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Preface

Ten years ago, several researchers decided to organize a workshop to bring
together an emerging community of scientists who were working on adding
machine-readable semantics to the Web, the Semantic Web. The organizers were
originally planning for a few dozen researchers to show up. When 200 of them
came to Stanford in August 2001, the Semantic Web Workshop became the
Semantic Web Working Symposium, and the International Semantic Web Con-
ference (ISWC) was born. Much has changed in the ten years since that meeting.
The Semantic Web has become a well-recognized research field in its own right,
and ISWC is a premier international research conference today. It brings to-
gether researchers, practitioners, and users in artificial intelligence, databases,
social networks, distributed computing, Web engineering, information systems,
human–computer interaction, natural-language processing, and others. Compa-
nies from Facebook to Google to the New York Times rely on Semantic Web
technologies to link and organize their data; governments in the United States,
United Kingdom, and other countries open up their data by making it accessible
to Semantic Web tools; scientists in many domains, from biology, to medicine, to
oceanography and environmental sciences, view machine-processable semantics
as key to sharing their knowledge in today’s data-intensive scientific enterprise;
semantic technology trade shows attract more than a thousand attendees. The
focus of Semantic Web research has moved from issues of representing data on
the Web and the growing pains of figuring out a common format to share it, to
such challenges as handling billions of statements in a scalable way to making
all this data accessible and usable to regular citizens.

This volume contains the main proceedings of the 10th International Seman-
tic Web Conference (ISWC 2011), which was held in Bonn, Germany, in October
2011. We received tremendous response to our calls for papers from a truly inter-
national community of researchers and practitioners. Indeed, every track of the
conference received a record number of submissions this year. The careful nature
of the review process, and the breadth and scope of the papers finally selected
for inclusion in this volume, speak to the quality of the conference and to the
contributions made by researchers whose work is presented in these proceedings.

The Research Track of the conference attracted 264 submissions. Each paper
received at least three, and sometimes as many as five, reviews from members of
the Program Committee. After the first round of reviews, authors had the oppor-
tunity to submit a rebuttal, leading to further discussions among the reviewers,
a meta-review and a recommendation from a member of the Senior Program
Committee. Every paper that had at least one recommendation for acceptance
was discussed in a virtual meeting of the Senior Program Committee.

As the Semantic Web develops, we find a changing variety of subjects that
emerge. This year the keywords of accepted papers were distributed as follows
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(frequency in parentheses): ontologies and semantics (15), database, IR, and AI
technologies for the Semantic Web (14), management of Semantic Web data
(11), reasoning over Semantic Web data (11), search, query, integration, and
analysis on the Semantic Web (10), robust and scalable knowledge management
and reasoning on the Web (10), interacting with Semantic Web data (9), on-
tology modularity, mapping, merging, and alignment (8), languages, tools, and
methodologies for representing and managing Semantic Web data (8), ontol-
ogy methodology, evaluation, reuse, extraction, and evolution (7), evaluation of
Semantic Web technologies or data (7), specific ontologies and ontology patterns
for the Semantic Web (6), new formalisms for the Semantic Web (4), user inter-
faces to the Semantic Web (3), cleaning, assurance, and provenance of Semantic
Web data, services, and processes (3), social Semantic Web (3), evaluation of Se-
mantic Web technology (3), Semantic Web population from the human Web (3).

Overall, the ISWC Program Committee members adopted strict standards
for what constitutes high-quality Semantic Web research and what papers must
deliver in terms of theory, practice, and evaluation in order to be accepted to
the Research Track. Correspondingly, the Program Committee accepted only 50
papers, 19% of the submissions.

The Semantic Web In-Use Track received 75 submissions. At least three mem-
bers of the In-Use Program Committee provided reviews for each paper. Sev-
enteen papers were accepted – a 23% acceptance rate. The large number of
submissions this year demonstrated the increasingly diverse breadth of applica-
tions of Semantic Web technologies in practice. Papers demonstrated how seman-
tic technologies could be used to drive a variety of simulation and test systems,
manage distributed content and operate within embedded devices. Several pa-
pers tapped the growing amount of semantically enriched environmental data
available on the Web allowing communities to visualize, organize, and monitor
collections for specific purposes.

The Doctoral Consortium has become a key event at the conference over
the years. PhD students get an opportunity to present their thesis proposals
and to get detailed feedback on their research topics and plans from the leading
academic and industrial scientists in the field. Out of 31 submissions to the
Doctoral Consortium, 6 were accepted as long papers for presentation at the
conference, and 9 were accepted for presentation at the special Consortium-
only poster session. Each student was assigned a mentor who led the discussion
following the presentation of their proposal, and provided extensive feedback
and comments.

A unique aspect of the ISWC conference is the Semantic Web Challenge.
In this competition, the ninth to be held at the conference, practitioners and
scientists showcase useful and leading-edge applications of Semantic Web tech-
nology. Diana Maynard and Chris Bizer organized the Semantic Web Challenge
this year.

The keynote talks given by leading scientists in the field further enriched the
ISWC program. Alex (Sandy) Pentland, the director of the Human Dynamics
Laboratory and the Media Lab Entrepreneurship Program at the Massachusetts
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Institute of Technology, discussed the New Deal on Data—a new data ecosystem
that can allow personal data to become an accessible asset for the new generation
of systems in health, finance, logistics, and transportation. Gerhard Weikum, a
Research Director at the Max Planck Institute for Informatics, discussed the
issues and approaches to extending and enriching linked data, in order to im-
prove its scope, quality, interoperability, cross-linking, and usefulness. Frank van
Harmelen, a professor at the VU University Amsterdam, and a participant and
leader in Semantic Web research, provided his analysis of the past ten years,
discussing whether any universal patterns have emerged in the way we built the
Semantic Web. Nigel Shadbolt, Deputy Head of the School of Electronics and
Computer Science at the University of Southampton, gave a lively dinner talk.

As in previous ISWC editions, the conference included an extensive Tuto-
rial and Workshop program. Tania Tudorache and Heiner Stuckenschmidt, the
Chairs of this track, created a stellar and diverse collection of 7 tutorials and 16
workshops, where the only problem that the participants faced was which of the
many exciting workshops to attend.

We would like to thank Marta Sabou and Guilin Qi for organizing a lively
Poster and Demo Session. This year, the Posters and Demos were introduced in a
Minute Madness Session, where every presenter got 60 seconds to provide a teaser
for their poster or demo. Marco Neumann coordinated an exciting Industry
Track with presentations both from younger companies focusing on semantic
technologies and software giants, such as Yahoo! and Microsoft.

As we look forward to the next ten years of Semantic Web research, we or-
ganized an Outrageous Ideas Session, with a special award sponsored by the
Computing Community Consortium. At this track, we invited scientists to sub-
mit short papers describing unconventional and innovative ideas that identify
new research opportunities in this field. A Program Committee of established
Semantic Web researchers judged the submissions on the extent to which they
expand the possibilities and horizons of the field. After presentation of short-
listed papers at the conference both the PC members and the audience voted
for the prize winners.

We are indebted to Eva Blomqvist, our Proceedings Chair, who provided
invaluable support in compiling the volume that you now hold in your hands (or
see on your screen) and exhibited super-human patience in allowing the other
Chairs to stretch deadlines to the absolute limits. Many thanks to Jen Golbeck,
the Fellowship Chair, for securing and managing the distribution of student
travel grants and thus helping students who might not have otherwise attended
the conference to come to Bonn. Mark Greaves and Elena Simperl were tireless
in their work as Sponsorship Chairs, knocking on every conceivable virtual ‘door’
and ensuring an unprecedented level of sponsorship this year. We are especially
grateful to all the sponsors for their generosity.

As has been the case in the past, ISWC 2011 also contributed to the linked
data cloud by providing semantically annotated data about many aspects of the
conference. This contribution would not have been possible without the efforts
of Lin Clark, our Metadata Chair.
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Juan Sequeda, our Publicity Chair, was tirelessly twittering, facebooking,
and sending old-fashioned announcements on the mailing lists, creating far more
lively ‘buzz’ than ISWC ever had.

Our very special thanks go to the Local Organization Team, led by Stef-
fen Staab and York Sure-Vetter. They did a fantastic job of handling local ar-
rangements, thinking of every potential complication way before it arose, often
doing things when members of the Organizing Committee were only beginning
to think about asking for them. Special thanks go to Ruth Ehrenstein for her
enormous resourcefulness, foresight, and anticipation of the conference needs
and requirements. We extend our gratitude to Silke Werger, Holger Heuser, and
Silvia Kerner.

Finally, we would like to thank all members of the ISWC Organizing Com-
mittee not only for handling their tracks superbly, but also for their wider contri-
bution to the collaborative decision-making process in organizing the conference.

October 2011 Lora Aroyo
Chris Welty

Program Committee Co-chairs
Research Track

Harith Alani
Jamie Taylor

Program Committee Co-chairs
Semantic Web In-Use Track

Abraham Bernstein
Lalana Kagal

Doctoral Consortium Chairs

Natasha Noy
Conference Chair
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Capturing Instance Level Ontology Evolution for DL-Lite . . . . . . . . . . . . . 321
Evgeny Kharlamov and Dmitriy Zheleznyakov

Querying OWL 2 QL and Non-monotonic Rules . . . . . . . . . . . . . . . . . . . . . 338
Matthias Knorr and José Júlio Alferes
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DC Proposal: Graphical Models and Probabilistic Reasoning for
Generating Linked Data from Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Varish Mulwad

DC Proposal: Evaluating Trustworthiness of Web Content Using
Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Jarutas Pattanaphanchai

DC Proposal: Decision Support Methods in Community-Driven
Knowledge Curation Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

Razan Paul

DC Proposal: Towards Linked Data Assessment and Linking Temporal
Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Anisa Rula

DC Proposal: Towards a Framework for Efficient Query Answering and
Integration of Geospatial Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Patrik Schneider

DC Proposal: Automatically Transforming Keyword Queries to
SPARQL on Large-Scale Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Saeedeh Shekarpour

DC Proposal: Enriching Unstructured Media Content about Events
to Enable Semi-automated Summaries, Compilations, and Improved
Search by Leveraging Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Thomas Steiner

DC Proposal: Ontology Learning from Noisy Linked Data . . . . . . . . . . . . . 373
Man Zhu

DC Proposal: Capturing Knowledge Evolution and Expertise in
Community-Driven Knowledge Curation Platforms . . . . . . . . . . . . . . . . . . . 381

Hasti Ziaimatin



XXIV Table of Contents – Part II

Invited Talks—Abstracts

Keynote: 10 Years of Semantic Web Research: Searching for Universal
Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Frank van Harmelen

Keynote: Building a Nervous System for Society: The ‘New Deal
on Data’ and How to Make Health, Financial, Logistics, and
Transportation Systems Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Alex Pentland

Keynote: For a Few Triples More . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Gerhard Weikum

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393



Leveraging the Semantics of Tweets for

Adaptive Faceted Search on Twitter
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Abstract. In the last few years, Twitter has become a powerful tool
for publishing and discussing information. Yet, content exploration in
Twitter requires substantial effort. Users often have to scan information
streams by hand. In this paper, we approach this problem by means
of faceted search. We propose strategies for inferring facets and facet
values on Twitter by enriching the semantics of individual Twitter mes-
sages (tweets) and present different methods, including personalized and
context-adaptive methods, for making faceted search on Twitter more ef-
fective. We conduct a large-scale evaluation of faceted search strategies,
show significant improvements over keyword search and reveal signifi-
cant benefits of those strategies that (i) further enrich the semantics of
tweets by exploiting links posted in tweets, and that (ii) support users
in selecting facet value pairs by adapting the faceted search interface to
the specific needs and preferences of a user.

Keywords: faceted search, twitter, semantic enrichment, adaptation.

1 Introduction

The broad adoption and ever increasing popularity of Social Web have been re-
shaping the world we live in. Millions of people from all over the world use social
media for sharing masses of (user-generated) content. This data, for example
from social tagging or (micro-)blogging, is often unstructured and is not in com-
pliance with the Semantic Web standards. Research efforts aiming at transform-
ing social data into RDF data such as DBpedia [3], and services like revyu.com do
exist along with other pioneer exceptions like Semantic Media Wiki1, semantic
tagging [1], and semantic (micro-)blogging (SMOB [2]). However, the big players
often do not adhere to Semantic Web principles. For instance, on Twitter, the
most popular microblogging service on the Web, the content of Twitter messages
(tweets) is not semantically described, which has a negative impact on search.
Even though Twitter does allow for metadata2, this metadata is for describing
the context of a tweeting activity; e.g. location of the user, Twitter client from
1 http://semantic-mediawiki.org/wiki/Semantic_MediaWiki
2 http://dev.twitter.com/pages/annotations_overview

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 1–17, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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which the user tweeted, date and time of the tweet and so on. Yet, there is still a
lack of tools to automatically enrich the semantics of tweets and fill those meta-
data fields with semantics in order to describe the content of a Twitter message.
The lack of semantics and structure makes searching and browsing on Social
Web applications like Twitter a really challenging task.

Although considerable amount of research has been directed towards Twitter
recently, search on Twitter has not been studied extensively yet which motivates,
for example, the TREC 2011 track on Microblogs that defines the first search
tasks on Twitter3. In line with the TREC research objectives, we investigate
ways to enhance search and content exploration in the microblogosphere by
means of faceted search. In an open and enormous network like Twitter, users
may get lost, become de-motivated and frustrated easily with the information
overload. Hence, there is a need for an effective personalized searching option
from the users’ point of view that would assist them in following the optimal
path through a series of facets to find the information they are looking for, while
providing a structured environment for relevant content exploring. In this paper
we propose and evaluate an adaptive faceted search framework for Twitter. We
investigate how to extract facets from tweets, how to design appropriate faceted
search strategies on Twitter and analyze the impact of the faceted search strategy
building blocks on the search performance by means of an automated evaluation
framework for faceted search. Our main contributions can be summarized as
follows4.

Semantic Enrichment. To allow for faceted search on Twitter, we present
methods for enriching the semantics of tweets by extracting facets from
tweets and related external Web resources that describe the content of tweets.

Adaptive Faceted Search Framework. We introduce different building
blocks that allow for various faceted search strategies for content explo-
ration on Twitter and propose methods that adapt to the interests/context
of a user.

Evaluation Framework. We present an evaluation environment based on an
established model for simulating users’ click behavior to evaluate different
strategies of our adaptive faceted search engine for Twitter. Given this, we
prove the effectiveness of our methods on a large Twitter dataset of more
than 30 million tweets. We reveal the benefits of faceted search over keyword
search and investigate the impact of the different building blocks of our
adaptive faceted search framework on the search performance.

2 Background

Twitter is the second most popular social media application which has experi-
enced exponential growth over the last few years in terms of number of users and
3 http://sites.google.com/site/trecmicroblogtrack/
4 Our adaptive faceted search framework, the code of our evaluation framework and

the dataset are available via: http://wis.ewi.tudelft.nl/iswc2011/

http://sites.google.com/site/trecmicroblogtrack/
http://wis.ewi.tudelft.nl/iswc2011/
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tweets published. A recent report shows that one billion tweets are published in
a week which corresponds to an average of 140 million tweets per day5. This
astounding growth and popularity of the microblogging service have naturally
been attracting significant amount of research from various perspectives and
fields lately. In this section, we present the background and related work that
help to understand the usage dynamics and semantics of Twitter messages and
motivations for faceted search on Twitter.

2.1 Understanding Twitter Semantics

Tweets are distinctively short text messages of maximum 140 characters that do
not explicitly feature facets, in addition to being too short to extract meaningful
semantics from. Furthermore, the language and syntax of tweets are significantly
different than other Web documents, since Twitter users tend to use abbrevia-
tions and short-form for words to save space, as well as colloquial expressions,
which make it even harder to infer semantics from tweets.

Mining the semantics of tweets could lead to interesting applications. For
instance, Twitris 2.0, a Semantic Web application, facilitates understanding per-
ceptions from social media by capturing semantics with spatial, temporal, the-
matic dimensions, user intentions and sentiments, and networking behavior from
Twitter [8]. Following a top-down approach, Stankovic et al. mapped tweets to
conference talks and exploited metadata of the corresponding research papers
to enrich the semantics of tweets in order to better understand the semantics
of the tweets published in conferences [9]. We follow a similar approach to this
where we try to leverage the semantics of tweets for enhancing search on Twit-
ter. Therefore, instead of a restricted domain like scientific conferences, we try
to enrich the tweets in general.

Studies on the social network of Twitter and information diffusion dynamics
show that tweets are often news related. For instance, Kwak et al. showed that
the majority of the trending topics and 85% of all the posted tweets in Twitter
are related to news [4]. Sankaranarayanan et al. investigated the use of Twitter to
build a news processing system from tweets, called TwitterStand, by capturing
tweets that correspond to late breaking news [10]. Some researchers differentiated
between news and casual information by investigating the credibility of news
propagated through Twitter, while others studied the information propagation
via re-tweeting during emergency events [11]. Building on such studies which
revealed that Twitter is used more as a news media than a social network [4],
and identified “information seekers” as a primary category of Twitter users [7],
we try to map tweets to news articles on the Web over the same time period in
order to enrich them and to allow for extracting more entities to generate richer
facets for search.

Another distinct characteristic of the Twitter syntax is the use of hashtags.
Hashtags are meant to be identifiers for related messages of the same topic. By
including a hashtag in a message, users indicate to which conversations their

5 http://blog.twitter.com/2011/03/numbers.html

http://blog.twitter.com/2011/03/numbers.html
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message is related to. Due to the unorganized and fragmented streams of in-
formation in Twitter, the use of hashtags has become the means of creating
threads of conversations and gathering those serving for a particular interests.
When used appropriately, searching on hashtags would return messages that
belong to the same conversation. Huang et al. studied the use of hashtags and
tagging behavior in Twitter in comparison to Delicious, where they found that
hashtags are often just meaningful for a short period of time, and described
tagging in Twitter as “conversational” [14].

2.2 Search on Twitter

Since Twitter has become an important source of information for late-breaking
news, Twitter posts are already being exploited by major search engines such
as Google and Bing. The simplicity of Twitter is one of its powers that has
played an important role in its success. However this simplicity brings about
negative effect when it comes to searching, browsing or mining the Twitterverse
for various uses. Aggregating functions are limited to filtering tweets by users or
hashtags, or restricting by keywords, organized by time and not by relevance [12].
Our work is motivated by the inaccuracies of the current keyword search option
and the lack of semantics in tweets that hinders a better browsing experience.

Searching and browsing are indeed limited in Twitter. For example, one can
search for tweets by a keyword or by a user in a timeline that would return the
most recent posts. So, if a user wants to see the different tweets about a field of
sports, and were to search for “sports” in Twitter, only the recent tweets that
contain the word “sports” would be listed to the user. Many tweets that do not
contain the search keyword, but are about different sport events, sport games
and sport news in general, would be filtered out. This keyword search is not only
imprecise, but is also missing out on a number of messages that do not contain
the particular keyword. As tweets are unconventionally short and do not contain
explicit meanings, searching microblogging platforms and making sense of the
streams of messages passing through the system become even more challenging.

On the other hand, semantic search augments and improves traditional search
results by using data from the Semantic Web. Guha et al. described two semantic
search systems and outlined how the semantics of search terms can be used for
improving search results [15]. We follow a similar approach to adding explicit
semantics in order to improve search by extracting entities from tweets and
linking external Web sources to tweets in order to enhance their semantics.

A systematic overview of search behavior on Twitter and what differentiates
it from Web search was presented by [16]. Researchers investigated why peo-
ple search Twitter and found out that people mainly search socially generated
content to find temporally relevant information (e.g. breaking news, traffic jams
etc.) and social information (e.g. opinion, general sentiment, information related
to people of interest), as well as to “monitor” the associated results. It was also
noted that Twitter search queries are shorter, more popular and less likely to
evolve as part of a session, whereas Web queries change and develop during a
session to “learn” more about a topic. We take the search behavior of the users
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into account when we develop strategies for our faceted search framework, such
as time sensitive or personalized rankings of facet values.

2.3 Faceted Search

Faceted search is becoming a popular method to allow users to interactively
search and navigate complex information spaces. Faceted search systems help
people find what they are looking for by allowing them to specify not just key-
words related to their information needs, but also metadata which is used for
query refinement. Hearst defined facets as “a set of meaningful labels organized
in such a way as to reflect the concepts relevant to a domain” [18]. Koren et
al. defined three common characteristics for faceted search interfaces; (i) facets
and facet-values, (ii) previous search results, and (iii) the current query [17]. By
choosing from the suggested facet-values, a user can interactively refine the query.
Traditional faceted search interfaces allow users to search for items by specifying
queries regarding different dimensions and properties of the items (facets) [19].
For example, online stores such as eBay6 or Amazon7 enable narrowing down
their users’ search for products by specifying constraints regarding facets such
as the price, the category or the producer of a product. In contrast, information
on Twitter is rather unstructured and short, which does not explicitly feature
facets. This puts constraints on the size and the number of keywords, as well as
facets that can be used as search parameters without risking to filter out many
relevant results.

As a solution, we enrich the semantics of tweets by extracting facets and
assigning semantics to them, which allows for a rather semantic faceted search
than a keyword search. For instance, given a tweet like “Off to BNP Paribas at
Indian Wells”, entities such as “BNP Paribas” and “Indian Wells” are extracted
and assigned to facet types such as “SportsEvents” and “Locations” respectively,
which allows for searching in different dimensions (multiple facets) even though
the words like “sport”, “event” or “location” are not included in the tweet (see
Figure 1(a)).

2.4 Problem Formalization

On Twitter, facets describe the properties of a Twitter message. For example,
persons who are mentioned in a tweet or events a tweet refers to. Oren et al. [19]
formulate the problem of faceted search in RDF terminology. Given an RDF
statement (subject, predicate, object), the faceted search engine interprets (i)
the subject as the actual resource that should be returned by the engine, (ii)
the predicate as the facet type and (iii) the object as the facet-value (restriction
value). We follow this problem formulation proposed by Oren et al. [19] and
interpret tweets as the actual resources (subjects) which the faceted search engine
should return, entities that are mentioned in a tweet as facet value and the type
of an entity as facet type.
6 http://ebay.com/
7 http://amazon.com/

http://ebay.com/
http://amazon.com/
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(a) Faceted search interface
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Fig. 1. Adaptive faceted search on Twitter: (a) example interface and (b) architecture
of the faceted search engine

Figure 1(a) illustrates how we envision the corresponding faceted search in-
terface that allows users to formulate faceted queries. Given a list of facet val-
ues which are grouped around facet types such as locations, persons and events,
users can select facet-value pairs such as (URIevent, URIwimbledon) to refine their
current query ((URIperson, URIfederer), (URIsportsgame, URItennis)). A faceted
query thus may consist of several facet-value pairs. Only those tweets that match
all facet-value constraints will be returned to the user. The ranking of the tweets
that match a faceted query is a research problem of its own (cf. [16]). In this
paper, we rank matching tweets according to their creation time, i.e. the older a
tweet the lower its ranking. The core challenge of the faceted search interface is
to support the facet-value selection as good as possible. Hence, the facet-value
pairs that are presented in the faceted search interface (see left in Figure 1(a))
have to be ranked so that users can quickly narrow down the search result lists
until they find the tweets they are interested in. Therefore, the facet ranking
problem can be defined as follows.

Definition 1 (Facet Ranking Problem). Given the current query Fquery,
which is a set of facet-value pairs (predicate, object) ∈ Fquery , the hit
list H of resources that match Fquery, a set of candidate facet-value pairs
(predicate, object) ∈ F and a user u, who is searching for a resource r at time
t via the faceted search interface, the core challenge of the faceted search engine
is to rank the facet-value pairs F . Those pairs should appear at the top of the
ranking that restrict the hit list H so that u can retrieve t with the least possible
effort.

3 Framework for Adaptive Faceted Search

The architecture of the engine that we propose for faceted search on Twitter is
depicted in Figure 1(b) and features three main components. The semantic en-
richment layer aims to extract facets from tweets and generates RDF statements
that describe the semantic meaning of a Twitter message. In order to adapt the
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Table 1. Building blocks of faceted search framework: strategies for extracting facet-
value pairs (FVPs) from tweets, inferring user interest in FVPs and ranking FVPs

Building Block Description

Semantic Enrichment
Enriching tweets to extract FVPs for representing tweets:

(1) tweet-based enrichment
(2) tweet-based and link-based enrichment

User/Context Modeling

Strategies for generating profiles that represent
(current) user demands in FVPs:

(1) user modeling based on tweets published by a user [6]
(2) context modeling based on user context when issuing

a query (here: query time)

Adaptive Faceted Search

Strategies for adapting the faceted search interface to the
user and context and for ranking FVPs in particular:

(1) Occurrence Frequency: ranking based on frequency
of a FVP in the tweets

(2) Personalization: adapting the FVP ranking to a given
user profile

(3) Time Sensitivity: adapting the FVP ranking to
temporal context

(4) Diversification: strategy to increase variety among the
top-ranked FVPs

faceted search engine to the people who are using it, we propose user modeling
and context modeling strategies that infer interests of the users in facets. Based
on the semantically enriched tweets and the user profiles inferred by the user
modeling layer, the adaptive faceted search layer solves the actual facet rank-
ing problem. It provides methods that adapt the facet-value pair ranking to the
given context and user. Table 1 lists the components and different strategies of
the three main building blocks. Below, we explain these building blocks in detail.

3.1 Semantic Enrichment

Twitter messages are short text messages that do not feature facets describ-
ing the content of the message. Twitter messages such as “Federer is great
http://bit.ly/2fRds1t” can be represented in RDF using, for example, SIOC
vocabulary8, the semantic meaning of such messages is however not explicitly
defined:

<http://twitter.com/bob/statuses/48748435752333312>
a <sioc:Post> ;
dcterms:created "2011-07-08T15:52:51+00:00" ;
sioc:content "Federer is great http://bit.ly/2fRds1t";
sioc:has_creator <http://twitter.com/bob> ;
sioc:links_to <http://bit.ly/2fRds1t> ;

While the above RDF representation specifies the tweet’s metadata such as the
creator of the tweet or the creation time, it requires further enrichment so that
8 http://rdfs.org/sioc/spec/

http://rdfs.org/sioc/spec/
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the content of a tweet is semantically described as well. Representing the seman-
tics of Twitter messages will allow for semantic search strategies such as faceted
search (for casual users) or SPARQL queries (for advanced users and applica-
tion developers). Our faceted search framework features two core strategies for
extracting the semantics from tweets: (i) tweet-based enrichment where named
entities are extracted from Twitter messages and (ii) tweet-based and link-based
enrichment where tweets are further enriched with entities that are extracted
from external Web resources that are referenced from the tweets. Therefore, our
framework connects to three named entity recognition services: OpenCalais9,
DBpedia spotlight10 and Alchemy11. Using our semantic enrichment infrastruc-
ture, we can represent the semantics of the above Twitter message:

<http://twitter.com/bob/statuses/48748435752333312>
a <sioc:Post> ;
...
sioc:has_topic <http://dbpedia.org/resource/Roger_Federer> ;
sioc:has_topic <http://dbpedia.org/resource/Tennis> ;
sioc:has_topic <http://dbpedia.org/resource/2009_Wimbledon_Championships> .

While the relation to dbpedia:Roger Federer can be inferred by merely analyzing
the tweet (tweet-based enrichment), inferring that the tweet refers to Federer’s
achievements at the Wimbledon tournament 2009 is possible when following the
link that is posted in the tweet (link-based enrichment). Our engine uses the
identified entities as facet values and exploits the type of the entities to group
facet values into facet types. In our evaluation, we process tweets by means of
the OpenCalais API which allows us to infer 39 different facet types.

3.2 User and Context Modeling

The goal of the user modeling module is to create a user profile that represents
the current demands of the user so that the faceted search interface can be
adapted to the inferred profile. Therefore, we define a user profile as a list of
weighted facet values (entities):

Definition 2 (User Profile). The profile of a user u ∈ U is a set of weighted
entities where with respect to the given user u for an entity e ∈ E its weight
w(u, e) is computed by a certain function w.

P (u) = {(e, w(u, e))|e ∈ E, u ∈ U}
Here, E and U denote the set of entities and users respectively.

In this paper, we apply a lightweight user modeling strategy that weights the en-
tities according to their occurrence frequency in the complete history of tweets
which have been published by the user u before she is performing the search

9 http://opencalais.com/
10 http://dbpedia.org/spotlight
11 http://alchemyapi.com/

http://opencalais.com/
http://dbpedia.org/spotlight
http://alchemyapi.com/
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activity. The time of a search activity is considered as context and in the sub-
sequent section we introduce a strategy that exploits this feature to adapt the
faceted search engine to the temporal context. For more detailed information on
user and context modeling strategies that are part of our search framework, we
refer the reader to [6].

3.3 Adaptive Faceted Search

Given the strategies for enriching the semantic descriptions of tweets as well as
user and context modeling strategies, the module for adaptive faceted search can
operate on semantically rich Twitter items and profiles to solve the ranking task
specified above (see Definition 1). Below, we present four ranking strategies that
order the facet-value pairs to adapt the faceted search interface to the current
context and user.

Occurrence Frequency. A lightweight approach is to rank the facet-value
pairs (p, e) ∈ F based on their occurrence frequency in the current hit list H ,
the set of tweets that match the current query (cf. Definition 1):

rankfrequency((p, e), H) = |H(p,e)| (1)

|H(p,e)| is the number of (remaining) tweets that contain the facet-value pair
(p, e) which can be applied to further filter the given hit list H . By ranking those
facet values high that appear in most of the tweets, rankfrequency minimizes the
risk of ranking relevant facet values low. However, this might increase the effort a
user has to invest to narrow down search results: by selecting facet values which
occur in most of the remaining tweets the size of the hit list is reduced slowly.

Personalization. The personalized facet ranking strategy adapts the facet
ranking to a given user profile that is generated by the user modeling layer
depicted in Figure 1(b). Given the set of facet-value pairs (p, e) ∈ F (cf. Defi-
nition 1), the personalized facet ranking strategy utilizes the weight w(u, e) in
P (u) (cf. Definition 2) to rank the facet-value pairs:

rankpersonalized ((p, e), P (u)) =
{

w(u, e) if w(u, e) ∈ P (u)
0 otherwise (2)

Diversification. The main idea of the diversification strategy is to produce
facet rankings for which the highly ranked facet-values lead to diverse subsets of
the current hit list H . For example, if a user is searching for news on “Egypt”,
based on the frequency, the highly ranked facet-values would be entities such
as “Cairo” or “Middle East”, because they appear in most of the resources in
the hit list. However, these facet-values may refer to very similar items, i.e.
issuing the query “Cairo” on top of “Egypt” will not filter out many more items.
Hence, to drill down to a small result set as quickly as possible, it might be more
appropriate to display facet value pairs which (i) are more selective and (ii) are
diverse from the other facet-value pairs so that users with diverse information
needs can be satisfied.
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The diversification algorithm that we propose uses occurrence frequency as
basis ranking strategy and then reorders the FVPs according to the number of
items in the current hit list that (1) match the given FVP and (2) do not match
the higher ranked FVPs (see Equation 3 and Equation 4).

rankdiversify ((p, e), H) = rankfrequency((p, e), H) + d · diversify ((p, e), H) (3)

diversify ((p, e), H) = |H(p,e) \ ∪N
i=1H(pi,ei)| (4)

Here, d ∈ R allows for adjusting the influence of the diversification – in this paper
we set d = 1. N is the number of higher ranked facet value pairs. All items in
the hit list which contain higher ranked FVPs are not taken into account for the
scoring of the remaining facet value pairs.

Time Sensitivity. The time sensitive ranking strategy takes into account the
current temporal context (query time) and the publishing time of the tweets
that match a facet-value pair. The core idea is to rank those FVPs that recently
occurred in tweets (trending FVPs) higher than FVPs that constantly are men-
tioned in tweets. To achieve this, we take the creation times of all tweets that
match a facet-value pair (p, e) and calculate the average age of these tweets,
i.e. the average distance to the actual query time. For each FVP, we therefore
obtain a score that describes how recently the tweets are that match the FVP.
The smaller the score – i.e. the younger the matching tweets – the higher the
rank. In practice, we combine the time sensitive ranking score with one of the
above ranking strategies such as occurrence frequency:

ranktime((p, e), H) =
d

avgage(Hp,e)
· rankfrequency((p, e), H) (5)

Here, avgage(Hp,e) is the average, normalized age of the tweets in H that match
FVP (p, e). Normalization is done by dividing avgage(Hp,e) by the maximum
average age associated with a FVP in H . The dampen factor d ∈ R allows
to adjust the influence of the time sensitive score with respect to the rank-
ing score rankfrequency((p, e), H). In our experiments, we set d = 1 and test
the time sensitive scoring method also with other ranking strategies such as
rankpersonalized ((p, e), H).

4 Analysis of Facet Extraction

In this section, we analyze the characteristics of a large Twitter corpus of more
than 30 million Twitter messages, and investigate how the semantic enrichment
of tweets impacts the facet-value pair extraction so that tweets are discoverable
by means of faceted search. We collected those tweets by monitoring the Twitter
activities of more than 20,000 Twitter users over a period of more than four
months starting on November 15, 2010. We started the crawling process by
monitoring popular Twitter accounts in the news domain such as the New York
Times (nytimes) and CNN Breaking News (cnnbrk) and then extended the set
of accounts in a snowball manner with users who replied or re-tweeted messages
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(a) Impact of link-based enrichment (b) Facet values per tweet

Fig. 2. Impact of link-based enrichment on (a) the characteristics of tweets and the
faceted search settings and (b) the number of facet values per tweet

of Twitter users whom we followed already. Figure 2(b) shows the distribution of
identified entities per tweet. The distribution shows that for most tweets only a
very small number of related entities are identified. Nearly 50% of tweets contain
only one entity. Around 92% of the tweets contain 3 or less entities. Moreover,
Figure 2(b) shows the impact of the semantic enrichment for the tweets. While
the majority of the tweets still contain one, two or three different entities, a
significant increase is observed for the number of tweets containing five or more
different facet values with the aid of enrichment. In this scenario the number of
tweets which are related to more than four facet-value pairs is around 14 times
larger when using the semantic enrichment based on link exploitation.

Figure 2(a) overviews some of the characteristics of tweets and the faceted
search scenarios for both tweet-based and tweet- and link-based enrichment. It
reveals that the number of facet value pairs related to each tweet increases on
average when using the semantic enrichment functionality which exploits links to
external Web resources. While the tweets contain on average 1.85 facet values,
the link-based enrichment strategy features 5.72 facet values per tweet, thus
allowing the end-user to find a tweet via many more alternative search paths and
faster by drilling down to a smaller set of resulting tweets. The numbers showing
discoverable tweets, FVP-selects and the size of the result set are related to
the simulated search scenario. Figure 2(a) shows that the link-based-enrichment
increases the number of discoverable tweets significantly. This suggests more
FVP-selects to drill down the result list. However our evaluations show that the
slight increase of 15% more click actions result in a much smaller result set.
When using the link exploration strategy, the size of the result set is 9 times
smaller, this helps the user to find the tweet(s) of interest faster.

5 Evaluation of Faceted Search Strategies

Having analyzed the characteristics of the facet extraction, we now evaluate the
performance of the faceted search strategies proposed in Section 3 and answer
the following research questions.
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1. How well does faceted search that is supported by the semantic enrichment
perform in comparison to keyword search?

2. What strategy performs best in ranking facet-value pairs that allow users to
find relevant tweets on Twitter?

3. How do the different building blocks of our faceted search framework (see
Table 1) impact the performance?

5.1 Evaluation Methodology

Our evaluation methodology extends an approach introduced by Koren et al. [17]
that simulates the clicking behavior of users in the context of faceted search
interfaces.

The core evaluation setup consists of parameters describing the user inter-
face itself and algorithms characterizing the simulated user behavior. In general,
faceted search user interfaces share some common characteristics and feature at
least two parts: an area displaying the facets and a part showing the search re-
sults (see Figure 1(a)). Based on such an interface, a user can perform different
actions, where the goal is to find a relevant tweet. We consider a tweet as relevant
for a user if it was re-tweeted by the user. In a faceted search interface, a user
can perform different actions and we focus on the following types of actions: (1)
selection of a facet-value pair to refine the query and drill down the search result
list, (2) if no appropriate facet-value pair is shown to the user then she can ask
for more facet-value pairs and (3) if the user cannot select further facet-value
pairs then she has to scan the result set until she finds the relevant tweet. In our
simulation, we assume that the user knows the tweet she is looking for and only
selects facet-value pairs that match the target tweet.

We model the user’s facet-value pair selection behavior by means of a first-
match user that selects the first matching facet-value pair. To evaluate the per-
formance, we generated search settings by randomly selecting 1000 tweets that
have been re-tweeted. Each search setting consists of (i) a target tweet (= the
tweet that was re-tweeted), (ii) a user that is searching for the tweet (= the
user who re-tweeted the tweet) and (iii) the timestamp of the search activity (=
the time when the user re-tweeted the message). The set of candidate items was
given by all those tweets which have been published within the last 24 hours be-
fore the search activity. On average, the number of candidate items is 61161.23
for the tweet-based enrichment strategy and 75782.76 for the tweet-based and
link-based enrichment strategy (see Figure 2(a)) while there is only one single
relevant tweet (target tweet) per search session.

For measuring the performance of our facet ranking strategies, we utilize Suc-
cess@k which is the probability that a relevant facet-value pair, the user selects
to narrow down the search result list, appears within the top k of the facet-value
pair ranking. This metric is a direct indicator for the effort a user needs to spends
using the search interface: the higher Success@k, the faster the user will find a
relevant facet-value pair when scanning the facet-value pair ranking.

For evaluating the performance of faceted search in comparison with keyword
search, we use hashtags as keyword queries and measure the performance by



Adaptive Faceted Search on Twitter 13

(a) Faceted vs. Keyword Search (b) Comparison of Faceted Search Strategies

Fig. 3. Overview on results: (a) mean reciprocal rank (MRR) of target item in the
search result ranking for faceted search and keyword search and (b) performance of the
faceted search strategies for ranking FVPs

means of the mean reciprocal rank (MRR) which indicates at which position we
find the target item in the search result ranking.

5.2 Results
Using the evaluation method presented above, we analyze the quality of the
search strategies. Figure 3 overviews the results that allow us to answer the
research questions raised at the beginning of this section.

Faceted Search vs. Keyword Search. Figure 3(a) shows that our approach
to faceted search clearly outperforms faceted search based on hashtags as well
as keyword search. Using tweet-based semantic enrichment for extracting FVPs
and occurrence frequency as weighting scheme for ranking FVPs (frequency-
based faceted search), we achieve an improvement regarding MRR of more than
360% (from 0.096 to 0.446) over hashtag-based faceted search where hashtags
mentioned in the tweets are exploited as facets. Comparing the semantic faceted
search strategy to hashtag-based keyword search, where a user issues a single
hashtag as a query, shows actually an improvement regarding MRR of more
than 660% (from 0.058 to 0.446). Furthermore, it is important to state that the
results shown in Figure 3(a) are based on those 28% of the search settings for
which the target tweet contains at least one hashtag12. For the remaining search
settings, hashtag-based strategies fail which further proves that the semantic
enrichment of our faceted search framework is highly beneficial and important
for search on Twitter.

Comparison of Strategies for Ranking FVPs. Figure 3(b) gives an overview
of the performance of the different facet ranking strategies measured by Suc-
cess@100, Success@50 and Success@20. Again, we observe that the hashtag-
based faceted search strategy, which exploits hashtags as FVPs and applies
occurrence frequency as weighting scheme, is clearly outperformed by the se-
mantic faceted search strategies provided by our framework. For example, the
12 Given the more than 30 million tweets of our dataset, we actually observe that just

19.82% of the tweets mention a hashtag.
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tweet-based semantic enrichment in combination with occurrence frequency as
weighting scheme (frequency) improves over the hashtag-based baseline by 121.5,
99.5% and 42.4% regarding S@100, S@50 and S@20 respectively. For the faceted
search strategies that make use of semantic enrichment, we observe that the per-
sonalized ranking strategy outperforms the other strategies for all metrics. When
looking at the Success@100, the personalized strategy performs approximately
12% better than the other three strategies. Knowing the preferences of a user
for certain topics, which are modeled via the FVPs, thus brings advantages for
adapting the faceted search interface to the user who is searching for a tweet.
Furthermore, knowing the user’s temporal context also improves the search per-
formance slightly (see time sensitivity in Figure 3(b)). However, the differences
between the ranking strategies based on time, diversification and frequency are
very small which might be caused by the fact that both the time sensitive strat-
egy and the diversification use occurrence frequency as basic weighting function.
Hence, reducing the influence of the frequency-based scoring on these strategies
could possibly lead to further improvements.

Impact of the different Building Blocks on Faceted Search. Figure 4
illustrates the impact of some of the building blocks of our framework on the
faceted search performance. In Figure 4(a), we compare the performance of the
frequency-based strategy and personalized strategy when doing (i) semantic en-
richment solely on tweets (tweet-based enrichment) or (ii) semantic enrichment
by analyzing both the content of the tweets and Web resources that are linked
from the tweets (tweet-based & link-based enrichment). It shows that the link-
based enrichment significantly improves the Success@100 for both strategies.
Hence, while semantic enrichment by means of named entity recognition in tweets
improves already the faceted search performance over faceted search based on
hashtags, we achieve further improvements if we follow the links posted in Twit-
ter messages to further describe the semantic meaning of a Twitter message.
Furthermore, the improvement gained by personalization are consistent through
the different enrichment strategies. For example, the personalized strategy im-
proves over the frequency-based strategy by 8.3% when link-based enrichment
is conducted.

Figure 4(b) shows how the Success@100 rates for the frequency and the di-
versification based rankings increase when the temporal context of the search
activity is taken into account to adjust the ranking of the FVPs. One can see
improvements for both strategies with 3.8% for the frequency-based strategy and
5.3% for the diversification strategy.

Synopsis. Given these observations, we now revisit our research questions raised
at the beginning of this section. We showed that faceted search clearly outper-
forms hashtag-based keyword search. Using the our faceted search framework, we
achieve a more than eight times higher MRR than keyword search. In response
to which strategy performs the best for ranking facet-value pairs, we revealed
that the personalization strategy – i.e. adapting the facet-value pair ranking to
the interest profile of the user who is searching for a tweet – performs best for
faceted search on Twitter. Furthermore, we showed that the different building
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(a) Impact of semantic enrichment (b) Impact of time-sensitivity

Fig. 4. Impact of (a) semantic enrichment strategy on the frequency-based and the
personalized strategies for search settings where the target tweet contains a link and
(b) impact of time-sensitive re-ordering on the performance of the frequency-based and
the diversification-based strategies

blocks of our faceted search framework all have positive impact on the facet-value
pair ranking in order to answer our second question. Semantic enrichment by
means of exploiting both tweets and Web resources that are referenced from the
tweets increases the number of tweets that are discoverable via faceted search.
It also increases the number of facet-value pairs per tweet so that users have
more alternatives in narrowing down the search result list. Moreover, we showed
that time-sensitivity – i.e. adapting the facet-value pair ranking to the temporal
context – improves the performance of the facet-value pair ranking so that users
can find their intended tweets faster and with less effort.

6 Conclusions

In this paper, we tackled the problem of searching for relevant messages on
Twitter. We introduced an adaptive faceted search framework that features se-
mantic enrichment of tweets as a solution to this problem. Our framework allows
adding semantics to tweets by extracting entities and enriching them with exter-
nal resources in order to create facets (e.g. persons, locations, organizations etc.)
and facet-values that describe the content of tweets. To support users in select-
ing facet-value pairs during their faceted search activities, we studied different
strategies that adapt the ranking of facet-value pairs to the user and context
(e.g. temporal context).

We presented an evaluation framework that allows for simulating users’ search
behavior and applied this simulator on a large Twitter dataset of more than
30 million tweets. Our evaluation proves the effectiveness of our strategies and
reveals that our faceted search framework achieves tremendous improvements in
comparison with hashtag-based keyword search. Moreover, we see that person-
alization and context-adaptation gain the best performance among the faceted
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search strategies. Our analysis of semantic enrichment strategies also showed
that the exploitation of links that are posted in Twitter messages is beneficial
for describing the semantic meaning of tweets and therefore improves the search
performance as well.
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Abstract. Following the design rules of Linked Data, the number of available
SPARQL endpoints that support remote query processing is quickly growing;
however, because of the lack of adaptivity, query executions may frequently be
unsuccessful. First, fixed plans identified following the traditional optimize-then-
execute paradigm, may timeout as a consequence of endpoint availability.
Second, because blocking operators are usually implemented, endpoint query en-
gines are not able to incrementally produce results, and may become blocked if
data sources stop sending data. We present ANAPSID, an adaptive query engine
for SPARQL endpoints that adapts query execution schedulers to data availabil-
ity and run-time conditions. ANAPSID provides physical SPARQL operators that
detect when a source becomes blocked or data traÆc is bursty, and opportunis-
tically, the operators produce results as quickly as data arrives from the sources.
Additionally, ANAPSID operators implement main memory replacement policies
to move previously computed matches to secondary memory avoiding duplicates.
We compared ANAPSID performance with respect to RDF stores and endpoints,
and observed that ANAPSID speeds up execution time, in some cases, in more
than one order of magnitude.

1 Introduction

The Linked Data publication guideline establishes the principles to link data on the
Cloud, and make Linked Data accessible to others1. Based on these rules, a great num-
ber of available SPARQL endpoints that support remote query processing to Linked
Data have become available, and this number keeps growing. Additionally, the W3C
SPARQL working group is defining a new SPARQL 1.1 query language to respect
the SPARQL protocol and specify queries against federations of endpoints [19]. How-
ever, access to the Cloud of Linked datasets is still limited because many of these end-
points are developed for very lightweight use. For example, if a query posed against a
linkedCT endpoint2 requires more than 3 minutes to be executed, the endpoint will time-
out without producing any answer. Thus, to successfully execute real-world queries, it

1 ���������������������	���������	���
���������
2 Clinical Trials data produced by the ��	�	��� �	������� site available at
��������	���
� ����. and ������������
��	���������!�

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 18–34, 2011.
c� Springer-Verlag Berlin Heidelberg 2011

http://www.w3.org/DesignIssues/LinkedData.html
ClinicalTrials.gov
http://linkedCT.org
http://hcls.deri.org/sparql
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may be necessary to decompose them into simple sub-queries, so that the endpoints will
then be capable of executing these sub-queries in a reasonable time. Additionally, since
endpoints may unpredictably become blocked, execution engines should modify plans
on-the-fly to contact first the available endpoints, and produce results as quickly as data
arrives.

Several query engines have been developed to locally access RDF data
[1,10,12,17,24]. The majority have implemented optimization techniques and eÆcient
physical operators to speed up execution time [12,17,24]; others have defined structures
to eÆciently store and access RDF data [17,25], or have developed strategies to reuse
data previously stored in cache [1,10,17]. However, none of these engines are able to
gather Linked Data accessible through SPARQL endpoints, or hide delays from users.

Recently several approaches have addressed the problem of query processing on
Linked Data [2,7,9,13,14,15,16,21]; some have implemented source selection tech-
niques to identify the most relevant sources for evaluating a query [7,14,21], while oth-
ers have developed frameworks to retrieve and manage Linked Data [2,8,9,13,15,16],
and to adapt query processing to source availability [9]. Additionally, Buil-Aranda et
al. [4] have proposed optimization techniques to rewrite federated queries specified in
SPARQL 1.1, and reduce the query complexity by generating well-formed patterns. Fi-
nally, some RDF engines[18,20] have been extended to query federations of SPARQL
endpoints. Although all these approaches are able to access Linked Data, none of them
can simultaneously provide an adaptive solution to access SPARQL endpoints.

In this paper we present ANAPSID, an engine for SPARQL endpoints that extends
the adaptive query processing features presented in [22], to deal with RDF Linked
Data accessible through SPARQL endpoints. ANAPSID stores information about the
available endpoints and the ontologies used to describe the data, to decompose queries
into sub-queries that can be executed by the selected endpoints. Also, adaptive phys-
ical operators are executed to produce answers as soon as responses from available
remote sources are received. We empirically analyze the performance of the proposed
techniques, and show that these techniques are competitive with state-of-the-art RDF
engines which access data either locally or remotely.

The paper is comprised of six additional sections. We start with a motivating example
in the following section. Then, we present the ANAPSID architecture in section 3 and
describe the query engine in section 4. Experimental results are reported in section 5,
and section 6 summarizes the related work. Finally, we conclude in section 7 with an
outlook to future work.

2 Motivating Example

LinkedSensorData3 is a dataset that makes available sensor weather data of approx-
imately 20,000 stations around the United States. Each station provides information
about weather observations; the ontology O&M-OWL4 is used to describe these

3 ��������	�	������	������	�
�"������	���
#���������
4 ������������	����	�����
���������������$��������	������

http://wiki.knoesis.org/index.php/LinkedSensorData
http://knoesis.wright.edu/ssw/ont/sensor-observation.owl
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observations; a Virtuoso endpoint is provided to remotely access the data. Further, each
station is linked to its corresponding location in Geonames5.

Consider the acyclic query: Retrieve all sensors that detected freezing temperatures
on April 1st, 2003, between 1:00am and 3:00am6. The answer comprises 1,600 sensors.

prefix om-owl:<http://knoesis.wright.edu/ssw/ont/sensor-observation.owl#>
prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
prefix weather:<http://knoesis.wright.edu/ssw/ont/weather.owl#>
prefix sens-obs:<http://knoesis.wright.edu/ssw/>
prefix xsd:<http://www.w3.org/2001/XMLSchema#>
prefix owl-time:<http://www.w3.org/2006/time#>
prefix gn:<http://www.geonames.org/ontology#>
SELECT DISTINCT ?sensor
WHERE {
?sensor om-owl:generatedObservation ?observation .
?observation rdf:type weather:TemperatureObservation .
?observation om-owl:samplingTime ?time .?time owl-time:inXSDDateTime ?xsdtime .
?observation om-owl:result ?result .?result om-owl:floatValue ?value .
?result om-owl:uom weather:fahrenheit .FILTER(?value <= "32.0"ˆˆxsd:float).
FILTER(?xsdtime >= "2003-04-01T01:00:00-07:00ˆˆhttp://www.w3.org/2001/XMLSchema#dateTime")
FILTER(?xsdtime <= "2003-04-01T03:00:00-07:00ˆˆhttp://www.w3.org/2001/XMLSchema#dateTime").
?sensor om-owl:hasLocatedNearRel ?location .?location om-owl:hasLocation ?ga. ?ga gn:name ?name}

Using the LinkedSensorData endpoint7, we executed several versions of the former
query with di�erent date ranges. Table 1 reports on the observed execution time values.
Di�erent instantiations of the SPARQL endpoint parameter SPARQL SPONGE8 were
set up to indicate the type of dereferences to be executed during query processing.

Table 1. Execution Time (secs.) of Queries Against the LinkedSensorData SPARQL Endpoint;
SPONGE parameter: Local, Grab All, Grab All seeAlso, Grab Everything

Local Grab All Grab All (seeAlso) Grab Everything
Average 0.35 100.78 Timeout Timeout

Standard Deviation 0.04 38.32 Timeout Timeout
Minimum 0.30 58.95 Timeout Timeout
Maximum 0.45 155.59 Timeout Timeout

We can observe that if the query is run on data locally stored in the endpoint, i.e.,
SPONGE is equal to Local and only one endpoint is contacted, the queries can be ex-
ecuted in less than one second. However, if IRI’s are dereferenced by using the Grab
All option, the execution time increases in average two orders of magnitude. Moreover,
if the seeAlso references are considered and the corresponding endpoints are contacted
(Grab All seeAlso), the execution reaches a timeout of 86,400 secs. (one day). Similarly,
if all the referred resources are downloaded (Grab Everything), the endpoint reaches the
timeout without producing any answer. These results suggest that when the LinkedSen-
sorData endpoint requires to download data from remote endpoints, it may become
blocked waiting for answers; this may be caused by a blocking query processing model
executed by existing endpoints.

5 �������������������������������%
6 Time is specified in Mountain Time; temperature in Fahrenheit scale.
7 ����������	�������������	�����
�&&'(�����!�
8 �������
���������	����������	�������	�����������������

http://www.geonames.org/ontology
http://sonicbanana.cs.wright.edu:8890/sparql
http://docs.openlinksw.com/virtuoso/virtuososponger.html
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Traditionally, query processing engines are built on top of a blocking iterator model
that fires a query execution process from the root of the execution plan to the leaves, and
does not incrementally produce any result until its corresponding children have com-
pletely produced the answer. Thus, if any of the intermediate nodes becomes blocked
while producing answers, the root of the plan will also be blocked. We consider plans
whose leaves are endpoints; however, similar problems may occur, if leaves corresponds
to URIs that need to be dereferenced.

To overcome limitations of existing execution models when Linked Data is deref-
erenced, some state-of-the-art approaches have proposed adaptive query engines that
are able to produce answers as data becomes available [9,14]. For example, Hartig et
al. [9] extend the traditional iterator model and provide an adaptive query engine that
hides delays that occur when any linked dataset becomes blocked. This adaptive iter-
ator detects when a URI look-up stops responding, and resumes the query execution
process executing other iterators; results can be incrementally produced, and delays in
retrieving data during URI look-ups are hidden from the users. Further, Ladwig et al.
[14] use a non-blocking operator to opportunistically produce answers as soon as deref-
erenced data is available. However, none of these approaches support the access to a
federation of SPARQL endpoints. Finally, some RDF engines have been extended to
deal with SPARQL queries against federations of endpoints[4,18,20], but no adaptive
query techniques have been implemented, and queries are frequently unsuccessful when
endpoints become blocked. In this paper we present an adaptive engine that makes use
of information about endpoints, to decompose the query into simple sub-plans that can
be executed by the remote endpoints. Also, we propose a set of physical operators that
gather data generated by the endpoints, and quickly produce responses.

3 The ANAPSID Architecture

ANAPSID is based on the architecture of wrappers and mediators [26] to query feder-
ations of SPARQL endpoints (Figure 1).

User 
queries

Query 
Planner

Query 
Decomposer

Adaptive 
Query Engine

Wrapper

SPARQL 
Endpoint

Descriptions

ANAPSID

Wrapper

Query 
Optimizer

Query
Plan

Mediator

Catalog

Fig. 1. The ANAPSID Architecture

Lightweight wrappers translate SPARQL sub-queries into calls to endpoints as well
as convert endpoint answers into ANAPSID internal structures. Mediators maintain
information about endpoint capabilities, statistics that describe their content and per-
formance, and the ontology used to describe the data accessible through the endpoint.
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Following the approach developed in previous work [11], the Local As View (LAV)
approach is used to describe endpoints in terms of the ontology used in the endpoint
dataset. Further, mediators implement query rewriting techniques, decompose queries
into sub-queries against the endpoints, and gather data retrieved from the contacted
endpoints. Currently, only SPARQL queries comprised of joins are considered; how-
ever, the rewriting techniques have been extended to consider all SPARQL operators,
but this piece of work is out of the scope of this paper. Finally, mediators hide delays,
and produce answers as quickly as data arrives; they are composed of the following
components:

– Catalog: maintains a list of the available endpoints, their ontology concepts and ca-
pabilities. Contents are described as views with bodies comprised of predicates that
correspond to ontology concepts; execution timeouts indicate endpoint capabilities.
Statistics are updated on-the-fly by the adaptive query engine.

– Query Decomposer: decomposes user queries into multiple simple sub-queries, and
selects the endpoints that are capable of executing each sub-query. Simple sub-
queries are comprised of a list of triple patterns that can be evaluated against an
endpoint, and whose estimated execution time is less than the endpoint timeout.
Vidal et al. [24] suggest that the cardinality of the answer of sub-queries comprised
of triple patterns that share exactly one variable, may be small-sized; so the query
decomposer will try to identify low cost sub-queries that meet this property.

– Query Optimizer: identifies execution plans that combine sub-queries and bene-
fits the generation of bushy plans composed of small-sized sub-queries. Statistics
about the distribution of values in the di�erent datasets are used to identify the
best combination of sub-queries. These statistics and capabilities of the endpoints
are collected by following an Adaptive Sampling Technique [3,24], or on-the-fly
during query execution.

– Adaptive Query Engine: implements di�erent physical operators to gather tuples
from the endpoints. These physical operators are able to detect when endpoints
become blocked, and incrementally produce results as the data arrives. Addition-
ally, the query engine can modify an execution plan on-the-fly to execute first the
requests against the endpoints that are available; information gathered during run-
time is used to update catalog statistics, and to re-optimize delayed queries.

4 The ANAPSID Query Processing Engine

The ANAPSID query engine provides a set of operators able to gather data from dif-
ferent endpoints. Opportunistically, these operators produce results by joining tuples
previously received even when endpoints become blocked. Additionally, the physical
operators implement main memory replacement policies to move previously computed
matches to secondary memory, ensuring no duplicate generation. Each join operator
maintains a data structure called Resource Join Tuple (RJT), that records for each in-
stantiation of the join variable(s), the tuples that have already matched. Suppose that
for the instantiation of the variable ?X with the resource r, the tuples �T1� ���� Tn� have
matched, then the RJT will be the pair (r, �T1� ���� Tn�), where the first argument, head of
the RJT, corresponds to the resource and the second, tail of the RJT, is the list of tuples.
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4.1 The Adaptive Group Join (agjoin)

The agjoin operator is based on the Symmetric Hash Join [5] and XJoin [22] operators,
defined to quickly produce answers from streamed data accessible through a wide-area
network. Basically, the Symmetric Hash Join and XJoin are non-blocking operators that
maintain a hash table for the data retrieved from sources A and B. Execution requests
against A and B are submitted in parallel, and when a tuple is generated from source
A (resp. B), it is inserted in the hash table of A (resp. hash table of B) and probed
against the hash table of B (resp. hash table of A). An output is produced each time a
match is found. Further, the XJoin implements a main memory replacement policy that
flushes portions of the hash tables to secondary memory when they become full, and
ensures that no duplicates are generated. Even though these operators produce results
incrementally, results are produced one-by-one because tuples are first inserted in the
corresponding hash table and then probed against the other hash table to find one match
at a time. To speed up query answering, we propose the agjoin operator. The agjoin
maintains for source A (resp. B) a list LA (resp. LB) of RJTs, which represents for each
instantiation, �(?X), of the tuples already received from source A, the tuples received
from B that match �(?X). LA (resp. LB) is indexed by the values of �(?X) that correspond
to the heads of the RJTs in LA (resp. LB); thus, agjoin provides a direct access to the
RJTs. When a new tuple t with instantiation �(?X) arrives from source A, agjoin probes
against LA to find an RJT whose head corresponds to �(?X); if there is a match, the
agjoin quickly produces the answer as the result of combining t with all the tuples in
the tail of RJT of �(?X); if not, nothing is added to LA. Independently of the success
of the probing process, t is inserted in its corresponding RJT in LB. Figure 2 illustrates
main memory contents during the execution of agjoin between sources A and B.

(r1,{B1,B2,B3})

(r2,{B4,B5,B6})

(r3,{B7,B8})

(r1,{A1,A2})

(r3,{A3,A4})

Source A Source B

LA LB

(a)

(r1,{B1,B2,B3})

(r2,{B4,B5,B6})

(r3,{B7,B8})

Source A Source B

(r1,{A1,A2})

(r3,{A3,A4})

(r2,{A5})

(b)

LA LB
A5 A5

Probe
Insert

(A5,B4),(A5,B5),(A5,B6)

Output

Fig. 2. agjoin between sources A and B: (a) LA and LB current state; (b) e�ects of arriving a tuple
A5 from source A, three tuples are immediately produced, and RJT (r2,�A5�) is inserted in LB

LA and LB in Figure 2 (a) indicate that tuples (B1,A1), (B1,A2), (B2,A1), (B2,A2),
(B3,A1), (B3,A2), (B7,A3), (B7,A4), (B8,A3), (B8,A4) have been already produced;
also, at this time, no tuples with �(?X) � r2 have been received from A, while three of
these tuples have arrived from source B. Figure 2 (b) shows the current state of LA and
LB after a tuple A5 with �(?X) � r2 arrives from source A, i.e., shows the e�ects in LB

of arriving a new tuple A5 with �(?X) � r2 from source A. In this case, A5 is probed
against LA and three outputs are produced immediately; concurrently, the insert process
is fired, and RJT (r2,�A5�) is inserted in LB.
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Property 1. Consider the current state of lists LA and LB in an instant t, the number of
answers produced until t, NAPt, is given by the following formula:

NAPt �

�

RJTa�LA � RJTb�LB � head(RJTa)�head(RJTb)

(�tail(RJTa)� � �tail(RJTb)�)�

A three-stage policy is implemented to flush RJTs; completeness and no duplicates are
ensured. A first stage is performed while at least one source sends data; a second stage
is fired when both sources are blocked, and the third is only executed when all data have
completely arrived from both sources. Note that the same operator can execute first or
second stages at di�erent times and depending on the availability of the sources, it can
move from one stage to the other; however, the third stage is executed only once.

In a first stage, when a tuple t arrives from source A, it is inserted in an RJT in LB;
the probe time of t in LA and the insert time of t in LB are stored with t. Further, if
a portion of the main memory assigned to A becomes full, an RJT victim is chosen
based on the time of the last probe; thus, the least recently probed RJT is selected,
flushed to secondary memory, and annotated with the flush time. In case RJTs with
the same head are chosen as victims at di�erent times, only one RJT will be stored
to secondary memory; the tail will be comprised of the tails of the di�erent victim
RJTs; these tails will be annotated with the respective flush time. Figure 3 illustrates
the process performed when a main memory failure occurs and the timestamps of the
stored tuples.

(r1,{(B1,(1,2)),(B2,(2,3)),(B3,(3,4))}):7

(r2,{(B4,(2,5)),(B5,(3,6)),(B6,(5,7))}):8

(r3,{(B7,(6,8)),(B8,(8,9))}):6

Source A Source B

(a)

(r1,{(A1,(3,5)),(A2,(7,8))}):3

(r3,{(A3,(3,4)),(A4,(6,7))}):7

(r2,{(A5,(8,10))}):5

LBLA

Memory Failure in LA at 11.
RJT for r3 is chosen as victim

(r1,{(B1,(1,2)),(B2,(2,3)),(B3,(3,4))}):7

(r2,{(B4,(2,5)),(B5,(3,6)),(B6,(5,7))}):8

Source A Source B

(b)

(r1,{(A1,(3,5)),(A2,(7,8))}):3

(r3,{(A3,(3,4)),(A4,(6,7))}):7

(r2,{(A5,(8,10))}):5

LB

LA

(r3,{(B7,(6,8)),(B8,(8,9))}):11

LA in Secondary Memory

Fig. 3. Timestamp annotations and Main Memory Failures: (a) LA and LB timestamps; (b) e�ects
of a main memory failure in LA; RJT for r3 is flushed

Figure 3 (a) illustrates the RJTs in Figure 2, annotated with the probe and insert
times of the tuples, and the RJTs probe times9. Thus, we can say that B1 was probed at
time 1 and inserted in LA at 2; also, timestamp 7 associated with the RJT of r1 in LA,
indicates that the last probe of a tuple from source B was performed against this RJT
at time 7. Further, suppose that a failure of memory occurs at time 11 in the portion of
main memory assigned to source A, then the RJT with head r3, is flushed to secondary
memory and its flush time is annotated with 11. Figure 3 (b) illustrates the final state of

9 An RJT probe time corresponds to the most recent probe time of the tuples in the RJT.
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LA (main and secondary memory) and LB after flushing the RJT to secondary memory.
Definition 1 states the conditions to meet when tuples are joined during a first stage.

Definition 1. Let RJTi and RJTj be Resource Join Tuples in LA and LB, respectively,
such that, head(RJTi)�head(RJT j). Suppose RJT j has been flushed to secondary mem-
ory. Then, a tuple B j � tail(RJTi) was matched to tuples of tail(RJTj) during a first stage
of the agjoin, i.e., before RJT j was flushed, if and only if:

probeTime(B j) � flushTime(RJT j)�

A second stage is fired when both sources become blocked; Definition 2 establishes the
conditions to be satisfied by tuples that are matched in a second stage.

Definition 2. Let RJTi and RJTj be Resource Join Tuples in LA and LB, respectively,
such that, head(RJTi)�head(RJT j). Suppose RJT j has been flushed to secondary mem-
ory. Then, a tuple B j � tail(RJTi) was matched to tuples of tail(RJTj) during a second
stage of the agjoin, i.e., before RJTi was flushed to secondary memory10, if and only if,
there is a second state ss:

flushTime(RJT j) � insertTime(B j) � TimeSecondStage(ss) � flushTime(RJTi)�

To produce new answers during a second stage, the agjoin selects the largest RJTs in
secondary memory, and probes them against their corresponding RJTs in main mem-
ory. To avoid duplicates, conditions in Definitions 1 and 2 are checked. The execution
of a second stage is finished, when one source becomes unblocked, and all the RJTs in
secondary memory are checked to find new matches. A global variable named Time-
LastSecondStage, is maintained and updated when a second stage finishes; also, for
each second stage, we maintain the time it was performed.

Suppose tuple t from RJTi matches tuples in RJT j in the second stage at time st, then
the probe time of t and the probe time of its RJT in main memory are updated to st. To
illustrate this process, consider the current state of LA and LB reported in Figure 3 (b);
also suppose that the last second stage was performed at time 14. Following the pol-
icy to select RJTs in secondary memory, (r3,�(B7,(6,8)),(B8,(8,9))�) in the secondary
memory version of LA, is chosen and probed against (r3,�(A3,(3,4)),(A4,(6,7))�) in LB;
the RJT in secondary memory was chosen because it has the longest tail. Since condi-
tions in Definition 1 hold for tuples B7 and B8, no new answers are produced and their
timestamps are not changed. Finally, one of the sources becomes available at time 15,
then the second stage finalizes, and TimeLastSecondStage is updated to 15.

The third stage is fired when data has been completely received. Tuples that do not
satisfy conditions in Definitions 1 and 2 are considered to produce the rest of the an-
swers. First, RJTs in main memory are probed with RJTs in secondary memory. Then,
RJTs in secondary memory are probed to produce new results. Figure 4 illustrates states
of LA and LB right after all the tuples have been received at time 100 and the third stage
is fired; the last second stage was performed at time 60. First, agjoin tries to combine
RJT of r3 in secondary memory of source A with RJT of r3 in main memory of source
B. Because A21 was inserted in the RJT at time 63, i.e., after the last second stage was

10 If an RJT is in main memory, then its flush time is �.
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(r3,{(B25,(51,52)),(B26,(52,53)),(B27,(54,56))}):57

(r3,{(A3,(3,4)),(A4,(6,7))}:16,
                   {(A11,(18,19)),(A12,(19,20))}:23)

(r4,{(B13,(16,17)),(B14,(18,19))}):28

(r5,{(B15,(30,31)),(B16,(41,42))}):50
(r4,{(A13,(22,23)),(A14,(24,25))}):30

(r5,{(A15,(35,36)),(A16,(37,38))}):65

TimeLastSecondStage=60 CurrentTime=100

Fig. 4. The agjoin third stage at time 100, after having the last second stage at time 60

performed, the combination of A21 with all the tuples of RJT of r3 in secondary mem-
ory of source A, must be output. The rest of the combinations between tuples in these
RJTs were already produced. Then, RJT of r3 in secondary memory of B and RJT of
r3 in main memory of source A are considered, and no answers are produced because
all the tuples satisfy conditions in Definition 2. Next, RJTs in secondary memory are
combined, but no answers are produced: (a) tuples of RJTs of r3 in secondary memory
were matched in a first stage, (b) tuples of RJTs of r4, and tuples of RJTs of r5, were
matched in a first stage; at this point agjoin finalizes.

Property 2. Let A and B be sources joined with the agjoin operator, no duplicates are
generated. Additionally, if A and B send all the tuples, the output is complete.

4.2 The Adaptive Dependent Join (adjoin)

The adjoin extends the Dependent join operator [6] with the capability to hide de-
lays to the user. The Dependent join is a non-commutative operator, that is required
when instantiations of input attributes need to be bound to produce the output. Sim-
ilarly, the adjoin is executed when a certain binding is required to execute part of a
SPARQL query. For example, suppose triple pattern t1��s p1 ?X� is part of an outer
sub-query, triple pattern t2��?X p2 o� is part of the inner sub-query, and the predicate
p1 is )��)�����, �
)�����*���, or ��������*�. For each instantiation � of variable ?X,
dereferences of � must be performed before executing the inner sub-query, i.e., the ad-
join is used when instantiations from the outer sub-query need to be dereferenced to
execute the inner sub-query. Also, the clause �������� in SPARQL 1.1 represents this
type of dependencies. We implemented the adjoin as an extension of the agjoin op-
erator, but instead of asynchronously accessing sources A and B, accesses to source B
are only fired when tuples from source A are inserted in LB. The rest of the operator
remains the same.
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5 Experimental Study

We empirically analyze the performance of the proposed query processing techniques,
and report on the execution time of plans comprised of ANAPSID operators versus
queries posed against SPARQL endpoints, and state-of-the-art RDF engines.

Dataset Number of triples
LinkedSensorData-blizzards 56,689,107
linkedCT 9,809,330
DBPedia 287,524,719

(a) Dataset Cardinality

Benchmark #patterns answer size
1 24-30 1,298-9,008
2 13-17 1-99
3 16-20 0-7

(b) Query Benchmarks

Fig. 5. Experiment Configuration Set-Up

Datasets and Query Benchmarks11: LinkedSensorData-blizzards12, linkedCT13, and
DBPedia (english articles)14 were used; datasets are described in Table of Fig-
ure 5(a). Sensor data15 was accessed through a Virtuoso SPARQL endpoint; the
timeout was set to 86,400 secs. We could not execute our benchmark queries against
existing endpoints for clinical trials because of timeout configuration, so we im-
plemented our own Virtuoso endpoint with timeout equal to 86,400 secs.16 Three
sets of queries were considered (Table of Figure 5(b)); each sub-query was exe-
cuted as a query against its corresponding endpoint. Benchmark 1 is a set of 10
queries against LinkedSensorData-blizzards; each query can be grouped into 4 or
5 sub-queries. Benchmark 2 is a set of 10 queries over linkedCT with 3 or 4 sub-
queries. Benchmark 3 is a set of 10 queries with 4 or 5 sub-queries executed against
linkedCT and DBPedia endpoints.

Evaluation Metrics: We report on runtime performance, which corresponds to the
user time produced by the �	�� command of the Unix operation system. Experi-
ments were executed on a Linux CentOS machine with an Intel Pentium Core2 Duo
3.0 GHz and 8GB RAM. Experiments in RDF-3X were run in both cold and warm
caches; to run cold cache, we cleared the cache before running each query by per-
forming the command �� $� +�%�� , ���� � � �������%�����
��� ������+; to
run on warm cache, we executed the same query five times by dropping the cache
just before running the first iteration of the query. Each query executed by ANAP-
SID and SPARQL endpoints was run ten times, and we report on the average time.

Implementations: ANAPSID was implemented in Python 2.6.5.; the SPARQL End-
point interface to Python (1.4.1)17 was used to contact endpoints. To be able to
configure delays and availability, we implemented an endpoint simulator in Python
2.6.5. This simulator is comprised of servers and proxies. Seven instances of this
script were run and listened on di�erent ports, simulating seven endpoints. Servers

12 ��������	�	������	������	�
�"������	���
#���������
13 ��������	���
� ����
14 ��������	�	�
���
	��������������
15 ����������	�������������	�����
�&&'(�����!�
16 ��������	�������
�����������������!�
17 �����������!�$�������������)���������

http://wiki.knoesis.org/index.php/LinkedSensorData
http://linkedCT.org
http://wiki.dbpedia.org/Datasets
http://sonicbanana.cs.wright.edu:8890/sparql
http://virtuoso.bd.cesma.usb.ve/sparql
http://sparql-wrapper.sourceforge.net/
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materialize intermediate results of queries in Benchmark 2, and were implemented
using the Twisted Network framework 11.0.018. Proxies send data between servers
and RDF engines, following a particular transfer delay and respecting a given size
of messages; they were implemented using the Python low level networking socket
interface.

5.1 Performance of the ANAPSID Query Engine

We compare ANAPSID performance with respect to Virtuoso SPARQL endpoints,
ARQ 2.8.8. BSD-style19, and RDF-3X 0.3.4.20. RDF-3X is the only engine that ac-
cessed data stored locally, so we ran queries in both cold and warm caches. Execution
times in warm caches indicate a lower bound on the execution time, and correspond
to a best scenario when all the datasets are locally stored and physical structures are
created to eÆciently access the data. Datasets linkedCT and DBPedia were merged;
RDF-3X ran queries in Benchmark 3 against this dataset. Queries ran in ANAPSID
were comprised of sub-queries combined using the agjoin and adjoin operators. To fa-
cilitate the execution of queries against the Virtuoso endpoints, the SPONGE parameter
was set to Local, i.e., the endpoint only considered data locally stored in its database;
the rest of the configurations of SPONGE failed, reporting the errors: ������ ������


������
	�� and ���"% ����� -(.. Table 2 reports on execution times and geometric
means for Benchmarks 1, 2 and 3.

We can observe that RDF-3X is able to improve cold cache execution time by a
factor of 1.37 in the geometric mean when the Benchmark 1 queries were run in warm
cache, by a factor of 1.8 for Benchmark 2, and by a factor of 2.85 for Benchmark 3.
This is because RDF-3X exploits compressed index structures and caching techniques
to eÆciently execute queries in warm cache. ANAPSID accesses remote data and does
not implement any caching technique or compressed index structures; however, it is able
to reduce the execution time geometric means of the other RDF engines. For queries in
Benchmark 1, Virtuoso SPARQL endpoint execution time is reduced by a factor of
19.31, and RDF-3X warm cache execution time is improved by a factor of 3.62; ARQ
failed evaluating these queries.

Further, queries in Benchmark 2 timed out in all linkedCT SPARQL endpoints. Sim-
ilarly, queries q4 to q9 timed out after 12 hours in ARQ. However, ANAPSID was able
to run all the Benchmark 2 queries, and overcome RDF-3X in warm cache and ARQ by
a factor of 1.1 and 4,160.56, respectively. Finally, for queries in Benchmark 3, which
combine data from linkedCT and DBPedia, we observed that RDF-3X did not exhibit
a good performance, while the SPARQL endpoints as well as ARQ, failed executing
all the queries. Bad performance of RDF-3X may be because the dataset result of mix-
ing linkedCT and DBPedia has around 18GB, and this size impacts on the aggregated
index structures needed to be accessed during both optimization and query execution.
Furthermore, the endpoints were not able to execute these queries, because they could
not dereference the URIs in the queries before meeting the timeout. Finally, ARQ exe-
cuted all the joins as Nested Loop joins, and invoked many times the di�erent endpoints,

18 ���������	���
����	"����
19 ������������)�����������������������
20 �������������	$	�)�����
��/��������
)�"�

http://twistedmatrix.com
http://sourceforge.net/projects/jena/
http://www.mpi-inf.mpg.de/~neumann/rdf3x/
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Table 2. Execution Time (secs) Di�erent RDF Engines; Virtuoso Endpoint Sponge Local

Benchmark 1
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom.

Mean

RDF-3X

Cold Caches
7.83 7.12 8.47 7.45 6.36 523.89 551.20 462.77 472.42 473.20 60.60

Warm Caches
4.40 4.14 4.09 4.18 4.05 466.79 465.26 464.65 475.95 463.96 44.10

SPARQL
Endpoint 380.71 147.03 129.40 141.06 93.86 374.56 464.02 330.16 466.62 198.86 234.86

ANAPSID 16.60 9.22 9.54 6.80 9.59 21.48 14.34 13.48 11.08 16.19 12.16
Benchmark 2

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom.
Mean

RDF-3X

Cold Caches
6.35 3.55 4.13 1,543.82 3.71 4.36 1,381.9 2.75 3.83 0.51 10.62

Warm Caches
2.44 2.28 2.41 1,385.09 2.71 1.75 1,321.05 1.74 1.73 0.14 5.87

SPARQL
Endpoint Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

ANAPSID 6.21 6.11 6.67 7.27 6.94 6.24 6.89 6.76 4.28 1.10 5.30
ARQ 21,043.34 17,686.52 18,936.85 43,200� 43,200� 43,200� 43,200� 43,200� 43,200� 593.36 22,051.01�

Benchmark 3
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 Geom.

Mean

RDF-3X

Cold Caches
6.84 4.15 4.12 34,037.8 2,954.76 2,447.02 35,497.11 2,403.11 2,402.71 0.33 268.49

Warm Caches
0.88 0.92 0.90 27,779.41 2,468.83 2,416.54 26,420.77 2,374.60 2,374.51 0.003 94.01

SPARQL
Endpoint Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout Timeout

ANAPSID 12.54 11.66 12.97 18.17 10.41 9.79 12.60 12.87 6.68 7.03 11.03

which failed executing the queries because the maximum number of allowed requests
was exceeded. However, ANAPSID showed a stable behavior along all the queries,
overcoming RDF-3X in warm caches by a factor of 8.52. ANAPSID performance relies
on the operators and the shape of plans; they are composed of small-sized sub-queries
that can be executed very fast by the endpoints. These results indicate that even in the
best scenarios where data is locally stored and state-of-the-art RDF engines are used to
execute the queries, ANAPSID is able to remotely access data and reduce the execution
time.

5.2 Adaptivity of ANAPSID Physical Operators

We also conducted an empirical study to analyze adaptivity features of ANAPSID oper-
ators in presence of unpredictable data transfers or data availability. We implemented an
endpoint simulator, and ran di�erent types of physical join operators to analyze the im-
pact on the query execution time, of di�erent data transfer distributions. We considered
three join implementations: (a) Blocking corresponds to a traditional Hash join which
produces all the answers at the end of the execution, (b) SHJ implements a Symmetric
Hash Join, and (c) the ANAPSID agjoin operator. All the operators were implemented
in Python 2.6.5. We measured the time to produce the first tuple, and time to com-
pletely produce the query answer. To run the simulations, queries of Benchmark 2 were
executed and all intermediate results were stored in files, which were accessed by the
endpoint simulator server during query execution simulations; five di�erent simulated
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(a) Gamma(k=0.1;θ=0.5), 100 tuples. (b) No Delays, 100 tuples.

(c) Gamma(k=0.1,θ=0.5), 10 tuples. (d) No Delays, 10 tuples.

Fig. 6. Execution time (secs.) of Hash Join, Symmetric Hash Join (SHJ), and ANAPSID operators

endpoints were executed. Data transfer rates were configured to respect a Gamma dis-
tribution with k � 0�1 and � � 0�5; message sizes were set to 100 and 10 tuples. Finally,
the performance of all the operators in an ideal environment with no delays, was also
studied.

Figure 6 reports on the performance of the proposed operators. We can observe that
the usage of RJTs in ANAPSID, benefits a faster generation of the first tuple as well as
the output of the complete answer, even considering the cost of managing asynchronous
processes in the non-blocking operators. In case that the tuple transfer delays are high
(Figure 6 (c)), SHJ and ANAPSID operators exhibit a similar behavior; this is because
the savings produced by using the RJTs are insignificant with respect to the time spent
in receiving the data. Based on these results, we can conclude that ANAPSID opera-
tors overcome blocking operators, and that their performance may be a�ected by the
distribution data transfer rate.

Finally, we ran ARQ, Hash join, SHJ, and ANAPSID against the endpoint simulator,
and evaluated their performance in the following SPARQL 1.1. query:

������ �������� 	
�� 	
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Intermediate results to answer the query were loaded in 15 files which were accessed
through two simulated endpoints. We considered three types of delay distributions as
well as no delays; Figure 7 reports on execution time (secs. log-scale).

(a) Time First Tuple (b) Total Time

Fig. 7. ANAPSID Physical Operators versus state-of-the-art Join Operators. Execution time in
(secs. log-scale).

We observe that SHJ and ANAPSID operators are able to produce the first tuple
faster than ARQ or Hash join, even in an ideal scenario with no delays; further, ARQ
performance is clearly a�ected by data transfer distribution and its execution time can
be almost two orders of magnitude greater than the time of SHJ or ANAPSID. We
notice that SHJ and ANAPSID are competitive, this is because the number of interme-
diate results is very small, and the the benefits of the RJTs cannot be exploited. This
suggests that the performance of ANAPSID operators depends on the selectivity of the
join operator and the data transfer delays.

6 Related Work

Query optimization has emphasized on searching strategies to select the best sources
to answer a query. Harth et al. [7] present a Qtree-based index structure which stores
data source statistics that have been collected in a pre-processing stage. A Qtree is a
combination of histograms and an R-tree multidimensional structure; histograms are
used for source ranking, while regions determine the best sources to answer a join
query. Li and Heflin [16] build a tree structure which supports the integration of data
from multiple heterogeneous sources. The tree is built in a bottom-up fashion; each
triple pattern is rewritten according to the annotations on its corresponding datasets.
Kaoudi et al. [13] propose a technique that runs on Atlas, a P2P system for processing
RDF distributed data that are stored in hash tables. The purpose of this technique is
to minimize the query execution time and the bandwidth consumed; this is done by
reducing the cardinality of intermediate results. A dynamic programming algorithm was
implemented that relies on message exchange among sources. None of these approaches
use information about the processing capacity of the selected sources; in consequence,
they may select endpoints that will time out because the submitted query is too complex.

The XJoin [22] is a non-blocking operator based on the Symmetric Hash Join, and it
follows two principles: incremental production of answers as sources become available,
and continuous execution including the case when data sources present delays; access
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to the sources is not done through SPARQL endpoints, and the XJoin operator can only
be applied when its arguments are evaluated independently. The Tukwila integration
system [5] executes queries through several autonomous and heterogeneous sources.
Tukwila decomposes original queries into a number of sub-queries on each source, and
uses adaptive techniques to hide delays. We consider dependency between arguments
and define operators able to respect binding pattern restrictions while delays are hidden.

Urhan et al. [23] present the algorithm of scrambling query plans that aims to hide
delays; in case a source becomes blocked and all the previously gathered data have al-
ready been considered, the execution plan is reordered to produce at least partial results.
Hartig et al. [9] rely on an adaptive iterator model that is able to detect when a derefer-
enced dataset stops responding, and submits other query requests to alive datasets; also,
heuristics-based techniques are proposed to minimize query intermediate results [8].
Ludwig and Tran [14] propose a mixed query engine; sources are selected using ag-
gregated indexes that keep information about triple patterns and join cardinalities for
available sources; these statistics are updated on-the-fly. Execution ends when all rel-
evant sources have been processed or a stop condition given by the user is hold; addi-
tionally, the Symmetric Hash Join is implemented to incrementally produce answers;
recently, this approach was extended to also process Linked Data locally stored [15].
Avalanche [2] produces the first k results, and sources are interrogated to obtain statis-
tics which are used to decompose queries into sub-queries that are executed based on
their selectivity; sub-queries results are sent to the next most selective source until all
sub-queries are executed; execution ends when a certain stop condition is reached.
Finally, some RDF engines are able to process federated SPARQL queries[4,18,20].
Although these approaches are able to access Linked data, none of them provide an
adaptive solution to query SPARQL endpoints.

7 Conclusions and Future Work

We have defined ANAPSID, an adaptive query processing engine for RDF Linked Data
accessible through SPARQL endpoints. ANAPSID provides a set of physical operators
and an execution engine able to adapt the query execution to the availability of the
endpoints and to hide delays from users. Reported experimental results suggest that our
proposed techniques reduce execution times and are able to produce answers when other
engines fail. Also, depending on the selectivity of the join operator and the data transfer
delays, ANAPSID operators may overcome state-of-the-art Symmetric Hash Join oper-
ators. In the future we plan to extend ANAPSID with more powerful and lightweight
operators like Eddy and MJoin [5], which are able to route received responses through
di�erent operators, and adapt the execution to unpredictable delays by changing the
order in which each data item is routed.
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Abstract. Understanding and forecasting the health of an online com-
munity is of great value to its owners and managers who have vested
interests in its longevity and success. Nevertheless, the association be-
tween community evolution and the behavioural patterns and trends
of its members is not clearly understood, which hinders our ability of
making accurate predictions of whether a community is flourishing or
diminishing. In this paper we use statistical analysis, combined with a
semantic model and rules for representing and computing behaviour in
online communities. We apply this model on a number of forum com-
munities from Boards.ie to categorise behaviour of community members
over time, and report on how different behaviour compositions correlate
with positive and negative community growth in these forums.

1 Introduction

Online communities form a fundamental part of the web today where a large
portion of the Internet’s traffic is driven by and through them [16]. These com-
munities are where the majority of web users share content, seek support, and
socialise. On the one hand, for companies and businesses, such online commu-
nities tend to yield much value in terms of idea generation, customer support,
problem solving, etc. [15]. On the other hand, managing and hosting these com-
munities can be very costly and time consuming, and hence their owners and
managers have a great vested interest in ensuring that these communities con-
tinue to flourish, and that their members remain active and productive.

One of the main metrics often used by community managers to measure com-
munity health is the number of members and posts. These numbers give a good
indication of community popularity. However, for deeper assessment and fore-
casting, other more complex qualitative and behavioural parameters need to be
considered [6, 13]. For example, behavioural analytics complement other com-
munity assessment tools and increase the value of the data [8].

Health of online communities is a relatively new and complex concept that is
codependent on the emergence and evolution of user behaviour in those commu-
nities. Domination of any type of behaviour, whether positive or negative, could
encourage others to change their behaviour or even abandon the community [10].
Therefore, monitoring and analysis of behaviour and its evolution over time, in
addition to straightforward metrics such as post and user counts, can provide
valuable information on how healthy an online community currently is or will
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be in the near future. Behaviour in online communities is usually associated
with various social and technical parameters which influence the roles users hold
in different settings [11]. Associating users with behavioural categories involves
identifying and applying constraints, expectations and frameworks to categorise
and follow user behaviour in the community [4].

To support community owners and managers in observing and maintaining
the good health of their communities, we first need to (a) model, capture and
monitor the activities of community members, (b) analyse emergent behaviours
and their change over time, (c) understand the correlation of certain types of
behaviour with community evolution, and (d) learn how and when to intervene
to influence the interactions and behaviour of community members. In this work
we focus on the first three tasks; the first task is concerned with producing a
semantic model for representing user activities in online communities and the
attention they generate in those communities. The second task focuses on com-
paring the emergence and change in patterns of behaviour with the evolution
of those communities. And the third task explores how community composi-
tion, i.e. a macro-analysis of the community, is correlated with the health of the
community. By monitoring activities in online communities we will be able to
better understand and predict their evolution directions; i.e. whether they are
flourishing (positive evolution) or diminishing (negative evolution). The main
contributions in this paper are as follows:

1. Method to infer user roles in online communities: We employ semantic rules
to label community users with their role and utilise dynamic feature binning
to account for the dynamic nature of communities and their propensity to
evolve.

2. Ontology to model behavioural features and support community role inference:
Allowing user features to be captured in a common machine-readable format
across communities and platforms.

3. Analysis of community health through role composition: We demonstrate the
utility of our approach by analysing three communities over a 3 year period,
showing the effects of behaviour composition changes on community health
and compositions that are key signifiers of healthy or unhealthy communities.

In the following section we report on various related works in the area of be-
haviour and community analysis. In section 3 we present our methodology for
user behaviour analysis and how we utilise Semantic Web technologies to in-
fer the role that a user has within an online community. Section 4 describes our
analysis of community health in the three sample forums, followed by discussions
and future plans in section 5, and finishes with conclusions in section 6.

2 Related Work

In this section we report on existing works on analyses of behaviour patterns
and roles in online communities. The identification of behaviour is often based
on features which reflect the intensity, persistence, focus, reciprocity and polarity
of user activities.
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For instance, users who contribute with high intensity, reciprocity and per-
sistence, positive polarity and are focused on supporting and contributing to
the community are characterised as moderators, mediators [10], captains and
pillars [14]. When such users are able to set the standard for community inter-
actions, they get labelled as celebrities [4]. Popular initiator, popular participant
and joining conversationalist [3] are three roles very similar to the celebrity type
since their intensity, persistence and reciprocity are also quite high. Another type
of prolific, but not as widely popular, user is the elitist, who demonstrates high
values for the above dimensions but communicates with a smaller group of users.
On the lower end of the activity scale the lurker is the most frequently observed
role and is defined as a participant who consumes but does not contribute and
usually has a strong personal focus [4, 10, 14]. Similarly described roles are those
of content consumers [9], grunts and taciturns [3] who do contribute but with
low intensity. The polarity of the user contribution has also been used to dis-
tinguish the negative roles of troll and flamer who exhibit disruptive behaviour
similar to the ranter. Like celebrities, ranters also demonstrate high intensity
and persistence yet their primary goal is to raise discussions on the topic of their
interest for some personal goals, same as over-riders and generators [14].

Although there is no commonly agreed set of behaviour patterns and labels,
the social and technical features considered by the above works when categoris-
ing behaviour do share some characteristics, albeit sometimes tailored to suit the
online communities under investigation. The approaches followed in the above
references are normally based on correlating a set of features taken from a speci-
fied snapshot of a community, then labelling users with behaviour roles that fits
the results from that snapshot.

Our analysis extends these approaches by introducing a framework for repre-
senting, computing, and monitoring users’ behaviour over time. We extend the
state of the art by demonstrating how various features can be modelled and
articulated into semantic rules to automate the detection and categorisation of
users with specific types of behaviour.

