
A Native and Adaptive Approach for Unified Processing
of Linked Streams and Linked Data�

Danh Le-Phuoc1, Minh Dao-Tran2, Josiane Xavier Parreira1,
and Manfred Hauswirth1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
{danh.lephuoc,josiane.parreira,manfred.hauswirth}@deri.org

2 Institut für Informationssysteme, Technische Universität Wien
dao@kr.tuwien.ac.at

Abstract. In this paper we address the problem of scalable, native and adaptive
query processing over Linked Stream Data integrated with Linked Data. Linked
Stream Data consists of data generated by stream sources, e.g., sensors, enriched
with semantic descriptions, following the standards proposed for Linked Data.
This enables the integration of stream data with Linked Data collections and fa-
cilitates a wide range of novel applications. Currently available systems use a
“black box” approach which delegates the processing to other engines such as
stream/event processing engines and SPARQL query processors by translating
to their provided languages. As the experimental results described in this paper
show, the need for query translation and data transformation, as well as the lack of
full control over the query execution, pose major drawbacks in terms of efficiency.
To remedy these drawbacks, we present CQELS (Continuous Query Evaluation
over Linked Streams), a native and adaptive query processor for unified query
processing over Linked Stream Data and Linked Data. In contrast to the existing
systems, CQELS uses a “white box” approach and implements the required query
operators natively to avoid the overhead and limitations of closed system regimes.
CQELS provides a flexible query execution framework with the query processor
dynamically adapting to the changes in the input data. During query execution, it
continuously reorders operators according to some heuristics to achieve improved
query execution in terms of delay and complexity. Moreover, external disk access
on large Linked Data collections is reduced with the use of data encoding and
caching of intermediate query results. To demonstrate the efficiency of our ap-
proach, we present extensive experimental performance evaluations in terms of
query execution time, under varied query types, dataset sizes, and number of par-
allel queries. These results show that CQELS outperforms related approaches by
orders of magnitude.

Keywords: Linked Streams, RDF Streams, Linked Data, stream processing, dy-
namic query planning, query optimisation.

� This research has been supported by Science Foundation Ireland under Grant
No. SFI/08/CE/I1380 (Lion-II), by the Irish Research Council for Science, Engineering
and Technology (IRCSET), by the European Commission under contract number FP7-2007-
2-224053 (CONET), by Marie Curie action IRSES under Grant No. 24761 (Net2), and by the
Austrian Science Fund (FWF) project P20841.

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 370–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

A Native and Adaptive Approach for Unified Process of Linked Stream 371

1 Introduction

Sensing devices have become ubiquitous. Mobile phones (accelerometer, compass, GPS,
camera, etc.), weather observation stations (temperature, humidity, etc.), patient moni-
toring systems (heart rate, blood pressure, etc.), location tracking systems (GPS, RFID,
etc.), buildings management systems (energy consumption, environmental conditions,
etc.), and cars (engine monitoring, driver monitoring, etc.) continuously produce infor-
mation streams. Also on the Web, services like Twitter, Facebook and blogs, deliver
streams of (typically unstructured) real-time data on various topics. The heterogeneous
nature of such diverse streams makes their use and integration with other data sources
a difficult and labor-intensive task, which currently requires a lot of “hand-crafting.”

To address some of the problems, there have been efforts to lift stream data to a
semantic level, e.g., by the W3C Semantic Sensor Network Incubator Group1 and
[12,32,37]. The goal is to make stream data available according to the Linked Data
principles [10] – a concept that is known as Linked Stream Data [31]. This would al-
low an easy and seamless integration, not only among heterogenous sensor data, but
also between sensor and Linked Data collections, enabling a new range of “real-time”
applications.

However, one distinguishing aspect of streams that the Linked Data principles do not
consider is their temporal nature. Usually, Linked Data is considered to change infre-
quently. Data is first crawled and stored in a centralised repository before further pro-
cessing. Updates on a dataset are usually limited to a small fraction of the dataset and
occur infrequently, or the whole dataset is replaced by a new version entirely. Query pro-
cessing, as in traditional relational databases, is pull based and one-time, i.e., the data is
read from the disk, the query is executed against it once, and the output is a set of results
for that point in time. In contrast, in Linked Stream Data, new data items are produced
continuously, the data is often valid only during a time window, and it is continually
pushed to the query processor. Queries are continuous, i.e., they are registered once and
then are evaluated continuously over time against the changing dataset. The results of a
continuous query are updated as new data appears. Therefore, current Linked Data query
processing engines are not suitable for handling Linked Stream Data. It is interesting to
notice that in recent years, there has been work that points out the dynamics of Linked
Data collections [35]. Although at a much slower pace compared to streams, it has been
observed that centralised approaches will not be suitable if freshness of the results is
important, i.e., the query results are consistent with the actual “live” data under certain
guarantees, and thus an element of “live” query execution will be needed [34]. Though
this differs from stream data, some of our findings may also be applicable to this area.

Despite its increasing relevance, there is currently no native query engine that sup-
ports unified query processing over Linked Stream and Linked Data inputs. Available
systems, such as C-SPARQL [9], SPARQLstream [14] and EP-SPARQL [3], use a
“black box” approach which delegates the processing to other engines such as
stream/event processing engines and SPARQL query processors by translating to their
provided languages. This dependency introduces the overhead of query translation and
data transformation. Queries first need to be translated to the language used in the un-

1 http://www.w3.org/2005/Incubator/ssn/

http://www.w3.org/2005/Incubator/ssn/

372 D. Le-Phuoc et al.

derlying systems. The data also needs to be transformed to feed into the system. For
instance, in C-SPARQL and SPARQLstream, the data is stored in relational tables and
relational streams before any further processing, and EP-SPARQL uses logic facts. This
strategy also does not allow full control over the execution plan nor over the implemen-
tation of the query engine’s elements. Consequently, the possibilities for query optimi-
sations are very limited.

To remedy these drawbacks, we present CQELS (Continuous Query Evaluation over
Linked Streams), a native and adaptive query processing engine for querying over uni-
fied Linked Stream Data and Linked Data. In contrast to the existing systems, CQELS
uses a “white box” approach. It defines its own native processing model, which is imple-
mented in the query engine. CQELS provides a flexible query execution framework with
the query processor dynamically adapting to changes in the input data. During query ex-
ecution, it continuously reorders operators according to some heuristics to achieve im-
proved query execution in terms of delay and complexity. External disk access on large
Linked Data collections is reduced with the use of data encoding and caching of inter-
mediate query results, and faster data access is obtained with indexing techniques. To
demonstrate the efficiency of our approach, we present extensive experimental perfor-
mance evaluations in terms of query execution time, under varied query types, dataset
sizes, and number of parallel queries. Results show that CQELS performs consistently
well, and in most cases outperforms related approaches by orders of magnitude.

