information request. In this
case the interrupted agent responds by sending the current region size via the
IncomingRequest event. Then, it returns to continue with the Alive thread.

The agent environnement is formed by the Image array (d∗) and a second
array called Labels, both of ImageSize2 elements. Each element in Labels array
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Fig. 1. Two agents growing the same region. Pixels are labeled A by Agent A, or B by
Agent B according to region sizes and to angles between normal vectors.

memorizes an agent identifier (the last has labeled the pixel), and the angle
between the normal vector at the pixel and the normal vector at the seed center.
At any time an agent can receive a request for information, as an event. It then
responds the sender by sending its current region size.

According to this behavior of agents, a given planar region is smoothed and
labeled by several agents (belonging all to the same region). The way by which
pixels are smoothed allows a smart image denoising, given the fact that pixels of
the same homogeneous region are smoothed by considering the best region seed.

3 Experimentation

Most of authors having dealt with range images [6,8,3,1] have used a dedicated
framework for performance evaluation of range image segmentation algorithms,
proposed by Hoover et al. [5].

According to this framework a machine-generated segmentation (MS) is com-
pared to an ideal segmentation, which represents a ground truth (GT). An ex-
tracted region can be classified as a correct detection, an over-segmentation, an
under-segmentation, a missed region, or a noise region. A compare tool tolerance
T ; 50% < T ≤ 100% is used to express the strictness of the classification. The
40 real images of ABW set are divided into two subsets: 10 training images, and
30 test images. Four methods, namely USF, WSU, UB and UE, cited in [5] are
involved in the result comparison.

3.1 Parameter Selection

The set of training images with their ground truth segmentation is used ac-
cording to a supervised learning approach, in order to select optimal values of



300 S. Mazouzi and Z. Guessoum

Algorithm 1. Method Alive()
repeat

(xc, yc) ← (random(ImageSize);random(ImageSize))
until SurfaceQualityAt(xc, yc) ≥ Q
(xseed, yseed) ← (xc, yc)
RegionSize ← 0
PushOnStake(xc, yc)
while Not(StakeEmpty) do

PopFromStake(x,y)
φA ← Calculateφ(x, y)
if Labels(x, y).Agent = 0 then

Labels(x, y).Agent ← Self
Labels(x, y).φ ← φA

RegionSize ← RegionSize + 1
else

φB ← Labels(x, y).φ
RegionSizeB ← RequestInfos(Labels(x, y).Agent)
if φA + η ∗ RegionSize > φB + η ∗ RegionSizeB then

Labels(x, y).Agent ← Self
Labels(x, y).φ ← φA

RegionSize ← RegionSize + 1
end if

end if
Image(x,y) ← Image(xseed, yseed)
for xc ← x − 1 To x + 1 do

for yc ← y − 1 To y + 1 do
if Labels(xc, yc).Agent �= Self And Homogeneous(xc, yc) then

PushOnStake(xc, yc)
end if

end for
end for

end while

Algorithm 2. Event IncomingRequest(AGENT Sender)
SendInfos(Sender,RegionSize)

the involved parameters. Optimal parameter values correspond to the maximum
of regions correctly detected, according to a ground truth (GT), with T set to
80% [5].

Our method, named MABIS for Multi-Agent-Based Image Segmentation uses
four parameters, for which optimal values must be set. Namely they are Trφ ,
Trh, Q, and η (see Section 2). The value of η is simply set to 1/RSA, where
RSA is the average of sizes of all regions in the training set. For the reminder
of parameters, 64 combinations namely (Trφ,Trh,Q) ∈ {12◦, 15◦, 18◦, 21◦} ×
{12, 16, 20, 24}× {0.90, 0.95, 0.97, 0.99}, were run on the training set. Obtained
optimal values of the parameters, which correspond to the maximum correct



A New Distributed Approach for Range Image Segmentation 301

detection for the overall training set of range images, are as follows: Trφ = 18◦,
Trh = 16, and Q = 0.95.

3.2 Experimental Results

We use an example of a range image to illustrate detailed results and to com-
pare them to those obtained by other authors. Latter, we introduce the results
of correct detection using the overall set of test images. The test image named
abw.test.8 was considered, by several authors [5,6,8,3,1] as a typical image in
order to show visual results of segmentation, and to compare the involved meth-
ods. Obtained results with this image are presented in Fig. 2. Fig. 2a shows
the rendered range image. Fig. 2b, 2c 2d and 2e show image segmentation of
respectively USF, WSU, UB and UE methods. Fig. 2f presents the segmentation
result obtained by our method.

Table 1. Comparison results with abw.test.8 image for T=80%

Method GT Correct Over- Under- Missed Noise
region detection segmentation segmentation

USF 21 17 0 0 4 3
WSU 21 12 1 1 6 4
UB 21 16 2 0 3 6
UE 21 18 1 0 2 2

MABIS 21 17 1 0 1 1

(a) (b) (c)

(d) (e) (f)

Fig. 2. Segmentation results of abw.test.8 image. (a) Rendered Range image; (b) USF
result; (c) WSU result; (d) UB result; (e) UE result; (f) MABIS result.
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Fig. 3. Average results of correctly detected regions of all methods, according to the
compare tool tolerance T ; 0.5 < T ≤ 1.0

We can see in Table 1 that the number of correct detected regions is equivalent
to those obtained with the UE and USF algorithms, that scored better than UB
and WSU. Our results for all incorrect detected regions are better than those
corresponding to all the involved algorithms.

For the overall set of test images, Fig. 3 shows the average numbers of cor-
rectly detected regions, according to the compare tool tolerance T ; T ∈ {51%,
60%, 70%, 80%, 90%, 95%}. Results show that the number of correctly detected
regions by our method is in average equivalent to UE and USF algorithms, and
better than those of UB and WSU ones. It scored higher than WSU for all the
values of the compare tool tolerance T . It scored higher than USF for T > 70%,
and better than UB for T < 90%.

4 Conclusion

In this paper we have presented an unsupervised and distributed approach for
image segmentation, with application to range images. The distributed entities
were modeled as autonomous and situated agents. Each agent performs region
growing and image smoothing starting from a region seed, selected according to a
quality criterion. Agents can share pixels, and thus must exchange information in
order to better label pixels. Several tests and comparisons were performed using
real images. Obtained experimental results has allowed to validate the proposed
approach which provides an efficient region-based range image segmentation. In
futur work, we plan to test the approach with other types of images, including
range images containing curved objects, 2D grey-level, and color images.
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Abstract. Recently, databases have incremented their size in all areas
of knowledge, considering both the number of instances and attributes.
Current data sets may handle hundreds of thousands of variables with a
high level of redundancy and/or irrelevancy. This amount of data may
cause several problems to many data mining algorithms in terms of per-
formance and scalability. In this work we present the state-of-the-art the
for embedded feature selection using the classification method Support
Vector Machine (SVM), presenting two additional works that can handle
the new challenges in this area, such as simultaneous feature and model
selection and highly imbalanced binary classification. We compare our
approaches with other state-of-the-art algorithms to demonstrate their
effectiveness and efficiency.

Keywords: Embedded methods, Feature selection, SVM.

1 Introduction

Feature selection is an important topic in pattern recognition, especially in high-
dimensional applications. A low-dimensional representation of the data reduces
the risk of overfitting [3,5], improving model generalization. Feature selection is
a combinatorial problem in the number of original features [3], and finding the
optimal subset of variables is considered NP-hard.

Support Vector Machine (SVM) [10] is an effective classification method with
significant advantages such as the absence of local minima, an adequate gener-
alization to new objects, and a representation that depends on few parameters
[5,10]. This method, however, does not directly determine the importance of the
features used [5,6].

Several feature selection approaches for SVM have been proposed in the lit-
erature. An excellent review has been published by Guyon et al. [3]. Since then,
several trends have arisen in concordance with the new challenges: First, given
the increasing size of data sets, data mining methods are required to be more
efficient in terms of training time and scalability. Data sets with millions of in-
stances and a high level of irrelevant variables are more and more common for
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new data mining applications, such as e. g. social network mining, and pattern
recognition methods must adapt to the new challenges. In the same direction,
model selection, meaning the process of fitting adjustable parameters to build
the model, and feature selection are usually considered as different tasks. The
advantages of developing a model selection framework that simultaneously per-
forms feature selection and parameter fitting are the reduction of computational
effort and avoiding the risk of overfitting [4]. Finally, several pattern recognition
tasks involve classification with highly imbalanced data sets, and feature selec-
tion methods should be adapted to this challenge. In this paper we present two
embedded methods for feature selection using SVM, comparing both approaches
with well-known feature selection strategies and analyzing them in terms of the
three challenges presented.

This paper is structured as follows. In Section 2 we provide a general overview
of the different feature selection approaches. Section 3 introduces SVM for clas-
sification. Recent developments for embedded feature selection using SVM are
reviewed in Section 4, providing experimental results using two real-world data
sets. A summary of this paper can be found in Section 5, where we provide its
main conclusions and address future challenges.

2 Feature Selection

Three main directions have been developed for feature selection: filter, wrapper,
and embedded methods [3]. The first scheme (filter methods) uses statistical
properties of the features to filter out irrelevant ones. This is usually done before
applying any classification algorithm. Common filter methods are the Fisher
Criterion Score, which is based on Fisher’s Linear Discriminant Analysis (LDA),
or entropy measures such as Information Gain [3]. This strategy has advantages,
such as its simplicity, scalability and a reduced computational effort; but it
ignores the interactions between the variables and the relationship between them
and the classification algorithm.

Wrapper methods are computationally demanding, but generally provide more
accurate results than filter methods. A wrapper algorithm explores the whole
feature space to score feature subsets according to their predictive power. Since
the exhaustive search for an optimal subset of features grows exponentially with
the number of original variables, heuristic approaches have been suggested [3].
Commonly used wrapper strategies are the Sequential forward selection (SFS)
and the Sequential backward elimination (SBE) [3]. In the first case, each can-
didate variable is included into the current set, and the resulting is evaluated.
The variable whose inclusion resulted in the best evaluation is inserted in the
current set. Subsequently, SBE starts with the variable set that consists of all
the candidate variables, and the variable whose exclusion resulted in the best
evaluation is considered to be eliminated from the current set. Advantages of
wrapper methods include the interaction between subset of variables and the
model. The main disadvantage is the high computational cost and the risk
of overfitting [3]. Greedy strategies may also get stuck in a local optimum,
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leading to an unsatisfactory subset of features. To overcome this problem, several
random search strategies have been proposed [3].

Embedded methods attempt to find an optimal subset of features in the pro-
cess of model building. These methods depend directly on the nature of the
classification method used. In general, embedded methods present important
advantages in terms of variable and model interaction, capturing accurately
the dependencies between variables, being computationally less demanding than
wrapper methods. [3]. However, these techniques are conceptually more complex,
and modifications to the classification algorithm may lead to a poor performance.
In Section 4 several embedded approaches for SVM will be presented.

3 Support Vector Machine for Binary Classification

This section introduces SVM for binary classification as developed by Vapnik
[10]. Given training vectors xi ∈ �n, i = 1, ...,m and a vector of labels y ∈ �m,
yi ∈ {−1,+1}, SVM provides the optimal hyperplane f(x) = wT · x + b to
separate the training classes. For a linearly separable problem, this hyperplane
maximizes the sum of the distances to the closest positive and negative training
instances, which is called margin. In order to maximize this margin, we need to
classify correctly the vectors xi of the training set into two different classes yi,
using the smallest norm of coefficients w [10]. For a non-linear classifier, SVM
maps the data points into a higher dimensional space H , where a separating
hyperplane with maximal margin is constructed. The dual formulation of SVM
can be stated as follows:

Max
α

m∑
i=1

αi −
1
2

m∑
i,s=1

αiαsyiysK(xi,xs) (1)

subject to
m∑

i=1

αiyi = 0

0 ≤ αi ≤ C i = 1, ...,m.

The mapping is performed by a kernel function K(x,y) which defines an inner
product in H . From a variety of available kernel functions, the polynomial and
the Gaussian kernel are chosen in many applications [4,5]:

1. Polynomial function: K(xi,xs) = (xi · xs + 1)d, where d ∈ N is the degree
of the polynomial.

2. Radial basis function: K(xi,xs) = exp
(
− ||xi−xs||2

2ρ2

)
, where ρ > 0 is the

parameter controlling the width of the kernel.

The selection of the best Kernel function is still a matter of research [6]. Empiri-
cally, we have achieved best classification performance with the Gaussian Kernel
[5,6].
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4 Embedded Feature Selection for SVM

According to the emerging challenges related to feature selection as identified in
the introduction, we present recently developed algorithms and show how they
can contribute to the future trends. Section 4.1 presents state-of-the-art embed-
ded methods for SVM. Section 4.2 presents our previously developed approaches,
which address the mentioned trends. Finally, Section 4.3 presents numerical re-
sults for two well-known benchmark data sets.

4.1 Related Work and Analysis

There are different strategies for embedded feature selection. First, feature selec-
tion can be seen as an optimization problem. For example, the methods presented
in Neumann et al. [7] add an extra term that penalizes the cardinality of the
selected feature subset to the standard cost function of SVM. By optimizing this
modified cost function features are selected simultaneously to model construc-
tion. Another embedded approach is the Feature Selection ConcaVe (FSV) [1],
based on the minimization of the “zero norm” : ‖w‖0 = | {i : wi = 0} |. Note
that ‖·‖0 is not a norm because the triangle inequality does not hold [1], unlike
lp-norms with p > 0. Since l0-“norm” is non-smooth, it was approximated by a
concave function:

‖w‖0 ≈ eT (e− exp(−β|w|) (2)

with an approximation parameter β ∈ �+ and e = (1, ...,1)T. The problem is
finally solved by using an iterative method called Successive Linearization Algo-
rithm (SLA) for FSV [1]. Weston et al. [12] proposed an alternative approach for
zero-“norm” minimization (l0-SVM) by iteratively scaling the variables, multi-
plying them by the absolute value of the weight vector w. Perkins et al. consider
simultaneously the three objectives goodness-of-fit, a regularization parameter
for structural risk minimization, and feature penalization, considering a secuen-
cial forward selection strategy [8]. An important drawback of these methods is
that they are limited to linear classification functions [3,5].

Several embedded approaches consider backward feature elimination in order
to establish a ranking of features, using SVM-based contribution measures to
evaluate their relevance. One popular method is known as Recursive Feature
Elimination (SVM-RFE) [4]. The goal of this approach is to find a subset of size
r among n variables (r < n) which maximizes the classifier’s performance. The
feature to be removed in each iteration is the one whose removal minimizes the
variation of W 2(α):

W 2(α) =
m∑

i,s=1

αiαsyiysK(xi,xs) (3)

The scalar W 2(α) is a measure of the model’s predictive ability and is inversely
proportional to the margin. Features are eliminated applying the following
procedure:
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1. Given a solution α, for each feature p calculate:

W 2
(−p)(α) =

m∑
i,s=1

αiαsyiysK(x(−p)
i ,x(−p)

s ) (4)

where x(−p)
i represents the training object i with feature p removed.

2. Eliminate the feature with smallest value of |W 2(α)−W 2
(−p)(α)|.

Another ranking method that allows kernel functions was proposed by Rako-
tomamonjy [9], which considers a leave-one-out error bound for SVM, the radius
margin bound [10] LOO ≤ 4R2||w||2, where R denotes the radius of the smallest
sphere that contains the training data. This bound is also used in Weston et
al. [11] through the scaling factors strategy. Feature selection is performed by
scaling the input parameters by a vector σ ∈ [0, 1]n. Large values of σj indicate
more useful features. The problem consists in choosing the best kernel of the
form:

Kσ(xi,xs) ≡ K(σ ∗ xi,σ ∗ xs) (5)

where ∗ is the component-wise multiplication operator. the method presented
by Weston et al. considers the gradient descent algorithm for updating σ. Canu
and Grandvalet [2] propose to limit the use of the attributes by constraining the
scaling factors using a parameter σ0, which controls the norm of σ.

4.2 Proposed Methods for Embedded Feature Selection

We consider two approaches that attempt to perform feature selection and model
selection (hyperparameter setting) in the same algorithm. The main idea is to
define a procedure that simultaneously defines both the classifier and the se-
lected features, instead of the standard two-step methodology that first selects
features and then constructs the classifier via model selection for a given subset
of variables. The first approach is a ranking method called Holdout SVM (HO-
SVM) [5], which defines a new contribution measure based on the number of
errors in a validation subset. Then, a backward feature elimination procedure is
performed, pruning those features whose removal keeps this contribution mea-
sure small, until an explicit stopping criterion is reached: when the elimination of
variables lead to a degradation of the predictive performance, i.e. the number of
errors in the validation set grows by removing any feature. Algorithm 1 formally
presents this approach.

The second approach, called Kernel-Penalized SVM (KP-SVM) [6], uses the
scaling factors principle to penalize the use of features in the dual formulation
of SVM (1). This penalization is performed by considering an additional term
that penalizes the zero norm of the scaling factors, in a similar way as in (2).
The respective optimization procedure is done by updating the scaling factors
using a variation of the gradient descent approach, as presented in Algorithm 2.
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Algorithm 1. HO-SVM Algorithm for Feature Selection
1. Initial Model selection: set C and kernel parameter ρ, σ = (1, ..., 1)
2. repeat

(a) Random split of the training data in subsets TRAIN and V AL
(b) SVM Training (Formulation (1))using TRAIN for a given subset of features

σ, kernel of the form presented in (5).
(c) for each feature p with σp = 1, do determine E(−p)(α, σ), the number of

classification errors when feature p is removed.
(d) remove feature j with the smallest value of E(−p)(α, σ):

E(−p)(α, σ) =
∑

l∈V AL

∣∣∣∣∣yv
l − sign

( ∑
i∈TRAIN

αiyiKσ (x
(−p)
i ,x

v(−p)
l ) + b

)∣∣∣∣∣ (6)

where VAL is the Validation subset and xv
l and yv

l are the objects and labels
of this subset, respectively. x

(−p)
i (x

v(−p)
l ) means training object i (validation

object l) with feature p removed.
3. until the smallest value of E(−p)(α, σ) is greater than E(α, σ), which is the num-

ber of errors in the Validation subset using all features as indicated by the current
vector σ, i.e. without removing any further feature.

Algorithm 2. Kernel Width Updating and Feature Elimination
1. Initial Model selection: set C and kernel parameter σ = ρ · e;
2. cont=true; t=0;
3. while(cont==true) do
4. train SVM (Formulation (1), kernel of the form presented in (5)) for a given σ;
5. σt+1 = σt − γΔF (σt);

where γ is the gradient descent parameter. For a given feature j, the gradient for
kernel updating ΔjF (σ) is:

ΔjF (σ) =
m∑

i,s=1

σj(xi,j − xs,j)2αiαsyiysK(xi,xs, σ) + C2βexp (−βσj) (7)

6. for all (σt+1
j < ε) do

7. σt+1
j = 0;

8. end for
where ε is the threshold for feature selection: when a kernel variable σj in the
iteration t + 1 is below a threshold ε, we consider this feature irrelevant, and we
eliminate it by setting σj = 0.

9. if (σt+1 == σt) then
10. cont=false;
11. end if
12. t = t + 1;
13. end while;
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4.3 Experimental Results

We applied the proposed approaches for feature selection and the alternative
embedded methods FSV and SVM-RFE on two well-known benchmark data
sets: A real-world data set from the UCI data repository, and a DNA microarray
data set. Wisconsin Breast Cancer data set (WBC) contains 569 observations de-
scribed by 30 continuous features, while Colorectal Microarray data set (CRMA)
contains the expression of the 2000 genes with highest minimal intensity across
62 tissues. Results in terms of mean classification accuracy over 100 realizations
using the test subset are shown in Table 1, where the first two rows consider the
stopping criterion for HO-SVM and the latter two rows the stopping criterion
for KP-SVM. From this table we obtain that the proposed approaches outper-
form the alternative methods in terms of classification performance for a given
number of selected features, while KP-SVM is particularly effective for high-
dimensional data sets, such as CRMA, obtaining significantly better results for
a small number of attributes. For the method KP-SVM, convergence is achieved
in 25 iterations for WBC and 75 iterations for CRMA. Therefore, this method
is more efficient than backward approaches, since the number of iterations to
reach convergence is smaller than the number of original variables.

Table 1. Comparison of four embedded methods for SVM

n FSV RFE-SVM HO-SVM KP-SVM

WBC 12 94.70±1.3 95.47±1.1 97.69±0.9 *
CRMA 100 91.17±6.7 95.61±5.4 96.36±5.3 *
WBC 15 95.23±1.1 95.25±1.0 * 97.55±0.9

CRMA 20 92.03±7.7 92.52±7.2 * 96.57±5.6

5 Conclusions and Future Challenges

In this paper we present two embedded methods for feature selection using SVM.
A comparison with other embedded techniques shows the advantages of our ap-
proach in terms of effectiveness and dimensionality reduction. We also present
three different challenges regarding the future of feature selection. The first trend
is the importance of considering the process of model selection as a whole, in-
cluding both feature selection and hyperparameter setting [4]. Several embedded
methods attempt to establish a ranking of features from a training set, being
necessary a second step that finally leads to the intended model, defining the
adequate number of ranked variables. This second step, usually done via cross-
validation, is both time consuming and may lead to overfitting, especially when
the feature ranking is done using non-linear functions. Both methods presented,
HO-SVM and KP-SVM, performs the model selection as a whole, determining
the selected number of features in the same algorithm. Alternative approaches,
such as FSV and SVM-RFE, require the mentioned additional step, and can be
compared with the proposed approaches only using their stopping criterion.
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The second presented trend is the increasing size of the data sets, making too
complex methods less tractable for large scale pattern recognition. The main
benefit of KP-SVM is that we can reach convergence in a small number of iter-
ations, even if the number of variables is very high, making it computationally
less intensive. An additional advantage is that ranking methods based on greedy
search present difficulties when data sets are high dimensional.

The third and last presented trend is the extension to highly imbalanced data
sets, a very relevant topic in pattern recognition. The proposed approaches can be
easily adapted to this task. For example, HO-SVM may consider a cost function
C(−p)(α,σ) instead of the number of errors, establishing asymmetric costs for
the Type I and Type II errors. For KP-SVM, the proposed formulation could
consider different costs of errors by penalizing the vector ξ differently, depending
on the label of the instance i. As future work, we consider the implementation of
these models to compensate for the undesired effects caused by imbalanced data
sets in model construction; an issue which occurs for example in the domains of
Spam filtering, microarray analysis and fraud detection.
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7. Neumann, J., Schnörr, C., Steidl, G.: Combined SVM-Based Feature Selection and
Classification. Machine Learning 61(1-3), 129–150 (2005)

8. Perkins, S., Lacker, K., Theiler, J.: Grafting: Fast incremental feature selection by
gradient descent in function space. JMLR 3, 1333–1356 (2003)

9. Rakotomamonjy, A.: Variable Selection Using SVM-based Criteria. JMLR 3, 1357–
1370 (2003)

10. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
11. Weston, J., Mukherjee, S., Chapelle, O., Ponntil, M., Poggio, T., Vapnik, V.: Fea-

ture selection for SVMs. In: Advances in NIPS, vol. 13. MIT Press, Cambridge
(2001)

12. Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.: The use of zero-norm with
linear models and kernel methods. JMLR 3, 1439–1461 (2003)



An Efficient Approach to Intensity

Inhomogeneity Compensation Using c-Means
Clustering Models�
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Sapientia - Hungarian Science University of Transylvania,
Faculty of Technical and Human Science, T̂ırgu-Mureş, Romania
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Abstract. Intensity inhomogeneity or intensity non-uniformity (INU) is
an undesired phenomenon that represents the main obstacle for magnetic
resonance (MR) image segmentation and registration methods. Various
techniques have been proposed to eliminate or compensate the INU,
most of which are embedded into clustering algorithms, and they gen-
erally have difficulties when INU reaches high amplitudes. This study
reformulates the design of c-means clustering based INU compensation
techniques by identifying and separating those globally working compu-
tationally costly operations that can be applied to gray intensity levels in-
stead of individual pixels. The theoretical assumptions are demonstrated
using the fuzzy c-means algorithm, but the proposed modification is com-
patible with a various range of c-means clustering based techniques. Ex-
periments using synthetic phantoms and real MR images indicate that
the proposed approach produces practically the same segmentation ac-
curacy as the conventional formulation, but 20-30 times faster.

Keywords: image segmentation, magnetic resonance imaging, intensity
inhomogeneity, c-means clustering, histogram.

1 Introduction

Magnetic resonance imaging (MRI) is popular due to its high resolution and
good contrast. However, the automatic segmentation of such images is not triv-
ial because of the noise that may be present. Intensity inhomogeneity or intensity
non-uniformity (INU) represents an undesired phenomenon in MRI, manifested
as a slowly varying bias field with possibly high magnitude, making pixels be-
longing to the same tissue be observed with different intensities. INU is the main
obstacle for intensity based segmentation methods: several efficient and accurate
removal techniques exist for high frequency noise [13], but the segmentation in
the presence of inhomogeneities represents a significant computational load [16].

Inhomogeneities in magnetic resonance (MR) images are usually categorized
by their origin. Device related INU artifacts can be efficiently compensated via
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calibration methods based on prior information obtained by using a uniform
phantom. Alternately, INU artifacts related to the shape, position, structure
and orientation of the patient, are much more difficult to handle [16]. Several
retrospective INU compensation approaches have been reported, which include
homomorphic filtering [5], polynomial or B-spline surface fitting [14], segmenta-
tion based techniques via maximum likelihood estimation [9], Markov random
fields [17], fuzzy c-means clustering [1,8,10], or nonparametric estimation [3]. Fur-
ther INU compensation procedures based on histogram involve high-frequency
maximization [11], information maximization [15], or histogram matching [12].
The most complete review of INU compensation techniques can be found in [16].

Probably the most widely used compensation tool is the fuzzy c-means (FCM)
algorithm [2], having several adaptations for INU estimation and being combined
with a series of further techniques. Pham and Prince introduced a modified ob-
jective function producing bias field estimation and containing extra terms that
force INU vary smoothly [8]. Liew and Hong created a log bias field estimation
technique that models the INU with smoothing B-spline surfaces [6]. Ahmed et
al. established a regularization operator that allowed the labeling of a pixel to
be influenced by its immediate neighbors [1]. This approach reduced some of the
complexity of its ancestors, but the zero gradient condition that was used for
bias field estimation leads to several misclassifications [10].

The compensation of INU artifacts is a computationally costly problem, which
demands highly efficient design and implementation. This paper demonstrates
that the INU compensation on a single-channel intensity image via c-means clus-
tering can be performed much more efficiently than it was reported in previous
formulations. The operations performed during the iterations of the alternating
optimization (AO) scheme are separated into globally working ones and locally
applied ones, and their execution is optimized according to their necessities:
global criteria are applied to gray intensities instead of individual pixels, which
makes a drastic reduction of the computational load. Using this novel formula-
tion, and applying it to improved clustering models (e.g. [7,13]) combined with
multi-stage INU compensation, can make c-means clustering more attractive on
the combined scales of accuracy and efficiency. Improving the accuracy is not in
the scope of this paper. Our main goal is to reduce the execution time without
damaging the accuracy.

2 Background Works

The conventional FCM algorithm optimally partitions a set of object data into
a previously set number of c clusters based on the iterative minimization of a
quadratic objective function. When applied to segment gray-scale images, FCM
clusters the intensity value of pixels xk, k = 1 . . . n. The objective function

JFCM =
c∑

i=1

n∑
k=1

um
ik(xk − vi)2 , (1)
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is optimized under the so-called probability constraint
∑c

i=1 uik = 1, k = 1 . . . n,
where uik ∈ [0, 1] is the fuzzy membership function indicating the degree to
which pixel k is assigned to cluster i, vi represents the centroid or prototype of
the i-th cluster, and m > 1 is the fuzzy exponent. The minimization of the cost
function is reached by alternately applying the optimization of JFCM over {uik},
i = 1 . . . c, k = 1 . . . n with vi fixed, and the optimization of JFCM over {vi},
i = 1 . . . c, with uik fixed [2].

In real data processing, the observed data {yk} differs from the actual one
{xk}. In this paper we only assume to handle the INU artifacts, by compensat-
ing during segmentation. Literature recommends three different data variation
models for intensity inhomogeneity. If we consider the INU as a bias field, for
any pixel k, we will have yk = xk + bk, where bk represents the bias value at
pixel k [1,8,10]. In case of gain field modeling [13], there will be a gain value gk

for each pixel k, such that yk = gkxk. Finally, the so-called log bias approach in
fact is a gain field estimation reduced to bias computation using the logarithmic
formula log yk = log gk + log xk [6]. Regardless of the used compensation model,
the variation of the intensity between neighbor pixels has to be slow. The zero
gradient conditions derived from FCM’s objective function does not fulfil this
demand. Consequently, a smoothing operation is necessary to assure this slow
variation of the estimated bias or gain field.

In the INU compensation problem, the conventional FCM based approach
optimizes the objective function:

JFCM−b =
c∑

i=1

n∑
k=1

um
ik(yk − bk − vi)2 . (2)

Zero gradient conditions and Lagrange multipliers lead to the following opti-
mization formulas. The fuzzy partition is obtained as:

u�
ik =

(yk − bk − vi)−2/(m−1)∑c
j=1(yk − bk − vj)−2/(m−1)

∀k = 1 . . . n, ∀i = 1 . . . c . (3)

Cluster prototypes are updated as:

v�
i =

∑n
k=1 u

m
ik(yk − bk)∑n

k=1 u
m
ik

∀i = 1 . . . c . (4)

The bias field for the pixel xk is estimated as:

b�k = yk −
∑c

i=1 u
m
ikvi∑c

i=1 u
m
ik

∀k = 1 . . . n . (5)

3 Methodology

When a clustering algorithm is required to perform quickly on a large set of
input data, the aggregation of similar input values is an easily implementable
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choice. It is well known, that the FCM algorithm in image processing belongs
to the segmentation methods that work with global information. This means
that pixels will be assigned to clusters based on their own intensity (color),
without regard to their position in the image. Consequently, pixels with same
intensity will belong to the same clusters with the same membership degrees.
Based on this assumption, it is obvious that the FCM-based segmentation of
single-channel intensity image can be performed based on the histogram, by
clustering the colors instead of individual pixels [13].

Table 1. The proposed accelerated algorithm

01 t = 0

02 Set initial bias field b
(t=0)
k = 0, ∀k = 1 . . . n

03 Choose initial cluster prototypes v
(t=0)
i

04 Repeat
05 t ← t + 1

06 Compute new histogram h
(t)
l , ∀l ∈ Ω(t)

07 Compute new fuzzy partition u
(t)
il , ∀i = 1 . . . c and ∀l ∈ Ω(t), using Eq. (7)

08 Compute new cluster prototypes v
(t)
i , ∀i = 1 . . . c, using Eq. (8)

09 Compute auxiliary lookup table values q
(t)
l , ∀l ∈ Ω(t), using Eq. (9)

10 Compute new estimated bias field b
(t)
k , ∀k = 1 . . . n, using Eq. (10)

11 Smoothen the estimated bias field using the chosen filter

12 Until convergence occurs, that is
∑c

i=1 |v
(t)
i − v

(t−1)
i | < ε

13 Assign pixel k (k = 1 . . . n) to the cluster with index arg max
i

{ui,yk−bk
, i = 1 . . . c}

When INU artifacts are present, local conditions must be involved into the
compensation process, in order to assure the smooth variation of the estimated
inhomogeneity. Consequently, pixels of similar or same observed intensity cannot
be collected and handled together. In the followings, we will demonstrate that
most operations of the INU compensation algorithm can be executed using global
information, which will lead to a drastic reduction of the computational load.

Let us consider the cost function of the bias estimation approach, given in Eq.
(2). The input image contains pixels in order of 104-105, and intensity levels in
order of 102-103. In every iteration of the AO algorithm, we need to aggregate
those pixels, which bear the same intensity after having the current estimated
bias subtracted. That is why, we investigate the distribution of the composite
variable yk − bk, which varies from iteration to iteration. Let us denote by h

(t)
l

the number of pixels for which the compensated intensity in iteration t satisfies
yk−bk = l. Obviously, if we denote by Ω(t) the range of possible values of yk−bk,
we will have

∑
l∈Ω(t) h

(t)
l = n. As the matter of fact, h(t)

l with l ∈ Ω(t) represents
the intensity histogram of the compensated image in iteration t.

Using the above notations, we can aggregate equal values of yk − bk in the
cost function, which in iteration t will become:

JFCM−qb =
c∑

i=1

∑
l∈Ω(t)

h
(t)
l um

il (l − vi)2 . (6)
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Zero gradient conditions and Lagrange multipliers lead to the following opti-
mization formulas. Fuzzy memberships are established as

u�
il =

(l − vi)−2/(m−1)∑c
j=1(l − vj)−2/(m−1)

∀l ∈ Ω(t) ∀i = 1 . . . c . (7)

One evaluation of the above formula computes the fuzzy labels of h(t)
l pixels at

the same time. Cluster prototypes are updated as:

v�
i =

∑
l∈Ω(t) h

(t)
l um

il l∑
l∈Ω(t) h

(t)
l um

il

∀i = 1 . . . c . (8)

This formula is evaluated c times in every iteration, like in case of conventional
FCM-b, but here both the denominator and divisor of the fraction sum up much
fewer terms. Obviously the estimated bias field has to treat each pixel separately.
But even here we can simplify the computations by introducing some auxiliary
variables and organizing them into a lookup table. In this order, let

ql =
∑c

i=1 u
m
il vi∑c

i=1 u
m
il

∀l ∈ Ω(t) , (9)

and subsequently, for any pixel with index k = 1 . . . n, we get the estimated bias:

b�k = yk − qlk with lk = yk − b(t−1)
k . (10)

The proposed accelerated algorithm is summarized in Table 1.

4 Results and Discussions

The theoretical time complexity of the conventional and accelerated approach
is compared in Table 2, where ω stands for the cardinality of the set Ω or the
number of different intensity values in the current compensated image. Consid-
ering the fact that the number of present gray intensities (ω) is less than the
number of pixels (n) in the image by minimum two orders of magnitude, we can
state that the time consuming first three steps of the conventional algorithm are
replaced with much quicker solutions in the proposed algorithm.

Both the conventional and proposed approaches were tested on 24 artificial
phantoms and 40 real MR images. Artificial phantoms were created by adding
slowly varying INU noise to single-channel intensity images that contained two
easily separable regions of constant intensity. Real MR images were taken from
the Internet Brain Segmentation Repository [4]. All benchmark results were
obtained on a PC with Athlon64 processor running at 2GHz frequency.

Figure 1(a) summarizes the benchmark results of both algorithms that were
executed on artificial phantoms of various sizes. In case of two classes, the pro-
posed algorithm accelerates the execution about 15-25 times. It is also visible
that the speed-up ratio slightly rises if we increase the size of the input phantom
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Table 2. Computational complexity of algorithmic steps

Algorithmic step Conventional (FCM-b) Accelerated (FCM-qb)

Partition updating O(nc2) O(ωc2)
Cluster prototype updating O(nc) O(ωc)
Bias estimation O(nc) O(n + ωc)
Bias smoothing O(n) O(n)
Histogram updating – O(n)

Fig. 1. Runtime of one main loop, using the conventional and accelerated approach
(up), and the resulting speed-up ratio (down), all represented against the number of
pixels in the image: (a) phantom images, segmented into c = 2 classes; (b) real MR
images, segmented into c = 3 classes

Fig. 2. (a) The evolution of the histogram of an INU contaminated two-class phantom
image, during the iteration cycles; (b) The evolution of the intensity distribution of an
INU contaminated real MR image during the iteration cycles

Fig. 3. Segmentation of phantoms (left) and real MR images (right): (a) original image,
(b) failed segmentation without INU compensation, (c) successful segmentation with
INU compensation
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image. Real MR brain images of different sizes, artificially contaminated with
inhomogeneity were also fed to both algorithms. These images were segmented
into c = 3 classes corresponding to white matter (WM), gray matter (GM), and
cerebro-spinal fluid (CSF), respectively. Benchmark results are exhibited in Fig.
1(b). The speed-up ratio is even higher: it varies between 28 and 32.

Figure 2(a) shows the variation of the histogram of a phantom image during
the iterative compensation. The two classes are perfectly separated after 10-12
iteration cycles. The regions the compensation produces are not piecewise con-
stant, but they are easily separable, so the classification can be 100% accurate.
Figure 2(b) shows the variation of the histogram of a brain MRI image segmented
into three clusters, during the iterative compensation. Here convergence requires
30-80 iterations. As the WM and GM have their intensities close to each other,
in the presence of noise their histograms overlap, so their distributions cannot be
completely separated by INU compensation. This is a primary source of misclas-
sifications, equally present in both the conventional and proposed approaches.

Figure 3 exhibits the segmentation and INU compensation of a two-class phan-
tom, and a real MR image. Without compensation the segmentation fails, but
compensation makes the classes perfectly separable. The beneficial effect of INU
compensation is also visible in real MR images, but here tissues are not perfectly
separable due to their overlapping intensity ranges.

As c� ω � n, the theoretical complexity values exhibited in Table 2 suggest
that the running time of the accelerated algorithm hardly depends on the num-
ber of clusters. To confirm this hypothesis, we have fed various images to the
algorithm, setting the number of clusters c to values ranging from 2 to 8. The
obtained speed-up ratios linearly grew together with c, reaching 65 at c = 8.

Both approaches theoretically perform the same computations, so the ac-
celerated approach should have exactly the same accuracy as the conventional
one. However, in practice, there is a secondary source of errors in the proposed
approach due to the quantification error of the bias field. In our tests, bias quan-
tification never increased the number of misclassifications more than 1%.

The proposed method is also compatible with other INU modeling schemes: in
case of modeling INU as gain field, or in the log-bias approach, the partition and
cluster prototypes can be computed using the histogram, just as we have shown
in the bias field formulation. The proposed approach is insensitive to the chosen
bias smoothing procedure: the user has the freedom to apply for example the
mean spread filtering [10]. Further on, the formulation of the proposed solution
is adaptable to other c-means clustering algorithms [13].

5 Conclusion

In this paper, we have reformulated the c-means clustering based approach of
INU compensation and segmentation of magnetic resonance images, in order
to drastically reduce the processing time. We have shown that the most time
consuming parts of the conventional algorithm’s iteration cycle can be applied to
individual gray intensities instead of individual pixels. We achieved an approach
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that performs the segmentation of brain MR images 20-30 times faster, without
causing relevant change in terms of accuracy. The proposed algorithm is highly
compatible with various reported c-means clustering based INU compensation
techniques. With this increased execution speed, c-means clustering may receive
a significantly higher popularity in the domain of MR image segmentation.
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Abstract. In this paper a new criterion for clusters validation is proposed. Many 
stability measures to validate a cluster have been proposed such as Normalized 
Mutual Information. We propose a new criterion for clusters validation. The 
drawback of the common approach is discussed in this paper and then a new 
asymmetric criterion is proposed to assess the association between a cluster and 
a partition which is called Alizadeh-Parvin-Minaei criterion, APM. The APM 
criterion compensates the drawback of the common Normalized Mutual 
Information (NMI) measure. Then we employ this criterion to select the more 
robust clusters in the final ensemble. We also propose a new method named 
Extended Evidence Accumulation Clustering, EEAC, to construct the matrix of 
similarity from these selected clusters. Finally, we apply a hierarchical method 
over the obtained matrix to extract the final partition. The empirical studies 
show that the proposed method outperforms other ones. 

Keywords: Clustering Ensemble, Stability Measure, Cluster Evaluation. 

1   Introduction 

Data clustering or unsupervised learning is an important and very difficult problem. 
The objective of clustering is to partition a set of unlabeled objects into homogeneous 
groups or clusters [6]. Clustering techniques require the definition of a similarity 
measure between patterns. Since there is no prior knowledge about cluster shapes, 
choosing a specific clustering method is not easy [17]. Studies in the last few years 
have tended to combinational methods. Cluster ensemble methods attempt to find 
better and more robust clustering solutions by fusing information from several 
primary data partitionings [11]. 

Fern and Lin [7] have suggested a clustering ensemble approach which selects a 
subset of solutions to form a smaller but better-performing cluster ensemble than 
using all primary solutions. The ensemble selection method is designed based on 
quality and diversity, the two factors that have been shown to influence cluster 
ensemble performance. This method attempts to select a subset of primary partitions 
which simultaneously has both the highest quality and diversity. The Sum of 
Normalized Mutual Information, SNMI [8]-[10] and [18] is used to measure the 
quality of an individual partition with respect to other partitions. Also, the Normalized 
Mutual Information, NMI, is employed for measuring the diversity among partitions. 
Although the ensemble size in this method is relatively small, this method achieves 
significant performance improvement over full ensembles. Law et al. proposed a 
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multi objective data clustering method based on the selection of individual clusters 
produced by several clustering algorithms through an optimization procedure [14]. 
This technique chooses the best set of objective functions for different parts of the 
feature space from the results of base clustering algorithms. Fred and Jain [10] have 
offered a new clustering ensemble method which learns the pairwise similarity 
between points in order to facilitate a proper partitioning of the data without the a 
priori knowledge of the number of clusters and of the shape of these clusters. This 
method which is based on cluster stability evaluates the primary clustering results 
instead of final clustering. 

Moller and Radke [16] have introduced an approach to validate a clustering results 
based on partition stability. This method uses a perturbation which is produced by 
adding some noise to the data. An empirical study robustly indicates that the 
perturbation usually outperforms bootstrapping and subsampling. Whereas the 
empirical choice of the subsampling size is often difficult [5], the choosing of the 
perturbation strength is not so crucial. This method uses a Nearest Neighbor 
Resampling approach (NNR) that offers a solution to both problems of information 
loss and empirical control of the change degree made to the original data. The NNR 
techniques were first used for time series analysis [3]. Inokuchi et al. [12] have 
proposed a kernelized validity measures where a kernel means the kernel function 
used in support vector machines. Two measures are considered in this measure. One 
is the sum of the traces of the fuzzy covariances within clusters and the second is a 
kernelized Xie-Beni’s measure [19]. This validity measure is applied to the 
determination of the number of clusters and also the evaluation of robustness of 
different partitionings. Das and Sil [4] have proposed a method to determine the 
number of clusters which validates the clusters using splitting and merging technique 
in order to obtain optimal set of clusters.  

We discuss the drawbacks of the common approaches and then have proposed a 
new asymmetric criterion to assess the association between a cluster and a partition 
which is called Alizadeh-Parvin-Minaei criterion, APM. The APM criterion 
compensates the drawbacks of the common method. Also, a clustering ensemble 
method is proposed which is based on aggregating a subset of primary clusters. This 
method uses the Average APM as fitness measure to select a number of clusters. The 
clusters which satisfy a predefined threshold of the mentioned measure are selected to 
participate in the clustering ensemble. To combine the chosen clusters, a co-
association based consensus function is employed. 

2   Proposed Method 

In this section, first the proposed clustering ensemble method is briefly outlined, and 
then its phases are described in the subsequent subsections in more detail. 

The main idea of the proposed clustering ensemble method is to utilize a subset of 
the best performing primary clusters in the ensemble instead of all of them. It seems 
that every cluster does not have a good quality. So, in this method just those clusters 
which satisfy enough stability to participate in the combination are chosen. The 
cluster selection is done based on cluster stability which is defined according to 
Normalized Mutual Information, NMI. 



322 H. Alizadeh, B. Minaei-Bidgoli, and H. Parvin 

The manner of computing stability is described in the following sections in detail. 
As seen in Fig 1, a subset of the most stable clusters is first selected for combination. 
This is simply done by applying a stability-threshold to each cluster. In the next step, 
the selected clusters are used to construct the co-association matrix. Several methods 
have been proposed for combination of the primary results [2] and [18]. In our work, 
some clusters in the primary partitions may be absent (having been eliminated by the 
stability criterion). Since the original EAC method [8] cannot truly identify the 
pairwise similarity while there is only a subset of clusters, we present a new method 
for constructing the co-association matrix. We call this method: Extended Evidence 
Accumulation Clustering method, EEAC. Finally, we use the hierarchical single-link 
clustering to extract the final clusters from this matrix. 

Since goodness of a cluster is determined by all the data points, the goodness 
function gj(Ci,D) depends on both the cluster Ci and the entire dataset D, instead of Ci 
alone. The stability as measure of cluster goodness is used in [13]. Cluster stability 
reflects the variation in the clustering results under perturbation of the data by 
resampling. A stable cluster is one that has a high likelihood of recurrence across 
multiple applications of the clustering method. Stable clusters are usually preferable, 
since they are robust with respect to minor changes in the dataset [14]. 

 

Fig. 1. Training phase of the Bagging method 

Now assume that we want to compute the stability of cluster Ci. In this method first 
a set of partitionings over resampled datasets is provided which is called the reference 
set. In this notation D is resampled data and P(D) is a partitioning over D. Now, the 
problem is: “How many times is the cluster Ci repeated in the reference partitions?” 
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Denote by NMI(Ci,P(D)), the Normalized Mutual Information between the cluster Ci 
and a reference partition P(D). Most previous works only compare a partition with 
another partition [18]. However, the stability used in [14] evaluates the similarity 
between a cluster and a partition by transforming the cluster Ci to a partition and 
employing common partition to partition methods. To illustrate this method let P1 = 
Pa ={Ci,D/Ci} be a partition with two clusters, where D/Ci denotes the set of data 
points in D that are not in Ci. Then we may compute a second partition P2 =Pb 
={C*,D/C*}, where C* denotes the union of all “positive” clusters in P(D) and others 
are in D/C*. A cluster Cj in P(D) is positive if more than half of its data points are in 
Ci. Now, define NMI(Ci,P(D)) by NMI(Pa,Pb) which is calculated as [9]: 
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where n is the total number of samples and ab
ijn  denotes the number of shared 

patterns between clusters aa
i PC ∈  and bb

j PC ∈ ; a
in  is the number of patterns in 

the cluster i of partition a; also b
jn  are the number of patterns in the cluster j of 

partition b. 
This computation is done between the cluster Ci and all partitions available in the 

reference set. Fig. 2 shows this method. 

 

Fig. 2. Computing the Stability of Cluster Ci 

NMIi in Fig. 2 shows the stability of cluster Ci with respect to the i-th partition in 
reference set. The total stability of cluster Ci is defined as: 
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where M is the number of partitions available in reference set. This procedure is 
applied for each cluster of every primary partition. 

Here a drawback of computing stability is introduced and an alternative approach 
is suggested which is named Max method. Fig. 3 shows two primary partitions for 
which the stability of each cluster is evaluated. In this example K-means is applied as 
the base clustering algorithm with K=3. For this example the number of all partitions 
in the reference set is 40. In 36 partitions the result is relatively similar to Fig 3a, but 
there are four partitions in which the top left cluster is divided into two clusters, as 
shown in Fig 3b. Fig 3a shows a true clustering. Since the well separated cluster in the 
top left corner is repeated several times (90% repetition) in partitionings of the 
reference set, it has to acquire a great stability value (but not equal to 1), however it 
acquires the stability value of 1. Because the two clusters in right hand of Fig 3a are 
relatively joined and sometimes they are not recognized in the reference set as well, 
they have less stability value. Fig. 3.b shows a spurious clustering which the two right 
clusters are incorrectly merged. Since a fixed number of clusters are forced in the base 
algorithm, the top left cluster is divided into two clusters. Here the drawback of the 
stability measure is apparent rarely. Although it is obvious that this partition and the 
corresponding large cluster on the right reference set (10% repetition), the stability of 
this cluster is evaluated equal to 1. Since the NMI is a symmetric equation, the 
stability of the top left cluster in fig 3.a is exactly equal to the large right cluster in fig 
3.b; however they are repeated 90% and 10%, respectively. In other words, when two 
clusters are complements of each other, their stabilities are always equal. This 
drawback is seen when the number of positive clusters in the considered partition of 
reference set is greater than 1. It means when the cluster C* is obtained by merging 
two or more clusters, undesirable stability effects occur.  

 

Fig. 3. Two primary partitions with k=3. (a) True clustering. (b) Spurious clustering. 

Here, a new criterion is proposed which can solve this problem. Assume that the 
problem is evaluating the APM criterion for cluster C1 in Fig. 4a with respect to 
clustering obtained in Fig. 4b. 



 A New Asymmetric Criterion for Cluster Validation 325 

 

Fig. 4. evaluating the APM criterion for cluster C1 from clustering (a) with respect to clustering 
(b), with k=4 

 

 

Fig. 5. Providing data for evaluating the APM criterion. (a) Deleting all other clusters except C1 
from Pa. (b) deriving Pb*, the corresponding samples of C1 in Pb 

The main idea in this method is to eliminate the symmetricalness which exists in 
NMI equation. In this approach, except the cluster C1 all other clusters in Pa are taken 
out. Also, all clusters in Pb which are not included the samples of this cluster are 
eliminated. In the next step, the other samples which are not in C1 of Pa, are removed 
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from clusters in Pb (from the clusters which include some of these samples). This 
process is depicted in Fig. 5. 

Now, the entropy between remained clusters in two partitions Pa and Pb is 
computed (see Fig. 6). On account of the other involved samples are eliminated, this 
criterion is not symmetric. 

All the previous works are based on the NMI definition as equation 1. Even for 
evaluating the occurrence of a cluster in a partition, the problem is modified in some 
way to become the comparing problem between two partitions and then the NMI 
equation is used. In this paper, the problem is not changed according to definition of 
NMI; instead, the NMI equation is modified so that the occurrence of a cluster in a 
partition is computed. It is done by evaluating the entropy between the considered 
cluster and other pseudo clusters in the corresponding partition. In this paper the 
Alizadeh-Parvin-Moshki-Minaei criterion, APM, is defined between a cluster Ci from 
Pa and the partition Pb* from Pb, as below equation: 
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where n is number of samples available in the cluster Ci and *ab
ijn  denotes the number 

of shared samples between the clusters aa
i PC ∈ and ** bb

j PC ∈ . Also kb* is the number 

of clusters in Pb*. 

 

 

Fig. 6. Computing the entropy between the cluster C1 from Pa and Pb* from Pb 

Here, the Average APM, AAPM is proposed as a measure of stability of a primary 
cluster Ci with respect to the partitions available in the reference set as equation 4: 
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where *b
jP  is from j-th partition of the reference set. 

In the following step, the selected clusters are used to construct the co-association 
matrix. In the EAC method the m primary results from resampled data are 
accumulated in an n×n co-association matrix. Each entry in this matrix is computed 
from this equation: 

ji

ji

m

n
jiC

,

,),( =  (5)

where nij counts the number of clusters shared by objects with indices i and j in the 
partitions over the primary B clusterings. Also mij is the number of partitions where 
this pair of objects is simultaneously present. There are only a fraction of all primary 
clusters available, after thresholding. So, the common EAC method cannot truly 
recognize the pairwise similarity for computing the co-association matrix. In our 
novel method (Extended Evidence Accumulation Clustering, or EEAC) each entry of 
the co-association matrix is computed by: 
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where ni and nj are the number present in remaining (after stability thresholding) 
clusters for the i-th and j-th data points, respectively. Also, nij counts the number of 
remaining clusters which are shared by both data points indexed by i and j, 
respectively.  

3   Experimental Results 

This section reports and discusses the empirical studies. The proposed method is 
examined over 5 different standard datasets. It is tried for datasets to be diverse in 
their number of true classes, features and samples. A large variety in used datasets can 
more validate the obtained results. Brief information about the used datasets is 
available in Table 1. More information is available in [15]. 

Table 1.  Brief information about the used datasets 

 Class Features Samples 
Glass 6 9 214 
Breast-C 2 9 683 
Wine 3 13 178 
Bupa 2 6 345 
Yeast 10 8 1484 

 
All experiments are done over the normalized features. It means each feature is 

normalized with mean of 0 and variance of 1, N(0, 1). All of them are reported over 
means of 10 independent runs of algorithm. The final performance of the clustering 
algorithms is evaluated by re-labeling between obtained clusters and the ground truth 
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labels and then counting the percentage of the true classified samples. Table 2 shows 
the performance of the proposed method comparing with most common base and 
ensemble methods. 

Table 2.  Experimental results 

 Simple Methods (%) Ensemble Methods (%) 

Dataset 
Single 

Linkage 
Average 
Linkage 

Complete 
Linkage 

Kmeans 
Kmeans 

Ensemble 
Full 

Ensemble 

Cluster 
Selection by 
NMI Method 

Cluster 
Selection by 

max 
Method 

Wine 37.64 38.76 83.71 96.63 96.63 97.08 97.75 98.31 

Breast-C 65.15 70.13 94.73 95.37 95.46 95.10 95.75 98.33 

Yeast 34.38 35.11 38.91 40.20 45.46 47.17 47.17 47.17 

Glass 36.45 37.85 40.65 45.28 47.01 47.83 48.13 50.47 

Bupa 57.68 57.10 55.94 54.64 54.49 55.83 58.09 58.40 

 
The first four columns of Table 2 are the results of some base clustering 

algorithms. The results show that although each of these algorithms can obtain a good 
result over a specific dataset, it does not perform well over other datasets. For 
example, according to Table 2 the K-means algorithm has a good clustering result 
over Wine dataset in comparison with linkage methods. But, it has lower performance 
in comparison to linkage methods in the case of Bupa dataset. Also, the complete 
linkage has a good performance in Breast-Cancer dataset in comparison with others; 
however it is not in the case of all datasets. The four last columns show the 
performance of some ensemble methods in comparison with the proposed one. Taking 
a glance at the last four columns in comparison with the first four columns shows that 
the ensemble methods do better than the simple based algorithms in the case of 
performance and robustness along with different datasets. The first column of the 
ensemble methods is the results of an ensemble of 100 K-means which is fused by 
EAC method. The 90% sampling from dataset is used for creating diversity in 
primary results. The sub-sampling (without replacement) is used as the sampling 
method. Also the random initialization of the seed points of K-means algorithm helps 
them to be more diverse. The single linkage algorithm is applied as consensus 
function for deriving the final clusters from co-association matrix. The second column 
from ensemble methods is the full ensemble which uses several clustering algorithms 
for generating the primary results. Here, 70 K-means with the above mentioned 
parameters in addition to 30 linkage methods provide the primary results. The third 
column of Ensemble Methods is consensus partitioning using EEAC algorithm of top 
33% stable clusters, employing NMI method as measure of stability. The fourth 
column of the ensemble methods is also consensus partitioning using EEAC 
algorithm of top 33% stable clusters, employing max method as measure of stability. 

4   Conclusion and Future Works 

In this paper a new clustering ensemble method is proposed which is based on a 
subset of total primary spurious clusters. Since the quality of the primary clusters are 
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not equal and presence of some of them can even yield to lower performance, here a 
method to select a subset of more effective clusters is proposed. A common cluster 
validity criterion which is needed to derive this subset is based on normalized mutual 
information. In this paper some drawbacks of this criterion is discussed and an 
alternative criterion is suggested which is named Alizadeh-Parvin-Moshki-Minaei, 
APM. The experiments show that the APM criterion does slightly better than NMI 
criterion generally; however it significantly outperforms the NMI criterion in the case 
of synthetic data sets. Because of the symmetry which is concealed in NMI criterion 
and also in NMI based stability, it yields to lower performance whenever symmetry is 
also appeared in the data set. Another innovation of this paper is a method for 
constructing the co-association matrix where some of clusters and respectively some 
of samples do not exist in partitions. This new method is called Extended Evidence 
Accumulation Clustering, EEAC. The empirical studies over several data sets 
robustly show that the quality of the proposed method is usually better than other 
ones. 
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Abstract. In this paper, a semi-supervised approach based on probabilistic re-
laxation theory is presented. It combines two desirable properties; firstly, a very
small number of labelled samples is needed and, secondly, the assignment of
labels is consistently performed according to our contextual information con-
straints. The proposed technique has been successfully applied to pattern recogni-
tion problems, obtaining promising preliminary results in database classification
and image segmentation. Our methodology has also been evaluated against a re-
cent state-of-the-art algorithm for semi-supervised learning, obtaining generally
comparable or better results.

Keywords: Semi-supervised, Probabilistic Relaxation, Classification.

1 Introduction

Unsupervised learning assumes that all the observations are caused by latent variables
that can be somehow modelled. However, there exist many tasks that are generally too
specialised to use unsupervised techniques and, at the same time, too time-consuming
for an expert if every single case should be solved manually, spending a large amount
of time isolating the most interesting parts of the images. These tasks are especially
common, for instance in remote sensing or medical imaging applications. Therefore, a
process that is able to do this work in an accurate way without too much participation
of an expert has become a very demanding task on these fields.

Semi-supervised learning has received an increasing attention for the last years and
has been widely extended to many fields [1]. Semi-supervised approaches arise from
the idea of using together a large amount of unlabelled data, which is often cheap and
easy, and few labelled data, which is hard to obtain since it requires human experts or
special devices. The important point here is to manage a better classifier (or clustering
result) than from the unlabelled data alone.

Relaxation methods find numerical solutions for a wide range of problems in physics
and engineering and, more concretely, probabilistic relaxation has demonstrated to be
very useful for pattern recognition [3]. A general framework for the theoretical founda-
tions of relaxation processes can be found in [5]. This general relaxation structure has
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attracted important interest, being often refined in a number of ways by means of ad
hoc or heuristic choices [11].

Relaxation approaches are iterative processes that are used for reducing ambiguities
in assigning symbolic labels to a set of nodes (clusters, objects, etc.) which is often
known as equilibrating or relaxing a system. Relaxation methods involve contextual
information that describes relations between single components [5], defining a neigh-
bourhood in accordance with the properties of the system. The contextual information
is generally introduced into the process from our a priori knowledge of the problem.
Therefore, these approaches present two interesting features; the use of the context of
the problem and the expected good performance to obtain a robust solution [7].

A semi-supervised approach based on probabilistic relaxation is presented in this
paper. Using few labelled samples introduced by an expert (contextual information),
the proposed method is able to propagate this information to the whole system. Experi-
mental evidences of the robustness of the methodology will be also offered by means of
applying the presented technique to several pattern recognition fields such as database
classification or image segmentation.

2 Probabilistic Relaxation Methodology

A probabilistic relaxation method is an iterative process that assigns consistent labels to
a initial set of nodes on the basis of the contextual information, which is also introduced
into the model. A node is a point in a graph that represents objects, clusters, regions,
etc. whereas the contextual information is generally related to the relationship among
those nodes, that is, arcs among the nodes in the graph.

In the proposed approach, an initial Gaussian mixture that models the input data is
assumed. Let us consider that each mode of the Gaussian mixture is a node of a fully
connected graph. Therefore, let us suppose a set of nodes N = {n1, n2, . . . , nN},
a set of class labels L = {ω1, ω2, . . . , ωL} and a support function Qs(ni ← ωk)
representing that the node ni would be labelled with ωk. This support function results
from each binary relation with the setN i of neighbouring nodes of ni at the step sth of
the iterative process,

Qs+1(ni ← ωk) = Qs(ni ← ωk) +
1∣∣N i

∣∣ ∑
j∈N i

Cij P s(ωk | nj) (1)

where Cij are the coefficients representing the strength of interaction between nodes
ni and nj . These coefficients are independent of the estimated posterior probabilities
(P ) and can be computed ahead of time, remaining constant during the entire process.
Coefficients Cij satisfy that

∑N
j=1 Cij = 1. Our approach defines these coefficients as:

Cij =
D(i, j)∑
lD(i, l)

, being D(i, j) = exp
(cij
κ

)
where κ = min (cmn) ∀m,n ∈ N .

(2)
Coefficients cij = αij

d(i,j) for nodes i, j represent the relationship between the relative
density αij and the distance d(i, j) between the nodes. Note that D(i, j) is a potential
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term that acts as a relative measure of potential similarity function. It will be high for
the neighbouring node with the best rate for coefficient cij and very low for the rest of
the nodes.

Coefficientsα have been worked out using the d-dimensional volumes that form each
node, being d the dimension of the data. That is, since each node represents a mode of
a Gaussian mixture, the radius of each dimension of the ellipse formed by the mode
can be derived from the covariance matrix of the mixture mode. In our case, radius is
approximated as 3 times the standard deviation. Therefore, if we have d radius for each
mode, say 〈r1, r2, . . . , rd〉, the d-dimensional ellipsoid volume V and the density ρ for
mode m are calculated as

V(m) =
π

d
2

Γ (d
2 + 1)

d∏
i

ri ρ(m) =
card(m)
V(m)

(3)

where Γ is the gamma function and card(·) provides the number of samples of the
mode. In this sense, each sample belongs to the ellipsoid where it is contained, assign-
ing to the nearest ellipse centroid those samples that could belong to several ellipsoids
(intersections).

Therefore, using these equations, the coefficient α between the modes i and j is cal-
culated as αij = ρ(i,j)

ρ(i)+ρ(j) , where density ρ(i, j) is worked out considering the possible
mode formed by the samples of both modes i and j.

The updating formula for calculating the posterior probability P s(ωk | ni) for label
ωk given the node ni is:

P s+1(ωk | ni) =
P s(ωk | ni)Qs(ni ← ωk)

K
(4)

where K =
∑|L|

l=1 P
s(ωl | ni)Qs(ni ← ωl) is a normalising factor.

The system (P 0) is initialised on the basis of the a priori information of the problem
statement, also setting Q0 = P 0 in this initialisation. The number of neighbouring
nodes (N ) is set up to the number of classes of the problem.

2.1 The Algorithm

The algorithm here presented for a semi-supervised probabilistic relaxation (semi-PR)
has three input sources: the number of classes, the labelled data and unlabelled data.
The unlabelled data is divided into two subsets for training and test. Multiple initial
probability distributions (modes) per class are considered, being the number of modes
of each class estimated in the initialisation stage. Thus, semi-PR generates a Gaussian
mixture model of the data where each initial mode is a node of the graph used for the
probabilistic relaxation described in Sect. 2. Each node of the graph has its initial prob-
abilities according to the contextual information provided by the user and the strength
of interaction between nodes is used in the edges of the graph.

Initialising the mixture. The initialisation stage provides the preliminary Gaussian
mixture that models the whole dataset as a reduced description of the data. Several
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techniques have been taken into account [9,10] to learn this initial mixture. However,
the more robust behaviour has been found using a vector quantization design [6] for
estimating the N centroids that cover the whole dataset and then assigning each sample
to the nearest centroid found by the vector quantizer. Thus, the training data is divided
into N modes where the mean and covariance of each mode is estimated. Figure 1
shows several examples of this initialisation stage in its second row.

The initialisation stage is finished by a final refinement of the initial mixture, where
modes with a high compatibility (α coefficients) are merged into one. That is, given
a pair of modes i, j, if the αij value is higher than certain threshold T , these modes
are considered together as a single mode. Figure 1 shows examples of this refinement
process in its third row.

It is worth saying that both the initial N and the refinement threshold T have been
set up to values that are safe enough for not creating any mode with instances from
different classes. The experimental part of this work describes these values.

Semi-supervised Probabilistic Relaxation Algorithm. The Gaussian modes found in
the initialisation stage are used as initial nodes for our proposed Semi-supervised Prob-
abilistic Relaxation Algorithm. The initial probabilities (P 0) for each node are based on
the a priori information that stems from our problem, that is, from initial modes found
in the initialisation stage and from the supervised samples. These supervised samples
allow us to label some of the initial nodes/modes to certain classes. The probabilities
of the modes where no a priori information is available are equally distributed for each
class before starting the relaxation process.

The objective of the semi-PR algorithm is to iteratively optimise Equation (4) until
all the initial nodes would be consistently labelled for each class. For this optimisation,
Equation (1) must be also calculated at each iteration, providing the level of agreement
for each node and their possible labels. Distance d(i, j) in coefficients cij is worked out
using the Mahalanobis distance between the nodes ni and nj .

The process stops when, for each node of the system, one of the class probabilities
exceeds 1 − ε1, being ε1 � 1. As the literature suggests [2], if the whole changes in
the system do not exceed certain threshold ε2, the system is supposed relaxed enough
and the process also stops in this case. Note that the process needs to keep iterating
until the previous stopping conditions are reached, even so, from the first iterations the
propagation of information is channelled through the probabilistic relaxation model.
Therefore, parameters ε1 and ε2 are not critical, although they can probably be consid-
ered application-dependent.

3 Experimental Results

The experimental part of this work shows the preliminary results obtained by our pro-
posal in several applications. Experiments are divided into the results obtained using
several synthetic toy datasets (Sect. 3.1) and the results obtained in colour image seg-
mentation (Sect. 3.2).

Initial mixtures in all the cases have heuristically been set up to 40 modes (N = 40),
having a refinement threshold T = 0.5. In addition, unless otherwise stated, only two



Semi-supervised Classification by Probabilistic Relaxation 335

supervised samples per class are used, which have randomly been selected from the
training set. The position of these labelled samples is drawn in the resulting labelled
dataset as black-square spots. Samples of the test set are eventually classified perform-
ing their maximum class conditional likelihood according to the resulting Gaussian
mixture model associated with each class.

3.1 Results on 2D-Datasets

Figure 1 shows the results obtained on synthetic 2D-datasets with two classes. These
toy datasets are frequently used in the literature as illustrative examples to show the
robustness of a technique. Semi-PR algorithm shows very consistent results with a
classification accuracy higher than 95% in all the cases.

Fig. 1. Experiments on synthetic 2D-datasets with two classes. From top to bottom in rows, input
data, preliminary initialisation, initialisation refinement and results of the presented technique.

Figure 2 shows the results obtained on synthetic 2D-datasets in a multi-class schema.
The first row of the figure shows the input datasets from which, although these datasets
are provided unlabelled, is easy to have an idea of which should be the ideal clustering
solution. These datasets, let us name DS1, DS2 and DS31 from left to right in columns,

1 DS2 and DS3 datasets are available from CLUTO - Software for Clustering High-Dimensional
Datasets at http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.
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Fig. 2. Experiments on synthetic 2D-datasets multi-class. From top to bottom in rows, input data,
results obtained by Semi-LGC and results obtained by the presented technique (Semi-PR).

have been used not only for testing our proposal but for comparing our results with the
semi-supervised algorithm proposed by Zhou et al. in [12], hereafter called Semi-LGC.
This algorithm is a very well-known work and representative of graph based semi-
supervised learning approaches. Parameters for the Semi-LGC algorithm have been
estimated in a similar way to [8], being the kernel parameter σ conveniently defined as
the third part of the average distance between each point and its nearest neighbour.

Figure 2 shows in its second row the results obtained by Semi-LGC algorithm
whereas the results obtained by our proposal are shown in the third row. As it can be
seen, Semi-PR has found more consistent solutions than Semi-LGC for these datasets,
solving perfectly DS1 and obtaining an acceptable labelling result for DS2 and DS3.
Since Semi-LGC algorithm works in a transductive way, for this experiment no divi-
sion into training and test sets has been done. The same two supervised samples per
class (randomly selected) have been used for Semi-PR and Semi-LGC algorithms.

Finally, it is also important to compare the performance of the two semi-supervised
approaches in terms of the classification accuracy for different number of labelled sam-
ples. We have used the datasets shown in Figure 1 to this end. Let us name TOY1,
TOY2, TOY3 and TOY4 to each column (dataset) of the figure. Again, no division
into training and test set has been done and the same supervised samples, randomly
selected, per class have been used in both algorithms. Figure 3 shows the classification
rate (y-axis) for each semi-supervised method related to the number of labelled sam-
ples provided per class (x-axis). Each method has been carried out 10 times in order to
reduce the influence of the stochasticity in the experiment.

As it can be seen, both algorithms perform very similar in datasets TOY1, TOY2 and
TOY3. However, our proposal clearly outperforms the classification accuracy obtained
by Semi-LGC in TOY4.
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Fig. 3. Performance obtained for Semi-LGC algorithm and our proposal (Semi-PR) related to the
number of supervised samples per class used. From left to right and top to bottom, classification
accuracy for TOY1, TOY2, TOY3 and TOY4 datasets.

3.2 Results on Colour Image Segmentation

The proposed technique has also been used for segmenting colour images. The total
amount of pixels is equally divided into two sets, one for training and another for test.
From each image, the number of classes is known and only two labelled pixels per class
are provided to the algorithm, which have randomly been taken from the training set.
Each sample is a 2D-vector representing the chroma of a pixel in the L∗a∗b∗ colour
space, that is, the a∗b∗ dimensions.

Figure 4 shows the image segmentation results obtained for the well-known images
of house and toys. As it can be seen, the segmentation results are quite robust, espe-
cially in the case of the house image. The segmentation result for toys image, although
acceptable, shows some important mistakes mainly due to the effect of shadows and
brightness. Note that there are some isolated pixels that are badly labelled. This is due
to the fact that there is no spatial constraint in the process, but some spatial regularisa-
tion could be applied as in [4].

Fig. 4. Image segmentation results. From left to right, source image house (5 classes), segmenta-
tion result, source image toys (12 classes) and its segmentation result.
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4 Conclusions

The main objective of this work is to develop a robust semi-supervised algorithm us-
ing probabilistic relaxation that can be applied to several application problems. Our
methodology satisfies the use of few labelled samples and the assignment of labels ac-
cording to the contextual constraints.

This work supports the increasing attention that the semi-supervised learning is re-
ceiving during the last years. The presented approach has demonstrated an effective
use of labelled and unlabelled data in experiments including classification in toy data
problems and image segmentation. For a classification problem, the accuracy obtained
has been comparable to a recent semi-supervised approach from the literature, being
capable to reach the highest classification rates with very few labelled samples. For
an image segmentation problem, the methodology has demonstrated some promising
results in classic images from the literature.

The promising results obtained in terms of the amount of supervised information
needed to finish the task allow our proposal to be very suitable for partial annotation.
Therefore, in order to extend this work, further actions will include testing the algorithm
from a practical point of view in interactive image segmentation or applications in re-
mote sensing or medical imaging. Future work will also include testing the algorithm
in other problems i) with higher dimensionality, ii) in presence of noise and iii) with a
higher level of overlapping among the classes.
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Abstract. This paper presents a novel semi-automated image process-
ing procedure dedicated to the identification and characterization of the
dental root canal, based on high-resolution micro-CT records. After the
necessary image enhancement, parallel slices are individually segmented
via histogram based quick fuzzy c-means clustering. The 3D model of
root canal is built up from the segmented cross sections using the recon-
struction of the inner surface, and the medial line is extracted by a 3D
curve skeletonization algorithm. The central line of the root canal can
finally be approximated as a 3D spline curve. The proposed procedure
may support the planning of several kinds of endodontic interventions.

Keywords: image processing, skeleton extraction, micro computed to-
mography, fuzzy c-means algorithm.

1 Introduction

The ability to localize all canals within a tooth is essential for rendering suc-
cessful endodontic treatment and for ensuring long term successful outcome. In
the process, it is necessary to minimize risks and untoward sequelae associated
with treatment of challenging teeth. For example, severely curved or multiple
curved canals may pose diagnostic and treatment challenge. The new imaging
technologies such as CBCT show great promise to ascertain, before endodontic
treatment is commenced. Since this novel modality provides digitized images in
3D, this raw data of the set of voxels serves as a basis of further analysis. In order
to make the system more efficient and effective, the work of our interdisciplinary
research group focuses on the automatic recognition of the root and root canals
and mathematical description of root canal curvatures, as well. The integration
of these steps of image processing in novel systems may significantly improve the
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4.2.1/B-09/1/KMR-2010-0002), and the Hungarian National Scientific Research
Foundation, Grants No. T80316 and T82066. The work of L. Szilágyi was supported
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endodontic practice in the near future. Also, the attempt to automatically locate
and classify the root canals may result in significantly decreased chair time for
both the patient and the practitioner.

Root canals differ from individual to individual and from tooth to tooth. That
is why whenever an endodontic intervention is planned, the shape of that given
root canal needs to be accurately detected. Modern medical imaging devices
make it possible to record high resolution cross sections of the teeth, which can
be fed to image processing techniques to extract the shape of the root canal.
This problem has been solved several different ways, based on recorded data
originating from various imaging tools.

Analui et al [1] elaborated a geometric approach for modeling and measure-
ment of root canal of human dentition based on stereo digital radiography. Hong
et al [6] used both 2D radiographic and endoscopic images to build up a 3D
tooth model, while Endo et al [4] turned to ultrasonic imaging and implemented
a fuzzy logic based root canal detection. Lee et al [7] used micro CT images and
a 3D reconstruction software to measure the three-dimensional canal curvature
in maxillary first molars via mathematical modeling.

Recently, several other 3D dental structure reconstruction systems were elab-
orated, including Willerhausen et al [11] who used X-ray images, and Van Soest
et al [8], who applied optical coherence tomography records for 3D structure
reconstruction. Germans et al [5] presented an imaging system based on vir-
tual reality that can navigate through the reconstructed 3D structure and make
measurements concerning the curvature of the root canal. An excellent review
of current researches based on micro-CT data can be found in [9].

In this paper we introduce a complete image processing procedure, which
starts with the enhancement of input micro CT slices, continues with 2D image
segmentation based on an enhanced fuzzy c-means clustering [10], identification
of the root center in 2D slices via a region growing method. At this point the
algorithm can bifurcate: we can interpolate the 3D shape of the root canal’s
medial axis from the centers detected in 2D, or we can build a 3D tubular shape
model and extract the medial axis using 3D morphological operations.

2 Background Works: 3D Curve Skeleton Extraction

In two dimensions, the skeleton of an object is defined as the union of loca-
tions that possess at least two closest points on the boundary of the object.
These places are usually localized using the grass-fire algorithm or the method
of largest circles. The straightforward extension of these algorithms to 3D ob-
jects produces skeletons consisting of medially placed curves and surfaces. As
several computer graphics applications demanded the concise representation of
3D objects with curve arcs, the notion of 3D curve skeleton was introduced,
having no mathematical definition, but sharing a series of specific properties [3].

In the followings, we will shortly introduce the 3D curve skeleton extraction
methods and discuss only those specific properties, which are relevant in our
application. Methods based on thinning or boundary propagation iteratively
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remove so-called simple points (whose presence does not affect the topology),
from the surface of the object. This is generally achieved using a hit-or-miss
transform extended to three dimensions. Approaches based on distance fields
define and compute the minimum distance of each discrete interior point to
the surface of the object, an approximate the curve skeleton with the ridges of
this distance field. Geometric models generally use a graph-based representation
the approximation of the medial surface or curve of the object. Generalized
potential field methods define an internal potential field that differs from the
distance field (e.g. electrostatic field generated by placing point charges to all
discrete boundary locations [2]), and extract a hierarchical structure composed
of critical and saddle points of the field.

Being a straightforward extension of 2D skeletons, 3D curve skeletons are
also composed of loci having at least two closest points on the boundary of the
object. This property makes curve skeletons suitable to approximate the center
line of the root canal. Curve skeletons preserve the topology of the object, and
embody the hierarchy of its components, which is relevant at the detection of
bifurcations. In order to suit the needs of our application, we have to choose
the approach that yields the smoothest curve and performs the least sensitive to
slight changes of the object boundary. As we will see later, these latter conditions
are most suited by the potential field approach.

For further details on the topic of 3D curve skeletons, the reader is referred
to [3], which is an excellent repository of such methods and their properties.

3 Methods

Dental micro CT records consist of single channel intensity images, representing
high-resolution (1500-3000dpi) scans of parallel cross sections of a certain tooth.
A set of images may contain several hundreds of scanned horizontal planes,
which usually are linearly distributed along an axis that is orthogonal to the
scanned planes. The distribution of pixel intensity levels varies from slice to slice,
but there are a few rules which most slices obey. In this order, the anatomical
structure is reflected by pixel intensities. In normal cases, cross sections contain
a light gray spot corresponding to the dentin, usually lighter at its edges (that is
because the enamel) with circularly distributed texture due to imaging artifacts,
possibly surrounding one or more darker regions, which represent the root canal
containing soft tissues. The cementum, when visible, is usually somewhat lighter
than the dentin.

The main goal of our image processing procedure is to identify the 3D struc-
ture of the root canal that we can build up from the inner darker regions iden-
tified from all cross sections. Afterwards, we need to track the spatial curve
that corresponds to the central line. The detected central line must follow the
topology of the root canal, by reflecting its curves and bifurcations.

Figure 1(left) exhibits the diagram of the image processing procedure. The
following paragraphs discuss the functionality of each box of the diagram.
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Fig. 1. (left) The steps of the proposed algorithm; (right) Checking the correlation of
dark spot centers in neighbor slices reveal the presence of bifurcations (around slice 70)
and the need for manual interaction (around slice 310). Both events can be localized
and identified automatically.

Preprocessing. The automatic image segmentation must be preceded by some
image enhancement steps. In our application, the following preprocessing steps
are employed: (1) A simple median filter, which reduces the high frequency noise
that is most visible in the dentin’s texture; (2) Establishing the region of interest
(ROI) by trimming the image: this way we get rid of the dark areas that represent
outer space. It is necessary to store the exact coordinates of the ROI; (3) Some
basic morphological operators are used to remove texts from the original image
and regularize the boundary of the root canal.

Segmentation in 2D. The final result of the planar segmentation should be a
binary image. Even if the image enhancement techniques have already suppressed
the disturbing textures, in order to assure high quality segmentation, we need
to apply a double partitioning and combine their outcome.

In this order, this phase produces two different partitions that are both obtained
using the enhanced FCM (EnFCM) clustering algorithm [10]. The first partition is
achieved by performing EnFCM on the ROI of the slice, setting the number of clus-
ters to c = 4. In the followings, this partition will be referred to as local partition,
as it is computed from the local data of the slice. The second partition is produced
by a simple thresholding operation, using a previously computed threshold τglobal

that was obtained by EnFCM from the whole dataset, using c = 2 clusters. This
latter partition is called global partition of the slice, because it uses the global
threshold extracted from the data of all slices. As the matter of fact, not all slices
contribute to the global threshold: only a representative selection of slices is taken



Identification of the Root Canal from Dental Micro-CT Records 343

into consideration, in order to reduce computation time. The global threshold pro-
duces a binary image at once. The local partition contains 4 different colors, corre-
sponding to the prototypes of the 4 clusters, v1 to v4. Let us suppose the intensity
values are ordered increasingly, that is, vi+1 > vi, ∀i = 1 . . . c− 1. The 4 clusters
are then separated in two classes, using the threshold τlocal = (vi+1−vi)/2, where
i = arg max

j
{vj+1−vj, j = 1 . . . c−1}. In most cases, both binary images are good

quality partitions, but there are exceptions, when one of these algorithms fails. In
these cases we need to select the correct partition.

Decision making. In order to provide an intelligent selection of the correct
binary partition, we have built up a decision tree, based on 250 slices representing
above mentioned exceptions. The decision is made in a four dimensional search
space, corresponding to parameters: τglobal, and τi = (vi+1 − vi)/2 , where i =
1 . . . 3. The output of the tree is the decision whether the local or the global
binary partition is the correct one. During the training process, we employed the
entropy minimization technique until all leaves of the tree became homogeneous.
After having the decision tree trained, the decision can be made quickly. Finally
we obtain a binary image, where the inner dark regions have to be localized.

Region growing and selection. The identification of dark spots situated
within the light area of the binary image, is performed by an iterative region
growing method. As long as there are dark pixels in the segmented image, a
dark pixel is arbitrarily chosen and a region is grown around it. Outer space
(which is also dark) is obviously discarded, and the detected dark spots are
separately stored. Each branch of the root canal, which is present in the cross
section, should normally be represented by a single dark region within the slice.
Unfortunately, mostly because of imaging artifacts or complex shaped canals,
there are some cases, when a single canal branch is manifested by more than
one dark region. These cases can be detected automatically, but their treatment
sometimes requires manual interventions.

Each dark spot has its center point, which we can compute two different ways:
as the center of gravity of the spot, or by the means of morphological thinning.
The center of gravity is easier to compute, but sometimes it falls outside the
spot. Morphological thinning always gives a quasi centrally located center point,
but it brings more computational load.

The automatic selection of detected spots can be performed by several dif-
ferent protocols, which are: P1 – always extracts the largest dark spot from
the slice; P2 – also extracts the second/third/fourth largest spot if it is present
and is larger than a small threshold size; P3 – adaptive, which may extract any
number of spots, according to some predefined rules that concern the size of dif-
ferent spots. Protocol P1 can be used in cases of incisor teeth only, when a priori
anatomical information makes the presence of a single spot highly probable.

Automatic shape regularization. Due to the artifacts present in the original
microCT records, the dark spot detected in certain slices may contain irregu-
larities. There are several kinds of such cases: some can be treated by auto-
matic regularization techniques, while there are also cases that require manual
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interaction. For example, a light “island” within the dark spot is easily remov-
able. Strange shaped “peninsulas” can be treated by large masked median filter
or morphological opening/closing. There are also cases where the real root canal
is detected as several separate dark spots situated very close from each other,
which need to be unified. Automatic unification is possible using morphological
operations or distance transform.

Correlation checking. The accurate segmentation of the microCT images may
demand manual intervention. Luckily, the necessity of such steps is visible from
the correlation of detected dark spots within adjacent cross sections, or in other
words, there cannot be a relevant change in the structure found within neighbor
slices. Wherever there is a large distance between the center points detected in
neighbor slices, either we have a bifurcation, or some intervention is likely to be
beneficial. In case of bifurcation, the number of dark spots in the neighbor slices
should differ, but correlate with the other neighbors of each.

Manual interactions to improve accuracy. The user has the opportunity to
change the result of the automatic segmentation within any of the slices. As it
was justified in the previous section, the user is advised where the interaction is
required. The implemented manual interventions are: M1 – overrule the decision
dictated by the decision tree; M2 – Change the local threshold to any desired
value; M3 – discard some of the automatically detected dark spots; M4 – unify
several dark spots using a parametric active contour model (snake).

Reconstruct the spatial shape of the root canal. The inner dark spots
localized within each slice are put together in space to form a three dimensional
object that describes the shape of the root canal. The center line of this object
will be searched for using a procedure based on 3D curve skeleton extraction.

3D curve skeleton extraction. As mentioned in [3], there are various ap-
proximation algorithms for the 3D curve skeleton of voxelized objects. We need
to employ such an approach which provides a smooth curve with low amount
of branches, and extremely insensitive to zigzagged surfaces. This sort of curve
skeleton is reportedly produced by potential field methods. We have successfully
implemented the method proposed in [2], and applied it to extract the skeletons
of the root canal object.

Corrections of the extracted skeleton. The 3D curve skeleton accurately
handles critical cases like root canal bifurcations, or slices that are far from
being orthogonal to the root canal’s direction. Under such circumstances, the
curve skeleton is an excellent approximation of the center line. However, at all
endings of the root canal, the curve skeleton is either shorter than it should
be as the iterative thinning has its effect from every direction, or it has several
short branches connected to high curvature points of the surface of the recon-
structed 3D object. In order to produce an accurate center line with the skeleton
extraction algorithm, we need to choose the divergence parameter of Cornea’s
potential field approach low enough, so that the endings of the skeleton towards
superficial high curvature points are not present. Further on, in order to avoid
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the shortened endings of the skeleton, we need to virtually lengthen all endings
of the reconstructed tubular 3D object with as many slices (identical to the
peripheral one) as necessary. The number of such virtually added slices is well
approximated as the shortest radius of the dark spot in the peripheral slice.

Most steps of the algorithm summarized in Fig. 1(left) are performed auto-
matically. The only box having gray background represents a step that requires
manual interaction. This step is not mandatory in simple cases, e.g. incisor teeth
on images with low amount of artifacts.

4 Results and Discussion

The proposed algorithm can automatically process more than 95% of the recorded
image sets, while the rest of the cases need manual interaction. Using a Pentium4
PC, the processing of a slice in 2D lasts 0.3-0.5 seconds, while a central canal
reconstruction is interpolated in less than a second. The accuracy of the detected
medial axis also depends on the number of slices involved. An accuracy that is
suitable to guide medical intervention can be obtained from carefully selected
subsets of at least 50 slices.

Figure 2(left) exhibits the intermediary results provided by the 2D segmen-
tation. Three cases of various difficulties are presented in the three rows of the
image. The first row presents a simple case involving a slice with two dark spots
representing two different, easily detectable root canals (there was a bifurcation
several slices away from this one). The slice in the middle row manifests an odd
shaped dark region, which was successfully detected. The slice presented in the

Fig. 2. (left) Detailed view of image segmentation in 2D: each row represents a different
slice. First column shows the original recorded images; second column presents the
clustered images (4 clusters); last column indicates the segmented binary images with
detected center points; (right) 3D views of a root canal, with the extracted medial line.
Numbers indicate pixels, which are easily convertible to millimeters.
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third row shows a difficult case: three different dark spots are present in the
segmented images, but they belong to only two different canal branches. This
is the case which requires correlation test with neighbors or decision overruling
performed by the ANN.

Figure 2(right) shows four different 3D views of a root canal, together with its
detected medial axis. The central line was produced from 944 equidistant slices,
segmented in 2D with binary separation using the global optimal threshold.

5 Conclusions

We have proposed and implemented a complex image processing procedure for
the detection of the center line from dental micro CT records. In most cases the
algorithm performs automatically, but there are still a few nodes in the decision
tree where the decision has to be made interactively. Thus we have created an
imaging system that can efficiently assist certain medical interventions.

References

1. Analoui, M., Krisnamurthy, S., Brown, C.: Modeling and measurement of root
canal using stereo digital radiography. In: Proceedings of SPIE - The International
Society for Optical Engineering, vol. 3976, pp. 306–314 (2000)

2. Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical
curve-skeletons of 3D objects. The Visual Computer 21, 945–955 (2005)

3. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and al-
gorithms. IEEE Trans. Vis. Comp. Graph. 13, 530–548 (2007)

4. Endo, M., Kobashi, S., Kondo, K., Hata, Y.: Dentistry support ultrasonic system
for root canal treatment aided by fuzzy logic. In: Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, vol. 2, pp. 1494–1499 (2005)

5. Germans, D.M., Spoelder, H.J.W., Renambot, L., Bal, H.E., van Daatselaar, S.,
van der Stelt, P.: Measuring in virtual reality: a case study in dentistry. IEEE
Trans. Instrum. Meas. 57, 1177–1184 (2008)

6. Hong, S.Y., Dong, J.: 3-D root canal modeling for advanced endodontic treatment.
In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE - The Inter-
national Society for Optical Engineering, vol. 4702, pp. 321–330 (2002)

7. Lee, J.K., Ha, B.H., Choi, J.H., Perinpanayagam, H.: Quantitative three-
dimensional analysis of root canal curvature in maxillary first molars using micro-
computed tomography. J. Endodontics 32, 941–945 (2006)

8. van Soest, G., Shemesh, H., Wu, M.K., van der Sluis, L.W.M., Wesselink, P.R.:
Optical coherence tomography for endodontic imaging. In: Progress in Biomedical
Optics and Imaging - Proceedings of SPIE 6843, vol. 6843, art. no. 68430F, pp.
1–8 (2008)

9. Swain, M.V., Xue, J.: State of the art of micro-CT applications in dental research.
Int. J. Oral. Sci. 1, 177–188 (2009)
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Abstrcat. Constrained clustering addresses the problem of creating min-
imum variance clusters with the added complexity that there is a set of
constraints that must be fulfilled by the elements in the cluster. Research
in this area has focused on “must-link” and “cannot-link” constraints,
in which pairs of elements must be in the same or in different clusters,
respectively. In this work we present a heuristic procedure to perform
clustering in two classes when the restrictions affect all the elements of
the two clusters in such a way that they depend on the elements present
in the cluster. This problem is highly susceptible to outliers in each clus-
ter (extreme values that create infeasible solutions), so the procedure
eliminates elements with extreme values in both clusters, and achieves
adequate performance measures at the same time. The experiments per-
formed on a company database allow to discover a great deal of infor-
mation, with results that are more readily interpretable when compared
to classical k-means clustering.

1 Introduction

Among all methods for unsupervised pattern recognition, clustering [9] is pos-
sibly the most widely used technique. One of the research areas that has been
receiving increasing attention in the last decade is the use of additional infor-
mation regarding the problem, incorporated to the problem by using constraints
that the elements must satisfy. This area is called “constrained clustering” [3],
and has been applied to a wide range of fields [1,6,7].

The methods of constrained clustering present a semi-supervised approach to
obtain segments of a dataset incorporating certain restrictions that the members
of one cluster, the members of different clusters, or the general structure of the
clusters must fulfill. The term “semi-supervised” refers to the incorporation of
knowledge that is not directly present in the data, or that is known only for a
limited number of cases, in order to improve the results on the entire domain.

In this paper, a method to perform semi-supervised clustering with two classes
is presented, that differs from the usual formulation in a key aspect: the con-
straints have to be satisfied by all the elements present in a cluster, against
all the elements in the other cluster, clearly a challenge since simply changing
one element from one cluster to another changes the whole set of constraints.
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Such application is common in social phenomena, where it is expected that the
members of one group are, in some aspects, different than all the elements of the
other cluster. One example is clustering customers whose client value is different,
or segmenting groups with a defined utility.

In order to solve this problem, a heuristic method that takes into account the
structure of the problem will be presented, to then test the proposed approach
against classical k-means clustering, using a database of unreturned (defaulted)
loans.

This work is structured as follows: Section 2 provides a brief overview of semi-
supervised clustering, to then present the proposed algorithm in section 3. An
application of the method and its results are presented in section 4, and finally
conclusions are drawn in section 5.

2 Constrained Clustering and Semi-supervised Methods

There are two different approaches reported in the literature for constrained
clustering, as noted for example in [4], and both are based on the concept of
“Must-Link” and “Cannot-Link” restrictions. The first set of constraints indi-
cates that two elements must always belong to the same cluster, whereas the
second one does not permit the presence of two elements in the same cluster.

The methods that can be constructed from these pairwise constraints have
been studied in depth, and usually differ in the role of the respective constraints:
in the first case the algorithm fulfills an objective or distance function using the
information from restrictions, the best known application of this work appearing
in [2], which uses Hidden Markov Random Fields to estimate the probability of
belonging to each cluster.

In the second type of models, the constraints limit the presence of elements
in one cluster or the other, using some heuristic approach to change and alter
the clusters and converging to a new solution. One example of this type of
procedures is [8] where the authors propose to alter the k-means procedure
and iteratively construct clusters. A similar approach is followed in this paper
adapting it to the new problem: each of the elements of one cluster must satisfy
the restrictions against most of the elements of the other cluster. The inclusion
of these constraints for each instance has not received such extensive study so
far, with some attempts to select only relevant constraints to, for example, make
the problem more tractable and select the information that is more relevant [10].

There are several issues that must be addressed in the problem stated above.
First, each time an element is changed from a cluster many restrictions have
to be recalculated and re-checked. Second, the high number of restrictions can
make the problem intractable. And finally, if there is an element with an extreme
value in one of the clusters, that is, an element whose variables make the value
of the constraints too high or too low, the problem can easily become infeasible.
To approach this, in the next section we will present a heuristic approach to
solve the problem efficiently.
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3 Iterative Procedure for Constrained Clustering with
Extreme Value Elimination

The procedure presented here differs from previous works in that it filters outliers
in each iteration, checking for the best solution in terms of violations and cluster
robustness. In each iteration the results are not necessarily feasible, because
such search is an NP-hard problem and it would make the algorithm impractical
[4]. With this modification, the procedure is very fast, as it is necessary when
clustering medium to large datasets.

If we assume a dataset X with N elements, and a partition of the dataset into
two clusters, such that each one (X1 and X2) is formed by elements x1

i ∈ X1,
i ∈ {1, . . . , I1} and x2

j ∈ X2, j ∈ {1, . . . , I2}, with centroids c1 and c2, the
problem is to solve the following optimization problem, adapted from a common
formulation [5]:

min
M,c1,c2,ext1,ext2

N∑
i=1

2∑
k=1

‖xi − ck‖2 ·mi

s.t. M ∈ {0, 1}N

R1 · x1
i (≥ ∨ ≤)ext1 ∀x1

i | mi = 1

R2 · x2
j (≥ ∨ ≤)ext2 ∀x2

j | mi = 0

ext1(≥ ∨ ≤)b2 · x2
i ∀x1

i | mi = 0

ext2(≥ ∨ ≤)b1 · x1
j ∀x2

j | mi = 1

(1)

Where R1 and R2 are the set of parameters associated with the constraints
that each case must satisfy, against all the other functions of the values in the
other cluster, represented by vectors b1 and b2 and extreme values ext1 and ext2.
Vector M indicates the cluster to which element i belongs, taking a value of 1
if the element belongs to cluster 1 and of 0 if it is not. This formulation is a
reduced form used to illustrate the complexity of the problem, since the variable
mi is present in the definition of the restrictions. A more explicit version would
have N × N restrictions, one for each element and cluster, since a priori it is
not known in which cluster each element is, nor the centroids of each cluster.

In order to solve this problem, we propose a heuristic procedure that takes into
account the constraints that must be satisfied and takes advantage of the fact
that the linear restrictions are bound to possess a maximum or minimum value in
the dataset, that is, that given a fixed distribution of elements in the cluster, only
the values ext1 and ext2 have to be checked against the elements of the cluster.
The procedure starts with random centroids, and in each iteration the elements
in the cluster are compared to the extreme value of the other cluster, i.e., if the
element is in cluster 1, then it is checked whether restriction R1 · x1

i (≥ ∨ ≤)ext1
is satisfied with the largest or smallest element present in cluster 2, according
to what is necessary. In case at the end of the movements the conditions are
not fulfilled by all cases, then the extreme values in both clusters are removed
from the analysis and the process is repeated. The algorithm continues until
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Algorithm 1. CCF(Dataset X, R1, R2, b1, b2)

1: C = (C1, C2) ← Random(size(2))
2: Flag ← 1N {If element is used or outlier}
3: while Movement in C > ε do
4: Assign elements to closest cluster
5: M1 ← X(cluster = 1)
6: M2 ← X(cluster = 2)
7: Calculate ext1 and ext2 from vectors M2 · b2 and M1 · b2

8: Violations ← 0, Eliminated ← 0
9: while Eliminated < 0.01N or Violations > εN do

10: for i = 1 to N do
11: if Flag(i) = 0 then
12: Skip i
13: end if
14: if Cluster(xi) = 1 then
15: R ← R1 · xi

16: else
17: R ← R2 · xi

18: end if
19: if Element i violates conditions then
20: Change cluster of element
21: Violations ← Violations + 1
22: end if
23: end for
24: if Violations > ε then
25: Flag(I(ext2)) ← 0, Flag(I(ext1)) ← 0
26: Eliminated ← Eliminated + 2
27: end if
28: Recalculate(M1, M2, ext1, ext2)
29: end while
30: Recalculate(C)

31: end while

both the violations are below a threshold and the values of the centroids do not
move more than a given tolerance. The algorithm for constrained clustering with
filtering (CCF) is described in Algorithm 1.

The elements in each cluster have to satisfy the restrictions against most of
the elements in the other cluster, and this is accomplished by eliminating a small
number of extreme cases in each iteration and seeking that all other satisfy the
constraints. At each step the minimum variance cluster is approximated (by
assigning elements to the closest cluster), and is this solution the one that is
perturbed by moving the elements according to the constraints. The convergence
of the algorithm is ensured, since at worst case (infeasible problem) only two
elements will remain and the method will stop with one element per cluster.
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4 Experimental Results

To test the presented methodology, a dataset consisting of 24,500 loans granted
to mass-market is available, all of which were not returned. The database orig-
inates from a Chilean organization, and comprises a 10 year period, from 1997
to 2007. Each loan is described by the following variables, which are associated
to the customer or to the loan itself:

– Collaterals: The collaterals are described by two variables. The first is a
dummy variable that indicates whether the customer secured the loan or
not (With Collaterals), The second one represents the value of the collateral
(Value Collateral UF), in UF, the Chilean inflation-adjusted monetary unit.