Furthermore, is it often the case that fixed ranges of feature-values are calcu-
lated when associating them with behaviour types, so if the feature value for a
given user falls within that range, then that user will be labelled with the corre-
sponding behaviour. However, it is often the case that such value ranges seize to
apply if the time window or community changes. Here we present a framework
that enables a more dynamic association of features to roles (Section 3.2) and
allows for on-the-fly value threshold assignment that takes context into account.

Community health indicators are normally dependent on the goals and char-
acteristics of the community [11]. Straightforward measures such as number and
frequency of posting are often used as an index of community health. For exam-
ple, it has been shown that the activity of a group can be maintained in high
levels by long term members, who help keep the group together [1, 10]. On the
other hand, it has been found that having lurkers in a community does not nec-
essarily have a negative influence [12]. Our framework allows us to investigate
the influence that various user behaviours and interactions have on the overall
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health of communities over time. This helps in understanding what the optimum
compositions of behaviour should be for a given community, and in forecasting
community evolution. We analyse the influence and predictability of a wide set
of behaviours on community health.

3 Methodology for Behaviour Analysis

In this section we describe our approach for labelling users in online communities
with the roles they hold in the context of these communities and in a specified
timeframe. To perform such labelling we first need to capture the activity of
users in online communities, define what sort of behaviour is associated with
particular roles and compare it to a user’s activity. For capturing users’ activities
we define an ontology (Section 3.1) that represents all involved entities and their
interactions. We also define “rule skeletons” (Section 3.2) which provides high-
level descriptions of how certain features are associated with various behaviour
roles. Our community analysis then fleshes out these rules with dynamic and
automatically computed value-ranges that will eventually determine which users
will be categorised with which behaviours. Finally we apply these rules on all
community members to infer their behaviour types (Section 3.3).

3.1 Ontology

Capturing a user’s activity in online communities is a primary step to analysing
his behaviour. Fig. 1 presents a portion of our Behaviour Ontology1 which repre-
sents online community users and their interactions. The ontology extends SIOC
[2] to refine the representation of low level user activities and interactions. It also
extends the Social Reality [5] ontology which provides an abstract representa-
tion of social roles and their contexts. The main concepts and properties of the
ontology are:

– sioc:UserAccount is a SIOC class to represent online community users.
– oubo:Post represents users’ main activities; writing and replying to posts.
– oubo:PostImpact summarises a post’s replies, comments, forwards, etc.
– oubo:UserImpact encodes the user impact (behaviour)
– oubo:TimeFrame is the temporal context during which the analysis is

carried out and the association of a user to a role holds.
– social-reality:C represents context, such as time period (oubo:TimeFrame)

and a forum (sioc:Forum).
– oubo:Role represents the roles we derive for users based on their activities

in the community.
– oubo:belongsToContext links context-related concepts, such as oubo:

TimeFrame, sioc:Forum, and social-reality:C.
– social-reality:counts as associates a user with a oubo:Role.
– social-reality:context associates a user role with its context.
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Fig. 1. Behaviour Ontology

The ontology also defines the rules for the population of features and classifica-
tion of the users in different roles using dynamically populated feature weights
(Fig. 3). This is discussed in Section 3.3.

3.2 Behaviour Roles

To derive the behaviour roles of community users, their activity patterns need to
be compared against the behavioural characteristics of each role type. In the lit-
erature, the features (e.g. number of posts and replies, in/out degrees) associated
with behaviour are often given static value ranges (i.e. min and max values for
corresponding behaviours) which are calculated based on the community snap-
shot under analysis (e.g. [3, 9, 17]). However, a common characteristic of online
communities is their propensity to evolve and develop as new users participate
and the dynamic of the community changes. An effect of such dynamism is that
should we learn a static value for the maximum and minimum values for each
role’s features then applying such values at a later point in time will lead to
users being omitted from the labelling process.

To counteract such effects we use the notion of skeleton rules, where each rule
contains a mapping between a given feature and the level that the value of the
feature should take to indicate a certain type of behaviour: low, medium or high.
In using this method we can shift the bounds that constitute such levels as the
dynamics of the community changes, thereby allowing more users to be labelled
with behaviour roles.

Many different behaviours and associated features have been proposed in the
literature (section 2). Our framework for modelling and computing behaviour is
not tied to any specific community or behaviour types or feature compositions.
To demonstrate our framework, we selected the behaviour roles defined in [3],
which covers a range of common activity and participation roles. In [3], Chan
and Hayes performed clustering over users within Boards.ie community forums
and then carried out manual analysis to derive the behaviour labels for each
cluster. They clustered the users using a list of key features that covered (a)

1 http://purl.org/net/oubo/0.3

http://purl.org/net/oubo/0.3
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the structural network properties of a user within the community, (b) the user’s
popularity amongst the community, (c) their propensity to initialise discussions,
and (d) their persistence in discussions. These features are:

– In-degree Ratio: The proportion of users U that reply to user υi, thus
indicating the concentration of users that reply to υi.

– Posts Replied Ratio: Proportion of posts by user υi that yield a reply,
used to gauge the popularity of the user’s content based on replies.

– Thread Initiation Ratio: Proportion of threads that have been started
by υi. This feature captures the propensity of a user to instigate discussions
and generate fresh content for the community.

– Bi-directional Threads Ratio: Proportion of threads where user υi replies
to a user and receives a reply, thus forming a reciprocal communication.

– Bi-directional Neighbours Ratio: The proportion of neighbours where
a reciprocal interaction has taken place - e.g. υi replied to υj and υj replied
to υi. This can be thought of as the intersection between the set of repliers
and recipients. This measure allows the reciprocal characteristics of the user
to be captured and their participation with users in the community, where
higher values demonstrate a tendency to interact.

– Average Posts per Thread: The average number of posts made in every
thread that user υi has participated in. Allows the level of discussion that
the user participates in to be gauged.

– Standard Deviation of Posts per Thread: The standard deviation of
the number of posts in every thread that user υi has participated in. This
gauges the distribution of the discussion lengths, for example, one would
expect that a user who often discusses at length with other users would have
a high Average Posts per Thread and a low Standard Deviation of Posts
per Thread, while someone who varies their participation will have a higher
Standard Deviation of Posts per Thread.

Based on the feature-behaviour compositions in [3] and in other literature, we
deduce a mapping of these common feature to value ranges for each behaviour
role (Table 1).

3.3 Constructing and Applying Behaviour Rules

Our approach for constructing and applying rules is shown in Fig. 2 and is
composed of four stages that function in a cyclical manner: First, we construct
features for all users who participated in the given community at a specific point
in time. Second, we derive bins for features in the community, thus providing
the bounds for the low, medium or high levels of each feature. Third, the rule
base is constructed using the skeleton rule base and the levels from the bin-
ning. Fourth we apply the rules to each member of the community and derive a
role label, this provides the role composition of the community at a given time
snapshot. As Fig. 2 shows, the process is repeatable over time, thereby allowing
the composition of a given community to be monitored by inferring the role of
each community user at a given point in time. We now explain the four steps in
greater detail.
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Table 1. Roles and the feature-to-level mappings

Role Feature Level
Elitist In-Degree Ratio low

Bi-directional Threads Ratio high
Bi-directional Neighbours Ratio low

Grunt Bi-directional Threads Ratio med
Bi-directional Neighbours Ratio med
Average Posts per Thread low
STD of Posts per Thread low

Joining Conversationalist Thread Initiation Ratio low
Average Posts per Thread high
STD of Posts per Thread high

Popular Initiator In-Degree Ratio high
Thread Initiation Ratio high

Popular Participants In-Degree Ratio high
Thread Initiation Ratio low
Average Posts per Thread med
STD of Posts per Thread med

Supporter In-Degree Ratio med
Bi-directional Threads Ratio med
Bi-directional Neighbours Ratio med

Taciturn Bi-directional Threads Ratio low
Bi-directional Neighbours Ratio low
Average Posts per Thread low
STD of Posts per Thread low

Ignored Posts Replied Ratio low

Fig. 2. Overview of the approach to analyse user behaviour, label users with behaviour
roles and derive the community composition

Step 1: Constructing Features. The previously defined statistical features
are constructed for each user at a given point in time. For our experiments,
as we describe in the following section, we use a window function to extract
all posts made within a given community during that time period. Using the
reply-to structure of the posts, we then compile the above features and create
an instance of oubo:UserImpact that contains the features for the given user
measured at a given point in time.

Step 2: Deriving Bins. Our skeleton rule base contains mappings of features-
to-levels, allowing the bounds of the levels to be altered depending on the
dynamics of the community. We set the bounds through binning, a process
that discretizes continuous feature values into three bins (low, medium or high)
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using Weka’s2 discretization filter together with equal frequency binning. Using a
naive binning approach - e.g. splitting a feature range into thirds - can result in a
large frequency skew within a single bin, equal frequency binning avoids this and
provides a distribution-dependent notion of levels. The process of deriving the
bins is performed when we analyse the community at a different point in time,
in doing so our intuition is that we will reduce the number of unclassified users
and account for changes in the community’s dynamics - we show this empirically
in the following section.

Step 3: Compiling the Rule Base. The association of users to roles is in-
ferred by analysing the captured data for each user against features that each role
embodies. To perform such inferences our approach employs the SPARQL Infer-
ence Notation (SPIN)3 framework, allowing the encoding of rules as SPARQL
queries. The benefits of such an approach is that the rules are embedded in an
ontological model and can, therefore, be shared and executed across platforms
that support SPARQL Extensions and Jena.

To compile the rule base we create a rule for each behaviour role within the
community. For each role a new instance of the oubo:RoleClassifier Class is
created and associated with a set of features as shown in Fig. 3. Each feature
has a minimum and maximum value which specify the range of feature values a
user should have for this feature in order to be assigned to this role. We use the
skeleton rule of the role to provide the rule’s syntax and then replace the levels
with the necessary bounds produced by our binning procedure. In the majority
of cases a combination of features is required for the association of a user to a
role. In these cases, all the feature values of the user should belong to the ranges
specified by each feature belonging to the relative RoleClassifier instance.

Fig. 3. Association of Roles with Features

Step 4: Applying Rules. The produced rules are SPARQL Construct
queries that exploit the power of SPIN Functions by testing each instance of
sioc:UserAccount against each instance of oubo:RoleClassifier, and then assign-
ing the user to the role whose associated classifier is matched. Fig. 4 presents
an example of one such query that is encoded as a spin:rule for the class
sioc:UserAccount. For each instance of sioc:UserAccount (represented by the
variable ?this) a set of triples are inferred representing the association of the
user with a new instance of a specific role ?role. The ?role is an instance
2 http://www.cs.waikato.ac.nz/ml/weka/
3 http://spinrdf.org

http://www.cs.waikato.ac.nz/ml/weka/
http://spinrdf.org
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of a subclass of oubo:Role, ?t depending on the classification of the user as
described in Fig. 4. The spin function oubo:fn getRoleType executes the pro-
cess described above and returns the appropriate classifier. Then using the
smf:buildURI SPARQL Motion function ?t is built so that it is associated to the
correct subclass of oubo:Role. Finally, the ?context is created and connected to
the particular ?role via the relation social-reality:hasContext, and is also
associated to the temporal and forum relevant contexts in which it makes sense
that the user holds this particular role - i.e. a given user can have multiple roles
within different communities and time periods.

CONSTRUCT {
?role a ?t .
?this social-reality:count_as ?role .
?context a social-reality:C .
?role social-reality:content ?context .
?temp a oubo:TemporalContext .
?forum a sioc:Forum .
?forum oubo:belongsToContext ?context .
?temp oubo:belongsToContent ?context

} WHERE {
BIND (oubo:fn_getRoleType(?this) AS ?type) .
BIND(smf:buildURI("oubo:Role{?type}") AS ?t) .
.....

}

Fig. 4. SPARQL CONSTRUCT encoded as a spin:rule in the class sioc:UserAccount

4 Analysis of Community Health

Healthy communities provide users with the resources from which information
can be sought, interactions made and discussions participated in. In this section
we explore the relation between the composition of a community, i.e. the various
roles that users have within a community and the proportion to which such
roles make up the community (e.g. 20% elitists, 10% taciturns, etc.), and the
activity in the community. Through experiments and analysis of the subsequent
results, we seek to identify key community compositions that are associated
with both an increase and decrease in community activity. In doing so, we are
provided with an understanding of how certain behaviour types are correlated
with community evolution and what compositions are signifiers of healthy and
unhealthy communities. We here consider the level of activity as a proxy of
community health, but other parameters (e.g. reciprocity, sentiment) could also
be considered.

4.1 Experimental Setup

For our experiments we used a dataset collected from the Irish community dis-
cussion forums, Boards.ie. We extracted all posts from the beginning of 2004
through to the end of 2006 for our analysis - thereby capturing a 3 year period
over which we could perform our analyses. Rather than analysing the entire site,
we selected 3 forums that showed a variance in activity throughout the analysed
period - the plots of post activity are shown in Fig. 6.
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– Forum 246 (Commuting and Transport): Demonstrates a clear increase in
activity over time.

– Forum 388 (Rugby): Exhibits periodic increase and decrease in activity and
hence it provides good examples of healthy/unhealthy evolutions.

– Forum 411 (Mobile Phones and PDAs): Increase in activity over time with
some fluctuation - i.e. reduction and increase over various time windows.

In order to compile a dataset for each forum we used the following process:
beginning on 1st January 2004 we used a window from 13 weeks prior to this
date up until the date as our feature window. Within this window we extracted
all the posts made within the forum, and used the posts to compile the statistics
for each unique user who had made a post within that window. Once we had
finished building the statistics for each user at that collection date, we then rolled
the date forward 84 days, leaving a 12 week gap between our last collection date.
The window was compiled once again: going 13 weeks back, returning all posts
within the window, and then building the user features for each unique user
within the window. We repeated this process until the end of 2006. To provide
a coarse measurement of the community’s health we also counted the number of
posts made in the forum during that window - allowing the activity at one point
in time to be contrasted against earlier activity.

Following the compilation of our user statistics at the incremental time steps
(13 time steps in total) and the instantiation of oubo:UserImpact, we categorised
each user using our previously described rules. In doing so we were able to
measure the composition of the community over time as differing percentages of
users that have taken on such roles within the community. We then correlated
this composition with the health of the community at that point in time, seeking
patterns that describe a healthy and unhealthy community in terms of either
an increase or decrease in activity, e.g. having many users of a certain role type
reduces community activity. We also report on how our approach greatly reduces
the percentage of users that could not be classified by the current behaviour rules.

4.2 Results

Fig. 5 shows the correlograms from the individual forums. The upper panel shows
the extent to which a correlation exists between two features and the polarity of
the correlation (i.e. positive or negative). The greater the portion of the circle
that is filled then the greater the correlation. The colour indicates the polarity:
blue indicates a positive correlation and red indicates a negative correlation.

For forum 246 (Commuting and Transport), shown in Fig 5(a), a positive
correlation exists between the post count and both the number of elitists and
popular participants (’partic’ in the chart), indicating that as more users assume
such roles within the community then activity increases. This is due to the pop-
ular participants driving discussions and joining in with the community to make
it more vibrant. Meanwhile, elitists communicate a lot with their own group
and thus drive its activity. In forum 246 we also observe a negative correlation
between the post count and the proportion of taciturns within the community,
indicating that users who communicate very little with others can reduce the
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overall interactions and dynamic of the community. Fig 5(a) also shows that an
increased number of ignored users has a negative effect on community activity,
which follows intuition. As forum 246 concerns transport discussion, many users
post questions regarding travel situations and modes of transport, and hence
if a large portion of those users are ignored then activity in this community
diminishes as questions remain unanswered.

(a) Forum 246 (b) Forum 388 (c) Forum 411

Fig. 5. Correlation between the various features within each forum

Similarly to forum 246, in forum 388 (Rugby) we also find a positive correla-
tion between post counts and number of elitists and popular participants (Fig.
5(b)). There is also a slight correlation between post count and the proportion
of conversationalists within the community, which demonstrates the value of
conversations and debates in driving this community. There is also a negative
correlation between the post count and the number of taciturns and ignored
within the community.

For forum 411, (Mobile Phones and PDAs), the correlogram in Fig. 5(c)
demonstrates similar patterns to the previous two forums in terms of positive
correlations. Once again, we find that the post count has a positive correlation
with the proportion of elitists and popular participants. We also find that the
post count has a negative correlation with the proportion of taciturns and, in this
individual forum, with the proportion of supporters. Supporters have a mid-level
range of ’Bi-directional Threads Ratio’, indicating that conversation is one of the
drivers behind this role. However in forum 411, debate between users appears to
be limited, as users require information regarding support and are less inclined
to chat with other users repeatedly. This is also supported by the lack of positive
correlation between the post count and the proportion of conversationalists in
this forum.

Within Fig. 6 we show the composition changes in each of the analysed forums
over time, plotted together with the post count within each forum. For all forums
we find that activity increases where the proportion of ignored users decreases.
For forum 246 we see that as the proportion of joining conversationalists and
popular initiators increases so does activity. The same applies to forums 388 and



46 S. Angeletou, M. Rowe, and H. Alani

(a) Forum 246 (b) Forum 388 (c) Forum 411

Fig. 6. Changes in composition over time plotted with forum post counts

411, although for the latter the number of popular initiators was more important,
confirming our earlier correlation analysis for that forum where conversations are
not driving activity in this forum.

An interesting factor in each forum is the effect of composition stability on
community activity. In the case of forum 246 and forum 411 we find that the
composition converges on relatively stable proportions (i.e. with no extreme fluc-
tuations in role types) and leads to a large rise in activity over time. Conversely
for forum 388, Fig. 6(b) shows that the lack of stability in the community’s com-
position leads to fluctuations in activity. This suggests that although limiting
the number of ignored users and taciturns in the community would be beneficial,
a stable mix of user types actually improves community health.

Unclassified Users. Our rule-based approach for inferring the role of a given
user at a given point in time utilises dynamic binning to update the low, mid and
high bounds for each rule’s features. In utilising dynamic binning our intuition
was that our approach could adapt to the changing dynamics of the community
as it evolves over time, i.e. the low bound for a feature during one year will
differ from a year later. Therefore to demonstrate the utility of our approach we
measured the proportion of users that are unclassified in each forum. We contrast
this against the proportion of users who are unclassified when the feature bounds
are not updated at each time step (40.05% unclassified users for forum 246,
37.92% for forum 388 and 39.84% for forum 411). Results show that our method
of dynamically updating the bins for feature bounds enables a greater coverage
of the users (29.06% unclassified users for 246, 28.06% for 388 and 28.68% for
411), and therefore enables, on average, a greater proportion of users to be
labelled with a given role. Additional behaviour rules can be added to increase
the percentage of classified users even more.

Predicting Community Health. Thus far we have concentrated on identify-
ing correlations between the post count within single forums and the proportion
of roles within such communities. An important aspect of undertaking such anal-
ysis is the ability to forecast community health should the composition of the
community change. To demonstrate the utility of such an approach we per-
formed a binary classification task to identify, based on the composition of the
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community, whether the activity had either increased or decreased since the
previous time window. We built a dataset for each forum and constructed an
instance for each of the 13 time windows. Each instance contained the features
describing the 7 behaviour roles in the community together with the percent-
age of users allocated with such roles and a class label denoting the activity in
the forum as having either increased (pos) or decreased (neg) since the previous
time window. For our classification task we used the J48 decision tree classifier
in a 10-fold cross validation setting (due to the limited size of the datasets) by:
first, identifying increases and decreases in each of the forums, and secondly,
identifying activity changes across communities, by combining forum datasets
together into a single dataset. To report on the performance of our approach we
used precision, recall, f-measure (setting β = 1) and the area under the Receiver
Operator Characteristic Curve (ROC).

Table 2. Results from detecting changes in activity using community composition

Forum P R F1 ROC
246 0.799 0.769 0.780 0.800
388 0.603 0.615 0.605 0.775
411 0.765 0.692 0.714 0.617
All 0.583 0.667 0.607 0.466

Table 2 presents the results from our classification experiments. For forum 246
we achieve the highest F1 value due to the activity in the forum steadily increas-
ing over time and the precision value indicating that in this forum the compo-
sition patterns account for fluctuations in activity. For forum 388 we return the
lowest F1 value, indicating that the variance in activity renders the prediction
of activity increase difficult within this forum, this could possibly be due to the
seasonal fluctuations in interest surrounding the rugby season. For forum 411 we
achieve high precision, indicating that activity can be precisely detected based
on the composition in this forum. When performing cross-community health
predictions we achieve lower F1 values than those for forums 246 and 411 and
the lowest ROC value. This indicates that cross-community patterns are not as
reliable as individual community analysis, where patterns in compositions for
single forums account for the idiosyncratic behaviour.

For our next task we induced Linear Regression models by regressing the
post count on the community composition, using each of the role proportions as
our predictor variables, seeking a relationship between the change in the overall
composition of the community and the health of the forum. We now report on
the model learnt for forum 388 (Commuting and Transport), given that this
model achieved the highest coefficient of determination while forums 246 and
411 achieved R2 values of 0.649 and 0.793 respectively.

Table 3 shows the results from the induced model.4 The model indicates that
should a community increase in its proportion of popular initiators and popular
4 We found no multicolinearity between variables in the model when testing using the

Variance Inflation Factor, suggesting that the roles are distinct in this forum and
there are no clear dependencies between them.
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participants while decreasing in the proportion of supporters and ignored then
the community’s activity will increase. However, an increase in ignored and sup-
porters will yield a reduction in the post count and therefore a reduction in the
“health” of the community. Such patterns can be used to alert a community
manager of the current state of their community and its projected evolution.
Managers could then use this information to decide what action to take to in-
fluence the evolution of their community in a positive way.

Our analysis of community forums has explored the correlation between com-
munity composition and health, and how predictions can be performed. Through
this analysis we have identified four key take-home messages:

1. Healthy communities contain more elitists and popular participants.
2. Unhealthy communities contain many taciturns and ignored users.
3. Communities exhibit idiosyncratic compositions, thus reflecting the differing

dynamics that are required/exhibited by individual communities.
4. A stable composition, with a mix of roles, increases community health.

Table 3. Linear regression model induced from the forum composition of f388

Role Est’ Coefficient Standard Error t-Value P(x >t)
Joining Conversationalist 69.20 43.82 1.579 0.1751

Popular Initiators 173.41 54.72 3.169 0.0248 **
Taciturns -135.97 101.91 -1.334 0.2397
Supporters -266.53 109.60 -2.432 0.0592 *

Elitists -105.19 55.88 -1.882 0.1185
Popular Participants 372.44 103.24 3.608 0.0154 **

Ignored -75.69 33.39 -2.267 0.0727 *

Summary: Res. St Err: 311.5, Adj R2: 0.8514, F7,5: 10.82, p-value: 0.0092
Signif. codes: p-value < 0.001 *** 0.01 ** 0.05 * 0.1 . 1

5 Discussion and Future Work

The communities we chose to analyse in this paper were forums from Boards.ie.
It is possible of course that different behavioural patterns could emerge when
analysing different communities. However, there is no reason to assume that our
current behaviour types would not apply, since the basic statistics that underpin
them are not specific to any community. As for the features we chose to measure
users’ value, we have already started comparing them with results from Twitter
and highlighting variations in their influence from Boards.ie.

Churn - i.e. the loss of community members - is a risk posed to online com-
munities and one that community operators wish to avoid. Churn is normally
affected by various community features [7]. By analysing the community compo-
sition that is correlated with a healthy community that evolves into an unhealthy
community, we will be able to learn patterns that could then be used to pre-
empt such changes, and thus warn community managers of the possibility of
such decline. Our future work will also seek to identify key users within online
communities and monitor their behaviour to predict their churn which would
have a detrimental effect on the community. The combination of such micro and
macro-level analysis would enable community managers to identify which users
to pay more attention to in order to maintain a healthy community.
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The emergence and evolution of certain types of behaviour could be dependent
on the rise and fall of other behavioural types. Such possible correlations need
further investigation and can support prediction of community evolution. On
the other hand, negative user behaviour could badly influence health of the
community, and an unhealthy community could foster negative behaviour. Many
studies have shown that certain features (e.g. sentiment, time, user popularity)
influence the spread of some types of behaviour, or increase response to posts.
Some of these findings differ from one online community to another. The ideal
mix and spread of behavioural types that boosts health in communities is still
unknown, and it is likely to be dependent on the characteristics and goals of the
communities in question.

Our approach for inferring user roles accounts for the dynamic nature of com-
munities by utilising the repeated binning of feature values and using skeleton
rules that map features to value levels. In doing so we have shown the ability
of this approach to reduce the proportion of unclassified users when compared
with an approach that does not utilise such updating. However, on average our
approach still misses ∼29% of users and is unable to associate those users with
behaviour types. Our future work will explore methods to reduce this percentage
by exploring the use of clustering and outlier detection techniques to account for
new emerging roles within the community.

6 Conclusions

In this paper we have presented an approach to label the users of online com-
munities with their role based on the behaviour they exhibit. We presented an
ontology to capture the behavioural characteristics of users as numeric attributes
and explained how semantic rules can be employed to infer the role that a given
user has. There is currently no standard or agreed list of behaviour types for de-
scribing activities of users in online communities. Behaviour categories suggested
in the literature are sometimes based on different observations and conceptions.
In this paper our aim was not to identify the ultimate list of behavioural types,
but rather to demonstrate a semantic model for representing and inferring be-
haviour of online community members.

A key contribution of this paper is the analysis of community composition
over time and the correlation of such compositions with the health of communi-
ties, characterised by the number of posts made within a given community. Our
empirical analysis of such correlations identified patterns in community compo-
sition that lead to both healthy and unhealthy communities, where a greater
proportion of elitists and popular participants lead to an increase in activity,
while a greater proportion of taciturns and ignored users lead to a decrease in
activity. We also found that a stable community composition of role propor-
tions lead to an increase in activity within the community, suggesting that wide
fluctuations in role types could reduce community health.

Acknowledgment. This work was supported by the EU-FP7 projects WeGov (grant
248512) and Robust (grant 257859). Also many thanks to Boards.ie for providing data.
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Abstract. In a semantic P2P network, peers use separate ontologies
and rely on alignments between their ontologies for translating queries.
Nonetheless, alignments may be limited —unsound or incomplete— and
generate flawed translations, leading to unsatisfactory answers. In this
paper we present a trust mechanism that can assist peers to select those
in the network that are better suited to answer their queries. The trust
that a peer has towards another peer depends on a specific query and
represents the probability that the latter peer will provide a satisfactory
answer. In order to compute trust, we exploit both alignments and peers’
direct experience, and perform Bayesian inference. We have implemented
our technique and conducted an evaluation. Experimental results showed
that trust values converge as more queries are sent and answers received.
Furthermore, the use of trust improves both precision and recall.

1 Introduction

Peer-to-peer (P2P) systems have received considerable attention because their
underlying infrastructure is very appropriate for scalable and flexible distributed
applications over Internet. In P2P systems, there is no centralised control or
hierarchical organisation: each peer is equivalent in functionality and cooperates
with other peers in order to solve a collective task. P2P systems have evolved
from simple keyword-based file sharing systems such as Napster and Gnutella
to semantic data management systems such as Edutella [14], Piazza [8] or
SomeWhere [1].

In this paper, by a semantic P2P network we refer to a fully decentralised
overlay network of people or machines (peers) sharing and searching for resources
(documents, videos, photos, data, services) based on their semantic annotations
using ontologies. In semantic P2P systems, every peer is free to organise her local
resources as instances of classes of her own ontology serving as query interface
for other peers. Alignments between ontologies make possible to reformulate
queries from one local peer vocabulary to another. The result of a query is a set
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of resources (e.g., documents) which are instances of some classes corresponding,
possibly via subsumption or equality, to the initial query posed to a specific peer.

Trust is widely acknowledged as a central factor when considering networks
of autonomous interacting entities and notably in the context of the Semantic
Web. When referring to the notion of trust, T. Berners-Lee advocates for a
user to be able to search for reasons why he or she should be confident of a
returned answer [3]. Trust is helpful to select, from a given set of peers, those
that are expected to answer with most satisfactory instances. Peers may use
this information for broadcasting their queries to a reduced set of peers and to
have an approximation of the reliability of provided answers. Furthermore, peers
may preventively send selected queries in order to improve the trust they have
towards another peer. Finally, by identifying “weak correspondences”, peers may
signal faulty alignments and trigger new matching of the ontologies.

Several proposals have been made that do not share the same meaning for
trust [15,2]. Many are user/agent/peer centred and rely on the assumption that
all peers share similar implicit goals. Trust is then closely related to the notion
of reputation in a community.

In contrast, in the context of semantic P2P systems, each peer may have her
own view on how categorising the resources that are exchanged between peers.
For this reason, we rather promote the computation of subjective trust values
based on direct experiences between peers. We also argue for a finer grained
approach to trust in order to take into account the fact that, for answers provided
by the same peer, the trust into these answers may vary according to which class
they are instance of within the peer ontology.

An Illustrative Scenario

Consider a semantic P2P system for exchanging bookmarks, in which a peer Alice
organises her bookmarks according to two main categories: FavouriteMusic and
GoodRestaurants. These in turn are divided into subcategories: Jazz , PopRock
and Folk for FavouriteMusic, and Italian and Chinese for GoodRestaurants .
Within the Semantic Web, this can be implemented as a lightweight ontology
that can be expressed in RDFS, in which categories and subcategories correspond
to classes and subclasses, and the URLs identifying bookmarks correspond to
URIs declared as instances of some classes.

Suppose that Alice is acquainted with Bob and Chris with whom she shares
some interests in music and restaurants. This is captured by correspondences
between her ontology and Bob’s and Chris ’s ontologies. If Bob organises his
best-of songs according to his favourite singers (e.g., the classes MichaelJackson
and LouisArmstrong are declared as subclasses of BestSongs in his ontology),
the following correspondence expresses that any URL bookmarked by Bob as an
instance of his class MichaelJackson can be bookmarked by Alice as an instance
of her own class PopRock :1

Bob : MichaelJackson � Alice : PopRock
1 We make use of the notation P : A for identifying a class A of peer P ’s ontology.
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An alignment between two peer ontologies is a set of correspondences between
some classes used by these peers. Figure 1 shows the ontologies and alignments
between Alice’s, Bob’s and Chris ’s ontologies. It must be seen as a (small) part
of a semantic P2P system that can be queried for resource finding.

FavouriteBookmarks

FavouriteMusic GoodRestaurants

Jazz PopRock Folk Italian Chinese

Alice

Pizzeria

BestRestaurants

LouisArmstrong FastFood

BestOf
Bob

BestSongs

MichaelJackson

Chris : Gastronomic �Alice : GoodRestaurant

Chris : Trattoria �Alice : Italian

Chris : BluesMusic �Alice : Jazz

Chris
MyBookmarks

Restaurants BluesMusic

Gastronomic Trattoria

Bob : MichaelJackson �Alice : PopRock

Bob : LouisArmstrong �Alice : Jazz

Bob : Pizzeria �Alice : Italian

Fig. 1. Three semantic peers in a P2P semantic network

Suppose Alice wants to get bookmarks from her acquaintances in the network
to enrich her bookmarks about Italian restaurants. The alignments between her
ontology and Bob’s and Chris ’s ontologies allow to reformulate her initial query
about Italian restaurants into the query Pizzeria asked to Bob, and Trattoria
asked to Chris . As his answer set, Bob will return to her the set of instances in
the extension of his class Pizzeria , and Chris the set of instances in the extension
of his class Trattoria.

Alice notices that Chris has some bookmarks in common with her, and thus
tends to trust Chris for providing her with instances that fits well with her taste
in terms of Italian restaurants. Subsequently, she may be inclined to add new
bookmarks in her class Italian when they come from Chris .

However, although she trusts Chris for restaurants, she may not trust him
for his musical tastes. For instance, for getting new bookmarks about Jazz , she
can discover by choosing a sample of the set of URLs returned by Chris as the
extension of his class BluesMusic that very few corresponding music files fit well
with her taste in terms of Jazz music. For music, she will later tend not to trust
Chris and will prefer to query Bob on this topic.
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Contributions

In this paper we propose a probabilistic model to handle trust in a semantic P2P
setting. We define the trust of a peer P towards another peer P ′ regarding a
class C (belonging to P ’s ontology) as the probability that an instance returned
by P ′ as an answer to the query asking for instances of C is satisfactory for P . In
order to compute trust, we exploit the information provided by peers’ ontologies
and alignments, along with the information that comes from direct experience.
Trust values are refined over time as more queries are sent and answers received.

We have designed an experimental protocol to study the convergence of trust,
and to measure the gain of using trust for resource finding in practice.

Finally, a by-product of our trust model is a probabilistic setting for resource
finding, in which the instances returned as answer for a given query are associated
with a probability. This is in line with the recent trends towards probabilistic
databases [4].

The paper is organised as follows. The background of our work is presented
firstly. Then we introduce the notion of probabilistic populated ontology and
the definition of trust. Later we explain the computation of trust and update of
probabilistic populated ontologies. We discuss experimental results, and finally
give some concluding remarks.

2 Preliminaries

In this section the components of a semantic peer-to-peer network are presented:
populated ontologies, alignments and acquaintance graphs. The kind of queries
that we take into account is also described.

2.1 Ontologies and Populated Ontologies

We draw a distinction between the ontological structure and the instances used
to populate it. We deal with lightweight ontologies: classes linked by means of a
less-general-than relation and a disjointness relation.

Definition 1. An ontology is a tuple O = 〈C, �,⊥〉 where C is a non-empty
finite set of class symbols; � is a partial order on C; ⊥ is an irreflexive and
symmetric relation on C; and for all c, c′, d, d′ ∈ C,

if c ⊥ d, c′ � c and d′ � d then c′ ⊥ d′

A populated ontology is the result of adding instances to an ontology in accor-
dance to the intended meaning of the two ontological relations.

Definition 2. A populated ontology O is a tuple 〈O, I, ext〉, where O is an
ontology, I is a set of instances, and ext is a function that maps each class c
of O with a subset ext(c) of I called the extension of c, in such a way that the
family of class extensions covers I, and for all classes c, d the following hold:

1. if c � d then ext(c) ⊆ ext(d), and
2. if c ⊥ d then ext(c) ∩ ext(d) = ∅.
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2.2 Alignments

In an open and dynamic environment as a P2P network, the assumption of peers
sharing the same ontology is not realistic. But if peers fall back on different
ontologies, there must be a way to connect ontologies and translate queries so
that their addressees are able to process them. Typically this is done by means
of alignments —sets of correspondences between semantically related ontological
entities— and finding alignments is what ontology matching is aimed at (see [7]).

A correspondence between two classes c and c′ of two ontologies O and O′,
respectively, is usually defined as a tuple 〈c, c′, r〉 with r ∈ {�, =, �,⊥}, where
c � c′ (or 〈c, c′, �〉) is read “c is less general than c′”, c = c′ is read “c is equal
to c′”, c � c′ is read “c is more general than c′”, and c ⊥ c′ is read “c is disjoint
from c′”. Here, however, we deal with a more general notion of a correspondence
inspired from [6].

Definition 3. Let O and O′ be two ontologies, and let c and c′ be two classes
of O and O′, respectively. A correspondence between c and c′ is a tuple 〈c, c′, R〉
with R ∈ 2Γ where Γ is the set {=, >, <, �,⊥}. An alignment A between O and
O′ is a set of correspondences between classes of O and O′.

In such correspondences, a class is connected to another through a set of base
relations to be thought of as an exclusive disjunction. For instance, c{>, <}c′
(i.e., 〈c, c′, {>, <}〉) is read “either c is more general than c′ or less general than
c′”. In this way, we can express uncertainty with regard to the alignment relation.
Note that the relations ‘�’ and ‘�’ can be seen as abbreviations for {=, >} and
{=, <}, respectively. Secondly, a nonstandard symbol ‘�’ is introduced. It reflects
the idea of overlapping: classes the extensions of which share some instances
but no one is equal to or contained into the other. Finally, c Γ c′ states total
uncertainty about the relation between c and c′.

According to Definition 3, an alignment may include correspondences that
link the same two classes through different relations, or no one connecting two
particular classes. However, one would like alignments to relate any pair of classes
and to do it in one way. If there exists no correspondence between c and c′ in
an alignment A, we can simply add 〈c, c′, Γ〉. If 〈c, c′, R〉, 〈c, c′, S〉 ∈ A with
R �= S, we can replace both with 〈c, c′, R∩S〉. This follows the interpretation of
alignments as a set of correspondences which all hold. The resulting alignment
is said to be normalised.

Definition 4. Let A be an alignment between two ontologies O and O′. The
normalisation of A is the alignment A made up of all correspondences 〈c, c′, R〉
with c ∈ C, c′ ∈ C′ and R =

⋂
RA(c, c′) where RA(c, c′) = {S : 〈c, c′, S〉 ∈ A}.

The alignment A is said to be normalised providing A = A.

Remark 1. Recall that if RA(c, c′) = ∅ then
⋂

RA(c, c′) = Γ.

All alignments considered in this work are assumed to be normalised.
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2.3 Peers and Acquaintance Graphs

We consider a finite set P = {Pi}n
i=1 of peers. In this work, Pi will be identified

by i. We assume that each peer Pi is associated with one populated ontology
Oi = 〈Oi, Ii, exti〉 (where 1 ≤ i ≤ n).

An acquaintance graph stands for peers’ acquaintances (or neighbours) in the
network. As usual, a link between two peers reflects the fact that they know the
existence of each other. In addition, we assume that there exists one alignment
between their respective ontologies.

Definition 5. An acquaintance graph is a labelled directed graph 〈P ,acq〉 where
P = {Pi}n

i=1 is the set of vertices and any edge in acq is of the form 〈i, j〉 with
i �= j, and it is labelled with an alignment Aij between ontologies Oi and Oj.
Moreover, if 〈i, j〉 ∈ acq then 〈j, i〉 ∈ acq and Aji is the inverse of Aij .2

Peer Pj is said to be an acquaintance of peer Pi if 〈i, j〉 ∈ acq. The set of
acquaintances of Pi is denoted by acq(Pi).

Remark 2. Note that, given two ontologies O and O′, we can always consider
the trivial alignment, that is, the one that is made up of all correspondences
〈c, c′, Γ〉 with c ∈ C and c′ ∈ C′.

2.4 Queries and Query Translations

Peers pose queries to obtain information concerning other peers’ populated on-
tologies. We deal with a simple query language, as peers can only request class
instances: if peer Pj is an acquaintance of peer Pi, she may be asked

Q = c(X)? (1)

by Pi with c ∈ Oi. Now, since we do not assume that all peers share the same
ontology, queries may require to be translated for their recipients to be able to
process them.

Query translations are determined by correspondences of the alignments of
the network. Specifically, if peer Pi wants to send Q to Pj , she will first choose
one correspondence 〈c, d, R〉 ∈ Aij (typically R is equal to ‘=’ or ‘>’) and then
send Pj the translation

Q′ = d(X)? (2)

The answer to (1) through its translation (2) is the set of instances of class d
in Pj ’s populated ontology. Unlike queries, we assume that no translation of
instances is ever required. Since alignments may be unsound and incomplete,
this answer may contain unsatisfactory instances, i.e., instances which are not
considered instances of c by Pi.

A peer cannot foresee whether the answer that another peer provides to one
of her queries contains satisfactory instances or not, but this uncertainty can be
estimated with the help of a trust mechanism.
2 Given an alignment A between O and O′, the inverse of A is the alignment A−1 =
{〈c′, c, R−1〉 : 〈c, c′, R〉 ∈ A} between O′ and O, where R−1 = {r−1 : r ∈ R} and r−1

is ‘>’ and ‘<’ if r is ‘<’ and ‘>’, respectively, and r−1 = r otherwise.
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3 The Trust Mechanism

As mentioned above we look at trust as a way to estimate the proportion of
satisfactory instances in a peer answer. The notion of satisfactory instance can
be faithfully captured by an ideal populated ontology O∗

i that corresponds to
a hypothetical situation in which peer Pi classified all instances of the network
according to her ontology Oi. In this way we can express the fact that Pi considers
an arbitrary instance a as an instance of c ∈ Oi by a ∈ ext∗i (c). It is assumed that
Oi = O∗

i and exti(c) ⊆ ext∗i (c) for every class c ∈ Ci. This populated ontology
is referred to as the reference populated ontology of peer Pi.

If peer Pi receives a set B as an answer to the query (2), the proportion of
satisfactory instances is given by the conditional probability p(ext∗i (c)|B). The
probability space under consideration here is the triple (Ω, A, p(·)) where Ω is the
set of instances of the network (a finite set), the σ-algebra A is the power set of
Ω, and p(·) is Laplace’s definition of probability. Our approach for trust aims at
finding approximations to these conditional probabilities. Before the definition
of trust we introduce the notion of a probabilistic populated ontology.

3.1 Probabilistic Populated Ontologies

Once an answer is received, it can be (partly) added or not to the extension of
the queried class. In order to capture the evolution of class extensions in the
network, we consider a time variable t ∈ N, and we will write Ot

i to denote peer
Pi’s populated ontology at instant t (beginning with Oi):

Oi = O0
i ,O1

i , . . . ,Ot
i , . . . (3)

We assume that the underlying ontology never changes, i.e., Oi = Ot
i (t ∈ N),

and that the sequence of class extensions {extti(c)}t∈N is monotonically increasing
for all c ∈ Ci.

Nonetheless, since we deal with probabilities new instances may not be 100%
satisfactory. For this reason, at t ∈ N, peer Pi is associated with a probabilistic
populated ontology.

Definition 6. Peer Pi’s probabilistic populated ontology at time t is a triple

Õt
i = 〈Oi, I

t
i , ẽxt

t

i〉

where It
i is a set of instances and ẽxt

t

i is a function that maps each class c of
Oi with its probabilistic extension

ẽxt
t

i(c) = 〈A∗,F〉 with F = {〈Ak, [pk, qk]〉}k∈K where

• A∗ is a (possibly empty) subset of ext∗i (c), that is, a set of instances which
are certain to be instances of the class c, and all

• Ak are pairwise disjoint subsets of It
i which are also disjoint from A∗, and

all [pk, qk] are distinct subintervals of the unit interval [0, 1], where k ∈ K
and K is a (possibly empty) index set of integers.
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Furthermore, the tuple Ot
i = 〈Oi, I

t
i , extti〉 with extti(c) = A∗ 

⊎
k∈K Ak must be

a populated ontology (so that the axioms that relate classes with their extensions
are fulfilled).

A probabilistic extension ẽxt
t

i(c) can be seen as a classical extension extti(c)
partitioned into a number of subsets A∗, A1, . . . , An. All instances of A∗ are
sure to be instances of the class c and then p(ext∗i (c)|A∗) = 1. However, the
set Ak (1 ≤ k ≤ n) may contain instances that are actually not instances of c.
The idea behind the interval [pk, qk] ⊆ [0, 1] is that there exists some statistical
evidence for pk ≤ p(ext∗i (c)|Ak) ≤ qk.3 The way probabilistic extensions are
built is explained in Section 3.5.

Remark 3. Every populated ontologyOi can be seen as a probabilistic populated
ontology Õi = 〈Oi, Ii, ẽxti〉 where ẽxti(c) = {〈exti(c), ∅〉} for all c ∈ Ci.

Peers build probabilistic populated ontologies as more queries are sent and an-
swered (starting with the “probabilistic version” of Oi):

Õi = Õ0
i , Õ1

i , . . . , Õt
i , . . . (4)

And what was said about (3) at the beginning of this section holds for the
underlying populated ontologies of (4).

3.2 Definition of Trust

With the new terminology, Pj ’s answer to query (1) via its translation (2) at time
t is the extension exttj(d), and an arbitrary instance a ∈ exttj(d) is qualified as
satisfactory provided that a ∈ ext∗i (c). The proportion of satisfactory instances
in exttj(d) is given by the conditional probability p(ext∗i (c)|exttj(d)). Our proposal
is that the higher this value is, the more Pi trusts Pj .

Definition 7. Let us consider two peers Pi and Pj (i �= j) and two classes c
and d of Oi and Oj, respectively. The trust that Pi has towards Pj with respect
to the translation 〈c, d〉 at time t is the conditional probability p(ext∗i (c)|exttj(d))
and it is denoted by trustt(Pi, Pj , 〈c, d〉).

This idea is slightly different from most of the existing approaches for trust. In
our setting cheating is not directly addressed: unsatisfactory answers are seen
as the result of peers’ incapacity to understand each other. In addition, trust
is dependent on translations: peers may be very trustworthy in regard with
some translations but not with others. In the following section, we explain our
approach for computing trust. It exploits the information provided by alignments
and revises it with direct experience.

3 The use of intervals follows Lukasiewicz’s notation for conditional constraints in
probabilistic knowledge bases [11].
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3.3 Computation of Trust

Our approach for trust aims at approximating trustt(Pi, Pj , 〈c, d〉) by Bayesian
inference. A probability distribution T t(Pi, Pj , 〈c, d〉) represents Pi’s belief about
θ = p(ext∗i (c)|exttj(d)). If there is no direct experience, alignments are taken to
construct prior beliefs. Answers are later used to revise these beliefs. As they can
be of a size that cannot be processed manually, we propose to perform sampling
with replacement in order to estimate the number of satisfactory instances. We
work with beta distributions as they are typically used to describe the parameter
of a binomial distribution.

No direct experience: alignment-based trust. If T t(Pi, Pj , 〈c, d〉) is not defined
(this is the case when, for instance, t = 0), we fall back on alignments. Peers Pi

and Pj ’s ontologies are linked through Aij . Since this alignment is normalised
then there exists a unique R ⊆ Γ such that 〈c, d, R〉 ∈ Aij . The intending
meaning of correspondences is

R = {=} iff ext∗i (c) = ext∗j (d)
R = {>} iff ext∗i (c) ⊃ ext∗j (d)
R = {<} iff ext∗i (c) ⊂ ext∗j (d)
R = {⊥} iff ext∗i (c) ∩ ext∗j (d) = ∅
R = { � } iff none of the above holds

Hence, provided that exttj(d) ⊆ ext∗j (d),

if R is ‘=’ or ‘>’ then p(ext∗i (c)|exttj(d)) = 1

if R is ‘⊥’ then p(ext∗i (c)|exttj(d)) = 0

if R is ‘<’ or ‘ � ’ then p(ext∗i (c)|exttj(d)) ∈ [0, 1]

In the general case, R is a set {r1, . . . , rn} ⊆ Γ (with n ≤ 5). If we assume that
all relations in R are equiprobable, by the law of total probability, we have

trustt(Pi, Pj , 〈c, d〉) ∈ [u, v] with u =
1
n

n∑
k=1

ak v =
1
n

n∑
k=1

bk

where [ak, bk] = [1, 1] if rk is ‘=’ or ‘>’, [ak, bk] = [0, 0] if rk is ‘⊥’, and finally
[ak, bk] = [0, 1] if rk is ‘<’ or ‘�’ (k = 1, . . . , n).

The information above can be used to construct Pi’s prior belief about the
parameter θ = p(ext∗i (c)|exttj(d)) by means of a beta distribution Beta(α, β). If
[u, v] = [0, 1], we take the uniform distribution U [0, 1] = Beta(1, 1). If not, and
u < v, we equal [u, v] with [μ− 2σ, μ+2σ] and then find Beta(α, β) whose mean
and deviation are μ and σ. This is the standard way to find a confidence interval
based on the normal distribution. If u = v, we proceed with σ = 0.005 and μ = u
unless u = 1 and u = 0, in which cases μ = 0.99 and μ = 0.01, respectively.4 In
this way, we define the trust distribution T t(Pi, Pj , 〈c, d〉) = Beta(α, β).

4 The values for α and β can be found by solving μ = α
α+β

and σ =
√

μ(μ−1)
α+β+1

.
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Example 1. If R = {<, =} then [u, v] = [.5, 1]. If we make [.5, 1] = [μ−2σ, μ+2σ]
then μ = .75 and σ = .125. This leads to Beta(8.25, 2.75) whose shape is depicted
in Figure 2(a). Figure 2 is completed with the shapes of beta distributions for
the relations R = {=} and R = Γ. The latter corresponds to Beta(0.4, 0.8).5
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Fig. 2. Beta distributions for different correspondences

Direct experience. Trust at time t is used to choose a peer to which to send a
query, as well as a class through which to translate it. This is explained in detail
in Section 3.4. Let us imagine that Pi receives B = exttj(d). A sampling with
replacement is performed over B in order to estimate the number of satisfactory
instances. Let S ⊆ B be a sample (strictly speaking, S is a multiset). We assume
that every peer can call an oracle (typically the user) to find out whether an
instance is satisfactory or not. More specifically, given a ∈ S, Pi’s oracle provides
a yes/no response to the question: “a ∈ ext∗i (c)?”. Even this, nonetheless, may
be a high burden for Pi’s oracle. We can benefit from peers’ populated ontologies
to process some instances automatically without the need to call oracles. Recall
that Pi is associated with a probabilistic populated ontology Õt

i , and that the
probabilistic extension of class c includes a set A∗ of instances which are certain
to be instances of ext∗i (c). So if a ∈ B ∩ A∗, a ∈ ext∗i (c). We can also identify
unsatisfactory instances automatically: if a ∈ S is such that there exists c′ in Oi

with c ⊥ c′ and a ∈ A′∗ then a /∈ ext∗i (c). The remaining instances are processed
by peer Pi’s oracle.

Assume that T t(Pi, Pj , 〈c, d〉) = Beta(α, β). If s is the sample size, s+ is the
number of successes (satisfactory instances), and s− = s− s+ is the number of
failures, peer Pi’s posterior belief about θ = p(ext∗i (c)|exttj(d)) is summarised in
Beta(α + s+, β + s−). Thus we define

T t+1(Pi, Pj , 〈c, d〉) = Beta(α + s+, β + s−) (5)
5 Although cΓd stands for total uncertainty about the relation between c and d, the

mean of its associated beta distribution, Beta(0.4, 0.8), is not 0.5 but 0.6. However,
our aim is not to find out the correct relation between c and d, but to estimate the
probability p(ext∗i (c)|extt

j(d)). In this sense, total uncertainty arises with c < d, c � d
or c{<, �}d, which are all modelled with a uniform distribution (whose mean is 0.5).
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3.4 Use of Trust

Imagine that peer Pi wants to query c(X)? (c ∈ Ci) at time t ∈ N. Then Pi

chooses an element from the set

P0 = {〈Pj , dj〉 : Pj ∈ acq(Pi) and dj ∈ Oj}

so that, if 〈Pj0 , dj0〉 is the preferred tuple, Pi will send dj0(X)? to Pj0 . This
choice depends on trust: Pi opts for 〈Pj0 , dj0〉 iff

E(T t(Pi, Pj0 , 〈c, dj0〉)) = max
〈Pj ,dj〉∈P0

{E(T t(Pi, Pj , 〈c, dj〉))}

where E(·) denotes the expected value of a distribution.

3.5 Updating Probabilistic Populated Ontologies

In the end, trust is used for class extensions to be increased with new satisfactory
instances. If peer Pi receives B = exttj(d) as an answer to “c(X)?” then B will be
(partly) added to extti(c). In line with the computation of trust based on direct
experience (see Section 3.3), the set B is partitioned into three subsets:

B = B+
aut B−

aut Baut

• B+
aut = {a ∈ B : a ∈ extti(c)} = B ∩ extti(c)

• B−
aut = {a ∈ B : there exists c′ ∈ Oi with a ∈ extti(c

′) and c ⊥ c′}
• Baut = {a ∈ B : a /∈ B+

aut and a /∈ B−
aut} = B \ (B+

aut B−
aut)

The set B+
aut contains the instances in B that already belong to extti(c), and

B−
aut comprises those instances that, if added to extti(c), would yield to a logical

inconsistency. The set Baut embodies the new information that can be included
in extti(c).

6 Since the answer B was received as the result of a comparison of
trust values, it seems reasonable to add all instances of Baut to extti(c). The fact
that these instances may not be 100% satisfactory, though, should be reflected
in Pi’s populated ontology. As described in Section 3.1, probabilistic populated
ontologies are designed for this purpose.

The set Baut will be included in extti(c) along with an interval [p, q] such that
p ≤ p(ext∗i (c)|Baut) ≤ q on the basis of statistical evidence. Again, we propose
to perform Bayesian inference, but, instead of weighing more on Pi’s oracle, we
lean on the previous sampling and make use of the formula

p(ext∗i (c), Baut|exttj(d)) = p(ext∗i (c)|Baut) · p(Baut|exttj(d)) (6)

Let us explain this in detail. The probability p(Baut|exttj(d)) represents the pro-
portion of instances of Baut in exttj(d) and its computation is straightforward.
By monotonicity, we have

0 ≤ p(ext∗i (c), Baut|exttj(d)) ≤ p(Baut|exttj(d))

6 The subscript “aut” stands for “automatic”, as both instances from B+
aut and B−

aut

can be automatically processed, whereas this is not the case for Baut.
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In order to compute a prior about ϑ = p(ext∗i (c), Baut|exttj(d)), we proceed as
the computation of alignment-based trust (Section 3.3): we equate the interval
[u, v], where u = 0 and v = p(Baut|exttj(d)), with [μ− 2σ, μ + 2σ], and then find
Beta(α, β) whose mean and deviation are μ and σ, respectively. A posterior is
computed with the same sampling S used for Equation 5, but this time we count
as a success any satisfactory instance that also belongs to Baut.

Let Beta(α′, β′) be the resulting posterior, and let μ′ and σ′ be its mean and
deviation. The set Baut is included in extti(c) along with the interval [p, q] where

p =
1

p(Baut|exttj(d))
(μ′ − 2σ′) q =

1
p(Baut|exttj(d))

(μ′ + 2σ′)

Hence, p ≤ p(ext∗i (c)|Baut) ≤ q with 95% probability, which is based on the
normal approximation to the posterior density for ϑ and Equation 6. Actually, if
S+ denotes the set of satisfactory instances in the sample S, Baut is partitioned
into Baut ∩S+ and Baut \S+, which are added to extti(c) separately. Thus [p, q]
must be resized accordingly, and then replaced by another interval [p′, q′]. Below
we explain explicitly how probabilistic populated ontologies are built.

As remarked in Section 3.1, Õ0
i is defined as the probabilistic version of Pi’s

initial populated ontology Oi, that is,

• Õ0
i = Õi, and

• at time t ∈ N, if ẽxt
t

i(c) = 〈A∗,F〉 then we define

ẽxt
t+1

i (c) = 〈A∗  (Baut ∩ S+),F  〈Baut \ S+, [p′, q′]〉〉

In order for Õt+1
i to be a probabilistic populated ontology, though, Baut must

be included in the extension of any superclass c′ of c. For the sake of space, we
give a brief explanation of how this is done. Notice first that no instance in Baut

belongs to the extension of a class disjoint from c′ as B−
aut ∩ Baut = ∅ and c

is a subclass of c′. All instances in Baut ∩ S+ are certainly instances of c′ since
ext∗i (c) ⊆ ext∗i (c

′). Instead of Baut \S+ we include Baut \ (S+∪extti(c
′)) as some

instances of Baut \S+ may already belong to extti(c
′). In order to find an interval

with which to estimate p(ext∗i (c
′)|Baut \ (S+∪extti(c

′))), we proceed as before to
approximate p(ext∗i (c)|Baut \ (S+ ∪ extti(c

′))) and then apply the monotonicity
of probability. In this way, the upper bound that we obtain is equal to 1.

By construction, Õt+1
i is a probabilistic populated ontology.

4 Experimental Analysis

This section reports on a preliminary experimental campaign that has been
conducted to test the viability of the trust mechanism described in this paper.

We set out to answer two research questions:

1. Do trust values converge as more queries are sent and answers received?
2. Is there any gain in query-answering performance —measured in precision

and recall— by using the trust technique?

In what follows we first describe the experimental setting and then explain the
execution and evaluation.
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4.1 Experimental Setting

The trust mechanism presented in this work has been implemented in a simulator
written in Java. The simulator also deals with aspects indirectly related to trust,
such as generation of P2P networks, populated ontologies and alignments. In the
remainder of the section we elaborate more on these aspects.

P2P network topology. Social networks are well-known to exhibit small-world
characteristics [5]. For this reason, a small-world topology was used for the entire
evaluation. To generate this topology, we ran Kleinberg’s algorithm included in
the JUNG Java library.7 A node in the network represents a peer associated
with a populated ontology. The total number of peers in our evaluation was 20.

Populated ontologies. All populated ontologies in the evaluation had the same
underlying ontology Oi = O. More specifically, we chose the ontological scheme
described in [10] (with 64 classes). The semantic heterogeneity was reproduced
by the way classes were populated with instances. The simulator implements
an ontology population module which was utilised for both reference populated
ontologiesO∗

i and initial populated ontologies Oi = O0
i . First, a set S of abstract

instances is generated. In our evaluation, the size of S was 6000. Second, for each
peer Pi, a sample Si is taken from S. Furthermore, this sampling is performed in
a way that Si and Sj overlap for each pair i, j. The size of each Si is determined
with a Zipfian distribution, which is often used to approximate data in physical
and social sciences [12]. The skewing factor considered was 0.5. Third, the top
class of O∗

i is populated with Si and a top-down population process is carried
out by removing instances randomly for the remainder of classes. During this
process, we check that all ontological axioms —subclass and disjoint relations—
are fulfilled. Initial populated ontologies are generated in a similar way, starting
this time with a sample of Si instead of S to populate the top class in Oi.

Alignment generation. A connection between peers Pi and Pj in the network
(edge between nodes) is labelled with an alignment Aij between their respective
ontologies. This is seen as a declined version of a reference alignment A∗

ij which
is never available to the peers. Thus we can capture the real practice of ontology
matching. Reference alignments are built by comparing class extensions in the
reference populated ontologies (for instance, c < d is included in A∗

ij iff ext∗i (c) ⊂
ext∗j (d)). To build initial alignments, correspondences in reference alignments are
discarded or replaced randomly in accord with global values for precision and
recall. In our evaluation, we chose 0.6 for both measures.

4.2 Execution and Evaluation

From all peers and classes in the network we chose a subset P0 ⊆ P of 15 peers
and a subset C0 ⊆ C of 25 classes randomly and ran 100 simulations. At each
round n ≤ 100 of the execution, a peer Pi ∈ P0 and a class c ∈ C0 are randomly
chosen. Then an acquaintance Pj of Pi and a class d ∈ Cj are selected by using

7 http://jung.sourceforge.net

http://jung.sourceforge.net
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the trust mechanism (Section 3.4). Notice that Ci = Cj = C as we chose a single
ontological scheme O. To process answers, the maximum number of oracle calls
allowed was 40. The subset Baut ⊆ exttj(d) is included in peer Pi’s probabilistic
populated ontology if the expected value E(T n(Pi, Pj , 〈c, d〉)) is greater than a
given threshold. In our evaluation, this threshold was 0.6.

In order to test the convergence of trust, we analysed the difference

Δn = |E(T n(Pi, Pj , 〈c, d〉))− p(ext∗i (c)|ext∗j (d))|

over the 10 most occurred queries. Figure 3 shows the experimentation results.
After a number of rounds, Δn approached 0. Actually, in most of the cases, no
more than 5 rounds were needed for Δn to be close to 0.1.
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Fig. 3. Test of convergence of trust

In order to test the gain in query-answering performance, we compared the
use of the trust mechanism with a naive strategy. In the latter, peers randomly
choose acquaintances and always accept their answers. For the evaluation to be
fair, the same set of queries was used in both strategies. This time we analysed
precision and recall measured by

Precision(n) =
|ext∗i (c) ∩ extni (c)|

|extni (c)| Recall(n) =
|ext∗i (c) ∩ extni (c)|

|ext∗i (c)|

Figure 4 depicts the average precision and recall over the 100 rounds for the 20
most occurred queries. As expected, the naive strategy produced lower values
for both measures. Furthermore, the use of the trust mechanism ensured high
precision. However, this was not the case for recall. The reason is that peers only
ask their neighbours, and these ones never change. As instances are spread all
over the network, many instances may be unaccessible to peers. It is expected
that if instances were more accessible, recall would be higher, but this remains
to be experimented. The theoretical model presented in this paper is general
enough to cover the case where peers receive answers from non-neighbour peers.
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Fig. 4. Comparison between the use of trust and the naive strategy

5 Concluding Remarks

We have proposed a trust mechanism in semantic P2P systems. The trust that
a peer has towards another peer depends on a specific query and represents the
probability that the latter will provide a satisfactory answer. In order to compute
trust, we exploit alignments and peers’ direct experience, and perform Bayesian
inference. Preliminary experimental results show that trust values converge as
more queries are sent and answers received, and that there is a gain in query-
answering precision and recall when peers make use of the trust mechanism.

The notion of probabilistic populated ontology has been introduced. This is a
by-product of trust computation that allows to store and process the instances
obtained from query answers in the same way as it is done in probabilistic
databases [4]. More precisely, a probabilistic populated ontology can be seen as
a probabilistic database in which each fact C(i) is associated with a (lower bound
of) probability. As a result, query answers can be ranked, and only top-k answers
can be returned to interested users. In addition, since trust evolves over time as
more queries are spread over the network and their answers are processed and
stored with their probabilities, the resulting probabilistic populated ontologies
somehow capture and compile the results of a trust propagation.

Many different probabilistic approaches to trust can be found in the literature
[16,13]. Some also perform Bayesian inference over feedback on past interactions.
However, to the best of our knowledge, our model is the only one which explicitly
benefits from ontological content and alignments.

EigenTrust [9] is a peer-to-peer algorithm which, like ours, has a direct trust
computation. Direct trust is then propagated among peers and aggregated to
calculate global trust which can be very costly. As remarked above, we avoid this
computation by exploiting the information on global trust stored and compiled
in the probabilistic populated ontologies of acquaintance peers.

As future work, we plan to extend our trust model in order to deal with
more expressive ontology and query languages. Although witness peers are not
considered in this paper, the use of witness information is another future research
line. Witness peers can help to find new trustworthy acquaintances. In this way,
recall values can increase. Furthermore, the impact of malicious peers that hide
or bias information, or lie, will be studied too.
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Regarding the experimentation, we aim to perform a thorough experimental
analysis concerning different network configurations in terms of number of peers,
instances and oracle calls. Moreover, we want to investigate the relation between
the quality of alignments and the speed of convergence of trust values.
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References
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Abstract. Current ontology development tools offer debugging support
by presenting justifications for entailments of OWL ontologies. While
these minimal subsets have been shown to support debugging and under-
standing tasks, the occurrence of multiple justifications presents a signif-
icant cognitive challenge to users. In many cases even a single entailment
may have many distinct justifications, and justifications for distinct en-
tailments may be critically related. However, it is currently unknown how
prevalent significant numbers of multiple justifications per entailment are
in the field. To address this lack, we examine the justifications from an
independently motivated corpus of actively used biomedical ontologies
from the NCBO BioPortal. We find that the majority of ontologies con-
tain multiple justifications, while also exhibiting structural features (such
as patterns) which can be exploited in order to reduce user effort in the
ontology engineering process.

1 Introduction

Debugging and repair of an OWL ontology is a crucial step in the ontology
development process in order to ensure the correctness and quality of the on-
tology. Finding the source of an error and modifying it to remove the fault can
be a tedious and error-prone task in large and often complex OWL ontologies.
Adequate explanation support for arbitrary entailments is therefore an essential
component of OWL ontology editors.

Justifications, minimal subsets of an ontology that are sufficient for an entail-
ment to hold, are currently the prevalent form of explanation in OWL ontology
development tools such as Protégé 4. Previous research has mainly dealt with
improving the comprehensibility of single justifications for an individual entail-
ment [16,8,13], as well as optimising the performance of computing justifications
[14,3,24]. We are now attempting to tackle the issue of coping with multiple
justifications.

Multiple justifications for a single entailment occur in a large number of OWL
ontologies, regardless of the size or description logic expressivity of the ontology,
often reaching up to several hundred justifications per entailment [4]. However,
even small numbers of multiple justifications can cause a cognitive overload
for the ontology engineer. Choosing a minimal repair, i.e. a smallest possible
modification to remove the entailment without affecting the remainder of the

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 67–82, 2011.
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ontology, requires significant cognitive effort from the user when faced with not
just one, but multiple justifications.

Further, repairing entailments in isolation might also cause non-minimal re-
pairs, as demonstrated in [15]. Considering multiple entailments to repair simul-
taneously almost certainly1 requires the user to deal with multiple justifications.
As in the case of multiple justifications for a single entailment, the ontology
engineer must recognize relationships between the justifications in order to find
a suitable repair. While the root and derived justifications described in [15]
point out one type of relations (namely subset relations), there exist many other
structural aspects of justifications which have not been explored yet.

While there is a clear use case for improved coping mechanisms, we may also
consider gathering additional knowledge about an ontology from the justifica-
tions occurring in it. A user may want to learn about the modelling of an ontology
by considering not only its explicitly asserted structure and metrics, but also its
implicit structure, which is described by the relations between entailments and
their entailing axiom sets.

To date, there has been no systematic investigation into the problem of mul-
tiple justifications in an independently motivated corpus of OWL ontologies. In
this paper, we analyse the relationships between justifications in a set of ontolo-
gies from the biomedical domain which were extracted from the NCBO BioPor-
tal.2 This analytical work constitutes the first step on the road to developing an
explanation tool with improved coping strategies for multiple justifications with
the aim of supporting ontology engineers in the debugging process.

To facilitate the description of justificatory structure, we introduce a graph-
based framework for capturing and analysing relationships between justifications
in OWL ontologies. Using these JGraphs, we outline different aspects of the jus-
tificatory structure and perform an analysis of an ontology corpus. The contribu-
tions of this paper are: 1) A framework to compute and describe the justificatory
structure as the foundation for improved explanation support for multiple jus-
tifications. 2) Metrics for OWL ontologies that describe implicit features of the
ontology. 3) A survey of a representative set of bio-ontologies that demonstrates
the concept of justificatory structure and provides insight into structural aspects
of the corpus.

2 Preliminaries

In the following section we provide a brief overview of the Web Ontology Lan-
guage OWL and discuss the notion of entailment sets. We then introduce justi-
fications as a form of explanation for entailments.

2.1 OWL

The Web Ontology Language OWL 2,3 may be regarded as a syntactic variant
of the expressive description logic (DL) [2] SROIQ, with an OWL 2 ontology
1 A set of axioms can be a minimal entailing set for multiple entailments.
2 http://bioportal.bioontology.org
3 http://www.w3.org/TR/2009/REC-owl2-overview-20091027

http://bioportal.bioontology.org
http://www.w3.org/TR/2009/REC-owl2-overview-20091027
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corresponding to a set of SROIQ [11] axioms. These axioms, i.e. statements
about the entities in the ontology, can take the form of subsumptions (denoted
by the symbol � in DL and SubClassOf in OWL Manchester Syntax4) and equiv-
alent classes (denoted by ≡ in DL and EquivalentClasses in Manchester Syntax).
They may involve complex class expressions to describe the relationships be-
tween the classes in the ontology, which are based on a wide range of available
constructors in OWL 2. For example, the equivalent class axiom

DNA ≡ NucleicAcid � ∃ hasPart.Deoxynucleotide

defines the class DNA as a NucleicAcid that has some (at least one) part which is
a Deoxynucleotide. In addition to subsumptions and equivalences between classes,
we can also make statements about the individuals and the roles in the ontology.
In the remainder of this paper we will use the term OWL interchangeably with
OWL 2 when referring to OWL 2 ontologies.

2.2 Entailments

Any statement which holds in all models of an ontology O is considered an
entailment of the ontology. For example, an ontology O containing the above
axiom entails that DNA is a subclass of NucleicAcid, which is expressed as O |=
DNA � NucleicAcid.

We consider the entailment set of an ontology to be a set of entailments of
interest, given by a function ε(O):

Definition 1 (Entailment set). Let O be an ontology and ε(O) a function
that returns a finite set of axioms {η1 . . . ηn} such that O |= ηi; this set is an
entailment set of O.

While the entailment relation O |= η is well defined through the semantics of
description logics, the term is often used in an ambiguous way [6]. In order to
specify a particular finite subset of the set of all entailments of an ontology O,
multiple variables need to be fixed: For the purpose of analysing the justificatory
structure of ontologies, we focus on entailments that are direct subsumptions be-
tween atomic (named) classes, including � and ⊥. This set includes asserted
entailments, as there may be additional (other than the axiom itself) reasons
for the entailment to hold, which may be missed when excluding asserted entail-
ments from the analysis. Tautologies such as A � A, A � � and ⊥ � A for a
named class A are omitted, as they hold no information value.

2.3 Justifications

Justifications [23,20] are a form of explanation of entailments of OWL ontologies,
which is used in OWL ontology editors such as Protégé 4 to provide explanation
support to the user. A justification is a minimal subset of an ontology O that
causes an entailment η to hold.
4 http://www.w3.org/TR/owl2-manchester-syntax

http://www.w3.org/TR/owl2-manchester-syntax
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Definition 2 (Justification). J is a justification for O |= η if J ⊆ O,J |= η
and, for all J ′ ⊂ J , it holds that J ′ � η.

For every axiom which is asserted in the ontology, the axiom itself naturally is
a justification. We are, however, only interested in non-trivial entailments, i.e.
justifications which have some (at least one) justification which is not the axiom
itself; in this case, the justification is also called a non-trivial justification.

A justification is defined with respect to a single entailment η and an ontology
O; in order to describe the set of all justifications for all entailments in an
entailment set ε(O), we introduce the notion of justification sets :

Definition 3 (Justification set). Given an ontology O and a function ε(O),
the justification set Justs(O, ε) is the set of all justifications {J1 . . .Jm}, Ji ⊆
O, for the axioms in the entailment set ε(O).

Further, we define the set of all axioms occurring in all justifications for a par-
ticular entailment set:

Definition 4 (Justification axioms)

JustAx(O, ε) = {α | there is a J ∈ Justs(O, ε) s.t. α ∈ J }

With respect to debugging unwanted entailments (i.e. ε(O) is the set of all
unwanted entailments, e.g. unsatisfiable classes) of an ontology, a repair is a
subset of JustAx(O, ε) which, if removed from the ontology, would break all
these unwanted entailments. We are particularly interested in finding a minimal
repair, which corresponds to a minimal hitting set [21] for the justifications in
Justs(O, ε).

3 JGraphs

In this section we provide the necessary definitions for justification graphs which
capture the relations between axioms in the ontology, justifications (sets of ax-
ioms) and entailments of interest. Based on the above definitions of entailments
sets and justification sets, we can now define the justification graph of an on-
tology O. A justification graph (JGraph) GJ is a directed graph whose set of
vertices is the union of the set of axioms ε(O) which are entailed by O and
the set JustAx(O, ε) of axioms that participate in justifications for these entail-
ments, together with the set of all justifications Justs(O, ε). The edges indicate
whether an axiom is an element of a justification, and whether a justification is
a justification for a particular entailed axiom; hence, the graph is bipartite.

Definition 5 (Justification graph)

GJ = (ε(O) ∪ JustAx(O, ε) ∪ Justs(O, ε), E1 ∪ E2) where

E1 = {(u, v) ∈ ε(O) ∪ JustAx(O, ε)× Justs(O, ε) | u ∈ v},
E2 = {(v, w) ∈ Justs(O, ε)× ε(O) | v ∈ Justs(O, w)}.
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Side remarks: 1) The set of justifications for a given set of entailments is unique,
so is the set of axioms in the justifications, and the edges follow from these un-
ambiguous relations; therefore the JGraph is unique. 2) ε(O) and JustAx(O, ε)
are not disjoint; i.e. an axiom in O may have a non-trivial justification, while
also being an element of a justification for some other entailment. 3) Any axiom
vertex in the graph with an in-degree of at least one is an entailment in ε(O).
(4) Similarly, any axiom vertex in the graph with an out-degree of at least one
is in JustAx(O, ε).

The principle of JGraphs is demonstrated by the following example ontology:

O = {A � ∃R.B, (a1)
∃R.B � C �D, (a2)
A � D, (a3)
F � G} (a4)

The entailment set ε(O) comprising the direct and indirect atomic subsumptions
that are entailed by O contains the following axioms:

ε(O) = {A � C, (a5)
A � D, (a3)
F � G} (a4)

Only the first two entailments a5 and a3 in ε(O) have a non-trivial justification
j1 = {a1, a2}, and the entailed axiom a3 has an additional trivial justification,
which is the axiom itself: j2 = {a3}. The set of vertices in JGraph GJ therefore
is: {a1, a2, a3, a5, j1, j2}. The respective sets of edges in the graph are: E1 =
{(a1, j1), (a2, j1), (a3, j2)} and E2 = {(j1, a5), (j1, a3), (j2, a3)}.

a1

j1

a2

a3 j2

a5

Fig. 1. Example of a JGraph

4 Justificatory Structure

Using the JGraphs defined above, we outline different aspects of the justificatory
structure, which allows us to examine and describe implicit structural properties
of an OWL ontology.

4.1 Number and Size of Justifications
Justificatory Redundancy. The number of justifications per entailment is an
indicator of justificatory redundancy in the ontology; it demonstrates “how often
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the same thing is expressed in different ways”. The in-degree of entailments in
the JGraph corresponds to this metric. We must point out that, while the term
redundancy has mostly negative connotations, this measurement can also be a
criterion for the richness and inferential power of an ontology. It is also not
to be confused with logical redundancy, as this would imply that it is possible
to remove a set of axioms from the ontology without breaking any entailments.
Furthermore, we cannot make any claims about the purpose of the axioms in
the justifications; they might have been added without the intention of causing
the entailment.

Activity. Finally, with respect to the user effort required when dealing with an
ontology, we define the activity of an OWL ontology. This is the total number
of axioms that occur in justifications for non-trivial entailments, that is, the
size of the subset of the ontology which actively participates in inference. An
ontology in which the set of asserted axioms is the same as the set of inferred
ones (with respect to some definition of ε(O)) has an activity value of 0. This
measurement does not take into account equivalent sets of axioms where the
axioms have different sizes; for example, a subsumption of the form A � B �D,
A � C � D could be re-written into a single axiom A � B � C � D, which is
logically equivalent, but has a lower activity value.

4.2 Self-Justifications

Any justification which is simply the entailed axiom itself is classified as a self-
justification. In the JGraph this is expressed as a cycle between an axiom node
and a justification node, where the in-degree of the justification node is one. The
justification j2 in Figure 1 illustrates a self-justification for the axiom a3. There
are different reasons for the existence of self-justifications: (1) A conscious design
decision to improve reasoner performance or a tailoring towards a particular
ontology browser interface which does not support reasoning, i.e. the inferred
subsumptions were added back into the ontology. (2) The absence of a reasoner
during the ontology engineering process and the modeller not being aware that
the subsumption is already entailed. (3) The entailed subsumption could simply
be a side-effect of axioms that were added to the ontology without the aim of
causing the entailment.

4.3 Justification Overlap

Arbitrary Overlap. Justifications for both single and multiple entailments
may share some axioms, i.e. the justifications overlap to a certain extent. With
respect to coping with multiple justifications, this overlap is an indicator for a
common lemma, i.e. an intermediate entailment caused by a subset of a justifi-
cation [9]. A suitable lemma may support understanding structural similarities
between multiple justifications, which in turn reduces the task of understanding
multiple seemingly distinct justifications to understanding a smaller number of
lemmas.
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Root and Derived Justifications. A special case of justification overlap are
root and derived unsatisfiable classes [15], which describes the containment of
one justification in another. An unsatisfiable class C is derived if one of its justifi-
cations is a superset of the justification of another unsatisfiable class D; all other
unsatisfiable classes are roots. Meyer et al. [17] propose a repair strategy that
extends root and derived unsatisfiable classes to arbitrary sets of entailments.
These relationships are captured by the edge set E3 in the JGraph:

Definition 6 (Root and derived justifications). Given a JGraph GJ =
(ε(O)∪ JustAx(O, ε)∪ Justs(O, ε), E1 ∪E2) and a vertex v ∈ Justs(O, ε); v is
a derived justification if there is a justification v′ such that {w | (w, v) ∈ E1} ⊃
{w | (w, v′) ∈ E1}. Else, v is a root justification.

This definition aligns with the root and derived unsatisfiable classes defined in
[15]; in this case, the entailment set ε(O) is comprised of all unsatisfiable classes
in an ontology O.

Equality. Equality is another special case of justification overlap, where the
justifications for different entailments contain the same axioms. In terms of the
JGraph, these justifications are represented by a single vertex which has an
out-degree greater than one. The equality of justification is illustrated by the
following two axioms from the above example ontology:

Example 1 (Multiple Entailments)

A � ∃R.B

∃R.B � C � D

This minimal set of axioms entails the two atomic subsumptions A � C and
A � D and therefore represents a justification for both entailments. In the graph
shown in Figure 1, this justification is represented by the vertex labelled j1,
which entails the two axioms a3 (A � D) and a5 (A � C).

We may consider the number of axioms that a justification entails as the
inferential power of the justification, answering the question “how much can be
expressed with how little?”. In the context of repairing unwanted entailments,
users can benefit from examining multiple unwanted entailments at the same
time if they share some justifications rather than looking at each justification in
isolation, as this reduces the total number of justifications to repair.

Axiom Power. The power of an axiom, also denoted as arity [23], is the out-
degree of any axiom in JustAx(O, ε). The respective axiom occurs in multiple
justification, which corresponds to a justification overlap of size one. Key axioms
are those axioms with the maximal out-degree. These provide informations about
the ontology in two ways: With respect to repairing an unwanted entailment, the
user may focus on removing or weakening the key axioms first, as they have the
highest repair powers. Secondly, key axioms are those statements that contribute
to a large number of entailments of the ontology, and are therefore structurally
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(not necessarily in the context of domain knowledge) relevant to understanding
the ontology.

A set of axioms can be a justification for more than one entailment. Therefore,
we need to consider how many entailments would be removed from the ontology
through the removal or weakening an axiom in the repair process. The impact
of an axiom is the number of entailments that would break in addition to the
entailment we focus on, which corresponds to the out-degree of all justifications
that the axiom has edges to.

4.4 Patterns

Two types of patterns can be identified in the context of the justificatory struc-
ture: (1) Graph surface patterns, and (2) isomorphism between justifications.
A surface pattern is a structural similarity in the JGraph, such as matching
subgraphs. Surface patterns in the JGraph reveal modelling similarities in the
ontology, regardless of whether the justifications and axioms in the pattern also
interact in a similar way. Highlighting a pattern of this type may support user
understanding of the modelling in the ontology, while it may also be an indicator
for isomorphic justifications.

Two justifications J1 and J2 are isomorphic [7] if there is an injective renaming
from J1 to J2, i.e. the axioms in the justifications have the same structure while
using different class and property names. It can be claimed that if a person is
able to understand J1 (from a structural point of view, not considering domain
knowledge), they can also understand J2. Making this sameness explicit may
reduce the user effort required when faced with a large number of justifications
in the debugging process, as it reduces the number of justifications that need to
be examined.

4.5 Components

The number of components of the graph provides a measure for the disjointness
of justifications in the whole ontology. The disjointness of justifications strongly
affects the justification computation process, which makes use of Reiter’s Hitting
Set Tree (HST) algorithm for diagnosis [21,22]. In the HST, the vertices are
labelled with justifications and the paths constitute hitting sets, i.e. minimal
repairs for the justifications. Optimisations for the HST algorithm are mainly
based on closing a branch in the tree if the path to it is labelled with a superset
of an existing path, which is not possible if the justifications are disjoint. This
leads to a rapid growth of the HST and has significant negative effects on the
performance of computing all justifications for an entailment.

5 BioPortal Ontology Survey

In this section we apply the JGraph metrics on a corpus of ontologies used in
bio-health applications. By analysing selected aspects of justificatory structure,
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we draw conclusions regarding the occurrence and the nature of multiple justi-
fications in OWL ontologies. In a nutshell, the ontologies surveyed cover a wide
range of justificatory structure from very lean to very rich, with size or DL
flavour of the ontology being no indicator of its implicit structure.

5.1 Test Corpus: The NCBO BioPortal

The purpose of this study was to analyse the justificatory structure of a realis-
tic and representative set of OWL ontologies. Thus, the test corpus was selected
based on the following criteria: 1) The ontologies had to be publicly accessible. 2)
In order to avoid hand-picking “suitable” ontologies that may not be representa-
tive of naturally occurring ontologies, the choices were between a random sample
of web ontologies, or an existing set from a web-based repository. 3) For the same
reason, we focused on realistic ontologies that were actively used, i.e. ontologies
that were built simply for training purposes (such as the Koala or Pizza on-
tologies) would be excluded. The NCBO BioPortal [18] repository meets all the
above criteria while containing a large number of OWL and OWL-compatible
ontologies; it was therefore selected as the test corpus for our survey.

The BioPortal provides ontologies from various groups from the biomedical
domain, including the full set of daily updated OBO Foundry5 ontologies, which
are built based on common design principles. OBO ontologies use a flat-file
format, which can be translated into OWL 2 and were therefore included in the
test corpus.

Dataset. At the time of downloading (12 March 2011), the BioPortal repository
listed 226 latest versions of ontologies in OWL and OBO format, out of which 218
could be downloaded and parsed with the OWL API6 parsers [10]. 8 ontologies
could not be processed due to the file being not available under the given URL,
or parsing errors. For each ontology the imports closure was downloaded and
merged with the root ontology, while missing imports were ignored. We then
extracted all entailed atomic subsumptions from the parseable OWL files and
excluded those ontologies that did not contain any non-trivial entailments, which
left us with 72 ontologies. At this stage, 5 ontologies were removed from the
set as they could not processed by the justification generation and the JGraph
framework due to their large size and number of entailments.

The structural analysis of the remaining 67 ontologies was further restricted
to only include ontologies with coherent TBoxes, i.e. ontologies that contained
only statements about the concept hierarchy and no unsatisfiable classes. Both
justifications for unsatisfiable classes and ABox entailments need to be treated
differently from justifications for subsumptions between named classes; a sepa-
rate investigation of the justificatory structure of both incoherent ontologies and
ontologies with ABoxes are omitted due to space limitations, but are part of
future work. This filtered out 20 ontologies with an ABox, and 5 ontologies with

5 http://obofoundry.org
6 http://owlapi.sourceforge.net

http://obofoundry.org
http://owlapi.sourceforge.net
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unsatisfiable classes, leaving us with 42 ontologies that contained non-trivial en-
tailments for which the justifications could be generated and processed in the
JGraph generator.

Imported Entailments. In the next stage of data pruning, the import struc-
ture of the 42 ontologies was examined in order to determine to which extent
entailments were imported from external ontologies. An entailment whose jus-
tifications contain only axioms from an imported ontology is classified as an
“imported entailment”, whereas an entailment whose justifications contain only
axioms from the importing ontology is called a “native entailment” [6]. 28 on-
tologies did not have any imported entailments at all, which could be either
due to them having no imports, the imported ontology having no entailments
that matched our criteria, or missing imports, which were ignored in the pre-
processing stage.

We found that 7 ontologies in BioPortal import the Basic Formal ontology
(BFO), an “upper” ontology for biological data which itself is contained in the
BioPortal corpus. 3 of these ontologies had 70 imported entailments each, which
all stemmed exclusively from BFO, and no native entailments. The remaining
4 ontologies had the 70 imported entailments from BFO, plus additional entail-
ments which were either native or imported from ontologies other than BFO.
A further 7 ontologies had imported entailments from other ontologies, which,
in most cases, could be attributed to the ontology intentionally being split up
over several files. For example, the Chemical Information ontology (76 entail-
ments) had 1 native entailment, 72 imported entailments from an ontology titled
“cheminf-external”, and 3 entailments from “cheminf-core”.

In order to prevent skewed results due to the dominance of BFO, the ontologies
which imported BFO were also removed from the set (while BFO itself remained
in the corpus). This left us with 35 ontologies which had only native (or mixed)
non-trivial entailments from a coherent TBox, which could be processed by the
JGraph framework.7

5.2 Results and Analysis

Entailments. From the 35 ontologies, 12,010 non-trivial entailments were ex-
tracted, with a total of 7,176 distinct non-trivial justifications. In addition, 2,340
self-justifications were found, i.e. 2,340 entailments were asserted in the ontolo-
gies while also having additional justifications. The average number of non-trivial
entailments across all ontologies is 343, which is mainly affected by the large
number of entailments in the NCI Thesaurus (7,862), and the Experimental Fac-
tor ontology (1,787), which deviates by an order of magnitude from the other
ontologies.
7 Due to space limitations and the wealth of data obtained in the experiments, we

have to omit tables and graphs displaying the results. The raw data from the graph
analysis as well as detailed overview tables are available from
http://owl.cs.manchester.ac.uk/research/publications/

supporting-material/iswc2011-juststruct

http://owl.cs.manchester.ac.uk/research/publications/supporting-material/iswc2011-juststruct
http://owl.cs.manchester.ac.uk/research/publications/supporting-material/iswc2011-juststruct
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The majority of ontologies (74.3%) that produce non-trivial entailments
has 100 or less entailments. Surprisingly, small numbers of non-trivial entail-
ments occurred in some of the largest ontologies with high DL expressivity, such
as the MaHCO ontology (ALCHIQ(D), 13,844 axioms, 26 non-trivial entail-
ments) and Cardiac Electrophysiology (SHF(D), 176,113 axioms, 19 non-trivial
entailments).

As we can see from these examples, the size of an ontology does not necessarily
affect the number of non-trivial entailments. This is confirmed by the Spearman’s
rank coefficient8 of ρ = 0.18, which indicates that there is no correlation between
the two values.

Multiple Justifications. The average in-degree for the JGraph vertices rep-
resenting entailments is 1.3 (standard deviation σ = 4.4), not counting the self-
justifications (i.e. the justification which is the asserted axiom itself). In partic-
ular, only 10 out of the 35 ontologies (28.6%) have exactly one justification for
each of its entailments;9 27 ontologies (57.1%) have between one and 2 justifi-
cations per entailment; and 5 (14.3%) ontologies have an average of more than
2 justifications per entailment.

The largest number of justifications for a single entailment (236) can be found
in the Gene Ontology Extension, an ontology that has several entailments with
more than 100 justifications each, followed by the Experimental Factor ontology,
which has 20 entailments with 16 or more justifications each. There exists no
correlation between the size of an ontology and the number of justifications per
entailments (ρ = −0.21), so neither size nor expressivity of an ontology are an
indicator for multiple justifications.

The occurrence of multiple justifications in 71.4% of the surveyed ontologies,
as well as the large maximal number of justifications per entailment in some
ontologies shows that both the computational requirements as well as the cog-
nitive complexity of multiple justifications can pose a significant challenge when
dealing with OWL ontologies found in practice.

Self-Justifications. In the surveyed corpus, 2,340 of the 12,010 entailments
have self-justifications, which means that the entailments are asserted as well
as inferred through additional reasons in the ontology. While the occurrence of
self-justifications is common (e.g. due to the entailment simply being a side-
effect of some axioms in the ontology), it is surprising that 8 ontologies do not
contain any self-justifications, despite large numbers of both entailments and
justifications. On the other extreme, one ontology, the Software Ontology, has
a self-justification for each of its 332 entailments; a detailed discussion of this
ontology follows in Section 5.2.

8 Values for Spearman’s rank coefficient range from -1, which indicates a perfect neg-
ative correlation between two variables, to +1 (perfect positive correlation), with 0
indicating no correlation.

9 Only 11 out of the 800 justifications in the NCI Thesaurus have multiple justifications
(2 and 3 respectively), which yields an average of 1 justification per entailment after
rounding.
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Size of Justifications. The average size of justifications in the ontology is 5.9
axioms (σ = 4.0), with a maximum size of 20 axioms for a justification in the NCI
Thesaurus. We have to emphasize that the justifications were only computed for
direct subsumptions; this means that large justifications cannot stem from long
subsumption chains. The largest justifications were found in the Gene Ontology
Extension (average size: 9.5 axioms) and the NCI Thesaurus (9.6 axioms), with
the latter having over 300 entailments that have justifications of size 10 or larger.

All 35 ontologies have an average justification size of less than 10 axioms,
which gives us a useful indicator of the potential cognitive complexity of un-
derstanding justifications: While there are some extreme cases, such as the NCI
Thesaurus, most ontologies produce justifications with a size that can be deemed
“manageable” by human users. As with the number of justifications per entail-
ment, we cannot detect any correlation between the size of an ontology and the
average size of its justifications (ρ = 0.11).

Activity. Regarding the number of axioms of the ontology that participate in jus-
tifications, the largest total numbers can be found in the NCI Thesaurus (6,479 ax-
ioms) and the Experimental Factor ontology (3,813 axioms). Interestingly, when
taking into account the total size of the ontology, the NCI Thesaurus only uses
4.4% of its axioms in justifications, whereas the axioms occurring in justifications
in Experimental Factor make up 53.7% of the whole ontology, with both ontolo-
gies having relatively large numbers of entailments (7,862 and 1,787 entailments
respectively). This state is reflected by the average number of entailments per jus-
tification, i.e. the inferential power of the justifications in the ontology: While the
NCI Thesaurus has an average of 9.8 entailments per justification, the justifica-
tions in Experimental Factor only have 1.2 entailments each.

The majority of ontologies in the corpus (21 out of 35) have comparatively
small numbers (less than 100) of axioms that participate in inference, regardless
of the size of the ontology. Not surprisingly, there is a strong correlation between
the total number of non-trivial entailments of an ontology and the number of
axioms that participate in the justifications for these entailments (ρ = 0.9).