The remainder of this paper is organised as follows: Section 2 discusses our contri-
bution in relation to relational database management systems, data stream management
systems, Linked Data processing, and Linked Stream Data processing. Our processing
model is described in Section 3, and the query engine is discussed in Section 4. Sec-
tion 5 presents an experimental evaluation of our approach, and Section 6 provides our
conclusions and a brief discussion about ongoing work and next steps.

2 Related Work

RDF stores. A fair amount of work on storage and query processing for Linked Data
is available, including Sesame [13], Jena [38], RISC-3X [28], YARS2 [23], and Oracle
Database Semantic Technologies [16]. Most of them focus on scalability in dataset size
and query complexity. Based on traditional database management systems (DBMSs),
they typically assume that data changes infrequently, and efficiency and scalability are
achieved by carefully choosing appropriate data storage and indexing optimised for
read access, whereas stream data is characterised by high numbers and frequencies
of updates. The Berlin SPARQL benchmark2 shows that the throughput of a typical
triple store currently is less than 200 queries per second, while in stream applications
continuous queries need to be processed every time there is a new update in the data,
which can occur at rates up to 100,000 updates per second. Nevertheless, some of the
techniques and design principles of triple stores are still useful for scalable processing
of Linked Stream Data, for instance some of the physical data organisations [1,13,38]
and indexing schemas [16,23,28].

2 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

A Native and Adaptive Approach for Unified Process of Linked Stream 373

Data stream management. Data stream management systems (DSMSs) such as
STREAM [4], Aurora [15], and TelegraphCQ [26] were built to overcome limitations
of traditional database management systems in supporting streaming applications [20].
The STREAM system proposes CQL [4] (Continuous Query Language) which extends
standard SQL syntax with new constructs for temporal semantics and defines a mapping
between streams and relations. The query engine consists of three components: opera-
tors, that handle the input and output streams, queues, that connect input operators to
output operators, and synopses, that store the intermediate states needed by continuous
query plans. In the Aurora/Borealis project [15] users can compose stream relationships
and construct queries in a graphical representation which is then used as input for the
query planner. TelegraphCQ introduces StreaQuel as a language, which follows a differ-
ent path and tries to isolate temporal semantics from the query language through exter-
nal definitions in a C-like syntax. TelegraphCQ also uses a technique called Eddies [6],
which continuously reorders operators in a query plan as it runs, adapting to changes in
the input data. DSMSs perform better compared to traditional DBMSs in the context of
high volumes of updates. Even though DSMSs can not directly process Linked Stream
Data, such processing is still possible by translating the queries and mapping the data to
fit into the data storage. This is currently done by available systems that process Linked
Stream Data. The CQELS query engine, on the other hand, can directly process Linked
Stream Data, yielding consistently better performance, as we will demonstrate later on
in the paper.

Streams and semantics. Semantic Streams [37] was among the first systems to pro-
pose semantic processing of streams. It uses Prolog-based logic rules to allow users to
pose declarative queries over semantic interpretations of sensor data. Semantic System
S [12] proposes the use of the Web Ontology Language (OWL) to represent sensor data
streams, as well as processing elements for composing applications from input data
streams. The Semantic Sensor Web project [8,32] also focuses on interoperability be-
tween different sensor sources, as well as providing contextual information about the
data. It does so by annotating sensor data with spatial, temporal, and thematic semantic
metadata. Research like the one carried by W3C Semantic Sensor Network Incubator
Group3 aims at the integration of stream data with Linked Data sources by following
the Linked Data principles for representing the data. In parallel, the concept of Linked
Stream Data was introduced [31], in which URIs were suggested for identifying sensors
and stream data.

In contrast to these approaches, our work focuses on the efficient processing of
Linked Stream Data integrated with other Linked Data sources. Existing work with this
focus comprises Streaming SPARQL [11], C-SPARQL [9], SPARQLstream [14], and
EP-SPARQL [3] as the main approaches. They all extend SPARQL with sliding window
operators for RDF stream processing. Streaming SPARQL simply extends SPARQL to
support window operators without taking into account performance issues regarding
the choice of the data structures and the sharing of computing states for continuous ex-
ecution. Continuous SPARQL (C-SPARQL) proposes an execution framework built of
top of existing stream data management systems and triple stores. These systems are
used independently as “black boxes.” In C-SPARQL, continuous queries are divided

3 http://www.w3.org/2005/Incubator/ssn/

http://www.w3.org/2005/Incubator/ssn/

374 D. Le-Phuoc et al.

into static and dynamic parts. The framework orchestrator loads bindings of the static
parts into relations, and the continuous queries are executed by processing the stream
data against these relations. C-SPARQL is not designed for large static data sets, which
can degrade the performance of the stream processing considerably.

Along the same lines, SPARQLstream also translates its SPARQLstream language to
another relational stream language based on mapping rules. Event Processing SPARQL
(EP-SPARQL), a language to describe event processing and stream reasoning, can
be translated to ETALIS [3], a Prolog-based complex event processing framework.
First, RDF-based data elements are transformed into logic facts, and then EP-SPARQL
queries are translated into Prolog rules. In contrast to these systems, CQELS is based on
a unified “white box” approach which implements the required query operators for the
triple-based data model natively, both for streams and static data. This native approach
enables better performance and can dynamically adapt to changes in the input data.

3 Processing Model

The adaptive processing model of CQELS captures all the aspects of both data mod-
elling and query processing over Linked Stream Data and Linked Data in one single
theoretical framework. It defines two types of data sources, RDF streams and RDF
datasets, and three classes of operators for processing these types of data sources. Oper-
ators used in a query are organised in a data flow according to defined query semantics,
and the adaptive processing model provides functions to reorder the query operators
to create equivalent, more efficient data flows. The details of the processing model are
described in the following.

3.1 Definitions

In continuous query processing over dynamic data, the temporal nature of the data is
crucial and needs to be captured in the data representation. This applies to both types of
data sources, since updates in Linked Data collections are also possible. We define RDF
streams to represent Linked Stream Data, and we model Linked Data by generalising
the standard definition of RDF datasets to include the temporal aspect.

Similar to RDF temporal [22], C-SPARQL, and SPARQLstream, we represent tem-
poral aspects of the data as a timestamp label. We use t ∈ N to indicate a logical
timestamp to facilitate ordered logical clocks for local and distributed data sources as
done by classic time-synchronisation approaches [24]. The issues of distributed time
synchronization and flexible time management are beyond the scope of this paper. We
refer the reader to [19,27,33] for more details.