– Amount and Rate: The amount of the loan, in UF, and the total annual
interest rate charged for the loan.

– Arrears and Cancellations: The total sum of days the installments of the
loan were in arrear before defaulting is included in variable Days Arrear.
Also, sometimes the institution will cancel the payment of punishments and
excess interest that arises from arrear. This event is resumed into two dif-
ferent variables, considering the number of times this happened in the loan
lifetime (Num Cond), and the amount that was reduced (Amount Cond).
Additionally if some of the interests due to be paid are also discounted from
the installments, this value is annotated in variable Interest Low.

– Extensions: Sometimes the company will extend the period of an installment.
The number of times a customer applies to this benefit appears in variable
Num Post, and the amount adjusted appears in Amount Adjust, and, since
the adjustment can be positive or negative, the total amount of negative
adjustments is incorporated into Negative Adj.

4.1 Constraints

In this case, a set of constraints is created from the economical behavior expected
between the customers. In particular, the set R of restrictions characterizes the
rationality of not paying back the loan for two reasons: failure in capacity of
repayment (class G), and failure in willingness of repayment (class W ). In this
setting, customers request an amount xG or xW of money, are charged a rate
r, and discount their income using discount rates of δW and δG. The lender
has requested a collateral valued at Ci for each customer i, and discounted by
the company by a value of 40%, that is α = 0.6, which is a known value, and
discounts its income by a value of δC = 0.93. There is an external chance of losing
income (which translates into failure in paying back the loan) given by q = 0.15,
extracted from the long term default rate of the institution, and an a priori
belief that the customer is of class W given by θ = 0.55, arising from internal
estimations of the company, as well as parameters δG and δW which were fixed
to values of 0.75 and 0.5 respectively.Under this setting, and assuming linear
utilities, it is possible to estimate the amounts that should be requested such
that rationality is achieved. The restrictions that are proposed are:
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xG1(1 − δG(1 − q)(1 + r)) + δGxG2(1 − q)·
(1 − δG(1 − q)(1 + r)) − δGqC1 − δ2G(1− q)qC2 ≥ 0

(2)

θxG1(−1 + δC(1 − q)(1 + r)) − (1− θ)xW1 + xG2δCθ·
(−1 + δC(1 − q)(1 + r)) + C1αδC(1− θ(1 − q)) + θ(1− q)qδ2CαC2 ≥ 0

(3)

xW1 ≥ C1δW q (4)

These restrictions come from assuming that customers in class G desire a second
loan, while customers in class W do not. The extensive formulation of this game-
theory problem is not relevant to the clustering procedure itself, so it will be
omitted in this work.

4.2 Results

The experiments are run on the normalized database, and then the results are
de-normalized to better reflect the differences obtained, the method was imple-
mented using MATLAB and the code is available upon request. The method
eliminates only 2% of the total cases, and converges in two minutes which, given
that the database is medium sized, it is a very good convergence time. To test the
stability of the method, the procedure was run 10 times from different random
starting points, all converging to roughly the same result as is to be expected.

To study the information that the model brings the centroids of the cluster
must be studied. Table 1 (left) presents the obtained results.From the clustering
procedure it arises that the differences in collaterals are important but have
to be interpreted carefully, since the collateral value is used in the constraints.
More relevant is that the percentage of customers with a collateral is not really
meaningful between the clusters, so the conclusion is that is not the presence
of a collateral the relevant information, but its value. Also, customers in class
G request a far larger amount for their loans, which would be consistent with a
default based on the capacity of payment. Considering the total number of days
in arrear, class G accumulates 170+ days more than class W before defaulting,
indicating that they make a greater effort of paying back the loan than class W .
The procedure also shows that they apply for a larger number of renegotiations
(0.74 per customer in average), get greater adjustments and debt reliefs, and are
more prone to receive a discount on their due interests (1.32 UF per customer
in average, versus 0.31). Finally, they pay almost one full installment more than
the customers in class W .

The values of the variables hint that there is indeed a different behavior de-
tected, but to shed light on whether this procedure brings indeed more infor-
mation than classic K-Means clustering, Table 1 (right) presents the results of a
K-Means clustering procedure that will be used for comparison. Stability com-
parisons, such as Davis-Bouldin index, are not relevant, since obviously the con-
strained algorithm will have a greater standard deviation than the unconstrained
problem.
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Table 1. De-normalized centroids for semi-supervised clustering procedure (left) and
k-means procedure (right)

Variable Class G Class W

With Collaterals 0.41 0.33
Amount 52.94 14.82
Days Arrear 895.78 719.82
Num Cond 0.27 0.36
Num Post 0.85 0.46
Num Reneg 0.72 0.45
Amount Adjust -0.27 -0.08
Amount Cond 4.23 2.44
Negative Adj 0.41 0.09
Interest Low 1.32 0.31
Payments 2.81 2.42
Value Coll UF 71.37 7.93
Rate 1.10 1.10

Variable Cluster 1 Cluster 1

With Collaterals 0.35 0.34
Amount 21.78 22.57
Days Arrear 1242.10 337.93
Num Cond 0.56 0.15
Num Post 0.42 0.64
Num Reneg 0.68 0.35
Amount Adjunt -0.15 -0.05
Amount Cond 4.63 1.21
Negative Adj 0.26 0.06
Interest Low 1.06 0.04
Payments 2.25 2.70
Value Coll UF 18.55 21.64
Rate 1.10 1.10

The two tables show the advantages of incorporating additional information
in the form of constraints, since the k-means procedure focuses on two vari-
ables: days in arrear and reduction in rate (Interest Low). All the other variables
present only minor differences or equivalent results to the proposed method. The
conclusion that can be extracted from the k-means procedure is that there are
indeed two groups with some difference in their payments behavior, but the infor-
mation that can be deduced does not permit a more meaningful interpretation.
This is contrasted with the much richer information that the semi-supervised
clustering procedure brings, where the differences between these variables are
also present, but are also complemented with a series of other, more subtle,
differences that arise from the restrictions imposed.

5 Conclusions

A procedure to estimate the centroids of a two-class constrained clustering prob-
lem was presented. The main difference between this procedure and the ones
presented previously in the literature is that the constraints are associated to
all elements in each cluster, as well as allowing intra-cluster restrictions. This
problem is much harder to solve than traditional constrained clustering with
must-link and cannot-link constraints, since each time an object changes its
cluster, all the constraints have to be re-checked. Additionally, since all the ob-
jects must be checked with respect to all restrictions, it is usually not possible
to satisfy the constraints for all elements.

The proposed method is a heuristic procedure based on first obtaining mini-
mum variance clusters and then adjusting the constraints and filtering outliers.
The experimental results show that it performs fast and reliably, presents few
eliminated cases, and shows a reasonable convergence time.
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However, the most important feature of the method is that the results use
correctly the additional information that is considered through the constraints.
When applying the method to a database of defaulted loans, the results from
a classical K-Means algorithm are greatly enriched, presenting more subtle dif-
ferences between the classes and profiling two different segments of defaulters
using only expected rational behavior.

It can be concluded that the model is useful for the presented problem, and
that the results show the benefits of including external information in clustering
procedures. Future work in this line is to use these results to improve classifica-
tion in credit risk problems.
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Abstract. We present new results on the performance of Minimum Error En-
tropy (MEE) decision trees, which use a novel node split criterion. The results 
were obtained in a comparive study with popular alternative algorithms, on 42 
real world datasets. Carefull validation and statistical methods were used. The 
evidence gathered from this body of results show that the error performance of 
MEE trees compares well with alternative algorithms. An important aspect to 
emphasize is that MEE trees generalize better on average without sacrifing error 
performance.  

Keywords: decision trees, entropy-of-error, node split criteria. 

1   Introduction 

Binary decision trees, based on univariate node splits, are popular tools in pattern rec-
ognition applications, given the semantic interpretation often assignable to nodal deci-
sion rules and fast computation. Available design algorithms for these trees are based 
on greedy construction of locally optimal nodes using some node split criterion. All 
node split criteria proposed until today are based, as far as we know, on estimates of 
class conditional input distributions at each node. A recent KDnuggets Poll 
(www.kdnuggets.com) disclosed that the most used analytic software were Rapid-
Miner, R, and KNIME (freeware tools) and SPSS, SAS and Matlab (commercial 
tools). The decision tree algorithms in all these tools use “classic” split criteria 
(known since the seminal works on decision trees; for a survey see e.g. [1]): Gini, 
Information Gain and Twoing splitting rules. 

In a recent paper [2] we proposed a new type of node split criterion that is not a 
“randomness measure” of class conditional distributions; instead, it is a “randomness 
measure” of nodal error distribution, concretely its entropy. We showed how to use 
this concept in the construction of "Minimum Error Entropy" (MEE) trees.  

In the present paper we provide further comparative results on the application to 
real world datasets of MEE tree and competing tree design algorithms, using more 
datasets and sound validation and analysis methods, allowing, therefore, to reach a 
body of well-grounded conclusions concerning the advantages of using MEE trees. 
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2   MEE Trees 

MEE trees are built by selecting, at each node a pair (x, ω ), where x is a data feature 
and ω  a class label, minimizing the error entropy. Consider a candidate split between 
a class Ω∈

k
ω  and its complement ikik ωω ≠∪=  using a rule y based on the values 

of x (e.g., x < Δ ). For any x, the rule y produces a class assignment { }kky x ωωω ,)( ∈  
which is compared to the true class label ω (x); an "error" variable )()( xx yωω −  is 
then defined. Denoting T and Y the random variables (r.v.) for a convenient coding of 

)(xω and )(xyω  (say, assigning 1 if kωω = and 0 otherwise), we then also have an 
r.v. of the “errors” (deviations), YTE −= , taking value in {−1, 0, 1}, such that: 

 

• 10)0,1()1( PYTPEP ≡====  is the misclassification probability of kω ; 

• 01)1,0()1( PYTPEP ≡===−=  is the misclassification probability of kω ; 

• 10011)0( PPEP −−==  is the correct classification probability. 
 

The MEE split rule consists of finding y minimizing the error (Shannon) entropy: 

)1ln()1(lnln),( 10011001101001011001 PPPPPPPPPPEEEE −−−−−−−=≡ . 

The motivation for using MEE splits in decision trees stems from two main facts: by 
minimizing EE one is, in general, for not too overlapped distributions, favoring error 
distributions concentrated at the origin, with split points corresponding to the mini-
mum probability of error; MEE will not work for largely overlapped P(x|�k) 
and )|( kxP ω distributions [3], providing a natural way when to stop tree growing, 

therefore inherently limiting the model complexity. 
Details on the practical application of these principles to the construction of MEE 

trees are given in [2], showing that MEE trees can be applied to data described by 
either numerical or nominal features, and to any number of classes. The MEE tree 
algorithm written in Matlab, together with its description, is available at http:// gno-
mo.fe.up.pt/~nnig/. The main steps of the MEE tree algorithm are as follows (further 
details in [2]): 

1. At each tree node we are given an n×f (n cases, f features) matrix X and an n×c 
(n cases, c classes) matrix T, filled with zeros and ones. A univariate split y  mi-
nimizing EE is searched for in the f×c-dimensional space. 

2. For that purpose, the error rates nnPnnP /,/ 01011010 ==  ( 'ttn : number of class t 

cases classified as t ') are computed for each candidate class label t.  
3. The rule minimizing (the empirical) EE is assigned to the node and if a stopping 

criterion is satisfied the node becomes a leaf. Otherwise, the left and right node 
sets are generated and steps 1 and 2 iterated. 

A leaf is reached whenever a lower bound on the number of instances is reached or 
minEE occurs at interval ends, corresponding to the large distribution overlap case. 

An important aspect shown in [2] is that MEE trees are quite insensitive to prun-
ing; i.e., in general, the tree built without pruning is the same or almost the same as 
the one to which pruning was applied. This is a consequence of what was said above: 
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for largely overlapped )|( kxP ω and )|( kxP ω distributions one is able to detect an 

invalid MEE point and stop node splitting. Therefore, MEE enforces simple models 
with good generalization ability. 

3   Materials and Methods 

3.1   Real World Datasets and Experimental Setup 

The MEE algorithm was applied to the 42 datasets presented in Table 1, and the re-
sults confronted with those obtained using the CART-Gini, CART-Information-Gain 
and CART-Twoing algorithms (available in Matlab) and the popular C4.5 algorithm 
(available in Weka). All algorithms were run with unit misclassification costs, esti-
mated priors and the same minimum number of instances at a node: 5. 

All datasets are from the well-known UCI repository [4], except the colon, central 
nervous system and leukemia datasets which are from the Kent Ridge Biomedical 
Dataset (http://datam.i2r.a-star.edu.sg/datasets/krbd).  

The CART and MEE algorithms were run with Cost-Complexity Pruning (CCP) 
with the ‘min’ criterion and 10-fold cross-validation. The C4.5 algorithm was run 
with Pessimistic Error Pruning (PEP) at 25% confidence level [1]. 

Table 1. Datasets. The number of categorical features is given inside parentheses. 

 Arrythmya Balance Car Clev. HD2 Clev.HD5 CNS Colon 
No. cases 452 625 1278 297 297 60 62 
No. features 274 (54) 4 (4) 6 (6) 13 (8) 13 (8) 7129 (0) 2000 (0) 
No. classes 9 3 4 2 5 2 2 
 Cork stop. Credit CTG Dermatol. E-coli Flags H. surv 
No. cases 150 653 2126 358 327 194 306 
No. features 10 (0) 15 (9) 21 (0) 34 (33) 5 (0) 26 (20) 3 (0) 
No. classes 3 2 10 6 5 7 2 
 Heart Image Seg. Landsat Led Leukemia LRS Lymphog. 
No. cases 270 2310 6435 200 72 531 148 
No. features 13 (8) 18 (0) 36 (0) 7 (7) 7129 (0) 101 (1) 18 (17) 
No. classes 2 7 6 10 2 6 3 
 Mammog. Monk Mushrrom Ozone Page blks Parkinsons Pen Digits 
No. cases 830 556 8214 1847 5473 195 10992 
No. features 4 (3) 6 (6) 21 (21) 72 (0) 10 (0) 22 (0) 16 (0) 
No. classes 2 2 2 2 5 2 10 
 P. Diabetes P. Gene Robot-1 Spect-Heart Spectf-Heart Swiss HD Synth. Chart 
No. cases 768 106 88 267 267 120 600 
No. features 8 (0) 57 (57) 90 (0) 22 (22) 44 (0) 7 (4) 60 (0) 
No. classes 2 2 4 2 2 5 6 
 Thyroid VA HD Wdbc Wpbc Wine Yeast Zoo 
No. cases 215 186 569 194 178 1479 101 
No. features 5 (0) 6 (4) 30 (0) 32 (0) 13 (0) 6 (0) 16 (16) 
No. classes 3 5 2 2 3 9 7 

3.2   Statistical Methods 

Ten-fold crossvalidation (CV10) was applied to all datasets and tree design algo-
rithms. According to the theoretical analysis of crossvalidation [5], ten is a sensible 
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choice for the number of folds. A more recent work, [6], also confirmed the good per-
formance of CV10 when compared with alternative validation methods.  

Besides average test error estimates we also computed average design (resubstitu-
tion) error estimates, allowing us to evaluate generalization. Statistics regarding tree 
sizes in the cross-validation experiments were also computed. 

All results obtained for the five methods were evaluated following recommenda-
tions in [7-10], by namely performing: counts of wins and losses with chi-square test; 
multiple sign test comparing each method against MEE; Friedman test; post-hoc 
Dunn-Sidak test for multiple comparison; post-hoc Finner test for comparison of each 
method against MEE. The post-hoc tests are only performed when a significant 
Friedman p < 0.05 is found. The Finner test for post-hoc comparisons of a proposed 
method against another was analyzed in [8] and found to be more powerful than com-
peting tests. 

4   Results 

4.1   Error Rates 

Table 2 presents the cross-validation estimates of the error rate, with the best MEE 
solution found for class unions up to [c/2]. The total number of wins (smallest error) 
and losses are also shown in Table 2 with the chi-square test p: no significant differ-
ence is found relative to the equal distribution hypothesis. 

The Friedman test did not detect significant differences (p = 0.453) for these 42 da-
tasets. The mean ranks for the five methods (following from now on Table 2 order) 
are: 2.98, 3.16, 3.27, 2.68 and 2.92. 

The comparison between MEE vs any of the other algorithms, with the signs used 
in the multiple sign test [8], was also performed. Denoting by e the error rate, the null 
hypothesis of the test is H0: ej ≤ eMEE, where j is any algorithm MEE is compared 
with. H0 is rejected whenever the sum of minuses is below a certain critical value, 
which is in this case 16 at p = 0.05. Since all sums of minuses (resp. 19, 17, 17, 23) 
are above the critical value, we conclude that MEE performs similarly to any of the 
other algorithms. 

4.2   Generalization 

Denoting by eR and eCV respectively the mean training set error rate and the mean 
test set (CV10) error rate, we computed seeD CVR /−= , using the pooled standard 
deviation s . D reflects the generalization ability of the classifiers. The Friedman 
test found a significant difference (p ≈ 0) of the methods for the D values (mean 
ranks: 2.69, 2.91, 3.01, 4.22 and 2.16); the post-hoc Dunn-Sidak test revealing a 
significant difference between MEE vs C4.5 and Twoing (see Fig. 1). The post-hoc 
Finner test found, in fact, significantly better generalization of MEE vs any of the 
other methods. 
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Table 2. CV10 estimates of test set Pe-(std) with wins (bold) and losses (italic) 

 Arrythmya Balance Car Clev. HD2 Clev.HD5 CNS 

Gini 0.3518 (0.022) 0.1952 (0.016) 0.0434 (0.005) 0.2357 (0.025) 0.4680 (0.029) 0.3500 (0.062) 
Info Gain 0.3606 (0.023) 0.2528 (0.017) 0.0457 (0.005) 0.2593 (0.025) 0.4512 (0.029) 0.3000 (0.059) 
Twoing 0.3628 (0.023) 0.2176 (0.017) 0.0405 (0.005) 0.2761 (0.026) 0.4613 (0.029) 0.3167 (0.060) 
C4.5 0.3934 (0.023) 0.2192 (0.017) 0.0434 (0.005) 0.1987 (0.023) 0.4577 (0.029) 0.4833 (0.065) 

MEE 0.3208 (0.022) 0.3120 (0.019) 0.0718 (0.006) 0.2222 (0.024) 0.4646 (0.029) 0.3667 (0.062) 
 Colon Cork stop. Credit CTG Dermatol. E-coli 

Gini 0.2581 (0.056) 0.1133 (0.028) 0.1363 (0.013) 0.1689 (0.008) 0.0531 (0.012) 0.1927 (0.022) 

Info Gain 0.2581 (0.056) 0.1400 (0.028) 0.1363 (0.013) 0.1877 (0.008) 0.0587 (0.012) 0.1896 (0.022) 
Twoing 0.2419 (0.054) 0.1267 (0.027) 0.1363 (0.013) 0.1811 (0.008) 0.0670 (0.013) 0.1682 (0.021) 

C4.5 0.2419 (0.054) 0.1133 (0.026) 0.1332 (0.013) 0.1731 (0.008) 0.0991 (0.016) 0.1713 (0.021) 
MEE 0.1935 (0.050) 0.1200 (0.027) 0.1424 (0.014) 0.1891 (0.008) 0.0559 (0.012) 0.1315 (0.019) 
 Flags H. surv Heart Image Seg. Landsat Led 

Gini 0.4794 (0.036) 0.2680 (0.025) 0.2037 (0.025) 0.0403 (0.004) 0.1294 (0.004) 0.3100 (0.033) 

Info Gain 0.4639 (0.036) 0.2647 (0.025) 0.2444 (0.026) 0.0368 (0.004) 0.1361 (0.004) 0.3050 (0.033) 
Twoing 0.4845 (0.036) 0.2745 (0.026) 0.2481 (0.026) 0.0485 (0.004) 0.1406 (0.004) 0.3200 (0.033) 

C4.5 0.4022 (0.035) 0.3070 (0.026) 0.2000 (0.024) 0.0385 (0.004) 0.1324 (0.004) 0.5869 (0.035) 

MEE 0.4691 (0.036) 0.2647 (0.025) 0.2444 (0.026) 0.0589 (0.005) 0.1566 (0.005) 0.3000 (0.032) 
 Leukemia LRS Lymphog. Mammog. Monk Mushrrom 

Gini 0.1806 (0.045) 0.1450 (0.015) 0.2754 (0.037) 0.2084 (0.014) 0.1007 (0.013) 0.0004 (0.000) 

Info Gain 0.1944 (0.047) 0.1450 (0.015) 0.2754 (0.037) 0.2157 (0.014) 0.1187 (0.014) 0.0000 (0.000) 
Twoing 0.1667 (0.044) 0.1431 (0.015) 0.2061 (0.033) 0.2072 (0.014) 0.1331 (0.014) 0.0000 (0.000) 
C4.5 0.1389 (0.041) 0.2917 (0.020) 0.2528 (0.036) 0.2000 (0.014) 0.1115 (0.013) 0.0000 (0.000) 
MEE 0.1667 (0.044) 0.1638 (0.016) 0.2500 (0.036) 0.2386 (0.015) 0.0989 (0.013) 0.0009 (0.000) 

 Ozone Page blks Parkinsons Pen Digits P. Diabetes P. Gene 

Gini 0.0693 (0.006) 0.0342 (0.002) 0.1590 (0.026) 0.0418 (0.002) 0.2487 (0.016) 0.2547 (0.042) 
Info Gain 0.0693 (0.006) 0.0347 (0.002) 0.1487 (0.025) 0.0357 (0.002) 0.2695 (0.016) 0.3208 (0.045) 

Twoing 0.0731 (0.006) 0.0365 (0.003) 0.1487 (0.025) 0.0378 (0.002) 0.2695 (0.016) 0.2642 (0.043) 
C4.5 0.0785 (0.006) 0.0281 (0.002) 0.1242 (0.024) 0.0418 (0.002) 0.2578 (0.016) 0.2547 (0.042) 

MEE 0.0704 (0.006) 0.0347 (0.002) 0.1436 (0.025) 0.0666 (0.002) 0.3216 (0.017) 0.1698 (0.036) 
 Robot-1 Spect-Heart Spectf-Heart Swiss HD Synth. Chart Thyroid 

Gini 0.2727 (0.047) 0.2022 (0.025) 0.2097 (0.025) 0.6117 (0.044) 0.1150 (0.013) 0.0844 (0.019) 
Info Gain 0.2841 (0.048) 0.2060 (0.023) 0.2060 (0.025) 0.6083 (0.045) 0.0817 (0.011) 0.1023 (0.021) 

Twoing 0.1932 (0.042) 0.2210 (0.025) 0.2172 (0.025) 0.6250 (0.044) 0.1200 (0.013) 0.0977 (0.020) 
C4.5 0.3500 (0.051) 0.1873 (0.024) 0.2135 (0.025) 0.5847 (0.045) 0.0833 (0.011) 0.0558 (0.016) 
MEE 0.2614 (0.047) 0.1985 (0.024) 0.2060 (0.025) 0.6083 (0.045) 0.0617 (0.010) 0.0977 (0.020) 
 VA HD Wdbc Wpbc Wine Yeast Zoo 

Gini 0.7527 (0.032) 0.0650 (0.010) 0.2371 (0.031) 0.1067 (0.023) 0.4219 (0.013) 0.1683 (0.037) 
Info Gain 0.7527 (0.032) 0.0721 (0.011) 0.2474 (0.031) 0.0562 (0.017) 0.4206 (0.013) 0.1683 (0.037) 

Twoing 0.7419 (0.032) 0.0685 (0.011) 0.2371 (0.031) 0.0787 (0.020) 0.4381 (0.013) 0.1386 (0.034) 
C4.5 0.7366 (0.032) 0.0650 (0.010) 0.3144 (0.031) 0.0899 (0.021) 0.4077 (0.013) 0.3069 (0.046) 

MEE 0.7097 (0.033) 0.0615 (0.010) 0.2371 (0.031) 0.1180 (0.024) 0.5335 (0.013) 0.1089 (0.031) 

 Gini Info Gain Twoing C4.5 MEE p 
Wins 7 9 6 14 13 0.27 

Losses  6 8 9 10 12 0.70 
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Fig. 1. Dunn-Sidak comparison intervals for the D scores 

4.3   Tree Sizes 

Table 3 shows the averages and ranges of tree sizes achieved in the cross-validation 
experiments by all algorithms. The total number of wins (smallest average tree size) 
and losses are also shown in Table 3 with the chi-square p. A significant difference is 
found relative to the equal distribution hypothesis. Performing the multiple sign test 
as in the preceding section, we found a significant difference of MEE vs C4.5: smaller 
trees on average for MEE. The Friedman test also found a significant difference (p ≈ 
0) with mean ranks 2.51, 2.43, 2.80, 4.35 and 2.92. The post-hoc comparisons tests 
confirmed the conclusions of the multiple sign test (see Fig. 2). 

We re-analyzed the test set error rates and the D scores for the 20 datasets where 
MEE found the smallest average tree size. We arrived essentially to the same conclu-
sions as in 4.1 and 4.2. 

We also analyzed the tree size ranges (see Table 3), since a significantly smaller 
range of tree sizes is a symptom of a more stable algorithm [11-12]. We didn't find 
any statistically significant diference of the tree size ranges, either for the Friedmann 
(p = 0.3) or the multiple sign test. 
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Fig. 2. Dunn-Sidak comparison intervals for the average tree size 
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Table 3. Average-(ranges) of tree sizes with wins (bold) and losses (italic) 

 Arrythmya Balance Car Clev. HD2 Clev.HD5 CNS 
Gini 12.2 (10) 26.6 (10)  66.2 (38) 6.8 ( 8) 5.6 (16) 1.6 (2) 
Info Gain 12.8 ( 8) 26.6 (20)  58.0 (34)  7.8 ( 8)  6.8 ( 8) 2.0 (2) 
Twoing 11.6 (14) 27.6 ( 8)  66.0 (26)  8.8 (10)  5.8 (12) 2.4 (2) 
C4.5 37.8 (24) 43.6 (12)  71.4 (12) 19.2 (10) 34.8 (16) 6.2 (4) 
MEE 36.2 (10) 90.6 (52) 115.0 (48) 18.8 (12) 22.0 (42) 3.2 (4) 
 Colon Cork stop. Credit CTG Dermatol. E-coli 
Gini 3.0 (0) 5.0 (0) 3.0 ( 0) 74.6 (46) 13.4 (6) 10.8 (12) 
Info Gain 3.0 (6) 5.0 (0) 3.0 ( 0) 70.2 (52) 15.8 (6) 10.2 (14) 
Twoing 3.0 (4) 5.0 (0) 3.0 ( 0) 60.0 (30) 16.2 (2) 11.0 (14) 
C4.5 5.8 (2) 5.8 (6) 24.8 (20) 136 (26) 13.0 (0) 17.2 ( 8) 
MEE 3.2 (2) 5.0 (0) 12.4 (24) 56.8 (16) 14.1 (2)  9.4 ( 2) 
 Flags H. surv Heart Image Seg. Landsat Led 
Gini 12.8 (12) 4.2 (28) 11.2 (12) 79.8 (58) 108.8 (80) 22.0 (24) 
Info Gain 10.0 (14) 1.0 ( 0) 10.8 (32) 55.2 (36) 131.2 (98) 20.6 ( 8) 
Twoing 10.6 (20) 2.6 ( 8) 8.4 (10) 70.4 (74) 110.4 (98) 25.6 (20) 
C4.5 27.8 ( 6) 4.2 ( 6) 17.2 ( 8) 59.8 (18) 331.6 (58) 22.0 ( 6) 
MEE 20.0 (36) 1.0 ( 0) 19.4 (14) 32.4 ( 8) 125.6 (56) 23.0 ( 4) 
 Leukemia LRS Lymphog. Mammog. Monk Mushrrom 
Gini 3.0 (0) 11.6 ( 4) 6.0 ( 4) 5.8 (14) 28.8 (28) 18.2 (8) 
Info Gain 3.0 (0) 11.8 ( 6) 6.0 ( 4)  6.2 ( 6) 30.0 (24) 16.2 (2) 
Twoing 3.0 (0) 11.2 ( 2)  6.4 ( 4)  6.2 ( 6) 27.0 (24) 18.8 (2) 
C4.5 3.8 (2) 28.8 (12) 13.8 ( 8) 16.8 ( 4) 31.0 (14) 23.0 (0) 
MEE 3.0 (0) 24.2 ( 6) 17.6 (22) 24.6 (12) 33.6 (28) 42.6 (16) 
 Ozone Page blks Parkinsons Pen Digits P. Diabetes P. Gene 
Gini  1.0 ( 0) 23.4 (28)  5.4 ( 8) 336.8 (184)  6.0 ( 4)  7.8 (10) 
Info Gain  1.0 ( 0) 23.4 (22)  7.6 (10) 327.6 (216)  6.6 (14)  5.6 ( 8) 
Twoing  3.4 (24) 22.6 (24)  8.8 (18) 371.2 (152)  8.4 (36)  7.0 ( 8) 
C4.5 54.0 (34) 54.8 (16) 15.0 ( 4) 271.4 ( 32) 30.6 (28) 11.4 ( 6) 
MEE  1.0 ( 2) 20.8 ( 6) 3.0 ( 0) 233.0 ( 60) 2.2 ( 4)  8.6 ( 8) 
 Robot-1 Spect-Heart Spectf-Heart Swiss HD Synth. Chart Thyroid 
Gini  8.2 (4)  6.0 (14)  1.6 ( 6)  1.8 ( 8) 24.8 (20) 8.0 ( 6) 
Info Gain  8.8 (4) 13.4 (24) 1.0 ( 0) 1.0 ( 0) 37.4 (18) 7.4 ( 8) 
Twoing  9.4 (2)  5.8 (20)  2.2 (12)  1.6 ( 6) 39.2 (24) 9.2 (12) 
C4.5 10.4 (4) 13.6 ( 4) 28.4 (12) 17.8 (16) 28.8 ( 6) 9.0 ( 4) 
MEE  8.2 (2) 23.2 (28) 1.0 ( 0) 1.0 ( 0) 22.0 ( 2) 5.0 ( 0) 
 VA HD Wdbc Wpbc Wine Yeast Zoo 
Gini  5.8 (18) 10.2 (14) 1.0 ( 0) 11.8 (16)  22.4 (22) 10.6 (6) 
Info Gain 10.0 (18) 10.2 (14)  1.6 ( 6)  8.4 ( 2) 22.0 (16) 10.8 (4) 
Twoing  8.6 (28) 11.0 (20) 1.0 ( 0)  7.8 ( 4)  17.8 (12) 10.4 (2) 
C4.5 26.0 (20) 15.4 (10) 13.8 (26)  8.8 ( 2) 135.2 (40) 11.0 (0) 
MEE 23.4 (12)  5.2 ( 2) 1.0 ( 0) 6.6 ( 4)  25.4 (10) 11.0 (0) 
 Gini Info Gain Twoing C4.5 MEE p 
Wins 15 15 11 1 20 0.00 
Losses  3 0 5 27 9 0.00 

5   Conclusions 

The present work provided a substantial body of results concerning classification ex-
periments carried out in 42 real-world datasets, with varied number of cases, classes 
and features, by trees designed using the MEE approach and the popular CART-Gini, 
CART-Information-Gain, CART-Twoing and C4.5 algorithms. The statistical analy-
sis of the test set (CV10) error rates, obtained in these experiments showed that the 
MEE algorithm competes well with the other algorithms. 
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Moreover, we have obtained in the present work statistically significant evidence 
that the MEE algorithm produces, on average, smaller trees than the popular C4.5 
algorithm. 

As to the generalization issue, MEE trees were found to generalize better than 
those produced by the other algorithms without sacrifice on performance. 

These features of the MEE tree design, particularly the better generalization of 
MEE tree solutions, together with their relative insensibility to pruning shown else-
where [2], are of importance in many pattern recognition applications. 
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Abstract. The aim of this paper is to present a novelty methodology
to develop similarity measures for classification of time series. First, a
linear segmentation algorithm to obtain a section-wise representation of
the series is presented. Then, two similarity measures are defined from
the differences between the behavior of the series and the level of the
series, respectively. The method is applied to subjective-data on time
series generated through the evaluations of the driving risk from a group
of traffic safety experts. These series are classified using the proposed
similarities as kernels for the training of a Support Vector Machine. The
results are compared with other classifiers using our similarities, their
linear combination and the raw data. The proposed methodology has
been successfully evaluated on several databases.

Keywords: Similarity, Kernel Method, Classification, Time Series,
Data Segmentation.

1 Introduction

Similarity measures between time series is a common issue that has been treated
in several ways. Usually, the statistical models fitted to the series are compared.
Nevertheless, subjective-data time series are rarely taked into account. This
kind of data corresponds to information collected from human opinions over
a period of time. In this case, it is not possible to successfully fit a unique
model to all the data set since the changes on the level of the series usually
respond to a great variety of factors. In the particular case of driving risk
evaluations from human experts, these factors are related to driver’s responses to
vehicle or road variations (speed, aceleration, road conditions, etc). The driver’s
distraction study is a very difficult problem due to the high number of factors
involved in the distraction-related accidents [1]. However, these distractions can
be reduced with the development of a system that can automatically evaluate
the driver’s behavior. CABINTEC (“Intelligent cabin truck for road transport”)
is an ongoing project focused on risk reduction for traffic safety [2]. One of the
main objectives of the project is to identify driver’s unsuitable behavior and lacks
of attention. For that purpose, a system for automatic driving risk evaluation is

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 363–371, 2011.
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being developed using time series information from several traffic safety experts.
Further, a previous selection of experts is needed in order to detect unpracticed
experts whose opinions should not be considered. For this purpose, it is necessary
to measure the similarity between experts risk evaluations time series.

Most of the known similarity measures between time series are concerned with
the distance between series levels. However, for subjective data, it is necessary to
define a measure that considers the similarity in the behavior (trend of data) as
well as the similarity in the level. For this purpose, a proper representation
of the time series is needed. The same idea for signal matching has a long
history in cardiac signal analysis (see, for instance, [3]). However, most of these
representations imply sensitivity to noise, lack of intuitiveness, and the need
to fine-tune many parameters [4]. In this paper, an alternative representation
based on a linear segmentation of the time series is proposed. The segmented
representation allows the definition of two similarity measures considering the
behavior of the series and the series level, respectively. The defined similarities
were used as kernels to train a Support Vector Machine (SVM) and a k-NN (k-
Nearest Neighbor) classifier. The proposed methodology, main contribution of
this paper, was applied for the classification of a group of traffic safety experts
labeled according to their professional experience. The data acquisition process
was made as follows: a driving simulation exercise of ten minutes was recorded
from a truck cabin simulator from the Centro de Estudios e Investigaciones
Técnicas de Gipuzkoa (CEIT) [2]. Then, a group of 47 traffic safety experts were
asked to evaluate the driving risk of the simulated exercise. For that purpose,
the simulation reproduction tool Virtual Co-driver was used [5]. To collect the
experts evaluations, a Visual Analog Scale (VAS) was employed. This method
has been considered the best for subjective measurements (see, for instance, [6]).
The considered VAS ranges from 0 to 100, where 100 refers to the highest driving
risk level. Finally, to know some aspects of experts experience in the traffic safety
field, a personal quiz was applied.

The rest of the paper is organized as follows. Section 2 presents our algorithm
for the linear segmentation of time series. In Section 3, the section-wise
similarities are defined. Several experiments on real databases are considered
in Section 4 to evaluate the relative performance of the proposed similarities.
Section 5 concludes this paper.

2 Linear Segmentation Algorithm

In order to define a similarity between time series, small oscillations out of
the main trend could be uninformative and generate noise. In this case, these
oscillations should be removed. This happens, for instance, when dealing with
subjective-data time series, where a linear behavior along a temporary period of
time is expected. A variety of algorithms have been proposed to obtain proper
representations of time series (see, for instance, [7] and [8]). In this paper, an
algorithm to reduce the complexity of the data through the fit of regression lines
in local sections of the series has been developed. The linear model was selected
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(a) Example of expert (red line) and
unpracticed evaluators (black line).

(b) Expert

(c) Unpracticed

Fig. 1. Labeled CABINTEC time series in accordance with the traffic safety experience
of the human evaluator: (a) example series of an expert and an unpracticed evaluator,
(b) series of the experts evaluations, and (c) series of the unpracticed evaluators

due to its low computational cost. To illustrate the algorithm an example of the
CABINTEC time series will be used (Figure 1(a)). The key idea of the algorithm
is to represent the time series into a section-wise linear approximation losing
the least amount of usefull information. The output will be a set of estimated
regression lines, one per section. A scheme of the algorithm is presented in
Algorithm 1.

Algorithm 1. Linear segmentation of the curve f
Input: Curve f , n-Order Tangent fn, R2

min, ρ (reduction parameter), T = length(f)
Output: Y = {ys}S

s=1, set of S lines estimated by linear regression, one per section.
Initialize: ini = 1
1. Set: τ = max(fn)
2. Select end as the first t∗ in ini + 1 : T such that

fn(t∗) ≥ max( τ, fn(t∗ + 1), fn(t∗ − 1))
3. Estimate the line ys in section [ini, end]
if (R2(ys) > R2

min) or (τ < min(fn)) then
ys ∈ Y (store the regression parameters of the estimated line)
ini = i (change to next section)
go to 1

else
τ = ρτ (reduce the threshold)
go to 2

end if

The start and end points of each section must denote a change on the trend of
the serie. For that purpose the tangent of the time serie at each point needs to
be defined. Let f(t) be the value of curve f evaluated in time t = {1, . . . , T}.
Let fn(t) the value of its tangent of order n, calculated as:
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Table 1. Linear Segmentation Algorithm on CABINTEC data

R2
min 0.40 0.70 0.80 0.90 1.00

Original
Data

Number of

Sections
2 10 18 23 130

131
registers

Segmented

Graph Result

fn(t) = hf(t)−
n∑

i=−n, i�=0

hif(t+ i) , (1)

where hi = 1/(2|i|), and h is the sum of all hi.
Notice that the weight (hi) assigned to the i-th neighbor of the point t is

inversely proportional to the distance between them.
The basis of this time series segmentation algorithm is to look for strong

changes in the trend of data. This aim is achieved by the search of local maxima
of fn. When a point is selected in step 2 of Algorithm 1, a section s in the serie
is defined, and a regression line is fitted to the data in that section. Let R2

ys
be

the square of the sample correlation coefficient of the regression line. If the fitted
model explains much of the variability of the section, the calculated parameters
of the regression line are stored and the algorithm iterates. In other case, no
linear behavior is expected. Therefore, the section needs to be subdivided.

An example of the algorithm performance is presented in Table 1. The
segmented graphical result and the number of sections generated by the
algorithm were calculated for different selections of R2

min, the minimum fit (or
one minus the maximum error) allowed. For this example a tangent of order 5
was used. When R2

min = 0.40, only two sections were generated. It is clear that
the unique cut point was given by the global maximum of the 5-order tangent.
Notice that the higher the R2

min was, the higher the number of sections were
obtained. In the case of R2

min = 1, a section is generated for each pair of points.
To choose the optimal linear representation of the database we consider a trade-
off between the global linear error and the complexity of the representation as
follows:

α(1−R2) + (1− α)
number of sections

T − 1
. (2)

In the example, R2
min = 0.90 minimizes expression (2) (trade-off parameter

α = 0.5, which implies similar relevance for both terms).

3 Section-Wise Similarities

Given a set of segmented time series, it is possible to calculate several section-
wise similarities between them. Next, we propose one similarity measure based
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(a) Existent Area (b) Worst Area (c) Existent Angle (d) Worst Angle

Fig. 2. Level and Angle based section-wise similarities of the time series fa and fb, in
the section between the points t(1) and t(2)

on the differences between the level of the sections lines, and one similarity
measure based on the differences between the angles of the sections lines.

Let fa and fb be two different time series. Let {A} and {B} be the set of initial
and final points that defined the sections obtained for fa and fb, respectively,
from Algorithm 1. The similarity measures will be built on sections defined from
the union of sets {A} and {B}. That is, every initial or final point of a section
from fa or fb will be used.

3.1 Level Based Similarity

Let s = [t(1), t(2)] be the section where t(1) and t(2) ∈ {A} ∪ {B}. Let ra and rb
be the regression lines obtained from Algorithm 1 for fa and fb, respectively, in
s (see Figure 2(a)). Consider the area L bounded by ra and rb calculated as:

L =
1
2

[(ra(t(1))− rb(t(1))) + (ra(t(2))− rb(t(2)))] ∗ (t(2) − t(1)) , (3)

where ri(t(j)) denotes the value of the regression line ri in the point t(j).
Notice that (t(2)− t(1)) is the width (number of points) of section s. The level

based similarity calculated in the section s, denoted by s0S(s), is obtained as
the relation between the area in (3) and the worst possible area L̆ as follows:
s0S(s) = 1 − L/L̆. Notice that in this way, the proposed similarity measure is
in [0, 1]. The worst area L̆ is calculated from the maximum possible change in
the analyzed section. For that purpose, a line from fb(t(1)) to min(fb) and a
line from fa(t(1)) to max(fa) are considered, as shown in Figure 2(b). Finally,
the overall level based section-wise similarity for the time series fa and fb is
calculated as the weighted sum of all the sectional similarities as follows:

S0S(fa, fb) =
∑S

s=1 w(s) s0S(s)∑S
s=1 w(s)

, (4)

where w(s) is the time width of section s = 1, . . . , S.
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3.2 Angle Based similarity

The angle based section-wise similarity considers the angle formed by the
regression lines ra and rb defined in the section s. Let θa and θb be the slopes of
ra and rb, respectively (see Figure 2(c)). The angle between the regression lines
is calculated as:

θab = |θa − θb| . (5)

The angle based similarity calculated in the section s, denoted by s1S(s), is
obtained as the relation between the angle θab and the worst possible angle θ̆:
s1S(s) = 1 − θab/θ̆. The worst angle θ̆ is calculated with the crossed maximum
possible change in the analyzed section. That is, a line from fb(t(1)) to max(fb)
and a line from fa(t(1)) to min(fa) as shown in Figure 2(d) are considered.
Finally, the overall angle based section-wise similarity for the time series fa and
fb is calculated as the weighted sum of all the sectional similarities as follows:

S1S(fa, fb) =
∑S

s=1 w(s) s1S(s)∑S
s=1 w(s)

, (6)

where w(s) is the time width of section s = 1, . . . , S.

4 Experiments

The CABINTEC time series (Figure 1), were labeled in accordance with the
experience in traffic safety of each human evaluator. Each evaluator was labeled
as expert or unpracticed depending on their profession and years of experience
in the field (Figure 1(b) and Figure 1(c)). This information was obtained from
personal quizzes applied to each evaluator before the knowledge acquisition
experiments.

In order to test the accuracy and utility of similarities defined in Section 3,
several classification experiments were performed. These similarities were used
as kernel to train a SVM following [9] (C = 100). Further, the similarity matrices
were applied to a 1-Nearest Neighbor classifier. In addition, for benchmarking,
two similarities based on the Euclidean distance were considered. Let fa and fb

be two time series. S0P denotes a point-wise similarity based on the Euclidean

Table 2. Summary of the databases considered in the classification experiments

Database Name
Number of

Classes

Number of

series

Time Series

Length
Train set %

CABINTEC 2 47 313 50

Gun Point 2 200 150 25

ECG200 2 200 96 50

Coffee 2 56 286 50

Growth 2 93 31 64
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Table 3. Error rate and (standard deviation) of the classification experiments using
section-wise similarities (single and combined), point-wise similarities (single and
combined), SVM on raw data and NFDA on raw data

Classification
Algorithm

Similarity
Applied CABINTEC Gun Point ECG200 Coffee Growth

SVM

S0S 18.8 (0.21) 5.0 (0.07) 12.6 (0.10) 19.6 (0.25) 5.8 (0.11)

S1S 29.4 (0.25) 14.3 (0.10) 20.6 (0.11) 2.9 (0.09) 6.0 (0.10)
S0S+S1S

2 10.2 (0.21) 6.9 (0.08) 16.0 (0.10) 3.2 (0.12) 5.0 (0.10)

S0P 19.5 (0.20) 6.8 (0.10) 11.8 (0.10) 8.8 (0.22) 4.9 (0.10)

S1P 32.4 (0.23) 6.7 (0.11) 19.6 (0.11) 5.2 (0.15) 6.6 (0.12)
S0P+S1P

2 15.5 (0.20) 6.0 (0.10) 13.7 (0.10) 3.1 (0.15) 4.5 (0.09)

K-NN

S0S 20.2 (0.22) 9.1 (0.09) 9.7 (0.09) 22.9 (0.25) 7.8 (0.12)

S1S 25.4 (0.24) 10.0 (0.09) 15.9 (0.11) 6.6 (0.14) 7.2 (0.12)
S0S+S1S

2 15.3 (0.20) 7.4 (0.09) 11.1 (0.09) 14.2 (0.21) 3.3 (0.10)

S0P 19.9 (0.21) 11.7 (0.10) 11.6 (0.09) 18.9 (0.25) 7.2 (0.11)

S1P 36.6 (0.23) 10.8 (0.10) 17.5 (0.11) 22.2 (0.25) 8.8 (0.15)
S0P+S1P

2 18.1 (0.21) 10.4 (0.10) 12.9 (0.10) 8.8 (0.19) 6.8 (0.12)

SVM Raw Data 21.5 (0.07) 6.1 (0.03) 11.5 (0.32) 11.1 (0.08) 7.4 (0.36)

NFDA Raw Data 19.1 (0.07) 19.8 (0.05) 16.4 (0.38) 0.5 (0.01) 5.1 (0.03)

distance in the raw data:
√∑T

i=1(fa(i)− fb(i))2. Similarly, S1P denotes a point-
wise similarity based on the Euclidean distance in the angle gived by the n-

order tangent (fn):
√∑T

i=1(fn
a (i)− fn

b (i))2. Further, for the section-wise and
point-wise similarities, linear combinations denoted by S0S+S1S

2 and S0P+S1P
2 were

considered. Additionally to CABINTEC dataset, several well-known databases,
out of the driving risk problem, were employed: the Gun Point, ECG200, Coffee,
and Growth databases. A summary of these databases is shown in Table 2 (see
[10] and [11] for a complete description). The linear segmentation algorithm
proposed in Section 2 was applied to all the series.

In order to use Algorithm 1, the reduction parameter ρ and the order of the
tangent n were established as 0.90 and 5 respectively in all cases. The parameter
R2

min was selected by the minimization of (2) using train data. Two additional
classifiers were considered and applied to the raw data: a SVM with a RBF
kernel, and a classifier based in functional data representation (NFDA) [12].
Notice that k-NN applied to the point-wise similarity S0P , corresponds to the
k-NN evaluation on raw data. To compare the performance of the methods,
the average classification results obtained in the test sets over 1 000 runs were
calculated. The mean error rate and its standard deviation in the test sets are
presented in Table 3. In our case study, the CABINTEC database, the best
global result was achieved by the combination of the section-wise similarities
used as kernel for the SVM. The error reduction obtained by this combination
regarding the individual similarities (10.2% vs. 29.4% and 18.8%) shows their
complementarities in this database. Likewise, the combination of the point-wise
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similarities reached an error reduction. Similar results were obtained with the
K-NN classifier. As a summary, in almost all the databases, the section-wise
similarities or their combination achieved the best results. These results show
the capacity of our method to reduce the complexity of the data, preserving the
usefull information for classification purposes.

5 Conclusions

The main contribution of this paper, is a novelty methodology for the similarity
measurement and classification of time series. A linear segmentation algorithm
for the proper representation of subjective-data time series has been developed.
Then, two similarity measures have been defined from the differences between
the level of the series and the angle of the series, respectively. These similarities
have been used as kernels to train a SVM. The application of the methodology
to the CABINTEC database achieves outstanding results in the classification of
traffic safety experts according to their experience. Moreover, very competitive
results were achieved even in databases out of our study case. The results of the
classification experiments show that the angle based similarities contain relevant
information for classification purposes. This information, based on the behavior
of the data, shows to be complementary to the information collected by the level
based similarities. In this work, the section similarities were averaged over the
total number of sections. In the future, the use of the individual similarities
calculated in each section will be considered. In addition, the section-wise
similarities could be used to detect clusters of experts when no label information
is available.
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Abstract. The problem of reconstructing the feature values in samples
of objects given in terms of numerical features is considered. The three
approaches, not involving the use of probability models and a priori infor-
mation, are considered. The first approach is based on the organization
of the iterative procedure for successive elaboration of missing values of
attributes. In this case, the analysis of local information for each object
with missing data is fulfilled. The second approach is based on solving
an optimization problem. We calculate such previously unknown feature
values for which there is maximum correspondence of metric relations
between objects in subspaces of known partial values and found full de-
scriptions. The third approach is based on solving a series of recognition
tasks for each missing value. Comparisons of these approaches on simu-
lated and real problems are presented.

Keywords: missing data, imputation, feature, pattern recognition, fea-
ture values restoration.

1 Introduction

Many problems in data mining can be written in the standard form. Let be given
a sample {zi, x̄i}, i = 1, 2, ...,m, x̄i = (xi1, xi2, ..., xin) is the feature description
of some object, zi, xij ∈ R. We assume scalar zi is defined by vector x̄i. It is
necessary to calculate z = f(x̄) by some vector x̄. Here z, xj ∈ R.

Here we can distinguish three specific tasks:

1. z ∈ {1, 2, ..., l},zi, i = 1, 2, ...,m, are known (supervised classification or
recognition task);

2. z ∈ {1, 2, ..., l}, but the values zi, i = 1, 2, ...,m, (and may be l) are unknown
(unsupervised classification or clustering task);

3. z ∈ (a, b), zi, i = 1, 2, ...,m are known (task of regression reconstruction).

In this paper we consider the case of missing data for some features (unknown
feature values are denoted by Δ).

There are various approaches: taking into account the type of tasks (clus-
tering, classification or regression), cases of training or classification , taking

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 372–379, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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into account additional a priori knowledge and hypotheses, the direct solution
of problems with missing data or their decision after a preliminary gaps recon-
struction . We consider the case when the problems are solved in the following
two steps. First signs of recovering missing values in object descriptions. In the
second phase is addressing these problems for a complete description, which
already uses the standard well-known algorithms.

There are different approaches to solve the problem of reconstruction of miss-
ing feature values that are commonly referred to as marginalisation, imputation,
and projection. In the case of marginalization or skipping incomplete objects, the
incomplete objects in the dataset are discarded simply in order to create a new
complete dataset [1]. In this case, you may lose a large amount of information.
In the case of Imputation approaches, a value from the entire dataset to fill the
missing attribute is estimated. The well-known imputation techniques are the
mean of known values of the same feature in other instances, median, random
[1, 2], the nearest neighbour method [3]. In [4], a partial imputation technique
has been proposed. It consists of the imputation of missing data using complete
objects in a small neighborhood of the incomplete ones. In [5], a new approach
is proposed , using the entropy to estimate the missing values.

The Projection methods (or imputation by regression) realize the next idea.
The feature space is reduced to one dimension less for each missing attribute.
So, it is necessary to compute a special classifier or regression function in the
reduced space. Usually, complete objects of the training set are used to build
the optimal classifier\regression. In [6], the imputation technique using support
vector regressions (SVR) is studied and compared with some well-known ones.
The results showed the high precision obtained by SVR technique with regards
to the mean, median, of the nearest neighbor techniques.

It is well known and reliable algorithm for filling gaps by maximum likelihood
(EM algorithm) [1, 2]. A disadvantage is the low rate of convergence, if missed
a lot of data. Probably, there are a lot of local optimal solutions. It is assumed
a reasonable probabilistic model of classification or regression.

In this article we propose three algorithms for the restoration feature values
according to the training samples, based on attempts to implement the following
principles:

– use all the objects of training sample, regardless of the number of existing
gaps;

– do not use any probabilistic assumptions about the data set;
– background information is only sample data;
– features in general are not independent.

Initial information is training sample of objects X = {x̄1, x̄2, ..., x̄m}. We assume
that xij ∈ {Mj, Δ},Mj ⊆ R. Unknown feature values xij are denoted as Δ. Let
the set of pairs of indexes J specifies all unknown values of attributes of the
objects of training sample J = {〈i, j〉 : xij = Δ}. Region Mj , j = 1, 2, ..., n, of
permissible values of each feature is a finite set, which is determined by a given
sample.
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The task of reconstruction of unknown feature values is to find a sample
X∗ = {x̄∗1, x̄∗2, ..., x̄∗m} of complete descriptions x̄∗i = (x∗i1, x

∗
i2, ..., x

∗
in), x∗ij ={

xij , xij = Δ,
∈Mj , xij = Δ,

, “the most corresponding” sample given a partial descriptions

X . This ”best match” can be defined explicitly or not explicitly. We consider
the following three approaches and specific algorithms.

2 Local Method for Reconstructing Feature Values

First, all the unknown feature values are filled with random numbers from the
range of admissible values of variable xij ∈Mj , j = 1, 2, ..., n. Next, the unknown
values sequentially modified by a combination of method k-nearest neighbor and
shift procedure. Let be given the metric in the space of the feature descriptions.

Step 0. Initializing random x
(0)
ij ∈Mj, ∀ 〈i, j〉 ∈ J . Obtain the full descriptions.

If 〈i, j〉 ∈ J , let x(0)∗
ij is an average value of feature j over the k nearest neighbors

of x̄i. Then define x1
ij = x

(0)
ij +θ(x(0)∗

ij −x(0)
ij ), ∀ 〈i, j〉 ∈ J , x(1)

ij = x
(0)
ij , ∀ 〈i, j〉 /∈ J .

Here 0 < θ ≤ 1.
Step t=1,2,. . . . We have x̄(t−1)

i = (x(t−1)
i1 , ..., x

(t−1)
in ). For each pair 〈i, j〉 ∈ J ,

the x(t−1)∗
ij is calculated as the average value of feature j over the k- nearest

neighbors of the object x(t−1)
i . Then define x(t)

ij = x
(t−1)
ij + θ(x(t−1)∗

ij − x(t−1)
ij ),

∀ 〈i, j〉 ∈ J , x(t)
ij = x

(t−1)
ij , ∀ 〈i, j〉 /∈ J . Step is repeated, if not satisfied the

stopping criterion. Otherwise, the restoration of gaps is finished.
Stopping criterion: the maximum number of iterations N ,∑
〈i,j〉∈J

∣∣∣x(t)
ij − x

(t−1)
ij

∣∣∣2 ≤ ε, etc. Finally, we put x
(final)
ij , ∀ 〈i, j〉 ∈ J the

nearest value from Mj .

3 Optimization Method for Reconstructing Feature
Values

The essence of this approach is that missing values should take such values for
which the metric relationships between objects in space of ”full descriptions”
as would correspond to metric relations in the subspaces of known ”partial
descriptions”.

Let x̄i,x̄j is a pair of training objects. We introduce the notation: Ω0
i =

{t : xit = Δ}, Ω1
i = {t : xit = Δ}. Let Ω00

ij = Ω0
i

⋂
Ω0

j , Ω01
ij =

Ω0
i

⋂
Ω1

j , Ω10
ij = Ω1

i

⋂
Ω0

j , Ω11
ij = Ω1

i

⋂
Ω1

j . We will use the Euclidean metric

ρ2(x̄i, x̄j) =
(∑

t∈Ω00
ij

(xit − xjt)2 +
∑

t∈Ω01
ij

(xit − yjt)2 +
∑

t∈Ω10
ij

(yit − xjt)2+∑
t∈Ω11

ij
(yit − yjt)2

)
. Here and below, for convenience, the unknown values of

features xit are replaced by the parameters yit: {〈i, j〉 ∈ J} for all pairs of in-
dexes.

We will consider the next distances in the feature subspaces.
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ρ+(x̄i, x̄j) =
(∑

t∈Ω00
ij

(xit − xjt)2
) 1

2
is a distance in the subspace in which the

values of the features of both objects are known.

ρ++(x̄i, x̄j) =
(∑

t∈Ω00
ij

(xit − xjt)
2 +

∑
t∈Ω01

ij
(xit − yjt)

2 +
∑

t∈Ω10
ij

(yit − xjt)
2
) 1

2 is
a distance in the subspace, in which the feature values are known at least for
one object.

We consider the following two criteria of filling gaps quality as a function of
the unknown values of features:

Φ(〈yij〉) =
m∑

i, j = 1
i > j

(ρ(x̄i, x̄j)−N+
ijρ

+(x̄i, x̄j))2,

F (〈yij〉) =
m∑

i, j = 1
i > j

(ρ(x̄i, x̄j)−N++
ij ρ++(x̄i, x̄j))2.

Here N+
ij , N++

ij are chosen according to one of the following ways:

1.a N+
ij = 1, 1.b. N+

ij = n

|Ω00
ij | (if

∣∣Ω00
ij

∣∣ = 0 put ρ(x̄i, x̄j)−N+
ij ρ

+(x̄i, x̄j) = 0).

2.a. N++
ij = 1, 2.b. N++

ij = n

|Ω00
ij +Ω01

ij +Ω10
ij |

(if
∣∣Ω00

ij +Ω01
ij +Ω10

ij

∣∣ = 0 put ρ(x̄i, x̄j)−N++
ij ρ++(x̄i, x̄j) = 0).

Gradient of the first criterion is as follows

∂Φ(〈yij〉)
∂yαβ

= 2
∑
i = α,

ρ+(x̄i, x̄α) > 0

(ρ(x̄i, x̄α)−N+
iαρ

+(x̄i, x̄α))
ρ(x̄i, x̄α)

(yαβ − xiβ),

Gradient for F (〈yij〉) is the analogy one.
Then we apply the method of steepest descent with constraints
yij ∈ [ min

t=1,2,...,m
xtj , max

t=1,2,...,m
xtj ].

In the local and optimization approaches, we do not distinguish between
numeric and discrete features. After restoring the values of features, we put
x∗ij = asj : asj ∈Mj,

∣∣∣asj − x(final)
ij

∣∣∣ = min
t = 1, 2, ...,m
< t, j >/∈ J

∣∣∣atj − x(final)
ij

∣∣∣. In the case

of two possible solutions, we take one from them which has a higher frequency
on the training data.

4 Restoration of Feature Values as the Solution of
Recognition Problem

Meaningful task is to assign these numerical values for objects with a gaps, which
are the most ”agreed” with known features of the object. The reconstruction
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problem is solved sequentially for each pair 〈i, j〉 ∈ J as a special recognition task.
Let for a object x̄i from the sampleX value xij is unknown. For simplicity, we fur-
ther denote ȳ = x̄i, ȳ = (y1, y2, ..., yn), Ωi = {j1, j2, ...jτ}, Θi = {k1, k2, ..., kσ} =
{1, 2, ..., n}\Ωi, xij = Δ , ∀j ∈ Ωi. Denote Mj = {a1, a2, ..., aN} as the set of all
possible values of j−th feature. It is calculated by known data. Let a = a1 <
a2 < ... < aN = b.

The general algorithm consists in solving of [log2N ] + 1 dichotomous recog-
nition tasks. It was used the estimation calculation algorithm, based on voting
over support sets of a given power [7]. This algorithm reflects the correlation
properties between features and doesn’t use any training.

1. There is a set of numbers a = a1 < a2 < ... < aN = b. We consider two
classes: K1 = {x̄|a ≤ xj ≤ a[ N

2 ]}, K̃1 = K1

⋂
X , K2 = {x̄|a[ N

2 ] < xj ≤ b},
K̃2 = K2

⋂
X .

2. Estimate Γt(ȳ) =
∑

x̄λ∈K̃t
Ck

d(x̄λ,ȳ) for class Kt, t = 1, 2 (degree of mem-
bership of an object ȳ to class Kt, t = 1, 2) is computed. Here d(x̄λ, ȳ) =
|{β : |yβ − xλβ | ≤ εβ}, β ∈ Θi

⋂
Θλ|, 1 ≤ k ≤ n is an integer (control in-

put parameter), εβ = 2
|hβ |(|hβ |−1)

∑
x̄u,x̄v∈K̃1

⋃
K̃2,u>v,xuβ ,xvβ �=Δ |xuβ − xvβ |,

hβ =
∣∣∣{x̄a ∈ K̃1

⋃
K̃2 : xaβ = Δ}

∣∣∣.
3. If Γ1(ȳ) ≥ Γ2(ȳ) put ȳ ∈ K1, otherwise ȳ ∈ K2.
4. If, the class to which ȳ is assigned contains only one element x̄a, then we put
yj = xaj . The task of restoring the value xij is considered to be resolved.
Otherwise, the transition at point 1 and process is repeated with respect to
the set a1 < a2 < ... < a[ N

2 ] (if ȳ assigned in class K1) or relative to the set
a[ N

2 ]+1 < a[ N
2 ]+2 < ... < aN (if ȳ assigned in class K2). It is clear that no

more than [log2N ] + 1 steps, we obtain the first situation 4.

To calculate estimates for the classes one can use other ways of calculating
estimates [7].

5 The Results of Numerical Experiments

This section presents the initial results of the application and comparison of
some different feature values restoration techniques. Two models of the creation
of data gaps have been considered.

In the first model in each training object α% of feature values were considered
missing. This selection was performed randomly in a uniform distribution law. In
the second model, α% of elements of training set were considered as missing. The
choice of these pairs ”object-feature” also was performed randomly according
uniform distribution law. Experiments were carried out as follows. According to
the original training set, the training samples with gaps were formed by the first
or second model. The samples of incomplete feature descriptions were restored
by the algorithm mean substitution, and the algorithms proposed in this paper.
After that, for all tables were solved the supervised classification (recognition)
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problems using different algorithms. We used the implementation of algorithms
in a software system ” Recognition” [8]. Experiments were conducted with model
data and with one practical problem.

As a model task, a mixture of two normal distributions has been consid-
ered. Training and the control data consisted of 200 vectors, 100 ones from each
class. The vectors consisted of values of 10 independent features. Features of
the first (second) class are normally distributed according normal distributions
with parameters a = 0, σ2 = 9 (respectively a = 5, σ2 = 9), where the a is an
expectation, σ2 is a variance. Transformations of training and control data in
the samples with gaps were run with α= 35. Restoration of training and con-
trol samples were carried out independently. Fig. 1 shows the visualization of
control sample. Black and gray dots correspond to the first and second classes,
respectively. They are displaying objects from a R10on a plane with maximum
preservation of metric relations between objects in R10 [9].

Fig. 1. Visualization of the control sample in a simple model task

Tables 1 and 2 present the recognition results to a control sample and its
modifications by various algorithms.

Recognition accuracy was estimated as the percentage of correctly recognized
objects of control sample. When training of the various algorithms used standard
values of their control parameters. The task of choosing the optimal parameters
of the algorithms for training was not considered. So, the results of different
algorithms for solving same tasks are very different. The rows of tables presents
the results of recognition of different algorithms: LM – “linear machine” [9],
k –neighbors – “k-nearest neighbors” [9], AEC – “estimation calculation algo-
rithms” [7], LDF – “Fisher linear discriminator”[9], LR - ”voting algorithm over
sets of logical regularities of classes [10].

Each column of the table presents the results of recognition of different mod-
ifications of the original checklist: the source table, the method of mean substi-
tution, applications of methods 1, 2, 3, that denote the local, optimization and
based on pattern recognition tasks solving methods. In the local method we used
the values of parameters θ = 0.8, N = 50, k = 5, in an optimization algorithm
has been used functional Φ(〈yij〉) for N+

ij = 1.
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Table 1. Recognition of simulated data for the first model of gaps creation

recogn.
method \
table

source ta-
ble

mean substi-
tution

method 1 method 2 method 3

LM 84.5 85.0 84.5 86.0 84.5

k –
neighbors

87.0 82.0 82.5 83.0 81.5

AEC 86.0 73.0 79.5 75.5 80.0

LDF 86.0 81.0 82.5 81.5 77.5

LR 85.0 72.5 81.0 78.5 78.0

Table 2. Recognition of simulated data for the second model of gaps creation

recogn.
method \
table

source ta-
ble

mean substi-
tution

method 1 method 2 method 3

LM 84.5 85.5 81.5 86.0 84.5

k –
neighbors

87.0 82.5 85.5 81.5 85.0

AEC 86.0 75.0 78.0 78.5 83.0

LDF 86.0 79.0 81.5 79.5 82.0

LR 85.0 69.9 77.5 79.5 81.5

6 Conclusion

There was considered a model task that has been created on the basis of three
normal distributions having linearly inseparable centers of the classes. Besides,
here were used some other recognition algorithms (neural network with back
propagation training [11], binary decision trees [9], SVM [12], multiplicative
neural network [13]). As a test task,we examined a sample of patients with com-
plaints of chest pain from Heart Disease Databases (Hungarian Institute of Car-
diology. Budapest: Andras Janosi, M.D., University Hospital, Zurich,
Switzerland: William Steinbrunn, M.D., University Hospital, Basel, Switzerland:
Matthias Pfisterer, M.D., V.A. Medical Center, Long Beach and Cleveland Clinic
Foundation: Robert Detrano, M.D., Ph.D.). The results were similar to those of
considered earlier.

For a more accurate evaluation of the proposed approaches and their compar-
ison necessary to carry out a large series of experiments both on real and sim-
ulated data, and various models of missing data modelling. Nevertheless, these
preliminary calculations confirm some a priori expectations. Local averaging of
characteristics (method 1) is better than the average for the full sample. Method
2 showed good results, but apparently it will be inefficient for problems with a
large number of gaps. In method 3 is used an algorithm AEC. The calculation
of the degree of affiliation Γt(ȳ) for object ȳ to a certain class Kt is based on a
comparison ȳ with each x̄λ ∈ K̃t. Comparison takes place on different subsets of
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features in the maximum feature subspace where ȳ and x̄λ have no gaps. This
expresses the fact of existance of dependencies between features (see [7]).

The total ratio of the first places of compared methods is 4:7:16:9. Methods
1-3 show generally higher results. In any case, the creation of new algorithms
for reconstruction of unknown feature values is important. Having a set of dif-
ferent recovery algorithms, we improve the chances of a more exact solution of
classification problems.
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Abstract. This paper proposes a heuristic classifier ensemble to improve the 
performance of learning in multiclass problems. Although the more accurate 
classifier leads to a better performance, there is another approach to use many 
inaccurate classifiers while each one is specialized for a few data in the problem 
space and using their consensus vote as the classifier. In this paper, some en-
sembles of classifiers are first created. The classifiers of each of these  
ensembles jointly work using majority weighting votes. The results of these en-
sembles are combined to decide the final vote in a weighted manner. Finally the 
outputs of these ensembles are heuristically aggregated. The proposed frame-
work is evaluated on a very large scale Persian digit handwritten dataset and the 
experimental results show the effectiveness of the algorithm.  

Keywords: Genetic Algorithm, Optical Character Recognition, Pairwise  
Classifier, Multiclass Classification. 

1   Introduction 

In practice, there may be problems that one single classifier can not deliver a satisfac-
tory performance [7], [8] and [9]. In such situations, employing ensemble of classify-
ing learners instead of single classifier can lead to a better learning [6]. Although 
obtaining the more accurate classifier is often targeted, there is an alternative way to 
obtain it. Indeed one can use many inaccurate classifiers each of which is specialized 
for a few dataitems in the problem space and then employ their consensus vote as the 
classification. This can lead to better performance due to reinforcement of the clas-
sifier in error-prone problem spaces.  

In General, it is ever-true sentence that "combining the diverse classifiers which are 
better than random results in a better classification performance" [2], [6] and [10]. Di-
versity is always considered as a very important concept in classifier ensemble metho-
dology. It refers to being as much different as possible for a typical ensemble. Assume 
an example dataset with two classes. Indeed the diversity concept for an ensemble of 
two classifiers refers to the probability that they produce dissimilar results for an arbi-
trary input sample. The diversity concept for an ensemble of three classifiers refers to 
the probability that one of them produces dissimilar result from the two others for an 
arbitrary input sample. It is worthy to mention that the diversity can converge to 0.5 and 
0.66 in the ensembles of two and three classifiers respectively. Although reaching the 
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more diverse ensemble of classifiers is generally handful, it is harmful in boundary 
limit. It is very important dilemma in classifier ensemble field: the ensemble of accu-
rate-diverse classifiers can be the best. It means that although the more diverse classifi-
ers, the better ensemble, it is provided that the classifiers are better than random.  

An Artificial Neural Network (ANN) is a model which is to be configured to be 
able to produce the desired set of outputs, given an arbitrary set of inputs. An ANN 
generally composed of two basic elements: (a) neurons and (b) connections. Indeed 
each ANN is a set of neurons with some connections between them. From another 
perspective an ANN contains two distinct views: (a) topology and (b) learning. The 
topology of an ANN is about the existence or nonexistence of a connection. The 
learning in an ANN is to determine the strengths of the topology connections. One of 
the most representatives of ANNs is MultiLayer Perceptron. Various methods of 
setting the strength of connections in an MLP exist. One way is to set the weights 
explicitly, using a prior knowledge. Another way is to 'train' the MLP, feeding it by 
teaching patterns and then letting it change its weights according to some learning 
rule. In this paper the MLP is used as one of the base classifiers. 

Decision Tree (DT) is considered as one of the most versatile classifiers in the ma-
chine learning field. DT is considered as one of unstable classifiers. It means that it 
can converge to different solutions in successive trainings on same dataset with same 
initializations. It uses a tree-like graph or model of decisions. The kind of its know-
ledge representation is appropriate for experts to understand what it does [11]. 

Its intrinsic instability can be employed as a source of the diversity which is needed 
in classifier ensemble. The ensemble of a number of DTs is a well-known algorithm 
called Random Forest (RF) which is considered as one of the most powerful ensemble 
algorithms. The algorithm of RF was first developed by Breiman [1]. 

In a previous work, Parvin et al. have only dealt with the reducing the size of clas-
sifier ensemble [9]. They have shown that one can reduce the size of an ensemble of 
pairwise classifiers. Indeed they propose a method for reducing the ensemble size in 
the best meaningful manner. Here we inspire from their method, we propose a frame-
work based on that a set of classifier ensembles are produced that its size order is not 
important. Indeed we propose an ensemble of binary classifier ensembles that has the 
order of c, where c is number of classes. 

This paper proposes a framework to develop combinational classifiers. In this new 
paradigm, a multiclass classifier in addition to a few ensembles of pairwise classifiers 
creates a classifier ensemble. At last, to produce final consensus vote, different votes 
(or outputs) are gathered, after that a heuristic classifier ensemble algorithm is em-
ployed to aggregate them.  

This paper focuses on Persian handwritten digit recognition (PHDR), especially on 
Hoda dataset [4]. Although there are well works on PHDR, it is not rational to com-
pare them with each other, because there was no standard dataset in the PHDR field 
until 2006 [4]. The contribution is only compared with those used the same dataset 
used in this paper, i.e. Hoda dataset. 
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2   Artificial Neural Network 

A first wave of interest in ANN (also known as 'connectionist models' or 'parallel 
distributed processing') emerged after the introduction of simplified neurons by 
McCulloch and Pitts in 1943. These neurons were presented as models of biological 
neurons and as conceptual components for circuits that could perform computational 
tasks. Each unit of an ANN performs a relatively simple job: receive input from 
neighbors or external sources and use this to compute an output signal which is prop-
agated to other units. Apart from this processing, a second task is the adjustment of 
the weights. The system is inherently parallel in the sense that many units can carry 
out their computations at the same time. Within neural systems it is useful to distin-
guish three types of units: input units (indicated by an index i) which receive data 
from outside the ANN, output units (indicated by an index o) which send data out of 
the ANN, and hidden units (indicated by an index h) whose input and output signals 
remain within the ANN. During operation, units can be updated either synchronously 
or asynchronously. With synchronous updating, all units update their activation si-
multaneously; with asynchronous updating, each unit has a (usually fixed) probability 
of updating its activation at a time t, and usually only one unit will be able to do this 
at a time. In some cases the latter model has some advantages.  

An ANN has to be configured such that the application of a set of inputs produces 
the desired set of outputs. Various methods to set the strengths of the connections 
exist. One way is to set the weights explicitly, using a priori knowledge. Another way 
is to 'train' the ANN by feeding it teaching patterns and letting it change its weights 
according to some learning rule. For example, the weights are updated according to 
the gradient of the error function. For further study the reader must refer to an ANN 
book such as Haykin's book on theory of ANN [3]. 

 

Fig. 1. An exemplary raw data 

3   Decision Tree Learning 

DT as a machine learning tool uses a tree-like graph or model to operate deciding on a 
specific goal. DT learning is a data mining technique which creates a model to predict 
the value of the goal or class based on input variables. Interior nodes are the  
representative of the input variables and the leaves are the representative of the target 
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value. By splitting the source set into subsets based on their values, DT can be 
learned. Learning process is done for each subset by recursive partitioning. This 
process continues until all remain features in subset has the same value for our goal or 
until there is no improvement in Entropy. Entropy is a measure of the uncertainty 
associated with a random variable. 

Data comes in records of the form: (x,Y) = (x1, x2, x3,…, xn ,Y). The dependent va-
riable, Y, is the target variable that we are trying to understand, classify or generalize. 
The vector x is composed of the input variables, x1, x2, x3 etc., that are used for that 
task. To clarify that what the DT learning is, consider Fig.1. Fig.1 has 3 attributes 
Refund, Marital Status and Taxable Income and our goal is cheat status. We should 
recognize if someone cheats by the help of our 3 attributes. To do learn process, 
attributes split into subsets. Fig.2 shows the process tendency. First, we split our 
source by the Refund and then MarSt and TaxInc. 

For making rules from a decision tree, we must go upward from leaves as our ante-
cedent to root as our consequent. For example consider Fig.2. Rules such as following 
are apprehensible. We can use these rules such as what we have in Association Rule 
Mining. 

• Refund=Yescheat=No 

• TaxInc<80, MarSt= (Single or Divorce), Refund=Nocheat=No 

• TaxInc>80, MarSt= (Single or Divorce), Refund=Nocheat=Yes 

• Refund=No, MarSt=Marriedcheat=No 

 

Fig. 2. The process tendency for Fig.1 

4   Proposed Algorithm 

The main idea behind the proposed method is to use a number of pairwise classifiers 
to reinforce the main classifier in the error-prone regions of the problem space. Fig.3 
depicts the training phase of the proposed method schematically. 

In the proposed algorithm, a multiclass classifier is first trained. Its duty is to pro-
duce a confusion matrix over the validation set. Note that this classifier is trained over 
the total train set. At next step, the pair-classes which are mostly confused with each 
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other and are also mostly error-prone are detected. After that, a number of pairwise 
classifiers are employed to reinforce the drawbacks of the main classifier in those 
error-prone regions. A simple heuristic is used to aggregate their outputs.  

At the first step, a multiclass classifier is trained on all train data. Then, using the 
results of this classifier on the validation data, confusion matrix is obtained. This 
matrix contains important information about the functionalities of classifiers in the 
dataset localities. The close and Error-Prone Pair-Classes (EPPC) can be detected 
using this matrix. Indeed, confusion matrix determines the between-class error distri-
butions. Assume that this matrix is denoted by a. Item aij of this matrix determines 
how many instances of class cj have been misclassified as class ci.  

Table 1 shows the confusion matrix obtained from the base multiclass classifier. 
As you can see, digit 5 (or equivalently class 6) is incorrectly recognized as digit 0 
fifteen times (or equivalently class 1), and also digit 0 is incorrectly recognized as 
digit 5 fourteen times. It means 29 misclassifications have totally occurred in recogni-
tion of these two digits (classes). The mostly erroneous pair-classes are respectively 
(2, 3), (0, 5), (3, 4), (1, 4), (6, 9) and so on according to this matrix. Assume that the i-
th mostly EPPC is denoted by EPPCi. So EPPC1 will be (2, 3). Also assume that the 
number of selected EPPC is denoted by k. 

After determining the mostly erroneous pair-classes, or EPPCs, a set of m ensem-
bles of binary classifiers is to be trained to jointly, as an ensemble of binary classifi-
ers, reinforce the main multiclass classifier in the region of each EPPC. So as it can be 
inferred, it is necessary to train k ensembles of m binary classifiers. Assume that the 
ensemble which is to reinforce the main multiclass classifier in the region of EPPCi is 
denoted by PWCi. Each binary classifier contained in PWCi, is trained over a bag of 
train data like RF. The bags of train data contain only b percept of the randomly se-
lected of train data. It is worthy to be mentioned that pairwise classifiers which are to 
participate in PWCi are trained only on those instances which belongs to EPPCi. As-
sume that the j-th classifier binary classifier of PWCi is denoted by PWCi,j. Because 
there exists m classifiers in each of PWCi and also there exists k EPPC, so there will 
be k*m binary classifiers totally. For example in the Table 1 the EPPC (2, 3) can be 
considered as an erroneous pair-class. So a classifier is necessary to be trained for that 
EPPC using those dataitems of train data that belongs to class 2 or class 3. As men-
tioned before, this method is flexible, so we can add arbitrary number of PWCi to the 
base primary classifiers. It is expected that the performance of the proposed frame-
work outperforms the primary base classifier. It is worthy to note that the accuracies 
of PWCi,j can easily be approximated using the train set. Because PWCi,j is trained 
only on b percept of the train set with labels belong to EPPCi, provided that b is very 
small rate, then the accuracy of PWCi,j on the train set with labels belong to EPPCi 
can be considered as its approximated accuracy. Assume that the mentioned approx-
imated accuracy of PWCi,j is denoted by Pi,j. 

It is important to note that each of PWCi acts as a binary classifier. As it mentioned 
each PWCi contains m binary classifiers with an accuracy vector, Pi. It means of these 
binary ensemble can take a decision with weighed sum algorithm illustrated in [5]. So 
we can combine their results according to weighs computed by the equation 1. 
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Fig. 3. The first training phase of the proposed method  

where wi,j is the accuracy of j-th classifier in the i-th binary ensemble. It is proved that 
the weights obtained according to the equation 1 are optimal weights in theory. Now 
the two outputs of each PWCi are computed as equation 2. 
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where x is a test data. 
The last step of the proposed framework is to combine the results of the main mul-

ticlass classifier and those of PWCi. It is worthy to note that there are 2*k outputs 
from the binary ensembles plus c outputs of the main multiclass classifier. So the 
problem is to map a 2*k+c intermediate space to a c space each of which corresponds 
to a class. The results of all these classifiers are fed as inputs in the aggregators. The 
Output i of aggregator is the final joint output for class i. Here, the aggregation is 
done using a special heuristic method. This process is done using a heuristic based 
ensemble which is illustrated in the Fig.4. As the Fig.4 shows, after producing the 
intermediate space, the outputs of i-th ensemble of binary classifier are multiplied in a 
qi number. This qi number is equal to the sum of the main multiclass classifier's confi-
dences for the classes belong to EPPCi. Assume that the results of the multiplication 
of qi by the outputs of PWCi are denoted by MPWCi. It is important to note that 
MPWCi is a vector of two confidences; the confidences of the classifier framework to 
the classes belonging to PWCi. 
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Fig. 4. Heuristic test phase of the proposed method test 

After calculating the MPWCi, the max value is selected between all of them. If the 
framework's confidence for the most confident class is satisfactory for a test data, then 
it is selected for final decision of framework, else the main multiclass classifier de-
cides for the data. It means that the final decision is taken by equation 3. 
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where MCC(h|x) is the confidence of the main multiclass classifier for the class h 
given a test data x. MPWCsc(h|x) is the confidence of the sc-th ensemble of binary 
classifiers for the class h given a test data x. MaxDecision is calculated according to 
equation 4. 
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where sc is: 

)))|(((maxmaxarg)( xhMPWCxsc i
EPPChi

i∈
=                                        5 

Because of the reinforcement of the main classifier by some ensembles in erroneous 
regions, it is expected that the accuracy of this method outperforms a simple MLP or 
unweighted ensemble. Fig.3 along with Fig.4 stands as the structure of the ensemble 
framework. 

5   Why the Proposed Method Works Results 

As we presume in the paper, it is aimed to add as many as pairwise classifiers to com-
pensate a predefined error rate, PDER*EF(MCL,DValidation), where PDER is a  
predefined error rate and EF(MCL,DValidation) is error frequency of multiclass clas-
sifier, MCL, over the validation data, DValidation. Assume we add |EPS| pairwise 
classifiers to the main MLC. It is as in the equation below. 
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Now assume that a data instance x which belongs really to class q is to be classified 
by the proposed algorithm; it has the error rate which can be obtain by equation 12. 
First assume pp

max is probability for the proposed classifier ensemble to take decision 
by one of its binary classifiers that is able to distinguish two classes: q and p. Also 
assume ppr

max is probability for the proposed classifier ensemble to take decision by 
one of its binary classifiers that is able to distinguish two classes: r and p. They can be 
is obtained by equation 7 and 8 respectively.  

))|(),|(max(*))|()|(()|),((max xrPWCxpPWCxrMCCxpMCCqxrpEPPCp pr +=∈=    7 

))|(),|(max(*))|()|(()|),((max xqPWCxpPWCxqMCCxpMCCqxqpEPPCpp +=∈=   8 

We can assume equation 9 without losing generality.  

λμ =∈∈<<≅∈∈≠∀ ))|(),|(max())|(),|(max(| qxqPWCqxpPWCqxrPWCqxpPWCqr   9 

where μ is a fixed value and then we have: 

μμ ×+∝×+≅∈= )())|()|(()|),(( ,,max qrqp

pr bbxrMCCxpMCCqxrpEPPCp       10 

λλ ×+=×+=∈= )())|()|(()|),(( ,,max qqqp

p bbxqMCCxpMCCqxqpEPPCp       11 

As it is inferred from the algorithm in the same condition, its error can be formulated 
as follow. 
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where ppair is probability of taking correct decision by binary classifier and bj,q is de-
fined as follow. 
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So we can reformulate equation 12 as follow: 
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Note that in equation 14 if ppr
max and pr

max are zero for an exemplary input the error of 
classification will be still equal to the main multiclass classifier. If they are not zero 
for an exemplary input the misclassification rate will still be reduced because of re-
duction in second part of equation 14.  Although the first part increases the error in 
equation 14, but if we assume that the binary classifiers are more accurate than the 
multiclass classifier, then the increase is nullified by the decrease part. 

6   Experimental Results 

This section evaluates the results of applying the proposed framework on a Persian 
handwritten digit dataset named Hoda [4]. This dataset contains 102,364 instances of 
digits 0-9. Dataset is divided into 3 parts: train, evaluation and test sets. Train set 
contains 60,000 instances. Evaluation and test datasets are contained 20,000 and 
22,364 instances. The 106 features from each of them have been extracted which are 
described in [4].  

In this paper, MLP and DT are used as base primary classifier. We use MLPs with 
2 hidden layers including respectively 10 and 5 neurons in the hidden layer 1 and 2, as 
the base Multiclass classifier and base simple classifiers. Confusion matrix is obtained 
from its output. Also DT’s measure of decision is taken as Gini measure. The classifi-
ers’ parameters are kept fixed during all of their experiments. It is important to take a 
note that all classifiers in the algorithm are kept unchanged. It means that all classifi-
ers are considered as MLP in the first experiments. After that the same experiments 
are taken by substituting all MLPs whit DTs. 
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Table 1.  Unsoft confusion matrix pertaining to the Persian handwritten OCR 

 0 1 2 3 4 5 6 7 8 9 

0 969 0 0 4 1 14 2 0 0 1 

1 4 992 1 0 2 4 1 1 1 15 

2 1 1 974 18 9 1 4 4 0 1 

3 0 0 13 957 12 0 3 2 0 1 

4 5 0 3 17 973 3 2 2 0 3 

5 15 0 0 0 0 977 1 0 0 0 

6 2 6 2 1 3 0 974 5 1 3 

7 3 0 3 1 0 1 1 986 0 0 

8 0 1 0 1 0 0 2 0 995 0 

9 1 0 4 1 0 0 10 0 3 976 

 
The parameter k is set to 11. So, the number of pairwise ensembles of binary clas-

sifiers added equals to 11 in the experiments. The parameter m is also set to 9. So, the 
number of binary classifiers per each EPPC equals to 9 in the experiments. It means 
that 99 binary classifiers are trained for the pair-classes that have considerable error 
rates. Assume that the error number of each pair-class is available. For choosing the 
most erroneous pair-classes, it is sufficient to sort error numbers of pair-classes. Then 
we can select an arbitrary number of them. This arbitrary number can be determined 
by try and error which it is set to 11 in the experiments. 

As mentioned 9*11=99 pairwise classifiers are added to main multiclass classifier. 
As the parameter b is selected 20, so each of these classifiers is trained on only b 
precepts of corresponding train data. It means each of them is trained over 20 percept 
of the train set with the corresponding classes. The cardinality of this set is calculated 
by equation 15. 

240010/2.0*2*60000/*2* === cbtrainCar                              15 

It means that each binary classifier is trained on 2400 datapoints with 2 class labels. 
Table 2 shows the experimental results comparatively. As it is inferred the framework 
is outperforms the previous works and the simple classifiers in the case of employing 
decision tree as the base classifier. 

Table 2. The accuracies of different settings of the proposed framework 

Methods DT ANN 
A simple multiclass classifier 96.57 97.83 

Parvin et al. [9] 97.93 98.89 
Weighed fusion 99.01 98.46 
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7   Conclusion 

In this paper, a new method is proposed to improve the performance of multiclass 
classification system. We also propose a framework based on that a set of classifier 
ensembles are produced that its size order is not important. Indeed we propose an 
ensemble of binary classifier ensembles that has the order of c, where c is number of 
classes. So first an arbitrary number of binary classifier ensembles are added to main 
classifier. Then results of all these classifier are given to a set of a heuristic based 
ensemble. Usage of confusion matrix make proposed method a flexible one. The 
number of all possible pairwise classifiers is c*(c-1)/2 that it is O(c^2). Using this 
method without giving up a considerable accuracy, we decrease its order to O(1). This 
feature of our proposed method makes it applicable for problems with a large number 
of classes. The experiments show the effectiveness of this method. Also we reached to 
very good results in Persian handwritten digit recognition which is a very large data-
set. 
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Abstract. This paper proposes an innovative approach to improve the perfor-
mance of Persian text classification. The proposed method uses a thesaurus as a 
helpful knowledge to obtain the real frequencies of words in the corpus. Three 
types of relationships are considered in our thesaurus. This is the first attempt to 
use a Persian thesaurus in the field of Persian information retrieval. Experimen-
tal results show a significant improvement in the case of employing Persian the-
saurus rather common methods.  

Keywords: Persian Text, Persian Thesaurus, Semantic-Based Text  
Classification. 

1   Introduction 

In the current century Information Technology is considered as one of the most im-
portant fields (if not the most important field) among the researchers. Because the 
information is growing in a significant rapid way, its appropriate management and 
usage are inevitable. Indeed proper responding to the user queries is crucial in the 
Information Technology [1]. One of the most challenging problems in the field of 
Information Technology is how to do text retrieval and how to employ efficient algo-
rithm on the mass of information. 

In this direction, usage of keywords is very promising way for researchers to han-
dle the job. A very important desire for researchers is to find the best representative 
keywords in the field of information retrieval. One of the most straightforward ways 
is based on frequency based keywords. Although this method is a very handful solu-
tion, the between word relationships are ignored there. It means while two synonym 
words are counted by the algorithm as two different words, it is better for the algo-
rithm to count them as a single word and for its frequency to be equal to sum of fre-
quencies of those two words. 

To response queries of users relevantly, indexing is necessary. In general each con-
text is consisted of two main parts: (a) external part and (b) body part. In library in-
dexing based on first part is descriptive cataloging and based on second part is subject 
cataloging. Indexing needs the cognition of context. If indexing is done by computer, 
this will be automated indexing [2].  

In text retrieval systems, indexing can be produced completely automatically.  
Research on creating or improving indexing methods and the automatic search for  



392 H. Parvin, B. Minaei-Bidgoli, and A. Dahbashi 

information in texts for different languages has always been hot. The most sensitive 
and difficult step in the process during indexing should be automatically selection of 
the words that are used for index construction. In practice, indexing based on all 
words contained in the context has very high overhead. It is worthy to mention that 
indexing based on all the words is unnecessary.  

In information processing, many systems were established. These systems are ca-
tegorized in five main groups, which include: (I) Management Information System, 
(II) Data Base Management System, (III) Decision Support System, (VI) Question 
Answering System and (V) Information Retrieval System. 

Text retrieval systems belong to information retrieval systems. Since a lot of simi-
larities between information retrieval systems and database management systems, 
somebody may confuse the two systems with each other.  

While data processing operations are performed on documents and duty of the  
systems is to store documents, provide and create access to documents or their repre-
sentatives. In text retrieval systems, data input is natural language text (full text or 
selections, or abstract full text) [3]. In information retrieval systems, output in re-
sponse to a search query is in the form of a set of references. These references show 
information about system user favorite items to them [4]. The duty of a database man-
agement system is the storage, the preservation and the retrieval system in a system, 
i.e. the information in this system is not natural language text; it is in the form of 
certain data elements that are stored in tables. 

This paper has been to use existing relationships between words to help build a 
suitable technique for automatic thesaurus-based indexing in the Persian language.  

Rest of this paper is organized as follows. Section 2 is related works. In section 3, 
we explain the proposed method. Section 4 demonstrates results of our proposed 
method against traditional comparatively. Finally, we conclude in section 5. 

2   Related Work 

In 1999, Turney showed that keyword extraction is one of the most important factors 
accelerate and facilitate information retrieval applications, but until then there is no 
attempt to improve quality of extracted keywords [5]. 

Then simultaneously in 1999, Frank et al. who worked in the field of artificial in-
telligence, while they were presenting machine processing algorithm, they tried to 
improve the quality of extracted keywords. Their work was based on Simple Bayes 
algorithm. Their system is named "KEA". In this method, although the quality of the 
extracted words significantly increased, linguistic issues were not considered [6]. The 
general process for extracting keywords was introduced by Liu in 2005. They elected 
the first candidate keywords, and then assigned a weight to each word and finally 
extracted the keywords with the highest weights [7]. Franz in 2002 combined statis-
tical analysis and linguistic analysis [8]. He believed that without considering infor-
mation about linguistic knowledge, statistical analysis considers disadvantageous and 
non-key words [8]. 

In direction of previous researches in 2005, to solve the drawbacks of the extrac-
tion of disadvantageous and non-key words, Freitas et al. modeled the process of 
keyword extraction as a classification problem [9]. Zhang et al. used a decision tree as 
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classifier to recognize the keywords [10]. Halt used n-gram in the context of informa-
tion retrieval [11]. In the first attempt, Deegan used thesaurus in 2004 [12] to improve 
information retrieval efficacy. After that Hyun tried to specialized thesaurus for a 
special query [13]. There are some successive works, tried to improve information 
retrieval efficacy after them [14]-[16]. 

Some of the work done in the field of Persian language is as follows [17]-[21]. 
While there are many methods in the Persian language, there is a lack of employing 
thesaurus in the Persian so far. 

 

 

Fig. 1. Proposed Indexing framework 

 

Fig. 2.  Pre-processing phase of proposed framework 

3   Proposed Framework 

Fig. 1 depicts the proposed framework. The first step of the Fig. 1 is expanded in the 
Fig. 2. As seen in Fig. 2, in preprocessing step, Persian texts are refined to extract 
useful texts along with keywords to be ready for indexing stage. Indeed the  
pre-processing phase of proposed framework consists of three sub-parts. First the 

Omission of Common Words 

Finding the Roots of Words 

Omission of Words with Redundant and 
Common Roots (very versatile words) 

2-Applying Thesaurus
Finding the synonyms and inclusions 

2-Weighting Mechanism

1-Pre-processing
Delete redundant words (stop words) and rooting 
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common words like prepositions are omitted. Then the root of each word is found. 
Third the common roots, like “be”, are omitted. 

In the Fig. 3 assume that the word1, word2 and word3 are synonyms. Using the-
saurus these three words are converted to first word, i.e. the frequency of word1 is 
considered as 3. 

 

 

Fig. 3. A typical text with three words that are synonyms 

So a table is produced from Fig. 3 that the frequencies of words are like Table 1.  

Table 1. Table with frequencies of words of Fig. 3 

word #  

. 

. 

. 

  

word1 3 head 

word2 3  

word3 3  

. 

. 

. 

  

 
So in the table of words frequencies synonym relationship is considered by a 

weight equals to 1, i.e. emerging the synonym of a word is equal to emerging that 
word. Another relationship that is taken into consideration is inclusion. For example a 
word an animal includes a wolf. So if in a text first animal is emerged, emerging a 
word wolf is equal to emerging animal with weight α, where α is less than one and 
vice versa. It means if an inclusion word has been emerged so far, emerging an in-
cluded word is to emerge the included word by weight one, and including word by a 
weight below one. For example consider text of Fig. 4. Assume that word5 is a spe-
cial kind of word4 and word4 is special kind of word3. As before, word1, word2 and 
word3 are synonyms. 
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Fig. 4. A typical text with three words that are synonyms 

Now a table is produced from Fig. 3 that the frequencies of words are like Table 2. 
For simplicity assume that α is 1/4. 

Table 2. Table with frequencies of words of Fig. 4 

word #  

. 

. 

. 

. 

. 

. 

. 

. 

. 
word1 4+1/4+1/4*1/4 head 

word2 4+1/4+1/4*1/4  

word3 4+1/4+1/4*1/4  

word4 1+4*1/4+1/4 head 

word5 1+1/4+4*1/4*1/4 head 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 
In the table 2 word1 is the head for three words, word1, word2 and word3. Because 

the words, word1, word2 and word3, are emerged 4 times, their frequencies are con-
sidered 4 at least. Besides due to emerging the word4 that is a special kind of word3, a 
1/4 is added to their frequencies. Due to emerging the word5 that is a special kind of 
word4, a 1/4*1/4 is added to their frequencies. From another side, the frequency of 
the word4 is at least 1, due to its appearance. Because of four appearances of the 
word1, 4 times 1/4 is added by its one appearance. Besides because of one appearance 
of word5 another 1/4 is added to its frequency. This scenario is valid for word5. It 
means that one appearance of word5, plus 1/4 due to appearance of word4 plus 4 
appearances of word1 that has inclusion relationship with length 2, i.e. 4*1/4*1/4, is 
considered as frequency of word5. 
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4   Experimental Results 

In order to test the proposed method five different categories has been collected from 
Hamshahri [22] newspaper. The detail of the dataset is presented in the Table 3. 

Table 3. Details of used dataset 

 
 
After refinement of dataset, the average number of words in each category is re-

duced as the Table 4. 

Table 4.  Dataset after refinement 

  

After applying refinement phase, we produce a feature space as illustrated in the 
Table 5.  