Axiom Power. The average axiom power across all ontologies in the corpus is
3.0, which means that, on average, an axiom occurs in 3 justifications. While only
4 ontologies have an average axiom power of exactly 1.0, all remaining ontologies
have surprisingly high-power axioms. More than half of the ontologies (54.3%)
contain at least one axiom which occurs in 9 or more justifications, and 31.4%
have axioms with a power of 20 or higher, peaking at one axiom that occurs in
510 justifications in the Experimental Factor ontology.

Again, this shows that considering justifications in isolation when debugging
an ontology can lead to non-minimal repairs, e.g. by removing a different axiom
from each justification rather than removing a shared axiom, which also causes
an unnecessary overhead in terms of effort required.

Since the analysis of impact depends on a particular justification/entailment
pair in the context of ontology repair, a general discussion on this metric is
omitted.
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Patterns. One interesting case of patterns in the form of isomorphic justi-
fications is the Software ontology (2,080 axioms, DL expressivity ALCHIN ).
Almost all of the 332 entailments have exactly one self-justification and one ad-
ditional non-trivial justification which contains 2 axioms; in fact, only one of the
justifications contains 3 axioms. 318 of these entailments are of the form X �
R Software for X being some class name in the ontology, with all of the justifica-
tions of size two being structurally isomorphic and the equivalence axiom occur-
ring in all 318 justifications: Ji = {R Software ≡ ∃is encoded in.R Language,
X � ∃is encoded in.R Language}.10

ax24

just7

ax23

just2

ax15

just3

ax16 ax28

just8

ax26

just4

ax20

just9

ax17

just5

ax22 ax18

just1

ax27 ax19ax25

ax21

just6

Fig. 2. JGraph of the Biopax ontology, with 3 isomorph subgraphs

A similar pattern can be found in the Biopax ontology (Figure 2). The 3
isomorphic subgraphs are justifications for atomic subsumptions of the type A �
B which themselves are asserted in the ontology (i.e. they have self-justifications,
just5, just6 and just9). 2 of the 3 justifications (just3 and just8) contain
an axiom of the type A � ∃d.x, where d is a data property and x a data
property value (in this case a string), together with a data property domain
axiom Domain(d, B). Justification just1 contains axioms of the same structure
with an object property and object property domain axiom instead. These 3
justifications have exactly the same surface structure in the graph, while not
being strictly isomorphic.

This phenomenon highlights the importance of structural analysis of multi-
ple justifications, as we can easily understand the nature of several hundred
justifications (as in the case of the Software ontology) by examining only one
justification and understanding the isomorphic structure, rather than dealing
with every single justification independently.

6 Related Work

Structural analysis of (OWL) ontologies is an actively researched topic in the ar-
eas of ontology quality measurement, ontology integration, and ontology
10 The ontology uses IDs for the class names, which we here display with their human-

readable labels instead.
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matching. Most of the frameworks developed for these purposes focus on
analysing the asserted class hierarchy using basic metrics, such as the num-
bers of root classes, numbers of leaf classes and depth of the inheritance tree,
to determine structural metrics of the ontology [25,27,1,19]. A more in-depth
approach to analysing the asserted class graph is proposed in [12], which applies
methods from Social Network Analysis for the purpose of comparing ontologies.

The research area of exploring structural relationships between the reasons
for entailments of OWL ontologies is in its early stages. In one of the first ap-
proaches to analysing this implicit structure of ontologies, Vrandecic et al. [26]
introduce ontology metrics that also consider the semantics of the ontology lan-
guage, mainly focusing on the entailed statements of an ontology.

Root and derived justifications [15] provide a way of exploiting structural
relations between justifications for multiple entailments. Focusing on root justi-
fications can drastically reduce the number of justifications a user has to examine
when attempting to repair unsatisfiable classes. In [17], the authors describe an
extension for root and derived justifications to cover arbitrary sets of entailments
beyond unsatisfiable classes. The focus of the work of root and derived justifica-
tions is to provide improved ontology debugging and repair support; there is no
indication of inferring information about the ontology from its root and derived
structure.

In [5], we introduce the notion of justificatory structure and conduct a pre-
liminary survey on a set of ontologies. We analyse a small number of properties,
such as the number of justifications per entailment, with findings indicating that
the problem of multiple justifications for entailments is common in real-life OWL
ontologies.

The characteristics of justifications in bio-ontologies in particular are the focus
of a survey of the NCBO BioPortal [10]. In this study, the number of non-
trivial entailments and justifications per entailment are analysed against the
background of the ontology size and expressivity. It is found that a large number
of ontologies contains non-trivial entailments, which indicates the use of inference
in the ontology engineering process.

7 Conclusion and Future Work

We have presented a graph-based framework that captures the relations between
axioms, entailments and justifications of an OWL ontology. Analysing this jus-
tificatory structure of OWL and OWL-compatible ontologies from the NCBO
BioPortal has clearly shown that multiple justifications do occur in a large pro-
portion (71.4%) of the surveyed ontologies.

Furthermore, some ontologies have very large numbers of multiple justifica-
tions per entailment (up to several hundred), which poses a significant compu-
tational and cognitive challenge against the background of explanation support
for ontology debugging tasks. We have found no correlations between the DL
expressivity and size of an ontology and the complexity of its justificatory struc-
ture. With improved ontology development tool support and modelling patterns,
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we expect OWL ontologies to become more complex in the future, which may
lead to a more complex justificatory structure. We can therefore conclude that
it is necessary to focus attention on developing improved coping mechanisms for
multiple justifications in order to reduce user effort and limit the computational
load.

In our presentation of justificatory structure, we have also discussed and
demonstrated structural relations between the justifications in an ontology, such
as axiom power, patterns and justification overlap, which may be exploited for
these coping mechanisms. Based on the axiom power analysis and the patterns
found in the surveyed ontologies (e.g. the Software ontology), we have shown
how structural analysis can drastically reduce the number of seemingly distinct
justifications that have to be examined when attempting to understand the jus-
tifications in an ontology.

For future work, we plan to further explore justification overlap and lemmas,
using approaches from formal concept analysis. This will provide us with the
necessary structural information which can then be used to suggest to the user
a suitable repair strategy when confronted with multiple justifications. Finally,
as the current basic visualization of JGraphs is clearly limited in terms of scal-
ability and the representation of most structural aspects, we aim to investigate
approaches to developing a user oriented interaction framework.
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12. Hoser, B., Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Semantic Network
Analysis of Ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 514–529. Springer, Heidelberg (2006)

13. Ji, Q., Qi, G., Haase, P.: A relevance-based algorithm for finding justifications of
DL entailments. Technical report, University of Karlsruhe (2008)

14. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding All Justifications of
OWL DL Entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
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Abstract. Triple stores have long provided RDF storage as well as data
access using expressive, formal query languages such as SPARQL. The
new end users of the Semantic Web, however, are mostly unaware of
SPARQL and overwhelmingly prefer imprecise, informal keyword queries
for searching over data. At the same time, the amount of data on the
Semantic Web is approaching the limits of the architectures that pro-
vide support for the full expressivity of SPARQL. These factors com-
bined have led to an increased interest in semantic search, i.e. access to
RDF data using Information Retrieval methods. In this work, we pro-
pose a method for effective and efficient entity search over RDF data. We
describe an adaptation of the BM25F ranking function for RDF data,
and demonstrate that it outperforms other state-of-the-art methods in
ranking RDF resources. We also propose a set of new index structures
for efficient retrieval and ranking of results. We implement these results
using the open-source MG4J framework.

1 Introduction

The amount of data published on the Semantic Web has grown at increasing rates
in the past years due to the activities of the Linked Data community and the
adoption of RDFa by major web publishers. The amount of data to be managed
is stretching the scalability limitations of triple stores that are conventionally
used to manage Semantic Web data. At the same time, the Semantic Web is
increasingly reaching end users who need efficient and effective access to large
subsets of this data. Such end users prefer simple, but ambiguous natural lan-
guage queries over highly selective, formal graph queries in SPARQL, the query
language of triple stores. In a web search scenario, formulating SPARQL queries
may not be feasible altogether due to the heterogeneity of data.

These requirements are spurring interest in the field of Semantic Search, in
particular the adaptation of Information Retrieval methods to data access. IR-
style indexing is efficient in that it scales well with respect to the size of text
collections in both index construction and retrieval. The field has also devel-
oped a number of methods for effective ranking of documents that match user
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queries. The challenge in Semantic Search is adapting these results in indexing
and ranking to exploit the inherent structure and semantics of RDF data, and
expanding them to support the user tasks common in RDF retrieval. The most
basics of these tasks is entity-search or Ad-hoc Object Retrieval (AOR) as de-
scribed by [15], i.e. the retrieval of RDF resources that are representation of an
entity described in a keyword query.

This problem has direct relevance to the operation of Web search engines,
which increasingly incorporate structured data in their search results pages.
Figure 1 shows a search result page from Yahoo! Search for the query vienna,
austria. Besides the ten blue links representing document results, we can see on
the left-bar suggestions for points of interest in Vienna. This requires an under-
standing that this query represents the city of Vienna, and a ranking over the
points of interest. Similarly, an information box above the result pages shows
relevant travel information such as the current weather and the geographic lo-
cation of the city. This again requires a decision that travel information might
be relevant to this query, and to execute a top-1 query for the most relevant city
in the travel database, and to retrieve the location of the city and the current
weather.

In this paper, we describe our system for entity search that adapts a state-of-
the-art IR ranking model by taking into consideration the structure and seman-
tics of RDF data. We show that this ranking model outperforms in effectiveness
all 14 submissions that have been evaluated on the task of entity-search at the
Semantic Search workshop in 2010. We also discuss the combination of index
structures that allow this system to be efficient even on large and heterogenous
datasets collected from the Web.

2 Related Work

Besides the core problem of document retrieval, ranking models from Information
Retrieval have been applied in the past to the problem of retrieval over XML [9]
and the relational data model [1,8,10]. However, adaptations to the RDF model
are relatively new.

The typical way of providing online access to RDF collections is by using triple
stores (or quad stores) that implement database-style indexing of the structure
of RDF graphs. Triple stores (such as OWLIM1 and 4store2) allow the option
to index the text values of literals in an inverted index on the side (e.g. using
Lucene), or rely on text-indexing of the underlying DBMSs (such as Oracle3

and Virtuoso4), but these indices are only used for matching (filtering candidate
solutions). As SPARQL does not have a built in query language for full text
search in literals, this functionality is typically exposed using ’magic predicates’
1 http://www.ontotext.com/owlim
2 http://4store.org/
3 http://www.oracle.com/technetwork/database/options/semantic-tech/

index.html
4 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIntro

http://www.ontotext.com/owlim
http://4store.org/
http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://www.oracle.com/technetwork/database/options/semantic-tech/index.html
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSIntro
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Fig. 1. Examples of structured data in the search result page

that are specific to the triple store. SPARQL 1.0 allows matching using regular
expressions, but this is typically not supported by IR engines. Triple stores in
general do not perform ranking.

The work of Wang et al. [18] on the Semplore system considers a deeper
integration of DB and IR technology, where a set of inverted indices are used for
matching limited forms of conjunctive queries, in particular tree-shaped queries
with a single target variable at the root of the tree. Such queries may include
“keyword concepts”, i.e. the set of resources that have a predicate-value that
contains a given set of keywords. They show that resolving such queries can be
more efficient than the combination of a triple-store with a full-text index on the
side. They also propose a simple propagation algorithm to transfer the scores
from the keyword matching along the relations back to the root node of the query
tree, thereby obtaining a ranking over the results. The relations themselves do
not change the scoring.

All of the above systems consider an expert user who is familiar with the
structure of the data and is able to denote his information need using a struc-
tured query, i.e. providing graph patterns for matching. The scenario we consider
in our work is one of ad-hoc retrieval, i.e. retrieval by users who are not assumed
to have prior knowledge of the system, including the representation of data.
This scenario is typical for open search systems with inexperienced users who
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are not aware of the schema of the data, but also for systems that contain
heterogeneous collections of data that don’t conform to any single schema. As
an example, the web dataset considered in this paper consists of over 30,000
unique RDF properties. In such cases, it is impossible to translate the user’s
information need into a single correct structured representation of the query as
suggested by [17].

More specifically, we consider the task of Ad-hoc Object Retrieval (AOR)
defined by [15]. Pound et al. point out that over 40% of searches in a typi-
cal web search usage are looking for a single object or entity. The task –also
commonly called entity search– is thus to provide a ranking over RDF re-
sources in terms of their relevance to an entity that is explicitly named in the
query (though the query may contain more information than just the name
of the entity). Though this task is basic, it requires solving basic problems
in ad-hoc retrieval, in particular, dealing with multiple potential interpreta-
tions, and ranking partially matching resources based on their degree of
relevance.

This task has been evaluated in a campaign run at the SemSearch 2010 work-
shop, where six participants entered 14 submissions [7]. The submissions rep-
resent a wide range of retrieval approaches, including the ones used in existing
Semantic Web search engines such as Sindice [13]. We show that our method
outperforms these systems in retrieval effectiveness by as much as 40%.

The method we use is closest in nature to the one proposed by Pérez-Agüera
[14]. We also adapt BM25F, a scoring function that is considered state-of-the-
art in text retrieval. The index structure used in their system is similar to our
horizontal index, but it considers five fields: text (all text from property values),
title (words from the URI), object (tokens from the URIs of objects), inlinks
(tokens from predicates of ’incoming’ triples). The main difference to our work
is that BM25F scoring is applied to this five-field structure, while in our work
BM25F is used on the vertical index where there is one field per predicate in
the data. In other words, while Pérez-Agüera et al. consider all predicates with
equal weight, we design a system where it is possible to assign different weights
to different predicates. We will show that such weight assignment can improve
retrieval performance.

Alternative evaluations exist for other important tasks in Semantic Search.
The TREC Entity Track is focusing on entity search over text or hybrid col-
lections (text with metadata).5 The 1st Workshop on Question Answering over
Linked Data (QALD)6 focused on natural language question-answering over se-
lected RDF datasets, where ranking is not required. The evaluation campaign
organized by the European SEALS project focuses on user experience and em-
ploys user studies in addition to automated testing [19]. We do not expect that
our system could be applied directly in all these scenarios, but some of the
techniques described may be useful in designing solutions for them.

5 http://krisztianbalog.com/files/trec2010-entity-overview.pdf
6 http://www.sc.cit-ec.uni-bielefeld.de/qald-1

http://krisztianbalog.com/files/trec2010-entity-overview.pdf
http://www.sc.cit-ec.uni-bielefeld.de/qald-1
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3 Ranking Model

The basis for our ranking is the ranking function BM25F [16] that has been
originally developed for text retrieval. It is an extension of the BM25 probabilistic
model that weights query terms differently depending on which document fields
they appear in. Originally, BM25F was employed to weigh occurrences of terms
in the title, body, or anchor text of Web pages, whereas we will break down
the description of an RDF resource by the property, and consider as values the
literals that appear for each unique datatype-property (see Section 4).

The features that BM25F uses are the field term frequency tfsi (number of
times term i appears in field s), the field length ls (number of tokens in the field
s) and the field weights vs. The ranking function does not exploit proximity
information or term dependencies.

Using BM25F, a document D is scored against a query Q using a summation
over individual scores of query terms q ∈ Q:

scoreBM25F (Q, D) =
∑
q∈Q

wBM25F
i (1)

First, BM25F computes a document length normalization factor as

Bs =
(

(1− bs) + bs ·
ls

avls
)
)

, (2)

where avl is the average length of field l and bs is a tunable parameter (0 ≤
bs ≤ 1) that controls the amount of normalization. Next, BM25F aggregates the
weighted term frequencies over all the fields S, normalizing them using Bs as

˜tfi =
S∑

s=1

vs
tfsi

Bs
, (3)

and finally these frequencies are normalized using a sigmoid function as

wBM25F
i =

t̃f

k1 + ˜tfi

· wIDF
i , (4)

where k1 is a parameter and wIDF
i is the inverse document frequency of term i,

calculated as log
(

D−ni+0.5
ni+0.5

)
(ni is the number of documents i occurs in).

The ranking function as described in its most general form requires informa-
tion of all field lengths (ls), which is infeasible to index for very large collections.
Instead, we use a simplified version of the ranking function where the size of
the document D is used as the length of all fields (ls = l). An additional prob-
lem of RDF collections is that many objects are very short and are promoted
by the normalization component. In order to mitigate this problem, we select
a threshold lmax so that if l > lmax → l = lmax, and set lmax = 10 for all the
experiments.
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Standard document retrieval models also allow for incorporating document
query-independent features, which might come from different sources such as the
Web graph. Two examples are the document PageRank values or the number of
inlinks that point to a particular Web page. In our case, we classify documents
based on their domain into three classes, just like the field weights. We add this
document-weights wD to compute a final retrieval score as [2]:

score(Q, D) = wD · scoreBM25F (Q, D) (5)

4 Indexing

Information Retrieval engines rely on indices for efficient access to the infor-
mation required for computing scores at query time [11]. Indexing in IR is a
basic process of inversion (hence the name inverted index ) in which a docu-
ment is made accessible by the term(s) appearing in the content rather than by
some identifier of the document. In more detail, an inverted index provides, for
each term that appears in a collection of documents, a posting list, that is a list
of numbers identifying the documents in which the term appears. The posting
lists can be richer, providing, for instance, also the number of occurrences and
possibly the exact positions (always expressed as offsets from the start of the
document).

Current off-the-shelf retrieval packages allow references to multiple indices
or fields within a single query. In addition, state-of-the-art packages provide
support for an alignment operator. Alignment of queries is useful for parallel
texts. The need for handling parallel texts comes originally from the area of
natural language indexing, e.g. storing part-of-speech information. For example,
a text parallel to “Washington won several battles” could be “PERSON VERB -
NOUN”. Once parallel texts have been indexed, an alignment operator between
terms of two different indices returns just the documents in which two terms
appear in the same positions. For instance, an alignment between “Washington”
and “PERSON” would return the document associated to the parallel texts
above, but an alignment between “Washington” and “PLACE” would not (even
if “Washington” does appear in the document).

This technique is implemented in MG4J [5], an open-source engine for text
indexing. MG4J provides, for each query, a minimal-interval semantics—a set
of regions of text satisfying the query which are incomparable by containment
(i.e., no region is contained inside another region). The resulting semantics are
an extension of the Clarke–Cormack–Burkowski lattice [6] that handles multiple
indices (e.g., title and main text) particularly suited to parallel texts. Indeed,
the alignment operator can align any set of regions, and since the set of regions
associated to a term is exactly given by the positions in which the term appears,
we obtain the alignment of parallel texts we described. Other possibilities are
also available, such as operators that are weaker than exact alignment.
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These functionality allow two main alternatives to implement structured
retrieval.

The first option is illustrated in Table 2 using the sample data shown in
Table 1. For simplicity, we will call this a horizontal index on the basis that
RDF resources are represented using only three fields, one field for the tokens
from values, one for the properties and one for the tokens from the subject URI.
The token and property indices are aligned in that there is a correspondence
between the positions in the token and property fields, i.e. the value in the token
field at a given position is (part of) the value for the property written to the
same position in the property index. (Note that we write the complete predicate
in each position of the property field.) The alignment operator is used to align
the matches in the token and property fields where the query specifies a token
to match in a particular field.

The second option, which we will call a vertical index is shown in Table 3
using the same data. Here we create a field for each property occurring in the
data. In this case performing matching on particular properties only requires the
ability to restrict matches by field. Positions can be still useful, e.g. to make sure
the first and last name are matched as consecutive words. Note that structured
retrieval can also be implemented using a single field, e.g. by encoding fields as a
post-fix of tokens or storing field information as payload. These alternatives are
much less appealing. Post-fixing, for example storing terms like peter foaf:name,
leads to an explosion in dictionary size, especially when using a large number
of fields. On the other hand, encoding fields as payload makes it inefficient to
restrict searches to particular fields.

Table 1. Sample RDF data in Turtle format

@prefix foo: <http://example.org/ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix vcard: <http://www.w3.org/2006/vcard/ns#> .

foo:peter foaf:name "peter mika" .

foo:peter foaf:age "32" .

foo:peter vcard:location "barcelona" .

Table 2. Horizontal index of the data in Table 1

Field pos1 pos2 pos3 pos4 pos5

token peter mika 32 barcelona
property foaf:name foaf:name foaf:age vcard:location
subject http example org ns peter

In previous work [12], we have shown that both of these index structures can
be efficiently built in a distributed fashion using a single MapReduce job. Since
indexing can be efficiently parallelized, the index building time is linear in the
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Table 3. Vertical index of the data in Table 1

Field pos1 pos2 pos3 pos4 pos5

foaf:name peter mika
foaf:age 32
vcard:location barcelona

Table 4. R-vertical index of the data in Table 1

Field pos1 pos2 pos3 pos4 pos5

wimp peter mika barcelona
wneut

wuni 32

size of the input given the same number of machines in the cluster, and also linear
in the number of machines given the same input (up to the natural limit where
the cost of distribution outweighs the cost of indexing). The resulting indices
are similar in size for the horizontal and vertical case and a small fraction of
the size of the input data. Note that the vertical index alone does not contain
all the information we need for ranking, in particular only the horizontal index
provides direct access to term frequencies and the document sizes that is used in
our ranking. Thus in practice we can either use the horizontal index on its own
or use a combination of the vertical and the horizontal index, where the vertical
index is used for faster matching, but the horizontal index is also accessed when
computing resource scores.

In our current work, we propose a third additional index structure for im-
proved performance. For purposes of ranking, we only need to distinguish fields
that have different weights assigned. In our ranking function, we will use three
different weight levels for important, neutral, and unimportant properties so that
we can index all properties with the same weight using only three fields, instead
of the much larger number of fields we build for the regular vertical index. We
call this reduced version of the vertical index the r-vertical index. Table 4 shows
how we would index our sample data using this index structure, assuming that
we classify foaf:name and vcard:location as important, and foaf:age as unimpor-
tant. The disadvantage of the r-vertical index is the loss in functionality: using
this index it is not possible any more to issue queries that explicitly restrict
matches to particular properties, e.g. to retrieve resources where the word peter
matches in foaf:name and not in other fields. Note that using the r-vertical index
instead of the vertical index does not change the way ranking is performed, it
merely provides faster access and therefore speeds up the ranking process. We
investigate this next. We refer the reader to [12] for more discussion on how we
build these indices, the time spent and the distributed methods used to scale up
indexing.
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5 Evaluation

5.1 Evaluation of Efficiency

To measure the efficiency of these structures, we index the Billion Triples Chal-
lenge 2009 dataset.7 It contains RDF data collected by various Semantic Web
crawlers, and as such the data is highly heterogeneous. It contains 2,680,081
classes and 33,164 properties, and therefore it is unlikely that any user could be
aware of the complete structure of the data and compose formal queries to match
this structure. The collection contains 1.14 billion quads, which is 249GB of data
in uncompressed N-Quads format. The usage of predicates is highly skewed, and
fits an exponentially decaying distribution (refer to the webpage for other statis-
tics). Note that the scale of the data justifies the use of distributed indexing, i.e.
a single-machine setup would have been much slower in indexing this amount of
data.

For indexing, we grouped the quads by subject URI, and considered as virtual
documents the quads with the same subject. We subdivided each document into
fields by considering each unique predicate as a separate field. We only indexed
datatype-properties, i.e. quads with literals in the object position. In case of
multiple values for the same subject and predicate, we simply considered the
concatenation of values. We performed a minimal processing of values at indexing
time, namely we removed stop-words using a list of 389 common English terms
and lower-cased terms. We also indexed the subject URIs by replacing delimiters
with blank spaces and applying the same processing to the resulting string. The
version of the BTC 2009 dataset used in the evaluation does not include blank
nodes, i.e. all blank node identifiers have been replaced by URIs. We index this
data using all three index structures. For the vertical index, we select the top
three-hundred most common datatype-properties for indexing.

In the experiments, we measure the efficiency of retrieval, i.e. the time it takes
to process queries including matching and ranking, but not result rendering. We
consider two execution modes: AND where we require all keywords to be present
in a document to be scored and OR where only a single term is needed. The
former execution mode resembles Web search engines whereas the latter is the
mode by default in our ranking model. To show the additional cost of structured
retrieval, we also include a plain BM25 run using the token index.

We sample 150K queries taken from Yahoo!’s query logs with the restriction
that they lead to a click in Wikipedia, in order to ensure there is an entity focus
in the user intent. Among those queries 68% are unique and the average query
length is 2.2 terms. Table 5 presents the average running times, which converge
after a couple of thousand queries are being executed. The Table shows results for
the baseline BM25 retrieval, all three index configurations (horizontal, vertical
and reduced-vertical) and the two query execution modes.

Our tests show that the vertical approach is about eight time faster than the
horizontal approach when queries are executed in AND mode, while it is only
slightly faster in OR mode.
7 http://vmlion25.deri.ie/

http://vmlion25.deri.ie/
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Table 5. Retrieval efficiency using different index structures and execution modes

AND mode OR mode

BM25 46 ms 80 ms
Horizontal 819 ms 847 ms
Vertical 97 ms 780 ms

R-Vertical 48 ms 152 ms

In general, AND queries execute faster than OR queries. In AND mode, it
is necessary to compute the intersection of two (or more) posting lists; for OR
queries, it is necessary to compute the union. Clearly, in the second case we
always need to read the full posting list of each term involved. In the AND case,
instead, it is often possible to skip over documents that are not necessary using
skip-pointers [11]. For instance, when computing the AND of a very common
and a very rare term, most of the postings of the very common term are not
needed to compute the result, as the rare term doesn’t appear there.

The difference between AND or OR execution modes is small in the horizontal
case, because the alignment operator dominates execution times. Further, we can
see that the r-vertical index is almost as fast as the vertical index. This proves
that it is possible to trade-off query expressivity for faster execution times and
apply our scoring at execution times comparable to the current state-of-the-art
in Web search engines.

5.2 Evaluation of Effectiveness

We evaluate the effectiveness of our ranking using the data set, the queries and
the relevance assessments that have been made available as part of the Semantic
Search Challenge of 2010 [7]. All of the data has been made publicly available
for research use.8

The collection used in this evaluation is the Billion Triples Challenge 2009
data set that we have described in Section 4. The query set consists of 92 queries
with an entity focus selected from the query logs of Microsoft Live Search and
Yahoo! Search (see [7] for details.) We use a proprietary, state-of-the-art spell
corrector to fix a small number of user mistakes in the queries and apply the
same term-processing as on the collection.

For ranking, we use the ranking function described in Section 3. We classify
manually the properties into three classes (important, unimportant and neutral)
and assign the same vs for each class. In principle, we could learn or select a
different vs for each field, but in practice this would lead to an excessive number
of parameters. Table 6 shows the list of important and unimportant properties.

Similarly, we do not assign a weight wD individually to each document, but
manually classify a small number of domains into the three classes. Table 7
shows the list of important and unimportant domains, while all other domains
are considered neutral. We then set wD to wi

D, wu
D, wn

D for documents coming

8 http://km.aifb.kit.edu/ws/semsearch10/

http://km.aifb.kit.edu/ws/semsearch10/
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from domains classified as important, unimportant and neutral respectively. It
is future work to look at how we could automatically learn these lists, i.e. based
on the likelihood of the fields matching in relevant documents or domains vs.
the likelihood of matching in irrelevant documents or domains. Similarly, we
use a single b parameter for all bs. We choose a separate weight for the subject
field, which plays a special role as the identifier of the resource. We score the
documents after matching in OR execution mode.

Table 6. Manually selected list of important and unimportant properties. URIs are
abbreviated using known prefixes provided by the prefix.cc web service

important dbp:abstract, rdfs:label, rdfs:comment, rss:description, rss:title,
skos:prefLabel, akt:family-name, wn:lexicalForm, nie:title

unimportant dc:date, dc:identifier, dc:language, dc:issued, dc:type, dc:rights,
rss:pubDate, dbp:imagesize, dbp:coorDmsProperty, dbo:birthdate,
foaf:dateOfBirth,foaf:nick, foaf:aimChatID, foaf:openid, foaf:yahooChatID,
georss:point, wgs84:lat, wgs84:long

We use the official relevance assessments for evaluation, which were gathered
using Amazon Mechanical Turk and used a three-scale grading for excellent re-
sults, fair results and irrelevant results [3]. We report the retrieval performance
using Mean Average Precision (MAP) [11] which is more robust to noise pertur-
bations than the P@10 measure [4] and check for statistical significant differences
against the baseline using Wilcoxon’s signed rank test (significance level set to
0.01).

Table 7. Manually selected list of important and unimportant domains

important dbpedia.org, netflix.com

unimportant www.flickr.com, www.vox.com, ex.plode.us

Our results are shown in Table 8. We perform two rounds of parameter tuning,
in each round using a linear search over the individual parameter spaces. First,
we select a default configuration for the parameters and tune the performance
of each one of the features individually and report on their individual contribu-
tion to the increase in performance. Next, given the parameter list ordered as
displayed in the table, we report the performance increase when adding a new
parameter to the model, one at a time. This allows us to determine what is the
benefit of adding each parameter over the best configuration found for the model
so far.

We report the contribution of each of the features described Section 3. We start
with the plain BM25 function with no structure (vs = 1). We then investigate
the effect of tuning BM25’s b parameter. We then look at the result of assigning
field weights other the default vs = 1, in particular the effect of finding an
optimal weight for the subject field (vsjc), and for important and unimportant
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fields according to Table 6. Last, we look at changing document weights to other
than the default wn

D = 1. In particular, we assign a higher weight to documents
that are from important domains as given by Table 7, and then decrease the
weights of documents from unimportant domains. We omit the results for the
k1 parameter as it has little effect in retrieval performance.

Table 8. Feature importance measured with MAP. Improvements are statistically sig-
nificant against plain BM25 using Wilcoxon’s pairwise sign rank test (p-value < 0.01).
The Individual Features column computes the improvement of each feature indepen-
dently, on top of the untuned baseline, whereas the Combination column shows cumu-
lative gain as we add features in the listed order, one at a time.

Feature Description Individual Features Combination

BM25 BM25 0.1805 0.1805

b BM25’s b parameter 0.2450 (+35.7%) 0.2450 (+35.7%)

vsjc weighting for the subject field 0.2279 (+26.26%) 0.2512 (+2.5%)

vimp weighting for important properties 0.2261 (+25.25%) 0.2565(+2.1%)

vuni weighting for unimportant properties 0.2160 (+19.72%) 0.2590 (+1%)

wi
D weighting for important domains 0.2229 (+23.49%) 0.2730 (+5.4%)

wu
D weighting for unimportant domains 0.2319 (+28.47%) 0.2754 (+1%)

The first column of results shows that all features are able to improve sig-
nificantly the baseline, even adding them individually. It is interesting to note
that property field weighting (vsjc, vimp, vuni) is able to improve the MAP
score by more than 20%. This is a promising result given that we only took
a few properties into account, and potentially adding more parameters to the
ranking function could boost the performance by a larger margin. Adding query-
independent domain-based weights (wi

D, wu
D) is also beneficial, despite the fact

that we only included a limited number of site domains. This indicates that there
is still room for improvement, given enough training data available and further
analysis of which fields and properties should be weighted differently.

The second column of the table shows the accumulated improvement when we
introduce one parameter at a time in the model. The total improvement using
this one-step linear tuning of features is around 53% over the untuned baseline.
35% of the improvement is due to the b parameter, and on top of that, the field
and site features are able to boost the performance another 18%, which is an
encouraging result. The fact that the document normalization component plays
an important role in the performance (controlled by b) goes accordingly to results
in document retrieval. This indicates that the model is able to incorporate many
different signals and boost up the performance significantly by combining them
in a suitable way.

Next, we perform a 2-fold cross validation splitting the query set in two halves
in order to determine the performance of the combination of features and what
would be the effectiveness of the system in a real search environment, with
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Table 9. Cross-validated results comparing our ranking function against the BM25
baseline and the best performing submission at SemSearch 2010 (percentage improve-
ments are relative to SemSearch 2010)

Method MAP NDCG

SemSearch’10 0.1909 0.3134

BM25 0.1805 (-6%) 0.3869 (+23%)

BM25F 0.2705 (+42 %) 0.4800 ( +52%)

limited training data available. We tune the parameters performance with a lin-
ear search and the promising directions algorithm [16] on each one of the halves
separately. The algorithm starts with an initial set of parameter values, and per-
forms one independent linear search over each parameter. Then, it selects the
vector going from the initial set of parameter values and the best found values,
which defines a promising direction in the parameter space. The algorithm ex-
plores the parameter space over this vector and repeats the whole process until
convergence to a local minimum or when a maximum number of iterations is
reached. We report the results averaged over the two halves in Table 9 using
both the MAP and the NDCG metric, where the latter exploits graded rele-
vance judgments. Our method improves 50% over the BM25 baseline, and 42%
over the best run submitted to SemSearch 2010 using MAP [7]. These results
are extremely significant and would necessarily translate to a qualitative jump
in user experience.

Looking at the results in more detail, we could conclude that we did poorly
on long queries such as the morning call lehigh valley pa. We also did poorly
on queries with only one relevant result that we didn’t find such as kaz vapor-
izer, in this case because the single result came from ex.plode.us domain which
we marked as unimportant due to poor quality data (a flat list of tags).9 We
also performed low on the query hospice of cincinnati, which is a long-term care
provider in Cincinnati that has no directly relevant resource in the BTC dataset.
In this case, our system favored blog posts from RSS feeds that mentioned all
three words and in general talked about hospice care in Cincinnati. However,
the assessors marked as fair results other institutes in Cincinnati, such as the
University of Cincinnati, the Hyde Park in Cincinnati and the Cincinnati Police
Department. Conversely, we did well on queries that were short but highly selec-
tive such as mst3000, which stands for Mystery Science Theater 3000, an Ameri-
can cult television comedy. We also did well on queries where there was only one
relevant result that we did manage to find, e.g. fitzgerald auto mall chambersburg
pa. This auto mall has no relevant information in the BTC dataset, but the City
of Chambersburg, Pennsylvania was accepted as a fair result by the assessors.
All other queries fell in between these extremes, and typically had more than
one relevant result.

9 http://ex.plode.us is a social aggregator that is not in service any more.

http://ex.plode.us
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6 Conclusions

Ad-hoc object retrieval is one of the most basic tasks in semantic search and
it has direct applications in search engines that incorporate structured data
in their result pages. In this paper, we have proposed an adaptation of the
BM25F ranking function to the RDF data model that incorporates both field
weights, document priors and a separate field for the subject URIs. We have
shown that each of these features contributes to effectiveness on its own and in
combination with other features. In cross-validation, the combination of these
features outperforms in effectiveness the baseline BM25 method that ignores
RDF structure and semantics by 50% in MAP score. It also improves on other
state-of-the-art methods on the ad-hoc object retrieval task by 42% in MAP and
52% in NDCG scores.

We have shown two basic index structures, which we called the horizontal
and vertical indices, for efficient retrieval of the information required for scoring.
Both provide the same query expressivity, but represent different trade-offs in
effectiveness. The vertical index becomes ineffective as the number of properties
grow, while the horizontal index is able to capture all our data, but requires
the slower alignment operator to resolve queries. We also proposed a modified
version of the vertical index, which groups properties with the same weight, and
thereby trades off query expressivity for a performance that is comparable to
retrieval over text. In previous work, we have shown that both basic structures
can be efficiently built using MapReduce.

In future work, we plan to explore the combination of retrieval with data
integration to reduce the redundancy in current object search results. For this,
we need to find co-referent objects in search results and integrate the information
that different sources provide. A second problem we would like to address is the
ranking of information that is provided about each object. As some objects may
have several hundreds of triples associated with them, it is necessary to select
only those triples for display that are most descriptive of the object and at the
same time pertinent to the user query.
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Abstract. When thousands of vocabularies having been published on
the Semantic Web by various authorities, a question arises as to how they
are related to each other. Existing work has mainly analyzed their sim-
ilarity. In this paper, we inspect the more general notion of relatedness,
and characterize it from four angles: well-defined semantic relatedness,
lexical similarity in contents, closeness in expressivity and distributional
relatedness. We present an empirical study of these measures on a large,
real data set containing 2,996 vocabularies, and 15 million RDF docu-
ments that use them. Then, we propose to apply vocabulary relatedness
to the problem of post-selection vocabulary recommendation. We imple-
ment such a recommender service as part of a vocabulary search engine,
and test its effectiveness against a handcrafted gold standard.

Keywords: Ontology, recommendation, relatedness, vocabulary.

1 Introduction

The Semantic Web enriches data with machine-readable, unambiguous meaning
by advising different applications to use common vocabularies (a.k.a. ontologies),
and to adhere strictly to the term descriptions provided. It would enable an even
wider range of applications that operate on integrated data when vocabularies
from different communities are interconnected, e.g. aligned. A large body of
work has been devoted to this problem of matching [9], which aims at finding
terms (i.e. classes or properties) in different vocabularies that have the same
intensional meaning. Accordingly, approaches thus far mainly follow a paradigm
that measures the similarity between terms [9] or between vocabularies [17,5]. In
fact, similarity is just a specific kind of relatedness. As other forms of relatedness,
one vocabulary may extend another by defining more specific subclasses, and
two vocabularies may describe closely related domains so that they are often
used together, etc. However, this more general notion of relatedness has been
addressed by only few work [19,23,11], and none of these approaches has been
evaluated on a representative sample of real-world vocabularies. In this regard,
whereas our previous work [4] has analyzed only explicit relations between terms,
in this paper, we will characterize several different aspects of relatedness between
vocabularies via an empirical study of many real-world, diverse vocabularies.
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Vocabulary relatedness can find many applications. For example, it could be
employed to rank and find central vocabularies [7]. Here we conceive another ap-
plication called post-selection vocabulary recommendation. Assume that a user
has shown an interest in a vocabulary, or in other words, she has selected a
vocabulary. Such selection widely exists in many scenarios, e.g. having selected
a vocabulary for further exploration when interacting with a vocabulary search
engine, or having selected a vocabulary for use when developing an application.
Then, a recommender system will automatically suggest several other vocab-
ularies that the user might also be interested in, e.g. one as an alternative or
complementary to the selected one for a particular use. Naturally, such recom-
mendation mainly relies on the features of the selected vocabulary, and thus we
call it post-selection recommendation. We will discuss how this specific task can
be supported by the study of vocabulary relatedness.

To summarize, the contribution of this paper is threefold:

– Rather than similarity, we study the more general notion of relatedness be-
tween vocabularies on the Semantic Web. We discuss four kinds of relat-
edness: (a) semantic relatedness defined by vocabulary (meta-)descriptions,
(b) content similarity which exploits lexical features, (c) expressivity close-
ness according to the language constructs adopted, and (d) distributional
relatedness derived from vocabulary usage.

– We apply six proposed relatedness measures to a real-world data set crawled
by a Semantic Web search engine, which contains 2,996 vocabularies instan-
tiated by other 15 million RDF documents (collectively containing 4 billion
RDF triples). We analyze and compare the effects of our measures, and re-
port many statistical findings that help characterize real-world vocabularies.

– We consider the problem of post-selection vocabulary recommendation, and
propose to solve it by using relatedness measures. We also examine the pop-
ularity of vocabularies for recommendation. We evaluate our approach based
on a handcrafted gold standard, and also develop such a recommender sys-
tem and incorporate it into a vocabulary search engine.

In the remainder of this paper, Sect. 2 characterizes our data set, in particular
the vocabularies identified from it. Section 3 describes and compares several re-
latedness measures. Section 4 introduces and evaluates a solution to the problem
of post-selection vocabulary recommendation. Finally, Sect. 5 compares related
work, and Sect. 6 concludes the paper.

2 Vocabularies in the Real World

2.1 Data Set

The data set investigated in this work is the one — at the time of writing
— used by the Falcons search engine.1 As summarized in Table 1, it comprises

1 http://ws.nju.edu.cn/falcons/
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15 million RDF (including RDF/XML and RDFa) documents, which collectively
contain 4 billion RDF triples, crawled from 5 thousand pay-level domains2 be-
tween February 2010 and May 2011.

Table 1. Data set statistics

Number of RDF documents 15,947,721
Number of pay-level domains hosting RDF documents 5,805
Aggregate number of RDF triples 4,099,414,887

Number of vocabularies 2,996
Number of pay-level domains hosting vocabularies 261
Aggregate number of classes 396,023
Aggregate number of properties 59,868

To characterize the data set, Figure 1 presents the distribution of the number
of pay-level domains over the number of RDF documents hosted on a log-log
scale. The distribution approximates a power law, but having a long tail to the
right which corresponds to several large data sources including hi5.com, l3s.de,
geonames.org, dbpedia.org, etc. This power law phenomenon has also been
observed on other data sets such as the one crawled by Swoogle [8].
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2.2 Identifying Vocabularies

We study only the vocabularies that are published by applying best practice.3

Accordingly, since a vocabulary description may be distributed among multiple
2 A pay-level domain is a domain that requires payment at a (country-code) top-level

domain [14]. For instance, the URI http://ws.nju.edu.cn/falcons/ belongs to the
pay-level domain nju.edu.cn. We use the Apache Nutch package (nutch.apache.
org) to identify the pay-level domain of a URI.

3 http://www.w3.org/TR/swbp-vocab-pub/
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documents, we employ a bottom-up strategy to identify vocabularies from the
data set. That is, firstly we identify a term as a dereferenceable URI that refers to
a class or a property in the RDF document retrieved via dereferencing the URI.
Then, terms sharing a common namespace URI are grouped into a vocabulary,
using this namespace URI as its identification. In this way, we may miss some
old-fashioned vocabularies that are not dereferenceable, and may also fail to find
all the terms for some vocabulary, but we believe that the results obtained would
accurately reflect real-world conditions at our best.

As summarized in Table 1, we have identified 396,023 classes and 59,868 prop-
erties, which are grouped into 2,996 vocabularies. They come from 261 pay-level
domains or 33 top-level domains. That is, among 5,805 pay-level domains in our
data set that serve RDF documents, only a small portion (4.50%) publish their
own vocabularies. Figure 2 depicts the distribution of the number of vocabular-
ies hosted over top-level domains, in which org and edu dominate with 44.53%
and 31.58%, respectively, followed by com and several country-code ones. This
distribution is also close to the one for Swoogle [8].

These vocabularies vary considerably in size and composition. The largest
ones, in terms of the number of terms, are some versions of YAGO and Cyc
which comprise tens of thousands of terms, whereas most of the others (72.30%)
contain not more than 25. Even among large vocabularies, some (e.g. YAGO)
mainly provide classes when some others (e.g. SUMO) are rich in both classes
and properties.

3 Characterizing Relatedness between Vocabularies

In this section, we discuss, from different points of view, four kinds of relatedness
between vocabularies, and formalize them as numerical measures. In particular,
we assume that relatedness measures are symmetric. We perform an empirical
analysis of these measures, and finally make a comparison.

3.1 Semantic Relatedness

Vocabularies on the Semantic Web are described in a structured way. When one
vocabulary is connected to another via a typed link, it naturally indicates certain
kind of relatedness having well-defined semantics, and this leads to our first kind
of relatedness measure.

Explicit Relation. Major vocabulary languages such as OWL provide mech-
anisms for describing information about a vocabulary itself. For instance, owl:
imports references another vocabulary whose meaning will be included in the
present one. Since such relation between vocabularies is directly given in the
meta-description of a vocabulary, we call it explicit relation. Further, when there
are explicit relations between vocabulary v1 and v2, and between v2 and v3, we
observe some kind of relation between v1 and v3, which looks “longer” and thus
is probably weaker than the two original relations.
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These observations could be represented as an edge-weighted graph GE , where
nodes correspond to vocabularies, and every pair of explicitly related vocabular-
ies vi and vj are connected by an undirected edge, associated with a weight w
indicating how weak the relation is:

w(vi, vj) =

{
2 if vi references vj or vj references vi,

1 if vi references vj and vj references vi.
(1)

Then, the relatedness (denoted by RE
S ) between two vocabularies is defined as

the multiplicative inverse of the weight of a shortest path between their corre-
sponding nodes in GE , which is thus inside (0,1], or 0 when unreachable. Note
that we actually ignore the specific types of relations, as we will see later that
most relations observed in practice are quite homogeneous.

Implicit Relation. In a vocabulary, the description of a term may refer to terms
in other vocabularies, e.g. via rdfs:subClassOf or complex OWL constructs,
which suggests a kind of implicit relation between vocabularies, in the sense that
they are revealed by term-level descriptions but might not be mentioned in the
meta-description of vocabulary. Analogous to GE , here we devise another edge-
weighted graph GI to convey such relations, which differs from GE in only one
respect that: implicit but not explicit relation is considered. Then, a relatedness
measure, denoted by RI

S , is defined based on GI analogously.

Hybrid Relation. When we take both explicit and implicit relations into con-
sideration, we obtain a kind of hybrid relation between vocabularies. Analo-
gously, it could be characterized as an edge-weighted graph GE+I , based on
which a relatedness measure, denoted by RE+I

S , is defined.

Empirical Analysis. Among 2,996 vocabularies in the data set, explicit, im-
plicit and hybrid relations are observed between 2,968, 2,845 and 4,691 pairs
of vocabularies, respectively. According to Table 2 which summarizes several
statistical properties of GE , GI and GE+I , whereas GE and GI are similar in
terms of the number of edges, GE seems more fragmented, suggested by the per-
centages of isolated nodes and the metrics below for characterizing reachability.
On the other hand, there are far more edges in GE+I than in GE , indicating
that many implicit relations between vocabularies are not captured by the meta-
descriptions thereof.

In particular, only 17 types of explicit relations are observed in our data set,
and only 6 occur in the meta-descriptions of more than one vocabulary. As shown
in Table 3, when owl:imports dominates largely, most others are negligible.

3.2 Content Similarity

In a vocabulary description, terms are not only interconnected but also usually
associated with human-readable contents, e.g. labels. Given two vocabularies
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Table 2. Statistical properties of GE , GI and GE+I

GE GI GE+I

Number of nodes 2,996 2,996 2,996
Number of edges 2,968 2,845 4,691

Average degree 1.98 1.90 3.13
Maximum degree 786 684 848
Percentage of isolated nodes 56.88% 36.72% 32.31%

Number of connected components 1,763 1,143 1,007
Percentage of nodes in the largest connected component 32.78% 57.44% 62.18%
Percentage of pairs of connected nodes 5.40% 16.50% 19.33%

Table 3. Relations used in the highest percentages of vocabulary meta-descriptions

http://www.w3.org/2002/07/owl#imports 36.58%
http://www.daml.org/2001/03/daml+oil#imports 1.60%
http://www.w3.org/2000/01/rdf-schema#seeAlso 0.30%
http://www.w3.org/2002/07/owl#priorVersion 0.10%
http://purl.org/dc/terms/requires 0.07%
http://www.openlinksw.com/schema/attribution#isDescribedUsing 0.07%

modeling the same or related domains, their textual descriptions often overlap.
By detecting this aspect, we present our second kind of relatedness measure.

Specifically, the relatedness (denoted by RC) between two vocabularies vi and
vj combines the content similarity between their classes (denoted by Ci and Cj)
and the one between their properties (denoted by Pi and Pj):

RC(vi, vj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SetSim(Ci,Cj)+SetSim(Pi,Pj)

2 if Ci × Cj �= ∅ and Pi × Pj �= ∅,
SetSim(Ci, Cj) if Ci × Cj �= ∅ and Pi × Pj = ∅,
SetSim(Pi, Pj) if Ci × Cj = ∅ and Pi × Pj �= ∅,
0 if Ci × Cj = ∅ and Pi × Pj = ∅,

(2)
where SetSim is a similarity measure for term sets that determines the extent
to which the lexical features of both sets are covered by each other:

SetSim(Ti, Tj) = HMean(
1
|Ti|

∑
ti∈Ti

max
tj∈Tj

LS(ti, tj),
1
|Tj |

∑
tj∈Tj

max
ti∈Ti

LS (ti, tj)) ,

(3)
where HMean returns the harmonic mean of the two parameters, and LS(ti, tj)
gives the lexical similarity between terms. As one implementation of LS, we apply
a string metric [24] to all pairs of the respective labels of the two terms, normalize
each result to be inside the interval [0,1], and finally take the maximum.
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Empirical Analysis. In our data set, to exploit term descriptions for labels,
we retrieve property values from rdfs:label, dc:title and their subproperties
(e.g. skos:prefLabel) that are defined via or can be inferred from the rdfs:
subPropertyOf relation, which collectively amount to 86 types of properties. In
this way, at least one label can be found for 63.67% of all the terms, which are
distributed among 36.21% of all the vocabularies. Since the absence of label is
still commonly observed, the local name of each term URI is also employed.

Another thing we would like to point out is: computing content similarity
is the most expensive task performed in our experiments, which costs a mul-
tithreading program running on a multi-core server several weeks. This is not
surprising because all pairs of 2,996 vocabularies are compared, and for each
pair, every class (resp. property) in one vocabulary is compared with every class
(resp. property) in another, which is again time-consuming in particular for large
vocabularies, as illustrated in Sect. 2.2.

3.3 Expressivity Closeness

Vocabularies vary from lightweight taxonomies to heavyweight ones with com-
plex constraints. In this regard, two vocabularies are close when they are similar
in expressivity. Accordingly, we develop our third kind of relatedness between
vocabularies based on their expressivity closeness.

The expressivity of a vocabulary is mainly (though not fully) captured by
the language constructs (e.g. rdfs:subClassOf vs. owl:complementOf) adopted
for describing terms. Besides, other meta-level terms may also be employed for
description, e.g. Dublin Core metadata terms and those for meta-modeling.
Therefore, we propose to characterize the expressivity of a vocabulary v by
MetaTerms(v) — the set of all meta-level terms that are instantiated in v’s de-
scription. Then, given two vocabularies vi and vj , we define their relatedness
(denoted by RE) as follows:

RE(vi, vj) = J(MetaTerms(vi), MetaTerms(vj)) , (4)

where J returns the Jaccard similarity coefficient of the two sets.

Empirical Analysis. We observe 4,978 meta-level terms that are instantiated
in at least one vocabulary’s description, 469 (9.42%) of which are used in at
least two, showing a wide variety. In particular, the meta-level terms instan-
tiated in the highest percentages of vocabulary descriptions are all language
constructs, led by rdf:type, rdfs:domain and rdfs:range. Excluding these,
Table 4 presents the top-ranked ones remaining, which are all not widely used.

On the other hand, describing a vocabulary needs to instantiate an average
of 10.13 types of meta-level terms. In fact, 92.96% of all the vocabularies in our
data set use not more than 20 types. However, we still recognize hundreds of
types of meta-level terms in some complex vocabularies such as Cyc.
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Table 4. Meta-level terms (excluding those in RDF, RDFS, OWL or DAML) instan-
tiated in the highest percentages of vocabulary descriptions

http://purl.org/dc/elements/1.1/description 1.50%
http://purl.uniprot.org/core/encodedIn 0.90%
http://www.w3.org/2004/02/skos/core#definition 0.73%
http://purl.org/dc/terms/modified 0.67%
http://www.swop-project.eu/ontologies/pmo/product.owl#unit 0.67%
http://purl.org/dc/terms/issued 0.63%
http://www.w3.org/2003/06/sw-vocab-status/ns#term_status 0.63%

3.4 Distributional Relatedness

Whereas all the previous notions of relatedness rely on the intensional descrip-
tions of vocabularies, our fourth kind of measure looks at the extensional side,
i.e. to investigate vocabulary usage in practice.

Recall that on the fruitful topic of relatedness in the field of computational
linguistics, among others, distributional relatedness [20] defines close words as
those that are used in similar contexts, e.g. having many co-occurring words in
common. Accordingly, a “distributional profile” is created for each word, which
characterizes the strength of association between the word and every other word
that co-occurs with it, commonly by using conditional probability. Then, the
similarity (e.g. cosine) between distributional profiles is calculated, as a proxy
for relatedness between words.

Inspired by this line of research, we study vocabulary co-occurrence in
use, which in the context of the Semantic Web amounts to vocabulary co-
instantiation. We conceive an RDF document as the context from which co-
instantiation is observed, and let IV(d) be the set of all vocabularies instantiated
in RDF document d. Then, given the set of all vocabularies V and v ∈ V , the
distributional profile of v is represented by a |V |-dimensional vector, denoted by
DP(v), where:

DPi (v) =
|{d ∈ D| v, vi ∈ IV(d)}|
|{d ∈ D| v ∈ IV(d)}| , (5)

where D is the set of all RDF documents under investigation. In particular,
DP(v) is defined as 0 when no instantiation of v can be observed in any d ∈ D.
Finally, the relatedness between vocabulary vi and vj , denoted by RD(vi, vj), is
given by the cosine similarity between DP(vi) and DP(vj).

This straightforward implementation is improved in two ways. Firstly,
language-level vocabularies (e.g. RDF) are trivially and widely instantiated,
which function as stop words in computational linguistics. Hence they are filtered
out prior to processing. Otherwise, they may undesirably, even largely, increase
the relatedness between many pairs of vocabularies. Secondly, as discussed in
Sect. 2.1, considering the distribution of the number of pay-level domains over
the number of RDF documents hosted, a large data source in the long tail of the
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distribution may unfairly affect the computation of relatedness. To avoid this,
we limit the effects that could be caused by a single pay-level domain. Specifi-
cally, we define PLD(D) as a partition of D such that each element of PLD(D)
corresponds to all the RDF documents in D that are hosted by one particular
pay-level domain. Then, we rewrite (5) as follows:

DPi (v) =
|{S ∈ PLD(D)| ∃d ∈ S, v, vi ∈ IV(d)}|
|{S ∈ PLD(D)| ∃d ∈ S, v ∈ IV(d)}| . (6)

Empirical Analysis. In our data set, instantiation is observed for 1,874
(62.55%) vocabularies. Table 5 shows the most widely instantiated ones, led
by Dublin Core metadata vocabularies and FOAF. Further, among 9,763 pairs
of vocabularies that have co-instantiation, Table 6 presents the most frequent
ones.

Table 5. Vocabularies (excluding RDF, RDFS, OWL and DAML) instantiated in RDF
documents hosted by the highest percentages of pay-level domains

http://purl.org/dc/elements/1.1/ 37.45%
http://xmlns.com/foaf/0.1/ 22.79%
http://purl.org/dc/terms/ 15.90%
http://www.icra.org/rdfs/vocabularyv03# 10.65%
http://www.w3.org/2003/01/geo/wgs84_pos# 5.22%
http://purl.org/vocab/bio/0.1/ 2.76%
http://www.w3.org/2000/10/swap/pim/contact# 2.76%
http://rdfs.org/sioc/ns# 2.20%
http://usefulinc.com/ns/doap# 1.67%
http://purl.org/vocab/relationship/ 1.38%

Table 6. Pairs of vocabularies (excluding those involving RDF, RDFS, OWL or
DAML) co-instantiated in RDF documents hosted by the highest percentages of pay-
level domains

http://purl.org/dc/elements/1.1/
14.42%

http://purl.org/dc/terms/

http://purl.org/dc/elements/1.1/
10.65%

http://www.icra.org/rdfs/vocabularyv03#

http://purl.org/dc/terms/
10.61%

http://www.icra.org/rdfs/vocabularyv03#

http://xmlns.com/foaf/0.1/
9.42%

http://purl.org/dc/elements/1.1/

http://www.w3.org/2003/01/geo/wgs84_pos#
5.05%

http://xmlns.com/foaf/0.1/
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3.5 Comparison

Now we study the levels of agreement between different relatedness measures.
We apply, to all pairs of 2,996 vocabularies in our data set, each of our six
relatedness measures, namely RE

S , RI
S , RE+I

S , RC , RE and RD. Each measure will
induce a ranking of these pairs, and we leverage the Spearman’s rank correlation
coefficient, denoted by ρ, to measure the correspondence between these rankings
and assess its significance. ρ is inside the interval [-1,1], and an increasing value
implies increasing agreement.

The results are summarized in Fig. 3. All the values are positive, i.e., all
these measures are positively correlated. Larger values are found between RI

S

and RE+I
S (0.88), and between RE

S and RE+I
S (0.53), which are not surprising

since RE+I
S comprises RE

S and RI
S . In particular, the second largest value (0.66)

is observed between RE
S and RD, indicating that explicitly related vocabularies

are also most likely to be instantiated together, and vice versa.

RI
S RE+I

S RC RE RD

RE
S 0.39 0.53 0.21 0.19 0.66

RI
S - 0.88 0.26 0.38 0.35

RE+I
S - - 0.30 0.26 0.43
RC - - - 0.32 0.23
RE - - - - 0.24

Fig. 3. Levels of agreement between in-
dividual relatedness measures

I
SR

E
SR CR

IE
SR DR ER

Fig. 4. Dendrogram showing the single-
link hierarchical clustering of individual
relatedness measures based on their lev-
els of agreement

Further, based on ρ values, we employ the single-link hierarchical clustering
technique to depict the relationships between measures. As shown in Fig. 4, RC

is relatively far from the other measures. One reason might be that for describing
the same domain, different authorities may publish their own vocabularies, which
vary considerably in expressivity and are rarely connected to each other.

4 Post-selection Vocabulary Recommendation

In this section, we describe an application that can be enriched by the study of
vocabulary relatedness. Recall that when we browse online book stores or movie
databases, some of these applications will provide recommendations to avoid
overloading users with information. For instance, when we look at the introduc-
tion of a book, several “related items” are also presented, e.g. books written by
the same author. Analogously, when interacting with a vocabulary repository,
e.g. a vocabulary search engine, after a vocabulary has been selected for examin-
ing details, the system is expected to recommend several related vocabularies. In
the next, we address this problem of post-selection vocabulary recommendation.
We describe an approach as well as an extension, and present evaluation results.
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4.1 Relatedness-Based Ranking

In Sect. 3, we have introduced six measures of relatedness between vocabularies,
namely R = {RE

S , RI
S , RE+I

S , RC , RE , RD}, all returning values inside the inter-
val [0,1]. For a selected vocabulary v0, we argue that a vocabulary vi is more
likely to be recommended if it is more related to v0, in terms of some Rj ∈ R.
That is, we rank recommendation candidates by Rj(vi, v0). Here, which Rj to
use is specified by users according to their specific needs. R can also be extended
to include other metrics developed in the future.

When users intend to receive recommendations featuring several different
characteristics, it requires employing multiple measures. Further, users may at-
tach different degrees of importance to different measures. To this end, we allow
ranking recommendation candidates by a linear combination of all the measures
in R, i.e.

∑
Rj∈R αjRj(vi, v0), where αj ∈ [0, 1] is a group of weightings.

We implement such a recommender service in Falcons Ontology Search.4

When exploring a retrieved vocabulary, users could enquire about related ones
after specifying a weighting for each relatedness measure.

4.2 Popularity-Based Re-ranking

Besides relatedness, another factor we would like to consider in vocabulary rec-
ommendation is popularity. Recall that the Semantic Web could facilitate data
integration on the semantic level exactly because different Semantic Web ap-
plications produce and consume data adhering to common vocabularies. Hence,
we argue that a recommender service should return more popular vocabular-
ies, i.e. those having been used by more applications. To incorporate popularity
into the criteria for ranking, given Pop(v) — the number of pay-level domains
hosting RDF documents that instantiate v, we extend our approach to rank
recommendation candidates by the following metric:∑

Rj∈R

αjRj(vi, v0) · (1 + logb (1 + Pop(vi))) , (7)

where b is a parameter that tunes the degree of influence of popularity on rec-
ommendation. When decreasing b from +∞ to a small value (e.g. 2), the degree
of influence increases. But apparently, popularity is achieved at the relative cost
of relatedness. A trade-off needs to be studied for specific applications.

4.3 Evaluation

Firstly, without considering popularity, we examine which Rj ∈ R is more use-
ful for recommendation. To achieve this, we compare generated rankings thereof
to the gold standard given by human experts. We identify 1,302 vocabularies
from our data set for this experiment, each containing 5–25 terms, being neither

4 http://ws.nju.edu.cn/falcons/ontologysearch/
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too small to be significant nor too large for manual investigation. We choose 20
from them at random as “selections” for testing post-selection recommendation.
For each selection, we can hardly ask experts to give a ranking of all the other
1,301 vocabularies, but rather, we apply the depth-10 pooling technique, which is
widely adopted for evaluating information retrieval (IR) systems. To be specific,
we apply each Rj ∈ R to score all the other 1,301 vocabularies, retain only those
having positive relatedness values, and collect the top-10 ones. For all Rj ∈ R,
these top-ranked vocabularies collectively form a pool to be used in the exper-
iment. The pool is randomly divided up and assigned to two experts. For each
assignment, the expert is asked to assess the relatedness between the assigned
vocabulary and the selection, and report (a) “closely related”, (b) “somewhat
related”, or (c) “unrelated”, corresponding to ratings 2, 1 and 0, respectively. In
particular, 5 vocabularies in each pool are assigned to both experts.

We receive 739 assessments in total, of which 81.60% are unrelated, 10.55%
somewhat related and 7.85% closely related. Unrelated vocabularies take the
largest proportion, which in fact is quite common under pooling methods. Be-
sides, among 100 (20 × 5) vocabularies assessed by both experts, agreement is
reached on 80%. If we consider only binary ratings by taking closely and some-
what related as “related”, agreement is reached on 91%, suggesting a high quality
of the assessments. Finally, to form one single gold standard, when two experts
give different assessments on a vocabulary, we take the higher rating.
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Fig. 6. Relationship between relatedness
and popularity under different b values

For each selection, we evaluate each Rj ∈ R by calculating its normalized
discounted cumulative gain (NDCG) — a widely used metric for IR evaluation.
NDCG@k, inside the interval [0,1], measures the quality of the k top-ranked vo-
cabularies against their gold-standard ratings. Figure 5 summarizes the results
averaged over all the 20 selections, under different settings of k. RC noticeably
outperforms the others, showing that our experts assess relatedness between vo-
cabularies mainly based on the overlap between their contents. On the other
hand, we attribute the bad performances of RE

S and RD to the fact that, as
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presented in Sect. 3, 56.88% of vocabularies in our data set are not explicitly re-
lated to any other ones, and that 37.45% have no instantiation. Thereby, RE

S and
RD fail to find any related vocabularies for 13 and 11 selections, respectively. In
these cases, NDCG is defined as 0, which largely hurt their overall performances.

Secondly, we look at combinations of measures. Since RC performs the best
in the first experiment, we combine it with every other measure in R to see
whether better results can be achieved. Figure 7 illustrates the evaluation results
of several combinations. Actually, for each kind of combination, we show only
one group of weightings with which the best result is obtained. We find that
under different settings of k, better or equal results are consistently observed
when RC is combined with RE

S , RE or RD, whereas RI
S and RE+I

S seem only
helpful when k = 1, i.e. in generating the top-ranked vocabulary. However, the
reader is reminded that these results only reflect the bias of our experts, whereas
our flexible approach indeed allows task-oriented combination.
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Fig. 7. NDCG of several combinations of measures

Finally, we illustrate, with RC , the relationship between relatedness and pop-
ularity. Under different b values in (7), we evaluate relatedness by NDCG@1
and evaluate popularity by the number of pay-level domains hosting RDF doc-
uments that instantiate the top-ranked vocabulary. As shown in Fig. 6, when
NDCG decreases from 0.60 to 0.45 (averaged over all the 20 selections), the num-
ber of pay-level domains increases linearly. A much higher popularity can also be
achieved, which however loses relatedness considerably. It reveals that looking
for a good trade-off is not an easy task, but has to rely on specific applications.

5 Related Work

5.1 Relatedness

In computational linguistics, a substantial amount of research has been con-
ducted on the measurement of relatedness between words (or senses) [3]. Most
existing methods exploit semantic networks such as WordNet, and operate on
shortest paths or information theory. These ideas have also been transplanted
to the Semantic Web for measuring relatedness between terms in a vocabu-
lary [19,23,11], by treating a vocabulary description as a semantic network.
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Complementary to this, another line of research studies the co-occurrence of
words to measure their distributional relatedness [20].

Differently, we look at relatedness on the vocabulary but not the term level.
In an earlier work [4], we derive a vocabulary dependence graph from the rela-
tions between terms, and perform a complex network analysis, which reveals its
scale-free nature. In [7], several types of relations between terms and between
vocabularies are identified, to characterize a random surfer’s behavior for rank-
ing. In [25], vocabularies are clustered based on their use of language constructs.
Whereas each of these studies investigates very few kinds of relatedness, the
work in this paper characterizes it in four aspects and compares six measures.

As a special kind of relatedness, similarity between terms [9] and between
vocabularies [17,5] have attracted extensive research. Further, the similarities
among a collection of vocabularies can be represented as a graph, on which
statistical analysis [10,21] and complex network analysis [12] have been carried
out. Besides, more sophisticated measures of similarity have been established
based on such graph [6]. In our work, we also implement content-based similarity
as one aspect, when we deal with the more general notion of relatedness.

5.2 Recommendation

Recommender systems have become an important research area [1]. In partic-
ular, collaborative approaches have been applied to vocabulary recommenda-
tion [22,15], which are grounded on user-generated ratings. A closely related
problem is vocabulary search, which usually takes a keyword query as input
and in fact performs query-biased recommendation [2,13,18]; these approaches
mainly investigate how well a vocabulary is relevant to a keyword query. In-
spired by [16], the problem of post-selection recommendation addressed in our
work is in a different context that takes a selected vocabulary as input and de-
mands selection-biased recommendations, to which relatedness measurement is
the natural solution.

6 Conclusions and Future Work

In this paper, we have discussed vocabulary-level relatedness from four aspects.
Our empirical analysis on a large, real data set compares six developed measures,
and also, reports many statistical findings, which help characterize vocabularies
on the real Semantic Web. In particular, we observe that many cross-vocabulary
relations between terms are not embodied in their vocabulary meta-descriptions,
and vocabularies having explicit relations tend to be instantiated together. After
that, we have proposed to apply relatedness measures to the problem of post-
selection vocabulary recommendation. The evaluation results demonstrate the
effectiveness of our measures in recommendation, particularly when they are
combined appropriately. We have enriched our Falcons Ontology Search system
with such a flexible recommender service.

In fact, our relatedness measures have not fully exploited vocabularies. As
future work, textual descriptions and provenance information in vocabulary
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meta-description still need investigation. About vocabulary recommendation, it
would be interesting to combine our relatedness measures with collaborative
methods and ontology evaluation techniques.
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23. Pirró, G., Euzenat, J.: A Feature and Information Theoretic Framework for Se-
mantic Similarity and Relatedness. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P.,
Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I.
LNCS, vol. 6496, pp. 615–630. Springer, Heidelberg (2010)

24. Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 624–637. Springer, Heidelberg (2005)

25. Tempich, C., Volz, R.: Towards a Benchmark for Semantic Web Reasoners-An
Analysis of the DAML Ontology Library. In: 2nd International Workshop on Eval-
uation of Ontology-based Tools. CEUR Workshop Proceedings (2003)



RELIN: Relatedness and Informativeness-Based

Centrality for Entity Summarization

Gong Cheng1, Thanh Tran2, and Yuzhong Qu1

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210093, China

2 Institute AIFB, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
{gcheng,yzqu}@nju.edu.cn, ducthanh.tran@kit.edu

Abstract. Linked Data is developing towards a large, global repository
for structured, interlinked descriptions of real-world entities. An emerg-
ing problem in many Web applications making use of data like Linked
Data is how a lengthy description can be tailored to the task of quickly
identifying the underlying entity. As a solution to this novel problem
of entity summarization, we propose RELIN, a variant of the random
surfer model that leverages the relatedness and informativeness of de-
scription elements for ranking. We present an implementation of this
conceptual model, which captures the semantics of description elements
based on linguistic and information theory concepts. In experiments in-
volving real-world data sets and users, our approach outperforms the
baselines, producing summaries that better match handcrafted ones and
further, shown to be useful in a concrete task.

Keywords: Distributional relatedness, entity summarization, informa-
tiveness, PageRank, random surfer model.

1 Introduction

Linked Data can be conceived as a large collection of entity descriptions. As de-
scriptions evolve on the Linked Data Web, they are linked to others. The result
is that descriptions become increasingly lengthy. Already today, lengthy descrip-
tions can be found in many existing data sets. For instance, the latest version of
the well-known DBpedia data set1 describes 3.5 million entities with 672 million
facts (i.e. RDF triples). This means each entity description is associated with
an average of 192 RDF triples. Lengthy descriptions take long time for human
users to read, which is unacceptable in tasks that require quick identification of
the underlying entities. For example during entity search [5,14], users want to
quickly browse through search results to identify the ones that match a given
information need. Another task is pay-as-you-go data integration [11,19], where
users evaluate entity mappings computed by the matching system by identifying
the referred entities and judging whether they denote the same thing. To im-
prove the efficiency of these tasks, we aim at solving this novel problem that we
1 http://dbpedia.org/
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call entity summarization to produce a version of the original description that is
more concise, yet containing sufficient information for users to quickly identify
the underlying entity.

The more general problem of data summarization has been studied by dif-
ferent communities. For example, database [2] and graph summarization [13]
compute compact representations of data that generalize the original data el-
ements (e.g. cells in a data cube, or a graph) to a more coarse-grained level
(e.g. dimension-based regions, or an aggregated graph). That is, data elements
are categorized, and then are compactly represented using the resulting cate-
gories. However, this is proposed for lossless or lossy (but with bounded errors)
data representation, which is distinct from the summary pursued in our prob-
lem of entity summarization that is for facilitating quick identification of the
underlying entity, or in other words, for helping to efficiently distinguish one
entity from others. Thereby, rather than categorization, a solution needed here
could be a way of selecting a few central data elements that are most useful in
characterizing an entity. This is more similar to extractive text [8] and ontology
summarization [20], the goal of which is to find the central topics of the given
data (e.g. a document or an ontology). Unlike categories in database and graph
summaries, a topic here is an element extracted from the original data, e.g. a
text sentence or an ontology element. To find central elements, the notion of cen-
trality is often employed. Existing approaches [8,20] mainly simulate a random
surfer’s behavior (as in PageRank [15]), and incorporate data elements that are
most likely to be visited by the surfer into the summary. We follow this line of
research in our work.

To summarize, we propose to look at this novel (1) problem of entity summa-
rization. In this first (to the best of our knowledge) solution to the problem, we
elaborate on (2) a variant of the random surfer model. This well-known model is
used as the basis to support the idea of incorporating central elements into the
summary. However, it is revised by a more specific notion of centrality, called
RELIN, where the computation of central elements involves relatedness (or sim-
ilarity) between elements as well as their informativeness, i.e. the amount of
information carried that helps to identify the entity. It extends the previous
idea of capturing the main themes [8,20] that describe the data, to find more
specific central elements that identify the data. To this end, instead of a tradi-
tional random surfer, we simulate a rather goal-directed surfer that explores an
entity description with the aim of identifying the underlying entity. We model
two kinds of action, namely relational move and informational jump, that follow
non-uniform probability distributions. The surfer, to achieve her goal, prefers
related elements when she moves, and prefers informative elements when she
jumps. We propose a simple but effective (3) implementation of these notions of
relatedness and informativeness that exploits the semantic information captured
by the graph structure of the data (as in [20]) as well as the labels of nodes and
edges. For the latter, we apply well-known linguistic and information theory con-
cepts. We carried out an extensive (4) empirical study of the proposed approach.
The results show that it significantly outperformed the baseline approaches, both
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in an intrinsic evaluation based on a comparison with handcrafted summaries,
and in an extrinsic evaluation where the computed summaries are used for the
task of confirming entity mappings.

The remainder of this paper is organized as follows. The problem is defined in
Sect. 2. The approach is detailed in Sect. 3, and an implementation is given in
Sect. 4. Related work is discussed in Sect. 5. Experimental results are presented
in Sect. 6 before we conclude in Sect. 7.

2 Problem Statement

For the investigated problem, we employ a graph-structured data model corre-
sponding to RDF, which describes entities in the form of attribute values and
relations to other entities (collectively called property values). Let E be the set
of all entities, L the set of all literals, and P the set of all properties.

Definition 1 (Data Graph). A data graph is a digraph G = 〈V, A, LblV ,
LblA〉, where V is a finite set of nodes, A is a finite set of directed edges where
each a ∈ A has a source node Src(a) ∈ V and a target node Tgt(a) ∈ V , and
LblV : V �→ E ∪L and LblA : A �→ P are labeling functions that map nodes and
edges to entities or literals, and properties, respectively.

Definition 2 (Feature). A feature f is a property-value pair where Prop(f) ∈
P and Val(f) ∈ E ∪L denote the property and the value, respectively. An entity
e has a feature f in a data graph G = 〈V, A, LblV , LblA〉 if there exists a ∈ A
such that LblA(a) = Prop(f), LblV (Src(a)) = e and LblV (Tgt(a)) = Val(f).

That is, a feature of an entity corresponds to one of its associated edges in the
data graph. We actually consider both incoming and outgoing edges (i.e. where
e appears as target and source node, respectively). Without loss of generality,
we focus on outgoing edges for the sake of clear presentation.

A feature is regarded as the smallest meaningful description element for an
entity, based on which we characterize an entity description as a set of features:

Definition 3 (Feature Set). Given a data graph G, the feature set of an entity
e, denoted by FS(e), is the set of all features of e that can be found in G.

The left part of Fig. 1 depicts the data graph for our running example, which
describes a person and one of his publications. Given this data graph, the feature
set of the entity ex:Rudi_Studer is shown in the right part of Fig. 1.

Finally, the problem of entity summarization is defined as extracting a subset
from a lengthy feature set, subject to a cardinality constraint.

Definition 4 (Entity Summarization). Given FS(e) and a positive integer
k < |FS(e)|, the problem of entity summarization is to select Summ(e) ⊂ FS(e)
such that | Summ(e)| = k. Summ(e) is called a summary of e.



Relatedness and Informativeness-Based Centrality for Entity Summarization 117

foaf:givenName

foaf:familyName

swrc:publication swrc:year

FS(ex:Rudi_Studer)

f
1 <foaf:givenName, "Rudi">

f
2 <foaf:familyName, "Studer">

f
3 <swrc:publication, ex:Semantic-Wikipedia>

Fig. 1. The feature set of the entity ex:Rudi_Studer (on the right), given the data
graph (on the left) containing two entities (ellipses) and three literals (rectangles)

In the running example, valid summaries of ex:Rudi_Studer include {f1, f2},
{f1, f3} and {f2, f3} given k = 2. In the next sections, we will introduce an
approach to finding a summary from

(|FS(e)|
k

)
candidates that best characterizes

e for quick identification.
It is worth noting that we impose a length constraint on the summary based

on the number of features. In fact, the content of individual features may also be
a factor that deserves consideration because, for instance, features may contain
literals that significantly vary in length. However, this will not be investigated in
our work. Besides, we actually concentrate on what information (i.e. which fea-
tures) should be presented, but will not address how this information should be
presented (e.g. by using visualization or natural language generation methods),
although the latter is also an important part of the summarization task.

3 Entity Summarization

We conceive the problem of entity summarization as the one of ranking, i.e.
selecting the k top-ranked features from the feature set for a summary. In this
sense, entity summarization and feature ranking refer to the same task.

3.1 Centrality-Based Ranking

Centrality-based ranking has been successfully applied to text [8] and ontology
summarization [20], and we follow this direction to solve entity summarization.
This paradigm requires constructing a graph where nodes correspond to the data
elements to be ranked, i.e. sentences in text summarization [8], RDF sentences
in ontology summarization [20], and features in entity summarization. Every
pair of related nodes are connected by undirected [8] or directed edges [20],
and such pairs could be defined based on some numerical relatedness measures
with a predefined threshold [8] or problem-specific heuristics [20]. Finally, nodes
are ranked according to their centralities in the graph, often computed by using
PageRank [15]. Basically, PageRank simulates a surfer, who navigates from node
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to node, choosing with a uniform probability which edge to follow at each step,
and with a small probability, occasionally jumps to a random node; the ranking
of nodes is obtained by considering the stationary distribution of such a Markov
chain, and a node with a higher probability of being reached by the surfer is
ranked higher. In this way, top-ranked nodes (i.e. data elements) are believed
to capture the main themes of the original data, since they are central to the
original data with regard to the relatedness among data elements.

However, applying the random surfer model like this to our scenario yields
two problems. (1) The supported notion of centrality may be too general. Cap-
turing the main themes of the original entity description is not the only goal
pursued here. Recall that the summary we are looking for is the one that can
best characterize the underlying entity and help to distinguish the entity from
others. That is, the measurement of centrality should also give consideration to
how much information a feature carries that can contribute to the identification
of the entity. (2) To apply this random surfer model, edges are added between
“significantly related” nodes, where relatedness is actually defined as a boolean-
valued function: nodes are either related (and thus connected by an edge) or not
(and thus not adjacent). Then, all the adjacent nodes of a node are treated as
being equally related to it, since the surfer chooses from them with a uniform
probability which one to visit. In other words, the model does not represent the
degree of relatedness on a more fine-grained level. This imprecision may lead to
suboptimal results, particularly when such a boolean-valued function is derived
from a relatedness threshold, as it is often the case.

3.2 RELIN: Relatedness and Informativeness-Based Centrality

To remedy the flaws pointed out above, we extend the standard random surfer
model as follows. For the first issue, inspired by [10], we propose to embed the
measurement of informativeness in the random surfer model. Recall that in the
standard model, the surfer jumps to a random node with a given probability.
We replace this uniform probability distribution with a non-uniform one that is
dependent on the amount of information carried by each target node that helps
to identify the entity. As a result, a feature that is informative in terms of dis-
tinguishing the underlying entity from others will more likely to be reached by
the surfer, and thus will be ranked higher. For the second issue, we propose to
construct an edge-labeled complete graph, as illustrated in Fig. 2 (solid lines).
Then the surfer at a node chooses which edge to follow not with a uniform prob-
ability but with a probability (derived from the label of the edge) proportional
to the relatedness between the two associated nodes (i.e. the current node and
the target). In this way, we avoid the problem of finding the most appropri-
ate threshold (which is shown to be difficult [8]) and can also fully exploit the
computed numerical relatedness values.

To be specific, we propose RELIN, a variant of the random surfer model that
measures RELatedness and INformativeness-based graph centrality for entity
summarization. Similar to the standard model in PageRank, we simulate a ran-
dom surfer’s behavior using two kinds of action, one called relational move and
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Fig. 2. A graph under the RELIN random surfer model, where nodes represent features,
solid lines represent relational moves (i.e. edges) between features, and dashed curves
represent informational jumps between features. Each action is associated with a non-
uniform probability.

the other informational jump. This hypothetical surfer is a goal-directed one that
navigates through a feature set in order to identify the underlying entity. To this
end, the surfer either performs a relational move — more likely to a feature that
carries related information about the theme currently under investigation, or
performs an informational jump — more likely to a feature that provides a large
amount of new information for clarifying the identity of the underlying entity.
These choices are represented by two non-uniform probability distributions, one
given by the relatedness between features and the other by the informativeness
of features. For the running example, Fig. 2 illustrates the graph under this new
random surfer model.

Now we formalize our solution using a general probabilistic framework [7].
The surfer’s behavior in RELIN, namely relational move (M) and informational
jump (J), is defined with respect to the current feature fq:

– P(M |fq): the probability of performing a relational move from fq, and
– P(J |fq): the probability of performing an informational jump from fq.

There exist only two kinds of action, and thus they satisfy P(M |fq)+P(J |fq) = 1.
Then both actions are defined with targets:

– P(fp|fq, M): the probability of performing a relational move from feature fq

to feature fp, and
– P(fp|fq, J): the probability of performing an informational jump from feature

fq to feature fp.

These sets of probabilities must satisfy the following normalization constraints
for each fq ∈ FS, where FS is the feature set under consideration:

–
∑

fp∈FS P(fp|fq, M) = 1, and
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–
∑

fp∈FS P(fp|fq, J) = 1.

Let x(t) be a |FS |-dimensional vector where xp(t) is the probability that the
surfer visits feature fp at step t. By taking all the possibilities of the surfer’s
behavior into account, the probability xp(t + 1) is updated as follows:

xp(t + 1) =
∑

fq∈FS

xq(t) · ( P(M |fq) · P(fp|fq, M)

+ P(J |fq) · P(fp|fq, J)) .

(1)

All the above probabilities defining the RELIN random surfer model can be
organized into the following |FS | × |FS | matrices:

– M, where Mp,q = P(fp|fq, M),
– J, where Jp,q = P(fp|fq, J),
– Δ, a diagonal matrix where Δq,q = P(M |fq), and
– Λ, a diagonal matrix where Λq,q = P(J |fq).

Then (1) can be rewritten as:

x(t + 1) = (M ·Δ + J ·Λ) · x(t) . (2)

It has been proved [7] that:
lim

t→∞
x(t) = x∗ , (3)

where x∗ is a constant vector that does not depend on the initial distribution
x(0), if P(J |fq) �= 0 and P(fp|fq, J) �= 0 for every fp, fq ∈ FS. In practice, the
iterative computation of (2) is usually configured to stop after a certain number
of iterations.

Finally, features in FS are ranked by x∗. That is, feature fp will be ranked
higher than feature fq if x∗

p > x∗
q .

To implement this model, we need to give M, J, Δ and Λ, i.e., to define
P(fp|fq, M), P(fp|fq, J), P(M |fq) and P(J |fq) for every fp, fq ∈ FS. This will
be discussed in the next section.

4 Implementation

Firstly, we define Δ and Λ as follows:

Δq,q = 1− λ, q = 1, . . . , |FS | ,
Λq,q = λ, q = 1, . . . , |FS | ,

(4)

where λ ∈ [0, 1] is regarded as a parameter to be tuned and tested in experiments.
Here we actually follow PageRank to assume that the surfer has a consistent
probability of choosing between move and jump.

Next, as a general strategy for computing M, the relatedness between features,
and J, the informativeness of features, we propose to exploit the information
captured by the labels of nodes and edges in the original data graph. We now
discuss one possible implementation.
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4.1 Relatedness

Two features, i.e. property-value pairs, are related when they have related prop-
erties, e.g. “has paper” and “has research interest” which are both about aca-
demic information, or they have related values, e.g. a paper titled “Semantic
Wikipedia” and a research interest “Semantic Web”. Thus, we define the relat-
edness between two features as a combination of the relatedness (denoted by Rel)
between their properties and the relatedness between their values (subjected to
the mentioned probability normalization):

Mp,q =
√

Rel(Prop(fp), Prop(fq)) · Rel(Val(fp), Val(fq)) . (5)

As potential implementations of Rel, various notions of relatedness have been
proposed in the literature. Among others, a well-known line of research [3] em-
ploys semantic network such as WordNet2 to measure the relatedness between
text phrases, usually based on the length of the shortest path between their cor-
responding nodes in the network. However, it is difficult to find such a source of
background knowledge that has a good coverage of all the properties and values
in our problem that might be encountered in practice. Therefore, we employ
another notion called distributional relatedness [12], i.e., two phrases are more
related if they more often co-occur in certain contexts (e.g. documents). We use
an implementation called Pointwise Mutual Information (PMI). Let P(si) be the
probability that phrase si occurs in a document, which could be estimated by
counting throughout a corpus. Analogously, let P(si, sj) be the joint probability
of phrase si and phrase sj . Their PMI is defined as follows:

PMI(si, sj) = log
P(si, sj)

P(si) · P(sj)
. (6)

Note that to estimate this for every edge in a graph under the RELIN random
surfer model, we need to obtain probabilities for every entity, literal and property
that might be mentioned in the nodes (i.e. features). Achieving this coverage
requires a large and diverse corpus. To this end, we leverage the Google search
engine to obtain the contexts in which phrases may co-occur. Let Hits(si) be
the number of documents returned by the search engine that match phrase si

(which could be the name of a property or an entity, or the lexical form of a
literal), and N a predefined normalizing constant. Then, we estimate P(si, sj),
P(si) and P(sj) by computing Hits(si,sj)

N , Hits(si)
N and Hits(sj)

N , respectively.
For instance, in the running example, f1 is more related to f2 than to f3,

mainly because their property names “given name” and “family name” have a
higher PMI than “given name” and “publication” have.

It is worth noting that the use of a Web search engine could become a per-
formance bottleneck that limits a practical summarization system. Solutions
include completing all (or most) potential queries prior to placing the system in
service, or using a local corpus instead.
2 http://wordnet.princeton.edu/



122 G. Cheng, T. Tran, and Y. Qu

4.2 Informativeness

We use a well-known information theory concept to measure the informativeness
of features. Given o an outcome of a random variable with probability P(o), its
self-information is defined as:

SelfInfo(o) = − log(P(o)) . (7)

That is, the smaller probability an outcome has, the more information its occur-
rence provides. In this sense, according to the RELIN random surfer model, we
should look at P(fp|fq) — the probability that feature fp belongs to a feature
set, given fq belongs to the same one. This can be estimated via a statistical
analysis of the original data graph:

P(fp|fq) =
|{e ∈ E | fp, fq ∈ FS(e)}|
|{e ∈ E | fq ∈ FS(e)}| . (8)

Then, the amount of new information that the surfer obtains by performing an
informational jump from fq to fp is measured by (subjected to the mentioned
probability normalization):

Jp,q = SelfInfo(fp|fq) = − log(P(fp|fq)) . (9)

For instance, given f1 in the running example, in terms of distinguishing the
underlying entity from others, f3 is more informative than f2 because there is
only one Rudi that is an author of the publication “Semantic Wikipedia”, but
there are probably more than one Rudi whose family name is Studer.

It is worth noting that, when computing SelfInfo(fp|fq) between all pairs of
features is too costly in practice, SelfInfo(fp) can be used as an approximation.
This would assume that the informativeness of one feature is independent from
the information provided by other features such that for informational jump,
only the information of the targets plays a role.

5 Related Work

Summarization methods can be classified into extractive and non-extractive ones.
Most text [18] and ontology summarization [16,20] work employs the more pop-
ular extractive strategies, which produce a summary by choosing a subset from
the original data elements. We follow it by conceiving an entity description to be
summarized as a feature set. On the other hand, database [2] and graph summa-
rization [13] usually adopt the non-extractive paradigm, and define the notion
of summary on a level that is more coarse-grained than the original data.

The adoption of a PageRank-like [15] graph centrality measure for entity
summarization here is motivated by research in related fields. Firstly, for the
closely related problem of text summarization, centrality-based methods (e.g. [8])
have proven to be superior to those simple centroid -based statistical methods
(e.g. [17]), which basically rank data elements according to their relatedness to
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the “centroid” of the entire data. A detailed theoretical and empirical compari-
son of these two styles is given in [8]. Secondly, among various notions of graph
centrality, we prefer a principled PageRank-like measure mainly because PageR-
ank has shown a better performance than its competitors (e.g. degree-based
measures) in the experiments on previous summarization tasks [8,20].

Although the proposed RELIN approach also builds upon the random surfer
model [15] as in previous methods [8,16,20], it is about computing central el-
ements (i.e. features) that not just represent the main themes of the original
data, but rather, can best identify the underlying entity. Thus, instead of a tra-
ditional random surfer, we simulate a goal-directed one that has a preference for
related and informative features. Further, different from the standard model, the
surfer’s behavior in RELIN is characterized by non-uniform probability distribu-
tions. This idea of assigning different weights to different actions in the random
surfer model has been investigated, among others, for dealing with the prob-
lem of Web search [10]. Besides dealing with a different problem, the proposed
approach also uses information that is completely different from the notions of
relatedness and informativeness implemented in our work.

Complementary to centrality, diversity [4] is another popular metric for eval-
uating a summary, by measuring its coverage of themes in the original data. In
fact, this diversity aspect is partially supported by our implementation, since
according to Sect. 4.2, informational jumps are dependent on the amount of
“new” information. However, this matter is not elaborated in the paper because
it is orthogonal to our concern in the sense that it can be easily incorporated
into our approach as a re-ranking step, as proposed before [4,20].

From another point of view, our work is also related to the topic of rank-
ing in RDF graphs, for which different ideas have been studied. For instance,
[6] performs a hierarchical link analysis for ranking entities; [9] applies tensor
decomposition to find latent aspects of the data and generate aspect-specific
rankings; [1] ranks associations (i.e. paths) between entities by means of a wide
range of customizable metrics. However, none of these approaches is well fit for
the problem of entity summarization here, which requires ranking data elements
according to how much they help identify the underlying entity. In this respect,
[16,20] are the most related work: basically, an RDF graph is decomposed into
a set of subgraphs called “RDF sentences”; based on the common nodes they
share, links are defined between them, from which a new graph with nodes
representing RDF sentences is derived; then, various graph centrality measures
(e.g. PageRank) are applied to this new graph for ranking. In comparison, our
work leverages the information contained in the labels of nodes and edges in the
original data graph. This goes beyond [16,20], which mainly employ the graph
structure for ranking.

6 Experiments

In the experiments, two real-world data graphs were used: (1) the English version
of the DBpedia 3.4 core data sets, which collectively contain 124,404,962 RDF
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triples,3 and (2) the December 2009 Link Export of the Freebase data set,4 which
contains 325,158,504 RDF triples.5 Both are domain-independent encyclopedic
data sets, which belong to the largest that have been made publicly available
on the Web as part of the Linked Data initiative. They cover a broad range of
descriptions of entities such as people, cities and music albums.

We implemented RELIN as described previously in the paper. For the pa-
rameter λ in (4), which assigns the importance of informational jump relative
to relational move, we tested 5 different values, namely 0.00, 0.15, 0.50, 0.85
and 1.00. Particularly, with λ = 0.00, our approach relies only on relatedness
between features, which can then be regarded as an application of traditional
text summarization methods (e.g. [8]) to entity summarization. On the contrary,
with λ = 1.00, it amounts to one that employs informativeness of features only.
Besides, the iterative computation in RELIN was set to stop after 10 iterations.