Let I , B, and L be RDF nodes which are pair-wise disjoint infinite sets of Informa-
tion Resource Identifiers (IRIs), blank nodes and literals, and IL = I ∪ L, IB = I ∪ B
and IBL = I ∪ B ∪ L be the respective unions. Thereby,

1. A triple (s, p, o) ∈ IB × I × IBL is an RDF triple.
2. An RDF dataset at timestamp t, denoted by G(t), is a set of RDF triples valid at

time t. An RDF dataset is a sequence G = [G(t)], t ∈ N, ordered by t. When it
holds that G(t) = G(t+1) for all t ≥ 0, we call G a static RDF dataset and denote
Gs = G(t).

A Native and Adaptive Approach for Unified Process of Linked Stream 375

3. An RDF stream S is a bag of elements 〈(s, p, o) : [t]〉, where (s, p, o) is an RDF
triple and t is a timestamp. S≤t denotes the bag of elements in S with timestamps
≤ t, i.e., {〈(s, p, o) : [t′]〉 ∈ S | t′ ≤ t}.

Let V be an infinite set of variables disjoint from IBL. A mapping is a partial func-
tion μ : V → IBL. The domain of μ, dom(μ), is the subset of V where μ is defined.
Two mappings μ1 and μ2 are compatible if ∀x ∈ dom(μ1)∩dom(μ2), μ1(x) = μ2(x).

A tuple from (IB ∪ V) × (I ∪ V) × (IBL ∪ V) is a triple pattern. For a given
triple pattern P , the set of variables occurring in P is denoted as var(P) and the triple
obtained by replacing elements in var(P) according to μ is denoted as μ(P). A graph
template T is a set of triple patterns.

3.2 Operators

Our processing model takes as input RDF datasets and RDF streams containing possibly
infinite numbers of RDF triples, applies a query Q and continuously produces outputs.

In processing Q, snapshots of the input at discrete times t, i.e., finite amounts of
data, are used in the evaluation of the query. This requires dedicated operators to (i)
take snapshots of the input and filter its valid part w.r.t. some condition, (ii) operate on
the finite, intermediate data, and (iii) convert the final results back into a stream. The
required operators are called window, relational, and streaming operators.

Window Operators. These operators extract triples from an RDF stream or dataset
that match a given triple pattern and are valid within a given time window. Similar to
SPARQL, we define a triple matching pattern operator on an RDF dataset at timestamp
t as

[[P, t]]G = {μ | dom(μ) = var(P) ∧ μ(P) ∈ G(t)}.
A window operator [[P, t]]ωS is then defined by extending the operator above as fol-

lows.

[[P, t]]ωS = {μ | dom(μ) = var(P) ∧ 〈μ(P) : [t′]〉 ∈ S ∧ t′ ∈ ω(t)}.
where ω(t) : N → 2N is a function mapping a timestamp to a (possibly infinite) set of
timestamps. This gives us the flexibility to choose between different window modes [5].
For example, a time-based sliding window of size T can be expressed as ωRANGE (t) =
{t′ | t′ ≤ t ∧ t′ ≥ max(0, t − T)}, and a window that extracts only events happening
at the current time corresponds to ωNOW (t) = {t}. Moreover, we can similarly define
triple-based windows that return the latest N triples ordered by the timestamps.

We define a result set Γ as a function from N∪{−1} to finite but unbounded bags of
mappings, where Γ (−1) = ∅. A discrete result set Ω = Γ (t), t ≥ 0, denotes the bag
of mappings at time t. Discrete result sets are the input of relational operators described
below.

Relational Operators. Our processing model supports the operators found in traditional
relational database management systems [18]. Similar to the semantics of SPARQL [29],

376 D. Le-Phuoc et al.

the operators work on the mappings from discrete result sets. As an example, given two
discrete result sets, Ω1 and Ω2, the join and union operators are defined as

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 are compatible }
Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 ∨ μ ∈ Ω2}.

Streaming Operators. Similarly to the relation-to-stream operator of CQL [5], we de-
fine an operator, based on some patterns, to generate RDF streams from result sets.
From a graph template T, that provides a set of triple patterns, and a result set Γ , a
streaming operator C is defined as

C(T, Γ) =
⋃

t≥0

{〈μ(P) : [f(t)]〉 | μ ∈ Γ (t) \ Γ (t − 1) ∧ P ∈ T},

where f : N → N is a function mapping t to a new timestamp to indicate when we want
to stream out the result. In the simplest case, f is the identity function, indicating that
triples are streamed out immediately.

Query Semantics. Operators of a query are organised in a data flow. A data flow D is a
directed tree of operators, whose root node is either a relational or a streaming operator,
while leaves and intermediate nodes are window and relational operators, respectively.

Suppose the inputs to the leaves of D are RDF streams S1, . . . , Sn (n ≥ 1) and RDF
datasets G1, . . . , Gm (m ≥ 0). The query semantics of D is then defined as follows:
If the root of D is a streaming (resp., relational) operator, producing a stream S (resp.,
result set Γ), then the result of D at time t is S≤t (resp., Γ (t)), which is produced
by recursively applying the operators comprising D to S≤t

1 , . . . , S≤t
n and G1, . . . , Gm.

Next we introduce the “localisation scenario” to illustrate the query semantics of our
processing model. This scenario will also be used in following sections of the paper.

Localisation scenario: Consider a group of people wearing devices that constantly
stream their locations in a building, i.e., in which room they currently are, and as-
sume we have information about the direct connectivity between the rooms, given
by a static RDF dataset G with triples of the form P3 = (?loc1, conn, ?loc2),
where GS = {(r1, conn, r2), (r1, conn, r3), (r2, conn, r1), (r3, conn, r1)}. Also as-
sume that people’s locations are provided in a single stream S with triples of form
(?person , detectedAt , ?loc). We are interested in answering the following continuous
query: “Notify two people when they can reach each other from two different and di-
rectly connected rooms.”

Figure 1a depicts a possible data flow D1 for the query in the localisation scenario.
It suggests to extract two windows from stream S using the functions ω1 = ωNOW and
ω2 = ωRANGE . The former looks at the latest detected person, and the latter monitors
people during the last T logical clock ticks by which we can assume that they are still
in the same room. For the example, we assume T = 2. Let Γ 1 and Γ 2 be the outputs of
the window operators. We use the triple patterns Pi = (?person i, detectedAt , ?loci) for
i = 1, 2 at the window operators; hence, mappings in Γ i are of the form {?personi �→
pid , ?loci �→ lid}.