Table 5. Dataset after refinement 

 

Average # of 
words after 
refinement 

phase 

Average # of 
words 

Topic Row 

149 204 Sport 1 
135 199 Economic 2 
76 123 Rural 3 

115 160 Adventure 4 
124 177 Foreign 5 

 

Average # of 
words 

# of articles Topic Row 

204 146 Sport 1 
199 154 Economic 2 
123 171 Rural 3 
160 89 Adventure 4 
177 130 Foreign 5 
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In Table 5, parameter n is the number of all Head Word which is a head word in an 
article at least. The entity jth column of ith row in Table 5 is equal to frequency value 
of head word j in the ith article. 

By filling the Table 5 values by using thesaurus and without using thesaurus we 
obtain two different datasets. By 4-fold cross validation and 1-neareast neighbour 
classifier, we reach the results in the Table 6. 

Table 6. Accuracy of 1NN classifier with and without thesaurus 

 Without thesaurus With thesaurus 
Accuracy of classification 68.3% 78.4% 

5   Conclusion and Future Works 

In this paper, we have proposed a new method to improve the performance of Persian 
text classification. The proposed method uses a Persian thesaurus to reinforce the fre-
quencies of words. With a simple classifier, it is shown that using thesaurus can im-
prove the classification of Persian texts. We consider two relationships: synonyms and 
inclusion. We use a hierarchical inclusion weighting, and linear synonym weighting.  

As a future work, one can turn to research on the different weighting methods.  
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Abstract. This paper proposes an ensemble based approach for feature selec-
tion. We aim at overcoming the problem of parameter sensitivity of feature se-
lection approaches. To do this we employ ensemble method. We get the results 
per different possible threshold values automatically in our algorithm. For each 
threshold value, we get a subset of features. We give a score to each feature in 
these subsets. Finally by use of ensemble method, we select the features which 
have the highest scores. This method is not a parameter sensitive one, and also 
it has been shown that using the method based on the fuzzy entropy results in 
more reliable selected features than the previous methods'. Empirical results 
show that although the efficacy of the method is not considerably decreased in 
most of cases, the method becomes free from setting of any parameter.  

Keywords: Feature Selection, Ensemble Methods, Fuzzy Entropy. 

1   Introduction 

We have to use features of a dataset to classify data points in pattern recognition and 
data mining. Some datasets have a large number of features. Processing these datasets 
is not possible or is very difficult. To solve this problem, the dimensionalities of these 
datasets should be reduced. To do this, some of the redundant or irrelevant features 
should be eliminated. By eliminating the redundant and irrelevant features, the classi-
fication performance over them will be improved. Three different approaches are 
available for feature selection mechanism [1]. The first ones are embedded approach-
es. In these algorithms, feature selection is done as a part of the data algorithm. The 
second ones are filter approaches. These algorithm selected features before the data 
mining algorithm is run. The last ones are wrapper approaches. In these algorithms 
the target data mining algorithm is used to get the best subset of features. 

A lot of methods for feature subset selection have been presented, such as similari-
ty measures [2], gainentropies [3], the relevance of features [4], the genetic algorithms 
method [5], the overall feature evaluation index (OFEI) [6], the feature quality index 
(FQI) [6], the mutual information-based feature selector (MIFS) [7], classifiability 
measures [8], neuro-fuzzy approaches [9, 10], fuzzy entropy measures[11], etc. 

This paper is based on Shie-and-Chen’s method [11]. In Shie-and-Chen’s method 
by use of the previous fuzzy entropy measurements and also by explaining some  
new definitions, the authors present a new algorithm for feature selection problem. 
This algorithm can select appropriate features more accurately than the other  
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algorithms. The new definitions are explained in the following section. This method 
uses boundary samples instead of the full set of samples. Boundary samples are some 
kinds of samples which are incorrectly classified samples of previously selected fea-
tures. It uses two different threshold values to calculate the entropies. The most im-
portant weakness of the algorithm is raises from its sensitiveness to user-defined thre-
shold values. User has to test different threshold values, and finally selects ones which 
cause the best performance. In other words this algorithm is a kind of the parameter 
sensitive algorithms. For a new dataset a lot of different values for two threshold 
values must be tested and then the best ones are selected. 

In this paper we try to improve Shie-and-Chen’s method. We try to solve the 
drawback of parameter sensitivity. To do this we use ensemble method. We get the 
results for different threshold values. For each threshold values, we get a subset of 
features. We give a score to each feature in these subsets. Finally by use of ensemble 
concept, we select the features which have the highest scores. This method is not a 
parameter sensitive one, and also it has been shown that using the method based on 
the fuzzy entropy results in more reliable selected features than the previous methods'.  

Our contributions are three-folded. 

1. We propose a novel ensemble approach in the feature selection. 
2. We propose a novel method to be got rid of the drawback of parameter sensitivi-

ty for feature selection. 
3. We will show empirically that the ensemble-based approach for feature selection 

is fully automated and parameterless, also it outperforms the original version. 

2   Proposed Algorithm 

The algorithm which is presented Fig. 1 is parameter sensitive. So if these parameters 
change, the result of algorithm can be changed significantly. When these parameters 
are given by the user, the quality of algorithm results will be even weaker. Because 
user selects the parameters randomly and experimentally, so it is possible that they are 
not proper values for an exemplary dataset. So the result of algorithm is not trustable. 
Also the proper values are not available for some datasets which are not used in this 
algorithm. So to find the best result we need to test the algorithm for a lot of possible 
threshold values. Then we must select the threshold values which cause the best re-
sults. To solve this problem we use ensemble method. 

We do not select threshold values experimentally in our algorithm. Our algorithm 
test different possible values for thresholds and then by doing some steps, it selects 
the subset of features. This algorithm has 5 steps. We employ Shie-and-Chen’s me-
thod by a little change in our algorithm. The result of their algorithm is a subset of 
features. But we get a sequence of features instead of a subset. Actually the order of 
feature appearance is important in our algorithm.  

First step runs Shie-and-Chen’s method for each pair of (Tr , Tc). The result of al-
gorithm at this step is a table of feature sequences which are selected for each pair of 
threshold values. For example the result of our algorithm for Iris is shown in Table 1. 
We obtained this result for 5 different values for Tc and Tr. Each element in this table 
is a feature sequence selected by the algorithm of Fig. 1 with a different pair of thre-
shold values. The first step of the algorithm is as Fig. 2. 
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FSeq= Shie-and-ChenÊs Algorithm(Tr, Tc) 
F is a set of candidate feature, FS is the selected feature subset 
FSeq is the selected feature sequence. 
Step 1: 
For each f   do 

 Let  

 Let E(f)= FFE(f) 
Step 2: 
 Let i=1 
 Let   
 Let  
 Let   
 Let  
 Let i= i+1 
 Let  
Step 3:  
repeat 
 for each    do 
  Let EMtemp= CEM(FS,f,Tr) 
  Let E(f)= BSFFE(FS,f) 
 Let    
 Let    
 Let       
 Let i= i+1 
 Let   
 Let      
 Let     
until 0  0   
Let FS be the selected feature subset and FSeq be the selected feature sequence. 

Fig. 1. Shie-and-Chen’s Algorithm with a simple modification 

For Tr = base_tr: step_tr :1 
 For Tc = base_tc: step_tc :1 
  AllFSeq(Tr, Tc) = Shie-and-Chen’s algorithm(Tr, Tc); 

Fig. 2. Pseudo code of the first step of algorithm 

It has two loops. One of them slides over Tr and the other one slides over Tc. Two 
parameters base_tr and base_tc are the minimum values used for Tr and Tc respective-
ly. Two parameters step_tr and step_tc determine the distance between two consecu-
tive threshold values of parameters Tr and Tc respectively. FSeq is a two dimensional 
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matrix whose elements are features sequences obtained by the algorithm of Fig. 3 
with each possible tested pair of threshold values. 

As it is inferred from Table 1, at the first and the last rows of each column we have 
some similar results for some threshold values. There is a similar discussion about the 
first and the last columns of each row. The results of algorithm for the first and the 
last columns of each row and the first and the last rows of each column are not trusta-
ble to reach some proper threshold values. Since these results have strongly negative 
effect on the final evaluation, at the second step we have to remove these repetitions. 
This step has two parts. The first part removes the repetitions of columns and the 
second part removes the repetitions of rows. First part keeps only the results at the 
beginning and ending of each column to reach a dissimilar result at the beginning and 
ending of each column. And the second part keeps only the results at the beginning 
and ending of a row to reach a dissimilar result at the beginning or ending of each 
row. In other words, we use only one of the same results at the beginning and ending 
parts of each row and each column in final evaluation. The following pseudo code is 
the first part of second step of the algorithm. 

 
New_AllFSeq = AllFSeq 
For Tr = base_tr: step_tr :1 
 q = base_ tc 
 While (true) 
  q = q + step_ tc 
  if is_same ( AllFSeq ( Tr , base_tc ) , AllFSeq ( Tr, q )) 
   New_AllFseq ( Tr , q ) = EmptySeq 
  else 
   break 
 q = last_ tc 
 While (true) 
  q = q - step_ tc; 
  if is_same ( AllFSeq ( Tr , last_tc ) , AllFSeq ( Tr, q )) 
   New_AllFseq ( Tr , q ) = EmptySeq 
  else 
   break 

Fig. 3. Pseudo code of the first part of the second step of the algorithm 

Table 1.  Feature subsets selected for some pairs of threshold values over Iris dataset 

Tc,   Tr 0.01 0.21 0.41 0.61 0.81 
0.01 4, 3  3, 4 3, 4 3, 4 3, 4 
0.21 4, 3  4, 3 3, 4 3, 4 3, 4 
0.41 3, 4 4, 3 3, 4 3, 4 3, 4 
0.61 4, 1 4, 2 3, 1 3, 1 3, 1 
0.81 3, 1 4, 3, 1 3, 4 3, 4 3, 4 
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Equation 1 is a function that checks the similarity of its inputs. It has two input pa-
rameters which can be two sequences of features. If they are similar, the output will 
be 1 and if they are not similar the output is 0. _   ,  1,             0,                                            1 

It checks the similarity between the first sequence of a column and the consecutive 
sequences of that column. By reaching the first dissimilar sequence at the beginning 
or ending of a column, this part of algorithm is done for each column. Output for Iris 
example of doing the first part of the second step of the algorithm is available in Ta-
ble 2 by horizontal shading (+ sings). The second part of the second step of the algo-
rithm is as the algorithm of Fig. 4. It is like the first part of the second step. It checks 
the similarity between the first sequence of a row and the other sequences in that 
column. By reaching the first dissimilar sequence at the beginning or ending of a row, 
this part of algorithm is done for each row.  
 

For Tc = base_tc: step_tc :1 
 q = base_ tr 
 While (true) 
  q = q + step_ tr 
  if is_same ( AllFSeq ( Tc , base_tr ) , AllFSeq ( Tc, q )) 
   New_AllFseq ( Tc , q ) = EmptySeq 
  else 
   break;  
 q = last_ tr 
 While (true) 
  q = q - step_ tr 
  if is_same ( AllFSeq ( Tc , last_tr ) , AllFSeq ( Tc, q )) 
   New_AllFseq ( Tc , q ) = EmptySeq 
  else 
   break 
AllFseq=New_AllFseq 

Fig. 4. Pseudo code of the second part of the second step of the algorithm 

Result of doing the second part of the second step of the algorithm over the Iris  
dataset which is obtained from the first step is shown in Table 2 by vertical shading  
(* sings). 

Table 2. Delete repetitions in columns of Table 1 then delete repetitions in rows of Table 1 

Tc,   Tr 0.01 0.21 0.41 0.61 0.81 
0.01 4, 3  * * * 3, 4 
0.21 + +* +* +* + 
0.41 3, 4 4, 3 +* +* + 
0.61 4, 1 4, 2 * * 3, 1 
0.81 3, 1 4, 3, 1 * * 3, 4 
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Third step uses majority voting to reach the best subset of features. We have to 
give a score to each feature. There is a subset of selected features for each pair of Tr 
and Tc. We change this subset to a sequence of features by their ranks of appearing at 
the first step. In other words each feature that appears sooner has more effect on out-
put, so it is given a higher score. Then we sum all given scores to features for each 
pair of threshold values. We define the score of each feature as equation 2. 

After obtaining Table 2 for each dataset, we give a score to each of its features ac-
cording to equation 2. In the equation 2, we give the higher weight to the first feature 
which appears sooner, and we give the lower weight to the last feature which appears 
at the end of the sequence. For example if there are 10 features, the weight of the first 
feature is considered 10, and the weight of the last feature is considered 1.    ∑ ∑ ∑    , ,  | | 1             2 

where MaxSF is obtained by equation 3. 

, , |   , |                                     3 

Finally we sum all the weighted scores obtained by the algorithm for different pairs of 
threshold values. For example, in the Iris example the MaxFS is 3. In the example we 
get these results: Score (3) = 21, Score (4) = 21, Score (1) = 7 and Score (2) = 2. 

Then we sort all features by their scores. After that we select the features with 
maximum scores. We select the same number of features as the Shie-and-Chen’s 
method. In Iris example the subset of {3, 4} features is selected as final selected sub-
set, because these features have the highest scores, and Shie-and-Chen’s method se-
lected two features for this example. 

3   Experimental Results 

In [11] they tested their algorithm in two stages. Their first experiment is compared 
with some previous methods in Table 3. These methods are OFFSS, OFEI, FQI and 
MIFS. This table shows the feature subsets selected by some methods. They use four 
datasets in this stage. These data sets are Iris, Breast Cancer Diagnostic, Pima Di-
abetes and Mile Per Gallon (MPG). 

Table 3.  Comparison of feature subsets selected by previous methods [11] 

Data set Feature subsets selected by different methods 
 Shie-and-ChenÊs MIFS FQI OFEI OFFSS 

Iris {4, 3} {4, 3} {4, 3} {4, 3} {4, 3} 
Breast Cancer {6, 2, 1, 8, 5, 3} {6, 3, 2, 7} {6, 1, 8, 3} {6, 1, 3, 2} {6, 3, 1, 2} 
Pima Diabetes {2, 6, 8, 7} {2, 6, 8} {8, 2, 1} {2, 3, 6} {2, 6, 7} 

MPG {4, 6, 3} {4, 6, 2, 1} {4, 6, 3, 2} {4, 5, 6, 2} {6, 2, 5, 4} 

Table 4 shows the accuracies of different classifiers on the selected features ob-
tained by the methods used in Table 3. It shows that the different classifiers on the 
selected features obtained by Shie-and-Chen’s method have better accuracies than the 
other methods. It uses four classifiers to compare these methods. These classifiers are 
LMT, Naive Bayes, SMO and C4.5. 
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Table 4. Comparison between average classification accuracy rates of previous methods [11] 

Average classification accuracy rates of different methods  
Classifiers 

 
Data sets Shie-and-ChenÊs 

method 
MIFS FQI OFEI OFFSS 

94.67 �4.27% 94.67 �4.27%94.67 �4.27%94.67 �4.27%94.67 �4.27% LMT  
 

Iris 
96.00 ��4.00% 96.00 ��4.00%96.00 ��4.00%96.00 ��4.00%96.00 ��4.00% Naive Bayes 
96.00 ��4.00% 96.00 ��4.00%96.00 ��4.00%96.00 ��4.00%96.00 ��4.00% SMO 
96.00 ��5.33% 96.00 ��5.33%96.00 ��5.33%96.00 ��5.33%96.00 ��5.33% C4.5 
96.49 ��2.08% 95.46 ��1.79%96.49 �2.09%95.90 �2.15%95.90 ��2.15% LMT  

 
Breast cancer 

96.63 ��1.97% 95.31 ��1.58%96.49 �1.88%96.19 �2.56%96.19 ��2.56% Naive Bayes 
97.07 ��2.27% 96.05 ��2.62%97.07 �1.85%96.34 �2.19%96.34 ��2.19% SMO 
96.02 ��2.57% 95.16 ��2.86%96.93 �1.90%95.61 �2.70%95.61 ��2.70% C4.5 
77.22 ��4.52% 75.53 ��4.39% 73.56 �4.68% 76.04 �3.63% 76.83 ��3.79% LMT  

 
Pima diabetes 

77.47 ��4.93% 76.44 ��5.50%74.09 �5.43%76.83 �4.36%76.57 ��3.65% Naive Bayes 
77.08 ��5.06% 75.91 ��4.97% 75.39 �4.93% 75.91 �3.80% 75.91 ��4.96% SMO 

74.88 ��5.89% 74.61 ��4.86% 71.74 �3.18% 74.36 �4.27% 75.01 ��3.72% C4.5 

81.87 ��6.74% 84.17 ��7.26%82.38 �7.28%81.13 �5.67%81.13 ��5.67% LMT  
 

MPG 
80.60 ��7.01% 76.28 ��8.25%79.59 �6.79%78.31 �7.63%78.31 ��7.63% Naive Bayes 
81.86 ��8.25% 76.77 ��4.12%81.61 �6.99%80.58 �7.21%80.58 ��7.21% SMO 
79.93 ��7.78% 81.37 ��9.05%79.58 �8.24%79.83 �7.84%79.83 ��7.84% C4.5 

 
The second experiment is on five datasets and three problems. These datasets are 

Pima Diabetes, Cleve, Correlated, M of N-3-7-10 and Crx datasets, also Monk-1, 
Monk-2 and Monk-3 problems. They compare their method with Dong and Kothari’s 
method. Table 5 shows the feature subsets which are selected by these algorithms. 

Table 5. Feature subsets selected by Dong-and-Kothari’s method and Shie-and-Chen’s method 

Feature subsets selected by different methods Data sets 
Shie-and-ChenÊs method Dong-and-KothariÊs method 
{2, 6, 8, 7}{2, 8, 1}Pima diabetes data set 
{13, 3, 12, 11, 1, 10, 2, 5, 6} {10, 13, 12, 3, 9}Cleve data set 
{6, 1, 2, 3, 4}{6, 1, 2, 3, 4}Correlated data set 
{4, 9, 8, 5, 3, 6, 7}{4, 9, 5, 8, 3, 6, 7}M of N-3-7-10 data set 
{9}{8, 9, 13, 10}Crx data set 
{5, 1, 2}{5, 1, 2}Monk-1 data set 
{5}{3, 6, 1, 2, 4, 5}Monk-2 data set 
{5, 2, 4}{2, 5, 4, 1}Monk-3 data set 

 
Table 6 shows the accuracies of two methods using the same classifier employed 

for Table 3. 

Table 6. Comparison between average classification accuracy rates of Dong-and-Kothari’s 
method and Shie-and-Chen’s method 

Average classification accuracy rates of different methods  
Classifiers 

 
Data sets Shie-and-ChenÊs method Dong-and-KothariÊs method

77.22 μ 4.52% 73.56 μ 4.68%LMT  
Pima diabetes data 

set 
77.47 μ 4.93% 73.43 μ 1.57%Naive Bayes 
77.08 μ 5.06% 75.39 μ 4.93%SMO 
74.88 μ 5.89% 71.74 μ 3.18%C4.5 



406 H. Parvin, B. Minaei-Bidgoli, and S. Parvin 

Table 6. (Continued) 

82.87 μ�6.23% 83.17 μ�4.24%LMT  
Cleve data set 84.48 μ 3.93% 84.17 μ 1.82%Naive Bayes 

83.51μ�6.09%84.47 μ 5.59%SMO 
76.90 μ�8.40% 76.90  μ 8.71%C4.5 
100.00 μ 0.00% 100.00 μ 0.00%LMT  

Correlated data set 86.03 μ 3.75% 86.03 μ 3.75%Naive Bayes 
89.87 μ 6.88% 89.87 μ �6.88%SMO 
94.62 μ 4.54% 94.62 μ 4.54%C4.5 
100.00 μ 0.00% 100.00 μ 0.00%LMT  

M of N-3-7-10 
data set 

89.33 μ 1.56% 89.33 μ 1.56%Naive Bayes 
100.00 μ 0.00% 100.00 μ 0.00%SMO 
100.00 μ 0.00% 100.00 μ 0.00%C4.5 
85.22 μ 4.04% 85.22 μ 4.04%LMT  

Crx data set 85.51 μ 4.25% 84.06 μ 1.33%Naive Bayes 
85.80 μ 3.71% 85.80 μ 3.71%SMO 
85.51 μ 4.25% 85.36 μ 4.12%C4.5 
100.00 μ 0.00% 100.00 μ 0.00%LMT  

Monk-1 data set 74.97 μ 1.95% 74.97 μ 1.95%Naive Bayes 
75.02 μ 5.66% 75.02 μ 5.66%SMO 
100.00 μ 0.00% 100.00 μ 0.00%C4.5 
67.36 μ 1.17% 67.36 μ 1.17%LMT  

Monk-2 data set 67.14 μ 0.61% 66.22 μ 2.80%Naive Bayes 
67.14 μ 0.61% 67.14 μ 0.61%SMO 
67.14 μ 0.61% 67.14 μ 0.61%C4.5 
99.77 μ 0.10% 99.77 μ 0.10%LMT  

Monk-3 data set 97.21 μ 2.71% 97.22 μ 0.47%Naive Bayes 
100.00 μ 0.00% 100.00 μ 0.00%SMO 
100.00 μ 0.00% 100.00 μ 0.00%C4.5 

 
We have implemented our feature selection algorithm in Matlab. We use weka to 

evaluate the mapped datasets into the selected features obtained by our feature selec-
tion algorithms. We compare the feature subsets selected by our method with those 
selected by Shie-and-Chen’s method in Table 7 for all of datasets which are used to 
compare in [11]. 

Table 7. Comparison between feature subsets selected by our and Shie-and-Chen’s methods 

Feature subsets selected by two methods Data sets 
Our method Shie-and-ChenÊs method 

{4,3} {4,3} Iris 
{6, 2, 3, 1, 9, 5} {6, 2, 1, 8, 5, 3} Breast cancer data set 
{2, 4, 6, 3} {2, 6, 8, 7} Pima 
{2, 4, 1} {4, 6, 3} MPG data set 
{13, 1, 12, 3, 9} {13, 3, 12, 11, 1, 10, 2, 5, 6} Cleve data set 
{9} {9} Crx data set 
{5, 1, 2} {5, 1, 2} Monk-1 data set 
{5} {5} Monk-2 data set 
{2,5,1} {5, 2, 4} Monk-3 data set 



 An Accumulative Points/Votes Based Approach for Feature Selection 407 

Also Table 8 shows that the obtained accuracies of different classifiers on the se-
lected features obtained by proposed method are better that the obtained accuracies of 
the same classifiers on the selected features obtained by Shie-and-Chen’s algorithms 
the most datasets. 

Table 8. Comparison between average classification accuracy rates of our and Shie-and-Chen’s 
methods  

Average classification accuracy rates of different methods  
Classifiers 

 
Data sets Shie-and-ChenÊs method Our method

77.22 μ 4.52% 76.30 μ4.84% LMT  
Pima diabetes 

data set 
77.47 μ�4.93% 76.30 μ4.84% Naive Bayes 
77.08 μ�5.06% 75.65 μ5.61% SMO 
74.88 μ�5.89% 94.62 μ2.12% C4.5 
82.87 μ 6.23% 82.42 μ 5.34% LMT  

Cleve data set 84.48 μ 3.93% 80.41 μ 3.95% Naive Bayes 
83.51 μ 6.09% 80.00 μ 5.99% SMO 
76.90 μ 8.40% 76.90 μ 8.40% C4.5 
100.00 μ�0.00% 100.00 μ��0.00%LMT  

Correlated data 
set 

86.03 μ 3.75% 86.03 μ�3.75%Naive Bayes 
89.87 μ 6.88% 89.87 μ�6.88%SMO 
94.62 μ 4.54% 94.62 μ 4.54%C4.5 
100.00 μ 0.00% 100.00 μ 0.00%LMT  

M of N-3-7-10 
data set 

89.33 μ 1.56% 89.33 μ 1.56%Naive Bayes 
100.00 μ �0.00% 100.00 μ�0.00%SMO 
100.00 μ 0.00% 100.00 μ 0.00% C4.5 
85.22 μ 4.04% 86.53 μ3.87% LMT  

Crx data set 85.51 μ 4.25% 86.53 μ3.87% Naive Bayes 
85.80 μ 3.71% 86.53 μ3.87% SMO 
85.51 μ 4.25% 85.36 μ 4.12% C4.5 
100.00 μ 0.00% 100 μ 0.00% LMT  

Monk-1 data set 74.97 μ 1.95% 72.22 μ 6.33% Naive Bayes 
75.02 μ 5.66% 72.22 μ 6.33% SMO 
100.00 μ 0.00% 100.00 μ 0.00% C4.5 
67.36 μ 1.17% 67.14 μ 0.61% LMT  

Monk-2 data set 67.14 μ 0.61% 67.14 μ 0.61% Naive Bayes 
67.14 μ 0.61% 67.14 μ 0.61% SMO 
67.14 μ 0.61% 67.14μ 0.61 % C4.5 
99.77 μ 0.10% 97.22 μ 0.47% LMT  

Monk-3 data set 97.21 μ 2.71% 97.21 μ 2.71% Naive Bayes 
100.00 μ 0.00% 97.22 μ 0.47% SMO 
100.00 μ 0.00% 100.00 μ 0.00% C4.5 

4   Conclusion 

In this paper we improved one of the existing feature selection algorithms, Shie-and-
Chen’s method. This feature selection algorithm uses fuzzy entropy concept. The 
problem of Shie-and-Chen’s method is that it is a parameter sensitive algorithm.  
User should select threshold values in that algorithm experimentally. The result of 



408 H. Parvin, B. Minaei-Bidgoli, and S. Parvin 

algorithm for some threshold values is very weak and it is not trustable. To solve this 
problem we use ensemble method. Our paper runs Shie-and-Chen’s algorithm for 
different values as thresholds and then gives a weight to each selected features ac-
cording its rank. Finally by using one of the ensemble methods, majority voting, it 
selects the best features which have the highest scores. So this algorithm does not 
need any input parameter. Also the obtained accuracies of different classifiers on the 
selected features obtained by proposed method are better that the obtained accuracies 
of the same classifiers on the selected features obtained by Shie-and-Chen’s  
algorithms.  
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Abstract. In this paper, we address the problem of opinion analysis us-
ing a probabilistic approach to the underlying structure of different types
of opinions or sentiments around a certain object. In our approach, an
opinion is partitioned according to whether there is a direct relevance
to a latent topic or sentiment. Opinions are then expressed as a mix-
ture of sentiment-related parameters and the noise is regarded as data
stream errors or spam. We propose an entropy-based approach using a
value-weighted matrix for word relevance matching which is also used to
compute document scores. By using a bootstrap technique with sampling
proportions given by the word scores, we show that a lower dimensional-
ity matrix can be achieved. The resulting noise-reduced data is regarded
as a sentiment-preserving reduction layer, where terms of direct relevance
to the initial parameter values are stored

1 Introduction

Social networks have become ubiquitous and are used throughout the world for
interpersonal communication. This form of discourse can be related to personal
matters but is also about common interests, especially products and services. In
particular these discussions about products and services give rise to a massive
source of valuable information. In this paper, focused as it is on text communi-
cations on the web, it centers on online discussions, tweets and social networks,
which are subjective in nature and therefore not easy to classify. Mostly, these
communications/conversations concern the quality of a particular product.

Sentiment analysis is used in information retrieval and text mining for discov-
ering the attitude or the subjective judgment of the writer about a particular
matter. For example, it is used in social media to make judgments about certain
products and services that are of interest to them. The massive amount of data
that is generated by this media can be used to optimize the commodities, by
analyzing the overall sentiment towards expressed about them [8].

In general, sentiment can be expressed as a quantity (e.g. a score) or as a
textual opinion. The latter might reveal a polarity that can be unveiled by using
data analytics [4]. In the context of data mining and knowledge discovery we can
distinguish two main approaches, supervised and unsupervised learning, as being

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 409–416, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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possible ways to recognize patterns in the text based discourse being analyzed.
Sentiment analysis or hidden meaning can be regarded as being unsupervised,
because when triggered by an associated polarity, the hidden meaning is revealed.

Likes and dislikes are often concealed in words where the meaning less than
obvious and in some cases, criticism can be encapsulated in a cynical or some-
what ambiguous phrase. Linguistic markers such as the identification of partic-
ular words from a list or table on the assumption that may mean something in
particular could lead to a completely different meaning from the one intended
[5].

For example, when analyzing sentiments about the iPad c©we can find phrases
containing a sentiment, such as:

I can’t believe how fast twitter works on my iPad

In the other hand, phrases like

Free iPad 2! How awesome is that? You HAVE to join!

doesn’t contain any sentiment information so they can be considered as spam.
Moreover, we are also confronted with the reality that individual words, while
having some meaning, are not richly enough preserved until they appear along-
side other words in terms and phrases. In our approach, there is no prior knowl-
edge of the sentiment or polarity of a phrase. Alternatively, an entropy-based
criteria based on a non-uniform prior distribution on words can be used to gather
sentiment-preserving information. We present a worked example using a bag-of-
words representation, but the proposed approach can be generalized to other
representations based on multiple correlated words [1].

This paper is organized as follows. Section 2 discusses the general framework
for sentiment analysis and similar approaches in the literature. In Section 3,
we describe the proposed methodology for sentiment-preserving reduction and
finally, Section 4 provides a worked example using Twitter.1

2 Latent Topic Opinion Mining

Probabilistic models such as topic models can be used to discover the hidden or
latent description or the topic of a group of opinions using a particular combi-
nation of words [11]. In topic modeling, a document-term matrix X is extracted
from a text corpora. This matrix describes the occurrences of terms in documents
and is composed the frequency on each one of the phrases, so each element xij

contains the frequency of the word wi in the document or opinion oj .
A probabilistic model could consider each word as a mixture of single or

multiple words (n-grams) and each opinion o being generated by first choosing
a topic z and then sampling N words according to the conditional distribution
p(o) of words given the topic:

1 http://twitter.com

http://twitter.com
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p(o) =
∑

z

p(z)
N∏

n=1

(p(wn|z)) (1)

If we now let each opinion to exhibit not only one but multiple topics (e.g.
words having more than one meaning), the resulting generative model for a word
is a mixture of multinomial random variables representing the different topics.

p(o, wn) = p(o)
∑

z

p(z)p(wn|z)p(z|o) (2)

Each opinion is then represented as a list of mixture proportions representing
its membership to any particular topic. Due to the bag-of-words assumption,
there is no particular order for the words wn so the probabilistic approach is
simplified. However, the frequency of counts approach might not be enough
to capture the structure of the opinions and because of the large number of
parameters required is also likely to pose over-fitting issues. This is especially
problematic in opinion mining where the number of number of words is usually
smaller than the standard documents considered in topic modeling.

Latent Dirichlet Allocation (LDA) extends the probabilistic approach based
on mixtures of unigrams by considering exchangeable partition of the set
{z1, . . . , zN}. In LDA, words are generated by conditionally independent and
identically distributed topics, so the probability of a sequence of words and top-
ics can be written as the product:

p(w, z) =
∫
p(θ)

( N∏
n=1

p(zn|θ)p(wn|zn)
)
dθ (3)

The parameter θ is used for the multinomial distribution for each topic. Now,
using Dirichlet prior distributions with hyper-parameters α and β for the topics
and words respectively, leaves the following generative process:

Choose θ ∼ Dir(α)
for n = 1 TO N do

Choose a topic zn ∼M(θ)
Choose a word wn from the conditional distribution of the word given the
chosen topic p(wn|zn, β)

end for

2.1 Related Work

A Joint Sentiment/Topic (JST) model was proposed in [7]. In their approach,
sentiment polarity is treated as an unsupervised learning problem where senti-
ment and topic are jointly detected from text using LDA. Given the fact that
sentiment can be expressed in a more subtle way than a topic, the authors
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proposed to incorporate prior information by using a subjectivity lexicon with
aggregated words displaying positive or negative polarity.

More recently, the JST approach has been extended into a weakly-supervised
approach in [6], and the authors reported improved classification accuracy when
compared to semi-supervised alternatives. Also, in the context of micro-blogging,
qualitative and quantitative experiments on topic modeling using short text
messages was studied in [3].

More closely related to this work, a sentiment-preserving dimension reduc-
tion methodology has been presented in [10]. The authors proposed an inverse
projection from word frequencies into sentiment, where prior knowledge of the
conditional distribution is used for the inverse regression of text. This approach
requires labeled data and was tested in richer text corpora, such as political
speeches and restaurant reviews. Instead, in our approach we analyze data from
micro-blogging environments which is not labeled, so there is no prior knowledge
of the sentiment of the documents. A previous article also describes the proposed
methodology [2].

3 Sentiment Preserving Reduction

In order to perform opinion spam detection we would like to find a matrix X̂ with
lower dimensionality than the original matrix X . A signal denoising algorithm
based on entropy can be then used to eliminate columns with non useful phrases
leaving only text meaning vectors. This requires us to process a large quantity
of data in order to identify errors in the signal stream and thereby, generate the
matrix of non-noisy items.

For a particular set of M opinions and Nd words, the entropy is given by:

p(OM ) = exp
(
−
∑M

d=1 log p(wd)∑M
d=1Nd

)
(4)

Because the number of opinions M is usually large, a brute force implemen-
tation for spam detection is not feasible. However, we can take a sample from
a bootstrap sample and then compare the information gain from the entropy
of the LDA model having a term matrix Xtest. This procedure can be repeated
until some criteria of convergence is achieved.

The following algorithm shows this methodology:
repeat

Find a subset OJ ⊂ OM with J < M .
if P (OJ ) < P (OM ) then

Let OM = OJ

end if
until Convergence
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4 Example

In this Section, we test the proposed approach with a corpus obtained using
a custom development using the Twitter Application Programming Interface
(API). The generated dataset contains 10.000 tweets related to the iPad during
the months of March and April 2011. Using a tag cloud depiction of the dataset
(see Figure 1), we can infer that most of the frequent terms cannot be associ-
ated to any sentiment or polarity. Most frequent terms like ‘free’ or ‘win’ are
associated with spam. Therefore, removing terms based on sparsity could only
remove the interesting patterns from the data.

Fig. 1. Tag cloud representation of tweets around the iPad

Specific toolboxes for topic modeling in the R statistical software [9] were
used to produce the document-term matrices and fit the models to the data.
The following data processing steps where taken :

1. Using the Twitter API, a comma-delimited text file is aggregated every 30
mins with the search topic iPad..

2. Each tweet is stored on a per-row basis. Extra white spaces, numbers, com-
mon English words and punctuation are removed.

3. A document-term matrix with term and document frequency-weighting
(TFIDF) is created and then sparse items with factor 0.99% are removed.

4. A Gibbs sampler is used to train the LDA model.

Choosing the number of topics is another issue in topic modeling. Here, we
perform a Bayes factor test using K = 2 to K = 100 topics and the result-
ing number of topics K = 3 model is finally used. Fitting an LDA model
with this dataset leaves the following posterior topic probabilities shown in
Figure 2.

Table 1 shows the five most frequent terms per topic for the complete model.
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Fig. 2. Posterior distribution of the complete model

Table 1. Top five terms in the complete model

Topic 1 Topic 2 Topic 3

app free iphone
apple apple ipod
apps win join
tablet amp link
via copy click

Now, we concentrate on the sentiment-preserving algorithm. In order to sam-
ple a portion of the documents, we use a non-symmetric Dirichlet word dis-
tribution for the sentiment-preserving dimensionality reduction algorithm. The
following terms were considered as relevant to the sentiment analysis task:

"love", "free","waste","compatibility","compatibility","cheesy",
"great","obscure","fantastic","low","fine","cost","speed"

Using the sentiment-preserving algorithm, a vector-valued weight function
is then applied to sample a portion of the original dataset that has better en-
tropy than the complete dataset. The posterior probabilities using the sentiment-
preserving reduction are shown in Figure 3.

The five most frequent terms of the reduced model are also shown in Table 2
and the summary statistics of each model is shown in Table 3.
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Fig. 3. Posterior distribution of the reduced model

Table 2. Top 5 terms in the reduced model

Topic 1 Topic 2 Topic 3

handing ipad ipad
broken tweets giving
bugging increase entry
howdy app win
giving free free

Table 3. Summary statistics of the complete and the reduced model

complete model reduced model

Entropy 44.56 33.32
# of documents 9643 1811

Sparsity 95% 96%

5 Conclusion

Opinions are usually populated with words and phrases having subjective mean-
ings. Probabilistic topic models can represent sentiment in opinions by modeling
the uncertainty of words and topics. In this regard, sentiment becomes a signal
yet to be discovered through multiple and hidden topics. However, the amount
of spam in social media can lead to deceitful results.

Here, we have presented an unsupervised sentiment-preserving data reduc-
tion method. The method is based on the standard Latent Dirichlet Allocation
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methodology; thus not requiring any classification of polarity in the opinions.
Similar to the previously proposed Joint Sentiment-Topic model, our method is
also based on a manually selected subjectivity lexicon. However, we only use it
as a proxy to a bootstrapping technique that gathers sentiment-rich opinions.
We have demonstrated that the resulting reduction has better entropy than the
model using the complete dataset, indicating better generalization performance.

Since our method is completely unsupervised, there is no direct interpretation
of the sentiment over topics. Further research in semi-supervised and instrumen-
tal regression techniques will be conducted for the sentiment detection problem.
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Abstract. In many classification problems, and in particular in med-
ical domains, it is common to have an unbalanced class distribution.
This pose problems to classifiers as they tend to perform poorly in the
minority class which is often the class of interest. One commonly used
strategy that to improve the classification performance is to select a sub-
set of relevant features. Feature selection algorithms, however, have not
been designed to favour the classification performance of the minority
class. In this paper, we present a novel filter feature selection algorithm,
called FSMC, for unbalanced data sets. FSMC selects attributes that
have minority class distributions significantly different from the major-
ity class distributions. FSMC is fast, simple, selects a small number of
features and outperforms in most cases other feature selection algorithms
in terms of global accuracy and in terms of performance measures for the
minority class such as precision, recall, F-measure and ROC values.

Keywords: feature selection, unbalanced data set, medical domain.

1 Introduction

With the rapid advances in computer and database technologies, data sets with
hundreds and thousands of variables or features are now present in pattern
recognition, data mining, and machine learning applications [1–4]. Processing
such huge data sets is a challenging task because traditional machine learning
techniques usually work well only on small data sets. Feature selection addresses
this problem by removing irrelevant, redundant, or noisy data. It improves the
performance of the learning algorithm, reduces its computational cost and pro-
vides better understandings of the produced models [5].

Feature selection algorithms can be widely categorized into two groups: filter
and wrapper methods [2, 4, 6–8]. Filter methods evaluate the goodness of the
feature subset by using the intrinsic features of the data. They are computa-
tionally inexpensive since they do not rely on any induction algorithm. Wrapper
methods, on the contrary, directly use the induction algorithm to evaluate the
feature subsets. They generally outperform filter methods in terms of prediction
accuracy, but are computationally more intensive.

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 417–424, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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The development of our work was motivated by an application in a medical
domain with a relatively large number of attributes and a very unbalanced class
distribution, that is common to other medical domains, and that poses problems
to traditional classification algorithms and to feature selection algorithms that
tend not to favour the minority class [9, 10].

There is large number of feature selection algorithms, however, very few re-
search has been targeted particularly towards unbalanced class distributions. In
particular [11], the authors propose a performance measure using ROC curves
for feature selection. The main disadvantage of this work is that it uses a wrap-
per approach requiring repetitive and expensive model training during the fea-
ture selection process. In [12], the authors modify the ReliefF feature selection
algorithm and present three filter-based feature selection techniques to attack
unbalanced data sets, namely, give more weight to the instances of the minor-
ity class, oversample the minority class or undersample the majority class. The
work presented in [13] is more closely related to our work. In that work the
authors aproximate the probability density function (PDF) of each feature in-
dependently in an unsupervised manner and then removing those features for
which their PDFs have higher covering areas with the PDFs of other features
which are known as redundant features, it is important to mention that the
authors used both majority and minority class data to calculate the PDFs.

In this paper, we propose a novel filter feature selection algorithm named
Feature Selection for Minority Class (FSMC) that uses the difference between
the expected value of the majority class and the expected value of minority class
of each attribute to identify the relevant features for the minority class.

We evaluate the efficiency of FSMC by comparing our method to some well-
known filters and wrappers feature selection strategies, applied with five different
types of classifiers in several medical data sets from the UCI repository [14] and
on a real data set of gait analysis. The results show that FSMC is competi-
tive and in many cases outperforms other features selection algorithms in terms
of classification accuracy, precision, recall, F-measure and ROC values for the
minority class as well as selected feature size.

The rest of this paper is organized as follows. Section 2 describes the FSMC
algorithm. In Section 3 the experimental results are presented, and finally, Sec-
tion 4 concludes and provides future research directions.

2 FSMC

In this section we introduce a Feature Selection for Minority Class (FSMC) al-
gorithm. The goal of FSMC is to measure the difference between the expected
value of the majority class and the expected value of the minority class to se-
lect relevant features for classifying the minority class. The rationale behind our
proposal is to select those features whose values are particularly different from
the values of the majority class and that could help to classify instances from
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the minority class. The algorithm boils down to obtain the mean and standard
deviation of each variable for the majority class and the mean of the same
variables for the minority class. If the mean value of the minority class is at least
two standard deviations away from the mean value of the majority class, then
that feature is selected as relevant. This is a very simple and easy to implement
criterion that to our knowledge has not been used before in the literature and,
as shown in Section 3, is very competitive with respect to other feature selection
algorithms. A description of FSMC is summarized in Algorithm1.

Algorithm 1. The FSMC algorithm
1: begin
2: Let Y a given set of attributes
3: Let Maj(y) the majority class data of attribute y ∈ Y
4: Let Min(y) the minority class data of attribute y ∈ Y
5: Let RelAtt = ∅ the output set of relevant attributes calculated by FSMC
6: for all y ∈ Y do
7: Compute the mean (μMaj(y)) and standard deviation (σMaj(y)) of y in Maj(y)
8: Compute the mean (μMin(y)) of y in Min(y)
9: if (μMin(y) > (μMaj(y) +2∗σMaj(y)))∨(μMin(y) < (μMaj(y)−2∗σMaj(y))) then

10: Let RelAtt ← RelAtt ∪ {y}
11: end if
12: end for
13: Return RelAtt
14: end

3 Experimental Results and Discussion

In order to evaluate the performance of our algorithm FSMC, we used five med-
ical data sets from the UCI ML repository, namely, arrhythmia, ozone, Pima In-
dians diabetes, diabetes and cardio [14]. Additionally, we used information from
gait analysis involving elderly subjects provided by researchers of the National
Institute of Rehabilitation of Mexico and which motivated the development of
this research. In all cases we used a binary class problem.

We used five different classifiers to obtain performance measures over these
data sets for the minority class, namely, precision, recall, F-measure and ROC
values and also to obtain information from the global accuracy. The selected clas-
sifiers were taken from Weka [15] and involved different classification strategies
with their default parameters: (i) PART (a decision list that uses separate-and-
conquer strategy that builds a partial C4.5 decision tree in each iteration and
makes the “best” leaf into a rule), (ii) J48 (C4.5 decision tree algorithm), (iii)
Bagging (with 10 decision trees classifiers), (iv) BayesLogicRegresion (Bayesian
network learning algorithm that estimates the parameters of P (Y |X) using Lo-
gistic Regression), and (v) SMO (John Platt’s sequential minimal optimization
algorithm for training a support vector classifier).
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We compared FSMC against seven feature selection algorithms also taken
from Weka[15] with their default parameters, namely, CFsSubsetEval (evalu-
ates a subset of features), FilteredSubsetEval (evaluates a subset of features
that has been passed through a filter strategy), SVMattributeEval (evaluates
the worth of an attribute using a SVM classifier), Wrapersubseteval (a wrapper
feature selection strategy), PrincipalComponents (performs a PCA analysis),
InfoGainAttributeEval (uses information gain to select attributes), and Relief-
FAttributeEval (implements the ReliefF algorithm).

Table 1 shows in the header row the general characteristics of the different
data sets used in these experiments, such as the total number of instances and
attributes, as well as the number of instances in the majority and minority
classes. This table summarizes also the number of relevant attributes selected
by each feature selection algorithms when applied to the different data sets.

Note that FSMC selects fewer relevant attributes than the rest of algorithms in
most data sets, with the exception of the human gait data set. This is convenient
in problems involving a large number of variables and a few number of instances.

Table 1. Number of variables selected by eight feature selection methods including
FSMC

Datasets
Arrhythmia Ozone Pima Indians Diabetes Gait Cardio

Diabetes
Instances 273 1876 569 768 270 1831
Attributes 135 72 8 9 31 21
No. Maj. instances 237 1819 500 500 143 1655
No. Min. instances 36 57 69 268 127 176
Feature Selection
Algorithms
CFsSubsetEval 19 18 3 4 2 6
Filteredsubseteval 18 18 3 3 2 3
SVMattributeEval All All All All All All
Wrapersubseteval None None None None None None
PrincipalComponents 50 19 7 All 9 14
InfoGainAttributeEval All All All All All All
ReliefFAttributeEval All All All All All All
FSMC 4 8 1 1 3 1

The global accuracies obtained using the different classifiers in the data sets
are shown in Table 2. In this case, we only show the performance of the three
best feature selection algorithms. In all the experiments we used 10-fold cross
validation.

The results presented in Table 2 show that the classifiers have, in general,
better performance with the features selected by FSMC.

Table 3 shows the number of times that the classification of the minority and
majority classes of all data sets was better by the different classifiers using the
different subsets of attributes. Again the set variables selected by FSMC has in
general better performance.
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Table 2. Classification accuracy of different data sets with different classifiers based on
different set of variables selected by five methods of feature selection including FSMC

Arrhythmia
Classifier All CFsSubsetEval Filteredsubseteval PrincipalComponents FSMC
PART 89.74 91.58 91.58 86.08 92.67
J48 90.84 89.38 89.38 84.25 92.31
Bagging 92.67 91.94 91.58 90.11 91.94
BayesLogicRegresion 91.58 87.18 87.91 86.81 92.67
SMO 86.81 86.81 86.81 86.81 92.31
Average 90.33 89.38 89.45 86.81 92.38

Ozone
PART 95.36 96.54 96.54 96.48 96.64
J48 95.63 95.52 95.52 95.95 96.48
Bagging 96.86 96.86 96.86 96.96 96.80
BayesLogicRegresion 84.22 88.91 88.91 83.69 90.03
SMO 96.96 96.96 96.96 96.96 96.96
Average 93.81 94.96 94.96 94.01 95.38

Gait Analysis
PART 64.81 77.41 77.41 70.74 82.22
J48 69.26 78.15 78.15 78.52 81.85
Bagging 69.26 79.63 79.63 74.07 80.37
BayesLogicRegresion 65.93 53.33 53.33 57.41 59.63
SMO 52.22 63.70 63.70 54.44 54.44
Average 64.30 70.44 70.44 67.04 71.70

Pima Indians Diabetes
PART 87.70 88.23 88.23 89.10 89.63
J48 88.40 88.93 88.93 88.05 89.63
Bagging 87.17 88.23 88.23 88.40 88.93
BayesLogicRegresion 87.87 87.87 87.87 87.87 87.87
SMO 87.87 87.87 87.87 87.87 88.75
Average 87.80 88.22 88.22 88.26 88.96

Diabetes
PART 73.05 72.27 73.31 73.05 72.01
J48 71.48 73.44 75.26 71.48 72.01
Bagging 76.69 75.52 75.00 76.69 71.88
BayesLogicRegresion 65.76 63.93 64.06 65.76 65.10
SMO 65.10 62.89 63.54 65.10 69.27
Average 70.42 69.61 70.23 70.42 70.05

Cardio
PART 98.74 98.31 97.00 98.69 93.99
J48 98.53 98.74 97.27 98.03 93.99
Bagging 98.47 98.53 97.21 98.03 93.99
BayesLogicRegresion 93.56 91.43 93.17 91.86 93.99
SMO 91.59 92.41 95.79 93.66 93.99
Average 96.18 95.88 96.09 96.06 93.99

Table 3. Times that the classification of majority and minority class was better using
different set of variables

ALL CfsSubsetEval Filteredsubseteval PrincipalComponents FSMC
Wins in Accur. Min. class 8 12 8 6 13
Wins in Accur. Maj. class 6 8 6 11 20
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Table 5. Summary of winners of Table 4

ALL CfsSubsetEval Filteredsubseteval PrincipalComponents FSMC
Precision 2 0 0 0 15
Recall 3 4 1 2 9

F-Measure 4 3 2 2 9
ROC 4 4 1 2 9

Finally, Table 4 shows complementary information about the effectiveness of
FSMC on the minority class on the six data sets. This table show how many times
the precision, recall, F-measure and ROC values were better on these measures
for the minority class with the classifiers used with specific set of variables.
Table 5 shows the summary of how many times each feature selection algorithm
won over the other algorithms in the different performance measures shown in
Table 4. Again, FSMC outperforms the other feature selection algorithms in all
of these measures.

4 Conclusions and Future Work

In this paper, we have presented a novel feature selection algorithm useful for
unbalanced data sets. Its main feature selection strategy is based on selecting
those features whose values are particularly different from the values of the
majority class and that could help to classify instances from the minority class.

The experimental results show that the proposed method tends to select fewer
attributes than other feature selection methods and, at the same time, outper-
forms most of the time such algorithms in different performance measures when
tested on several data sets and with different classification algorithms.

As part of the future work we would like to extend the selection strategy
to nominal attributes. We would also like to extend the selection strategy to
real-valued data that do not follow a Gaussian distribution.
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Abstract. This paper presents an empirical evaluation on a dissimilarity mea-
sure strategy by which dissimilarity-based classifications (DBCs) [10] can be
efficiently implemented. In DBCs, classifiers are not based on the feature mea-
surements of individual objects, but rather on a suitable dissimilarity measure
among the objects. In image classification tasks, however, one of the most in-
tractable problems to measure the dissimilarity is the distortion and lack of infor-
mation caused by the differences in illumination and directions and outlier data.
To overcome this problem, in this paper, we study a new way of performing DBCs
in eigenspaces spanned, one for each class, by the subset of principal eigenvec-
tors, extracted from the training data set through a principal component analy-
sis. Our experimental results, obtained with well-known benchmark databases,
demonstrate that when the dimensionality of the eigenspaces has been appropri-
ately chosen, the DBCs can be improved in terms of classification accuracies.

1 Introduction

Dissimilarity-based classifications (DBCs) [10] are a way of defining classifiers among
the classes. The process is not based on the feature measurements of individual objects,
but rather on a suitable dissimilarity measure among the objects. The problem with this
strategy is that we need to measure the inter-pattern dissimilarities for all the training
data to ensure there is no zero distance between objects of different classes. Thus, the
classification performance of DBCs relies heavily on how well the dissimilarity ma-
trix is constructed. To improve the performance, therefore, we need to ensure that the
dissimilarity matrix is well designed.

With regard to solving this problem, investigations have focused on measuring the
appropriate dissimilarity by using various lp norms and traditional measures, such as
those used in template matching and correlation-based analysis [10]. In image classifi-
cation tasks, however, one of the most intractable problems that we encountered when
employing these measuring systems is the distortion and lack of information caused by
the environmental differences in computation. In face recognition, for example, there
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Research Foundation of Korea funded by the Korean Government (NRF-2011-0002517).
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are many kinds of variations based on such factors as pose (direction), expression, illu-
mination, and distance [1], [4].

To address this problem, several strategies, including a generalization of dissimilarity
representations [2], [9], a dynamic programming technique [5], a statistical similarity
measuring method [6], and classification of regions of interest (ROIs) [13], have been
developed and evaluated in the literature. On the other hand, subspace methods of pat-
tern recognition are a technique in which the object classes are not primarily defined as
bounded regions in a feature space, but rather given in terms of linear subspaces defined
by the principal component analysis (PCA), one for each class [8].

For example, in Eigenface [1], [7], a well-known PCA approach to face recognition,
face images are first decomposed into a small set of eigenvectors (i.e., eigenfaces) using
a PCA. Then, each individual face is represented in terms of a linear combination of
the eigenfaces. Here, the eigenvalues are equal to the variance of the projection of the
image data set onto the corresponding eigenvector. Thus, the eigenvectors associated
with the higher valued eigenvalues encode the larger variations in the data set, while
the eigenvectors associated with the lower valued ones encode smaller variations in the
set. Since the latter features encode smaller variations, it is commonly assumed that
they represent noise in the data set. From this point of view, when performing DBCs in
eigenspaces spanned by the principal eigenvectors, we can expect that the noise could
be excluded from the dissimilarity representation.

The major task of our study is to deal with how the dissimilarity measure can be ef-
fectively computed. The goal of this paper is to demonstrate that the classification per-
formance of DBCs can be improved by measuring the dissimilarity in the eigenspaces
after constructing them by class. In particular, this goal can be achieved by appropri-
ately projecting the data set on the eigenspaces and effectively measuring the distance
between the projected points1. However, there is an essential difference between what
we do in this paper and what Oja [8] (and also O-Alzate, et al. [9]) does. We characterize
objects with distances in the subspace, while they use the distances to the subspace.

The remainder of the paper is organized as follows: In Section 2, after providing a
brief introduction to DBCs, we present an explanation of the dissimilarity measure used
in the eigenspaces and an improved DBC. In Section 3, we present the experimental
results obtained with four benchmark image databases and UCI real-life data sets. In
Section 4, we present our concluding remarks.

2 DBCs in Eigenspaces

Dissimilarity-based classifications (DBCs): A dissimilarity representation of a set of
samples, T = {xi}ni=1 ∈ Rd, is based on pairwise comparisons and is expressed, for
example, as an n ×m dissimilarity matrix, DT,P [·, ·], where P =

{
pj

}m

j=1
∈ Rd, a

prototype set, is extracted from T , and the subscripts ofD represent the set of elements
on which the dissimilarities are evaluated. Thus, each entry, DT,P [i, j], corresponds to

1 To make it less sensitive to noisy samples, a pseudo-Euclidean embedding method is proposed
in [10], where distances are isometrically embedded in a pseudo-Euclidean space and DBCs
are performed. The details of the embedding are omitted here, but can be found in [10].
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the dissimilarity between the pairs of objects, xi and pj , where xi ∈ T and pj ∈ P .
Consequently, an object, xi, is represented as a column vector, δ(xi, P ), as follows:

δ(xi, P ) = [d(xi,p1), d(xi,p2), · · · , d(xi,pm)]T , 1 ≤ i ≤ n. (1)

Here, the dissimilarity matrix, DT,P [·, ·], defines vectors in a dissimilarity space on
which the d-dimensional object, x, is represented as an m-dimensional vector, δ(x).

A conventional algorithm for DBCs is summarized in the following:
1. Select the prototype subset, P , from the training set, T , by using one of the selec-

tion methods described in the literature [10].
2. Using Eq. (1), compute the dissimilarity matrix, DT,P [·, ·], in which each dissim-

ilarity is computed on the basis of the measures described in the literature [10].
3. For a testing sample, z, compute a dissimilarity column vector, δ(z), by using the

same measure used in Step 2.
4. Achieve the classification by invoking a classifier built in the dissimilarity space

and operating it on the dissimilarity vector δ(z).
Here, we can see that the performance of DBCs relies heavily on how well the dis-

similarity space, which is determined by the dissimilarity matrix, is constructed. To
improve the performance, we need to ensure that the matrix is well designed.

Distance Measures in Eigenspaces [7]: The data set, T , can be decomposed into
subsets, Ti, as follows 2: T =

⋃c
i=1 Ti, Ti = {xj}ni

j=1 ∈ Rd, with n =
∑c

i=1 ni,
Ti ∩ Tj = φ, ∀i = j. Our goal is to design a DBC in an appropriate eigenspace con-
structed with this training data set, T , and to classify a new sample into an appropriate
class. To achieve this, for each Ti, we first find eigenvectors and eigenvalues, μih and
λih, (h = 1, · · · , d), of the covariance matrix,Σi, usingΣiμih = λihμih, and sort them
in decreasing order according to the corresponding eigenvalues, i.e., λi1 ≥, · · · ,≥ λid.
Next, these eigenvectors are selected to form the row vectors of a transformation ma-
trix, Ai = {μih}

q
h=1 ∈ Rd. We then project the data samples, xj , (j = 1, · · · , ni),

into c q-dimensional subspaces, called eigenspaces, spanned by the arranged principal
eigenvectors, using a transformation formula for each class as follows:

yij = AT
i (xj −mi), 1 ≤ i ≤ c, (2)

where yij = (yij1, · · · , yijq)T and mi = 1
ni

∑ni

j=1 xj , where xj ∈ Ti.
Let yij ∈ Ti and ykl ∈ Tk be q-dimensional feature vectors defined in the eigenspace.

Many measures exist for yij and ykl, mostly constructed in an additive way after count-
ing the differences for each feature separately. The basic measures come from the family

of lp(p ≥ 1) distance, ‖yij − ykl‖p = (
∑q

h=1(yijh − yklh)p)1/p
, called Minkowski

distance. Based on this distance, various measures can be defined as follows:
1. Manhattan distance (l1 metrics): dManh(yij ,ykl) =

∑q
h=1 |yijh − yklh|,

2. Euclidean distance (l2 metrics): dEucli(yij ,ykl) =
√∑q

h=1(yijh − yklh)2,
3. Sum square error (SSE) distance: dSSE(yij ,ykl) =

∑q
h=1(yijh − yklh)2,

4. Canberra distance: dCanbe(yij ,ykl) =
∑q

h=1
|yijh−yklh|
|yijh|+|yklh| .

2 The subsets have been chosen as the classes here, but clusters could also be used.
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Here, the dimensionality of the eigenspace, q, can be selected based on the criteria,
such as a heuristic selection [7], a cumulative proportion [8], and an intra-set distance
[3]. A criterion associated with the intra-set distance is defined as follow: For an ar-
bitrary sample, xj ∈ Ti, the mean of d (xj , Ti − {xj}) over Ti is called the intra-set
distance of Ti and is denoted by D2(Ti) = 1

ni

∑ni

j=1 d
2(xj , Ti − {xj}). By conve-

niently rearranging the elements in the summation of D2(Ti), the intra-set distance can
be expressed in terms of the unbiased variances of components of the given samples

like: D2(Ti) = 2
∑d

k=1 σ
2
k, where σ2

k = ni

ni−1

(
x2

k − (x̄k)2
)

for all xj ∈ Ti. This is

the rationale of the scheme for employing the intra-set distance as a criterion to select
the dimensionality of the eigenspace. The details of the other criteria are omitted in the
interest of compactness, but can be found in the related literature.

Proposed Dissimilarity-Based Classification: To overcome the limitation caused by
the variations in illumination and the outlier data, in this paper, we measure the dis-
similarities in a transformed subspace, rather than in the input-feature space. The basic
strategy of the technique is to solve the classification problem by first mapping the
input-feature space to an eigenspace, and then constructing a dissimilarity matrix with
the distance measures in the eigenspace; finally, DBCs are performed on the dissim-
ilarity space to reduce the classification error rates. The proposed approach, which is
referred to as an eigenspace DBC (EDBC), is summarized in the following:

1. Select the entire training set T as the prototype subset P .
2. After computingAi and mi for each class, Ti, (i = 1, · · · , c), transform the input-

feature vector, xj , (j = 1, · · · , ni), into the feature vectors, yij , using Eq. (2).
3. Using Eq. (1), compute DT,T [·, ·], in which each dissimilarity, d(xj ,xk), is mea-

sured with d(yij ,ylk), where the class of the samples {xk,yij ,ylk} is the same.
4. This step is the same as Step 3 in the conventional DBC.
5. This step is the same as Step 4 in the conventional DBC.

The time complexities of the above algorithm, EDBC, can be analyzed as follows: As in
the case of DBC, almost all the processing CPU-time of EDBC is consumed in comput-
ing the transformation matrix and the dissimilarity matrices. More specifically, in DBC,
Step 2 of computing the n× n dissimilarity matrix requiresO(dn2) time. On the other
hand, the computation of that of EDBC needs O(d3 + dn2 + cn2) time in executing
Steps 2 and 3.

3 Experimental Results

Experimental Data: The proposed method has been tested and compared with the
conventional ones. This was done by performing experiments on well-known bench-
mark databases, namely, Kimia2 (1024/216/2) [11], Yale (1024/165/15) [4], Nist38
(256/200/2) [14], and CMU-PIE (256/1365/65) [12], and other multivariate data sets
cited from UCI Machine Learning Repository3. Here, three numbers in brackets repre-
sent the numbers of dimensions d, samples n, and classes c, respectively. Also, Kimia2
and Nist38 are of binary images, while Yale and CMU-PIE are of gray scale images.

3 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Fig. 1. A comparison of the estimated error rates of knnc and libsvm designed in the eigenspaces:
(a) top left, (b) top right, (c) bottom left, and (d) bottom right; (a) and (b) are of knnc, (c) and (d)
are of libsvm, obtained with Kimia2 and CMU-PIE using the four distance measures

Experimental Method: In this experiment, first, data sets are randomly split into train-
ing sets and test sets in the ratio of 75 : 25. Then, the training and testing procedures are
repeated 10 times and the results obtained are averaged. To evaluate the classification
accuracies of DBCs designed in the input-feature spaces and the principal eigenspaces,
different classifiers, such as k-nearest neighbor classifiers and support vector machines,
are employed and implemented with PRTools 4, and will be denoted as knnc and libsvm,
respectively, in subsequent sections.

Experimental Results: First, the experimental results obtained in the eigenspaces for
Kimia2, Yale, Nist38, and CMU-PIE were probed into. Fig. 1 shows a comparison of
the error rates of knnc and libsvm designed in the dissimilarity matrices constructed with
the four distance measures in the eigenspaces for the Kimia2 and CMU-PIE databases.

The observations obtained from the figures are the following ones:

- The reader first should observe that the classification accuracy of DBCs can be
improved by means of appropriately choosing the distance measures in eigenspaces
when the dimensionality of the subspaces is appropriately chosen.

- It should also be pointed out that the error rate of dCanbe, marked with � symbol,
decreases at first as the dimension increases, but rapidly increases. This overtraining

4 PRTools is a Matlab toolbox for pattern recognition (refer to http://prtools.org/).
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Table 1. A numerical comparison of the error rates (standard deviations) for the four databases

data sets distance knnc libsvm
(d / n / c) measures DBCs EDBCs DBCs EDBCs

Manh 0.0241 (0.0232) 0.0111 (0.0129) 0.0463 (0.0235) 0.0148 (0.0146)
Kimia2 Eucli 0.0185 (0.0175) 0.0241 (0.0125) 0.0204 (0.0204) 0.0204 (0.0137)

(1024/216/2) SSE 0.0241 (0.0232) 0.0241 (0.0152) 0.0463 (0.0235) 0.0389 (0.0162)
Canbe 0.0241 (0.0232) 0.0648 (0.0330) 0.0463 (0.0235) 0.3389 (0.3068)
Manh 0.2267 (0.0953) 0.1500 (0.0393) 0.2233 (0.0668) 0.1500 (0.0451)

Yale Eucli 0.2100 (0.0903) 0.1800 (0.0592) 0.2033 (0.0936) 0.1867 (0.0450)
(1024/165/15) SSE 0.2433 (0.0969) 0.2067 (0.0466) 0.2133 (0.0789) 0.1667 (0.0351)

Canbe 0.2200 (0.0757) 0.2633 (0.0618) 0.2200 (0.0670) 0.2333 (0.0588)
Manh 0.0420 (0.0305) 0.0120 (0.0103) 0.0520 (0.0368) 0.0120 (0.0103)

Nist38 Eucli 0.0360 (0.0295) 0.0400 (0.0249) 0.0380 (0.0358) 0.0420 (0.0220)
(256/200/2) SSE 0.0420 (0.0305) 0.0540 (0.0267) 0.0520 (0.0368) 0.0440 (0.0280)

Canbe 0.0420 (0.0305) 0.1480 (0.0634) 0.0520 (0.0368) 0.2340 (0.0626)
Manh 0.7782 (0.0148) 0.0877 (0.0105) 0.1218 (0.0177) 0.0086 (0.0066)

CMU-PIE Eucli 0.7403 (0.0125) 0.7388 (0.0096) 0.0923 (0.0169) 0.0911 (0.0201)
(256/1365/65) SSE 0.8283 (0.0035) 0.8311 (0.0169) 0.1114 (0.0283) 0.1037 (0.0165)

Canbe 0.7055 (0.0115) 0.2385 (0.0195) 0.1317 (0.0188) 0.1145 (0.0262)

observed is the result of the normalization. If many eigenvectors are used, also the ones
with small eigenvalues are included. Their contributions are close to the origin and as a
result they get large weights: noise is emphasized.

- For the experiment of Kimia2 (and Nist38), which are relatively well represented
data sets, the error rates of libsvm show the peaking effect before arriving at the low-
est values (refer to Fig. 1 (c)). On the other hand, the error rates of CMU-PIE (and
Yale), which are an example of small sample size (SSS) problems, do not show the
phenomenon (refer to Figs. 1 (b) and (d)).

- For the experiment of CMU-PIE, in which the face images have been resized into
16 × 16 pixels of having only facial components, the error rates obtained with dCanbe

and dManh are completely different; the error rates of the latter measure steadily de-
crease, while those of the former sharply decrease till an optimal or near optimal dimen-
sion, but abruptly increase after passing that point (refer to Figs. 1 (b) and (d)). Also, in
Fig. 1(b), the error rates of dEucli and dSSE do not appear, which means that the two
distance measures did not work well for the database. The similar characteristics could
also be observed in the Yale and Nist38 databases.

Second, to investigate the difference of DBCs and EDBCs, the experiment (of esti-
mating error rates) was repeated in the two spaces. In this experiment, the dissimilarity
matrices were constructed with the four distance measures, where the dimensionality
of the matrices was determined as follows: The dimensions of the feature spaces for all
DBCs and the dManh, dEucli, and dSSE measures of EDBCs are the same as d. How-
ever, for the dCanbe measure, it was selected based on the criterion value of the intra-set
distance (because of the characteristics shown in Fig. 1). The selected dimensions for
Kimia2, Yale, Nist38, and CMU-PIE are 64, 8, 64, and 8, respectively. Table 1 shows a
numerical comparison of the error rates of knnc and libsvm for the four databases.
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Table 2. A numerical comparison of the error rates (standard deviations) obtained with dManh

for UCI data. The results of the other measures are omitted here in the interest of compactness.

data parameters knnc libsvm
sets (d / n / c) DBCs EDBCs DBCs EDBCs

Nist (256/2000/10) 0.0704 (0.0086) 0.0420 (0.0098) 0.0666 (0.0092) 0.0428 (0.0105)
Sonar (60/208/2) 0.1980 (0.0397) 0.1451 (0.0533) 0.1667 (0.0455) 0.1588 (0.0438)

Dermatology (34/366/6) 0.0945 (0.0260) 0.0714 (0.0209) 0.0418 (0.0253) 0.0374 (0.0221)
Wine (13/178/3) 0.2372 (0.0512) 0.2163 (0.0640) 0.0837 (0.0745) 0.0744 (0.0628)

Malaysia (8/291/20) 0.4627 (0.0480) 0.4610 (0.0398) 0.5695 (0.0409) 0.5881 (0.0582)

We observed the same characteristics in Table 1 as in Fig. 1. The table clearly shows
that the classification accuracies of DBCs can be improved when dManh is used to
measure the dissimilarity in the eigenspace (see the underlined numbers). However, for
dEucli, dSSE , and dCanbe, the error rates of DBCs and EDBCs are almost the same,
which means the increase and/or decrease of the error rates is not significant. Formally,
dEucli should not change after an eigenvalue decomposition that involves all eigenvec-
tors. The space is just rotated. Then, dEucli and dSSE are also rotation independent.
However, the values between DBC and EDBC are still slightly different; these might be
caused by different training/test set splits in the experiments.

To further investigate the advantage of using the proposed scheme, and, especially, to
find out which kinds of significant data set are more suitable for the scheme, we repeated
the experiment with a few of UCI data sets. Table 2 shows a numerical comparison of
the error rates obtained with dManh for the UCI data sets. From the table, it should
be observed that the classification accuracy of the proposed scheme can be improved
when applied to high-dimensional image data. However, the scheme does not work
satisfactorily with low-dimensional data sets.

Additionally, it is interesting to note that PCA was applied separately to each subset
Ti, (i = 1, · · · , c), of the training data, not the entire set. In order to compare two ways
of using an eigenspace for each class and a single eigenspace obtained with all training
data, we performed two EDBCs for UCI data sets in Table 2. From the experiment, it
was observed that the error rates of the latter are generally higher than those of the
former. For example, the error rates of the latter knnc and libsvm are 0.0894 and
0.0562 for Nist and 0.2235 and 0.1804 for Sonar, respectively.

In review, it is not easy to crown one particular measuring method with superior-
ity over the others in terms of solving the dissimilarity measuring problem. However,
in terms of classification accuracies, the Manhattan distance measured in eigenspaces
seems to be more useful for certain kinds of significant data sets than the Euclidean one
does. This observation is very interesting. It deserves further discussion and exploration.

4 Conclusions

In order to improve the classification performance of DBCs, we studied a distance mea-
suring technique based on eigenspaces of data. To achieve this improvement of DBCs,
we first computed eigenvectors and eigenvalues of the training data, one for each class.
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We then performed DBCs in the eigenspaces spanned by the subset of principal eigen-
vectors, where the dissimilarity was measured with a Manhattan distance. This measur-
ing technique has been employed to solve the distortion and lack of information caused
by the differences in illumination and directions. The proposed scheme was tested on
four image databases and some UCI data sets. Our experimental results demonstrate that
the classification accuracies of DBCs were improved when the dimensionality of the
eigenspaces has been appropriately chosen. Although we have shown that the perfor-
mance of DBCs can be improved by employing the Manhattan distance in eigenspaces,
many tasks remain unchallenged. One of them is to further investigate the result that
the improvement can be achieved only when using the Manhattan distance. Also, it is
not yet clear which kinds of significant data sets are more suitable for the scheme.
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Abstract. Biometric technologies are the primary tools for certifying
identity of individuals. But cost of sensing hardware plus degree of phys-
ical invasion required to obtain reasonable success are considered ma-
jor drawbacks. Nevertheless, the signature is generally accepted as one
means of identification. We present an approach on signature recognition
using face recognition algorithms to obtain class descriptors and then use
a simple classifier to recognize signatures. We also present an algorithm
to store the writing direction of a signature, applying a linear transfor-
mation to encode this data as a gray scale pattern into the image. The
signatures are processed applying Principal Components Analysis and
Linear Discriminant Analysis creating descriptors that can be identified
using a KNN classifier. Results revealed an accuracy performance rate
of 97.47% under cross-validation over binary images and an improve-
ment of 98.60% of accuracy by encoding simulated dynamic parameters.
The encoding of real dynamic data boosted the performance rate from
90.21% to 94.70% showing that this technique can be a serious contender
to other signature recognition methods.

Keywords: signature recognition, on-line signatures, off-line signatures,
fishersignatures.

1 Introduction

In modern world trust between individuals has become a key factor in every
activity. This enforces the need of authentication for all individuals involved in
any given transaction. To accomplish the latter, biometric recognition employs
two strategies: physical based characteristics and behavioral based characteris-
tics [1]. Within the latter, the signature outstands for its social acceptance and
relatively low implementation costs [2]. Even legal regulations on most countries
accept signature as a key discriminant factor. Hence, correct signature identi-
fication is crucial to guarantee the suitability of any transaction taking place.
This paper presents a signature’s analysis technique to determine whether or
not it belongs to a given person, analyzing the signature’s image against the
results of a previous training process. Given its importance, signatures are sub-
ject to counterfeiting. Against this, the automatic signature recognition faces
two main problems: the need to identify intrinsic static characteristics of the
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signature in question, such as its geometry (process known as off-line), and the
need to identify graphological characteristics of the individual’s signature, such
as unique patterns of hand movements, speed and direction of writing, known
as on-line analysis [3]. Thus, the problem of identifying people lies in finding
efficient algorithms to analyze static and dynamic signature characteristics, and
then compare those analyses results in real time against a knowledge base of
signatures, previously generated. This document is organized as follows: section
II describes the state of the art of signatures recognition. Section III describes
the proposed method based on principal component analysis (PCA) and linear
discriminant analysis (LDA). This section also details the equations used to rep-
resent the signature’s writing direction. Section IV presents the experimental
development, including results analysis. Finally, Section V presents conclusions
and scope of this paper plus future work of this research.

2 Related Work

The two most common approaches current investigations explore are: signature
changes analysis in time domain and shape analysis of signature stroke morphol-
ogy. Relevant works on the first approach are [4],[5] where temporal signature
evolution is analyzed using multi-section vector quantization. On the second
approach, work [6] analyzes gravity, eccentricity, skewness, with good accuracy
results. Ad hoc selection of features can be used to increase accuracy [7]. This
concept is extended by sub pattern analysis of signature’s stroke [8] and the anal-
ysis of humans’ perception of stroke segments [9]. An issue here is the amount
of data to be analyzed. One approach is to reduce the dimensionality of the
feature space while maintaining discrimination between classes. A relevant work
is [10] where LDA is used for dimensionality reduction and Neural Networks for
classification. The drawback is that NN are hard to conceptualize due to their
black box nature [11]. Nonetheless, as the potential of dimensionality reduction
is obvious, a recognition method should have a simpler classifier and better fea-
ture extraction. A special note deserves the idea in [12] where a color scheme is
used, based on signature changes. This creates a unique color-based fingerprint
for every signature, though these fingerprints are based on morphology changes
rather than dynamic features. Our method uses dimensionality reduction as face
recognition methods do, that is, by using PCA [13] and LDA to create feature
vectors like EigenFaces [14], and FisherFaces [15], and a simple KNN algorithm
as classifier. We strengthen the capture process by creating a gray scale color
based algorithm to encode dynamic features on to signature images.

3 Proposed Method

The action of signing is unique and exclusive for each individual. This is based
not only in its geometry but on the existence of characteristics of the signature
process itself, such as speed and direction of the signing action [16]. Given this, it
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is very difficult to replicate the static characteristics [17] and dynamic character-
istics of another individual’s signature, without committing errors in the process.
The hypothesis that it is possible to recognize the subject issuer of a signature
using algorithms that belong to the face recognition problem [18] opens the
possibility of using dynamic characteristics to encode extra information within
the signatures images while capturing them. Nonetheless, the feature extraction
process can theoretically be also applied to static characteristics. Based on the
latter, our model proposes static analysis of vector of characteristics specific
to signatures captured off-line, creating Fishersignatures, which correspond to
principal component analysis and linear discriminator applied over the images.
The whole recognition process is divided in two sections: i) training using Fish-
ersignatures method over a set of images, and ii) testing using a new image as
input for comparison against the already trained matrix of weights resulting from
the section i). Additionally, we propose an algorithm to acquire dynamic char-
acteristics when capturing the signatures. This method encodes the data into
the original signature image, strengthening the features extraction process. The
complete signature recognition system used is shown schematically in Figure 1.

Fig. 1. Block diagram of the system proposed

3.1 Fishersignatures Training Method

Our technique for signatures recognition is based on the Eigenfaces matrix used
in face recognition to project images onto a lower dimensional space, reducing
computational complexity of features extraction. Given a set of signature images
per class {Ij(x, y), j = 1, 2, ...,M}, being Ij a matrix of order N = m xn, the
images are column-stacked vectorized (rasterized) and named xj , j = 1, 2, ,M .

The vectorized training set is X = [X1X2 . . . Xc] with Xk =
[
xk

1x
k
2 ...x

k
M

]
,

k = 1, 2, ..., c, where xk
j is the vectorized image j for class k. The order of X is

N xD, with D = M x c
The inter-class average of the images is a vector of N elements:

μk =
1
M

M∑
j=1

xk
j , k = 1, 2, ..., c (1)
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The class average is a vector with N elements:

μ =
1

(M x c)

c∑
k=1

M∑
j

xk
j (2)

The difference between each image and the class average is A = [A1A2 . . . AD]
where Ad, with d = 1, 2, ..., D, are in turn:

Ad = xk
j − μ , d = 1, 2, ..., D (3)

The covariance matrix is defined as:

ST = AAT (4)

Next is the calculation of the Eigen vectors of AAT , defined as ui. The trick
here is to find the vi Eigen vectors of a new matrix ATA, with λi being the
Eigen vectors of both AAT and ATA, related through the following equality:

ui = Avi (5)

The search for the vi Eigen vectors is carried out using the Jacobi method
[19], where all vi are placed in descending order, following the order of the Eigen
values λi. After normalizing ‖ui‖ = 1, all ui Eigen vectors are concatenated to
form a U matrix of order N xD, where U = [u1u2...ui], i = 1, 2, ..., D. Finally,
the WE projection matrix gets defined as:

WE = UTA (6)

Fisher discriminant increases the separation between classes preserving a low
discrimination inside every class. Fisher is considered an implementation of LDA
over PCA space. With this, the dimensionality of U can be reduced to N xDp,
with Dp = (M · c) − c, by redefining U as a new matrix Wpca. The new data
projection on the reduced PCA space gets defined by WEF of order Dp xD:

WEF = WT
pcaX (7)

More in detail, WEF =
[
wk

1w
k
2 ...w

k
M

]
. The above reduction redefines the class

average with a new equation where wk
j is the j projected vectorized image of

class k:

ηk =
1
M

M∑
j=1

wk
j , k = 1, 2, ..., c (8)

Following the above transformation, the new equation for the inter-class
average is:

η =
1

(M x c)

c∑
k=1

M∑
j

wk
j (9)
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In the same way, the class dispersion matrix gets determined by:

SB =
c∑

k=1

(ηk − η)(ηk − η)T (10)

And the inter-class dispersion matrix gets determined by:

SW =
c∑

k=1

M∑
j=1

(wk
j − η)(wk

j − η)T (11)

It’s interesting to note that SB and SW are square matrices of order Dp xDp.
In order to ensure that SB and SW are related by SBWfld = SWWfldλ, the
Wfld Eigen vectors and λ Eigen values are calculated defining what we call
Fishersignatures, with the following equation:

P = WpcaWfld (12)

Finally, the new WE projection matrix of Fishersignatures gets defined as:

WE = PTA (13)

3.2 Testing Method

To classify a new signature, a KNN search against the closest neighbor is per-
formed, with the following steps:

a.- Testing signature I is vectorized in to vector x of order N x 1 with N = m xn
b.- Inter-class average O is obtained from equation O = x− μ
c.- LDA projection WP is carried out using P and O: WP = PTO
d.- Euclidean distance from WE to WP denotes a distance vector√∑

|WE −WP |2 in which the lowest value corresponds to the signature’s
identified class.

3.3 Signature’s Writing Direction Encoding Method

In order to capture dynamic information, such as the signature’s writing di-
rection, a data encoding method was developed. This method strengthens the
feature extraction process by visually encoding extra information into the im-
age, at capture time. A gray value is assigned to each pixel of the signature’s
track being captured. The background of the captured image is set to zero to
give more contrast. The gray value for first pixel t1 of the signature’s track is
0.1, to distinguish it from the background. The gray value for last pixel of the
signature’s track is 1.

Let T (x, y) = t1(x1, y1), t2(x2, y2), ..., ti(xi, yi), ..., tn(xn, yn) be a Cartesian
coordinates vector representing the signature’s track, with t1(x1, y1) being the
first pixel written, and tn(xn, yn) being the last written. Each ti pixel of vector
T is assigned a gray level value given by the linear equation:
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ti = 0.9
i− 1
n− 1

+ 0.1 (14)

The background of binary captured signatures is usually set to 1 and signa-
ture’s track to 0, but the above transformation captures the signature’s track
with a black-to-white gradient denoting the direction in which the signature was
written, starting from pixel t1 (lowest gray value), to last pixel tn (highest value).
This effect is shown in Figure 2.

Fig. 2. Binary captured signature (left). Transformation to encode direction of signa-
ture (center). Result of visually encoded direction (right).

Simple visual inspection clearly shows that the image containing the signa-
ture’s direction encoded in gray scale delivers more information than the binary
one, even though they both share the same geometrical information, hence a
Fishersignatures training and classification process using these gray scale im-
ages should deliver better performance results than their corresponding binary
counterparts.

4 Experiments and Results

The database used for this work was GPDS960signature [20], with 960 classes,
24 images per class, in variable sizes. All images were normalized and resized
to 102x64 pixels. These values come from the size of a tablet device used in a
previous work to create a custom signature db. We preserved the resolution for
comparison reasons.

Our implementation of Eigen values and vectors search rely on singular value
decomposition, requiring a lot of RAM for big matrices. To solve this issue, the
algorithms were tested over a smaller data set, split in 3 groups, keeping 20
signatures per class in each group: one set with 100 classes; another set with
200 classes; and a third set with 300 classes. No counterfeit signatures were used
as the nature of this work was to verify performance of Fishersignatures idea
using cross-validation. These signatures were not originally captured using the
encoding process proposed in section 3.3. In order to verify the strengthening
capability of such an algorithm, writing direction simulations were applied over
the original b/w images. The accuracy performance of the original Fishersigna-
tures classification (created with the original b/w images) was compared to new
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Fishersignatures classification (created with simulated writing direction encoded
onto the same images). Four different writing direction simulations were applied
to each of the 3 data sets: first 40% of the images of a data set were applied
a black-to-white (gray) gradient from left to right. Next 20% of the images of
the same data set were applied the gradient from right to left. Next 20% of the
images of the same data set were applied a top-down gradient. Final 20% of
the images of the same data set were applied a bottom-up gray gradient. These
percentages were arbitrarily chosen, based on the fact that people in western
countries write from left to right, hence, simulation of this direction takes the
biggest proportion. All other simulations equally share the remaining 60%. In
order to maintain simplicity, the classifier used for all tests was KNN matching
the first neighbor found for each class.

Fig. 3. Examples of simulated writing direction using a black-to-white gradient. Bi-
nary captured signature and left-to-right direction simulation (left). Binary captured
signature and right-to-left direction simulation (right).

Performance results were evaluated through stratified cross validation using
5% of the data to test and the remaining 95% for training. Stratification ensures
the representation of each class in the test sets. The overall performance of
the method proposed is the average of 20 performances obtained. The average
performance is shown in Table 1.

To fully test the proposed data encoding algorithm, a second experiment was
executed. This time, the writing direction (dynamic data) was encoded in real
time during the acquisition process. The resulting db is SRM-SDB [18] with
45 classes, 10 signatures per class, and all images acquired using the method
described in 3.3 (each signature’s writing direction encoded in gray scale). A
b/w version of the images was also created for later use, where signature track’s

Table 1. Accuracy performance results using cross-validation over 3 sets of images.
Tests were carried out twice over each data set, one over binary images, and the next
run over images with an encoded writing direction simulation.

Data Set Image type Accuracy %

100 individuals Binary 92.20%
100 individuals Encoded simulation 95.15%
200 individuals Binary 97.00%
200 individuals Encoded simulation 97.58%
300 individuals Binary 97.47%
300 individuals Encoded simulation 98.60%
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Table 2. Accuracy performance results using cross-validation over signatures with real
writing direction data encoded in gray scale and binary versions of same images

Data Set Image type Accuracy %

45 individuals Binary (no gradient) 90.21%
45 individuals Encoded real writing direction 94.70%

gray values were replaced by 0 (black) and background values were replaces by
255 (white). The accuracy of Fishersignatures created using the original gray
scale acquired images was compared to Fishersignatures created using binarized
images. The classifier was KNN matching the first neighbor found per class.
Performance results were evaluated using stratified cross validation with 10% of
data to test and 90% for training. The average performance is shown in Table 2.

5 Conclusions

In this paper we propose two contributions for an improved signature recogni-
tion technique: One contribution is the implementation of Fisher discriminant
based feature vectors, we called Fishersignatures, a la face recognition method.
The second contribution is our feature strengthening method of encoding dy-
namic parameters while acquiring signatures, particularly the signature’s writing
direction.

The first contribution shows that our Fishersignatures implementation creates
good class separation. Even if applied over black and white images, the use of
a simple classifier, such as KNN, to identify signatures delivers an accuracy of
97.47% in the best b/w case.

The second contribution shows that the signature acquisition process can be
greatly improved by encoding extra information into a signature, without mod-
ifying its morphological characteristics, and still allow the processing of images
using Fishersignatures plus a simple KNN classifier. This statement gets vali-
dated by two different successful experiments:

I) Encoding of simulated writing direction over binary-acquired signatures:
the best accuracy rate achieved under binary analysis (97.47%) was super-
seded by an accuracy of 98.60% when encoding simulated dynamic infor-
mation into the images.

II) Encoding of real writing direction at acquisition time: the proposed en-
coding method tested in a real-life scenario delivered an accuracy rate of
94.70%, which is far superior than 90.21% of accuracy obtained using a
b/w version of the same images.

Although both experiments are obviously not comparable between them (given
the nature of data acquisition of each experiment plus number of classes, sam-
ples, folds, etc.), it can be observed that Fishersignatures classification always
delivered an accuracy of over 90% in all cases, and also that the proposed encod-
ing method raised this accuracy in both experiments. The accuracy rate of other
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techniques is: 93% obtained by Karouni et al. [6], 94% obtained by Al-Mayyan et
al. when using PCA [7], 93% obtained by Radhika et al. [8]. A further compari-
son of the best accuracy performance obtained in the first experiment (98.60%)
against these other techniques shows that Fishersignatures classification deliv-
ers excellent performance, even though the KNN classifier seems weaker than
others. Finally, accuracy results obtained denote that the combination of our
two contributions can become a serious contender to other signature recognition
methods.

An extension of the encoding algorithm is planned for future work, where other
dynamic parameters will be encoded, such as writing speed. The replacement of
the classifier for a stronger one, plus the analysis of a higher volume of signatures
are also in our research roadmap.

Acknowledgments. This work was supported in part by School of Engineering,
Pontificia Universidad Catolica de Chile, Grant FIA.

References

1. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition.
IEEE Transactions on Circuits and Systems for Video Technology 14, 4–20 (2004)

2. Prabhakar, S., Pankanti, S., Jain, A.K.: Biometric recognition: security and privacy
concerns. IEEE Security & Privacy 1, 33–42 (2003)

3. Faundez-Zanuy, M.: On-line signature recognition based on VQ-DTW. Pattern
Recognition 40, 981–992 (2007)

4. Pascual-Gaspar, J.M., Faundez-Zanuy, M., Vivaracho, C.: Fast on-line signature
recognition based on VQ with time modeling. Engineering Applications of Artificial
Intelligence 24(2), 368–377 (2011)

5. Pascual-Gaspar, J.M., Faundez-Zanuy, M., Vivaracho, C.: Efficient on-line signa-
ture recognition based on multi-section vector quantization. Pattern Analysis &
Applications 14(1), 37–45 (2010)

6. Karouni, A., Daya, B., Bahlak, S.: Offline signature recognition using neural net-
works approach. In: Procedia Computer Science, World Conference on Information
Technology, vol. 3, pp. 155–161 (2011)

7. Al-Mayyan, W., Own, H.S., Zedan, H.: Rough set approach to online signature
identification. Digital Signal Processing 21(3), 477–485 (2011)

8. Radhika, K.R., Venkatesha, M.K., Sekhar, G.N.: Signature authentication based
on subpattern analysis. Applied Soft Computing 11(3), 3218–3228 (2011)

9. Ebrahimpour, R, Amiri, A., Nazari, M., Hajiany, A.: Robust Model for Signa-
ture Recognition Based on Biological Inspired Features. International Journal of
Computer and Electrical Engineering 2(4) (August 2010)

10. Meshoul, S., Batouche, M.: A novel approach for online signature verification using
fisher based probabilistic neural networks. In: Proceedings - IEEE Symposium on
Computers and Communications, pp. 314–319 (2010)

11. Tu, J.V.: Advantages and disadvantages of using artificial neural networks versus
logistic regression for predicting medical outcomes. Journal of Clinical Epidemiol-
ogy 49(11), 1225–1231 (1996)

12. Kulkarni, V.B.: A Colour Code Algorithm for Signature Recognition. Electronic
Letters on Computer Vision and Image Analysis 6, 1–12 (2007)



442 T. Schmidt, V. Riffo, and D. Mery

13. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuro-
science 3, 71–86 (1991)

14. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings of Com-
puter Vision & Pattern Recognition, CVPR 1991, IEEE Computer Society Con-
ference, pp. 586–591 (1991)

15. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recognition
using class specific linear projection. IEEE Transactions on Pattern Analysis and
Machine Intelligence 19, 711–720 (1997)

16. Vivaracho-Pascual, C., Faundez-Zanuy, M., Pascual, J.M.: An efficient low cost
approach for on-line signature recognition based on length normalization and frac-
tional distances. Pattern Recognition 42, 183–193 (2009)

17. Erkmen, B., Kahraman, N., Vural, R., Yildirim, T.: CSFNN optimization of sig-
nature recognition problem for a special VLSI NN chip. In: 3rd International
Symposium on Communications, Control and Signal Processing, ISCCSP 2008,
pp. 1082–1085 (2008)

18. Riffo, V., Schmidt, T., Mery, D.: Propuesta Novedosa de Reconocimiento Dinmico
de Firmas. In: Proceeding of First Chilean Workshop on Pattern Recognition:
Theory and Applications, pp. 44–51 (2009)

19. Hari, V.: Accelerating the SVD Block-Jacobi Method. Computing 75, 27–53 (2005)
20. Blumenstein, M., Ferrer Miguel, A., Vargas, J.F.: The 4NSigComp2010 off-line

signature verification competition: Scenario 2. In: Proceedings of 12th International
Conference on Frontiers in Handwriting Recognition, Kolkata, India, November
16-18, pp. 721–726 (2010) ISSBN: 978-0-7695-4221-8



A Multi-style License Plate Recognition System

Based on Tree of Shapes for Character
Segmentation
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Abstract. The aim of this work is to develop a multi-style license
plate recognition (LPR) system. Most of the LPR systems are country-
dependent and take advantage of it. Here, a new character extraction
algorithm is proposed, based on the tree of shapes of the image. This
method is well adapted to work with different styles of license plates,
does not require skew or rotation correction and is parameterless. Also,
it has invariance under changes in scale, contrast, or affine changes in
illumination. We tested our LPR system on two different datasets and
achieved high performance rates: above 90 % in license plate detection
and character recognition steps, and up to 98.17 % in the character seg-
mentation step.

1 Introduction

License Plate Recognition (LPR) is a very popular research area because of its
immediate applications in real life. Security control and traffic safety applica-
tions, such identification of stolen cars or speed limit enforcement, have become
very important application areas where the license plate (LP) analysis plays a
fundamental role [1].

An LPR system can be divided in three steps: LP detection, character seg-
mentation and character recognition. Character recognition success strongly de-
pends on the quality of the bounding boxes, obtained by the segmentation step.
Therefore, we considered that segmentation is a very important step in an LPR
system. An extensive review for LPR can be found in [1]. However, the problem
of LPR systems able to handle license plates from different countries and with
different styles (shape, foreground-background colors, etc.) is currently an open
research area. Several works implement LPR tasks achieving high performance
rates, but most of them are country dependent.

In [6,10,11] LPR with multi-style analyses is addressed. Also, [6] and [11]
use a similar procedure to search for LP regions, and added a recognition feed-
back to improve the detection step when the recognition fails. The character
extraction step, is usually performed by binarization methods and a connected
component analysis [10,11]. The choice of binarization-thresholds is a hard task;
if it is not chosen properly, we will easily get redundant detections or miss some
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detections too. An interesting work which handled detection and segmentation
simultaneously is presented in [4].

In [11], the recognition step is carried out by a statistical approach using
Fourier descriptors, and a structural approach using the Reeb Graph to distin-
guish ambiguous characters. In addition, for better character recognition, in [6]
a three-layer artificial neural network over fixed sub-blocks from previously ex-
tracted characters, is computed.

In this work we develop a LPR System on still images adaptable to different
countries. Our focus is in the segmentation step which is considered to be very
important in an LPR system A new character extraction method is proposed
based on the tree of shapes of an image. This method is well adapted to work
under different LP styles, does not require rotation or skew correction and is
parameterless. Also, it has invariance under changes in scale, contrast, or affine
changes in illumination. These properties are derived by the properties of the
tree of shapes [8]. The system was tested on two datasets (see examples in Fig. 1)
obtaining high performance rates.

Fig. 1. Examples from two datasets used to test our system. First row shows cars
images from USA. Second row shows Argentinean truck images.

This paper is organized as follows. Section 2 details the implementation of the
LPR system and its steps. Experimental results over the datasets are given in
section 3. Finally, section 4 presents the conclusions and future work.

2 License Plate Recognition System

In this section we introduce the three steps of the LPR system: license plate
detection, character segmentation and character recognition (Fig. 2).

The initial task of any LPR system is to find the location of the LP in the
image. Thus, our LP detection process starts generating several regions of inter-
est (RoI) using morphological filters. To validate the RoIs Ri, i = 1, . . . , N and
choose the most probable LP region, more exhaustive analyses are applied to
give a score to each region using template matching and feature extraction [9].
Then, the system passes the region with the highest score to the segmentation
step and validates its result if it has encountered more than three bounding
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boxes (|bbx| > 3 in Fig. 2) . Finally, the bounding boxes are used as an input
to the character recognition step and it is validated as described in section 2.3.
Following [11], if the analysis fails in the character segmentation or character
recognition steps, the second most probable region will be evaluated, and so on,
until the RN region is reached. In such situation, the system returns no detection.

Fig. 2. LPR system diagram. Diamond shaped blocks represent validation steps.

2.1 License Plate Detection

In this section we discuss the analysis done for every region in order to give them
a confidence value.

ROI generation. A morphological top-hat filtering is applied to the input im-
age to enhance the contrast in regions with great difference in intensity values.
Then, vertical contours are calculated using the Sobel filter, and successive mor-
phological operations are then applied to connect the edges in the potential LP
regions. These operations are a simple and rapid way to provide several potential
RoIs. This is a critical step in the LPR system: if the LP is not detected by the
morphological filters, it will be lost.

ROI evaluation. Each RoI Ri, i = 1, ..., N is evaluated by two methods: tem-
plate matching and text detection [5]. Then, we define four evaluation vectors of
length N : pcv for template matching, and mgd, nts and tbr for text detection,
where pcv(i) is the pattern correlation value obtained by cumulating the cor-
relation values inside the boundaries of Ri, and mgd(i), nts(i), tbr(i) are the
maximum gradient difference, the number of text segments and the text block
ratio, inside Ri. We need to merge their information in order to decide which
of the N regions is the most probable to be a license plate. To do so, we create
four sorting index vectors: pcvsi, mgdsi, ntssi and tbrsi. These vectors give an
index to each Ri that depends on an ascending sorting of the evaluation vectors.
The Ri with the lowest value in the feature vector gets index 1, and the Ri with
the highest value gets index N . Then, we define a vector votes of length N :

votes(i) = pcvsi(i) + mgdsi(i) + ntssi(i) + tbrsi(i)
The region Rm, with m = arg max1≤i≤N votes(i) is retained as the LP.
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Adapting the thresholds. The detection step can be applied to different
datasets. However, the thresholds must be adapted to detect the LP in images
obtained from different cameras or environments. To do this, the first images of
the dataset are analyzed. As the position of each license plate is labeled in each
image of the dataset, this information is used in order to fix the thresholds of the
detection method. These thresholds are chosen to validate 95 % of all text seg-
ments inside the first five well recognized LPs. Also, the LP used as correlation
pattern is set to the first image of the dataset.