We intend to compare our approach with other work on ranking RDF data.
However, as discussed in Sect. 5, no existing method is well-suited to our prob-
lem. Thus, to establish baselines, on the one hand, we implemented OntoSum,
which is an adaptation of the most related approach given in [20] to our prob-
lem of ranking features.6 To be specific, given the data graph comprising all the
features of the entity under consideration, the notion of RDF sentence proposed
in [20] amounts to one single RDF triple, which further corresponds to a fea-
ture of the entity. Thereby, a ranking of RDF sentences produced by [20] would
naturally induce a ranking of features. On the other hand, we also implemented
RandomRank that always produces a random ranking of features.

We ran two independent evaluations. In an intrinsic one, automatically com-
puted summaries were compared with ideal ones. The other extrinsic evaluation
aimed at investigating the usefulness of the summaries in a practical task.

6.1 Intrinsic Evaluation

In the intrinsic evaluation, 24 participants (comprising graduate and undergrad-
uate students majoring in computer science) were invited to manually construct
ideal entity summaries as the gold standard. A sample of 149 entities were se-
lected at random from DBpedia under the constraint that the cardinality of each
one’s feature set is inside the interval [20,40], such that it is neither too small
to be significant for a summarization task nor too lengthy for manual investiga-
tion. Then, each entity was randomly assigned to an average of 4.43 participants;
given an entity description presented as a list of features sorted in random or-
der, a participant was asked to return two ideal summaries — one containing
5 features and the other containing 10 — that could best clarify the identity
3 The data sets Links to Wikipedia Article and External Links were not imported since

they are less relevant to the summarization task.
4 http://www.freebase.com/
5 The RDF triples that involve non-English literals were removed since our participants

cannot read.
6 Among several centrality measures compared in [20], we chose the best-preforming

one, namely PageRank.
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of the underlying entity. That is, given k ∈ {5, 10} and an entity e, we would
receive, from n different participants, n ideal summaries, denoted by SummI

i (e)
for i = 1, . . . , n.

Firstly, we report the level of agreement between ideal summaries. Given
k ∈ {5, 10}, an entity e and n ideal summaries received, their agreement is
defined by their average overlap:

2
n(n− 1)

n∑
i=1

n∑
j=i+1

| SummI
i (e) ∩ SummI

j (e)| . (10)

In our experiments, when k = 5, the agreement averaged over all the entities is
2.91 features, and when k = 10, the overall agreement is 7.86. These indicate a
significant level of agreement between participants about ideal summaries.

Secondly, based on ideal summaries, for a summary automatically computed,
denoted by Summ(e), its quality is evaluated by looking at the average overlap
between Summ(e) and each SummI

i (e):

Quality(Summ(e)) =
1
n

n∑
i=1

| Summ(e) ∩ SummI
i (e)| . (11)

Table 1 presents the quality of summaries computed under each approach setting,
averaged over all the entities. The best quality values are highlighted.

Table 1. Quality of summaries computed under each approach setting

k = 10 k = 5

OntoSum 3.69 1.01
RandomRank 3.36 0.76
RELIN, with λ = 0.00 3.58 1.61
RELIN, with λ = 0.15 3.84 1.73
RELIN, with λ = 0.50 4.40 1.99
RELIN, with λ = 0.85 4.88 2.29
RELIN, with λ = 1.00 4.86 2.40

Our approach, under almost all the tested values of λ, outperformed the two
baselines. When k = 10, compared with OntoSum and RandomRank, the quality
achieved by RELIN increases by up to 32.2% and 45.2%, respectively. When
k = 5, the highest increases are 137.6% and 215.8%, respectively. These results
suggest that w.r.t. entity summarization, our approach is clearly superior to
the most related competitor in the literature, and both are better than a random
selection.

By testing different values of λ, we found that informativeness (i.e. when
λ = 1.00) is more effective than relatedness (i.e. when λ = 0.00), particularly
in generating extremely short summaries (k = 5), where it achieved the best
result. That means, it seems the participants preferred only to jump from one
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informative feature to one another. However, it changed when the summaries
became longer. For instance, when k = 10, the best result was achieved when
λ = 0.85, i.e. the use of informativeness in combination with relatedness. Thus,
these results suggest that whereas both actions are useful, the choice of λ should
be tested and tuned in experiments, and the defined length of summary is one
important factor that determines this trade-off.

6.2 Extrinsic Evaluation

In the extrinsic evaluation, 19 participants (comprising graduate and under-
graduate students majoring in computer science) were invited to confirm entity
mappings. That is, given two (summaries of) descriptions, a participant was
asked to judge whether they refer to the same underlying entity. The accuracy
and efficiency of these judgments would reflect the usefulness of automatically
computed summaries when being applied to assist users in this particular task. A
sample of 47 pairs of entities were used in the experiments. Each pair, consisting
of one entity from DBpedia and the other from Freebase, is either correct (i.e.
referring to the same real-world entity) or incorrect (i.e. referring to different
real-world entities). These pairs were constructed as follows. Firstly, a sample
of 47 entities were selected at random from DBpedia under the constraint that
when submitting each one’s name as a keyword query against the Freebase search
engine, at least two entities could be retrieved. Then, the DBpedia entity and
one Freebase entity randomly selected from the top-2 search results formed an
entity mapping. If such a mapping could be found in the DBpedia extended data
set Links to Freebase, which explicitly defines entity mappings (in the form of
owl:sameAs relation) between DBpedia and Freebase, it was deemed correct, or
otherwise incorrect. In this way, we obtained 24 correct mappings and 23 incor-
rect ones. These judgments were used as gold-standard answers.

For each mapping, under each of the five approach settings as shown in Ta-
ble 2, the two entity descriptions were summarized and then were randomly and
blindly assigned to an average of 3.62 participants to judge. Each summary was
presented as a list of features sorted by their ranking values. In particular, under
the ReturnsAll setting, all the features in a description would be presented in
random order without summarization. To compare different approach settings,
we examined the (1) accuracy of the judgments made by the participants, and
the (2) time they spent. The accuracy of a judgment is 1.0 if it coincides with
the gold standard, or otherwise 0.0. To eliminate the difference in participants’
intrinsic efficiency,7 before aggregation, every time value spent by a participant
was normalized by the average time per judgment spent by this participant.
In this sense, 1.0 would mean medium efficiency, when smaller values indicate
higher efficiency. Table 2 summarizes the experimental results averaged over all
the mappings and participants, where better results are highlighted.

By looking at the three settings under the same k = 5, we found our ap-
proach achieved the highest accuracy, whereas OntoSum performed even worse
7 For example, an inefficient participant would unfairly increase the overall time spent

under those approach settings that she was involved in.
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Table 2. Accuracy and time for judgments using summaries computed under each
approach setting

k Accuracy Time

OntoSum 5 0.56 0.84
RandomRank 5 0.60 0.87
RELIN, with λ = 0.85 5 0.70 0.92
RELIN, with λ = 0.85 10 0.68 1.12
ReturnsAll n/a 0.60 1.41

than RandomRank. Considering the other two settings as well, we can see the
effect of summary length on the time spent: with summarization enabled (i.e.
other than ReturnsAll), the time is significantly shorter. This corresponds to our
expectation that participants’ efficiency in carrying out tasks can be improved
when using concise entity descriptions. By comparing the results of RELIN un-
der k = 5 and k = 10, we further found that even when being generated by the
same approach, longer summaries required noticeably more time.

An interesting finding reflected by the last three rows of Table 2 is that, with
longer summary length, although the time increases as expected, the accuracy
actually decreases. That is, the accuracy of judgments does not positively cor-
relate with the amount of presented data. Many participants reported in post-
experiment interviews that it was because they got rather lost when facing a
large amount of (often low-quality and confusing) information. This indicates
that providing a concise entity description could also improve the user experi-
ence and effectiveness (e.g. accuracy here).

6.3 Discussion

Although our approach performed better than the baselines, the results are still
far from perfect. For example, in the intrinsic evaluation, the overall levels of
agreement between a computed summary and an ideal summary (i.e. quality)
are 4.88 and 2.40 at best when k = 10 and k = 5, respectively, which are much
lower than the ones between ideal summaries (7.86 and 2.91, respectively). That
means, automatically computed summaries still cannot replace handcrafted ones.

The experimental results also revealed some factors that deserve considera-
tion when further improving our approach. Firstly, although some features were
ranked high because of their high informativeness and notable relatedness, e.g.
features that stand for the longitude and latitude of a city, they were not pre-
ferred by most participants because the information they carry were deemed too
“domain-specific” to be exploited. That is, these features are highly informative
for domain experts that can deal with this particular kind of knowledge, but are
not as valuable when presented to average users. This suggests a user-specific no-
tion of informativeness, which could be implemented by leveraging user profiles
or feedback. Secondly, information redundancy was observed in entity descrip-
tions, which should be reduced during summarization. For example, the location
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of a city in DBpedia is usually not only described by the properties “longitude”
and “latitude” but also redundantly described by an additional “point” property.
Although our implementation has partially addressed the issue of diversity (as
discussed in Sect. 5), other strategies are still needed to cope with more general
cases. Thirdly, as described in Sect. 2, we focus on ranking and selecting fea-
tures, rather than presenting. However, several participants reported that they
could hardly understand some features, whereas some others suggested that they
would prefer to see summaries presented using a richer widget, as opposed to
simply a list of features as we did in the experiments. Thus, we can conclude that
besides selecting the best features, methods used for presenting entity summaries
also have an impact on the user-perceived quality.

7 Conclusions and Future Work

We have studied the problem of entity summarization, which is related to but dif-
ferent from the problems of extractive text and ontology summarization, since it
is more about identifying the entity that underlies a lengthy description. To this
novel problem, we have proposed a solution called RELIN. As a variant of the
random surfer model, it is based on non-uniform probability distributions, and
embeds informativeness into the traditional relatedness-based centrality mea-
sure. We have presented an implementation that rests on the information cap-
tured by the labels of nodes and edges in the data graph. It goes beyond related
methods for ontology summarization which mainly build upon the graph struc-
ture. The experimental results of applying our approach to entity summarization
are quite promising. It performs better than the baselines in terms of producing
summaries that are closer to handcrafted ideal summaries, and that assist users
in confirming entity mappings more accurately.

The experimental results and feedback obtained from the participants have
indicated directions for future research. We will study “human factors” in the
context of entity summarization. For instance, we will look at user feedback. We
are also interested in application-specific entity summaries, such as query-biased
summaries for entity search.
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Abstract We present the first large scale investigation into the modular
structure of a substantial collection of state-of-the-art biomedical ontolo-
gies, namely those maintained in the NCBO BioPortal repository.1 Using
the notion of Atomic Decomposition, we partition BioPortal ontologies
into logically coherent subsets (atoms), which are related to each other
by a notion of dependency. We analyze various aspects of the resulting
structures, and discuss their implications on applications of ontologies.
In particular, we describe and investigate the usage of these ontology de-
compositions to extract modules, for instance, to facilitate matchmaking
of semantic Web services in SSWAP (Simple Semantic Web Architecture
and Protocol). Descriptions of those services use terms from BioPortal so
service discovery requires reasoning with respect to relevant fragments
of ontologies (i.e., modules). We present a novel algorithm for extracting
modules from decomposed BioPortal ontologies which is able to quickly
identify atoms that need to be included in a module to ensure logically
complete reasoning. Compared to existing module extraction algorithms,
it has a number of benefits, including improved performance and the pos-
sibility to avoid loading the entire ontology into memory. The algorithm
is also evaluated on BioPortal ontologies and the results are presented
and discussed.

Keywords: OWL, modularity, atomic decomposition, semantic Web
services, SSWAP.

1 Introduction

State-of-the art biomedical ontologies, e.g., those provided by the NCBO Bio-
Portal, are often maintained as monolithic collections of axioms in single files or

1 http://bioportal.bioontology.org/
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in a few files. This is not ideal for applications which require access to individual
fragments of ontologies, for example, axioms relevant for a particular term. One
example is use of ontology terms in descriptions of Semantic Web services or
requests for their discovery. In such cases it is undesirable to load the entire
ontology into memory (or transfer it over the network) in order to reason about
a limited signature.

Semantic Web Services, such as SSWAP2 (Simple Semantic Web Architec-
ture and Protocol [8]) or SADI (Semantic Automated Discovery and Integration
[14]), offer particular challenges for monolithic ontologies. In this application,
semantic Web services reference (and dereference) ontological terms at transac-
tion time–often requiring only a few terms from numerous ontologies in order to
complete a transaction between two agents. This creates two challenges specific
to ontology decomposition and modularity: 1) Semantic Web services operate
under both AAA (Anyone can say Anything about Anything3) and the OWA
(Open World Assumption). Thus even if service providers had complete know-
ledge of all BioPortal ontologies before transaction, this could become incomplete
at transaction time because service providers could be presented with new terms
from new ontologies where said terms could imply arbitrarily complex relations
with cached ontologies (e.g., class subsumption or equivalence). This implies
new, on-demand reasoning, which places a premium on minimizing the size and
complexity of relevant ontologies to those components necessary and sufficient
for the transaction at hand; 2) memory and hard disk resources are not limi-
ting for virtually all biological ontologies. But network bandwidth and latency
is limiting: large, monolithic ontologies can exceed 10 Mbytes when serialized
as RDF/XML. Therefore it is important to investigate the possibility of main-
taining ontologies in a more flexible form which supports reasoning over small
(from the network’s or the reasoner’s viewpoint) fragments.

This paper presents the first, to our knowledge, large-scale investigation into
decomposability and modular aspects of the NCBO BioPortal ontologies and
demonstrates that most of them can be split into small logically coherent parts
(atoms), from which modules can be efficiently assembled before reasoning. We
discuss such good (on average) decomposability of BioPortal ontologies, its im-
plications for applications, and also comment on occasional poor decomposabi-
lity (Section 3). Finally, we describe a novel algorithm for decomposition-based
module extraction (and the auxiliary algorithm for computing minimal seed
signatures) and present evaluation results in Section 4.

2 Modularity and Atomic Decomposition

We assume the reader to be familiar with OWL and the underlying Description
Logics [1], and sketch here some of the central notions around locality-based
modularity [2] and Atomic Decomposition [6]. We use L for a Description Logic,
2 http://sswap.info
3 For details see paragraph 2.2.6 of the “RDF: Concepts and Abstract Syntax’ docu-

ment at http://www.w3.org/TR/rdf-concepts#section-anyone

http://sswap.info
http://www.w3.org/TR/rdf-concepts#section-anyone
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e.g., SHIQ, and O,M, etc., for an ontology, i.e., a finite set of axioms. Moreover,
we respectively use α̃ or Õ for the signature of an axiom α or of an ontology O,
i.e., the set of class, property, and individual names used in α or in O.

Given a set of terms, or seed signature, Σ, a Σ-module M based on deductive-
Conservative Extensions [9] is a minimal subset of an ontology O such that, for
all axioms α with terms only from Σ, we have that M |= α iff O |= α, i.e. O and
M have the same entailments over Σ. Deciding if a set of axioms is a module
in this sense is hard or even impossible for expressive DLs [12], but if we drop
the minimality requirement we can define “good sized” approximations, as in the
case of syntactic locality, or locality for short, which can be efficiently extracted.
Such modules provide strong logical guarantees by capturing all the relevant
entailments about Σ, despite not necessarily being minimal subsets of O with
this property [11]. A module extractor is implemented in the OWL API.4

Given an ontology O and a seed signature Σ, we say that an axiom α ∈ O
is ⊥-local w.r.t. Σ if we can “clearly identify” the result of replacing all terms
in α not in Σ with ⊥ as a tautology; see [2] for a formal definition. Then, a
⊥-module for Σ contains all axioms that are non-⊥-local w.r.t. Σ, plus all those
needed to preserve the meaning of terms occurring in these axioms. Similarly
we can define �-modules. Additionally, by nesting these two notions until a
fixpoint is reached we obtain �⊥∗-modules. Hence, locality-based modules come
in 3 flavours, namely �,⊥, and �⊥∗: roughly speaking, a �-module for Σ gives
a view “from above” because it contains all subclasses of class names in Σ; a
⊥-module for Σ gives a view “from below” since it contains all superclasses of
class names in Σ; a �⊥∗-module is a subset of both the corresponding �- and
⊥-modules, containing all entailments to imply that two classes in Σ are in the
subclass relation, but not necessarily all their sub- or super-classes. Given a
module notion x ∈ {�,⊥,�⊥∗}, we denote by x-mod(Σ,O) the x-module of O
w.r.t. Σ.

In [6] we have introduced a new approach to represent the whole family Fx
O

of locality-based x-modules of an ontology O. The key point is observing that
some axioms appear in a module only if other axioms do. In this spirit, we
have defined a notion of “logical dependence” as follows: an axiom α depends on
another axiom β if, whenever α occurs in a module M, then β belongs to M,
too. Next, we observe that, for each axiom α, the x-module for the signature α̃
is the smallest x-module containing α; we call α-module a module x-mod(α̃,O)
and denote it by Mx

α.
The dependence between axioms allows us to identify clumps of highly inter-

related axioms that are never split across two or more modules [6]; these clumps
are called atoms. More precisely, for x ∈ {�,⊥,�⊥∗} an x-atom of an ontology
O is a maximal subset of O which is either contained in, or disjoint with, any
x-module of O. The family of x-atoms of O is denoted by A(Fx

O) and is called
x-Atomic Decomposition (x-AD). If x is clear from the context, we drop it.

Since every atom is a set of axioms, and atoms are pairwise disjoint, the AD
is a partition of the ontology O. Hence, the number of atoms is at most linear

4 http://owlapi.sourceforge.net

http://owlapi.sourceforge.net
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w.r.t. the size of O. Moreover, atoms are the building blocks of all modules [7].
For an atom a ∈ A(Fx

O), the module Mx
a = x-mod(ã,O) is called compact.

Proposition 1. Let a be an atom in the AD A(Fx
O) of an ontology O and

α ∈ a; then, for any selection of axioms S = {α1, . . . , ακ} ⊆ a we have that
x-mod(S̃,O) = Mx

α. In particular, for each αi ∈ a, Mx
αi

= Mx
α. Vice versa, if

Mx
α = Mx

β, then there exists some a such that α, β ∈ a.

As a consequence of Prop. 1, the set of compact modules coincides with the set
of α-modules, and we denote by Ma the module Mα for each α ∈ a. Now, we
are ready to extend the definition of logical dependence to atoms. Let a and b be
two distinct atoms of an ontology O. Then, a is dependent on b (written a � b) if
Mb ⊆Ma. The dependence relation � on AD is a partial order (i.e., dependence
is transitive, reflexive, and antisymmetric) and thus can be represented by means
of a Hasse diagram, i.e. a graph showing the dependencies between its nodes.
Moreover, � provides the basis for a polynomial-time algorithm for computing
the AD, since they allow us to construct A(Fx

O) via α-modules only [6].
Given the Hasse diagram of an AD, it is easy to get all compact modules of

an ontology by considering the principal ideal of an atom a, i.e. the set (a] =
{α ∈ b | a � b} ⊆ O.

Example 2. Consider the ontology {α1, . . . , α7} and its ⊥-AD:
α1 = ‘Animal � (= 1hasGender.�)’,
α2 = ‘Animal � (≥ 1hasHabitat.�)’,
α3 = ‘Person � Animal’,
α4 = ‘Vegan ≡ Person 	 ∀eats.(Vegetable � Mushroom)’,
α5 = ‘TeeTotaller ≡ Person 	 ∀drinks.NonAlcoholicThing’,
α6 = ‘Student � Person 	 ∃hasHabitat.University’,
α7 = ‘GraduateStudent ≡ Student 	 ∃hasDegree.{BA, BS}’

a1

a2

a3 a4 a5

a6

Here the ⊥-atoms in the AD contain the following axioms respectively: a1 =
{α1, α2}, a2 = {α3}, a3 = {α4}, a4 = {α5}, a5 = {α6}, a6 = {α7}. The compact
module for the atom a6 is Ma6 = a1 ∪ a2 ∪ a5 ∪ a6.

Next, we are interested in modules that do not “fall apart”, and thus can be
said to have an internal logical coherence. A module is called fake if there exist
two �-uncomparable modules M1,M2 with M1 ∪M2 = M; a module is called
genuine if it is not fake. Interestingly, the notions of α-modules, principal ideals
of atoms, and genuine modules coincide [6], so from now on we refer to them
simply as Genuine Modules (GMs). Note that fake modules are represented in
the Hasse diagram of an AD as union of principal ideals of atoms; the converse
does not hold: not all combinations of principal ideals of atoms are fake modules.

Whilst getting GMs is an easy task to perform via ADs, extracting a module
for a general signature is more complicated. This happens because axioms can
pull in a module terms that are not “strictly necessary” for them to be non-
local. For example, only axiom α4 in Ex. 2 is non-⊥-local w.r.t. Σ = {Vegan}.
However, each module containing α4 contains also α1, α2, and α3, because in
order to preserve the meaning of Vegan we need first to preserve the meaning of
the other terms occurring in this axioms. To guarantee this condition, we need
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to enlarge Σ with the terms pulled in by relevancy, and then re-check the axioms
against relevancy w.r.t. the new signature.

We formalize this idea as follows. We define a minimal seed signature for a
module M = x-mod(Σ,O) to be a ⊆-minimal signature Σ′ such that M =
x-mod(Σ′,O). We denote the set of all minimal seed signatures of a module by
x-mssig(M,O). We call an atom a relevant for a signature Σ if there exists
Σ′ ∈ x-mssig(Ma,O) such that Σ′ ⊆ Σ.

Proposition 3. Let x ∈ {⊥,�} and Σ0 the input signature. Let us consider
Mx

0 = {α ∈ (a] | a is relevant for Σ0} and, for i ≥ 1, Mx
i = {α ∈ (a] | a is rele-

vant for M̃x
i−1 ∪Σ0}. Then, the chain of inclusions Mx

0 � Mx
1 � . . . eventually

stops, and denoted by Mx
∗ the fixpoint, we have that Mx

∗ = x-mod(Σ0,O).

The procedure described in Prop. 3 is equivalent to the standard extraction of
a module only for the two notions � and ⊥, because the �⊥∗-AD only partially
reflecting dependencies between atoms; see [3] for an example.

In summary, x-atoms and related genuine modules form a basis for all x-
locality-based modules. Next, we analyse ADs of existing ontologies and discuss
their decomposability.

3 Decomposability of BioPortal Ontologies

Decomposing ontologies into suitable parts is clearly beneficial when it comes to
processing, editing, and analyzing them, or to reusing their parts. When ontolo-
gies are decomposed automatically, e.g., by computing an AD, it is interesting to
discuss and evaluate the suitability of such decomposition for different scenarios,
and whether all or which ontologies decompose “well”, what it means to decom-
pose well, and which properties of an ontology lead to “good” decomposability.

In this paper we discuss and evaluate the performance of ADs w.r.t. a specific
task, i.e. Fast Module Extraction. Suitable application and maintainance scena-
rios for this task are, as stated before, semantic Web services, or SADI services.
We prove that in these cases the AD is generally a good decomposition. On
the other hand, “good decomposability” may have a different meaning in other
scenarios.

A first such scenario, called Collaborative Ontology Development and Reuse,
involves different ontology engineers working on different modules of an ontology.
The aim is to minimize the risk of conflicts which could result from two or more
ontology engineers making changes to logically related parts of the ontology
(i.e., one engineer could be changing the semantics of terms used by another).
Modularity provides the notion of “safety” which defines conditions under which
there is no such risk [2]. We assume that each engineer works within their module
and uses other terms in a safe way, and that modules different engineers work
on do not overlap. Here, a fine-grained decomposition is desirable.

Another scenario, called Topicality for Ontology Comprehension, is based on
the assumption that, in order to enable the understanding of what the ontology
deals with, we can search for its “topics” and their interrelations [4]. In this case,
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a good decomposition should provide a “bird’s-eye” view of the topical structure
of an ontology. This means that a very fine-grained decomposition is undesirable
because it does little to help understanding. On the other hand, large clumps of
axioms could aggregate, hence hide, specific topical relations. In this scenario, a
good decomposition should be only modestly fine-grained.

We now present the results of decomposing BioPortal ontologies w.r.t. our
notions of locality. Due to space restrictions we present only summaries of this
results, but full decompositions, spreadsheets with metrics and other data is
available online at http://tinyurl.com/modbioportal.

The 3 notions of ADs we use are strongly related since �⊥∗-AD is a refinement
w.r.t. set inclusion of both ⊥- and �-AD, see [3]. As a consequence, we expect
ontologies to have more, smaller �⊥∗-atoms than ⊥- or �-atoms.

Proposition 4. The �⊥∗-AD is finer than both the ⊥-AD and �-AD, i.e., for
any �⊥∗-atom a, there exists a ⊥-atom b and a �-atom c with a ⊆ b and a ⊆ c.

The NCBO BioPortal ontology repository contains over 250 bio-medical onto-
logies, of which 218 are OWL or OBO ontologies. Among these, we filtered out
those whose file was corrupted, those that do not contain any logical axioms, and
some very large ontologies.5 The result is a corpus of 181 ontologies, designed
and built by domain experts, that vary greatly in size and expressivity [10].

We have decomposed these 181 BioPortal ontologies according to all three
notions of syntactic locality: ⊥, �, and �⊥∗. For each decomposition, we compute
a basic set of metrics: for each ontology, we compute the average and maximal
size of atoms and Genuine Modules (GM) measured in numbers of axioms (axs.
in the table), and then we take the average of the resulting numbers over all 181
ontologies. The results are presented in the following table.

Average Average Average Average Average
Notion of average maximum average maximum nr. of conn.
locality axs./atom axs./atom axs./GM axs./GM components

�⊥∗ 1.73 86 66 143 826
⊥ 2.19 93 73 156 45
� 330.45 1, 417 1, 166 2, 093 1.64

It can be seen that the �⊥∗-AD is generally quite fine-grained: the average
size of an atom is less than 2 axioms; indeed, only 54 ontologies out of 181 have
at least one atom greater than 10 axioms. Next, ⊥-AD is fairly, even suprisingly
close in granularity to �⊥∗-AD as the average atom is only slightly larger than
2 axioms, and all other metrics are surprisingly close. This remark is supported
by the Spearman’s coefficient [13] comparing the number of atoms per ontology
in the ⊥-AD with the one in the �⊥∗-AD. It has a value of ρ ∼= 0.9946, showing
a strong, monotonic correlation between the two measures. Moreover, closer
inspection reveals that these two ADs even coincide in 34/181 ontologies. This
is interesting for FME, as we will see later.
5 See the technical report [3] for statistics for ontologies with over 20K axioms.

http://tinyurl.com/modbioportal
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In contrast, �-AD is substantially coarser than both �⊥∗ and ⊥-ADs as the
average atom is two orders of magnitude larger, and all other metrics are much
larger as well. Given the nature of �-locality [2], this is not surprising, and
it supports our general understanding that �-ADs are not a good choice when
small size of atoms and modules are relevant. Also, observe that the connectivity
of �⊥∗-AD is much looser than that of the other two ADs: this reflects the fact
that the dependency relation, for �⊥∗-AD, only reflects one kind of dependency,
which is the reason why a �⊥∗ version of Prop. 3 does not hold.

In the majority of the ontologies investigated, we observe rather good de-
composability in terms of atom size. There are, however, ontologies that contain
abnormally huge atoms even for �⊥∗-AD, e.g., over 6K axioms. This is of concern
since a module of these ontologies is likely to be of at least that size. For example,
in the context of Web services, an attempt to discover a service whose descrip-
tion uses terms from such an atom may require transmitting and reasoning with
thousands of axioms, which is undesirable. We observe these huge atoms both
in absolute terms, i.e., with more than 200 axioms, and in relative terms, i.e.,
with more than 50% of axioms of the ontology. In the following table, we list
ontologies whose �⊥∗-ADs have a huge atom, absolute, relative, or both. We
report their size, the size of the maximal atoms, plus some other data that is
explained in what follows.

Ontology O (ID in BioPortal) #O #max #Eq. #Disj.
Atom axs. axs.

Nanoparticle Ontology (1083) 16, 267 6, 425 42 6, 106
Breast Tissue Cell Lines Ontology (1438) 2, 734 2, 201 0 7
IMGT Ontology (1491) 1, 112 729 38 594
SNP Ontology (1058) 3, 481 598 30 210
Amino Acid Ontology (1054) 477 445 8 190
Comparative Data Analysis (1128) 804 434 8 190
Family Health History (1126) 1, 091 378 0 1
Neural Electromagnetic Ontologies (1321) 2, 286 259 21 0
Computer-based Patient Record Ontology (1059) 1, 454 238 18 20

Basic Formal Ontology (1332) 95 89 13 41
Ontology of Medically-related Social Entities (1565) 138 100 17 41
Ontology for General Medical Science (1414) 194 102 17 41
Cancer Research and Mgmt Acgt Master (1130) 5, 435 3, 796 16 42

We carried out a preliminary investigation of ontologies with huge atoms,
trying to understand the reasons for the existence of huge atoms. It turns out that
some huge atoms are due to the abundance of Disjoint Covering Axioms (DCAs)
and we assume that their abundance is due to a specific usage pattern of ontology
editors. More precisely, one version of DCAs is a pair of axioms of the form
{A ≡ (B0�. . .�Bn), PairwiseDisjoint(B0, . . . , Bn)}. Since our notion of modularity
is based on axioms and subsets of an ontology and is self-contained, any module
that mentions Bi contains both axioms, and thus pulls in all axioms about Bj as
well. When DCAs occur on many classes on all levels in the class hierarchy of an
ontology, then this results, unsurprisingly, in a huge atom. Moreover, note that
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not only disjointness causes axioms to tie together, as the explicit covering axiom
shows the same behaviour. For disjointness, however, this “pulling-in” effect does
not occur if we rewrite the n-ary disjointness axiom into equivalent pairwise
disjointness axioms or even make the disjointness implicit, as in the following
example: {B0 � A�(= 0R.�), . . . , Bn−1 � A�(= n−1 R.�), Bn � A�(≥ n R.�)}.

In the previous table, we see that ontologies with huge atoms often have a
large number of DCAs in these atoms, as indicated by the number of equivalence
class and disjointness axioms in the last two columns: e.g., in the first ontology,
which also has the largest atom, almost all axioms in this atom are disjointness
axioms; additionally, upon inspection, it turns out that some of the equivalence
axioms in this atom are covering axioms involving 10 or more classes. Also, in
the second ontology, even though the largest atom only contains 7 disjointness
axioms, it turns out that one disjointness axiom contains 52 terms.

The numbers for Comparative Data Analysis and Amino Acid ontologies look
very similar because the first ontology imports the second. Trivially, large atoms
persist also in the imports closure of an ontology: they can only grow. This is
particularly relevant for ontologies that are used as base for others. In our corpus,
we indeed find such a basis, which causes other ontologies to decompose badly
in the sense described above: the Basic Formal Ontology consists of 95 axioms,
89 of which form an atom, which is due to the abundant usage of DCAs. Among
the “relative huge atoms” ontologies, two import the Basic Formal Ontology, and
their decomposability is affected.

Other patterns also lead to huge atoms, and an investigation of possible
patterns is part of future work.

The last remark about this data concerns its analysis under the viewpoint
of scenarios different from semantic Web services. For Collaborative Ontology
Development and Reuse, these results are promising since they show a seemingly
good decomposability of ontologies for �⊥∗-AD and ⊥-AD, i.e., the existence of
small, disjoint sets of axioms that can be safely updated in parallel. In contrast,
in the Topicality for Ontology Comprehension scenario we observe that, when
the number of atoms is comparable with the number of axioms, then atoms do
not provide any summarization over axioms and we cannot hope that considering
atoms can provide any summarization benefit. In this case, the atoms reflect only
very fine-grained topics of an ontology [4]. However, the dependency structure
reflects the logical dependency between atoms, and thus can be used to consider,
e.g., dependent components which, in turn, may better reflect the topics of an
ontology. Of course, to really support ontology comprehension, we might have to
consider “most relevant” atoms of an ontology [5] and, definitely, suitable labeling
of modules. Both directions are part of future work.

4 Labeled Atomic Decomposition and Decomposition-
Based Module Extraction

One particular application of atomic decomposition explored in this paper is
module extraction. In this section we describe a module extraction algorithm,
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called FME for “Fast Module Extraction”, which is (a) usually faster than the
standard ME algorithm and (b) does not require loading the entire ontology into
memory.

As explained in Section 2, every module is a union of atoms, however, not every
union of atoms is a module. In general, it is non-trivial to determine which atoms
the module for a given seed signature Σ consists of. In particular, a seemingly
irrelevant atom, whose signature is disjoint with Σ, may turn out to be a part of
the module. One way to help determining relevant atoms is to label them, i.e.,
associate them with extra information regarding seed signatures. In this paper
we consider a particular kind of labels which, for each atom a, contains the set
of the Minimal Seed Signatures MSS((a]) (recall that each (a] is a module).

Labelling each atom a with the minimal seed signatures of its module MSS((a])
can have several uses. First, every Σ ∈ MSS((a]) can be regarded as a (minimal)
topic that determines (a] and a. In this sense, all MSSs of all atoms constitute all
relevant minimal topics about which the ontology speaks. This can be exploited
for comprehension. The case where atoms have too many MSSs—(a] could have
up to 2#(a] many—is the subject of a representation method that allows the
adjustment of granularity and is deferred to future work. Second, the collection
of all MSSs guides the extraction of a single module by suggesting possible topics
(MSSs as inputs of the extraction algorithm). Again, the number of topics needs
to be controlled by adjusting the granularity of the presentation.

4.1 Labeling Algorithm and Evaluation

First, we present an AD-driven algorithm for computing, for each atom a in the
decomposition, the set of its minimal seed signatures MSS((a]). Currently, the
algorithm is limited to � or ⊥-locality. We plan to extend it to �⊥∗-locality in
the future.

Note: in Algorithm 1 the symbol ∪∗ means “union and minimization w.r.t.
set inclusion”. This operator guarantees that every set S of seed signatures does
not contain Σ′ if Σ ⊆ Σ′ for some Σ ∈ S. For example, {Σ1, Σ2} ∪∗ {Σ3, Σ4},
where Σ2 ⊂ Σ3, is equal to {Σ1, Σ2, Σ4}.

Algorithm 1 first computes the set MGS(a) (minimal globalizing signatures)
for all axioms in a (Line 4). For an axiom α and a given notion of locality x,
MGS(α) is the set of all Σ ⊆ α̃ such that α is x-non-local w.r.t. Σ and α is
x-local w.r.t. all proper subsets of Σ. For bottom atoms a (i.e., atoms which do
not depend on other atoms) the sets MSS((a]) and MGS((a]) coincide.

Now, every signature Σ ∈ MGS(a) is necessarily a seed signature for (a] but,
unless a is a bottom atom, is not necessarily minimal. The reason is that Σ′ ⊂ Σ

could be a seed signature for a module (b], for some atom b � a if Σ ⊆ Σ′ ∪ (̃b].
In that case, informally, Σ′ first “pulls” (b] into the module (Σ′ being a seed
signature for (b]) and then the extended seed signature Σ′ ∪ (̃b] “pulls” the
axioms of a and the rest of (a]. With “extended seed signature”, we mean the
seed signature against which locality is checked at some iteration of the standard
ME algorithm. Even worse, there could be MSSs for (a] which are not subsets of
any signature in MGS(a) – or not even subsets of ã, as illustrated in Example 5.
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Algorithm 1. Computing MSSs for a principal ideal

1: Input: Ontology O; its AD x-mod-AD, x ∈ {�,⊥}; atom a

2: Output: MSS(a), the set of all MSSs for (a]

3: MSS(a), PreMSS(a) ← ∅
4: MGS(a) ←

⋃∗
α∈a MGS(α)

5: DD(a) ← the set of atoms that a non-transitively depends on
6: if DD(a) = ∅ then
7: return MGS(a)
8: end if
9: for each b ∈ DD(a) do

10: MSS(b) ← recursively compute MSSs for (b]
11: end for
12: for each Σ ∈ MGS(a) do
13: RCΣ(a) ← {b ∈ DD(a) | Σ ∩ (̃b] �= ∅}
14: for each {b1, . . . , bn} ∈ ℘(RCΣ(a)) do
15: Σa ← Σ \

⋃
i=1,...,n (̃bi]

16: for each X ∈ MSS(b1) × · · · × MSS(bn) do
17: PreMSS(a) ← PreMSS(a) ∪∗ {Σa ∪ X}
18: end for
19: end for
20: end for
21: for each Σ ∈ PreMSS(a) do
22: MSS(a) ← MSS(a) ∪∗ {{Σ′} | Σ′ ⊆ Σ and x-mod(Σ′,O) = (a]}
23: end for
24: return MSS(a)

Example 5. Let O = {α, β, γ} with α = ‘A ≡ B � C’, β = ‘B ≡ D � E’, and
γ = ‘C ≡ F � G)’. Then the following hold:

⊥-mod({A},O) = ⊥-mod({B, C},O) = {α, β, γ}
⊥-mod({B},O) = ⊥-mod({D},O) = ⊥-mod({E},O) = {β}
⊥-mod({C},O) = ⊥-mod({F},O) = ⊥-mod({G},O) = {γ}

Therefore, there are three atoms a = {α}, b = {β}, c = {γ} with the dependen-
cies b � a and c � a. Now take the MSS {B, C} for a and replace B and C, which
occur in b and c, with the MSSs {D} and {F} for b and c. Then {D, F} is an MSS
for (a] = O although obviously {D, F} is disjoint with ã and with any member of
MGS(a).

Despite these complications, axioms of a can only be pulled into the module once
the extended seed signature includes at least one of the members of MGS(a). The
algorithm next recursively computes MSS for all direct children of a (Line 10)
and then proceeds to discover other MSSs of (a] by combining the sets MSS for
direct children of a with the set MGS(a) (Lines 12–20).

It does so by “elaborating” each Σ ∈ MGS(a). It selects those atoms b � a

which behave as described above, i.e., (̃b] overlaps with Σ. The set of all such
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direct children of a w.r.t. Σ is stored as RCΣ(a) (Line 13). Then the algorithm
removes from Σ (the signature being “elaborated”) the terms in the “lower” atoms
(
⋃

i=1,...,n (̃bi]) and stores the result in Σa (Line 15). Lines 16–18 go through all
seed signatures X which are guaranteed to pull every atom in RCΣ(a). Then,
X ∪Σa is a seed signature (not necessarily minimal) for (a], as explained above.
All such X ∪Σa are collected in PreMSS(a).

The members Σ ∈ PreMSS(a) are not guaranteed to be a minimal seed si-
gnature for (a] because of possible weak dependencies between direct children
of a. Informally, there could be a subset of Σ which first pulls some bi, then
some child of bi and only then bj. Therefore, the algorithm has to “minimize”
every Σ ∈ PreMSS(a) by checking whether any of its subsets are, by themselves,
already seed signatures of (a] (Lines 21–23). However, entries of PreMSS(a) are
usually good approximations of truly minimal seed signatures; in particular, they
are much better approximations than just the signature of (a].

4.2 Properties of the Labeling Algorithm

The correctness of Algorithm 1 is established in [3]. It requires time exponential
in the size of the ontology in the worst case, see the discussion in [3]. Despite the
worst-case intractability the algorithm has the anytime property: the loops for
elaborating (Lines 14–21) and minimizing (Line 21–23) a seed signature could
be interrupted upon time-out, which will result in computing some subset of the
MSS set for an atom.6 This allows for practical approximations in the case when
computing all MSS takes too long. We call atoms whose labels do not contain
all MSS dirty (other atoms are called clean).

Dirty atoms require special handling during module extraction because their
relevance may not be determinable due to missing of some MSS. In other words,
if a dirty atom a is not relevant to a signature, it could mean two things: first,
the atom is not a part of the module or, second, the atom is part of the module
but a seed signature, which would indicate the relevance of a, has not been
computed due to the time-out. Therefore, in order for the FME algorithm to
remain correct it is forced to include dirty atoms into the module even though
they may be irrelevant. This means, in particular, that performance of the FME
algorithm directly depends on whether the MSS algorithm has been able to
compute all MSS for every atom. This is subject of the evaluation which we
discuss next. The open-source Java implementation used for our experiments is
available at http://tinyurl.com/bioportalFME.

4.3 Evaluation of the Labeling Algorithm

We evaluated the labeling algorithm on the same BioPortal ontologies as used
in Sect. 3. The main goal of the evaluation is to assess the practical feasibility of
computing all MSS for atoms in the BioPortal ontologies. We set the time-out for

6 Minimization has to be interrupted carefully to make sure that all produced signa-
tures are minimal w.r.t. inclusion even though some signatures could be missing.

http://tinyurl.com/bioportalFME
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computing labels for every atom to be 5 seconds, so the algorithm is guaranteed
to finish in 5 times the number of atoms in seconds. The results are presented
in the following table.

Total no. Avg. size Avg. number Max. size Number of Max. number
of ont.s of MSS(a) of terms in of MSS(a) ont. with of

all MSS(a) dirty atoms dirty atoms
181 1.4 2.1 4, 252 5 554

For the vast majority of ontologies (176 out of 181) the algorithm was able to
compute all MSS for all atoms. Also, the average label size (that is, the number
of MSSes per atom) and the average number of terms in all MSSes per atom are
small: 1.4 and 2.1, respectively (when averaged first within an ontology then over
all ontologies). This is yet another consequence of the simplicity of the BioPortal
ontologies: their atoms are relevant to only a small number of terms which implies
a small average number of atoms (and consequently, axioms) per module, see the
next subsection. This observation might suggest that the BioPortal ontologies, in
contrast to those examined by Del Vescovo et al. in [5], do not have exponential
numbers of modules, but it is no firm evidence because it does not tell us about
the asymptotic growth of their module numbers relative to their sizes.

Regarding the few ontologies with dirty atoms, they either do not decom-
pose well or have an interesting property of the AD graph: certain atoms non-
transitively depend on a high number of other atoms. Both reasons are true, e.g.,
for the Nanoparticle ontology, for which the MSS algorithm left 554 atoms dirty
and managed to compute 1, 019 MSS sets for one atom, and the International
Classification for Nursing Practice ontology (72 dirty atoms and 4, 252 MSS sets,
respectively). We leave it for future research to investigate such cases, where a
subset of an ontology turns out to be relevant for such a high number of distinct,
but overlapping, seed signatures.

4.4 Fast Module Extraction Algorithm and Evaluation

Finally, we present a LAD-based FME algorithm, which extracts modules based
on Prop. 3 (i.e., by examining MSS sets in labels), and its evaluation. Similarly
to the labeling algorithm, the current version of the FME algorithm is restricted
to �- or ⊥-locality.

The relevance check at Line 6 takes into account the possible dirtiness of an
atom. More formally, the atom is possibly relevant to Σ if it is clean and there
exists Σ′ ∈ MSS(a) such that Σ′ ⊆ Σ or it is dirty and (̃a] ∩Σ �= ∅ and there is
no Σ′ ∈ MSS(a) such that Σ ⊂ Σ′.7

The FME algorithm has two important advantages over the standard ME
algorithm. First, it should be faster for most of ontologies because it benefits from
the labeled AD in two ways: i) it exploits labels to quickly detect relevant atoms,

7 Observe that if a subset of MSS(a) contains a proper superset of Σ, then, since all
seed signatures are minimal, the full set MSS(a) cannot contain a subset of Σ.
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Algorithm 2. Atomic decomposition-based module extraction algorithm (FME)

1: Input: LAD for FME of an ontology O, a seed signature Σ
2: Output: The module x-mod(Σ,O), where x ∈ {�,⊥}
3: M ← ∅
4: repeat
5: enlarged ← false
6: M ← M∪ “all atoms that are possibly relevant to Σ”
7: if M̃ \ Σ �= ∅ then
8: enlarged ← true
9: end if

10: Σ ← Σ ∪ M̃
11: until enlarged = false
12: return M

ii) once an atom a is established to be relevant the corresponding module (a] is
added to the module without further checks. Second, it consumes substantially
less memory since only relevant atoms (and their principal ideals) need to be
loaded. The second advantage is especially important when modules are small
comparing to the size of the ontology. This is the case with most of the BioPortal
ontologies where the median module’s size for small seed signatures is under 1%,
as illustrated by the FME evaluation results, which we show next.

We ran the FME algorithm on the same set of BioPortal ontologies, which
were used for decomposition and the labeling evaluation. Seed signatures are
generated by a random selection of class names. For each size both FME and
ME algorithms were run 100 times on different seed signatures and the results
are averaged over all runs. The results are averaged over all 181 ontologies and
presented in the following table. Correctness of the FME algorithm was also
verified empirically by checking that the resulting modules contain all axioms
extracted by the standard ME algorithm.8

Size of Avg. (median) rel. Number of Avg. ME Avg. FME Max. FME
seed sig. module size (%) positive cases runtime (ms) speed-up speed-up

2 0.77 (0.04) 173 1.09 7.33 37.28
5 0.91 (0.08) 169 1.15 3.86 27.12

10 0.99 (0.13) 150 1.18 2.48 8.34

“Relative module size” = size of the module divided by the size of the ontology
“Positive cases” = ontologies for which FME is faster than ME
“Avg. (max.) speed-up” = average (max.) value of ME time divided by FME time

Several conclusions can be drawn from the results. First, good decomposability
of BioPortal ontologies indeed implies small modules on average (column 2).
8 The converse is only guaranteed to be true when there is no dirty atoms. Otherwise

an FME module could be a superset (i.e., an approximation) of the ME module for
the same seed signature. Of course, the irrelevant atoms can easily be removed by
running the ME algorithm on the FME module, i.e., by refining the approximation.
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Second, even the standard ME is very fast (around 1 millisecond). Third, the
FME algorithm is typically faster than the standard ME algorithm, however,
this depends on several factors: i) decomposability of the ontology, ii) average
number of atoms’ labels, and iii) size of the seed signature. The first factor is
important for both FME and ME algorithms as it effects the size of the module.
The second factor determines how quickly the FME algorithm can perform the
relevance check on an atom. In the worst case, the algorithm has to examine each
MSS for an atom to decide if it is relevant.9 The seed signature’s size determines
the number of relevant atoms. When the seed signature gets larger, the algorithm
has to examine more atoms for relevancy. Finally, note that the results include
ontologies with dirty atoms on which the FME algorithm could be up to 5 times
slower than the ME algorithm because of considering possibly irrelevant atoms
(this illuminates the importance of efficient labeling).

We also investigated the cases in which the FME algorithm runs an order of
magnitude faster than the standard ME algorithm. This seems to be the case
with ontologies which decompose into small atoms with a low number of MSS set,
and small seed signatures. This is fairly typical for BioPortal ontologies, including
some well-known ones. We illustrate this by comparing the running time of FME
and ME on randomly generated samples of size between 10K and 60K axioms of
GO (the Gene Ontology) and ChEBI (Chemical Entities of Biological Interest
Ontology).10 Seed signatures of size 2, 5 and 10 are generated as in the previous
experiment. The results are shown in the two figures below (GO on the left,
ChEBI on the right).
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The graphs show that FME time tends to grow more slowly with the size
of the ontology than ME time. This is unsurprising because the ratio of the
module’s size to the ontology size is decreasing (provided the seed signature’s
size remains constant) and the FME is usually able to quickly locate relevant

9 In fact, this depends on the data structure used to store sets of MSS. We use simple
hash sets, so the check takes O(|MSS(a)| × |Σ|), where Σ is the seed signature.

10 Both ontologies are slightly over 60K logical axioms.
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atoms while the ME algorithm has to examine each axiom.11 As in the previous
experiments, the speed-up is greater for smaller seed signatures. Note, however,
that for seed signatures of 10 terms the relative speed-up of FME decreases
after 30K axioms for ChEBI. Although it is still an order of magnitude, the
behavior suggests that additional optimizations might be necessary for FME.
For example, the relevance check could be made much quicker if MSS sets are
stored in a data structure tuned for testing set inclusion.

In addition, the FME algorithm can work when only labels and the graph
structure of the AD (but not axioms) are loaded into memory. This could be
important for maintaining large ontologies, or even large collections of large
ontologies, such as ontology repositories. In that case, contrary to the standard
ME, the FME algorithm could still extract modules by loading axioms of only
relevant atoms (plus possibly some dirty atoms for which irrelevance cannot be
proved). For example, if BioPortal ontologies were maintained in the decomposed
form, it would be possible to provide clients, such as SSWAP, with modules for
a required seed signature in a scalable (from the memory perspective) way.

5 Summary and Future Directions

In this paper we have presented results of decomposing and extracting modules
from most of BioPortal ontologies. We showed that the majority of ontologies
decompose well, discussed possible reasons for poor decomposability, and im-
plications of decomposability for possible use cases, in particular, semantic Web
service annotation and discovery. In addition, we presented novel AD-based algo-
rithms for computing minimal seed signatures for compact modules and module
extraction.

Overall, the reported results show the utility of ontology modularity and de-
composition for such tasks as semantic Web service matchmaking. In particular,
it is likely that only small portion of a biomedical ontology is relevant for terms
used in a Web service description, e.g., on SSWAP or SADI (see the average
module size in the table on Page 142). Therefore, reasoning required to discover
the service could be (efficiently) performed on a small set of OWL axioms. Fur-
thermore, decomposition helps to get that set (module) faster than the standard
module extraction and without the necessity to keep the ontology in memory.

We intend to continue our work on decomposition in several directions. First,
we will investigate the possibility of maintaining ontologies in a decomposed
form. This is more scalable from the memory perspective, enables faster ME,
and is also potentially useful for comprehension and collaborative development
of the ontology. However, it will require the possibility of incremental updates
to the AD since its computation can be time consuming. Second, we will extend
our algorithms to �⊥∗-modules and, possibly, to semantic locality. Third, we
11 For space reasons our description of the FME algorithm does not show how labels

serve as indexes by enabling us to perform the relevance test only on atoms whose
MSS sets overlap with the seed signature. We must mention that a syntactic indexing
(but coarser and less efficient) could be used for the standard ME as well.
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will keep on investigating modeling guidelines for developing well decomposable
ontologies and will seek to improve understanding of poor decomposability.
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Abstract. Ontology alignment is an important problem for the linked
data web, as more and more ontologies and ontology instances get pub-
lished for specific domains such as government and healthcare. A num-
ber of (semi-)automated alignment systems have been proposed in re-
cent years. Most combine a set of similarity functions on lexical, seman-
tic and structural features to align ontologies. Although these functions
work well in many cases of ontology alignments, they fail to capture
alignments when terms or structure varies vastly across ontologies. In
this case, one is forced to rely on manual alignment. In this paper, we
study whether it is feasible to re-use such expert provided ontology align-
ments for new alignment tasks. We focus in particular on many-to-one
alignments, where the opportunity for re-use is feasible if alignments are
stable. Specifically, we define the notion of a cluster as being made of
multiple entities in the source ontology S that are mapped to the same
entity in the target ontology T . We test the stability hypothesis that
the formed clusters of source ontology are stable across alignments to
different target ontologies. If this hypothesis is valid, the clusters of an
ontology S, built from an existing alignment with an ontology T , can be
effectively exploited to align S with a new ontology T ′. Evaluation on
both manual and automated high-quality alignments show remarkable
stability of clusters across ontology alignments in the financial domain
and the healthcare and life sciences domain. Experimental evaluation
also demonstrates the effectiveness of utilizing the stability of clusters in
improving the alignment process in terms of precision and recall.

1 Introduction

Ontology alignment is an important problem for the linked data web, as more
and more ontologies get published for specific domains such as government
and healthcare. A number of (semi-)automated alignment systems have been
developed in recent years (e.g., Lily [16], ASMOV [8], Anchor-Flood [11], Ri-
MOM [13]). Most systems combine a large set of similarity functions on lexical,
semantic and structural features to align ontologies (for surveys, see [2], [14]).
While these similarity functions are important and effective for many cases of
ontology alignments, there are also cases where none of the similarity functions

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 146–161, 2011.
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adequately capture the nature of the alignment; this is particularly true when
the two ontologies of extremely different modeling granularities are involved.
For instance, one alignment exercise frequently conducted by IBM consultants
in the field is to align models that describe assets at an IT level (e.g., the IBM
Information FrameWork model used to describe IT assets in the banking indus-
try) to models that describe the same assets at a business level (e.g., the IBM
Component Business Model for banking). Because the two models describe the
same assets in different terms and different structures, traditional approaches to
automated ontology alignment fail abysmally (the mapping precision we have
measured can be as low as 1% in these cases). In fact, the only alternative in
such cases is to rely on a domain expert who can provide the alignment between
these types of models. However, if the expert has actually done the hard work
of mapping the models once, is it feasible to re-use these high-quality manual
ontology alignments, to improve the alignment process for new alignments when
the two models evolve, or when the same model needs to be aligned to new
models? This is the research focus of our paper.

For the purpose of investigating the re-use of manual mappings, we direct our
attention in this paper to many-to-one (or conversely, one-to-many) mappings,
because this is where mapping re-use can be readily applied while similarity
functions fail to produce valuable information for alignments. In many-to-one
mapping scenarios, multiple entities in one ontology S get mapped to a single
entity in a target ontology T 1. The grouping of multiple entities in S can be
viewed as user-specified clustering of source entities. In principle, there is a
chance that prior ontology alignments can provide some guidance for the current
alignment task in hand, if there is some stability in mapping certain entities in
one ontology to the same entity in target ontologies. Put it another way, the
question is whether the user-specified clusters based on the alignment of S to
T 1 tend to appear when S is aligned with ontology T 2 different from T 1. If the
user-specified clustering in S is in fact stable, then the clustering information can
be exploited when alignment needs to be performed from S to T 2. Specifically,
a mapping provided by an expert on one of the entities in a cluster of S can be
automatically generalized to map other members of this cluster.

To evaluate the stability hypothesis, we define two novel metrics to measure
the similarity of clusters constructed for an ontology S based on its alignment
results to different ontologies. These metrics are conceptually similar to Lev-
enshtein and Jaccard measures of string similarity. We also design a mapping
strategy that utilizes the clustering information for new alignments and study
the effectiveness of this strategy in terms of the classical mapping quality metrics
such as precision and recall. Furthermore, we characterize mapping efficiency in
terms of the amount of saving in human effort required in the alignment task
with and without the clustering information. We apply these metrics to com-
pare two independent alignments that were performed by IBM consultants in the
field. The first alignment involved the mapping of the IBM Component Business
Model (CBM), a flat model of business functions expressed in business terms to
Information FrameWork (IFW), a structured and detailed model of enterprise
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processes described from an IT perspective. The second alignment involved a
very different version of the CBM model which was aligned to a mostly un-
changed IFW model. The alignment process was conducted about a year apart,
by different consultants. As mentioned earlier, applying any of the standard sim-
ilarity functions to either model pair fails to detect any meaningful alignments.
Manual mappings produced by IBM consultants had most CBM entities mapped
to multiple IFW entities. Using these expert created mappings as reference, we
tested whether the user defined clusters of IFW entities stayed stable when it
was mapped to a very different version of CBM. Our evaluation of the previously
defined metrics showed remarkable stability of clustering of IFW entities (the
average similarity of clusters is 0.89, within the range of [0, 1]). For the same
dataset, the improvement in mapping precision is 0.4, and the efficiency is 0.95
within a scale of 0 to 1; the higher the better. For repeatability purposes, we
evaluated these same metrics for 2312 ontology comparisons publicly available
on the BioPortal web site1 with again remarkable stability of clustering of source
ontology entities (the average similarity of clusters is 0.84). From these positive
stability results, the opportunity for re-use is quite clear: clustering information
generated from existing alignments is very helpful for new alignment tasks. For
instance, if entities a, and b in ontology S are mapped to entity c in ontology
T 1, and a is mapped to entity d in another ontology T 2, we know b should be
mapped to d in T 2 as well.

Our main contributions in this paper are as follows:

– We present a novel technique to uncover, from existing many-to-one (or
conversely, one-to-many) alignments, internal structures of related entities
(i.e., clusters of entities) in ontologies.

– We show the stability of those clusters across alignments in two different do-
mains (finance and healthcare & life sciences) and on both manually created
mappings and automatically generated high-quality mappings.

– We describe how clusters discovered in existing many-to-one and one-to-
many alignments can be exploited for performing new alignments, and eval-
uate the impact on both mapping quality (precision/recall) and mapping
efficiency (saving in human effort).

The remainder of the paper is organized as follows. In the next section, we
present an overview of our clustering-based ontology alignment approach and
the fundamental stability hypothesis it relies on. In Section 3, we describe clus-
ter similarity measures needed to validate the stability hypothesis. The evalua-
tion results on many-to-one alignments are presented in Section 4. Finally, after
discussing related work in Section 5, we conclude in Section 6.

2 Overview of Clustering-Based Ontology Alignment

In many-to-one alignment scenarios, multiple entities in the source ontology S
get matched to the same entity in the target ontology T . One way to interpret
1 http://bioportal.bioontology.org

http://bioportal.bioontology.org
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the alignment result of S → T is that the entities in S are partitioned into
clusters (i.e., groups) such that each cluster of entities are matched to the same
entity in T . Consider a simple example.

Source ontology S = {a, b, c, d}, target ontology T = {e, f}, and their align-
ment result: S → T = {a → e, b → e, c → f, d → f}. In this case, ontology S is
partitioned into 2 clusters: Ps = {{a, b}, {c, d}}.

It naturally follows that a source ontology could be partitioned in different ways
based on its alignment resultswithdifferent target ontologies.Our clustering-based
ontology alignment approach relies on the following fundamental hypothesis:

Hypothesis (H): The partitions of a source ontology (based on alignment
results with different target ontologies) are stable across ontology alignments.

If this hypothesis is valid, it is feasible to leverage the alignment result of
ontology S to ontology T 1 to help a new alignment of S to ontology T 2 as
follows:

– Generate a partition (i.e., a set of clusters) of S, denoted as Ps, from the
alignment result of S → T 1;

– To perform the alignment task of S → T 2, instead of matching individual
entities in S independently with the entities in T 2, it may be more efficient
and more accurate to match a cluster of entities in Ps to the entities in T 2.
The intuition is that the entities in one cluster are expected to match to the
same entity in T 2.

This approach would be particularly valuable to maintain alignments as ontolo-
gies evolve. For example, if a high-quality alignment from ontology S to ontology
T 1 has been produced through a manual or semi-automated process and ontology
T 1 then evolves to a new version T 1’, this approach would significantly reduce
the amount of pairwise mappings to consider in order to build an alignment from
S to T 1’.

Table 1. Example of an IFW cluster based on manual alignment to CBM

IFW CBM

Provide FMO Transaction Reconciliation Account Reconciliation
Request Amended Counterparty Confirmation Account Reconciliation
Accumulate Futures Transaction Values Account Reconciliation
Analyze FMO Transaction Details Account Reconciliation
Compare FMO Transaction Details Account Reconciliation
Verify FMO Transaction Details Account Reconciliation

Tables 1 and 2 show two examples of clusters obtained respectively through
manual alignment and through automated alignment.

In Table 1, most entities in the IFW cluster (i.e., ‘Provide FMO Transaction
Reconciliation’, ‘Request Amended Counterparty Confirmation’, ‘Accumulate
Futures Transaction Values’, and ‘Analyze FMO Transaction Details’) show lit-
tle to no lexical or structural similarity between themselves or with the target
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Table 2. Example of a Mouse Anatomy cluster based on lexical alignment to Brenda
Tissue Ontology

Mouse Anatomy Brenda Tissue

intestine (no synonym) intestine (synonyms: bowel, gut)
bowel (no synonym) intestine (synonyms: bowel, gut)
gut (no synonym) intestine (synonyms: bowel, gut)

CBM entity, ‘Account Reconciliation’. In fact, applying standard similarity func-
tions to directly map IFW to CBM produce extremely poor results because, as
mentioned in Section 1, the two models are very different from almost all per-
spectives: different vocabularies (IT vocabulary for IFW vs. business vocabulary
for CBM), very different structures (deep nested structure for IFW vs. flat struc-
ture for CBM), modeling at different levels of abstraction (modeling at the IT
process level for IFW vs. modeling at the business functions level for CBM).
The semantic similarity between IFW entities in the cluster, which could not be
computed from information present in both models, was indirectly identified by
the domain experts (IBM consultants) when they map these IFW entities to the
same CBM entity.

Table 2 shows partial results of aligning the adult Mouse Anatomy Ontology
(MA) and Brenda Tissue Ontology (BTO) using the automated process2 de-
scribed in [9]. Like the IFW-CBM case, entities in the cluster of MA ontology
do not exhibit any meaningful similarity that could be computed based only on
information in MA ontology. However, as opposed to the previous IFW case,
entities in MA are lexically similar to the mapped entity (i.e., intestine which
has as explicit synonyms bowel and gut) in the target ontology. In this case,
the alignment to BTO serves as a dictionary look up that uncovers the semantic
similarity between intestine, bowel, and gut. This uncovered semantic similarity
could then be used in the next alignment involving MA ontology.

3 Measures of Cluster Similarity

To test our stability hypothesis (H), we need to evaluate the similarity between
the partitions of the same ontology, which requires a similarity measure on a pair
of partitions (i.e., sets of clusters). To ease presentation, consider two alignments,
S to T 1 and S to T 2. Based on their alignment results, we can generate two
partitions of S: Ps,1 = {C1, C2, . . . , Cm} and Ps,2 = {C′

1, C
′
2, . . . , C

′
n}, where

each cluster Ci or C′
j is a collection of entities in the source ontology S. So the

real challenge is to define an appropriate measure to evaluate the similarity of
Ps,1 and Ps,2. A good measure needs to be symmetric and have a fixed range of
values, preferably [0, 1], such that similarity values computed for different pairs
of partitions are comparable. Here we consider two similarity measures which
are conceptually similar to similarity metrics for strings.

2 The ontologies and the alignments are available at
http://bioportal.bioontology.org/

http://bioportal.bioontology.org/
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3.1 Measure I: Jaccard Similarity on Entity Pairs

For each cluster C in the partition Ps of ontology S, we can generate all pairs
of entities in cluster C. Thus, the partition Ps can be represented as the union
of all the sets of entity pairs (one set per cluster in Ps). The generated set
of entity pairs is equivalent to the original partition in the sense that we can
re-generate the partition from the set of entity pairs. For instance, consider a
partition P1 = {{a, b}, {c, d, e}}. The corresponding set of entity pairs is P ′

1 =
{{a, b}, {c, d}, {c, e}, {d, e}}. Note that given P ′

1, we can re-generate the original
partition P1. For another partition P2 (say, P2 = {{a, b, c}, {d, e}}), we can also
generate a set of entity pairs as P ′

2 = {{a, b}, {a, c}, {b, c}, {d, e}}. The similarity
of the two sets P ′

1 and P ′
2 can then be computed with the standard Jaccard

similarity [1] by treating each entity pair (without considering the sequence of
entities) as the basic element of a set. Therefore, the similarity of P1 and P2

can be computed as follows:

PSim1(P1,P2) =
|P ′

1 ∩ P ′
2|

|P ′
1 ∪ P ′

2|
(1)

where the numerator is the size of set intersection, and the denominator is
the size of set union, with each entity pair as a basic unit in the set. The
similarity measure PSim1 has the desired property that it is symmetric (i.e.,
Sim1(P1, P2) = Sim2(P2, P1)) and the range of the similarity value is [0, 1].
Furthermore, PSim1 captures the effect of big clusters in a partition, because
big clusters will generate entity pairs that are exponential in size to cluster size;
thus reflecting the natural preference for big clusters.

3.2 Measure II: Partition Edit Distance

One measure that is closely related to similarity is distance. The distance be-
tween two partitions can be intuitively characterized by the minimum amount
of work to transform one partition into the other, which is conceptually similar
to edit distance (i.e., the minimum number of edits, including insertion, dele-
tion, and substitution) between two strings. The basic operations for partitions
we consider include Split and Merge. A Split operation on a cluster C1 creates
two non-overlapping clusters C2 and C3, with the union of C2 and C3 including
all the elements in C1. Merge is an inverse operation of Split. To continue with
the previous example, to transform partition P1 into partition P2, we need 2
operations: a Split operation on the cluster {c, d, e} generates two clusters {c}
and {d, e}; and a Merge operation of the two clusters {a, b} and {c} creates a
new cluster {a, b, c}, thus resulting in partition P2. So the edit distance between
P1 and P2 is 2.

Definition: The edit distance between two partitions P1 and P2, denoted
as ED(P1,P2), is the length of the shortest edit path composed of Splits and
Merges from P1 to P2. A nice property of the partition edit distance is that it
is symmetric, i.e., ED(P1,P2) = ED(P2,P1). Although the edit path from P1

to P2 is different from the path of transforming P2 to P1, these two paths have
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the same length, since the two basic operations of Merge and Split are inverse
of each other.

Because the edit distance between two partitions of the same ontology is
dependent on ontology size, we need a normalization factor to transform edit
distance into a similarity measure. The normalization factor we consider here
is ontology size, i.e., the number of entities in a source ontology. Thus, the
similarity measure derived from edit distance of two partitions P1 and P2 is:

PSim2(P1,P2) = 1− 1
|S|ED(P1,P2) (2)

where |S| is the size of the source ontology. The similarity measure PSim2 is
also symmetric.

3.3 Measure III: Mapping Quality

The above two measures reflects the stability of partitions from the similarity
perspective. We also propose another measure to evaluate the actual quality
of mappings which are generated based on the clustering information. To this
end, we simulate the procedure of generating partitions of a source ontology and
applying the clustering information for a new alignment that involves the same
source ontology:

– Generate a partition P1 of the source ontology S based on the mapping
result from S to a target ontology T 1;

– For a new alignment task from S to another target ontology T 2, generate
the mappings as follows:
• For each cluster C in the partition P1, randomly pick one entity s from

C and find the mapped entity t in T 2;
• Generalize the mapping to other entities in the same cluster, with the

mappings being {〈s′, t〉|s′ ∈ C}.

Since in this paper we focus on many-to-one mappings, we exclude the one-to-
one mappings from the estimation of precision and recall, the two classical
metrics for measuring mapping quality.

precision =
|M ∩MGS |

|M| , recall =
|M ∩MGS|
|MGS|

where M is the mappings generated using the strategy described above, and MGS

is the gold-standard (i.e., reference) mappings. Note that |M| and |MGS| are equal
in this scenario, so precision and recall are equal, and we will only report re-
sults in precision in the experiment section. In addition to the mapping quality,
we also measure the amount of saving of human effort to generate the mappings,
compared to the baseline approach of independently generating mappings for
each entity in the source ontology from scratch. The human effort is estimated
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as the number of mappings that require human input. We thus define mapping
efficiency with utilization of clustering information as:

efficiency = 1− |Pm2o|/|Sm2o|

where |Pm2o| is the number of non-singleton clusters (i.e., clusters with more
than one entity) in the partition P of the source ontology S, and |Sm2o| is the
total number of entities in the non-singleton clusters. Intuitively, the bigger the
clusters, the more efficient the approach based on clustering. At the same time,
however, bigger clusters tend to be more impure (i.e., meaning entities in the
same cluster are mapped to different entities in the target ontology). Therefore,
clusters of size exceeding the optimal value will adversely affect mapping quality.

3.4 Discussion

The three measures described above reflect different information aspects for
the hypothesis testing about partition stability. The Jaccard similarity indicates
whether the partitions generated based on mappings to different target ontologies
are at the same granularity. For example, if the target ontology T 1 is more fine-
grained than another target ontology T 2, we expect that the Jaccard similarity
of the two partitions of the source ontology is relatively low. A simple example
will illustrate this fact. Suppose we have one partition containing just one cluster
{a, b, c, d}, and the other partition is {{a, b}, {c, d}}. It is easy to see that the
target ontologies in the two alignments are at different granularity. The Jaccard
similarity of the two partitions is 1/3, which is relatively low. The partition
edit distance, on the other hand, is insensitive to such partition granularity.
Continue that simple example. We can see that the edit distance between the
two partitions is 1, so the normalized similarity based on the edit distance is
1 - 1/4 = 0.75. The advantage of edit distance is that it can capture both the
cases where entities mapped to the same entity are mapped to different entities in
another target ontology, and the cases where entities mapped to different entities
in one target ontology are mapped to the same entities in another ontology.
The third measure, mapping quality, provides information about whether the
partition information is reliable for end use. That is, how much the users can trust
the partition information provided by one alignment task, when they perform
a related alignment task in the same domain with the same source ontology.
In some sense, mapping quality is a hybrid measure of Jaccard similarity and
partition edit distance, and can provide an estimate of usefulness of the clustering
information for end users.

4 Evaluating Partitioning Stability

In this section, we evaluate the stability of partitioning, using the three measures
defined in Section 2, on one dataset from the financial domain and one from the
life sciences domain that is publicly available on the BioPortal website.
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4.1 IFW - CBM: Ontology Evolution Scenario

As discussed earlier in Section 1, we first studied the case where we had two high-
quality manual alignments: IFW-CBM1 and IFW-CBM2, where CBM2 reflects
an evolution of CBM1. CBM1 has 65 entities, and CBM2 has 120 entities; they
overlap in 37 entities. There are 2165 entities in IFW that are involved in many-
to-one mappings. The partition of IFW based on the mappings from IFW to
CBM1 consists of 62 clusters, and the partition based on the mappings from
IFW to CBM2 consists of 111 clusters. The average cluster size in both partitions
is 25. Recall that the average cluster size determines the mapping efficiency,
i.e., the amount of human effort that can be saved by leveraging the clustering
information. Therefore, the mapping efficiency in this case is expected to be high;
the actual efficiency value is 0.95. We also calculated the similarity of the two
partitions: (1) The similarity based on partition edit distance is 0.89; and (2)
the Jaccard similarity is 0.53. The low Jaccard similarity is likely due to the fact
that the number of clusters in two partitions is quite different (62 vs. 111), as
is the cluster size. As a consequence, the number of entity pairs generated from
the clusters of IFW entities changes significantly. Because Jaccard similarity is
quite sensitive to the size of the sets of entity pairs, the two partitions have a
low Jaccard similarity. Jaccard similarity clearly reflects the actual change in
granularity of the two versions of CBM.

The mapping precision metric is not symmetric, which means using the clus-
tering information based on the mappings from IFW to CBM1 to generate map-
pings for IFW to CBM2 may have a precision quite different from that in the
other direction. Therefore, we estimated mapping precision in both directions,
and the average precision is 0.78. To determine the improvement in precision
due to the use of clustering information, we measured the overlap between the
two alignment results (i.e., IFW-CBM1 and IFW-CBM2) as the baseline. The
intuition is that, if we directly use one alignment result to generate mappings
for the other alignment, only the overlap of the two alignments can generate
correct mappings; the precision for this approach is 0.38. So through the uti-
lization of clustering information from one alignment for the other alignment,
we improve the mapping precision by 0.4; which is statistically significant. As
mentioned in Section 1, the lexical and structural similarity between IFW and
CBM is extremely low; we actually ran our alignment algorithm [5] for the two
alignments IFW-CBM1 and IFW-CBM2 and got a precision around 0.01. In this
scenario, manual mapping is therefore a must, and improving precision by 0.4
by alignment re-use is a significant saving.

4.2 Large Scale Evaluation on BioPortal Ontologies

The BioPortal website contains 149 ontologies, 9.3K ontology comparisons, and
1.75 million matchings of elements in various ontologies that were largely lexi-
cally generated.

Recall that we can create one partition of the source ontology from one on-
tology alignment result. For a given source ontology S, there could be multiple
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Fig. 1. Histogram of #entities in partition pairs

Average cluster size of a partition pair
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Fig. 2. Histogram of average cluster size per partition

partitions of S, based on the alignment results with respect to different target
ontologies. We used the two similarity measures (described in Section 3) to es-
timate pairwise similarity of the partitions on the same source ontology. If an
ontology S is aligned with k ontologies, we will generate k partitions of S, and
there will be

(
k
2

)
similarity computations of the pairs of partitions. Therefore,

the total number of pairwise comparison of partitions is
∑K

i=1

(
ki

2

)
, where K

is the number of ontologies, and ki is the number of times an ontology Si is
aligned with other ontologies. In this setting, we have altogether 24K similarity
computations between generated partitions.

Since we were focused on many-to-one matching scenarios, we needed to pre-
process the expected matchings from the BioPortal website before analyzing the
similarity of partitions on the same source ontology, using the following steps:
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Similarity score of partition pair (Jaccard)
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Fig. 3. Histogram of Jaccard similarity values

1) For a pair of partitions on the same source ontology, we identified the entities
that appeared in both partitions. We removed from further analysis those
entities that only appeared in one of the partitions. The rationale for this
pruning was that these entities were really analogous to missing observations.
That is, if an entity is missing from the partition it could be either due to
incomplete alignment by domain experts, or because it is a singleton in this
alignment, or because it should have been mapped to a different cluster.
Since we had no way of knowing which of the three cases these entities fell
into, we basically eliminated the entities from the analysis.

2) For any entity that is a singleton cluster in both partitions, we also removed
them from further analysis; although the singleton clusters common in two
partitions do not actually affect the similarity values, due to the robustness
of our similarity measures.

3) To make the analysis meaningful, we also removed ontology comparisons
that contained less than 10 entities involved in many-to-one matchings.

After preprocessing the expected matchings, we had 10.4K pairs of partitions
for the similarity comparison. Figure 1 shows the distribution of the number
of entities in each pair of partitions. The average number of entities involved
in many-to-one matching scenarios is 64, which ensures that our analysis of
partitioning stability is based on a reasonable number of data points and is
reliable. Figure 2 shows the distribution of average cluster size per partition. It
is clear that a majority of the partitions have small clusters, with a size of 2
or 3; note that we have excluded singleton clusters generated from one-to-one
mappings. Since the mapping result is incomplete and often only covers a small
part of the ontology, we made only considered the entities mentioned in both
matchings, which partially explains small clusters.
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Similarity score of partition pair (based on edit distance)
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Fig. 4. Histogram of similarity values based on partition edit distance

Figure 3 shows the distribution of the similarity values of all pairs of parti-
tions using Jaccard similarity on entity pairs (see Section 3.1). The mean of the
similarity values is 0.72, and the standard deviation is 0.26. Figure 4 shows the
distribution of the similarity values of all pairs of partitions based on partition
edit distance (see Section 3.2). The mean of the similarity values is 0.84, and the
standard deviation is 0.16.

Both Figure 3 and Figure 4 show that the partition of an ontology S is reason-
ably stable based on the results of aligning S with different ontologies. This ob-
servation indicates that we can leverage the partition of ontology S constructed
from an existing alignment result to help new ontology alignments, which can
be done in the following way: (1) Given the result of aligning S to T 1, we can
generate a partition (i.e., clusters) of S, denoted as Ps; (2) For a new alignment
from S to T 2, we match each cluster of entities in Ps to the same entity in T 2.
This alignment strategy has two benefits: (i) it improves alignment quality, since
the alignment tool can aggregate the information from all entities in a cluster to
make alignment decisions rather than make decisions based on individual entities
independently; and (ii) it improves alignment efficiency, because the alignment
of one entity in a cluster can be easily generalized to the other entities in the
same cluster. Figure 5 shows the distribution of precision when we apply the
mapping strategy to the 10.4K ontology pairs. The average precision is 0.92,
with a standard deviation of 0.11. This result verifies that it is viable to utilize
the clustering information from one ontology pair for the alignment of another
pair in the same domain, certainly with the same source model. Figure 6 shows
the distribution of mapping efficiency in terms of the percentage of mappings
that can be automatically generated by leveraging the partition information.
The average efficiency is 0.37, with a standard deviation of 0.19. As explained
in the previous section, the efficiency is highly dependent on the average cluster
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Mapping precision
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Fig. 5. Histogram of mapping precision values

Mapping efficiency
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Fig. 6. Histogram of mapping efficiency values

size; the bigger the average cluster size, the higher the efficiency. Since the av-
erage cluster size of the partitions is small (see Figure 2), the efficiency is thus
modest.

We also note that the observed stability of clusters for the BioPortal ontologies
is not simply an artifact of the fact that the mappings were computed using lexi-
cal matching. For instance, the concepts COO:F0005386 hyaluronidase activity,
CCO:F0004395 hyaluronate lyase activity, and CCO:F0000824 hyalurononglu-
cosaminidase activity are all mapped to PHI:0000199 hyaluronidase activity
based on their broad synonyms. Yet, each of the 3 concepts is mapped to differ-
ent concepts in the Gene Ontology (GO). It is clear that stability is independent
of whether or not lexical similarity drives the alignment process, which was also
shown earlier with the IFW-CBM alignments.
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Can the use of clustering information improve the alignment for BioPortal on-
tologies? Unfortunately, we do not have the luxury of having overlaps between
two versions of the same model, like the IFW-CBM case, that can be used as a
baseline. We do note, however, that there were a substantial number (48,261) of
mappings, generated by our clustering-based approach, that are missing from the
BioPortal website. Since the mappings provided by BioPortal are incomplete [9],
it is unclear whether some entities in part of a cluster should not be mapped
to any entity in the target ontology or the extra mappings we found are valid.
Although we were unable to verify the validity of all the mappings due to lack of
expertise, a number of them seemed correct based on their synonyms (see Table
3 for a few examples below). In the table, CLL is missed because it is an acronym
for chronic lymphocytic leukemia, lung neoplasms is missed because it is a syn-
onym of lung cancer, and similarly, RB1 is missed because it is an acronym for
retinoblastoma. This observation indicates that our clustering-based alignment
approach can improve the recall for the alignments of BioPortal ontologies; note
that the average precision estimated with the existing mappings is 0.92.

Table 3. Examples of missed matches as defined by clustering

Concept 1 Concept 2

estrogen receptor alpha (CDR0000322904) estrogen receptor (PRO 000007204)
retinoblastoma (MPATH:378) RB1 (CDR0000043571)
non-small cell lung cancer (CDR0000040862) Lung neoplasms (D008175)
renal cell carcinoma (CDR0000038140) carcinoma, renal cell (C1534)
B-cell chronic lymphocytic leukemia (CDR0000039824) CLL (LP34550-1)

5 Related Work

The alignment technique we proposed in this paper, which exploits internal
structures of ontologies discovered through existing high-quality alignments, can
be contrasted with previous work in terms of its singular focus on many-to-
one and one-to-many alignments and in terms of the novelty of its approach to
learning from existing alignments.

Although many approaches have been proposed to perform ontology align-
ment in the literature, there have been, to the best of our knowledge, no signif-
icant efforts to tailor the alignment process for alignments with cardinality dif-
ferent from one-to-one. After computing an aggregate similarity score for each
candidate matching, most state-of-the art systems (e.g., AgreementMaker [3]
and BLOOMS [15]) simply return the matchings above a given threshold under
a given alignment cardinality constraint (e.g., one-to-one, one-to-many, many-
to-one) without any consideration for the internal structures implied by one-to-
many or many-to-one alignments. Other systems (e.g., ASMOV [12]) have been
optimized for one-to-one alignments to the point of considering multiple entity
correspondences, where the same entity in one ontology is matched with multi-
ple entities in the other ontology, as an inconsistency check in the final semantic
verification step. This bias for one-to-one alignments also transpires from the
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relatively large collection of mostly one-to-one ontology alignments used to eval-
uate and systematically characterize the performance of state-of-the-art ontol-
ogy alignment systems at the annual Ontology Alignment Evaluation Initiative3

event.
Prior work on learning from existing high-quality alignments (e.g., [5], [4], [7]

and [6]) has typically taken a machine learning approach to customize the align-
ment process either for a given pair of ontologies, for which a partial reference
alignment is available, or for a domain where multiple reference alignments are
available. The outcome of this traditional learning approach is the specification
of the optimal value for each parameter of the alignment process for a particular
alignment or for alignments in a given domain. However, the learning approach
does not work well when there is little or no lexical/structural similarity between
the ontologies to align; in which cases the similarity functions can provide little
signal for the learning process. Furthermore, no information is learned about
the intrinsic structure of ontologies and then used to help new alignment. In
contrast, in this paper, we describe how existing many-to-one (or one-to-many)
alignments can be used to discover internal structures (i.e., grouping entities
within an ontology); such structures can then be leveraged in new ontology
alignment as discussed in Section 2.

To the best of our knowledge, [9] and [10] are the only related work which
attempts to learn structural characteristics of ontologies from matchings. How-
ever, our work is different from [9] in terms of its goals. The main goal of [9]
is to uncover the network structure of the set of ontologies, and learn from
their links (i.e., entity matchings) the interesting properties of the ontologies in
the particular domain; for example, which ones are the most relevant and most
appropriate to serve as background knowledge for domain-specific tools. Our
goal is to uncover internal ontological structures to enhance future alignments.
Reference [10] proposed an alignment technique to generate mappings between
source ontology and target ontology by composing previously determined map-
pings that involve intermediate ontologies. Our work differs from [10] in that we
evaluated the soundness of the hypothesis that the partition (i.e., clustering of
entities) of the source ontology is stable across ontology alignments, which val-
idates the underlying assumption made by [10]; so our work is complementary
to [10].

6 Conclusions

In this paper we proposed the hypothesis that the internal structure of an on-
tology, i.e., clusters of its entities discovered from the many-to-one alignment
scenario, is stable across ontology alignments in the same domain. To evalu-
ate this hypothesis, we defined two novel metrics to measure the similarity of
clusters generated for one ontology based on its alignments with different target
ontologies. Experimental evaluation with datasets from the financial domain and

3 http://oaei.ontologymatching.org/2010/

http://oaei.ontologymatching.org/2010/
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the healthcare and life sciences domain demonstrated that the stability hypoth-
esis is valid. In addition, we designed a mapping strategy that can leverage the
clustering information for new alignment tasks, and characterized the effective-
ness of this mapping strategy in terms of the impact on mapping quality and
mapping efficiency. Experimental evaluation showed that clustering information
discovered from one alignment can help improve, with a statistical significance,
the mapping quality and mapping efficiency of a new alignment.
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Abstract. Entities on the Web of Data need to have labels in order to be
exposable to humans in a meaningful way. These labels can then be used
for exploring the data, i.e., for displaying the entities in a linked data
browser or other front-end applications, but also to support keyword-
based or natural-language based search over the Web of Data. Far too
many applications fall back to exposing the URIs of the entities to the
user in the absence of more easily understandable representations such
as human-readable labels. In this work we introduce a number of label-
related metrics: completeness of the labeling, the efficient accessibility of
the labels, unambiguity of labeling, and the multilinguality of the label-
ing. We report our findings from measuring the Web of Data using these
metrics. We also investigate which properties are used for labeling pur-
poses, since many vocabularies define further labeling properties beyond
the standard property from RDFS.

Keywords: Web of Data, labels, human interfaces, data quality.

1 Introduction

A growing number of applications is expected to use the Web of Data. They will
discover descriptions of interesting entities on the Web, load these descriptions,
and improve the user experience by being smarter, or enable completely new
scenarios, by building on the knowledge found in the Semantic Web [8]. These
applications often need to expose the entities and the data they have gathered
about these entities from the Web to the end user. In order to do so, labels are
often used as human-readable names for the entities. Labels can be utilized for
a number of different purposes:

– displaying the data to end-users, instead of displaying the URIs,
– for searches over the Web of Data, be they keyword-based or question-based,
– for indexing purposes, or
– for training and using annotation tools with a given knowledge base, etc.

In order to be able to utilize labels, they need to be made accessible to the
application. In the general case it is assumed that labels will be made available,
among other information, by dereferencing the URI of an entity using the HTTP
protocol, following Linked Open Data principles [21].

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 162–176, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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In reality, the situation is slightly more complicated. Issues such as interna-
tionalization, multiple labels for an entity, the computational costs associated
with dereferencing, or the use of alternative labeling properties make the task of
finding a label for a given entity much harder than expected. In this paper we
investigate how labeling on the Web of Data is actually used. The findings of our
analysis allow us to derive a number of recommendations for data publishers. We
define a number of metrics that provide a baseline for a quantitative analysis of
the state of labeling on the Web. We finally come up with some suggestions on
how to improve the current situation. The suggestions are aimed at simplifying
the usage of data from the Semantic Web in any application.

The paper is structured as follows. Section 2 describes related work, espe-
cially how current applications (mostly browsers for linked data) deal with the
issue of labeling. Section 3 draws the distinction between information resources
and non-information resources, and how they are currently dealt with by data
publishers with regards to labels. In Section 4 we investigate which properties
are actually used to provide labels. Even though there is a property defined in
the RDFS standard, a number of vocabularies define alternative properties to
provide labels. Based on those properties, we define metrics in Section 5 in order
to assess the current state of labeling in the Web of Data, followed by the results
of applying those metrics on a sample of the Web in Section 6. We close with a
number of recommendations and conclusions in Section 7.

2 Related Work

Applications enabling human users to exploit the Web of Data can be classified
into three categories: Linked Data browsers, Linked Data search engines, and
domain specific Linked Data applications [20].

Linked data browsers, such as Disco [9], Tabulator [5] or Marbles [4] to name
just a few, enable human users the exploration of linked data similar to how
HTML browsers enable exploration of the traditional Web of documents. In-
stead of navigating between HTML pages, they allow navigation between RDF
documents following links in the data by following RDF links. Since applications
consuming linked data such as linked data browsers are intended to be used by a
broad audience if the Web of Data becomes widely used, hiding technical details
such as URIs when displaying facts to human users becomes crucial. For anno-
tating entities with human-readable descriptions, the property rdfs:label from
the RDF vocabulary is commonly used to provide a human-readable version of
a resource’s name besides its URI [10].

For example when displaying data available in the linked data cloud for the
artist Sidney Bechet using the linked data browser Sig.ma, the list of information
items for his affiliation contains, amongst other items, the following three items:

– http://rdf.freebase.com/ns/m.049jnng
– http://rdf.freebase.com/ns/m.043j22x
– Sidney Bechet and His Orchestra
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For the first two items no human-readable labels are available to Sig.ma, there-
fore the URI is displayed which does not represent anything meaningful to the
user besides the information that Freebase contains information about Sidney
Bechet.

If for a resource no label is known or an unexpected property is used for
labeling or the label is not retrieved by resolving the URI, developers of linked
data browser came up with a set of options when dealing with the problem of
missing human-readable labels:

1. The URI itself is displayed to the user. The URI can be meaningful for
some users that do not regard it as noise and that are capable of deriving
the meaning from some readable strings in the URI. However, this requires
URIs that have been created by following a convention to use meaningful
names for URIs.1 Displaying the URI also often leads to an overly technical
feel of the interface.

2. The last part of the URI is used, i.e. the local name or the fragment identifier.
For example for the URI
http://www.example.com/about#bob the fragment identifier bob is used,
and for the URI
http://www.example.com/people/alice the last part of the path is used,
i.e. alice.

3. A more complex mechanism, as e.g. used in Protégé [18] which allows the
user to specify which property values to display.

Human-oriented search engines such as Falcons, Sindice, MicroSearch, Watson,
SWSE, and Swoogle provide keyword-based search services. Keyword search on
graphs relies on the existence of nodes that are labeled thus allowing to match
keywords to nodes via their labels [19,30], or on meaningful URIs .

While measurements of the Web of Data have been performed before [14,32,13],
an analysis of labels in the Web of Data has not been performed. However, Azli-
nayati et al. [24] analyzed identifiers and labels in 219 OWL ontologies. Given
that the Web of Data mainly consists of instance data, their analysis regarding
schema data can be seen as complementing our approach which analyses instance
data.

3 Information Resources and Non-information Resources

URIs are used to identify resources, where a resource might be anything from a
person over an abstract idea to a simple document on the Web [23]. Information
resources (IR) are resources that consist of information and therefore all of their
essential characteristics can be conveyed in a message and be transported over

1 However, http://www.w3.org/Provider/Style/URI recommends not to use topic
names in a URI since thereby an URI’s creator binds herself to some classification
that can be subject to change, and would therefore require a renaming of the URI,
which is considered undesired.

http://www.w3.org/Provider/Style/URI
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protocols such as HTTP. IRs can be copied from and downloaded via the Internet
given their URLs. Disjoint from this set of resources is the set of non-information
resources (NIR) – resources that cannot be accessed and downloaded via the
Internet – such as a person or a country. Nevertheless, a non-information resource
can be identified with a URI. Resolving the URI should result in metadata that
describes the non-information resource. This idea is part of the Linked Open
Data principles [21].

The distinction between information and non-information resources is relevant
for the further investigation of labeling behaviour on the Web of Data: whereas
NIRs are not directly accessible to the machine (i.e. the machine can talk about a
resource, but not access or transform it), IRs can be downloaded, displayed, and
further processed. IRs do not necessarily require labels in order to be useful to the
end-user, whereas for NIRs there is not much else that can be used to represent
them in the user interface. IRs can be represented by themselves (in case of a
picture), or by a hyperlink to the document, or by the document title (in case of
an HTML page or Office document). Applications such as Linked Data browsers
should thus be aware of the difference, and treat NIRs and IRs differently. Indeed,
some browsers do so. Tabulator [6], Explorator [2], and Graphite2 display, for
instance, images inline with the other data in the browser.

Whether a URI refers to an information resource or to a non-information
resource should be determined as follows: Non-information resources should have
a hash URI or, if they have a slash URI, resolving the URI should lead to an
HTTP 303 See also response. Hash URIs include a fragment, with a special
part that is separated from the rest of the URI by a hash symbol # [27].3 URIs
of information resources on the other hand should ultimately resolve with the
given information resource, which means with an HTTP response code 200 OK
(after following redirects). When we receive an error when resolving a URI (i.e.
a response in the 4xx or 5xx range), we cannot infer whether this URI refers or
has referred to an information resource or a non-information resource.