The join ��12 of discrete result sets from Γ 1 and Γ 2 in Figure 1a gives us the output
result set in Γ 3 to check the reachability based on the latest detected person. After
joining elements of Γ 3 with those of Γ 4 (the direct connectivity between locations

A Native and Adaptive Approach for Unified Process of Linked Stream 377

C

��124

��12 [[P3, t]]G

[[P1, t]]
ω1
S [[P2, t]]

ω2
S

...

S

n
ow

ra
n
ge

2

Γ 3 Γ 4

Γ 1 Γ 2

Γ

...

Sout

(a) D1

C

��412

��41

[[P3, t]]G [[P1, t]]
ω1
S

[[P2, t]]
ω2
S

...

S

n
ow ra

n
g
e
2

Γ 5

Γ 4 Γ 1

Γ 2

Γ

...

Sout

(b) D2

Fig. 1. Possible data flows for the query in the localisation scenario

Table 1. Input and output of D1 as time progresses

t S Γ 1 Γ 2 Sout

0 〈(m0, dA, r1) : [0]〉 {?p1 �→ m0, ?�1 �→ r1} {?p2 �→ m0, ?�2 �→ r1} ∅

1
〈(m0, dA, r1) : [0]〉 {?p2 �→ m0, ?�2 �→ r1}
〈(m1, dA, r2) : [1]〉 {?p1 �→ m1, ?�1 �→ r2} {?p2 �→ m1, ?�2 �→ r2} 〈(m0, reaches, m1) : [1]〉

2
〈(m0, dA, r1) : [0]〉
〈(m1, dA, r2) : [1]〉 {?p2 �→ m1, ?�2 �→ r2} 〈(m0, reaches, m1) : [1]〉
〈(m2, dA, r1) : [2]〉 {?p1 �→ m2, ?�1 �→ r1} {?p2 �→ m2, ?�2 �→ r1} 〈(m1, reaches, m2) : [2]〉

3

〈(m0, dA, r1) : [0]〉
〈(m1, dA, r2) : [1]〉 〈(m0, reaches, m1) : [1]〉
〈(m2, dA, r1) : [2]〉 {?p2 �→ m2, ?�2 �→ r1} 〈(m1, reaches, m2) : [2]〉
〈(m3, dA, r2) : [3]〉 {?p1 �→ m3, ?�1 �→ r2} {?p2 �→ m3, ?�2 �→ r2} 〈(m2, reaches, m3) : [3]〉

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

provided by G) via ��124, we have the result set Γ to answer the query. To return this
result in terms of a stream Sout , the operator C is used at the root of D1.

Table 1 shows the input/output of D1 as time progresses. To reduce space consump-
tion, we use abbreviations as follows: dA for detectedAt , ?p for ?person , and ?� for
?loc.

3.3 Adaptation Strategies

A data flow contains inner relational operators which can be reordered to create new
equivalent data flows. For instance, Figures 1a and 1b show two equivalent data flows
for the query in the localisation scenario. With respect to each alternative, an operator
might have a different next/parent operator. For example, [[P1, t]]ω1

S has ��12 as its parent
in D1 while in D2, its parent is ��41.

In a stream processing environment, due to updates in the input data, during the
query lifetime the engine constantly attempts to determine the data flow that currently
provides the most efficient query execution. We propose an adaptive query processing

378 D. Le-Phuoc et al.

C

��124

��12

Γ1 Γ2

Γ4 ��12

?p1Γ3(0) ?�1 ?p2 ?�2 �
m0 r1 m0 r1

?p1Γ1(0) ?�1

m0 r1

?p2 ?�2 Γ2(0)

m0 r1

��12

?p1Γ3(1) ?�1 ?p2 ?�2

m1 r2 m0 r1

m1 r2 m1 r2

?p1Γ1(1) ?�1

m1 r2

?p2 ?�2 Γ2(1)

m0 r1

m1 r2

C

��412

��41

Γ4 Γ1

Γ2

��41

?p1Γ5(0) ?�1 ?�2

m0 r1 r2

m0 r1 r3

?p1 ?�1 Γ1(0)

m0 r1

?�1 ?�2Γ4(0)

r1 r2

r1 r3

r2 r1

r3 r1

��41

?p1Γ5(1) ?�1 ?�2 �
m1 r2 r1

?p1 ?�1 Γ1(1)

m1 r2

?�1 ?�2Γ4(1)

r1 r2

r1 r3

r2 r1

r3 r1

t = 0 t = 1

Fig. 2. Dynamically choose the next operator after Γ 1 at timestamps 0 and 1

mechanism similar to Eddies [6], which continuously routes the outputs of an opera-
tor to the next operator on the data flow. The routing policy will dynamically tell the
operator what is the next operator it should forward data to, as shown in Algorithm 1.

Algorithm 1. route(routingEntry, O, t)
Input: routingEntry : timestamped triple/mapping, O : operator, t : timestamp
Ω := compute(routingEntry , O, t)
if O is not root then

nextOp := findNextOp(O, t)
for μ ∈ Ω do route(μ,nextOp, t)

else deliver Ω

Function route(routingEntry , O, t) is used to recursively apply the operator O on a
mapping or timestamped triple routingEntry and to route the output mappings to the
next operator. It uses the following primitives:

– compute(routingEntry, O, t): apply O, a window, relational, or streaming opera-
tor, to routingEntry , a timestamped triple or a mapping, at timestamp t, and return
a discrete result set.

– findNextOp(O, t): find the next operator to route the output mapping to, at times-
tamp t, based on a given routing policy.

The routing policy decides the order in which the operators are executed at runtime.
There are many ways to implement a routing policy. However, choosing the optimal
order on every execution is not trivial. We are investigating mechanisms for dynamic
cost-based optimisation. Preliminary findings are reported in [25]. A possible solution,

A Native and Adaptive Approach for Unified Process of Linked Stream 379

common to DBMSs, is a cost-based strategy: the routing policy computes an estimated
“cost” to each possible data flow, and chooses the one with the smallest cost. While the
definition of cost is not fixed, it is usually measured by estimating the number of output
mappings the operator will produce.

The following example illustrates how the adaptation strategies work as a whole.

Example 1. Consider again the query in the localisation scenario at timestamps 0 and 1,
and assume the routing policy implemented is the cost-based strategy mentioned above.
Figure 2 illustrates the decision of which operator to choose next after extracting the
latest triple at Γ 1. In this figure, two simplified versions of D1 and D2 are on the left.
On the right hand side, we show the input/output of the join operators ��12 and ��41. At
timestamp 0, |Γ 1(0)| = |Γ 2(0)| = 1 as the first triple is streamed into the system. It
is preferable at this point to use D1, i.e., to join Γ 1(0) with Γ 2(0) using ��12 because
the intermediate result Γ 3(0) has size 1. If we follow D2 then joining Γ 1(0) with
Γ 4(0) using ��41 yields Γ 5(0) with size 2. However, at t = 1, D2 is preferred because
|Γ 3(1)| = 2 and |Γ 5(1)| = 1.