2.2 Character Segmentation

To extract the characters in the LP we propose a new algorithm, which processes
the tree of shapes of an image [8] to search for groups of characters. The tree
of shapes is a complete representation of an image, i.e. the original image can
be reconstructed from it. Also, the shapes in the tree are consistent with what
we expect to be “objects” in the image. For instance, a character in an image
will be represented by a shape (or a set of shapes) in the tree. The goal of this
procedure is to state properties shared by every LP with no restrictions on the
style of the plate.

Tree of shapes. A shape is defined as a connected component of a level set
whose holes are “filled” (see [8] for a formal definition). Then, upper and lower
level sets, at level λ, of an image u are defined as Xλu = {x | u(x) ≥ λ} and
Xλu = {x | u(x) < λ}, respectively. It is known that connected components of
level sets can be arranged in an inclusion tree ordered by λ, their gray level [8].
Moreover, the shapes extracted from an image can be ordered by geometrical
inclusion (a shape is a child of another shape if it is included in its interior) to
build the tree of shapes.

Char-grouping algorithm. This algorithm uses the fact that characters in
license plates have properties in common, such as same foreground-background
contrast, alignment and minimum overlap of bounding boxes, and similar width
and height. The steps of this algorithm can be summarized as follows. The RoI
Rm, returned by the detection step, is used to compute the tree of shapes.
Then, all the nodes (shapes) in the tree are pairwise compared, linking the
similar shapes, with a given criterion. Finally, the bounding boxes of the most
linked node and its neighbors are returned as the result. Algorithm 1 shows the
pseudo-code of the proposed algorithm.

In order to avoid performing comparison of shapes included in other shapes
or in already linked shapes, the tree of shapes is traversed taking advantage of
its structure: nodes are visited top-down, and a node is never compared with a
descendant of it or with a descendant of a node linked to it (line 4). This is a
proper traverse, i.e. there are no repeated nor missing comparisons, due to the
inclusion property of the tree of shapes, and to the fact that any two shapes are
either disjoint or nested (see [8] for an explanation).
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Character comparison. A feature vector is built for each node in the tree. This
feature vector bears information about the bounding box and the type (upper or
lower) of its associated shape. The comparison of the feature vectors (line 2) is
carried out by the predicate SimilarChars(n,m), which returns true if nodes n
and m have the same type, and the distance between the corresponding shapes Φ
is above a fixed threshold, and returns false otherwise. The distance Φ is given by

Φ(n,m) =
min
(

W (n),W (m)
)

max
(

W (n),W (m)
)+

min
(

H (n),H (m)
)

max
(

H (n),H (m)
)+ y(n)∩ y(m)

min
(

H (n),H (m)
)+1− x (n)∩ x (m)

min
(

W (n),W (m)
)

where functions W (·) and H (·) return width and height of the corresponding
bounding boxes of n and m, respectively. Also, terms x (n)∩x (m) and y(n)∩y(m)
represent the bounding box overlapping in x and y directions, respectively. In
addition, shapes which lack vertical rectangularity, or which are too small, or
too big or too distant, are discarded before performing the comparison.

Algorithm 1. char-grouping algorithm
Input: Tree of shapes T
Output: Set of bounding boxes S
1: for all n, m ∈ T do
2: if SimilarChars(n,m) then
3: Link(n, m)
4: Skip n’s children and m’s children
5: Let nmax the maximum linked node
6: for all n ∈ T do
7: if Linked(n,nmax) then
8: S ← S ∪ { BoundingBox(n) }
9: return S

Fig. 3 shows examples of the bounding boxes computed by the char-grouping
algorithm. As it can be seen, characters of LPs of very different styles are de-
tected without modifying the algorithm. The first column shows examples of
cluttered images where the detected text region is highly over-sized but the seg-
mentation step still succeeds. The second column shows segmentation examples
with different foreground-background color combination (top and middle: dark
foreground and bright background, bottom: bright foreground and dark back-
ground). The third column shows how the contrast invariance property of the
tree of shapes gives the advantage to work under several and nonuniform illumi-
nation conditions of image acquisition. The fourth column shows segmentations
for LPs not in the tested datasets.

As we can see, the char-grouping algorithm has no need of rotation or skew
correction, it is style independent and furthermore it is parameterless. Also,
it works under changes in the scale of the license plate and under changes in
contrast or illumination conditions. These properties are achieved without con-
straints on the style of license plate or a priori information.
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Fig. 3. Examples of character segmentation using char-grouping algorithm

2.3 Character Recognition

A Support Vector Machine (SVM) based classifier is trained using the Histogram
of Gradient (HoG) as features.

Histogram of Gradient. This feature uses gradient magnitude and orientation
around a point of interest or in a region of the image to construct a histogram.
The HoG feature space is composed of histograms obtained from rectangular
regions shifted by one pixel inside the pattern, defined as follows.

Once a character is segmented, it is resized to a 16x12 pixels pattern and
then applied a 3x3 Sobel filter. The gradient orientation of each pixel is quan-
tized to integer values between 0 and 5 using modulo π instead of modulo 2π.
In this way, dark on bright characters give the same orientation than bright on
dark characters. For each pixel p in the pattern, we considered nine regions with
p as top-left corner and sizes MxM, Mx2M, 2MxM, M ∈ {4, 6, 8} to build the
histograms. Then, the histograms are normalized to obtain their sum equals to 1.

Support vector machine. In this work, we train a SVM using libsvm li-
brary [2]. The strategy for the classification is the One Against All approach.
The training characters are extracted from images labeled as non-deteriorated
(see section 3) which are not included in the test dataset. We construct 35 bi-
nary (O and 0 are in the same class) SVM classifiers, each of which separates
one character from the rest. To get the k-th SVM classifier the training dataset
is composed as follows: the positive set correspond to samples from k-th class,
and the negative set correspond to samples of other classes. In the testing phase,
an input character (resized and normalized) is the input of each classifier. Then,
it will be classified as the class that classifier produces the highest value.

Character recognition validation. The character recognition results are
tested following the strategy developed in [11]. Two confidence values are es-
timated from the SVM classifiers outputs: cr and cd, that indicate classifier
performance and discriminability, respectively. For each character, these values
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are calculated and the total performance is obtained performing the mean of
these results, obtaining c̄r and c̄d. If c̄r < Cr and c̄d < Cd, all the operation is
invalidated and the region is rejected. The thresholds Cd and Cd are estimated
to validate the 99 % of the training dataset.

3 Experimental Results

We tested our LPR system performance on two datasets (see examples in Fig. 1).
The first dataset, from now on called the USA dataset, is composed of 158 images
tagged as non-deteriorated from the UCSD/Calit2 database [3]. These images
were captured from outdoor parked cars and the license plates have different
styles, containing alphanumeric characters without an established configuration.
The second dataset, from now on called the ARG dataset1, is composed of 439
truck images from Argentina. These images were acquired by an infrared camera
placed at a truck entrance gate. All the images have the same style, but this style
is not used to tune up the system. Both datasets were manually tagged with
plate text, plate location and character bounding box. An extra label is added
indicating if the image is deteriorated or non-deteriorated, where deteriorated
images are those with a license plate which is too noisy, broken or incomplete.
To validate a detection we check if the detected region intersects more than
the half of the tagged region. In an analogous way, we validate the character
segmentation. Also, character recognition is evaluated using the Levenshtein
distance.

Additionally, we tested our system using Maximally Stable Extremal Regions
(MSER) [7] in the segmentation step. The MSER has been widely used in many
applications, including license plate recognition [4]. Two variants of MSER can
be computed denoted as MSER+ and MSER-. The first detects bright regions
with darker boundary, and the second detects dark regions with brighter bound-
ary. For the purpose of character extraction, we set the sensitivity parameter
Δ = 10 and we filter out unstable or repeated regions.

Detection, segmentation and recognition rates for ARG and USA datasets
are show in Table 1. The LPR system with char-grouping algorithm (CGA)
and MSER, achieved similar detection performance rates as expected because
the detection step is the same. However, the CGA outperforms MSER in 3 %
in the segmentation step and therefore in recognition too, because character
recognition strongly depends on the quality of the bounding boxes obtained by
the segmentation step. Moreover, the MSER procedure needs information about
the foreground-background contrast, e.g. MSER+ for ARG dataset and MSER-
for USA dataset, resulting in a loss of the multi-style characteristic of the system.
Also, CGA and MSER have better performance on the ARG dataset than on the
USA database because of the difference in image acquisition conditions between
both datasets.

1 Available at http://www-2.dc.uba.ar/grupinv/imagenes/~fgomezf/lpr

http://www-2.dc.uba.ar/grupinv/imagenes/~fgomezf/lpr
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Table 1. Detection, segmentation and recognition rates, using char-grouping algorithm
(CGA) and Maximally Extremal Stable Regions (MSER+ and MSER-)

(a) ARG dataset

Det Seg Rec

CGA 97.27 98.17 95.08
MSER+ 97.04 95.54 92.18

(b) USA dataset

Det Seg Rec

CGA 90.51 93.76 92.45
MSER- 89.12 90.47 89.27

4 Conclusions and Future Work

This work introduced a novel LPR system for multi-style license plates, which
proposed a new algorithm for character extraction. This algorithm does not
requires rotation or skew correction and is parameterless. Also, it has invari-
ance under changes in scale, contrast, or affine changes in illumination. The
quantitative and qualitative results shown in the previous sections, support the
mentioned properties. Further work has to be done to study the adaptation of
the detection thresholds without any a priori information. Also, we think that
adding features to the nodes of the tree of shapes, like pixel distribution inside
a bounding box, will enhance the comparison. Moreover, the need to extend the
system to handle two-row LP is an important task to tackle in further studies.
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Abstract. Pattern recognition and digital signal processing techniques
allow the design of automated systems for avian monitoring. They are a
non-intrusive and cost-effective way to perform surveys of bird popula-
tions and assessments of biological diversity. In this study, a number of
representation approaches for bird sounds are compared; namely, feature
and dissimilarity representations. In order to take into account the non-
stationary nature of the audio signals and to build robust dissimilarity
representations, the application of the Earth Mover’s Distance (EMD) to
time-varying measurements is proposed. Measures of the leave-one-out
1-NN performance are used as comparison criteria. Results show that,
overall, the Mel-ceptrum coefficients are the best alternative; specially
when computed by frames and used in combination with EMD to gene-
rate dissimilarity representations.

Keywords: Automated avian monitoring, bird sounds, dissimilarity rep-
resentations, feature representations.

1 Introduction

Advances in pattern recognition and digital signal processing allow the iden-
tification of bird species by their emitted sounds and, thereby, the design of
automated systems for avian monitoring. In spite of those advances, biodiversity
assessments have typically been carried out by visual inspection, which requires
human involvement and, therefore, may be expensive and have a limited co-
verage. In contrast, automatic acoustic monitoring is a non-intrusive and cost-
effective alternative that may provide good temporal and spatial coverages.

The simplest sounds in a bird song are called elements or notes. Several notes
together in a regular pattern in a song constitute a syllable and, in turn, sev-
eral syllables are a song phrase [1]. Previous studies [2–4] have shown that the
sound-based recognition of bird species is suitable when considering syllables as
� Mauricio Orozco-Alzate is a member of Sociedad Caldense de Ornitoloǵıa (SCO), a

regional ornithological society from Caldas, Colombia: http://rnoa.org/sco/
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elementary units. Raw measurements corresponding to those elementary units
have to be represented in vector spaces where classification rules can afterwards
be applied. Representations for bioacoustic signals have traditionally been built
by feature extraction; however, we advocate that dissimilarity representations
are also a feasible option to face this problem. Furthermore, dissimilarities have
the potential to build either simpler or richer representations; the later case, a
richer representation, when considering for instance time-varying measurements
that take into account non-stationarity. In this study, we evaluate different types
of representations, including feature-based and dissimilarity-based ones, for bird
sounds segmented into syllables.

Considered feature representations include the so-called standard features and
a so-called coarse representation of segment structure; both of them include the
syllable duration as well as features related to particular frequencies and maxi-
mum values in the frequency domain [2]. Besides, we evaluate a set of acoustical
features, named in [3] and here as descriptive features, and the Mel-cepstrum
representation, which is based on a linear cosine transform of a log power spec-
trum on a nonlinear Mel scale of frequency. Spectral analyses such as as the Fast
Fourier Transform (FFT) and the Parametric estimation of the Power spectral
Density (PSD) are simple initial representations to find dissimilarities between
syllables. Such options to build dissimilarity representations are also considered.
In addition, we calculate dissimilarities with richer spectral estimates, namely
time-varying ones, that consist in dividing segments into frames and mapping
each one into two-dimensional spectral or feature representations. The computa-
tion of dissimilarities between time-varying initial representations is carried out
by using the Earth Mover’s Distance (EMD), due to its usefulness to compare
distributions.

The goodness of a particular representation can be roughly assessed by using
measures of the leave-one-out nearest-neighbor (1-NN) performance. Such mea-
sures are commonly used as criteria when selecting features or prototypes for a
representation [5]. We use them here as comparison values between the evaluated
representations.

2 Methods

The design of a bird sound recognition system includes, at least, the following
three stages: preprocessing, representation and performance evaluation. The first
one consists in the segmentation of continuous records, whose objective is to de-
tect intervals —according to the energy signal— where there are sounds emitted
by birds. Consequently, it is assumed that bird sounds are located in signal re-
gions with high energy levels. Steps of the segmentation stage are: computation
of the energy signal, estimation of an energy threshold, search of syllables (re-
gions having energies above a threshold), and the application of a criterion of
deletion and merging of very short segments.
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Regarding the second stage —representation— several methods of feature-
based representations, commonly used in bioacoustics and bird sound classifica-
tion, are compared in this paper. In addition, the dissimilarity-based approach
is proposed as an alternative for representation. The last stage —performance
evaluation— is carried out, as indicated at the end of Sec. 1, i.e. by using the
leave-one-out 1-NN performance.

2.1 Feature Representations

Standard features: Segments are characterized by using four features as pro-
posed in [2]; namely minimum and maximum frequencies, temporal duration and
maximum power.

Coarse representation of segment structure: The following eleven vari-
ables, originally proposed in [2], are used as features for each segment: minimum
and maximum frequencies, temporal duration and frequency of maximum power
in eight non-overlapping frames.

Descriptive features: This set includes both temporal and spectral features.
Segments are divided into overlapping frames of 256 samples with 50% overlap.
For each frame, the following features are estimated: spectral centroid, signal
bandwidth, spectral roll-off frequency, spectral flux, spectral flatness, zero cross-
ing rate and short time energy. Feature vectors for classification are composed
by mean and variance values of the feature trajectories along the frames. Fre-
quency range (minimum and maximum frequencies), segment temporal duration
and modulation spectrum (position and magnitude of the maximum peak in the
modulation spectrum) are calculated from the entire segment. Therefore, 19 fea-
tures are calculated with this method as proposed in [3].

Mel-cepstrum representation: Mel-frequency cepstral coefficients (MFCCs)
are a feature representation method commonly used in many audio classifica-
tion problems, e.g. in speech recognition. Mel-frequency scale is derived from
the human perceptual system. Such systems in birds are not the same but ex-
hibit similar characteristics; therefore, MFCCs have also been used in birdsong
recognition [3, 4]. The first 12 MFCCs, the log-energy and the so-called delta
and delta-delta coefficients are obtained for each frame. Their mean values along
the frames are used as features, as proposed in [3].

2.2 Dissimilarity Representations

A dissimilarity representation consists in building vectorial spaces where coordi-
nate axes represent dissimilarities —typically distance measures— to prototypes.
In these spaces, classifiers can be built. In a full dissimilarity matrix, prototypes
are all the elements available in a particular dataset. The matrix is often symmet-
ric and must be real and have zero diagonal. “Dissimilarity representations can
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be derived in many ways, e.g. from raw (sensor) measurements such as images,
histograms or spectra or, from an initial representation by features, strings or
graphs” [5]. Considering that the analysis of signal properties is usually done in
the frequency domain, we have calculated the spectrum for each signal by using
two different approaches: FFT and PSD. Dissimilarity representations have been
then computed by pointwise distances between spectra.

Dissimilarity representations, derived as described above, suppose that spec-
tral behavior is similar in the entire segment. In order to obviate such an as-
sumption, we also use representations that change over time (time-varying). In
such a way, the acoustic space for each sound segment is efficiently covered [6].
Time-varying representations are computed by dividing sound segments into
frames and converting each one to either a spectral or a feature representation.
Feature sets measured for each frame were: 1) spectrogram, also known as short
time Fourier transform (SFT); 2) PSD by using the Yule Walker method; 3)
selected descriptive features (spectral centroid, signal bandwidth, spectral roll-
off frequency, spectral flux, spectral flatness, zero crossing rate and short time
energy); and 4) the Mel-cepstrum representation as explained in Sec. 2.1. Sets
3) and 4) must be standardized because features are not in same scale.

Measuring dissimilarities between representations: In the case of equally-
sized representations (e.g. FFT or PSD) a classical measure, as the Euclidean
distance, can be used. Conversely, the Euclidean distance can not be directly
applied to time-varying representations. To overcome this difficulty, in this study
we have used the EMD. Due to space constraints, we are not able to provide a
description for this distance measure; see [7] and [6] for further implementation
details.

3 Experimental Results

We performed a set of experiments on a dataset of raw field recordings taken at
Reserva Natural Rı́o Blanco in Manizales, Colombia. The sampling frequency of
the recordings is 44.1 kHz. The dataset is composed by a total of 595 syllables
distributed per species as follows1: Grallaria ruficapilla (GR, 33), Henicorhina
leucophrys (HL, 64), Mimus gilvus (MG, 66), Myadestes ralloides (MR, 58),
Pitangus sulphuratus (PS, 53), Pyrrhomyias cinnamomea (PC, 36), Troglodytes
aedon (TA, 33), Turdus ignobilis (TI, 74), Turdus serranus (TS, 78), Xiphoco-
laptes promeropirhynchus (XP, 46) and Zonotrichia capensis (ZC, 54).

Evaluation for each representation was assessed by using measures of the
leave-one-out 1-NN performance. For each representation, a confusion matrix
is reported. In addition, the following performance measures per class are pre-
sented: True Positive rate (TP), False Positive rate (FP), Accuracy (ACC) and
F1 score. Results are shown in Tables 1-4.

1 Scientific names are indicated together with a pair (Abbreviation, Number of
syllables).
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Table 1. Results for feature representations

(a) Standard features
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 21 0 0 3 1 3 0 0 1 4 0 33 63.64 1.60 96.47 66.67
HL 1 35 8 2 4 0 7 1 2 3 1 64 54.69 4.33 91.26 57.38
MG 0 6 28 4 10 4 5 2 3 1 3 66 42.42 5.67 88.57 45.16
MR 1 1 3 39 3 5 0 3 3 0 0 58 67.24 2.98 94.12 69.03
PS 0 2 4 2 36 1 2 1 3 2 0 53 67.92 4.98 92.61 62.07
PC 2 1 4 2 0 24 0 0 0 3 0 36 66.67 2.50 95.63 64.86
TA 0 6 3 0 2 0 21 0 0 0 1 33 63.64 3.02 95.13 59.15
TI 0 0 1 1 0 0 1 67 3 1 0 74 90.54 2.30 96.81 87.58
TS 1 5 5 2 4 1 0 4 52 1 3 78 66.67 3.87 92.27 69.33
XP 2 1 1 0 1 0 0 0 1 39 1 46 84.78 2.91 96.13 77.23
ZC 2 1 1 0 2 0 2 1 4 1 40 54 74.07 1.66 96.13 77.67
Total 30 58 58 55 63 38 38 79 72 55 49 595

Total accuracy = 67.56%

(b) Coarse representation of segment structure
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 27 0 3 0 0 0 0 0 3 0 0 33 81.82 0.71 98.32 84.38
HL 1 45 2 2 3 0 4 1 2 2 2 64 70.31 2.07 94.96 75.00
MG 0 1 43 2 2 3 1 0 11 2 1 66 65.15 4.73 91.93 64.18
MR 0 0 1 41 1 6 0 1 7 1 0 58 70.69 2.98 94.45 71.30
PS 2 0 6 1 40 0 0 0 0 4 0 53 75.47 2.21 95.80 76.19
PC 0 0 1 6 0 25 1 0 1 1 1 36 69.44 2.50 95.80 66.67
TA 0 5 1 0 3 1 22 0 0 0 1 33 66.67 1.78 96.47 67.69
TI 0 1 2 1 0 0 0 65 3 2 0 74 87.84 0.77 97.82 90.91
TS 0 2 6 2 0 3 1 2 60 1 1 78 76.92 5.61 92.10 71.86
XP 0 0 1 1 1 0 0 0 1 42 0 46 91.30 2.37 97.14 83.17
ZC 1 2 2 1 2 1 3 0 1 0 41 54 75.93 1.11 96.81 81.19
Total 31 56 68 57 52 39 32 69 89 55 47 595

Total accuracy = 75.80%

(c) Descriptive features
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 33 0 0 0 0 0 0 0 0 0 0 33 100.00 0.36 99.66 97.06
HL 0 54 1 0 0 0 7 1 1 0 0 64 84.38 1.88 96.64 84.38
MG 1 2 58 1 3 0 0 0 1 0 0 66 87.88 1.51 97.31 87.88
MR 0 0 2 54 0 0 0 1 0 0 1 58 93.10 0.93 98.49 92.31
PS 0 0 0 0 52 0 0 0 1 0 0 53 98.11 0.74 99.16 95.41
PC 0 0 0 1 0 34 1 0 0 0 0 36 94.44 0.00 99.66 97.14
TA 0 5 2 0 0 0 26 0 0 0 0 33 78.79 1.42 97.48 77.61
TI 0 0 1 0 0 0 0 72 1 0 0 74 97.30 0.38 99.33 97.30
TS 0 3 1 1 1 0 0 0 70 1 1 78 89.74 0.77 97.98 92.11
XP 0 0 0 0 0 0 0 0 0 46 0 46 100.00 0.18 99.83 98.92
ZC 1 0 1 2 0 0 0 0 0 0 50 54 92.59 0.37 98.99 94.34
Total 32 64 65 59 56 34 34 74 74 47 52 595

Total accuracy = 92.27%

(d) Mel-cepstrum representation
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 33 0 0 0 0 0 0 0 0 0 0 33 100.00 0.00 100.00 100.00
HL 0 58 0 0 0 0 5 0 0 1 0 64 90.63 1.69 97.48 88.55
MG 0 0 66 0 0 0 0 0 0 0 0 66 100.00 0.38 99.66 98.51
MR 0 1 0 54 1 0 1 0 0 0 1 58 93.10 0.19 99.16 95.58
PS 0 0 0 0 53 0 0 0 0 0 0 53 100.00 0.37 99.66 98.15
PC 0 0 0 1 0 34 0 0 1 0 0 36 94.44 0.18 99.50 95.77
TA 0 5 0 0 0 0 28 0 0 0 0 33 84.85 1.25 97.98 82.35
TI 0 0 1 0 0 0 1 70 0 2 0 74 94.59 0.38 98.99 95.89
TS 0 3 1 0 0 1 0 2 69 1 1 78 88.46 0.58 97.98 92.00
XP 0 0 0 0 1 0 0 0 2 43 0 46 100.00 0.18 99.83 98.92
ZC 0 0 0 0 0 0 0 0 0 0 54 54 100.00 0.37 99.66 98.18
Total 33 67 68 55 55 35 35 72 72 47 56 595

Total accuracy = 94.45%
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Table 2. Results for dissimilarity representations computed from 1-D spectra

(a) Spectra computed by FFT
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 20 4 1 0 1 0 1 1 1 0 4 33 60.61 1.42 96.47 65.57
HL 0 28 6 3 1 4 7 6 3 1 5 64 43.75 7.91 86.89 41.79
MG 1 5 35 1 7 1 0 7 4 4 1 66 53.03 7.18 88.40 50.36
MR 0 2 0 33 2 0 1 6 5 0 9 58 56.90 5.03 91.26 55.93
PS 1 1 3 5 35 1 0 4 2 0 1 53 66.04 3.87 93.45 64.22
PC 1 6 1 1 0 17 1 1 6 0 2 36 47.22 3.76 93.28 45.95
TA 1 6 4 0 2 1 13 0 1 2 3 33 39.39 1.78 94.96 46.43
TI 1 5 7 3 1 3 0 40 10 3 1 74 54.05 7.49 87.73 52.29
TS 2 5 8 4 5 7 0 10 29 5 3 78 37.18 8.12 84.71 38.93
XP 0 5 8 0 1 1 0 2 6 21 2 46 45.65 2.73 93.28 51.22
ZC 1 3 0 10 1 3 0 2 4 0 30 54 55.56 5.73 90.76 52.17
Total 28 70 73 60 56 38 23 79 71 36 61 595

Total accuracy = 50.58%

(b) Spectra computed by PSD
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 31 0 1 0 0 0 0 0 0 1 0 33 93.94 0.18 99.50 95.38
HL 0 48 3 1 1 0 5 0 1 1 4 64 75.00 3.39 94.29 73.85
MG 0 4 44 1 2 0 1 3 6 5 0 66 66.67 2.65 93.95 70.97
MR 0 1 0 46 1 2 0 2 5 0 1 58 79.31 0.93 97.14 84.40
PS 0 1 0 0 41 2 0 1 3 4 1 53 77.36 2.03 96.13 78.10
PC 0 0 0 0 0 34 1 0 1 0 0 36 94.44 0.89 98.82 90.67
TA 0 6 2 1 0 0 23 1 0 0 0 33 69.70 1.60 96.81 70.77
TI 0 0 1 1 1 0 0 71 0 0 0 74 95.95 2.11 97.65 91.03
TS 0 2 2 1 4 1 0 3 58 7 0 78 74.36 3.29 93.78 75.82
XP 1 2 5 0 2 0 1 1 1 33 0 46 71.74 3.28 94.79 68.04
ZC 0 2 0 0 0 0 1 0 0 0 51 54 94.44 1.11 98.49 91.89
Total 32 66 58 51 52 39 32 82 75 51 57 595

Total accuracy = 80.67%

Table 3. Results for dissimilarity representations derived from:

(a) SFT
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 33 0 0 0 0 0 0 0 0 0 0 33 100.00 0.00 100.00 100.00
HL 0 58 1 0 0 0 5 0 0 0 0 64 90.62 1.51 97.65 89.23
MG 0 2 59 0 0 0 0 1 3 1 0 66 89.39 0.76 98.15 91.47
MR 0 1 0 52 0 0 1 0 4 0 0 58 89.66 0.00 98.99 94.55
PS 0 0 0 0 50 0 1 0 1 1 0 53 94.34 0.18 99.33 96.15
PC 0 0 0 0 0 36 0 0 0 0 0 36 100.00 0.18 99.83 98.63
TA 0 5 0 0 0 0 26 0 1 1 0 33 78.79 1.60 97.31 76.47
TI 0 0 1 0 0 0 1 72 0 0 0 74 97.30 0.19 99.50 97.96
TS 0 0 0 0 0 1 0 0 76 1 0 78 97.44 1.74 98.15 93.25
XP 0 0 2 0 0 0 0 0 0 44 0 46 95.65 0.73 98.99 93.62
ZC 0 0 0 0 1 0 1 0 0 0 52 54 96.30 0.00 99.66 98.11
Total 33 66 63 52 51 37 35 73 85 48 52 595

Total accuracy = 93.78%

(b) Time-varying PSD
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 33 0 0 0 0 0 0 0 0 0 0 33 100.00 0.00 100.00 100.00
HL 0 53 2 0 0 0 7 0 2 0 0 64 82.81 3.01 95.46 79.70
MG 0 1 56 0 0 0 1 0 4 4 0 66 84.85 1.89 96.64 84.85
MR 0 2 0 47 1 0 2 0 5 0 1 58 81.03 0.37 97.82 87.85
PS 0 1 1 0 45 0 0 1 3 2 0 53 84.91 0.55 98.15 89.11
PC 0 1 0 0 0 33 1 0 1 0 0 36 91.67 0.54 98.99 91.67
TA 0 5 0 0 0 0 27 0 0 1 0 33 81.82 1.96 97.14 76.06
TI 0 0 2 1 1 1 0 68 1 0 0 74 91.89 0.77 98.32 93.15
TS 0 1 2 1 0 1 0 3 64 6 0 78 82.05 3.68 94.45 79.50
XP 0 1 3 0 0 0 0 0 2 40 0 46 86.96 2.37 96.81 80.81
ZC 0 4 0 0 1 1 0 0 1 0 47 54 87.04 0.18 98.66 92.16
Total 33 69 66 49 48 36 38 72 83 53 48 595

Total accuracy = 86.22%
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Table 4. Results for dissimilarity representations derived for frame-based:

(a) Descriptive features
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 33 0 0 0 0 0 0 0 0 0 0 33 100.00 0.00 100.00 100.00
HL 0 56 0 0 0 0 5 0 3 0 0 64 87.50 1.13 97.65 88.89
MG 0 0 65 0 1 0 0 0 0 0 0 66 98.48 0.57 99.33 97.01
MR 0 0 0 55 0 0 0 0 0 1 2 58 94.83 0.19 99.33 96.49
PS 0 0 0 0 53 0 0 0 0 0 0 53 100.00 0.18 99.83 99.07
PC 0 0 0 0 0 35 0 0 1 0 0 36 97.22 0.00 99.83 98.59
TA 0 5 0 0 0 0 28 0 0 0 0 33 84.85 0.89 98.32 84.85
TI 0 0 1 0 0 0 0 72 1 0 0 74 97.30 0.19 99.50 97.96
TS 0 0 2 0 0 0 0 1 74 0 1 78 94.87 1.35 98.15 93.08
XP 0 0 0 0 0 0 0 0 0 46 0 46 100.00 0.18 99.83 98.92
ZC 0 1 0 1 0 0 0 0 2 0 50 54 92.59 0.55 98.82 93.46
Total 33 62 68 56 54 35 33 73 81 47 53 595

Total accuracy = 95.29%

(b) Mel-Cepstrum
Predicted Total TP FP ACC F1GR HL MG MR PS PC TA TI TS XP ZC

A
ct

u
a
l

GR 33 0 0 0 0 0 0 0 0 0 0 33 100.00 0.00 100.00 100.00
HL 0 59 0 0 0 0 5 0 0 0 0 64 92.19 0.94 98.32 92.19
MG 0 0 66 0 0 0 0 0 0 0 0 66 100.00 0.00 100.00 100.00
MR 0 0 0 58 0 0 0 0 0 0 0 58 100.00 0.19 99.83 99.15
PS 0 0 0 0 53 0 0 0 0 0 0 53 100.00 0.00 100.00 100.00
PC 0 0 0 0 0 36 0 0 0 0 0 36 100.00 0.00 100.00 100.00
TA 0 5 0 0 0 0 28 0 0 0 0 33 84.85 0.89 98.32 84.85
TI 0 0 0 1 0 0 0 73 0 0 0 74 98.95 0.00 99.83 99.32
TS 0 0 0 0 0 0 0 0 78 0 0 78 100.00 0.19 98.83 99.36
XP 0 0 0 0 0 0 0 0 0 46 0 46 100.00 0.00 100.00 100.00
ZC 0 0 0 0 0 0 0 0 1 0 53 54 98.15 0.00 99.83 99.07
Total 33 64 66 59 53 36 33 73 79 46 53 595

Total accuracy = 97.98%

In order to obtain an overall impression of the one-against-all subproblems, the
above-reported confusion matrices were summed across all the representations.
As a result, the following observations can be made: In ascending order, the total
number of syllables that were erroneously assigned to each class (FP) were: 24
(GR), 59 (PC), 60 (ZC), 74 (MR), 76 (TI), 82 (PS), 85 (XP), 91 (TA), 134 (MG),
148 (HL) and 151 (TS). Similarly, the number of syllables that were erroneously
assigned to other classes (FN), in ascending order, were: 33 (GR), 52 (PC), 60
(XP), 70 (TI), 72 (PS), 72 (ZC), 88 (TA), 101 (MR), 140 (MG), 146 (HL) and
150 (TS). In consequence, the easiest identification corresponds to GR and the
most difficult ones are HL, MG and MR. Notice also that the most frequent
confusions are those between HL and TA.

4 Discussion

In this paper, three approaches for representing bird sounds have been analyzed:
1) feature representations, 2) dissimilarity representations for signals in the fre-
quency domain and 3) dissimilarity representations for time-varying signal trans-
forms. Representations —for each approach— with the highest accuracies were
Mel-cepstrum representation (Table 1(d)), dissimilarity representation for PSDs
(Table 2(b)) and dissimilarity representations for time-varying Mel-cepstrum
(Table 4(b)); respectively. The last one was the representation with the overall
highest total accuracy. In general, all representations have good accuracies per
class; however, in this case, accuracy is not a reliable performance measure due
to the unbalanced nature of the multiclass problem, i.e. the sample size of a class
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is much smaller than the combined sample size of the rest of the classes. In this
case, the F1 score gives more confident results.

Mel-cepstrum and descriptive features showed a good performance in both fea-
ture and dissimilarity representations, as expected because those representations
are specifically designed for audio recognition. The dissimilarity representation
for PSDs, in spite of being a rather simple representation, yielded an acceptable
performance with a total accuracy of 80.67%. Performances of dissimilarity rep-
resentations for time-varying signal transforms are remarkable. This fact reveals
the importance of taking into account the non-stationarity; which is observ-
able by comparing results of dissimilarity representations computed for FFTs,
the poorest ones with a total accuracy of 50.58%, and results of the dissimi-
larity representations for time-varying FFTs (SFTs) that had a total accuracy
of 93.78%. In the case of PSDs, the performance also increased when deriving
dissimilarities for time-varying transforms but in less proportion, with a total
accuracy of 86.22%.

In summary, we conclude that Mel-cepstrum coefficients are suitable for bird
sound representation, even more when dissimilarities are computed from them;
i.e. when non-stationarity is taken into account. Furthemore, classifying in dis-
similarity spaces derived from time-varying representations was found to be
preferable instead of doing so in the corresponding 1-D representations.
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Abstract. This paper presents a method aimed at classification of the 
environmental sounds in the visual domain by using the scale and translation 
invariance. We present a new approach that extracts visual features from sound 
spectrograms. We suggest to apply support vector machines (SVM’s) in order 
to address sound classification. Indeed, in the proposed method we explore 
sound spectrograms as texture images, and extracts the time-frequency 
structures by using  a translation-invariant wavelet transform and a patch 
transform  alternated with local maximum and global maximum to  pursuit 
scale and translation invariance. We illustrate the performance of this method 
on an audio database, which composed of 10 sounds classes. The obtained 
recognition rate is of the order 91.82 % with the multiclass decomposition 
method: One-Against-One. 

Keywords: Environmental sounds, Visual features, Translation-invariant 
wavelet transform, Spectrogram, SVM Multiclass. 

1   Introduction 

The environmental sound classification has for purpose the identification of  some 
everyday life sound classes. It is about an elementary task participant in the 
conception of remote monitoring systems for the securing urban transport, the 
assistance to the old persons, etc. 

For a long time, choosing suitable features for environmental sounds is a basic 
problem in audio signal processing. The environmental sound classification system 
can achieve important results for surveillance and security applications. Many 
previous works [9], [10] and [11] have concentrated on classification of 
environmental sound, which used in extraction phase an audio feature vector with a 
very limited components number like Line Spectral Frequencies (LSF’s), spectral 
energy distribution, Linear-Frequencies Cepstral Coefficients  (LFCCs). Many other 
studies [1] and [2], used a combination of audio features such as wavelet-based 
features, MFCCs, individual temporal and frequency features. The majority of these 
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studies focus on the acoustic features derived from linear models of sound production. 
Indeed, this work presents a classification of the environmental sounds in the 
visual domain by processing the time-frequency representation sounds as texture 
images. In the time-frequency plan the descriptors extraction method is based on 
using the wavelet technique followed by a local maximum application of the obtained 
wavelet coefficients. A patch transform is then applied to group together the similar 
time-frequency geometries, followed by a research for a global maximum to select a 
representative time-frequency structure. The classification phase is realized by using 
SVM’s with the multiclass One-Against-One and One-Against-Rest methods.  

This paper is organized in four parts. Section 2 presents the advantage of using 
sound environmental spectrogram, describes the visual feature extraction method and 
depicts the classification algorithm. Classification results are given in Section 3. 
Finally conclusions are presented in Section 4. 

2    Description of the Classification System   

In this paper, first we apply a time-frequency transformation on the signal to obtain 
the spectrogram. Then, we pass into the phase of characteristics extraction from the 
resulting spectrogram. This extraction uses the scale and translation invariance [3]. 
Finally, we adopt the SVM’s for the classification phase. 

2.1   Visual Features Extraction 

A spectrogram is an energy representation of signal, obtained by Short-time Fourier 
transform, it displays several distinctive characteristics [12]. Therefore, a spectrogram 
is compact and the most efficient representation to observe the complete spectrum of 
environmental sounds and to express sound by combining the merit of time and 
frequency domains [13]. Furthermore, we can easily identify the spectrograms of 
environmental sounds by their contrast, since they are considered as different textures 
[14]. These observations show that the spectrograms contain characteristics that can 
be used to differentiate between different classes of environmental sounds [15]. 

After the signal spectrogram calculation [14], we extracted visual features based 
on translation-invariant wavelet transform, followed by a particular patch transform 
and a global selection operation [16]. 

In this paper, the algorithm is based on the following steps: 

Step 1 : Translation-invariant wavelet transform. Let  [ ]yxS ,   be a spectrogram 

of the size  21 NN ×  .We used the translation-invariant wavelet transform. The 

resulting wavelet coefficients will be defined by:       

              
1 2

1 1

1 ,
( , , , ) [ , ] ( )

2 2

N N

k
j j

x y

x u y v
Wf u v j k S x y ψ

= =

− −= .                     (1) 

Where 3,2,1=k  is the orientation (horizontal, vertical, diagonal), ),( yxkψ  is the 

wavelet function. Indeed, to build a translation- invariant wavelet representation, the 
scale is made discrete but not the translation parameter. The scale is sampled on a 
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dyadic analysis 
 

{ } Ζ∈j
j2 . The use of the translation-invariant wavelet transform 

creates a redundancy of information that allows keeping the translation-invariance at 
all levels of factorization [7]. The scale invariance is carried out by normalization, 
using the following formula:            

                                          

( )
1 2

sup

( , , , )
( , , , )

k
jp

Wf u v j k
S u v j k

S ψ

=  .                                  (2) 

Where  ( )
2

sup k
jp

S ψ
 is the energy of detail wavelet coefficients of a spectrogram.  

 
Step 2 : Local Maximum. The continuation of translation invariance [3] and [16], is 
done by calculating the local maximum of 

1S : 

              1 1
' 2 ( 1) 1,2 ), ' 2 ( 1) 1,2 )

( , , , , ) ( ', ', , )max
j j j ju u u v v v

C u v j k S u v j k
 ∈ − + ∈ − +

=  .             (3) 

The 1C  section is obtained by a subsampling of  1S  using a cell grid of the jj 22 ×  

size   that is then followed by the local maximum. Generally, the maximum being 
taken at each j  scale and k  direction of a spatial neighborhood of a size that is 

proportional to 
jj 22 × . The resulting 1C  at the j  scale and the k  direction is 

therefore of the jj NN 2/2/ 21 ×  size, where 3,2,1=j . 

Step 3 : Patch Transform. The idea consists of selecting N prototypes iP  of 1C , 

then the scalar product is calculated between the prototypes iP and the 1C  

coefficients, then followed by a sum [11] . For every patch, we get only one scalar at 
the end. 

                 
1 2/2 /2 3

2 1
' 1 ' 1 1

( , , , ) ( ', ', , ) ( ' , ' , )
j jN N

i
u v k

S u v j i C u v j k P u u v v k
= = =

= − −    .       (4) 

Where iP  of size 3×× ii MM are the patch functions that group 3 wavelet 

orientations. The patch functions are extracted by a simple sampling at a random scale 

and a random position of the 1C  coefficients of a spectrogram [3], for instance a 0P  

patch of the 00 MM ×  size contains 300 ××MM   elements, 0M  may take the 

following values )12,8,4( 0 =M . 

Step 4: Global Maximum. The 2C  coefficients are obtained by the application of 

the max function on 2S : 
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                                                  2 2

, ,

( ) ( , , , )max
u v j

C i S u v j i=  .                          (5) 

In this work, the obtained result is a vector of 2NC values, where N corresponds 

to the number of extracted patches. In this way, the 2C obtained coefficients constitute 

the parameter vector for the classification. 

2.2   SVM Classification 

The classification is performed using a new technique of statistic learning: Support 
Vector Machines. The SVM’s is a tool for creating practical algorithms for estimating 
multidimensional functions [4]. 

Let a set of data ),( 11 yx ,…, ),( mm yx ∈ { }1±×ℜd where { }mxxX ,...,1=  a 

dataset in dℜ   where each  ix   is the feature vector of a signal. In the nonlinear case, 

the idea is to use a kernel function ),( ji xxk , where ),( ji xxk satisfies the Mercer 

conditions [5].  Here, we used a Gaussian RBF kernel whose formula is:  

                                        
2' ' 2( , ) exp 2k x x x x γ = − −  

 .                               (6) 

Where .  indicates the Euclidean norm in dℜ .  

Let Ω  be a nonlinear function which transforms the space of entry dℜ  to an 
intern space H called a feature space. Ω  allows to perform a mapping to a large 
space in which the linear separation of data is possible [8].  

                                         
:

( , ) ( ) ( ) ( , )

d

i j i j i j

H

x x x x k x x

Ω ℜ →
Ω Ω =

.                          (7) 

The H space is a reproducing kernel Hilbert space (RKHS). 
Thus, the dual problem is presented by a Lagrangian formulation as follows: 

                      
0 , 1

1
max ( ) ( , ), 1,...,

2

m m

i i j i j i j
i i j

W y y k x x i mα α α α
= =

= − =  .      (8) 

Under the following constraints: 

                                              
1

0,  0
m

i i i
i

y Cα α
=

= ≤ ≤ .                                       (9) 

They iα are called Lagrange multipliers and C  is a regularization parameter which 

is used to allow classification errors. The decision function will be formulated as 
follows: 
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1

( ) sgn( ( , ) )
m

i i i
i

f x y k x x bα
=

= + .                        (10)  

We hence adopted two approaches of multiclass classification: One-against-the-
Rest and One-against-One. The first method one-against-the-rest builds K models of 

binary SVM. The SVM model assigns the label '1' for the class 
 kC  and the 

supplementary label '-1' to all the remaining classes. The second method one-against-
one, consists of creating a binary classification of each possible combination of 
classes, the result for K classes 2/)1( −KK . The classification is then carried out 

in accordance with the majority voting scheme [6]. 

3   Experimental Results  

Our corpus of sounds comes from commercial CDs [18]. Among the sounds of the 
corpus we find: explosions, broken glass, door slamming, gunshot, etc. We used 10 
classes of environmental sounds as shown in Table 1.  

All signals have a resolution of 16 bits and a sampling frequency of 44100 Hz that 
is characterized by a good temporal resolution and a wide frequency band. Most of 
the signals are impulsive, we took 2/3 for the training and 1/3 for the test. Each 
spectrogram is segmented into 8 non-overlapping segments. Each segment is 
composed of 64 samples. 

For each signal, firstly we apply a time-frequency transformation, then the 
resultant spectrogram passes by the various stages of the proposed-visual 
characteristic extraction method. Finally, the obtained feature vector passed for the 
classification phase by using SVM’s. Among the big problems met during the 
classification by the SVM’s is the choice of the values of the kernel parameter γ  and 
the constant of regularization C . To resolve this problem we used the cross-

validation method. Indeed, according to [17], this method consists in setting up a grid- 
search for γ  and C. For the implementation of this grid, it is necessary to proceed 

 
Table 1. Classes of sounds and number of samples in the database used for performance 
evaluation 

Classes Train Test Total number 
Door slams 
Explosions 
Class breaking 
Dog barks 
Phone rings 
Children voices 
Gunshots 
Human screams 
Machines 
Cymbals 
Total 

208 
38 
38 
32 
32 
54 

150 
48 
38 
32 

670 

104 
18 
18 
16 
16 
26 
74 
24 
18 
16 
330 

312 
56 
56 
48 
48 
80 

224 
72 
56 
48 

1000 
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iteratively, by creating a couple of valuesγ  and C. In this work, we use the following 

couples C ,γ  : C=[2(0), 2(1), …, 2(16)] et γ =[2(15), 2(-14), …, 2(2)]. 

In Table 2, we present the results obtained with various classes of sound and 
different γ,C  settings of Gaussian RBF kernel. After learning phase, we test firstly 

the train data then the test data. We remark that the classification rate is different from 
one class to another.  We were able to achieve an averaged accuracy rate of the order 
91.82% in ten classes with one-against-one approach. There are seven classes that 
have a classification rate higher than 90%. But with one-against-all approach we 
obtained an averaged accuracy rate of the order 87.90%.  

The obtained results by our classification system in nine classes of environmental 
sounds, with one-against-one approach, is satisfactory. Indeed, we reached a recognition 
 

Table 2. Recognition rates for visual feature applied to one-vs-all and one-vs-one SVMs based 
classifiers 

Classes Kernel 
 

Parameters   
),( γC  

Multiclass 
Approach 

 

Classification 
rate(%) 

Train      Test 

Execution 
Time(s) 

 
Door slams Gaussien   

RBF 
(2(1)

, 2
(-7)) 

(2(1)
, 2

(-7)) 
 One-vs-all 
One-vs-One 

91.42 
94.28 

85.71 
  90.47 

147.45 
7.91 

 
Explosions 

 
Gaussien   

RBF       
(2(-5)

, 2
(-15)) 

(2(3)
, 2

(-5)) 
 One-vs-all 
One-vs-One 

 

91.28 
94.28 

90.47 
95.23 

113.19 
7.96 

 
Class 
breaking 

 

Gaussien   
RBF       

(2(1)
, 2

(-9)) 
(2(1)

, 2
(-7)) 

 One-vs-all 
One-vs-One 

98,46 
97.94 

97,43 
97.43 

 

147.94 
7.96 

Dog barks 
 

Gaussien   
RBF       

(2(0)
, 2

(-8)) 
(2(1)

, 2
(-7)) 

 One-vs-all 
One-vs-One 

90.00 
93.33 

83.33 
88.88 

113.02 
7.91 

       
Phone rings 

 
Gaussien   

RBF       
(2(0)

, 2
(-6)) 

(2(2)
, 2

(-6)) 
 One-vs-all 
One-vs-One 

90.00 
93.33 

77.77 
83.33 

111.01 
8.01 

 
Children 
voices 
 
Gunshots 

 
 

Human 
screams 

 
Machines 

 
 

Cymbals 

Gaussien   
RBF       

 
Gaussien   

RBF       
 

Gaussien   
RBF       

 
Gaussien   

RBF       
 

Gaussien 
     RBF     

(2(3)
, 2

(-7)) 
(2(1)

, 2
(-7)) 
 

(2(5)
, 2

(-5)) 
(2(0)

, 2
(-15)) 

 
(2(0)

, 2
(-4)) 

(2(1)
, 2

(-7)) 
 

(2(12)
, 2

(2)) 
(2(5)

, 2
(-3)) 
 

(2(8)
, 2

(-2)) 
(2(2)

, 2
(-6)) 

 

 One-vs-all 
One-vs-One 

 
 One-vs-all 
One-vs-One 

 
 One-vs-all 
One-vs-One 

 
 One-vs-all 
One-vs-One 

 
 One-vs-all 
One-vs-One 

94.00 
96.00 

 
97,85 
98.57 

 
93.33 
95.55 

 
91.42 
94.28 

 
90.00 
93.33 

90.00 
93.33 

 
 96,42 
 97.61 

 
 88.88 
 92.59 

 
 85.71 
 90.47 

 
 83.33 
 88.88 

112.57 
7.88 

 
   112.77 

7.97 
 

   141.32 
7.69 

 
   112.35 

7.80 
 

   122.20 
     8.56 
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rate of the order 92.14% with visual descriptors, but in [2] the obtained classification 
rate is of 90.23%, whose method is to extract from the signal the following descriptors: 
MFCCs, Energy and Log energy. Furthermore, by combining wavelet-based features, 
MFCCs, individual temporal and frequency features, "Rabaoui, et al " [2] have attained 
a recognition  rate of the order 93.22% with the same classes and the same classification 
approach that we have adopted. It proves that our result is efficient compared to the 
number of the used characteristics parameters. 

The adjustment of the extraction method of visual features, used in image 
processing, to the special characteristics of the environmental sounds has given 
satisfactory and improved classification results. Furthermore, the used feature vector 
represent all relevant time-frequency information in the signals to recognize. 

4   Conclusion 

This paper presents a new approach for environmental sound classification in the 
visual domain by processing spectrogram as texture images. Indeed this approach is 
based on the use of wavelet technique followed by a local maximum then a  
patch transform, and finally by a global maximum. The obtained results are very 
satisfactory (91.82 % with the method one-against-one and 87.90 % with the method 
one-against-all). The proposed approach can be improved while digging deeply into 
the visual domain. 
 
Acknowledgments. We are grateful to G. Yu for many discussions by mail. 

References 

1. Chu, S., Narayanan, S., Kuo, C.C.J.: Environmental Sound Recognition with Time-
Frequency Audio Features. IEEE Trans. on Speech, Audio, and Language Processing 17, 
1142–1158 (2009) 

2. Rabaoui, A., Davy, M., Rossignol, S., Ellouze, N.: Using One-Class SVMs and Wavelets 
for Audio Surveillance. IEEE Transactions on Information Forensics and Security 3,  
763–775 (2008) 

3. Schulz-Mir, H., Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., Poggio, T.: Robust 
Object Recognition with Cortex-Like Mechanisms. IEEE Transactions Pattern Analysis 
and Machine Intelligence 29, 411–426 (2007) 

4. Vladimir, V., Vapnik, N.: An Overview of Statistical Learning Theory. IEEE Transactions 
on Neural Networks 10, 988–999 (1999) 

5. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural 
Computation 12 (2000) 

6. Hsu, C.-W., Lin, C.-J.: A comparison of methods for multi-class support vector machines. 
IEEE Transactions on Neural Networks 13, 415–425 (2002) 

7. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press (1999) 
8. Scholkopf, B., Smola, A.: Learning with Kernels. MIT Press (2001) 
9. El-Maleh, K., Samouelian, A., Kabal, P.: Frame-Level Noise Classification in Mobile 

Environments. In: Proc. ICASSP, Phoenix, AZ, pp. 237–240 (1999) 



466 S. Souli and Z. Lachiri 

 

10. Dufaux, A., Besacier, L., Ansorge, M., Pellandini, F.: Automatic Sound Detection and 
Recognition For Noisy Environment. In: Proceedings of European Signal Processing 
Conference (EUSIPCO), Tampere, FI, pp. 1033–1036 (2000) 

11. Fleury, A., Noury, N., Vacher, M., Glasson, H., Serigna, J.-F.: Sound and Speech 
Detection and classification in a Health Smart Home. In: 30th Annual Int. Conf. IEEE, 
Engineering in Medicine and Biology Society (EMBS), Canada, pp. 4644–4647 (2008) 

12. He, L., Lech, M., Maddage, N.: Stress and Emotion Recognition Using Log-Gabor Filter 
Analysis of Speech Spectrograms. In: 3rd Int. Conf. Affective Computing and Intelligent 
Interaction and Workshops, ACII, Amsterdam, pp. 1–6 (2009) 

13. Xinyi, Z., Jianxiao, Y., Qiang, H.: Research of STRAIGHT Spectrogram and Difference 
Subspace Algorithm for Speech Recognition. In: Int. Congress on Image and Signal 
Processing (CISP 2009), IEEE DOI Link 0910, pp. 1–4 (2009) 

14. Yu, G., Slotine, J.J.: Audio Classification from Time-Frequency Texture. In: Proc. IEEE 
Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Taipei, pp. 1677–1680 
(2009) 

15. He, L., Lech, M., Maddage, N.C., Allen, N.: Stress Detection Using Speech Spectrograms 
and Sigma-pi Neuron Units. In: Fifth Int. Conf. on Natural Computation, pp. 260–264 
(2009) 

16. Yu, G., Sloine, J.J.: Fast Wavelet-based Visual Classification. In: Proc. IEEE ICPR, 
Tampa (2008) 

17. Hsu, C.-W., Chang, C-C., Lin, C-J.: A practical Guide to Support Vector Classification. 
Department of Computer Science and Information Engineering National, Taipei, Taiwan 
(2009) 

18. Leonardo Software, Santa Monica, CA 90401, http://www.leonardosoft.com 



Quaternion Correlation Filters for Illumination

Invariant Face Recognition

Dayron Rizo-Rodriguez1, Heydi Méndez-Vázquez1, Edel Garćıa1,
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Abstract. Illumination variations is one of the factors that causes the
degradation of face recognition systems performance. The representation
of face image features using the structure of quaternion numbers is a
novel way to alleviate the illumination effects on face images. In this pa-
per a comparison of different quaternion representations, based on veri-
fication and identification experiments, is presented. Four different face
features approaches are used to construct quaternion representations. A
quaternion correlation filter is used as similarity measure, allowing to
process together all the information encapsulated in quaternion com-
ponents. The experiment results confirms that using quaternion algebra
together with existing face recognition techniques permits to obtain more
discriminative and illumination invariant methods.

1 Introduction

Variations in lighting conditions is one of the principal factors causing the de-
terioration of face recognition systems performance [1]. Several methods have
been proposed to cope with the problem of face recognition under illumina-
tion variation [2]. Among them, in [3] taking into account the benefits of the
use of quaternion algebra in image processing [4], an illumination invariant face
image representation based on quaternion number structure was presented. Two
representations, a complex and a quaternion one, based on image image diffe-
rentiation, were constructed and compared regarding their illumination inva-
riant properties. Both representations are transformed into frequency domain
and cartesian and polar expressions are obtained. The most illumination inva-
riant component of each representation is selected and used as face image des-
criptor. A simple normalized correlation is used as similarity measure. In that
work [3], experimental results showed that quaternion representation is better

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 467–474, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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than the complex one, regarding illumination invariant and discriminative pro-
perties. However, only one component of quaternion representation is used as
face image descriptor, discarding the remaining ones, where valuable discrimina-
tive information could be encapsulated. On the other hand, using the normalized
correlation as similarity measure only permits to process one component at a
time. More powerful tools are needed in order to use together all the components
of quaternion representation to analyze face images.

Quaternion correlation filters have been specially designed for face recognition
[5]. In [5], a multi-band processing analysis is performed, using discrete wavelet
decomposition, to obtain the quaternion representation. The wavelet decompo-
sition is used because directly provides a multi-resolution analysis of the image,
however other face image extraction techniques can be used in order to obtain
more illumination invariant and discriminative representations.

The aim of this work, is to compare the performance of quaternion correlation
filters based on different face images representations, when dealing with illumina-
tion variations. Besides image differentiation and discrete wavelet decomposition,
used in previous works for extracting the multi-band information of face images
from which the quaternion representation is constructed, discrete cosine trans-
form (DCT) and local binary patterns (LBP) are selected among different face
images descriptors, because of the well known behavior of these methods in front
of illumination variations [6,7]. The unconstrained optimal tradeoff quaternion
filter (UOTQF) presented in [5], based on the traditional unconstrained optimal
tradeoff filter (UOTF), is used to perform the cross-correlation based on each
quaternion representation.

Verification and identification experiments were conducted in XM2VTS and
Extended Yale B databases respectively. The quaternion representation con-
structed from LBP features showed the best performance in both face recogni-
tion experiments. The paper is organized as follows. In Section 2, face image
decomposition to construct the quaternion frequency domain representation are
described. In Section 3, the construction of quaternion correlation filter and its
use in the recognition process is explained. The experimental results are drawn
in Section 4. Finally, Section 5 gives the conclusions of the paper.

2 Face Images Quaternion Representation

Quaternion algebra was the first hypercomplex number system to be discovered,
introduced by Hamilton in 1843 [8]. The cartesian representation of quaternion
numbers is usually defined as follows:

q = a+ bi + cj + dk (1)

where a, b, c, d are real and i, j, k are orthogonal imaginary operators.
Based on Eq.(1), a general expression for face images quaternion representation,

at pixel (x, y), can be defined as:

q(x, y) = Q1(x, y) +Q2(x, y)i +Q3(x, y)j +Q4(x, y)k (2)
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where Q1(x, y), Q2(x, y), Q3(x, y) and Q4(x, y) would be four descriptions of the
image at (x,y) coordinate, using some face feature extraction method.

Then, to construct the face image quaternion description, the first step is to
decompose the image in four bands of information. For this purpose, different
feature extraction methods are evaluated in this work: image differentiation, dis-
crete wavelet decomposition, discrete cosine transform and local binary patterns.

Image differentiation (DIF) has shown to be a face image descriptor less sen-
sitive to illumination effects [9]. In [9], first order derivatives of the images, in x
and y directions, are used to assemble a complex representation of face images.
Calculating again first order derivatives, in x and y directions, over each one of
these components, results in four descriptions of the images which actually are
the second order derivatives of the image: &2

xxI(x, y), &2
xyI(x, y), &2

yxI(x, y)
and &2

yyI(x, y). In this way, the quaternion representation based on image diffe-
rentiation, can be expressed as:

qDIF (x, y) = &2
xxI(x, y) +&2

xyI(x, y)i +&2
yxI(x, y)j +&2

yyI(x, y)k (3)

In practice, image differentiation is implemented by convolving the signal with
some form of linear filter that approximates derivative operator. In our case a
Sobel filter, the one applied in [9], was used. In Figure 1(a), the above DIF
decomposition process is graphically illustrated.

The wavelet transform can be used to decompose an image into different scales
and resolutions. When applying the discrete wavelet decomposition (DWT), the
face image is passed through a low pass filter and a high pass filter to get
the low and high frequency components of the original image. This process is
applied iteratively to the low and high frequency bands in order to obtain the
representation at different scales and resolutions. The implementation of this
process is made by projecting the original image to the wavelet basis function. In
[5] the Daubechies family of wavelets is used to decompose the face images into
four subbands: low-low(LL), low-high(LH), high-low(HL) and high-high(HH),
which are encoded in the quaternion representation as in Eq.(4). The illustration
of this process can be found on Figure 1(b).

qDWT (x, y) = WLL(x, y) +WLH(x, y)i +WHL(x, y)j +WHH(x, y)k (4)

The discrete cosine transform (DCT) has been very used in face recognition. In
[7], a method using the DCT to compensate for illumination variations was
presented. The illumination variations are compensated, setting to zero the
low-frequency DCT coefficients of an image in the logarithm domain and re-
constructing a normalized image applying the inverse DCT. Varying the low-
frequency coefficients used for the illumination compensation, a multi-resolution
representation can be obtained, discarding and retaining different information of
the face image each time. In Figure 1(c), four face images obtained by applying
this process with different low-frequency DCT coefficients each time, are shown.
The quaternion representation using this method can be expressed as:

qDCT (x, y) = DCTL1(x, y)+DCTL2(x, y)i+DCTL3(x, y)j+DCTL4(x, y)k (5)
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Fig. 1. Illustration of the processes of obtaining the four bands of information needed
for quaternion representation, using each one of the face feature extraction method
described: a) DIF, b) DWT, c) DCT and d) LBP

The local binary patterns operator (LBP) is a texture descriptor which has
been very used in face analysis based on the idea that faces are composed by
micro-patterns which can be well described by this operator [6]. The original
LBP operator labels each pixel of an image with a value called LBP code, which
corresponds to a binary number that represents its relation with the 3x3-local
neighborhood. Different extensions of the original operator have been proposed.
Among them, the multi-scale LBP [10], permits to codify the LBP operators at
different neighborhood sizes, providing a multi-resolution analysis of face images.
For the assembling of quaternion representation in Eq.(6), the LBP operator at
four different radii are computed as it is shown in Figure 1(d).

qLBP (x, y) = LBPR1(x, y) +LBPR2(x, y)i+LBPR3(x, y)j+LBPR4(x, y)k (6)

3 Quaternion Correlation Filters

The use of quaternion correlation filters in face recognition involves enrollment
and recognition stages. During enrollment, the first step is to transform the
quaternion description of training images, obtained with some of the processes
described above, to the frequency domain.
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The quaternion descriptions are transformed to the frequency domain, using
Quaternion Discrete Fourier Transform (QDFT) [11] defined as:

Q(p, s) =
M−1∑
m=0

N−1∑
n=0

e−μ2π((pm/M)+(sn/M))q(m,n) (7)

where μ is any unit pure quaternion and q is the training face images quaternion
representation in the form of Eq.(2).

The quaternion correlation filter is designed based on the QDFT of the trai-
ning images. The unconstrained optimal tradeoff quaternion filter (UOTQF),
proposed in [5], is used for this purpose. The derivation of this filter is similar
to the one of the traditional unconstrained optimal tradeoff filter (UOTF) [12],
and has the following closed form solution:

h = γ(αD + C)−1m (8)

where h is the designed frequency domain filter represented in the vector form,
m represents the frequency domain training image in the vector form, α and
γ are tradeoff parameters, which can be tuned to obtain the optimal tradeoff
between maximizing the discrimination ability and minimizing the output noise
variance of the filter h. D is a diagonal matrix, where the main diagonal is
the average power spectrum of the training images and C is also a diagonal
matrix, representing the noise power spectral density (psd). Typically a white
noise model is assumed, thus C takes the form of an identity matrix. In this
formulation of the UOTQF filter, all vector and matrix terms are quaternion
number arrays, while for the UOTF filters they are all complex number arrays.

The UOTQF are computed and stored for each subject on the training set.
Then, at recognition stage, each testing image is transformed into quaternion fre-
quency domain by applying Eq.(7) and it is cross-correlated with every UOTQF
obtained at training.

Following [5], the specialized 2-D quaternion correlation (QC), is used for the
cross-correlation computation. From the magnitude value of each quaternion co-
rrelation output, a similarity score is computed. A large peak value in correlation
output plane is yielded in case of a genuine identity and no discernible peaks for
an impostor. The fitness measure of the peak sharpness is calculated using the
peak-to-sidelobe-ratio (PSR), defined in [5].

4 Experimental Evaluation

In order to compare the behavior of the quaternion representations based on the
four selected face descriptors, verification and identification experiments were
conducted in XM2VTS [13] and Extended Yale B [14] databases respectively.

4.1 Verification Experiment

Configuration I of the Lausanne protocol [13], designed for experiments on
XM2VTS database, was used to compare the performance of the different repre-
sentations on a face verification setting. Under this configuration, the 2360 face
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Table 1. Verification Results
in terms of TER (%)

Eval. Test Dark

Q1 DIF 33.67 29.24 51.48

DWT 32.60 27.05 49.87

DIF 23.55 20.64 41.54

DCT 58.33 55.68 75.90

LBP 22.00 18.56 40.68

Table 2. Recognition Rates (%) ob-
tained in Identification Experiment

S1 S2 S3 S4 S5

Q1 DIF 100.0 100.0 93.14 38.60 06.05

DWT 98.22 100.0 73.71 44.73 11.92

DIF 100.0 100.0 99.24 97.15 59.07

DCT 59.11 58.33 19.42 16.66 30.60

LBP 99.56 100.0 97.71 95.83 82.92

images of 295 subject on the database, are divided into a Training, an Evalua-
tion and a Test sets, composed of images under controlled illumination conditions
used as clients and imposters. An additional set (Dark) which contains images of
every subject under non regular lighting conditions is used to test the behavior
of the methods in the presence of this kind of variations.

In a verification setup, the False Rejection Rate (FRR) and the False Accep-
tance Rate (FAR) are used as a measure of algorithms performance. The Equal
Error Rate (EER), is the point where FRR = FAR. Under the selected protocol,
the similarity value obtained by the classification method at this point in the
Evaluation set is used as a threshold for the decision of acceptance or rejection
in the Test and Dark sets.

The Total Error Rate (TER), which is the sum of FRR and FAR, is computed
for each set of the database when applying the quaternion correlation filters using
the four alternatives described in previous sections. The obtained results are
shown in Table 1. The first row of the table corresponds to the results obtained
in [3], where only one component of the quaternion representation based on DIF
is selected and used as face descriptor.

It can be appreciated in the table, that quaternion correlation filters based
on DIF and LBP outperform the one proposed in [5] based on DWT whether
images are affected by illumination variations (Dark set) or not (Evaluation
and Test sets). On the other hand, these results are also superior to use only
one component of the quaternion representation. In general, the LBP method
exhibits the best results in all sets of the database, while DCT achieved the
worst results.

4.2 Identification Experiment

The Extended Yale B [14] database was used to conducted the identification
experiments. It contains images of 28 subjects under 64 different illumination
conditions. This database is usually divided into 6 subsets according to the angle
of the incident illumination. Face images with frontal lighting are used as gallery
and subsets S1, S2, S3, S4 and S5 grouped the images in a way that S1 contains
the ones with minor variations and S5 the most affected images.

The recognition rates obtained in each subset of the database using the co-
rrelation filters based on the four representations are shown in Table 2. Also
in this case, the results obtained with only one component of the quaternion
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Fig. 2. Cumulative match score vs. rank curve in S5

is included in the first row of the table. Besides, in Figure 2, which represents
the cumulative match score vs. rank curve, is illustrated the behavior of the
four quaternion correlation filters in S5, the most difficult one respect to the
illumination variations.

From the table, the quaternion filter based on DIF presents the best results
in subsets S1, S2 S3 and S4, following by the one based on LBP for a little
margin. However in S5, where the illumination variations are the greatest, the
LBP method perform much better, which is corroborated in Figure 2, being the
only method achieving more than 90% of correct classification in this subset. In
this case, both LBP and DIF representation, and even the one based on DCT,
perform significantly better than the one based on DWT and the use of the
normalize cross-correlation of only one component of the quaternion.

5 Discussion and Conclusions

This paper presents a comparison of quaternion correlation filters based on di-
fferent face images representations. Quaternion representations based on DIF,
DWT, DCT and LBP are constructed and cross-correlated using the uncon-
strained optimal tradeoff quaternion filter (UOTQF).

The obtained results in verification and identification, confirm the hypo-
thesis that using jointly the multi-band information encoded in a quaternion
representation permits to retain more discriminative information of face images
than only one component even though this is the most invariant one. On the
other hand, selecting adequate face image descriptors, it is possible to improve
the face recognition results on an specific problem.

In this case, the LBP method was selected because of its well known behavior
dealing with the illumination problem on face recognition [6]. As was expected,
the quaternion representation based on this face descriptor achieves the better
results in the conducted experiments. Surprisingly, the DCT method, which has
been also very used for illumination invariant face recognition [7], achieved the
worst result. We think that the multi-resolution analysis based on this method
and the way in which the DCT coefficients are discarded to form the quaternion
need to be improved.
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It can be concluded that quaternion algebra is a powerful mathematical tool
that can lead to excellent results in face recognition problems, specially because
of the possibility of encapsulating and processing together the multi-band in-
formation. For the continuity of this work, it is necessary to obtain better face
descriptors and to analyze other correlation filters on quaternion domain, in
order to improve the recognition results.
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Abstract. The interest of the incorporation of voice interfaces to the
Question Answering systems has increased in recent years. In this work,
we present an approach to the Automatic Speech Recognition component
of a Voice-Activated Question Answering system, focusing our interest in
building a language model able to include as many relevant words from
the document repository as possible, but also representing the general
syntactic structure of typical questions. We have applied these technique
to the recognition of questions of the CLEF QA 2003-2006 contests.

Keywords: Voice-Activated Question Answering, Automatic Speech
Recognition, Language Models, Named Entities Recognition.

1 Introduction

In recent years the interest in the development of applications for accessing to
large non structured repositories of information of different types, such as text,
audio, video, or images has increased. Evaluation conferences, such as TREC1

and CLEF2, organize multiple tracks in order to compare the behavior of the
different approaches proposed. One of these tracks is Question Answering (QA),
which goal is to access to information repositories, accepting questions in natural
language.

At this moment, most of the QA systems accept written sentences as input,
but in the last years the interest in using voice to ask the questions has increased
[10,8], as well as in accessing to large audio repositories. In order to develop
real world applications, it would be interesting to design speech-driven systems
providing access to information from mobile telephones, tablets or other speech
interfaces. The Automatic Speech Recognition (ASR) component of this kind of
systems has to present some specific features: to be able to deal with a large
vocabulary, to provide a good language model that characterizes the type of
questions, and to be prepared to correctly recognize some relevant words that

1 http://trec.nist.gov
2 http://www.clef-campaign.org

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 475–482, 2011.
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have a great influence in the posterior answer searching process. In particular,
the recognition of Named Entities (NE) is one of the main problems to be faced
in question answering applications with speech input. NEs are key elements for
the search process [5], so misrecognition of a spoken NE can produce serious
errors in the search results. Some works related to the NE recognition problem
are [1,7,6].

In the literature it has shown that, in general, better results in NE recognition
[5] imply better performance of the Voice-activated QA system. In a previous
work in our laboratory, some experiments were carried out with the QUASAR
QA system [11] with the aim of studying the effect on the QA system accu-
racy of the word error rate introduced by the ASR system, especially from the
perspective of the recognition of NEs. The experiments with simulated speech
input (i.e., errors in the input questions -200 questions of the CLEF 2005 Span-
ish monolingual test set- were introduced) showed that when recognition errors
do not affect NEs, the QA system performance is still good, even with a WER of
25%. Error rates greater than 30% made the system behavior deteriorate quickly.

In this work, we present an approach to the ASR component of a QA system,
focusing our interest in the language modelization for questions, and in the influ-
ence of categorization of relevant words, such as NEs, in the system performance.
The language modelization proposed is based on keeping the specific character-
istics of the syntax of questions, but adding to the ASR vocabulary different sets
of relevant words in order to increase the coverage. In order to determine what
are the relevant word candidates to be included in the ASR vocabulary, we have
used a Part-of-Speech (POS) tagging tool [9] to find NEs and common nouns
in the document repository. Based on their frequency we built different sets of
relevant words to study the behavior of the recognition process.

We have applied these technique to the recognition of questions of the CLEF
QA 2003-2006 contests. The corpus consist of a set of questions and the target
collection (the set of documents to be searched in order to find the answer)
composed by documents of the EFE (Spanish news agency) of the years 1994
and 1995. Due to the correlation of the performance of the ASR system and the
performance of the whole Voice-Activated QA system, we have decided to give
the results in terms of the performance of the ASR system. The experimentation
carried out shows that the categorized language models outperform the language
model learned only with training questions.

This article is organized as follows, Section 2 presents the adaption in the vo-
cabulary and language model of the ASR system for spoken question recognition.
Section 3 presents the experimental set-up. Section 4 presents the results of the
evaluation of the performance of the ASR depending on the language model and
the amount of the relevant words in the vocabulary. Finally, some conclusions
are presented in Section 5.

2 Language Model Estimation

In this section, we are going to describe our proposal for language model es-
timation for Voice-Activated QA. In this work, we have focused on the data
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pre-processing for training a suitable language model in order to achieve bet-
ter performance in Voice-Activated QA. The main idea is to build a language
model able to include as many NEs and other relevant words from the document
repository as possible, but also representing the general syntactic structure of
typical questions extracted from training data (eg. Who is...?, When did. . . ?
What is. . . ?). To do that, it is necessary to build a categorized language model
where the categories are related to the concepts that could be asked by the user.

Figure 1 shows how the language model for the ASR has been built. We use
two different corpora to train the language model. One of them is the set includ-
ing the training questions, from which the syntactic structure is estimated, and
the other one is the document repository, from which the additional information
to generalize the categorized language model is obtained. It is interesting to note
that not all training queries are formulated in an interrogative way (e.g. What
is the capital of France?) but some are in a declarative way (e.g. Name some
tennis players.), so our model has to be aware of this in order to have a better
recognition performance.

Fig. 1. Speech Recognition Module

2.1 Categorized Language Model

In order to incorporate relevant information to the language model, we have
to select which relevant words can be categorized. To do that, after deciding
which categories must been selected a POS tagging process is applied in order
to obtain the instances of the different categories from the document repository.
The key point of our experimentation concerns the amount of relevant words to
be included in the language model. The categories used in our language model
are:



478 J. Pastor et al.

– Named Entities: usually is the main concept which has been asked by the
user.

– Dates and numbers: not all possible combinations of dates (year, month and
day) and numbers are included in the training set.

– Common Nouns (CNs): in some cases NEs are not the main concept of the
question, or simply there are not in the question. In other cases not only the
NE but also some common nouns provides the relevant information to find
the answer (e.g Who is the president of France?).

– The rest of the words, where, formally, each word belongs to its own class
(i.e. one class per word).

2.2 Category Members Selection

First, for retrieving the categorized data, we use FreeLing POS Tagging feature
[9,2,3]. The words belonging to any of the categories previously described are
replaced by their specific tag in the training question set.

Second, we perform the same POS tagging process to the document repository
(the target collection where the information has to be retrieved) and we extract
the frequency sorted lists of NEs and CNs. The NE list includes more than one
million of different elements. Analyzing this set, we have checked that most of
these NEs appear just a few times, sometimes due to orthographic mistakes. If
we filter out all the NEs that appear less than 10 times, the number of remaining
NEs is around 80, 000 and if the threshold is 20 times then the amount of NEs
is reduced to around 48, 000. We can assume that the most common NEs in the
corpus are the most likely to appear in a question, so they would be added to our
NE set, which will be provided as an input to the ASR component. Something
similar occurs with the CNs; in this case, the 4, 000 more frequent CNs cover
more than the 85% of the CNs present in the training questions.

Each word tagged as NEs or CNs during the tagging process has a confidence
score of belonging to that category. Figure 2 shows how the coverage of NEs
and CNs increases as more items are included in each category considering only
those words with a score of belonging to the category higher than a threshold. It
can be seen that the use of different threshold has no influence on the coverage
of NEs. Regarding CNs, the more permissive you are the more coverage you get.

2.3 Orthographic Entity Merging

The document repository is a heterogeneous collection of documents that in-
cludes all the news published by the EFE agency along two years. For this reason,
there are some NEs that appears written in different ways. Usually, these NEs
have several orthographic transcriptions with the same phonetic transcription
(e.g, Korea and Corea, Qatar and Catar).
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To avoid this problem, we have merged the entities with the same phonetic
transcription keeping the orthographic transcription of the most frequent one.
To do that, we have used the Grapheme-to-phoneme tool Ort2Fon [4].
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Fig. 2. NE/CN Coverage

There are some especial cases where two different entities has the same pho-
netic transcription (e.g Baldi and Valdi). In this case, due to the fact that the
ASR is unable to discriminate between them, the most frequent one is used.

3 Experimentation

3.1 Evaluation Metrics

The most commonly used parameter to measure the performance of ASR is the
Word Error Rate (WER). Another criterion which indicates the performance
of the language model regardless of the ASR used is the percentage of Out-of-
Vocabulary words (OOV ). In addition to WER and OOV, we have defined some
other measures related to the recognition of relevant words:

– NE ACC : Named Entities accuracy. A good indicator of the performance of
the global Voice-Activated QA system would be determine the set of test
NEs properly recognized by the ASR.

– CN ACC : Common Nouns accuracy. In the way that NEs accuracy, CNs ac-
curacy would be a good indicator of the performance of the Voice-Activated
QA system.

– WER SW : WER without considering stop words. Usually, stop words are
not taken into account by the QA systems.

3.2 Experimental Setup

In our experiments, we have used the questions from the CLEF QA 2003-
2006 contests in Spanish. The document repository (the set of documents to
be searched in order to find the answer) is composed by documents of the EFE
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(Spanish news agency) of the years 1994 and 1995. The set of questions amounts
to 1, 800 questions divided in two subsets: 1, 600 for training and 200 for test.
The 200 test questions were acquired by an specific user and are used as input
of the ASR.

For the experimentation, three different language models were applied:

– Single NEs model : using an incremental number of NE between 4, 000 and
48, 000 in order to check how an increase of the amount of NE affects to the
performance of the recognizer.

– NEs Modified model : using the same number of entities as in the previous
model, but including the phonetic approach described in section 2.3.

– NEs/CNs Modified model : using the same entities as in the NE Model Mod-
ified Model and including an amount of 4, 000 CNs.

4 Results

Table 1 presents the results of the experimentation, It is also included, as a
baseline, the language model trained only with the training questions without
either categorization nor generalization (Plane training model). This Table only
shows the best results for each one of the language models. Figure 3 shows, for
each model, how the number of relevant words in the model affects the different
proposed measures.

Table 1. Experimental results summary

WER NE ACC CN ACC WER SW OOV

Plane Training model 0.384 0.420 0.768 0.449 0.222

Single NEs Model (best) 0.326 0.551 0.825 0.402 0.133

NEs Modified Model (best) 0.315 0.546 0.817 0.389 0.127

NEs/CNs Modified Model (best) 0.290 0.537 0.871 0.350 0.089

It can be seen that, for all models, WER and WER without stop words
(WER SW) measures gets worse when a few amount of entities is included.
While the WER remains stable for Single NEs model and NEs Modified model,
the performance slightly improves for the NEs/CNs Modified model. It is impor-
tant to see that each improvement has a good impact in all system measures.

Figure 3 shows that in the Single NE model the NE accuracy decreases sig-
nificantly until 20, 000 NEs, while in the other models it remains stable. This
occurs because some entities, which are well recognized in previous experiments,
are confused when the amount of NEs is increased. The NEs/CNs Modified model
provides a more flexible language model which avoids this problem. Even in the
NEs/CNs Modified model, the accuracy increases when more NEs are added.

It is interesting to see how the Single NEs model has the best Named Entity
accuracy with the smallest NEs set (4, 000), also the other recognition measures
work better with the NE/CNs Modified Model while the amount of NE/NCs
increases.
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Fig. 3. Language Models results

5 Conclusion and Future Work

In this paper, we have presented an approach to the Automatic Speech Recog-
nition component of a Voice-Activated Question Answering system. We have
focused out interest in building a language model able to include as many rele-
vant words from the document repository as possible, but also representing the
general syntactic structure of typical questions.

The proposed language models, in which relevant words from the document
repository are included, present better results in all the evaluation measures
than the language model learned only with training questions (Plane Training
model).

As future work, we propose first, to take into account non-Spanish Named
Entities and their phonetics. Second, we propose to create an interaction mech-
anism which provides the user with a list of possible NEs to be chosen.
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Abstract. Manifold learning models attempt to parsimoniously
describe multivariate data through a low-dimensional manifold embed-
ded in data space. Similarities between points along this manifold are
often expressed as Euclidean distances. Previous research has shown that
these similarities are better expressed as geodesic distances. Some prob-
lems concerning the computation of geodesic distances along the mani-
fold have to do with time and storage restrictions related to the graph
representation of the manifold. This paper provides different approaches
to the computation of the geodesic distance and the implementation of
Dijkstra’s shortest path algorithm, comparing their performances. The
optimized procedures are bundled into a software module that is em-
bedded in a dimensionality reduction method, which is applied to MRS
data from human brain tumours. The experimental results show that the
proposed implementation explains a high proportion of the data variance
with a very small number of extracted features, which should ease the
medical interpretation of subsequent results obtained from the reduced
datasets.

1 Introduction

The choice of a type of distance as a similarity measure is relevant in many
supervised, unsupervised and semi-supervised machine learning tasks [1]. For
real-valued data, the Euclidean distance is the most common choice due to its in-
tuitive understanding and the simplicity of its computation. In manifold learning,
though, the Euclidean distance has been shown not always to be the most ade-
quate choice to measure the (dis)similarity between two data points [2,3,4]. This
is most relevant when working with data that reside in a high-dimensional space
of which we ignore the intrinsic geometry, a common situation in biomedicine or
bioinformatics.

An alternative distance function that may alleviate the previously mentioned
problem is the geodesic distance, since it measures similarity along the embedded
manifold, instead of doing it through the embedding space. Unlike the Euclidean
distance, the geodesic one follows the geometry of the manifold that models the
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data. In this way, it may help to avoid some of the distortions (such as breaches
of topology preservation) that the use of a Euclidean metric may introduce when
learning the manifold (due to undesired manifold curvature effects).

Manifold learning methods that use geodesic distances can be categorized,
according to their main task, as unsupervised [2,4,5] and semi-supervised. The
first semi-supervised methods used for classification task were reported in [6]
and [7]. These methods, as well as many others that involve the geodesic dis-
tance [8], are known as graph-based methods. Most of them compute the data
point pairwise distance of a graph using the basic Dijkstra algorithm, as well
as use a full data matrix representation for finding the shortest path between
them. This may lead to computational time and storage problems. The current
study provides different approaches to the computation of the geodesic distance
and the implementation of Dijkstra’s shortest path algorithm, comparing their
performances.

The best performing methods are bundled in a software module that is in-
serted in a nonlinear dimensionality reduction (NLDR) method, namely ISOMAP
[2], which is then applied to the analysis of magnetic resonance spectroscopy
(MRS) data from human brain tumours. The performance of the proposed
method is compared to that of the original ISOMAP implementation.

2 Geodesic Distances

The explicit calculation of geodesic distances can be computational impractical.
This metric, though, can be approximated by graph distances [9], so that instead
of finding the minimum arc-length between two data points lying on a manifold,
we would set to find the shortest path between them, where such path is built
by connecting the closest successive data points. In this paper, this is done using
the K-rule, which allows connecting the K-nearest neighbours. A weighted graph
is then constructed by using the data and the set of allowed connections. The
data are the vertices, the allowed connections are the edges, and the edge labels
are the Euclidean distances between the corresponding vertices. If the resulting
graph is disconnected, some edges are added using a minimum spanning tree
procedure in order to connect it. Finally, the distance matrix of the weighted
undirected graph is obtained by repeatedly applying Dijkstra’s algorithm [10],
which computes the shortest path between all data samples. For illustration, this
process is graphically represented in Fig. 1.

2.1 Computation of the Geodesic (Graph) Distance

There are different implementation alternatives for some of the stages involved in
the geodesic distance computation (see Fig. 1). This computation is constrained
by the type of graph representation of the dataset and by the chosen shortest
path algorithm. Two alternatives for graph representation are the adjacency
matrix and the adjacency list. The former consists in a n by n matrix structure,
where n is the number of vertices in the graph. If there is an edge from a vertex
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Minimum

Spanning Tree
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D

Fig. 1. Graph distance procedure scheme. Stage (A) represents the input data. Stage
(B) is for building the weighted, undirected, connected graph. Stage (C) is for comput-
ing the geodesic (graph) distance, which is returned in Stage (D).

i to a vertex j, then the element aij is 1, otherwise it is 0. This kind of structure
provides faster access for some applications but can consume huge amounts of
memory. The latter considers that each vertex has a list of which vertices it is
adjacent to. This structure is often preferred for sparse graphs as it has smaller
memory requirements.

On the other hand, three options (of several) for the shortest path algo-
rithm are: (basic) Dijkstra, Dijkstra using a Fibonacci heap (F-heap) and Floyd-
Warshall. All of them assume that the graph is a weighted, connected graph.
The time complexity of the simplest implementation of Dijkstra’s algorithm is
O(|V |2), using the Big-O notation. For some applications where the obtained
graph is a sparse graph, Dijkstra’s algorithm can save memory resources by
storing the graph in the form of adjacency list and using an F-heap as a pri-
ority queue to implement extracting minimum efficiently. In this way, the time
complexity of the algorithm can be improved to O(|E|+ |V |log|V |).

An F-heap is a binary tree with the property that, for every subtree, the root is
the minimum item. This data structure is widely used as priority queue [11]. The
priority queues are used to keep a dynamic list of different priorities jobs. An F-
heap allows several operations as, for instance, Insert(), which adds a new job to
the queue and ExtractMin(), which extracts the highest priority task.

Another approach for computing the shortest path is provided by the Floyd-
Warshall algorithm, which is an example of dynamic programming. It finds the
lengths of the shortest paths between all pairs of vertices. Unlike Dijkstra’s
algorithm which assumes that all weights are positive, this algorithm can deal
with positive or negative edge weights. Its complexity is O(|V |3).

3 Experiments

The goal of the experiments herein reported is twofold. Firstly, we aim to assess
which combination of graph representation and shortest path algorithm produces
the best time performance for computing the geodesic distance for datasets with
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increasing numbers of items. Secondly, the software implementation of the best
found solution is inserted in the NLDR ISOMAP algorithm. Its performance is
compared to that of the original Tenenbaum’s implementation (basic and land-
mark versions) and to standard Principal Component Analysis (PCA), in terms
of the amount of explained variance as a function of the number of new features
extracted. We hypothesize that the connected graph built through the proposed
procedure adds more geometric information to ISOMAP than the largest con-
nected component found by the original version.

The experiments were carried out setting the K parameter to a value of 10,
in order to get a connected graph when the K-rule is applied. After that, K was
set to 1 for gauging the time performance of the geodesic distance computation
when graph is sparse and unconnected. All experiments were performed using a
dual-processor 2.3 Ghz BE-2400 desk PC with 2.7Gb RAM.

3.1 UCI Datasets and MRS Brain Tumour Database

Five datasets from the UCI machine learning repository [12], with increas-
ing number of items, were used for the experiments. They are: Ecoli (336 7-
dimensional points belonging to 8 classes representing protein location sites);
German (1000 24-dimensional data points belonging to good or bad credit risks;
Segmentation (2,310 19-dimensional items representing several measurements
of image characteristics belonging to seven different classes); Pageblocks (5,473
items described by 10 attributes, concerning block measurements of distinct
documents corresponding to five classes); and Pendigits (10,992 16-dimensional
items corresponding to (x, y) tablet coordinate information measurements, which
belong to ten digits).

We also experiment with MRS data acquired at different echo times (short
-STE- and long -LTE-), as well as with a combination of both. Data belong to
a multi-center, international database [13], and consist of: (1) 217 STE spec-
tra, including 58 meningiomas (mm), 86 glioblastomas (gl), 38 metastases (me),
22 astrocytomas grade II (a2), 6 oligoastrocytomas grade II (oa), and 7 oligo-
dendrogliomas grade II (od); (2) 195 LTE spectra, including 55 mm, 78 gl, 31
me, 20 a2, 6 oa, and 5 od. (3) 195 items built by combination (through direct
concatenation) of the STE and LTE spectra for the same patients. Only the
clinically relevant regions of the spectra were analyzed. They consist of 195 fre-
quency intensity values (measured in parts per million (ppm), an adimensional
unit of relative frequency position in the data vector), starting at 4.25 ppm.
These frequencies become the observed data features.

3.2 Results and Discussion

The time performance results for computing geodesic (graph) distances, using
K = 10, are shown in Table 1. Here, a combination of adjacency matrix for
graph representation and basic Dijkstra as the choice for shortest path algo-
rithm outperformed the other combinations, except for Pageblocks. This is due
to the faster access to elements in an adjacency matrix when basic Dijkstra’s
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Table 1. Time performance results for the computation of geodesic (graph) distances
(assuming a connected graph by setting K = 10) for several UCI datasets and different
settings. The ‘–’ symbol indicates that the memory limit was exceeded.

Dataset Shortest path Representation Time (s)
(# items)

Dijkstra Adjacency Matrix 0.43
Dijkstra+F-heaps Adjacency Matrix 1.19

Ecoli Floyd-Warshall Adjacency Matrix 0.53
(336) Dijkstra Adjacency List 0.67

Dijkstra+F-heaps Adjacency List 1.59
Floyd-Warshall Adjacency List 0.42

Dijkstra Adjacency Matrix 12.43
Dijkstra+F-heaps Adjacency Matrix 25.03

German Floyd-Warshall Adjacency Matrix 23.67
(1000) Dijkstra Adjacency List 16.18

Dijkstra+F-heaps Adjacency List 38.39
Floyd-Warshall Adjacency List 18.71

Dijkstra Adjacency Matrix 185.57
Dijkstra+F-heaps Adjacency Matrix 297.31

Segmentation Floyd-Warshall Adjacency Matrix 347.16
(2310) Dijkstra Adjacency List 229.83

Dijkstra+F-heaps Adjacency List 511.59
Floyd-Warshall Adjacency List 292.89

Dijkstra Adjacency Matrix 3621.90
Dijkstra+F-heaps Adjacency Matrix 4031.93

Pageblocks Floyd-Warshall Adjacency Matrix 18369.84
(5473) Dijkstra Adjacency List 3585.92

Dijkstra+F-heaps Adjacency List 8039.92
Floyd-Warshall Adjacency List 10409.90

Dijkstra Adjacency Matrix −−
Dijkstra+F-heaps Adjacency Matrix −−

Pendigits Floyd-Warshall Adjacency Matrix −−
(10992) Dijkstra Adjacency List 124363.18

Dijkstra+F-heaps Adjacency List 66105.34
Floyd-Warshall Adjacency List 204604.99

algorithm required them. It is worth noting how the time performance for the
adjacency list representation and Dijkstra is better for larger datasets. This ef-
fect is pronounced for Pendigits, with which the matrix representation can not
deal due to the storage restrictions of the operating system (it dedicates ap-
proximately 700 Mb for each process). In this case, the best combination is the
adjacency list and Dijkstra using F-heaps. Now, using the matrix representation,
and if time results are compared for Dijkstra and Dijkstra using F-heaps algo-
rithms, we observe that the time proportion decreases when number of items
increases; this difference is more pronounced for Dijkstra implemented with F-
heaps. This tendency is not maintained for the list representation using small
and medium datasets, but it is notably low for large datasets as Pendigits. Thus,
it can be inferred that, for large datasets, the best time performance for comput-
ing geodesic distances would be provided by an adjacency list (or matrix, when
storage restrictions are discarded) representation and Dijkstra using F-heaps.
The opposite occurs for the Floyd-Warshall algorithm independently from the
graph representation. Its performance is good only for small sets.

Now, the K parameter for the K-rule is set to 1, in order to show the time
performance when the procedure is dealing with an unconnected and sparse
graph (see Table 2). The pattern found in the results reported in Table 1 is
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Table 2. Time performance results for the computation of geodesic (graph) distances
(assuming an unconnected, sparse graph by setting K = 1) for several UCI datasets
and different settings. The ‘–’ symbol indicates that the memory limit was exceeded.

Dataset Shortest path Representation Time (s)
(# items)

Dijkstra Adjacency Matrix 0.47
Dijkstra+F-heaps Adjacency Matrix 1.21

Ecoli Floyd-Warshall Adjacency Matrix 0.6
(336) Dijkstra Adjacency List 0.67

Dijkstra+F-heaps Adjacency List 1.57
Floyd-Warshall Adjacency List 0.44

Dijkstra Adjacency Matrix 12.85
Dijkstra+F-heaps Adjacency Matrix 25.72

German Floyd-Warshall Adjacency Matrix 23.32
(1000) Dijkstra Adjacency List 16.18

Dijkstra+F-heaps Adjacency List 37.89
Floyd-Warshall Adjacency List 19.27

Dijkstra Adjacency Matrix 186.55
Dijkstra+F-heaps Adjacency Matrix 294.22

Segmentation Floyd-Warshall Adjacency Matrix 345.38
(2310) Dijkstra Adjacency List 228.47

Dijkstra+F-heaps Adjacency List 507.53
Floyd-Warshall Adjacency List 192.38

Dijkstra Adjacency Matrix 3483.08
Dijkstra+F-heaps Adjacency Matrix 3955.05

Pageblocks Floyd-Warshall Adjacency Matrix 10867.04
(5473) Dijkstra Adjacency List 5549.91

Dijkstra+F-heaps Adjacency List 7678.91
Floyd-Warshall Adjacency List 10179.90

Dijkstra Adjacency Matrix −−
Dijkstra+F-heaps Adjacency Matrix −−

Pendigits Floyd-Warshall Adjacency Matrix −−
(10992) Dijkstra Adjacency List 131085.17

Dijkstra+F-heaps Adjacency List 67312.69
Floyd-Warshall Adjacency List 193720.78

maintained. In general, it is observed that the modified minimum spanning tree
procedure to connect the graph does influence the time results. The larger the
dataset, the less affected the Dijkstra+F-heaps connection algorithm is.

Finally, the optimized geodesic distance calculation software module, devel-
oped in C++, was embedded in the NLDR ISOMAP algorithm, herein named
ISOMAP gMod. Its performance was compared to that of Tenenbaum’s ISOMAP
implementation and PCA. The corresponding results are shown in Table 3. It can
be observed that using ISOMAP gMod helps to explain a large percentage of the
data variance with far fewer extracted features than the alternative implementa-
tions. For the LTE set (195 features corresponding to spectral frequencies), even
just the first extracted feature explains 80% of the data variance. Moreover, for
the high-dimensional SLTE set (390 features), two extracted features suffice to
explain nearly 90% of the data variance. Overall, the ISOMAP gMod implemen-
tation outperforms all alternatives according to this evaluation measure. Further
experiments were conducted with versions of the datasets reduced to 20 features
through prior selection. Results are reported in Table 4 and they are consistent
with those in Table 3.
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Table 3. Explained variance as a function of the number of extracted features.
ISOMAP variants: Standard, Landmark (Land) and with the proposed optimized mod-
ule (gMod). NEF stands for number of extracted features.

Dataset DR method % of variance explained by NEF #Var %
(itemXdim) 1 2 3 4 5 6 7 8 9 10 > 80% (#Var)

LTE PCA 57.82 9.89 8.32 5.36 4.97 3.54 3.25 2.61 2.16 2.09 4 81.39
(195 × 195) ISOMAP 58.31 12.08 9.88 4.52 3.96 2.72 2.45 2.18 2.05 1.85 3 80.28

ISOMAP Land 58.82 10.49 7.35 4.46 4.11 3.61 3.21 3.00 2.62 2.33 4 81.11
ISOMAP gMod 80.50 9.06 3.50 2.25 1.19 1.02 0.76 0.66 0.59 0.46 1 80.50

STE PCA 66.88 7.68 6.58 5.74 3.71 2.64 2.18 1.80 1.41 1.38 3 81.14
(217 × 195) ISOMAP 67.05 8.38 7.86 4.70 3.12 2.30 2.00 1.65 1.55 1.39 3 83.29

ISOMAP Land 66.42 7.42 6.58 4.26 3.16 2.92 2.70 2.45 2.18 1.92 3 80.42
ISOMAP gMod 78.15 8.10 3.75 3.06 2.14 1.35 1.04 0.90 0.81 0.70 2 86.24

SLTE PCA 61.61 8.28 7.10 6.02 4.16 3.40 2.77 2.58 2.14 1.94 4 83.01
(195 × 390) ISOMAP 65.26 9.73 7.01 3.97 3.0 2.83 2.55 2.09 1.88 1.67 3 82.00

ISOMAP Land 66.27 9.48 4.48 4.26 3.51 3.22 2.57 2.40 1.98 1.85 3 80.23
ISOMAP gMod 75.28 13.22 4.53 1.76 1.32 1.00 0.88 0.77 0.68 0.55 2 88.50

Table 4. Summary of the explained variance as a function of the first 20 extracted
features. Legend as in Table 3

Dataset DR method #Var> 80% %
(item×dim) (#Var)

LTE PCA 6 80.85
(195 × 195) ISOMAP 6 80.84

ISOMAP Land 8 81.73
ISOMAP gMod 2 87.23

STE PCA 4 81.52
(217 × 195) ISOMAP 4 80.20

ISOMAP Land 6 80.78
ISOMAP gMod 2 83.19

SLTE PCA 6 80.64
(195 × 390) ISOMAP 6 82.17

ISOMAP Land 6 80.27
ISOMAP gMod 2 85.71

4 Conclusion

The use of the geodesic metric has been shown to be relevant in NLDR manifold
learning models. Its implementation, though, is not trivial and usually requires
graph approximations. The characteristics of the software implementation of
such approximations may have a considerably impact on the computational re-
quirements, but also on the final results. Experimental results have shown that
the combined use of an adjacency matrix and Dijkstra algoritm is recommend-
able for computing geodesic distances in small and medium datasets. For larger
datasets, though, the use of an adjacency list representation becomes crucial.