Even though URIs are supposed to be opaque [7], an analysis performed on
URIs with extensions from the BTC 2010 corpus revealed that URIs with file
name extensions such as .html or .jpg often refer to information resources. In
order to test this hypothesis, we collected all URIs ending in extensions from the
BTC 2010 corpus. The Billion Triple Challenge (BTC) 2010 corpus4 is a dataset
consisting of linked data crawled from the web which is stored as ntriples. Here,
each of the 3,167,799,445 ntriples is a quad constituted by a subject, a predicate,
an object, and a context, where the context is the URI of the resource the
triple has been crawled from. When ignoring the context, thus reducing the
quads to triples, the dataset contains 1,441,499,7185 distinct triples. Looking
through the corpus, we found 75,6 Million distinct URIs that were either in

2 http://graphite.ecs.soton.ac.uk/
3 e.g. http://www.example.com/about#alice
4 Available at http://km.aifb.kit.edu/projects/btc-2010/, (accessed May 2011)
5 http://gromgull.net/blog/2010/09/redundancy-in-the-btc2010-data-

its-only-1-1b-triples/ (accessed 2011-06-29)

http://graphite.ecs.soton.ac.uk/
http://km.aifb.kit.edu/projects/btc-2010/
http://gromgull.net/blog/2010/09/redundancy-in-the-btc2010-data-
its-only-1-1b-triples/
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the subject or the object position.6 Of these, 10,3 Million URIs ended in an
extension (13,6%). For each extension, we selected a random sample of 50 URIs,
and issued HTTP HEAD requests. The aim of the request was not to retrieve
the whole resource, but only the HTTP header information. If the response to
the request was a 303 See other, the URI would have been a non-information
resource even though the URI ended in a file extension. Extensions that appear
more than 100,000 times in the BTC 2010 corpus are .jpg, .html, .rdf, .bml,
.do, .json, .ttl, .jsp, .xml, .php, .htm, .png, and .gif. The percentage of
NIRs among those resources is 0% – indeed not a single URI returned a 303
among these extensions. A complete list of all extensions and results can be
found online7). The results show that almost all URIs ending with an extension
are indeed information resources, as expected. The only surprising number we
encountered was among .svg files, which were encountered 3,287 times. Of these
SVG URIs, 31% gave a 303 See other response. We further investigated the
matter, and found that all those URIs came from DBpedia [3], and can be traced
back to DBpedia’s extraction mechanism, which transforms infobox links to local
SVG files on Wikipedia articles as properties of a given entity.

The BTC 2010 corpus also provides a file that contains all URIs that had a
303 See other response when they have been resolved, and the URIs they have
been redirected to.8 This list contains about 6 Million URIs. Some of them point
to HTML documents, and not only to RDF files, but in general we assume that
this list contains a subset of the NIRs that are within the BTC 2010 corpus.

4 Labeling Properties

The RDFS standard defines the property label, which can be used to connect an
entity to a name aimed at human consumption [11]. But rdfs:label is only one
of the many means that are actually used on the Web to assign a human-readable
name to an entity. There are several different reasons for using alternative label-
ing properties. Some vocabularies prefer to use more specific properties to assign
names. For example, the FOAF vocabulary [12] defines foaf:name to assign a
name to a person, as it sounds much more acceptable to give a person a name
than a label. The SWRC ontology [29] provides swrc:name as well. SKOS even
provides a set of properties for preferred and alternative labels [26], as the simple
label property from RDFS is not sufficient for the needs of SKOS. Other vocab-
ularies might provide an alternative labeling property due to legacy reasons.
FOAF introduces a foaf:LabelProperty class for labeling such properties, but
this is not used even within FOAF itself.

In order to find out which properties are used for labeling, we examined the
BTC 2010 corpus. From the corpus we extracted the property from all quads with
6 We also looked at the URIs in the property positions, but within a sample of ca.

40 Million triples we only found a single URI with an extension, and subsequently
ignored this case.

7 http://km.aifb.kit.edu/sites/label/btc/
8 The file redirects.nx in the BTC 2010 corpus.

http://km.aifb.kit.edu/sites/label/btc/
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Table 1. Most often used properties for labeling purposes

Number of quads Property URI

184,848,373 http://www.w3.org/2000/01/rdf-schema#label

71,742,600 http://xmlns.com/foaf/0.1/nick

17,005,858 http://purl.org/dc/elements/1.1/title

7,107,149 http://purl.org/rss/1.0/title

6,083,581 http://xmlns.com/foaf/0.1/name

2,914,013 http://purl.org/dc/terms/title

2,808,455 http://www.geonames.org/ontology#name

2,413,957 http://xmlns.com/foaf/0.1/nickname

1,649,940 http://swrc.ontoware.org/ontology#name

1,506,497 http://sw.cyc.com/CycAnnotations_v1#label

1,133,192 http://rdf.opiumfield.com/lastfm/spec#title

1,021,985 http://www.proteinontology.info/po.owl#ResidueName

713,219 http://www.proteinontology.info/po.owl#Atom

713,219 http://www.proteinontology.info/po.owl#Element

713,219 http://www.proteinontology.info/po.owl#AtomName

663,485 http://www.proteinontology.info/po.owl#ChainName

541,038 http://purl.uniprot.org/core/fullName

488,528 http://purl.uniprot.org/core/title

452,537 http://www.aktors.org/ontology/portal#has-title

434,237 http://www.w3.org/2004/02/skos/core#prefLabel

404,950 http://www.aktors.org/ontology/portal#name

391,730 http://xmlns.com/foaf/0.1/givenName

358,077 http://www.w3.org/2000/10/swap/pim/contact#fullName

337,650 http://xmlns.com/foaf/0.1/surName

336,063 http://swrc.ontoware.org/ontology#title

317,076 http://swrc.ontoware.org/ontology#booktitle

290,178 http://www.aktors.org/ontology/portal#has-pretty-name

283,754 http://purl.uniprot.org/core/orfName

253,034 http://purl.uniprot.org/core/name

211,193 http://www.daml.org/2003/02/fips55/fips-55-ont#name

186,984 http://www.geonames.org/ontology#alternateName

157,019 http://purl.uniprot.org/core/locusName

132,317 http://www.w3.org/2004/02/skos/core#altLabel

126,250 http://creativecommons.org/ns#attributionName

126,126 http://www.aktors.org/ontology/portal#family-name

126,086 http://www.aktors.org/ontology/portal#full-name

http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/nick
http://purl.org/dc/elements/1.1/title
http://purl.org/rss/1.0/title
http://xmlns.com/foaf/0.1/name
http://purl.org/dc/terms/title
http://www.geonames.org/ontology#name
http://xmlns.com/foaf/0.1/nickname
http://swrc.ontoware.org/ontology#name
http://sw.cyc.com/CycAnnotations_v1#label
http://rdf.opiumfield.com/lastfm/spec#title
http://www.proteinontology.info/po.owl#ResidueName
http://www.proteinontology.info/po.owl#Atom
http://www.proteinontology.info/po.owl#Element
http://www.proteinontology.info/po.owl#AtomName
http://www.proteinontology.info/po.owl#ChainName
http://purl.uniprot.org/core/fullName
http://purl.uniprot.org/core/title
http://www.aktors.org/ontology/portal#has-title
http://www.w3.org/2004/02/skos/core#prefLabel
http://www.aktors.org/ontology/portal#name
http://xmlns.com/foaf/0.1/givenName
http://www.w3.org/2000/10/swap/pim/contact#fullName
http://xmlns.com/foaf/0.1/surName
http://swrc.ontoware.org/ontology#title
http://swrc.ontoware.org/ontology#booktitle
http://www.aktors.org/ontology/portal#has-pretty-name
http://purl.uniprot.org/core/orfName
http://purl.uniprot.org/core/name
http://www.daml.org/2003/02/fips55/fips-55-ont#name
http://www.geonames.org/ontology#alternateName
http://purl.uniprot.org/core/locusName
http://www.w3.org/2004/02/skos/core#altLabel
http://creativecommons.org/ns#attributionName
http://www.aktors.org/ontology/portal#family-name
http://www.aktors.org/ontology/portal#full-name
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a literal with the datatype xsd:string or without a given datatype. We counted
the number of occurrences for each such property. From the set of 178 properties
that occurred at least 100,000 times9 we manually assessed whether the property
is used for the purpose of labeling. To do so we performed a URI lookup on the
property itself, checking the label and the description of the property, and then
looked at instance data. This resulted in a list of 36 properties shown in Table 1
that are used for the purpose of labeling. Note that the numbers in Table 1
should not be read as the number of labeled entities, since an entity can have
multiple labels or an entity can be labeled several times in multiple contexts.

Most of these properties are not connected to rdfs:label in a way that would
allow for machines to automatically discover the alternative labeling property.
From the given list, only FOAF [12], SKOS [26], and Geonames10 explicitly
connect their labeling properties to rdfs:label via the rdfs:subPropertyOf
property. Under both RDFS [11] and OWL 2 semantics [17], this would allow
to automatically infer that any label connected with the alternative labeling
property is also a valid value for rdfs:label.11 Also, the pattern occurs so fre-
quently that it might be worthwhile to hard-code it into an application, to avoid
the overhead implied by the usage of a reasoner. Note that proteinontology con-
tains multiple properties used for labeling. This is due to the fact, that these
properties are annotated as functional properties with a given domain. For ex-
ample the domain of the property po:Atom is the class po:Atoms. That means
that when using such a property, besides labeling an entity this, this entity can
be uniquely referred to via that label and it can be inferred that this entity
belongs to class po:Atoms.

5 Metrics

In this section we define a number of metrics that help study the properties of
labeling within a dataset. In the following section we will discuss the results of
measuring the Web of Data along these metrics.

5.1 Completeness

All non-information resources should have labels. The labeling completeness met-
ric LC tells us if this is indeed the case. It is the ratio of all URIs with at least
one value for a labeling property to all URIs in a given knowledge base. The
metric is extended with three parameters: the actual properties used to assign
the label, the entities to be regarded by the metric, and the dataset.

Labeling properties are indicated by the subscript of the metric. They may be
defined strictly as only rdfs:label (LCrdfs), or including any formally defined

9 The whole set is available at http://km.aifb.kit.edu/sites/label/btc/
10 http://www.geonames.org
11 Note that this was not true for the OWL 1 Lite and DL semantics since rdfs:label

is an owl:AnnotationProperty [28], but OWL 2 was extended to enable this pattern.

http://km.aifb.kit.edu/sites/label/btc/
http://www.geonames.org
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subproperty of rdfs:label (LCrdfs+), or as any other set of labeling properties
lp (LClp) (such as the set presented in Section 4, which we call BTC).

The regarded entities are defined by the superscript. Most often, we will only
want to consider the non-information resources (LCNIR). For an automatic as-
sessment of this metric we also must devise a method to decide whether a given
URI is an information resource, or a non-information resource, as discussed in
Section 3. One might also argue that some non-information resources actually
do not require labels, as some resources are basically artifacts of the knowledge
representation (LC−). In RDFS and OWL this would most prominently include
nodes that model n-ary relations [25].

The third parameter is given as the argument of the metric. Thus LC(D) is
the labeling completeness of the dataset D. We expect LC(D) to always be 1
for a good knowledge base D.

Note that a dataset may include data from several RDF files, and indeed most
of the time LC is defined over the merged data from a whole site. In this paper,
for example, we regard the BTC as a whole, the merged data from several million
look-ups.

5.2 Efficient Accessibility

A wide-spread method to work with data from the Semantic Web is called follow
your nose, and it works due to the Linked Open Data principles [21]: whenever
an application encounters an unknown URI, it can simply dereference the URI
in order to access information about the entity identified by the URI. This will
usually include a label for the entity of interest, and also links to other enti-
ties to which the given entity is connected, so that the application can further
dereference these as well.

Assume that for the URI ex:Berlin the result of this exercise looks as follows:

ex:Berlin ex:location ex:Germany .
ex:Berlin rdfs:label "Berlin" .

A linked data browser can display the string Berlin to represent the resource
of interest, but it has to look up both ex:location and ex:Germany before it
can represent the single fact that is included in the response. If an RDF graph
contains 50 triples, with about 60-80 different URIs, the application actually
needs to make several dozens of HTTP requests in order to display the facts
within that single resource. This turns out to be the main reason for the slow
performance of linked data browsers [31]: a single browsing step can fire dozens,
if not hundreds, of requests.

Imagine that the response would instead be:

ex:Berlin ex:location ex:Germany .
ex:Berlin rdfs:label "Berlin" .
ex:location rdfs:label "Location" .
ex:Germany rdfs:label "Germany" .
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Now the application can display the fact without any additional lookup. This
approach has nevertheless several disadvantages: it implies redundancy, and leads
to larger data files. In general it is expected to nevertheless reduce the load and
bandwidth of serving linked open data as the amount of requests would be
significantly reduced.

We define the metric LE as the ratio of all mentioned URIs with at least
one value for a labeling property to all mentioned URIs in a given RDF graph.
The subscript and superscript are defined as for LC, the superscript can further
define a background set of known labels (e.g. for a widely deployed vocabulary
like FOAF or GoodRelations [22]). For example, the following graph would have
a LEfoaf−

rdfs of 1, but a LE−
rdfs of 0.5 (since the foaf:img property has no label).

Note that for brevity RDF and RDFS are always assumed to be known.

ex:Basil foaf:img ex:basil.jpg .
ex:Basil rdfs:label "Basil" .

Whereas for the LC metric we can always look up a given URI, this is not
allowed for LE. Nevertheless, LE with sensible parameters should always be 1
in order to increase the utility of any given response for inquiring applications.

5.3 Unambiguity

Each entity can have a whole set of different labels attached to it. This will likely
yield meaningful results if the application can distinguish between these labels:
SKOS includes different properties for denominating preferred and alternative
labels [26], and given a multi-lingual knowledge base we expect to have several
labels for a given entity, one in each language (see the following section).

But an entity can also have several labels that are not at all differentiated.
In this case an application has to select one of the labels. And unless it does
not have a deterministic selection procedure, the application might end up being
inconsistent, displaying different labels every time the entity is displayed – which
might easily lead to confusion for the user of the application. Even if the applica-
tion provides a deterministic selection procedure, as long as this procedure is not
common among all applications the user uses to interact with a given knowledge
base, the user will be exposed to confusing inconsistencies in the interface.

We introduce the metric LUf which is the ratio of all URIs that have exactly
one preferred label according to a selection procedure f to all URIs with any
label in a given knowledge base. The superscript is the same as for LC, but the
subscript is replaced by the selection procedure f , which might be, in the simplest
case, just selecting any value of rdfs:label (LCrdfs), but could also include a
more sophisticated preference function (e.g. if there is a skos:prefLabel take
that, otherwise any rdfs:label).

As with all the other metrics in this paper, a good knowledge base should
have a LU of 1.
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5.4 Multilinguality

Language tags can be used on plain literals to state the natural language used by
the literal. This enables applications to select the most appropriate literals based
on their user’s language preferences. An example for a literal with a language
tag is "university"@en or "Universität"@de.

In order to measure multilinguality we define two metrics: LLN , the number
of languages used with a labeling property, and LLClang, the completeness for
a given language, i.e. the ratio of URIs with at least one label tagged with the
given language or a less specific one to all URIs in a given knowledge base. The
same sub- and superscripts apply as for LC (note that there are two different
superscripts). If no superscript defines the language, then the average over all
used languages is supposed.

6 Results

We used the metrics defined in the previous section on the BTC 2010 corpus. For
measuring, we did not consider entailments as defined by the formal semantics
of RDFS, OWL, or RIF. In particular we did not mush entities together through
owl:sameAs statements or inverse functional properties, but regarded them URI
by URI.

The BTC2011 corpus consists of 219 chunks. From each chunk we extracted
the URIs from the first 100 nquads which resulted in 7195 URIs. For each URI
we performed a lookup and identified 1376 NIRs by 303 See other redirect. By
following the redirect and analyzing the RDF data we found that for 526 NIRs
at least one label exists given the properties in Table 1. This means that only
38.2% of the analyzed NIRs have a label. Table 2 shows which properties are
used to assign labels.

Table 2. Completeness of NIR labels

Number of NIRs Labeling property

451 http://www.w3.org/2000/01/rdf-schema#label

73 http://xmlns.com/foaf/0.1/name

53 http://purl.org/dc/elements/1.1/title

20 http://xmlns.com/foaf/0.1/givenName

13 http://purl.org/dc/terms/title

5 http://xmlns.com/foaf/0.1/nick

4 http://www.w3.org/2004/02/skos/core#prefLabel

In order to measure the efficient accessibility, we looked through a sample of
five random graphs from each second level domain in the BTC 2010 corpus. The
results are given in Figure 1. In order to define a set of known vocabularies,
we took the ten most widely used vocabularies in the BTC 2010 corpus (see
Table 3).

http://www.w3.org/2000/01/rdf-schema#label
http://xmlns.com/foaf/0.1/name
http://purl.org/dc/elements/1.1/title
http://xmlns.com/foaf/0.1/givenName
http://purl.org/dc/terms/title
http://xmlns.com/foaf/0.1/nick
http://www.w3.org/2004/02/skos/core#prefLabel
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Fig. 1. Histogramm of the LEtop
BTC of up to five random graphs from each of the

domains in the BTC 2010 corpus, for a total of 741 graphs

Table 3. Top ten most occurring vocabulary namespaces in the BTC 2010 corpus
(according to http://gromgull.net/2010/10/btc/explore.html)

Vocabulary namespace Number of occurences

http://www.w3.org/2000/01/rdf-schema# 845,952,387
http://data-gov.tw.rpi.edu/vocab/p/90/ 651,432,324
http://www.w3.org/1999/02/22-rdf-syntax-ns# 567,247,265
http://purl.org/goodrelations/v1# 527,323,224
http://xmlns.com/foaf/0.1/ 209,249,423

http://purl.uniprot.org/core/ 41,961,030
http://purl.org/dc/elements/1.1/ 29,596,285
http://www.proteinontology.info/po.owl# 13,661,605
http://purl.org/dc/terms/ 12,579,646
http://www.w3.org/2002/07/owl# 12,362,503

We measured the unambiguity of the corpus. From the set of 57, 532 NIRs
that have at least one label in the corpus, 903 NIRs have multiple labels – either
multiple labels for at least one of the labeling properties shown in Table 1,
or multiple labels for at least one property and language. This results in an
unambiguity ratio of 0.98.

Finally, we measured the multilinguality of the Web of Data. In general, most
data sources contained at most one language (2.2%), if any was specified. A
merry few (0.7%) contained several language tags, but even they did not have a
high completeness. The most commonly used language tags are en (44.72%), de
(5.22%), and fr (5.11%).

Labels are used in order to provide a human-readable names for entities.
Every entity should have labels in all relevant languages. Almost none of the
datasets on the Web have a full set of labels in more than one language, i.e.
most ontologies are not multi-lingual. Thus they miss a potential benefit of the
Semantic Web, i.e. the language-independence of the Web of Data.

http://www.w3.org/2000/01/rdf-schema#
http://data-gov.tw.rpi.edu/vocab/p/90/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/goodrelations/v1#
http://xmlns.com/foaf/0.1/
http://purl.uniprot.org/core/
http://purl.org/dc/elements/1.1/
http://www.proteinontology.info/po.owl#
http://purl.org/dc/terms/
http://www.w3.org/2002/07/owl#
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7 Conclusion

Our work has investigated the current state of labeling the Web of Data, and
some problems that need to be considered in the future in order to optimize the
ways application developers and potential end-users interact with the data. We
have defined metrics to assess the completeness, efficient accessibility, unambi-
guity, and multilinguality. These metrics address issues that were problematic
during the development of applications. The list is not complete, but sound given
that they are all based in previous experience. While defining the metrics, we
noticed that we had to include a number of parameters that depend on the ap-
plication that will use the knowledge. This is not surprising: data on the Web
of Data is hardly ever evaluable by itself – it greatly benefits from knowing the
context of an application that will use the data. The parameters in the evalua-
tion metrics allow to customize the metrics based on the given application, on
the labeling properties the application understands, and on the set of entities
that are expected to play a role when using the application.

Based on our findings and the argumentation leading to the definition our
metrics, we can nevertheless make a number of suggestions on how to improve
the quality and usefulness of labels in the data:

– Provide labels for all URIs mentioned in a given RDF graph, not only for
the main entities, as this will considerably speed displaying the data with
human-readable names and reduce the number of requests significantly.

– Provide a complete set of labels in all supported languages. One of the biggest
advantages of the Web of Data is its inherent multilinguality, but currently
this is a tremendously underused feature of the architecture.

– If you are using a labeling property of your own, connect your labeling prop-
erty to rdfs:label explicitly with the rdfs:subPropertyOf property. Use
rdfs:label redundantly as well, since many tools will not provide the in-
ferencing needed to understand your labeling property. If possible, simply
avoid using your own labeling property.

– Do not provide more than one obvious preferred label for each entity, in order
to decrease the possible confusion for the end-user when using an application
over your data.

The suggestions given above lead to an obvious problem: even a moderately small
RDF graph with about 100 triples will include about 150 entities. Labeling all
these entities in, e.g. ten languages will lead to an extra 1500 triples – a huge
overhead (and not even considering the costs creating those labels, a task that
would highly benefit from automation). While one could devise new protocols
to deal with these problems, there is also an under-utilized existing solution:
HTTP allows to set the Accept-Language header, that defines a set of natural
languages the response should cover [16]. By using the HTTP headers a data
provider could both provide all labels necessary for an efficient exposure of the
data, as well as not unnecessarily inflate the size of the response by only providing
the requested languages.
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Labels should follow a style guide and be used consistently. A style guide
should define if classes are labeled with plural or singular noun, if properties
are labeled with nouns or verbs, etc. Labels should never use camel case or
similar escape mechanisms for multi word terms, but instead simply use space
characters (or whatever is most suitable for the given language). I.e. an URI
http://example.org/LargeCity should have a label "large city"@en. Exter-
nal dictionaries such as WordNet [15] can be used to check consistency with
regards to a style guide.

In an environment where datasets are assembled on the fly from multiple
datasets [1], the assembled parts may follow different style guides. The assembled
dataset will then not adhere to a single style guide and thus offer an inconsistent
user interface. It is not expected that a single style guide will become ubiquitous
on the whole Web. Instead, a dataset may specify explicitly what style guide it
follows, and even provide labels following different style guides. This would allow
to introduce a subproperty of label that is style guide specific, which would in
return allow for the consistent display of assembled datasets.

Even when subproperties of rdfs:label are defined, there should always be
one label (per supported language) given explicitly by using rdfs:label itself.
Even though this is semantically redundant, many tools (especially visualization
tools) do not apply reasoning for fetching the labels of an entity but simply look
for the explicit triple stating the entity’s label.

Many of the problems described in this paper are a consequence of publishing
data using the Linked Open Data principles. It is not clear if this is indeed the
best way to publish data on the Web of Data. Serving data through a SPARQL
endpoint provides a viable alternative, with the big advantage that the applica-
tion can, in a very fine-grained way, describe exactly what kind of information,
labels, and language it needs. The SPARQL endpoint can then try to understand
the query and do its best effort to provide a viable response.

The Linked Open Data principles have spread widely due to their obvious
advantages derived from being part of the Web architecture. But the principles
are meeting their limitations, as this investigation on labels shows. The Semantic
Web has long struggled with the chicken and egg problem of data vs. applications.
Now that the data is there, we see that applications don’t yet follow with the
same force that the datasets had. One of the reasons is the lack of quality in
some of the published datasets.

Labeling may be just a small, but at the same time it is an absolutely essential
piece of the puzzle that is needed for the Web of Data to finally become widely
used.
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Abstract. Faceted search and querying are two well-known paradigms
to search the Semantic Web. Querying languages, such as SPARQL, of-
fer expressive means for searching RDF datasets, but they are difficult
to use. Query assistants help users to write well-formed queries, but
they do not prevent empty results. Faceted search supports exploratory
search, i.e., guided navigation that returns rich feedbacks to users, and
prevents them to fall in dead-ends (empty results). However, faceted
search systems do not offer the same expressiveness as query languages.
We introduce Query-based Faceted Search (QFS), the combination of
an expressive query language and faceted search, to reconcile the two
paradigms. In this paper, the LISQL query language generalizes existing
semantic faceted search systems, and covers most features of SPARQL. A
prototype, Sewelis (aka. Camelis 2), has been implemented, and a usabil-
ity evaluation demonstrated that QFS retains the ease-of-use of faceted
search, and enables users to build complex queries with little training.

1 Introduction

With the growing amount of available resources in the Semantic Web (SW), it is a
key issue to provide an easy and effective access to them, not only to specialists,
but also to casual users. The challenge is not only to allow users to retrieve
particular resources (e.g., flights), but to support them in the exploration of a
knowledge base (e.g., which are the destinations? Which are the most frequent
flights? With which companies and at which price?). We call the first mode
retrieval search, and, following Marchionini [10], the second mode exploratory
search. Exploratory search is often associated to faceted search [5,13], but it
is also at the core of Logical Information Systems (LIS) [4,2], and Dynamic
Taxonomies [12]. Exploratory search allows users to find information without
a priori knowledge about either the data or its schema. Faceted search works
by suggesting restrictions, i.e., selectors for subsets of the current selection of
items. Restrictions are organized into facets, and only those that share items
with the current selection are suggested. This has the advantage to provide
guided navigation, and to prevent dead-ends, i.e., empty selections. Therefore,
faceted search is easy-to-use and safe: easy-to-use because users only have to

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 177–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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choose among the suggested restrictions, and safe because, whatever the choice
made by users, the resulting selection is not empty. The selections that can
be reached by navigation correspond to queries that are generally limited to
conjunctions of restrictions, possibly with negation and disjunction on values.
This is far from the expressiveness of query languages for the semantic web, such
as SPARQL1. There are semantic faceted search that extend the expressiveness of
reachable queries, but still to a small fragment of SPARQL (e.g., SlashFacet [7],
BrowseRDF [11], SOR [9], gFacet [6]). For instance, none of them allow for cycles
in graph patterns, unions of complex graph patterns, or negations of complex
graph patterns.

Querying languages for the semantic web are quite expressive but are difficult
to use, even for specialists. Users are asked to fill an empty field (problem of the
writer’s block), and nothing prevents them to write a query that has no answer
(dead-end). Even if users have a perfect knowledge of the syntax and semantics
of the query language, they may be ignorant about the data schema, i.e., the
ontology. If they also master the ontology or if they use a graphical query editor
(e.g., SemanticCrystal [8], SCRIBO Graphical Editor2) or an auto-completion
system (e.g., Ginseng [8]) or keyword query translation (e.g., Hermes [14]), the
query will be syntactically correct and semantically consistent w.r.t. the ontology
but it can still produce no answer.

The contribution of this paper, Query-based Faceted Search (QFS), is to define
a semantic search that is (1) easy to use, (2) safe, and (3) expressive. Ease-of-use
and safeness are retained from existing faceted search systems by keeping their
general principles, as well as the visual aspect of their interface. Expressiveness is
obtained by representing the current selection by a query rather than by a set of
items, and by representing navigation links by query transformations rather than
by set operations (e.g., intersection, crossing). In this way, the expressiveness of
faceted search is determined by the expressiveness of the query language, rather
than by the combinatorics of user interface controls. In this paper, the query lan-
guage, named LISQL, generalizes existing semantic faceted search systems, and
covers most features of SPARQL. The use of queries for representing selections
in faceted search has other benefits than navigation expressiveness. The current
query is an intensional description of the current selection that complements its
extensional description (list of items). It informs users in a precise and concise
way about their exact position in the navigation space. It can easily be copied
and pasted, stored and retrieved later. Finally, it allows expert users to modify
the query by hand at any stage of the navigation process, without loosing the
ability to proceed by navigation.

The paper is organized as follows. Section 2 discusses the limits of set-based
faceted search by formalizing the navigation from selection to selection. Section 3
introduces LISQL queries and their transformations. In Section 4, navigation
with QFS is formalized and proved to be safe and complete w.r.t. LISQL, and
efficient. Section 5 reports about a usability evaluation, and Section 6 concludes.

1 see http://www.w3.org/TR/rdf-sparql-query/
2 http://www.scribo.ws/xwiki/bin/view/Blog/SparqlGraphicalEditor
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2 Limits of Set-Based Faceted Search

The principle of faceted search [13] is to guide users from selection of items
to selection of items. At each navigation step, a new selection is derived by
applying a set operation between the current selection S and a restriction R. A
restriction is a feature that applies to at least one item of the current selection,
i.e., S ∩ R �= ∅. Typically, a feature is a pair facet-value, and the set operation
is intersection: S := S ∩ R. The new selection is the set of items that belong to
the current selection, and that belong to the restriction. Extensions of faceted
search may allow for the exclusion of a restriction (S := S \ R), or the union
with a restriction (S := S ∪R). Restrictions can also be tags or item names.

In the context of the Semantic Web, items and values are resources, facets
are properties, and tags are classes. Because of the relational nature of semantic
data, new kinds of restrictions and set operations have been introduced in se-
mantic faceted search (e.g., /facet [7], BrowseRDF [11], SOR [9], gFacet [6]). A
restriction can be the set of items that are subject of some property (the domain
of the property), or that are object of some property (the range of the property)
(e.g., BrowseRDF). A facet can be defined as a path of properties. Finally, a
property p can be crossed forwards (S := p(S, .)) or backwards (S := p(., S))
(e.g., /facet, SOR, gFacet).

Both in theory and in practice, it is useful to distinguish between syntax
and semantics. For example, we should distinguish between a pair facet-value
(syntax), and the set of items it matches (semantics). In the following table, we
define the syntax and semantics of the various kinds of restrictions: r denotes any
RDF resource (URI, literal), c denotes a RDFS class, p denotes a RDF property,
and S0 denotes the set of all items (possibly all resources of a RDF dataset).

restriction syntax semantics examples
name r {r} <JohnSmith>, "John", 2011
tag a c rdf:type(., {c}) a person
(facet, value) p : r p(., {r}) year : 2011
(facet, value) p of r p({r}, .) mother of <JohnSmith>
domain p : ? p(., S0) year : ?
range p of ? p(S0, .) mother of ?

The same distinction can be made for complex selections, and we introduce in
the following table a syntax for the various set operations that can be applied
between selections and restrictions: S denotes a selection, and R denotes a re-
striction that is relevant to S: i.e., S ∩R �= ∅.

selection syntax semantics
initial ? S0

intersection S and R S ∩R
exclusion S and not R S \R
union S or R S ∪R
crossing backwards p : S p(., S)
crossing forwards p of S p(S, .)
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The syntactic form of restrictions are features. The syntactic form of selections
are queries whose answers are sets of items, i.e., subsets of S0. The above tables
implicitly define a grammar for features and queries:

S → ? | S and R | S and not R | S or R | p : S | p of S
R → r | a c | p : r | p of r | p : ? | p of ?.

This grammar already defines a rich language of accessible queries, but it has
strong limits in terms of flexibility and expressivity, as we discuss now. To reach
some selections requires a precise ordering in navigation steps, which hinders the
flexibility of the search, and assumes that the user has a clear idea of his query
in advance. For example, to reach the query father of (mother of (name :
"John") and name : "Jane"), the user has first to select name : "John" (peo-
ple named John), then to cross forward mother (their mothers), then to inter-
sect with name : "Jane" (. . . whose name is Jane), and finally to cross forward
father (their fathers). Any other ordering will fail; starting from the expected
result (grand-fathers) will lead to the set of grand-children instead.

Some useful selections that can be defined in terms of set operations are
not reachable by set-based faceted search. For example, the following kinds of
selections are not reachable: unions of complex selections. e.g., (R1∩R2)∪ (R3∩
R4); or intersection of crossings from complex selections, e.g., p1(., R1 ∩ R2) ∩
p2(., R3 ∩R4). Note that a selection S1 ∩ p(., S2) cannot in general be obtained
by first navigating to S1, then crossing forwards p, navigating to S2, and finally
crossing backwards p, because it is not equivalent to p(., p(S1, .) ∩ S2) unless p
is inverse functional. Therefore, not all combinations of intersection, union, and
crossing are reachable, which is counter-intuitive and limiting for end users.

Existing approaches to semantic faceted search often have additional limi-
tations, which are sometimes hidden behind a lack of formalization. A same
facet (a property path) cannot be used several times, which is fine for functional
properties but not for relations such as “child”: p(., f1 ∩ f2) is reachable but not
p(., f1)∩p(., f2) (e.g., BrowseRDF, gFacet). A property whose domain and range
are the same cannot be used as a facet (e.g., /facet), which includes all family
and friend relationships for instance.

3 Expressive Queries and Their Transformations

The contribution of our approach, Query-based Faceted Search (QFS), is to signif-
icantly improve the expressivity of faceted search, while retaining its properties
of safeness (no dead-end), and ease-of-use. The key idea is to define navigation
steps at the syntactic level as query transformations, rather than at the seman-
tic level as set operations. The navigation from selection to selection, as well as
the computation of restrictions related to the current selection, are retained by
defining the semantics of features and queries, i.e., the mapping from a feature f
or a query q to a set of items: R = items(f) and S = items(q). Transformations
at the syntactic level are necessary because there exist useful navigation steps
that cannot be obtained by applying set operations on the current selection. For
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example, given S = R1 ∩ R2, the set of items S′ = R1 ∩ (R2 ∪ R3) cannot be
derived from S and R3. On the contrary, the query f1 and (f2 or f3) can be
derived from the query f1 and f2 and the feature f3 because enough information
is retained at the syntactic level.

In this section, we generalize in a natural way the set of queries compared
to Section 2. This defines a query language, which we call LISQL (LIS Query
Language). We then define a set of query transformations so that every LISQL
query can be reached in a finite sequence of such transformations. This is in
contrast with previous contributions in faceted search that introduce new se-
lection transformations, and leave the query language implicit. We think that
making the language of reachable queries explicit is important for reasoning on
and comparing different faceted search systems. In Section 3.3, we give a trans-
lation from LISQL to SPARQL, the reference query language of the Semantic
Web. This provides both a way to compute the answers of queries with existing
tools, and a way to evaluate the level of expressivity achieved by LISQL.

3.1 The LIS Query Language (LISQL)

A more general query language, LISQL, can be obtained simply by merging the
syntactic categories of features and queries in the grammar of Section 2, so that
every query can be used in place of a feature.

Definition 1 (LISQL queries). The syntax and semantics of the LISQL con-
structs is defined in the following table, where r is a resource, c is a class,
p is a property, S0 is the set of all items, and q1, q2 are LISQL queries s.t.
S1 = items(q1) and S2 = items(q2).

query syntax (q) semantics (items(q))
resource r {r}
class a c rdf:type(., {c})
all ? S0

crossing backwards p : q1 p(., S1)
crossing forwards p of q1 p(S1, .)
complement not q1 S0 \ S1

intersection q1 and q2 S1 ∩ S2

union q1 or q2 S1 ∪ S2

The definition of LISQL allows for the arbitrary combination of intersection,
union, complement, and crossings. In order to further improve the expressive-
ness of LISQL from tree patterns to graph patterns, we add variables (e.g., ?X) as
an additional construct. Variables serve as co-references between distant parts
of the query, and allows for the expression of cycles. For example, the query
that selects people who are an employee of their own father can be expressed as
a person and father : ?X and employee of ?X, or alternately as a person
and ?X and employee of father of ?X. The semantics of queries with vari-
ables is given with the translation to SPARQL in Section 3.3, because it cannot
be defined like in the table of Definition 1.
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Syntactic constructs are given in increasing priority order, and brackets are
used in concrete syntax for disambiguation. The most general query ? is a
neutral element for intersection, and an absorbing element for union. In the
following, we use the example query qex = a person and birth : (year :
(1601 or 1649) and place : (?X and part of England)) and father :
birth : place : not ?X, which uses all constructs of LISQL, and selects the
set of “persons born in 1601 or 1649 at some place in England, and whose father
is born at another place”.

3.2 Query Transformations

We have generalized the query language by allowing complex selections in place
of restrictions: e.g., S1 ∩ S2 instead of S ∩ R. However, because the number of
suggested restrictions in faceted search must be finite, it is not possible to suggest
arbitrarily complex restrictions. More precisely, the vocabulary of features must
be finite. In QFS, we retain the same set of features as in Section 2, which is a
finite subset of LISQL for any given dataset.

The key notion we introduce to reconcile this finite vocabulary, and the reach-
ability of arbitrary LISQL queries is the notion of focus in a query.

Definition 2 (focus). A focus of a LISQL query q is a node of the syntax tree
of q, or equivalently, a subquery of q. The set of foci of q is noted Φ(q); the root
focus corresponds to the root of the syntax tree, and represents the whole query.
The subquery at focus φ ∈ Φ(q) is noted q[φ]; and q[φ := q1] denotes the modified
query q, where the subquery at focus φ has been replaced by q1.

In the following, when it is necessary to refer to a focus in a query, the cor-
responding subquery is underlined with the focus name as a subscript, like in
mother of ?φ. Foci are used in QFS to specify on which subquery a query trans-
formation should be applied. For example, the query (f1 and f2) or (f3 and
f4) can be reached from the query (f1 and f2) or f3 by applying the inter-
section with restriction f4 to the subquery f3, instead of to the whole query.
Similarly, the query p1 : (f1 and f2) and p2 : (f3 and f4) can be reached
by applying the intersection with restriction f4 to the subquery f3. This removes
the problem of unreachable selections in set-based faceted search presented in
Section 2. Moreover, this removes the need for a strategy in the ordering of nav-
igation steps. For example, the query a woman and mother of name : "John"
can be reached by first selecting a woman, then by selecting mother of ?φ, then
by inserting name : "John" at the focus φ.

Definition 3 (query transformation). The different kinds of LISQL query
transformations are listed in the following table, where each transformation is
paramaterized by a focus φ and a query q1. The expression q[t] is the query that
results from the application of transformation t to query q.

transformation notation (t) result query (q[t])
intersection φ and q1 q[φ := q[φ] and q1]
exclusion φ and not q1 q[φ := q[φ] and not q1]
union φ or q1 q[φ := q[φ] or q1]
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We show in the following equations how the intersection with an arbitrary
LISQL query can be recursively decomposed into a finite sequence of intersec-
tions with features, and exclusions and unions with the most general query ?.

q[φ and (?)] = q
q[φ and (p : q1)] = q[φ and p : ?φ1 ][φ1 and q1]
q[φ and (p of q1)] = q[φ and p of ?φ1 ][φ1 and q1]
q[φ and (not q1)] = q[φ and not ?φ1 ][φ1 and q1]
q[φ and (q1 and q2)] = q[φ and q1φ1 ][φ1 and q2]
q[φ and (q1 or q2)] = q[φ and q1φ1 ][φ1 or ?φ2 ][φ2 and q2]

For example, the complex query qex = a person and birth : (year :
(1601 or 1649) and place : (?X and part of England)) and father :
birth : place : not ?X can be reached through the navigation path:
?φ0 [φ0 and a person] [φ0 and birth : ?φ1 ] [φ1 and year : 1601φ2 ]
[φ2 or ?φ3 ] [φ3 and 1649] [φ1 and place : ?φ4 ] [φ4 and ?X]
[φ4 and part of England] [φ0 and father : ?φ5 ] [φ5 and birth : ?φ6 ]
[φ6 and place : ?φ7 ] [φ7 and not ?φ8 ] [φ8 and ?X]. The classical facet-value
features appear to be redundant for navigation as their intersection can be
decomposed, but they are still useful for visualization in a faceted search
interface.

Sequences of query transformations are analogous to the use of graphical query
editors, but the key difference is that answers and restrictions are returned at
each step, providing feedback, understanding-at-a-glance, no dead-end, and all
benefits of exploratory search. Despite the syntax-based definition of navigation
steps, those have a clear semantic counterpart. Intersection is the same as in
standard faceted search, only making it available on the different entities involved
in the current query. In the above example, intersection is alternately applied
to the person, his birth, his birth’s place, his father, etc. The set of relevant
restrictions is obviously different at different foci. The union transformation
introduces an alternative to some subquery (e.g., an alternative birth’s year).
The exclusion transformation introduces a set of exceptions to the subquery
(e.g., excluding some father’s birth’s place). In Section 4, we precisely define
which query transformations are suggested at each navigation step, and we prove
that the resulting navigation graph is safe (no dead-end), and complete (every
“safe” query is reachable).

3.3 Translation to and Comparison with SPARQL

We here propose a (naive) translation of LISQL queries to SPARQL queries.
It involves the introduction of variables that are implicit in LISQL queries. As
this translation applies to LISQL queries with co-reference variables, it becomes
possible to compute their set of items.

Definition 4 (SPARQL translation). The SPARQL translation of a LISQL
query q is sparql(q) = SELECT DISTINCT ?x WHERE { S0(x) GP(x, q) }, where
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the graph pattern S0(x) binds x to any element of the set of all items S0, and
the function GP inductively defines the graph pattern of q with variable x rep-
resenting the root focus.

GP(x, ?v) = S0(v) FILTER (?x = ?v)
GP(x, r) = FILTER (?x = r)
GP(x, a c) = ?x rdf:type c
GP(x, p : q1) = ?x p ?y. GP(y, q1) where y is a fresh variable
GP(x, p of q1) = ?y p ?x. GP(y, q1) where y is a fresh variable
GP(x, ?) = { }
GP(x, not q1) = NOT EXISTS { GP(x, q1) }
GP(x, q1 and q2) = GP(x, q1) GP(x, q2)
GP(x, q1 or q2) = { GP(x, q1) } UNION { GP(x, q2) }

We now discuss the translations of LISQL queries compared to SPARQL in gen-
eral. They have only one variable in the SELECT clause because of the nature of
faceted search, i.e., navigation from set to set. From SPARQL 1.0, LISQL misses
the optional graph pattern, and the named graph pattern. Optional graph pat-
terns are mostly useful when there are several variables in the SELECT clause.
LISQL has the NOT EXISTS construct of SPARQL 1.1. If we look at the graph
patterns generated for intersection and union, the two subpatterns necessarily
share at least one variable, x. This is a restriction compared to SPARQL, but
one that makes little difference in practice as disconnected graph patterns are
hardly useful in practice.

4 A Safe and Complete Navigation Graph

In this section, we formally define the navigation space over a RDF dataset as
a graph, where vertices are navigation places, and edges are navigation links.
A navigation place is made of a query q and a focus φ of this query. The fo-
cus determines the selection of items to be displayed, and the corresponding
restrictions at this focus. A navigation link is defined by a query transformation
and, possibly, a focus move. Before defining the navigation graph itself, we first
define the set of items and the set of restrictions for some query q and some fo-
cus φ ∈ Φ(q). The set of items is defined as the set of items of the query flip(q, φ)
that is the reformulation of q from the point of view of the focus φ. For exam-
ple, the reformulation, called the flip, of the query a woman and mother of
name : "John"φ is the query name : "John" and mother : a woman.

Definition 5 (flip at focus). The flip of a query q at a focus φ ∈ Φ(q) is
defined as flip(q, φ) = flip′(?, q, φ), where the function flip′(k, q′, φ) is inductively
defined, with k representing the context of q′ in q, by (only main cases are given):

flip(k, p : q1, φ) = flip(p of k, q1, φ) if φ ∈ q1

flip(k, q1 and q2, φ) = flip(k and q2, q1, φ) if φ ∈ q1

flip(k, q1 or q2, φ) = flip(k, q1, φ) if φ ∈ q1

flip(k, not q1, φ) = flip(k, q1, φ) if φ ∈ q1

flip(k, q′, φ) = q′ and k otherwise
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When the focus is in the scope of an union, only the alternative that contains
the focus is used in the flipped query. This is necessary to have the correct
set of restrictions at that focus, and this is also useful to access the differ-
ent subselections that compose an union. For example, in the query a man and
(firstname : "John"φ or lastname : "John"), the focus φ allows to know
the set of men whose firstname is John without forgetting the second alternative.
When the focus is in the scope of a complement, this complement is ignored in
the flipped query. This is useful to access the subselection to be excluded. For
example, in the query a man and not father : ?φ, the focus φ allows to know
the set of men who have a father, i.e., those who are to be excluded from the
selection of men.

Definition 6 (items at focus). The items of a query q at focus φ is defined
as the items of the flip of q at focus φ, i.e., items(q, φ) = items(flip(q, φ)).

This enables the definition of the set of restrictions at each focus in the normal
way. The navigation graph can then be formally defined.

Definition 7 (restrictions at focus). The restrictions of a query q at focus φ
is defined as the features that share items with the query q at focus φ:

restr(q, φ) = {f | items(q, φ) ∩ items(f) �= ∅}.

Definition 8 (navigation graph). Let D be a RDF dataset. The navigation
graph GD = (V, E) of D has its set of vertices defined by

V = {(q, φ) | q ∈ LISQL, φ ∈ Φ(q)},

and its set of edges defined by the following table for every vertice (q, φ). The
notation (q′, φ′) = (q, φ)[l] denotes the navigation place obtained by traversing
the navigation link l from the navigation place (q, φ).

navigation link notation (l) target ((q′, φ′)) conditions
focus change focus φ′ (q, φ′) for every focus φ′ ∈ Φ(q)
intersection and f (q[φ and fφ′ ], φ′) for every f ∈ restr(q, φ)
exclusion and not ? (q[φ and not ?φ′ ], φ′)
union or ? (q[φ or ?φ′ ], φ′)
name name ?v (q[φ and ?vφ′ ], φ′) for some fresh variable v
reference ref ?v (q[φ and ?vφ′ ], φ′) for every v ∈ vars(q)

s.t. items(q′, φ′) �= ∅
delete delete (q[φ := ?], φ)

The number of navigation places (vertices) is infinite because there are infinetely
many LISQL queries, but the number of outgoing navigation links (edges) is
finite at each navigation place because the vocabulary of features is finite, and
the number of foci and variables in a query is finite. By default, the initial
navigation place is v0 = (?φ, φ). The following lemma shows that intersection
navigation links behave as in standard faceted search.

Lemma 1. For every query q, focus φ ∈ Φ(q), and feature f , the following
equality holds: items((q, φ)[and f ]) = items(q, φ) ∩ items(f).
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4.1 Safeness and Completeness

From the formal definition of navigation graphs, we can now formally state safe-
ness and completeness theorems. Those theorems have subtle conditions w.r.t.
focus change, and the main purpose of this section is to discuss them. For reasons
of space, lemmas and proofs have been removed, but they are fully available in
a research report [3] (the presentation is slightly different but equivalent).

Theorem 1 (safeness). Let D be a RDF dataset. The navigation graph GD is
safe except for some focus changes, i.e., for every path of navigation links without
focus change from (q, φ) to (q′, φ′), items(q, φ) �= ∅ implies items(q′, φ′) �= ∅.

We justify to allow for unsafe focus changes by considering the following
navigation scenario. The current query has the form q = f1 or f2φ, i.e.,
the union of two restrictions. The feature f3 is a restriction of q such that
items(f2) ∩ items(f3) = ∅, i.e., only items of f1 match f3. The intersection
with f3 leads to the query q′ = (f1 or f2) and f3φ′ , and a focus change on f2

leads to an empty selection. We could prevent intersection with f3 but this would
be counter-intuitive because it is a valid restriction for (q, φ). We could simplify
the query q′ by removing the second alternative f2 (q′ = f1 and f3), or forbid
the focus change, but we think users should have full control on the query they
have built. Finally, allowing for the unsafe focus change is a simple way to inform
users that no item of f2 matches the new restriction feature f3.

Theorem 2 (completeness). Let D be a RDF dataset. The navigation
graph GD is complete except for some queries having an unsafe focus change,
i.e., for every query q s.t. for every φ ∈ Phi(q), items(q, φ) �= ∅, there is a
navigation path from v0 to the navigation place (q

φ
, φ).

In the above scenario, it was possible to navigate to (f1 or f2) and f3 that has
an unsafe focus change on f2, but it is not possible to navigate to the equivalent
f3 and (f1 or f2) because f2 /∈ restr(f3 and (f1 or ?φ2), φ2). Fortunately, a
query that is not a dead-end but has unsafe focus changes can be simplified into
an equivalent query (same set of items) without unsafe focus changes. It suffices
to delete from the query empty alternatives (S ∪ ∅ = S), and empty exclusions
(S \ ∅ = S).

4.2 Efficiency

Each navigation step from a navigation place (q, φ) requires the computation
of the set of items items(q, φ), the set of restrictions restr(q, φ), and the set of
navigation links as specified in Definition 8. In many cases, the set of items can
be obtained efficiently from the previous set of items, and the last navigation
link. If the last navigation link was an intersection, Lemma 1 shows that the set
of items is the result of the intersection that is performed during the computation
of restrictions, like in standard faceted search. For an exclusion or a naming, the
set of items is unchanged. For a reference, the set of items was already computed
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at the previous step. Otherwise, for an union or a focus change, the set of items
is computed with a LISQL query engines, possibly reusing existing query engines
for the Semantic Web (see Section 3.3).

Computing the set of restrictions is equivalent to set-based faceted search,
i.e., amounts to compute set intersections between the set of items and the
precomputed set of items of features. The same datastructures and algorithms
can therefore be used. As features are LISQL queries, their set of items can be
computed like for queries, possibly with optimizations given features are simple
queries. Finally, determining the set of navigation links requires little additional
computation. A navigation link is available for each focus of the query (focus
change), and each restriction (intersection). Three navigation links for exclusion,
union, and naming are always available. Only for reference navigation links it
is necessary, for each variable in the query, to compute the set of items of the
target navigation place, in order to check it is not empty. This additional cost
is limited as the number of variables in a LISQL query is very small in practice,
and is bounded by the number of foci of the query.

5 Usability Evaluation

This section reports on the evaluation of QFS in terms of usability3. We have
measured the ability of users to answer questions of various complexities, as well
as their response times. Results are strongly positive and demonstrate that QFS
offers expressiveness and ease-of-use at the same time.

Prototype. QFS has been implemented as a prototype, Sewelis4 (aka. Camelis 2).
Figure 1 shows a screenshot of Sewelis. From top to bottom, and from left to
right, it is composed of a menu bar (M), a toolbar (T), a query box (Q), query
controls (QC), feature controls (FC), an answer list or extension box (E), a facet
hierarchy (F), and a set of value boxes (V). A query engine can be derived from
Sewelis by retaining only the components Q and E. A standard faceted search
system can be derived by retaining only the components E, F, and V. Navigation
links, i.e., suggested query transformations, are available on all components.
Whenever a navigation control is triggered, the corresponding navigation link
is applied, and components (Q,E,F,V) are refreshed accordingly. The query box
(Q) is clickable for setting the focus on any subquery. Query controls (QC)
provide buttons for naming, union, exclusion (and a few others). Every element
of components (E,F,V) can be used as an argument for intersection, with the
guarantee that the resulting query does have answers. Restriction are dispatched
between components (E,F,V) according to their types. The facet hierarchy (F)
contains variables of the current query (e.g., ?X), classes (e.g., a person), and
property paths (e.g., father of ?, birth : year : ?). Each value box (V)
contains a list or hierarchy of relevant values for some property path facet (e.g.,
3 Details can be found on http://www.irisa.fr/LIS/alice.hermann/camelis2.html
4 See http://www.irisa.fr/LIS/softwares/sewelis/ for a presentation, screencasts,

a Linux executable, and sample data.
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Fig. 1. A screenshot of the user interface of Sewelis. It shows the selection of male
persons whose lastname is Washington.

father of ’George Washington’, birth : year : 1601). The extension box
(E) contains resources (e.g., England). The hierarchical organization of facets
in (F) is based on RDFS class and property hierarchies. A value box (V) is
hierarchically organized according to the last property of its property path, if
that property is transitive (here, in = part of).

Dataset. The datasets were chosen so that subjects had some familiarity with
the concepts, but not with the individuals. We found genealogical datasets about
former US presidents, and converted them from GED to RDF. We used the
genealogy of Benjamin Franklin for the training, and the genealogy of George
Washington for the test. The latter describes 79 persons by their birth and/or
death events, which are themselves described by their year and place, by their
firstname, lastname, and sex, and by their relationships (father, mother, child,
spouse) to other persons. Places are linked by a transitive part-of relationship,
allowing for the display of place hierarchies in Sewelis.

Methodology. The subjects consisted of 20 graduate students in computer sci-
ence. They had prior knowledge of relational databases but neither of Sewelis,
nor of faceted search, nor of Semantic Web. None was familiar with the dataset
used in the evaluation. The evaluation was conducted in three phases. First, the
subjects learned how to use Sewelis through a 20min tutorial, and had 10 more
minutes for free use and questions. Second, subjects were asked to answer a set
of questions, using Sewelis. We recorded their answers, the queries they built,
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Table 1. Questions of the test, by category, and the minimum number of navigation
links to answer them

Category Question (# navig. links)

Visualization
1 How many persons are there? (0)
2 How many men are there? (0)
3 How many persons have a birth’s place in the base? (0)

Selection

4 How many women are named Mary? (4)
5 Who was born at Stone Edge? (4)
6 Which man was born in 1659? (5)
7 Who is married with Edward Dymoke? (3)

Path
9 Which man has his father married with Alice Cooke? (5)
11 Which man is married with a woman born in 1708? (7)

Disjunction
8 Which women have for mother Jane Butler or Mary Ball? (6)
12 Which men are married with a woman whose birth’s place is Cuck-

fields or Stone Edge? (9)

Negation
10 How many men were born in the 1600 or 1700 years, and not in

Norfolk? (12)
13 How many women have a mother whose death’s place is not Warner

Hall? (7)

Inverse
14 Who was born in the same place as Robert Washington? (6)
15 Who died during the year when Augustine Warner was born? (6)

Cycle
16 Which persons died in the same area where they were born? (9)
17 How many persons have the same firstname as one of their parent?

(8)
18 Which persons were born the same year as their spouse? (10)

and the time they spent on each question. Finally, we got feedback from subjects
through a SUS questionnaire and open questions [1]. The test was composed of
18 questions, with smoothly increasing difficulty. Table 1 groups the questions
in 7 categories: the first 2 categories are covered by standard faceted search,
while the 5 other categories are not in general. For category Visualization, the
exploration of the facet hierarchy was sufficient. In category Selection, we asked
to count or list items that have a particular feature. In category Path, subjects
had to follow a path of properties. Category Disjunction required the use of
unions. Category Negation required the use of exclusions. Category Inverse re-
quired the crossing of the inverse of properties. Category Cycle required the use
of co-reference variables (naming and reference navigation links).

Results. Figure 2 shows the number of correct queries and answers, the average
time spent on each question and the number of participants who had a correct
query for at least one question of each category. For example, in category “Visu-
alization”, the first two questions had 20 correct answers and queries; the third
question had 10 correct answers and 13 correct queries; all the 20 participants
had a correct query for at least one question of the category; the average re-
sponse times were respectively 43, 21, and 55 seconds. The difference between
the number of correct queries and correct answers is explained by the fact that
some subjects forgot to set the focus on the whole query after building the query.
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Fig. 2. Average time and number of correct queries and answers for each question

All subjects but one had correct answers to more than half of the questions.
Half of the subjects had the correct answers to at least 15 questions out of
18. Two subjects answered correctly to 17 questions, their unique error was on
a disjunction question for one and on a negation question for the other. All
subjects had the correct query for at least 11 questions. For each question, there
is at least 50 percent of success. The subjects spent an average time of 40 minutes
on the test, the quickest one spent 21 minutes and the slowest one 58 minutes.

The first 2 categories corresponding to standard faceted search, visualization
and selection, had a high success rate (between 94 and 100) except for the
third question. The most likely explanation for the latter is that the previous
question was so simple (a man) that subjects forgot to reset the query between
the questions 2 and 3. All questions of the first two categories were answered in
less than 1 minute and 43 seconds on average. Those results indicate that the
more complex user interface of QFS does not entail a loss of usability compared
to standard faceted search for the same tasks.

For other categories, all subjects but two managed to answer correctly at least
one question of each category. Within each category, we observed that response
times decreased, except for the Cycle category. At the same time, for Path,
Disjunction and Inverse, the number of correct answers and queries increased.
Those results suggest a quick learning process of the subjects. The decrease in
category Negation is explained by a design flaw in the interface. For category
Cycle, we conjecture some lassitude at the end of the test. Nevertheless, all but
two subjects answered correctly to at least one of Cycle questions. The peak of
response time in category Inverse is explained by the lack of inverse property
examples in the tutorial. It is noticeable that subjects, nevertheless, managed
to solve the Inverse questions with a reasonable success rate, and a decreasing
response time.
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Table 2. Results of SUS questions

SUS Question Score (on a 0-4 scale)

I think that I would like to use this system frequently 2.8 Agree

I found the system unnecessarily complex 0.8 Strongly disagree

I thought the system was easy to use 2.6 Agree

I think that I would need the support of a technical per-
son to be able to use this system

1.5 Disagree

I found the various functions in this system were well
integrated

2.9 Agree

I thought there was too much inconsistency in this system 0.6 Strongly disagree

I would imagine that most people would learn to use this
system very quickly

2.5 Agree

I found the system very cumbersome to use 1.0 Disagree

I felt very confident using the system 2.8 Agree

I needed to learn a lot of things before I could get going
with this system

1.7 Neutral

SUS Questionnaire. Table 2 shows the answers to the SUS questions, which are
quite positive. The first noticeable thing is that, despite the relative complexity
of the user interface, subjects do not find the system unnecessarily complex nor
cumbersome to use. We think this is because the principles of QFS are very
regular, i.e., they follow few rules with no exception. The second noticeable
thing, which may be a consequence of the first, is that subjects felt confident
using the system and found no inconsistency. Finally, even if it is necessary for
subjects to learn how to use the system, they thought that the system was easy
to use, and that they would learn to use it very quickly. The results of the test
demonstrate that they are right, even for features that were not presented in the
tutorial (the Inverse category).

6 Conclusion

We have introduced Query-based Faceted Search (QFS) as a search paradigm
for Semantic Web knowledge bases, in particular RDF datasets. It combines
most of the expressiveness of the SPARQL query language, and the benefits of
exploratory search and faceted search. The user interface of QFS includes the
user interface of other faceted search systems, and can be used as such. It adds a
query box to tell users where they are in their search, and to allow them to change
the focus. It also adds a few controls for applying some query transformations
such as the insertion of disjunction, negation, and variables.

QFS has been implemented as a prototype, Sewelis. Its usability has been
demonstrated through a user study, where, after a short training, all subjects
were able to answer simple questions, and most of them were able to answer
complex questions involving disjunction, negation, or co-references. This means
QFS retains the ease-of-use of other faceted search systems, and gets close to
the expressiveness of query languages such as SPARQL.
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Abstract. Effective techniques for keyword search over RDF databases
incorporate an explicit interpretation phase that maps keywords in a
keyword query to structured query constructs. Because of the ambiguity
of keyword queries, it is often not possible to generate a unique inter-
pretation for a keyword query. Consequently, heuristics geared toward
generating the top-K likeliest user-intended interpretations have been
proposed. However, heuristics currently proposed fail to capture any
user-dependent characteristics, but rather depend on database-dependent
properties such as occurrence frequency of subgraph pattern connecting
keywords. This leads to the problem of generating top-K interpretations
that are not aligned with user intentions. In this paper, we propose a
context-aware approach for keyword query interpretation that person-
alizes the interpretation process based on a user’s query context. Our
approach addresses the novel problem of using a sequence of structured
queries corresponding to interpretations of keyword queries in the query
history as contextual information for biasing the interpretation of a new
query. Experimental results presented over DBPedia dataset show that
our approach outperforms the state-of-the-art technique on both effi-
ciency and effectiveness, particularly for ambiguous queries.

Keywords: Query Interpretation, Keyword Search, Query Context, RDF
Databases.

1 Introduction

Keyword search offers the advantage of ease-of-use but presents challenges due
to their often terse and ambiguous nature. Traditional approaches [1][2][8] for
answering keyword queries on (semi)structured databases have been based on an
assumption that queries are explicit descriptions of semantics. These approaches
focus on merely matching the keywords to database elements and returning some
summary of results i.e., IR-style approaches. However, in a number of scenarios,
such approaches will produce unsatisfactory results. For example, a query like
“Semantic Web Researchers” needs to be interested as a list of people, many
of which will not have all keywords in their labels and so will be missed by
IR-style approaches. For such queries, each keyword needs to be interpreted
and the entire query needs to be mapped to a set of conditional expressions,
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i.e., WHERE clause and return clause. It is not often easy to find a unique
mapping, therefore this problem is typically done as a top-K problem with the
goal of identifying the K likeliest user intended interpretations.

Existing top-K query interpretation approaches [11] for RDF databases em-
ploy a cost-based graph exploration algorithm for exploring schema and data
to find connections between keyword occurrences and essentially fill in the gaps
in a keyword query. However, these techniques have the limitation of using a
“one-size-fits-all” approach that is not user-dependent but rather more database-
dependent. The heuristics used are based on the presumption that the likeliest
intended interpretation is the interpretation that has the most frequent support
in the database, i.e., the interpretation is related to classes of high-cardinality.
Unfortunately, since such metrics are not user-dependent, the results generated
do not always reflect the user intent.

In this paper, we address the problem of generating context-aware query in-
terpretations for keyword queries on RDF databases by using information from
a user’s query history. The rationale for this is that users often pose a series of
related queries, particularly in exploratory scenarios. In these scenarios, infor-
mation about previous queries can be used to influence the interpretation of a
newer query. For example, given a keyword query “Mississippi River”, if a user
had previously queried about “Mortgage Rates”,then it is more reasonable to
select the interpretation of the current query as being that of a financial institu-
tion “Mississippi River Bank”. On the other hand, if a user’s previous query was
“Fishing Techniques”, it may make more sense to interpret the current query
as referring to a large body of water : the “Mississippi River”. Two main chal-
lenges that arise here include (i) effectively capturing and efficiently representing
query history and (ii) effectively and efficiently exploiting query history during
query interpretation. Towards addressing these challenges we make the following
contributions:

i) Introduce and formalize the problem of Context-Aware keyword query inter-
pretation on RDF databases.

ii) Propose and implement a dynamic weighted summary graph model that is
used to concisely capture essential characteristics of a user’s query history.

iii) Design and implement an efficient and effective top-K Context-Aware graph
exploration algorithm that extends existing cost-balanced graph exploration
algorithms, with support for biasing the exploration process based on context
as well as with early termination conditions based on a notion of dominance.

iv) Present a comprehensive evaluation of our approach using a subset of the
DBPedia dataset [3], and demonstrate that the proposed approach outper-
forms the state-of-the-art technique on both efficiency and effectiveness.

2 Foundations and Problem Definition

Let W be an alphabet of database tokens. An RDF database is a collection
of subject-property-object triples linking RDF resources. These triples can be
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represented as a graph GD = VD, ED, λD, ϕD, where subject or object is repre-
sented as node in VD while property is represented by edge in ED. An object
node can either represent another entity (RDF resource) or literal value. λD is a
labeling function λD : (VD ∪ED) → 2W that captures the rdfs:label declarations
and returns a set of all distinct tokens in the label of any resource or property in
the data graph. In addition, for any literal node vl ∈ VD, λD(vl) returns all dis-
tinct tokens in the literal value represented by vl. ϕD is the incidence function:
ϕD : VD × VD → ED.

An RDF schema is also a collection of subject-property-object triples, which
can also be represented as a graph: GS = (VS , ES , λS , ϕS , π), where the nodes
in VS represent classes and edges in ES represent properties. λS is a labeling
function λS : VS∪ES → 2W that captures the rdfs:label declarations and returns
a set of all distinct tokens in the label of any class or property in the schema
graph. ϕS is an incidence function: ϕS : VS × VS → ES . π : VS → 2VD is
a mapping function that captures the predefined property rdf:type maping a
schema node representing a class C to a set of data graph nodes representing
instances of C. Nodes/edges in a schema can be organized in a subsumption
hierarchy using predefined properties rdfs:subclass and rdfs:subproperty.

We define some special nodes and edges in the schema graph that are necessary
for some of the following definitions:

– let VLITERAL ⊂ VS be a set containing all literal type nodes (i.e., a set of
literal nodes representing literal types such as “XSD:string”);

– let VLEAF CLASS ⊆ (VS − VLITERAL) be a set containing all leaf nodes (i.e.
those nodes representing classes who do not have sub-classes) which are not
literal type nodes;

– let ELEAF PROPERTY ⊆ ES be a set containing all leaf edges (i.e. those
edges representing properties which do not have sub-properties);

– let VLEAF LITERAL ⊆ VLITERAL be a set containing all literal type nodes
who are joined with leaf edges, for example, in Fig 1, literal type node vstring1

is in VLEAF LITERAL but vstring2 is not because the edge ename connecting
vPlace and vstring2 is not a leaf edge.

We define a keyword query Q = {w1, w2, . . . , wn|wi ∈ W} as a sequence of
keywords, each of which is selected from the alphabet W . Given a keyword
query Q, an RDF schema and data graphs, the traditional problem that is ad-
dressed in relation to keyword queries on RDF databases is how to translate an
keyword (unstructured) query Q into a set of conjunctive triple patterns (struc-
tured query) that represents the intended meaning of Q. We call this process
as keyword query “structurization”/interpretation . To ensure that the
structured query has a defined semantics for the target database, the transla-
tion process is done on the basis of information from the data and schema graphs.
For example, given a keyword query “Mississippi River Bank”, the schema graph
and the data graph shown in Fig 1, we can find a structured query with con-
junctive triple patterns listed at the top of Fig 1. Because of the class hierarchy
defined in the schema, there could be many equivalent triple patterns for a given
keyword query. For instance, in the schema graph of Fig 1, “Organization” is the
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Fig. 1. Graph Summarization

super class of “Bank”. Assuming that only “Bank” has the property “bName”,
thus, the two pattern queries:
〈?x bName “river”〉, 〈?x rdf:type Organization〉, and
〈?x bName “river”〉, 〈?x rdf:type Bank〉
are equivalent because the domain of the property “bName” requires that the

matches of ?x can only be the instances of “Bank”. To avoid redundancy and
improve the performance, usually a summary graph structure is adopted that
concisely summarizes the relationships encoded in the subsumption hierarchies
and the relationships between tokens and the schema elements they are linked
to.

Recall that our goal is to enable context-awareness for keyword query interpre-
tation, we would also like this summary graph structure to encode information
about a user’s query history such as which classes have been associated with
recent queries. This leads to a notion of a context-aware summary graph which
is defined in terms of the concept of “Upward Closure”:

DEFINITION 1 (Upward closure): Let vC be a node in a schema graph
GS that represents a class C. The upward closure of vC is v∧C , which is a set
containing vC and all the nodes representing super classes of C. For example, in
Fig 1, the upward closure of the node vState is: v∧State = {vThing, vPlace, vState}.
The upward closure of an edge eP ∈ ES denoted by e∧P is similarly defined.
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DEFINITION 2 (Context-aware Summary Graph) : Given an RDF
schema graph GS , a data graph GD and a query history QH : QH = {Q1, . . . ,
QT }, where QT is the most recent query, a context-aware summary graph can
be defined as SG = (VSG, ESG, θ, λSG, ΨSG, ω), where

– θ : VSG ∪ ESG → 2(VS∪ES) is an injective mapping function that maps any
node or edge in SG to a set of nodes or edges in GS .

– VSG = {vi|∃u ∈ VLEAF CLASS ∪ VLEAF LITERAL such that θ(vi) = u∧}.
For example, the context-aware summary graph in Fig 1 contains {v1,

v2, v3, v4} four nodes, each of which can be mapped to the upward closure
of one of the leaf nodes in {vstring1, vBank, vState, vstring3} in the schema
graph respectively.

– ESG = {ei|∃u ∈ ELEAF PROPERTY such that θ(ei) = u∧}.
For example, the summary graph in Fig 1 contains {e1, e2, e3} three

edges, each of which can be mapped to the upward closure of one of the leaf
edges in {ebName, elocatedIn, esName} respectively.

– λSG is a labeling function: λSG : (VSG ∪ ESG) → 2W .
• ∀v ∈ VSG where θ(v) = v∧C and vC ∈ VS representing class C,

λSG(v) = {
⋃

vi∈v∧
C

λS(vi)} ∪ {
⋃

rj∈π(vC) λD(rj)},
i.e., union of all distinct tokens in the labels of the super classes of C
and distinct tokens in labels of all instances of C. For example, in Fig 1,

λSG(v4) = { “Mississippi”, “North”, “Carolina”};
λSG(v3) = { “Thing”, “Place”, “State”}.

• ∀e ∈ ESG where θ(e) = e∧P and eP ∈ ES representing property P ,
λSG(e) =

⋃
ei∈e∧

P
λS(ei),

which is a union of all distinct tokens in the labels of all super classes of
P . For example,

λSG(e2) = { “LocatedIn”,“ In”}.
– ΨSG is the incidence function: ΨSG : VSG×VSG → ESG, such that if θ(v1) =

v∧C1, θ(v2) = v∧C2, θ(e) = e∧P , then ΨSG(v1, v2) = e implies ϕS(vC1, vC2) = eP .
– ω : (QH, VSG ∪ ESG) → R is a query history dependent weighting function

that assigns weights to nodes and edges of SG. For a query history QHT−1

and QHT = QHT−1 + QT , and m ∈ SG, ω(QHT−1, m) ≥ ω(QHT , m) if
m ∈ QT .

Note that, we only consider user-defined properties for summary graph while
excluding pre-defined properties. Further, we refer to any node or edge in a
context-aware summary graph as a summary graph element.

DEFINITION 3 (Hit): Given a context-aware summary graph SG and a
keyword query Q, a hit of a keyword wi ∈ Q is a summary graph element
m ∈ SG such that wi ∈ λ(m) i.e., wi appears in the label of m. Because there
could be multiple hits for a single keyword w, we denote the set of all hits of w
as HIT (w). For example, in Fig 1, HIT (“bank”) = {v1, v2}.

DEFINITION 4 (Keyword Query Interpretation): Given a keyword query
Q and a context-aware summary graph SG, a keyword query interpretation QI
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is a connected sub-graph of SG that connects at least one hit of each keyword
in Q.

For example, the summary graph shown in Fig 1 represents the interpretation
of the keyword query “Mississippi, River, Bank” which means “Returning those
banks in the Mississippi State whose name contains the keyword ’River’ ”. The
equivalent conjunctive triple patterns are also shown at the top of Fig 1. Note
that for a given keyword query Q, there could be many query interpretations due
to all possible combinations of hits of all keywords. Therefore, it is necessary to
find a way to rank these different interpretations based on a cost function that
optimizes some criteria which captures relevance. We use a fairly intuitive cost
function in the following way: cost(QI) =

∑
mi∈QI ω(mi),

which defines the cost of an interpretation as a combination function of the
weights of the elements that constitute the interpretation. We can formalize the
context-aware top-k keyword query interpretation problem as follows:

DEFINITION 5 (Context-aware Top-k Keyword Query Interpretation
Problem): Given a keyword query Q, and a context-aware summary graph SG,
let [[Q]] = {QI1, . . . , QIn} be a set of all possible keyword query interpretations
of Q, the context-aware top-K keyword query interpretation problem is to find the
top K keyword query interpretations in IS: TOPK = {QI1, . . . , QIK} ⊆ [[Q]]
such that

(i.) QIi ∈ TOPK and QIj ∈ ([[Q]]− TOPK), cost(QIi) ≤ cost(QIj).
(ii.) If 1 ≤ p < q ≤ k, cost(QIp) ≤ cost(QIq), where QIp, QIq ∈ TOPK.

This problem is different from the traditional top-k keyword query interpreta-
tion problem in that the weights are dynamic and are subject to the evolving
context of query history. Because some queries are more ambiguous than others,
keyword query interpretation problem requires effective techniques to deal with
large interpretation space. We propose a concept called Degree of Ambiguity
(DoA) for characterizing the ambiguity of queries: The DoA of the keyword
query Q is defined as DoA(Q) =

∏
wi∈Q |HIT (wi)|, which is the number of all

combinations of keyword matches. It will be used as a performance metric in our
evaluation.

Overview of our approach. Having defined the problem, we start with an
overview of our approach. It consists of the following key steps as shown in
Fig 2:

– Find keyword hits using an inverted index for a given keyword query Q.
(Step (1)–(3)).

– The query interpreter takes the hits and utilizes a graph exploration algo-
rithm to generate a set of top-K interpretations of Q. (Step (4)–(5))

– The top-1 interpretation of the top-K interpretation is passed to a cost model
to update the weights of the context-aware summary graph. (Step (6)–(7))

– Steps involved in Fig 2 only capture one of the iteration cycles of the in-
teractions between user and our interpretation system. The new weights of
context-aware summary graph will be used to bias the graph exploration in
the next iteration when user issues a new query
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Fig. 2. Architecture and workflow

The cost model will be discussed in the next section and the graph exploration
algorithm will be discussed in section 4.

3 Representing Query History Using a Dynamic Cost
Model

The implementation of the dynamic cost model for representing query history
consists of two main components: i) data structures for implementing a labeled
dynamic weighted graph i.e., the context-aware summary graph; ii) a dynamic
weighting function that assigns weights to summary graph elements in a way that
captures their relevance to the current querying context. To understand what
the weighting function has to achieve, consider the following scenario. Assuming
that we have the following sequence of queries Q1 = “Ferrari, price” and Q2 =
“F1, calendar”, with Q2 as the most recent query. If Q1 is interpreted as “Car”,
the relevance score of the concept “Car” as well as related concepts (concepts
in their immediate neighborhood such as “Auto Engine”) should be increased.
When Q2 arrives and is interpreted as “Competition”, the relevance score for it
should be increased. Meanwhile, since “Auto Engine” and all the other concepts
that are not directly related to Q2, their relevance scores should be decreased.
Then ultimately, for a new query Q3 = “Jaguar, speed”, we will prefer the
concept with higher relevance score as its interpretation, for example, we prefer
“Car” than “Mammal”.

To achieve this effect, we designed the dynamic weighting function to be based
on a relevance function in terms of two factors: historical impact factor (hif)
and region factor (rf).

Let T indicate the historical index of the most recent query QT , t be the
historical index of an older keyword query Qt, i.e., t ≤ T , and m denote a



200 H. Fu and K. Anyanwu

summary graph element. Assume that the top-1 interpretation for Qt has already
been generated : QIt. Region factor is defined as a monotonically decreasing
function of the graph distance d(m, QIt) between m and QIt:

rf(d(m, QIt)) = 1
αd(m,QIt)

(rf(d(m, QIt)) = 0 if d(m, QIt) ≥ τ) τ is a constant value, and d(m, QIt)
is the shortest distance between m and QIt, i.e., among all the paths from
m to any graph element in the sub-graph QIt, d(m, QIt) is the length of the
shortest path. Here, α > 1 is a positive integer constant. The region factor
represents the relevance of m to QIt . Historical impact factor captures the
property that the relevance between a query and a graph element will decrease
when that query ages out of the query history. hif is a monotonically decreasing
function: hif(t) = 1/βT−t, where β > 1 is also a positive integer constant. We
combine the two factors to define the relevance of m to query interpretation QIt

as hif (t)∗rf(d(m, QIt)). To capture the aggregate historical and region impacts
of all queries in a user’s query history, we use the combination function as the
relevance function γ :

γ(m, T ) =
∑T

0
hif (t) ∗ rf (d(m, QIt)) =

∑T

0
(1/βT−t)(1/αd(m,QIt)) (1)

To produce a representation of (1) for a more efficient implementation, we rewrite
a function as recursive:

γ(m, T ) = γ(m, T − 1)/β + 1/αd(m,QIT ) (2)

The consequence of this is that, given the relevance score of m at time T − 1,
we can calculate γ(m, T ) simply by dividing γ(m, T − 1) by β then adding
1/αd(m,QIT ). In practice, we use d(m, QIT ) < τ = 2, so that, only m and the
neighboring nodes and edges of m will be have their scores updated.

Boostrapping. At the initial stage, there are no queries in the query history,
so the relevance score of the summary graph elements can be assigned based on
the TF − IDF score, where each set of labels of a summary graph element m
i.e., λSG(m) is considered as a document. User-feedback is allowed at every stage
to select the correct interpretation if the top-1 query interpretation generated is
not the desired one.

Since top-K querying generation is based on finding the smallest cost con-
nected subgraphs of the summary, the definition of our weighting function for
the dynamic weighted graph model is defined as the following function of the
relevance function γ.

ω(m, t) = 1 + 1/γ(m, t) (3)

This implies that a summary graph element with a higher relevance value will
be assigned a lower weight. In the next section, we will discuss how to find
interpretations with top-k minimal costs.
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4 Top-K Context-Aware Query Interpretation

The state of the art technique for query interpretation uses cost-balanced graph
exploration algorithms [11]. Our approach extends such an algorithm [11] with
a novel context-aware heuristic for biasing graph exploration. In addition, our
approach improves the performance of the existing algorithm by introducing an
early termination strategy and early duplicate detection technique to eliminate
the need for duplicate detection as a postprocessing step. Context Aware Graph
Exploration (CoaGe) algorithm shown in Fig 3.

Fig. 3. Pseudocodes for CoaGe and TopCombination

4.1 CoaGe

CoaGe takes as input a keyword query Q, a context-aware summary graph SG
and an integer value K indicating the number of candidate interpretations that
should be generated. In CoaGe, a max binomial heap TOPK is used to maintain
top-K interpretations and a min binomial heap CQ is used to maintain cursors
created during the graph exploration phase (line 1). At the initialization stage,
for each hit of each keyword, CoaGe generates a cursor for it. A cursor originates
from a hit mw of a keyword w is represented as c(keyword, path, cost, topN),
where c.keyword = w; c.path contains a sequence of summary graph elements
in the path from mw to the node that c just visited; c.cost is the cost of the
path, which is the sum of the weights of all summary graph elements in c.path;
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c.topN is a boolean value that indicates whether mw is among the top-N hits of
HIT (w). The Top-N hit list contains the N minimum weighted hits of all hits
in HIT (w).

Each node v in the context-aware summary graph has a cursor manager CL
that contains a set of lists. Each list in CL is a sorted list that contains a sequence
of cursors for keyword w that have visited v, we use CL[w] to identify the list
of cursors for keyword w. The order of the elements in each list is dependent
on the costs of cursors in that list. The number of lists in CL is equal to the
number of keywords: |CL| = |Q|.During the graph exploration, the cursor with
minimal cost is extracted from CQ (line 5). Let v be the node just visited by this
“cheapest” cursor (line 6). CoaGe first determines whether v is a root (line 7).
This is achieved by examining if all lists in v.CL is not empty, in other words,
at least one cursor for every keyword has visited v. If v is a root, then, there
are

∏
wi∈Q |v.CL[wi]| combinations of cursors. Each combination of cursors can

be used to generate a sub-graph QI. However, computing all combinations of
cursors as done in the existing approach [11] does is very expensive. To avoid
this, we developed an algorithm TopCombination to enable early termination
during the process of enumerating all combinations. TopCombination algorithm
(line 8) will be elaborated in the next subsection. A second termination condition
for the CoaGe algorithm is if the smallest cost of CQ is larger than the largest
cost of the top-K interpretations (line 9). After the algorithm checks if v is a root
or not, the current cursor c explores the neighbors of v if the length of c.path is
less than a threshold (line 11). New cursors are generated (line 14) for unvisited
neighbors of c (not in c.path, line 13). New cursors will be added to the cursor
manager CL of v (line 17). The cost of new cursors are computed based on the
cost of the path and if c is originated from a top-N hits.

Unlike the traditional graph exploration algorithms that proceed based on
static costs, we introduce a novel concept of ’velocity’ for cursor expansion.
Intuitively, we prefer an interpretation that connects keyword hits that are more
relevant to the query history, i.e., lower weights. Therefore, while considering
a cursor for expansion, it penalizes and therefore “slows down” the velocity of
cursors for graph elements that are not present in the top-N hits (line 16). By
so doing, if two cursors have the same cost or even cursor cA has less cost than
cursor cB, but cB originates from a top-N hit, cB may be expanded first because
the cost of cA is penalized and cA.cost ∗ penalty factor > cB.cost. The space
complexity is bounded by O(n · dD), where n =

∑
wi∈Q |HIT (wi)| is the total

number of keyword hits, d = Δ(SG) is the maximum degree of the graph and
D is the maximum depth a cursor can explore.

4.2 Efficient Selection of Computing Top-k Combinations of
Cursors

The TopCombination algorithm is used to compute the top-K combinations
of cursors in the cursor manager CL of a node v when v is a root. This al-
gorithm avoids the enumeration of all combinations of cursors by utilizing a
notion of dominance between the elements of CL. The dominance relation-
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ship between two combinations of cursors Comp = (CL[w1][p1], ...CL[wL][pL])
and Comq = (CL[w1][q1], ...CL[wL][qL]) is defined as follows: Comp dominates
Comq, denoted by Comp � Comq if for all 1 ≤ i ≤ L = |Q|, pi ≥ qi and exists
1 ≤ j ≤ L, pj > qj . Because every list CL[wi] ∈ CL is sorted in a non decreasing
order, i.e., for all 1 ≤ s ≤ L, i ≥ j implies that CL[ws][i].cost ≥ CL[ws][j].cost .
Moreover, because the scoring function for calculating the cost of a combination
Com is a monotonic function: cost(Com) =

∑
ci∈Com ci.cost, which equals to

the sum of the costs of all cursors in a combination, then we have:
Comp = (CL[w1][p1], CL[w2][p2], ..., CL[wL][pL])
�
(Comq = CL[w1][q1], CL[w2][q2], ..., CL[wL][qL])
implies that for all 1 ≤ i ≤ L,
CL[wi][pi].cost ≥ CL[wi][qi].cost and cost(Comp) ≥ cost(Comq).
In order to compute top-k minimal combinations, given the combination

Commax with the max cost in the top-k combinations, we can ignore all the
other combinations that dominate Commax. Note that, instead of identifying all
non-dominated combinations as in line with the traditional formulation, our goal
is to find top-K minimum combinations that require dominated combinations to
be exploited.

The pseudocodes of the algorithm TopKCombination is shown in Fig 3.
TopKCombination takes as input a max binomial heap TOPK, a cursor man-
ager CL and an integer value K indicating the number of candidate interpre-
tations that should be generated. The algorithm has a combination enumerator
Enum that is able to enumerate possible combinations of cursors in CL (line
1). TL is initialized to contain a list of combinations as thresholds (line 2). The
enumerator starts from the combination

Com0 = (CL[w1][0], CL[w2][0], ..., CL[wL][0]),
which is the “cheapest” combination in CL. Let
Comlast = (CL[w1][l1], CL[w2][l2], ..., CL[wL][lL]), be the last combination,

which is the most “expensive” combination and li = CL[wi].length− 1, which
is the last index of the list CL[wi].

The enumerator outputs the next combination in the following way: if the
current combination is

Comcurrent = (CL[w1][s1], CL[w2][s2], ..., CL[wL][sL]),
from 1 to L, Enum.Next() locates the first index i, where 1 ≤ i ≤ L such

that si ≤ li, and returns the next combination as Comnext =
(CL[w1][0], ..., CL[wi−1][0], CL[wi][si + 1], ..., CL[wL][sL]) ,
where, for all 1 ≤ j < i, sj is changed from lj − 1 to 0, and sj = sj +

1. For example, for (CL[w1][9], CL[w2][5]), if CL[w1].length equals to 10 and
CL[w2].length > 5, then, the next combination is (CL[w1][0], CL[w2][6]). The
enumerator will terminate when Comcurrent == Comlast.

Each time Enum move to a new combination cur comb, it is compared with
every combination in TL to check if there exists a threshold combination h ∈ TL
such that cur comb � h (line 4). If so, instead of moving to the next combination
using Next(), Enum.DirectNext() is executed (line 5) to directly return the
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next combination that does not dominate h and has not been not enumerated
before. This is achieved by the following steps: if the threshold combination is

Comthreshold = (CL[w1][s1], CL[w2][s2], ..., CL[wL][sL]),
from 1 to L, Enum.DirectNext() locates the first index i, where 1 ≤ i ≤ L

such that si �= 0, and from i + 1 to L, j is the first index such that sj �= lj − 1 ,
then the next generated combination is Comdirect next =

(CL[w1][0], ..., CL[wi][0], ..., CL[wj−1][0], CL[wj ][sj + 1], ..., CL[wL][sL])
where for all i ≤ r < j, sr is changed to 0, and sj = sj + 1. For example, for
comthreshold = (CL[w1][0], CL[w2][6], CL[w3][9], CL[w4][2]),
assume that the length of each list in CL is 10, then its next combination

that does not dominate it is
comdirect next = (CL[w1][0], CL[w2][0], CL[w3][0], CL[w5][3]).
In this way, some combinations that could be enumerated by “Next()” func-

tion and will dominate comthreshold will be ignored. For instance, comnext =
Next(comthreshold) =

(CL[w1][1], CL[w2][6], CL[w3][9], CL[w4][2]),
and the next combination after this one: Next(comnext) =
(CL[w1][2], CL[w2][6], CL[w3][9], CL[w4][2])
will all be ignored because they dominate comcurrent.
If a new combination is “cheaper” than the max combination in TOPK, it will

be inserted to it (line 16), otherwise, this new combination will be considered a
new threshold combination, and inserted to TL (line 12) such that all the other
combinations that dominate this threshold combination will not be enumerated.
The time complexity of TopKCombination is O(Kk), where K = |TOPK| is the
size of TOPK, k = |Q| is the number keywords. Because, for any combination

com = (CL[w1][s1], ..., CL[wL][sL]), where for all si, 1 ≤ i ≤ L, si ≤ K
comK = (CL[w1][K + 1], ..., CL[wL][K + 1]) � com
In the worst case, any combinations that dominates comK will be ignored and

Kk combinations are enumerated. Consequently, the time complexity of CoaGe
is O(n ·dD ·Kk), where n is the total number of keyword hits, d = Δ(SG) is the
maximum degree of the graph, D is the maximum depth. The time complexity
of the approach in [11] (we call this approach TKQ2S) is O(n ·dD ·SD−1), where
S = |SG| is the number of nodes in the graph.

5 Evaluation

In this section, we discuss the experiments including efficiency and effectiveness
of our approach. The experiments were conducted on a machine with Intel duel
core 1.86GHz and 3GB memory running on Windows 7 Professional. Our test
bed includes a real life dataset DBPedia, which includes 259 classes and over
1200 properties. We will compare the efficiency and effectiveness with TKQ2S.

5.1 Effectiveness Evaluation

Setup. 48 randomly selected college students were given questionnaires to com-
plete. The questionnaire contains 10 groups of keyword queries (To minimize the
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cognitive burden on our evaluators we did not use more than 10 groups in this
questionnaire). Each group contains a short query log consisting of a sequence of
up to 5 keyword queries from the oldest one to the newest one. For each group,
the questionnaire provides English interpretations for each of the older queries.
For the newest query, a list of candidate English interpretation for it is given,
each interpretation is the English interpretation representing a structured query
generated by either TKQ2S or CoaGe. Therefore, this candidate interpretation
list provided to user is a union of the results returned by the two algorithm. Then
users are required to pick up to 2 interpretations that they think are the most
intended meaning of the newest keyword query in the context of the provided
query history. A consensus interpretation (the one that most people pick) was
chosen as the desired interpretation for each keyword query.

Metrics. Our choice of a metric of evaluating the query interpretations is to eval-
uate how relevant the top-K interpretations generated by an approach is to the
desired interpretation. Further, it evaluates the quality of the ranking of the in-
terpretations with respect to their relative relevance to the desired interpretation.
Specifically, we adopt a standard evaluation metric in IR called “Discounted cu-

mulative gain (DCG)” with a refined relevance function: DCGK =
K∑

i=1

2reli−1
log2(1+i)

, where K is the number of top-K interpretations generated, reli is the graded
relevance of the resultant interpretation ranked at position i. In IR, the relevance
between a keyword and a document is indicated as either a match or not, reli is
either zero or one. In this paper, the relevance between a resultant interpreta-
tion QI and a desired interpretation QID for a given keyword query Q cannot be
simply characterized as either a match or not. QI and QID are both sub-graphs
of the summary graph and could have some degree of overlapping, which means
reli ∈ [0, 1]. Of course, if QI == QID, QI should be a perfect match. In this
experiment, we define the relevance between a candidate interpretation QI and
the desired interpretation QID as: reli = |QIi∪QID |−|QIi∩QID |

|QIi∪QID | , where QIi is the
interpretation ranked at position i. reli returns the fraction of those overlapping
summary graph elements in the union of the the two sub-graphs. Large overlap-
ping implies high similarity between QIi and QID, and therefore, high relevance
score. For example, if QIi has 3 graph elements representing a class “Person”,
a property “given name” and a class “XSD:string”. The desired interpretation
QID also has 3 graph elements, and it represents class “Person”, a property
“age” and a class “XSD:int”. Therefore, the relevance between QIi and QID is
equal to 1/5 = 0.2 because the union of them contains 5 graph elements and
they have 1 common node.

On the other hand, we use another metric precision to evaluate the results.
The precision of a list of top-K candidate interpretation is:

P@K = | relevant interpretations in TOPK|/|TOPK|,
which is the proportion of the relevant interpretations that are generated in

TOPK. Because sometimes, when the user votes are evenly distributed, the
consensus interpretation cannot represent the most user intended answer, our
evaluation based on DCG may not be convincing. The precision metric can
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Fig. 4. Efficiency and effectiveness evaluation

overcome this limitation by consider the candidate interpretations that over 10%
people have selected as desired interpretations.