4 CQELS’s Query Engine

The CQELS query engine implements the model introduced in Section 3. Continuous
queries can be registered using our CQELS language, an extension of the declarative
SPARQL 1.1 language, which is described next. We then explain the details of the en-
gine. We show how data is encoded for memory savings, how caching and indexing are
used for faster data access, and how operators and the routing policy are implemented.
Before moving onto the query language, we first need to introduce our second scenario,
the “conference scenario,” which is also used in the evaluation section.

Conference scenario: This scenario is based on the Live Social Semantics experiment
presented in [2]. We extend the localisation scenario by considering that people are
now authors of research papers and they are attending a conference. These authors
have their publication information stored in a DBLP dataset. To enhance the conference
experience, each participant would have access to the following services, which can all
be modelled as continuous queries:

(Q1) Inform a participant about the name and description of the location he just en-
tered,

(Q2) Notify two people when they can reach each other from two different and directly
connected (from now on called nearby) locations,

(Q3) Notify an author of his co-authors who have been in his current location during
the last 5 seconds,

(Q4) Notify an author of the editors that edit a paper of his and have been in a nearby
location in the last 15 seconds,

(Q5) Count the number of co-authors appearing in nearby locations in the last 30 sec-
onds, grouped by location.

380 D. Le-Phuoc et al.

4.1 CQELS Language

Based on our query semantics, we introduce a declarative query language called CQELS
by extending the SPARQL 1.1 grammar4 using the EBNF notation. We add a query
pattern to apply window operators on RDF Streams into the GraphPatternNotTriples
pattern.
GraphPatternNotTriples ::=GroupOrUnionGraphPattern | OptionalGraphPattern

|MinusGraphPattern |GraphGraphPattern|StreamGraphPattern
| ServiceGraphPattern | Filter | Bind

Assuming that each stream is identified by an IRI as identification, the Stream-
GraphPattern pattern is defined as follows.
StreamGraphPattern ::= ‘STREAM’ ‘[’ Window ‘]’ VarOrIRIref ‘{’TriplesTemplate‘}’

Window ::= Range | Triple | ‘NOW’ | ‘ALL’

Range ::= ‘RANGE’ Duration (‘SLIDE’ Duration)?

Triple ::= ‘TRIPLES’ INTEGER
Duration ::= (INTEGER ‘d’ | ‘h’ | ‘m’ | ‘s’ | ‘ms’ | ‘ns’)+

where VarOrIRIRef and TripleTemplate are patterns for the variable/IRI and triple
template of SPARQL 1.1, respectively. Range corresponds to a time-based window
while Triple corresponds to a triple-based window. The keyword SLIDE is used for
specifying the sliding parameter of a time-based window, whose time interval is speci-
fied by Duration . More details of the syntax are available at
http://code.google.com/p/cqels/.

Given the CQELS language defined above, we can represent the five queries from
the conference scenario as follows, where $Name$ is replaced by a constant when in-
stantiating the query.5

SELECT ?locName ?locDesc
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM<http://deri.org/streams/rfid> [NOW] {?person lv:detectedAt ?loc}
GRAPH <http://deri.org/floorplan/>{?loc lv:name ?locName. ?loc lv:desc ?locDesc}
?person foaf:name ‘‘$Name$’’. }

Query Q1

CONSTRUCT {?person1 lv:reachable ?person2}
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM<http://deri.org/streams/rfid>[NOW] {?person1 lv:detectedAt ?loc1}
STREAM<http://deri.org/streams/rfid>[RANGE 3s]{?person2 lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2} }

Query Q2

SELECT ?coAuthName
FROM NAMED <http://deri.org/floorplan/>
WHERE {

STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc}
STREAM <http://deri.org/streams/rfid> [RANGE 5s] {?coAuth lv:detectedAt ?loc}
{ ?paper dc:creator ?auth. ?paper dc:creator ?coAuth.

?auth foaf:name ‘‘$Name$’’. ?coAuth foaf:name ?coAuthorName}
FILTER (?auth != ?coAuth) }

Query Q3

4 http://www.w3.org/TR/sparql11-query/#grammar
5 For the sake of space we omit the PREFIX declarations of lv, dc, foaf, dcterms and swrc.

http://code.google.com/p/cqels/
http://www.w3.org/TR/sparql11-query/#grammar

A Native and Adaptive Approach for Unified Process of Linked Stream 381

SELECT ?editorName
WHERE {

STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 15s] {?editor lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}
?paper dc:creator ?auth. ?paper dcterms:partOf ?proceeding.
?proceeding swrc:editor ?editor. ?editor foaf:name ?editorName.
?auth foaf:name ‘‘$Name$’’ }

Query Q4

SELECT ?loc2 ?locName count(distinct ?coAuth) as ?noCoAuths
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM<http://deri.org/streams/rfid>[TRIPLES 1]{?auth lv:detectedAt ?loc1}
STREAM<http://deri.org/streams/rfid>[RANGE 30s]{?coAuth lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/>{?loc2 lv:name?locName.loc2 lv:connected?loc1}
{?paper dc:creator ?auth. ?paper dc:creator ?coAuth. ?auth foaf:name ‘‘$Name$’’}
FILTER (?auth != ?coAuth)}
GROUP BY ?loc2 ?locName

Query Q5

4.2 Data Encoding

When dealing with large data collections, it is very likely that data will not fit into
the machine’s main memory for processing, and parts of it will have to be temporarily
stored on disk. In the particular case of RDF data, with IRIs or literals stored as strings,
a simple join operation on strings could generate enough data to trigger a large number
of disk reads/writes. However, these are among the most expensive operations in query
processing and should be avoided whenever possible. While we cannot entirely avoid
disk access, we try to reduce it by encoding the data such that more triples can fit into
main memory.

We apply dictionary encoding, a method commonly used by triple stores [1,16,13].
An RDF node, i.e., literal, IRI or blank node, is mapped to an integer identifier. The
encoded version of an RDF node is considerably smaller than the original, allowing
more data to fit into memory. Moreover, since data comparison is now done on integers
rather than strings, operations like pattern matching, perhaps the most common operator
in RDF streams and datasets, are considerably improved.