The NLDR ISOMAP algorithm was implemented using the proposed opti-
mized procedures and it was used to analyze a data set of small size but high
dimensionality of MRS spectra corresponding to human brain tumours. In prob-
lems concerning the diagnosis and prognosis of such tumours, the interpretability
of the results is paramount. Such interpretability can be helped by dimensional-
ity reduction procedures. The ISOMAP gMod implementation has been shown
to outperform several alternatives in terms of explaining a large percentage of
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the variance of these data through an extremely reduced number of features.
Future research will investigate the use of this data reduction results in brain
tumour diagnostic classification tasks. A comparison of ISOMAP variants with
the original Euclidean model of them, metric MDS, should also be included.
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Abstract. We propose a multiclassification analysis to evaluate the rel-
evance of different factors in schizophrenia detection. Several Magnetic
Resonance Imaging (MRI) scans of brains are acquired from two sen-
sors: morphological and diffusion MRI. Moreover, 14 Region Of Interests
(ROIs) are available to focus the analysis on specific brain subparts. All
information is combined to train three types of classifiers to distinguish
between healthy and unhealthy subjects. Our contribution is threefold:
(i) the classification accuracy improves when multiple factors are taken
into account; (ii) proposed procedure allows the selection of a reduced
subset of ROIs, and highlights the synergy between the two modalities;
(iii) correlation analysis is performed for every ROI and modality to
measure the information overlap using the correlation coefficient in the
context of schizophrenia classification. We see that we achieve 85.96 %
accuracy when we combine classifiers from both modalities, whereas the
highest performance of a single modality is 78.95 %.

Keywords: Machine learning algorithms, Magnetic resonance imaging,
Support vector machines, Correlation.

1 Introduction

Computational neuroanatomy using magnetic resonance imaging (MRI) is a
growing research field that employs image analysis methods to quantify mor-
phological characteristics of different brains [5]. The ultimate goal is to identify
structural brain abnormalities by comparing normal subjects (controls) with
patients affected by a certain disease. Advanced computer vision and pattern
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recognition techniques may deeply help the understanding of brain characteris-
tics and functionalities and there are several studies where these techniques are
applied [4,3]. In this paper we work on schizophrenia on which a substantial body
of research demonstrates numerous structural and functional brain abnormali-
ties in patients [11,9]. [1] is an excellent review on the use of MR for psychiatric
diseases for the interested readers.

In this paper, we propose an image-based analysis starting from a rather wide
set of brain scans acquired by two sensors: i) 3D Morphological (Smri), which
highlight morphological properties, and ii) Diffusion Weighted Imaging (Dwi),
which show the microstructure of the tissues. For each brain, a set of Region of
Interests (ROIs) are available in order to concentrate the analysis only on brain
subparts which are in relation with the disease [2].

The main contribution of the paper is the exploitation in a multiclassification
scenario of both morphological and diffusion data for schizophrenia detection;
moreover we show also the effect of combining different classifiers and ROIs. In
particular, we evaluate several strategies for combining several aspects [6]: ROIs,
data modalities, and type of classifiers. As a second contribution, we observe the
correlations1 between the classifiers trained on different ROIs and modalities
to measure the level of overlap of information contained among the ROIs and
modalities.

In the following, we describe the selected data set and the experimental set-
up in Sect. 2 and 3, respectively. Subsequently, we report the results combining
several types of data and processing strategies in Sect. 4, and finally, last remarks
are discussed in Sect. 5.

2 Data Set

We used a data set of 59 patients and 55 healthy subjects for both 3D Smri

and Dwi modalities (Figure 1). Smri data are more often used for human brain
research. Data are quite accurate with respect to noise and the volume-data
is represented with high resolution. Conversely, Dwi data are more noisy and
suitable for evidencing the microstructure of the tissues aiming at analyzing the
integrity of the brain. It is worth noting that Dwi data are less used for human
brain research, and only few work have been done in schizophrenia. Several ROIs
have been traced from Smri data by drawing contours enclosing the intended
region. For each ROI, the tracing has been carried out by a trained expert
following a specific protocol [3]. In Fig. 2, we show a sample of the right superior
temporal gyrus: the volume is composed of 35 slices of size 41×40 (ordered from
left to right, top to bottom).

In order to obtain the ROIs also on the Dwi-space, we apply a nonrigid regis-
tration between diffusion and morphological images using the 3DSlicer (Available
at http://www.slicer.org/) in accordance with a standard medical procedure.
According with our previous work [3], we generate a histogram of properly nor-
malized intensity values for each ROI and subject for Smri. For Dwi we extract
1 The idea of using the correlations for information extraction is adapted from [13].
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Fig. 1. Two slices acquired by 3D Morphological (Smri) (left) and Diffusion Weighting
Imaging Dwi (right) techniques

Fig. 2. Montage of the slices in the ROI volume (41 × 40 × 35) of rstg for subject 11.
On the left, the Mri values; on the right, the corresponding binary masks.

the histograms of Apparent Diffusion Coefficient (ADC) values. Such histogram
representations are the feature vectors which are evaluated by the classifiers.

3 Experimental Setup

In order to summarize the experimental setup, two issues should be highlighted,
which are reported in the following.

3.1 Factor Combination

We propose to combine the following factors: i) three classifiers: k-nearest neigh-
bor with k = 1 (1nn), support vector machine with a linear kernel (svl), and
support vector machine with a radial basis kernel (svr), ii) seven ROIs × two
hemispheres: Amygdala (lamyg and ramyg), Dorso-lateral PreFrontal Cortex
(ldlpfc and rdlpfc), Entorhinal Cortex (lec and rec), Heschl’s Gyrus (lhg and rhg),
Hippocampus (lhippo and rhippo), Superior Temporal Gyrus (lstg and rstg), and
Thalamus (lthal and rthal), and iii) two modalities: Smri data, and Dwi data.
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3.2 Validation Criteria and Decision Rule

For every factor combination, we use leave-one-out (LOO) methodology to train
the models and assess the accuracy. Instead of using a binary decision rule,
we record the posterior probability outputs of each model and use them for
constructing ensembles using the mean combiner (i.e. SUM rule in classifier
combination).

We also add another representation which is the concatenation of Smri and
Dwi data, which we call Con. Therefore, each trained basic model consists of
one modality, one ROI, and one classifier (i.e., Smri-lamyg-1nn). The modality,
the ROI or the classifier will be omitted throughout the text when the context
is clear.

3.3 Correlation of Base Classifiers

We use the posterior probability outputs of the svr classifier to calculate the
correlation coefficient between ROIs and modalities. It’s known that for ensem-
bles to have better accuracy, we need to have diverse base classifiers. Various
measures of diversity exist [7], but in general, diversity can be defined as the clas-
sifiers responding differently to the same input. Correlations of base classifiers
are also used when creating ensembles, and in this paper we used the correlation
coefficient proposed by Petrakos et al. [8] which was studied empirically in the
context of decision fusion. We apply the correlation computation to see how the
ROIs and modalities are correlated. In principle, one would use a validation set
to compute the correlation of the classification algorithms and then form the
ensemble according to this information [7]. Instead, what we do in this study is
to calculate the correlation of pairwise ROIs and modalities on the test set to
observe the overlap of information contained in different ROIs [13].

The correlation between two classifiers is calculated as in [8]:

ρ2 =
2×N00

N01 +N10 + 2×N00

where Nij shows the number of subjects (N00: incorrectly classified by both
classifiers, N11: correctly classified by both classifiers, N01 incorrectly classified
by the first and correctly classified by the second, and N10: correctly classified
by the first, and incorrectly classified by the second).

4 Results and Discussions

In this section, we evaluate different strategies to combine classifiers, ROIs, and
data modalities.

4.1 Exp 1: Single Classifier per ROI

In the first experiment, we compare classification performances by training a
single classifier per ROI and modality. In the left part of Table 1, one can see
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the best LOO accuracies among the three different types of classifiers. Please,
note that the best accuracy is 71.93 when we use Smri-ldlpfc. The best accuracy
of Dwi is 62.28 when we use lec which is interesting because it is one of the
only three ROIs where Dwi is more accurate than Smri. In half of the ROIs the
accuracy improves when the feature concatenation approach is applied.

The right part of Table 1 shows instead the integration of the three types
of classifiers using the mean combiner for each ROI and modality. Also this
combination strategy does not yield better accuracies, sometimes makes it worse.

Table 1. Best and mean combiner (mc) accuracies using a single classifier per ROI
and modality (in %)

best mc

Smri Dwi Con Smri Dwi Con

lamyg 64.91 59.65 71.93 63.16 57.02 69.30
ramyg 64.91 53.51 52.63 63.16 47.37 56.14
ldlpfc 71.93 50.88 57.02 64.91 51.75 54.39
rdlpfc 61.40 51.75 64.91 63.16 48.25 59.65
lec 57.02 62.28 69.30 50.00 62.28 59.65
rec 63.16 54.39 63.16 65.79 53.51 55.26
lhg 55.26 58.77 62.28 52.63 57.89 58.77
rhg 57.02 57.02 58.77 51.75 51.75 54.39
lhippo 70.18 61.40 66.67 64.04 64.04 66.67
rhippo 57.89 60.53 57.02 55.26 46.49 47.37
lstg 62.28 57.89 64.04 59.65 57.02 62.28
rstg 62.28 51.75 64.91 58.77 49.12 66.67
lthal 63.16 52.63 57.02 60.53 50.00 57.89
rthal 61.40 57.02 58.77 58.77 53.51 57.02

4.2 Exp 2: Integration of ROIs

In the second experiment, we fix modalities and classifiers; and combine the
ROIs (Table 2, upper part) using the mean combiner. One can see that the best
accuracy of Con is improved from 71.93 % to 74.56 %. It’s known that combining
a subset of models may lead to better accuracies than using all the models [10,12].
Bearing this in mind, we have performed another experiment where we selected
the best seven ROIs. We can see from Table 2 (middle) that the accuracies
increase 5%, 14 % and 3% respectively when we use the svr classifiers and the
best 7 ROIs. Using this selection strategy, we can have 76.32 accuracy when
we use the morphological data. Even better is the result of the concatenation:
78.07 %. This experiment suggests that the best integration strategy is obtained
when we combine a subset of different ROIs for any modality. Therefore, we
design an exhaustive experiment to select automatically such subset of ROIs.
We first have performed the analysis for the three modalities separately. Then,
we allow the combination between all the ROIs of both the sensors at the same
time. In these experiments, we use svr, because it has the best performace.
The results can be seen in Table 2 (bottom). The optimum accuracy is 78.95
when a single modality is used, and 83.33 when we use the concatenation of
both modalities whereas when both modalities are jointly combined the accuracy
improves to 85.96. Another interesting fact is that optimal ROIs combination for
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Table 2. Combination accuracies for combining all ROIs and a selection of ROIs
(in %)

1nn svl svr
Smri 60.53 64.91 71.05
Dwi 63.16 56.14 57.02
Con 57.89 67.54 74.56
Best7-Smri 59.65 68.42 76.32
Best7-Dwi 53.51 51.75 71.05
Best7-Con 52.63 67.54 78.07
opt-Smri - - 78.95
opt-Dwi - - 74.56
opt-Con - - 83.33
opt-Joint - - 85.96

Smri includes five ROIs which are not the best five. The optimum combination
for Dwi selects four ROIs which are again in the best seven but not the best four.
This shows us that different classifiers may perform well in classifying different
parts of the input space, and even though they have low single accuracies, they
may bring a relevant improvement when combined with other parts.

Another interesting aspect of this evaluation is that the optimum combination
including both the modalities selects five ROIs from Smri and three ROIs from
Dwi which again differ from those selected for the single modality evaluation.
It is worth to note that this combination strategy not only provides the best
performance in detecting schizophrenic subjects, but also allows us to localize
the most discriminative brain subparts.

4.3 Exp 3: Correlations of Classifiers

In the above experiments we analyze that it is good to combine multiple ROIs in
order to get better ensemble accuracy. The better method is to combine the out-
puts of classifiers coming from different modalities which our exhaustive analysis
pointed out. One could also use the correlations to come up with such ensembles,
but since we exhaustively searched all the solution space, instead of showing how
to build an ensemble using correlation, we will observe the pairwise correlations
among ROIs and modalities. Most of the correlations are below 0.50 (note that ρ2

gets values in the range [0, 1]) and the correlations above this value are unevenly
distributed amongst ROIs and the two modalities. The highest correlation is 0.61
between Smri-lthal and Smri-ldlpfc. This shows us that the correlations between
these classifiers are low and combining them to construct ensembles would lead
better ensemble accuracy which was also shown by our experiments above. This
also has an important medical interpretation. It shows us that the information
contained in each of these ROIs and across these two modalities are different
(also complementary as we show above) and we should combine the information
in these ROIs and modalities to get better ensemble accuracy. Table 3 shows the
correlations across modalities and hemispheres. The first part of the table shows
the correlations across the two modalities using the same ROI. We can see that
the highest correlation is 0.56 which is observed on rhippo. The second part of
the table shows the correlations across the brain hemispheres. This time we can
see that the highest correlation is 0.63 and between stg of Smri. We can see
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that correlations inside ROIs are higher than cross-modality correlations which
shows us that it may be a good idea to combine the two modalities which was
confirmed by our combination experiments. Analyzing the table, we can also say
the following: In the context of schizophrenia detection (using these features),
the hemispheres of the brain are more similar in terms of morphology than func-
tion. Also we can see that the correlations between the right hemisphere of the
two modalities are higher (except stg) than the correlations between the left
hemispheres which shows that they are more similar in terms of discriminative
power.

Table 3. Correlation of modalities and hemispheres. l- shows the left hemisphere and
r- shows the right hemisphere.

amyg dlpfc ec hg hippo stg thal
l-Smri vs. l-Dwi 0.37 0.41 0.39 0.39 0.44 0.49 0.44
r-Smri vs. r-Dwi 0.44 0.55 0.46 0.45 0.56 0.48 0.47

l-Smri vs. r-Smri 0.53 0.47 0.49 0.46 0.49 0.63 0.56
l-Dwi vs. r-Dwi 0.45 0.58 0.46 0.42 0.43 0.51 0.52

5 Conclusions

In this work, we evaluate the effectiveness of different classifier combination
strategies in the context of schizophrenia detection. Even if the question “Can
schizophrenia be detected just by analyzing MRI images?” is still unsolved, this
study provides novel useful insights on the combined effect of two data modali-
ties: in particular we have considered morphological and diffusion data, extracted
from 14 ROIs associated to brain subparts, and classified using three types of
classifiers. We have seen that neither concatenating the two modalities, nor com-
bining different types of classifiers on the same ROI, provides the expected effect
of increasing ensemble accuracy. Such effect may be found when we use a care-
fully selected subset of ROIs, which are combined using the mean combiner
strategy. The best increase in accuracy occurs when we combine also the two
data modalities (Joint). This highlights that the information encoded in the
morphological and diffusion data are different, and their contributions to the
classification are complementary. We also showed this using correlation coeffi-
cients between classifiers. Using the correlation coefficients, we have seen that
the classifiers trained using different modalities are more diverse. Also we have
seen that in terms of schizophrenia detection, the two hemispheres are more
similar in terms of morphology than in terms of function. As a future work, we
will exploit the use of other classifier combination algorithms to improve the
ensemble accuracies.
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Abstract. Here we present a method for online signature verification
treated as a two-class pattern recognition problem. The method is based
on the acceleration signals obtained from signing sessions using a special
pen device. We applied a DTW (dynamic time warping) metric to mea-
sure any dissimilarity between the acceleration signals and represented
our results in terms of a distance metric.

Keywords: online signature, biometrics, signature verification.

1 Introduction

Several types of biometric authentication exist. Some of them have appeared
in the last few decades, such as DNA and iris recognition and they provide
more accurate results than the earlier methods did (e.g. fingerprint, signature).
Hence they are more difficult to forge. However, a signature is still the most
widely accepted method for identification (in contracts, bank transfers, etc.).
This is why studies tackle the problem of signature verification and examine the
process in detail. Usually their aim is to study the mechanics of the process and
learn what features are hard to counterfeit.

There are two basic approaches of recognising signatures; namely the offline
and the online. Offline signature recognition is based on the image of the sig-
nature, while the online case uses data concerning the dynamics of the signing
process (pressure, velocity, etc.). The main problem with the offline approach is
that it gives higher false accept and false reject errors, but the dynamic approach
requires much more sophisticated techniques.

The online signature recognition systems differ in their feature selection and
decision methods. Some studies analyse the consistency of the features [1], while
others concentrate on the template feature selection [2]; some combine local and
global features [3].
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An important step in signature recognition was the First International Sig-
nature Verification Competition [4]. Reviews of automatic signature verification
were written by Leclerc and Plamondon [5,6].

Many signals and therefore many different devices can be used in signature
verification. Different types of pen tablets have been used in several studies, as
in [7,8]; the F-Tablet was described in [9] and the Genius 4x3 PenWizard was
used in [10]. In several studies (like ours), a special device (pen) was designed
to measure the dynamic characteristics of the signing process.

In [11], the authors considered the problem of measuring the acceleration
produced by signing with a device fitted with 4 small embedded accelerometers
and a pressure transducer. It mainly focused on the technical background of
signal recording. In [12], they described the mathematical background of motion
recovery techniques for a special pen with an embedded accelerometer.

Bashir and Kempf in [13] used a Novel Pen Device and DTW for handwrit-
ing recognition and compared the acceleration, grip pressure, longitudinal and
vertical axis of the pen. Their main purpose was to recognise characters and
PIN words, not signatures. Rohlik et al. [14,15] employed a similar device to
ours to measure acceleration. Theirs was able to measure 2-axis accelerations,
in contrast to ours which can measure 3-axis accelerations. However, our pen
cannot measure pressure like theirs. The other difference is the method of data
processing. In [14] they had two aims, namely signature verification and author
identification, while in [15] the aim was just signature verification. Both made
use of neural networks.

Many studies have their own database [8,9], but generally they are unavailable
for testing purposes. However some large databases are available, like the MCYT
biometric database [16] and the database of the SVC2004 competition1 [4].

In this paper we propose an online signature recognition method that is based
on a comparison of the 3-axis acceleration of the handwriting process. We created
our database with genuine signatures and unskilled forgeries, and used the dy-
namic time warping method to measure the dissimilarities between signatures.
The novelty of our approach is a detailed investigation of the contribution of
acceleration information in the signature verification process.

2 Proposed Method

2.1 Technical Background

We used a ballpoint pen fitted with a three-axis accelerometer to follow the
movements of handwriting sessions. Accelerometers can be placed at multiple
positions of the pen, such as close to the bottom and/or close to the top of the pen
[11,13]. Sometimes grip pressure sensors are also included to get a comprehensive
set of signals describing the movements of the pen, finger forces and gesture
movements. In our study we focused on the signature-writing task, so we placed
the accelerometer very close to the tip of the pen to track the movements as
accurately as possible (see Figure 1).
1 Available at http://www.cse.ust.hk/svc2004/download.html

http://www.cse.ust.hk/svc2004/download.html
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Fig. 1. The three-axis accelerometer is mounted close to the tip of the pen

Fig. 2. Block diagram of the data acquisition system

In our design we chose the LIS352AX accelerometer chip because of its signal
range, high accuracy, impressively low noise and ease-of-use. The accelerometer
was soldered onto a very small printed circuit board (PCB) and this board was
glued about 10mm from the writing tip of the pen. Only the accelerometer, the
decoupling and filtering chip capacitors were placed on the assembled PCB. A
thin five-wire thin ribbon cable was used to power the circuit and carry the
three acceleration signals from the accelerometer to the data acquisition unit.
The cable was thin and long enough so as not to disturb the subject when s/he
provided a handwriting sample. Our tiny general purpose three-channel data
acquisition unit served as a sensor-to-USB interface [17].

The unit has three unipolar inputs with signal range of 0 to 3.3V, and it also
supplied the necessary 3.3V to power it. The heart of the unit is a mixed-signal
microcontroller called C8051F530A that incorporates a precision multichannel
12-bit analogue-to-digital converter. The microcontroller runs a data logging pro-
gram that allows easy communication with the host computer via an FT232RL-
based USB-to-UART interface. The general purpose data acquisition program
running on the PC was written in C#, and it allowed the real-time monitoring
of signals. Both the hardware and software developments are fully open-source
[18]. The block diagram of the measurement setup is shown in Figure 2.

The bandwidth of the signals was set to 10Hz in order to remove unwanted
high frequency components and prevent aliasing. Moreover, the sample rate was
set to 1000Hz. The signal range was closely matched to the input range of the
data acquisition unit, hence a clean, low noise output was obtained. The acquired
signals were then saved to a file for offline processing and analysis.

2.2 Database

The signature samples were collected from 40 subjects. Each subject supplied
10 genuine signatures and 5 unskilled forgeries, so we had a total 40 · 15 = 600
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(a) Genuine1 (b) Genuine2 (c) Forgery

Fig. 3. The images and acceleration signals of two genuine signatures and one forged
signature

signatures in total. The signature forgers were asked to produce 5 signatures
of another person participating in the study. Each participant supplied forged
samples and genuine samples.

In order to make the signing process as natural as possible, there were no
constraints on how the person should sign. This led to some problems in the
analysis because it was hard to compare the 3 pairs of curves (two signatures).
During a signing session, the orientation of the pen can vary somewhat (e.g. a
rotation with a small angle causes big differences for each axis). That was why
we chose to reduce the 3 dimensional signals to 1 dimensional signals and we
only compared the magnitudes of the acceleration vector data.

Figure 3 shows the acceleration signals of 2 genuine signatures and 1 forged
signature. Figures 3a and 3b belong to the same author, and they appear quite
similar. Figure 3c is a corresponding forged signature, which differs significantly
from the first two.

2.3 Distance between Time Series

An elastic distance measure was applied to determine dissimilarities between the
data. The dynamic time warping (DTW) approach is a commonly used method
to compare time series. The DTW algorithm finds the best non-linear alignment
of two vectors such that the overall distance between them is minimised. The
DTW distance between the u = (u1, . . . , un) and v = (v1, . . . , vm) vectors (in
our case, the acceleration vector data of the signatures) can be calculated in
O(n ·m) time.

We can construct, iteratively, a C ∈ R(n+1)×(m+1) matrix in the following
way:

C0,0 = 0, Ci,0 = +∞, C0,j = +∞, i = 1, . . . , n, j = 1, . . . , m

Ci,j = |ui − vj | + min (Ci−1,j , Ci,j−1, Ci−1,j−1) ,

i = 1, . . . , n, j = 1, . . . , m.
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After we get the Cn,m which tells us the DTW distance between the vectors u
and v. Thus

dDTW(u, v) = Cn,m.

The DTW algorithm has several versions (e.g. weighted DTW and bounded
DTW), but we decided to use the simple version above, where |ui − vj | denotes
the absolute difference between the coordinate i of vector u and coordinate j of
vector v.

Since the order of the sizes of n and m are around 103−104, our implementa-
tion does not store the whole C matrix, whose size is about n×m ≈ 106 − 108.
Instead, for each iteration, just the last two rows of the matrix were stored.

Table 1. Sample distance matrix

DTW AE00 AE01 AE02 AE03 AE04 AE05 AE06 AE07 AE08 AE09 ME10 ME11 ME12 ME13 ME14

AE00 0 62 97 122 115 63 114 103 75 223 342 277 236 316 709
AE01 0 63 70 65 113 81 67 65 160 238 232 176 258 676
AE02 0 103 66 134 75 76 63 82 252 251 175 258 695
AE03 0 99 163 127 111 108 165 278 283 228 301 712
AE04 0 156 70 70 58 78 385 445 254 409 874
AE05 0 155 146 104 308 527 450 347 490 851
AE06 0 60 36 155 331 401 221 332 793
AE07 0 49 138 199 239 178 220 669
AE08 0 116 233 247 157 225 683
AE09 0 362 484 303 365 950

ME10 0 133 70 49 258
ME11 0 107 83 197
ME12 0 67 394
ME13 0 267
ME14 0

A distance matrix is shown in Table 1. The intersection of the first 10 columns
and 10 rows shows the distance values between the genuine signatures (got from
the same person). The intersection of the first 10 rows and the last 5 columns tells
us the distances between genuine and the corresponding forged signatures. The
rest (the intersection of the last 5 rows and last 5 columns) shows the distances
between the forged signatures.

The distance between the genuine signatures varies from 60 to 308 (with
average distance of 95), but between a genuine and a forged signature it varies
from 157 to 950 (with average distance of 390).

The distance matrices are similar to that given above. In some cases the
distance between genuine and forged signatures can be easily delimited, but in
other cases we cannot define a strict line.

3 Results

The performance of a signature verification algorithm can be measured by the
rate of Type I error (false reject), when a genuine signature is marked as forged
and Type II error (false accept), when a forged signature is marked as genuine.
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Fig. 4. False reject and false accept rates depending on the constant multiplier

For each person, 5 genuine signatures were chosen randomly as references, so
they belonged to the training set. All the other signatures of this person and
unskilled forgeries of their signature were used for testing. Thus the test set
contained 5 genuine and 5 unskilled forged signatures for each person.

We first computed the average distance between the five elements of the train-
ing set (Davg). Then, for each signature in the test set, the average distance of
the signature from the training set’s five signatures was found (Ddis). Now, if
for some t in the set

Ddis < m ·Davg

then t was accepted as a true signature, otherwise it was rejected.
Figures 4 shows the false reject and false accept rates depending on the con-

stant multiplier m of the minimum distance got from the training dataset. We
can see that we get a zero FA rate around m = 7. The curve decreases quite
quickly while the increase of the FR is less marked.

Besides the average we also used two other metrics, namely the maximum and
minimum distances. These were calculated from the training set via

Dmax(R) = max
i,j=1,...,|R|,i�=j

dDTW(ri, rj) and Dmin(R) = min
i,j=1,...,|R|,i�=j

dDTW(ri, rj),

where the set R is the training data set, |R| denotes the cardinality of R and ri
is the signature i in the training set.

We can use the same definitions to compute the distance between a test sig-
nature and a training set.

Table 2 shows the false accept and false reject errors in percentage terms. The
Equal Error rate (EER) is the percentage where the false acceptance and the
false rejection rates are equal. We see that we get the best results (the lowest
EER), when we use dmin both for the training and the test set.
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Table 2. Equal Error rates (EER) depending on the chosen distance on the reference
set and the chosen distance between references and the sample. The values in brackets
are the corresponding multipliers.

Test distance
average maximum minimum

T
ra

in
in

g average 14.50% (1.36) 23.50% (0.56) 18.00% (3.34)
maximum 17.25% (2.02) 29.50% (0.84) 23.25% (4.82)
minimum 15.50% (0.98) 23.25% (0.38) 13.00% (2.28)

4 Summary, Discussion and Conclusions

In this paper an online signature verification method was proposed for verifying
human signatures. The proposed procedure was implemented and then tested.
A test dataset was created using a special device fitted with an accelerometer.
The dataset contained 600 signatures, where 400 signatures were genuine and
200 were forged. In the study we found we had to limit the 3d acceleration
vector data to 1d acceleration vector data so as to make the verification task
more manageable. Using a time series approach and various metrics we were able
to place signature samples into two classes, namely those that are genuine and
those that are forged. The results we got were instructive and the method looks
promising.

The method outlined in [15], which used a similar device and neural networks
to verify signatures, attained an overall accuracy ratio between 82.3% and 94.3%,
depending on the author of the signatures (with an average of 87.88%). We
attained an 88.50% overall accuracy ratio in the case of the minimum distance
and choosing m = 2.2 as a multiplier. Thus our results compared to the above
mentioned previous study is slightly better, despite the fact we used less data,
as we did not use pressure data.

There are several ways that the work described here could be extended. First,
other metrics than DTW could be included and the results compared. Second,
our method just uses the magnitude of the acceleration, not the direction. Thus
our verification method could be improved by extracting more useful information
from the 3 dimensional signals. Third, we could compare other features (e.g.
velocity, which can be computed from the acceleration data values) to learn
which features are the most important in the signature verification process. A
normalisation of the acceleration signals may be helpful too. Finally, we could
adapt other sensors to make our signature-verifying tool more robust.

Acknowledgment. This work was supported by the Project ”TÁMOP-4.2.1/B-
09/1/KONV-2010-0005 - Creating the Center of Excellence at the University of
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Abstract. This paper presents a two-level based character recognition method 
in which a dynamically selection of the most promising zoning scheme for 
feature extraction allows us to obtain interesting results for character 
recognition. The first level consists of a conventional neural network and a 
look-up-table that is used to suggest the best zoning scheme for a given 
unknown character. The information provided by the first level drives the 
second level in the selection of the appropriate feature extraction method and 
the corresponding class-modular neural network. The experimental protocol has 
shown significant recognition rates for handwritten characters (from 80.82% to 
88.13%). 

Keywords: dynamic selection, zoning mechanism, handwritten character, 
recognition. 

1   Introduction 

An important subject of research in the field of document analysis and recognition is 
still the recognition of handwritten characters. The motivation is that even after many 
research efforts there is still a gap between human reading capabilities and the 
recognition systems. Over the years researchers have applied different techniques and 
methods to reduce this gap. In this direction, several authors have presented different 
schemes based on zoning mechanisms or regional decomposition methods. Zoning is 
a simple way to obtain local information and it has been used for extraction of 
topological information from patterns [1]. The goal of the zoning is to obtain local 
characteristics instead of global characteristics. This is possible, since a zoning 
scheme consists in partitioning the pattern bounding box in regions or zones. The 
resulting partitions allow us to determine the position of specific features of the 
pattern to be recognized [2]. However, the major problem related to zoning 
mechanisms is to choose the best zoning scheme to solve the recognition problem of 
different classes of characters. 

Thus, depending on the domain of application or the experience of the researcher 
the zoning can be carried out exclusively on the basis of intuitive motivations [1] or 
based on the easier manner, i.e. fixed or symmetrical zoning [3-5]. Different zoning 
approaches for characters recognition can be found in the literature. By using 
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IRONOFF handwritten database, the authors in [3] report recognition rates of 87.1% 
and 77.8% for uppercase and lowercase characters respectively, handling directly 2D 
pattern avoiding the subtle stage of the extraction of relevant and applying MLP-NN 
(Multiple Layer Perceptron - Neural Network). Other interesting results were reported 
in [5], where the recognition rate for lowercase characters was 80.75% and for 
uppercase characters was 89.21%; applying Class-Modular MLP-NN and a feature set 
based on directional and curvature histograms for the contour image and a zoning 
mechanism into Z = 16 (4 x 4) or Z = 20 (4 x 5) regions. Using the isolated French 
word images from IRONOFF database, the authors in [4] describes a system based on 
sliding window segmentation and 140 geometrical features are extracted from each 
frame. The classification stage is based on conventional discrete Hidden Markov 
Models (HMM) using Vector Quantization (VQ). This paper reported 83.1% of 
recognition rate for handwritten words. 

The author in [6] uses a regular zoning scheme based on 4 symmetrical regions and 
reported 92.3% and 84.6% for upper and lowercase characters from NIST database. 
Using the same database, the work described in [7] uses an implicit zoning scheme 
based on row and columns discrete HMMs and reached 90.0%, and 84.0% for upper 
and lowercase characters, respectively. Finally, the work presented in [8] describes an 
automatic approach to define the zoning for offline handwritten digit recognition, using 
Multi-Objective Evolutionary Algorithms (MOEAs). The authors pointed out that their 
proposal provides a self adaptive methodology to define the zoning strategy with Z 
non-overlapping zones and an acceptable error rate, with no need of human 
intervention during the search stage. The best result was obtained using six zones 
composed by three symmetrical rows (horizontal: 2/6, 2/6, 2/6) and three non-
symmetrical columns (vertical: 1/6, 3/6, 2/6) using a random subset from the NIST 
SD-19 hsf-0123 handwritten digit database with 50,000 samples for the training set, 
and another 10,000 for the validation set to evaluate the individual's error rate. The 
error rate applying this zoning strategy was 5%. However, the authors left an open 
problem: since, it is very difficult to find an unique and best zoning for all classes, is it 
possible to dynamically select the best zoning scheme for an unknown pattern? 

To answer this question, this paper presents a dynamic zoning selection applied in 
a two-level method for character recognition. In the first level, a conventional Neural 
Network and a traditional zoning scheme based on four equal zones (Z=4) is used to 
predict the top 3 recognition results for an unknown pattern. In fact, the idea is to 
predict the best zoning scheme from the different options shown in Figure 1. The 
second level uses the selected zoning to extract the features for a feedforward MLP-
NN using a Class-Modular architecture [9] that decides the final recognition result.  

 

Fig. 1. Zoning Mechanisms: Z=4, 5H, 5V and 7 
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The paper is organized as follows. Section 2 presents the baseline system and how 
the dynamic zoning selection is proposed. Section 3 presents the experimental results. 
Section 4 discusses the experimental results and points the future works. 

2   Baseline System 

The proposed method uses as input a 256 grey-level image. Then, a preprocessing step 
is applied, which is composed of binarization (OTSU algorithm [10]) and bounding 
box definition. The feature set is based on Concavities/Convexities deficiencies [11]. 
This feature set puts on evidence the topological and geometrical properties of the 
shape to be recognized and is computed by labeling the background pixels of the input 
images. The basic idea of concavity/convexity deficiencies is the following: for each 
background pixel in the image we search in four-directions: North, South, East, and 
West - Fig. 2. When black pixels are reached in all directions, we branch out in four 
auxiliary directions in order to confirm if the current white pixel is really inside a 
closed contour. Figure 2 shows the obtained result after the labeling process. The entire 
and definitive alphabet has 24 different symbols (S = 24) [2]. 

 

Fig. 2. Feature extraction: character “n” 

These global features are extracted considering the following zoning strategies: Z = 
4, 5H, 5V and 7 regions, as presented and defined by [2]. This hybrid feature extraction 
provided to the system a global and local description of the shape to be recognized.   

The proposed classification method is based on two levels; (a) dynamic zoning 
selection (DZS) and (b) character recognition (CR), as depicted in Figure 3. The first 
level is composed of a conventional Neural Network classifier. Given an unknown 
character, the feature extraction is done using a classical zoning (Z = 4). The main 
objective of the first level is to provide the best zoning scheme for the second level. So, 
for this purpose, we previously calculate the confusion matrices of the class-modular 
Neural Networks trained based on the different zoning options: Z = 4, 5H, 5V and 7 
regions as presented in Figure 1. Thus, the best zoning scheme is selected by looking 
for the confusion matrix that present the smaller number of confusions among the 
corresponding character classes involved in the Top 3 recognition result. The zoning 
scheme corresponding to the found matrix is selected for the feature extraction of the 
second level. However, in case of a tie when comparing the number of confusions, the 
best zoning scheme is chosen by considering only the Top 1 recognition result. In this 
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case, the confusion matrix that presents the best recognition result for the Top 1 result 
is selected for feature extraction of the next level.  

The second level of proposed method is based on a feedforward MLP-NN using 
Class-Modular architecture [9]. In Class-Modular architecture a single task is 
decomposed into multiple subtasks and each subtask is allocated to an expert network. 
In this paper, as well as in [9] the K-classification problem is decomposed into K 2-
classication subproblems, one for each of the K classes. A 2-classification subproblem 
is solved by the 2-classifier specifically designed for the corresponding class. The 2-
classifier is only responsible for one specific class and discriminates that class from the 
other K-1 classes. In the class-modular framework, K 2-classifiers solve the original K-
classification problem cooperatively, and the class decision module integrates the 
outputs from the K 2-classifiers. 

 

Fig. 3. Baseline system overview: Level 01(Dynamic Zoning Selection - DZS) and Level 02 
(Character Recognition - CR) 

At this level, the feature extraction is dynamic and depends on the zoning scheme 
selected in the first level.  

3   Experimental Results 

This section presents the main results undertaken during the development of the 
proposed method. The description of the used database and the results of the first and 
second levels of the proposed method are described. 
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3.1   Database 

The experiments were carried out using the lowercase handwritten character database 
from IRESTE/University of Nantes (France), called IRONOFF (IRESTE ON/OFF 
Dual Database), which is composed of isolated digits, isolated lowercase and 
uppercase characters and, isolated words from a 197 word lexicon. The IRONOFF 
database was selected because it is fully cursive. It was collected from about 700 
writers, mainly of French nationality. The experiments were carried out using three 
subsets, nominated as the training, validation and testing sets. Their compositions are 
as follows: 60%, 20% and 20% for training, validation, and testing, respectively. The 
database sums up 10,400 images of lowercase handwritten characters [12].  

3.2   Conventional MLP-NN 

As described before, the first level of the proposed method consists of a conventional 
neural network classifier, which is composed of  N = 96 (24 x Z, where Z = 4) nodes 
in the input layer, a 59 number of nodes in the hidden layer, and an output layer with 
26 nodes. Validation sets were employed in order to avoid overtraining and to make 
possible a Cross-Validation process. All the classes were trained together.  

The proposed method considers the three major outputs (Top 3) for each sample of 
character class in the test database. We have experimentally evaluated different 
numbers of neurons in the hidden layer and the best results were achieved with 59 
neurons. Firstly, the experiments consider the global feature extraction, without 
applying the zoning mechanism (Z-Global). Then, the classifier was experimented with 
the zoning schemes presented in Figure 1. We observed in Table 1 that there is an 
increase recognition rate when applying the Z = 4 as strategy of zoning, as well as an 
increase when compared from Z = 4 to Z = 7. At this point is possible to define the best 
zoning mechanism for each class of character. This information is used to construct a 
kind of a look-up-table used in the first level of our method. In fact, the look-up-table 
consists in the confusion matrices derived from the use of the different zoning 
strategies and the class-modular MLP-NN. Thus, by analyzing the confusion among 
the three major outputs (TOP3), it is possible to define the more appropriated strategy 
of zoning. Thereby the zoning that had the small number of confusion among the Top 
3 outputs is assigned to be used in the second level of the proposed method. As 
explained before, in case of a tie the zoning scheme of the top 1 recognition result is 
selected.  

3.3   Class Modular MLP-NN 

The second level of the proposed method is based on a Class-Modular MLP-NN, 
where each of K 2-classifiers is trained independently of the other classes using the 
training and validation set. To train 2-classifiers for each character class (K = 26), we 
re-organize the samples in the original training and validation set into K-two groups, 
Z0 and Z1, such that Z0 contains the samples from the current class and Z1 all the 
others, taking into account the a priori probability for each class. To recognize the 
input character patterns, the class decision module takes only the values of O0 and 
uses the simple winner-takes-all scheme to determine the final class. Table 1 presents  
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the recognition rate obtained for each zoning mechanism. All these results confirm 
that the class-modular network is superior in terms of convergence over the 
conventional network (according to the monitoring of the MSE—mean-square error) 
and in terms of recognition capability than the conventional network, as presented by 
[5] [9]. 

Table 1. Conventional NN and Class-Modular MLP-NN 

Characters Conventional NN 
Recognition Rate (%) 

Class-Modular MLP-NN 
Recognition Rate (%) 

 ZGlobal Z4 Z5H Z5V Z7 Z4 Z5H Z5V Z7 

a 68.75 83.75 82.50 80.00 83.75 80.00 86.25 78.75 85.00 
b 61.25 82.50 86.25 83.75 86.25 88.75 88.75 90.00 88.75 
c 71.25 95.00 97.50 93.75 95.00 93.75 95.00 88.75 93.75 
d 42.50 92.50 90.00 91.25 86.25 93.75 91.25 81.25 93.75 
e 76.25 83.75 83.75 77.50 63.75 82.50 83.75 77.50 87.50 
f 26.25 38.75 67.50 67.50 65.00 80.00 68.75 80.00 83.75 
g 40.00 65.00 71.25 67.50 61.25 63.75 65.00 73.75 87.50 
h 37.50 76.25 72.50 67.50 68.75 76.25 80.00 70.00 78.75 
i 80.00 81.25 82.50 82.50 77.50 86.25 88.75 86.25 86.25 
j 70.00 77.50 78.75 73.75 81.25 81.25 77.50 81.25 81.25 
k 61.25 66.25 73.75 62.50 76.25 65.00 72.50 72.50 72.50 
l 53.75 70.00 58.75 66.25 68.75 70.00 62.50 72.50 62.50 
m 13.75 48.75 71.25 60.00 61.25 50.00 53.75 85.00 73.75 
n 82.50 81.25 65.00 63.75 77.50 76.25 65.00 82.50 77.50 
o 82.50 88.75 90.00 93.75 91.25 88.75 87.50 90.00 91.25 
p 76.25 81.25 87.50 82.50 87.50 76.25 87.50 88.75 86.25 
q 87.50 95.00 93.75 98.75 97.50 95.00 92.50 88.75 93.75 
r 65.00 71.25 67.50 72.50 73.75 77.50 72.50 66.25 78.75 
s 76.25 85.00 77.50 81.25 86.25 88.75 78.75 81.25 87.50 
t 86.25 91.25 78.75 91.25 87.50 87.50 88.75 87.50 90.00 
u 50.00 83.75 83.75 78.75 82.50 87.50 83.75 68.75 85.00 
v 62.50 71.25 81.25 83.75 83.75 80.00 82.50 80.00 81.25 
w 83.75 88.75 92.50 87.50 90.00 83.75 87.50 90.00 85.00 
x 82.50 88.75 82.50 86.25 86.25 83.75 86.25 85.00 80.00 
y 90.00 92.50 90.00 92.50 87.50 90.00 90.00 87.50 77.50 
z 88.75 87.50 86.25 88.75 95.00 82.50 85.00 88.75 85.00 
Average 66.01 79.52 80.48 79.81 80.82 81.11 80.82 81.63 83.61 

3.4   Dynamic Zoning Selection 

The conventional Neural Network classifier in the first level provides the top 3 
recognition result and the most promising zoning scheme based on the confusion 
matrices previously created by considering different zoning schemes. The second 
level uses such information for feature extraction and selection of the appropriated 
Class-Modular MLP-NN. By applying the dynamic zoning selection - DZC (first 
level based on class-modular MLP-NN) and character recognition – CR (second level 
based on class-modular MLP-NN) the system reached 88.13% of average rate. Table 
2 presents the recognition rates for each class of handwritten characters. 
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3.5   Related Works 

Table 3 presents the results of some related works that uses the IRONOFF database. 
Comparing results is not easy since the works refers to different sets, feature 
extraction and classification strategies. Taking into consideration these differences, 
the results indicate that the dynamic zoning selection (DZS) is promising and the 
recognition rates are comparable to the literature. 

Table 2. DZS (Level 01) + Character Recognition (Level 02) 

Character Rec. Rate (%) Character Rec. Rate (%) 
a 85.00 o 92.50 
b 91.25 p 92.50 
c 96.25 q 95.00 
d 93.75 r 82.50 
e 87.50 s 95.00 
f 86.25 t 92.50 
g 88.75 u 91.25 
h 83.75 v 86.25 
i 90.00 w 90.00 
j 78.75 x 87.50 
k 80.00 y 91.25 
l 80.00 z 88.75 

m 82.50 Average 88.13 
n 82.50  

Table 3. Related works (IRONOFF databases) 

Method  Tr  V  Ts  Rec. (%)  

[4] – IRONOFF - words    83.1 
[3] – IRONOFF 
uppercase  
lowercase  

 
7,953  
7,952 

 
--  
-- 

 
3,926  
3,916 

 
87.1  
77.8 

[2] – IRONOFF 
uppercase (Z = 4) 
uppercase (Z = 7) 

 
6,240 
6,240 

  
2,080 
2,080 

 
2,080 
2,080 

 
83.0 
84.7 

[16] – IRONOFF - lowercase -- -- -- 80.7 

Proposed Method - lowercase 6,240 2,080 2,080 88.1 

4   Conclusion and Future Works 

This paper presented a two-level based character recognition method in which a 
dynamically zoning selection (DZS) scheme for feature extraction allows us to obtain 
promising results for character recognition. In the first level a conventional MLP-NN 
and the analysis of confusion matrices are used to determine the most promising 
zoning scheme for a given unknown character. The information provided by the first 
level drives the second level in the selection of the appropriate feature extraction 
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method and the corresponding class-modular neural network. The experimental 
results have shown some significant improvement in the recognition rates for 
lowercase handwritten characters from 80.82% (Conventional MLP-NN – Z = 7) to 
88.13% (DZS + CR). 
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Abstract. In this work we forecast the daily ATM cash demand
using dynamic models of type Nonlinear Autoregressive Exogeneous in-
puts (NARX) and Nonlinear Autoreggressive Moving Average with Ex-
ogeneous Inputs (NARMAX) performed by Neural Networks (NN) and
Least Square Support Vector Machine (LS-SVM) and used to predict one
step (OSA) or multistep (MPO). The aim is to compare which model
perform better results. We found that the Multilayer Perceptron NN
presented the best index of agreement with an average of 0.87 in NARX-
OSA and 0.85 in NARX-MPO. After, Radial Basis Function NN was 0.82
for both cases. Finally, LS-SVM obtained the worst results with 0.78 for
NARX-OSA and 0.70 for NARX-MPO. No significant differences be-
tween NARX and NARMAX structures were found. Our contribution
would have obtained the 2nd place in the NN5 competition of computa-
tional methods.

Keywords: MLP, RBF, LS-SVM, NARX, NARMAX, OSA, MPO, NN5,
IA, SMAPE.

1 Introduction

Automatic teller machines (ATMs) are devices financed and managed by finan-
cial institutions that made available to customers a simple method for conduct-
ing financial transactions in a public space with almost no human intervention.
According to estimates developed by ATMIA (ATM Industry Association) the
number of ATMs worldwide for 2007 exceeded 1.6 million units [1].

Some banks tend to keep an excess of up to 40% more cash in their terminals
(ATM) of what they really need. In this regard, many experts believe that excess
of cash is near to 15% to 20%.

Costs related to keeping cash at an ATM represent from 35% to 60% of total
maintenance costs [2]. Through improvements in administration and manage-
ment of cash, banks can avoid falling into losses in new business opportunities

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 515–522, 2011.
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due to having high cash assets. This is why it is necessary to develop new meth-
ods and advanced ways of estimating the demand for money at an ATM, so that
financial institutions can lower their operating costs.

On the other hand, banks and financial services assume that the demand for
cash can be associated with certain variables that can have substantial effects
on the level of demand for cash. Some of these variables that we must consider
are the following [3]:

1. ATM Location
2. Seasonal factors such as weekends, holidays, etc.
3. Historical data from the ATM.

At present the tools and technological processes have become more complex, so
it is necessary to develop methods and applications that succeed in improving
these tasks. One way to address this problem adequately is to model the system
dynamics using system identification [4].

System identification [5] has had great relevance in different areas of knowl-
edge such as physics, chemistry, biology, economics, etc because dynamical sys-
tems -those in which the output value depends not only on the values of its inputs
at the same moment, but also of its past values- abound in our environment and
that is the reason why models are required for their analysis, forecasting, sim-
ulation, design and control. These models need to simulate the real behavior of
the systems in cases when there is limited prior knowledge of its structure [4].

Our contribution consists in performing a comparative analysis of different
model structures (Non Linear Regressive with Exogeneous Input, NARX and/or
Non Linear Regressive Moving Average with Exogeneous Input NARMAX) us-
ing NN (Multilayer Perceptron, MLP and Radial Basis Function, RBF) and
Least Square-Support Vector Machine (LS-SVM) for One-Step-Ahead (OSA)
and Model Predictive Output (MPO) cash demand in ATM.

This document is configured as follows: after the Introduction, in Section 2
data processing is developed, followed by the methodology used (Section 3). In
Section 4 results are shown and finally in Section 5 we will present the conclusions
obtained in this work.

2 Data Processing

Data comes from the NN5 competition [6] and correspond to a set of 30 series
of ATM’s withdrawals used for training purposes. In addition, 11 series of the
same characteristics that are called reduced dataset NN5, serve as a benchmark
for comparison between the results here obtained and the general ranking of the
competition.

NN5 time series competition includes a time series of cash withdrawals on a
daily basis from ATMs located in different parts of England. All series show a
strong cyclical component of 7 days, as well as some recurring seasonal periods
such as summer holidays or Christmas. Almost all series contain empty values
(missing values) and some of these series show long-term trends or irregularities
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such as outliers or ”gaps” [7]. The aim of the NN5 competition is to obtain
the most accurate forecast possible with a horizon of 56 days for OSA using
computational intelligence techniques. Each time series consists of 2 years of
daily cash withdrawals at ATM [8].

All series include 3 types of ”Gaps” or singularities.

– Observations equal to 0, indicating that no withdrawals have taken place
due to ”cash out” of the ATM.

– ”Missing Values” indicating that on that day the client’s transaction was
not recorded.

– Outliers, indicating which data is above or below the normal behavior of
withdrawals at the ATM.

This research addresses the 3 types of abnormalities, detecting outliers, missing
values and values equal to 0.

To detect outliers the boxplot method by quartiles is used with k = 1.5 where
the lowest quartile is Q1 = xf with the f -th ordered observation. f is defined as:

f =
n+1

2 + 1
2

(1)

If f involves a fraction, Q1 is the average of xf and xf+1 . For obtaining Q3, the
f observations are counted from the beginning, e.g Q3 = xn+1−f [9]. Then an
outlier is one that meets the following condition:

x < Q1 − k(Q3 −Q1) (2)

x > Q3 + k(Q3 −Q1) (3)

On the other hand, once each of the anomalous data is identified (a total of
870) it is replaced by cubic spline interpolation with a polynomial form P (x) =
ax3 + bx2 + cx+ d. Fig. 1. shows the amount of outlier identified by each ATM.

Fig. 1. Identification of outliers by the boxplot method. (*): Outlier data. In the X-
axis 30 ATM are shown while in the Y-axis the amount earned by each ATM can be
observed. All Outlier along the series were replaced by cubic spline interpolation.
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3 Methodology

A total of 13 experiments for each series predicted separately (30 initial plus
11 reduced-series ATM) are performed with the following architectures: MLP-
NARX [10]; MLP-NARMAX [11]; RBF-NARX; RBF-NARMAX [12] and LS-
SVM-NARX [13]. Each structure is used for OSA and MPO predictions. 691 data
coming from the set consisting of 30 ATM’s are used for training while 100 data
are used for testing (prediction purposes). On the other hand, for comparison
reasons the NN5 reduced series, consisting of 11 ATM’s will be used, under the
rules of the competition, i.e. 735 data will be used for training and 56 for OSA
predictions.

The quality indices used to measure the performance of each architecture are:

SMAPE =
1
n

n∑
i=1

|ŷi − yi|
|ŷi|+|yi|

2

∗ 100 (4)

Symmetric mean absolute percentage error (SMAPE) used in the NN5 compe-
tition to determine the winner [14] and the Index of Agreement (IA) [15]:

IA = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(|y′i|+ |ŷ′i|)2

(5)

with

y′i = yi − ym

ŷ′i = ŷi − ym

To determine the amount of autoregressors the system needs a Lipschitz function
is used [16]. The necessary amount of regressors is 4. Data were normalized in
the range [0 1] using the following formula:

y = (ymax − ymin) ∗ (x− xmin)
(xmax − xmin) + ymin

(6)

Regarding the variables of the system they could be affected by the number of
working days, the day of the week, the week of the month and other calendar
effects such as festivals and religious events [17].

In NN5 series a strong daily component is present with a transactional peak
on Wednesday, Thursday and Friday. On the other hand, a strong seasonal com-
ponent is present depending on the week of the year.

Finally the day of the month (u1), day of week (u2), week (u3), month (u4) and
a dummy variable (u5) to indicate special dates such as month-end, holidays and
other calendar effects of interest are considered as inputs to the system. Given
this the considered prediction function is as follows:
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yt = f(yt−1, yt−2, yt−3, yt−4, u1t−1, u2t−1, u3t−1, u4t−1, u5t−1) + �t (7)

With the following associated predictor:

ŷ(t|Θ) = ŷ(t|t− 1, Θ) = g(ϕ(t), Θ) (8)

ϕ(t) is a vector containing the regressors, Θ is a vector containg the weights and
g is the function realized by the neural network.

In the case of MPO NARMAX predictors:

ŷMPO(k) = f [ŷ(k − 1), ., ŷ(k − 4), u1(k − 1), .., u5(k − 1), 0, 0] (9)

The presence of both 0 is because, for prediction, the future values of the error
are not known [18].

On the other hand, to find the parameters of LS-SVM tunelssvm toolbox
with simplex method and 20-folds cross validation is used, while for the MLP
network 9 input neurons, 4 hidden neurons and 1 output neuron is used. Finally
for designing the RBF network the NEWRB Matlab Toolbox is used with 9
input neurons and 1 output, the hidden layer is configured at runtime by the
Toolbox.

4 Results

The results will be compared based on the best, worst and average results of the
experiments using the two quality indices presented in Section 3.

Table 1. Results for all predictive structures and for a prediction horizon of 100 days

System
IA SMAPE

Mean Best Worst Mean Best Worst

MLP

NARX-OSA 0.87 0.93 0.70 21.37 15.42 32.50
NARX-MPO 0.85 0.91 0.69 22.71 14.54 35.84

NARMAX-OSA 0.87 0.92 0.67 21.56 14.93 28.99
NARMAX-MPO 0.86 0.92 0.72 22.65 16.80 35.21

RBF

NARX-OSA 0.82 0.92 0.62 25.82 16.05 43.80
NARX-MPO 0.82 0.92 0.61 25.50 16.05 43.80

NARMAX-OSA 0.82 0.92 0.62 26.71 15.25 43.16
NARMAX-MPO 0.83 0.92 0.63 25.91 14.26 51.66

LS-SVM
NARX-OSA 0.78 0.92 0.46 25.48 14.87 39.04
NARX-MPO 0.70 0.93 0.28 29.70 14.54 53.53

The results show that MLP networks were those that performed better aver-
aging IA=0.87 and IA=0.85 for OSA and MPO predictions respectively. On the
other hand, RBF networks also have a good IA= 0.82 for both cases. LS-SVM
had the worst results with IA=0.78 (OSA) and IA=0.70 (MPO). Regarding the
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index SMAPE, MLP again has the better results with 22%, followed by RBF
with 26% and LS-SVM with approximately 27%.

These results also show that the difference between NARX and NARMAX
models is not significant. In many cases they get the same value. It also shows
the great capacity of the MLP to perform MPO predictions (horizon=100 days)
with an IA=0.86.

Figure 2 shows MLP performance NARX-OSA and NARX-MPO for ATM 22.

Fig. 2. (a) MLP-NARX-OSA and (b) NARX-MPO predictions for the ATM 22. The
quality indexes for OSA are IA = 0.9348 and SMAPE 12.53%. For MPO predictions,
IA = 0.9241 and SMAPE = 14.93%.

Table 2 show our results and ranking for reduced dataset NN5.

Table 2. Results obtained with the reduced set NN5

Model
Ranking

SMAPE General NN & CI methods

MLP
NARX-OSA 19.80% 3◦ 2◦

NARMAX-OSA 20.55% 4◦ 3◦

RBF
NARX-OSA 25.63% 22◦ 14◦

NARMAX-OSA 26.03% 23◦ 15◦

LS-SVM NARX-OSA 24.35% 18◦ 12◦

According to the results shown in Table 2, the MLP system, NARX-OSA
would have won in the 2nd place the NN5 competition and would have obtained
the 3nd place in the overall ranking of all methods.

5 Conclusions

The results show that MLP-NARX model developed here allows to make predic-
tions with a high degree of quality over 85% for long-term predictions. On the
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other hand, the NARMAX model shows no significant advantage over NARX,
therefore NARX is better, aiming to simplicity considerations. Regarding the
RBF networks they are also considered as a reliable alternative to tackle these
problems, while LS-SVM has poorer results. In the future, new prediction meth-
ods will be studied about LS-SVM to improve the obtained results.

Acknowledgement. The authors like to acknowledge partial funding of this
work by FONDECYT project 1090316.
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Abstract. Reliable identification and verification of off-line handwrit-
ten signatures from images is a difficult problem with many practical
applications. This task is a difficult vision problem within the field of
biometrics because a signature may change depending on psychological
factors of the individual. Motivated by advances in brain science which
describe how objects are represented in the visual cortex, advanced re-
search on deep neural networks has been shown to work reliably on large
image data sets. In this paper, we present a deep learning model for off-
line handwritten signature recognition which is able to extract high-level
representations. We also propose a two-step hybrid model for signature
identification and verification improving the misclassification rate in the
well-known GPDS database.

Keywords: Deep Learning, Generative Models, Signature Recognition.

1 Introduction

The robustness and efficiency by which humans can recognize objects has since
ever been intriguing for researchers and a trigger challenge in computational in-
telligence. Motivated by the extreme efficiency of the visual recognition system
recent studies in brain science fields show that this is largely due to the expres-
sive deep architecture employed by human visual cortex systems [15]. Research
in brain science has recently traced the respective roles of the perceptual and
visuo-motor skills on letter shape learning and handwriting movement execu-
tion [12]. In the scope of biometric analysis, an important problem is to distin-
guish between genuine and forged signature which is a hard task. The continued
motivation to investigate this problem may be attributed in part to its challeng-
ing nature which depends on various factors such as behavioral characteristics
like mood, fatigue, energy, etc.. Feature extraction and pattern recognition un-
doubtedly constitute essential components of a signature verification system.
Research has been very intensive in the last years and many approaches have
been devised mainly using discriminative techniques [2,6,5,7]. This kind of solu-
tions plays an important role, with many applications in different fields, namely

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 523–532, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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in many official documents, such as detecting whether a person is misusing a
citizen ID, or to verify if a bank check was really signed by the owner, or even
accelerating the legal process of authenticating documents.

In this paper, we use instead a generative model broadly construed on a
deep neural architecture trained by the contrastive divergence method intro-
duced by Hinton [10]. The dataset is the GPDS(“Grupo de Procesado Digital de
Senales”) signatures image database1 which provided 300 signatures folders, 24
genuine and 30 faked for each folder. First, the feature extraction is performed
implementing the algorithms described in literature [2] yet novel features were
extracted. Second, we propose a two-step hybrid model, for signatures identifi-
cation and verification, with good performance for all the dataset. For the sake
of results comparison [2], one important part of the tests considered 39 and 44
folders of signatures. Third, we put forward a deep learning architecture which
made possible to set up a model with representational layers working out as the
human mental representation ability.

The paper is organized as follows. Section 2 describes both the Restricted
Boltzmann Machine (RBM) model and the deep learning algorithm. We intro-
duce the signature verification problem in Section 3 starting by describing the
GPDS database, and proceeding with the preprocessing and the feature extrac-
tion stages. In Section 4 we introduce the experimental setup, present the results,
and discuss the proposal regarding the two-step hybrid identification and ver-
ification model and the deep learning methodology. Finally, in Section 5, we
summarize the conclusions and point out further lines for future work.

2 Deep Learning

Theoretical results suggest that deep learning architectures with multiple levels
of non-linear operations provide high-level abstractions for object recognition
similar to those found in the human brain. Deep Belief Networks have recently
been proposed with notable success excelling the state-of-the-art in visual recog-
nition and AI areas. Bengio [3] gives an overview of the learning algorithms
for deep architectures, in particular those exploiting Restricted Boltzmann Ma-
chines, which are used to construct deeper models such as Deep Belief Networks.

2.1 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is an energy-based generative model
that consists of a layer of binary visible units (v, whose states are observed) and
a layer of binary hidden units (h, whose states cannot be observed)(Hintom,
2006 [10]), [11]. The hidden units with no pairwise connections act as latent
variables (features) that allow the RBM to model distributions over state vec-
tors (see Figure 1). With these restrictions, the hidden units are conditionally
independent given visible units (i.e. a visible vector). Given an energy function

1 Offline GPDS signature database http://www.gpds.ulpgc.es/download/

http://www.gpds.ulpgc.es/download/
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x

Fig. 1. Restricted Boltzmann Machine (RBM) with (V = 4, H = 6)

E(v,h) on the whole set of visible and hidden units, the joint probability is given
by:

p(v,h) =
e−E(v,h)

Z
(1)

where Z is a normalizing partition function i.e., ensures that p(v,h) is a valid
distribution.

For the binary units hi ∈ {0, 1} and vi ∈ {0, 1} the energy function of the
whole network is:

E(v,h) = −hTWv − cT v − bhT

= −
∑
jk

Wjkvkhj −
∑

k

ckvk −
∑

j

bjhj (2)

The marginal distribution over v is:

p(v) =
∑

h

p(v,h) =
∑

h

p(v|h)p(h) (3)

With H hidden units the hidden vector h can take 2H possible values, thus
2H distributions p(v|h). Therefore, computing the marginal for a large H is
impractical. A good estimator of the log-likelihood gradient is the Contrastive
Divergence (CD) algorithm ( [10]).

A good property of the RBM is that the posterior of one layer given the other
is easy to compute.

p(v|h) =
∏
k

p(vk|h) where p(vk = 1|h) = sigm(ck +
∑

j

Wjkhj)

p(h|v) =
∏
j

p(hj |v) where p(hj = 1|v) = sigm(bj +
∑

k

Wjkvk) (4)

where sigm is the sigmoid function 1
(1+e−zi )

with zi = bi +
∑

j Wjisj where s
is the state of the unit i and b the bias. Inference of hidden factor h given the
observed v can be done easily because h are conditionally independent given v.
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2.2 Learning in Deep Neural Networks

Definition 1. Deep Neural Network: A deep neural network contains an input
layer and an output layer, separated by l layers of hidden units.

x1x2x3x4

Hidden
Units

Visible
Units

Hidden
Units

Hidden
Units

Output
Unit

ĥ1(x)

ĥ2(x)

ĥ3(x)

o(x)

x

Fig. 2. Deep Belief Network with three hidden layers

The learning algorithm in Boltzmann Machines [1] allows to discover interest-
ing features that may represent complex regularities in the training data. The
algorithm can be very slow in networks with many layers, but it is fast in an
RBM that has a single layer of feature detectors. The composed neural network
can efficiently be trained by composing RBMs using the feature activations of
one layer as the training data for the next (see Figure 2). The rationale is that
the whole network can be viewed as a single, multilayer generative model and
each additional layer improves a lower bound on the probability that the multi-
layer model would generate the training data (Hinton, 2006 [9]). Learning one
hidden layer at a time is much more effective given their size which can be very
large (MM of weights). Besides, highest level features are much more useful for
classification (or dimension reduction) than raw data vectors.

An energy-based model of RBMs can be learnt by performing (stochastic)
gradient descent on the empirical negative log-likelihood of the training data
with respect to the RBM parameters.

∂

∂θ
(− log p(v0)) = Ep(h|v0)

[
∂E(v0,h)

∂θ

]
− Ep(v,h)

[
∂E(v,h)

∂θ

]
(5)

where θ are the model parameters. This gradient is difficult to compute analyti-
cally. Markov Chain Monte Carlo methods are well-suited for RBM models. One
iteration of the Markov Chain works well in practice.
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v0
p(h0|v0)−→ h0

p(v1|h0)−→ v1
p(h1|v1)−→ h1 (6)

where the operations of sampling are schematically indicated. Estimation of the
gradient using the above procedure is denoted by CD-1, where CD-k represents
the Contrastive Divergence algorithm [10,4] for performing k iterations of the
Markov Chain up to vk.

Given a training set of state vectors (data) learning consists of finding weights
and bias that define a Boltzmann distribution in which the training vectors have
high probability.

3 Signature Verification: Problem Statement

Our main task is to develop an off-line signature verification system able to
distinguish faked signatures from genuine ones. To achieve this goal, the im-
ages pre-processing, feature extraction and classifiers design steps need to be
performed in the GPDS database of digitalized signatures.

3.1 GPDS Signature Data Base

The GPDS database was downloaded from http://www.gpds.ulpgc.es/downlo
ad/ under a license agreement. The database contains data from 300 individuals:
24 genuine signatures for each individual plus 30 forgeries of his/her signature.
Detailed information on how the GPDS dataset was built is given in [6] where it
is also described how the data images were acquired (and pre-processed) prior to
its completion (and organization) in the dataset. In [14] an interesting discussion
on the different types of existing forgeries can be found.

3.2 Feature Extraction for the GPDS Signature Data Base

Feature extraction from image signatures is a crucial component of the verifica-
tion rate system. Generally, an image feature is a distinctive primitive charac-
teristic of a particular signature. More specifically, certain features are defined
by the visual appearance of an image, while other result from image specific
manipulations. The challenge is to find the optimal set of features able to per-
form forgery detection since it is not feasible to use the whole raw image. By
using adequate algorithms one can extract features able to isolate characteristic
regions within an image (image segmentation) and subsequent identification or
labeling of such regions (image classification).

Fourteen different features have been extracted from the GPDS database to
allow for signature classification using the methods described in the literature.
The features (Width, Height, Tri-Surface, Six-Fold Surface, Best Fit) were de-
scribed in [2]; the features (Geometric Parameters (Polar and Cartesian) ) in [6]
and the Modified Direction Feature (MDF) in [5]. The remaining four novel ex-
tracted features (K-Means, Histogram of frequencies, Discrete Cosine Transform
and Wavelet Transform) are briefly described next.

http://www.gpds.ulpgc.es/download/
http://www.gpds.ulpgc.es/ad/
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Fig. 3. Feature Ranking Analysis

1. K-Means: The k-means clustering algorithm was applied to the images pixels with
the goal to identify the positions of the signature’s main elements. The algorithm
was applied to each image individually, with k set to 5 by empirical experimenta-
tion. The clusters’ centroids Cartesian coordinates are the feature’s values.

2. Histogram Frequencies: In order to evaluate signatures’ intensity variations
along the perpendicular axes, the frequencies of each image’s horizontal and ver-
tical histogram were calculated. The histogram frequencies are obtained using the
Discrete Fourier Transform. To characterize the frequencies obtained, the three
distribution quartiles values were saved.

3. Discrete Cosine Transform Frequencies (DCT): This feature evaluates the
crispness of the signatures, whether specific frequency intervals occur more along
the vertical (or the horizontal) axes. The two-dimensional Discrete Cosine Trans-
form was applied to each image individually. The resultant frequencies are divided
into N frequency intervals with the same length, N=5 by empirical experimen-
tation. Each frequency band is separated by a diagonal axis, in order to compare
frequencies with mainly a vertical orientation from those with mainly an horizontal
orientation. For each interval, the proportion of the frequency amplitudes between
the vertical and horizontal regions is calculated and used as a feature value.

4. Discrete Wavelet Transform Frequencies (DWT): A space-frequency analy-
sis using the two-dimensional Discrete Wavelet Transform (DWT) is applied to the
signatures, to evaluate the horizontal, vertical and diagonal pixels variations. The
DWT is recurrently applied, with the haar wavelet, to inferior frequency levels.
For each orientation (and each level of decomposition), the gravity centers of the
frequency amplitudes are calculated. Those values represent the signatures’ regions
where those frequency intervals are most present.

A global analysis of their discriminative power is illustrated in Figure 3 where
MDF and DCT features show the strongest influence on the classifier’s perfor-
mance. An example of the MDF feature extraction is given in Figure 4. Several
values of max transitions from black to white were used in the picture and the
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Fig. 4. Performance and Error for (a) Transition (T)/ (b) Resampling (R) for MDF
Feature. Best pair found(T = 4; R = 5)

image resampling. The best results w.r.t. error performance were found with the
pair (T = 4, R = 5).

4 Experimental Setup and Results

The database was split in two parts for training and testing. We followed the
procedure in [2] i.e., for each signature we used from the genuine set, 20 samples
for training and 4 for testing. As for the forged set, 25 samples were used for
training and 5 for testing. Overall we come up with 658 attribute values for the
whole set of extracted features. We tested out a number of configurations [8] with
variable size in number of features’ combinations (and corresponding attributes).

4.1 Two-Step Signature Verification Model

We put forward a hybrid model consisting of two steps, the first, identifies the
owners of the signatures while, the second, determines its authenticity, i.e., ac-
cepts or rejects a signature. This architecture could mostly be used to verify the
signature of a check or a signed document. This approach requires a classifier that
can identify any signature (identification classifier) and several classifiers that
given signatures of only one individual can determine its authenticity (specific
classifiers). This entails the existence of a multi-class classifier for the identifi-
cation classifier and N binary specific classifiers, one for each individual. The
identification classifier will be trained with all the signatures in a standard way.
Each specific classifier will be trained with both authentic and forged signatures
from only one individual. The specific classifiers are expected to achieve higher
accuracy than a general classifier, i.e. a binary classifier trained with signatures
from different individuals. Intuitively, this originates from the idea that it is
easier to find an authentic/forged pattern from a single individual than it is to
find the same pattern for every individual possible. The generic classifier is used
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Fig. 5. Specific and (Generic) Classifiers Performance versus the Ratio threshold

whenever its predicted accuracy (based on the cross-validation error) is higher
than that of the specific classifier. To fine tune the approach we included a preva-
lence ratio threshold that explicitly favors the specific (or generic) classifier if it
is greater (or smaller) than 1, respectively. As an example, if we want to choose
the specific classifier even if its predicted accuracy is up to 5% lower than the
general classifier, a ratio of 1.05 should be set. The results illustrated in Figure 5
show how this works out with changing values of the ratio. It is also observed a
higher value of sensitivity than specificity since the number of forged signatures
is greater than the genuine ones.

We tried out several algorithms for the design of the classifiers, namely,(Fisher
Linear Discriminant, Feed Forward Neural Network, Radial Basis Neural Net-
work, Naive Bayes and Support Vector Machines (SVMs)) whose study is avail-
able elsewhere [8]. We choose SVMs to present the results (see Table 1) of an
experimental analysis of the performance of the specific classifier with the num-
ber of folders varying from 10 to 300. The best feature configuration attained
(MDF, Width, Six-Fold Surface and Wavelet Transform) consisting of 179 val-
ues for the images signatures was used. Moreover, we perform 30 runs for each
number of folders in the Table 1 and averaged the results (including standard
deviations). The metrics for performance evaluation were evaluated from the
confusion matrix with True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative and are indicated as follows: Recall, Precision, Training
Accuracy, Testing Accuracy and F1 measure. The latter measures the trade-off
between the Recall and Precision and is a good indicator in skewed distributions
as in the case of the GPDS database. In Biometrics, the error of type I (i.e. False
Positive Rate) is the False Reject Rate (FRR). It means a false alarm of the pos-
itive class (forged signature). The error type II (i.e. False Negative Rate) is the
False Accept Rate (FAR) which relates to missing to detect a forged signature.
The results compare well with those presented in [2] and [13] in particular w.r.t
the FAR, which has the lowest value for 44 folders and is a good indicator for the
system’s performance in the case of 300 folders which contain 16200 signatures.
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Table 1. Signature Verification Performance (%)

Folders Recall Precision FRR FAR Trn Acc Test Acc F1
10 86.67 ± 23.46 84.09 ± 15.31 28.33 13.33 91.26 ± 8.19 80.00 ± 16.22 82.75 ± 16.34
20 84.86 ± 19.85 85.42 ± 13.83 22.86 15.14 95.30 ± 4.20 81.43 ± 14.27 83.65 ± 13.29
39 87.28 ± 9.77 89.01 ± 15.30 17.82 12.72 97.36 ± 3.70 85.01 ± 14.30 85.97 ± 10.32
44 90.76 ± 16.17 84.58 ± 14.78 26.42 9.24 93.21 ± 5.88 83.12 ± 14.45 86.15 ± 12.32
60 80.17 ± 21.99 91.32 ± 12.57 11.77 19.83 97.64 ± 2.54 83.75 ± 13.66 83.19 ± 15.74
120 80.22 ± 22.99 90.45 ± 14.26 11.94 19.78 98.12 ± 1.85 83.70 ± 14.51 83.18 ± 16.86
200 82.25 ± 21.64 91.25 ± 13.56 11.50 17.75 99.46 ± 1.10 85.03 ± 14.25 84.63 ± 16.29
240 82.83 ± 21.14 90.54 ± 14.28 12.71 17.17 99.86 ± 0.56 84.81 ± 14.72 84.75 ± 16.10
300 85.33 ± 20.67 86.23 ± 15.79 20.25 14.67 94.10 ± 5.10 82.85 ± 15.11 84.37 ± 15.05

4.2 Deep Learning Model for Signature Recognition

Figure 6 shows the learned weights of two signatures of different owners, where
the white dots appear as noise. The deep neural network architecture with 100
visible units and two layers with 100 hidden units each was able to extract layer-
by-layer high-level representations of the images. The learning rate is η = 0.08
and the momentum α = 0.4. The number of epochs was varied from 100, 500,
1000 and 5000. We clamped into the network 10 signature folders after cropping
the images to the reasonable size of (144 × 225). The cost of training was very
high increasing with the number of epochs and with the number of hidden units.
Therefore it was only possible to test with 10 folders of signatures although there
is room for improvements. We show that the architecture learns the relevant
features at hand given very limited prior knowledge.

(a)

(b)

Fig. 6. Signature (a) original (b) learning weights
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5 Conclusions and Future Work
We presented a verification system for off-line signature recognition proposing
a two-step hybrid classifier system with overall good performance in the GPDS
database. In addition, the preliminary results with a deep learning architecture
are promising and raise interest regarding the application of this kind of models
in this problem. We were able to extract a high-representation of the signature
images through multi-layers in a deep hierarchical structure that allows non-local
generalization and comprehensibility in this specific domain. Despite the great
prospect of deep learning technologies future work will perform an extensive
study to cope with the millions of parameters that need to be adjusted, in
particular, with the use of Graphics Processing Units (GPU).
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Abstract. This paper presents three methods for automatic detection of dust devils 
tracks in images of Mars. The methods are mainly based on Mathematical 
Morphology and results of their performance are analyzed and compared. A dataset 
of 21 images from the surface of Mars representative of the diversity of those track 
features were considered for developing, testing and evaluating our methods, 
confronting their outputs with ground truth images made manually. Methods 1 and 
3, based on closing top-hat and path closing top-hat, respectively, showed similar 
mean accuracies around 90% but the time of processing was much greater for 
method 1 than for method 3. Method 2, based on radial closing, was the fastest but 
showed worse mean accuracy. Thus, this was the tiebreak factor.  

Keywords: Mars, Dust Devils Tracks, Mathematical Morphology, Feature 
Detection. 

1   Introduction 

Dust devils are vortexes caused by unstable wind convection processes near the 
planetary surfaces, due to solar heat. They have been studied on Earth for more than a 
century and were first observed on Mars in orbital images taken by the Viking 
program in the 1970s. These phenomena can achieve miles in width and height, and 
knowledge about their activity contributes to the understanding of Martian climate, 
geology and surface modification which is essential to plan future manned missions 
[1, 2]. According to [3], air circulation is one of the currently active processes which 
model the surface of Mars and some researches show that these vortexes are 
responsible for most of the linear and curvilinear surface features of the 
planet. Moreover, the inference of the wind direction based on dust devils tracks 
detection is one of the few techniques for verifying circulation models of the 
atmosphere. This fact suggests that more research on aeolian processes is needed. The 
direction of dust devils tracks can be used to get information on wind circulation, and 
it can be done by image analysis [3].  
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Many researchers have being studying dust devils in an attempt to better 
understand the phenomena. Generally, the research fields comprise mechanic and 
numerical simulation of dust devils in laboratories [4-6], methodologies for direct 
recognition of dust devils plumes from rovers on Mars surface [7-9], detection of 
plumes [10-12] and tracks [1, 3, 13, 14] from orbital images. Despite the number of 
papers regarding the subject, none of them addresses the automatic detection of dust 
devils tracks. All those works regarding identification, counting and analysis of dust 
devils tracks use a manual method and nothing is said about the tracks counting and 
marking process. As the number of well succeed missions launched to study Mars 
rises, so does the number of orbital images and their resolutions. There are hundreds 
of high resolution images depicting Martian surface, providing important data for, 
among others, researches in Geology, Cartography and Aeolian processes monitoring, 
at a level of detail never achieved before [15]. The amount of images taken (and 
therefore the amount of information on them) grew at a rate greater than the human 
capability to analyze and extract relevant information from these products to 
characterize the planet under study [16]. As examples of the difficulty in analyzing 
manually so many images, [1, 3, 13, 14, 17] had to search for tracks in (1,700), 
(3,000), (6,002), (167,254) and (1,238) MOC images, respectively; [10] searched in 
(23) HRSC images and [18] did that in (3,079) THEMIS images.  

Regarding the amount of images to be analyzed and the importance of detecting 
dust devils tracks, this paper presents, analyses and compares three automatic 
methods for detecting dust devils tracks in Mars Global Surveyor (MGS) Mars 
Orbiter Camera (MOC) and Mars Reconnaissance Orbiter (MRO) High Resolution 
Imaging Science Experiment (HiRISE) images. All three methods are mainly based 
on Mathematical Morphology.  

2   Image Datasets 

Based on some evidences [1, 3, 14] that dust devils are more likely to occur in the 
southern hemisphere and on the fact that they form during spring and summer, a 
search for MOC narrow angle (http://www.msss.com/msss_images/) and HiRISE 
(http://www.hirise.lpl.arizona.edu/) images with solar longitudes ranging between 
180° and 360° containing tracks of dust devils was performed in the regions Aeolis, 
Noachis and Argyre.  

A total of 16 images from those regions (12 MOC narrow angle and 4 HiRISE) 
showing dark dust devils tracks were considered. The albedo of the tracks varies 
significantly from scene to scene as does the morphology and landform. Based on 
that, the choice for these 16 images was driven by the attempt to represent as much as 
possible the high albedo variability of the tracks. In order to decrease time of 
processing and discard irrelevant information (like areas with no tracks) some of the 
images were cut, making a set of 21 images. Fig. 1 shows these images and Table 1 
summarizes their characteristics. The MOC images are panchromatic and can have up 
to 1.4 m/pixel of spatial resolution and the HiRISE images were taken in the red band 
with a spatial resolution as good as 0.25 m/pixel.    
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(a)               (b)                    (c)                        (d)                 (e) 

         
(f)                       (g)              (h)                   (i)                         (j) 

      
(k)                        (l)                   (m)                     (n)                      (o) 

      
(p)              (q)        (r)                   (s)                   (t)                     (u) 

Fig. 1. Diversity of Martian dust devils tracks on MOC and HiRISE images. Table 1 shows 
information about each of them. 
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Table 1. Summarized information about the images shown in Fig. 1. In the Table, “Res.” stands 
for “Spatial Resolution” and letters (a) through (u) in the field “Name” correspond to the 
images shown in Fig. 1. 

Name Sensor Date Res. (m) Size (pixels) Region 
R02-00357(a) MOC 02/07/2003 2.98 1,024x2,052 Aeolis 
R08-02402(b) MOC 08/27/2003 1.50 1,856x3,017 Aeolis 
R13-01467(c) MOC 01/10/2004 1.43 2,077x2,855 Aeolis 

PSP_002548_1255A(d) HiRISE 02/10/2007 0.25 4,069x2,779 Noachis 
PSP_002548_1255B(e) HiRISE 02/10/2007 0.25 5,582x2,621 Noachis 
PSP_002548_1255C(f) HiRISE 02/10/2007 0.25 2,840x3,011 Noachis 
PSP_005528_1255(g) HiRISE 10/01/2007 0.25 3,000x1,432 Noachis 

M10-01206(h) MOC 12/11/1999 5.55 363x829 Argyre 
S08-02952(i) MOC 07/27/2005 5.95 443x529 Argyre 
R13-02691(j) MOC 01/17/2004 5.81 414x590 Argyre 

R08-02621A(k) MOC 08/30/2003 4.40 564x632 Argyre 
R08-02621B(l) MOC 08/30/2003 4.40 500x856 Argyre 

E13-00271A(m) MOC 02/03/2002 5.83 462x316 Argyre 
E13-00271B(n) MOC 02/03/2002 5.83 420x606 Argyre 
S10-01598(o) MOC 09/29/2005 2.92 565x841 Argyre 
S08-03151(p) MOC 07/30/2005 4.46 233x339 Argyre 

M14-00175A(q) MOC 04/03/2000 5.53 349x1,144 Argyre 
M14-00175B(r) MOC 04/03/2000 5.53 454x1,795 Argyre 
M12-02214(s) MOC 02/21/2000 2.77 482x598 Argyre 

PSP_005596_1245(t) HiRISE 10/06/2007 0.50 2,196x864 Argyre 
PSP_006163_1345(u) HiRISE 11/19/2007 0.25 2,345x2,606 Argyre 

3   Methods 

Aiming to detect dust devils tracks automatically, three methods were developed, 
each one being an improvement of the predecessor, until a high level of accuracy was 
reached. The methods we are proposing are mainly based on morphological operators 
and their construction in sequence intended to improve some aspects not solved with a 
high degree of robustness by the preceding method. The main feature characterizing 
the dust devil tracks is their elongated linear shape, that is, thin shapes of long 
extensions, normally darker than the surrounding terrain. Method 1 uses the classic 
top-hat transform for extracting the tracks and morphological granulometries to define 
their thickness dimensions. Method 2 intends to search directly in every direction for 
those structures, by integrating information provided by a radial closing transform 
with linear structuring elements. Finally, Method 3, based on path closings, intends to 
recover all the regions of those thin structures, that is, not only their more linear 
(straight) segments but also their curvilinear components.  

3.1   Method 1: Closing Top-Hat 

The first method starts with an initial filtering by median (3x3 mask) and a 
morphological area opening γλ, which is equivalent to the union of all openings γ with 
the connected Structuring Elements (SE) B whose size in number of pixels equals λ, 
that is { }|  with ( )Bi i i

i
B Area Bλγ γ λ= ∨ = , where ∨  is the supremum operator. 
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The size of the area was set empirically and varies with the image spatial 
resolution. Next, an initial binarization by Otsu’s method [19] is applied and a 
morphological granulometric analysis with a SE disk is carried out. A granulometry 
can be defined as the family Γ = (φλ)λ≥ 0 of closings by scales λB = {λb | b ∈ B} with 
λ ≥ 0, and B convex. The granulometric analysis is used to infer the radius of the SE 
to be applied in the filtering by the top-hat ( ) ( )B Bf f fμ φ= − , where ( )B fφ  is the 

closing of f. The radius is chosen so that all dark components in the image do not fit 
the SE. Finally a binarization by Otsu is carried out to detect the features. The 
detection is based on the width of the tracks.  

3.2   Method 2: Radial Closing 

The second method starts with an initial filtering by a median operator (3x3 mask) 
and then applies a morphological radial closing [18]. This is the intersection of the 
closings performed with linear SEs aligned in every direction, that is                                             

( ) ( )Bi
i

f fψ φ= ∧ . The angles considered vary from i = 0° to 360° in steps of 5°. The 

length of the SE was empirically chosen and varies with the spatial resolution of the 
images. Finally, a binarization by Otsu method is performed. The length of tracks is 
the feature considered in the detection. 

3.3   Method 3: Path Closing Top-Hat 

This third method starts with an initial filtering by morphological surface area 
opening and closing. The definition of surface area closing is obtained by duality 
from area opening. Next, a morphological path closing is applied. They can be 
defined by duality from de definition of path openings given by [20] as follows. Let E 
be the image domain endowed with a binary adjacency relation x → y. We call x a 
predecessor of y and y a successor of x. Using the adjacency relation it is possible to 
define a dilation by writing ({ }) { | }x y E x yδ = ∈ → . The L-tuple a = (a1, a2, …, aL) 

is called a δ-path of length L if ak → ak+1. The set of all δ-path of length L contained 
in a subset X of E is denoted by ΠL(X). Then the path opening γL is the union of all 
paths of length L contained in X, and we can write { }( ) | ( )L LX Xγ = ∈ Π a a .                              

This equation can be extended to gray level images by the principle of threshold 
decomposition [18]. The search for the paths is done in four directions (0°, 45°, 90° 
and 135°) of the grid according to the rules defined by [20] . The lengths of the paths 
are defined by the diagonal length of the images times two (although the path closings 
being used are the constrained ones defined by [20], they still may zig-zag a little so 
the biggest possible path in the worse case would be the image diagonal times two). 
Next, the resulting images are binarized by Otsu method to detect the tracks. The 
detection is mainly driven by the length of the tracks. 

4   Results and Discussion 

The methods discussed in the previous section were applied to the images shown in 
Fig. 1. The results for two different spatial resolutions with the images 
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PSP_002548_1255A and E13-00271(Figs. 1(d) and 1(m)) are shown in Figs. 2(a) to 
(c) and 3(a) to (c) for all three methods. The analysis of the results was made 
accordingly to the procedure proposed in [21] and is based on the following 
measurement ( ) / ( )Accuracy TP TN m n= + × , where TP stands for true positives and 

TN for true negatives. TP and TN are defined relative to a ground truth or reference 
image. For a processed image PI and a ground truth image GT, TP and TN are 
calculated as ( )TP Area GT PI= ∩ and (~ ~ )TN Area GT PI= ∩ , where ∩ and ∼ are 

the operators intersection and negation, respectively. For each of the 21 images 
processed, a ground truth image was made manually by an expert on a computer 
screen. As examples, the ground truth made for image PSP_002548_1255A is shown 
in Fig. 2(d) and the one made for image E13-00271is shown in Fig. 3(d). For image 
PSP_002548_1255A the accuracies were 0.7866 for method 1, 0.8369 for method 2 
and 0.9414 for method 3.  

(a) (b) (c) (d) 

Fig. 2. Tracks detection in the image PSP_002548_1255A: (a) method 1, (b) method 2, (c) 
method 3 and (d) ground truth 

 

(a) (b) (c) (d) 

Fig. 3. Tracks detection in  MOC image E13-00271: (a) method 1, (b) method 2, (c) method 3 
and (d) ground truth 
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And for image E13-00271 the accuracies were 0.9638, 0.9669 and 0.9612 for 
methods 1, 2 and 3, respectively. Table 2 summarizes statistics of the analysis for the 
whole set of images. Method 2 was the worse one with mean accuracy 0.8230 ± 
0.1196. Besides, it is the one by which the smallest accuracy was reached (0.5955 for 
image M10-01206 (Fig. 1(h)). Methods 1 and 3 presented mean accuracies 0.8857 ± 
0.0660 and 0.8960 ± 0.0770, respectively. Considering their standard deviations there 
is no reason to believe that method 3 is better than method 1. Although, when it 
comes to the time of processing, method 3 is far faster (mean time of processing 96.27 
s ± 140.03 s per image against the 3,566.24 s ± 7,625.67 s of method 1). Speed is an 
important factor to be considered, especially when working with larger files like those 
of the HiRISE images. Some of them may have hundreds of thousands of lines and in 
such cases method 3 would be the preferable for processing. This is why we assume it 
is the best method from the three presented here. 

Table 2. Summary of the results obtained with the three methods 

 Accuracy 
Method 1 

Accuracy
Method 2

Accuracy
Method 3

Time (s) 
Method 1

Time (s) 
Method 2 

Time (s) 
Method 3 

Mean 0.8857 0.8230 0.8960 3,566.24 21.99 96.27 
Stdev 0.0660 0.1196 0.0770 7,625.67 29.80 140.03 
Min 0.7567 0.5955 0.7099 6.93 0.68 4.1 
Max 0.9781 0.9715 0.9732 30,461.22 105.13 440.75 

5   Conclusion 

The importance of studying Martian dust devils to get a better understanding of, for 
instance, low atmosphere and regolith characteristics, may be asserted by the huge 
amount of papers being published about the subject. But none of them proposes an 
automatic method for the detection of dust devils tracks. This has been done manually 
until now and is a time-consuming task. This paper presented three methods for 
detecting Martian dust devils tracks automatically. Each one is an improvement of its 
predecessor. All three are based on Mathematical Morphology. Method 3 was 
considered to be the best, not only for the high mean accuracy it produced but also for 
being the fastest, which is a crucial factor when processing HiRISE images that may 
have hundreds of thousands of lines. It succeeds in detecting tracks despite the 
variation in size and in spatial resolution of the images, and works for a great range of 
albedo variation as seen in Fig. 1, and can be a very useful tool for intensive mapping 
and largely increasing our understanding of these aeolion features. In particular, 
quantitative measures like width, length, number of tracks and their directions, among 
many others, can be carried out from the resulting binary images of our approach. 
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Federico Santa Maŕıa University, Chile

{jnancu,elopez,hallende,vector}@inf.utfsm.cl

Abstract. We present a model based on ensemble of base classifiers,
that are combined using weighted majority voting, for the task of in-
cremental classification. Definition of such voting weights becomes even
more critical in non-stationary environments where the patterns under-
lying the observations change over time. Given an instance to classify, we
propose to define each voting weight as a function that will take into ac-
count the location of an instance to classify in the different class-specific
feature spaces and also the prior probability of such classes given the
knowledge represented by the classifier as well as its overall performance
in learning its training examples. This approach can improve the general-
ization performance and ability to control the stability/plasticity trade-
off, in stationary and non-stationary environments. Experiments were
carried out using several real classification problems already introduced
to test incremental algorithms in stationary as well as non-stationary
environments.

Keywords: Incremental Learning, Dynamic Environments, Ensemble
Methods, Concept Drift.

1 Introduction

It is important that machine learning systems be capable of dealing with new
observations. Moreover, for large scale applications, it is unrealistic to think that
a complete set of representative examples is available from the start, and hence
algorithms able to learn from the observation of a sequence of examples delayed
in time is crucial. A simple approach consists in using past and current observa-
tions to build a new model every time that new observations become available.
However this solution is usually impractical or infeasible. An additional problem
appears when the patterns underlying the observations change over time, that is
the environment is not stationary. For example, in a document filtering problem,
it is possible that the features defining a category are no longer valid because
the preferences of user have changed. Ensemble methods are based on the idea
� This work was supported in part Research Grant DGIP-UTFSM (Chile).
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of combining a set of simple predictors instead of using only one [4,7,16]. An
interesting point is that with an appropriate design, the expected performance
of the combined predictor can be better than the average performance of the in-
dividual predictors. This flexibility makes them particularly suitable for learning
in changing environments. There are ensemble methods that have been proposed
to address the problem of incremental learning such as in [2,5,10,11,13,15]. Orig-
inally these methods were proposed for stationary environments, but today have
been extended for non-stationary ones. In this paper, we propose a strategy
(based on [9,5,12,15]) for incremental learning in non-stationary environments
that consist in using a set of base classifiers, combined using weighted majority
voting, where voting weights of each hypothesis h will be a function that depends
on the sample used to train classifier h.

2 Problem Definition

To obtain a formal definition of the incremental learning problem we follow a
statistical approach. Throughout this work we suppose that observations z live
in a space Z and are all drawn according to a probability measure P (z). The
observations are of the form z = (x, y) where x represents some information
about z and y a desired response or action. Given a sample of the form S =
z1...zn, obtained sampling the distribution P , we are asked to recover a model
h representing the relation between x and y. The problem in learning from
examples is that instead of the measure P , we only have a finite sample of
examples S. We select h such that it minimizes the so called empirical risk :

RS(h) =
1
n

n∑
i=1

Q(h(xi), yi) (1)

Instead of a single sample, in incremental scenarios, we have to deal with a
sequence of samples or batches of observations S1, S2, ..., St which arrive con-
tinuously over time and possibly have different size. An exact definition of the
learning task in such incremental scenarios is hence not straightforward.

A learning algorithm is called incremental if it is capable to generate hypothe-
ses in steps, where each step starts with certain working hypothesis and a set of
new data and ends with an appropriate updated hypothesis. Given a sequence of
training sets S1, ..., St such algorithm is hence capable to generate a sequence of
hypotheses h1, ..., ht, where ht is obtained from ht−1 and St. We distinguish two
possible objectives for the learning tasks: (a) Stationary Environments, the
goal at time t is to obtain a hypothesis as close as the one obtained by training
with a sample S = S1

⋃
...
⋃
St. If S1, ..., St were drawn according to a distribu-

tion P , future cases (St+1) also appear according to the distribution given by P ,
so we can measure the performance of the algorithm by using a test set and also
any of the partial samples S1, ..., St. (b) Non-Stationary Environments, the
underlying distribution of the new examples changes over time. The goal at time
t is to obtain a hypothesis capable to decide well the next batch of observations,
that is St+1.



An Ensemble Method for Incremental Classification 543

3 An Ensemble Based System for Learning in Dynamic
Environments

The overall structure of Ensemble Methods consist in generating a new hypoth-
esis ht when a new set of observations St becomes available. An updated model
is obtained combining the individual hypotheses using majority voting.

The Learn++ algorithm proposed in [13] is based on AdaBoost [3]. The main
steps of Learn++ (modified in [10] and [5]), are sketched as algorithm (1). When
a new set Sj of observations becomes available, a training sample Xt is generated
from Sj , sampling with weights given by a distribution d. A new set of classifiers
is then created to learn Xt and stacked with the classifiers generated previously
to update the current ensemble Ht.

Algorithm 1. Structure of the Learn++ Algorithm
1: Initialize T = 0
2: for each batch of observations Sj of size mj do
3: Initialize the sampling weights d0(i) of each example i = 1, . . . , mj

4: for t = T + 1, . . . , T + Tj do
5: Set the sampling distribution to Dt = dt(i)/

∑m
j=1 dt(j).

6: Generate a set of examples Xt sampling Sj according to Dt.
7: while εt < 1/2 do
8: Train a base classifier with Xt to obtain ht.
9: Compute the weighted error of ht on Sj , εt =

∑
i:ht(xi)�=yi

Dt(i).

10: end while
11: Compute the ensemble hypothesis Ht(x) using an aggregation algorithm

⊕
over the set

of classifiers h1, h2, . . . , ht.
12: Compute the weighted error of Ht on Sj, Et =

∑
i:Ht(xi)�=yi

Dt(i)

13: Compute the confidence of Ht, αt = log((1 − Et)/Et)
14: Update the sampling weights

dt+1(i) = dt(i) ×
{

e−αt , if Ht(xi) = yi

1 , otherwise
(2)

15: end for
16: Recall the current number of classifiers T =

∑ j
i=1 Ti.

17: end for
18: For any x, compute the final ensemble decision HT (x) applying an aggregation algorithm

⊕
over the complete set of classifiers h1, h2, . . . , hT .

The KBS-Stream algorithm proposed in [15] is similar to Learn++ but it
is based on a sampling strategy named KBS (Knowledge-Based Sampling) [14].
Instead of using the error on the new observations to define the sampling weights
dt, KBS defines the concept of Lift, which measures the correlation (according
to a given distribution) between a specific prediction and a specified true label.

4 An Aggregation Framework of Classifiers for Dynamic
Environments

We define a majority voting aggregation mechanism appropriate for incremental
classification based on algorithm (1). In these approach each classifier ht votes
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with a weight wt on the class it predicts for a given instance x. The final decision
is the class that cumulates the highest total weight from all the classifiers [8].
Defining ωtj as 1 if the prediction of ht corresponds to class j and 0 otherwise,
the final decision can be expressed as

ĉlass(x) = arg max
j

∑
t

wtωtj(x) (3)

The preservation of previous knowledge and the accommodation of novel infor-
mation, strongly depends on the relative importance of each classifier. In [13],
Polikar et al. proposed the AdaBoost aggregation strategy [3] for algorithm (1).
Voting weights are computed as wt = log((1 − ηt)/ηt) where ηt is the training
error of ht . In incremental environments this rule becomes not optimal, since
classifiers corresponding to different batches might be model different patterns
and hence the performances of these classifiers are not directly comparable. For
example, it is possible that the batch St contains only instances of one class, say
1, so it is not difficult for a classifier to achieve a high accuracy, let say ηt ∼ 0. If
new classes appear in the next batch, the accuracy of the corresponding classifier
could be significantly lower than say ηt > 0. The first classifier however is really
not better than the second because it represents an incomplete knowledge of the
environment.