Discussion. We compared the DCG of the results returned by our approach
and TKQ2S. Top-8 queries are generated for each algorithm for each keyword
query. The result shown in Fig 4 (a) illustrates the quality of interpreting queries
with varying DoA values. From (a), we can observe that TKQ2S does not gen-
erate good quality interpretations for queries with high DoA. The reason is that
they prefer the popular concepts and rank the desired interpretation which is
not popular but is higher relevant to the query history at a low position. It also
does not rank higher relevant interpretations higher. Fig 4 (b) illustrates the
precision of the top-5 queries generated by each algorithm. In most of cases,
TKQ2S generates same number of relevant queries as CoaBe, but it fails to



Effectively Interpreting Keyword Queries on RDF Databases 207

generate enough relevant interpretations for the last query with DoA = 3364.
For the first query in (b), TKQ2S does not output any relevant interpretations,
therefore, the precision is 0. Fig 4 (c) illustrates how different lengths of query
history will affect results. In this experiment, 4 groups of queries are given, the
ith group contains i queries in the query history. Further, the ith group contains
all the queries in the (i−1)th group plus a new query. Given the 4 different query
histories, the two algorithms are to interpret another query Q. (c) illustrates the
quality of interpreting Q given different query histories. We can observe that our
approach will do better with long query history. But for the first group, both
algorithms generate a set of interpretations that are very similar to each other.
Both the DCG values are high because user have to select from the candidate
list as the desired interpretation, even though they may think none of them is
desired. For the third group, that difference in performance is due to a transition
in context in the query history. Here the context of query changed in the 2nd or
3rd query. This resulted in a lower DCG value which started to increase again
as more queries about new context were added.

5.2 Efficiency Evaluation

From the result of the efficiency evaluation in Fig 4 (d)–(f), we can see that, our
algorithm outperforms TKQ2S especially when the depth (maximum length of
path a cursor will explore) and the number of top-K interpretations and the
degree of ambiguity DoA are high. The performance gain is due to the reduced
search space enabled by early termination strategy using the TopKCombination
algorithm.

6 Related Work

There is a large body of work supporting keyword search for relational databases
[1][2][7][8] based on the interpretation as “match” paradigm. Some recent efforts
such as Keymantic[5] QUICK[13], SUITS[6], Q2Semantics[12] and [11] have fo-
cused on introducing an explicit keyword interpretation phase prior to answering
the query. The general approach used is to find the “best” sub-graphs (of the
schema plus a data graph) connecting the given keywords and represent the in-
tended query meaning. However, these techniques are based on fixed data-driven
heuristics and do not adapt to varying user needs. Alternative approaches [6][13]
use techniques that incorporate user input to incrementally construct queries by
providing them with query templates. The limitation of these techniques is the
extra burden they place on users.

Query history has been exploited in IR [4][9][10]. These problems have dif-
ferent challenges from the ones addressed in this work. The similarity measures
are based on mining frequent query patterns. However, we need to exploit the
query history to identify similar search intent, which may not necessarily be the
most frequent query patterns. Our problem requires unstructured queries, their
intended interpretations (structured queries) and the ontology to be managed.
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7 Conclusion and Future Work

This paper presents a novel and effective approach for interpreting keyword
queries on RDF databases by integrating the querying context. In addition to
the techniques proposed in this paper, we plan to explore the idea of exploiting
the answers to a priori queries for query interpretation.

Acknowledgement. The work presented in this paper is partially funded by
NSF grant IIS-0915865.
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Abstract. Nowadays communication exchanges are an integral and
time consuming part of people’s job, especially for the so called knowl-
edge workers. Contents discussed during meetings, instant messaging
exchanges, email exchanges therefore constitute a potential source of
knowledge within an organisation, which is only shared with those
immediately involved in the particular communication act. This poses
a knowledge management issue, as this kind of contents become “buried
knowledge”. This work uses semantic technologies to extract buried knowl-
edge, enabling expertise finding and topic trends spotting. Specifically we
claim it is possible to automatically model people’s expertise by monitor-
ing informal communication exchanges (email) and semantically anno-
tating their content to derive dynamic user profiles. Profiles are then used
to calculate similarity between people and plot semantic knowledge-based
networks. The major contribution and novelty of this work is the ex-
ploitation of semantic concepts captured from informal content to build
a semantic network which reflects people expertise rather than captur-
ing social interactions. We validate the approach using contents from a
research group internal mailing list, using email exchanges within the
group collected over a ten months period.

1 Introduction

Email is a common tool for quick exchange of information between individuals
and within groups, especially in formal organisations [10], via the use of official
or unofficial mailing lists. Mailing lists exchanges are often used to reach a wider
audience that includes both the initiator’s personal networks and other individu-
als with shared interests [31] and who may be potential sources of expertise. This
poses a knowledge management issue, as the emails’ knowledge content is not
shared with the whole organisation but only with those included in the recipient
list, thus implicitly creating and/or reinforcing the existence of dynamic com-
muntities inside organisations. Whilst this is positive as it increases flexibility
and innovation, the drawback is that knowledge remains implicit or not shared
with the rest of the organisation, becoming ”buried knowledge” [32]. Moreover
as recognised by [25] the lines between inter-communication on professional and
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social levels are increasingly blurred: people tend to share more aspects of their
social life with co-workers and these exchanges often lead to establishing profes-
sional coooperations or sharing topics of interests. Extracting information from
emails could prove useful in a knowledge management perspective, as it would
provide means to build social networks, determine experts and communities of
practice, taking into account not only professional content but also social and
emerging topics, that may highlight emerging cooperations, interests etc. As
proved by [14] email traffic can be analysed and used to identify COINS (Col-
laborative Innovation Networks), groups of individuals inside organisations that
are self-motivated and work together on a new idea. In this paper we propose an
approach to automatically model people’s expertise and dynamic communities
interests by monitoring informal communication exchanges. The content of com-
munication exchanges is semantically annotated and used to derive user profiles.
Profiles are then used to calculate similarity between people and plot semantic
knowledge-based networks, highlighting groups of users with shared knowledge
or with complementary knowledge. The main novelty concerns the profile gener-
ation; with respect to the state of the art in the Social Network Analysis, where
profiles are mostly based (i) on information declared by users in their static
profiles, (ii) on rates of communication exchanges between users and (iii) on the
morphology of the social graph, our work proposes a profile generation which is
based on semantic concepts extracted from user generated content; these profiles
have the advantage of being both dynamic, as they are created from user gener-
ated content and semantic, in the sense that unique and meaningful concepts are
extracted. To confirm its quality and validity we experimented the proposed ap-
proach on a dataset consisting of a research group internal mailing list exchanges
(as in [13]), extracting profiles with different degrees of semantics. The similarity
between users has then been calculated for every type of profile and compared
against users subjective similarity judgements, to understand if increasing the
level of semantics in the user profiles increases the accuracy of similarity, there-
fore increasing the potential for exploiting the technique for different tasks, such
as expert finding, knowledge sharing or replicated expertise detection within
an organisation. To demonstrate the usefulness of the approach, this has been
integrated into a knowledge management system aimed at capturing and shar-
ing knowledge exchanged during informal communication exchanges (meetings,
chats, etc.): this has provided clear scenarios of usage that will be evaluated in
the coming months to understand whether semantic dynamic user profiling is
beneficial to increase efficiency and efficacy in knowledge management.

The paper is structured as follows. Section 2 presents a review of the state
of the art in knowledge capture from informal communication exchanges, on
semantic user profiling and on measures for user similarity. Section 3 describes
the proposed approach to automatically model people’s expertise profiles and
calculate similarity between them. Section 4 presents the experiments used to
extract and evaluate user profiles and similarities, whilst section 5 introduces the
applications of the approach and possible scenarios of use. Section 6 discusses
the results and the next stages of our research.
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2 State of the Art

2.1 Knowledge Capture from Informal Communication Exchanges

Capturing, representing and sharing knowledge from informal communication
exchanges has been a topic of research in the knowledge management and in
the information seeking behaviour communities for many years, as this type of
knowledge is tacit, often very specilized and precise and is not shared with any-
one else than the immediate recipient of the informal communication exchange.
Previous researches on knowledge workers information seeking behaviours proved
how engineers spend 40-66% of their time sharing information [18,30]. Different
types of communication exchange can be recognised at different levels of formal-
ity, with structured planning meetings or corporate mailing lists at one side of
the spectrum and informal chats at the coffee machine or chats over internet
messaging programs at the other. Independently from the degree of formality
all these communication exchanges contain invaluable knowledge that is often
buried [32]. Different techniques have been explored in previous works to extract,
represent and share this buried knowledge, often focusing on one specific type of
communication exchange, such as emails, meeting recordings etc. In this work
we focus on email exchanges. Email content, and addressee and recipient, often
provide clues about the interests and expertise of participants [5] and they are
used as a source for automatic expertise identification and knowledge elicitation
[7,31]. The main techniques adopted to extract information and build social net-
works from emails are usually quantitative data analysis, such as frequency of
exchanges between individuals, and data mining over the email content.

Exchange Frequency. In the panorama of work on extracting social networks
from email, the frequency of email exchange has been widely used as the main
indicator of relevance of a connection. In some cases the effort is on determining
frequency thresholds [33,11,3,9], while in others time-dependent threshold condi-
tions are defined to detect dynamic networks [6,19]. Diesner et al. [10] construct
a social network via weighted edges over a classical dataset, the Enron corpus1,
a large set of email messages made public during the legal investigation of the
Enron corporation. They reported the emergence of communication sub-groups
with unusually high email exchange in the period prior to the company becoming
insolvent in 2001, when email was a key tool for obtaining information especially
across formal, inter-organisational boundaries. Diesner et al. [10] also observed
that variations in patterns of email usage were influenced by knowledge about
and reputation of, in addition to, formal roles within the organisation. Our ap-
proach differs from the above cited works as we choose to not take into account
the frequency of individual communication exchanges but to perform content-
based analysis of mailing list archives, where the emphasis is not on individual
recipients of an email but on reaching a wider base of colleagues to find experts
that could answer very specific questions.

1 http://www.cs.cmu.edu/~enron

http://www.cs.cmu.edu/~enron
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Content-Based Analysis. Email content analysis has been used for different
purposes: determining expertise [31], analysing the relations between content and
people involved in email exchanges [5,17,25,39], or simply extracting useful infor-
mation about names, addresses, phone numbers [21]. Our approach takes inspira-
tion from Schwartz et al. [31] in trying to derive expertise and common interests
within communities from email exchange but moves on from the keyword-based
extraction approach, to consider McCallum et al. [25] contribution in applying
Machine Learning (ML) and Natural Language Processing (NLP) to retrieve the
rich knowledge content of the information exchanged in automatically gathered
social networks, and better interpret the attributes of nodes and the types of
relationships between them.

Laclav́ık et al. [21] observe that enterprise users largely exploit emails to com-
municate, collaborate and carry out business tasks. They also adopt a cont-based
approach and exploit pattern-based Information Extraction techniques to anal-
yse enterprise email communications, and exploit the data obtained to create so-
cial networks. The test sets (one in English containing 28 emails, and a second in
Spanish with 50 emails) consist of mainly formal emails exchanged between dif-
ferent enterprises. The results obtained indicate that emails are a valid means for
obtaining information across formal, inter-organisational boundaries. Lin et al.
[24,23]propose a framework for social-oriented Knowledge Management within
an organization. They exploit the content of emails for corporate search and for
providing expert finding and social network facilities. The focus of these work
is rather on the framework description in terms of provided functionalities than
on the description of how the content is processed and how the user profiles
are generated. The work we present in this paper, on the other hand, makes
use of a test set containing informal email exchanges from an internal mailing
list for an academic research group, for a pilot, exploratory set of experiments.
We adopt multiple approaches for extracting information at different levels of
semantic granularity to aid the understanding of the content of the conversa-
tions carried out via email, and depict the variety of topics discussed using this
communication medium and ultimately derive effective user profiles.

2.2 Semantic User Profiles

Using semantic technologies to derive user profiles has been a topic of research
in recent years within different communities, especially in the field of Informa-
tion Retrieval, with the objective of providing customized search results and
in the Recommender Systems community, with the aim of generating effective
customized suggestions to the users. In the IR community the focus is on build-
ing a user profile which reflects the user interests more than the user expertise,
to customize search results. Daoud et al. [8] represent semantic user profiles as
graphs of concepts derived from a pre-defined ontology and represent documents
as vector of concepts of the same ontology. Then profiles are exploited to de-
termine the personalized result ranking, using a graph-based document ranking
model. In the field of Recommender Systems the goal is improving the accuracy



Extracting Semantic User Networks 213

recommendations. Abel et al. [1] build semantic user profiles for news recom-
mendations: they enrich users’ Twitter activities with semantics extracted from
news articles and then use these profiles to suggest users articles to read.

The input for the semantic user profile generation can be gathered in different
ways: Kramar [20] e.g. proposes to monitor user activities on the web end ex-
tracting metadata (tags, keywords, named entities) from the visited documents.
Another direction is the usage of user generated content to extract interests and
knowledge levels of users. The most similar work to ours in this direction is the
one proposed by Abel et al. [2] who use Twitter posts to generate User Models.
Semantic user profiles are extracted from the messages people post on Twitter;
in particular they generate three types of profiles: hashtag-based, topic-based
or entity-based profiles. The main focus of their work is how to extract seman-
tic from short text like tweets rather than extensively comparing the different
types profiles. Our work also propose to generate three types of profiles, with
increasing level of semantics (keyword, named entities and concepts), but we
also investigate how increasing the levels of semantic in the user profile improves
the quality of the profile for a certain task; specifically we show how a more
semantic profile better reflects the user perceived similarity with other users in
the community.

2.3 Measures for User Similarity

Calculating similarity between user is a key research question in many fields. In
Social Networks the similarity between two users is usually a binary function,
indicating the ”friendship” of two users who are either connected or not. Non-
binary similarities have also been proposed [35]. The relationship between two
users can be explicit, as stated by the two users, or predicted by means of
automatic techniques. Typical features which are used to infer the similarity
are attributes from the user’s profile like geographic location, age, interests [27].
Social connections already present in the graph are also used as features to
predict new possible connections. Other commonly used features (for example in
Facebook) are interaction-counters top-friend, and picture graphs. Also spatio-
temporal data pertaining to an individuals trajectories has been exploited to
geographically mine the similarity between users based on their location histories
[22,37].

In our study we take inspiration from the way content-based recommender
systems create user profiles as vectors of defining keywords [4,28]; we build user
profiles by exploiting the content of emails belonging to each user and we repre-
sent them as vectors. The novelty of our technique is using semantic concepts as
feature representation rather than keywords. With respect to existing techniques
for user similarities in Social Networks, the novelty of our technique is exploiting
user generated content to build the feature space, rather than exploiting static
features from user profiles. We calculate similarity between users within a net-
work but we use dynamic and semantic features rather that static user-defined
ones. The main advantage is that we capture the dynamicity and evolutionary
nature of the user interaction.
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3 Semantic Network Extraction from Informal Mail
Exchanges

The proposed approach models people’s expertise and dynamic communities in-
terests by analysing informal communication exchanges. The approach performs
the generation of content-based user profiles by analysing user generated con-
tents. User profiles are then used to derive similarity between users. The value of
similarity can then be exploited to plot semantic network between users, which
will reflect the similarity on the basis of shared knowledge. The following sections
will discuss the profile generation and similarity derivation in details.

3.1 Building User Profiles

User profiles are built by extracting information from email content using three
techniques, with varying degrees of semantics. This is done to ascertain the qual-
ity of user profiles and their suitability to model people’s interests and expertise.

Keyword-based profile. Each email ei in the collection E is reduced to a Bag
of Keywords representation, such as ei = {k1, . . . , kn}. Each user keyword-based
profile consists of Bag of Keywords, extracted from their sent emails.
Entity-based profile. Each email ei in the collection E is reduced to a Bag
of Entities representation, such as ei = {ne1, . . . , nek}. Entities are elements in
text which are recognized as belonging to a set of predefined categories (classical
categories are persons, locations, organizations, but more fine grained classifica-
tion is typically used). Each user entity-based profile consists of Bag of Entities,
extracted from their sent emails.
Concept-based profile. Each email ei in the collection E is reduced to a Bag
of Concepts representation, such as ei = {c1, . . . , cn}. Concepts are elements in
text which are identified as unique objects and linked to an entry in a refer-
ence Knowledge Base (Wikipedia in this case). Each user concept-based profile
consists of Bag of Concepts, extracted from their sent emails.

Implementation details. The keyword extraction process has been performed
using Java Automatic Term Recognition Toolkit (JATR v1.02). JATR imple-
ments a voting mechanism to combine the results from different methods for
terminology recognition (dealing with single- and multi-word term recognition)
into an integrated output, improving results of integrated methods taken sepa-
rately [38].

The Named Entity extraction has been performed using the Open Calais
web service3. Open Calais is an ontology-based service which returns extraction
results in RDF. Together with named entity recognition, the service performs in-
stance recognition (concept identification) and facts extraction. For the purposes
of this work we only exploited the Named Entities returned by OpenCalais.

2 http://staffwww.dcs.shef.ac.uk/people/Z.Zhang/resources/

tools/jatr v1.0.zip
3 http://www.opencalais.com/

http://staffwww.dcs.shef.ac.uk/people/Z.Zhang/resources/tools/jatr_v1.0.zip
http://staffwww.dcs.shef.ac.uk/people/Z.Zhang/resources/tools/jatr_v1.0.zip
http://www.opencalais.com/
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The Concept extraction process has been performed using the Wikify web
service [26]. Wikify uses a machine-learning approach to annotate Wikipedia
concepts within unstructured text. The disambiguation procedure uses three
features: a priori probability of each Wikipedia concept, weighted context terms
in the target text and a measure of the goodness of the context. The context
terms weights are calculated by using the average semantic relatedness with all
other context terms. The measure of goodness of the context reflects its homo-
geneity and it is used to dynamically balance a priori probability and context
term weights, instead of using a fixed heuristic. The candidate terms are gen-
erated by gathering all n-grams in the text and discarding those below a low
threshold (to discard non-sense phrases and stopwords). Experiments show that
the method perform as well on non-Wikipedia texts as on Wikipedia ones, with
an F-measure of 75% on non-Wikipedia texts.

3.2 Deriving People Similarity

The obtained user profiles are then used to calculate the similarity strength
between users, measured on a [0,1] range. Similarity values reflect the amount
of knowledge shared between two users. When used to plot a network of users
similarity values can be useful to identify central users, small communities with
shared knowledge (users with higher values of similarity among each other).

Following [15] similarity score is calculated using Jaccards index. The Jaccard
similarity coefficient measures similarity between sample sets, and is defined
as the size of the intersection divided by the size of the union of the sample
sets. Sample sets for our user similarity are concepts (or keywords or Named
Entities respectively) in each user profile. Moreover the similarity calculated
over semantic user profiles is compared with the same measure calculated over
the keyword based profiles and the named entity based profiles, to prove that
increasing the semantic value of a profile increases its quality and suitability for
modelling people’s expertise. The semantic profiles amongst the others, better
mimic the users’ perceived similarities between each other. Results for similarities
calculated over the three different types of profiles are shown in section 4.

4 Experiments

The aim of the experiments was to validate the hypothesis that increasing the
level of semantic in the user profile generation improves the quality of profiles.
For such purpose we used the task of inferring similarities between users and
assessed the correlation with human judgment. The corpus used for analysis and
knowledge content extraction is an internal mailing list of the OAK Group in the
Computer Science Department of the University of Sheffield4. The mailing list
is used for quick exchange of information within the group on both professional
and social topics. We use the same corpus as [13], but with a broader period

4 http://oak.dcs.shef.ac.uk

http://oak.dcs.shef.ac.uk
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coverage: we selected all emails sent to the mailing list in the ten month period
from July 2010 to May 2011, totalling 1001 emails. We will refer to this corpus
as mlDataset. For each email we extracted the subject and the email body.
The number of users in the mailing list is 40; 25 of them are active users (users
sending email to mailing list). The average message length is 420 characters. The
average message length per user is shown in table 1, together with number of
concepts in each user profile. Table 1 reports statistic about all 25 active users,
even if only 15 of those 25 participated to the evaluation exercise.

Table 1. Corpus statistics for mlDataset. Column ID contains an anonymous identifier
for the users. Column AvgMsg contains the average message length for that user,
expressed in number of characters. Column Conc contains the number of concepts in
the user profile.

ID AvgMsg n. sent email Conc ID AvgMsg n. sent email Conc

1 445 62 42 16 612 121 71

3 453 209 90 18 170 27 35

5 1192 9 10 21 290 24 25

6 543 5 5 22 155 27 14

7 489 13 11 23 345 53 39

8 330 9 14 24 271 10 14

9 462 74 67 25 399 65 79

10 237 37 23 27 236 36 33

11 282 90 80 28 523 20 23

12 841 23 40 33 102 8 5

13 766 12 12 36 227 30 15

14 338 17 18 40 224 3 3

15 516 17 22

We compared user similarity obtained with the three different profile types
(section 3) against the users perceived similarity. Pearson correlation has been
calculated for user judgments compared against the automatic generated simi-
larities using Keyword based profiles, Named Entity based profiles and Concepts
based profiles.

The evaluation was conducted as a paper-based exercise in which the partici-
pants were asked to fill in a table containing a list of people within the working
group and rate their perceived similarity on a scale from 1 to 10, with 1 = not
similar at all and 10 = absolutely similar. If the user was not known they were
instructed to leave the rating blank. The participants were asked to score the
similarity in terms of topics or interest shared with the other person, both from a
professional and social point of view (e.g. hobbies or other things which emerge
within the working time) to concentrate the user thoughts towards ”general”
similarity without thinking about what specific type of similarity they share.
The exercise was repeated twice for a small subset of users, with the second one
seven days after the first one. The inter-annotator agreement was calculated by
comparing for each user his/her perceived similarities about other participants
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and similarities perceived by all the rest of participants for that particular user.
Inter-annotator agreement is shown in the last column of table 2.

A total of 15 users took part in the evaluation exercise, all providing valid
questionnaires.

Table 2. Correlation (C) of similarity with user judgment at (S) significance level,
obtained using Keyword based profiles (K), Named Entity based profile (NEs), Concept
based profiles (Conc). Column (Agr) reports Inter-annotator agreement for each user
at significance < 0.001.

ID K NEs Conc Agr

C S C S C S C

14 0.55 0 0.41 0.04 0.68 0 0.91

7 0.48 0.02 0.39 0.06 0.58 0 0.87

28 0.5 0.01 0.41 0.04 0.57 0 0.89

10 0.47 0.02 0.39 0.05 0.57 0 0.94

27 0.32 0.11 0.29 0.16 0.48 0.02 0.92

21 0.34 0.11 0.42 0.04 0.42 0.04 0.91

1 0.35 0.02 0.32 0.11 0.42 0.04 0.94

3 0.3 0.14 0.31 0.14 0.38 0.06 0.86

9 0.28 0.18 0.36 0.07 0.38 0.06 0.9

18 0.5 0.01 0.5 0.01 0.36 0.07 0.87

8 0.17 0.53 0.19 0.48 0.35 0.18 0.82

11 0.59 0 0.42 0.04 0.34 0.1 0.83

25 0.25 0.22 0.33 0.11 0.3 0.14 0.73

23 0.21 0.32 0.33 0.1 0.19 0.36 0.86

Table 2 shows the Pearson correlation between automatically generated sim-
ilarity with user judgment. For the three types of user profiles, Keyword based
profiles (K), Named Entity based profile (NEs) and Concept based profiles
(Conc), the table shows the correlation value (C) and the respective significance
level (S). The inter-annotator agreement for each user reported in column Agr,
has been calculated with Pearson correlation at significance < 0.001. Results are
presented in descending order of correlation for similarities over concept based
profiles. Figures show that the correlation almost always improves by the usage
of Concept based profiles over Keyword based profiles, except for three users
(18, 11, 23). Moreover the significance level for the correlation on concept based
similarity is lower than the one on keyword based similarity (except for user
23). For the three users not confirming the trend, the inter-annotator agreement
average (0.83) is lower than the general average (0.88).

5 Applications and Scenarios of Usage

The approach presented in this paper allows to automatically extract content
and user similarity from an email corpus to build networks which reflects people
expertise rather than capturing users’ social interactions. This approach could
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prove particularly useful for knowledge management, in particular for tasks such
as expertise finding, trend spotting and identification of dynamic communities
inside an organisation. In order to prove its usefulness for knowledge manage-
ment the approach has been integrated into a knowledge management system
aimed at capturing and sharing knowledge exchanged during informal commu-
nication exchanges (meetings, chats, etc.): this has provided clear scenarios of
usage, which will be helpful to understand whether semantic dynamic user pro-
filing increases efficiency and efficacy in expert finding and trend spotting tasks.
The knowledge management framework adopts semantic user profiling to cap-
ture content from numerous informal communication exchanges such as emails,
meeting recordings and minutes etc.; these are then visualised using SimNET
(Similarity and Network Exploration Tool), a tool for exploring and searching
over socio-centric content, that interactively displays content and users networks
as part of the searching and browsing capabilities provided by the knowledge
management system. Section 5.1 introduces SimNET, whilst section 5.2 intro-
duces two scenarios of usage of the knowledge management system within a large
organisation. The scenarios are presented to highlight the capabilities and use-
fulness of the approach; an evaluation of the expert finding and trend analysis
tasks is scheduled for the coming months.

5.1 Semantic Network Visualisation

SimNET is a dynamic and real-time filtering interface that offers multiple visu-
alisations for knowledge extracted from user generated content, using classical
techniques such as node-Link diagrams [12,29], force-directed layouts [16],[34],
radial layouts [36] (as shown in Figure 1) and tag clouds (detail of a tag cloud
in Figure 3). SimNET has been built as a flexible visualisation tool to explore
socio-centric content using the most suitable visualisation for the undertaken
task. Radial visualization is provided to focus on the interactions between users,
while force-directed layout is provided to support by-topic knowledge exploration
and trends observation. SimNET has two main interaction paradigms - email vi-
sualisation and similarity visualisation. The users are initially presented with
an interface that visualises email interactions and a tag cloud describing all the
concepts. The users can then choose between a radial or a force-directed layout
according to the task and can use filtering and searching widgets to focus the
exploration of the dataset. For example, when clicking on concepts in the tag
cloud relevant emails are highlighted in the radial layout and vice versa. Users
can also select to visualise similarities by clicking on ‘Plot Similarity’. The radial
graph is updated to show the similarities as edges between nodes. These edges
are colour coded to signify the similarity among the connecting nodes. The in-
terface provides the users with a similarity slider, which can be dragged to set a
similarity threshold for showing edges and a date range selection bar, to explore
the network evolution over time.

Providing visualisation capabilities is critical for making sense of user profiles,
topics and similarities as it allows users to access and manipulate knowledge.
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Fig. 1. SimNET, Similarity and Network Exploration Tool

5.2 Scenarios of Use

Expertise Finding. Our system supports the task of finding an expert for a
given topic in multiple ways. For example a user may browse the tag cloud or per-
form a specific query. The system will then plot the results using a force-directed
or a radial layout and the user will be able to interact with the visualisation to
explore it and highlight users that are experts on that specific topic. This is
very important as it addresses the long tail of information, allowing to discover
expertise for topics that are not well known or for which not many people are
knowledgeable. It is even more important when applied to large and dynamic
organisation where the number of users is very high and it is very likely that they
do not know each other and they are not aware of who are the current experts
on certain topics, who are similar users to involve in a certain activity. Having
a system that highlights the long-tail of information allows sharing knowledge
in a more efficient manner; for example if a user working in a big organization
is looking for information of a common and well-known topic within her/his de-
partment almost everyone in her/his group will be able to answer her request,
whilst if looking for more obscure information that is interdisciplinary, people
in the same department may not know the answer. In such a case a system that
allows to discover expertise tailoring the short and long tail of information is
invaluable as it quickly highlights people in the organisations for quick help.

Expertise Trend Analysis. When wanting to understand the expertise of a
group of people or emerging topic trends inside a dynamic organisation it could
be helpful to plot all the topics accordingly to their relevance. Figure 2 refers
to the 25 users of the experiment shown in section 4. It shows a number of
topics discussed within the research group (as extracted from mlDataset). The
concepts closer to the central node Oak are the ones shared by the majority of
users, while nodes on the outer circle (randomly picked) are concepts shared by



220 A.L. Gentile et al.

Fig. 2. A force-directed layout to highlight the expertise of the group

Fig. 3. Tag clouds generated over two different period of time in the mlDataset

a small number of people (2 or 3). For example, Figure 2 clearly highlights the
emerging topics in the group as {Semantics, Wiki, Emoticon, Technology, User
(computing), Week, Semantic Web, Server (computing), HTML, Google}, but
also allows to identify topics that are emerging or have less wide-spread and more
specific expertise such as {Industry, Semantics, Semantic similarity, Javascript,
Debate, Vegetarianism, Marie Curie, resource Description Framework, Wireless,
Shoe, Chocolate}.

By using temporal filtering on the data it is also possible to study the trends
evolution over time and the hot topics during a certain period. Figure 3 shows
the topics discussed in July 2010 and in March 2011 (from mlDataset); the data
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tag cloud visualisation helps discovering that in one period there were discussions
e.g. about Augmented Reality and about Facebook on the other.

6 Conclusions and Future Work

This paper proposed an approach to automatically and dynamically model user
expertise from informal communication exchanges. The main novelty of our
approach consists of generating semantic user profiles from emails (and more
generally from any textual user generated content) guaranteeing flexibility, dy-
namicity and providing ways to connect these data with Linked Open Data
(LOD). Whilst linked data have not been exploited in the current work, future
work will consider semantic concept expansions, enriching user profiles by ex-
ploring the LOD cloud starting from concepts within the profiles. Indeed, the
actual concepts in each profile are dbpedia5 objects, therefore already highly
connected to the LOD cloud6.

Extracting information from informal communication exchanges could be
hugely beneficial for knowledge management inside an organisation, as it offers
means to recover buried knowledge without any additional effort from the indi-
viduals and respecting their natural communication patterns. In order to prove
and evaluate the possible benefits for knowledge management the approach has
been integrated in a knowledge management system aimed at capturing and
sharing knowledge gathered from informal communication exchanges (meetings,
chats, etc.) that dynamically builds user networks, determines experts and com-
munities of practice and identifies emerging topics, mirroring the natural evolu-
tion of the organisational communities and displays it in an interactive interface
that provides means to access and manipulate knowledge. Further evaluations of
the approach will be conducted shortly with users to test whether the approach
provides advantages over standard knowledge management practices. During this
evaluation, attention will be given as whether the approach increases efficiency
and efficacy for a given task by presenting in a visual way trends and topics of
expertise and providing means to search for experts inside the organisation.
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Abstract. Ontology verification is concerned with the relationship between the
intended structures for an ontology and the models of the axiomatization of the
ontology. The verification of a particular ontology requires characterization of
the models of the ontology up to isomorphism and a proof that these models are
equivalent to the intended structures for the ontology. In this paper we provide
the verification of the ontology of time introduced by Hobbs and Pan, which
is a first-order axiomatization of OWL-Time. We identify five modules within
this ontology and present a complete account of the metatheoretic relationships
among the modules and between other time ontologies for points and intervals.

1 Introduction

Over the years, a number of first-order ontologies for time have been proposed. In ad-
dition to ontologies for timepoints and ontologies for time intervals ([2]), there are
also ontologies that axiomatize both timepoints and time intervals together with the re-
lationships between them. More recently, Hobbs and Pan ([10], [12]) have proposed
a first-order axiomatization Towltime of OWL-Time1 as an ontology of time for the
Semantic Web that also includes both timepoints (referred to as instants) and intervals.

The primary objective of this paper is to provide a characterization of the models
of Towltime up to isomorphism using the notion of theory reducibility from [6]. This
will lead to a modularization of Towltime and allow us to identify incorrect or missing
axioms in the current axiomatization of Towltime. Finally, we will also use this reduction
to compare Towltime to other time ontologies for points and intervals, and address the
question as to whether Towltime forms an adequate core theory for time ontologies, or
whether it is too weak or too strong to play such a role.

2 Ontology Verification

Our methodology revolves around the application of model-theoretic notions to the de-
sign and analysis of ontologies. The semantics of the ontology’s terminology can be
characterized by a set of structures, which we refer to as the set of intended structures
for the ontology. Intended structures are specified with respect to the models of well-
understood mathematical theories (such as partial orderings, lattices, incidence struc-
tures, geometries, and algebra). The extensions of the relations in an intended structure
are then specified with respect to properties of these models.

1 http://www.w3.org/TR/owl-time/
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Why do we care about ontology verification? The relationship between the intended
models and the models of the axiomatization plays a key role in the application of
ontologies in areas such as semantic integration and decision support. Software systems
are semantically integrated if their sets of intended models are equivalent. In the area of
decision support, the verification of an ontology allows us to make the claim that any
inferences drawn by a reasoning engine using the ontology are actually entailed by the
ontology’s intended models. If an ontology’s axiomatization has unintended models,
then it is possible to find sentences that are entailed by the intended models, but which
are not provable from the axioms of the ontology. The existence of unintended models
also prevents the entailment of sentences or a possible barriers to interoperability.

With ontology verification, we want to characterize the models of an ontology up
to isomorphism and determine whether or not these models are elementarily equivalent
to the intended structures of the ontology. From a mathematical perspective this is for-
malized by the notion of representation theorems. The primary challenge for someone
attempting to prove representation theorems is to characterize the models of an ontology
up to isomorphism. For this we use the following notion from [6]:

Definition 1. A class of structures M can be represented by a class of structures N iff
there is a bijection ϕ : M → N such that for any M ∈ M, M is definable in ϕ(M)
and ϕ(M) is definable in M.

The key to ontology verification is that a theorem about the relationship between the
class of the ontology’s models and the class of intended structures can be replaced
by a theorem about the relationship between the ontology (a theory) and the theory
axiomatizing the intended structures (assuming that such axiomatization is known). We
can use automated reasoners to prove this relationship and thus verify an ontology in a
(semi-)automated way.

The relationship between theories TA and TB is the notion of interpretation ([5]),
which is a mapping from the language of TA to the language of TB that preserves the
theorems of TA. If there is an interpretation of TA in TB , then there exists a set of
sentences (referred to as translation definitions) in the language LA ∪ LB of the form

(∀x) pi(x) ≡ ϕ(x)

where pi(x) is a relation symbol in LA and ϕ(x) is a formula in LB . Translation defi-
nitions will be used extensively in the proofs of theorems later in the paper.

We will say that two theories TA and TB are definably equivalent iff they are mutu-
ally interpretable, i.e. TA is interpretable in TB and TB is interpretable in TA.

The key to using theorem proving and model finding to support ontology verification
is the following theorem ([6]):

Theorem 1. A theory T1 is definably equivalent with a theory T2 iff the class of models
Mod(T1) can be represented by Mod(T2).

Let Mintended be the class of intended structures for the ontology, and let Tonto be
the axiomatization of the ontology. The necessary direction of a representation theorem
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(i.e. if a structure is intended, then it is a model of the ontology’s axiomatization) can
be stated as

M ∈ Mintended ⇒M ∈ Mod(Tonto)

If we suppose that the theory that axiomatizes Mintended is the union of some previ-
ously known theories T1, ..., Tn, then by Theorem 1 we need to show that Tonto in-
terprets T1 ∪ ... ∪ Tn. If Δ is the set of translation definitions for this interpretation,
then the necessary direction of the representation theorem is equivalent to the following
reasoning task:

Tonto ∪Δ |= T1 ∪ ... ∪ Tn

The sufficient direction of a representation theorem (any model of the ontology’s ax-
iomatization is also an intended structure) can be stated as

M ∈ Mod(Tonto) ⇒M ∈ Mintended

In this case, we need to show that T1 ∪ ...∪ Tn interprets Tonto. If Π is the set of trans-
lation definitions for this interpretation, the sufficient direction of the representation
theorem is equivalent to the following reasoning task:

T1 ∪ ... ∪ Tn ∪Π |= Tonto

Proving these two entailment problems constitutes the reducibility theorem for Tonto;
the set of theories T1, ..., Tn form the reduction of Tonto.

All of the theories introduced in this paper are being investigated in the context of
the COLORE (Common Logic Ontology Repository) project, which is building an open
repository of first-order ontologies that serve as a testbed for ontology evaluation and
integration techniques, and that can support the design, evaluation, and application of
ontologies in first-order logic. We identify the theories for the reduction by searching
through the COLORE ontology repository for ontologies that are definably equivalent
to the ontology that we are verifying, and then prove that the mappings between the
ontologies are correct.

3 Modularization of OWL-Time

The verification of the OWL-Time Ontology Towltime will also provide a decomposi-
tion of the ontology into a set of subtheories which are related by conservative exten-
sion. We will not present the verification of the entire OWL-Time Ontology in this pa-
per; rather we will focus on the subtheory Ttimespan of Towltime that omits the axioms
for durations and dates. Furthermore, throughout the paper we will identify additional
axioms that are required to prove the representation theorems, leading to the specifica-
tion of a theory T ∗

timespan as an extension of Ttimespan. By the end of the paper, we
will show that T ∗

timespan is definably equivalent to the following theories (which will
be introduced and discussed in detail in the following sections) from COLORE:

Tlinear_order ∪ Tpseudo_complete ∪ Tlog ∪ Tweak_planar ∪ Tdiamond
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In Figure 1, we can see which subsets of these theories interpret subtheories of Towltime,
and this set of subtheories 2 constitutes the modules within Towltime. In this way, mod-
ules within OWL-Time are obtained by identifying ontologies within the COLORE
ontology repository that are definably equivalent to subtheories of OWL-Time. In the
following sections, we will specify the reduction theorems for each of these subtheories,
culminating in the representation theorem for T ∗

owltime.

Towltime instants

Towltime interval

Towltime inside

Teventuality

Ttimespan

Towltime

Towltime duration

Tsemilinear order ∪Tcsgg ∪Tslog ∪Tweak planar ∪Tdiamond

Tsemilinear order ∪Tcsgg ∪Tslog ∪Tweak planar

Tsemilinear order ∪Tcsgg ∪Tslog

Tsemilinear order ∪Tcsgg

Tsemilinear order

Fig. 1. Relationships between the subtheories of Towltime and the theories from COLORE which
are used to prove the representation theorem for Towltime. Solid lines denote conservative exten-
sion and dotted lines denote interpretability between theories.

4 Instants and Intervals

The first two modules within OWL-Time that we will consider are Towltime_instant

and Towltime_interval, which axiomatize fundamental intuitions about timepoints (In-
stants) and time intervals (Intervals). Besides the objective of ontology verification,
we will also be interested in using the reduction of Towltime_interval to determine the
relationship to other ontologies for timepoints and time intervals. Given an existing
ontology T of timepoints and intervals, we will identify the theory that is a common
extension of both Towltime_interval and T , and also identify the common subtheory of
Towltime_interval and T .

2 The original first-order axiomatization of Towltime can be found at
http://www.cs.rochester.edu/˜ferguson/daml/
daml-time-nov2002.txt
The CLIF (Common Logic Interchange Format) axiomatization of the subtheories of Towltime

discussed in this paper can be found at
http://stl.mie.utoronto.ca/colore/time/owltime_instants.clif
http://stl.mie.utoronto.ca/colore/time/owltime_interval.clif
http://stl.mie.utoronto.ca/colore/time/owltime_inside.clif
http://stl.mie.utoronto.ca/colore/time/eventuality.clif
http://stl.mie.utoronto.ca/colore/time/timespan.clif

http://www.cs.rochester.edu/~{}ferguson/daml/daml-time-nov2002.txt
http://www.cs.rochester.edu/~{}ferguson/daml/daml-time-nov2002.txt
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4.1 Time Ontologies for Points

Ontologies for time points have been studied in [2] and [9], and all axiomatize an or-
dering relation over the points. Although Hobbs and Pan rightly argue that a restriction
to linear orders is too strong, allowing arbitrary partial orderings is arguably too weak.
We consider the following extension:

Definition 2. Towltime_instant_s is the extension of Towltime_instant with the axiom

(∀x, y)Instant(x)∧Instant(y) ⊃ (∃z)(before(z, x)∨(z = x))∧(before(z, y)∨(z = y)))

It is straightforward to see that the resulting ordering on the set of instants is a semilinear
ordering [4] as axiomatized by the theory Tsemilinear_ordering

3.

4.2 Time Ontologies for Points and Intervals

In his Catalog of Temporal Theories [9], Hayes introduced three time ontologies that
axiomatize both timepoints and time intervals. The endpoints theory combines the lan-
guage of intervals and points by defining the functions beginof, endof, and between to re-
late intervals to points and vice-versa. This theory imports the axioms of linear_point
that define the binary before relation between timepoints as transitive and irreflexive,
and impose the condition that all timepoints are linearly ordered and infinite in both
directions. The vector_continuum theory is a theory of timepoints and intervals that
introduces the notion of orientation of intervals. It also imports theory linear_point. In
this theory single-point intervals, known as moments, are defined as intervals whose be-
ginof and endof points are the same. The point_continuum theory combines intervals
and points by defining the relation in that relates a point to the interval it is contained
in. The verification of these three time ontologies is given in [7].

The theory IQ in [13] (which we will refer to as Tvila in this paper) is a com-
mon subtheory for all of the ontologies of time points and intervals. Later in the paper,
we will characterize the relationship between Tvila and Towltime_interval. To lay the
groundwork for this characterization, we review the classes of structures that will be
used for the reducibility theorem for these theories.

Graphical Incidence Structures. The basic building blocks for the models presented
in this paper are based on the notion of incidence structures ([3]).

Definition 3. A k-partite incidence structure is a tuple I = (Ω1, ..., Ωk, in), where
Ω1, ..., Ωk are sets with

Ωi ∩Ωj = ∅, i �= j

and
in ⊆ (

⋃
i=j

Ωi ×Ωj)

Two elements of I that are related by in are called incident.

3 http://stl.mie.utoronto.ca/colore/ordering/
semilinear_ordering.clif

http://stl.mie.utoronto.ca/colore/ordering/semilinear_ordering.clif
http://stl.mie.utoronto.ca/colore/ordering/semilinear_ordering.clif


230 M. Grüninger

The models of the time ontologies in this paper will be constructed using special classes
of incidence structures.

Definition 4. An strong graphical incidence structure is a bipartite incidence structure

S = 〈X, Y, inS〉

such that all elements of Y are incident with either one or two elements of X , and for
each pair of points p,q ∈ X there exists a unique element in Y that is incident with
both p and q.

The class of strong graphical incidence structures is axiomatized by Tstrong_graphical
4

Definition 5. A loop graphical incidence structure is a bipartite incidence structure

S = 〈X, Y, inS〉

such that all elements of Y are incident with either one or two elements of X , and for
each pair of points p,q ∈ X there exists a unique element in Y that is incident with
both p and q, and for each point r ∈ X there exists a unique element in Y that incident
only with r.

The class of loop graphical incidence structures is axiomatized by Tloop_graphical
5.

These classes of incidence structures get their names from graph-theoretic represen-
tation theorems of their own.

Definition 6. A graph G = (V, E) consists of a nonempty set V of vertices and a set
E of ordered pairs of vertices called edges.

An edge whose vertices coincide is called a loop. A graph with no loops or multiple
edges is a simple graph.

A complete graph is a graph in which each pair of vertices is adjacent.

Theorem 2. Let G = (V, E) be a complete graph.
A bipartite incidence structure is a strong graphical incidence structure iff it is

isomorphic to I = (V, E,∈).

Theorem 3. Let G = (V, E) be a complete graph with loops.
A bipartite incidence structure is a loop graphical incidence structure iff it is

isomorphic to I = (V, E,∈).

These representation theorems show that there is a one-to-one correspondence between
the particular class of incidence structures and the given class of graphs; in so doing,
we have a characterization of the incidence structures up to isomorphism.

4 http://stl.mie.utoronto.ca/colore/incidence/
strong-graphical.clif

5 http://stl.mie.utoronto.ca/colore/incidence/
loop-graphical.clif

http://stl.mie.utoronto.ca/colore/incidence/strong-graphical.clif
http://stl.mie.utoronto.ca/colore/incidence/strong-graphical.clif
http://stl.mie.utoronto.ca/colore/incidence/loop-graphical.clif
http://stl.mie.utoronto.ca/colore/incidence/loop-graphical.clif
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Reducibility Theorems for Points and Intervals. We will ultimately be interested in
determining the relationship between the theory Tvila and Towltime_interval. On the one
hand, one of the design objectives for OWL-Time was to be a relatively weak theory
that could be consistently extended to other time ontologies. On the other hand, Tvila is
the common subtheory of existing time ontologies for points and intervals.

The approach taken in this paper is to compare different time ontologies by com-
paring the theories in their reductions. Using the axiomatizations of these classes of
incidence structures, we can prove the following reducibility theorem for Tvila.

Theorem 4. Tvila is definably equivalent to

Tlinear_order ∪ Tstrong_graphical

Proof.

Using the same set of translation definitions, we can also prove the following:

Theorem 5. Let Tmoment be the extension of Tvila with the axiom

(∀t) timepoint(t) ⊃ (∃i) timeinterval(i) ∧ (beginof(i) = t) ∧ (endof(i) = t)

Tmoment is definably equivalent to

Tlinear_order ∪ Tloop_graphical

In the next section we will show how this theory Tmoment is definably equivalent to an
extension of Towltime_interval.

4.3 Reducibility Theorems for Extensions of Towltime_interval

Given that the time ontologies in [9] and [13] use linear orderings over timepoints, We
introduce the following extensions and subtheories of Towltime_interval that impose a
linear ordering on instants.

Towltime_linear is the extension of Towltime_interval with the axiom

(∀t1, t2) Instant(t1) ∧ Instant(t2) ⊃ (before(t1, t2) ∨ before(t2, t1) ∨ (t1 = t2))

Towltime_e is the extension of Towltime_interval with the axiom

(∀i) Interval(i) ⊃ (∃t1, t2) begins(t1, i) ∧ ends(t2, i)

Towltime_le is the extension of Towltime_linear with Towltime_e.
Towltime_leu is the extension of Towltime_le with the axiom

(∀t1, t2, i1, i2)begins(t1, i1)∧ends(t2, i1)∧begins(t1, i2)∧ends(t2, i2) ⊃ (i1 = i2)

Towltime_m is the subtheory of Towltime without the axioms

(∀t) (Instant(t) ≡ begins(t, t))

(∀t) (Instant(t) ≡ ends(t, t))

The relationships between these theories are shown in Figure 2.
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Towltime interval

Towltime m

Towltime linear

Towltime e

Towltime se

Towltime le

Towltime leu

Towltime mleu

Tmoment

Tvila

Towltime semilinear

Fig. 2. Relationships between extensions of Towltime_interval and other time ontologies for
points and intervals. Dotted lines denote nonconservative extension and solid lines denote de-
finable equivalence.

Theorem 6. Towltime_leu is definably equivalent to

Tlinear_order ∪ Tloop_graphical

Proof. Let Δ1 be the following set of translation definitions:

(∀x) point(x) ≡ Instant(x)

(∀x) line(x) ≡ Interval(x)

(∀x, y) inG(x, y) ≡ (begins(x, y) ∨ ends(x, y))

(∀x, y) before(x, y) ≡ lt(x, y)

Using Prover9 [11], we have shown that6

Towltime_le ∪Δ1 |= Tlinear_order ∪ Tloop_graphical

Let Π1 be the following set of translation definitions:

(∀x) Instant(x) ≡ point(x)

6 All proofs in this paper that have been generated by Prover9 can be found at
http://stl.mie.utoronto.ca/colore/time/mappings/proofs/
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(∀x) Interval(x) ≡ line(x)

(∀x, y) begins(x, y) ≡ ((inG(x, y) ∧ ((∀z) inG(z, y) ⊃ lt(x, z))

(∀x, y) ends(x, y) ≡ ((inG(x, y) ∧ ((∀z) inG(z, y) ⊃ lt(z, x))

(∀x, y) before(x, y) ≡ lt(x, y)

Using Prover9, we have shown that

Tlinear_order ∪ Tloop_graphical ∪Π1 |= Towltime_le

Combining Theorem 6 and Theorem 4 gives us

Corollary 1. Towltime_leu is definably equivalent to Tmoment.

Since all subtheories and extensions of Towltime_interval have the same nonlogical lex-
icon, we can use the same translation definitions as in the proof of Theorem 6 to prove
the following theorem:

Theorem 7. Towltime_mleu is definably equivalent to

Tlinear_order ∪ Tstrong_graphical

Combining Theorem 7 and Theorem 5 gives us

Corollary 2. Towltime_mleu is definably equivalent to Tvila.

4.4 Semilinear Ordering on Instants

If we now generalize these results to semilinear orderings on instants, then we need to
consider a different class of structures for the reducibility theorem.

Definition 7. A semilinear betweenness relation B is a ternary relation that is defin-
able in a semilinear ordering 〈X, <〉 by the formula

(∀x, y, z) B(x, y, z) ≡ (((x < y) ∧ (y < z)) ∨ ((z < y) ∧ (y < x)))

The semilinear betweenness relation captures the notion of comparability among in-
stants within the semilinear ordering. The key axiom of Towltime_interval is the one
which states that for every two comparable points, there exists an interval of which they
are the endpoints. This relationship between intervals and the ordering over instants is
then captured by the following class of structures:

Definition 8. A closed semilinear graphical geometry is a structure S = 〈X, Y,B, inG〉
such that

1. B = 〈X,B〉 is a semilinear betweenness relation;
2. I = 〈X, Y, inG〉 is a graphical incidence structure;
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3. triples of points in the extension of the betweenness relation B are incident with the
same line in Y ;

4. any triple of points that are incident with the same line in Y are ordered by the
betweenness relation B.

The class of closed semilinear graphical geometries is axiomatized by Tcsgg
7.

We did not need this class for extensions of Towltime_interval with linear orderings
because all instants in a linear ordering are comparable. This is not the case with semi-
linear orderings – elements on different branches are not comparable.

We can use translation definitions similar to those from the proof of Theorem 6 to
prove the reducibility theorem for Towltime_se:

Theorem 8. The theory Towltime_se = Towltime_interval_e ∪ Towltime_instant_s is
definably equivalent to

Tsemilinear_order ∪ Tcsgg

4.5 Intervals without Begin and Ends

The preceding sections have shown the reducibility of theories that are exten-
sions of Towltime_e (which requires that all intervals have endpoints) rather than
Towltime_interval (which allows intervals that do not have beginning or end in-
stants). Nevertheless, we can use these results to provide a representation theorem for
Towltime_interval.

Definition 9. Let I = 〈P, I, in〉 be an incidence structure.
A line l ∈ I is solitary iff it is incident with a unique point.
A line l ∈ I is isolated iff it is not incident with any point.

Theorem 9. Any model M of Towltime_interval contains as substructures a unique
modelN of Towltime_e and a bipartite incidence structure I = 〈P, L∪R∪C, in〉 such
that

M∼= N ∪ I

where L and R are disjoint sets of solitary lines and C is a set of isolated lines.

4.6 Discussion

If we consider the summary of results in Figure 2, we can see that Towltime_leu is the
theory which is a common extension of both Towltime_interval and Tvila. In addition,
Towltime_mleu is the common subtheory of Towltime_interval and Tvila; as such, it is
intepretable by all existing time ontologies for points and intervals.

As a consequence of these results, we can see that Towltime_interval is not inter-
pretable by all of the existing ontologies for timepoints and intervals; in other words,
there are ontologies that are not definably equivalent to any consistent extension of
Towltime_interval. In particular, it is not interpretable by any time ontology that pre-
vents the existence of moments [1], such as Tendpoints from [9].

7 http://stl.mie.utoronto.ca/colore/geometry/csgg.clif
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5 Inside Intervals

Moving on to the next module Towltime_inside of Towltime, we encounter a new rela-
tion, inside, between instants and intervals. Before we introduce the classes of struc-
tures required to characterize the models of this module, we briefly discuss the problem
of unintended models of Towltime_inside.

5.1 A Critique of the Axioms

Ordering on Instants Inside an Interval. Mace can be used to construct a model of
Towltime_interval that satisfies the sentence

(∃t1, t2, i)inside(t1, i)∧inside(t2, i)∧¬before(t1, t2)∧¬before(t2, t1)∨(t1 �= t2))

that is, a model in which the Instants in an Interval are not linearly ordered, even though
the axioms do entail the condition that the beginning and end instants themselves are
linearly ordered.

We add the following axiom to Towltime to guarantee that all Instants in an Interval
are linearly ordered:

(∀t1, t2, i) inside(t1, i) ∧ inside(t2, i)

⊃ (before(t1, t2) ∨ before(t2, t1) ∨ (t1 = t2)) (1)

Which Instants are Inside? Although Hobbs and Pan assert:

The concept of inside is not intended to include the beginnings and ends of
intervals.

the axiomatization in Towltime_inside does not quite capture these intended models.
While we can use Prover9 to show that the following sentence is entailed by Towltime

(∀i, t1, t2)ProperInterval(i)∧begins(t1, i)∧ends(t2, i) ⊃ ¬inside(t1, i)∧¬inside(t2, i)

Mace can be used to construct models of Towltime_inside that falsify each of the following sen-
tences:

(∀i, t1) ProperInterval(i)∧ begins(t1, i) ⊃ ¬inside(t1, i)

(∀i, t1) ProperInterval(i)∧ ends(t1, i) ⊃ ¬inside(t1, i)

(∀i, t1) Interval(i) ∧ begins(t1, i) ⊃ ¬inside(t1, i)

(∀i, t1) Interval(i) ∧ ends(t1, i) ⊃ ¬inside(t1, i)

In other words, Towltime_inside is not strong enough to eliminate models in which only
the beginnings or ends of intervals are included as instants inside the interval.

If we are to entail these sentences (which should follow from the original intuition),
we need to extend Towltime with the following two sentences:

(∀i, t1, t2) inside(t1, i) ∧ begins(t2, i) ⊃ before(t2, t1) (2)

(∀i, t1, t2) inside(t1, i) ∧ ends(t2, i) ⊃ before(t1, t2) (3)
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5.2 Semilinear Ordered Geometries

When we used incidence structures to represent the models of Towltime_interval, we
only needed to worry about two instants that are incident with an interval, namely, the
beginning and the end. For models of Towltime_inside, intervals may be incident with
a larger set of instants that are linearly ordered. We therefore need to introduce a new
class of structures.

Definition 10. A semilinear ordered geometry is a structure L = 〈X, Y,B, inL〉 such
that

1. B = 〈X,B〉 is a semilinear betweenness relation;
2. I = 〈X, Y, inL〉 is a weak bipartite incidence structure;
3. any triple of points that are incident with the same line in Y are ordered by the

betweenness relation B.

The class of semilinear ordered geometries is axiomatized by Tslog
8.

5.3 Reducibility Theorem for Towltime_inside

Let T ∗
owltime_inside be the axioms in Towltime_inside ∪ Towltime_se together with Ax-

ioms 1, 2, and 3.

Theorem 10. T ∗
owltime_inside is definably equivalent to

Tsemilinear_order ∪ Tcsgg ∪ Tslog

Proof. Let Δ2 be the set of translation definitions in Δ1 together with:

(∀x, y) inL(x, y) ≡ inside(x, y)

(∀x, y, z)B(x, y, z) ≡ ((before(x, y)∧before(y, z))∨(before(z, y)∧before(y, z)))

Using Prover9, we have shown that

T ∗
owltime_inside ∪Δ2 |= Tsemilinear_order ∪ Tcsgg ∪ Tslog

Let Π2 be the set of translation definitions in Π1 together with:

(∀x, y) inside(x, y) ≡ inL(x, y)

Using Prover9, we have shown that

Tsemilinear_order ∪ Tcsgg ∪ Tslog ∪Π2 |= T ∗
owltime_inside

8 http://stl.mie.utoronto.ca/colore/geometry/slog.clif
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6 Eventualities

Hobbs and Pan introduce the class of eventualities to “cover events, states, processes,
propositions, states of affairs, and anything else that can be located with respect to
time.” In this section, we characterize the models of the two subtheories, Teventuality

and Ttimespan, of Towltime which axiomatize the intuitions for eventualities and their
relationships to instants and intervals.

6.1 Weak Planar Geometries

Since Teventuality extends Towltime_interval, a natural approach is to extend the ge-
ometries that are the underlying structures for the intended models.

Definition 11. A weak planar geometry is a tripartite incidence structure

E = 〈X, Y, Z, inE〉

in which N(q) is a linear ordered geometry for each q ∈ Z .

Examples of weak planar geometries can be found in Figure 3(a) and 3(b). In each
example, the incidence relation between the eventuality e1 and the intervals ij corre-
sponds to the during relation; the incidence relation between e1 and the instants tk
corresponds to the atTime relation.

e1

i1 i2i0

t1 t2 t3 t4

e1

i1 i2

t1 t2 t3

e1

i1 i2

t1 t2 t3

(a) (b) (c)

Fig. 3. Examples of weak planar geometries and diamond geometries

The class of weak planar geometries is axiomatized by Tweak_planar
9.

6.2 Reducibility Theorem for Teventuality

Let T ∗
eventuality be the axioms in Teventuality ∪ T ∗

inside together with

(∀e) Eventuality(e) ⊃ ¬TemporalEntity(e) (4)

(∀e) atT ime(e) ⊃ Eventuality(e) (5)

(∀e) during(e) ⊃ Eventuality(e) (6)

(∀t, e) timeSpan(t, e) ⊃ Eventuality(e) ∧ TemporalEntity(e) (7)

9 http://stl.mie.utoronto.ca/colore/geometry/weak_planar.clif
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Theorem 11. Teventuality is definably equivalent to

Tsemilinear_order ∪ Tcsgg ∪ Tslog ∪ Tweak_planar

Proof. Let Δ3 be the set of translation definitions in Δ2 together with:

(∀x, y) inE(x, y) ≡ (inside(x, y) ∨ during(x, y) ∨ atT ime(x, y))

Using Prover9, we have shown that

Teventuality ∪Δ3 |= Tsemilinear_order ∪ Tcsgg ∪ Tslog ∪ Tweak_planar

Let Π3 be the set of translation definitions in Π2 together with:

(∀x) eventuality(x) ≡ plane(x)

(∀x, y) during(x, y) ≡ inE(x, y) ∧ plane(x) ∧ line(y)

(∀x, y) atT ime(x, y) ≡ inE(x, y) ∧ plane(x) ∧ point(y)

Using Prover9, we have shown that

Tsemilinear_order ∪ Tcsgg ∪ Tslog ∪ Tweak_planar ∪Π3 |= Teventuality

6.3 Diamond Semilattices

We can now proceed to the final class of structures that we will need to characterize
models of Teventuality as part of the full representation theorem.

Definition 12. A diamond semilattice is a bounded semilattice in which all nonextremal
elements are incomparable.

Definition 13. A diamond geometry is a tripartite incidence structure

D = 〈X, Y, Z, inD〉

in which N(q) is isomorphic to a diamond semilattice for each q ∈ Z .

The class of diamond geometries is axiomatized by Tdiamond
10.

Figure 3(c) is an example of a diamond geometry, which is isomorphic to the exten-
sion of the timespan relation; note that it is a substructure of the weak planar geometry
in Figure 3(b). Figure 3(a) is an example of a weak planar geometry that does not con-
tain a diamond geometry as a substructure; this corresponds to a model of Ttimespan in
which the extension of the timespan relation is empty.

10 http://stl.mie.utoronto.ca/colore/geometry/diamond.clif



Verification of the OWL-Time Ontology 239

6.4 Reducibility Theorem for Ttimespan

Theorem 12. T ∗
timespan = Ttimespan ∪ T ∗

eventuality is definably equivalent to

Tsemilinear_order ∪ Tcsgg ∪ Tslog ∪ Tweak_planar ∪ Tdiamond

Proof. Let Δ4 be the set of translation definitions in Δ3 together with:

(∀x, y) inD(x, y) ≡ timeSpan(x, y)

Using Prover9, we have shown that

T ∗
timespan ∪Δ4 |= Tsemilinear_order ∪ Tcsgg ∪ Tslog ∪ Tweak_planar ∪ Tdiamond

Let Π4 be the set of translation definitions in Π3 together with:

(∀x, y) timeSpan(x, y) ≡ (inD(x, y) ∧ plane(x) ∧ ((∃z) line(z)∧ inE(z, x)

∧((∀w) point(w) ⊃ (inE(w, x) ≡ inE(w, z)))))

Using Prover9, we have shown that

Tsemilinear_order ∪ Tcsgg ∪ Tslog ∪ Tweak_planar ∪ Tdiamond ∪Π4 |= T ∗
timespan

7 Representation Theorem for Towltime

The reducibility of T ∗
timespan in Theorem 12 is the first step in the verification of the

ontology The second step is to define the class of intended models:

Definition 14. Mowltime is the following class of structures: M∈ Mowltime iff

1. M∼= P ∪G ∪ L ∪ E ∪ D, where
(a) P = 〈P, <〉 is a linear ordering;
(b) G = 〈P, I, inG〉 is a closed semilinear graphical geometry;
(c) L = 〈P, I,B, inL〉 is a semilinear ordered geometry;
(d) E = 〈P, I, E, inE〉 is a weak planar geometry;
(e) D = 〈P, I, E, inD〉 is a diamond geometry.

2. 〈p1,p2〉 ∈ before iff p1 < p2;
3. 〈p, i〉 ∈ begins iff 〈p, i〉 ∈ inG

and for any p′ ∈ P such that 〈p′, i〉 ∈ inG, we have p < p′;
4. 〈p, i〉 ∈ ends iff 〈p, i〉 ∈ inG

and for any p′ ∈ P such that 〈p′, i〉 ∈ inG, we have p′ < p;
5. 〈p, i〉 ∈ inside iff 〈p, i〉 ∈ inL;
6. 〈e,p〉 ∈ atTime iff e ∈ E, p ∈ P and 〈e,p〉 ∈ inE;
7. 〈e, i〉 ∈ during iff e ∈ E, i ∈ I and 〈e, i〉 ∈ inE;
8. 〈t, e〉 ∈ timeSpan iff 〈t, e〉 ∈ inD and N(e) ∼= K1,m,n.

We can now state the Representation Theorem for T ∗
timespan:
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Theorem 13. M ∈ Mowltime iff M∈ Mod(T ∗
timespan).

Proof. The theorem follows from Theorem 12 and Theorem 1, together with the fact
that each of the substructures of M ∈ Mowltime corresponds to a theory in the reduc-
tion – Tsemilinear_order axiomatizes the class of semilinear orderings, Tcsgg axioma-
tizes the class of closed semilinear graphical geometries, Tslog axiomatizes the class
of semilinear ordered geometries, Tweak_planar axiomatizes the class of weak planar
geometries, and Tdiamond axiomatizes the class of diamond geometries.

8 Summary

The first-order time ontology for the Semantic Web proposed by Hobbs and Pan aims to
be a core ontology for specifying temporal concepts for a wide variety of web applica-
tions and services. If it is to play this role effectively, we need a characterization of the
models of the ontology and a guarantee that these models are equivalent to the intended
models of the ontology’s concepts. In this paper, we have provided a characterization
of the models of Towltime up to isomorphism. This verification of Towltime has also led
to modularization of the ontology and the identification of additional axioms to capture
intuitions for intended models. We have also shown that two axioms of Towltime make
it inconsistent with some existing time ontologies for points and intervals.

The next step is the proof of representation theorems for all of Towltine, including
the axioms for duration and dates, based on the duration and dates ontology in [8].
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Abstract. In this paper, we present an approach to determining the cognitive
complexity of justifications for entailments of OWL ontologies. We introduce
a simple cognitive complexity model and present the results of validating that
model via experiments involving OWL users. The validation is based on test data
derived from a large and diverse corpus of naturally occurring justifications. Our
contributions include validation for the cognitive complexity model, new insights
into justification complexity, a significant corpus with novel analyses of justifi-
cations suitable for experimentation, and an experimental protocol suitable for
model validation and refinement.

1 Introduction

A justification is a minimal subset of an ontology that is sufficient for an entailment
to hold. More precisely, given O |= η, J is a justification for η in O if J ⊆ O,
J |= η and, for all J ′ � J , J ′ �|= η. Justifications are the dominant form of ex-
planation in OWL,1 and justification based explanation is deployed in popular OWL
editors. The primary focus of research in this area has been on explanation for the sake
of debugging problematic entailments [8], whether standard “buggy” entailments, such
as class unsatisfiability or ontology inconsistency, or user selected entailments such as
arbitrary subsumptions and class assertions. The debugging task is naturally directed
toward “repairing” the ontology and the use of “standard errors” further biases users
toward looking for problems in the logic of a justification.

As a form of explanation, justifications are a bit atypical historically. While they
present the ultimate, ontology specific reasons that a given entailment holds, they, un-
like proofs, do not articulate how those reasons support the entailment, at least, in
any detail. That is, they correspond to the premises of a proof, but do not invoke any
specific proof calculus. Clearly, this brings advantages, as justifications are calculus in-
dependent, require nothing more than knowledge of OWL, and do not involve a host of
knotty, unresolved issues of long standing (such as what to do about “obvious” steps
[2]). Furthermore, justifications are highly manipulable: Deleting an axiom breaks the
entailment, which allows for a very active, ontology related form of experimentation

1 Throughout this paper, “OWL” refers to the W3C’s Web Ontology Language 2 (OWL 2).

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 241–256, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



242 M. Horridge et al.

by users. However, in spite of their field success, justifications are held to be lacking
because they don’t articulate the connection and thus are too hard to understand.2

The Description Logic that underpins OWL, SROIQ, is N2ExpTime-complete
[10], which suggests that even fairly small justifications could be quite challenging
to reason with. However, justifications are highly successful in the field, thus the com-
putational complexity argument is not dispositive. We do observe often that certain jus-
tifications are difficult and frustrating to understand for ontology developers. In some
cases, the difficulty is obvious: a large justification with over 70 axioms is going to be at
best cumbersome however simple its logical structure. However, for many reasonably
sized difficult justifications (e.g. of size 10 or fewer axioms) the source of cognitive
complexity is not clearly known.

If most naturally occurring justifications are easy “enough” to understand, then the
need for auxilliary explanation faculties (and the concomitant burden on the user to
master them and the tool developer to provide them) is reduced. In prior work [5,3,6],
we proposed a predictive complexity model based on an exploratory study plus our own
experiences and intuitions. However, in order to deploy this metric reliably, whether to
assess the state of difficulty of justifications or to deploy an end-user tool using it, the
model needed validation.

In this paper, we present the results of several experiments into the cognitive com-
plexity of OWL justifications. Starting from our cognitive complexity model, we test
how well the model predicts error proportions for an entailment assessment task. We
find that the model does fairly well with some notable exceptions. A follow-up study
with an eye tracker and think aloud protocol supports our explanations for the anoma-
lous behaviour and suggests both a refinement to the model and a limitation of our
experimental protocol.

Our results validate the use of justifications as the primary explanation mechanism
for OWL entailments as well as raising the bar for alternative mechanisms (such as
proofs). Furthermore, our metric can be used to help users determine when they need
to seek expert help or simply to organise their investigation of an entailment.

2 Cognitive Complexity and Justifications

While there have been several user studies in the area of debugging [11,9], ontology
engineering anti-patterns [16], and our exploratory investigation into features that make
justifications difficult to understand [5], to the best of our knowledge there have not
been any formal user studies that investigate the cognitive complexity of justifications.

Of course, if we had a robust theory of how people reason, one aspect of that ro-
bustness would be an explanation of justification difficulty. However, even the basic
mechanism of human deduction is not well understood. In psychology, there is a long
standing rivalry between two accounts of human deductive processes: (1) that people

2 See, for example, a related discussion in the OWL Working Group
http://www.w3.org/2007/OWL/tracker/issues/52. Also, in [1], the authors
rule out of court justifications as a form of explanation: “It is widely accepted that an ex-
planation corresponds to a formal proof. A formal proof is constructed from premises using
rules of inference”.

http://www.w3.org/2007/OWL/tracker/issues/52
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apply inferential rules [15], and (2) that people construct mental models [7].3 In spite
of a voluminous literature (including functional MRI studies, e.g., [14]), to date there is
no scientific consensus [13], even for propositional reasoning.

Even if this debate were settled, it would not be clear how to apply it to ontology
engineering. The reasoning problems that are considered in the literature are quite dif-
ferent from understanding how an entailment follows from a justification in a (fairly
expressive) fragment of first order logic. For example, our reasoning problems are in
a regimented, formalised language for which reasoning problems are far more con-
strained than deduction “in the wild.” Thus, the artificiality of our problems may en-
gage different mechanisms than more “natural” reasoning problems: e.g. even if mental
models theory were correct, people can produce natural deduction proofs and might
find that doing so allows them to outperform “reasoning natively”. Similarly, if a tool
gives me a justification, I can use my knowledge of justifications to help guide me, e.g.,
that justifications are minimal means that I must look at all the axioms presented and I
do not have to rule any out as irrelevant. As we will see below, such meta-justificatory
reasoning is quite helpful.

However, for ontology engineering, we do not need a true account of human deduc-
tion, but just need a way to determine how usable justifications are for our tasks. In other
words, what is required is a theory of the weak cognitive complexity of justifications,
not one of strong cognitive complexity [17].

A similar practical task is generating sufficiently difficult so-called “Analytical Rea-
soning Questions” (ARQs) problems in Graduate Record Examination (GRE) tests.
ARQs typically take the form of a “logic puzzle” wherein an initial setup is presented,
along with some constraints, then the examinee must determine possible solutions. Of-
ten, these problems involve positioning entities in a constrained field (e.g., companies
on floors in a building, or people seated next to each other at dinner). In [13], the inves-
tigators constructed and validated a model for the complexity of answering ARQs via
experiments with students. Analogously, we aim to validate a model for the complexity
of “understanding” justifications via experiments on modellers.

In [13], Newstead et al first build a preliminary complexity model, as we did, based
on a small but intense pilot study using think aloud plus some initial ideas about the
possible sources of complexity. Then they validated their model in a series of large scale
controlled experiments wherein a set of students were given sets of questions which
varied systematically in complexity (according to their model) and in particular features
used. One strong advantage Newstead el al have is that the problems they considered
are very constrained and comparatively easy to analyse. For example, the form of ARQ
question they consider have finite, indeed, easily enumerable, sets of models. Thus, they
can easily determine how many possible situations are ruled out by a given constraint
which is a fairly direct measure of the base line complexity of the problem. Similarly,
they need merely to construct problems of the requisite difficulty, whereas we need to
recognise the difficulty of arbitrary inputs. Finally, their measure of difficulty is exactly
what proportion of a given cohort get the questions right, whereas we are dealing with
a more nebulous notion of understanding.

3 (1) can be crudely characterised as people use a natural deduction proof system and (2) as
people use a semantic tableau.
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Of course, the biggest advantage is that their problems are expressed in natural lan-
guage and reasonably familiar to millions of potential participants, whereas our investi-
gations necessarily require a fair degree of familiarity with OWL — far more than can
be given in a study-associated training session. Nevertheless, the basic approach seems
quite sound and we follow it in this paper.

3 A Complexity Model

We have developed a cognitive complexity model for justification understanding. This
model was derived partly from observations made during an exploratory study (see
[5,3,6] for more details) in which people attempted to understand justifications from
naturally occurring ontologies, and partly from intuitions on what makes justifications
difficult to understand.

Please note that reasonable people may (and do!) disagree with nigh every aspect of
this model (the weights are particularly suspect). For each factor, we have witnessed
the psychological reality of their causing a reasonably sophisticated user difficulty in
our exploratory study. But, for example, we cannot warrant their orthogonality, nor can
we show that some combinations of factors is easier than the sum of the weights would
indicate. This should not be too surprising especially if one considers the current under-
standing of what makes even propositional formulae difficult for automated reasoners.
While for extremely constrained problems (such as propositional kCNF), we have long
had good predictive models for reasoning difficulty for key proving techniques, more
unconstrained formulae have not been successfully analysed. Given that the complexity
of a given algorithm is intrinsically more analysable than human psychology (consider
simply the greater ease of controlled experiments), the fact that we do not have good
predictive models for automated reasoners should be a warning for theorists of cogni-
tive complexity. However, while daunting, these facts do not mean we should give up,
as even a fairly crude model can be useful, as we have found. Furthermore, we can hope
to improve the predictive validity of this model, even without determining the structure
of the phenomena.

Table 1 describes the model, wherein J is the justification in question, η is the fo-
cal entailment, and each value is multiplied by its weight and then summed with the
rest. The final value is a complexity score for the justification. Broadly speaking, there
are two types of components: (1) structural components, such as C1, which require a
syntactic analysis of a justification, and (2) semantic components, such as C4, which
require entailment checking to reveal non-obvious phenomena.

Components C1 and C2 count the number of different kinds of axiom types and class
expression types as defined in the OWL 2 Structural Specification.4 The more diverse
the basic logical vocabulary is, the less likely that simple pattern matching will work
and the more “sorts of things” the user must track.

Component C3 detects the presence of universal restrictions where trivial satisfac-
tion can be used to infer subsumption. Generally, people are often surprised to learn
that if 〈x, y〉 �∈ RI for all y ∈ ΔI , then x ∈ (∀R.C)I . This was observed repeatedly in
the exploratory study.

4 http://www.w3.org/TR/owl2-syntax/

http://www.w3.org/TR/owl2-syntax/
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Table 1. A Simple Complexity Model

Name Base value Weight

C1 AxiomTypes Number of axiom types in J & η. 100

C2 ClassConstructors Number of constructors in J & η. 10

C3 UniversalImplication If an α ∈ J is of the form ∀R.C � D or D ≡ ∀R.C then 50 else
0.

1

C4 SynonymOfThing If J |= � � A for some A ∈ Signature(J ) and � � A ∈ J and
� � A = η then 50 else 0.

1

C5 SynonymOfNothing If J |= A � ⊥ for some A ∈ Signature(J ) and A � ⊥ ∈ J and
A � ⊥ = η then 50 else 0.

1

C6 Domain&NoExistential If Domain(R, C) ∈ J and J |= E � ∃R.� for some class
expressions E then 50 else 0.

1

C7 ModalDepth The maximum modal depth of all class expressions in J . 50

C8 SignatureDifference The number of distinct terms in Signature(η) not in Signature(J ). 50

C9 AxiomTypeDiff If the axiom type of η is not the set of axiom types of J then 50 else 0 1

C10 ClassConstructorDiff The number of class constructors in η not in the set of constructors of
J .

1

C11 LaconicGCICount The number of General Concept Inclusion axioms in a laconic version
of J

100

C12 AxiomPathLength The number of maximal length expression paths in J plus the number
of axioms in J which are not in some maximal length path of J , where
a class (property) expression subsumption path is a list of axioms of
length n where for any 1 ≤ i < n, the axiom at position i is Ci �
Ci+1.

10

Components C4 and C5 detect the presence of synonyms of 	 and ⊥ in the signature
of a justification where these synonyms are not explicitly introduced via subsumption
or equivalence axioms. In the exploratory study, participants failed to spot synonyms of
	 in particular.

Component C6 detects the presence of a domain axiom that is not paired with an
(entailed) existential restriction along the property whose domain is restricted. This
typically goes against peoples’ expectations of how domain axioms work, and usually
indicates some kind of non-obvious reasoning by cases. For example, given the two
axioms ∃R.	 � C and ∀R.D � C, the domain axiom is used to make a statement
about objects that have R successors, while the second axiom makes a statement about
those objects that do not have any R successors to imply that C is equivalent to 	.
This is different from the typical pattern of usage, for example where A � ∃R.C and
∃R.	 � B entails A � B.

Component C7 measures maximum modal depth of sub-concepts in J , which tend
to generate multiple distinct but interacting propositional contexts.

Component C8 examines the signature difference from entailment to justification.
This can indicate confusing redundancy in the entailment, or synonyms of 	, that may
not be obvious, in the justification. Both cases are surprising to people looking at such
justifications.

Components C9 and C10 determine if there is a difference between the type of, and
types of class expressions in, the axiom representing the entailment of interest and the
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types of axioms and class expressions that appear in the justification. Any difference can
indicate an extra reasoning step to be performed by a person looking at the justification.

Component C11 examines the number of subclass axioms that have a complex left
hand side in a laconic5 version of the justification. Complex class expressions on the
left hand side of subclass axioms in a laconic justification indicate that the conclusions
of several intermediate reasoning steps may interact.

Component C12 examines the number of obvious syntactic subsumption paths
through a justification. In the exploratory study, participants found it very easy to quickly
read chains of subsumption axioms, for example, {A � B, B � C, C � D, D � E} to
entail A � E. This complexity component essentially increases the complexity when
these kinds of paths are lacking.

The weights were determined by rough and ready empirical twiddling, without a
strong theoretical or specific experimental backing. They correspond to our sense, esp.
from the exploratory study, of sufficient reasons for difficulty.

4 Experiments

While the model is plausible and has behaved reasonably well in applications, its vali-
dation is a challenging problem. In principle, the model is reasonable if it successfully
predicts the difficulty an arbitrary OWL modeller has with an arbitrary justification
sufficiently often. Unfortunately, the space of ontology developers and of OWL justifi-
cations (even of existing, naturally occurring ones) is large and heterogeneous enough
to be difficult to randomly sample.

4.1 Design Challenges

To cope with the heterogeneity of users, any experimental protocol should require mini-
mal experimental interaction, i.e. it should be executable over the internet from subjects’
own machines with simple installation. Such a protocol trades access to subjects, over
time, for the richness of data gathered. To this end, we adapted one of the experimental
protocols described in [13] and tested it on a more homogeneous set of participants—a
group of MSc students who had completed a lecture course on OWL. These students had
each had an 8 hour lecture session, once a week, for five weeks on OWL and ontology
engineering, and had completed 4 weeks of course work including having constructed
several ontologies. The curriculum did not include any discussion of justifications or
explanation per se, though entailment and reasoning problems had been covered.6 Ob-
viously, this group is not particularly representative of all OWL ontologists: They are
young, relatively inexperienced, and are trained in computer science. However, given
their inexperience, especially with justifications, things they find easy should be reliably
easy for most trained users.

While the general experimental protocol in [13] seems reasonable, there are some
issues in adapting it to our case. In particular, in ARQs there is a restricted space of

5 Laconic justifications [4] are justifications whose axioms do not contain any superfluous parts.
6 See http://www.cs.manchester.ac.uk/pgt/COMP60421/ for course materials.

http://www.cs.manchester.ac.uk/pgt/COMP60421/
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possible (non-)entailments suitable for multiple choice questions. That is, the wrong
answers can straightforwardly be made plausible enough to avoid guessing. A justifi-
cation inherently has one statement for which it is a justification (even though it will
be a minimal entailing subset for others). Thus, there isn’t a standard “multiple set” of
probable answers to draw on. In the exam case, the primary task is successfully an-
swering the question and the relation between that success and predictions about the
test taker are outside the remit of the experiment (but there is an established account,
both theoretically and empirically). In the justification case the standard primary task is
“understanding” the relationship between the justification and the entailment. Without
observation, it is impossible to distinguish between a participant who really “gets” it
and one who merely acquiesces. In the exploratory study we performed to help develop
the model, we had the participant rank the difficulty of the justification, but also used
think aloud and follow-up questioning to verify the success in understanding by the
participant. This is obviously not a minimal intervention, and requires a large amount
of time and resources on the part of the investigators.

To counter this, the task was shifted from a justification understanding task to some-
thing more measurable and similar to the question answering task in [13]. In particu-
lar, instead of presenting the justification/entailment pair as a justification/entailment
pair and asking the participant to try to “understand” it, we present the justifica-
tion/entailment pair as a set-of-axioms/candidate-entailment pair and ask the participant
to determine whether the candidate is, in fact, entailed. This diverges from the standard
justification situation wherein the modeller knows that the axioms entail the candidate
(and form a justification), but provides a metric that can be correlated with cognitive
complexity: error proportions.

4.2 Justification Corpus

To cope with the heterogeneity of justifications, we derived a large sample of justifi-
cations from ontologies from several well known ontology repositories: The Stanford
BioPortal repository7 (30 ontologies plus imports closure), the Dumontier Lab ontology
collection8 (15 ontologies plus imports closure), the OBO XP collection9 (17 ontologies
plus imports closure) and the TONES repository10 (36 ontologies plus imports closure).
To be selected, an ontology had to (1) entail one subsumption between class names with
at least one justification that (a) was not the entailment itself, and (b) contains axioms in
that ontology (as opposed to the imports closure of the ontology), (2) be downloadable
and loadable by the OWL API (3) processable by FaCT++.

While the selected ontologies cannot be said to generate a truly representative sample
of justifications from the full space of possible justifications (even of those on the Web),
they are diverse enough to put stress on many parts of the model. Moreover, most of
these ontologies are actively developed and used and hence provide justifications that a
significant class of users encounter.

7 http://bioportal.bioontology.org
8 http://dumontierlab.com/?page=ontologies
9 http://www.berkeleybop.org/ontologies/

10 http://owl.cs.manchester.ac.uk/repository/

http://bioportal.bioontology.org
http://dumontierlab.com/?page=ontologies
http://www.berkeleybop.org/ontologies/
http://owl.cs.manchester.ac.uk/repository/
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For each ontology, the class hierarchy was computed, from which direct subsump-
tions between class names were extracted. For each direct subsumption, as many justi-
fications as possible in the space of 10 minutes were computed (typically all justifica-
tions; time-outs were rare). This resulted in a pool of over 64,800 justifications.

While large, the actual logical diversity of this pool is considerably smaller. This is
because many justifications, for different entailments, were of exactly the same “shape”.
For example, consider J1 = {A � B, B � C} |= A � C and J2 = {F � E, E �
G} |= F � G. As can be seen, there is an injective renaming from J1 to J2, and J1 is
therefore isomorphic with J2. If a person can understand J1 then, with allowances for
variations in name length, they should be able to understand J2. The initial large pool
was therefore reduced to a smaller pool of 11,600 non-isomorphic justifications.

4.3 Items and Item Selection

Each experiment consists of a series of test items (questions from a participant point of
view). A test item consists of a set of axioms, one following axiom, and a question, “Do
these axioms entail the following axiom?”. A participant response is one of five possible
answers: “Yes” (it is entailed), “Yes, but not sure”, “Not Sure”, “No, but not sure”, “No”
(it is not entailed). From a participant point of view, any item may or may not contain a
justification. However, in our experiments, every item was, in fact, a justification.

It is obviously possible to have non-justification entailing sets or non-entailing sets
of axioms in an item. We chose against such items since (1) we wanted to maximize the
number of actual justifications examined (2) justification understanding is the actual
task at hand, and (3) it is unclear how to interpret error rates for non-entailments in
light of the model. For some subjects, esp. those with little or no prior exposure to
justifications, it was unclear whether they understood the difference between the set
merely being entailing, and it being minimal and entailing. We did observe one person
who made use of this metalogical reasoning in the follow-up study.

Item Construction: For each experiment detailed below, test items were constructed
from the pool of 11,600 non-isomorphic justifications. First, in order to reduce variance
due primarily to size, justifications whose size was less than 4 axioms and greater than
10 axioms were discarded. This left 3199 (28%) justifications in the pool. In partic-
ular, this excluded large justifications that might require a lot of reading time, cause
fatigue problems, or intimidate, and excluded very small justifications that tended to be
trivial.11

For each justification in the pool of the remaining 3199 non-isomorphic justifica-
tions, the complexity of the justification was computed according to the model pre-
sented in Table 1, and then the justification was assigned to a complexity bin. A total
of 11 bins were constructed over the range of complexity (from 0 to 2200), each with a
complexity interval of 200. We discarded all bins which had 0 non-isomorphic justifi-
cations of size 4-10. This left 8 bins partitioning a complexity range of 200-1800.

11 Note that, as a result, nearly 40% of all justifications have no representative in the pruned set
(see Figure 3). Inspection revealed that most of these were trivial single axiom justifications
(e.g. of the form {A ≡ B} |= A � B or {A ≡ (B 	 C)} |= A � B, etc.
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Figure 1 illustrates a key issue. The bulk of the justifications (esp. without the triv-
ial), both with and without isomorphic reduction, are in the middle complexity range.
However, the model is not sophisticated enough that small differences (e.g. below a
difference of 400-600) are plausibly meaningful. It is unclear whether the noise from
variance in participant abilities would wash out the noise from the complexity model.
In other words, just from reflection on the model, justifications whose complexity dif-
ference is 400 or less do not seem reliably distinguishable by error rates. Furthermore,
non-isomorphism does not eliminate all non-significant logical variance. Consider a
chain of two atomic subsumptions vs. a chain of three. They have the same basic log-
ical structure, but are not isomorphic. Thus, we cannot yet say whether this apparent
concentration is meaningful.

Since we did not expect to be able to present more than 6 items and keep to our
time limits, we chose to focus on a “easy/hard” divide of the lowest three non-empty
bins (200-800) and the highest three non-empty bins (1200-1800). While this limits
the claims we can make about model performance over the entire corpus, it, at least,
strengthens negative results. If error rates overall do not distinguish the two poles
(where we expect the largest effect) then either the model fails or error rates are not
a reliable marker. Additionally, since if there is an effect, we expect it to be largest in
this scenario thus making it easier to achieve adequate statistical power.

Each experiment involved a fixed set of test items, which were selected by randomly
drawing items from preselected spread of bins, as described below. Please note that the
selection procedure changed in the light of the pilot study, but only to make the selection
more challenging for the model.12

The final stage of item construction was justification obfuscation. All non-logical
terms were replaced with generated symbols. Thus, there was no possibility of using
domain knowledge to understand these justifications. The names were all uniform, syn-
tactically distinguishable (e.g. class names from property names) and quite short. The
entailment was the same for all items, i.e. C1 � C2. It is possible that dealing with these
purely symbolic justifications distorted participant response from response in the field,
even beyond blocking domain knowledge. For example, they could be alienating and
thus increase error rates or they could engage less error prone pattern recognition.

5 Results

The test items that were selected by the above sampling methodology are shown below.
Every set of axioms is a justification for C1 � C2. There was no overlap in participants
across the studies. For the main study, none of the authors were involved in facilitating
the study, though Bail and Horridge participated in recruitment.

5.1 Pilot study

Participants: Seven members of a Computer Science (CS) Academic or Research Staff,
or PhD Program, with over 2 years of experience with ontologies and justifications.

12 The selections are available from http://owl.cs.manchester.ac.uk/research/
publications/supporting-material/iswc2011-cog-comp

http://owl.cs.manchester.ac.uk/research/publications/supporting-material/iswc2011-cog-comp
http://owl.cs.manchester.ac.uk/research/publications/supporting-material/iswc2011-cog-comp
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Fig. 1. Justification Corpus Complexity Distribution

Materials and procedures: The study was performed using an in-house web based
survey tool, which tracks times between all clicks on the page and thus records the time
to make each decision.

The participants were given a series of test items consisting of 3 practice items,
followed by 1 common easy item (E1 of complexity 300) and four additional items,
2 ranked easy (E2 and E3 of complexities 544 and 690, resp.) and 2 ranked hard (H1
and H2 of complexities 1220 and 1406), which were randomly (but distinctly) ordered
for each participant. The easy items were drawn from bins 200-800, and the hard items
from bins 1200-1800. The expected time to complete the study was a maximum of 30
minutes, including the orientation, practice items, and brief demographic questionnaire
(taken after all items were completed).

Results: Errors and times are given in Table 2. Since all of the items were in fact justi-
fications, participant responses were recoded to success or failure as follows: Success =
(“Yes” | “Yes, but not sure”) and Failure = (“Not sure” | “No, Not sure” | “No”). Error
proportions were analysed using Cochran’s Q Test, which takes into consideration the
pairing of successes and failures for a given participant. Times were analysed using two
tailed paired sample t-tests.

Table 2. Pilot Study Failures and Response Times

Item Failures Mean Time (ms) Time StdDev. (ms)

E1 0 65,839 39,370
E2 1 120,926 65,950
E3 2 142,126 61,771
H1 6 204,257 54,796
H2 6 102,774 88,728
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An initial Cochran Q Test across all items revealed a strong significant difference in
error proportions between the items [Q(4) = 16.00, p = 0.003]. Further analysis using
Cochran’s Q Test on pairs of items revealed strong statistically significant differences
in error proportion between: E1/H1 [Q(1) = 6.00, p = 0.014], E1/H2 [Q(1) = 6.00,
p = 0.014] E2/H2 [Q(1) = 5.00, p = 0.025] and E3/H2 [Q(1) = 5.00, p = 0.025].
The differences in the remaining pairs, while not exhibiting differences above p = 0.05,
were quite close to significance, i.e. E2/H1 [Q(1) = 3.57, p = 0.059] and E3/H1
[Q(1) = 5.00, p = 0.10]. In summary, these error rate results were encouraging.

An analysis of times using paired sample t-tests revealed that time spent understand-
ing a particular item is not a good predictor of complexity. While there were significant
differences in the times for E1/H1 [p = 0.00016], E2/H1 [p = 0.025], and E3/H1
[p = 0.023], there were no significant differences in the times for E1/H2 [p = 0.15],
E2/H2 [p = 0.34] and E3/H2 [p = 0.11]. This result was anticipated, as in the ex-
ploratory study people gave up very quickly for justifications that they felt they could
not understand.

5.2 Experiment 1

Participants: 14 volunteers from a CS MSc class on OWL ontology modelling, who
were given chocolate for their participation.13 Each participant had minimal exposure to
OWL (or logic) before the class, but had, in the course of the prior 5 weeks, constructed
or manipulated several ontologies, and received an overview of the basics of OWL 2,
reasoning, etc. They did not receive any specific training on justifications.