However, in context of RDF streams, data is often fed into the system at a high rate,
and there are cases when the cost of updating a dictionary and decoding the data might
significantly hinder the performance. Therefore, our engine does not encode the RDF
nodes into dictionary if they can be represented in 63 bits. As such, a node identifier is
presented as a 64-bit integer. The first bit is used to indicate whether the RDF node is
encoded or not. If the RDF nodes does not have to be encoded, the next 5 bits represent
the data type of the RDF node (e.g. integer, double or float) and the last 58 bits store its
value. Otherwise, the RDF node is stored in the dictionary and its identifier is stored in
the remaining 63 bits.

4.3 Caching and Indexing

While data encoding allows a smaller data representation, caching and indexing aim at
providing faster access to the data. Caching is used to store intermediate results of sub-
queries over RDF data sets. Indexing is applying on top of caches, as well as on output

382 D. Le-Phuoc et al.

mapping sets from window operators, for faster data look-ups. Similar to data ware-
houses, cached data is initially kept on disk with indexes and only brought to memory
when needed.

In continuous query processing, RDF datasets are expected to have a much slower
update rate than RDF streams. Therefore, the output of a sub-query over an RDF dataset
rarely changes during a series of updates of RDF streams. Based on this observation, as
soon as a query is registered, we materialise the output of its sub-queries over the RDF
datasets and store them in a cache that is available to the remaining query operators.
Thereby, a possibly large portion of the query does not need to be re-executed when
new stream triples arrive.

To keep the cache updated, we use triggers to notify changes in the RDF datasets. The
CQELS engine has a triple store that allows the engine to load and update RDF datasets
as named graphs. This triple store provides triggers that will notify the engine to update
the respective cached data. For the RDF datasets that are not loaded, we manually set
a timer to trigger an update. At the moment, a cache update is done by recomputing
the full sub-query as a background process and replacing the old cached data by the
new results as soon as they are ready. We are investigating adaptive caching [7] and
materialised view maintenance [21] techniques to create more efficient cache updating
mechanisms.

For faster lookups on the cache, indexes are built on the variables shared among the
materialised sub-queries and other operator’s inputs. We use similar indexing schemas
as in popular triple stores [13,16,23,28,38]. Vigals et al. [36] showed that, in stream
processing, building hash tables for multi-way joins can accelerate the join operation.
Therefore, we also index data coming from window operators, which are the input to
the relational operators. Similar to caching, there is an update overheard attached to
indexes. In CQELS, the decision to create an index is as follows: cache data is always
indexed. For data coming from window operators, an index is maintained as long as it
can be updated faster than the window’s stream rate. If this threshold is reached, the
index is dropped, and the relational operators that depend on this index will be replaced
by equivalent ones that can work without indexes.

4.4 Operators and Routing Policy

To recap, the CQELS processing model contains three groups of operators: window, re-
lational and streaming operators. In the current implementation, we support two types
of window operators: triple-based window and sliding window. We implement all rela-
tional operators needed to support the CQELS language. In particular, one of the join
operators is a binary index join that uses indexing for faster processing. The implemen-
tation of the streaming operator is rather simple: as soon as a mapping arrives at the
streaming operator, it simply binds the mapping to the graph template, then sends the
output triples, tagged with the time they were created, to the output stream.

To allow adaptive query execution, our engine currently support a “cardinality-based”
routing policy, based on some heuristics. For a given query, the engine keeps all possible
left-deep data flows that start with a window operator. For instance, Figure 3 shows
the four data flows that are maintained for the query in the localisation scenario from
Section 3.

A Native and Adaptive Approach for Unified Process of Linked Stream 383

C

��

��

[now] [range 3s]

G

C

��

��

[now]

[range 3s]

G

(a) From window now

C

��

��

[now][range 3s]

G

C

��

�� [now]

[range 3s] G

(b) From window range 3s

Fig. 3. Left-deep data flows for the query in the localisation scenario

Algorithm 2. findNextOp(O, t)
Input: O : operator, t : timestamp
nextOp := null
for unaryOp ∈ nextUnaryOp(O) do

if unaryOp is a filter operator then return unaryOp else nextOp := unaryOp

mincard := +∞
for binaryOp ∈ nextBinaryOpOnLeftDeepTree (O) do

if mincard > card(binaryOp.rightChildOp, t) then
mincard := card(binaryOp.rightChildOp, t)
nextOp := binaryOp

return nextOp

Algorithm 2 shows the findNextOp function used in the current routing policy (see
Algorithm 1). It applies two simple heuristics: the first one, common in DBMSs, pushes
operators like filters closer to the data sources. The rationale here is that the earlier we
prune the triples that will not make it to the final output, the better, since operators will
then process fewer triples. The second looks at the cardinality of the operators’ output
and sorts them in increasing order of this value, which also helps in reducing the number
of mappings to process.

Function nextUnaryOp(O) returns the set of possible next unary operators that O

can route data to, while nextBinaryOpOnLeftDeepTree(O) returns the binary ones.
Examples of unary operators are filters and projections, and they can be directly exe-
cuted on the output produced by O. Binary operators, such as joins and unions, have
two inputs, called left and right child, due to the tree shape of the data flows. O will
be the left child, since the data flows are all left-deep. The right child is given by the
rightChildOp attribute. For each binary operator, we obtain the cardinality of the right
child at time t from card(binaryOp.rightChildOp , t). We then route the output of O

to the one whose cardinality function returns the smallest value.

5 Experimental Evaluation

To evaluate the performance of CQELS, we compare it against two existing systems that
also offer integrated processing of Linked Streams and Linked Data – C-SPARQL [9]

384 D. Le-Phuoc et al.

and ETALIS [3].6 Note that EP-SPARQL is implemented on top of ETALIS. We first
planned to express our queries in EP-SPARQL, which would then be translated into
the language used in ETALIS. However, the translation from EP-SPARQL to ETALIS
is currently not mature enough to handle all queries in our setup, so we decided to
represent the queries directly in the ETALIS language. We also considered compar-
ing our system against SPARQLstream [14], but its current implementation does not
support querying on both RDF streams and RDF dataset. Next, we describe our exper-
imental setup, and then report and discuss the results obtained. All experiments pre-
sented in this paper are reproducible. Both systems and datasets used are available at
http://code.google.com/p/cqels/.

5.1 Experimental Setup

We use the conference scenario introduced in Section 4. For the stream data, we use
the RFID-based tracking data streams provided by the Open Beacon community.7 The
data is generated from active RFID tags, the same hardware used in the Live Social
Semantics deployment [2]. The data generator from SP2Bench [30] is used to create
simulated DBLP datasets. We have also created a small RDF dataset, 172 triples, to
represent the connectivity between the locations given in the Open Beacon dataset.