An idea to overcome this problem is to use instance-dependent weights. In
[5], Gangardiwala et al. proposed to obtain wt(x) as mink 1/δtk(x), where δtk is
the class-specific Mahalanobis distance of the test instance to the data used to
train the classifier. If Xt is the set of input instances used to train the classifier
ht and Xtk is the subset of X corresponding to the instances of class k, with
k = 1, ...,K, the k-th class-specific distance of an input instance x to Xtk is
computed as

δtk(x) = (x − μtk)′ ·C−1
tk · (x− μtk) (4)

where μtk is the mean and Ctk the covariance matrix of Xtk.
We propose to define the voting weight wt(x) of the classifier ht, for predicting

label x, as a function that depends on the Mahalanobis distance between the
instance x and each class-specific subset Xtk. If Mahalanobis distance between
x and class-specific subset is zero, hypothesis should have greater weighting,
otherwise, the weight decreases, penalizing divergence:

ŵt(x) =
K∑

k=1

exp(−(x− μtk)′ ·C−1
tk · (x− μtk)) =

K∑
k=1

exp(−δtk) (5)

In addition, the coverage that the classifier for each class has, is considered.
Suppose that classifier ht has been trained with instances Xtk of a given class k
very similar to the instance to classify xtest but this has not been trained with
enough examples of the class k to generalize well. Consider the event Ak = “x
is of class k”, then P (k|ht) corresponds to the prior probability of the event
Ak given the classifier ht. Since the knowledge acquired depends on the data,
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it seems reasonable to use as the prior P (k|ht) the fraction of such data that
belongs to the class k.

ŵt(x) =
K∑

k=1

exp(−δtk)× P (k|ht) =
K∑

k=1

exp(−δtk)× |Xtk|
|Xt|

(6)

where | · | denotes cardinality, Xt is set of input used to train ht and Xtk the
subset of X corresponding to the instances of class k.

Finally, it should be mentioned that knowledge represented by a classifier
depends on the classes it was able to learn, that is, the proposed framework
should consider how reliable is the knowledge it represents. Then we will use
P (ht) as the probability how much good is the classifier ht.

ŵt(x) =

(
K∑

k=1

exp(−δtk)× |Xtk|
|Xt|

)
× P (ht) (7)

The determination of this probability may be through the classifier accuracy,
even in literature, the accuracy is used for determining the weight of ht, but it
is not the only strategy possible. If suppose, we take a uniform distribution for
P (ht), weight wt(x) is equal (6). If we consider P (ht) proportional to accuracy,
P (hy) can be defined as P (hy) = log((1 − ηt)/ηt) where ηt is the training error
of ht with St. It should be noted that the whole set of classifiers originated after
a new batch of observations that arrive to the system are generated to learn
the new information contained in these observations. Resampling steps after the
first one, make that different classifiers work with partially different data sets.

Hence it makes sense to compute the weight wt(x) only once per batch, imme-
diately after the first resampling of the data, that has the task of identifying the
observations that presumably contain new information. In this approach, which
we call Global Probabilistic, all the classifiers created for a given batch of data
Sk receive the same weight, that is computed using the equation (7) with the
set of observations Xt obtained after step 14 of algorithm (1) has been applied
for the first time with the current batch.

In non-stationary environments, Scholz [15] used an aggregation strategy ca-
pable to follow the dynamic of the drifting observations. Just like the instance
selection methods based on sliding windows or example weighting [6,18], where
aggregation strategy is biased towards the last observations, our voting strategy
can be adapted similarly. Instead of computing the accuracy of the classifier hj

in Sj , we can use the last batch of observations as a better approximation of
the distribution of future observations. Then, P (ht) is recomputed immediately
after a new batch of observations become available as log((1− ηt)/ηt), but now
ηt is the training error of ht on the most recent sample of examples.

Since a particular batch of observations could be an incomplete description
of a stationary frame in the dynamics of the environment, this strategy could
be improved if we were able to detect the step in which a drift takes place
and if we use the performance of the classifiers in the set of batches after the
drift to compute the prior P (ht). The effect however is attenuated because our
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aggregation strategy remains sensitive to the location of the instances to classify
in the feature space.

5 Experiments

In [17] we provided comparative results, for problems already studied in [10] and
[5] for incremental learning, between our algorithm and the Learn++ algorithm
as defined in [5]. Here, we study the behavior of our algorithm in non-stationary
environments using one classification problem and three different concept drift
scenarios proposed in [15].

The benchmark used to test our algorithm in non-stationary environments
consist in the Satellite Image Data obtained from the UCI library [1]. Since it
does not contain a known concept drift and in order to allow a comparison, we
used the experimental setup proposed in [15]: the data was randomly ordered
into a stream and split in 20 batches of equal size (321 examples per batch). Since
the KBS-Stream algorithm [15] is designed to deal with binary classification, 2
of the original 6 classes were marked as relevant (class 1) and the other as non-
relevant (class 2). The same three concept drift scenarios proposed in [15] were
simulated:

1. Scenario A corresponds to an abrupt drift from the first to the second class
in batch 10. That is, after the batch 10 examples marked as relevant become
not-relevant and viceversa.

2. Scenario B corresponds to a gradual drift from the first to the second class
between batches 8 and 12. That is, a linearly increasing fraction of the ex-
amples of class 1 becomes of class 2 and viceversa, beginning with 0 in batch
8 and finishing with 1 in batch 12.

3. In Scenario C, an abrupt drift occurs in batch 9, as in scenario A, but it is
abruptly reversed in batch 11.

Table (1) shows the best results obtained in the scenarios A, B and C with
our framework (7) using accuracy of the classifier without considering concept
drift (named Static Priors) and using the framework designed for concept drift
(named Adaptive Priors). The base classifier used is the same on [17]. Tables
include the mean and variance of the classification error computed after 20 ex-
perimental runs with different random permutations of the examples. Rows of
the table correspond to different parameter configurations: number of classifiers
per batch (C) and number of neurons (N).

From the results reported above we can conclude that the voting strategy
defined to deal with concept drift introduces significant improvements with re-
spect to our original static accuracy based strategy to define the priors over
the classifiers. In Scenario A we reduce the misclassification error around 4%, in
Scenario B around 3% and in Scenario C, which represents a more complex type
of drift, around 2%. Improvements seem independent of the parameter configu-
ration of the algorithms, that is number of classifiers and the number of neurons
in the base learners. Moreover, an important reduction of variance is observed
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Table 1. Best Results in Non-Stationary Environments

Results in Scenario A
Static Priors Adaptive Priors

Combinations Mean Error Variance Mean Error Variance
20N-2C 14.819315 5.788040 9.581776 3.440245
20N-6C 13.628505 5.689071 9.853583 3.193592

Results in Scenario B
Static Priors Adaptive Priors

Combinations Mean Error Variance Mean Error Variance
10N-2C 15.162773 4.416926 11.483645 3.030324
20N-6C 14.123832 3.654565 11.693925 2.787356

Results in Scenario C
Static Priors Adaptive Priors

Combinations Mean Error Variance Mean Error Variance
10N-2C 11.746885 4.834248 9.409657 6.536859
20N-4C 12.666667 4.659173 9.326324 6.640003

in scenarios A and B (around the half of the original variance). The curves rep-
resenting the behavior of the algorithm as new batches of observations become
available, also show that the algorithm designed for changing environments has a
stronger ability to recover for an abrupt or gradual drift. This occurs because the
static algorithm can only recover from a drift creating more classifiers represent-
ing the new knowledge than the classifiers representing the old knowledge. The
dynamic algorithm, on the other hand, is capable to rapidly and selectively reuse
old knowledge structures and hence can respond more quickly. This observation,
in fact, explains the closer difference between the algorithms in Scenario C.

6 Conclusions

In this paper we have introduced a new voting strategy to incremental learning
using an ensemble of classifiers. This strategy identifies a voting weight with two
fundamental pieces: (1) a function which depends on the instance to classify and
the knowledge represented by the classifier and (2) a prior which represents an
instance-independent belief about the ability of the classifier to deal with the
environment. By defining both pieces we can obtain an aggregation mechanism
with different properties. This paper has examined a model which explores the
knowledge cumulated by the classifier in the different class-specific feature spaces
and different types of priors. Using priors depending on the overall performance
of the classifier in its training set we have obtained an algorithm capable to
accommodate new knowledge without compromising previously acquired knowl-
edge and capable to detect the most suitable knowledge substructures to predict
a given instance. Experiments in well-known benchmarks show that this algo-
rithm can introduce important improvements or at least competitive results with
respect to similar algorithms. Introducing a simple modification on the priors
again, we can obtain a new version of the algorithm capable to deal with non-
stationary environments. Further improvements could probably be obtained if
we were able to detect the specific step in which a drift takes place, and if we
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use the performance of the classifiers in the set of batches after the drift to
recompute the prior.
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Abstract. Service robots are becoming increasingly available and it is
expected that they will be part of many human activities in the near
future. It is desirable for these robots to adapt themselves to the user’s
needs, so non-expert users will have to teach them how to perform new
tasks in natural ways. In this paper a new teaching by demonstration al-
gorithm is described. It uses a Kinect R© sensor to track the movements of
a user, eliminating the need of special sensors or environment conditions,
it represents the tasks with a relational representation to facilitate the
correspondence problem between the user and robot arm and to learn
how to perform tasks in a more general description, it uses reinforcement
learning to improve over the initial sequences provided by the user, and
it incorporates on-line feedback from the user during the learning process
creating a novel dynamic reward shaping mechanism to converge faster
to an optimal policy. We demonstrate the approach by learning simple
manipulation tasks of a robot arm and show its superiority over more
traditional reinforcement learning algorithms.

Keywords: robot learning, reinforcement learning, programming by
demonstration, reward shaping.

1 Introduction

The area of robotics is rapidly changing from controlled industrial environ-
ments into dynamic environments with human interaction. To personalize service
robots to the user’s needs, robots will need to have the capability of acquiring
new tasks according to the preferences of the users and non-expert users will
have to be able to program new robot tasks in natural and accessible ways.
One option is to show the robot the task and to let the robot imitate the user’s
movements in what is called Programming by Demonstration (PbD) [4]. This
approach, however, normally uses sophisticated hardware and can only repro-
duce the traces provided by the user, so the performance of the robot depends
on the performance of the user in the task. An alternative approach is to use
reinforcement learning (RL) and let the robot explore the environment to learn
the task [12]. This, however, normally results in long training times.

In this paper, the user shows the robot how to perform a task. To capture the
user’s demonstration, rather than using a sophisticated arrangement of sensors or
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special purpose environments, we use a Kinect R© sensor to capture the depth infor-
mation of obstacles and to detect the movements follow by the arm when showing
how to perform a particular task. Instead of trying to reproduce exactly the same
task, we use reinforcement learning to refine the tracesproduced by the user. Rather
than waiting for the RL algorithm to converge, the user can provide, during the
learning process, on-line feedback using voice commands that are translated into
additional rewards. We demonstrate the approach in a simple manipulation task.

The rest of the paper is organized as follows. Section 2 reviews the most
closely related work. Section 3 describes the proposed method. In Section 4 the
experimental set-up is described and the main results presented. Finally Section 5
gives conclusions and future research directions.

2 Background and Related Work

Programing by Demonstration (PbD), Learning from Demonstration (LfD) or
Learning by Imitation (LbI), is a mechanism that combines machine learning
techniques with human-robot interaction. The idea is to derive control policies
of a particular task from traces of tasks performed by a user [3]. One of the ad-
vantages of this approach is that the search space is significantly reduced as it is
limited to the space used in the demonstration [4]. Several approaches have been
used for PbD, however, in most cases the user needs to wear special equipment
under particular conditions, limiting its applicability to restricted environments.
In this paper, we use a Kinect R© sensor which is relatively cheap and robust
to changes in illumination conditions. Also, in most of these developments the
performance of the system strongly depends on the quality of the user’s demon-
strations. In this paper, we couple the user’s demonstration with a reinforcement
learning algorithm to improve over the demonstrations given by the users.

Reinforcement Learning (RL) is a technique used to learn in an autonomous
way a control policy in a sequential decision process. The general goal is to
learn a control policy that produces the maximum total expected reward for
an agent (robot) [12]. Learning an optimal control policy normally requires the
exploration of the whole search space and very large training time. Different
approaches have been suggested to produce faster convergence times, such as
the use of abstractions, hierarchies, function approximation, and more recently
reward shaping [11,9,10,1,8,5]. In reward shaping, most of these methods require
domain knowledge to design an adequate reward shaping function, or try to learn
the reward functions with experience, which can take long training times. In our
case, the user can provide feedback to the robot and change the reward function.
Some authors also have provided feedback from the user and incorporated it into
the reinforcement learning algorithm [6,2,7]. In [2] the robot first derives a control
policy from user’s demonstrations and the teacher modifies the policy through a
critiquing process. A similar approach is taken in [6], however the user’s critique
is incorporated into the optimization function used to learn the policy. In [7],
the authors combine TAMER, an algorithm that models a hypothetical human
reward function, with eight different reward shaping functions. Contrary to these
approaches, in our work the user can provide, through voice commands, feedback
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that can be given at any time during the learning process and that directly affects
the reward function (see also [13]). We extend this last work with traces given
by the user and observed by the robot, and with a more powerful representation
language to create more general policies, as explained in the next section.

3 Method and System Design

Our approach, illustrated in Figure 1, has three main modules: 1) demonstration,
perception and representation of the task, 2) reproduction and refinement, and
3) on-line user feedback.

Fig. 1. The imitation and feedback learning

The interaction between the different components of the system is shown in
Figure 2, where the initial demonstrations are used to seed the initial Q-values and
the system follows a process where the user can intervene during the RL process.

3.1 Demonstration, Perception and Task Representation

In the demonstrations, the instructor shows the robot the task to learn with
his/her arm movements. The 3D positions of the hand and of the objects in
the environment are tracked using the Kinect R© sensor. These 3D coordinates
sequences are obtain from a previously calibrated working area that includes
all the arm movements. The sequences are processed to obtain relational state-
action pairs. Each state s ∈ S is described by a six-term tuple with the following
elements: s = (H, W, D, dH, dW, dD), where:

– H = Height: {Up,Down}
– W = Width: {Right, Left}
– D = Depth: {Front,Back}
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Fig. 2. Training phases of the proposed approach

– dH = Height distance to target: {V eryFar, Far, Close, V eryClose,Over}
– dW = Width distance to target: {V eryFar, Far, Close, V eryClose,Over}
– dD = Depth distance to target: {V eryFar, Far, Close, V eryClose,Over}

Each action a ∈ A is described as a movement in one direction with information
of how much to move the manipulator, a = (D, pD), where:

– D : Direction {Up,Down,Right, Left, Front,Back}
– pD : a real value that defines the magnitude of the movement performed by

the robot according to how close it is from an object. For example, a right
movement will have a greater displacement to the right when it is far from
the target object than a right movement when it is close to the target object.

The main advantage of this representation is that, since it is a relative position
between the human or robotic arm with the target place or object, it does not
need to have any special transformation between the traces shown by the user
and the traces used by the robot. On the other hand, the states and the learned
policies, as it will be shown later, are consequently relative to the target object
so the initial position of the robot arm and the initial and final position of the
target object or place can be completely different from the positions shown by
the user, and the learned policy is still suitable for the task.

3.2 Reproduction and Refinement

The goal of this stage is to improve over the traces performed by the user. Given
a set of initial traces by the user, these are transformed into the state-action pairs
with the previously described representation and directly used by the robot to
initialize the Q-values of the visited state-action pairs. The robot then follows a
normal RL algorithm using Q-learning to improve over the initial policy. During
the exploration moves, the robot can reach previously unvisited states that are
incrementally added to the state space.
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Also, during the execution of actions it is possible to produce continuous ac-
tions by combining the discrete actions of the current policy. This is performed as
a lineal combination of the discrete actions with the larger Q-values. The lineal
combination is proportional to the magnitude of the used Q-values. The updating
function over the Q-values is also proportionally performed over all the involved
discrete actions.

3.3 On-line Feedback

While the robot is exploring the environment to improve over its current policy,
the user can provide on-line voice feedback to the robot. We build over the work
described in [13], where a fixed vocabulary was defined for the user’s commands.
The user feedback can be in the form of action commands or as qualifiers over
particular states that are transformed into rewards and added to the current
reward function.

Our reward function is defined as: R = RRL +Ruser where RRL is the normal
reward function and Ruser is the reward obtained from the voice commands given
by the user. The main difference with previous reward shaping functions is that
in our case the rewards can be given sporadically and can be contrary to what it
is needed for achieving a goal. Nevertheless, we assume that when they are given
correctly they reinforce the movements where the agent is moving towards the
goal and satisfy a potential-based shaping framework. So even with noisy feedback
from the user we can still guarantee convergence towards an adequate policy as
long as the agent receives in average correct rewards (see [13] for more details).

4 Experiments and Results

We used a 6 DOF robot manipulator, named Armonic Arm 6M (see Figure 3
right), in our experiments and the task was to pick-up an object and place it in
a new position.

Fig. 3. Robot Katana Armonic Arm 6M



554 A. León et al.

In front of the Kinect sensor, the user simply picks up an object from a spatial
position and places it in a different location. The sensor is responsible for identi-
fying the 3D location of the user hand and object and track the hand movements.
From the Kinects tracking system we get a sequence of 3D coordinates to define
distances and locations with respect to the object and to determine relational
states to characterize the task. Figure 4 shows a human demonstration used to
pick-up a object and place it in a different location (up) and the information
obtained by the Kinect sensor (down).

Figure 3 shows to the left a sequence performed by the robot after learning
this task.

Fig. 4. Human demonstration for picking-up and placing a particular object

For the experiments, we designed different conditions to test the individual
parts of the proposed system including a simulator for training during 50 episodes:

1. Using only Reinforcement Learning (RL)
2. Reinforcement Learning + Human demonstration (HD)
3. Reinforcement Learning + Simulation (S) + Human demonstration
4. Reinforcement Learning + Simulation + Human demonstration + User’s

Feedback (FB)

Figure 5 shows the performance of the different experiments and table 4 shows
the total computer times. As can be seen, using human demonstration and user’s
feedback during the learning process can significantly reduced the convergence
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times for the RL algorithm. It should be noted that each episode shown in the
figure started from random initial positions and ended in random (reachable)
object positions.

Fig. 5. Performance of the different experimental conditions. (i) RL = reinforcement
learning, (ii) HD + RL = RL + human demonstration, (iii) HD + S + RL = RL +
simulation traces + human demonstrations, and (iv) HD + S + RL + FB = RL +
simulation traces + human demonstrations + user’s feedback.

Table 1. Total computing times: The second row shows the time of HD (˜5 min) and
the time of RL. The third and fourth rows show the time of HD, S, and RL respectively
in each column; FB does not require additional time. The last column shows the total
time spent for each experimental condition.

Time (s) Total time (s)

RL 16168.896 16168.896

HD + RL ˜300 11056.56 11356.56

HD + S + RL ˜300 25.628 6729.399 7055.027

HD + S + RL + FB ˜300 19.348 3242.273 3561.621

5 Conclusions and Future Work

Teaching a robot how to perform new tasks will soon become a very relevant
topic with the advent of service robots. We want non-expert users to be able to
teach robots in natural ways how to perform a new task. In this paper, we have
described how to teach a robot to perform a task by combining demonstration
performed by the user with voice feedback over the performance of the robot
during its learning phase. Our main contributions are: the simple PbD setup
with Kinect sensor, the representation used for the demonstration which is used
also in RL and the incorporation of on-line voice feedback from the user during
the learning process.
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There are several research directions that we would like to pursue. So far we
have focused our approach in the displacement of the hand and of the end effec-
tor. This is suitable in environment; without obstacles or in static environments.
As future work, we would like to incorporate information from the movements of
all the articulations. We would also like to enrich the vocabulary for other stages
in the learning process, like assigning particular names to learned sub-tasks and
then re-using them for learning more complex tasks. Finally we would like to
test our approach in other maniplation tasks and with different objects.
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Abstract. In this paper, we present some recent improvements in our
automatic speech segmentation system, which only needs the speech
signal and the phonetic sequence of each sentence of a corpus to be
trained. It estimates a GMM by using all the sentences of the train-
ing subcorpus, where each Gaussian distribution represents an acoustic
class, which probability densities are combined with a set of conditional
probabilities in order to estimate the probability densities of the states
of each phonetic unit. The initial values of the conditional probabili-
ties are obtained by using a segmentation of each sentence assigning the
same number of frames to each phonetic unit. A DTW algorithm fixes
the phonetic boundaries using the known phonetic sequence. This DTW
is a step inside an iterative process which aims to segment the corpus
and re-estimate the conditional probabilities. The results presented here
demonstrate that the system has a good capacity to learn how to identify
the phonetic boundaries.

Keywords: automatic speech segmentation, phoneme boundaries de-
tection, phoneme alignment.

1 Introduction

The two main applications of speech segmentation at the phonetic level are
text-to-speech synthesis and acoustic models training. For both purposes it is
useful to have available as many labelled sentences as possible. Doing this la-
belling task by hand implies a great and very expensive effort. Additionally, as
some authors point out, manual segmentations of a single corpus carried out by
different experts can differ significantly, thus it is reasonable to use automatic
segmentations in the previous applications. As an example, some researchers
gave the same speech database to different human experts to segment it. Then,
they evaluated the differences between the manual segmentations obtained. In
[1], 97% of the boundaries within a tolerance interval of 20 ms were found, and
93% in [2].

There are some different approaches for performing automatic segmentation
of speech corpora when the phonetic sequence of each sentence is available. Most
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of them are systems that operate in two stages: the first one is done by a pho-
netic recognizer based on Hidden Markov Models (HMM), which fixes the pho-
netic boundaries by using the Viterbi algorithm with forced alignment, and the
second stage adjusts the phonetic boundaries. In [1,3,4] different pattern recog-
nition approaches are proposed for local adjustment of boundaries. [5] presents
an HMM-based approach where pronunciation variation rules are applied and
a recognition network is generated for each sentence. Then a Viterbi search de-
termines the most likely path and obtains an adapted phonetic transcription for
each sentence. This process is repeated until the adapted phonetic transcrip-
tions do not change any more. Initial phone HMMs are generated with flat-start
training using the canonical transcriptions of the sentences.

A Dynamic Time Warping (DTW) based method that aligns the spoken utte-
rance with a reference synthetic signal produced by waveform concatenation is
proposed in [6]. The known phonetic sequence of each sentence is used to generate
the synthetic signal. The alignment cost function depends on the pair of phonetic
segment classes being aligned, and is computed taking a combination of acoustic
features. In [7] a set of automatic segmentation machines are simultaneously
applied to draw the final boundary time marks from the multiple segmentation
results. Then, a candidate selector trained over a manually-segmented speech
database is applied to identify the best time marks. In [8] several linear and non-
linear regression methods are used for combining multiple phonetic boundary
predictions which are obtained through various segmentation engines.

An approach inspired in the minimum phone error training algorithm for au-
tomatic speech recognition [9] is presented in [10]. The objective of this approach
is to minimize the expected boundary errors over a set of phonetic alignments
represented as a phonetic lattice. A quite different approach, which is presented
in [11], uses an extension of the Baum-Welch algorithm for training HMMs that
use explicit phoneme segmentation to constrain the forward-backward lattice.
This approach improves the accuracy of automatic phoneme segmentation and
is even more computationally efficient than the original Baum-Welch.

A technique that modifies the topology of the HMMs in order to control the
duration of the phonetic boundaries is presented in [12]. The prototype for all the
phones is defined as a 5-state left-to-right topology with duration control states
at each end. This topology improves the segmentation accuracy by reducing
the probability of looping at the beginning and end states, as these model the
boundaries between phonetic units. The acoustic vectors within the transition
from one phonetic unit to the other are clustered at these states.

In this paper we present a technique for automatic speech segmentation at
the phonetic level based on the same idea of altering the topology of the HMMs.
Nevertheless, three differences should be noted: (a) we calculate the emission
probabilities in a different way, (b) the forced alignment is performed by a DTW
algorithm, and (c) we do not use manually segmented sentences for training.
Emission probabilities are computed by combining acoustic probabilities with
conditional probabilities estimated ad hoc [13,14]. The conditional probabilities
reflect the relation between the acoustic and the phonetic probability densities.



Improvements on Automatic Speech Segmentation at the Phonetic Level 559

The estimation of these conditional probabilities is done by means of a progres-
sive refinement iterative process which segments all the sentences of the training
set at every step. The initial values of the conditional probabilities are obtained
by using a segmentation into equal parts, i.e., the segments assigned to each pho-
netic unit within a sentence are equally long. The acoustic probability densities
are computed using a GMM (Gaussian Mixture Model), obtained as a result of
a clustering process.

Next, we describe in Section 2 the recent improvements on the automatic
speech segmentation system. Then, in Section 3, we show and comment the
experimental results. Finally, we conclude in Section 4.

2 System Improvements

The previous version of our system operated in three stages: (1) a coarse seg-
mentation based on acoustic-phonetic rules was used to estimate the initial con-
ditional probabilities, (2) the refinement of these conditional probabilities by
means of an iterative procedure, and (3) a local adjustment of phonetic bound-
aries considering distinct criteria depending on the pair of consecutive phonetic
units [14]. In this work, we present two improvements to this strategy. The first
one consists in using HMMs with a little variation in the topology based on the
idea presented in [12]. The topology is modified by having states without loops
at each end to control the duration of the transitions between phonetic units.
This improvement avoids the need for the coarse segmentation. The other im-
provement consists in the use of transitions between phonetic units as additional
units.

The iterative procedure for progressive refinement is based on a DTW al-
gorithm that automatically segments each sentence. This algorithm aligns the
sequence of states with respect to the sequence of acoustic frames. The sequence
of states of each sentence is obtained by concatenating the model of each phonetic
unit according to the given phonetic sequence. There are two relevant features in
the topology of the models: the total number of states and the number of dura-
tion control states. Figure 1 shows a model with 8 emitting states and 3 duration
control states at both sides. It is important to highlight that each phonetic unit
can have a different number of states according to its nature.

1.0 1.0 1.0 1.0 1.01.00.5 0.5

0.50.5

Fig. 1. An 8 emitting states HMM with 3 duration control states at each side

Figure 2 shows the allowed movements inside the DTW matrix in an example
of transition between two phonetic units, with one duration control state at
each end. We can observe that horizontal movements are forbidden for duration
control states, i.e., no loops are permitted. The diagonal movements are the only
ones allowed for these states, as these movements represent the transition from
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Fig. 2. Example of possible movements in our DTW focused on the join between two
phonetic units

one state to the next one. Vertical movements are always forbidden since it is
inconsistent to assign one acoustic frame to more than one state.

The alignment cost function used in the DTW algorithm takes p(xt|eu
i ) as the

emission probability, which represents the phonetic class-conditional probability
density function of observing the acoustic frame xt given eu

i , the i-th state of
the phonetic unit u. This phonetic class-conditional probability density function
is computed using the following formula

p(xt|eu
i ) =

∑
a∈A

p(xt|a) · Pr(a|eu
i ) (1)

where a is an acoustic class modelled by a Gaussian distribution, A is the set
of Gaussian distributions in the GMM which contains all the acoustic classes,
p(xt|a) is the acoustic class-conditional probability density function of observing
the acoustic frame xt given the acoustic class a, and Pr(a|eu

i ) is the conditional
probability of the acoustic class a given the state eu

i [13,14]. The GMM is com-
puted as the first step of the training process using all the acoustic frames of all
the sentences of the training subcorpus. This acoustical clustering is performed
by using the maximum likelihood estimation.

The initial values of the conditional probabilities are obtained from a seg-
mentation of each sentence into equal parts. The progressive refinement stops
when no variations are observed between the segmentations resulting from two
consecutive iterations. As a further step, the transitions between each pair of
phonetic units are added as new phonetic units, and new conditional probabil-
ities are computed for the new set of units (original units plus transitions).
The segmentation obtained in the last iteration of the previous progressive
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refinement process is used as the starting point for the estimation of the new set
of conditional probabilities.

3 Experimentation

3.1 Speech Corpora

In order to carry out experiments for both Spanish and English, we chose two
speech databases: Albayzin [15] and TIMIT [16]. The phonetic corpus from
the Albayzin database was used for the Spanish experiments: 6,800 utterances
(around six hours of speech) which we split into 1,200 sentences manually seg-
mented and labelled that were used for testing and the remaining 5,600 sentences
for training. No speakers appear in both subsets. The TIMIT database was used
for the English experiments, which contains 6,300 utterances (approximately five
hours of speech). In this case we used the suggested training/test subdivision.

The same acoustic parameters were used on both databases. Each acoustic
frame was formed by a 39-dimensional vector composed by the normalized en-
ergy, the first 12 Mel frequency cepstral coefficients, and their first and second
time derivatives. Each acoustic frame was obtained using a 20 ms Hamming
window every 5 ms.

3.2 Evaluation Criteria

The most widely used evaluation criterion to measure the accuracy of an auto-
matic segmentation with respect to a manual one is the percentage of boundaries
which error is within a tolerance. Usually, it is calculated for a range of toler-
ances [1,2,8].

As discussed in the introduction, some researchers have wondered if a manual
segmentation could be a valid reference [1,2]. To evaluate this, they gave the
same speech corpus to different human experts asking them to annotate it, and
then evaluated the differences among the manual segmentations. In the study
presented in [1], 97% of the boundaries were found within a tolerance of 20 ms
and in [2] 93%. Thus, we can interpret these results as an upper bound for the
accuracy of automatic segmentations, since a system that reaches 100% com-
pared with a manual segmentation will at least differ around 5% from another
manual segmentation for the same speech database.

3.3 Experimental Results

Our system has been evaluated using different combinations of the number of
emitting states (E) and duration control states (B). Table 1 presents the results
obtained using different E × B topologies. Results show that the use of dura-
tion control states lead to a significant improvement when the tolerance ranges
from 5 to 20 ms. This improvement is bigger when the tolerance interval is more
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Table 1. Percentage of correctly fixed phonetic boundaries for a range of tolerances

Albayzin TIMIT

Topology Tolerance in ms Tolerance in ms
E × B 5 10 15 20 30 50 5 10 15 20 30 50

5x1 33.0 58.5 74.9 85.3 94.6 98.7 25.5 46.6 62.0 72.7 88.0 97.7
5x2 36.8 62.6 78.6 87.5 94.7 98.5 22.4 43.7 61.9 74.8 89.6 97.8
6x2 37.1 64.4 80.0 87.9 95.2 98.8 29.5 53.6 69.9 80.3 91.6 97.9
7x0 31.7 58.5 75.5 85.2 94.1 98.3 24.4 44.9 60.8 72.3 88.0 97.9
7x1 33.6 61.0 77.3 85.8 94.4 98.5 24.4 45.2 62.3 74.3 89.5 98.1
7x2 36.2 63.0 78.6 86.9 95.1 98.7 28.5 52.1 68.9 79.8 91.8 98.2
7x3 40.9 67.8 82.1 89.1 95.6 98.9 24.7 47.8 66.6 78.6 91.2 98.1
8x3 40.5 67.5 82.1 89.5 96.2 99.2 27.8 51.9 70.7 82.7 93.6 98.5
9x2 39.8 66.8 81.1 88.5 95.7 98.9 28.6 52.2 69.0 79.8 91.6 97.7
9x3 38.1 66.0 81.5 89.0 96.1 99.2 28.2 52.0 70.8 82.6 93.8 98.6
9x4 44.0 70.3 82.8 89.4 95.8 99.0 25.4 49.9 69.3 81.5 92.7 98.2
10x4 42.5 68.9 82.2 88.9 95.8 99.0 26.3 50.1 68.2 79.9 91.6 98.1

restrictive. For example, using the Albayzin corpus, if E = 7 then the segmen-
tation accuracy improves from 58.5% to 67.8% for a tolerance error of 10 ms as
B increases, and from 85.2% to 89.1% for 20 ms.

As mentioned above, our system does not use any manual segmentation for
bootstraping. Starting from a blind segmentation of the sentences into equal
parts, the learning process converges in less than 20 iterations for all the topolo-
gies considered.

We used a subsampling rate of 200 Hz, so, an HMM with 8 emitting states
implies a minimum duration for each phonetic unit of 40 ms, which is longer than
usual for some of them. Thus, different topologies were used for voiced plosives
/b/, /d/ and /g/ when the topology of the remaining phonetic units is larger
than 5 states. In the experiments performed with the Albayzin corpus, a 5 × 2
topology was used for these units. The results improved significantly thanks to
this shorter topology. The structure of voiceless plosives /p/, /t/ and /k/ was
not different from the topologies used for the rest of units, since their preceding
silence is properly clustered by the HMM states. Silences were considered a
special case and were always modelled with a 3× 0 topology.

Since in the TIMIT corpus the voiceless plosives are preceded by a unit
representing the closure, a shorter topology was needed for these units. A 3× 1
topology was used for /b/, /d/, /g/, /p/, /t/, and /k/.

Additionally, we also considered adding the transitions between pairs of con-
secutive phonetic units as extra ones. Table 2 shows the results obtained when
a 6 × 2 topology was used for all units except plosives, which were modelled
with 4 × 1 for Albayzin and 3 × 1 for TIMIT. The silences were modelled with
a 3× 0 topology for both corpora. In the case of the Albayzin corpus no signifi-
cant improvements are observed. However, experiments with the TIMIT corpus
show small improvements for tolerances of 5 and 10 ms. Also, a significant im-
provement can be observed when using the manually segmented sentences of the
training subcorpus to initialize the conditional probabilities.
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Table 2. Percentage of correctly fixed phonetic boundaries when transitions were used.
For the TIMIT corpus results when using the manual segmentation for training are
also presented. No manual segmentation for training is available in the Albayzin corpus.

Albayzin TIMIT

Using Tolerance in ms Tolerance in ms
manual 5 10 15 20 30 50 5 10 15 20 30 50

No 40.6 68.7 83.2 90.5 96.4 99.3 31.5 55.8 71.0 81.1 92.3 98.2

Yes 44.1 70.3 81.9 88.2 94.8 98.7

4 Conclusions

We have presented here an automatic segmentation technique that combines
three ideas. The first one consists in using duration control states at each end
of every HMM as well as increasing the number of emitting states. The second,
detailed in Section 2, deals with the way emission probabilities are calculated.
The third idea consists in using a DTW algorithm to align the sequence of states
against the sequence of acoustic frames.

The goal of our approach is to automatically segment speech corpora that can
be useful to train acoustic models without the need for manually segmented and
labelled sentences. The obtained segmentation accuracy for the Albayzin corpus
in both kinds of experiments is around 90% within a tolerance of 20 ms. This
enables our system to be used for the planned purposes, namely, acoustic models
training and concatenative text-to-speech synthesis.

The results achieved with the TIMIT corpus without using the manually
segmented sentences for training are similar to the ones obtained by other re-
searchers referenced above using standard HMM and the manually segmented
sentences. When our system is trained using the manually segmented sentences
the results are even better. We have also used the transitions between phonetic
units, but this only improves the segmentation accuracy for tolerances of 5 and
10 ms.
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contract TIN2008-06856-C05-02.
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Abstract. In general, large amount of segmented and labeled data is
needed to estimate statistical language understanding systems. In recent
years, different approaches have been proposed to reduce the segmen-
tation and labeling effort by means of unsupervised o semi-supervised
learning techniques. We propose an active learning approach to the es-
timation of statistical language understanding models that involves the
transcription, labeling and segmentation of a small amount of data, along
with the use of raw data. We use this approach to learn the understand-
ing component of a Spoken Dialog System. Some experiments that show
the appropriateness of our approach are also presented.

Keywords: active learning, unaligned corpus, spoken language under-
standing, spoken dialog systems.

1 Introduction

One of the most important drawbacks in almost all the corpus-based approaches
to the development of Spoken Language Understanding (SLU) systems is the
effort that is necessary to manually transcribe, segment and label a training cor-
pus, process that is essential in this kind of approaches. Manual segmentation
and labeling, apart from the time-consuming work, has the disadvantage that
sometimes it is difficult to decide a-priori which limits of the segments are more
accurate to represent a specific semantic label and to better discriminate from
other semantic labels. Despite of this laborious and time-consuming process of
preparation of training data, statistical models have been widely used in recent
years in the Spoken Language Understanding (SLU) area, mainly in the frame-
work of spoken dialog systems, and they have shown good performances [8], [5],
[1], and [4].

Moreover, automatically training an understanding model from a segmented
and labeled corpus is a static learning process and it is not possible to adapt
the model to new kinds of interactions or to new ways to express the concepts.
This is why in recent years different techniques have been proposed to reduce the
labeling effort by means of unsupervised o semi-supervised learning techniques
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and to have the possibility of dynamically adapt the models when the system
is interacting with the users in order to allow for an active learning process [7],
[9] and [3]. Active learning aims at reducing the number of training examples to
be labeled by selectively sampling a subset of the unlabeled data. This is done
by inspecting the unlabeled examples and selecting the most informative ones,
with respect to a given cost function. Active learning is well-motivated in many
modern machine-learning problems, where unlabeled data may be abundant or
easily obtained; however, the labeling process is difficult, time-consuming, and
expensive.

In this paper we present an approach to SLU that is based on automatic
learning of statistical models. In previous versions of our SLU system [8], all
the transcribed training corpus was manually segmented and labeled in terms
of semantic labels. In the present approach we propose to apply an active learn-
ing process to estimate a SLU system which requires only the transcription,
segmentation and labeling of a small set of training user utterances.

We propose a two-step approach to the estimation of statistical language un-
derstanding models that involves the transcription, segmentation and labeling
of a small amount of data (recognized user utterances), along with the use of
raw (untranscribed, unsegmented and unlabeled) recognized user utterances. In
the first step, from a small corpus of unaligned pairs of recognized sentences and
their corresponding semantic representation (frames), we have applied a semi-
supervised process [6] obtaining an automatic segmentation of the corpus. From
the segmented and labeled sentences of that small corpus, a baseline statistical
language understanding model is estimated using an automatic method [8]. In
the second step, we incrementally update this baseline language understanding
model with more segmented and labeled sentences following an active learning
process. A set of new recognized user utterances is automatically segmented and
labeled with the baseline statistical language understanding model. According
to a confidence measure criterium obtained during the understanding process, a
small number of these new sentences (the least reliable ones) are manually tran-
scribed, segmented and labeled by an expert, and together with the automati-
cally segmented and labeled sentences, are used to retrain the baseline statistical
language understanding model. This process is repeated for another set of raw
sentences, but, this time, the retrained statistical language understanding model
is used.

The SLU model used [8] is based on a two-level statistical model, in which
both the probabilities of sequences of semantic labels and the lexical realization
(that is, the sequences of words associated) of each semantic label are repre-
sented. Some confidence measures generated in this decoding process are used
to automatically detect sentences that can be candidates for manual labeling.
This way only a few of the new sentences are manually labeled, while the sen-
tences that are decoded with high confidence are automatically included in the
new training corpus.

Some experiments were performed over a task of information about train
timetables and prices in Spanish. The experiments show the accuracy of the
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proposed learning methods that provides similar results to those obtained from
a completely segmented and labeled training corpus. Thus we have the possibility
of having a system that can be dynamically adapted while it is used by real users,
whereas the effort employed to obtain the models is not comparable with the
effort of manually transcribing, segmenting and labeling the full training corpus.

This paper is organized as follows, Section 2 describes the SLU process using
the two-level statistical model. Section 3 describes the initial automatic semi-
supervised segmentation process and the process of incrementally updating the
SLU model through an active learning approach. Section 4 presents the evalua-
tion of our proposal on the Corpus of Dihana, a Spoken Dialog System to access
a railway information system using Spontaneous Speech in Spanish. And finally,
Section 5 presents the conclusions.

2 Speech Understanding

We have proposed a method for speech understanding based on the use of
stochastic models automatically learned from data. The main characteristic of
our method is the integration of syntactic and semantic restrictions into one
finite-state automaton. To learn syntactic and semantic models a corpus of seg-
mented and labeled sentences is required. Each sentence in the corpus must be
segmented and a label (from a set of semantic labels V defined for the task) must
be assigned to each segment. The label assigned to each segment represents the
semantic information provided by this segment.

From the segmented and labeled corpus two types of finite-state models are
learned. A model As for the semantic language is estimated from the sequences
of semantic labels associated to the input sentences. A set of models, syntac-
tic models Avi (one for each semantic label vi ∈ V ), is estimated from all the
segments of words assigned to this semantic label.

In order to perform the understanding process, a global automaton At is
generated by combining the semantic model with the syntactic ones. The states
of the semantic automaton As are substituted by their corresponding stochastic
automata Avi .

Given the input sentence w = w1w2 . . . wn ∈ W ∗, the understanding process
consists of finding the sequence of semantic labels v = v1v2 . . . vk ∈ V ∗ which
maximizes the probability:

v̂ = argmax
v

P (w|v)P (v)

Where, P (v) is the probability of the sequence of semantic labels v and P (w|v)
is the probability of the sequence of words w given the sequence of semantic
labels v. We approach this latter probability as the maximum for all possible
segmentations of w in |v| segments.

P (w|v) = max
∀l1,l2,...lk−1

{P (w1, ..., wl1 |v1) ·P (wl1+1, ..., wl2 |v2) · ... ·P (wlk−1+1, ..., wn|vk)}
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The understanding process is performed using the Viterbi algorithm, which sup-
plies the best path through At that is able to produce the input sentence w.
From this path the sequence of semantic labels and the most likely segmenta-
tion of the input sentence associated to it can be easily obtained. More details
of our approach to speech understanding can we found in [8].

2.1 Semantic Representation for the DIHANA Task

Although our method is generic, a specific set of semantic labels must be defined
for each task. In addition, once the segmentation of the sentence is performed a
second phase is required. This second phase is devoted to reordering the semantic
labels following a canonical order and instantiating some values, mostly related
to hours and dates.

During the DIHANA project a corpus of 900 dialogs was acquired using the
Wizard of Oz technique [2]. Four dialogs were acquired for each of the 225
users who cooperated in the acquisition process. The chosen task was the access
to an information system using spontaneous speech. The information system
provided information about railway timetables, fares, and services. The system
was accessed by telephone in Spanish. The number of user turns acquired was
6 280 and the vocabulary size was 823 different words.

The semantic representation chosen for the task was based on frames. The
understanding module takes the sentence supplied by the automatic speech rec-
ognizer as input and generates one or more frames (which are concepts with their
corresponding attributes) as output. The frames are obtained after reordering
the semantic labels from the best segmentation of the sentence and instantiating
certain values as stated above. A total amount of 25 semantic labels were defined
for DIHANA task. In order to label segments without semantic, a null label was
also added the the label set.

Ten labels related to frame concepts, divided in two different types, were
defined:

1. Task-independent concepts: (ACCEPTANCE), (REJECTION), and (NOT-
UNDERSTOOD).

2. Task-dependent concepts: (HOUR), (DEPARTURE-HOUR), (ARRIVAL-
HOUR), (PRICE), (TRAIN-TYPE), (SERVICES), and (TRIP-DURATION).

The task-independent concepts represent generic interaction acts which could be
used for any task. The task-dependent concepts represent the information the
user can ask for. In an user turn, each task-dependent concept can include one or
more attributes from a set of fifteen. These attributes represent the constraints
that the user can place on his query.

The fifteen attributes defined for the DIHANA task are: City, Origin-City,
Destination-City, Class, Train-Type, Num-Relative-Order, Price, Services,
Date, Arrival-Date, Departure-Date, Hour, Departure-Hour, Arrival-Hour,
and Trip-Type.



An Active Learning Approach for Statistical SLU 569

Two examples of the semantic representation, translated from the original
Spanish DIHANA corpus, are shown below:

“I want to know the timetable on Friday to Barcelona, on June 18th”
(HOUR)
Destination: Barcelona
Departure-Date: (Friday)[18-06]

“yes, the fares from Valencia”
(ACCEPTANCE)
(PRICE)
Origin: Valencia

3 The Active Learning Process

The goal of the active learning process is to obtain good models by labeling only
a small part of the training samples. It also permits the models be dynamically
adapted when real users interact with the system. As this process is a kind
of bootstrapping process we need to start from an initial model that must be
learned using a small set of labeled training samples. Even in this preliminary
step of the learning process we avoid the effort of the manual segmentation of the
corpus, that is, we only need the pair (sentence, semantic representation in terms
of frames) without the explicit association of semantic labels to the segments of
the sentence. To do this, we have developed a semi-supervised learning algorithm
[6] that associates to each semantic label a set of segments of different lengths
based on the co-occurrences of segments and semantic labels. That is, given
a fixed length l, P (vk|ul) is calculated for every segment of length l, ul, and
every semantic label, vk, in the training corpus. Then, those segments with
P (vk|ul) > theshold are considered to belong to vk.

As the training corpus is small, it is necessary to increase the coverage in order
to include more linguistic variability that it is not present in the corpus. To do so,
a procedure of categorization, lematization, and semantic generalization based
on dictionaries is applied. This is the case for example of the segment ”quiero ir
a” (I want to go to) that is generalized to ”querer ir a” (to want to go to) that
includes the Spanish conditional form ”querŕıa ir a” (I would want to go to).

Increasing the length of segments, we can better discriminate between words
that are semantically ambiguous by adding context to the segment. For example
the word ”Valencia” in an isolated way can not be associated to a semantic
label, while the bigram ”to Valencia” can easily be associated to the semantic
label ”destination-city”. In our experiments, we have considered segments until
length 3.

After applying this semi-supervised algorithm, a first segmented and labeled
corpus is obtained. From this training corpus we can learn the semantic models
as explained in Section 2, and start the active learning process. This process is
based on detecting what new samples are not well represented in our models, and
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only these samples will be manually transcribed, analyzed and, if it is necessary,
relabeled. That is, by using our current semantic models we analyze a new set
of sentences from the automatic speech recognizer and those sentences that are
selected by considering a confidence score will be manually corrected.

The confidence measure we have used is based on the probability of the ap-
pearance of sequences of words when a semantic label is found. For each pair
(ui, vi), a linear combination of two measures is used to determine if the assign-
ment of the semantic label vi to the segment ui has been done properly during
the decoding process:

– logP (ui|vi)
|ui| is the probability of the segment ui within the semantic label vi

normalized according to the number of words in the segment. This measure
is more sensitive to syntactic variations.

–
log

∏
wj∈ui

P (ui|vi)

|ui| is the same probability but considering only the unigram
probability. This measure is more sensitive to out-of-vocabulary words.

Sentences containing one or more segments with a low value for the linear com-
bination of these measures are manually revised.

4 Experiments

Some experiments were carried out in order to evaluate the appropriateness of the
described technique. We used the 80% of the corpus as training and development
set and the 20% as test set. In all the experiments, the output of the recognition
module of the test sentences was used as the input of the understanding process.
The speech recognizer used in the experimentation had a 74% of word accuracy.

We defined two measures to evaluate the performance of the understanding
module:

– %CF, is the percentage of correct frames, i.e. the percentage of obtained
frames that are exactly the same as the corresponding reference frame.

– %CFS, is the percentage of correct frame units (concepts and attributes).

Two different experiments were done. In the first experiment, using the man-
ually transcribed, segmented, and labeled corpus we trained an understanding
model (Section 2). This experiment gives an upper bound of our understanding
technique to compare with the results of subsequent experiments. The second ex-
periment measures the behavior of the semi-supervised algorithm and the active
learning process (Section 3).

For the second experimentation, four subsets were created splitting the train-
ing corpus in order to apply the active learning technique (T25 1, T25 2, T25 3,
and T25 4), each one of them contained the 25% of the training corpus. The
models learned in each step were stochastic finite-state automata. The process
was as follows:
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1. We considered the sentences supplied by the speech recognizer for the first
training subset and the semantic representation (in terms of frames) associ-
ated to each one of them. An automatic segmentation and labeling process
was made using the semi-supervised algorithm. With this labeled data, the
first understanding model was trained (T25 1).

2. Using this understanding model, a process of segmentation and labeling of
the second training subset was performed.

3. Considering the confidence scores generated in the understanding process,
a part of the sentences in the second subset was selected in order to be
manually transcribed, segmented, and labeled. Instead of finding a threshold
of the confidence scores, we selected the 20% of the segments with the lower
confidence score.

4. After the last step a new training corpus was generated. This new corpus
consists of the first training subset, the sentences in the second subset that
were automatically labeled by the understanding process, and the small part
of the second subset (20%) that were manually corrected. With this new
corpus a new understanding model was learned (T25 2).

5. We repeated the process for the third and the fourth training subsets (T25 3,
T25 4).

The results of the first experiment were 63.8% for the %CF measure and 78.2%
for the %CFS measure. The %CFS value is higher than the %CF value. That
is because the %CF measure is more strict: an error in one frame unit produces
an error in the whole sentence.

Table 1 shows the results of the active learning process. As we can see both
measures improve with the increase of training data. The results are slightly
worse than the results in the reference experiment (Ref column), but the effort
of manual segmentation and labeling is much smaller.

Table 1. Results of the active learning process

T25 1 T25 2 T25 3 T25 4 Ref

%CF 53.1 54.8 56.9 57.9 63.8

%CFS 70.5 73.1 74.5 75.3 78.2

From a training corpus of 5,024 user turns, 1,256 were semantically labeled for
the initial semi-supervised process, and 750 additional turns were transcribed,
segmented and labeled during the active learning process. This implies a tran-
scription and segmentation of 15% of the training corpus, and semantic labeling
of the 40% of the training corpus. System performance has been reduced by
less than 3% compared to models using the entire transcribed, segmented, and
labeled training corpus.

5 Conclusions

In this paper, we have presented an active learning approach to the estimation
of statistical language understanding models which involves the transcription,
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labeling, and segmentation of only a small amount of data, along with the use of
raw data. We have used this approach to learn the understanding component of a
Spoken Dialog System for railway information retrieval in Spanish. Experiments
show that the results obtained with the proposed method are quite similar to
those obtained from a completely segmented and labeled corpus. However, the
effort employed to obtain the models is much lower than the effort required for
completely transcribing, segmenting, and labeling the training corpus.
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Abstract. We investigate the discriminant power of two local and two
global texture measures on virus images. The viruses are imaged using
negative stain transmission electron microscopy. Local binary patterns
and a multi scale extension are compared to radial density profiles in the
spatial domain and in the Fourier domain. To assess the discriminant po-
tential of the texture measures a Random Forest classifier is used. Our
analysis shows that the multi scale extension performs better than the
standard local binary patterns and that radial density profiles in compar-
ison is a rather poor virus texture discriminating measure. Furthermore,
we show that the multi scale extension and the profiles in Fourier domain
are both good texture measures and that they complement each other
well, that is, they seem to detect different texture properties. Combining
the two, hence, improves the discrimination between virus textures.

Keywords: virus morphology, texture analysis, local binary patterns,
radial density profiles.

1 Introduction

To image viruses using negative stain transmission electron microscopy (TEM)
has proven to be an invaluable tool in early virus diagnostics, [1,2]. Viruses
show different surface texture when imaged using TEM. This fact has been uti-
lized from the very beginning of virology when the advances in TEM technology
walked hand in hand with the discovery of new viruses and the creation of a
virus taxonomy.

The analysis of a virus sample using TEM typically means an visual inspec-
tion performed at the microscope. The main problems with this procedure are
the need for an expert to perform the analysis at the microscope and that the
result is highly dependent on the expert’s skill and experience. To make virus
diagnostic using TEM more useful, automatic analysis would hence be desirable.
The analysis presented in this paper is part of a project with the aim to develop
a fully automatic system for virus diagnostics based on TEM in combination
with automatic image analysis.

Viruses vary in shape from icosahedral to highly pleomorphic particles and
different virus types have different sizes. The appearance of virus particles in
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TEM images can be divided into properties like size, shape and texture. While
size and shape can be used to exclude some virus types they can not, by them-
selves, confirm a specific virus type. Many viruses show a distinct and recurring
texture making it an interesting property to analyse and use to discriminate
between different virus types.

Very little work has been reported on analysing virus texture in TEM images.
In [3] ring filters in the Fourier power spectrum are used as features to discrim-
inate between four icosahedral viruses. In [4] higher order spectral features are
utilized to differentiate between the same four icosahedral viruses. There is no
consensus definition of what texture is, but the general opinion often include
some repetitive intensity variation. The definition of a good texture measure
is hence highly dependent on the problem at hand. When a measure is used
in a classification procedure it becomes possible to assess its capabilities and
qualities.

Local binary patterns (LBP) emerged in the mid ’90s as a local texture mea-
sure [5,6]. LBP has along with several extensions become a popular texture
measure in several real-world applications, see e.g., [7,8]. The thesis by Mäenpää
[9] gives a good overview of LBP and some of it extensions.

Another way of describing the intensity variations in an object is to compute
a radial or density profile (RDP). In [10] radial density profiles are used to dis-
criminate between three maturation stages of human cytomegalovirus capsids in
TEM images of cell sections. [11,12] are examples of their use in cyro-electron
microscopy where DNA packing is compared between two virus types and at-
tachment sites on Simian Cytomegalovirus capsids are analysed, respectively.

In this paper the basic concepts of LBP and RDP, along with some variations,
are investigated for the problem of discriminating between virus textures. We use
Random Forest [13], an ensemble classifier based on decision trees, to enable a
quantitative comparison of how the different texture measures can discriminate
between 15 virus types.

2 Material

The data set consists of 15 different virus types represented with 100 TEM im-
age patches each. The virus types are of different sizes and shape. However, the
diameter (most common cross section for non spherical viruses) is relatively con-
stant within a virus type. The virus types range from 25 to 270 nm in diameter
and their shapes vary from icosahedral to highly pleomorphic (for example like
boiled spaghetti). The image patches are disk shaped cutouts centred on auto-
matically segmented virus particles using the segmentation method presented
in [14]. The viruses have been imaged at different magnifications in the TEM
with a pixel size ranging from 0.5 to 5 nm. To get comparable texture samples
we resample the images to two specific scales using bilinear interpolation. In the
first, which we call fixed scale, the size of a pixel is 1 nanometer. In the second,
which we call object scale, the radius of a virus particle is represented by 20
pixels. In Fig. 1 an image patch of each virus type in the object scale is shown
along with the virus name and diameter.
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Fig. 1. Example images of the 15 virus types in the data set resampled to object scale.
Following the virus name is the approximate particle diameter of each virus type. The
dashed circle marks the texture patch used in the analysis.

3 Methods

3.1 LBP

The local binary pattern (LBP) at a pixel qc with the position (xc, yc) in an
image I is computed by thresholding a number, N , of neighbour points, p, evenly
distributed at a radius R around qc. The position of the neighbour point p where
p ∈ [0, . . . , N − 1], is given by: (xc +R cos(2πp/N) , yc −R sin(2πp/N)).

The LBP code is then the sequence of zeros and ones from the thresholded
values in the neighbour points. If a point p does not coincide with a pixel centre,
bilinear interpolation is used to compute the gray value in p. The LBP code can
be made rotational invariant, LBPri, by circularly shifting the binary number
until the minimum value is obtained. Furthermore we can restrict our binary
codes, considering only uniform binary patterns, LBPriu, further limiting the
number of possible codes. Uniform binary patterns are patterns with at the
most two spatial transitions between 0 and 1 or 1 and 0. Detailed definitions of
LBP, rotational invariance and uniformity can be found in [9]. The rotational
invariant and uniform (allowing ≤ 2 transitions) LBP using N samples at the
radius R is denoted LBPriu2

N,R. The LBP measure of a set of pixels is then the
histogram of occurring LBP codes.
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3.2 LBPF

Extending LBP to multiple scales opens up many design options, whereof sev-
eral alternatives are presented in [9]. A straight forward extension of LBP is to
compute several LBPri

N,R with increasing R where the points are sampled using
Gaussian kernels. This is denoted LBPFri

N,R, where the additional F stands for
filtered. The standard deviation of the Gaussian kernels and the sample points
are selected to cover the neighbourhood as well as possible while minimizing the
overlap of kernels. We have used an exponentially growing radiusR and Gaussian
kernels computed as described in [9]. The LBPF codes are then concatenated
into one feature vector.

3.3 RDP

The radial mean intensity, f , at radius r from the center pixel qc in an image I
is defined as:

f(qc, r) =
1
|N |

∑
q∈N

I(q), (1)

N = {q : ‖q− qc‖2 ∈ (r − 0.5, r + 0.5]}, (2)

where q is a pixel at radius r from qc and N is the set of pixels at radius r from
qc. |N | is the number of pixels in the set N . The radial density profile with n
radii, RDPn, computed for the pixel qc is:

RDPn = [f(qc, 1)− fqc
f(qc, 2)− fqc

. . . f(qc, n)− fqc
] , (3)

where fqc
is the mean value of all f(qc, r), r ∈ [1, 2, . . . , n].

3.4 FRDP

The FRDP is computed in the same way as the RDP but using the Fourier
magnitude spectra in a loge scale as the input image. In this way, the FRDP
shows a profile of frequencies occurring in the input image I. FRDP can be
interpreted as a generalization of the spectral rings used in [3].

3.5 Classification

To get objective measures of the performances of the investigated texture mea-
sures we use the Random Forest classifier. That is an example of an ensemble
classifier based on bagged decision trees introduced by Breiman in [13]. When
the ensemble is created a new bootstrap sample is drawn for each new tree. When
a tree is grown only a random subset of the feature values are used, increasing
the diversity among trees even further. The error rate of the built ensemble clas-
sifier can be estimated through the samples left out of the bootstrap samples,
called “out-of-bag” data by Breiman. We grew 200 trees and the increase in per-
formance per added tree levelled out between 100 and 200 trees meaning that
100 trees is a large enough ensemble. The number of feature values to select at
random for each decision split is set to the square root of the number of feature
values, proposed by Breiman as a rule of thumb.



Virus Texture Analysis Using LBP and RDP 577

Fig. 2. Estimated classification errors for the Random Forest classifier for the different
texture measures. The boxes stretch from the lower to the upper quartile and the line
marks the median. The whiskers show min and max in the data excluding outliers.
Outliers (×) are data points at least 1.5 times the size of the box away from the box.

4 Results

For the investigation in this paper we have compared i) LBPri
8,2, ii) LBPriu2

8,2 , iii) a
multi scale LBPF composed of LBPFri

8,1 + ri
8,2.4 + ri

8,5.4, iv) the uniform variant
LBPFriu2

8,1 + riu2
8,2.4 + riu2

8,5.4, v) RDP20 and vi) FRDP20. The latter two measures
are of global character while the LBP variations are of local character. Figure 2
shows the result. We found that the LBPFri in fixed scale and the FRDP in
object scale are the two most promising texture measures investigated.

For LBPN,R a range of parameter values were tested: N ∈ [4, 8, 16], R ∈
[1, 2, 3, 4]. For LBPF the following sets of N were tested: N1 = [4, 8, 8], N2 =
[4, 8, 16], N3 = [8, 8, 8], N4 = [8, 8, 16] were tested together with R calculated
according to [9]. Many parameter combination resulted in similar discriminant
power and the values selected were the best performing options.

The result shows that LBP and its variations generally performed better in the
fixed scale. From Fig. 2 it is clear that applying the uniformity restriction results
in a poorer discrimination between the virus types in the fixed scale. Among the
1,500 texture patches in the data set, LBPriu2

8,2 resulted in 263 more samples
being wrongly classified in the fixed scale compared to using LBPri

8,2. Applying
the uniformity restriction in the LBPF also resulted in a poorer classification
result in the fixed scale, but only with 93 more samples incorrectly classified.
Most prominent, removing the uniformity restriction for samples of the Cowpox
virus the error decreased from 54% to 26% showing that for certain virus textures
important discriminant information is found in the non uniform patterns.

Figure 3 shows the confusion matrices for the classification using LBP, LBPF,
RDP and FRPD for the fixed scale (a), and the object scale (b). These matri-
ces display the information constituting the boxes for these texture measures in
Fig. 2. From the figures it is clear that RDP discriminates between the virus tex-
tures rather poorly (week diagonal and relatively high values everywhere in the
matrix). It is also easy to see that both LBP and LBPF perform better in the fixed
scale (generally lower off-diagonal values), and that the opposite is true for RDPF.
Both Fig. 3 and Fig. 2 show that the texture measures best discriminating the virus
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textures are LBPF in the fixed scale and RDPF in the object scale. By carefully
analysing their confusion matrices one can see that LBPF clearly perform better
for certain virus textures e.g. 4, 6 and 12, whereas RDPF perform better for 15.
Combining these two measures would probably give an even better discrimination.
That is in fact the case which is shown in Fig. 4. In the confusion matrix, Fig. 4. a),
the off-diagonal values are lower, and the values on the diagonal are much higher
compared to the confusion matrices for each of the two texture measures. It is also

Fig. 3. Resulting confusion matrices, i.e., from the Random Forest classification for the
texture measures, from left to right: LBPri, LBPFri, RDP, FRDP for a) image patches
in fixed scale and b) object scale

Fig. 4. a) Resulting confusion matrix after combining the LBPFri measure in the fixed
scale with the FRDP in the object scale. b) Total error in classification for each virus
type. The median value is marked with a horizontal line.
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clear that the two measures provide complementary information for many of the
virus textures as using both in the classification results in better discrimination
than using the best of the two for each virus class, see e.g. virus 5, 8, 9, and 13.
Figure 4 b) shows the classification result from using the combination of the two
measures for each of the virus classes. The median classification error rate is 13 %
which should be compared to 21% for LBPF in the fixed scale and 22% for RDPF
in the object scale.

5 Discussion

When the uniformity restriction was introduced in [15] the authors show that
the discriminant power was mainly made up by the uniform patterns. This re-
striction is commonly regarded as an improvement upon the basic LBP when
applied. However, our results show that the non uniform patterns contribute to
the discriminant power of LBP and LBPF for the virus texture data.

The approach to handle the different sizes of the viruses was to resample the
images into a fixed scale and into an object scale. From Fig. 2 we can conclude
that the global measures generally score better in the object scale while the
opposite can be observed for the two LBP-based measures.

The choice of classifier can of course be discussed and with a different clas-
sifier, e.g., SVM, NN or AdaBoost, the result would most likely have looked
slightly different. We have selected the Random Forest classifier based on previ-
ous positive experiences using similar measures and on a comparison of classifiers
(Random Forest, SVM, GMM, AdaBoost) on a similar problem. However, this
paper is not about selecting the best suited classifier but rather using a classifier
as a tool to evaluate our texture measures.

Future work includes exploring some of the many possibilities within the LBP
framework to make a local texture descriptor that is more robust to noise. Fur-
ther, combinations of texture measures and size and shape descriptors as well
as other a priori knowledge about the virus sample type will be used in the dis-
crimination problem present in our intended real-world application. For example
haemorrhagic fever viruses such as CCHF, Dengue and Ebola are rarely found
in fecal samples. Moreover, many virus particles will be analysed and classified
in each patient sample and therefore a certain degree of incorrect classifications
do not pose a problem.
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Abstract. The research on multiple classifiers systems includes the cre-
ation of an ensemble of classifiers and the proper combination of the
decisions. In order to combine the decisions given by classifiers, methods
related to fixed rules and decision templates are often used. Therefore,
the influence and relationship between classifier decisions are often not
considered in the combination schemes. In this paper we propose a frame-
work to combine classifiers using a decision graph under a random field
model and a game strategy approach to obtain the final decision. The
results of combining Optimum-Path Forest (OPF) classifiers using the
proposed model are reported, obtaining good performance in experiments
using simulated and real data sets. The results encourage the combina-
tion of OPF ensembles and the framework to design multiple classifier
systems.

1 Introduction

The research on multiple classifiers systems comprises the creation of an en-
semble of classifiers and also the combination of the decisions. The classifier
ensembles are often produced through techniques such as bagging [1], boosting
[4] and random subspace methods [6], producing classifiers using different sub-
sets of samples and features. The combination (or fusion) of all decisions is often
addressed using fixed rules [8] and also more complex methods.

If the classifiers to be combined provide only class labels as output, the majority
voting is the approach commonly used to combine them. The limits of such schemes
were investigated and the diversity aspect is currently under discussion, with the
study of patterns of failure and success, and “good” and “bad” diversity [2].
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In this study, we propose a framework for the combination of classifiers by
creating a decision graph under a Markov Random Field (MRF) model. In order
to compute the final decision we explored a majority voting scheme and a game
strategy approach (GSA). This should not be confused with fusion of graphs or
combination of structural pattern recognition classifiers. We rathers developed
a framework to combine classifiers using a random field model constructed from
a graph of classifier decisions, as a way to capture the dependency between
their outputs. Although another study used game theory to generalize rules
for support-vector classifiers combination [5], the GSA combination algorithm
proposed here is different, designed so that each classifier is seen as a player and
each classifier decision (class label) is seen as a strategy.

This paper aims to combine ensembles of Optimum-Path Forest (OPF) classi-
fiers [12], although the proposed model is general an can be used with a variety
of other classifiers. The OPF technique models the feature space as a graph,
using optimum-path algorithms to perform training and classification, and it
outputs only class labels. The proposed combination is performed by training
classifiers with distributed disjoint subsets and it is designed to improve accuracy
and reduce running time. To improve speed, the method was developed so that
it could be processed using parallel or distributed processors. Therefore, this
paper presents contributions both on the study of a new model for combination
of classifiers and on the development of a combination algorithm for the OPF
classifier.

The paper is organized as follows. Section 2 introduces the OPF classifier used
as basis for the ensembles. Section 3 describes the proposed combination frame-
work, including the graph-based MRF model, the GSA combination algorithm
and how the ensembles are created. Section 4 and 5 describe the experiments,
results and discussion, respectively. Finally, the conclusions are presented in
Section 6.

2 Optimum-Path Forest Classifier (OPF)

Papa et al. [12] introduced the idea of designing pattern classifiers based on
optimum-path forest. The training samples are interpreted as the vertices of a
graph, whose edges are defined by a given adjacency relation and weighted by
some distance function. It is expected that samples from a same class are con-
nected by a path of nearby samples. Therefore, the degree of connectedness for
any given path is measured by a connectivity (path-value) function, which ex-
ploits the distances along the path. Since the true label of the training samples
is known, key samples (prototypes) are identified in each class. Optimum paths
are computed from the prototypes to each training sample, such that each pro-
totype becomes the root of an optimum-path tree (OPT) composed by its most
strongly connected samples. The labels of these samples are assumed to be the
same of their root.

The training phase of OPF consists, basically, in finding prototypes and ex-
ecute OPF algorithm to determine the OPTs rooted at them. Further, the test
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phase essentially evaluates, for each test sample, which training vertex offered
the optimum-path to its. The classification of each new sample t from test set
O is performed based on the distance d(s, t) between t and each training vertex
s ∈ T and on the evaluation of the following equation:

C2(t) = min{max [C1(s), d(s, t)]}, ∀s ∈ T. (1)

Let s∗ ∈ T be the vertex s that satisfies this equation. It essentially considers
all possible paths from S in the training graph T extended to t by an edge (s, t),
and label t with the class of s∗.

The OPF classifier has been demonstrated to have similar results to the ones
obtained by Support Vector Machines, but running training much faster.

2.1 Learning Algorithm

Large datasets usually present redundancy, so it should be possible to estimate
a reduced training set with the most relevant patterns for classification. The use
of a training and an evaluation set has allowed OPF to learn relevant training
samples from the classification errors in the evaluating, by swapping misclassified
samples of the evaluating set and non-prototype samples of the training one
during a few iterations. In this learning strategy, the training set remains with
the same size and the classifier instance with the highest accuracy is selected to
be tested in the unseen test set.

3 Random Field Model for Combination of Classifier
Decisions

A classifier that outputs only class labels, for example OPF, allows only abstract-
level methods for combination. In such cases, the most common approach is to
apply a majority voting rule to obtain the final decision.

In this context, we propose a model similar to a Bayesian Network, using a
directed graph of decisions for each object to be classified, where the vertices
represent each classifier decision (class label), and the edges denote how each
classifier influences the decision of the other ones. At first, this graph can assume
any topology. To simplify the model, we are going to avoid cycles and use a tree
with inverted directions in this paper. An example of such model is depicted in
Figure 1(a), where the final decision is obtained through the propagation of the
decisions through the graph, from the source vertices to the sink vertex.

This framework allows the definition of a more general model for combination
of decisions. It can be specially useful when there is knowledge about how the
decisions must influence each other. One can also use it at random, choosing
different levels of vertices and edges.

One of the advantages of this framework is that it can be modeled through a
Markov Random Field (MRF). Consider, for example, the situation depicted in
Figure 1(a). In this case, we want to model the final decision, provided here by
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(a) (b)

Fig. 1. Examples a graph modelling the decision of classifiers, where the final decision
is obtained at the “sink” (S) vertex: (a) 10 classifiers and arcs with different weights,
(b) star graph for 9 classifiers

the base classifier “S”, in terms of the partial decisions given by other classifiers
(competitors). In other words, we want to analize how individual elements (clas-
sifiers) modify their behavior to conform to the behavior of other individuals in
their vicinity. This is the typical scenario found in MRF models, used to study
collective effects based on consequences of local interactions.

Since here each classifier gives as output a hard label (i.e., a discrete number
that indicates the class of that sample) a suitable choice is the Potts MRF model.

3.1 The Potts MRF Model

The dependency structure between the classifiers output can be well modeled by
a Potts MRF pairwise interaction. This model is both isotropic and stationary,
which means that the spatial dependency parameter is the same for all directions
and does not change as we move from one vertex to another. According to the
Hammersley and Clifford theorem, a MRF model can be equivalently defined by
a joint Gibbs distribution (global model) or by a set of local conditional density
functions (LCDF). Due to mathematical and computational tractability, we will
adopt a local description of the probability model by means of a set of LCDF’s.
According to [14], the Potts model LCDF for a single observation is given by:

p (vi = m|ηi, β) =
exp {βUi (m)}∑M
�=1 exp {βUi (�)}

, (2)

where m is the label of the current vertex, Ui (�) is the number of neighbors
of the i-th vertex having label equal to �, β ∈ � is the spatial dependency
parameter that controls how strong is the influence of the neighboring vertices,
and � ∈ G, with G = {1, 2, . . . ,M}, where M represents the number of classes
of the decision problem.

3.2 A Game Strategy Approach to Compute the Final Decision

It has been shown that MAP-MRF problems — where MAP stands for Maximum
a Posteriori — do not allow closed-form solutions and, in order to approximate
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the MAP estimator, combinatorial optimization algorithms are required to iter-
atively improve an initial solution [9]. In this study, we propose a combination
scheme (GSAc) based on the Game Strategy Approach (GSA) algorithm [15], a
non-cooperative game-theoretic algorithm that has been proved to approximate
the MAP-MRF estimator by, given an initial solution, converging to the Nash
Equilibrium.

In a n-person game, I = {1, 2, . . . , n} denotes the set of players. Here, each
player is a classifier, represented by a vertex in the graph. The idea is to build
a decision graph where each vertex is given by a decision of an OPF classifier.
The iterative process begins at the source vertices, propagating the labels to the
sinc, where the final decision will take place.

Each player has a set of pure strategies Si. In this case, the set Si is the same
for all players, being defined as Si = {1, 2, . . . , C}, where C is the number of
classes. The game process consists of, at a given instant, each player choosing a
strategy si ∈ Si in a way that a play s = (s1, s2, . . . , sn) is yielded, and a payoff
Hi (s) is assigned to each player.

Algorithm 1 – GSAc: combination of classifier decisions

Input: A labeled cooperation graph G = (V, E) with |E| = |V | − 1 (tree) and |V | = D where D is the
number of classifiers, and α ∈ [0, 1]

Output: Set of labels after final decision, L
Auxiliary: The base classifier is the sinc vertex and the labels of each vertex is the output of the respective

classifier.

1. For k = 1 to D, do

2. Choose the strategy l
′
i �= l

(k)
i that maximizes the payoff, i.e., Hi

(
l
(k)
i ||l′i

)
= maxliH

(
l
(k)
i ||l′i

)

3. If Hi

(
l
(k)
i ||l′i

)
≤ Hi

(
l
(k)
i

)

4. l
(k+1)
i = l

(k)
i

5. Else

6. l
(k+1)
i = l

′
i with propability α

7. l
(k+1)
i = l

(k)
i with propability 1− α

8. Stop if the labeled graph is a Nash point, or repeat the iteration using the current play.
9. Return the final decision (the result of the combination of the classifiers).

Two fundamental hypothesis are assumed in GSA: first, the payoff of a player
depends only on its own strategy and the strategies of its neighbors, and second,
it is supposed that each player knows all possible strategies and the payoff given
by each one of them. As GSA is based on non-cooperative game theory, each
player selects independently his own strategy to maximize the local payoff. The
solutions of a non-cooperative game are the Nash points, a condition achieved
when none of the players can improve his expected payoff by unilaterally chang-
ing his strategy. In mathematical terms, a play t∗ = (t∗1, t

∗
2, . . . , t

∗
n) satisfies the

Nash Equilibrium if [11]:

∀i : Hi (t∗) = maxsi∈SiHi (t∗||t) (3)

where t∗||t is the play obtained by replacing t∗ by t. It has been shown that
Nash points always exist in non-cooperative games with pure or mixed strategies
[11]. The GSA fundamentals are based on a major result derived by [15] which
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states that given a initial play, the GSA algorithm converges to a Nash point in
a finite number of steps.

The proposed GSAc algorithm for combining classifiers is given by Algo-
rithm 1. Some considerations must be provided. First, the local payoff is calcu-
lated as the local energy, that is, Hi (li) = βU (li), which is directly proportional
to the probability value p (vi = li|ηi, β). Another issue is regarding the α ∈ [0, 1]
parameter existing in GSAc, which controls the probability of acceptance of new
strategies. If α = 1, we always accept a better strategy (the algorithm becomes
deterministic), otherwise even if there is an improved strategy, we might not
accept it in that iteration (non-deterministic behavior).

3.3 Building an OPF Classifier Ensemble

To create an ensemble of OPF classifiers, we used disjoint training subsets [13].
Given a fixed number D of subsets, the algorithm chooses random samples,
without replacement, from the original training set T until D subsets are cre-
ated. The samples are taken so that each subset will contain approximately the
same number of objects per class. Each subset is then used to train a classifier.
The procedure is described in Algorithm 2, where OPF learn and OPF classify
corresponds to OPF learning and classification procedures, respectively.

As described in Section 2, the OPF has a fast learning algorithm to rebuild
training set using an evaluation set in order to improve accuracy of each classifier,
and, therefore, is expected to improve accuracy of the final decision. It has a
behavior similar to a boosting algorithm. Moreover, the OPF training algorithm
has computational complexity of Θ(N2), in which N denotes the training set
size, and therefore, it is expected to run faster for k training sets of size X then
for a larger one with size N = k ×X .

Algorithm 2 – OPFcd: OPF combination of distributed disjoint sets

Input: Training data set T of size N with correct labels ωj ∈ Ω, j = {1, .., C} for C classes, the
evaluation set V , the set of objects to be classified O (test set), the number of disjoint subsets
D, the number of samples of each class P = {p1, .., pC}, and the OPF algorithm OPF learn and
OPF classify

Output: Set of labels after final decision, L
Auxiliary: The number of objects on each subset M , training subsets Ki, classifiers Ei, and objects labeled

by each classifier Ii, where i = {1, .., D}

1. M ← �N/D�
2. For each subset i, (∀i = 1..D), do
3. For each class j, (∀j = 1..C), do
4. Select randomly (pj/D)×M samples of class j from T without replacement and store them in Ki

5. Ei ← OPF learn(Ki,V )
6. Ii ← OPF classify(O,Ei)
7. L ← Vote(Ii)
8. Return L

4 Experiments

4.1 Data

The experiments were carried out using four simulated and five real data sets.
The simulated data sets were built so that the classes were partially overlapped.
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Table 1. Simulated data sets characteristics, where C is the number of classes and F
is the number of features

Name Size C F Type

B2-2D 1,000 2 2 Banana-shape

B2-3D 2,000 4 2 Banana-shape

G4-2D 1,000 2 4 Gaussian

G4-3D 2,000 4 4 Gaussian

Table 2. Real data sets characteristics, where C is the number of classes and F is the
number of features

Name Size C F

NTL 8,067 2 4

COREL 1,000 10 150

Wine 178 3 13

KDD-1999 380,271 3 9

Activity 164,860 11 6

The Gaussian data sets have classes with different covariance matrices. The
banaha-shape data set with 3 features was generated with a higher variance
when compared to the one with 2 features. The project web page1 contains the
code to generate the simulated data using PRTools2 and an implementation of
GSAc. Table 1 shows the characteristics of simulated data sets and Table 2 of
real data sets.

NTL is a dataset of an electric power company for identification of legal and
illegal profiles of industrial costumers. COREL is a subset of an image database
including 10 classes with SIFT features [10]. Wine is a small data set with results
of chemical analysis of wines of three different cultivars [3]. KDD-1999 models a
network intrusion detector, capable of distinguishing intrusions or attacks, and
normal connections [3]. Activity is the “Localization Data for Person Activity
Data Set” to identify what is the current activity of a person based on sensors
[7].

4.2 Settings and Implementation

We conducted the experiments as follows: the data sets were partitioned in three
sets, 10% for training, 5% for evaluating and 85% for testing.

There are three exceptions in the settings due to the number of samples per
class and the size of some real data sets. The exceptions are: i) COREL data
set with 15% for training and 5% for evaluating, ii) Wine data set with 30%
for training and 15% for evaluating, and iii) KDD-1999 data set with 1% for
training and 0.5% for evaluating.

1 http://sites.google.com/site/projectensembles/
2 http://www.prtools.org/

http://sites.google.com/site/projectensembles/
http://www.prtools.org/
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The whole training set was used to train the OPF “single classifier”, and the
subsets obtained from the training set were used to train several classifiers and
build the ensembles. We performed experiments using from 3 to 9 training set
partitions (disjoint training subsets) obtained by the OPFcd (Algorithm 2).

In these series of experiments, the decision graph was modeled using a directed
star graph, since it is the simplest possible model and can show the robustness
of our proposed schema for classifier combination. Figure 1(b) shows an exam-
ple of the model for an ensemble of 9 classifiers. On each experiment, the sink
vertex was randomly chosen from the ensemble and all the other classifiers were
conected to the sink node to create the decision graph. No other relations were
specified. The GSAc algorithm (Algorithm 1) was then applied to obtain the
final decision. We also report the results of a simple majority vote applied to the
classifier ensemble in order to compare with the proposed method.

The parameters for the GSAc algorithm was experimentally obtained and
defined as β = 0.8 (spatial dependency parameter) and α = 0.9 (probability of
acceptance of new strategies).

All experiments were repeated 10 times on different training sets and par-
titions. The average and standard deviation results are presented. In order to
verify the significant differences between groups of results, we performed a two-
tailed t-test for samples with unequal variances.

5 Results and Discussion

The main results are shown in Table 3. It displays the classification errors for
the data sets using the naive OPF in the first column, and the errors for en-
sembles of 3, 5, 7, 9 and 42 OPF classifiers using Vote and GSA algorithms to
compute the final decision. The results for the ensembles with 4, 6 and 8 classi-
fiers were omitted due to space limitations, since the results were similar to the
displayed ones. The ensemble with 42 classifiers was created using the outputs
of all classifiers produced by the number of partitions from 3 to 9.

The combination approach using disjoint data sets improved the results for
all data sets except for the Activity. It was due to a high decrease in performance
as less samples are used for training in this data set — a bad scenario for combi-
nation of classifiers. However, the combination of all 42 decisions improved the
results of all data sets. An improvement on the results was observed for both
simulated and real problems in which the single classifier obtained higher error
rates, for example Wine and G4-2D, and also for those with a lower error, for
example KDD-1999 and B2-2D. By using an ensemble of 42 OPF classifiers it
was possible to achieve an accuracy of 99.95% for the KDD-1999 data set.

The GSAc results were similar to the Vote method. It is possibly due to the
characteristics of the GSAc algorithm under a star graph model, in which the
final decision will be dominated by the mode of the classes in the neighborhood.
It works as a majority vote rule using a random approach for tie-breaking when
the parameters are defined as α = 1 and β = 1. The proposed method is,
however, more flexible, allowing the design of different graph topologies and an
adjustment on the parameters α and β, as performed in this study.
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Although the differences between the proposed and competing method were
not significant for all data sets, the GSAc was able to improve the performance
using different sizes of classifier ensembles, and, therefore, different number of
training set partitions. It also showed a slightly better performance when using
the graph with all 42 decisions. We expect that more complex systems can take
advantage of the GSAc characteristics.

Table 3. Classification errors for naive OPF and combination of classifiers using Vote
and GSA. Results in boldface represents significant improvement for a p < 0.05. ∗
the ensemble with 42 classifiers represents the decisions of all classifiers trained with
number of partitions from 3 to 9.

Data set / Comb. Number of classifiers in the ensemble

Naive OPF Method 3 5 7 9 42
∗

B2-2D Vote 5.5±1.0 5.5±1.0 6.0±0.7 4.4±0.7 1.4±0.4
7.1±0.9 GSA 5.6±0.9 5.4±0.8 5.6±0.9 4.4±0.9 1.1±0.5
B2-3D Vote 21.2±1.5 17.1±1.7 18.4±2.4 16.4±2.1 5.6±1.1

21.6±1.5 GSA 20.6±1.7 17.0±1.5 18.3±2.4 16.4±2.2 4.5±0.7
G4-2D Vote 25.3±3.5 21.5±2.7 23.7±3.7 19.5±1.8 6.3±0.3

26.4±2.5 GSA 23.6±2.2 21.6±2.8 22.0±3.1 19.5±1.9 6.0±0.2
G4-3D Vote 14.4±1.3 14.2±1.1 13.5±0.9 12.3±1.0 9.6±1.2

14.2±1.0 GSA 14.2±1.5 13.0±0.7 12.6±1.0 12.3±0.9 9.5±1.1
NTL Vote 8.2±1.4 8.4±1.2 9.1±2.9 9.5±3.5 5.4±0.2

10.1±0.4 GSA 7.7±1.1 8.2±1.2 8.9±1.7 10.2±3.3 5.3±0.1
COREL Vote 16.4±1.0 15.9±0.8 15.5±1.6 16.3±2.0 12.3±0.3
18.1±0.6 GSA 16.4±1.2 15.1±0.8 15.0±1.2 15.3±1.3 12.2±0.5

Wine Vote 28.6±2.0 28.0±1.5 29.2±2.0 31.1±2.0 17.7±3.6
30.4±1.8 GSA 27.8±3.0 27.1±1.6 27.0±1.7 30.1±2.6 15.6±3.3

KDD-1999 Vote 0.16±0.02 0.25±0.03 0.24±0.04 0.14±0.02 0.04±0.01
0.21±0.05 GSA 0.17±0.02 0.21±0.02 0.19±0.02 0.15±0.03 0.05±0.01
Activity Vote 30.9±2.0 31.1±1.6 31.4±0.7 31.8±1.7 22.1±1.6
30.0±1.2 GSA 30.8±1.9 30.9±1.2 31.4±1.1 29.8±1.4 21.3±1.9

6 Conclusions

Using a simple star graph to model the classifier system, the results showed to
decrease the classification error. It was interesting to observe such results even
with the combination of few classifiers obtained with the OPFcd method, en-
couraging the use of OPF classifiers to build ensembles. Since the OPF training
algorithm is Θ(N2) as discussed in Section 3.3, the combination of OPF en-
sembles is also a faster procedure when compared with the single OPF, specially
when it is carried out with few classifiers, as proposed in this paper using disjoint
training subsets.

The behavior of the proposed combination framework was similar to the be-
havior of known methods for combination of ensemble of classifiers. We believe
it is a consequence of the simple star graph model used in the experiments, and
that it can change when a more complex model with several levels of decisions
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are used to model the multiple classifier system. The proposed model allow the
design of complex combination schemes, allowing the use of many known meth-
ods for MRF and optimization to solve the classification problem. Therefore it
has the potential to overcome difficult problems when there is knowledge about
how the classifiers decisions should influence each other. A more detailed anal-
ysis of how the decision graphs can be designed for different machine learning
problems is a point left for future studies.
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Abstract. In the process plants where beef skin is processed, leather
classification is done manually. An expert visually inspects the leather
sheet and classifies them based on the different types of defects found on
the surface, among other factors. In this study, an automatic method for
defect classification of the Wet Blue leather is proposed 1. A considerable
number of descriptors are computerized from the Gray Scale image and
the RGB and HSV color model. Features were chosen based on the Se-
quential Forward Selection method, which allows a high reduction of the
numbers of descriptors. Finally, the classification is implemented by us-
ing a Supervised Neural Network. The problem formulation is adequate,
allowing a high rate of success, obtaining a method with wide range of
possibilities for implementation.

1 Introduction

Leather is a raw material for producing a big amount of products from clothes
to furniture. Products made of leather are highly appreciated for buyers because
in many cases they are hand-made pieces with a high price.

The goal of leather processing plants is to transform the fresh skin (hide),
just taken from the animal, in leather sheet to be used in the production of end
goods. In figure 1, the main stages in the leather fabrication process are shown.
Figure 1(a) shows a stage named Ribera, in which the cow skin is clean from hair
and it is hydrated with chemical products to avoid decomposition. At the end
of this stage, the sheets are humid and with a blue tone. The hide at this stage
is named Wet Blue. Figure 1(b) shows the pre-classification stage, where the
Wet Blue leather sheets are manually separated in two categories: good and bad
quality. Figure 1(c) shows the draining phase, where the sheets are introduced
into a machine to eliminate the humidity excess. Finally, figure 1(d) shows a
leather lot already dried.

1 This work is partially supported by VisionLabs S.A. (http://www.visionlabs.cl).
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(a) (b)

(c) (d)

Fig. 1. Leather processing: (a) Ribera (b) Pre-classification (c) Drying (d) Wet Blue
leather lot

After the drying stage, an expert visually inspects the leather lot and proceeds
to classify it based on the amount of surface defects, zone and area affected by the
defect, thickness of the sheet, among other factors. The more defects a sheet has
the lower the price. Hence, the classification is a critical task for the economical
value of the product. The classification process is exposed to human error because
of operator fatigue, his mood, etc. An error in the classification devaluates the
product on the eyes of the buyer, sometimes producing 15% return rates [1],
implying considerable monetary losses for the leather plants.

The rest of the paper is organized as follow: Section 2 presents related studies
and research contribution to the topic. Section 3 presents the proposed method.
Section 4 analyzes the results. Finally section 5 displays the conclusions for the
study.

2 Related Studies

The proposal presented in [1] is a pioneer study for the leather classification
problem. A semi-automatic method is introduced, detecting defects and clas-
sifying the leather sheet based on the area affected by the defects. This work
requires human intervention for the defect detection.
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In [2] a method is proposed based on the use of geometric and statistic descrip-
tors, in addition to the use of decision trees for the classification of the leather
surface. The leather classification is done on finished leather stages past the Wet
Blue, hence a classification error means the irrevocable loss of the leather piece.

In [3] an identification method is proposed which analyze histogram of the
image, using the chi-square criteria. This method compares the distance between
the histogram for the analyzed area and the histogram of the areas with defects.

The following studies are a series of recent research for the Project DT-
COURO2, whose goal is to detect defects in Raw Hide leather and Wet blue
leather. In [4] software is implemented for the extraction and labeling of samples
from the areas with defects, all manually. In [5] a comparison of the performance
for several classifiers using first order descriptors from the Concurrence Matrix
is performed. The study in [6] adopts as a classifier the Support Vector Machine,
focusing on properly tuning the parameters of the classifier by using a stochastic
method. Finally, in [7,8] the classification scheme is improved by having a stage
selecting features, reducing the amount of descriptors used to 90.

This study presents an automatic method for classifying defects on the Wet
Blue leather. The most common defects in Chilean leather plants are considered:
Open Cut, Closed Cut, and Fly Bite. Computing a big amount of descriptors is
proposed as well as the implementation of a selection stage for features based
on the Sequential Forward Selection method, allowing approaching the prob-
lem with a much reduced amount of descriptors. For the classification, a Multi-
layer Perceptron, trained with a method allowing an adequate generalization is
adopted. The proposed innovations provided a robust method with a high rate of
success, obtaining a method with wide range of possibilities for implementation.

3 Method for Classifying Defects

In this section the different stages of the proposed defect classification method
are described. All the stages of a system for pattern recognition are considered,
from the sampling to the pattern classification. Four classes for the problem are
defined: three of them related to the defects, and one associated to a zero-defect
leather.

3.1 Capture

To capture the images, a camera with high sensitivity sensor Exview HAD CCD
for visual inspection was used 3. The camera was installed at the top of a hollow
cylinder, 30 cms over the leather sheet. Inside the cylinder, an artificial LED
lighting was implemented with the goal of keeping always the same lighting
conditions and to avoid light flashes on the leather surface.

159 1000x960-ṕıxel images of Wet Blue leather were taken, from which a
dataset of 1769 40x40 pixel samples of normal and defective leather pieces was
2 DTCOURO : http://www.gpec.ucdb.br/dtcouro
3 PointGrey Chameleon: http://www.ptgrey.com

http://www.gpec.ucdb.br/dtcouro
http://www.ptgrey.com
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(a) (b) (c)

Fig. 2. Leather Defects: (a) Open Cut (b) Close Cut (c) Bite Fly

built. The dataset has 341 samples of Open Cut, 336 Closed Cut, 374 Fly Bite,
and 718 normal leather pieces (without defects). Figure 2 presents 3 of the
captured samples, each one showing one of the defects.

3.2 Extraction of Features

Following the principle of “The More The Better”, a pattern classification prob-
lem can be approached by computing a wide amount of descriptors and then
using a technique to select features in order to obtain only the relevant de-
scriptors. A big number of features were calculated. Such characteristics were
extracted from the Gray Scale image, and from the RGB and HSV channels,
for a total of 2002 characteristics. The descriptors extracted can be classified in
seven groups: (i) First order statistics, (ii) Contrast characteristics, (iii) Haralick
descriptors , (iv) Fourier and Cosine transform, (v) Hu moments with informa-
tion about intensity, (vi) Local binary patterns, y (vii) Gabor features. Details
of the method and the adopted can be found in [9].

3.3 Selection of Features

In this stage the Sequential Forward Selection method (SFS) [10] is adopted.
This method allows to rank descriptors based on their contribution to the clas-
sification. In order to determine the number of features required to classify the
following procedure is followed: a classifier is linked to each class of interest.
Classifiers are trained with a determined number of features and the percentage
of success in the classification is calculated. Successive trainings of the classi-
fiers are performed, incrementing the number of features based on the ranking
provided by SFS.

The result of the process above is presented in figure 3(a). Each curve in the
figure shows the percentage of success for each one of the 4 classifiers used. It
is clearly noticeable that after a determined number of features, the percentage
of success does not improve substantially. This behavior allows to determine
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the number of features. By analyzing the curves, it is determined that only 10
characteristics, from the universe of 2002 initially computed, are required.

3.4 Design for a Robust Neural Classifier

A Multilayer Perceptron was adopted to design the classifiers because this net-
work belongs to a Universal Converger of Functions [11]. For training the Neural
Network the Bayesian Regularization algorithm is used because offer a better
training speed and a method to determine the number of neurons in the hid-
den layer, based on the computing the effective parameters of the network. The
procedure for training of the neuronal network is described on [12].

The classifier proposed for the problem is composed by 4 Multilayer Per-
ceptron, 3 networks for recognizing defects and another one for identifying the
zero-defect leather sheets. A scheme for classification is presented in figure 3(b),
where it can be observed that for each window analyzed, 10 descriptors are fi-
nally computed. Considering that all the neural networks give and answer, the
class for the network which output value is the closest to 1 is chosen.

For the training of the neural classifiers, the set of available samples was
divided in a training set and a test set as is shown in the left zone in table 1.
The goal is to have a set to train the classifiers and another set to validate the
training with samples that haven’t been part of the training.

(a) (b)

Fig. 3. (a) Selection of features (b) Classification scheme

4 Results

In this section results from the method and experiments executed are presented.
From table 1 it can be seen that the method provided very good results for
classifying the training set as well as the test set. The percentage of success
is above 95%, number that is comparable to the studies quoted but by using
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Table 1. Classification Performance

Type Samples of Samples of Training Set Test Set
of Training Test Hit Hit

Sample Set Set (%) (%)

Open Cut (OC) 200 141 99.5 94.9
Closed Cut (CC) 200 136 94.5 96.4

Fly Bite (FB) 200 174 95.5 96.4
Without Defect (WD) 600 118 97.3 98.2

a significantly reduced number of descriptors. The importance of having few
features is that the classifier has less parameters to adjust and, hence, the times
for training and classification are reduced considerably.

In figure 4 results from processing images with defects are shown. The top
row in the figure shows the images with defects and the bottom row gives the
results after classification. In the images resulting from the classification, the
baby blue color represents a leather sheet without defects, the blue represents
Open Cut (OC), White represents Closed Cut (CC), and red represents Fly
Bite. The classified images have a high percentage of success, with low presence

(a) (b) (c)

(d) (e) (f)

Fig. 4. Results, Top Row: (a) Open Cut (OC) (b) Closed Cut (CC) (c) Bite Fly (BF)
Bottom Row: (d) OC Classification (e) CC Classification (f) BF Classification
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of errors, which shows the good quality of the discrimination for the selected
descriptors and the good training of the classifiers.

5 Conclusions and Future Works

This study has presented an automatic method for classifying defects in Wet Blue
leather. Computation for a large set of features is proposed, and then a quite
reduced set is selected by using the Sequential Fordward Selection method. The
Multilayer Perceptron was selected as a classifier and it was trained by following
a procedure that ensures an adequate generalization.

The proposed method contributes to the solution of the defect detection prob-
lem in Wet Blue leather, by using new descriptors, applying the Sequential For-
ward Selection method in the feature selection stage, and with an adequate
procedure to train the neural network. Based on all the innovations above, the
method has a high reliability detecting defects on leather areas.

Current studies are dealing with a fast stage for finding defects with the goal
of recognizing the type of defect in a restricted area, which will allow to improve
the speed of the analysis of the leather sheets. Besides the previous goal, the
behavior of algorithms with new defects is being studied.
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Abstract. The constant appearance of new contour detection methods
makes it necessary to have accurate ways of assessing the performance
of these methods. This paper proposes an evaluation method of contour
detectors for noisy images. The method considers the computation of the
optimal threshold that produces a greater approximation to the ground
truth and the effect produced by the noise. Both analyzed dimensions
allow objective comparisons of the performance of contour detectors.

1 Introduction

The contour detection is one of the most important problems in image processing.
New operators and methods are constantly proposed with the aim of detecting
contours in complex situations, for example: low contrast images, images in which
objects have not precise and incomplete contours, images with high presence of
noise, among others. The existence of different approaches to address the contour
detection generates the need of evaluating such methods objectively and the need
of comparing the performance of them.