Materials and procedures: The study was performed according to the protocol used in
the pilot study. A new set of items were used. Since the mean time taken by pilot study
participants to complete the survey was 13.65 minutes, with a standard deviation of
4.87 minutes, an additional hard justification was added to the test items. Furthermore,
all of the items with easy justifications ranked easy were drawn from the highest easy
complexity bin (bin 600-800). In the pilot study, we observed that the lower ranking
easy items were found to be quite easy and, by inspection of their bins, we found that
it was quite likely to draw similar justifications. The third bin (600-800) is much larger
and logically diverse, thus is more challenging for the model.

The series consisted of 3 practice items followed by 6 additional items, 3 easy
items(EM1, EM2 and EM3 of complexities: 654, 703, and 675), and 3 hard items
(HM1, HM2 and HM3 of complexities: 1380, 1395, and 1406). The items were ran-
domly ordered for each participant. Again, the expectation of the time to complete the
study was a maximum of 30 minutes, including orientation, practice items and brief
demographic questionnaire.

Results. Errors and times are presented in Table 3. The coding to error is the same as
in the pilot. An analysis with Cochran’s Q Test across all items reveals a significant
difference in error proportion [Q(5) = 15.095, p = 0.0045].

A pairwise analysis between easy and hard items reveals that there are significant
and, highly significant, differences in errors between EM1/HM1 [Q(1) = 4.50, p =
13 It was made clear to the students that their (non)participation did not affect their grade and no

person with grading authority was involved in the recruitment or facilitation of the experiment.
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Table 3. Experiment 1 Failures and Response Times

Item Failures Mean Time (ms) Time StdDev. (ms)

EM1 6 103,454 68,247
EM2 6 162,928 87,696
EM3 10 133,665 77,652
HM1 12 246,835 220,921
HM2 13 100,357 46,897
HM3 6 157,208 61,437

0.034], EM1/HM2 [Q(1) = 7.00, p = 0.008], EM2/HM1 [Q(1) = 4.50, p = 0.034],
EM2/HM2 [Q(1) = 5.44, p = 0.02], and EM3/HM2 [Q(1) = 5.44, p = 0.02].

However, there were no significant differences between EM1/HM3 [Q(1) = 0.00,
p = 1.00], EM2/HM3 [Q(1) = 0.00, p = 1.00], EM3/HM3 [Q(1) = 2.00, p = 0.16]
and EM3/HM1 [Q(1) = 0.67, p = 0.41].

With regards to the nonsignificant differences between certain easy and hard items,
there are two items which stand out: An easy item EM3 and a hard item HM3, which
are shown as the last pair of justifications in Figure 2.

In line with the results from the pilot study, an analysis of times using a paired
samples t-test revealed significant differences between some easy and hard items, with
those easy times being significantly less than the hard times EM1/HM1 [p = 0.023],
EM2/HM2 [p = 0.016] and EM3/HM1 [p = 0.025]. However, for other pairs of
easy and hard items, times were not significantly different: EM1/HM1 [p = 0.43],
EM2/HM1 [p = 0.11] and EM3/HM2 [p = 0.10]. Again, time is not a reliable predic-
tor of model complexity.

Anomalies in Experiment 1: Two items (EM3 and HM3) did not exhibit their pre-
dicted error rate relations. For item EM3, we conjectured that a certain pattern of su-
perfluous axiom parts in the item (not recognisable by the model) made it harder than
the model predicted. That is, that the model was wrong.

For item HM3 we conjectured that the model correctly identifies this item as hard,14

but that the MSc students answered “Yes” because of misleading pattern of axioms at
the start and end of item HM3. The high “success” rate was due to an error in reasoning,
that is, a failure in understanding.

In order to determine whether our conjectures were possible and reasonable, we
conducted a followupup study with the goal of observing the conjectured behaviours in
situ. Note that this study does not explain what happened in Experiment 1.

5.3 Experiment 2

Participants: Two CS Research Associates and one CS PhD student, none of whom
had taken part in the pilot study. All participants were very experienced with OWL.

14 It had been observed to stymie experienced modellers in the field. Furthermore, it involves
deriving a synonym for �, which was not a move this cohort had experience with.
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Materials and procedures: Items and protocol were exactly the same as Experiment 1,
with the addition of the think aloud protocol [12]. Furthermore, the screen, participant
vocalisation, and eye tracking were recorded.

Results: With regard to EM3, think aloud revealed that all participants were distracted
by the superfluous axiom parts in item EM3. Figure 3 shows an eye tracker heat map
for the most extreme case of distraction in item EM3. As can be seen, hot spots lie over
the superfluous parts of axioms. Think aloud revealed that all participants initially tried
to see how the ∃prop1.C6 conjunct in the third axiom contributed to the entailment and
struggled when they realised that this was not the case.

EM1

C1 � ∃ prop1.C3

prop1 � prop2

prop2 � prop3

C3 � C4

C4 � C5

C5 � C6

C6 � C7

C7 � C8

C2 ≡ ∃ prop3.C8

HM1

C1 ≡ ∃ prop1.C3

prop1 ≡ prop2−

prop2 � prop3

prop3 ≡ prop4−

C3 ≡ (∃ prop5.C4) � (∃ prop2.C1)

� (∀prop5.C4) � (∀ prop2.C1)

prop6 ≡ prop5−

∃ prop6.� � C5

C6 � C7

C6 ≡ (∃ prop5.C5) � (∀prop5.C5)

C2 ≡ ∃ prop4.C7

EM2

C1 ≡ C3 � (∃ prop1.C4) � (∃ prop2.C5)

C1 � C6

C6 � C7

C7 � C8

C8 ≡ C9 � (∃ prop1.C10)

C2 ≡ C9 � (∃ prop1.C4) � (∃ prop2.C5)

HM2

C3 ≡ (∃ prop1.C5) � (∀ prop1.C5)

C3 � C4

∃ prop1.� � C4

C4 � C2

EM3

C1 � C3

C3 � C4

C4 ≡ C5 � (∃ prop1.C6)

C5 ≡ C7 � (∃ prop2.C8)

C1 � ∃ prop1.C9

C9 � C10

C2 ≡ C7 � (∃ prop1.C10)

HM3

C1 � ∀ prop1.C3

C6 ≡ ∀ prop2.C7

C6 � C8

C8 � C4

C4 � ∃ prop1.C5

∃ prop2.� � C4

C2 ≡ (∃ prop1.C3) � (∀ prop3.C9)

Fig. 2. Justifications Used in Experiment 1. All justifications explain the entailment C1 � C2.
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Fig. 3. Eye Tracker Heat Maps for EM3 & HM3

In the case of HM3, think aloud revealed that none of the participants understood
how the entailment followed from the set of axioms. However, two of them responded
correctly and stated that the entailment did hold. As conjectured, the patterns formed
by the start and end axioms in the item set seemed to mislead them. In particular,
when disregarding quantifiers, the start axiom C1 � ∀prop1.C3 and the end axiom
C2 � ∃prop1.C3  . . . look very similar. One participant spotted this similarity and
claimed that the entailment held as a result. Hot spots occur over the final axiom and
the first axiom in the eye tracker heat map (Figure 3), with relatively little activity in
the axioms in the middle of the justification.

6 Dealing with Justification Superfluity

Perhaps the biggest issue with the current model is that it does not deal at all with super-
fluity in axioms in justifications. That is, it does not penalise a justification for having
axioms that contain, potentially distracting, superfluous parts—parts that do not matter
as far as the entailment is concerned. Unfortunately, without a deeper investigation, it
is unclear how to rectify this in the model. Although it is possible to identify the su-
perfluous parts of axioms using laconic and precise justifications [4], throwing a naive
superfluity component into the model would quite easily destroy it. This is because
there can be justifications with plenty of superfluous parts that are trivial to understand.
For example consider J = {A � B � C} |= A � B, where C is along and complex
class expression, and yet there can be justifications with seemingly little superfluity (as
in the case of EM3) which causes complete distraction when trying to understand an
entailment. Ultimately, what seems to be important is the location and shape of super-
fluity, but deciding upon what “shapes” of superfluity count as non-trivial needs to be
investigated as part of future work.

One important point to consider, is that it might be possible to deal with the problems
associated with superfluity by presentation techniques alone. It should be clear that the
model does not pay any attention to how justifications are presented. For example, it
is obvious that the ordering (and possibly the indentation) of axioms is important. It
can make a big difference to the readability of justifications and how easy or difficult
they are to understand, yet the model does not take into consideration how axioms will
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be ordered when a justification is presented to users. In the case of superfluity, it is
conceivable that strikeout could be used to cross out the superfluous parts of axioms
and this would dispel any problems associated with distracting superfluity. Figure 4
shows the helpful effect of strikeout on EM3. As can be seen, it immediately indicates
that the problematic conjunct, ∃ prop1.C6, in the third axiom should be ignored. Some
small scale experiments, carried out as part of future work, could confirm this.

EM3

C1 � C3

C3 � C4

C4 ≡ C5 � (∃ prop1.C6)

C5 ≡ C7 � (∃ prop2.C8)

C1 � ∃ prop1.C9

C9 � C10

C2 ≡ C7 � (∃ prop1.C10)

EM3

C1 � C3

C3 � C4

C4 ≡ C5 � (∃ prop1.C6)

C5 ≡ C7 � (∃ prop2.C8)

C1 � ∃ prop1.C9

C9 � C10

C2 ≡ C7 � (∃ prop1.C10)

Fig. 4. EM3 with and without strikeout

7 Discussion and Future Work

In this paper we presented a methodology for validating the predicted complexity of
justifications. The main advantages of the experimental protocol used in the method-
ology is that minimal study facilitator intervention is required. This means that, over
time, it should be possible to collect rich and varied data fairly cheaply and from geo-
graphically distributed participants. In addition to this, given a justification corpus and
population of interest, the main experiment is easily repeatable with minimal resources
and setup. Care must be taken in interpreting results and, in particular, the protocol
is weak on “too hard” justifications as it cannot distinguish a model mislabeling from
people failing for the wrong reason.

The cognitive complexity model that was presented in this paper fared reasonably
well. In most cases, there was a significant difference in error proportion between model
ranked easy and hard justifications. In the cases where error proportions revealed no dif-
ference better than chance, further small scale follow-up studies in the form of a more
expensive talk-aloud study was used to gain an insight into the problems. These inspec-
tions highlighted an area for model improvement, namely in the area of superfluity. It
is unclear how to rectify this in the model, as there could be justifications with super-
fluous parts that are trivial to understand, but the location and shape of superfluity seem
an important factor.

It should be noted that the goal of the experiments was to use error proportion to de-
termine whether two justifications come from different populations—one from the set
of easy justifications and one from the set of hard justifications. This is rather different
than being able to say, with some level of statistical confidence, that the model gener-
alises to the whole population of easy or hard justifications. For the former the statistical
toolbox that is used is workable with very small sample sizes. Ultimately the sample
size depends on the variance of the sample, but sample sizes of less than 10 can work,
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where sample size is the number of outcomes (successes or failures) per justification.
For the latter, sample sizes must be much larger. For example, by rule of thumb, around
400 justifications would be needed from the hard category to be able say with 95% con-
fidence that all of hard justifications are actually hard justifications. While being able to
generalise to the whole population would be the best outcome, the fact that participants
would have to answer 400 items means that this is not achievable, and so the focus is
on using error proportion to determine the actually hardness of a justification.

The refinement and validation of our model is an ongoing task and will require con-
siderably more experimental cycles. We plan to conduct a series of experiments with
different cohorts as well as with an expanded corpus. We also plan to continue the anal-
ysis of our corpus with an eye to performing experiments to validate the model over the
whole (for some given population).
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Abstract. Concept diagrams were introduced for precisely specifying
ontologies in a manner more readily accessible to developers and other
stakeholders than symbolic notations. In this paper, we present a case
study on the use of concept diagrams in visually specifying the Semantic
Sensor Networks (SSN) ontology. The SSN ontology was originally devel-
oped by an Incubator Group of the W3C. In the ontology, a sensor is a
physical object that implements sensing and an observation is observed
by a single sensor. These, and other, roles and concepts are captured vi-
sually, but precisely, by concept diagrams. We consider the lessons learnt
from developing this visual model and show how to convert description
logic axioms into concept diagrams. We also demonstrate how to merge
simple concept diagram axioms into more complex axioms, whilst ensur-
ing that diagrams remain relatively uncluttered.

1 Introduction

There is significant interest in developing ontologies in a wide range of areas,
in part because of the benefits brought about by being able to reason about
the ontology. In domains where a precise (formal) specification of an ontology is
important, it is paramount that those involved in developing the ontology fully
understand the syntax in which the ontology is defined. For instance, one formal
notation is description logic [3], for which much is known about the complexity
of reasoning over its fragments [4].

Notations such as description logics require some level of mathematical train-
ing to be provided for the practioners using them and they are not necessar-
ily readily accessible to all stakeholders. There have been a number of efforts
towards providing visualizations of ontologies, that allow their developers and
users access to some information about the ontology. For example, in Protégé,
the OWLViz plugin [10] shows the concept (or class) hierarchy using a directed
graph. Other visualization efforts provide instance level information over popu-
lated ontologies [11]. To the best of our knowledge, the only visualization that
was developed as a direct graphical representation of description logics is a varia-
tion on existential graphs, shown to be equivalent to ACL by Dau and Eklund [7].
However, existential graphs, in our opinion, are not readily usable since their syn-
tax is somewhat restrictive: they have the flavour of a minimal first-order logic

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 257–272, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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with only the ∃ quantifier, negation and conjunction; the variation developed as
an equivalent to ACL uses ? to act as a free variable.

In previous work, Oliver et al. developed concept diagrams (previously called
ontology diagrams) as a formal logic for visualizing ontology specifications [12,13],
further explored in Chapman et al. [5]. Whilst further work is needed to estab-
lish fragments for which efficient reasoning procedures can be devised, concept
diagrams are capable of modelling relatively complex ontologies since they are
a second-order logic.

The contribution of this paper is to demonstrate how concept diagrams can be
used to model (part of) the Semantic Sensor Networks (SSN) ontology, in its cur-
rent version, which was developed over the period February 2009 to September
2010 by an Incubator Group of the W3C, called the SSN-XG [6]. We motivate
the need for accessible communication of ontology specifications in section 2,
ending with a discussion around why visualization can be an effective approach.
Section 3 presents a formalization of some of the SSN ontology’s axioms using
concept diagrams and using description logic, contrasting the two approaches.
Section 4 demonstrates how to translate description logic axioms to concept
diagrams and some inference rules. Section 5 concludes the paper.

2 Motivation

Complex ontologies are often developed by groups of people working together,
consistent with their most important application: to support the sharing of
knowledge and data. The most common definition of ontology refers to “an
explicit representation of a shared conceptualisation” [9]. A shared conceptuali-
sation is usually needed for the purposes for which ontologies are most used: for
representation of data to be shared amongst individuals and organisations in a
community. The “sharing” is necessary when domain-knowledge capture through
an ontology requires modelling of either commonly-held domain knowledge or
the common element of domain knowledge across multiple domains. This needs
to take account of instances that are asserted to exist in the ontology, and also
instances that might exist, or come into existence when the ontology is applied
to describe some data.

The W3C’s Web Ontology Language (OWL 2.0) is a very expressive but de-
cidable description logic: a fragment of first order predicate calculus. A brief
and incomplete introduction is given here: the reader is referred to [1] for a
complete treatment. In common with all ontology languages, a hierarchical tax-
onomy of concepts (called classes in OWL) is the primary modelling notion.
Individuals can be members (or instances) of concepts and all individuals are
members of the predefined concept Thing, no individuals are members of the
predefined Nothing. Binary relations over concepts, called roles, are used to re-
late individuals to others, and concept constructors comprising complex logical
expressions over concepts, roles and individuals are used to relate all these things
together. Most important here are role restrictions: expressions that construct
a concept by referring to relations to other concepts. There are also a range of role
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characteristics that can constrain the relations wherever they occur: such as
domain, range, transitive, subproperty and inverse. Two key features of OWL
designed for the semantic web applications is that all entities: classes (concepts),
properties (roles) and individuals are identified by URI (a Web identifier that can
be a URL), and that it has an RDF/XML serialization (commonly considered
unreadable).

In the experience of these authors, when people meet to develop concep-
tual structures, including models of knowledge intended to become an OWL
ontology, they very quickly move to sketching 2D images to communicate their
thoughts. At the beginning, these may be simple graph structures of labelled
nodes connected by labelled or unlabelled arcs. For example, figure 1 shows the
whiteboard used at the first Face-to-face meeting of the W3C Semantic Sensor
Networks Incubator Group, in Washington DC, USA, November 2009. Unlike
some modelling languages, OWL does not have a heritage in visual representa-
tions, and modellers struggle with different interpretations of the visualizations
used in the group. For example, in OWL, it is very important to know whether a
node represents an individual or a class. In a more advanced example, modellers
need to know whether a specified subsumption relationship between concepts is
also an equivalence relationship. As we shall see, concept diagrams are capable
of visualizing exactly these kinds of definitions.

Fig. 1. Whiteboard used at face-to-face meeting; Photo: M. Hauswirth

The major feature of OWL as a modelling language is also its greatest hin-
drance for shared development: the formal semantics and capability for reason-
ing. The examples we give later, in our case study, demonstrate that information
that would sometimes need to be inferred is actually explicitly visible on concept
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diagrams (so-called free-rides which we explain later). It is commonplace for
ontology developers, as domain experts, to be unaware of the formal semantics un-
derlying OWL, and if they are aware it remains very difficult to apply the knowl-
edge of the semantics in practice while developing in a team environment. For
example, even the simple difference between universal and existential role restric-
tions are difficult to represent and to assimilate in diagrammatic form. As
another example, the semantic difference between rdfs:domain and rdfs:range con-
straints on properties, as opposed to local restrictions on those properties in the
context of class definitions, is difficult to represent diagrammatically and very
hard to take into account when studying spatially-disconnected but semantically-
connected parts of an ontology sketch. There is a need for semantically-informed
sketching tools that help ontology developers to better understand their modelling
in real time.

3 Visualizing the SSN Ontology

In this section we walk through parts of the SSN ontology, showing how to
express it in our concept diagrams. At the end of section 3.2 we will give
a summary of the concept diagram syntax. The SSN ontology is available at
purl.oclc.org/NET/ssnx/ssn and extensive documentation and examples of its
use are available in the final report of the SSN-XG [2]. An alternative vi-
sualization of the SSN ontology was created using CMAP from IHMC (see
www.ihmc.us/groups/coe/) and may be compared with the visualisation pre-
sented here. The ontology imports, and is aligned with, the Dolce Ultra-Lite
upper ontology [14] from which it inherits upper concepts including Event, Ob-
ject, Abstract, Quality, PhysicalObject, SocialObject, InformationObject, Situation,
Description, Method, and Quality.

3.1 Concept Hierarchy Axioms

To represent the concept hierarchy, concept diagrams use Euler diagrams [8],
which effectively convey subsumption and disjointness relationships. In particu-
lar, Euler diagrams comprise closed curves (often drawn as circles or ellipses) to
represent sets (in our case, concepts). Two curves that have no common points
inside them assert that the represented sets are disjoint whereas one curve drawn
completely inside another asserts a subsumption relationship. In addition, Euler
diagrams use shading to assert emptiness of a set; in general, concept diagrams
use shading to place upper bounds on set cardinality as we will see later.

In the SSN ontology, descriptions of the concepts are given as comments in
the ssn.owl file [2], which we summarize here. The SSN ontology is defined over
a large vocabulary of which we present the subset required for our case study.
At the top level of the SSN hierarchy are four concepts, namely Entity, Feature-
OfInterest, Input, and Output. The concept Entity is for anything real, possible
or imaginary that the modeller wishes to talk about. Entity subsumes five other
concepts which, in turn, may subsume further concepts. The five concepts are:



Visualizing Ontologies: A Case Study 261

1. Abstract These are entities that cannot be located in space and time, such
as mathematical concepts.

2. Event These are physical, social, or mental processes, events, or states. Event
is, therefore, disjoint from Abstract.

3. Object These are physical, social or mental objects or substances. Therefore,
Object is disjoint from Abstract and Event.

4. FeatureOfInterest A feature of interest is an abstraction of real world phe-
nomena and is subsumed by the union of Event and Object.

5. Quality This is any aspect of an entity that cannot exist without that entity,
such as a surface of a solid object. Quality is also disjoint from Abstract,
Event, and Object.

An Euler diagram asserting these subsumption and disjointness properties as a
single axiom, alongside the axioms expressed using description logic, can be seen
here:

Entity

Abstract Quality+

Event+ Object+

FeatureOfInterest

1. Abstract � Entity
2. Quality � Entity
3. Event � Entity
4. Object � Entity
5. Abstract � Quality � ⊥
6. Abstract � Event � ⊥
7. Abstract � Object � ⊥
8. Quality � Event � ⊥
9. Quality � Object � ⊥

10. Event � Object � ⊥
11. FeatureOfInterest � Event Object
12. Entity ≡ Abstract Object Event Quality

The Euler diagram has a certain succinctness over the description logic in that
there are 6 DL axioms asserting disjointness properties, for example.

Notice, in the figure above, the concept Object is annotated with a plus sym-
bol, as are Event and Quality. Whilst not part of the formal syntax, this plus
symbol is used to indicate that there are concepts subsumed by each of these
concepts that are not displayed in this diagram; with tool support, one could
imagine clicking on this plus to ‘expand’ the diagram, to show the subsumed
concepts. In the SSN ontology, Object is the union of two disjoint concepts,
PhysicalObject and SocialObject:

Object

PhysicalObject+ SocialObject+ 1. Object ≡ PhysicalObject
SocialObject

2. PhysicalObject � SocialObject � ⊥
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A PhysicalObject is an object that has a proper space region whereas a So-
cialObject exists only within some communication Event, in which at least one
PhysicalObject participates. Again, as indicated by the plus sign, PhysicalObject
subsumes various other concepts: Sensor, System, Device, and SensingDevice. A
Sensor can do sensing: that is, a Sensor is any entity that can follow a sensing
method and thus observe some Property of a FeatureOfInterest. A System is a
unit of abstraction for pieces of infrastructure for sensing, namely Device and
SensingDevice. A Device is a physical piece of technology, of which SensingDe-
vice is an example. Additionally, SensingDevice is an example of Sensor. This
information about the SSN ontology is axiomatized by the single Euler diagram
below, and equivalently by the adjacent description logic axioms:

PhysicalObject

System
Sensor

Device

SensingDevice

1. Sensor � PhysicalObject
2. System � PhysicalObject
3. Device � System
4. SensingDevice � Device
5. SensingDevice � Sensor

It should be clear that the diagram just given makes some informational con-
tent explicit, whereas it needs to be derived from the description logic axioms.
For instance, one can easily read off, from the diagram, that SensingDevice is
subsumed by PhysicalObject, since the closed curve representing the former is
contained by the closed curve representing the latter. From the description logic
axioms, one must use the transitive property of � to extract this information:
SensingDevice � Sensor � PhysicalObject. To make this deduction, one has to
identify appropriate description logic axioms from the list given, which requires
a little more effort than reading the diagram. This example, illustrating the in-
ferential properties of the diagram, is a typical example of a free-ride (sometimes
called a cheap ride), the theory of which was developed by Shimojima [16], later
explored by Shimojima and Katagiri [17]. In general, a free-ride is a piece of
information that can be readily ‘seen’ in a diagram that would typically need to
be inferred from a symbolic representation.

SocialObject also subsumes various other concepts, which we do not describe
in full here. Three will be of use to us later: a Situation is a view on a set of
entities; an Observation is a Situation in which a SensingMethod has been used
to estimate or calculate a value of a Property of a FeatureOfInterest; and Sens-
ing is a process that results in the estimation, or calculation, of the value of a
phenomenon. The following Euler diagram defines an axiom from the SSN ontol-
ogy, and the adjacent description logic statements capture the same information:
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Observation

Situation

SocialObject

Description

Method

Process

Sensing

SensorOutput

InformationObject

1. Situation � SocialObject
2. Observation � Situation
3. InformationObject � SocialObject
4. SensorOutput � InformationObject
5. Description � SocialObject
6. Method � Description
7. Process � Method
8. Sensing � Process
9. Situation � Description � ⊥

10. Situation � SocialObject � ⊥
11. InformationObject � Description � ⊥

This diagram, presenting information about the concepts subsumed by SocialOb-
ject, also has many free-rides, such as Sensing is subsumed by Description, and
that Process is disjoint from Observation since the two curves do not overlap.
For the latter, to deduce this from the given description logic axioms, one would
need to use axiom numbers 2, 6, 7, and 9.

We saw earlier that Quality was subsumed by one of the top-level concepts,
Entity. In turn, Quality subsumes Property, which is an observable quality of an
event or object. Property subsumes many concepts, but we only make use of one
of them later: MeasurementCapability. This concept collects together measure-
ment properties (accuracy, range, precision, etc) as well as the environmental
conditions in which those properties hold, representing a specification of a sen-
sor’s capability in those conditions:

Quality

Property

MeasurementCapability
1. Property � Quality
2. MeasurementCapability � Property

The last part of the concept hierarchy that we demonstrate concerns Event,
which was subsumed by the top-level concept Entity. Two of the concepts sub-
sumed by Entity are Stimulus and SensorInput. A sensor input is an event that
triggers the sensor and the concept SensorInput is equivalent to Stimulus:

Event

Stimulus SensorInput
1. Stimulus � Event
2. SensorInput � Event
3. SensorInput ≡ Stimulus

Notice here that, in the Euler diagram, we have asserted equivalence between
concepts by drawing two circles on top of one another.
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We have represented 24 of the SSN concepts using Euler diagrams to assert
subsumption and disjointness relationships. The discussions around free-rides
indicate that Euler diagrams (the basis of concept diagrams) can be an effective
method of axiomatizing concept hierarchies. We refer the reader to [2] for further
information on the hierarchy.

3.2 Role Rescrictions

Moving on to role restrictions, concept diagrams extend Euler diagrams by in-
corporating more syntax to increase their expressiveness. In particular, arrows
are used to represent role restrictions. The source of the arrow is taken to re-
strict the domain of the role, and the target provides some information about the
image of the role under the domain restriction. The nature of the information
given is determined by the arrow’s type: arrows can be dashed or solid. Given a
solid arrow, a, sourced on C and targeting D, representing the role R, a asserts
that the image of R when it’s domain is restricted to C is equal to D, that is:

image(R|C) = D where image(R|C) = {y : ∃x ∈ C (x, y) ∈ R}.

By contrast, if a were instead dashed then it would assert that the image of R
when its domain is restricted to C includes at least the elements in D, that is:

image(R|C) ⊇ D.

As we shall see in our examples, the syntax that can be used as sources and
targets of arrows, including closed curves (both labelled, as in Euler diagrams,
or unlabelled), or dots. Unlabelled closed curves represent anonymous concepts
and dots represent individuals. As with closed curves, dots can be labelled to
represent specific individuals, or unlabelled to represent anonymous individuals.
The syntax and semantics will be more fully explained as we work through our
examples.

Our first example of some role restrictions concerns the concept Sensor, since
this is at the heart of the SSN ontology. There are various restrictions placed on
the roles detects, observes, hasMeasurementCapability and implements. The first
of these, detects, is between Sensor and Stimulus: sensors detect only stimuli.
Next, there is a role observes between Sensor and Property: sensors observe only
properties. Thirdly, every sensor hasMeasurementCapability, the set of which is
subsumed by MeasurementCapability. Finally, every sensor implements some sens-
ing. That is, sensors have to perform some sensing. The concept diagram below
captures these role restrictions:

Here, we are quantifying over the concept Sensor, since we have written ‘For all
Sensor s’ above the bounding box of the diagram (in the formal abstract syntax
of concept diagrams, this would be represented slightly differently, the details
of which are not important here). The dot labelled s in the diagram is then the
source of four arrows, relating to the role restrictions just informally described.
The solid arrow labelled detects is used to place the following restriction on the
detects role:

image(detects|{s}) ⊆ Stimulus,
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Sensor

s

Stimulus Property

Sensing

Measurement

Capabilitydetects

observes

implements

hasMeasurement

Capability

For all Sensor s

treating the individual s as a singleton set. The unlabelled curve is acting as an
existentially quantified anonymous set so, strictly, the arrow and the unlabelled
curve assert:

∃X image(detects|{s}) = X ∧ X ⊆ Stimulus.

Earlier, we defined an axiom that asserted MeasurementCapability is subsumed
by Property, along with axioms that give the disjointness information conveyed in
the diagram above. We have made use of that information in the diagram above,
by drawing the curves with appropriate containment and disjointness properties.
A further point of note is that, in this diagram, we have not asserted anything
about whether image(observes|{s}) and image(hasMeasurementCapability|{s}) are
disjoint, or whether one subsumes the other. All we know is that the former is
subsumed by Property and the latter is subsumed by MeasurementCapability.
Finally, the dashed arrow provides partial information:

∃X∃y image(implements|{s}) ⊇ X ∧ X ⊆ Sensing ∧ y ∈ X

where X arises from the unlabelled curve targeted by the arrow and y arises
from the unlabelled dot placed inside this curve; we are using unlabelled dots to
assert the existence of individuals.

The role restrictions just given, together with the disjointness information,
can also be expressed using the following description logic axioms:

1. Sensor � ∀ detects.Stimulus
2. Sensor � ∀ observes.Property
3. Sensor � ∃ implements.Sensing
4. Sensor � ∀ hasMeasurementCapability.MeasurementCapability
5. Sensor � Stimulus � ⊥
6. Sensor � Property � ⊥
7. Sensor � Sensing � ⊥
8. Stimulus � Property � ⊥
9. Stimulus � Sensing � ⊥

10. Property � Sensing � ⊥
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We can see that the concept diagram has free-rides arising from the use of
the unlabelled curves. For example, it is easy to see that image(detects|{s}) is
disjoint from Property, but this information is not immediately obvious from the
description logic axioms: one must make this deduction from axioms 1 and 8.

Our second collection of role restrictions concerns the concept Observation. Here,
an observation includes an event, captured by the role includesEvent, which is a
Stimulus, illustrated by the dashed arrow in the diagram immediately below. In
addition, observations are observedBy exactly one (unnamed) individual, which is
a Sensor. Similarly, observations have exactly one observedProperty and this is a
Property, exactly one sensingMethodUsed and this is a Sensing object, and a set
of observationResults all of which are SensorOutputs. Finally, observations have
exactly one featureOfInterest (role), which is a FeatureOfInterest (concept). All of
these role restrictions are captured in the diagram below, where again we have
used previous information about disjointness to present a less cluttered diagram:

Observation

o

Stimulus Sensor

Property

Sensing

includesEvent
observedBy

observedProperty

sensingMethod

Used

For all Observation o

SensorOutput

observation

Result

FeatureOf

Interest

featureOf

Interest

Here, of note is the use of a rectangle around the closed curve labelled Feature-
OfInterest. The rectangle is used to assert that we are not making any claim
about the disjointness of FeatureOfInterest with respect to the other concepts
appearing in the diagram.

To allow the reader to draw contrast with description logic, the role restric-
tions just given are expressed by 21 description logic axioms, comprising 15 dis-
jointness axioms and the following 6 axioms that correspond to the information
provided by the six arrows:
1. Observation � ∃ includesEvent.Stimulus
2. Observation � (= 1 observedBy) � (∀ observedBy.Sensor)
3. Observation � (= 1 observedProperty) � (∀ observedProperty.Property)
4. Observation � (= 1 sensingMethodUsed) � (∀ sensingMethodUsed.Sensing)
5. Observation � ∀ ObservationResult.SensorOutput
6. Observation � (= 1 FeatureOfInterest) � (∀ FeatureOfInterest.FeatureOfInterest)
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Consider axiom 2, which corresponds to the arrow labelled observedBy. From
the description logic axiom, a little reasoning is required to see that every ob-
servation is related to exactly one individual, which must be a sensor: one must
deduce this from the information that Observation is subsumed by the set of in-
dividuals that are related to exactly one thing under observedBy intersected with
the set of individuals that are related to only properties under observedBy. In
our opinion, the diagram more readily conveys the informational content of the
axioms than the description logic syntax and in a more succinct way (although
this, of course, could be debated).

To conclude this section, we summarize main syntax of concept diagrams:

1. Rectangles. These are used to represent the concept Thing.
2. Closed Curves. These are used to represent concepts. If the curve does

not have a label then the concept is anonymous. The spatial relationships
between the curves gives information about subsumption and disjointness
relationships.

3. Dots. These are used to represent individuals. As with closed curves, unla-
belled dots represent anonymous individuals. The location of the dot gives
information about the type of the individual. Distinct dots represent distinct
individuals. When many dots are present in a region, we may use ≤, =, and
≥ as shorthand annotations (this will be demonstrated later).

4. Shading. Shading in a region asserts that the concept represented by the
region contains only individuals represented by dots.

5. Solid Arrows. These are used to represent role restrictions. In particular,
the image of the role whose label appears on the arrow has an image, when
the domain is restricted to (the concept or individual represented by) the
source, is equal to the target.

6. Dashed Arrows. These are used to represent role restrictions. In particular,
the image of the role whose label appears on the arrow has an image, when
the domain is restricted to the source, which is a superset of the target.

In addition, quantifiers and connectives can be used in the standard way.

4 Discussion

We will now extract, from the case study that we have presented, some gen-
eral constructions of diagrams, from description logic axioms. Moreover, we will
show how to take these simple axioms and merge them into more complex ax-
ioms, by providing inference rules. These inference rules are inspired by the
manner in which we produced our visualization of the SSN ontology, aiming
for diagrams with minimal clutter, without compromising their informational
content.

With regard to subclass and disjointness information, where C and D are
concepts, we have the following translations:
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C D C D

C

D

However, using these translations would give one diagram for every disjoint-
ness, subsumption and equivalence axiom in the ontology. As we have seen, it is
possible to produce readable diagrams that correspond to many axioms of the
kind just given (all of our diagrams that conveyed concept hierarchy information
expressed more than one description logic axiom). There is clearly a requirement
on the ontology deverloper to determine a balance between the number of ax-
ioms like these conveyed in a single diagram and the clutter in a diagram. Our
diagrams were drawn in a manner that concepts were only in the same diagram
if we wanted to assert something about their relationship. Later, we will give
some general rules for merging these simple diagrams into larger diagrams.

As we saw earlier, we can readily translate information about ‘only’ or ‘some’
role restrictions into diagrammatic form. For example, in the Sensor concept, we
have Sensor detects only Stimulus and Sensor implements some Sensing. Abstract-
ing from this, and including more general constraints, we have role restrictions
of these forms, where C and D are concepts and R is a role:

C
c

R

For all C c

D

C
c

R

For all C c

D

C
c

R

For all C c

D
...

n copies

In the above, instead of drawing n dots, we could use one dot annotated with
≥ n as shorthand which is sensible if n gets beyond, say, 4. We can also adopt this
shorthand for ≤ n; we recall that shading is used to place upper bounds on set
cardinality, generalizing the use of shading in Euler diagrams, in a shaded region
all elements must be represented by dots. We now give two further translations:

C
c

R

For all C c

D

C
c

R

For all C c

D
...

n copies
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Again, in the diagram just given, we could have used the shorthand = n.
The above translations demonstrate how to produce concept diagrams from

role restrictions defined using description logic. These translations are sound
and, in fact, information preserving. As with the hierarchy information, there
are often more succinct, elegant diagrams that can be created by representing
many of these axioms in a single diagram. We will call the diagrams obtained
by applying the transformations just given atomic axioms. We now demonstrate
how to produce non-atomic axioms (like the diagrams given in the SSN ontology)
from atomic axioms.

We begin by giving some inference rules that allow us to replace some axioms
with others; in many cases there are obvious generalizations of the inference
rules. We adopt a traditional presentation style, where axioms written above a
line can be used to infer those written below the line. Each rule has a name,
displayed in shorthand: Dis for Disjunction, Sub for Subsumption, and Mer for
Merge. All of these rules are equivalences (no informational content is lost) and
can be formalized and proved sound, but here we just present them informally
using illustrative diagrams. First we have, concerning hierarchy information:

C D C E D E

D EC
Dis1

C D
D

E

C D
E

Sub1

C
D

D
E

D
E

C

Sub2

For instance, Dis1 says three axioms that tell us three concepts are pairwise
disjoint is equivalent to a single diagram telling us that the concepts are pairwise
disjoint. Sub1, tells us, roughly speaking, that if D appears in one axiom, a, and
we know that E is subsumed by D then we can copy E into a, placing it inside
D. Sub2 is another instance of this kind of inference.

Regarding role restrictions, we have seen that it is possible to use information
about disjointness when creating these kinds of axioms. For instance, if we know
that C and D are disjoint then we can simplify an axiom that tells us C is sub-
sumed by ∀R.D: we do not have to place D in a separate box. This intuition is
captured by our first role restriction rule, Dis2. Our second role restriction rule,
Mer1, takes atomic axioms arising from C � ∀R.D and C � ∀S.E and merges
them into a single diagram. Rule Mer2 is similar.
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C D
C

c

R

For all C c

D

C D
C

c

R

For all C c

D

Dis2

C

c

R

For all C c

D C

c

S

For all C c

E

C

c

S

For all C c

D

R

E

Mer1

C

c

R

For all C c

D C

c

R

For all C c

D

=n

C

c

R

For all C c

D

=n

Mer2

To demonstrate the use of these inference rules, we consider the example from
the SSN network concerning Sensor on page 265. Translating the associated de-
scription logic axioms numbered 1, 3, 5, 7, and 9, using the techniques of the
previous subsection, we get the following five diagrams:

Axiom 1:

Sensor

s

detects

For all Sensor s

Stimulus

Axiom 3:

Sensor

s

implements

For all Sensor s

Sensing

Axiom 5:

Sensor Stimulus

Axiom 7:

Sensor Sensing

Axiom 9:

Sensing Stimulus

Using the rule Mer2, from axioms 1 and 3 we obtain:

Sensor

s

implements

For all Sensor s

Sensing

Stimulus
detects

Using axiom 5, and a generalization of Dis2, we can delete the rectangle around
Stimulus (since Stimulus and Sensor are disjoint):

Sensor

s

implements

For all Sensor s

Sensing

Stimulus
detects
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Using axioms 7 and 9, we further deduce:

Sensor

s

implements

For all Sensor s

Sensing

Stimulus
detects

We leave it to the reader to use these kinds of manipulations to obtain the
single diagram given for the role restrictions imposed over the Sensor concept.

5 Conclusion

In this paper we have discussed the need for sophisticated ontology visualization
techniques that will allow disparate groups of ontology developers and users to
communicate effectively. Concept diagrams are a visual notation that were de-
veloped with this need in mind. We have used concept diagrams to produce a
visualization of (part of) the Semantic Sensor Network ontology, including in-
formation about the concept hierarchy and role restrictions. Thus, this paper
demonstrates that concept diagrams can be applied to modelling real-world on-
tologies. Concept diagrams may undergo further refinement as more case studies
are developed and as they are applied in other domains.

An important future development is the implementation of tool support. We
envisage developing tools which allow the automatic conversion of symbolically
specified ontologies to concept diagrams. This will involve solving challenging
problems, such as identifying what constitutes an effective diagram (as shown
in this paper, there are different diagrams that convey the same information)
and how to automatically draw chosen diagrams from abstract descriptions of
them. This functionality could build on recent advances in automated Euler di-
agram drawing [15,18,19], although the layout problem for concept diagrams is
more challenging. In addition, we want to allow ontology creators to be able to
specify the axioms directly with concept diagrams, which may require a sketch
recognition engine to be devised; this could also build on recent work that rec-
ognizes sketches of Euler diagrams [20]. These automatically drawn sketches can
be translated into symbolic form, so that we can make use of sophisticated tool
support that already exists for ontology development.
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Abstract. In this paper, we present LogMap—a highly scalable ontol-
ogy matching system with ‘built-in’ reasoning and diagnosis capabilities.
To the best of our knowledge, LogMap is the only matching system that
can deal with semantically rich ontologies containing tens (and even hun-
dreds) of thousands of classes. In contrast to most existing tools, LogMap
also implements algorithms for ‘on the fly’ unsatisfiability detection and
repair. Our experiments with the ontologies NCI, FMA and SNOMED
CT confirm that our system can efficiently match even the largest ex-
isting bio-medical ontologies. Furthermore, LogMap is able to produce
a ‘clean’ set of output mappings in many cases, in the sense that the
ontology obtained by integrating LogMap’s output mappings with the
input ontologies is consistent and does not contain unsatisfiable classes.

1 Introduction

OWL ontologies are extensively used in biology and medicine. Ontologies such as
SNOMED CT, the National Cancer Institute Thesaurus (NCI), and the Foun-
dational Model of Anatomy (FMA) are gradually superseding existing medical
classifications and are becoming core platforms for accessing, gathering and shar-
ing bio-medical knowledge and data.

These reference bio-medical ontologies, however, are being developed indepen-
dently by different groups of experts and, as a result, they use different entity
naming schemes in their vocabularies. As a consequence, to integrate and mi-
grate data among applications, it is crucial to first establish correspondences (or
mappings) between the vocabularies of their respective ontologies.

In the last ten years, the Semantic Web and bio-informatics research com-
munities have extensively investigated the problem of automatically computing
mappings between independently developed ontologies, usually referred to as the
ontology matching problem (see [8] for a comprehensive and up-to-date survey).

The growing number of available techniques and increasingly mature tools,
together with substantial human curation effort and complex auditing protocols,
has made the generation of mappings between real-world ontologies possible.
For example, one of the most comprehensive efforts for integrating bio-medical
ontologies through mappings is the UMLS Metathesaurus (UMLS) [2], which
integrates more than 100 thesauri and ontologies.

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 273–288, 2011.
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However, despite the impressive state of the art, modern bio-medical ontolo-
gies still pose serious challenges to existing ontology matching tools.

Insufficient scalability. Although existing matching tools can efficiently deal
with moderately sized ontologies, large-scale bio-medical ontologies such as NCI,
FMA or SNOMED CT are still beyond their reach. The largest test ontologies
in existing benchmarks (e.g., those in the OAEI initiative) contain around 2000-
3000 classes (i.e., with several million possible mappings); however, to the best of
our knowledge, no tool has been able to process ontologies with tens or hundreds
of thousands of classes (i.e., with several billion possible mappings).

Logical inconsistencies. OWL ontologies have well-defined semantics based on
first-order logic, and mappings are commonly represented as OWL class axioms.
Hence, the ontology O1 ∪ O2 ∪M resulting from the integration of O1 and O2

via mappings M may entail axioms that don’t follow from O1, O2, or M alone.
Many such entailments correspond to logical inconsistencies due to erroneous
mappings in M, or to inherent disagreements between O1 and O2. Recent work
has shown that even the integration of ontologies via carefully-curated map-
pings can lead to thousands such inconsistencies [9,5,16,13] (e.g., the integration
of FMA-SNOMED via UMLS yields over 6, 000 unsatisfiable classes). Most ex-
isting tools are based on lexical matching algorithms, and may also exploit the
structure of the ontologies or access external sources such as WordNet; however,
these tools disregard the semantics of the input ontologies and are thus unable
to detect and repair inconsistencies. Although the first reasoning-based tech-
niques for ontology matching were proposed relatively early on (e.g., S-Match
[10]), in practice reasoning is known to aggravate the scalability problem (e.g., no
reasoner known to us can classify the integration NCI-SNOMED via UMLS). De-
spite the technical challenges, there is a growing interest in reasoning techniques
for ontology matching. In particular, there has been recent work on ‘a-posteriori’
mapping debugging [12,13,14,15], and a few matching tools (e.g., ASMOV [11],
KOSIMap [21], CODI [19,20]) incorporate techniques for ‘on the fly’ semantic
verification.

In this paper, we present LogMap—a novel ontology matching tool that ad-
dresses both of these challenges. LogMap implements highly optimised data
structures for lexically and structurally indexing the input ontologies. These
structures are used to compute an initial set of anchor mappings (i.e., ‘almost
exact’ lexical correspondences) and to assign a confidence value to each of them.
The core of LogMap is an iterative process that, starting from the initial anchors,
alternates mapping repair and mapping discovery steps. In order to detect and
repair unsatisfiable classes ‘on the fly’ during the matching process, LogMap
implements a sound and highly scalable (but possibly incomplete) ontology rea-
soner as well as a ‘greedy’ diagnosis algorithm. New mappings are discovered
by iteratively ‘exploring’ the input ontologies starting from the initial anchor
mappings and using the ontologies’ extended class hierarchy.

To the best of our knowledge, LogMap is the only matching tool that has
shown to scale for rich ontologies with tens (even hundreds) of thousands of
classes. Furthermore, LogMap is able to produce an ‘almost clean’ set of output
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Fig. 1. LogMap in a nutshell

mappings between FMA, SNOMED and NCI; as shown ‘a posteriori’ using a
fully-fledged DL reasoner, LogMap only failed to detect one unsatisfiable class
(out of a total of several thousands) when integrating these large-scale ontologies.

2 The Anatomy of LogMap

We next provide an overview of the main steps performed by LogMap, which
are schematically represented in Figure 1.

1. Lexical indexation. The first step after parsing the input ontologies is their
lexical indexation. LogMap indexes the labels of the classes in each ontology
as well as their lexical variations, and allows for the possibility of enriching
the indexes by using an external lexicon (e.g., WordNet or UMLS-lexicon).

2. Structural indexation. LogMap uses an interval labelling schema [1,4,18]
to represent the extended class hierarchy of each input ontology. Each ex-
tended hierarchy can be computed using either simple structural heuristics,
or an off-the-shelf DL reasoner.

3. Computation of initial ‘anchor mappings’. LogMap computes an initial
set of equivalence anchor mappings by intersecting the lexical indexes of each
input ontology. These mappings can be considered ‘exact’ and will later serve
as starting point for the further discovery of additional mappings.

4. Mapping repair and discovery. The core of LogMap is an iterative pro-
cess that alternates repair and discovery steps.
– In the repair step, LogMap uses a sound and highly scalable (but possibly

incomplete) reasoning algorithm to detect classes that are unsatisfiable
w.r.t. (the merge of) both input ontologies and the mappings computed
thus far. Then, each of these undesirable logical consequences is auto-
matically repaired using a ‘greedy’ diagnosis algorithm.

– To discover new mappings, LogMap maintains two contexts (sets of ‘se-
mantically related’ classes) for each anchor. Contexts for the same an-
chor are expanded in parallel using the class hierarchies of the input
ontologies. New mappings are then computed by matching the classes
in the relevant contexts using ISUB [23]—a flexible tool that computes
a similarity score for any pair of input strings. This mapping discov-
ery strategy is based on a principle of locality: if classes C1 and C2 are
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Table 1. Fragment of the lexical indexes for NCI and FMA ontologies

Inverted index for NCI labels Index for NCI class URIs

Entry Cls ids Cls id URI

secretion 49901 49901 NCI:CellularSecretion
cellular,secretion 49901 37975 NCI:Trapezoid
cellular,secrete 49901 62999 NCI:TrapezoidBone
trapezoid 37975,62999 60791 NCI:Smegma
trapezoid,bone 62999
smegma 60791

Inverted index for FMA labels Index for FMA class URIs

Entry Cls ids Cls id URI

secretion 36792 36792 FMA:Secretion
bone,trapezoid 20948,47996 47996 FMA:Bone of Trapezoid
trapezoid 20948 20948 FMA:Trapezoid
smegma 60947 60947 FMA:Smegma

correctly mapped, then the classes semantically related to C1 in O1 are
likely to be mapped to those semantically related to C2 in O2.

LogMap continues the iteration of repair and discovery steps until no context
is expanded in the discovery step. The output of this process is a set of
mappings that are likely to be ‘clean’—that is, it will not lead to logical
errors when merged with the input ontologies (c.f., evaluation section).

5. Ontology overlapping estimation. In addition to the final set of map-
pings, LogMap computes a fragment of each input ontology, which intuitively
represent the ‘overlapping’ between both ontologies. When manually looking
for additional mappings that LogMap might have missed, curators can re-
strict themselves to these fragments since ‘correct’ mappings between classes
not mentioned in these fragments are likely to be rare.

2.1 Lexical Indexation

LogMap constructs an ‘inverted’ lexical index (see Table 1) for each input on-
tology. This type of index, which is commonly used in information retrieval
applications, will be exploited by LogMap to efficiently compute an initial set of
anchor mappings.

The English name of ontology classes as well as their alternative names (e.g.,
synonyms) are usually stored in OWL in label annotations. LogMap splits each
label of each class in the input ontologies into components; for example, the NCI
class ‘cellular secretion’ is broken into its component English words ‘cellular’ and
‘secretion’. LogMap allows for the use of an external lexicon (e.g., UMLS lexicon1

or WordNet) to find both their synonyms and lexical variations; for example,
UMLS lexicon indicates that ‘secrete’ is a lexical variation of ‘secretion’.

1 UMLS Lexicon, unlike WordNet, provides only normalisations and spelling variants.
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LogMap groups the component words of each class label and their variations
into sets, which will then constitute the key of an inverted index. For example,
the inverted index for NCI contains entries for the sets ‘cellular, secretion’ and
‘cellular, secrete’. The range of the index is a numerical ID that LogMap asso-
ciates to each corresponding class (see Table 1). Thus, in general, an entry in
the index can be mapped to several classes (e.g., see ‘trapezoid’ in Table 1) .

The use of external lexicons to produce a richer index is optional and LogMap
allows users to select among well-known lexicons depending on the application.

These indexes can be efficiently computed and bear a low memory overhead.
Furthermore, they only need to be computed once for each input ontology.

2.2 Structural Indexation

LogMap exploits the information in the (extended) class hierarchy of the input
ontologies in different steps of the matching process. Thus, efficient access to the
information in the hierarchies is critical for LogMap’s scalability.

The basic hierarchies can be computed by either using structural heuristics,
or an off-the-shelf DL reasoner. LogMap bundles HermiT [17] and Condor [22],
which are highly optimised for classification. Although DL classification might
be computationally expensive, it is performed only once for each ontology.

The class hierarchies computed by LogMap are extended—that is, they con-
tain more information than the typical classification output of DL reasoners. In
particular, LogMap exploits information about explicit disjoint classes, as well as
the information in certain complex class axioms (e.g., those stating subsumption
between an intersection of named classes and a named class).

These extended hierarchies are indexed using an interval labelling schema—an
optimised data structure for storing DAGs and trees [1]. The use of an interval
labelling schema has been shown to significantly reduce the cost of computing
typical queries over large class hierarchies [4,18].

In this context, the ontology hierarchy is treated as two DAGs: the descendants
DAG representing the descendants relationship, and the ancestors DAG, which
represents the ancestor relationship. Each named class C in the ontology is
represented as a node in each of these DAGs, and is associated with the following
information (as in [18]).

– Descendants preorder number: predesc(C) is the order in which C is
visited using depth-first traversal of the descendants DAG.

– Ancestors preorder number: preanc(C) is the preorder number of C in
the ancestors DAG.

– Topological order: deepest associated level within the descendants DAG.
– Descendants interval: the information about descendants of C is encoded

using the interval [predesc(C), maxpredesc(C)], where maxpredesc(C) is the
highest preorder number of the children of C in the descendants DAG.

– Ancestors interval: the information about ancestors of C is encoded using
the interval [preanc(C),maxpreanc(C)] where maxpreanc(C) is the highest
(ancestor) preorder number of the parents of C in the ancestors DAG.
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Fig. 2. NCI extended hierarchies. Abbreviations: BP=BiologicalProcess, A=Anatomy,
TT=TransmembraneTransport, CM=CellularMembrane, EGF=ExocrineGlandFluid,
CS=CellularSecretion, ES=ExocrineSystem, S=Smegma

Figure 2 shows a fragment of NCI and its labelled (entailed) hierarchy. Disjoint-
ness and complex class axioms are represented in a separate structure that also
uses integer intervals.

The interval labelling schemas provides LogMap with an interface to efficiently
answer queries about taxonomic relationships. For example, the following typical
queries over ontology hierarchies only require simple integer operations (please,
refer to Figure 2 for the class label abbreviations):

– ‘Is Smegma a subclass of Anatomy?’ : check if predesc(S)=7 is contained in
descendants interval [predesc(A), maxpredesc(A)]=[5,9];

– ‘Do Smegma and CellularSecretion have ancestors in common?’ : check if
the intersection of ancestors intervals [preanc(S), maxpreanc(S)]=[5,7] and
[preanc(CS), maxpreanc(CS)]=[2,4] is non-empty.
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Table 2. Fragment of the intersection between the inverted indexes for FMA and NCI

Entry FMA ids NCI ids Mappings

secretion 36792 49901 FMA:Secretion ≡ NCI:CellularSecretion

smegma 60947 60791 FMA:Smegma ≡ NCI:Smegma

trapezoid 20948
37975, FMA:Trapezoid ≡ NCI:Trapezoid
62999 FMA:Trapezoid ≡ NCI:TrapezoidBone

trapezoid,bone
20948,

62999
FMA:Trapezoid ≡ NCI:TrapezoidBone

47996 FMA:Bone of Trapezoid ≡ NCI:TrapezoidBone

2.3 Computing Anchor Mappings

LogMap computes an initial set of anchor mappings by simply intersecting the
inverted indexes of the input ontologies (i.e., by checking whether two lexical
entries in the indexes of the input ontologies contain exactly the same strings).
Anchor computation is hence extremely efficient. Table 2 shows the result of
intersecting the inverted indexes of Table 1, which yields five anchor mappings.

Given an anchor m = (C1 ≡ C2), LogMap uses the string matching tool ISUB
to match the neighbours of C1 in the ontology hierarchy of O1 to the neighbours
of C2 in the hierarchy of O2. LogMap then assigns a confidence value to m by
computing the proportion of matching neighbours weighted by the ISUB simi-
larity values. This technique is based on a principle of locality: if the hierarchy
neighbours of the classes in an anchor match with low confidence, then the an-
chor may be incorrect. For example, LogMap matches classes FMA:Trapezoid and
NCI:Trapezoid (see Table 2). However, NCI:Trapezoid is classified as a polygon
whereas FMA:Trapezoid is classified as a bone. LogMap assigns a low confidence
to such mappings and hence they will be susceptible to be removed during repair.

2.4 Mapping Repair and Discovery

The core of LogMap is an iterative process that alternates mapping repair and
mapping discovery steps. In each iteration, LogMap maintains two structures.

– A working set of active mappings, which are mappings that were discovered
in the immediately preceding iteration. Mappings found in earlier iterations
are established, and cannot be eliminated in the repair step. In the first
iteration, the active mappings coincide with the set of anchors.

– For each anchor, LogMap maintains two contexts (one per input ontology),
which can be expanded in different iterations. Each context consists of a set
of classes and has a distinguished subset of active classes, which is specific
to the current iteration. In the first iteration, the contexts for an anchor
C1 ≡ C2 are {C1} and {C2} respectively, which are also the active classes.

Thus, active mappings are the only possible elements of a repair plan, whereas
contexts constitute the basis for mapping discovery.
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Table 3. Propositional representations of FMA, NCI, and the computed mappings

Propositional FMA (P1) Propositional NCI (P2)

(1) Smegma → Secretion (8) Smegma → ExocrineGlandFluid

(2) Secretion → PortionBodySusbstance (9) ExocrineGlandFluid → Anatomy

(3) PortionBodySusbstance → AnatomicalEntity (10) CellularSecretion → TransmembraneTransport

Computed mappings (PM) (11) TransmembraneTransport → TransportProcess

(m4) FMA:Secretion → NCI:CellularSecretion (12) TransportProcess → BiologicalProcess

(m5) NCI:CellularSecretion → FMA:Secretion (13) Anatomy ∧ BiologicalProcess → false

(m6) FMA:Smegma → NCI:Smegma (14) ExocrineGlandFluid ∧ ExfolCells → Smegma

(m7) NCI:Smegma → FMA:Smegma

TRUE

FALSEFMA:AnatomicalEntity
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FMA:Smegma
0

1
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Fig. 3. Graph representation of Horn-clauses in Table 3
.

Mapping Repair. LogMap uses a Horn propositional logic representation of
the extended hierarchy of each ontology together with all existing mappings
(both active and established). As an example, Table 3 shows Horn clauses ob-
tained from the extended hierarchies of FMA and NCI (which have been com-
puted using a DL reasoner), and the anchor mappings computed by LogMap.
As shown in the table, LogMap splits each equivalence mapping into two Horn
clauses.

The use of a propositional Horn representation for unsatisfiability detection
and repair is key to LogMap’s scalability since DL reasoners do not scale well
with the integration of large ontologies via mappings. The scalability problem is
exacerbated by the number of unsatisfiable classes (more than 10,000 found by
LogMap when integrating SNOMED and NCI using only anchors) and the large
number of additional reasoner calls required for repairing each unsatisfiability.

Unsatisfiability checking. LogMap implements the well-known Dowling-Gallier
algorithm [7] for propositional Horn satisfiability, and calls the Dowling-Gallier
module once (in each repair step) for each class. Our implementation takes as
input a class C (represented as a propositional variable) and determines the
satisfiability of the propositional theory PC consisting of
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– the rule (true → C);
– the propositional representations P1 and P2 (as in Table 3) of the extended

hierarchies of the input ontologies O1 and O2; and
– the propositional representation PM of the mappings computed thus far.

We make the following important observations concerning our encoding of the
class satisfiability problem into propositional logic.

– Our encoding is sound. If the propositional theory PC is unsatisfiable, then
the class C is indeed unsatisfiable w.r.t. the DL ontology O1∪O2∪M, where
O1 and O2 are the input ontologies and M is the set of mappings computed
so far by LogMap (represented as DL concept inclusions)

– Due to the properties of the Dowling-Gallier algorithm, our encoding is
worst-case linear in the size of PC . Furthermore, the total number of calls
to the Dowling-Gallier module is also linear in the number of classes of O1

and O2. As shown in the evaluation section, these favourable computational
properties are key to the scalability of LogMap.

– Our encoding is incomplete, and hence we might be reporting unsatisfiable
classes as satisfiable. Incompleteness is, however, mitigated by the following
facts. First, the extended hierarchies of O1 and O2 have been computed
using a complete reasoner and many consequences that depend on non-
propositional reasoning have already been pre-computed. Second, mappings
computed by LogMap (and by most ontology matching tools) correspond to
Horn rules. For example, as shown in our experiments, LogMap only failed
to report one unsatisfiable class for FMA-NCI (from more than 600).

A complete description of the Dowling and Gallier algorithm can be found in [7].
As an example, consider Figure 3, which shows the graph representation of all
propositional clauses that are involved in the unsatisfiability of the class Smegma
in FMA. Each node represents a propositional variable in Table 3; furthermore,
the graph contains a directed edge labelled with a propositional rule r from
variable C to variable D if the head of r is D and C occurs in the body of r.
Note that there is a path from true to NCI:BiologicalProcess and a path from true
to NCI:Anatomy which involve only rules with a single variable in the antecedent;
furthermore, the variables NCI:BiologicalProcess and NCI:Anatomy constitute the
body of rule (13), whose head is precisely false.

Computing repair plans. LogMap computes a repair for each unsatisfiable class
identified in the input ontologies. Given an unsatisfiable class C and the propo-
sitional theory PC , a repair R of PC is a minimal subset of the active mappings
in PM such that PC \ R is satisfiable.

To facilitate computation of repairs, LogMap extends Dowling-Gallier’s
algorithm to record all active mappings (Pact) that may be involved in each
unsatisfiability. For our example in Figure 3, LogMap records the active map-
pings Pact = {m4, m5, m6, m7}, which may be relevant to the unsatisfiability of
FMA:Smegma. This information is used in the subsequent repair process.

To improve scalability, repair computation is based on the ‘greedy’ algorithm
in Table 4. Unsatisfiable classes in each ontology are ordered by their topological
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Table 4. Repair in LogMap. A call to DowlingGallier returns a satisfiability value sat
and, if sat = false, it optionally returns the relevant active mappings (Pact).

Procedure Repair
Input: List: Ordered classes; P1, P2 and PM Horn-propositional theories.
Output: PM : set of repaired mappings

1: for each C ∈ List do
2: PC := P1 ∪ P2 ∪ PM ∪ {true → C}
3: 〈sat,Pact〉 := DowlingGallier(PC)
4: if sat = false then
5: Repairs := ∅
6: repair size := 1
7: repeat
8: for each subset R of Pact of size repair size do
9: sat := DowlingGallier(PC \ R)

10: if sat = true then Repairs := Repairs∪ {R}
11: end for
12: repair size := repair size + 1
13: until |Repairs| > 0
14: R := element of Repairs with minimum confidence.
15: PM := PM \ R
16: end if
17: end for
18: return PM

level in the hierarchy. Since subclasses of an unsatisfiable class are unsatisfiable,
repairing first classes high-up in the hierarchy is a well-known repair strategy.

Given each unsatisfiable class C and the relevant active mappings Pact com-
puted using Dowling-Gallier, the algorithm identifies subsets of Pact of increasing
size until a repair is found. Thus, our algorithm is guaranteed to compute all re-
pairs of smallest size. In our example, our algorithm computes repairsR1 = {m4}
and R2 = {m6} consisting of only one mapping. If more than one repair is found,
LogMap selects the one with the minimum confidence value.

Finally, each equivalence mapping is split into two propositional rules, which
are treated independently for repair purposes. Hence, a repair may include only
one such rule, thus ‘weakening’ the mapping, as in the case of R1 and R2.

Mapping Discovery. LogMap computes new mappings by first expanding the
contexts Cm

1 and Cm
2 for each anchor m, and then (incrementally) matching the

classes in Cm
1 to those in Cm

2 using ISUB, as described next.

Context expansion. LogMap only expands contexts that are open (i.e., with at
least one active class). The expansion of an open context is performed by adding
each neighbour (in the corresponding class hierarchy) of an active class in the
context. The set of active classes in each context is then reset to the empty set.

Context matching using ISUB. LogMap makes a call to ISUB for each pair of
classes C ∈ Cm

1 and D ∈ Cm
2 , but only if the same call has not been performed
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in previous discovery steps (for these or other contexts). Thus, LogMap never
calls ISUB twice for the same input classes. We call relevant those ‘new’ lexical
correspondences found by ISUB (in the current iteration) with a similarity value
exceeding a given expansion threshold.

LogMap uses these relevant correspondences to determine the set of active
classes of Cm

1 and Cm
2 for the next iteration as well as the set of new mappings.

– The new active classes of Cm
1 and Cm

2 are those that participate in some
relevant correspondence.

– The current set of mappings is expanded with those relevant correspondences
with similarity value exceeding a mapping threshold (which is higher than the
expansion threshold). These new mappings will constitute the set of active
mappings for the next repair step.

The use of ISUB allows LogMap to discover new mappings that, unlike anchors,
are not lexically ‘exact’ (but with similarity higher than the mapping threshold).
The number of ISUB tests performed is relatively small: only contexts for the
same anchor are matched using ISUB, the same ISUB call is never performed
twice, and context growth is limited by the expansion threshold.

2.5 Overlapping Estimation

In addition to the mappings, LogMap also returns two (hopefully small) frag-
ments O′

1 and O′
2 of O1 and O2, respectively. Intuitively, O′

1 and O′
2 represent

the ‘overlapping’ between O1 and O2, in the sense that each ‘correct’ mapping
not found by LogMap is likely to involve only classes in these fragments. Thus,
domain experts can focus only on O′

1 and O′
2 when looking for missing mappings

between O1 and O2. The computation of O′
1 and O′

2 is performed in two steps.

1. Computation of ‘weak’ anchors. Recall that LogMap computed the initial
anchors by checking whether two entries in the inverted index of O1 and O2

contained exactly the same set of strings (c.f., Section 2.3). For the purpose of
overlapping estimation (only), LogMap also computes new anchor mappings
that are ‘weak’ in the sense that the relevant entries in the inverted index are
only required to contain some common string. Thus, weak anchors represent
correspondences between classes that have a common lexical component.

2. Module extraction. The sets Si of classes in Oi involved in either a weak
anchor or a mapping computed by LogMap are then used as ‘seed’ signa-
tures for module extraction. In particular, O′

1 (resp. O′
2) are computed by

extracting a locality-based module [6] for S1 in O1 (resp. for S2 in O2).

Note that, unlike anchors, ‘weak anchors’ are not well-suited for mapping
computation since they rarely correspond to real mappings, and hence they
introduce unmanageable levels of ‘noise’. For example, the discovered correspon-
dence NCI:CommonCarotidArteryBranch ∼ FMA:BranchOfCommonCochlearArtery
is a weak anchor between NCI and FMA because both classes share the terms
‘branch’, ‘common’ and ‘artery’; however, such correspondence is clearly not a
standard mapping since none of the involved classes is subsumed by the other.
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Table 5. Repairing Gold Standards. The � column indicates subsumption mappings.
The % of total mappings includes those ‘weakened’ from equivalence to subsumption.

GS Mappings Repaired Mappings

Ontologies Total Unsat. Total � Time (s)

FMA-NCI 3,024 655 (96%) 2,898 78 10.6

FMA-SNOMED 9,072 6,179 (89%) 8,111 1,619 81.4

SNOMED-NCI 19,622 20,944 (93%) 18,322 837 812.4

Mouse-NCIAnat. 1,520 0 1,520 - -

3 Evaluation

We have implemented LogMap in Java and evaluated it using a standard laptop
computer with 4 Gb of RAM.

We have used the following ontologies in our experiments: SNOMED CT Jan.
2009 version (306, 591 classes); NCI version 08.05d (66, 724 classes); FMA version
2.0 (78, 989 classes); and NCI Anatomy (3, 304 classes) and Mouse Anatomy
(2, 744 classes), both from the OAEI 2010 benchmark [8]. Classification times
for these ontologies were the following: 89s for SNOMED, 575s for NCI, 28s for
FMA, 1s for Mouse Anatomy, and 3s for NCI Anatomy.2 We have performed
the following experiments,3 which we describe in detail in the following sections.

1. Repair of gold standards. We have used LogMap’s mapping repair module
(c.f. Section 2.4) to automatically repair the mappings in two gold standards:
– The mappings FMA-NCI, FMA-SNOMED and SNOMED-NCI included

in UMLS Metathesaurus [2] version 2009AA;4 and
– the OAEI 2010 anatomy track gold standard [3].

2. Matching large ontologies. We have used LogMap to match the following
pairs of ontologies: FMA-NCI, FMA-SNOMED, SNOMED-NCI, and Mouse
Anatomy-NCI Anatomy. To the best of our knowledge, no tool has so far
matched FMA, NCI and SNOMED; hence, we only compare our results with
other tools for the case of Mouse Anatomy-NCI Anatomy.

3. Overlapping estimation. We have used LogMap to estimate the overlapping
between our test ontologies as described in Section 2.5.

3.1 Repairing Gold Standards

Table 5 summarises our results. We can observe the large number of UMLS map-
pings between these ontologies (e.g., almost 20, 000 for SNOMED-NCI). Using
LogMap we could also detect a large number of unsatisfiable classes (ranging
from 655 for FMA-NCI to 20, 944 for SNOMED-NCI), which could be repaired
efficiently (times range from 10.6s for FMA-NCI to 812.4s for SNOMED-NCI).

2 We used ConDOR [22] to classify SNOMED, and HermiT [17] for the others.
3 Output resources available in: http://www.cs.ox.ac.uk/isg/projects/LogMap/
4 The mappings are extracted from the UMLS distribution files (see [13] for details).

http://www.cs.ox.ac.uk/isg/projects/LogMap/
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Table 6. Mappings computed by LogMap

Found Mapp. Output Mapp. Time (s)

Ontologies Total Unsat. Total � Anchors Total

FMA-NCI 3,185 597 (94%) 3,000 43 28.3 69.8

FMA-SNOMED 2,068 570 (99%) 2,059 32 35.6 92.2

SNOMED-NCI 14,250 10,452 (95%) 13,562 1,540 528.6 1370.0

Mouse-NCIAnat 1,369 32 (99%) 1,367 3 1.8 15.7

Finally, the repair process was not aggressive, as it resulted in the deletion of a
small number of mappings;5 for example, in the case of NCI and FMA LogMap
preserved 96% of the original mappings, and also managed to ‘weaken’ 78 equiv-
alence mappings into subsumption mappings (instead of deleting them).

We have used the reasoners HermiT and ConDOR to classify the merge of the
ontologies and the repaired mappings, thus verifying the results of the repair. For
FMA-NCI, we found one unsatisfiable class that was not detected by LogMap’s
(incomplete) reasoning algorithm. Unsatisfiability was due to a complex inter-
action of three ‘exact’ lexical mappings with axioms in NCI and FMA involving
existential and universal restrictions. For FMA-SNOMED and SNOMED-NCI
we could not classify the merged ontologies, so we extracted a module [6] of the
mapped classes in each ontology. For FMA-SNOMED we could classify the merge
of the corresponding modules and found no unsatisfiable classes. For SNOMED-
NCI no reasoner could classify the merge of the modules.

In the case of the Mouse Anatomy and NCI Anatomy ontologies from OEAI,
we found no unsatisfiable class using both LogMap and a DL reasoner.

3.2 Matching Large Ontologies

Table 6 summarises the results obtained when matching our test ontologies using
LogMap for a default expansion threshold of 0.70 and mapping threshold of 0.95.

The second and third columns in Table 6 indicate the total number of map-
pings found by LogMap (in all repair-discovery iterations), and the total number
of detected unsatisfiable classes, respectively. The fourth and fifth columns pro-
vide the total number of output mappings (excluding those discarded during
repair) and shows how many of those mappings were ‘weakened’ from equiv-
alence to simple subsumption during the repair process. We can observe that,
despite the large number of unsatisfiable classes, the repair process was not ag-
gressive and more than 94% (in the worst case) of all discovered mappings were
returned as output. Finally, the last two columns show the times for anchor
computation and repair, and the total matching time.6

Total matching time (including anchor computation and repair-discovery it-
erations) was less than two minutes for FMA-NCI and FMA-SNOMED. The

5 The repair process in our prior work was much more aggressive [13]; for example,
63% of UMLS for SNOMED-NCI were deleted.

6 Excluding only indexation time, which is negligible.
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Table 7. Precision and recall w.r.t. Gold Standard

Found Mappings Output Mappings

Ontologies Precision Recall F-score Precision Recall F-score

FMA-NCI 0.767 0.843 0.803 0.811 0.840 0.825

FMA-SNOMED 0.767 0.195 0.312 0.771 0.195 0.312

SNOMED-NCI 0.753 0.585 0.659 0.786 0.582 0,668

Mouse-NCIAnat 0.917 0.826 0.870 0.918 0.826 0.870

Table 8. Missed mappings by LogMap with respect to repaired gold standard

GS ISUB ≥ 0.95 GS ISUB ≥ 0.80 GS ISUB ≥ 0.50

Ontologies % Mapp. Recall % Mapp. Recall % Mapp. Recall

FMA-NCI 88% 0.96 93% 0.90 97% 0.87

FMA-SNOMED 21% 0.95 64% 0.30 92% 0.21

SNOMED-NCI 62% 0.94 75% 0.77 89% 0.65

Mouse-NCIAnat 75% 0.99 87% 0.95 95% 0.88

slowest result was obtained for SNOMED-NCI (20 minutes) since repair was
costly due to the huge number of unsatisfiable classes. We could only compare
performance with other tools for Mouse-NCIAnat (the largest ontology bench-
mark in the OAEI). LogMap matched these ontologies in 15.7 seconds, whereas
the top three tools in the 2009 campaign (no official times in 2010) required 19,
23 and 10 minutes, respectively; furthermore, the CODI tool, which uses sophis-
ticated logic-based techniques to reduce unsatisfiability, reported times between
60 to 157 minutes in the 2010 OAEI [20].

Table 7 shows precision and recall values w.r.t. our Gold Standards (the
‘clean’ UMLS-Mappings from our previous experiment and the mappings in the
anatomy track of the OAEI 2010 benchmark). The left-hand-side of the table
shows precision/recall values for the set of all mappings found by LogMap (by
disabling the repair module), whereas the right-hand-side shows precision/recall
for the actual set of output mappings. Our results can be summarised as follows:

– Although the main benefit of repair is to prevent logical errors, the table
shows that repair also increases precision without harming recall.

– In the case of Mouse-NCIAnat we obtained an F-score in line with the best
systems in the 2010 OAEI competition [8].

– Results for FMA-NCI were very positive, with both precision and recall ex-
ceeding 0.8. Although precision was also high for SNOMED-NCI and FMA-
SNOMED, recall values were much lower, especially for FMA-SNOMED.

We have analysed the reason for the low recall values for FMA-SNOMED and
SNOMED-NCI. Our hypothesis was that SNOMED is ‘lexically incompatible’
with FMA and NCI since it uses very different naming conventions. Results in
Table 8 support this hypothesis. Table 8 shows, on the one hand, the percentage
of gold standard mappings with an ISUB similarity exceeding a given threshold
and, on the other hand, the recall values for LogMap w.r.t. such mappings only.
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Table 9. Overlapping computed by LogMap

Ontologies Overlapping for O1 Overlapping for O2

O1-O2 O′
1 % O1 Recall O′

2 % O2 Recall

FMA-NCI 6,512 8% 0.95 12,867 19% 0.97

FMA-SNOMED 20,278 26% 0.92 50,656 17% 0.94

SNOMED-NCI 70,705 23% 0.86 33,829 51% 0.96

Mouse-NCIAnat 1,864 68% 0.93 1,894 57% 0.93

Note that LogMap could find in all cases more than 94% of the gold standard
mappings having ISUB similarity above 0.95. However, only 21% of the gold stan-
dard FMA-SNOMED mappings exceeded this value (in contrast to 88% between
FMA and NCI), showing that these ontologies use very different naming con-
ventions. To achieve a high recall for FMA-SNOMED mappings, LogMap would
need to use a mapping threshold of 0.5, which would introduce an unmanageable
amount of ‘noisy’ mappings, thus damaging both precision and scalability.

3.3 Overlapping Estimation

Our results concerning overlapping are summarised in Table 9, where O′
1 and

O′
2 are the fragments of the input ontologies computed by LogMap.
We can see that the output fragments are relatively small (e.g., only 8% of

FMA and 19% of NCI for FMA-NCI and only 26% of FMA and 17% of SNOMED
for FMA-SNOMED). Our results also confirm the hypothesis that ‘correct’ map-
pings involving an entity outside these fragments are rare. As shown in the table,
a minimum of 86% and a maximum of 97% of Gold Standard UMLS mappings
involve only classes in the computed fragments. Thus, these results confirm our
hypothesis even for FMA-SNOMED and SNOMED-NCI, where LogMap could
only compute a relatively small fraction of the Gold Standard mappings.

4 Conclusion and Future Work

In this paper, we have presented LogMap—a highly scalable ontology match-
ing tool with built-in reasoning and diagnosis capabilities. LogMap’s features
and scalability behaviour make it well-suited for matching large-scale ontolo-
gies. LogMap, however, is still an early-stage prototype and there is plenty of
room for improvement. We are currently working on further optimisations, and
in the near future we are planning to integrate LogMap with a Protege-based
front-end, such as the one implemented in our tool ContentMap [12].
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Royal Society and the EPSRC project LogMap, and also thank V. Nebot and R.
Berlanga for their support in our first experiments with structural indexation.
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Abstract. Typical tagging systems merely capture that part of the tag-
ging interactions that enrich the semantics of tag assignments according
to the system’s purposes. The common practice is to build tag-based re-
source or user profiles on the basis of statistics about tags, disregarding
the additional evidence that pertain to the resource, the user or the tag
assignment itself. Thus, the main bulk of this valuable information is
ignored when generating user or resource profiles.

In this work, we formalize the notion of tag-based and context-based
resource profiles and introduce a generic strategy for building such pro-
files by incorporating available context information from all parts in-
volved in a tag assignment. Our method takes into account not only
the contextual information attached to the tag, the user and the re-
source, but also the metadata attached to the tag assignment itself. We
demonstrate and evaluate our approach on two different social tagging
systems and analyze the impact of several context-based resource model-
ing strategies within the scope of tag recommendations. The outcomes of
our study suggest a significant improvement over other methods typically
employed for this task.

1 Introduction

One of the most popular innovations conveyed by Web 2.0 technologies is the
introduction of tagging, a novel method of annotating resources with relevant
keywords or terms in order to describe and enrich them with useful metadata.
In resource sharing systems like Flickr1, users mainly attach tags to their own
resources, while social tagging systems like Delicious2 enable users to create
tag assignments3 for any resource shared with the community (i.e., free-for-all
tagging [12]). Hence, there are two categories of tags: the personalized and the

1 See http://www.flickr.com
2 See http://www.delicious.com
3 A tag assignment is a user-tag-resource triple that describes which user assigned

which tag to which resource.
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collective ones [8]. Similarly, the benefits for the users are twofold: tags of the
former category facilitate the organization and management of the resources,
making search and retrieval more effective [11,20]; collective tags, on the other
hand, enhance the visibility of community content, associating relevant items
with the same annotation(s) [8,3].

Tag assignments are typically marked with subjectivity: different authors can
interpret the same tag in different ways. Although this conveys significant ben-
efits in the case of personalized tags, it also poses significant obstacles to the
usefulness of the collective ones: the purpose of a tag assignment is not always
clear to users other than its creator. For example, a tag associated with an im-
age may describe it with respect to different aspects: the place and the persons
depicted, the owner, an opinion or even its usage context (i.e., associated task).
Thus, tags can be valid solely from a user-specific point of view [7]. This also
explains why not all tags are suitable for search [4]; even those tags that mainly
aim at describing the content of an item might characterize just a small part of
the resource, without being representative of the entire resource. Some systems
like LabelMe [17] and TagMe!4 [1] offer solutions to this problem by providing
tags of finer granularity to their users.

In addition, tag assignments suffer from the ambiguity, inherent in any nat-
ural language: multiple meanings can be associated with the same tag (poly-
semy), while a specific tag can have multiple interpretations (synonymy). To
disambiguate the meaning of tags for specific tag assignments, frameworks like
MOAT [16] enable their users to associate each assignment with a URI spec-
ifying its meaning. This procedure is also incorporated in Faviki5, which uses
Wikipedia as the source for URIs that clarify the meaning of an annotation
(i.e., semantic tagging). A more flexible social tagging model is maintained in
TagMe!, where users can enrich tag assignments with additional facets: seman-
tic categories, URIs and spatial information. These facets represent contextual
information that contribute to the disambiguation of the tag assignments, thus
facilitating the search and the recommendation of tags or resources to a great
extent.

In this paper, we argue that the aforementioned shortcomings of social anno-
tations can be ameliorated by considering their context. In a previous work, we
have already demonstrated the benefits of context for recommendation strate-
gies [2]. However, the methods presented there were tailored to a particular
system and, thus, were not generalizable to other social tagging systems. In-
stead, this work introduces a general, versatile modeling approach that builds
comprehensive resource profiles, easily adapted to any folksonomy. It exploits
the contextual information that is available in tagging systems rich in metadata,
which are usually neglected.

At the core of our approach lies the idea of encapsulating not only the informa-
tion that exclusively pertain to tags, but also additional contextual facets that
refer to the other components of a tag assignment: the user, the resource and the

4 See http://tagme.groupme.org
5 See http://faviki.com.
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tag assignment itself. Merging these facets appropriately, we can derive weighted
tag lists that form comprehensive contextual profiles, which are compatible and
easily combined with typical tag-based profiles. These profiles can be employed
in a diversity of common tasks that rely on tags, such as personalization, search
and tag recommendation. We further describe how context-based profiles can be
transformed into semantic URI-based profiles. We also put our generic resource
modeling approaches into practice, demonstrating its applicability in two differ-
ent social tagging systems: TagMe! and BibSonomy6. In both cases, we evaluate
the impact of context-based profiles on the task of tag recommendations. The
outcomes of our experimental study verify our premise that contextual profiles
convey significant improvements in the performance of a social tagging system.

On the whole, the main contributions of our paper can be summarized as
follows:

– we introduce the notion of tag-based and context-based resource profiles and
present a generic context model for social tagging systems,

– we propose a generic strategy for exploiting context information embodied
in social annotations, exemplifying it with a variety of resource modeling
strategies, and

– we evaluate our strategies in two different tagging systems, verifying that the
incorporation of contextual information clearly outperforms typical methods
for generating resource profiles.

The remainder of the paper is structured as follows: in Section 2, we first elab-
orate on traditional folksonomies and recommenders proposed in the literature
and then introduce our generic modeling strategy. Section 3 analyzes the poten-
tial benefits of exploiting context to model resources and describes the method-
ology of our experiments. In Section 4 we present and discuss the results of our
evaluation, while in Section 5 we conclude the paper together with plans for
future work.

2 Generating Resource Profiles

In the following, we elaborate on existing and novel strategies for generating
generic resource profiles, which rely not only on the social annotations, but also
on their context.

2.1 Modeling Social Annotations and Context

The structure that emerges from social annotations is called folksonomy [13];
it basically constitutes a set of user-tag-resource bindings, optionally coupled
with the time each of them was performed [19]. In the context of our work, we
consider the folksonomy model that was formally defined by Hotho et al. in [11].
6 See http://www.bibsonomy.org.
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user resource

tag

context context context

tag assignment

context

Fig. 1. Contextual information of social annotations can refer to the user that per-
formed the tag assignment, to the tag that was designated by the user, to the resource
that was annotated, or to the entire tag assignment itself.

Definition 1 (Folksonomy). A folksonomy is a quadruple F := (U, T, R, Y ),
where U , T , R are finite sets of instances of users, tags, and resources, respec-
tively. Y defines the tag assignment, which is a relation between these sets (i.e.,
Y ⊆ U × T × R) that is potentially enriched with a timestamp indicating when
it was performed.

The above definition abstracts from the tagging activities and does not incor-
porate contextual information. The latter refers either to the entities involved
in a tag assignment (i.e., the user, the tag, and the resource), or to the tag
assignment itself. This is clearly illustrated in Figure 1.

In the following, we consider all possible dimensions of contextual information:
the meta-data attached to the tags, to the resources and to the users, as well
as the usage context attached to tag assignments, as a whole. To cover the
last case, we need to accommodate the attachment of any kind of context to
a tag assignment. We employ an extension of Definition 1, namely the context
folksonomy model [1].

Definition 2 (Context Folksonomy). A context folksonomy is a tuple F :=
(U, T, R, Y, C, Z), where:

– U , T , R, C are finite sets of instances of users, tags, resources, and context
information, respectively,

– Y defines the tag assignment, which is a relation between U , T , and R (i.e.,
Y ⊆ U × T × R), and

– Z defines the context assignment, which is a relation between Y and C (i.e.,
Z ⊆ Y × C).

2.2 Tag-Based Profiles

At the core of this work lies the notion of folksonomy structures from the per-
spective of resources. Similar to a personomy (i.e., the user-specific part of a
folksonomy, coined by Hotho et al. in [11]), we formally define the resource-
specific fraction of a context folksonomy, called personomy of a resource from
now on, as follows:
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Definition 3 (Resource Personomy). Personomy Pr = (Ur, Tr, Yr, Cr, Zr)
of a given resource r ∈ R is the restriction of F to r, where Ur and Tr are
the finite sets of users and tags, respectively, that are referenced from the tag
assignments Yr that are attached to r. Cr comprises the contextual information
that are associated with the tag assignments in Yr, and Zr are the corresponding
context assignments.

In essence, a resource personomy encompasses the tag assignments that refer
to a specific item along with their context. In a more abstract level, the tag-based
resource profile P (r) represents a resource as a set of weighted tags.

Definition 4 (Tag-based Resource Profile). The tag-based profile P (r) of
a resource r ∈ R is a set of weighted tags, where the weight of a tag t is computed
by a certain strategy w with respect to the given resource r:

P (r) = {(t, w(r, t))|t ∈ T, r ∈ R}, (1)

where w(r, t) is the weight that is associated with tag t for a given resource r.

P (r)@k denotes the subset of a tag-based profile P (r) that contains the k
tag-weight pairs with the highest weights. P̄ (r) represents a tag-based profile
whose weights are normalized, so that their sum is equal to 1, while |P (r)|
expresses the number of distinct tags contained in P (r). It is worth clarifying at
this point that the tags contained in P (r) are not restricted to the tags that are
explicitly associated with r (i.e., the tags included in the resource’s personomy
Pr). Instead, P (r) may also specify the weight for a tag ti that is associated to
the resource r indirectly, through another element of its context. We illustrate
this situation in Section 2.4 and Section 2.5 where we present our strategies for
weighting tags.

In line with Definition 4, tag-based profiles can be built for a given user
u ∈ U and for a particular context c ∈ C, as well. For instance, tag-based
user profiles (i.e., P (u)) have been studied by Firan et al. [6] and Michlmayr and
Cayzer [14]. A straightforward approach to create a tag-based context profile
P (c) is to consider the tag assignments that pertain to c and to weight each of
them according to the number of annotations that are contextualized with c
and mention it. More formally: w(c, t) = |{(u, t, r) ∈ Y : (c, (u, t, r) ∈ Z)}| (cf.
Definition 2). In Section 2.5, we introduce more advanced strategies that exploit
the characteristics of the respective type of context and show how these context
profiles can be employed to enhance tag-based resource profiles.

2.3 Baseline Strategies for Tag-Based Resource Profiles

The main challenge in generating tag-based profiles for resources is the definition
of a strategy w that appropriately assigns weights to the involved tags. In the
following, we present two weighting approaches that are typically used in the
literature, but do not exploit all aspects of the context of tag assignments.
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Tag Frequency. The rationale behind this approach is the assumption that the
more users annotate a resource r with a tag t, the more salient is t for the
description of r. Given the personomy of a resource Pr, the corresponding
tag-based resource profile P (r) can be formed by counting the number of
distinct users that assigned at least one tag t ∈ Tr to the resource r. Hence,
the weight w(r, t) attached to a specific tag t in P (r) is equal to: w(r, t) =
|{u ∈ Ur : (u, t, r) ∈ Yr}|. This approach was essentially employed by Cai
and Li in [5] with the aim of improving tag-based personalized search.

Tag-based Co-Occurrence. In tagging systems like Flickr, resources are typ-
ically annotated with a limited number of distinct tags [18]. For this reason,
Sigurbjörnsson and Zwol suggested in [18] to enrich the profile of a resource
r with those tags that frequently co-occur with the tags assigned to r (i.e.,
Tr). The weight of those additional tags is equal to the frequency of their
co-occurrence in the folksonomy:

w(r, t) = |{(u, ti, rj) ∈ Y : ∃ti ∈ Tr ∧ t ∈ Trj}|.

The second method is typically employed in the context of tag recommendation
techniques, which rely on association rules to capture the co-occurrence patterns
(see, for instance, a recent, state-of-the-art method, introduced by Heymann et
al. in [9]). For this reason, we employ it as the baseline method in our ex-
perimental study that examines the applicability of our algorithms in the tag
recommendation task.

2.4 Generic Strategy for Generating Context-Based Resource
Profiles

Context-based resource profiling strategies rely on the contextual information
available in folksonomies, and in resource personomies in particular: they build
the profile of a resource r by merging (some of) the tag-based context profiles
P (c) associated with r. Moreover, one can also consider contextual information
attached to the tag assignments referring to r (cf. Figure 1). The process of
generating context-based resource profiles is outlined in the form of a generic
approach in Definition 5.

Definition 5 (Context-based Resource Profile). Given a tag-based profile
P (r) of a resource r and the set of tag-based context profiles P (c1),..., P (cn),
where c1, .., cn ∈ Cr form the context information available in the resource per-
sonomy Pr, the context-based resource profile Pc(r) is computed by aggregating
the tag-weight pairs (tj , wj) of the given profiles according to the following al-
gorithm. Note that the parameter αi allows for (de-)emphasizing the weights
originating from profile P (ci).
Input:

P (r), ContextProfiles = {(P (c1), α1), ..., (P (cn), αn)}
Initialize: Pc(r) = P (r)
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for (P (ci), αi) ∈ ContextProfiles:

P (ci) = P̄ (ci)

for (tj , wj) ∈ P (ci):

if (tj , wPc(r)) ∈ Pc(r):

replace (tj , wPc(r)) in Pc(r) with (tj , wPc(r) + αi · wj)

else:

add (tj , αi · wj) to Pc(r)

end

end

end

Output: P̄c(r)

The above algorithm is independent from the type of context information
that is exploited to construct the context-based profiles and is, thus, generaliz-
able to any tagging system. The construction of context-based resource profiles
Pc(r) depends, however, on the type of context that is considered. In the follow-
ing, we present several weighting strategies for building them in systems rich in
metadata, like TagMe! and BibSonomy.

2.5 Domain- and Application-Specific Strategies for Generating
Context-Based Resource Profiles

TagMe!. We begin with describing the strategies used to build contexts for
resources in TagMe!. This system offers spatial tag assignments, enabling users
to draw a rectangle that specifies the part of the image that is relevant to the
corresponding tag. The resulting rectangular areas carry implicit information,
which add more value to a tag assignment. Consider, for instance, the size and the
distance of the tag’s area from the center of the resource; the former represents
the portion of the visual space that is covered by the tag, with larger areas
denoting tags that are more representative of the whole resource (i.e., tags with
small area pertain to a particular object depicted in the picture, whereas large
areas correspond to tags describing the picture in its entirety) [1]. Similarly, the
latter expresses the relevance of tag assignments to the resource: tags closer to its
center might be more important than tags placed at the margin of a resource [1].