The experiments were executed on a standard workstation with 1 x Quad Core In-
tel Xeon E5410 2.33 GHz, 8GB memory, 2 x 500GB Enterprise SATA disks, running
Ubuntu 11.04/x86_64, Java version “1.6”, Java HotSpot(TM) 64-Bit Server VM, and
SWI-Prolog 5.10.4. The maximum heap size on JVM instances when running CQELS
and C-SPARQL was set to 4GB. For ETALIS, the global stack size is also 4GB.

We evaluate performance in terms of average query execution time. At each run, after
registering the query, we stream a number of triples into the system and every time the
query is re-executed we measure its processing time. We then average these values over
multiple runs.

The queries used follow the templates specified in Section 4.1. They were selected
in a way that cover many operators with different levels of complexity, for instance
joins, filters and aggregations. One query instance is formed by replacing $Name$ in
the template with a particular author’s name from the DBLP dataset. We have performed
the following three types of experiments:

Exp.(1) Single query: For each of the Q1, Q3, Q4 and Q5 templates we generate 10
different query instances. For query template Q2, since it has no constants, we
create one instance only. Then we run each instance at a time and compute the
average query execution time.

Exp.(2) Varying size of the DBLP dataset: We do the same experiment as in (1) but
varying the numbers of triples of the DBLP dataset, ranging from 104 to 107

triples. We do not include Q2 in this experiment, since it does not involve the
DBLP dataset.

6 We would like to thank the C-SPARQL, ETALIS, and SPARQLstream teams for their sup-
port in providing their implementations and helping us to understand and correctly use their
systems.

7 http://www.openbeacon.org/

http://code.google.com/p/cqels/
http://www.openbeacon.org/

A Native and Adaptive Approach for Unified Process of Linked Stream 385

Table 2. Average query execution time for single queries (in milliseconds)

Q1 Q2 Q3 Q4 Q5

CQELS 0.47 3.90 0.51 0.53 21.83
C-SPARQL 332.46 99.84 331.68 395.18 322.64
ETALIS 0.06 27.47 79.95 469.23 160.83

 0.01

 0.1

 1

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

av
g.

 q
ue

ry
 e

xc
. t

im
e

(m
s)

 -
 lo

g
sc

al
e

Number of triples from DBLP

Q1

CQELS
C-SPARQL

ETALIS

 0.1

 1

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

av
g.

 q
ue

ry
 e

xc
. t

im
e

(m
s)

 -
 lo

g
sc

al
e

Number of triples from DBLP

Q3

CQELS
C-SPARQL

ETALIS

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

av
g.

 q
ue

ry
 e

xc
. t

im
e

(m
s)

 -
 lo

g
sc

al
e

Number of triples from DBLP

Q5

CQELS
C-SPARQL

ETALIS

Fig. 4. Average query execution time for varying sizes of simulated DBLP dataset

Exp.(3) Multiple queries: For query templates Q1, Q3 and Q4, we register 2M query
instances at the same time, with 0 ≤ M ≤ 10, and execute them in parallel.

In experiments Exp.(1) and Exp.(3), the numbers of triples from DBLP is fixed to
105.

5.2 Results and Analysis

Table 2 shows the results for Exp.(1). We can see that, for most of the cases, CQELS
outperforms the other approaches by orders of magnitude; sometimes it is over 700 times
faster. The only exception is query Q1, where ETALIS is considerably faster. The reason
is that ETALIS supports three consumption policies, namely recent, chronological, and
unrestricted, where recent is very efficient for queries containing only simple filters on the
stream data. For more complex queries, the performance of ETALIS drops significantly.
C-SPARQL is currently not designed to handle large datasets, which explains its poor
performance in our setup. CQELS, on the other hand, is able to constantly deliver great
performance, due to its combination of pre-processing and adaptive routing policy.

The results from Exp.2 are shown in Figure 4, for query templates Q1, Q3 and Q5.
The results for query template Q4 are very similar to those from query template Q3, so
we omit them for the sake of space.

We can see how the performance is affected when the size of the RDF dataset in-
creases. For both ETALIS and C-SPARQL, not only does the average execution time
increase with the size of the RDF dataset, but they are only able to run up to a certain
number of triples. They can execute queries with a RDF dataset of 1 million triples, but
at 2 million ETALIS crashes and C-SPARQL does not respond. CQELS’ performance
is only marginally affected by the RDF dataset’s size, even for values as high as 10 mil-
lion triples, and the performance gains sometimes were three orders of magnitude. This
is mainly due to the cache and indexes used for storing and accessing pre-computed

386 D. Le-Phuoc et al.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

av
g.

 q
ue

ry
 e

xc
. t

im
e

(m
s)

 -
 lo

g
sc

al
e

Number of queries

Q1

CQELS
C-SPARQL

ETALIS

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

av
g.

 q
ue

ry
 e

xc
. t

im
e

(m
s)

 -
 lo

g
sc

al
e

Number of queries

Q3

CQELS
C-SPARQL

ETALIS

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000

av
g.

 q
ue

ry
 e

xc
 ti

m
e

(m
s)

 -
 lo

g
sc

al
e

Number of queries

Q4

CQELS
C-SPARQL

ETALIS

Fig. 5. Average query execution time when running multiple query instances

intermediate results. We have observed that the size of the cache, which stores the co-
authors and editors of a certain author, does not increase linearly with the size of the
dataset. Moreover, by using indexes on this cache, the access time of a mapping in-
creases only logarithmically with the cache size. This behaviour shows the importance
of having such cache and index structures for efficient query processing.

As a scalability test, we wanted to analyse how the systems perform with a number
of queries running in parallel. Figure 5 presents the results for Exp.(3). Again, ETALIS
delivers the best performance when there is no join operator on the stream data (Q1).
But, for the other cases, the number of queries it can handle in parallel is very limited
(less than 10). Both C-SPARQL and CQELS can scale to a large number of queries, but
in C-SPARQL queries face a long execution time that exceeds 100 seconds, while in
CQELS, even with 1000 queries running, the average execution time is still around one
second. This scalability is mainly due to our encoding technique, which allows more
efficient use of main memory, consequently reducing read/write disk operations.

In summary, our experimental evaluation shows the great performance of CQELS,
both in terms of efficiency and scalability. Its query engine, with the cache, index, and
routing policy, adapts well to different query complexities and it can scale with the size
of the RDF datasets. Our encoding technique enhances memory usage, which is crucial
when handling multiple queries. Even though ETALIS performed better for simpler
queries, CQELS performs consistently well in all the experiments, and in most cases
outperforms the other approaches by orders of magnitude.