To know the results of a contour detection method, a synthetic image from
which the contours are known is considered. A human expert manually traces
the contours, establishing what is known as a ground truth. This image is used
as a benchmark to assess the outcome of a contour detection method.

To carry out the evaluation of a contour detector a performance function (PF)
is required. This function is generally an expression that involves the amount
of hits and errors on the ground truth. The performance function is usually
normalized (values within a range), so it can be compared with the results of
different methods.

When applying a contour detector, a dark image where the contours corre-
spond to the lighter pixels is got. To assess the PF, it is necessary to threshold the
image resulting from the application of the detector. Thus, we obtain a binary
image, where the detected contour pixels differ completely from the background
of the image. The number of hits and errors regarding the ground truth depends

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 599–606, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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on the threshold value. Thus, the validity of the comparison depends on the
correct computation of the threshold. The works from literature have varying
degrees of depth to the computation of the threshold. There are proposals which
compare results from different detectors with a determined threshold [1,2], where
the validity of results is highly opened to criticism because they can change dra-
matically by choosing different thresholds. Other works compute the PF with a
small set of thresholds [3,4,5,6], which does not permit to figure out if it is in the
set where the threshold that produces the grater approximation to the ground
truth is found. There are other works like [7], which considering the dependence
of the PF on the threshold, perform a search process of the optimal threshold,
thus allowing a more objective comparison.

The focus of this paper is the comparison of contour detection in noisy images.
The approximation of previous works which were mentioned is enriched when
studying the influence of noise in the computation of the appropriate threshold.
A procedure to determine the optimal threshold considering different noise situ-
ations is proposed. The method enables to objectively compare the performance
of contour detectors in images with high noise content.

The rest of the paper is organized as follows: Section 2 presents a new contour
detector derived from the coefficient of variation (CV), and the reasons why it
is speculated that the new operator detects the contours better than the CV
are outlined. Section 3 presents the objective method for evaluating contour
detection. The procedure is applied to the detectors discussed in the preceding
section, being clear the error in the conclusions. The final section presents the
conclusions of the work.

2 A New Contour Detector for Images with
Multiplicative Noise

The Coefficient of Variation is a value proposed as a contour detector in images
with multiplicative noise [8,9,10,11]. The CV is the ratio between the square root
of standard deviation and the mean of a set of data, as shown in the following
expression:

CV =

√
σ(W )
X(W )

(1)

where W corresponds to a sample of data coming from the image. If the image
has a high noise content, the analyzed window will define a population with a
significant presence of outliers. A well-known fact is that the mean is not a good
predictor of central tendencies when outliers are present. This means that the
CV will not be a good contour detector if the images have a high noise content.

To address the above problem, the median can be used in populations with
outliers. Following the above observation, the numerator and the denominator
of the CV are modified based on the median in the following way: as a measure
of deviation the Median Absolute Deviation (MAD) will be adopted, and as
measure of central tendency the same median will be occupied. The new operator
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is called Modified Coefficient of Variation (MCV), and according to the previous
reasoning, it should be robust than the CV for detecting contours in images with
high content of multiplicative noise. The expressions of MAD and the MCV are
presented in (2) and (3), respectively:

MAD(X) = median(|(X −median(X))|) (2)

MCV =
MAD(W )
median(W )

(3)

To generate an image that is contaminated with multiplicative noise a model
widely accepted in literature will be used [12]. The expression of this model is:

In = Iwn × n (4)

where In corresponds to the noisy image, Iwn is the image without noise, and
n is the noise. It is noted that n corresponds to a set of random numbers that
follow a particular probability distribution. In this case, a Gaussian distribution
of mean 1 and a standard deviation σ is used. The value of σ should be very
little not to alter the original image significantly.

To compare the results of both detectors on the noisy image, a performance
function that considers the hits and errors with respect to the ground truth is
adopted [3]. The expression of the performance function is as follows:

ρ =
card(PT )

card(PT ) + card(FP ) + card(FN)
(5)

where ρ is the function of performance, card(X) is the cardinal of a set X, PT
is the set of true positives, FP is the set of false positives, and FN is the set of
false negatives. The performance function ρ is close to 1 if there are many hits
and few errors, and it is close to 0 if there are few hits and many errors.

An interesting approach for contour detection is to consider the contours as
outliers of the image resulting from the application of a detector [13]. This implies
that contour detection is reduced to establish the values that are distant from the
central tendency of the image. In this work, a simple but effective criterion has
been adopted in order to determine the threshold, which separates the contour
pixels from the rest of the image. The criterion is based on the median of the
data as shown in the following expression:

th = k ×median(Ic) (6)

where th corresponds to the computed threshold, k a constant that indicates the
distance of the outlier in relation to a measure of central tendency, and Ic the
image resulting from the application of a contour detector.

Figure 1 shows the results of contour detection for the CV and the MCV. A
synthetic image has been contaminated with multiplicative noise that follows a
gaussian distribution with μ=0 and σ = 0.125. The threshold has been computed
considering k = 2.5 for the expression (6). From figures 1(e) and 1(h), it can be
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 1. Results of Contour Detection. Top row: (a) Original image (b) Noisy image with
Gaussian distribution of the Noise. Middle row: (c) Original image contour with CV
(d) Noisy image contour detection with CV (e) CV detected contours by thresholding.
Down row: (f) Original image contour with MCV (g) Noisy image contour detection
with MCV (h) MCV detected contours by thresholding.

visually seen that the MCV has a better performance than the CV. Numerically,
the result is consistent since ρCV < ρMCV (ρCV =0.1393, y ρMCV =0.3618).

Figure 2 shows performance curves of the function (ρ) for the CV and MCV,
when varying the noise intensity. It starts from an image without noise (σ=0), until
an image with high level of noise is reached (σ=0.2). The threshold that determines

Fig. 2. Performance Function (ρ) versus Noise Deviation (σ)
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the detected contours is computed as th = 2.5×median(Ic). It is noted that as the
noise grows, the PF of both detectors decreases. In the area of most intense noise,
the PF of the MCV is higher than the PF of the CV, so it can be concluded that
the MCV performs better than the CV on highly noisy images.

3 Objective Comparison of Contour Detection in Noisy
Images

In the previous section, the benefits of the MCV as contour detector in images
with multiplicative noise were shown. It was determined that for images with
high noise level, the MCV performs better than the CV. Unfortunately, the
conclusion has been obtained by performing a partial analysis of the variables
that influence the performance of the detector.

In this paper, the effect that the threshold value has on the performance of
the detector is analyzed as well as the fact of subjecting the image to different

(a) σ = 0.05 (b) σ = 0.1

(c) σ = 0.15 (d) σ = 0.2

Fig. 3. Behavior of performance function with variable threshold (1 < k < 2.5) in 4
noise intensity cases
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intensities of noise. The objective analysis of the performance of a contour de-
tector consists of finding the threshold that maximizes the performance function
(optimal threshold) for different noise situations.

Figure 3 shows the value of the performance function of the CV and MCV
for a variable threshold variable in 4 different noise situations. The threshold is
determined by the constant k, and the noise is defined by the standard deviation
σ of the noise distribution. It is clearly observed that, in case of noise, the higher
value of the performance function always corresponds to the CV. This figure
shows that for these 4 cases of noise, the CV detects the contours better than
the MCV, information which contrasts with the results of the previous section.

In order to generalize the previous result, figure 4 presents the curve of the
higher value of performance function for a continuous flow of noise case, both
for the CV and MCV. From the figure, it can be seen that the value of the
performance function associated to the optimal threshold is always higher for
the CV (the curve for the CV is always above the curve of the MCV). This figure
is an objective test to evaluate and compare the performance of the detectors in
question. This allows us to conclude that the CV is a contour detector stronger
than the MCV for images with multiplicative noise.

Figure 5 shows the contours detected for 3 levels of noise with CV and MCV. The
top row corresponds to a low noise level (σ = 0.1), the central line to a medium noise
level (σ = 0.15), the bottom row to a high noise level (σ = 0.2). The columns of
the figure show the noisy images, the contours detected by the CV and MCV, re-
spectively. In the caption of noisy images, the noise standard deviation is σ. In the
caption of the detected contour images, the optimal threshold is indicated by the
constantk, and the maximum value of the performance function by ρ. First, the fig-
ure shows that when the noise increases, the errors in the detected contours increase

Fig. 4. Maximum values of the performance function computed with variable noise
(0 < σ < 0.2)
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as well, what explains the decline of the curve with maximum value of the perfor-
mance function. Secondly, when observing the numerical indicators, it is confirmed
that the CV has a higher value for the performance function ρ than the MCV, no
matter the level of noise of the image. Finally, the figure shows that by visual in-
spection, it is very difficult to decide which method has closer results on the ground
truth. This underscores the importance of an objective and numerical comparison
of the results of contour detection.

(a) σ = 0.1 (b) k=1.8,ρ=0.60 (c) k=2.5,ρ=0.44

(d) σ = 0.15 (e) k=1.7,ρ=0.40 (f) k=2.4,ρ=0.33

(g) σ = 0.2 (h) k=1.6,ρ=0.24 (i) k=2.4,ρ=0.18

Fig. 5. Results of CV and MCV detected contours with three levels of noise. Top
row: Low level of noise (a) Noisy image (b) CV detected contours (c) MCV detected
contours. Middle row: Medium level of noise (d) Noisy image (e) CV detected contours
(f) MCV detected contours. Down row: High level of noise (g) Noisy image (h) CV
detected contours (i) MCV detected contours.

4 Conclusions

A method to compare the result of contour detection in noisy images in an objec-
tive way has been presented in this article. The method considers the influence
of the threshold that determines the contours which have been detected, and the
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noise level of the image. As an example, the comparison between two detectors
(CV and MCV) for images with multiplicative noise has been developed.

Initially, the CV and MCV were compared by a method with partial infor-
mation, which led to erroneous conclusions. It is shown that with the proposed
method an objective comparison can be made, what permits to draw accurate
conclusions when evaluating the performance of contour detectors.
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Abstract. Nursing documentation is all the information that nurses register 
regarding the clinical assessment and care of a patient. Currently, these records 
are manually written in a narrative style; consequently, their quality and 
completeness largely depends on the nurse’s expertise. This paper presents an 
algorithm based on standardized nursing language that searches and sorts 
nursing diagnoses by its relevance through a ranking. Diagnoses identification 
is performed by searching and matching patterns among a set of patient needs 
or symptoms and the international standard of nursing diagnoses NANDA. 
Three sorting methods were evaluated using 6 utility cases. The results suggest 
that TF-IDF (83.43% accuracy) and assignment of weights by hit (80.73% 
accuracy) are the two best alternatives to implement the ranking of diagnoses. 

Keywords: NANDA, Nursing documentation, Pattern Matching, Diagnosis 
retrieval, Decision Support, TF, TF-IDF. 

1   Introduction 

In nursing all information concerning the care and management of patients is 
documented in the form of patient records. In many places this information is stored 
manually in paper records, so its quality and completeness is determined by the 
nurse’s expertise. Currently, there are standards and terminology available that could 
be used to facilitate the transition to electronic records. Among them we find the 
terminology established by the North American Nursing Diagnosis Association 
(NANDA) [1]. This terminology has a total of 188 nursing diagnoses including label, 
code, definition, defining characteristics, risk factors, and related factors. 

In this paper, we present an algorithm that was developed and implemented as part 
of a nursing care software prototype. The system identifies and retrieves diagnoses 
from a set of needs that are identified in the clinical assessment of the patient 
according to the nursing model of Virginia Henderson [2]. 

2   Materials and Methods 

2.1   Data Set 
Two data sources were used by our algorithm: NANDA databases and a patient 
assessment chart. NANDA databases in Spanish were created and are being populated 
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by nurses of the Complejo Hospitalario de Jaén1. The patient assessment chart used in 
this work was created by the researchers in the first stage of the project and is based 
on Virginia Henderson's model. It contains a set of needs and symptoms commonly 
used by nurses in the cardio-surgery intensive care unit (ICU) to evaluate their 
patients. 

2.2   Search and Identification of Nursing Diagnoses Algorithm 

We implemented a pattern matching algorithm that searches for similarities between a 
set of needs or symptoms that are obtained from the clinical assessment of the patient 
and the available information in the NANDA database. Every need is searched among 
the information that describes each NANDA diagnosis (defining characteristics, 
related factors and risk factors). In order to improve the search and identification of 
patterns a tailored medical synonym dictionary was created and used within the 
search. Abbreviations were expanded and all the texts were normalized, i.e. letters 
were converted to lower case and accent marks and other diacritics were removed. 
Some special characters were not eliminated since they were thought to be important 
for the search (example: temperature is commonly referred as T °). 

From pattern matching we obtained a co-occurrence matrix where the columns 
corresponded to the needs or symptoms of the patient and the rows to the NANDA 
diagnoses. Then, each diagnosis dj can be represented by a weight vector dj = 
<wj1,…,wjn>, where n is the total number of different needs across the whole 
assessment chart, and wjk indicates the importance of the tk need in dj [ 3]. This matrix 
is used for the next step which will define the relevance ranking of the retrieved list of 
diagnoses. 

2.3   Diagnoses Relevance Ranking 

We studied and compared three methods to create a diagnoses relevance ranking. 
These methods worked by assigning weights to each diagnosis according to the 
information contained on the co-occurrence matrix.  

 

Frequency of the Terms (T.F.). This method assigns weights based on the frequency 
of co-occurrence of symptoms or needs in the defining characteristics, related factors 
and risk factors for each diagnosis. Frequencies of all the different symptoms 
considered in the search are added and the resulting score is assigned to that 
diagnosis. Once scores are assigned, diagnoses are sorted in a descending order.  
 
Assignment of Weights by Hit or Coincidence. Each time one of the searched 
symptoms appears in the information related to the diagnoses (fjk > 0) a hit or match is 
marked [4]. Once the hits for each diagnosis are detected, scores are assigned by 
adding the hits of those symptoms. Unlike the previous method, this one identifies the 
presence or absence of the search words, thus the score given to the diagnosis will 
depend of the presence or absence of the symptom and not on the number of times 
that this symptom shows in a given diagnosis. 

 

                                                           
1 Nursing Jaen, http://www.gratisweb.com/enferjoja/ 
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Weights Assignment Using TF-IDF. The I.D.F. method [5] calculates the weight of 
every need or symptom according to the inverse value of its frequency in the set of 
diagnoses. Thus, the IDF factor of a need or symptom tk is given by: 

                                      









=
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log)(

ktdf

N
ktidf  .                                           (1) 

Where, N is the total number of diagnoses and df(tk) is the number of diagnoses that  
contain tk.  

TF-IDF calculates the weight of every need or symptom in the vector that 
represents the diagnosis by taking into account the inverse frequency of the term  
in the diagnosis, combining it with the frequency of the term within each document 
(Eq. 2): 

                                       )(),( ktidfjdkttfjkw ⋅=  .                                       (2) 

In order to solve the equation above, we first calculate the frequency of the need or 
symptom tk in the diagnosis dj (TF). Then, we calculate the inverted frequency of the 
diagnosis dj using Eq.1. Finally, both measures are combined using Eq.2. Scores for 
every considered symptom are added to obtain the score for the diagnosis.  

Table 1 shows an example for two conditions: "arrhythmias" and "edema”. As the 
arrhythmias is only present in the diagnosis 1 and 3, the df of arrhythmias is dfa = 2, 
and as there are in total 188 NANDA diagnoses, N = 188, the inverse frequency of 
the arrhythmia diagnosis is idfa=log(188/2)=1.97; "Edema" is present in the 3 
diagnoses, thus its dfa = 3, then inverse frequency of the edema diagnosis is 
idfe=log(188/3)=1.79. Once TF and IDF values are obtained, the weight of each 
symptom within each diagnosis is determined by multiplying the frequency of the 
symptom by its inverse frequency resulting in the weight of the symptom. Finally, a 
general score for a given diagnosis is determined as the sum of the weights obtained 
by each symptom. In Table 1 the given order is: diagnosis 2, diagnosis 1, diagnosis 3. 

Table 1. Scores calculation examples of Weight assignment by Hit 

Diagnostics Arrhythmias Edema Score 
Diagnosis  1 2 1 1.97*2+1.79*1=5.73 
Diagnosis  2 0 7 1.97*0+1.79*7=12.53 
Diagnosis  3 1 1 1.97*1+1.79*1=3.76 

2.4   Diagnosis Ranking Assessment 

Evaluation of the algorithm was performed in 6 examples of use. These examples 
were reviewed by a nurse who determined which diagnoses would be expected given 
a certain set of symptoms and needs. To evaluate the ranking of retrieved diagnoses 
we compared the list of diagnoses given by the nurse with the results obtained by the 
three methods described in Section 2.3.   
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To estimate effectiveness of document retrieval tools, two measures are usually 
used [6]: Precision and Recall. The Recall measures the proportion of documents - in 
this case relevant diagnoses - that the system is able to retrieve.  Precision measures 
the proportion of the recovered diagnoses that are relevant to the query. In this case 
the metric we used to evaluate and compare the rankings is the mean average 
precision (MAP) which is based on the metrics discussed earlier.  
 
MAP is the average of the non-interpolated average precision over all queries [6]: 

                            )(
11

11
)( jkRrecision
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==

=  .                   (3)  

Where, 

 Q    : Total number of consultations. 
 j : Index of consultation. 
m : Total number of relevant documents. 
k : Top k of documents. 
R : Documents retrieved. 

 
MAP is suitable for the evaluation of rankings because it rewards methods that 
provide high scores to the relevant documents; that is, sorted into the top places in  
the list. 

Since the system can retrieve up to the top15 of diagnoses for each of the 6 cases, 
the assessment was made with the Top-5, Top-10 and Top-15. Only the first 15 
diagnoses were evaluated, as it is expected that the algorithm delivers the relevant 
diagnoses within the first listed. 

3   Results 

Table 2 presents MAP score results. It is observed that the MAP score tends to 
decrease as the number of documents to be evaluated increase; that is, going from 
Top-5 to Top-15. It can be noted that for each case both "Assignment of Weights by 
Hit" and "TF-IDF" have higher MAP values than the "TF" method.  

The method "TF-IDF" has a better response in finding the first documents (MAP = 
0.9625), which makes it a very efficient method compared to the "TF" method (MAP 
= 0.7366). The second best method is the "Assigning Weight by Hit” (MAP = 0.95). 
In fact, MAP values for "TF-IDF" are very similar to the MAP values obtained by the 
"Assignment of Weights by Hit”. This can be explained by the way in which both 
methods retrieve the diagnoses. For instance, with "TF-IDF" for each of the 6 queries 
the first two diagnoses corresponded to those expected by the nurse. In the case of the 
"Assignment of Weights by Hit", 4 of the 6 queries retrieved relevant diagnoses 
within the first two positions of the list. In the 2 remaining consultations the expected 
results were within the Top-5, but not necessarily in the first or second position.  
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Table 2. MAP comparison for different number of documents 

Number of 
Documents 

MAP TF MAP 
Weight by Hit 

MAP TF-
IDF 

5 0.7366 0.95 0.9625 
10 0.7121 0.85 0.8769 
15 0.6995 0.8073 0.8343 

4   Conclusions 

This article presents a nursing diagnoses search algorithm that uses a set of needs and 
symptoms from the clinical assessment of a patient. Six use cases were taken as base 
for the evaluation of the search algorithm and the relevance ranking of diagnoses.  

 Results suggest a reasonable performance of the algorithm for the identification 
and recovery of diagnoses (83.43% accuracy Top-15 for TF-IDF, 80.73% accuracy 
Top 15 for “Assignment of Weight by Hit”). We noted that the performance of the 
algorithm may have been affected by the lack of data on the Spanish version of the 
NANDA databases used but even with the available data the results are reasonable 
and promising for future developments that consider a more extensive evaluation of 
both usability and accuracy. Because of its simplicity, relevance ranking of diagnoses 
based on "Assignment of Weights by Hit" was chosen to implement the software 
prototype for the nursing care process. 

The methods shown in this paper allow for automatically retrieving a list of 
nursing diagnoses. This system constitutes a support tool for the nursing process that 
assists in the assessment and/or evaluation of the patient and suggests possible 
diagnoses, but the final decision of the diagnosis is left to the nurse or care giver. 

5   Future Work 

We propose to implement manual search of NANDA diagnosis by name or code that 
will allow the nurse to find diagnoses directly. Also, since this is just a preliminary 
study we plan to perform an extended evaluation involving more use cases. Finally, 
an interesting future work will be to evaluate the impact of the system in a clinical 
environment.  
 
Acknowledgments. The authors would like to thank the professional nurse José Jaen 
of the Jaén Hospital Complex for facilitating the NANDA databases in Spanish.  
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Abstract. In this paper we present a new technique to improve the con-
vergence and to reduce the ghosting artifacts based on constant statistics
(CS) method. We propose to reduce ghosting artifacts and to speed up
the convergence by using enhanced constant statistics method with the
motion threshold. The key advantage of the method is based in its ca-
pacity for estimate detectors parameters, and then compensate for fixed-
pattern noise in a frame by frame basics. The ability of the method to
compensate for nonuniformity and reducing ghosting artifacts is demon-
strated by employing video sequences of simulated and several infrared
video sequences obtained using two infrared cameras.

Keywords: Infrared detectors, focal-plane array, non-uniformity correc-
tion, fixed-pattern noise, ghosting artifact.

1 Introduction

Infrared imaging systems are employed in several applications such as defense,
astronomy and medical science. In general, those systems are based on the in-
frared focal-plane array IRFPA technology. An IRFPA is a die composed of a
group of photodetectors placed in a focal plane forming a matrix of X×Y pixels,
which gives the sensor the ability to collect the IR information.

It is well known that nonuniformity noise in IR imaging sensors, which is due
to pixel-to-pixel variation in the detectors responses, can considerably degrade
the quality of IR images since it results in a fixed-pattern-noise (FPN) that is
superimposed on the true image. Even more, what makes matter worse is that
the nonuniformity slowly varies over time, and depending on the technology used,
this drift can take from minutes to hours. In order to solve this problem, several
scene-based nonuniformity correction (NUC) techniques have been developed [1-
6]. Scene-based techniques perform the NUC using only the video sequences that
are being imaged, not requiring any kind of laboratory calibration technique.

Our group has been given special attention to NUC methods based on esti-
mation theory [7]. Seeking for more e effectiveness in the reduction of NUC, we
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propose to improve the previously published Minimizing the Ghosting Artifact
to RLS Filter scene-based NUC method [8]. Now, we proposed NUC method
based in constant statistics CS. This algorithm exhibits the advantages of desir-
able for simplicity and low mathematical operations [9, 10]. However, the method
has shown the following weakness: the supposition that the input scene is con-
stantly moving, in general, is not valid and ghosting artifacts are generated; the
assumption that the best target for the unknown input infrared irradiance is an
average over its neighboring pixels is scene dependent generating a poor correc-
tion in pixels, which are part of objects boundaries. Then, for improving the
performance of the CS-NUC algorithm, we propose to reduce ghosting artifacts
adding the effects of to speed up the convergence of the algorithm and motion
threshold. Both, mixed effects, are tested with simulated and real IR data.

This paper is organized as follows. In Section 2 the IR-FPA model and the
CS-NUC method with the proposed enhancement are presented. In Section 3
the proposed method is tested with video sequences of simulated and real raw
IR data captured using two infrared cameras. In Section 4 the conclusions of the
paper are summarized.

2 The CS Algorithm for Infrared Video Sequences

In this section, the previously published scene-based NUC method [8] is pre-
sented for completeness. We begin reviewing the most common model used for
the nonuniformity presented IR-FPA technology, and we finish developing the
techniques with the ability of being used to reduce ghosting artifacts and to
speed up convergence of such method.

2.1 CS Method

First, we assume that each infrared detector is characterized by a linear model.
Then, for the ijth detector in the focal-plane array, the measured readout signal
Yij(n) at a given time n can be expressed as

Yij(n) = aij(n) ·Xij(n) + bij(n) (1)

Where aij(n) and bij(n) are the gain and the o set of the ijth detector, andXij(n)
is the real incident infrared photon flux collected by the respective detector. Each
corrupted data pixel Yij(n) is the input to one of the linear repressors. Equation
(1) is reordered for obtain the inverse model given by:

Xij(n) =
Yij(n) −mij(n)

sij(n)
(2)

Mean and mean deviation of Yij(n) can be calculated by the following recursive
equations:

mij(n) =
Yij(n) + (n− 1) ·mij(n− 1)

n
(3)

sij(n) =
|Yij(n) +mij(n)| + (n− 1) · sij(n− 1)

n
(4)
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2.2 Performance of the CS-NUC Method

The main problems detected on the performance of the CS-NUC method are
originated by two basic constraints used in the development of the method. The
first is related to the supposition that the scene is constantly moving with respect
to the detector. Then, the problem is that when the scene is not moving for a
few frames, this is not valid, and the ghosting effect appears. This consists in a
ghost present in the next frames.

The second is related with large uniform areas in the scene. Even when the
scene is in constantly moving with respect to the detector, the moving camera
ensures no variation of photons on the sensor because may come from uniform
areas. This also consists of being ghosts in the next frames.

In the next section, we propose enhanced method CS-NUC to be included in
the algorithm to reduce the ghosting.

2.3 Nonuniformity and Proposed Ghosting Correction Algorithm

All scene nonuniformity correction algorithms require that the objects in the
image do not remain stationary for too long. This can be accomplished by either
periodically moving the camera or else requiring objects in the scene to move. If
an object in the image violates this assumption and remains stationary for a large
number of iteration, the object will blend into the background. If this stationary
object eventually moves from the field of view, it will leave a reverse ghost image
in the scene. The de-ghosting technique detects the changes of each pixel and
compare them with threshold value. This technique slows down the performance
of the algorithm. This effect is minimizing if CS method is modifying the Mean
and Mean Deviation as follows:

mij (n) =
Yij(n) + . . . + Yij(n − k) + (n − k − 1) · mij(n − 1)

n
(5)

sij(n) =
|Yij(n) + mij(n)| + . . . + |Yij(n − k) + mij(n − k)| + (n − k − 1) · sij(n − 1)

n
(6)

k can be chosen by trial and error, so that there is a compromise between speed
of convergence with an acceptable number of mathematical operations. Note
that with k=0 is normal CS-NUC (Eq. (3,4)).

3 Evaluation of the Proposed Methods Upgrades

The main goal of this section is to test the ability of the proposed method to
reduce nonuniformity on simulated and real infrared video data. The algorithm
is tested with simulated infrared image sequences. As a quantitative measure of
performance, we use the Root Mean Square Error (RMSE), which measures the
difference between the true infrared image with the corrected image using the
proposed method. The RMSE is calculated by:
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RMSE(n) =

⎧⎨
⎩ 1
pm

p∑
i=1

m∑
j=1

(x̂ij(n) − xij(n))2

⎫⎬
⎭

1/2

(7)

where p×m is the number of detectors in the FPA. A low value of RMSE means
a better correction of the frame data. The evaluation procedure for each set
of data is detailed in the following sections. Also, as a quantitative measure of
performance, we use the performance parameter ρ, which measures the roughness
in an image. More precisely, for any digital image f, we define

ρ =
‖h1 ∗ f‖1 + ‖h2 ∗ f‖1

‖f‖1

(8)

where h1 is a horizontal mask, [1,-1] , h2 = hT
1 is a vertical mask, the asterisk

denotes discrete convolution, and, for any image f , ‖f‖1 is its L1 norm (the
L1 norm is simply the sum of the magnitudes of all pixels). The two terms in
the numerator of Eq. (8) measure the pixel-to-pixel roughness in the horizontal
and the vertical directions, respectively. Normalization by f1 in Eq. (8) makes ρ
invariant under scaling. Clearly, ρ is zero for a constant image, and it increases
with the pixel-to-pixel variation in the image.

(a) (b) (c)

Fig. 1. Results on simulated data with emphasis in ghost artifacts reduction after 700
frame, a) frame with simulated nonuniformity, b) The corresponding frame corrected
by the previous CS method [10] and c) The corresponding frame corrected by the
enhanced SC method

3.1 Results with Simulated IR Video

The video has been generated using simulated images, where the intensity or gray
level indicates the bodies temperature. FPN is added to each image generating
the corrupted sequence. As an example, Fig. 1a shows a corrupted data frame.
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In Fig. 1b and 1c the corresponding corrected frame by the CS-NUC method
and the enhance CS-NUC method with k=1 are presented, respectively. In Fig.
1b and Fig. 1c we have shown a zooming of the corrected image, specifically of
the zones indicated by boxes. In them, using only the naked eye is clear that the
non-uniformity is better in the proposed method (Fig. 1c) than in the previous
published method (Fig. 1b).

Figure 2 shows the calculated RMSE (a) and roughness (b) for the corrupted
data, for each frame corrected using CS NUC method [10], and the enhanced CS-
NUC method. Further, the average RMSEs computed for the whole infrared se-
quence are equal to 0.075 and 0.068 for the CS-NUC algorithm and the enhanced
CS-NUC algorithm, respectively. It can be seen in Fig. 2a that the RMSE value
obtained for the enhanced CS-NUC method has a greater convergence speed,
because, for the same number of frame, it reaches a lower RMSE value than
other method. It can be seen in Fig. 2b that the roughness parameter associated
with the images indicate a reduction of enhanced CS-NUC method in relation
to CS-NUC method.

(a) (b)

Fig. 2. The performance parameters associated with the images; (a) the evolution of the
RMSE between original and the corrected frames; (b) the evolution of the roughness. In
both chart, x line represents the corrupted data (Raw); dot line represents the RMSE
computed for the CS-NUC method (CS); dashed line represents the RMSE computed
for the proposed enhanced CS-NUC method (E-CS); and Solid line represents original
frame (Original).

3.2 Results with Two Real Infrared Image Sequences

The first sequence has been collected using a 128×128 InSb FPA cooled camera
(Amber Model AE-4128) operating in the 3-5 μm range. As an example, Fig.
3a shows a corrupted readout data frame. In Fig. 3b and 3c the corresponding
corrected frame by the CS-NUC method and the enhance CS-NUC method are
presented, respectively. In Fig. 3b and Fig. 3c we have shown a zooming of the
corrected image, specifically of the zones indicated by boxes. In them, using only
the naked eye is clear that the non-uniformity is better in the proposed CS-NUC
method (Fig. 3c) than in the previous published method (Fig. 3b).
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(a) (b) (c)

Fig. 3. Results on simulated data with emphasis in ghost artifacts reduction after 915
frame, a) frame with simulated nonuniformity, b) The corresponding frame corrected
by the previous CS method [10] and c) The corresponding frame corrected by the
enhanced SC method

(a) (b) (c)

Fig. 4. Performance of the enhanced CS-NUC method under real IR data (Jade model
camera), a) The raw corrupted frame, b) The corresponding frame corrected by the CS
method and c) The corresponding frame corrected by the proposed enhance method

The second sequence of infrared data has been recorded using a 320×240
HgCdTe FPA cooled camera (CEDIP Jade Model) operating in the 8-12 μm
range. As an example, Fig. 4a shows the corrupted readout data. In Fig. 4b, and
Fig. 4c the corresponding corrected frames by the previous published method
CS and the NUC method proposed in this paper are shown, respectively. The
non-uniformity, visually presented in the raw frame, has been notably reduced
by the proposed method; in Fig. 4b and Fig. 4c this is specially noticed in the
marked region. In Fig. 4b it is possible to appreciate the ghosting present. This
ghost effect disappears when we used the enhance method with nonuniformity
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and ghosting correction algorithm, as it is shown in Fig. 4c. Note that the star
in the extended zone is better visually in the Fig. 4c. Thus, we have shown ex-
perimentally with real IR data that the proposed scene- based CS-NUC method
with ghost correction has the ability of notably reduce both the non-uniformity
noise presented in IRFPA sensors and the ghosting generated by lack of motion
in the recorded IR data.

The second sequence of infrared data has been recorded using a 320×240
HgCdTe FPA cooled camera (CEDIP Jade Model) operating in the 8-12 μm
range. As an example, Fig. 4a shows the corrupted readout data. In Fig. 4b, and
Fig. 4c the corresponding corrected frames by the previous published method CS
and the NUC method proposed in this paper are shown, respectively. The non-
uniformity, visually presented in the raw frame, has been notably reduced by the
proposed method; in Fig. 4b and Fig. 4c this is specially noticed in the marked
region. In Fig. 4b it is possible to appreciate the ghosting present. Thus, we have
shown experimentally with real IR data that the proposed scene based enhanced
CS-NUC method has the ability of notably reduce both the non-uniformity noise
presented in IRFPA sensors and the ghosting generated by lack of motion in the
recorded IR data.

4 Conclusions

In this paper an enhanced version of our previously published NUC method,
based in a constant statistics method is presented. The new algorithm has the
ability to improve the nonuniformity correction and to eliminate ghosting ar-
tifacts more efficiently than the previous method. This is obtained by means
adding the effects of to speed up the convergence of the algorithm and motion
threshold. Furthermore, the evaluation with simulated and real data has demon-
strated that the proposed method reduces ghosting artifacts and improves the
RMSE parameter when compared with the previous published method. Using
read-out data taken from cameras of two different technologies we were able to
observe that the method is capable to reduce nonuniformity, minimizing ghost-
ing, with fast convergence and low RMSE.
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Abstract. Atrial fibrillation (AF) is the most common arrhythmia en-
countered in clinical research, with a prevalence of 0.4% to 1% of the pop-
ulation. Therefore, the study of AF is an important research field that
can provide great treatment improvements. In this paper we apply inde-
pendent component analysis to a 12-lead electrocardiogram, for which we
obtain a 12-source set. We apply to this set three different atrial activity
(AA) selection methods based on: kurtosis, correlation of the sources with
lead V1, and spectral analysis. We then propose a reliable AA extraction
based on the consensus between the three methods in order to reduce the
effect of anatomical and physiological variabilities. The extracted AA sig-
nal will be used in a future stage for AF classification.

Keywords: atrial fibrillation, atrial activity, ECG, ICA, kurtosis, cor-
relation, power spectral density.

1 Introduction

Atrial fibrillation (AF) is the most common arrhythmia encountered in clinic
research, with a prevalence of 0.4% to 1% of the population. This prevalence
increases with age, reaching up to 8% in population over 80 years old [1,2].
Therefore, the study of AF is an important research field that can provide great
treatment improvements, such as lower morbidity and mortality, better life qual-
ity, and lower costs for the health care provider.

AF is characterized by uncoordinated atrial activation with consequent de-
terioration of atrial mechanical function [1]. From a clinical point of view, the
analysis of these activities using non-invasive measures is highly desirable. To
this end, the standard 12-lead electrocardiogram (ECG) can be used. Unfortu-
nately, atrial activity (AA) is coupled with ventricular activity (VA), represented
by the QRST complex, in all the 12-lead measures. Furthermore, AA presents
much lower amplitude than VA, sometimes with amplitudes near the noise level.
Additionally, both activities have spectral distributions that overlap, making
linear filtering solutions not useful. Hence, one of the most important tasks for
an appropriate AF analysis is the dissociation of AA from VA. When using
12-lead ECG the challenge we face for the dissociation of both activities is to

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 621–629, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



622 F. Donoso et al.

find a representative waveform that estimates the AA, starting from the 12-lead
ECG. Some of the algorithms used for AA extraction include spatio-temporal
QRST cancellation [3,4], principal components analysis (PCA) [5] and indepen-
dent component analysis (ICA) [6,7,8].

In this work we apply ICA together with three methods to select the best
representation of AA. The goal is to characterize the AA in AF, in order to
find patterns that can be recognized as different ECG-based AF classes, in the
hope that classes will give complementary information to improve the different
treatments currently applied to restore sinus rhythm to patients with this cardiac
alteration.

2 Methods

2.1 Data

Real 12-lead ECG recordings were used from four patients with diagnosed AF.
Records were 60 s long, sampled at 1200 Hz. A pre-processing consisting in a
bandpass filtering and an amplitude normalization were applied. This filtering
stage is basically to reduce baseline wandering below 0.5 Hz and high frequency
noise above 50 Hz. Amplitude normalization is optional, but helps visually com-
pare signals from different patients.

2.2 Independent Component Analysis

ICA is one of the techniques that solves the blind source separation (BSS) prob-
lem [9,10,11]. BSS recovers a set of source signals from the observation of linear
mixtures of the sources. These source signals are not directly accessible and have
to be extracted or separated from the set of measurable signals or observations.
As neither the source signals nor the mixing structure are known, this is referred
to as the BSS problem. This problem can be written in a matrix form as

X(t) = A · S(t) . (1)

X(t) is the vector of acquired signals X1(t),...,Xn(t) and S(t) is the vector of
source signals S1(t),...,Sn(t). A is called the mixing matrix. The goal of BSS is
to estimate S(t) and A from the observations X(t).

The ICA solution to the BSS problem assumes that the sources must be statis-
tically independent and the restriction that the sources must have non-gaussian
distributions [11]. The assumption of statistical independence has already been
established [6] since during an AF there is an uncoordinated operation of AA
and VA [1,12].

2.3 Source Selection for AA

As a result of applying ICA over a 12-lead ECG, a 12-source set is obtained.
From this set we have to choose the most representative signal for AA. For this
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search, three complementary methods will be applied: kurtosis-based extraction,
correlation of the sources to lead V1 of the ECG, and spectral features.

The first method is based on the non-gaussianity of the sources, specially
for those with considerable contents of VA. It is not difficult to observe that
VA presents a super-gaussian behavior, while the AA behaves as a sub-gaussian
random process [6,11]. This non-gaussianity of the sources can be measured by
the fourth-order marginal cumulant or kurtosis, that gives a high value, typically
above 10 for the VA or super-gaussian distributions and negative values for the
AA or sub-gaussian distributions. Thus, the best candidate for AA signal is the
source with the lowest kurtosis.

In the second method, a 12 by 12 correlation matrix between ECG leads
and sources is generated. In this matrix the column for lead V1 is of particu-
lar interest. It is generally accepted that lead V1 captures more atrial activity
[12,13]. Thus, the first approach to this method is to correlate lead V1 with all
the sources and selects the one with higher correlation index. However, it would
be wrong to choose directly the highest value, since the sources with high VA
components have high correlation with lead V1, hiding the correlation in the
non-QRST segments. To avoid this problem, only the sources with low kurtosis
are correlated, obtaining a relatively high correlation in the source that has more
similarity with the non-QRST segments of lead V1. Then, the most representa-
tive source of AA is chosen when the correlation with lead V1 is greater than
the correlation with all the other leads.

However, the fact that lead V1 captures more atrial activity is only a general
rule, dependent on both physiological and anatomical variability among patients.
That is why it is necessary to have redundant tools for an effective AA extrac-
tion. The third method is based in this spectral properties of the fibrillatory
waves, which has a distinct peak between 4 and 9 Hz [5,6,14,15]. To indentify
this feature, the power spectral density (PSD) is estimated using Welch’s aver-
aged modified periodogram method [16]. Then, we have to evaluate a spectral
parameter that give us infomation about the relative amount of energy of the
spectra in the range between 4 and 9 Hz. This parameter is called spectral con-
centration (SC) [8] and is defined by

SC =

9∑
f=4

P (f)

50∑
f=0.5

P (f)
· 100% . (2)

P (f) is the PSD of the signal and f the frequency in Hertz. Since we filtered the
signals in the band of 0.5 to 50 Hz, the denominator represents the total energy of
the signal, while the numerator represents only the energy in the range between
4 and 9 Hz. The criterion applied is that we choose the source with the higher
value of SC in the set of 12 sources.



624 F. Donoso et al.

The source chosen by at least two of these three methods is finally selected
as the AA signal.

3 Results

With all the 12-lead ECG’s signals pre-processed as mentioned in the previous
section, FastICA algorithm was applied [17]. For the resulting set of sources
the kurtosis method was applied, obtaining in all cases at least 4 sources with
kurtosis above 10. This means that those sources have considerable components
of VA, represented by a high amplitude QRS complex, as seen in Fig. 1. Table
1 shows the kurtosis found for all sources in all patients studied. We mentioned
that AA should have negative kurtosis. For example, in Patient 1, Source 9
is the best candidate for AA signal because it is the source with the lowest
kurtosis.

In correlation method, Table 2 shows the selected sources for every patient and
the corresponding correlations with the leads. Fig. 2 shows the source selected
with this method in Patient 1, with the corresponding segment of lead V1.
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Fig. 1. Source 1 in Patient 1, signal with high kurtosis value. QRS complexes are clearly
visible.

Table 1. Kurtosis for all the sources in every patient

Patient

Source 1 2 3 4

1 24.5156 21.9675 113.8125 21.5941
2 26.3407 23.4926 20.8175 19.9526
3 30.555 19.9116 28.0697 34.0353
4 9.249 10.9939 18.0115 11.7974
5 23.5282 7.9972 7.9839 17.5561
6 1.8372 2.74 15.5995 2.5687
7 1.3795 -0.6597 1.7316 1.9107
8 1.3427 1.265 2.0633 1.583
9 -0.5966 0.8024 1.2774 -0.3756
10 -0.4317 0.4478 0.7189 0.6692
11 0.2128 -0.1481 0.4896 -0.1498
12 -0.0792 0.1545 0.079 -0.0366
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Fig. 2. Comparison between Source 9 and lead V1 in Patient 1. Source 9 has the highest
correlation coefficient with this lead.

Table 3 shows the SC parameter for all the sources in the four patients. Fig. 3
shows the PSD of Source 9 (left) in Patient 1, with a SC of 63.2%, and the PSD
of Source 1 (right) in the same patient, with a lower SC of only 18.03%. Clearly,
Source 9 satisfy the hypothesis mentioned above, with a main peak frequency of
5.86 Hz.

Summarizing, Table 4 shows the results of the three methods for the most
representative source of the AA. In this table we see that only in Patient 1 the
three methods match. In the other patients one of the methods does not agree.
The possible causes for this will be discussed in the next section.
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Fig. 3. PSD for Source 9 (left) and Source 1 (right) in Patient 1

4 Discussion

AF is a cardiac alteration that is characterized by uncoordinated atrial acti-
vation. On the ECG, AF is seen as the replacement of consistent P waves by
rapid oscillations, known as fibrillatory waves, that vary in amplitude and fre-
quency components. Furthermore, anatomical differences between patients give
us a source of variabilities in the measurements. This is due to slight variations
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Table 2. Correlation coefficients for the selected sources

Patient/Source

Leads 1/9 2/12 3/12 4/8

I -0.041 0.247 0.044 -0.100
II -0.129 0.118 0.066 -0.023
III -0.125 0.040 0.017 0.038

aVR 0.114 -0.139 -0.054 0.085
aVL 0.076 0.131 0.031 -0.067
aVF -0.074 0.095 0.082 0.011
V1 0.439 -0.256 0.103 -0.385
V2 0.115 0.114 0.002 -0.062
V3 0.067 0.150 0.011 -0.016
V4 0.008 0.174 0.035 -0.001
V5 0.023 0.167 0.026 0.003
V6 0.023 0.141 0.016 0.009

Table 3. Spectral concentration (SC) in percentage for every source in all patients

Patient

Source 1 2 3 4

1 18.03 25.45 10.04 14.36
2 16.80 27.76 22.50 23.65
3 16.06 27.35 15.56 14.25
4 10.62 26.32 13.14 14.39
5 11.47 10.13 9.68 21.25
6 12.35 18.03 22.45 9.49
7 57.14 9.86 6.32 32.41
8 18.10 16.46 25.88 26.29
9 63.20 13.72 27.14 60.99
10 19.81 28.86 11.68 16.30
11 24.60 16.13 26.17 11.07
12 14.86 44.98 9.65 17.32

Table 4. Summary of results for the three methods. Sources shown are those selected
for each method.

Method

Patient Kurtosis corr V1 PSD

1 Source 9 Source 9 Source 9
2 Source 7 Source 12 Source 12
3 Source 12 Source 12 Source 9
4 Source 9 Source 8 Source 9
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Fig. 4. Comparison between Source 8 and lead V1 (left) and between Source 9 and
lead V2 (right). Sources selected by correlation for Patient 4.

in the position of the electrodes in relation to the anatomy of the cardiovascular
system of the patient. All these variabilities directly influence the results from
the proposed methods, thus we use a consensus between these three selection
approaches for AA extraction.

The kurtosis method is an statistical measure, so it is expected that for these
fibri-llatory waves we can have variabilities in the estimation of the kurtosis due
to the potentially non-stationary nature of the physiological process. For Patient
2 we choose Source 7 due to its lower kurtosis, however, Source 12 (chosen by the
other methods) also has a relatively low kurtosis. Although this value is positive,
it is relatively close to Source 7 kurtosis, and still far from values of kurtosis from
VA. Hence, we can conclude that kurtosis is an effective method to discard the
sources that represent the VA, but it is not so accurate to find the source that
represents the AA, due to the intrinsic variablities of this activity.

For the correlation method, the hypothesis we use is that lead V1 is the one
with more visible AA. As we mentioned, it is possible to have variabilities in
anatomical characteristics, resulting in changes of the direction of the electrical
vector, projecting lower or higher AA components to the different leads. Lead
V1 is not the exception to this problem, so the visibility of AA in this lead will
vary for different patients. In Patient 4, Source 8 has the higher correlation with
V1, however, the other methods indicate that Source 9 is the most representative
source for AA. From the analysis, we found that in this patient, Source 9 has the
higher correlation with lead V2. From the above reasoning, we can argue that
in this case lead V2 has more visible components of AA. In Figure 4 we show
both cases, where clearly lead V2 meets this argument. Also, Source 9 presents
a noiseless fibrillatory waves, with a frequency of approximately 7 Hz, matching
with the PSD results.

The PSD method is specially sensitive to variabilities in frequency, so it is
logical to expect variabilities in the PSD for different cases of AF. However, it
is well known that the spectrum of the AA during AF is concentrated between
4 and 9 Hz. In Patient 3 we observe that the SC values for all the sources are
under 28%. This means that we have a scattered spectrum, giving lower SC
for the range between 4 and 9 Hz. Figure 5 shows the PSD for sources 9 (left)
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Fig. 5. PSD for sources 9 (left) and 12 (right) in Patient 3. Source 9 have a peak at a
frequency of 0.6 Hz, and a secondary peak at 7.4 Hz. Source 12 presents a peak at 0.6
Hz and a scattered distribution in the rest of the spectrum.

and 12 (right) in Patient 3. Source 9 is the one selected by the PSD method,
whilst Source 12 is the choice for the kurtosis and correlation methods. It is clear
that Source 9 is not the correct signal for AA, since it has a considerable low
frequency peak that can not be a component of AA. Aditionally, Source 12 was
chosen with a kurtosis value that is not conclusive for the selection, and with
correlation method ocurrs the same, where its greatest value is 0.103. Therefore,
we have a complicated case for AA extraction, that can easily lead in a complete
disagreement of the three methods.

5 Conclusion

In this paper we proposed a reliable extraction of AA during AF. This reliability
is based on the use of a consensus between three selection approaches which
reduces the effect of the expected variabilities.

The results obtained in this paper are the beginning of a research work which
aims to classify AF signals into well-defined subgroups or classes. For the design
of a succesful classifier, we need reliable data, from which feature extraction can
be done. In that sense, if for a certain AF signal we have a complete disagreement
in the results for the three methods proposed, that signal should be discarded.

We trust that the proposed approach will allow for a consistent AA extraction,
thus permiting us to move to the next stage of AF classification.
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Abstract. Since the appearance of methods based on machine learning, they 
have been presented as an alternative to classical phenomenological modeling 
and there are few initiatives that attempt to integrate them. This paper presents a 
hybrid paradigm called gray box that blends a phenomenological description 
(differential equation) and a Support Vector Machine (SVM) to model a 
relevant problem in the field of cerebral hemodynamic. The results show that 
with this type of paradigm it is possible to exceed the results obtained with 
phenomenological models and also with the models based on learning, in 
addition to contributing to the description of the modelled phenomenon. 

Keywords: Gray Box Model, Support Vector Machine, Cerebral hemodynamic, 
PaCO2.  

1   Introduction 

In many fields of science and engineering one has partial knowledge of the 
phenomenon that it is desired to model, having available some equation that describes 
it partially (deterministic model) –this problem appears more often when the 
phenomenon is nonlinear–. On the other hand, there are methods based on learning, 
such as artificial neural networks (random model), which allow modeling nonlinear 
phenomena but do not describe adequately the principles of the phenomena.  

In the 1990s, Psichogios and Ungar [1] proposed the methods called gray box, 
which involve a hybrid strategy that mixes the phenomenological knowledge of an 
equation, usually differential (white box), and an automatic learning method like neural 
networks (black box) to make a more accurate description of the phenomenon (gray 
box). Thompson and Kramer [2] classified these methods into basically two structures. 
The so-called “series configuration”, where the neural network participates by 
adjusting parameters of the differential equation with the purpose of incorporating the 
data variations in the deterministic model, and the other alternative is the “parallel 
configuration”, where the neural network adjusts the results of the differential equation 
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to the data, estimating the residues between both. Representative applications of these 
methods are found in the fields of chemistry and bioprocesses [3-5]. 

In this paper we propose the use of the gray box method, specifically the series 
configuration, to model a relevant problem in the field of cerebral hemodynamic; it 
requires modeling the influence of CO2 pressure (PaCO2) on the system that regulates 
the cerebral blood flow. An increase of PaCO2 in the body causes a state of 
hypercapnia, producing dilation of the blood vessels, deteriorating autoregulation, and 
increasing Cerebral Blood Flow Velocity (CBFV) [6]. The most widely used 
technique to measure the reactivity of the blood vessels of an individual to PaCO2, 
consists in measuring the change produced in the CBFV by breathing a mixture of air 
and 5% PaCO2 [7] to estimate the percent change in CBFV with respect to the change 
in PaCO2 (the measurement of this ratio is known as the reactivity to PaCO2). The 
blood flow velocity is measured with Transcranial Doppler Ultrasonography. 

Since the CBFV variations depend also on the variations of Arterial Blood 
Pressure (ABP), the model is completed by measuring ABP in a noninvasive way on 
the middle finger with a Finapres instantaneous pressure gauge. 

At present there are phenomenological models that approximately represent 
CBFV variation when there are changes in the levels of inspiration of PaCO2 [8]. This 
model will be used as our white box model, to be part of the gray box method. Linear 
[7] and nonlinear nondeterministic models of the autoregulation phenomenon and the 
influence of PaCO2 on this system have also been made [9-10]. In particular, the work 
that we have done [10] has shown that Support Vector Machines (SVM) represent an 
adequate paradigm for modeling (like a black box) the cerebral autoregulation system, 
under normal conditions and when PaCO2 changes. 

The hypothesis that we will prove in what follows has to do with a gray box model 
using the model of Poulin et al. [8] as white box and an SVM as black box, and it will 
allow a better representation of the phenomenon, both under normal conditions and 
under conditions of aspiration of 5% PaCO2. 

2   Methods 

2.1   Data Collection  

Sixteen healthy subjects aged 31.8±8.5 years were studied in a temperature controlled 
laboratory. None of them had a history of hypertension, diabetes, migraine, epilepsy, 
or any other cardiovascular or neurologic disease. The study was approved by the 
Leicestershire Research Ethics Committee and informed consent was obtained in all 
cases. 

The subjects were asked to refrain from ingesting alcohol or caffeinated products 
in the 12 hours preceding the study. Measurements were made in the supine position. 
CBFV was recorded in the middle cerebral artery with transcranial Doppler (Scimed 
QVL-120) using a 2 MHz transducer. ABP was measured noninvasively using arterial 
volume clamping of the digital artery (Finapres 2300 Ohmeda). An infrared 
capnograph (Datex Normocap 200) with a face mask was used to measure end-tidal 
CO2 (EtCO2). The face mask was kept in place for the duration of the complete study 
including the PaCO2 reactivity test with a mixture of 5% PaCO2 in air administered 
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with a Douglas bag and elephant tubing connected to the face mask through a one-
way valve. 

Baseline values of CBFV, ABP and EtCO2 were recorded for an initial period of 5 
min with subjects breathing normal air, after all variables were stable for at least 15 
min. This was followed by a 5 min. recording with each subject breathing a mixture 
of 5% PaCO2 in air. 

2.2   Pre-processing 

All the signals were collected and saved on a digital audio tape using an 8-channel 
recording instrument (Sony PC108M), and they were then transferred to a 
microcomputer in real time. The fast Fourier transform was used to extract the 
maximum frequency of the CBFV signal, with a 5-ms time window. The signals were 
digitized and sampled at 200 samples/s, and then processed through an 8th order zero-
phase Butterworth low-pass filter with a cut-off frequency of 20 Hz. 

The beginning and end of each cardiac cycle were detected in the arterial pressure 
signal, and the mean values of ABP and CBFV were calculated for each heart beat. 
Spline interpolation, followed by re-sampling every 0.2 s produced time series with a 
uniform time base. The EtCO2 signal was interpolated linearly between successive 
end-tidal values and was also re-sampled at 0.2 s intervals. For the purpose of 
implementing SVM models, the signals were sub-sampled at 0.6 s intervals, resulting 
in approximately 500 data points for each of the two different segments of data. 

2.3   White Box Model 

The differential equation proposed by Poulin [8], which represents our white box 
model, is shown in Equation 1. 

[ ])(*)(
1))((

tCBFVCBFVTtug
dt

tCBFVd
d −+−•=

τ
             (1) 

where the input u(t-Td)=[EtCO2(t-Td)-EtCO2*], and EtCO2* is the control period. 
The three parameters g, τ, CBFV*, are obtained using the least squares technique. In 
the case of constant Td, a grid search is used that minimizes the sum of the squares of 
the other parameters. This equation is solved using separable variables to obtain the 
CBFV(n) in discrete times n which correspond to each heart beat. 

2.4   Black Box Model 

The adopted SVM algorithm was the ν-SVM, introduced by Vapnik in 1995 [11]. It is 
based on the statistical theory of learning, which introduced regression as the fitting 
of a tube of radius ε to the data. The decision boundary for determining the radius of 
the tube is given by a small subset of training examples called Support Vectors. 

Assuming that x


 represents the input data vector, the output value )(xf


 is given 

by the SVM regression using a weight vector w


, according to equation 2. 
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where b is a constant obtained from w


. 
The variation of the ν-SVM introduced by Schölkopf et al. [12] consists in adding 

ε to the minimization problem, weighted by a variable ν  that adjusts the contribution 
of ε between 0 and 1. 
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In equation 3, l represents the total dimension of the data (number of cases), C is a 
model parameter determining the trade-off between the complexity of the model, 
expressed by w


, and the points that remain outside the tube. Slack variables ξ depend 

on the distance of the data points from the regression line. We used the ε-insensitive 
loss function. 

The solution of this minimization problem for obtaining the weight vectors w


 is 
found by the standard optimization procedure for a problem with inequality 
restrictions when applying the conditions of Kuhn-Tuker to the dual problem. The 
main advantage of introducing parameter ν ∈ [0 1] is to make it possible to control 
the error fraction and the number (or fraction) of Support Vectors with only one 
normalized parameter. 

To solve a nonlinear regression problem it is sufficient to substitute the inner 
product between two independent original variables ji xx


•  (Eq. 2) by a kernel 

function gaussian radial base function (RBF), given by equation 4: 

))2/(exp(),( 22
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The implementation of the black box model for the case of a differential equation 
must correspond to a dynamic model in time. We have chosen a model of the 
AutoRegressive with Exogenous input (ARX) type that can consider one (ABP) or 
two (ABP and EtCO2) inputs to model a parameter (θ = τ, g or CBFV*) of Poulin’s 
differential equation [8]. The black box model presents two options, as shown in 
equations 5 and 6. 

))(),...,(),(),...,1(()(ˆ pntptpnttft −−−= θθθθ                       (5)                

))(),...,(),...,(),...,(),(),...,1(()(ˆ cp ntctcntptpnttft −−−−= θθθθ              (6) 

where p(t)=ABP(t), c(t)=EtCO2(t) and θ(t) is one of the parameters τ, g or CBFV*. 
Function  f () can be a linear function when Eq. 2 is used, or a nonlinear one when 

using the kernel RBF function shown in Eq. 4. 
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2.5   Gray Box Model 

The gray box model is implemented using Poulin’s differential equation as white box, 
for which some of the parameters τ, g or CVFB* are estimated by means of an SVM 
as black box, as shown in Figure 1. When Eq. 5 is used, the dotted line from c(t) does 
not exist, and in the case of Eq. 6 the SVM has two inputs (p(t) and c(t)). 
 
 
 

 
 
 
 

 

Fig. 1. Gray box model; the dotted line indicates if the black box model is univariate or 
multivariate 

3   Results 

Good quality recordings were obtained for all subjects with both the baseline and the 
5% PaCO2 test. Representative fluctuations in ABP, EtCO2 and CBFV are shown in 
Figure 2 for one subject (#13) for the baseline and 5% PaCO2 data segments. 

To train and evaluate the different proposed models two states are chosen, one 
during the baseline period and the other during the aspiration of 5% de PaCO2 in air. 
In each state one half of each period is chosen to train and the other half to evaluate. 
Since the output variables correspond to signals, we chose Pearson’s correlation (r) 
between the real and the estimated CBFV signals, as an index to evaluate the 
precision of the models. 

To estimate each of the three parameters, τ, g and CBFV*, each of them is isolated 
from the solution of Eq. 1, and then the SVM models are trained and evaluated using 
one these parameters as output signals. The best results are obtained by modifying the 
CBFV* parameter. The models are applied to each of the 16 subjects. 

The results were calculated for the baseline and changes to 5% PaCO2 conditions. 
In the baseline, for the univariate model of the SVM, only the nonlinear case is 
calculated. For multivariate 5% PaCO2 changes only the nonlinear case is calculated 
(the linear cases that were not calculated are not significant under these conditions). 
The results of the average correlations for the 16 subjects are shown in Table 1. 

Figure 3 shows the reactivity curves to EtCO2 for the linear and nonlinear models 
under the 5% PaCO2 change condition. It is also important to obtain the reactivity 
indices for these models, which are calculated as the ratio of the change between the 
CBFV values and the EtCO2 changes. The average values for linear univariate 5% 
PaCO2 is 4.8 (mm Hg/%), and 4.4 (mm Hg/%) for the nonlinear model. 
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Fig. 2. Representative time-series of ABP, EtCO2 and CBFV showing spontaneous fluctuations 
during baseline (left) and breathing 5% PaCO2 in air (right)  

Table 1. Average correlations for the baseline and 5% PaCO2 change conditions for univariate 
and multivariate SVM models 

 

When the Wilcoxon test was applied to establish if the differences were significant (p<0.05), 
the following values were obtained for p: #0.026, *0.002, †0.501, ‡0.535. 

 Baseline  
Model Training Test 
SVM Univariate   
Linear - - 
Nonlinear 0.967 0.769# 
SVM Multivariate   
Linear 0.968 0.727* 
Nonlinear 0.967  0.801#* 

 

               Changes 5% CO2  
Model Training Test 
SVM Univariate   
Linear 0.989 0.948† 
Nonlinear 0.986 0.962†‡ 
SVM Multivariate   
Linear - - 
Nonlinear 0.987 0.951‡ 
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Fig. 3. Normalized CBFV time response (asterisks line) and its standard deviations (dashed 
line) to a change of EtCO2 (dotted line). For the nonlinear multivariate model during baseline 
(left) and response for the nonlinear univariate model for breathing 5% PaCO2 in air (right).  

4   Discussion and Conclusions 

When the selection of parameters of the differential equation to estimate them with 
the SVM is examined, the advantages of a gray box model can already be seen, 
because of the three parameters, the one that can have the largest variation is precisely 
the baseline of the CVBF*. It is this parameter the one that represents the output of 
the basic model of the Cerebral Blood Flow Autoregulation phenomenon, when the 
ABP is the input signal [6,13]. It is also interesting to note that it is the univariate 
model of the SVM (ABP→CBFV*) the one that achieves the best results, and there 
are no significant differences with the multivariate model of the SVM (ABP, 
EtCO2→CBFV*). This can be explained when it is considered that Poulin’s equation 
[8] already considers the contribution of EtCO2 on the variation of CBFV, so 
including it in the SVM is redundant. 

The average reactivity curves shown in Fig. 3 as well as the calculated reactivity 
indices coincide with the values of normal subjects like those studied. 

The excellent results obtained with the correlation index show that they are 
significantly better than the white box (r= 0.805) as well as the black box models 
presented in [10], (nonlinear: r=0.707 for baseline and r=0.909 for 5% PaCO2), 
which were obtained with the same set of data. 

The results shown in this gray box application with SVM to a problem of cerebral 
hemodynamic bring up the potential of the method in terms of precision as well as  
of the valuable contribution that can be obtained from the description of the 
phenomenon. 

In future work it will be important to evaluate the contribution of the SVMs 
compared to Artificial Neural Networks, and the application to another field of 
science and engineering. 
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Abstract. This project shows the development of a new clustering algorithm, 
based on k-means, which faces its problems with clusters of differences 
variances. This new algorithm uses a line segment as prototype which captures 
the axis that presents the biggest variance of the cluster. The line segment 
adjusts iteratively its long and direction as the data are classified. To perform 
the classification, a border region that determines approximately the limit on the 
cluster is built based on geometric model, which depends on the central line 
segment. The data are classified later according to their proximity to the 
different border regions. The process is repeated until the parameters of the all 
border regions associated with each cluster remain constant.  

Keywords: Clustering, Kmeans, Variance, Central Line Segment, Border Region. 

1   Introduction 

The process of clustering consists on classifying in an unsupervised way a set of 
patterns (observations or data) into groups (clusters) [1].  There are many types of 
clustering algorithms. One of these is the center based algorithms. Compared with the 
others types of clustering algorithms, the center based algorithms are very efficient 
with big data bases and with high dimensional data.  Usually, these algorithms try to 
minimize an objective function, which defines how good is the solution obtained [2].  

1.1   K-Means 

The k-means is a clustering algorithm which is considered a center based algorithm.  
This algorithm tries to find the k partitions that minimize the objective function. The 
objective function used by this algorithm is the mean square error [3]. This criterion, 
where mi corresponds to the mean of the cluster Ci, n to the total number of objects, 
and k to the total number of clusters, is defined as [4]: 
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In general the k-means algorithm performs the classification of the data according 
to a measure of distance to certain points considered the centers of the clusters in a 
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specific space of features. These points, called centroids, are initialized at the 
beginning of the algorithm, as well as the measure of distance, and the subsequent 
classification is performed according to proximity to those. Then, after the 
classification process is completed, the centroids are recalculated as the means of each 
cluster. Then, the data are reclassified, and the process is repeated until the centroids 
remain constant [5] [6].   

1.2   Advantages and Disadvantages 

The advantages of k-means are its velocity and its easy application in high 
dimensional spaces. However it has some disadvantages: the algorithm is applicable 
only if the mean is defined, the k number of clusters has to be estimated, often 
converges to a local optimum, and the final result depends on the initial values 
assigned to the centroids [3]. On the other hand, the criterion of the mean square error 
works well when the clusters are compact clouds well separated. However, when the 
differences in size of the geometry of the clusters are very big, the use of this criterion 
could divide the larger clusters [4].  

2   Related Works 

A lot of works have been made trying to overcome the disadvantages of this 
algorithm. However, the most of them are focused to resolve the estimation of the 
parameter k (the number of clusters) [7] [8], optimize the convergence speed to the 
solution [9] [10], the extension of the algorithm to ordinals sets [11], and to determine 
the initials coordinates of the centroids [12] [13]. 

Concerning the treatment of clusters of different sizes, the only work founded in 
the literature is [3]. This algorithm is a modification of k-means, whose objective is 
only to detect clusters with circular shapes.  

3   Proposal  

The algorithm proposed in this document confronts the limitation of k-means when it 
is used over clusters of very dissimilar variances, using a line segment as prototype. 
This new algorithm, as well as the original, can be used in space of high dimensions. 

3.1   General Scheme 

The inputs that the algorithm receives are the data set, the initial centroids and the 
number of clusters to detect. Then, the algorithm starts to adjust iteratively the 
parameters that determine the border regions associated with each cluster and used to 
capture their variances. This process consists on classifying the data according to their 
proximity to the different border regions, and then update their parameters. The 
process is repeated until the parameters of the all border regions associated with each 
cluster remain constants. 
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3.2   General Algorithm 

Input: dataset, number of clusters, initial centroids 
Begin 
  Repeat 
    Classify Data 
    Calculate the Parameters of each Border Region 
  Until the Parameters of the Regions Associated Remain 
  Constant 
End 

3.3   Geometric Model 

The geometric model which this algorithm uses is defined by geometrics shapes 
which border region is made by all points that are equidistant from the same central 
line segment. This distance is called “radius”. Then, the parameters that determine the 
border region are the direction and length of the central line segment (specified by the 
coordinates of its extremes) and the radius of the figure. In two dimensions this model 
generates a rectangle with semicircles in its extremes, in three dimensions generates a 
cylinder with semispherical caps in its extremes. For simplicity the shape generated 
will be called “cylinder”, independent of the dimensions considered. The figure 1 
shows this concept. 

 

 

Fig. 1. The figure shows the geometric shape that is built in two dimensions according to the 
geometric model used by the algorithm. It is possible to note the central segment and the points 
that localized to a distance r (radius) made the border region. 

3.4   Classification 

This algorithm performs the classification founded the “cylinders” that best 
represent the data distribution of the data detected. The parameters that specify a 
cylinder are the direction and length of the central line segment and its radius. At 
the beginning of the process the radius are established to zero, and the central axis 
of each cylinders corresponds to the centroids of the clusters given as initial input to 
the algorithm, so in the first iteration the classification is performed according to 
the proximity of the data to the initials centroids. Then, the direction and length of 
each central line segment associated with the clusters are calculated, with the 
centroid as the midpoint, and finally the values of the radius of each figure are 
obtained. Once the values of parameters have been obtained, the data are 
reclassified. This classification depends on which of the following three situations 
is each datum, as the figure 2 illustrates: 

 

r

r
r
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a) The datum is not contained inside any cylinder: then the data is assigned 
to the cluster associated with the nearest cylinder. 

b) The datum is contained inside only one cylinder:  then the datum is 
assigned to the cluster associated with this cylinder.  

c) The datum is contained inside more than one cylinder: then the datum is 
assigned to the cluster associated with the cylinder whose central 
segment is the nearest, among the cylinders that contain the datum.  

Then, the process to calculate the central segments and radius is repeated, with the 
subsequence reclassification, until these remain constant.  

 

   

Fig. 2. The images show, from left to right, the situation of a datum extern from two cylinders, 
with the distances to both marked with dotted lines, the situation of a datum localized inside 
one cylinder, and the situation of a datum located inside two cylinders that intersects, with the 
distances to the central segments of both marked with dotted lines. 

3.5   Obtaining the Central Line Segment 

The generation of the cylinder is based on obtaining a line segment which 
corresponds to its central axis. It is obtained using the principal component analysis 
over the data set associated with the cluster, and extracting the vector that represents 
the component which captures the biggest variance of the data set. Then, a line 
segment is built, which corresponds to the central axis of the cylinder. This axis is 
aligned with the direction of the vector just calculated, centered in the centroid of the 
cluster. The length of this central axis is obtained calculating first the absolute 
magnitudes of the vectors projections associated to each datum, considering the 
centroid as the origin, over the line determined by the vector of biggest variance and 
the centroid. Then, the mean of these values is calculated, and the central axis length 
is specified, finally, as the double of the mean just calculated. This process is 
illustrated by the figure 3. Let dij be the vector associated with the i-th datum of the 
cluster j, vj the principal component with biggest variance of cluster j (assumed with 
unitary magnitude), nj the quantity of data of cluster j. Then, the length of central axis 
of cluster j, lj, is given by the next formula (the black circle represents the inner 
product):  
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Fig. 3. The images show, from left to right, the generation of the central segment of one cluster 
(the gray circles correspond to data and the black circle to the centroid). First it is determined 
the principal component of the biggest variance (black arrow), and then the vectors associated 
with each datum, their projections over the line, and finally the building of the segment with the 
centroid as the midpoint. 

3.6   The Calculus of the Radio 

The radio of a cylinder is obtained calculating the mean of the distances of data to the 
central segment. Let xij be the i-th datum of the cluster j, sj the central segment of the 
cluster j, d(xij, sj) the distance between the i-th datum and the segment of the cluster j, 
nj the quantity of data of cluster j. Then, the radio associated with cluster j, rj, is given 
by the next formula: 
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3.7   Distance between a Datum and a Central Segment 

This distance is defined as the length of the shortest line segment that connects a 
datum with some point of the cylinder central segment. To allow the algorithm be 
extensible to high dimensions the theorem of cosine is used to obtain these distances, 
to bring the calculation to a two dimensional plane. This procedure consists in 
generating a triangle whose vertices are the initial and final points of the cylinder 
central segment, and the datum. Then, the angles of the triangle are calculated using 
the cosine theorem. If all angles of the triangle are less than 90 degrees, then the 
distance between the datum and the central segment corresponds to the height of the 
triangle, which can be easily calculated. If one of the angles is greater than 90, then 
the distance between the datum and the two extremes points of the cylinder central 
axis. The lower value corresponds to the distance between the datum and the axis. 
Both situations are illustrated by the figure 4. 

 

 

Fig. 4. The images show the two different types of triangulations that can be formed with a 
datum (black circle) and the line segment (continuous line), and how these are used to obtain 
the distance between them 

d d
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3.8   Calculating the Distance between a Datum and a Cylinder 

Previous to calculate the distance between a datum and a cylinder, distance between 
the datum and the cylinder’s central segment is calculated. If this distance is less than 
the cylinder radius, then the datum is considered contained inside the inner space of 
the cylinder.  If this distance is greater than the radius, the datum is considered extern 
to the cylinder, and then the distance is calculated as the difference between the 
distance to the central segment just calculated and the cylinder radius. The figure 5 
shows this situation. Let x be a datum, v a cylinder, r the cylinder radius, s the 
cylinder central segment, and d the Euclidian distance, then the distance between a 
datum and a cylinder is specified as: 

 

( ) ( ) rsxdvxd −= ,,  (4) 

 

 
 
Fig. 5. The figure shows how the distances are obtained from two points (small circles) and a 
cylinder. The dotted lines which run from each point to the central segment s of the cylinder 
represent the distances from them to the segment. By subtracting the magnitude of the cylinder 
radius r the distances from the points to the cylinder border, d1 and d2, are obtained. 

4   Experimental Results 

The performance of the algorithm proposed was compared with the k-means in a series 
of tests. The data were generated artificially with Gaussian distribution. These tests were 
designed so that, from an initial configuration of clusters with similar variances, it was 
increasing gradually the ration between the clusters variances along one axis, as the 
figure 6 illustrates. To evaluate the performance of both algorithm the Rand index was 
used, which allows to  measure the level of similitude between two partitions, with 
values ranging from zero (minimal similitude) to one (maximal similitude) [2].  

 

Fig. 6. The image of the left shows, superimposed on two clusters, the cylinders and their 
central axes after having been applied the algorithm. The next images show the most extremes 
configurations used in the tests, with a ratio of 1/10 between the variances along y axis (central 
image) and x axis (right image). 
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Fig. 7. The graphics illustrate the comparative performance when the ratio between the 
variances of the two clusters is gradually increased, indicating the values delivered by the Rand 
index v/s the ratio between variances. The left graphic shows the test series where the ratio is 
increased along the “y” axis, and the right shows the test series where the ratio is increased 
along the “x” axis. 

The results show that, as the differences between the variances increase, the 
performance of the algorithm begins to overcome the k-means, as the graphics of the 
figure 7 illustrate. 

5   Conclusions and Future Works 

The algorithm demonstrated that it improved remarkably the performance of the k-
means in the situations where the clusters have many different variances. In the 
situations where the variances are not so different, the performance is similar to k-
means. However, it is still required a later research, so adding another criteria, or 
improving the ones that have been used, in the process of building the border region. 
It is also an option to define other border regions that allow a more accurate capture 
of the variances. 
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Abstract. A model for the recognition of the diameter of olives is
presented. The information regarding size of olive fruits is intended for
estimating the best harvesting time of olive trees. The recognition is per-
formed by analyzing the RGB images obtained from olive tree pictures

Keywords: image processing, pattern recognition, RGB model, CIELAB
color space, olive harvesting.

1 Introduction

One of the important aspects in olive cultivation is being able to estimate when
the harvest should take place, trying to obtain the best yielding from the land.
Based on this information, it is possible to make the right decisions both finan-
cially and agriculturally. The problem of estimating the optimal plantation yield
consists on determining the largest fruit size based on its equatorial and polar
diameters.

Literature review for the past 30 years shows that there are no publications
relating to the count of olives (olive fruit) but only to the identification of olive
trees (trees). Most of the publications found in the identification field refer to
particular objects. Therefore, we propose to use simultaneously identification
and caliber tools to identify the best harvesting time.

Saito et al. [11] used a method of classification of eggplants by using neural
networks in the RGB color model and color space CIELAB. The method de-
scribed by Martinez-Uso et al. [1], uses an algorithm for the minimization of
energy for active contours, in order to distinguish the different areas of the fruit,
which is the main criterion for image segmentation. This algorithm tends to
achieve a similar result to that obtained by clustering.

Unay and Gosselin [2] compare different types of classifiers for the recogni-
tion of defective blocks. SVM algorithm achieved the best results, increasing
by around 90% of correct classification. Cornelius et al. [4] showed that object
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recognition can be achieved by correlating the shape and contours of each shape.
In many cases, achieved satisfactory results.

Zhao et al. [6] use color and texture properties for the recognition of red
and green apples. This analysis proved successful by including the properties of
the co-occurrence matrix jointly with the levels of red, performing segmentation
using an analysis of “clustering”.

Wijethunga et al. [8], proposed a technique for counting kiwis, based on the
segmentation of images using the CIELAB color model and the “Watershed”
transformation to count the number of fruits in each image. A more simple
method was developed by Li et al. [10], proposed the identification of tomatoes
using grayscale image, obtaining a 75% of correct classification.

Another technique that refers to the invariability of objects with respect to
size and rotation is SIFT (Scale Invariant Feature Transform) used by Wan-Gan
et al. [9]. They proposed an algorithm based on this transformation in order to
solve the problem of fruit identification. The results were developed into a pilot,
as it performed well; using test scenarios.

According to Mirisaee and Woo [17], by taking a greater amount of informa-
tion with both, physical and color parameters of the RGB color model, a k-NN
(k-Nearest Neighbors) based on Euclidean distance, classifier can be obtained for
fruit classification. Classification results reached 90% of correct classification. In
classification of mature fruits and greens, Jamil et al. [7] used a neuro-fuzzy
based classification by taking intensity of the red, green, and blue as a param-
eter they reached an accuracy level of 73.3% in the classification of ripe and
green.

Alternatively, similarly to the study by Unay and Gosselin [2], Wang et al. [5]
present a comparison between artificial neural networks (ANN) and Support
Vector Machines (SVP) for apple classification. SVP presented a better result in
classification apples, yielding almost 90% of correct classification for the apple
harvest. In detection and classification of fruits, Mohamad et al. [3] performed a
study based on the classification of ripe and green based on the histogram feature
of the red, green, and blue, and the gray scale. Previous studies about recognition
and classification of fruits has been done by team of this paper [12], [16].

The biggest difference between the objectives of the studies cited and the work
presented here, is that most of the reviewed research is concerned primarily with
the identification of specific fruits, leaving a large margin of slack when develop-
ing classification models. In this paper, we propose a model to characterize olive
fruits in the tree and measuring the caliber of each specimen.

2 Background Extraction

From an olive tree picture, histogram analysis is used to verify the possibility
of separation of strata and check the data set under analysis for normality. The
strata chosen for analysis are: 1) Olive, 2) Leaf type 1 (dark green), 3) Leaf type
2 (light green), and 4) Stem. Fig. 1.a shows the layers corresponding to each
stratum with the background turned white for improved perception.
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Stratification of the data is improved due to the color reference standard;
otherwise, the visual differences between the strata would have been slightly
noticeable in the case of leaves and olives. Fig. 1.b shows data sets used in the
statistical analysis described next. Top left is olive fruit, top right is leaf type
1, bottom left is leaf type 2, and bottom right is stem. By visual inspection, it
could be inferred that in some images there is some overlap of color in the layers,
i.e., some olives (or a part of them) have very similar color.

Analyzing the spectral behavior of all 4 layers for the channels red, green,
and blue color of RGB model, hue, saturation, value color of model HSV, L,
a, b, a/b of CIELAB color space, respectively, it is concluded that the layer
segmentation opportunity for olives is more feasible in the matrix a∗. Fig. 1.c
shows the spectrum analysis of channel data to the color space for the four strata
(olives, leaves types 1 and 2, and stem). The ideal normal distributions for each
stratum were plotted along the empirical curve (thicker line) while keeping the
same color for each stratum. Then, a statistical analysis verifies the normality
of the data in each stratum because of the data or for each stratum are random
variables in the first instance under a normal distribution of data. The probability
density function of a normal distributed variable xk is defined as:

ϕμi,σi
2(x) =
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, (1)

where:
ϕμi,σi

2(x) : probability density function of the i-th stratum
μi : arithmetic mean of the i-th stratum
σi : standard deviation of the i-th stratum
xi : discrete random variable
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Fig. 1. a) Stratification of the data; b) Set of data used for analysis; c) Spectrum
analysis of data

To know the relationship of the data with respect to a normal distribution
curve, the random variable is plotted against the probability density curve (nor-
mal strata). In this case, the curves obtained have a squared correlation coeffi-
cient R2 between 0.972 and 0.994, therefore they could be considered as excellent
correlations. To calculate the amount of accumulated data to each point cut in
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the normal distribution curves, it is necessary to integrate the probability density
function to that point. The distribution function of a normal distribution is:

Φμi,σi
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The main idea of this evaluation is to minimize the amount of probability of
occurrence data for the layers leaf type 1 and type two stem leaves, and turn to
get as much information as possible for the olives. It is possible to find a good
theoretical cutting height, but the data are discrete integer random variables.
To resolve this limitation, all distribution functions are evaluated to a closed
interval between 112 and 116 to verify their probability of occurrence, Table 1
shows the results.

Table 1. Distribution functions of four strata for closed interval between 112 to 116

Cutoff value Distribution Function

xc xc = f(μ1, σ1) Olive Leaf 1 Leaf 2 Stem

112 μ1+1.0441σ1 85.1771 2.4738 0.1620 0
113 μ1+1.3176σ1 90.6169 4.2190 0.4604 0
114 μ1+1.5911σ1 94.4198 6.8484 1.1771 0.0008
115 μ1+1.8645σ1 96.8873 10.5917 2.7126 0.0030
116 μ1+2.1380σ1 98.3739 15.6276 5.6462 0.0114

Based on results in Table 1, cutoff value is made equal to 112. This is because
layers of leaf type 1, leaf type 2, and stem together do not exceed 3% incidence,
while stratum corresponding to olives have an incidence of over 85%, having an
average cut equal to the mean plus 1.0441 standard deviations.

In order to represent the ideal olive shape, the Principal Components (PCA)
method is used. This means to find the best projection that represents our goal
(ready to harvest olives) by statistical representation of least squares. The core
of this method is to find the eigenvectors or fundamental components of the data
sets that shape all possible combinations of olives.

3 The Model

Our proposed solution consists in creating three matrices Reigen, Geigen, and
Beigen respectively, which contain the underlying factors described or as close
to it as possible, the data of the stratum or random variables for olives. Hav-
ing obtained the fundamental matrices linearly independent, theoretically, it is
possible to build any olive on the basis of the linear combination of underlying
factors represented in the fundamental matrices previously described.

A way to obtain these vectors is by using of PCA method, this method basi-
cally find a set of uncorrelated variables to describe the set of observations. In
our case, we took a combination of those uncorrelated variables to generate one
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a) b) c)

Fig. 2. a) Selected data for analysis; b) Sample of 30 specimens; c) Eigen-image

eigen matrix for each RGB channel. To apply this method, it is necessary to have
a data set collected as indicated next. In order to achieve representativeness and
also to include variability, samples of various sizes, colors, brightness, contrast,
and a number of 50 replications of the random data sets.

Fig. 2.a shows the data set chosen for analysis of principal components. Be-
cause olives are of different sizes and their pictures captured at different angles of
inclination, a routine to find its rotation angle with respect to a reference point
considering the polar and equatorial diameters of the olives was devised. Once
found these angles, the median longitudinal, and equatorial diameters, data nor-
malization was applied. Note that the computation of median (or 50 percentile
of the data) is independent of presence of extreme data (Fig. 2.b).

After analyzing the 50 standardized samples, for simplicity the eigenvectors
were restricted to one dimension for channel, and then this restriction proceeded
to merge these three matrices themselves in one of three layers red, green, and
blue. Fig. 2.c shows the eigen-image obtained with the PCA analysis.

The cross-correlation index can be used for identifying patterns or correlation
between two datasets. An advantage of this index is its utilization with discrete
values as well as with continuous functions. It is known that within the CIELAB
color space segments of the olives, leaves, and stem are markedly distinct and
well defined, as well as with the eigen-image obtained after the PCA process.
These two sets of data can also be correlated. The cross-correlation can quickly
find sites that correlate better. Figure 3 shows the cross-correlation results.

Regarding olive counting, the need to estimate olives size makes the process
not yet complete (contour estimation). Estimation can be achieved by using
centroids of figures with greater correlation to the olive’s shape, however the
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Fig. 3. a) Cross-correlation test; b) filter LAB color space; c) Cross correlation
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olive shapes are variable and not complete. Problems arise when there are: two
or more overlapped olives. The solution proposed to this problem is an iterative
expansion of the object, starting from the centroid to a boundary that minimizes
the energy function. Then, splitting separates contiguous specimens by Euclidean
distance transformations, for eliminating possible random seams.

By minimizing the Euclidean distance between the candidate’s contours, it
is possible to reformulate the problem due to boundary estimation assuming
presence of active rather than passive or constant contours (Active Contours
Chan-Vese method). This last consideration makes possible to vary the image
and also allows us to calculate the gradient. The importance of the gradient is
critical because it is a normal vector to the surface under study. The gradient
gives a significant value where changes or variations occur, which in consequence
is very helpful to finding the contours.

On the other hand, the centroids of the potential candidates were identified
by the cross-correlation function. However, the problem is the extent to which
adjacent olives overlap among them. According to Stokes theorem [15], it can be
assumed that the closed integral, limiting the area of the vector field generated
by the gradient, equals the surface integral of the curl of the vector field on an
open surface. The value of this integral corresponds to the dot product of the
vector field with respect to a differential arc length.

The solution proposed by Chan and Vese [13], is to minimize the energy
function required to form a region. This solution was described for solving the
Mumford-Shah paradigm [14] [15], resulting in an active solution that iteratively
finds the point when the energy function phi is zero. It is the same for both
regions, as described also by the Continuity theorem. The energy formula is
defined by equation (3), where the terms corresponds to the calculated surface
energy a and b, respectively.

φ =
∫

Ωa

(
Î −Xa

)2

dA+
∫

Ωb

(
Î −Xb

)2

dA (3)

Figure Fig. 4.a show the mask generated using the contour search algorithm.
One aspect to be emphasized is the starting point of the process of energy mini-
mization. The initial mask of active contours is nothing more than the centroids
obtained by the correlation (Fig. 4.b). Note that if iterations tend to infinity or
a very large number, it only would slow the overall process, and it also may be
incurred in returning to the image with the adjacent samples.

The propused method was programed on MatLab R2007b and our test images
(5.0 MPix each) were taken from test-olive-fields in Chile, performing very well
with noisy pictures. About the computational complexity of the model, we run
at an AMD Athlon(tm)X2 DualCore QL-66, 2.20GHz, 2,74 GB RAM that took
just 83.3368 sec each in a batch process. Moreover, dividing the model in three
parts: segmentation, correlation and active contourns process they take 8.932%,
3.088 and 87.980% of the average time respectivebly.
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a) b)

Fig. 4. a) Chan-Vese Diagram; b) Result of active contours after 80 iterations

4 Conclusions

A model for the recognition of the diameter of olives has been presented. This
allows estimating the best harvesting time for an olive tree. Recognition is per-
formed by analyzing the RGB images obtained from olive tree pictures. By re-
viewing the related literature, all techniques used by many authors from around
the world in the field were summarized. Review of past 30 years of publications
show that there were no publications relating to the count of olives (olive fruits),
only relating to the identification of olive trees (trees).

The proposed model allows not only to identify correctly the olives but also
to measure millimeter caliber of each specimen. The idea of stratified data was
used to investigate the possibility of utilizing stratification as the fundamental
premise to identify that the CIELAB color space, specifically in the channel “a”,
could visually identify the possibility of a separation of layers and display a clear
trend data normally.

Validation of data normality was performed by conducting a simple test of
normality based on quadratic correlation between random variables and idealized
normal density curves data, with excellent correlation of 0.9860. Since the data
is discrete and in set Z, height of cut for the separation of strata is analyzed
in terms of the distribution function, leaving the average height of cut 1.0441
standard deviations over the layer of olives. This theoretically ensures that the
non-olive strata ought not to exceed 3% of incidence and an 85% for the layer
of olives, leaving a random error of less than 3%.

The success achieved in contour estimation was due largely to the proper
choice of the number of iterations of the energy minimization algorithm. This
selection was made empirically, concluding that for a great number of itera-
tions the algorithm tends to re-assemble the contiguous contours, while for less
iteration, the algorithm tends to underestimate the area of the olives.
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Abstract. In this paper, we use multi-scale stationary wavelet decom-
position technique combined with a linear autoregressive model for one-
month-ahead monthly sardine catches forecasting off central southern
Chile.The monthly sardine catches data were collected from the database
of the National Marine Fisheries Service for the period between 1 Jan-
uary 1964 and 30 December 2008. The proposed forecasting strategy is to
decompose the raw sardine catches data set into trend component and
residual component by using multi-scale stationary wavelet transform.
In wavelet domain, both the trend component and the residual compo-
nent are independently predicted using a linear autoregressive model.
Hence, proposed forecaster is the co-addition of two predicted compo-
nents. We find that the proposed forecasting method achieves a 99% of
the explained variance with a reduced parsimonious and high accuracy.

Keywords: forecasting, wavelet decomposition, autoregression.

1 Introduction

Common sardine is an important fish resource for industrial in the central south-
ern area off Chile. In order to develop sustainable exploitation policies, forecast-
ing the stock and catches of sardines in Chile is one of the main goals of the
fishery industry and the government. However, fluctuations in the environmental
variables complicate this task. To the best of our knowledge, few publications
exist on forecasting models for pelagic species. In recent years, linear regression
models [1,2] and artificial neuronal networks (ANN) [3,4] have been proposed
for forecasting models. The disadvantage of models based on linear regressions
is the supposition of stationarity and linearity of the time series of pelagic species
catches. Although ANN allow modeling the non-linear behavior of a time series,
they also have some disadvantages such as slow convergence speed and the stag-
nancy of local minima due to the steepest descent learning method. To improve
the convergence speed and forecasting precision of anchovy catches off northern
Chile, Gutierrez [3] proposed a hybrid model based on a multilayer perceptron
(MLP) combined with an autoregressive integrated moving average model. The
architecture of the MLP consists of an input layer with 6 nodes, two hidden layers
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of 15 nodes each, and an output layer with one node; the Levenberg Maquardt
(LM) method was used as the learning method. This forecaster obtained a co-
efficient of determination R2 of 82%, which improved slightly when combining
the MLP model with the ARIMA model, reaching an R2 of 87%. One of the
disadvantages of this hybrid model is its high parsimony (230 parameters) and
low forecasting precision. In this paper, the proposed forecasting model is based
on multi-scale wavelet decomposition combined with autoregressive models. The
multi-scale wavelet decomposition technique was selected due to its popularity
in hydrological [5,6], electricity market [7], financial market [8] and smoothing
methods [9,10,11]. This wavelet technique is based on the discreet wavelet trans-
form (DWT) or the stationary wavelet transform (SWT) [12]. The advantage of
these wavelet transforms in non-stationary time series analysis is their capacity
to separate low frequency (LF) from high frequency (HF) components. Whereas
the LF component reveals long-term trends, the HF component describes short-
term fluctuations in the time series. Being able to separate these components
is a key advantage in proposed forecasting strategies since the behavior of each
frequency component is more regular than the raw time series.

Therefore, an one-month-ahead monthly sardines catches forecasting scheme is
proposed. The forecasting strategy is to decompose the raw sardine catches data
set into trend component and residual component by using multi-scale stationary
wavelet transform (SWT). In wavelet domain, both the trend component and
residual component are independently predicted using a linear autoregressive
model.

This paper is organized as follows. In the next section, we briefly describe the
multi-scale stationary wavelet transform and the proposed multi-scale wavelet
autoregressive forecasting model. The simulation results and performance eval-
uation are presented in Section 3 followed by conclusions in Section 4.

2 Proposed Forecasting Model

This section presents the proposed forecasting model for one-month-ahead sar-
dines catches off central-southern Chile. Moreover, instead of using the raw data
set of past observations to predict the future value x(n + 1), we use its wavelet
coefficients.

2.1 Stationary Wavelet Decomposition

A signal x(n) can be represented at multiple resolutions by decomposing the
signal on a family of wavelets and scaling functions [9,10,11]. The approxima-
tion (scaled) signals are computed by projecting the original signal on a set of
orthogonal scaling functions of the form:

φjk(t) =
√

2−jφ(2−jt− k) (1)

or equivalently by filtering the signal using a low pass filter of length r, h =
[h1, h2, ..., hr], derived from the scaling functions. On the other hand, the detail
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signals are computed by projecting the signal on a set of wavelet basis functions
of the form

ψjk(t) =
√

2−jψ(2−jt− k) (2)

or equivalently by filtering the signal using a high pass filter of length r, g =
[g1, g2, ..., gr], derived from the wavelet basis functions. Finally, repeating the
decomposing process on any scale J , the original signal can be represented as
the sum of all detail coefficients and the last approximation coefficient.

In time series analysis, discrete wavelet transform (DWT) often suffers from
a lack of translation invariance. This problem can be tackled by means of the
un-decimated stationary wavelet transform (SWT). The SWT is similar to the
DWT in that the high-pass and low-pass filters are applied to the input signal
at each level, but the output signal is never decimated. Instead, the filters are
up-sampled at each level.

Consider the following discrete signal x(n) of length N where N = 2J for
some integer J . At the first level of SWT, the input signal x(n) is convolved
with the h1(n) filter to obtain the approximation coefficients a1(n) and with the
g1(n) filter to obtain the detail coefficients d1(n), so that:

a1(n) =
∑

k

h1(n− k)x(k) (3a)

d1(n) =
∑

k

g1(n− k)x(k) (3b)

because no sub-sampling is performed, a1(n) and d1(n) are of length N instead
of N/2 as in the DWT case. At the next level of the SWT, a1(n) is split into two
parts by using the same scheme, but with modified filters h2 and g2 obtained by
dyadically up-sampling h1 and g1.

The general process of the SWT is continued recursively for j = 1, ..., J and
is given as:

aj+1(n) =
∑

k

hj+1(n− k)aj(k) (4a)

dj+1(n) =
∑

k

gj+1(n− k)aj(k) (4b)

where hj+1 and gj+1 are obtained by the up-sampling operator inserts a zero
between every adjacent pair of elements of hj and gj ; respectively.

Therefore, the output of the SWT is then the approximation coefficients aJ

and the detail coefficients d1, d2, ..., dJ , whereas the original signal x(n) is rep-
resented as a superposition of the form:

x(n) = aJ(n) +
J∑

j=1

dj(n) (5)
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The wavelet decomposition method is fully defined by the choice of a pair of
low and high pass filters and the number of decomposition steps J . Hence, in
this study we choose a pair of haar wavelet filters [12]:

h =
[ 1√

2
1√
2

]
(6a)

g =
[−1√

2
1√
2

]
(6b)

On the other hand, a key issue for the success of any wavelet forecasting model
is suitable selection of the J level decomposition. At higher J , the variability of a
large number of predicted data is lower, so their prediction is easier and accurate.
In our proposed model, we determine the value of J using a stopping criterion
that is given as:

ρ =
Pdj

Px
< ε (7)

where Pdj and Px represents the average power of the detail component dj(n)
and the original data x(n), respectively.

We stop the decomposition on the level for which the ρ ratio is substantially
less than a threshold ε. The choice of the value of ε is not clear from a physical
point of view and different sets of approximation coefficients will be produced
by the wavelet decomposition method for different values of ε. In order to obtain
accurate and parsimonious forecasting results, the value of ε was set to 0.0 in
this work.

Finally, wavelet scales are such that times are separated by multiples of 2j, j =
1, ..., J . Our data set involves monthly observations so that the wavelet scales
are such that scale 1 is associated with 1− 2 month dynamics, scale 2 with 2− 4
month dynamics, scale 3 with 4− 8 month dynamics, scale 4 with 8− 16 month
dynamics, and so on.

2.2 Wavelet Autoregressive Model

In order to predict the future signal x(n+ 1), we can separate the original signal
x(n) into two components. The first component presents the trend t(n) of the
series and is characterized by slow dynamics, whereas the second component
presents the residue r(n) of the series and is characterized by fast dynamics.
Therefore, our forecasting model will be the co-addition of two predicted values
given as:

x(n+ 1) = t(n+ 1) + r(n + 1) (8)

On the one hand, the residual component is estimated using a linear autore-
gressive (AR) model given as:
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r(n+ 1) =
J∑

j=1

m∑
i=1

αjidj [n− i+ 1] (9a)

where the J value denotes the level of stationary wavelet decomposition and the
m value represents the autoregressive order of the detail coefficients.

On the other hand, the trend component is estimated using a linear AR model
given as:

t(n+ 1) =
m∑

i=1

βiaJ [n− i+ 1] (10)

We propose estimating the linear parameters θ = {αi, βi} using the least
squares method based on the Moore-Penrose pseudo-inverse. If we suppose a set
of Ns training input-output samples, then we can perform Ns equations of the
form of (9) and (10) as follows:

� = αΦ (11a)
Γ = βΨ (11b)

where

Φ = [d1(n), · · · , d1(n−m+ 1), · · · , dJ (n−m+ 1)] (12a)
Ψ = [aJ(n), aJ(n− 1), · · · , aJ(n−m+ 1)] (12b)

The optimal values of the linear parameters αi and βi are obtained using the
following residual sum of squares (RSS) function defined as:

RSS(α) =
Ns∑

n=1

[
R(n+ 1) − r(n+ 1)

]2 (13a)

R(n+ 1) = x(n+ 1) − aJ(n+ 1) (13b)

RSS(β) =
Ns∑

n=1

[
aJ (n+ 1) − t(n+ 1)

]2 (13c)

The result of minimizing the RSS objective function is:

α = (ΦTΦ)†ΦT� (14a)

β = (ΨTΨ)†ΨTΓ (14b)

where (·)† denotes the Moore-Penrose pseudo-inverse [13].
Once we have decided upon a forecasting structure to use, the next task is

to determine the autoregressive order on the different scales. This can be done
using the criterion given by the ration of the mean absolute deviation to the
mean of the time series (MADM) versus lagged values of the predictor variables,
where the MADM value is defined as [14]:

MADM =
∑Ns

i=1 |Ai − Fi|
Ā

(15)
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where Ai is the actual value at time i , Fi is the forecasted value at time i, Ā is
the mean value of observed monthly catches, and Ns is the number of samples.