6 Conclusions

This paper presented CQELS, a native and adaptive approach for integrated process-
ing of Linked Stream Data and Linked Data. While other systems use a “black box”
approach which delegates the processing to existing engines, thus suffering major ef-
ficiency drawbacks because of lack of full control over the query execution process,
CQELS implements the required query operators natively, enabling improved query ex-
ecution. Our query engine can adapt to changes in the input data, by applying heuristics
to reorder the operators in the data flows of a query. Moreover, external disk access on
large Linked Data collections is reduced with the use of data encoding, and caching/in-
dexing enables significantly faster data access. Our experimental evaluation shows the
good performance of CQELS, in terms of efficiency, latency and scalability. CQELS
performs consistently well in experiments over a wide range of test cases, outperform-
ing other approaches by orders of magnitude.

A Native and Adaptive Approach for Unified Process of Linked Stream 387

Our promising results indicate that an integrated and native approach is in fact nec-
essary to achieve the required query execution efficiency. For future work, we plan to
improve the performance of CQELS further. Query optimisation in adaptive query pro-
cessing is still an open problem under active research [17]. We have already started
investigating cost-based query optimisation policies [25] and we plan to look into adap-
tive caching [7] and materialised view maintenance [21] to enhance the efficiency of
our query execution algorithms.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web data manage-
ment using vertical partitioning. In: VLDB 2007, pp. 411–422 (2007)

2. Alani, H., Szomszor, M., Cattuto, C., Van den Broeck, W., Correndo, G., Barrat, A.: Live
Social Semantics. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D.,
Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 698–714. Springer,
Heidelberg (2009)

3. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event
processing and stream reasoning. In: WWW 2011, pp. 635–644 (2011)

4. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations
and query execution. The VLDB Journal 15(2), 121–142 (2006)

5. Arasu, A., Widom, J.: A denotational semantics for continuous queries over streams and
relations. SIGMOD Record 33(3), 6–12 (2004)

6. Avnur, R., Hellerstein, J.M.: Eddies: continuously adaptive query processing. SIGMOD
Rec. 29(2), 261–272 (2000)

7. Babu, S., Munagala, K., Widom, J., Motwani, R.: Adaptive Caching for Continuous Queries.
In: ICDE 2005, pp. 118–129 (2005)

8. Balazinska, M., Deshpande, A., Franklin, M.J., Gibbons, P.B., Gray, J., Hansen, M., Lieb-
hold, M., Nath, S., Szalay, A., Tao, V.: Data Management in the Worldwide Sensor Web.
IEEE Pervasive Computing 6(2), 30–40 (2007)

9. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An execution environment for C-
SPARQL queries. In: EDBT 2010, pp. 441–452 (2010)

10. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International Journal
on Semantic Web and Information Systems 5(3), 1–22 (2009)

11. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - Extending SPARQL to Process
Data Streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC
2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)

12. Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A., Ye, F.: A Semantics-
Based Middleware for Utilizing Heterogeneous Sensor Networks. In: Aspnes, J., Scheideler,
C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 174–188. Springer,
Heidelberg (2007)

13. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: An architecture for storing and
querying rdf data and schema information (2003)

14. Calbimonte, J.P., Corcho, O., Gray, A.J.G.: Enabling Ontology-Based Access to Streaming
Data Sources. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 96–111. Springer,
Heidelberg (2010)

15. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker,
M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data management applications.
In: VLDB 2002, pp. 215–226 (2002)

388 D. Le-Phuoc et al.

16. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient SQL-based RDF querying
scheme. In: VLDB 2005, pp. 1216–1227 (2005)

17. Deshpande, A., Ives, Z., Raman, V.: Adaptive query processing. Found. Trends Databases
(January 2007)

18. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 5th edn. Addison-Wesley
Longman Publishing Co., Inc., Boston (2006)

19. Fidge, C.J.: Logical time in distributed computing systems. IEEE Computer 24(8), 28–33
(1991)

20. Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Rec. 32(2), 5–14 (2003)
21. Gupta, A., Mumick, I.S.: Maintenance of materialized views: problems, techniques, and ap-

plications. In: Materialized Views, pp. 145–157 (1999)
22. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing Time into RDF. IEEE Transactions

on Knowledge and Data Engineering 19, 207–218 (2007)
23. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for Querying

Graph Structured Data from the Web. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-
Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 211–224. Springer,
Heidelberg (2007)

24. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

25. Le-Phuoc, D., Parreira, J.X., Hausenblas, M., Hauswirth, M.: Continuous query optimization
and evaluation over unified linked stream data and linked open data. Technical report, DERI,
9 (2010)

26. Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous
queries over streams. In: 2002 ACM SIGMOD International Conference on Management
of Data, pp. 49–60 (2002)

27. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and Distributed
Algorithms, pp. 215–226. North-Holland (1989)

28. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. The
VLDB Journal 19(1), 91–113 (2010)

29. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans.
Database Syst. 34(3), 1–45 (2009)

30. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: Sp2bench: A sparql performance bench-
mark. In: ICDE 2009, pp. 222–233 (2009)

31. Sequeda, J.F., Corcho, O.: Linked stream data: A position paper. In: SSN 2009 (2009)
32. Sheth, A.P., Henson, C.A., Sahoo, S.S.: Semantic Sensor Web. IEEE Internet Comput-

ing 12(4), 78–83 (2008)
33. Srivastava, U., Widom, J.: Flexible time management in data stream systems. In: PODS 2004,

pp. 263–274 (2004)
34. Stuckenschmidt, H., Vdovjak, R., Houben, G.-J., Broekstra, J.: Index structures and algo-

rithms for querying distributed rdf repositories. In: WWW, pp. 631–639 (2004)
35. Umbrich, J., Karnstedt, M., Land, S.: Towards understanding the changing web: Mining the

dynamics of linked-data sources and entities. In: KDML, Workshop (2010)
36. Viglas, S.D., Naughton, J.F., Burger, J.: Maximizing the output rate of multi-way join queries

over streaming information sources. In: VLDB 2003 (2003)
37. Whitehouse, K., Zhao, F., Liu, J.: Semantic Streams: A Framework for Composable Semantic

Interpretation of Sensor Data. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS,
vol. 3868, pp. 5–20. Springer, Heidelberg (2006)

38. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and retrieval in
Jena2, pp. 35–43 (2003)

	A Native and Adaptive Approach for Unified Processing of Linked Streams and Linked Data

	Introduction
	Related Work
	Processing Model
	Definitions
	Operators
	Adaptation Strategies

	CQELS's Query Engine
	CQELS Language
	Data Encoding
	Caching and Indexing
	Operators and Routing Policy

	Experimental Evaluation
	Experimental Setup
	Results and Analysis

	Conclusions
	References