3 Experiments and Results

In this section, we apply the proposed strategy for 1-month-ahead forecasting
of the monthly catches of sardines. The data set used corresponded to sardine
landings off central southern area Chile. These samples were collected monthly
from 1 January 1964 to 30 December 2008 by the National Fishery Service of
Chile (www.sernapesca.cl).

The proposed linear wavelet autoregressive (WAR) forecasting model basically
involves three stages. In the first stage, the original data set is decomposed into
different wavelet scales by using stopping criterion given in (7) to separate both
the trend component (approximation component) and the residual component
(difference between original data and trend component). In the second stage, the
trend component and residual component are independently forecasted by using
an linear autoregressive model. In the third stage, the next sample is predicted
by the co-addition of two predicted components.

The raw sardines data set have been normalized to the range from 0 to 1 by
simply dividing the real value by the maximum of the appropriate set. On the
other hand, the original data set was also divided into two subsets as shown in
Fig.1. In the first subset, the data from 1 January 1964 to 30 December 2003 were
chosen for the training phase (Ns = 480 months), whereas the remaining data
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Fig. 1. Observed monthly sardine catches data from 1964 to 2008
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were used for the validation phase. This normalized data set, when subjected
to the stopping criterion (7), yielded a 5 level wavelet decomposition. The low
frequency component a5 represents the trend of the observed sardines catches
data set. On the other hand, detail components {d1, d2, d3, d4, d5} contain high
frequency components of the original data such that d1 the highest frequency
component and d1 is considered to be more related to the noisy part of the
observed data, whereas d5 contains lower frequency information than {d4, d3, d2}.
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Fig. 2. Model order selection criteria

Hence, residual component forecasting is based on a linear AR model, whereas
predicting the trend component also is done with a linear AR model. Once we
chose the multi-scale autoregressive forecasting structure to use, the next task
was to determine the autoregressive order by using the method given in (14) and
(15). After we applied the least squares method and the MADM, we decided to
use two lagged values on each level wavelet decomposition due to the parsimony
principle and precision of the proposed WAR(J ,m) model with J = 5 and m = 2
as shown in Fig.2. In this study, two criteria of forecasting accuracy were used to
evaluate the forecasting capabilities of the WAR model. The first measurement
is the coefficient determination (R2) given as:

R2 = 1 −
∑Ns

i=1(Ai − Fi)2∑Ns

i=1(Ai − Ā)2
(16)

where Ai is the actual value at time i, Fi is the forecasted value at time i, Ā is
the mean value of observed monthly catches, and Ns is the number of forecasts.
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Fig. 3. Observed sardine catches vs estimated sardine catches from 2004 to 2008
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If R-square is large, then the model is good. Conversely, if R-square is small,
then the model is bad.

The second criterion is the mean absolute percentage error (MAPE) given as:

MAPE(%) =
1
Ns

Ns∑
i=1

∣∣∣Ai − Fi

Fi

∣∣∣× 100 (17)

Figures 3 and 4 show the results obtained with the best WAR(5,2) forecasting
model during the testing phase. Fig. 3 provides data on observed monthly sardine
catches versus forecasted catches; this forecasting behavior is very accurate for
testing data with a MAPE below 9.4%. Fig. 4 shows the regression between
observed and estimated monthly sardine catches. The good fit of the data to
line 1 : 1 and 99% of the explained variance can be seen in Fig.4. This level
of explained variance was achieved due to use of multi-scale stationary wavelet
decomposition.

4 Conclusions

In this paper was proposed a one-month-ahead monthly sardine catches fore-
casting strategy to improve prediction accuracy. The reason of the improvement
in forecasting accuracy was due to use stationary haar wavelet decomposition to
separate both the trend and residual components of the raw time series, since the
behavior of each component is more smoothing than raw data set. It was show
that the proposed forecaster achieves a MAPE value of 9.4% and a R-squared of
99%. Besides, proposed forecasting results showed that the 32 previous months
contain valuable information to explicate a highest variance level for sardines
catches forecasting. These months can be related with ocean-atmospheric as-
pects, which have a great influence on pelagic fish fisheries in Chile. Finally,
wavelet-autoregressive forecasting strategy can be suitable as a very promising
methodology to any other pelagic specie.

References

1. Stergiou, K.I.: Prediction of the Mullidae fishery in the easterm Mediterranean 24
months in advance. Fish. Res. 9, 67–74 (1996)

2. Stergiou, K.I., Christou, E.D.: Modelling and forecasting annual fisheries catches:
comparison of regression, univariate and multivariate time series methods. Fish.
Res. 25, 105–138 (1996)

3. Gutierrez, J.C., Silva, C., Yaez, E., Rodriguez, N., Pulido, I.: Monthly catch fore-
casting of anchovy engraulis ringens in the north area of Chile: Nonlinear univariate
approach. Fisheries Research 86, 188–200 (2007)

4. Garcia, S.P., DeLancey, L.B., Almeida, J.S., Chapman, R.W.: Ecoforecasting in
real time for commercial fisheries:the Atlantic white shrimp as a case study. Marine
Biology 152, 15–24 (2007)

5. Adamowski, J.F.: Development of a short-term river flood forecasting method for
snowmelt driven floods based on wavelet and cross-wavelet analysis. Journal of
Hydrology 353(3-4), 247–266 (2008)



Wavelet Autoregressive Model 663

6. Kisi, O.: Stream flow forecasting using neuro-wavelet technique. Hydrological Pro-
cesses 22(20), 4142–4152 (2008)

7. Amjady, N., Keyniaa, F.: Day ahead price forecasting of electricity markets by a
mixed data model and hybrid forecast method. International Journal of Electrical
Power Energy Systems 30, 533–546 (2008)

8. Bai-Ling, Z., Richard, C., Marwan, A.J., Dominik, D., Barry, F.: Multiresolution
Forecasting for Futures Trading Using Wavelet Decompositions. IEEE Trans. on
Neural Networks 12(4) (2001)

9. Coifman, R.R., Donoho, D.L.: Translation-invariant denoising, Wavelets and
Statistics. Springer Lecture Notes in Statistics, vol. 103, pp. 125–150. Springer,
Heidelberg (1995)

10. Nason, G., Silverman, B.: The stationary wavelet transform and some statistical
applications, Wavelets and Statistics. Springer Lecture Notes in Statistics, vol. 103,
pp. 281–300. Springer, Heidelberg (1995)

11. Pesquet, J.-C., Krim, H., Carfantan, H.: Time-invariant orthonormal wavelet rep-
resentations. IEEE Trans. on Signal Processing 44(8), 1964–1970 (1996)

12. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cam-
bridge University Press, Cambridge (2000)

13. Serre, D.: Matrices: Theory and applications. Springer, New York (2002)
14. Kolassa, S., W, S.: Advantages of the mad/mean ratio over the mape. The Inter-

national Journal of Applied Forecasting (6), 40–43 (2007)



A Multi-level Thresholding-Based Method to

Learn Fuzzy Membership Functions from Data
Warehouse

Dario Rojas1, Carolina Zambrano1, Marcela Varas2, and Angelica Urrutia3
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Abstract. Learn fuzzy membership functions automatically for char-
acterization and operation of fuzzy measures in Data Warehouse is a
problem of recent concern. This paper presents a new method to learn
membership functions of linguistic labels of fuzzy measures from Data
Warehouse. We proposed a multilevel thresholding based method with
clustering validation indices in order to obtain optimal number of labels
and parameters of membership functions. Validation is performed by
comparing the proposal against a supervised learning approach based on
clustering and genetic algorithms, including the application in response
to queries in a Data Warehouse with fuzzy measures.

Keywords: Fuzzy Logic, Data Warehouse, Multi-Level Thresholding,
Clustering, Clustering Validation Indices.

1 Introduction

Most events are vague or uncertain, ie, they imply on its characteristics a certain
degree of imprecision (fuzzyness). This imprecision may be associated with any
type of data as shape, position, time, color, texture, or even the semantics to
describe what they are. In many cases, the same concept can have different
meanings in different contexts or moments. A warm day in winter is not exactly
the same as a warm day in spring, the exact definition of when the temperature
goes from warm to temperate is imprecise and context-dependent. It is difficult
to associate a specific and unique value with warm or temperate, it can be 24◦C,
but 25◦C could be warm too. This kind of imprecision or fuzzyness is constantly
linked to phenomena, and is common in every field of study: sociology, physics,
biology, finance, engineering, and so on.
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Fig. 1. (a) General scheme for definition and validation of rules generated through
proposed method, (b) Example of two-sided Gaussian function

A formalization to express and operates this kind of data, is fuzzy set theory,
introduced by L. A. Zadeh [3] in 1965. His proposal considers that each element
has a degree of belonging to a set, and this degree is usually a value from 1
(completely belonging) and 0 (not belonging).

Majority of data (precise and imprecise) actually is stored in transactional
databases. In order to manage the uncertainty in transactional data bases there
are proposals on Fuzzy Databases (FDB), which aim to apply the theory of
fuzzy sets to the database, usually as an extension to relational database tech-
nology. FDB has been studied at modeling level in [4,13], and in term of design
and implementation in [4,9,10,11,12]. One factor to note about the fuzzy man-
agement in databases is that they have allowed the management of qualitative
information. On the other hand, Data Warehouse (DW) is a repository of data
from different sources and usually these sources are transactional databases that
collect information over time. DW processes this information and uses it to per-
form data analysis at the strategic and support decision-making levels in an
organization [8].

Fuzzy Data Warehouse (FDW) is defined for purposes of this research as: A
DW that can store data and operate fuzzy measures of a cube. In addition, one of
the main characteristics of FDW is that it can provide qualitative information
through fuzzy measures enriched with linguistic labels that are assigned to each
indicator according to its value and set of membership function based on the
principles of fuzzy logic.

On the other hand, fuzzy multidimensional models, syntax and semantics for
answering fuzzy queries have been proposed [1,2]. In this context, an area that
has been little explored is the development of rules that explain the nature of
data, ie, to obtain the parameters of membership functions from data analysis.
This implies that a membership function which defines a linguistic label of an
attribute, gets its parameters from context, given from a historical set of data.
For the above techniques you can use machine learning and pattern recognition
in general. In [16] clustering algorithms and optimization techniques such as
hill-climbing is performed in order to obtain classification rules of fuzzy logic,
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however, this method is a supervised learning approach, which implies the use of
a set of training data to obtain the membership functions, and this is not possible
directly in the context of Data Warehouse. On the other hand, in [4] we can find
an approach that uses fuzzy clustering to obtain the rules, but this approach only
generates triangular membership rules that can be locally optimal [10], because
it defines the degree of membership of a cluster based on the distance to its
center. In this context, in [14,15] multi-level thresholding techniques are used
in order to perform a segmentation of irregular histograms over biofilm images,
where the algorithms used are efficient at runtime and optimal, a nice feature,
allowing direct and objective comparison of results.

This article proposes a new method in order to obtain membership functions
to perform labeling of fuzzy measures in a Data Warehouse using an optimal and
efficient unsupervised learning approach, which is organized as follow: In section
2 we present methodology to obtain and validate the new method for obtaining
fuzzy rules. In section 3 the application of the proposed method for automatic
labeling of fuzzy measures in a Data Warehouse is shown, presenting the results
of two common fuzzy queries in such systems. Finally, in section 4 we present
the conclusion, comments and future works.

2 Methodology

The proposed method mainly consists in the application of multi-level threshold-
ing and clustering validity indices algorithms in order to obtain the amount and
parameters of fuzzy membership functions (two-sided Gaussian functions). In our
proposed approach, member functions that are obtained are results of an auto-
matic, unsupervised, optimal and efficient process, and therefore no-subjective
and comparable.

In order to validate proposed method, a reference method is developed based
on clustering techniques and genetic algorithms (supervised learning approach)
in order to ensure high precision of classification through membership functions
(also called rules in classification process). Then, results are compared between
the proposed method and reference method. In Fig. 1(a), the general scheme for
definition and validation of proposed method is depicted.

2.1 Data Set

In order to validate rules obtained from our proposed method, a classical bench-
mark problem in pattern classification (Fisher’s Iris Data Set) is used [5]. The
iris data set consists of a set of 150 data samples that map four input features
values (sepal length, petal width, petal length y sepal width) into one of three
species of iris flowers: Iris-setosa, Iris-versicolor, Iris-virginica.

A DW measure is a quantitative attribute which is mapped in a multidimen-
sional space through dimension hierarchies (qualitative attributes). However, a
DW measure is a one-dimensional attribute under pattern recognition approach.
Therefore, in order to obtain fuzzy rules and compare results between proposed
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method and reference method, a Principal Component Analysis (PCA) is per-
formed in order to project the four-dimensional space into a one-dimensional
space and transform iris data set into a DW measure.

2.2 Reference Method

In order to obtain initial fuzzy rules, k-means clustering algorithm is applied in
reduced feature space. Fig. 2(a) shows cluster results where symbol • represents
Iris-Setosa class, symbol ∗ represents Iris Virginica and symbol + represents
Iris Versicolor. For each cluster ci the mean mi and standard deviations σi are
obtained, where i ∈ [1, k], and k = 3 for each flower class. For each cluster, a
rule of classification is generated, where each mi represents the values of data set
which have associated a degree of membership equals to 1. On the other hand,
each standard deviation are used as right and left parameters for the two-sided
Gaussian functions. In Fig. 1(b) is depicted a typical Gaussian functions and the
four parameters used: two standard deviations and two mean.
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Fig. 2. (a) Two-sided Gaussian Membership Functions obtained through k-means clus-
tering without optimization, (b) Two-sided Gaussian membership functions optimized
through genetic algorithm (projection in y is only for visualization purposes)

Initially, each rule is generated from each cluster ci with mi = x∗Li
= x∗Ri

and
σi = σLi = σRi . For reference method, three initials rules are generated trough
this method, where each rule defines the degree of the values projected by PCA
to each class of flowers. The initial rules without optimization are depicted in
Fig. 2(a), which have a 79% of precision in classification.

In a second process, a genetic algorithm optimization process is performed
in order to optimize initials mi and σi parameters. The chromosomes are a
feature vector of four parameters for the three rules (12 chromosomes in total).
The fitness function to minimize is normalized error of classification error =
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1 − precision. The rules obtained after optimization process is depicted in Fig.
2(b), where precision of classification is 98%.

2.3 Proposed Method

After of dimensional reduction process (PCA), a relative frequency histogram
h is obtained. Then, three multi-level threshold algorithms [18] are applied to
h: Entropy-Based thresholding (ENTROPY), Otsu’s thresholding (OTSU) and
Minimun Error thresholding (MINERROR). In this context, a multi-level thresh-
olding process with k− 1 thresholds, have a direct relationship with the number
of classes k, in which a histogram is partitioned [14]. Viewing thresholding as
a problem of clustering frequency histogram h, clustering validity indices [17]
can be used in order to obtain the best number of classes k in which the his-
togram can be clustered, and hence the best number of membership functions
or labels can be obtained. In this work, four clustering validity indices are used
to determine the best number of thresholds and select the best thresholding
technique: Davies-Bouldin Index (DB), Dunn’s Index (DN), Index I (IndexI),
Calinski Harabasz Index (CH), Xie-Beni Index (XB).
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Fig. 3. Two-sided Gaussian membership functions defined through multi-level thresh-
olding techniques ( projection in y is only for visualization purposes)

The Fig. 3 shows the resulting rules of multi-level thresholding process. The
dotted gray lines represent the global thresholds TG

g with g ∈ [1, k − 1], which
divide the histogram into k initial clusters ci with i ∈ [1, k]. The solid black
lines, dotted black lines and solid gray lines represent the local thresholds TL

l

with l ∈ [1, 2] for each cluster ci. Each membership function μi for each cluster
is defined by:
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μi = f(TL
1 , T

L
2 , σi), (1)

where, f is a two-sided Gaussians function (see Fig. 1(b)), TL
1 = x∗Li

, TL
2 = x∗Ri

and σi = σLi = σRi . As can be see the interval between TL
1 and TL

2 always have
a membership degree equal to 1, and the values belonging to the right and left
intervals have lower degrees of membership according to the variance of each
cluster σi.

The classification process carried out with this approach achieves the best
accuracy of classification with the MINERROR and OTSU criteria, using an
unsupervised technique and obtained objective results, since for the same data
always get the same results in an optimal way. Table 1 shows the results of
classification precision of the three thresholding criteria using k = 3.

Table 1. Precision for each multilevel thresholding criteria, best values are showed in
boldface

Thresholding Criteria ENTROPY MINERROR OTSU

Precision 0.5667 0.9333 0.9333
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Fig. 4. I, CH, DN, XB and DB cluster validity indices applied after OTSU thresholding.
The gray dotted line show the optimal number of clusters obtained by each index.

According to the behavior of cluster validation indices shown in Fig. 4 and
Table 2, we can see that CH, XB and DN indices increase monotonically as it
increases the numbers of k − 1 thresholds used. From the above, the selection
criteria that obtain the numbers of thresholds and hence also the number of
labels, can be defined by the next expression:
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k = min(I∗j , DB
∗
j ) + 1, (2)

where i ∈ [1,K], I∗j is the number of thresholds defined by I index, DB∗
j is the

optimal number of thresholds obtained by DB index, and K is maximum number
of thresholds to find in data set (parameter defined by user).

In summary, the proposed method involves the application of multi-level
thresholding algorithm (OTSU) to obtain k membership functions, with k given
by Equation 2 through applying clustering validation indices, each membership
function μi, is obtained by the definition given in Equation 1 through applying
global and local thresholding criteria in order to perform the parameterization
of a two-sided Gaussian distribution function. We should note that the proposed
method is not comparable to other classification techniques directly, because the
process itself is for the membership functions and the classification is only for
validation purposes, because is not possible to determine classes on measures of
a Data Warehouse directly.

Table 2. I, CH, DN, XB and DB cluster validity indices applied with OTSU thresh-
olding. Values shown in boldface represent optimal number of clusters for each index.

# Thresholds I CH DB DN XB

1 18822 90066 0.283 0.050 1.10
2 19682 123331 0.452 0.077 8.70
3 16695 166604 0.431 0.100 21.4
4 12672 190410 0.451 0.111 46.4
5 9355 207642 0.463 0.143 80.0
6 7549 225759 0.427 0.143 123.7

3 Fuzzy Queries in Data Warehouse

In order to perform fuzzy queries using the automatic fuzzy functions proposed,
cube depicted in Figure 5 was developed over a subset from a data warehouse
system implemented for research at the University of Atacama, Chile [7]. This
figure shows part of a conceptual scheme of a DW with fuzzy measures [4]. This
schema has been modeled through an instance of the Fuzzy CWM OLAP Meta
Model [2]. The cube has six fuzzy measures: marks, age, mathematics, history,
science and language, where the last four measures are score of student in a set
of tests performed in the admission process of student to the university. In the
same context, the dimensions of analysis are: Courses, Time, Students, Cohort
and Undergraduate Program.

3.1 Case Study: Automatics Fuzzy Rules from Data Warehouse

Fuzzy rules for the six fuzzy measures obtained through method proposed are
depicted in Fig. 6. According the conceptual model, labels are defined according
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Fig. 5. Conceptual scheme of DW with fuzzy measures. The label << FMT2 >> is
stereotype of Fuzzy Measure (type 2) defined in [2].

the number of rules determined for each measure as: low, medium-low, medium-
high, and high. In order to show the use of rules obtained through this method
a set of typical queries are performed in the DW using fuzzy approach proposed
in [6]:

Query 1 - Average High Marks by Cohort: Table 3 presents the results of
query 1, where you can see that all cohorts with high marks have the maximum
possibility around 5.9. However, we can appreciate that other values are possible,
ie, the 2010 cohort has an average of 5.43 with possibility 84.9%.

Table 3. Results of Query 1: Average High Marks by Cohort

Possibility 2003 2004 2005 2006 2007 2008 2009 2010

84.9% 5.69 5.54 5.48 5.52 5.54 5.56 5.49 5.43
93.0% 5.83 5.93 5.80 5.75 5.67 5.65 5.59 5.50
98.2% 5.76 5.67 5.79 5.76 5.76 5.55 5.80 5.73
100% 5.91 5.90 5.90 5.89 5.89 5.87 5.92 5.85

Query 2 - Average High Age by Undergraduate Program: Table 4
presents the results of query 2, where you can see that all undergraduate pro-
grams have 24 years as the most possible high age, except Geological Engineering
and Business that have values slightly lower.
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Fig. 6. Fuzzy membership functions DW obtained through multi-level thresholding
based method from six measures
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Table 4. Results of query Average High Age by Undergraduate Program.

Possibility Business Computere Geological Industrial Metallurgical Mining
Science Engineering Engineering Engineering Engineering

71.0% 21.0 24.3 21.5 24.7 24.5 22.5
91.8% 22.0 24.3 22.2 24.3 24.5 24.2
100% 23.5 24.0 23.3 24.2 24.0 24.1

4 Conclusion

This work has presented a multi-level thresholding method for obtaining mem-
bership functions from fuzzy measures in a Data Warehouse. The proposal has
been validated by external criteria (classification rules) and relative criteria (In-
dex Validation) and applied to a real database.

From the results, you can see the great potential of this approach. Undoubt-
edly, the automation of obtaining the membership functions is one of the least
covered issues in fuzzy logic and data warehouse, since it is a process that has
not been fully automated.

It is important to add that defining membership functions in fuzzy measures
regardless of the context of data, could lead to obtain membership functions
with parameters that do not reflect the reality of the domain or organization.
For example, the parameters that define the membership function for the high
marks label are not the same at a university or another, but should be directly
related to the data from each of the universities.

As future works, this method can be appliied to fuzzy levels and extending
method to other types of fuzzy data in DW considering the efficiency and ob-
jectivity of the proposed approach.
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Abstract. Currently, there is no solution, which does not require a high 
runtime, to the problem of choosing preprocessing methods, feature selection 
algorithms and classifiers for a supervised learning problem. In this paper we 
present a method for efficiently finding a combination of algorithms and 
parameters that effectively describes a dataset. Furthermore, we present an 
optimization technique, based on ParamILS, which can be used in other 
contexts where each evaluation of the objective function is highly time 
consuming, but an estimate of this function is possible. In this paper, we present 
our algorithm and initial validation of it over real and synthetic data. In said 
validation, our proposal demonstrates a significant reduction in runtime, 
compared to ParamILS, while solving problems with these characteristics. 

Keywords: Full Model Selection, FMS, Machine learning Challenge, Iterative 
Local Search, ILS. 

1    Introduction 

The Model Selection task can be described as choosing the model that best describes 
a data set [2]. In the machine learning context, this problem may be interpreted in 
several different ways, from feature selection to parameter tuning. In this paper we 
will use a broader interpretation, based on the definition of Full Model Selection 
(FMS) as described by [4]. The FMS problem is defined as: given a pool of 
preprocessing methods, feature selection and classification algorithms, select the 
combination of these that obtains the lowest classification error for a given data set. 
This task also includes the selection of the hyperparameters for the considered 
methods. 

In today’s practice, the supervised learning problem is usually solved by applying 
conventions (e.g. the number of neighbors considered in KNN should be relatively 
low), ad hoc choices (SVM has worked well in the past, why not apply it now), and 
experimental comparisons on a limited scale (testing three different classifiers with 
their default settings and comparing performances). The problem with this approach 
is that, while it may return acceptable results, it does not truly consider the 
particularities of the problem at hand. The advantages of using a more specific 
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solution over the generalized approach have been shown in several studies [6]. An 
explanation for this improvement is given in the No Free Lunch Theorems for 
Optimization [1]. In a nutshell, this theorem says that any improvement in the 
performance of a model over one class of problems is offset by a lower performance 
over another class. Therefore, in order to obtain the best possible performance over a 
certain data set, the generalist approach should be discarded and replaced by the 
search for a specific model for the problem at hand. 

As mentioned before, the FMS problem explores different combinations of 
algorithms and their hyperparameters, resulting in a vast search space. Furthermore, 
in order to accurately evaluate each candidate model, training and testing using some 
validation technique (like Cross Validation) can take a long time, especially over 
large data sets, which are not uncommon in this field. This combination of a large 
search space with a long evaluation time, generates a problem well suited for 
stochastic optimization techniques. 

The proposed approach is to use an Iterative Local Search (ILS) algorithm, which are 
well suited for combinatorial optimization problems like this one. Specifically, an 
implementation ParamILS [5] was adjusted to solve the FMS problem. ParamILS is a 
parameter tuning algorithm designed with runtime optimization of algorithms in mind, 
but can be easily modified to fit the needs of the FMS problem. In this paper we present a 
new algorithm, called PILS (Probabilistic Iterative Local Search), which is specifically 
designed for combinatorial optimization problems with long evaluation time. 

This paper is organized as follows: Section 1 gives an overview of the problem. 
Section 2 describes the basic operators of ParamILS. Section 3 describes our proposed 
method, PILS. Section 4 reviews our technique for validating this algorithm and the 
initial results. Finally, Section 5 is a brief conclusion. 

2   Iterative Local Search (ILS) 

Iterated local search [5] (ILS) is a general meta-heuristic with two basic operators for 
generating new solutions. The first is the Local Search Operator, which attempts to 
find the local optimum in the neighborhood of a solution. The second is the 
Perturbation Operator, which is applied to the local optimum in order to generate a 
new starting point for a local search.  

A general overview of the ILS algorithm is presented in Algorithm 1: 
Algorithm 1: Iterative Local Search 
loop 

 x’  = Perturbation(x*); 
 x’’ = LocalSearch(x’); 
 if better(x’’,x*) 
  x* = x’’; 

2.1   ParamILS 

ParamILS [5], is the ILS on which our algorithm is based. This is a simple, but 
powerful, algorithm designed for parameter tuning that relies on the following 
definitions: 
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Solution. As was mentioned before, ParamILS is a parameter tuning algorithm. 
Therefore, it defines each solution as an array of values, where each position in the 
array represents a specific parameter. At some point during the algorithm execution, 
depending on the values of the solution, some of the parameters may become inactive. 
An inactive parameter is a parameter that, if changed, has no effect on the cost 
function. The relation between parameters that defines when they become inactive 
must be defined beforehand and is used to describe conditional relationships among 
parameters.  

Local Search. All ILS algorithms must define the way in which they look for a local 
optimum in the neighborhood surrounding a particular solution. ParamILS starts by 
defining a neighbor as a solution that differs from the initial one by only one 
parameter, as long as that parameter is active. Subsequently, it follows an Iterative 
First Improvement technique for finding a local optimum. This technique takes all the 
neighbors of an initial solution, in randomized order, and compares them to the initial 
solution. As soon as a solution is found to be better than the initial one, the process 
restarts using the new solution as a starting point. This will continue until a solution 
that is better than all of its neighbors is found (local optimum).  

Perturbation. ILS algorithms jump from local optimum to local optimum. In order to 
do this, they must define an operator that allows them to escape from the optimum 
they are currently in and restart the local search. This operator is defined as the 
Perturbation Operator. In the case of ParamILS, a very straightforward technique is 
used to find a new starting point. The Perturbation Operator is defined as a number of 
jumps from neighbor to neighbor, starting from the current optimum. The number of 
jumps will define how different one solution is from its predecessor. A small number 
will increase the likelihood or falling back on the same local optimum, while a large 
number of jumps will end up with a completely random starting point. 

Better. Any ILS algorithm requires a way of defining if one solution is better that 
another. ParamILS proposes two options for defining the Better Function. The first is 
BasicILS, which simply compares an each solution with a user defined cost function. 
The second is FocusedILS, which uses a variable number of training instances in each 
evaluation in order obtain results with a lower computational cost. The Better 
Function is precisely what is modified by our algorithm (PILS), so the 
implementation made by ParamILS is not explained in great depth here. For a more 
comprehensive understanding of the Better Functions and the ParamILS algorithm, 
please refer to [5]. 

3   Our Approach (PILS) 

ParamILS proves to be an effective way of moving along the search space finding 
local optimums. The problem that arises is that, with large datasets, the training and 
testing time necessary to accurately validate each candidate solution is too long. In 
turn, this means that, even though only a small portion of the search space is 
evaluated, a very long time is necessary to do it. In response to this problem we 
propose a new algorithm based on ParamILS, which redefines the Better Function in 
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order to diminish its runtime. Because of its probabilistic approach, we called it 
Probabilistic Iterative Local Search (PILS)1.  

Definitions. Considering the optimization problem being solved by ParamILS, we 
define a function which is an estimate of the original objective function, but with a 
considerably smaller runtime. In exchange for the reduction in runtime, we allow this 
estimate to be noisy. We model this estimation as shown in (1), where it is described 
as the objective function  plus a random variable  representing noise. Finally, 
the estimate function is defined so that the mean of several evaluations converges to 
the objective function, as represented in (2) and (3). 

 

 . (1)

 . (2)0 . (3)

Assumptions. We assume that independent evaluations of the estimation function 
produce independent and identically distributed random noise variables. This 
powerful assumption allows us to use the Central Limit Theorem, with regards to the 
distribution of the noise mean. After analyzing empirical results from the problem at 
hand, this assumption has proven to be reasonable. Furthermore, we were able to 
observe that, even though, the noise variance for different candidate solutions ( ) 
were not the same, they were very similar. This fact is integrated into the PILS 
algorithm and is, therefore, a necessary requirement for a correct use of this tool. 

Algorithm. As before mentioned, PILS uses the same search strategy as ParamILS, 
but it redefines the function responsible for comparing two candidate solutions. The 
goal behind the formulation of this algorithm is to decrease the uncertainty only on 
candidate solutions that could be optimums, in order to waste as little runtime as 
possible on bad candidate solutions. The way in which it decreases the uncertainty of 
a candidate solution is by evaluating it several times and averaging the results, which 
should eventually converge to the objective function. Thanks to the Central Limit 
Theorem, we can model the average noise of several evaluations as a random variable 
with mean zero, and a variance dependant on the number of evaluations and the 
variance of these evaluations. ~ 0, .  (4)

Thus, we can easily define a function that, given several evaluations of two candidate 
solutions, calculates the probability that one is better than the other. Afterwards, the 
algorithm decides, based on this probability, which of three possible courses to 

                                                           
1  The MatLab code for this algorithm can be downloaded from 

http://dl.dropbox.com/u/3304215/PILS.zip (Note for reviewers: if the paper is published, this 
code will be linked from our webpage) 
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follow. First, if the calculated probability is either very high or very low, then there is 
enough certainty to simply compare the two means directly. Second, if the probability 
is very close to 0.5 then the algorithm assumes that there is not a significant 
difference between the two candidate solutions and defines the one with the lowest 
variance as the best. This will, probably, save runtime in future comparisons. Third, if 
neither of the options mentioned is satisfied, the algorithm calculates a new evaluation 
of the estimation function for the candidate solution that has the lowest number of 
evaluations, and begins again. 

In order to ensure that this function ends, a maximum number of evaluations 
parameter was added. In case the maximum number of parameters is reached by both 
candidate solutions, the two means are compared directly. 

Our proposed Better Function can be seen bellow in Algorithm 2. 
 
Algorithm 2: PILS Better Function 
// x1, x2: Candidate Solutions that are being compared. 
// mu1, mu2: Mean of x1 and x2 respectively. 
// var1, var2: Variance of mu1 and mu2 respectively. 
// N1, N2: Number of evaluations of x1 and x2. 
better (x1, x2) 
{ 
 loop 
 { 
  p = ProbabilityBetter (x1, x2); 
  d = |0.5 - p|; 
  if d>=Us 
   return mu1>mu2; 
  if d<=Ui 
   return var1<var2; 
  if min(N1, N2) >= Nmax 
   return mu1>mu2; 
  if N1<N2 
   evaluate (x1); 
  else 
   evaluate (x2); 
 } 
} 

 
 
Variance Estimation. The algorithm described in the previous section requires an 
estimation of the variance associated with each candidate solution.  

 (5)

The problem that arises is that we now require, at least, two evaluations of the 
estimation function, in order to calculate its unbiased variance. Empirical testing 
showed that the problem went further, because the variance calculated for only two 



680 E. Cortazar and D. Mery 

 

samples was still a very poor estimation. Based on the assumption that the variances 
of different candidate solutions are similar, the calculation is formulated to consider a 
Global Variance variable. 

 11  (6)

 (7)

The Global Variance strongly depends on the way the estimation function is 
formulated and the dataset at hand. Moreover, it would require extensive 
experimentation in order to estimate this variable a priori. For these reasons, a way of 
approximate this variable in real time is necessary. Our implementation considers a 
user-defined estimation (prior) and its weight, associated with the level of confidence 
in this estimation. Throughout the algorithms execution, the Global Variance is a 
weighted mean that considers the user-defined prior and all the sample variances 
calculated for different candidate solutions, as shown in (8). Empirical 
experimentation has shown that the Global Variance variable converges quickly, and 
is a good estimation of the variance mean. ∑ 1∑ 1  (8)

4   Experimentation 

When validating a supervised learning model, 10-fold Cross Validation is usually 
considered an accurate estimation of its prediction abilities. Its downside is that it 
requires a long time for training and testing each subset. In our experimentation, we 
compare the use of ParamILS with 10-fold Cross Validation against PILS using a 
simple Hold Out Validation technique, which should take one tenth of the time but, 
on average, should converge to the same result. 

Using different machine learning toolboxes, like Balu2 and CLOP3, and several 
small datasets for testing purposes, the assumptions listed for the PILS algorithm were 
found to be adequately satisfied. But, in order to accurately show the advantages of 
PILS over the ParamILS algorithm, a very large number of tests under different 
conditions were necessary. For this purpose, we developed an artificial objective 
function that mimicked the conditions observed in our testing of real datasets. 

4.1   Real Data Set 

In our initial approach, we ran PILS, using Hold Out Validation, against ParamILS, 
using Cross Validation 10-fold over the Fishbone Dataset presented in [7]. Even 
though the results looked very promising, where ParamILS took up to ten times 
                                                           
2  Machine Learning toolbox available at http://dmery.ing.puc.cl/ 
3  Machine Learning toolbox available at http://www.modelselect.inf.ethz.ch/ 
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longer than PILS to obtain the same classification performance, this was not a very 
effective way of testing our proposal for several reasons. First, the time required by 
different candidate models was very uneven, which meant that the result from one 
execution depended on the search trajectory, more than on the optimization algorithm 
itself. Second, running either PILS or ParamILS was still a rather long task, which 
meant that extensive testing, in order to obtain more general results or analyze the 
relevance of certain parameters, was extremely time consuming. Finally, even though 
this test allowed us to observe the characteristics of this problem, it did not give us 
much control over the scenarios we wanted to evaluate. 

4.2   Artificial Objective Function 

The artificial objective function used for these results was constructed using a mixture 
of five n-dimensional Gaussian functions. Also, random, but similar, variances were 
assigned to each point in this search space, in order to emulate the estimation 
function. Using this artificial data, two functions where created. The first is a simple 
evaluation of the Gaussian mix, representing the real objective function, equivalent to 
Cross Validation in the Model Selection problem. The second is an evaluation of the 
Gaussian mix plus a normally distributed noise, representing the estimation function, 
equivalent to Hold Out Validation in the Model Selection problem.  

Table 1. Number of evaluations necesary for similar performance levels. The time column 
represents the persentaje of time that PILS would of needed, based on ParamILS. 

ParamILS PILS Time 
Performance N. of Evaluations Performance N. of Evaluations  

82 628.962 83.5 1203.278 19.13 

90.8 838.871 90 1685.198 20.09 

99 1419.927 97 2867.64 20.20 

 
One thousand tests were performed using ParamILS with the objective function 

and PILS with the estimation function. Table 1 shows the average number of 
evaluations necessary for each algorithm to obtain similar performance levels. As 
shown in this table PILS requires approximately twice as many evaluations as 
ParamILS to obtain similar results. But, considering that this data was mimicking a 
situation where each evaluation by ParamILS should take ten times longer, it’s easy to 
see the advantages offered by our proposal. 

5   Conclusions  

Even though further testing is necessary to fully validate our method, the initial 
results show that our proposal could be very useful in helping to solve the FMS 
problem. Still, a more in depth analysis of the algorithms parameters is necessary, in 
order to completely understand their impact on the output and find and adequate 
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configuration for solving this particular problem. In addition to the FMS problem, the 
proposed algorithm could prove to be useful in solving other optimization problems 
where the definitions and assumptions listed in section 2.2 are valid. 
 
Acknowledgments. We thank Alvaro Soto, Karim Pichara and Jorge Baier for many 
helpful discussions regarding this work. 
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Abstract. In this work, Binary Local Patterns (LBP), Support Vec-
tor Machine (SVM) and Trade-off (TOF) correlation filter are evaluated
in face recognition tasks using thermal infrared imagery. The infrared
technology has a particular kind of noise called non-uniformity and corr-
espond to a fixed pattern noise superimposed at the input image, de-
grading the quality of the scene. Non-uniformity varies over time very
slowly, and in many applications, depending of the technology used, can
be assumed constant for at least several hours. Additionally, additive
Gaussian noise (variable over time) is generated by the associated elec-
tronics. Both kind of noise affect the performance of classifiers in face
recognition applications using infrared technology and must be consi-
dered. The comparison of performance of each method considering fixed
and variable over time noise leads allow to conclude that SVM is more
robust under both kind of noise.

Keywords: Face Recognition, Infrared Thermal Imaging, SVM, LBP
and TOF.

1 Introduction

Actually, there are many works on face recognition [7], which mainly uses the
visible spectral range, although there are some works like Ghiass et al. [3], that
present a state of art in terms of facial recognition in the infrared spectral range.
Additionally, the work of Kong et al [4] presents a comparison between the
advantages and disadvantages of the techniques used in both spectral ranges. In
face recognition problem, the efficiency of classification process in visible range
depends principally of the face angle view, occluding objects, distance between
face and camera, facial expressions, and mostly the light or existing lighting in
the environment. In this work, an evaluation between TOF classification methods
[9], LBP [6,1] and SVM [11] using infrared imagery is presented. The infrared
thermal images correspond to the range 8 − 14μm, i.e., infrared emission being
independent of any light source. In particular, human skin has an emissivity
close to 1 (see [8]), which represents a unique thermal signature for each subject.

Infrared technology present a non-uniformity in the output scene when a
flat-image is captured. This effect is know as fixed pattern noise, i.e., remains
� This work was partial supported by Center for Optics and Photonics FB0824/2008.

C. San Martin and S.-W. Kim (Eds.): CIARP 2011, LNCS 7042, pp. 683–691, 2011.
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constant in time. For example, Figure 1a shows a capture without noise and in
Figure 1b a capture with fixed pattern noise using CEDIP JADE UC camera
is presented. In effect, the original capture is represented in Figure 1b while
the Figure 1a is obtained by correcting the non-uniformity at the scene using a
black body at two different temperatures (two-point calibration). This correction
requires stopping the capture process and the use of black bodies as a reference.
The aim of this work is to recognize individuals using images as Figure 1b without
the need to correct or eliminate the fixed pattern noise.

(a) (b)

Fig. 1. Infrared images captured using the CEDIP JADE camera, a) free noise image
and b) image with fixed pattern noise. The goal is to recognize the subject in an image
as b).

This work is organized as follows. In section 2 the algorithms TOF and LBP
are reviewed, and what is a support vector machine (SVM) is briefly explained.
In section 3 the used comparison methods for the algorithms mentioned above
is presented. In section 4 the experiment and results is presented. Finally, some
discussions and conclusions are reported in section 5 and 6, respectively.

2 Methodology

In this section, three traditional methods of face recognition are presented:
Trade-Off (TOF) correlation filter, Local Binary Patterns (LBP) based, and
Support Vector Machine (SVM).

2.1 Correlation Filter

Correlation is a measure commonly used to characterize the similarities between
a reference pattern and a test pattern. This concept is used frequently in recog-
nition applications, presenting a greater importance degree on the use of cross-
correlation for get the relative position of the object. The cross-correlation is
given by:

c(τx, τy) =
∫ ∫

T (fx, fy)R∗(fx, fy) expj2π(fx ,fy)+fyτy dfxdfy, (1)

= IFT {T (fx, fy)R∗(fx, fy)} , (2)
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Where R(fx, fy) and T (fx, fy) are the 2D Fourier transforms of the reference
pattern and the test pattern, respectively. In general, the use of a correlation
filter for face recognition, as shown in Figure 2. Consists in to apply a filter
(in particular, in this work we used the filter TOF 2.1) on subject image under
study, and observe which is the highest amplitude (high peak (equation 1)) of
the resulting image cross-correlation, and then calculate a similarity measure
(PSR or PCE [5]) to classify a subject as valid or not.

Fig. 2. Correlation filters in face classification

Optimal Tradeoff Filter (TOF). TOF algorithm (3) [9] provides a compro-
mise between the MACE filter characteristics [2], which increases the peak of
positive results, and the NTC filter, which aims to reduce the output noise va-
riance. In this case it is necessary to assume the presence of white noise in order
to approximate the matrix C to identity matrix, and the commitment between
the two is defined by α in the form:

TOF filter: h = T−1X(X ∗ T−1X)−1u, (3)
Trade-off: T = αMACE + (1 − α)NTC. (4)

2.2 Local Binary Patterns-(LBP)

The use of LBP in face recognition was introduced by Ahonen et al. in their work
[1] and different variations have appeared after Marcel et al. (2007) [6]. The work
of Socolinsky et al. [10] shows good results using methods based on appearance.
By the above, we were decided to explore the LBP algorithm, which is a texture
descriptor based on appearance, which is rather robust and less influenced by
possible alignment problems of infrared images.

As shown in Figure 3, the original LBP, each neighborhood (of 3x3) is thres-
holding according to the central pixel (gc) thereof, and the result is considered
as a binary number called LBP code. Then, the image is divided into rectan-
gular regions, and for each region is calculated the histogram of the LBP code.
Finally, the histogram of each region is concatenated into one that represents the
image of the face. The Chi-square similarity measure [1] is used to compare the
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histograms of two different images, and thereby discriminate whether a subject
is considered valid or impostor. The method of nearest neighbor was used to
make the classification (identification). The TEER (Threshold of Equal Error
Rate) was found to verification problem, and the value (obtained by means of
training set, that corresponding to the comparison with the measure Chi-square
similarity) was used as a threshold in the test set.

Fig. 3. Original Local-Binary Patterns [8]

2.3 Support Vector Machine (SVM)

Support Vector Machines [11] allow to solve classification problems. In its original
form were made to solve classification problems with only two classes, although
there are different methods for use in multiclass problems. In this work we chose
the original version, due to it adapts to the verification problem, where the first
class represents a subject, and the second class represents the other subjects
(impostors). A support vector machine assumes that if we have a set of data
not linearly separable of n dimension (which belong to two classes), then they
are linearly separable in the (n + 1) dimension. The SVM can use different
types of kernels, which greatly promotes the search for solutions to problems
of classification. These kernels can be: linear, polynomial, RBF, sigmoid, etc. In
particular, this paper each image was represented as a column vector where each
element contains the intensity of the pixel, which can be classified as a method
of appearance.

3 Evaluation Methods

To measure the fixed and variable noise tolerance, the following evaluation me-
thods are used (see [7]):

False Accepted Rate (FAR). The false accepted rate is calculated by the
relation between the number of accepted impostor subjects and the total number
of impostor subjects, i.e.:
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FAR =
(

impostors accepted as valid subjects
total number of impostor subjects

)
(5)

False Rejected Rate (FRR). The false rejected rate is calculated by the
relation between the number of rejected valid subjects and the total number of
valid subjects, i.e.:

FRR =
(

valid subjects rejected
total number of valid subjects

)
(6)

Equal Error Rate (EER). As shown in Figure 4, the EER value is obtained
when FRR = FAR. Note that while more smaller is this value, better is the
system to classify.

Fig. 4. EER as the intersection of FAR and FRR curves [7]

Note that these three indicators (EER, FAR and FRR) are proportional
inversely to the performance of facial recognition methods, i.e., while more closer
to zero are these indicators, the methods obtain a better classification.

4 Experimentation and Results

4.1 Experiment Description

To evaluate the noise tolerance of the three methods mentioned in section 2, we
performed the following experiment. A training set and test set from a database
was created, which contains two separate sets of faces, the expression set E (joy,
anger, surprise, etc.) and vocalization set V (vowels or words). The database has
102 subjects, 6 images per subject (subdivided into two sets: 3 images for the
set E and 3 for the set V). The training set was of 34 subjects, i.e., 68 subjects
will be impostors for the system. For each subject belonging to training set, a
training subset was defined, which consists of 3 images of a set (E or V) as hits
and 1 image (the same set) of each one of the other subjects in the training set
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(as rejections). As test subset to this subject was considered the 3 images in
the group (E or V) that weren’t considered in the training set (as hits) and all
images of impostor subjects (as rejections).

To train the system, the complete and original images were used, i.e., free
noise and the original size (320x240px). And then, case-by-case the noise tole-
rance (fixed and variable pattern) was evaluated, adding to the original image
a Gaussian noise simulated by a normal distribution with mean 0 and variance
t% of 28, where t = {10, 20, 30, 40, 50, 80} for fixed noise, and t = {1, 5, 10} for
temporal noise. Recall that in each case were used two training subsets (one E
and one with V) and two test subsets for each subject belonging to the training
set. Moreover, 5 exercises for each combination to obtain better statistics were
performed.

4.2 Results

Below, the Table 1 is presented, which contains the performance of the methods
with images in their original condition, i.e., free noise. Following, the tables show
the results of the experiment described above. Remember that the images are
classified into two sets (E and V), so the results are given separately for each
one. In Tables 2, 3 and 4 are presented the results of classification with fixed
pattern noise. Moreover, in Tables 5, 6 and 7 is shown the results considering
the variable white noise.

Table 1. Performance, EER, FAR y FRR for original images

Set E Set V
Method Accuracy EER FAR FRR Accuracy EER FAR FRR

TOF 94.77 5.88 6.39 8.33 98.69 3.92 3.70 10.78
LBP 97.71 1.96 2.15 3.27 99.35 1.96 2.15 3.27
SVM 97.69 2.28 2.29 5.88 97.19 2.70 2.75 9.80

Table 2. Performance of TOF method with fixed pattern noise

Set E Set V
exercise var 10% var 20% var 30% var 10% var 20% var 30%

1 74.5098 64.7059 60.4575 85.9477 82.0261 78.1046
2 65.0327 56.8627 52.2876 84.9673 81.6993 76.7974
3 59.8039 49.3464 49.0196 83.3333 82.0261 76.7974
4 56.8627 47.3856 47.7124 82.0261 80.3922 76.1438
5 52.2876 45.4248 45.7516 84.3137 79.7386 74.5098

Mean 61.6993 52.7451 51.0457 84.1176 81.1765 76.4706
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Table 3. Performance of LBP method with fixed pattern noise

Set E Set V
exercise var 10% var 20% var 30% var 10% var 20% var 30%

1 96.7320 96.0784 96.0784 97.0588 97.0588 98.0392
2 97.0588 96.7320 96.0784 97.7124 97.0588 97.3856
3 96.7320 96.7320 96.0784 97.7124 97.3856 97.0588
4 96.7320 96.0784 96.0784 97.3856 97.3856 97.0588
5 97.3856 96.4052 95.7516 96.7320 97.0588 98.0392

Mean 96.9281 96.4052 96.0130 97.3202 97.1895 97.5163

Table 4. Performance of SVM method with fixed pattern noise

Set E Set V
exercise var 10% var 20% var 30% var 10% var 20% var 30%

1 98.1466 98.0034 97.3952 98.1466 98.3970 98.3469
2 98.1895 97.9748 97.7601 98.2038 98.4901 98.4901
3 98.1394 97.9963 97.8174 98.1823 98.5258 98.5616
4 98.1752 98.0034 97.9176 98.1609 98.4471 98.4686
5 98.2038 98.0893 97.7315 98.1537 98.4686 98.5187

Mean 98.1709 98.0135 97.7243 98.1695 98.4657 98.4772

Table 5. Performance of TOF method with variable white noise

Set E Set V
exercise var 1% var 5% var 10% var 1% var 5% var 10%

1 94.7712 93.4641 88.2353 97.3856 94.4444 91.5033
2 94.4444 91.1765 86.9281 97.3856 95.4248 89.2157
3 94.1176 92.1569 88.2353 97.0588 96.0784 88.8889
4 94.7712 93.4641 88.2353 97.0588 95.7516 88.5621
5 94.1176 93.7908 89.2157 97.3856 94.7712 89.8693

Mean 94.4444 92.8105 88.1699 97.2549 95.2941 89.6079

Table 6. Performance of LBP method with variable white noise

Set E Set V
exercise var 1% var 5% var 10% var 1% var 5% var 10%

1 96.7320 96.7320 95.0980 98.0392 97.7124 97.0588
2 97.0588 96.4052 95.4248 98.6928 97.3856 96.7320
3 96.7320 97.0588 95.0980 97.7124 97.0588 97.0588
4 96.7320 96.7320 95.4248 98.3660 96.4052 96.7320
5 97.0588 97.0588 95.0980 99.0196 96.7320 97.0588

Mean 96.8627 96.7974 95.2287 98.3660 97.0588 96.9281
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Table 7. Performance of SVM method with variable white noise

Set E Set V
exercise var 1% var 5% var 10% var 1% var 5% var 10%

1 97.8317 98.0607 98.1466 97.5097 97.9891 98.2038
2 97.8102 98.0750 98.1967 97.4524 98.0106 98.1967
3 97.8460 98.0321 98.1895 97.4882 97.9963 98.2181
4 97.8818 98.0249 98.2110 97.5025 98.0106 98.1609
5 97.8603 97.9963 98.1466 97.4667 97.9677 98.1251

Mean 97.8460 98.0378 98.1780 97.4839 97.9948 98.1809

5 Discussion

As shown in Table 1 the LBP method succeeds in obtaining the best performance
for face recognition with free noise images in E set, obtaining a performance of
97.71%, closely followed by SVM with 97.69%. As is expected, the LBP method
also gets the lowest values for the indexes EER (1.96%), FAR (2.15%) and FRR
(3.27%). When is considered the V set of images, again the Table 1 shows that the
LBP method gets the best performance with 99.35% followed by TOF correlation
filter with 98.69%. Note that despite the TOF filter gets a better performance
than SVM, the SVM gets the lowest value to EER, FAR and FRR.

As shown in Tables 2, 3 and 4, the performance of classifiers in general is better
for set V than for set E, with differences exceeding 20% in accuracy comparing
to the same noise (in the case of TOFF correlation filter) and minor variations
in accuracy 0.0014% in case of SVM. Therefore, and according to the averages
shown in Table 4, the SVM is more stable when classifying both sets of images,
i.e. the accuracy obtained for the set E is very similar to that obtained for the
set V.

As shown in Table 2, the TOF correlation filter obtains the worst results
for the two sets (E and V) obtaining a minimum accuracy of 51.05% when
considering a 30% of fixed noise. Moreover, the best accuracy to the same noise
is achieved by the SVM (97.72%).

As shown in Tables 5, 6 and 7 the TOF correlation filter gets the worst per-
formance, and the SVM gets the best performance again. Note that, the results
obtained by SVM are usually slightly higher by about 1% to those obtained by
LBP, except in the training set V, with variable noise of 1%, where LBP is higher
than SVM at 0.8%.

For all the above and Table 1, we recommend the use of LBP method in faces
recognition with free or very little noise; on the other hand we recommended the
use of SVM for noisy images, due to SVM is robust to fixed and variable noise.
Also, SVM gets low values for the indexes EER, FAR and FRR.

Finally, we note that in some cases to increase the percentage of noise, is
produced a slight increase in accuracy, which could be considered as a possi-
ble inconsistency in the results, it’s logical to think that while more noise the
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analyzed image has, worse will be the performance of classification. But this be-
havior can be explained if is considered that with a slight noise added randomly
to the image, will be incorporated a differentiation element between them, which
is the responsible for the slight increase in accuracy obtained.

6 Conclusions

Due to the main factor of face recognition problem is the lighting, in this work
was used infrared thermal imaging to make a comparison between the TOF
method, LBP and SVM applied to this problem. In the previous section recom-
mends the use of one method over another in certain cases. They also concluded
that SVM is usually the most robust against noise from fixed and variable pat-
tern over time.

Further work is needed to incorporate other methods in the study of face
recognition in infrared images, it is also possible to extend the experiment and
increasing the percentage of noise to see that finally the algorithms performance
drops when this increase, and thus give more consistency to the data presented.
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1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition With Local Binary Pat-
terns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–
481. Springer, Heidelberg (2004)

2. Casasent, D., Ravichandran, G.: Advanced distortion-invariant minimum average
correlation energy (MACE) filters. Applied Optics 31, 1109–1116 (1992)

3. Ghiass, R.S., Bendada, A., Maldague, X.: Infrared Face Recognition: A Review of
the State of the Art. In: 10th International Conference on Quantitative InfraRed
Thermography (July 2010)

4. Kong, S.G., Heo, J., Abidi, B.R., Paik, J., Abidi, M.A.: Recent advances in visual
and infrared face recognition - a review. Computer Vision and Image Understand-
ing 97, 103–135 (2005)

5. Vijaya Kumar, B.V.K., Hassebrook, L.: Performance measures for correlation fil-
ters. Applied Optics 29(20), 2997–3006 (1990)

6. Marcel, S., Rodriguez, Y., Heusch, G.: On the Recent Use of Local Binary Patterns
for Face Authentication. International Journal on Image and Video Processing
Special Issue on Facial Image Processing (2007)

7. San Martin, C., Carrillo, R., Meza, P., Mendez, H., Plasencia, Y., Garćıa-Reyes,
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Abstract. This paper proposes a hybrid algorithm for fingerprint matching 
using geometric structures with Delaunay triangle´s based formed by the 
minutiae. For those minutiae triangles candidates for fingerprint matching, the 
texture information is extracted from the original raw image localized inside the 
triangle using Local Binary Patterns techniques (LBP). The preliminary results 
have shown that the merging technique is fairly robust for genuine fingerprint 
matching discrimination, reducing thus the error rate for FRR and FAR and the 
time comparison between fingerprint in the verification and/or identification 
process. The experimental results have shown that the proposed algorithm is 
effective and reliable.  Tests were conducted from the database BD1 and BD2 
of FVC2002 competition, obtaining an EER of 6.18% and 3.17% respectively. 

Keywords: Fingerprint Matching, Delaunay Triangles, Local Binary Pattern. 

1   Introduction 

Fingerprint matching provides a matching score that quantifies the similarity between 
the recognition feature set and the enrollment template. Fingerprint matching 
applications are concerned with two types of systems: the verification and 
identification systems. A verification system authenticates a person´s identity by 
comparing the captured fingerpring characteristics with her enrolled template 
fingerprint. It conducts a one-to-one comparison to confirm whether the claim of 
identity by the individual is true. In a identification system this recognizes an 
individual by searching the entire enrollment template database for a match. It 
conducts one-to-many comparisons to establish if the individual is present in the 
database.  

A categorization of fingerprints matching approaches are divided in three groups 
[1]: Correlation-based-matching, is the superposition of two fingerprint images and 
the correlation between corresponding pixels is computed for different alignments 
(e.g., various displacements and rotations). Minutiae-based-matching, is based on the 
minutiae extraction on both fingerprints and stored as sets of points in the two-
dimensional plane. This type of matching can be classified as local and global 
matching. The global matching consists of finding the alignment between the 
template and the input minutiae sets that result in the maximum number of minutiae 
pairings. The local matching algorithms try to match a subset of minutiaes that are 
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closed related based on geometric structures formed by local minutiae neigborhood. 
The atributes of these geometric structures provides a matching invariant to rotation 
and displacement of fingerprints. The Dealunay triangulation has been used in the last 
few years as an approach of geometrical structures [3-5]. One problem with Delaunay 
triangulation is its sensitivity to the false minutiae, producing different local 
structures. However, the inclusion of a new point in the triangulation only affect the 
topology around the new point, keeping the other areas of the topology undisturbed 
[5]. The third category of fingerprint matching is a non-minutiae feature-based. The 
aproach belonging to this family compare fingerprints in terms of features extracted 
from the ridge pattern. The most popular technique for comparing fingerprint texture 
is based on the method used by FingerCode [6], obtaining information using a Gabor 
filterbank around the core of the fingerprint. The most critical approach is to align the 
FingerCode using the area around the core. Some fingerprints do not have a core or 
are very difficult to determine their position accurately. In other case, the core is very 
close to the edges of the image, which cause the FingerCode to be incomplete or 
incompatible with the image of the fingerprint. In [7, 8] they propose a hybrid variant 
in which the images are aligned using information from the minutiae and then extract 
the information based on the texture of the fingerprint using Gabor filters on the entire 
image. In [9] it is presented another hybrid approach where the fingerprints are 
aligned using the minutiae and then the texture-based features are extracted from the 
full image using the local binary patterns (LBP) operator [10] with Gabor filters. A 
problem with methods based on comparison of fingerprint features is a high 
computational cost to calculate the vectors [7-9].  

This paper propose a hybrid approach combining fingerprint triangle structures, 
where the minutiae are vertices of the triangle using Delaunay triangulation 
techniques, merged with textural characteristics of the fingerprint extracted locally on 
the center of each triangle candidate for matching using the LBP operator. For each 
pair of feature vectors obtained from the Delaunay triangle candidates for matching, a 
difference of the LBP histogram is calculated from the center of the triangle which 
offer better discrimination between fingerprints. 

Section 2 describes the implementation details of the hybrid algorithm. Section 3 
shows the experiments and results. Finally, in section 4 presents conclusions and 
future work. 

2   Comparison of Fingerprints 

The system is to compare fingerprints with Delaunay minutiae triangles structures. 
For each triangle, geometric features invariant to rotation and translation are obtained 
to avoid a previous step of alignment. Once the similarity between triangles are 
calculated, they are confirmed by comparing the LBP operator histogram obtained 
locally on the center of the structures, which contain information about the texture of 
the triangle image. 

2.1   Delaunay Triangulation 

By applying the Delaunay triangulation on the set of minutiae, each fingerprint is 
represented as a set of triangles. The Delaunay triangles have certain properties that 
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are desirable for the application [5, 11, 12]: 1) The Delaunay triangulation of a non-
degenerated set of N minutiaes is unique and can be computed in O(NlogN), 
producing O(N) triangles. 2) The inclusion or absence of a triangulation point only 
affects the neighboring triangles, keeping the topology in unaffected areas. 3) The 
Delaunay triangulation guarantees the connectivity of each point, with about 2.6 
segments per point. This representation of the minutiae triangle structures is used to 
find similarity between fingerprints. 

2.2   Local Binary Patterns 

The LBP operator is a descriptor of texture images and has been used widely in face 
recognition applications [13, 14]. It has been proven to be highly discriminative and 
its main advantage is its invariance to changes to the gray scale and computational 
efficiency. The basic idea for the calculation of LBP is that the binary code is 
described using a pattern of local texture, constructed by the central value pixel used 
as a threshold and its neighbour pixels (Fig. 1). 

 

Fig. 1. Calculation of the LBP operator 

Then a histogram formed by the values obtained for each pixel of the image is used 
as a texture descriptor. To deal with textures at different sizes, the LBP operator 
defines the local neighborhood as a set of equally spaced sampled points on a circle 
centered at the tagged pixel, allowing the LBP define any kind of radio r and p sample 
points, whose notation is LBP . . Another extension for the LBP is the definition of 
uniform patterns, whose notation isLBP , . A LBP is called uniform if the binary 
pattern contains at most two transitions 0 to 1 or viceversa. To calculate the LBP 
histogram, each uniform pattern is stored in a separated bin and all non-uniform 
patterns are asigned to a single common bin [10]. 

2.3   Algorithm 

The proposed method uses two different types of information in the fingerprint image: 
The minutiae and texture based features on the image of the fingerprint. The minutiae 
extraction stage is performed by applying the NFIS Mindtct [15]. Thus, there are two 
sets of minutiae, one for the input fingerprint and another for the template fingerprint. 
By applying the Delaunay triangulation on both minutiae sets, it obtaing two sets of 
triangles, computed for both the feature vector set invariant to rotation and translation, 
used for comparing the structures between the two fingerprints. The vector of local 
characteristics of a triangle is given by Vi = [dij, djk, dki, angα, angβ, angγ, difiSij, 
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The Delaunay triangulation tends to avoid triangles with obtuse angles, but this is 
not guaranteed. To avoid these triangles, the system rejects those who have interior 
angles greater than 168º and below 10º. The comparison is to find matches between 
vectors of the triangles of the input fingerprint and the template fingerprint. For each 
of the comparisons between the feature vectors of fingerprints, the feature vector of 
the input fingerprint is rotated three times, one for each side of the triangle, using the 
smallest difference between the vectors, this being the best similarity to be found. If 
the difference of these vectors is below a define threshold, the two vectors are 
considered a possible match, being marked and stored as candidate matched triangles. 
Following, for each pair of candidates, a comparison is made by the LBP operator. 
This approach uses the operator LBP ,  which is used by [13, 14] for face 
recognition. The way of applying the LBP operator is through a window w x w whose 
midpoint coincides with the centroid of the structure analyzed. The window is divided 
into 4 sub-windows, by computing the LBP histograms independently in each. The 
four histograms are concatenated into a single vector (Fig. 3). Before applying the 
LBP operator, the window of the input fingerprint is rotated by the angular difference 
with one side common of the triangle of the template fingerprint. Thus, the LBP is 
applied in both windows with the same orientation.   

To measure the difference between both histograms, it uses the chi-square distance
2χ  [13]: 

2
2

1

( )
( , )

( )
χ

=

−
=

+
n

i i

i i i

T E
T E

T E
 (1)

where T and E are histograms of the template fingerprint and input fingerprint, 
respectively, n is the length of the histogram. If the difference between the two 
histograms does not exceed a defined threshold, the LBP histograms are similar, 
confirming the similarity of the triangle at the level of minutiae and texture of the 
fingerprint image. Finally, to determine whether these sets of triangles have a similar 
spatial distribution, it determines the Euclidean distance between each centroid 
structure, removing those triangles that vary in distance. Figure 4 shows two 
fingerprints of the same finger, which shows triangles that match (in white) and 
triangles that does not complied with the LBP operator neither in the spatial 
distribution (in segmented lines). We define the score of comparison between the 
input fingerprint and the template fingerprint as:   

( 1, 2)
= e

sc
min e e

 (2)

where e is the number of structure pairs that match, e1 and e2 corresponds to the 
structure numbers that are formed by Delaunay triangulation of the input fingerprint 
and the template fingerprint respectively. 
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Fig. 4. Delaunay triangle structures for two fingerprints of the same finger taken from DB2 for 
the FVC2002 competition 

3   Experiments and Results 

3.1   Data Set and Evaluation Methodology 

To obtain the results and determine the performance of the algorithm, it used 
fingerprint database DB1 and DB2 from FVC2002 competition [16]. Each database 
contains 800 images, 8 prints of the same finger for each of 100 individuals. The 
images of DB1 are 388x374 acquired with an optical sensor “TouchView II" by 
Identix. The images of DB2 are 296x560 using an optical sensor "FX2000" by 
Biometrika. 

The performance of the algorithm is measured by the Equal Error Rate (EER), 
parameter given by [16]. The EER occurs when the FRR (percent of comparisons 
when there is a false rejection) and FAR (percent of comparisons when there is a false 
acceptance) have the same value. The lower EER, the better is the comparison 
system. 

The algorithm was implemented in Matlab. The implementation of the algorithms 
was done in a laptop with Windows 7, Intel Core i5 (2.27 GHz), under normal 
working session. 

3.2   Experimental Results 

The first experiment is to estímate the parameters to be used in the LBP operator , . We use two configurations and two sizes of windows. One configuration use 
a single window of w x w and the other configuration use the same window size 
divided en four sub-windows, to obtain four LBP histograms that are concatenated to 
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get a single histogram. The purpose of the last configuration arises from the fact that 
you can get better results by dividing a window into sub-windows for greater 
discrimination. A histogram with four sub-windows contain more texture information 
locally that one with a single window. Table 1 and Table 2 show the results obtained 
with DB1 and DB2 respectively. It is observed that the execution time between a 
complete window and four sub-windows of the same size (1 of 80x80 and 4 of 40x40) 
shows no difference between the execution times. The best results of EER are 
obtained when it uses a set of 4 sub-windows in an area. In the LBP of DB1 4 sub-
windows of 20x20, performs better with respect to other configurations due to the size 
of the image being used. When larger windows size is used (80x80), the performance 
drops, because it captures areas that fall outside the zone of interest. By contrast, DB2 
obtain better performance with bigger window size because the images are larger (4 
sub-windows of 40x40) and these windows capture more texture information. 

Table 1. EER and times associated with different parameters for LBP in DB1 

N° of windows window size EER Avg. FAR Avg. FRR 
1 80x80 9.19% 0.18seg 0.39seg 
4 40x40 7.48% 0.19seg 0.47seg 
1 40x40 6.67% 0.17seg 0.32seg 
4 20x20 6.18% 0.19seg 0.39seg 

Table 2. EER and times associated with different parameters for LBP in DB2 

N° of windows window size EER Avg. FAR Avg. FRR 
1 80x80 4.59% 0.28seg 0.71seg 
4 40x40 3.27% 0.32seg 0.75seg 
1 40x40 5.58% 0.25seg 0.43seg 
4 20x20 5.24% 0.28seg 0.51seg 

Table 3. EER and times associated with different configurations for LBP in DB1 

Configuration EER AVG 
(+LBP +DIST) 6.18% 0.26seg 
(+LBP -DIST) 7.17% 0.22seg 
(-LBP +DIST) 7.33% 0.14seg 
(-LBP -DIST) 8.39% 0.12seg 

 
The second experiment is to validate the behavior of the hybrid algorithm. 

Different tests are performed using the LBP operator in different configurations with 
the Euclidan distance between structures. The EER and time associated with each of 
the configurations are shown in Table 3 and Table 4 for DB1 and DB2 respectively. 
The lowest EER is obtained when combining the comparison of Delaunay triangles in 
conjunction with the LBP operator and the Euclidan distance between structures 
(+LBP + DIST). The highest execution times were obtained for those configurations 
where EER was less, mainly because of the increased number of calculations of LBP 
operator when fingerprints have more common structures. 
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Table 4. EER and times associated with different configurations for LBP in DB2 

Configuration EER AVG 
(+LBP +DIST) 3.27% 0.47seg 
(+LBP -DIST) 4.07% 0.40seg 
(-LBP +DIST) 4.30% 0.36seg 
(-LBP -DIST) 7.30% 0.33seg 

4   Conclusions and Future Work 

This paper presents a hybrid approach using Delaunay triangulation in conjunction 
with the LBP texture based operator. The triangle structures proved to have sufficient 
discriminatory features for comparison. The execution times are relatively low 
because the LBP operator is calculated only on those triangles that are candidate for 
comparison. The fusion of the Delaunay and LBP operator generates a structure with 
additional discriminatory features in the comparison for fingerprint matching. As 
future work we intend to use the ridge count between minutiae as another parameter 
for discrimination in the triangles, and generate more tests with the new addition to 
the algorithm with other databases. One problem with Delaunay triangulation is its 
sensitivity to false minutiae, affecting the formation of false structures, thus 
worsening the system performance. For this problem it is proposed the use of another 
minutia extractor and use enhanced fingerprint images.     
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Abstract. This paper presents a method for automatic segmentation
of some short association fiber bundles from massive dMRI tractography
datasets. The method is based on a multi-subject bundle atlas derived
from a two-level intra-subject and inter-subject clustering strategy. Each
atlas bundle corresponds to one or more inter-subject clusters, presenting
similar shapes. An atlas bundle is represented by the multi-subject list of
the centroids of all intra-subject clusters in order to get a good sampling
of the shape and localization variability. An atlas of 47 bundles is inferred
from a first database of 12 brains, and used to segment the same bundles
in a second database of 10 brains.

1 Introduction

Diffusion MRI allows noninvasive study of brain white matter (WM) structure
through the measurement of the restricted diffusion of water. The fiber orienta-
tion can be inferred from this data and fiber bundles can be reconstructed using
tractography algorithms [1]. Until now, several WM bundle atlases have been
proposed [2,3] for the bundles belonging to deep white matter (DWM). However,
short fibers of superficial white matter (SWM) have been barely considered,
probably because these are more variable across sujects. Furthermore, the par-
tial volume effect in subcortical regions prevents accurate delineation of small
fiber bundles. The continuous improvement of DW-MRI acquisition schemes,
diffusion models and tractography algorithms leads to increasingly complex and
large tractography datasets, with known DWM tracts composed by various fiber
fascicles of different shapes and lengths, and a big amount of short SWM associ-
ation bundles. This improvement allows deeper analyses of WM bundles, but, at
the same time, increases the requirements of tractography datasets analysis and
segmentation techniques. The segmentation of human brain WM fiber bundles
is therefore a complex and not completely solved problem. In particular, the car-
tography of fiber bundles of SWM is still an unachieved task. In [4], the authors
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performed a group analysis to study SWM using a voxel-based approach rely-
ing on linear brain normalization. They could identify only four U-fiber bundles
because of the blurring occurring with such a normalization. Most recently, this
method was improved using non-linear normalization, and was able to detect 29
short association bundles in 20 subjects [5]. These results are very interesting
but as a ROI (region of interest) based approach was used, there is no guarantee
that the fibers present the same shape across subjects.

The usual strategies proposed for the segmentation of fiber bundles follow
two complementary ideas. The first approach is based on ROIs used to select
or exclude tracts [3,5]. The second strategy is based on tract clustering using
pairwise similarity measures [6]. This last approach requires less interaction than
manual approaches and integrates fiber shape and position information in the
analysis, which is not the case of most ROI-based segmentation approaches. It
can also embed a priori knowledge represented by a bundle template [7]. However,
the clustering-based methods commonly present a limitation on the number
of fibers that can be analyzed. In spite of two recent works that describe the
analysis of huge datasets (120,000 [8] and 480,000 fibers [9]), the segmentation
of huge tractography datasets, presenting more than one million tracts, is still a
challenge.

Hence, this paper presents a method for the segmentation of SWM fiber bun-
dles from massive tractography datasets using a priori information embedded
in a multi-subject (MS) fiber bundle atlas. The method builds upon a multires-
olution intra-subject clustering that can compress millions of tracts into a few
thousand consistent bundles, described in [10]. A second level of clustering is
performed across subjects in order to infer a list of generic bundles with consis-
tent shape and localization in a normalized space [11]. The most reproducible
inter-subject (IS) clusters computed from a database of 12 brains were manually
labeled to build the atlas. This MS strategy, embedding the shape and local-
ization variability, has been shown recently to be more efficient than the usual
single template approach for brain structure recognition because of weaknesses
of the spatial normalization paradigm [12]. New tractography datasets are first
compressed with the same intra-subject clustering. The resulting clusters are
then labeled using pairwise distances to the centroids representing the MS atlas
bundles. To the best of our knowledge, this is the first SWM clustering-based
segmentation method.

2 Material and Method

2.1 Diffusion and Tractography Datasets

The atlas was constructed from 12 subjects of a High Angular Resolution Dif-
fusion Imaging (HARDI) adult database (DB1). This database provides high
quality T1-weighted images and diffusion-weighted (DW) data acquired with a
GE Healthcare Signa 1.5 T Excite scanner. The diffusion data presents a high
angular resolution based on 200 directions and a b-value of 3000 s/mm2 (voxel
size of 1.875 x 1.875 x 2 mm).
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Ten subjects of another adult HARDI database (DB2), were used to test the
segmentation method. This database provides high quality T1-weighted images
and DW data acquired with a Siemens 3.0 T Tim Trio system. The DW data is
based on 41 directions and a b-value of 1000 s/mm2 (voxel size of 2 x 2 x 2 mm).

DW data were acquired using a twice refocusing spin echo technique com-
pensating Eddy currents to the first order. Geometrical distortions linked to
susceptibility artifacts were corrected using a phase map acquisition. T1 and
DW data were automatically realigned using a rigid 3D transform. The diffusion
Orientation Distribution Function (ODF) was reconstructed in each voxel. For
subjects from DB1, a spherical deconvolution (SD) of the fiber ODF was used.
It is a SD transform reconstructed from q-ball imaging with a constrained reg-
ularization [13], using a maximum spherical harmonic order SHmax = 8 and a
Laplace-Beltrami regularization factor λLB = 0.006. For subjects from DB2, an
analytical solution of the q-ball model was determined [14], using a SHmax = 6
and a λLB = 0.006. Whole-brain tractography was performed using an improved
tractography propagation mask (using T1 data rather than FA) and a regular-
ized deterministic tractography algorithm. Tractography was initiated from two
seeds in each voxel of the mask (with T1 resolution), in both retrograde and
anterograde directions, according to the maximal direction of the underlying
ODF. Tracking parameters included a maximum curvature angle of 30◦ and a
minimum and maximum fiber length of 20 mm and 250 mm, respectively, leading
to a set of about 1.5 millions tracts per subject.

2.2 HARDI Multi-subject Fiber Bundle Atlas

The two-level clustering was performed using the method described in [11] ap-
plied on database DB1, with some improvements. First, intra-subject clustering
[10] was applied to each dataset. This intra-subject clustering reduces the
tractography dataset information from more than one million of tracts to a few
thousand fiber bundles. The obtained bundles are thin and regular fiber fascicles
composed by fibers presenting similar length and shape. In addition, during the
analysis most of noise fibers are discarded, leading to a cleaner fiber dataset.
Due to its regular shape, each resulting fiber bundle can be represented by a
single fiber, called a bundle centroid. This compressed representation of a trac-
tography dataset allows the application of further processing steps that could
not be applied to the whole fiber dataset.

The second clustering level aimed at matching the putative bundles produced
by the previous level across the population of subjects. In this inter-subject
clustering, fiber centroids from all the subjects were aligned by an affine trans-
formation to the Talairach space (TS), estimated from the T1-weighted image.
Then, the centroids were clustered using pairwise distance measures [15] in or-
der to match bundles with similar shapes and positions in TS. In order to get
population representative clusters, only clusters composed by centroids from at
least half of the subjects were selected. The final addition of closest centroids
described in [11] was not performed with the aim of keeping very tight clusters.
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Fig. 1. Cortical surface anatomical regions used to identify the atlas short
association bundles. Images where adapted from http://www.bartleby.com/107/ and
http://www.netterimages.com/.

The inter-subject clusters belonging to SWM were manually labeled by an ex-
pert using gyral parcellation of cortical surfaces, in order to give an anatomical
name to each reproducible bundle (see Fig. 1). Each atlas bundle is then repre-
sented by the complete set of individual centroids belonging to the underlying
intra-subject clusters. A last visual inspection led to discard a few artefactual
centroids clearly including spurious parts like loops. The resulting multi-subject
representation provides a good sampling of the inter-subject variability of the
bundle trajectory after affine normalization. The atlas inference was done for
the bundles of the left hemisphere (LH), with a length between 35 and 110 mm.
The bundles of the right hemisphere (RH) were obtained using the symmetric
of those of the LH with respect to Talairach inter-hemispheric plane. The goal
is to get a symmetric atlas for the validation described in this paper. Ongoing
work aims at performing the same inference for the RH in order to remove any
bias. The current atlas includes a total of 47 SWM bundles; see details in Fig. 2.

2.3 WM Tracts Segmentation

The segmentation of a new tractography dataset begins with a compression into
a few thousand bundles equivalent to the compression used during the atlas
inference, described in [10]. Then, the resulting bundles are labeled using a su-
pervised classification based on the fiber bundle atlas. The bundle centroids are
normalized to the TS using an affine transformation. Then pairwise distances
are computed between each centroid of the new subject and all the centroids of
the atlas. The distance measure used is the maximum of the Euclidean distances
between corresponding points (dM), defined for two fibers A and B, described
by Np points, as

dM (A,B) = min
(

max
i

‖ ai − bi ‖,max
i

‖ ai − bNp−i ‖
)
, (1)

where ai and bi are the position of the points of fibers A and B respectively, for
i = 0..Np−1. This distance is a good representation of the similarity between two
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Fig. 2. Short association bundle atlas (47 bundles per hemisphere). The first
row shows all the atlas bundles. The remaining rows show each bundle in a separated
figure. Bundle names were assigned in function of the regions that the bundles connect,
following the names illustrated in Fig. 1. In some cases, an additional spatial specifi-
cation was used: fr (frontal), mid (middle), bck (back), sup (superior), inf (inferior).
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Fig. 3. Automatic fiber bundle segmentation results. Only left hemisphere
bundles are shown. Colors are the same as for the bundle atlas (Fig. 2). The bundles
were divided into three groups, in function of their reproducibility. Atlas bundles are
shown in the upper-left corner of each image. A: Fiber bundles found in all the subjects
(21 bundles). B: Fiber bundles found in 9 of the 10 subjects (12 bundles). C: Fiber
bundles found in 5 to 8 subjects (14 bundles).
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fibers, as it takes into account the fiber positions and shapes. It is more restrictive
than distances based on the closest points [15,6]. For the calculation, the atlas
fibers and the individual centroids are resampled using 21 equally distributed
points. The whole set of pairwise distances is obtained in a few minutes.

Each individual centroid is labeled by the closest atlas bundle, provided that
the distance to this bundle, namely the smallest pairwise distance to the cen-
troids representing this bundle, is lower than a threshold. This threshold was
empirically adapted to each atlas bundle (between 8–14 mm) taking into account
the bundle mean fiber length and the proximity to other atlas bundles, leading
to higher thresholds for long and isolated bundles. A leave-one-out strategy for
the determination of the thresholds could be implemented in the future.

3 Results

A general problem for evaluating WM bundle segmentation is the lack of gold
standard. This is even more complex for SWM, which cartography is still largely
unknown and to the best of our knowledge, no atlas describing the shape of these
bundles has been proposed. We evaluate our approach using a second database
(DB2). The results for the ten subjects are presented in Fig. 3. All the bundles
were found in at least half of the subjects, which is consistent with our atlas
construction requirements. Twenty-one bundles were found in all the subjects.
Twelve bundles were found in nine subjects and fourteen bundles were found in
between five to eight subjects. The segmentations were validated by the expert
who defined the atlas. To get an insight of the quality of the results, the bundles
were visually compared with those obtained using larger distance thresholds.
It was found that the chosen thresholds were close to optimal for most of the
bundles. Long and isolated bundles were in general well segmented, when these
existed, but some classifications errors were found in short bundles localized very
close to other atlas bundles.

4 Discussion and Conclusion

The proposed method shows that it is possible to segment the most reproducible
SWM bundles using a clustering-based approach in a population of subjects.
The use of a multi-subject representation of bundles and shape information
could lead to cleaner bundles than when using a ROI-based strategy, which
may improve the sensitivity of morphometric studies. Furthermore, this new
atlas and the possibility to manipulate massive tractography datasets allow finer
decompositions of the bundles, for instance, we proposed two subdivisions of the
bundle connecting the pre- and post-central gyri. Our atlas is bound to be refined
with more of such subdivisions in the near future.

However, the proposed method is far from be perfect. This is due in part to the
high inter-subject variability of short association SWM bundles and the current
limitations of dMRI techniques. Our results depend strongly on the quality of the
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tractography results: bundles that are not tracked in individuals can not be seg-
mented, a problem that particularly affects SWM due to the partial volume effect.

But an important improvement will be obtained by the use of non-linear
normalization [16]. First, the atlas construction will be performed using this
kind of normalization, leading to a better multi-subject representation of the
variability of the atlas bundles. Furthermore, the recognition of the bundles
should be also improved if non-linear normalization is used between the subjects
and the atlas, reducing the classification errors produced in bundles presenting
very similar shapes and close positions.
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Abstract. In this paper two classifiers have been derived in order to
determine if identical computer tasks have been executed at different
processors. The classifiers have been developed analytically following a
classical hypothesis testing approach. The main assumption of this work
is that the probability distribution function (pdf) of the random times
taken by the processors to serve tasks are known. This assumption has
been fulfilled by empirically characterizing the pdf of such random times.
The performance of the classifiers developed here has been assessed using
traces from real processors. Further, the performance of the classifiers
is compared to heuristic classifiers, linear discriminants, and non-linear
discriminants among other classifiers.

1 Introduction

Pattern recognition is a well-established research area that, in brief, takes groups
of known patterns and abstracts their fundamental characteristics in terms of
classes or clusters of data. Technically speaking, the stage where information is
abstracted from the known-patterns is termed as the training process, and the
known-patterns are called the training classes from the data sets. Based upon the
information obtained during the training process, classifiers are next mathemat-
ically devised with the goal of determining, as accurate as possible, the class of a
given sample data. This stage is called the classification process [1]. Lately, clas-
sification as well as pattern recognition techniques have been employed in new
application areas, such as parallel data processing, distributed data processing,
network analysis, intrusion detection, customer analysis at communication ser-
vice providers, etc. The common factor in all these areas is that it becomes
mandatory to classify either the execution time of the applications executed on
the system or the sojourn time of customers in the system, [2, 3, 4, 5, 6].

For instance, in computer networks’ intrusion detection, it becomes necessary
to monitor the processing time taken by a packet-analyzer to break down the
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data packets present in the computer network. If an accurate estimate of such
processing time is at hand, the behavior of normal as well as abnormal packets
flowing in the network can be understood, and more importantly for classifi-
cation and pattern recognition purposes, such behavior can be abstracted in a
mathematical fashion [2, 3, 5]. In parallel computing systems where servers are
not homogeneous, as in the case of distributed computing clusters, tasks assigned
to such systems must be smartly mapped onto servers so that a balanced allo-
cation of the computing resources can be achieved. It is know that an efficient
allocation of the computing resources in parallel and distributed computing sys-
tems depends vitally on an accurate knowledge about the execution time of the
individual tasks forming an application [4,7]. For instance, Zhang and Figuereido
employed in [4] a principal component analysis and k-NN classifiers to catego-
rize the execution time of tasks being processed on a cluster of computers. In [6],
Yang et al. proposed a classifier, based on the maximum-likelihood principle, to
determine if the customers of a telecommunications service-provider are switch-
ing or not between different companies. To do so, they trained classifiers to learn
the waiting time that different service providers offer to their customers.

In this paper, two classifiers have been developed in order to distinguish if
identical tasks, which have been assigned to processors in a parallel comput-
ing system, are executed or not on different processors. The classifiers have
been developed analytically using a classical hypothesis testing approach and
the Bayesian as well as the Neyman-Pearson design criteria. Using traces taken
from a real distributed system, a training process was conducted in order to
characterize the a priori probability distribution functions (pdfs) of the random
times taken by the processors to a serve task. As a result of the training process,
the pdfs of the execution times were fitted and mathematically modeled. The
performance of the classifiers developed here has been evaluated by categorizing
real data. Further, the performance of our classifiers was compared to generic
classifiers such as heuristic classifiers, linear discriminants, quadratic discrimi-
nants, and classifiers based on the Mahalanobis distance. Results have shown
that the classifiers developed in this work consistently outperform those generic
classifiers. At last, we comment that the motivation of this work is to implement
the classifiers developed here in the distributed system shown in [7] with the
goal of enhancing the load balancing algorithms of the system.

The rest of this paper is organized as follows. In Section 2 the empirical char-
acterization of the pdf of the execution times is carried out as part of the training
process. In Section 3 a Bayesian and a Neyman-Pearson classifiers are developed,
and their performance in classifying the execution time of tasks is evaluated in
Section 4. Our conclusions and future work are presented in Section 5.

2 Problem Definition and Training Stage

2.1 Problem Definition

Consider a parallel computing system based on two classes of processors. Suppose
that atomic identical tasks are assigned to the processors in the system for their
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concurrent execution. Due to the nature computing systems, executing such
tasks on any processor takes a random execution time, which depends solely on
the processor where they are executed. This paper addresses the problem of (i)
characterizing, for the purpose of designing classifiers, the processing times of
these atomic tasks; and (ii) classifying a series of samples of the execution time
of tasks in one out of the two classes of processors that are known to exist in
the parallel computing system.

2.2 Training Stage and Characterization of the Execution Times

Statistical classification theory assumes that the pdf of the hypotheses are known
it a priori. In order to obtain the pdf of processing times of the tasks forming the
application being executed on the parallel computing system, we have conducted
an experimental characterization of these random times by means of training
data-sets of each class of processor in the system. First, we describe the classes
of processors employed in the system. The first class of machines corresponds
to tablet computers equipped with Crusoe processors. We name this class as it
Crusoe and we also associate such machines, in the classification problem, with
the null hypothesis, H0. The second class of machines corresponds to laptop
computers equipped with a Pentium 4 Mobile processors. We name this second
class as P4m and associate them with the alternative hypothesis,H1. For training
purposes, a total of 22026 samples of the execution times were used in the case
of the Crusoe class, while 9805 samples of the execution time were used during
the characterization of the execution time of the P4m class.

During the training process, different probability distributions were fitted for
the execution times. In order to determine the best fit, the minimum total square
error criterion was employed. As a result, the Log-Normal distribution was se-
lected as the best model for the pdf of the execution time of both machines.
Fitted pdfs for different distribution functions can be observed in Fig. 1, while
in Table 1 the total minimum square errors for each fitted pdf are listed. From
these results, the pdf of the random variable Ti, i = {0, 1}, which denotes the
execution time of ith hypothesis Hi, i = {0, 1}, is mathematically described by
the function:

fTi(t;μi, σi) =
1

tσi

√
2π

exp
(
−(ln(t) − μi)2

2σ2
i

)
. (1)

The parameters of each pdf estimated from the training data sets are: μ0 =
0.7203, σ0 = 0.5459 for the Crusoe class and μ1 = 0.9760, σ1 = 0.4599 for the
P4m class.

3 Classifiers Design

3.1 Bayesian Classifier

To design a Bayesian classifier, first we must define both the costs associated
to all the different classification errors and the rewards associated to correct
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Fig. 1. Fitted pdfs for the execution time in: (a) Crusoe; and (b) P4m processors

Tabla 1. Total square error between the fitted and the empirical pdfs of the execution
time of tasks in the Crusoe class and in the P4m class of processors

Total square error
Machine Exponential Gamma Log-normal Pareto Weibull

Crusoe 0.612 0.524 0.466 0.698 0.603
P4m 0.610 0.566 0.524 0.826 0.656

classifications. It has been assumed here that the cost of making a mistake
are symmetrical and unitary for the type I and type II errors and for both
hypotheses, that is cij = 1, i, j = {0, 1}, i �= j, while the rewards associated
to correct classifications were assumed here to be zero, cij = 0, i, j = {0, 1},
i = j. In addition, it has been assumed here that the it a priori probabilities
of the hypotheses H0 and H1 are identical and, as traditionally assumed, equal
to 0.5. With this set-up defined, the classifier is designed after partitioning the
sample set Ω = Ω0 ∪Ω1 by means of one or more threshold values, which must
be determined in some optimal fashion with the goal of reducing the average
classification risk that is denoted here as δ(·). The minimal classification risk,
r∗(δ), can be expressed as [8]:

r∗(δ) = min
Ω1

{r(δ)} = {t ∈ Ω :
1∑

j=0

πj(c1j − c0j)f j
T (t) ≤ 0}. (2)

Once the probability distributions of the hypotheses, f j
T (t), the cost associated

to each mistaken classificaion,cij, and the a priori probabilities, πj , are known,

the likelihood ratio test (LRT) L(t) = f1
T (t)

f0
T (t)

= σ0
σ1 exp

(
(ln(t)−μ0)2

2σ2
0

− (ln(t)−μ1)2

2σ2
1

)
can be used to find the threshold values defining the classification regions.
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The threshold values are obtained from the LRT by solving the second-order
equation in the variable z = ln(t):(

σ2
1 − σ2

0

σ2
1σ

2
0

)
z2 + 2

(
μ1σ

2
0 − μ0σ

2
1

σ2
1σ

2
0

)
z +

(
μ2

0

σ2
0

− μ2
1

σ2
1

− 2 ln
σ1

σ0

)
= 0, (3)

whose solutions are ta = 2.027 and tb = 12.143. These solutions uniquely define
the following two classification regions: Ω0 = (0, 2.027) ∪ (12.143,∞) and Ω1 =
[2.027, 12.143].

3.2 Neyman-Pearson Classifier

The Neyman-Pearson criterion consists in maximizing the probability of true
positive PD = P1{Ω1}, i.e, the probability of effectively announcing that the
alternative hypothesis is observed when such hypothesis has truly occurred. The
Neyman-Pearson criterion also states that the probability of true positive is max-
imized under the constraint of allowing a false positive or false alarm probability
of PFA = P0{Ω1} = α. To fulfill these requirements a partition Ω1 of Ω must
be determined such that:(

σ2
1 − σ2

0

σ2
1σ

2
0

)
ln2(t) + 2

(
μ1σ

2
0 − μ0σ

2
1

σ2
1σ

2
0

)
ln(t) +

(
μ2

0

σ2
0

− μ2
1

σ2
1

− 2 ln
σ1

σ0

)
≥ ln γ (4)∫

{t:L(t)≥γ}
f0

T (t)dt =α (5)

where γ is the threshold value associated to the LRT. Solving the system of
non-linear inequalities (4) and (5) is a non trivial task, and to the best of our
knowledge, it is not possible to solve for analytically. We have developed here
an algorithm to solve numerically for this system of inequalities. The algorithm
must execute the following steps:

1. An initial threshold value is set, say to γ0.
2. Equation (4) is solved for to find the values ta(γ0) and tb(γ0). These solutions,

which are parameterized by the initial threshold value, satisfy the LRT.
3. The false positive in the classification regionΩ1(γ0) is calculated by means of

the equation α(γ0) = F0(tb(γ0))−F0(ta(γ0)), where F0(·) is the cummulative
distribution function (CDF) of the null hypothesis.

4. If the relationship α(γ0) ≈ α holds, then the classification region, Ω1, has
been accurately defined, otherwise the algorithm must be executed from step
1 using a different threshold value.

In Fig. 2(a) the inequality (4) is shown. Note that if the false positive probability
is fixed to α = 0.5, the values ta(γ) y tb(γ) satisfying the system of inequalities
are ta(γ) = 2.056 and tb(γ) = 11.97. These values define the following classifica-
tion regions: Ω0 = (0, 2.056)∪ (11.97,∞) and Ω1 = [2.056, 11.97].

Note that by inspection of Figs. 2(a) and (b) a simple classification rule can
be proposed. We propose here the boundary tu = 2.0, which approximately
balances the areas under the pdfs of the execution times. This boundary and its
classification regions, which have been determined in a qualitative and intuitive
manner, are jointly termed here as the heuristic classifier.
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Fig. 2. (a) False positive probability α, the LRT L(t), and the pdfs of the execution
times which represent the hypotheses of the problem. Solutions ta and tb of the LRT.

4 Results

To assess the performance of the classifiers devised here we have employed the
following metrics: the percentage of hits, the percentage of positive classifica-
tions, the percentage of misclassification, the percentage of false positives, and
classification error (in percentage). The metrics are mathematically defined as:

% Hits = 100
(Q{H0 : H0}

2Q{H0}
+
Q{H1 : H1}

2Q{H1}

)
, (6)

% Positive hits = 100
Q{H1 : H1}
Q{H1}

, (7)

% False negative = 100
Q{H0 : H1}
Q{H1}

, (8)

% False positives = 100
Q{H1 : H0}
Q{H0}

, (9)

% Errors = 1 − % Hits, (10)

where Q{Hi} is the number of times that the ith class happen to occur during
the assessment of the classifier, and Q{Hi : Hj} is the number of times that the
ith class was announced as true, when actually the jth class was the true class
from which the sample under analysis was drawn.

The results of the classifiers developed in this paper are listed in Table 2.
For comparison, we have employed the tool classify from Matlab’s statistics
toolbox�, and we have trained (using the same data employed to character-
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ize the distributions) classifiers based on linear discriminants, diag-linear dis-
criminants, quadratic discriminants, diag-quadratic discriminants, and classifiers
based on the Mahalanobis distance. The performance results of these Matalab
based classifiers are listed in Table 3.

From Table 2 we can observe that the Bayesian and the Neyman-Pearson
classifiers achieve a fairly good percentage of hits. We note, however, that the
Neyman-Pearson classifier offers some versatility over the Bayesian classifier
through the false alarm parameter. The designer, or even the user, of a Neyman-
Pearson classifier may adjust the false alarm probability to control the size of the
classification regions. From Tables 2 and 3 it can be observed that the classifiers
designed in this paper clearly outperform the classification methods implemented
in Matlab’s statistics toolbox in both metrics percentage classification hits and
percentage of classification errors.

Figure 3(a) shows the percentage of hits of the Neyman-Pearson classifier as
a function of the probability of false alarm. From the figure it can be observed
the existence of a point where the percentage of classification hits is the same for
both processors. At this point, the probability of false alarm is approximately
0.45. From Fig. 3(a) it can also be observed that the point where the percentage
of classification hits is maximized corresponds to approximately to a probabil-
ity of false alarm of 0.7. Figure 3(b) shows the receiver operating curve of the
Neyman-Pearson classifier. From such figure we can observe that the marginal
increment in the probability of classification is higher for values of the probabil-
ity of false alarm below 0.5, as compared with the marginal increment observed
for probabilities of false alarm larger than 0.6. In a more theoretical matter, it
can be noticed that the receiver operating curve shown in Fig. 3(b), which was
calculated numerically, indeed exhibits the property of concavity expected from
any receiver operating curve [8].

Tabla 2. Performance of the classifiers designed in this paper

Heuristic Bayes Neyman-Pearson
α = 0.2 α = 0.5 α = 0.7

Hits 58.84% 66.05% 52.80% 66.04% 67.57%
Errors 41.15% 33.95% 47.20% 33.95% 32.43%
False alarm 39.83% 39.57% 14.37% 39.57% 63.14%
Positive hits 74.71% 71.67% 19.98% 71.67% 98.28%
False negative 25.28% 28.33% 80.02% 28.33% 1.72%

Tabla 3. Performance of generic classifiers

Linear Diag-linear Quadratic Diag-quadratic Mahalanobis

Hits 57.08% 57.08% 58.25% 58.25% 32.58%
Errors 42.92% 42.92% 41.75% 41.75% 67.41%
False alarm 20.83% 20.83% 2.92% 2.92% 83.74%
Positive hits 25.49% 25.49% 2.72% 2.72% 55.93%
False negative 74.51% 74.51% 97.28% 97.28% 44.06%
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Fig. 3. Performance metrics of the Neyman-Pearson classifier: (a) Percentage of hits
in classifying H0 and H1. (b) The receiver operating curve.

5 Conclusions

In this paper we have devised two classifiers for determining whether identical
tasks have been executed or not in different processors. Since the Bayesiand and
the Neyman-Pearson classifiers devised here have been developed for a specific
application, their performance is indeed superior, as confirmed by our results,
to the performance of generic classifiers which have been devised for classifying
a wide class of applications. From our results we have observed also that the
classification regions of Neyman-Pearson classifiers, with a probability of false
alarm of 0.5, are similar to those obtained by the Bayesian classifier. This result
is expected because a false alarm probability of 0.5 implies that the misclassifi-
cation costs are symmetrical and unitary for both the null and the alternative
hypothesis, and these costs are equal to the costs of the Bayesian classifier.

As a future work we will attempt to implement the classifiers developed here
in a distributed system to improve its resource allocation algorithms.
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Dobó-Nagy, Csaba 339
Donoso, Felipe 621
Donoso Floody, Ramiro 683
Duclap, Delphine 701
Duin, Robert P.W. 1, 425

Falip, Céline 97
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