In addition to this spatial facet, TagMe! provides two additional dimensions
that are suitable for building context-based resource profiles: the categories and
the semantic-meaning of tags. Categories can be freely entered by users via the
tagging interface, in order to provide a more general description that disam-
biguates and describes tags more clearly. For instance, the tag “Brandenburger
Tor” can be assigned to the category “Building”. In addition, TagMe! automat-
ically enriches tags and categories assignments with DBpedia URIs to further
disambiguate the meaning of a tag. In the following, we introduce strategies for
building context-based profiles with the help of the tagging facets of TagMe!. Al-
though the choice of these facets may seem rather intuitive, they have all been
empirically evaluated in [1].
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User-based Co-occurrence. The rationale behind this weighting method is
that an individual typically annotates similar resources, thus employing
relevant tags in her tag assignments. This strategy considers, therefore, all
users that assigned a tag to a given resource r and aggregates all the tags
that they used (even for annotating other resources) into the context-based
resource profile P (r). The weight w(r, t) is calculated by accumulating the
frequencies of the tags available in the tag-based profiles of these users:
w(r, t) =

∑
u∈Ur

|{rk ∈ R : (u, t, rk) ∈ Y, rk �= r}|.
Semantic Category Frequency. This strategy considers as evidence for the

significance of a tag, the popularity of the category(ies) associated with
the respective tag assignment(s). The premise here is that a tag associated
with a category is more important than a tag without a category and,
thus, more relevant to the annotated resource. In fact, the more frequent
its category is, the more relevant it is. Thus, the weight of each tag is equal
to the frequency of its category. In case a tag is associated with multiple
categories, its weight amounts to the sum of the respective frequencies:
w(r, t) =

∑
i |{(ci, (uj, tk, rl)) ∈ Z : ∃(ci, (u, t, r)) ∈ Zr}|.

Co-occurring Semantic Category Frequency. The incentive for this strat-
egy is the idea that tags described by the same categories are semanti-
cally relevant to each other. Consequently, when one of them is assigned
to a particular resource r, the rest are also representative of r. Given a
resource r, this weighting method retrieves all categories associated with r
and places all tags associated with them (even through another resource)
in the profile of r, P (r). In line with the previous strategy, the value of each
tag is set equal to the (sum of) frequency(ies) of the related category(ies):
w(r, t) =

∑
i |{(ci, (ui, tj , rk)) ∈ Z : ci ∈ Cr ∧ ∃(ci, (u, t, r)) ∈ Zr}|.

Semantic Meaning. The rationale behind this approach is the assumption
that semantically annotated tags constitute the more carefully selected an-
notations of a resource, thus being more representative of it and the basis
for a more comprehensive description. Depending on whether a tag has been
linked to a URI that uniquely identifies its meaning, this strategy defines
two levels of importance. In other words, it assigns a binary value to each
tag, with those tags that satisfy this condition receiving the value of 1, while
the rest take the value of 0. More formally:
w(r, t) = 1 if ∃(URI, (u, r, t)) ∈ Zr.

Co-occurring Semantic Meaning. At the core of this strategy lies the idea
that tags that are semantically equal to, but more popular than the tags di-
rectly associated with r, are more representative of its content. Thus, given
a resource r, this strategy aggregates all the URIs involved in the tag assign-
ments of r and builds the resource profile P (r) by aggregating all tags that
were associated with these URIs, independently of the respective resource.
Tags are weighted according to the frequency(ies) of the URI(s) assigned
to them: w(r, t) =

∑
URIi∈Cr

|{(URIi, (uj, rk, tl)) ∈ Z : ∃(URIi, (u, r, t)) ∈
Zr}|.
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Area Size. The intuition behind this method is that the importance of tags is
proportional to their size: the larger the area occupied by a tag, the more
relevant the tag is to the annotated resource. On the other hand, tags that
have been associated with a particular part of a resource, are considered
more specific, and thus less significant. Thus, this strategy assigns to each
tag a weight proportional to its area. More formally: w(r, t) = |x1−x2|·|y1−
y2|, where (x1, y1) and (x2, y2) are the Cartesian coordinates of the lower
left and the upper right edge of the tag’s rectangle (x1, x2, y1, y2 ∈ [0, 1]).

Distance From Center. This strategy is based on the assumption that the
closer a tag is to the center of a resource (e.g., image), the more relevant it is.
Hence, it weights tags according to their distance from the resource’s central
point, with smaller distances corresponding to higher values. Expressed
mathematically, we have: w(r, t) = 1√

(xtc−xrc)2+(ytc−yrc )2
, where (xrc , yrc)

and (xtc , ytc) are the coordinates of the center of the resource and the center
of the tag, respectively (xrc , xtc , yrc , ytc ∈ [0, 1]). Note that, with respect to
the annotations of the above strategy, we have xtc = x1+x2

2 and ytc = y1+y2
2 .

It should be stressed at this point that the above strategies rely on different
facets of the context folksonomy of TagMe!. Thus, instead of being competitive
to each other, they are complementary and can be arbitrarily combined. In total,
we can have (27 − 1 =)127 distinct strategies, either atomic (i.e., composed of a
single weighting method) or composite ones (i.e., derived from the combination
of multiple weighting techniques).

BibSonomy. We now further demonstrate the adaptability and generality of our
approach by proposing concrete context modeling strategies for the folksonomy
of BibSonomy.

Co-occurring Journal Frequency. BibSonomy resources (i.e., publications)
are typically associated with the journals or conferences, where they were
published. This strategy exploits these metadata information, assuming
that each specific journal is focused on a particular subject that repre-
sents the aggregation of similar resources. Thus, its publications are highly
relevant to each other, and the tags assigned to one of them are probably
applicable to the rest, as well. Given a resource r, this weighting method
retrieves the Journal metadata associated with r and aggregates in P (r)
the tags of all the resources that were published by the same journal. The
value of each tag is equal to its frequency:
w(r, t) = |{(cj , (uj, t, rl)) ∈ Z : ∃(cj , (u, t, r)) ∈ Zr}|, where cj stands for the
journal metadata of the given resource r.

Co-occurring Journal-Year Frequency. The rationale behind this strategy
is the assumption that the topics of the papers published in a specific jour-
nal drift with the passage of time. As a result, the papers published in the
same journal in a particular year are more relevant in with each other than
with the papers published at a different point in time. In this context, this
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weighting method retrieves for every resource r the Journal and Year meta-
data associated with it; then, it generates a list of the tags of all resources
that were also published within the same journal in the same year. Tag
weights are set equal to the frequency of the tags:
w(r, t) = |{(cj,y, (uj , t, rl)) ∈ Z : ∃(cj,y, (u, t, r)) ∈ Zr}|, where cj,y stands
for the journal and year metadata of the given resource r.

2.6 Transforming Tag-Based and Context-Based Profiles into
Semantic Profiles

The aforementioned context-based modeling strategies form the basis for the
creation of semantic profiles; these are profiles that explicitly specify the
semantics of a tag by means of URIs. For social tagging systems that assign
meaningful URIs to tag assignments (e.g., TagMe!) or systems that make use of
the MOAT framework [16] (e.g., LODr [15]), we propose the transformation of
tag-based profiles into semantic profiles that, instead of a list of tags, consist of
a weighted list of URIs.

It is worth noting at this point that the semantic meaning of tags depends on
the context of their use. For example, the tag “paris” most likely refers to the city,
but for some tag assignments it could also refer to a person. It is not possible,
therefore, to have a global mapping of tags to URIs. Instead, it is necessary to
map each individual tag assignment to a particular URI. Thus, we propose to
transform the personomy Pr (see Definition 3) and its tag assignments as follows:

Definition 6 (URI-based Resource Personomy). Given the tag-based per-
sonomy Pr = (Ur, Tr, Yr, Cr, Zr) of a specific resource r and its URI assignments
Zr,uri ⊆ Y × Curi ⊆ Zr, where Curi is the set of URIs, the URI-based resource
personomy, Pr,uri = (Ur, Tr,uri, Yr,uri, Cr, Zr), can be constructed by iterating
over the tag assignments and replacing the tags with URIs of the corresponding
URI assignments according to the following algorithm:

Tr,uri = Tr ∪ Curi

Yr,uri = {}
for (u, t, r) ∈ Yr:

for ((u, t, r), uri) ∈ Zr,uri:
Yr,uri = Yr,uri ∪ (u, uri, r)

end
end
Pr,uri = (Ur, Tr,uri, Yr,uri, Cr, Zr)

Given the URI-based Resource Personomy and a URI-based Context Folksonomy
(which can be constructed in a similar manner as the semantic personomy), we
can apply the resource modeling strategies presented in Sections 2.3 and 2.5 in
order to generate semantic resource profiles. In this way, the resource modeling
framework presented above supports tag-based tasks in both the social tagging
and the Semantic Web systems.
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Table 1. Technical characteristics of the TagMe! data set

Tag Assignments (TAs) 1,288
TAs with Spatial Information 671
TAs with Category Information 917
TAs with URI Information 1,050
TAs with all information 432

3 Experimental Setup

To measure the quality of the above, context-based resource modeling strategies,
we apply them to the tag recommendation task: given a set of resources annotated
with tags and metadata, the goal is to predict other tags that are also relevant
to a specific resource, but have not yet been assigned to it. In the subsequent
paragraphs, we describe the setup of the thorough, experimental evaluation we
conducted in this context.

3.1 Social Tagging Data Sets

In the course of our experiments, we employed two real-world data sets that stem
from the aforementioned social tagging applications: TagMe! and BibSonomy. A
detailed description of the technical characteristics of the data sets is presented
below.

TagMe! This web application constitutes a multifaceted social tagging system
that allows users to associate their annotations with a variety of (optional) meta-
data, which are suitable for building context-based resource profiles. The data
we collected comprise the whole activity of the first three weeks after the launch
of the system in June, 2009. In total, its user base comprises 30 users; half of
them had a Flickr account and, thus, were able to tag their own pictures, while
the rest assigned tags to random pictures and pictures of their own interest. A
summary of the technical characteristics of this data set is presented in Table 1.

BibSonomy. BibSonomy [10] is a social bookmarking and publication-sharing
system that has been running for over four years. The resources in Bibsonomy
are publications, stored in BibTeX format. Each resource has several additional
metadata, such as the corresponding journal, volume, year, as well as the author
names. We employed Bibsonomy’s public data set that is available on-line from
the 1st July 2010. It consists of 566,939 resources, described and annotated by
6,569 users. In total, there are 2,622,423 tag assignments and 189,664 unique
tags. For our experimental study, we considered those resources that had the
journal information and were tagged with at least five distinct tags. We randomly
selected 500 of those resources and derived their context-based profiles from the
entire data set.
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3.2 Leave-one-out Cross-Validation

To evaluate the effect of context-based resource profiles on tag recommendations,
we employed the leave-one-out cross-validation methodology in the following
way: at each step, we hid one of the tag assignments and, then, we built the
profile of the corresponding resource according to the selected strategy, based
on the remaining assignments. The resulting profile encompasses a ranked list
of tags, whose value is estimated according to the facets of the folksonomy that
the current strategy considers. The goal is to predict the hidden tag by placing
it in the top positions of the ranking.

To estimate the performance of the algorithms, we considered the following
metrics :

Success Rate at 1 (S@1) denotes the percentage of tag predictions that had
the missing tag at the first position of the ranking. It takes values in the
interval [0, 1], with higher values corresponding to higher performance.

Success Rate at 10 (S@10) stands for the percentage of tag predictions that
had the missing tag in one of the top 10 positions of the ranking. Similar
to S@1, it takes values in the interval [0, 1], and the higher the value, the
better the performance of the corresponding method.

As baseline strategies, we consider the approaches described in Section 2.3, which
exclusively rely on the information encapsulated in tag assignments (i.e., user,
tag, and resource). Note that the tag frequency strategy adds to a resource profile
P (r) only tags that have already been assigned to the resource. Consequently,
it cannot be applied to the tag prediction problem without any further exten-
sion. Thus, we employ tag-based co-occurrence as the main baseline strategy and
compare it to the context-based strategies of Section 2.5. These strategies enrich
the traditional tag frequency with context-based profiles, following the process
described in Definition 5.

4 Results

4.1 TagMe!

As mentioned above, the large number of facets of the TagMe! data leads to
a total of 127 distinct context-based strategies. For the sake of readability and
due to space limitations, we provide the results only for the atomic ones (see
Definition 5) together with the best performing composite methods. It is worth
noting at this point that our methods are employed as extensions to the baseline
one, merging them with a weight α as described in Definition 5.

A summary of the performance of the baseline method and the atomic weight-
ing strategies is presented in Table 2. It is evident that all context-based meth-
ods improve over the baseline, to a varying, but statistically significant extent
(p < 0.01). The Semantic Description brings about a minor increase in S@1
of 2.6%, whereas the Spatial Annotation Distance and the Category-based Co-
Occurrence account for an improvement well above 30%. Equally significant is
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Table 2. S@1 and S@10 results for the atomic context-based strategies combined with
the baseline in TagMe! data set

Context Context S@1 S@10 Context
ID Weight

0 Baseline 0.076 0.331 -
1 User-based Co-Ocurrence 0.087 0.407 0.8
2 Spatial Annotation Size 0.089 0.408 0.4
3 Spatial Annotation Distance 0.094 0.377 0.9
4 Categorized Tag Frequency 0.085 0.352 0.5
5 Category-based Co-Occurrence 0.102 0.401 0.7
6 Semantic Description 0.078 0.407 0.8
7 Semantic-based Co-Ocurrence 0.083 0.406 0.1

the improvement with respect to the S@10 metric that varies from 6.3% for Cat-
egorized Tag Frequency context up to 23.3% for Spatial Annotation Distance.
The latter indicates that annotations attached closer to the center of a resource
are more valuable than those tags assigned to the margin (cf. Section 2.5).

The fourth column of Table 2 contains the optimal value of the weight used
to merge the corresponding individual strategy with the baseline method. This
value was determined through an exhaustive search of all values in the interval
[0,2] with a step of 0.1. The actual effect of this parameter is demonstrated in
Figure 2, where the performance for weight 1 (i.e., merging the baseline and the
contextual strategy on an equal basis) is compared with the best performing
weight. With the exception of the Semantic Description, we can notice that the
calibration of this parameter conveys significant improvement, ranging from 2%
for User-based Co-Occurrence to 12% for Categorized Tag Frequency.

Fig. 2. S@1 improvement (in percentage) of each context over the baseline in the
TagMe! data set. Gray bars show the results when the Context-Weight is set to 1, while
black bars correspond to the performance of the best performing Context-Weight of
each context.
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Table 3. S@1 results for the composite context-based methods that have the optimal
performance on the TagMe! data set. ContextIDs refer to the methods of Table 2.

ContextID (Context-Weight) S@1 Improvement(%)

2(0.4) & 5(0.7) & 7(0.1) 0.106 38.8
2(0.4) & 3(0.1) & 5(0.7) & 7(0.1) 0.105 37.7
2(0.4) & 5(0.7) 0.105 37.7
5(0.7) & 7(0.1) 0.104 36.7

Table 4. S@1 and S@10 results for the baseline and the contextualized strategies
(strategy-weight one to one) on the Bibsonomy data set

Context S@1 Improvement(%)

Baseline 0.00712 -
Co-occurring Journal Frequency 0.00991 39.02
Co-occurring Journal-Year Frequency 0.01425 100.00

Context S@10 Improvement(%)

Baseline 0.0701 -
Co-occurring Journal Frequency 0.0770 10.42
Co-occurring Journal-Year Frequency 0.1045 49.13

Additionally, we experimented with all possible composite strategies (i.e.,
combinations of the atomic ones), employing again a variety of context-weights
for each of them (i.e., wi ∈ [0, 2] for each method i). The best performing ones are
presented in Table 3, along with the respective weight and the improvement they
convey with respect to S@1. We can see that all of them perform significantly
better than the individual methods comprising them. Note, though, that they all
involve the atomic strategy with the highest value for S@1 (i.e., Category-based
Co-Occurrence) and assign to it the highest weight. However, they improve its
performance by just 2%. This clearly means that merging different contexts does
not result in a cumulative improvement, because their combination leads to noise
in the form of contradictory evidence: a tag rated high by a specific weighting
strategy can be rated lower by another one.

In summary, we can conclude that contextualized strategies that rely on the
spatial features, the categories and the semantics produce the best results in
the case of TagMe!. They perform individually well enough and can be slightly
improved when combined with the appropriate weights. Our semantic resource
profiling strategies can be applied to any other semantic tagging system, thus
being reusable and appropriate for other applications, as well.

4.2 BibSonomy

The use case of BibSonomy demonstrates how our model of context-based re-
source profiles can be beneficially applied to any folksonomy, and how we can
derive contextual information from the relations between the tag assignments.
The outcomes of our evaluation are summarized in Table 4. We can see that
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both context-based methods substantially improve over the baseline, with the
Co-occurring Journal-Year Frequency doubling its precision. Nevertheless, the
overall success rate remains very low (∼ 1%) in all cases. Note that the combi-
nation of the contextual weighting strategies with the baseline was done on an
equal basis (Context − Weight = 1).

5 Conclusions

In this paper, we proposed novel approaches to generating and enriching resource
profiles that exploit the multiple types of contextual information, available in
most social tagging systems. We demonstrated that context can be derived from
almost any metadata of the components of a tag assignment (i.e., user, tag,
and resource) as well as from the tag assignment as a whole. We formalized the
approach for modeling context-based profiles and described various, versatile
strategies for combining them.

To verify the benefits of context-based resource profiles, we considered the
task of tag recommendation, which typically relies on naive resource profiles
that are derived from tag co-occurrences. We applied our strategies on two real-
world datasets, with the outcomes indicating a considerable improvement over
the baseline recommendation method. This verifies our premise that items shar-
ing similar metadata (with respect to the same part of their tag assignments)
are highly likely to be annotated with the same tags. We also demonstrated that
contextual information pertaining to entire tag assignments provide significant
evidence for modeling the resource profiles. This was proven to be particularly
true for the cases where tag assignments are categorized, and spatially or seman-
tically annotated.

Finally, we validated that merging different contexts does not result in a
cumulative gain, since their arbitrary combination may lead to contradictory
results. This issue actually lies at the core of our future work: we intend to
develop techniques that identify complementary contexts, distinguishing them
from the competitive ones. So far, there is no relevant work on this field, although
techniques that optimally combine context models are expected to enhance the
performance of many other tasks, as well, like personalization.
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10. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: BibSonomy: A Social Book-
mark and Publication Sharing System. In: Proc. First Conceptual Structures Tool
Interoperability Workshop, pp. 87–102. Aalborg (2006)
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Abstract. We describe an optimised consequence-based procedure for
classification of ontologies expressed in a polynomial fragment ELHR+ of
the OWL 2 EL profile. A distinguishing property of our procedure is that
it can take advantage of multiple processors/cores, which increasingly
prevail in computer systems. Our solution is based on a variant of the
‘given clause’ saturation algorithm for first-order theorem proving, where
we assign derived axioms to ‘contexts’ within which they can be used and
which can be processed independently. We describe an implementation of
our procedure within the Java-based reasoner ELK. Our implementation
is light-weight in the sense that an overhead of managing concurrent
computations is minimal. This is achieved by employing lock-free data
structures and operations such as ‘compare-and-swap’. We report on
preliminary experimental results demonstrating a substantial speedup
of ontology classification on multi-core systems. In particular, one of
the largest and widely-used medical ontologies SNOMED CT can be
classified in as little as 5 seconds.

1 Introduction

Ontology classification is one of the key reasoning services used in the develop-
ment of OWL ontologies. The goal of classification is to compute the hierarchical
representation of the subclass (a.k.a. ‘is-a’) relations between the classes in the
ontology based on their semantic definitions. Ontology classification, and ontol-
ogy reasoning in general, is a computationally intensive task which can introduce
a considerable delay into the ontology development cycle.

Many works have focused on the development of techniques to reduce classi-
fication times by optimizing the underlying (mostly tableaux-based) procedures
so that they produce fewer inferences. In this paper we study another way of
reducing the classification time, which is achieved by performing several infer-
ences in parallel, i.e., concurrently. Concurrent algorithms and data structures
have gained substantial practical importance due to the widespread availability
of multi-core and multi-processor systems.

Nonetheless, concurrent classification of ontologies is challenging and only few
works cover this subject. Approaches range from generic ‘divide-and-conquer’
strategies when the ontology is divided into several independent components
[18] to more specific strategies involving parallel construction of taxonomies [1],
concurrent execution of tableau rules [11,12], distributed resolution procedures
[15], and MapReduce-based distribution approaches [14]. The practical improve-
ments offered by these strategies, however, remain yet to be demonstrated, as
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empirical evaluation of the proposed approaches is rather limited. As of today,
none of the commonly used ontology reasoners, including CEL, FaCT++, Her-
miT, jCEL, Pellet, and RACER, can make use of multiple processors or cores.

In this paper, we consider a ‘consequence-based’ classification procedure,
which works by deriving logical consequences from the axioms in the ontology.
Such procedures were first introduced for the EL family of tractable description
logics (DLs) [2], which became the basis of the OWL 2 EL profile [13]. Later the
EL-style classification procedures have been formulated for more expressive lan-
guages, such as Horn-SHIQ [7] and ALC [16]. Consequence-based procedures
have several distinguished properties, such as optimal worst-case complexity,
‘pay-as-you-go’ behaviour, and lack of non-determinism (even for expressive DLs
such as ALC). In this paper we will demonstrate that such procedures are also
particularly suitable for concurrent classification of ontologies.

The contributions of this paper can be summarised as follows:

(i) We formulate a consequence-based procedure for the fragment ELHR+ of
an OWL 2 EL profile. The procedure does not require the usual axiom
normalisation preprocessing [2] but works directly with the input ontology.
Although normalisation is usually fast and its effect on the overall run-
ning time is negligible, the removal of this preprocessing step simplifies the
presentation of the algorithm and reduces the implementation efforts.

(ii) We describe a concurrent strategy for saturation of the input axioms under
inference rules. The strategy works by assigning axioms to ‘contexts’ in
which the inferences can be performed independently, and can be used
with arbitrary deterministic inference systems.

(iii) We describe an implementation of our concurrent saturation strategy for
ELHR+ within a Java-based reasoner ELK. We demonstrate empirically
that the concurrent implementation can offer a significant speedup in ontol-
ogy classification (e.g., a factor of 2.6 for SNOMED CT on a 4-core machine)
and can outperform all existing highly-optimised (sequential) reasoners on
the commonly used EL ontologies. The improved performance is achieved
by minimising the overheads for managing concurrency and is comparable
to the ‘embarrassingly parallel’ algorithm on the pre-partitioned input.

2 Preliminaries

The vocabulary of ELHR+ consists of countably infinite sets NR of (atomic)
roles and NC of atomic concepts. Complex concepts and axioms are defined
recursively using the constructors in Table 1. We use the letters R, S, T for roles,
C, D, E for concepts and A, B for atomic concepts. A concept equivalence C ≡ D
stands for the two inclusions C � D and D � C. An ontology is a finite set of
axioms. Given an ontology O, we write �∗

O for the smallest reflexive transitive
binary relation over roles such that R �∗

O S holds for all R � S ∈ O.
ELHR+ has Tarski-style semantics. An interpretation I consists of a non-

empty set ΔI called the domain of I and an interpretation function ·I that
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Table 1. Syntax and semantics of ELHR+

Syntax Semantics
Roles:

atomic role R RI

Concepts:
atomic concept A AI

top � ΔI

conjunction C � D CI ∩ DI

existential restriction ∃R.C {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}
Axioms:

concept inclusion C 
 D CI ⊆ DI

role inclusion R 
 S RI ⊆ SI

transitive role Trans(T ) T I is transitive

Table 2. Inference rules for ELHR+

R�
C 
 D

C 
 E
: D 
 E ∈ O

R−
�

C 
 D1 � D2

C 
 D1

C 
 D2

R−
∃

C 
 ∃R.D

D 
 D

R+
�

C 
 C

C 
 � : � occurs in O

R+
�

C 
 D1 C 
 D2

C 
 D1 � D2
: D1 � D2 occurs in O

R+
∃

C 
 D

∃S.C → ∃S.D
: ∃S.D occurs in O

RH
D 
 ∃R.C ∃S.C → E

D 
 E
: R 
∗

O S

RT
D 
 ∃R.C ∃S.C → E

∃T.D → E
:

R 
∗
O T 
∗

O S
Trans(T ) ∈ O

assigns to each R a binary relation RI ⊆ ΔI×ΔI and to each A a set AI ⊆ ΔI .
The interpretation function is extended to complex concepts as shown in Table 1.

An interpretation I satisfies an axiom α (written I |= α) if the corresponding
condition in Table 1 holds. If an interpretation I satisfies all axioms in an ontol-
ogy O, then I is a model of O (written I |= O). An axiom α is a consequence of
an ontology O (written O |= α) if every model of O satisfies α. A concept C is
subsumed by D w.r.t. O if O |= C � D. Classification is the task of computing
all subsumptions A � B between atomic concepts such that O |= A � B.

3 A Classification Procedure for ELHR+

Table 2 lists the inference rules of our classification procedure, which are closely
related to the original completion rules for EL++ [2]. The rules operate with
two types of axioms: (i) subsumptions C � D and (ii) (existential) implications
∃R.C → ∃S.D, where C and D are concepts, and R and S roles. The implications
∃R.C → ∃S.D have the same semantic meaning as ∃R.C � ∃S.D; we use the
symbol → just to distinguish the two types of axioms in the inference rules.
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KneeJoint ≡ Joint � ∃isPartOf.Knee (1)
LegStructure ≡ Structure � ∃isPartOf.Leg (2)

Joint 
 Structure (3)
Knee 
 ∃hasLocation.Leg (4)

hasLocation 
 isPartOf (5)
Trans(isPartOf) (6)

Fig. 1. A simple medical ontology describing some anatomical relations

Note that we make a distinction between the premises of a rule (appearing
above the horizontal line) and its side conditions (appearing after the colon),
and use axioms from O as the side conditions, not as the premises.

It is easy to see that the inference rules are sound in the sense that every
conclusion is always a logical consequence of the premises and the ontology,
assuming that the side conditions are satisfied. For all rules except the last one
this is rather straightforward. The last rule works similarly to the propagation
of universal restrictions along transitive roles if we view axioms ∃S.C → E and
∃T.D → E as C � ∀S−.E and D � ∀T−.E respectively. Before we formulate a
suitable form of completeness for our system, let us first consider an example.

Example 1. Consider the ontology O in Fig. 1 expressing that a knee joint is
a joint that is a part of the knee (1), a leg structure is a structure that is a
part of the leg (2), a joint is a structure (3), a knee has location in the leg (4),
has-location is more specific than part-of (5), and part-of is transitive (6).

Below we demonstrate how the inference rules in Table 2 can be used to prove
that a knee joint is a leg structure. We start with a tautological axiom saying
that knee joint is a knee joint and then repeatedly apply the inference rules:

KneeJoint � KneeJoint input axiom, (7)
KneeJoint � Joint � ∃isPartOf.Knee by R� (7) : (1), (8)

KneeJoint � Joint by R−
� (8), (9)

KneeJoint � ∃isPartOf.Knee by R−
� (8). (10)

In the last axiom, we have obtained an existential restriction on knee, which now
allows us to start deriving subsumption relations for this concept thanks to R−

∃ :

Knee � Knee by R−
∃ (10), (11)

Knee � ∃hasLocation.Leg by R� (11) : (4). (12)

Similarly, the last axiom lets us start deriving subsumptions for leg:

Leg � Leg by R−
∃ (12). (13)



Concurrent Classification of EL Ontologies 309

This time, we can use (13) to derive existential implications using the fact that
∃hasLocation.Leg and ∃isPartOf.Leg occur in O:

∃hasLocation.Leg → ∃hasLocation.Leg by R+
∃ (13), (14)

∃isPartOf.Leg → ∃isPartOf.Leg by R+
∃ (13). (15)

The last implication, in particular, can be used to replace the existential restric-
tion in (12) using hasLocation �∗

O isPartOf, which is a consequence of (5):

Knee � ∃isPartOf.Leg by RH (12), (15). (16)

Similarly, we can derive a new implication using hasLocation �∗
O isPartOf �∗

O
isPartOf and transitivity of isPartOf (6):

∃isPartOf.Knee → ∃isPartOf.Leg by RT (12), (15). (17)

This implication can now be used to replace the existential restriction in (10):

KneeJoint � ∃isPartOf.Leg by RH (10), (17). (18)

Finally, we “construct” the definition of leg structure (2) using (3) and the fact
that the concept Structure � ∃isPartOf.Leg occurs in O:

KneeJoint � Structure by R� (9) : (3), (19)

KneeJoint � Structure � ∃isPartOf.Leg by R+
� (18), (19), (20)

KneeJoint � LegStructure by R� (20) : (2). (21)

We have thus proved that a knee joint is a leg structure.

In the above example we have demonstrated that a consequence subsumption
KneeJoint � LegStructure can be derived using the inference rules in Table 2
once we start with a tautology KneeJoint � KneeJoint. It turns out that all
implied subsumption axioms with KneeJoint on the left-hand-side and a concept
occurring in the ontology on the right-hand-side can be derived in this way:

Theorem 1. Let S be any set of axioms closed under the inference rules in
Table 2. For all concepts C and D such that C � C ∈ S and D occurs in O we
have O |= C � D implies C � D ∈ S.

Proof (Sketch). Due to lack of space, we can only present a proof sketch. A more
detailed proof can be found in the accompanying technical report [8].

The proof of Theorem 1 is by canonical model construction. We construct an
interpretation I whose domain consists of distinct elements xC , one element xC

for each axiom C � C in S. Atomic concepts are interpreted so that xC ∈ AI iff
C � A ∈ S. Roles are interpreted by minimal relations satisfying all role inclusion
and transitivity axioms in O such that 〈xC , xD〉 ∈ RI for all C � ∃R.D ∈ S.
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Using rules R−
� and R−

∃ one can prove that for all elements xC and all concepts
D we have:

C � D ∈ S implies xC ∈ DI . (22)

Conversely, using rules R+
�, R+

� , R+
∃ , RH and RT one can prove that for all

concepts D occurring in O and all concepts C we have:

xC ∈ DI implies C � D ∈ S. (23)

Properties (22) and (23) guarantee that I is a model of O. To see this, let
D � E ∈ O and xC be an arbitrary element of I. If xC ∈ DI , then C � D ∈ S
by (23), then C � E ∈ S by rule R�, so xC ∈ EI by (22). Thus DI ⊆ EI .

Finally, to complete the proof of Theorem 1, let C and D be such that C �
C ∈ S and D occurs in O. We will show that C � D /∈ S implies O �|= C � D.
Suppose C � D /∈ S. Then xC /∈ DI by (23). Since C � C ∈ S, we have xC ∈ CI

by (22). Hence CI � DI and, since I is a model of O, O �|= C � D. �

It follows from Theorem 1 that one can classify O by exhaustively apply-
ing the inference rules to the initial set of tautologies input = {A � A |
A is an atomic concept occurring in O}.

Corollary 1. Let S be the closure of input under the inference rules in Table 2.
Then for all atomic concepts A and B occurring in O we have O |= A � B if
and only if A � B ∈ S .

Finally, we note that if all initial axioms C � D are such that both C and D
occur in O (as is the case for the set input defined above), then the inference
rules derive only axioms of the form (i) C � D and (ii) ∃R.C → E with C, D,
E and R occurring in O. There is only a polynomial number of such axioms,
and all of them can be computed in polynomial time.

4 Concurrent Saturation under Inference Rules

In this section we describe a general approach for saturating a set of axioms
under inference rules. We first describe a high level procedure and then introduce
a refined version which facilitates concurrent execution of the inference rules.

4.1 The Basic Saturation Strategy

The basic strategy for computing a saturation of the input axioms under in-
ference rules can be described by Algorithm 1. The algorithm operates with
two collections of axioms: the queue of ‘scheduled’ axioms for which the rules
have not been yet applied, initialized with the input axioms, and the set of ‘pro-
cessed’ axioms for which the rules are already applied, initially empty. The queue
of scheduled axioms is repeatedly processed in the while loop (lines 3–8): if the
next scheduled axiom has not been yet processed (line 5), it is moved to the set
of processed axioms (line 6), and every conclusion of inferences involving this
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Algorithm 1. saturate(input): saturation of axioms under inference rules
Data: input: set of input axioms
Result: the saturation of input is computed in processed

1 scheduled ← input;
2 processed ← ∅;
3 while scheduled �= ∅ do
4 axiom ← scheduled.poll();
5 if not processed.contains(axiom) then
6 processed.add(axiom);
7 for conclusion ∈ deriveConclusions(processed, axiom) do
8 scheduled.put(conclusion);

axiom and the processed axioms is added to the queue of scheduled axioms. This
strategy is closely related to the ‘given clause algorithm’ used in saturation-based
theorem proving for first-order logic (see, e.g., [3]).

Soundness, completeness, and termination of Algorithm 1 is a consequence of
the following (semi-) invariants that can be proved by induction:

(i) Every scheduled and processed axiom is either an input axiom, or is ob-
tained by an inference rule from the previously processed axioms (sound-
ness).

(ii) Every input axiom and every conclusion of inferences between processed
axioms occurs either in the processed or scheduled axioms (completeness).

(iii) In every iteration of the while loop (lines 3–8) either the set of processed
axiom increases, or, otherwise, it remains the same, but the queue of sched-
uled axioms becomes shorter (termination).

Therefore, when the algorithm terminates, the saturation of the input axioms
under the inference rules is computed in the set of processed axioms.

The basic saturation strategy described in Algorithm 1 can already be used
to compute the saturation concurrently. Indeed, the while loop (lines 3–8) can
be executed from several independent workers, which repeatedly take the next
axiom from the shared queue of scheduled axiom and perform inferences with
the shared set of processed axioms. To remain correct with multiple workers, it
is essential that Algorithm 1 adds the axiom to the set of processed axioms in
line 6 before deriving conclusions with this axiom, not after that. Otherwise, it
may happen that two workers simultaneously process two axioms between which
an inference is possible, but will not be able to perform this inference because
neither of these axioms is in the processed set.

4.2 The Refined Saturation Strategy

In order to implement Algorithm 1 in a concurrent way, one first has to ensure
that the shared collections of processed and scheduled axioms can be safely
accessed and modified from different workers. In particular, one worker should
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Algorithm 2. saturate(input): saturation of axioms under inference rules
Data: input: set of input axioms
Result: the saturation of input is computed in context.processed

1 activeContexts ← ∅;
2 for axiom ∈ input do
3 for context ∈ getContexts(axiom) do
4 context.scheduled.add(axiom);
5 activeContexts.activate(context);

6 loop
7 context ← activeContexts.poll();
8 if context = null then break;
9 loop

10 axiom ← context.scheduled.poll();
11 if axiom = null then break;
12 if not context.processed.contains(axiom) then
13 context.processed.add(axiom);
14 for conclusion ∈ deriveConclusions(context.processed, axiom) do
15 for conclusionContext ∈ getContexts(conclusion) do
16 conclusionContext.scheduled.add(conclusion);
17 activeContexts.activate(conclusionContext);

18 activeContexts.deactivate (context);

be able to derive conclusions in line 7 at the same time when another worker is
inserting an axiom into the set of processed axioms. The easiest way to address
this problem is to guard every access to the shared collection using locks. But
this will largely defeat the purpose of concurrent computation, since the workers
will have to wait for each other in order to proceed.

Below we describe a lock-free solution to this problem. The main idea is to
distribute the axioms according to ‘contexts’ in which the axioms can be used
as premises of inference rules and which can be processed independently by the
workers. Formally, let C be a finite set of contexts, and getContexts(axiom) a
function assigning a non-empty subset of contexts for every axiom such that,
whenever an inference between several axioms is possible, the axioms will have
at least one common context assigned to them. Furthermore, assume that every
context has its own queue of scheduled axiom and a set of processed axioms (both
initially empty), which we will denote by context.scheduled and context.processed.

The refined saturation strategy is described in Algorithm 2. The key idea of
the algorithm is based on the notion of an active context. We say that a con-
text is active if the scheduled queue for this context is not empty. The algorithm
maintains the queue of active contexts to preserve this invariant. For every input
axiom, the algorithm takes every context assigned to this axiom and adds this
axiom to the queue of the scheduled axioms for this context (lines 2–4). Because
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the queue of scheduled axiom becomes non-empty, the context is activated by
adding it to the queue of active contexts (line 5).

Afterwards, each active context is repeatedly processed in the loop (lines 6–
17) by essentially performing similar operations as in Algorithm 1 but with the
context-local collections of scheduled and processed axioms. The only difference
is that the conclusions of inferences computed in line 14 are inserted into (possi-
bly several) sets of scheduled axioms for the contexts assigned to each conclusion,
in a similar way as it is done for the input axiom. Once the context is processed,
i.e., the queue of the scheduled axioms becomes empty and the loop quits at
line 8, the context is deactivated (line 18).

Similar to Algorithm 1, the main loop in Algorithm 2 (lines 6–17) can be
processed concurrently by several workers. The advantage of the refined algo-
rithm, however, is that it is possible to perform inferences in line 14 without
locking the (context-local) set of processed axioms provided we can guarantee
that no context is processed by more than one worker at a time. For the latter,
it is sufficient to ensure that a context is never inserted into the queue of active
contexts if it is already there or it is being processed by a worker. It seems that
this can be easily achieved using a flag, which is set to true when a context is
activated and set to false when a context is deactivated—a context is added to
the queue only the first time the flag is set to true:

activeContexts.activate (context):
if not context.isActive then

context.isActive ← true;
activeContexts.put(context);

activeContexts.deactivate (context):
context.isActive ← false;

Unfortunately, this strategy does not work correctly with multiple workers: it
can well be the case that two workers try to activate the same context at the
same time, both see that the flag is false, set it to true, and insert the context
into the queue two times. To solve this problem we would need to ensure that
when two workers are trying to change the value of the flag from false to true,
only one of them succeeds. This can be achieved without locking by using an
atomic operation ‘compare-and-swap’ which tests and updates the value of the
flag in one instruction. Algorithm 3 presents a safe way of activating contexts.

Algorithm 3. activeContexts.activate(context)
1 if context.isActive.compareAndSwap(false, true) then
2 activeContexts.put(context);

Deactivation of contexts in the presence of multiple workers is also not as easy
as just setting the value of the flag to false. The problem is that during the time
after quitting the loop in line 8 and before deactivation of context in line 18,
some other worker could insert an axiom into the queue of scheduled axioms for
this context. Because the flag was set to true at that time, the context will not
be inserted into the queue of active contexts, thus we end up with a context
which is active in the sense of having a non-empty scheduled queue, but not
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activated according to the flag. To solve this problem, we perform an additional
emptiness test for the scheduled axioms as shown in Algorithm 4.

Algorithm 4. activeContexts.deactivate(context)
1 context.isActive ← false;
2 if context.scheduled �= ∅ then activeContexts.activate(context);

5 Implementation

In this section we describe an implementation of the inference rules for ELHR+ in
Table 2 using the refined concurrent saturation strategy presented in Section 4.2.
There are two functions in Algorithm 2 whose implementation we need to ex-
plain, namely getContexts(axiom) and deriveConclusions(processed, axiom).

Recall that the function getContexts(axiom) is required to assign a set of
contexts to every axiom such that, whenever an inference between several ax-
ioms is possible, the premises will have at least one context in common. This is
necessary in order to ensure that no inference between axioms gets lost because
the inferences are applied only locally within contexts. A simple solution would
be to use the inference rules themselves as contexts and assign to every axiom
the set of inference rules in which the axiom can participate. Unfortunately, this
strategy can provide only as many contexts as there are inference rules—not that
much. To come up with a better solution, note that all premises of the inference
rules in Table 2 always have a common concept denoted as C. Instead of as-
signing axioms with inference rules, we can assign them with the set of concepts
that match the respective position of C in the rule applications. This idea leads
to the implementation described in Algorithm 5.

Algorithm 5. getContexts(axiom)
1 result ← ∅;

// matching the premises of the rules R�, R−
� , R−

∃ , R+
�, R+

� , R+
∃

2 if axiom match C 
 D then result.add(C);
// matching the left premise of the rules RH and RT

3 if axiom match D 
 ∃R.C then result.add(C);
// matching the right premise of the rules RH and RT

4 if axiom match ∃S.C → E then result.add(C);
5 return result;

To implement the other function deriveConclusions(processed, axiom), we
need to compute the conclusions of all inference rules in which one premise is
axiom and remaining premises come from processed. A naïve implementation
would iterate over all possible subsets of such premises, and try to match them
to the inference rules. To avoid unnecessary enumerations, we use index data
structures to quickly find applicable inference rules. For example, for checking
the side conditions of the rule R+

� , for every concept D occurring in the ontology
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Algorithm 6. deriveConclusions(processed, axiom) for context C

1 result ← ∅;
2 if axiom match C 
 D then
3 for D1 ∈ (C.subsumptions ∩ D.leftConjuncts) do
4 result.add(C 
 D1 � D); // rule R+

� , right premise

5 for D2 ∈ (C.subsumptions ∩ D.rightConjuncts) do
6 result.add(C 
 D � D2); // rule R+

� , left premise

// similarly for rules R�, R−
� , R−

∃ , R+
�, R+

∃

7 if axiom match D 
 ∃R.C then
8 for S ∈ (C.implications.keySet() ∩ R.superRoles) do
9 for E ∈ C.implications.get(S) do

10 result.add(D 
 E); // rule RH, left premise

// similarly for rule RT , left premise

11 if axiom match ∃S.C → E then
12 for R ∈ (C.predecessors.keySet() ∩ S.subRoles) do
13 for D ∈ C.predecessors.get(R) do
14 result.add(D 
 E); // rule RH, right premise

// similarly for rule RT , right premise

15 return result;

O we store a set of concepts with which D co-occur in conjunctions:

D.rightConjuncts = {D′ | D � D′ occurs in O},
D.leftConjuncts = {D′ | D′ � D occurs in O}.

Similarly, for checking the side condition of the rule RH, for each role R occurring
in O, we precompute the sets of its sub-roles and super-roles:

R.superRoles = {S | R �∗
O S},

R.subRoles = {S | S �∗
O R}.

The index computation is usually quick and can be also done concurrently.
To identify relevant premises from the set of processed axioms for the context

associated with C, we store the processed axioms for this context in three records
according to the cases by which these axioms were assigned to C in Algorithm 5:

C.subsumptions = {D | C � D ∈ processed},
C.predecessors = {〈R, D〉 | D � ∃R.C ∈ processed},
C.implications = {〈R, E〉 | ∃R.C → E ∈ processed}.

The pairs in the last two records are indexed by the key R, so that for every
role R one can quickly find all concepts D and, respectively, E that occur in the
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Table 3. Statistics for studied ontologies and classification times on ‘laptop’ for com-
monly used EL reasoners and ELK; times are in seconds; timeout was 1 hour

SNOMED CT GALEN FMA GO
#concepts 315,489 23,136 78,977 19,468
#roles 58 950 7 1
#axioms 430,844 36,547 121,712 28,897
CB 13.9 1.4 0.7 0.1
FaCT++ 387.1 timeout 5.4 7.5
jCEL 661.6 32.5 12.4 2.9
Pellet 509.3 stack overflow 88.5 2.5
Snorocket 24.5 2.3 1.6 0.3
ELK (1 worker) 13.15 1.33 0.44 0.20
ELK (2 workers) 7.65 0.90 0.38 0.18
ELK (3 workers) 5.66 0.80 0.39 0.19
ELK (4 workers) 5.02 0.77 0.39 0.19

pairs with R. Given this index data structure, the function deriving conclusions
within a context C can be described by Algorithm 6. Note that the algorithm ex-
tensively uses iterations over intersections of two sets; optimizing such iterations
is essential for achieving efficiency of the algorithm.

6 Experimental Evaluation

To evaluate our approach, we have implemented the procedure in the Java-based
reasoner ELK (version 0.1.0) using lock-free data structures, such as Concur-
rentLinkedQueue, and objects such as AtomicBoolean, which allow for ‘compare-
and-swap’ operations, provided by the java.util.concurrent package.1 The goal of
this section is (a) to compare the performance of ELK in practical situations with
other popular reasoners, and (b) to study the extent in which concurrent pro-
cessing contributes to the improved classification performance. To evaluate (a)
we have used a notebook with Intel Core i7-2630QM 2GHz quad core CPU and
6GB of RAM, running Microsoft Windows 7 (experimental configuration ‘lap-
top’). To evaluate (b) we have additionally used a server-type computer with an
Intel Xeon E5540 2.53GHz with two quad core CPUs and 24GB of RAM running
Linux 2.6.16 (experimental configuration ‘server’). In both configurations we ran
Java 1.6 with 4GB of heap space. All figures reported here were obtained as the
average over 10 runs of the respective experiments. More detailed information
for all experiments can be found in the technical report [8].

Our test ontology suite includes SNOMED CT, GO, FMA-lite, and an OWL
EL version of GALEN.2 The first part of Table 3 provides some general
1 The reasoner is available open source from http://elk-reasoner.googlecode.com/
2 SNOMED CT from http://ihtsdo.org/ (needs registration); GO from
http://lat.inf.tu-dresden.de/~meng/toyont.html, FMA-lite from
http://www.bioontology.org/wiki/index.php/FMAInOwl, GALEN from
http://condor-reasoner.googlecode.com/

http://elk-reasoner.googlecode.com/
http://ihtsdo.org/
http://lat.inf.tu-dresden.de/~meng/toyont.html
http://www.bioontology.org/wiki/index.php/FMAInOwl
http://condor-reasoner.googlecode.com/
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Fig. 2. Classification time and speedup for n workers on GALEN (left) and
SNOMED CT (right)

statistics about the sizes of these ontologies. We have measured performance on
these ontologies for the reasoners CB r.12 [7], FaCT++ 1.5.2 [19], jCEL 0.15.0,3
Pellet 2.2.2 [17] and Snorocket 1.3.4 [10]. We selected these tools as they provide
specific support for EL-type ontologies. FaCT++ and jCEL, and Pellet were
accessed through OWL API; CB, ELK, and Snorocket were accessed through
their command line interface. The second part of Table 3 shows the time needed
by the tested reasoners to classify the given ontologies in the ‘laptop’ scenario.
The times are as the reasoners report for the classification stage, which does
not include the loading times.4 The last part of Table 3 presents the result for
ELK tested under the same conditions for a varying number of workers. As can
be seen from these results, ELK demonstrates a highly competitive performance
already for 1 worker, and adding more workers can substantially improve the
classification times for SNOMED CT and GALEN.

The results in Table 3 confirm that concurrent processing can offer improve-
ments for ontology classification on common computing hardware. On the other
hand, the experiments demonstrate that the improvement factor degrades with
the number of workers. There can be many causes for this effect, such as dynamic
CPU clocking, shared Java memory management and garbage collection, hard-
ware bottlenecks in CPU caches or data transfer, and low-level mechanisms like
Hyper-Threading. To check to what extent the overhead of managing the workers
can contribute to this effect, we have performed a series of further experiments.

First, we have investigated classification performance for varying numbers
of parallel workers. Figure 2 shows the results for GALEN and SNOMED CT
obtained for 1 − 8 workers on ‘laptop’ and ‘server’ configurations. The reported
data is classification time (left axis) and speedup, i.e., the quotient of single
worker classification time by measured multi-worker classification time (right
axis). The ideal linear speedup is indicated by a dotted line. On the laptop (4

3 http://jcel.sourceforge.net/
4 Loading times can vary depending on the syntax/parser/API used and are roughly

proportional to the size of the ontology; it takes about 8 seconds to load the largest
tested ontology SNOMED CT in functional-style syntax by ELK.

http://jcel.sourceforge.net/
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Fig. 3. Classification time for n workers on n copies of GALEN on laptop (left) and
server (right)

cores), there is no significant change in the classification times for more than 4
workers, while the classification times for the server (2 × 4 cores) can slightly
improve for up to 8 workers.

Next, we measured how our procedure would score against the ‘embarrassingly
parallel’ algorithm in the situation when an ontology consists of n disjoint and
equal components, which can be classified completely independently. We have
created ontologies consisting of n disjoint copies of our test ontologies, and ran
n independent ELK reasoners with 1 worker on these n copies. We compared
the average classification times of this pre-partitioning approach with the times
needed by ELK when using n workers on the union of these partitions. Both
approaches compute exactly the same results.

The results of this experiment for copies of GALEN are presented in Fig. 3.
As can be seen from these results, the classification time for both scenarios grows
with n (ideally, it should remain constant up to the number of available cores, but
in practice it is not the case because, e.g., the CPU clock speed drops with the
load to compensate for the heat). More importantly, the difference between the
two approaches is not considerable. This proves that, the performance impact of
managing multiple workers is relatively small and interaction between unrelated
components is avoided due to the indexing strategies discussed in Section 5. The
fact that pre-partitioning requires additional time for initial analysis and rarely
leads to perfect partitioning [18] suggests that our approach is more suitable for
the (single machine, shared memory) scenario that we target.

7 Related Works and Conclusion

Our work is not the first one to address the problem of parallel/concurrent
OWL reasoning. Notable earlier works include an approach for parallelization
of (incomplete) structural reasoning algorithms [4], a tableaux procedure that
concurrently explores non-deterministic choices [11], a resolution calculus for
ALCHIQ where inferences are exchanged between distributed workers [15], and
a distributed classification algorithm that can be used to concurrently invoke
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(serial) OWL reasoners for checking relevant subsumptions [1]. Experimental
evaluations in each case indicated potential on selected examples, but further
implementation and evaluation will be needed to demonstrate a clear perfor-
mance advantage of these systems over state-of-the-art systems.

Some other works have studied concurrency in light-weight ontology languages.
Closest to our approach is a distributed MapReduce-based algorithm for EL+

[14]. However, this idea has not been empericaly evaluated. Works dedicated to
OWL RL [13] include an approach for pre-partitioning inputs that inspired the
evaluation in Section 6 [18], and recent MapReduce approaches [6,20].

Many further works focus on the distribution of reasoning with assertional
data using weaker schema-level modelling languages pD∗ (a.k.a. OWL-Horst)
and (fragments of) RDFS [5,21,22,9]. These works are distinguished from our
approach by their goal to manage large-scale data (in the range of billions of
axioms), which is beyond the memory capacity of a single machine. Accordingly,
computation is distributed to many servers without memory sharing. Yet, we
can find similarities in term-based distribution strategies [5,21,22,6,20,14] and
indexing of rules [6] with our strategy of assigning contexts to axioms.

In conclusion, we can say that this work does indeed appear to be the first to
demonstrate a compelling performance advantage for terminological reasoning
in OWL through exploiting shared-memory parallelism on modern multi-core
systems. We hope that these encouraging results will inspire further works in this
area, by exploiting existing general techniques for parallel computing, such as
the MapReduce framework, as well as new approaches for parallelization specific
to OWL reasoning, such as consequence-based reasoning procedures.
Acknowledgements. Yevgeny Kazakov and František Simančík are sponsored
by EPSRC grant EP/G02085X/1. Markus Krötzsch is sponsored by EPSRC
grant EP/F065841/1. Some experimental results were obtained using computing
resources provided by the Oxford Supercomputing Centre.
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Abstract. Evolution of Knowledge Bases (KBs) expressed in Description Log-
ics (DLs) proved its importance. Recent studies of the topic mostly focussed on
model-based approaches (MBAs), where an evolution (of a KB) results in a set of
models. For KBs expressed in tractable DLs, such as DL-Lite, it was shown that
the evolution suffers from inexpressibility, i.e., the result of evolution cannot be
expressed in DL-Lite. What is missing in these studies is understanding: in which
DL-Lite fragments evolution can be captured, what causes the inexpressibility,
which logics is sufficient to express evolution, whether and how one can approx-
imate it in DL-Lite. This work provides some understanding of these issues for
eight of MBAs which cover the case of both update and revision. We found what
causes inexpressibility and isolated a fragment of DL-Lite where evolution is ex-
pressible. For this fragment we provided polynomial-time algorithms to compute
evolution results. For the general case we proposed techniques (based on what we
called prototypes) to capture DL-Lite evolution corresponding to a well-known
Winslett’s approach in a DL SHOIQ (which is subsumed by OWL 2 DL). We
also showed how to approximate this evolution in DL-Lite.

1 Introduction

Description Logics (DLs) provide excellent mechanisms for representing structured
knowledge by means of Knowledge Bases (KBs) K that are composed of two compo-
nents: TBox (describes intensional or general knowledge about an application domain)
and ABox (describes facts about individual objects). DLs constitute the foundations for
various dialects of OWL, the Semantic Web ontology language.

Traditionally DLs have been used for modeling static and structural aspects of ap-
plication domains [1]. Recently, however, the scope of KBs has broadened, and they
are now used also for providing support in the maintenance and evolution phase of in-
formation systems. This makes it necessary to study evolution of Knowledge Bases [2],
where the goal is to incorporate new knowledge N into an existing KB K so as to take
into account changes that occur in the underlying application domain. In general, N
is represented by a set of formulas denoting properties that should be true after K has
evolved, and the result of evolution, denoted K � N , is also intended to be a set of for-
mulas. In the case where N interacts with K in an undesirable way, e.g., by causing the
KB or relevant parts of it to become unsatisfiable, N cannot be simply added to the KB.
Instead, suitable changes need to be made in K so as to avoid this undesirable interac-
tion, e.g., by deleting parts of K conflicting with N . Different choices for changes are
possible, corresponding to different approaches to semantics for KB evolution [3,4,5].

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 321–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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An important group of approaches to evolution semantics, that we focus in this
paper, is called model-based (MBAs). Under MBAs the result of evolution K � N is
a set of models of N that are minimally distanced from models of K. Depending on
what the distance between models is and how to measure it, eight different MBAs were
introduced (see Section 2.2 for details). Since K � N is a set of models, while K and
N are logical theories, it is desirable to represent K � N as a logical theory using the
same language as for K and N . Thus, looking for representations of K �N is the main
challenge in studies of evolution under MBAs. When K and N are propositional the-
ories, representing K � N is well understood [5], while it becomes dramatically more
complicated as soon as K and N are first-order, e.g., DL KBs [6].

Model based evolution of KBs where K and N are written in a language of the
DL-Lite family [7] has been recently extensively studied [6,8,9]. The focus on DL-
Lite is not surprising since it is the basis of OWL 2 QL, a tractable OWL 2 profile.
It has been shown that for every of the eight MBAs one can find DL-Lite K and N
such that K � N cannot be expressed in DL-Lite [10,11], i.e., DL-Lite is not closed
under MBA evolution. This phenomenon was also noted in [6,10] for some of the eight
semantics. What is missing in all these studies of evolution for DL-Lite is understanding
of

(1) DL-Lite wrt evolution: What DL-Lite fragments are closed under MBAs? What DL-
Lite formulas are in charge of inexpressibility?

(2) Evolution wrt DL-Lite : Is it possible and how to capture evolution of DL-Lite KBs
in richer logics? What are these logics?

(3) Approximation of evolution results: For DL-Lite KB K and an ABox N , is it
possible and how to do “good” approximations of K � N in DL-Lite?

In this paper we study the problems (1)-(3) for so-called ABox evolution, i.e., N
is a new ABox and the TBox of K should remain the same after the evolution.
ABox evolution is important for areas, e.g., artifact-centered service interopera-
tion (http://www.acsi-project.eu/), where the structural knowledge (TBox)
is well crafted and stable, while (ABox) facts about individuals may get changed. These
ABox changes should be reflected in KBs in a way that the TBox is not affected. Our
study covers both the case of ABox updates and ABox revision [4].

The contributions of the paper are: We provide relationships between MBAs for
DL-LiteR by showing which approaches subsume each other (Section 3). We intro-
duce DL-Litepr

R , a restriction on DL-LiteR where disjointness of concepts with role
projections is forbidden. We show that DL-Litepr

R is closed under most of MBA evolu-
tions and provide polynomial-time algorithms to compute (representations of) K � N
(Section 4). For DL-LiteR we focus on an important MBA corresponding to a well ac-
cepted Winslett’s semantics and show how to capture K �N for this semantics in a DL
SHOIQ (Section 5). We show what combination of assertions in T together with N
can lead to inexpressibility of (T ,A)�N in DL-LiteR (Section 5.1). For the case when
K � N is not expressible in DL-LiteR we study how to approximate it in DL-LiteR
(Section 5.4).

http://www.acsi-project.eu/
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2 Preliminaries

2.1 DL-LiteR

We introduce some basic notions of DLs, (see [1] for more details). We consider a
logic DL-LiteR of DL-Lite family of DLs [7,12]. DL-LiteR has the following con-
structs for (complex) concepts and roles: (i) B ::= A | ∃R, (ii) C ::= B | ¬B,
(iii) R ::= P | P−, where A and P stand for an atomic concept and role, respectively,
which are just names. A knowledge base (KB) K = (T ,A) is compounded of two sets
of assertions: TBox T , and ABox A. DL-LiteR TBox assertions are concept inclusion
assertions of the form B � C and role inclusion assertions R1 � R2, while ABox
assertions are membership assertions of the form A(a), ¬A(a), and R(a, b). The active
domain of K, denoted adom(K), is the set of all constants occurring in K. In Section 5
we will also talk about a DL SHOIQ [1] while we do not define it here due to space
limit.

The semantics of DL-Lite KBs is given in the standard way, using first order inter-
pretations, all over the same countable domain Δ. An interpretation I is a function ·I
that assigns to each C a subset CI of Δ, and to R a binary relation RI over Δ in
a way that (¬B)I = Δ \ BI , (∃R)I = {a | ∃a′.(a, a′) ∈ RI}, and (P−)I =
{(a2, a1) | (a1, a2) ∈ P I}. We assume that Δ contains the constants and that cI = c
(we adopt standard names). Alternatively, we view interpretations as sets of atoms
and say that A(a) ∈ I iff a ∈ AI and P (a, b) ∈ I iff (a, b) ∈ P I . An inter-
pretation I is a model of a membership assertion A(a) (resp., ¬A(a)) if a ∈ AI

(resp., a /∈ AI ), of P (a, b) if (a, b) ∈ P I , and of an assertion D1 � D2 if DI
1 ⊆

DI
2 .
As usual, we use I |= F to denote that I is a model of an assertion F , and I |= K

denotes that I |= F for each F in K. We use Mod(K) to denote the set of all models
of K. A KB is satisfiable if it has at least one model. The DL-Lite family has nice com-
putational properties, for example, KB satisfiability has polynomial-time complexity in
the size of the TBox and logarithmic-space in the size of the ABox [12,13]. We use
entailment on KBs K |= K′ in the standard sense. An ABox A T -entails an ABox A′,
denoted A |=T A′, if T ∪ A |= A′, and A is T -equivalent to A′, denoted A ≡T A′, if
A |=T A′ and A′ |=T A.

The deductive closure of a TBox T , denoted cl(T ), is the set of all TBox assertions
F such that T |= F . For satisfiable KBs K = (T ,A), a full closure of A (wrt T ),
denoted fclT (A), is the set of all membership assertions f (both positive and negative)
over adom(K) such that A |=T f . In DL-LiteR both cl(T ) and fclT (A) are computable
in time quadratic in, respectively, |T |, i.e., the number of assertions of T , and |T ∪
A|. In our work we assume that all TBoxes and ABoxes are closed, while results are
extendable to arbitrarily KBs.

A homomorphism h from a model I to a model J is a mapping from Δ to Δ sat-
isfying: (i) h(a) = a for every constant a; (ii) if α ∈ AI (resp., (α, β) ∈ P I ), then
h(α) ∈ AJ (resp., (h(α), h(β)) ∈ PJ ) for every A (resp., P ). A canonical model of
K is a model which can be homomorphically embedded in every model of K, denoted
Ican
K or just Ican when K is clear from the context.
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Fig. 1. Left: measuring distances between models and finding local minimums.
Right: three-dimensional space of approaches to model-based evolution semantics.

2.2 Evolution of Knowledge Bases

This section is based on [10]. Let K = (T ,A) be a DL-LiteR KB and N a “new” ABox.
We study how to incorporateN ’s assertions into K, that is, how K evolves under N [2].
More practically, we study evolution operators that take K and N as input and return,
possibly in polynomial time, a DL-LiteR K′ = (T ,A′) (with the same TBox as K) that
captures the evolution, and which we call the (ABox) evolution of K under N . Based
on the evolution principles of [10], we require K and K′ to be satisfiable. A DL-LiteR
KB K = (T ,A) and an ABox N is a evolution setting if K and (T ,N ) are satisfiable.

Model-Based Semantics of Evolution. In model-based approaches (MBAs), the result
of evolution of a KB K wrt new knowledge N is a set K � N of models. The idea of
MBAs is to choose as K�N some models of (T ,N ) depending on their distance to K’s
models. Katsuno and Mendelzon [4] considered two ways, so called local and global,
of choosing these models of (T ,N ), where the first choice corresponds to knowledge
update and the second one to knowledge revision.

The idea of the local approaches is to consider all models I of K one by one and for
each I to take those models J of (T ,N ) that are minimally distant from I. Formally,

K � N =
⋃

I∈Mod(K)

I � N , where I � N = arg min
J∈Mod(T ∪N )

dist(I,J ).

where dist(·, ·) is a function whose range is a partially ordered domain and argmin
stands for the argument of the minimum, that is, in our case, the set of models J
for which the value of dist(I,J ) reaches its minimum value, given I. The distance
function dist varies from approach to approach and commonly takes as values either
numbers or subsets of some fixed set. To get a better intuition of the local semantics,
consider Figure 1, left, where we present two model I0 and I1 of a KB K and four
models J0, . . . ,J3 of (T ,N ). We represent the distance between a model of K and
a model of T ∪ N by the length of a line connecting them. Solid lines correspond to
minimal distances, dashed lines to distances that are not minimal. In this figure {J0} =
argminJ∈{J0,...,J3} dist(I0,J ) and {J2,J3} = argminJ∈{J0,...,J3} dist(I1,J ).

In the global approach one choses models of T ∪ N that are minimally distant from
K:

K � N = argmin
J∈Mod(T ∪N )

dist(Mod(K),J ), (1)
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where dist(Mod(K),J ) = minI∈Mod(K) dist(I,J ). Consider again Figure 1, left, and
assume that the distance between I0 and J0 is the global minimum, hence, {J0} =
argminJ∈{J0,...,J3} dist({I0, I1},J ).

Measuring Distance Between Interpretations. The classical MBAs were developed for
propositional theories [5], where interpretation were sets of propositional atoms, two
distance functions were introduced, respectively based on symmetric difference “�”
and on the cardinality of symmetric difference:

dist⊆(I,J ) = I � J and dist#(I,J ) = |I � J |, (2)

where I �J = (I \J )∪ (J \I). Distances under dist⊆ are sets and are compared by
set inclusion, that is, dist⊆(I1,J1) ≤ dist⊆(I2,J2) iff dist⊆(I1,J1) ⊆ dist⊆(I2,J2).
Finite distances under dist# are natural numbers and are compared in the standard way.

One can extend these distances to DL interpretations in two different ways. One
way is to consider interpretations I, J as sets of atoms. Then I � J is again a set
of atoms and we can define distances as in Equation (2). We denote these distances
as dista⊆(I,J ) and dista#(I,J ). Another way is to define distances at the level of the
concept and role symbols in the signature Σ underlying the interpretations:

dists⊆(I,J ) = {S ∈ Σ | SI �= SJ }, and dists#(I,J ) = |{S ∈ Σ | SI �= SJ }|.

Summing up across the different possibilities, we have three dimensions, which give
eight semantics of evolution according to MBAs by choosing: (1) the local or the global
approach, (2) atoms or symbols for defining distances, and (3) set inclusion or cardinal-
ity to compare symmetric differences. In Figure 1, right, we depict these three dimen-
sions. We denote each of these eight possibilities by a combination of three symbols,
indicating the choice in each dimension, e.g., La

# denotes the local semantics where the
distances are expressed in terms of cardinality of sets of atoms.

Closure Under Evolution. Let D be a DL and M one of the eight MBAs introduced
above. We say D is closed under evolution wrt M (or evolution wrt M is expressible in
D) if for every evolution setting K and N written in D, there is a KB K′ written in D
such that Mod(K′) = K � N , where K � N is the evolution result under semantics M .

We showed in [10,11] that DL-Lite is not closed under any of the eight model based
semantics. The observation underlying these results is that on the one hand, the min-
imality of change principle intrinsically introduces implicit disjunction in the evolved
KB. On the other hand, since DL-Lite is a slight extension of Horn logic [14], it does
not allow one to express genuine disjunction (see Lemma 1 in [10] for details).

Let M be a set of models that resulted from the evolution of (T ,A) with N . A KB
(T ,A′) is a sound approximation of M if M ⊆ Mod(T ,A′). A sound approximation
(T ,A′) is minimal if for every sound approximation (T ,A′′) inequivalent to (T ,A′),
it holds that Mod(T ,A′′) �⊂ Mod(T ,A′), i.e., (T ,A′) is minimal wrt “⊆”.

3 Relationships between Model-Based Semantics

Let S1 and S2 be two evolution semantics and D a logic language. Then S1 is subsumed
by S2 wrt D, denoted (S1 �sem S2)(D), or just S1 �sem S2 when D is clear from the
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Gs
# Ls

#

Ls
⊆Gs

⊆

Ga
#

Ga
⊆ La

⊆

La
#

Fig. 2. Subsumptions for evolution semantics.
“ ”: for DL-LiteR (Theorem 1). “ ”: for DL-Litepr

R (Theorems 4, 5).
Dashed frame surrounds semantics under which DL-Litepr

R is closed.

context, if K �S1 N ⊆ K �S2 N for all satisfiable KBs K and N written in D, where
K �Si N denotes evolution under Si. Two semantics S1 and S2 are equivalent (wrt
D), denoted (S1 ≡sem S2)(D), if (S1 �sem S2)(D) and (S2 �sem S1)(D). Further in
this section we will consider K and N written in DL-LiteR. The following theorem
shows the subsumption relation between different semantics. We depict these relations
in Figure 2 using solid arrows. The figure is complete in the following sense: there is a
solid path (a sequence of solid arrows) between any two semantics S1 and S2 iff there
is a subsumption S1 �sem S2.

Theorem 1. Let β ∈ {a, s} and α ∈ {⊆, #}. Then for DL-LiteR it holds that

Gβ
α �sem Lβ

α, Gs
# �sem Gs

⊆, and Ls
# �sem Ls

⊆.

Proof. Let distβα be a distance function, EG = K � N wrt Gβ
α and EL = K � N wrt Lβ

α

be corresponding global and local semantics based on distβα. For an evolution setting
K and N , let J ′ ∈ EG . Then, there is I ′ |= K such that for every I ′′ |= K and
J ′′ |= T ∪ N it does not hold that distβα(I ′′,J ′′) � distβα(I ′,J ′). In particular, when
I ′′ = I ′, there is no J ′′ |= T ∪ N such that distβα(I ′,J ′′) � distβα(I ′,J ′), which
yields that J ′ ∈ arg minJ∈Mod(T ∪N ) distβα(I ′,J ), and J ′ ∈ EL. We conclude that:
Ga

# �sem La
#, Ga

⊆ �sem La
⊆, Gs

# �sem Ls
#, Gs

⊆ �sem Ls
⊆.

Consider E# = K � N wrt Lβ
#, which is based on dist#, and E⊆ = K � N wrt Lβ

⊆,
which is based on dist⊆. We now check whether E# �sem E⊆ holds. Assume J ′ ∈ E#

and J ′ �∈ E⊆. Then, from the former assumption we conclude existence of I ′ |= K such
that J ′ ∈ arg minJ∈Mod(T ∪N ) dist#(I ′,J ). From the latter assumption, J ′ /∈ E⊆, we
conclude existence of a model J ′′ such that dist⊆(I ′,J ′′) � dist⊆(I ′,J ′). This yields
that dist#(I ′,J ′′) � dist#(I ′,J ′), which contradicts the fact that J ′ ∈ E#, assuming
that dist⊆(I ′,J ′) is finite. Thus, E# �sem E⊆ as soon as dist⊆(I,J ) is finite. This
finiteness condition always holds for when β = s since the signature of K∪N is finite.
It is easy to check that dist⊆(I,J ) may not be finite when β = a, hence, La

# ��sem La
⊆.

Similarly, one can show that Gs
# �sem Gs

⊆ and Ga
# ��sem Ga

⊆ in DL-LiteR. �

4 Evolution of DL-Litepr
R KBs

Consider a restriction of DL-LiteR, which we call DL-Litepr
R (pr stands for positive role

interaction), where disjointness that involves roles is forbidden (only positive inclusions
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INPUT : satisfiable DL-LiteprR KB (T ,A) and DL-LiteR ABox N
OUTPUT: a set A′ ⊆ fclT (A) of ABox assertions

A′ := ∅; S := fclT (A);1

repeat2

choose some φ ∈ S ; S := S \ {φ};3

if {φ} ∪ fclT (N ) is satisfiable then A′ := A′ ∪ {φ}4

until S = ∅ ;5

Algorithm 1. Algorithm AlignAlg((T ,A),N ) for A′ deterministic computation

involving roles are permitted). Formally, T is in DL-Litepr
R if it is in DL-LiteR and T �|=

∃R � ¬B for any role R and any concept B. DL-Litepr
R is defined semantically, while

one can syntactically check (in quadratic time), given a DL-LiteR TBox T whether it
is in DL-Litepr

R : compute a closure of T , check that no assertion of the form ∃R � ¬B
is in the closure and if it is the case, then K is in DL-Litepr

R . Note that DL-Litepr
R is

an extension of RDFS ontology language (of its first-order logics fragment). DL-Litepr
R

adds to RDFS the ability of expressing disjointness of atomic concepts (A1 � ¬A2) and
mandatory participation (A � ∃R). In the rest of the section we investigate whether and
how to capture K � N in DL-Litepr

R for DL-Litepr
R KBs K under all the eight MBAs.

4.1 Capturing Atom-Based Evolution

We first study evolution under La
⊆. Let I be an interpretation. An align-

ment Align(I,N ) of I with an ABox N , is the interpretation {f | f ∈
I and f is satisfiable with N}.

Consider an algorithm AlignAlg (see Algorithm 1) that inputs an evolution setting
K, N , and returns the alignment Align(Ican,N ) of a canonical model Ican of K: it
drops all the assertions of fclT (A) contradicting N and keeps the rest. Using AlignAlg
we can compute representation of K � N in DL-Litepr

R :

Theorem 2. Let K = (T ,A) and N be an evolution setting, and T be in DL-LiteprR .
Then there exists a DL-Litepr

R representation of K�N underLa
⊆, and it can be computed

in time polynomial in |K ∪ N| as follows:

K � N = Mod(T , AlignAlg(K,N ) ∪N ).

Example 3. Consider T = {B0 � B, B � ¬C}, A = {C(a)}, and N = B(a). Then,
fclT (A) = {C(a),¬B0(a),¬B(a)} and AlignAlg((T ,A),N ) = {¬B0(a)}. Hence,
the result of evolution (T ,A) � N under La

⊆ is (T , {B(a),¬B0(a)}).

Relationships between Atom-Based Semantics. Next theorem shows that in DL-Litepr
R

all four atom-based MBAs coincide We depict these relations between semantics in
Figure 2 using dashed arrows, e.g., as between La

⊆ and Ga
#. Note that there is a path

with solid or dashed arrows (a sequence of such arrows) between any two semantics if
and only if in DL-Litepr

R there is a subsumption between them.
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Theorem 4. For DL-Litepr
R : La

# ≡sem La
⊆ ≡sem Ga

# ≡sem Ga
⊆.

Theorems 2 and 4 imply that in DL-Litepr
R one can use AlignAlg to compute (a repre-

sentation of) evolution under all MBAs on atoms.

4.2 Capturing Symbol-Based Evolution

Observe that symbol-based semantics behave differently from atom-based ones: two
local semantics (on set inclusion and cardinality) coincide, as well as two global se-
mantics, while there is no subsumption between local and global ones, as depicted in
Figure 2:

Theorem 5. The following relations on symbols-based MBAs hold for DL-Litepr
R :

(i) La
⊆ �sem Gs

#, while Gs
# ��sem La

⊆;
(ii) Ls

⊆ ≡sem Ls
#, and Gs

⊆ ≡sem Gs
#, while Ls

⊆ ��sem Gs
#.

As a corollary of Theorem 5, in general the approach presented in Theorem 2 does
not work for computing K � N under any of the symbol-based MBAs. At the same
time, as follows from the following Theorems 6 and 8, this approach gives complete
approximations of all symbol-based semantics, while it approximates global semantics
better than the local ones.

Consider the algorithm SymAlg in Algorithm 2 that will be used for evolutions on
symbols. It works as follows: it inputs an evolution setting (T ,A), N and a unary
property Π of assertions. Then for every atom φ in N it checks whether φ satisfies Π
(Line 4). If it the case, SymAlg deletes from AlignAlg((T ,A),N ) all literals φ′ that
share concept name with φ. Both local and global semantics have their own Π : ΠG and
ΠL.

Capturing Global Semantics. ΠG(φ) checks whether φ of N T -contradicts A: ΠG(φ)
is true iff ¬φ ∈ fclT (A) \ AlignAlg((T ,A),N ). Intuitively, SymAlg for global se-
mantics works as follows: having contradiction between N and A on φ = B(c), the
change of B’s interpretation is inevitable. Since the semantics traces changes on sym-
bols only, and B is already changed, one can drop from A all the assertions of the form
B(d). Clearly, SymAlg(K,N , ΠG) can be computed in time polynomial in |K ∪ N|.
The following theorem shows correctness of this algorithm.

Theorem 6. Let K = (T ,A) and N be an evolution setting, and T be in DL-LiteprR .
Then a DL-Litepr

R representation of K � N under both Gs
⊆ and Gs

# exists and can be
computed in time polynomial in |K ∪ N| as follows:

K � N = Mod(T , SymAlg(K,N , ΠG)).

Capturing Local Semantics. Observe that Ls
⊆ and Ls

# are not expressible in DL-Litepr
R

because they require for a disjunction which is not available in DL-LiteR (we omit
details due to space limit).

Theorem 7. DL-Litepr
R is not closed under Ls

⊆ and Ls
# semantics.
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INPUT : satisfiable DL-LiteprR KB (T ,A) and ABox N , a property Π of assertions
OUTPUT: a set A′ ⊆ fclT (A) ∪ fclT (N ) of ABox assertions

A′ := ∅; S1 := AlignAlg((T ,A),N ); S2 := fclT (N );1

repeat2

choose some φ ∈ S2; S2 := S2 \ {φ};3

if Π(φ) = TRUE then S1 := S1 \ {φ′ | φ and φ′ have the same concept name}4

until S2 = ∅ ;5

A′ := S1 ∪ fclT (N )6

Algorithm 2. Algorithm SymAlg((T ,A),N , Π) for deterministic computation
of K � N under Gs

⊆ and Gs
# semantics and minimal sound approximation under

Ls
⊆ and Ls

# semantics

To compute a minimal sound approximations under local semantics on symbols, we
use SymAlg with the following ΠL: ΠL(φ) is true iff φ /∈ S1. That is, ΠL checks
whether the ABox A T -entails A(c) ∈ fclT (N ), and if it does not, then the algorithm
deletes all the assertions from fclT (A) that share the concept name with A(c). This
property is weaker than the one for global semantics, since it is easier to get changes
in interpretation of A by choosing a model of K which does not include A(c). The
following theorem shows correctness and complexity of the algorithm.

Theorem 8. Let K = (T ,A) and N be an evolution setting, and T be in DL-LiteprR .
Then a DL-Litepr

R minimal sound approximation K′′ of K � N under both Ls
⊆ and Ls

#

exists and can be computed in time polynomial in |K ∪ N| as follows:

K′′ = (T , SymAlg(K,N , ΠL)).

Example 9. Consider the following DL-Litepr
R KB K = (∅,A) and N :

A = {A(a), A(b), B(c), B(d)}; N = {¬A(a), B(e)}.
It is easy to see that A′ = SymAlg(K,N , ΠG) is {¬A(a), B(c), B(d), B(e)}, and
A′′ = SymAlg(K,N , ΠL) is {¬A(a), B(e)}. That is, K � N under Gs

β is equal to
Mod(∅,A′), and under Ls

β is approximated by Mod(∅,A′′), where β ∈ {⊆, #}. A
closer look at A′ shows that the behaviour of the evolution under Gs

β is very counter-
intuitive: as soon as we declare that the object a is not in A, all the information about
another objects in A is erased. Local semantics Ls

β are even worse: the evolution under
them erases information about B as soon as we just add information about a new object
e in B.

To sum up on DL-Litepr
R : atom-based approaches (which all coincide) can be captured

using a polynomial-time time algorithm based on alignment. Moreover, the evolution
results produced under these MBAs are intuitive and expected, e.g., see Example 3,
while symbol-based approaches produce quite unexpected and counterintuitive results
(these semantics delete too much data). Furthermore, two out of four of the latter ap-
proaches cannot be captured in DL-Litepr

R . Based on these results we conclude that us-
ing atom-based approaches for applications seem to be more practical. In Figure 2 we
framed in a dashed rectangle six out of eight MBAs under which DL-Litepr

R is closed.
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5 La
⊆ Evolution of DL-LiteR KBs

In the previous section we showed that atom-based MBAs behave well for DL-Litepr
R

evolution settings, while symbol-based ones do not. This suggests to investigate atom-
based MBAs for the entire DL-LiteR. Moreover, one of the atom-based semantics La

⊆
which is essentially the same as a so-called Winslett’s semantics [15] (WS) was widely
studied in the literature [6,8]. Liu, Lutz, Milicic, and Wolter studied WS for expressive
DLs [6], and KBs with empty TBoxes. Most of the DLs they considered are not closed
under WS. Poggi, Lembo, De Giacomo, Lenzerini, and Rosati applied WS to the same
setting as we have in this work: to what they called instance level (ABox) update for DL-
Lite [8]. They proposed an algorithm to compute the result of updates, which has tech-
nical issues, i.e., it is neither sound, nor complete [10]. They further use this algorithm
to compute approximations of ABox updates in sublogics of DL-Lite, which inherits
these technical issues. Actually, ABox update algorithm cannot exist since Calvanese,
Kharlamov, Nutt, and Zheleznyakov showed that DL-Lite is not closed under La

⊆ [11].
We now investigate La

⊆ evolution for DL-LiteR and firstly explain why DL-LiteR is not
closed under La

⊆.

5.1 Understanding Inexpressibility of Evolution in DL-LiteR

Recall that for every DL-Lite KB K, the set Mod(K) has a canonical model. The fol-
lowing example illustrates the lack of canonical models for K � N under La

⊆, which
yields inexpressibility of K � N in DL-Lite.

Example 10. Consider the following DL-Lite KB K1 = (T1,A1) and N1 = {C(b)}:

T1 = {A � ∃R, ∃R− � ¬C}; A1 = {A(a), C(e), C(d), R(a, b)}.
Consider a model I of K1: AI = {a, x}, CI = {d, e}, and RI = {(a, b), (x, b)},
where x ∈ Δ \ adom(K1 ∪N1). The following models belong to I � N1:

J0: AI = ∅, CI = {d, e, b}, RI = ∅,
J1: AI = {x}, CI = {e, b}, RI = {(x, d)},
J2: AI = {x}, CI = {d, b}, RI = {(x, e)}.

Indeed, all the models satisfy N1 and T1. To see that they are in I � N1 observe that
every model J (I) ∈ (I � N1) can be obtained from I by making modifications that
guarantee that J (I) |= (N1∪T1) and that the distance between I and J (I) is minimal.
What are these modifications? Since in every J (I) the new assertion C(b) holds and
(∃R− � ¬C) ∈ T1, there should be no R-atoms with b-fillers (at the second coordinate)
in J (I). Hence, the necessary modifications of I are either to drop (some of) the R-
atoms R(a, b) and R(x, b), or to modify (some of) them, by substituting the b-fillers
with another ones, while keeping the elements a and x on the first coordinate. The
model J0 corresponds to the case when both R-atoms are dropped, while in J1 and J2

only R(a, b) is dropped and R(x, b) is modified to R(x, d) and R(x, e), respectively.
Note that the modification in R(x, b) leads to a further change in the interpretation of
C in both J1 and J2, namely, C(d) and C(e) should be dropped, respectively.

One can verify that any model Jcan that can be homomorphically embedded into J0,
J1, and J2 is such that AJcan = RJcan = ∅, and e, d /∈ CJcan . It is easy to check that
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such a model does not belong to K1�N1. Hence, there is no canonical model in K1�N1

and it is inexpressible in DL-Lite.

We now give an intuition why in K � N under La
⊆ canonical models may be missing.

Observe that in Example 10, the role R is affected by the old TBox T1 as follows:

(i) T1 places (i.e., enforces the existence of) R-atoms in the evolution result, and on
one of coordinates of these R-atoms, there are constants from specific sets, e.g.,
A � ∃R of T1 enforces R-atoms with constants from A on the first coordinate,
and

(ii) T1 forbids R-atoms in K1 � N1 with specific constants on the other coordinate,
e.g., ∃R− � ¬C forbids R-atoms with C-constants on the second coordinate.

Due to this dual-affection (both positive and negative) of the role R in T1, we were able
to provide ABoxes A1 and N1, which together triggered the case analyses of modifi-
cations on the model I, that is, A1 and N1 were triggers for R. Existence of such an
affected R and triggers A1 and N1 made K1�N1 inexpressible in DL-LiteR. Therefore,
we now formally define and then learn how to detect dually-affected roles in TBoxes T
and how to understand whether these roles are triggered by A and N .

Definition 11. Let T be a DL-LiteR TBox. Then a role R is dually-affected in T if for
some concepts A and B it holds that T |= A � ∃R and T |= ∃R− � ¬B. A dually-
affected role R is triggered by N if there is a concept C such that T |= ∃R− � ¬C
and N |=T C(b) for some constant b.

As we saw in Example 10, even one dually-affected role in a TBox can cause inexpress-
ibility of evolution. Moreover, if there is a dually affected role, we can always find A
and N to trigger it. We generalize this observation as follows:

Theorem 12. Let T be a DL-LiteR TBox and R be a role dually affected in T . Then
there exist ABoxes A and N s.t. (T ,A) � N is inexpressible in DL-LiteR under La

⊆.

5.2 Prototypes

Closer look at the sets of models K � N for DL-LiteR KBs K gives a surprising result:

Theorem 13. The set of models K � N under La
⊆ can be divided (but in general

not partitioned) into worst-case exponentially many in |K ∪ N| subsets S0, . . . ,Sn,
where each Si has a canonical model Ji, which is a minimal element in K � N wrt
homomorphisms.

We call these Jis prototypes. Thus, capturing K � N in some logics boils down to
(i) capturing each Si with some theoryKSi and (ii) taking the disjunction across all KSi .
This will give the desired theory K′ = KS1 ∨ · · · ∨ KSn that captures K � N . As
we will see some of KSis are not DL-Lite theories (while they are SHOIQ theories,
see Section 5.4 for details). We construct each KSi in two steps. First, we construct a
DL-LiteR KB K(Ji) which is a sound approximations of Si, i.e., Si ⊆ Mod(K(Ji)).
Second, based on K and N , we construct a SHOIQ formula Ψ , which cancels out all
the models in Mod(K(Ji)) \ Si, i.e., KSi = Ψ ∧ K(Ji). Finally,

KS0 ∨ · · · ∨KSn = (Ψ ∧K(J0))∨ · · · ∨ (Ψ ∧K(Jn)) = Ψ ∧ (K(J0)∨ · · · ∨K(Jn)).
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K � N S0 S1 S3S2

J0
J1 J2

J3

Mod(K(J0)) Mod(K(J1)) Mod(K(J2))

Mod(K(J3))

Fig. 3. Graphical representation of our approach to capture the result of evolution under La
⊆

To get a better intuition on our approach consider Figure 3, where the result of evolu-
tion K�N is depicted as the figure with solid-line borders (each point within the figure
is a model of K � N ). For the sake of example, let K � N under La

⊆ can be divided in
four subsets S0, . . . ,S3. To emphasize this fact, K�N looks similar to a hand with four
fingers, where each finger represents an Si. Consider the left part of Figure 3, where the
canonical Ji model of each Si is depicted as a star. Using DL-LiteR, we can provide
KBs K(Ji)s that are sound approximation of corresponding Sis. We depict the models
Mod(K(Ji)) as ovals with dashed-line boarders. In the right part of Figure 3 we depict
in grey the models Mod(K(Ji)) \ Si that are cut off by Ψ .

We now define prototypes formally and proceed to procedures discussed above.

Definition 14. Let K and N be an evolution setting. A prototypal set for K � N un-
der La

⊆ is a minimal subset = {J0, . . . ,Jn} of K � N satisfying the following prop-
erty:

for every J ∈ K � N there exists Ji ∈ homomorphically embeddable in J .

We call every Ji ∈ a prototype for K �N . Note that prototypes generalize canonical
models in the sense that every set of models with a canonical one, say Mod(K) for a
DL-LiteR KB K, has a prototype, which is exactly this canonical model.

5.3 Computing La
⊆ Evolution for DL-LiteR

For the ease of exhibition of our procedure that computes evolution K � N under La
⊆

semantics we restrict DL-LiteR by assuming that TBoxes T should satisfy: for any
two roles R and R′, T �|= ∃R � ∃R′ and T �|= ∃R � ¬∃R′. That is, we forbid
direct interaction (subsumption and disjoint) between role projections and call such T
as without direct role interactions. Some interaction between R and R′ is still possible,
e.g., role projections may contain the same concept. This restriction allows us to analyze
evolution that affects roles independently for every role. We will further comment on
how the following techniques can be extended to the case when roles interact in an
arbitrary way.

Components for Computation. We now introduce several notions and notations that we
further use in the description of our procedure. The notion of alignment was introduced
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BZP (K,N )

1. J0 := Align(Ican,N ) ∪N , where Ican is the canonical model of K.
2. For each R(a, b) ∈ AA(K,N ), do J0 := J0 \ {R(a, b)},

if there is no R(a, β) ∈ Ican \ AA(K,N ) do J0 := J0 \ rootat
T (∃R(a)).

3. Return J0.

Fig. 4. The procedure of building zero-prototype

in Section 4.1. An auxiliary set of atoms AA (Auxiliary Atoms) that, due to evolution,
should be deleted from the original KB and have some extra condition on the first
coordinate is:

AA(T ,A,N ) = {R(a, b) ∈ fclT (A) | T |= A � ∃R,A |=T A(a),N |=T ¬∃R−(b)}.

If Ri is a dually-affected role of T triggered by A and N , then the set of forbidden
atoms (of the original ABox) FA[T ,A,N ](Ri) for Ri is:

{D(c) ∈ fclT (A) | ∃R−
i (c) ∧ D(c) |=T ⊥ and N �|=T D(c), and N �|=T ¬D(c)}.

Consequently, the set of forbidden atoms for the entire KB (T ,A) and N is

FA(T ,A,N ) =
⋃

Ri∈TR

FA(T ,A,N )(Ri),

where TR(T ,N ) (or simply TR, which stands for triggered roles) is the set of all roles
dually-affected in T that are triggered by N . In the following we omit the arguments
(T ,A,N ) in FA when they are clear from the context. For a role R, the set SC(R),
where SC stands for sub-concepts, is a set of concepts that are immediately under ∃R
in the concept hierarchy generated by T :

SC(R) = {A | T |= A � ∃R and there is no A′ s.t. T |= A � A′ and T |= A′ � ∃R}.

If f is an ABox assertion, then rootat
T (f) is a set of all the atoms that T -entail f . For

example, if T |= A � ∃R, then A(x) ∈ rootat
T (∃R(x)).

We are ready to proceed to construction of prototypes.

Constructing Zero-Prototype. The procedure BZP (K,N ) (Build Zero Prototype) in
Figure 4 constructs the main prototype J0 for K and N , which we call zero-prototype.
Based on J0 we will construct all the other prototypes. To build J0 one should align the
canonical model Ican ofK with N , and then delete from the resulting set of atoms all the
auxiliary atoms R(a, b) of AA(K,N ). If Ican contains no atoms R(a, β) ∈ AA(K,N )
for some β, then we further delete atoms rootat

T (∃R(a)) from J0, otherwise would we
get a contradiction with the TBox. Note that J0 can be infinite.

Constructing Other Prototypes. The procedure BP (K,N ,J0) (Build Prototypes) of
constructing takes J0 and, based on it, builds the other prototypes by (i) dropping
FA-atoms from J0 and then (ii) adding atoms necessary to obtain a model of K � N .
This procedure can be found in Figure 5.

We conclude the discussion on the procedures with a theorem:
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BP (K,N ,J0)

1. := {J0}.
2. For each subset D = {D1(c1), . . . , Dk(ck)} ⊆ FA do

for each R = (Ri1 , . . . , Rik ) such that Dj(cj) ∈ FA(Rij ) for j = 1, . . . , k do
for each B = (Ai1 , . . . , Aik ) such that Aj ∈ SC(Rj) do

J [D,R,B] :=
[
J0 \

⋃k
i=1 rootT (Di(ci))

]
∪
⋃k

j=1

[
fclT (Rij (xj , cj)) ∪ {ARij

(xj)}
]
,

where all xi’s are different constants from Δ \ adom(K), fresh for Ican.
:= ∪ {J [D,R,B]}.

3. Return .

Fig. 5. The procedure of building prototypes in DL-LiteR without direct role interactions based
on the zero prototype J0

Theorem 15. Let K = (T ,A), N be an evolution setting and T without direct role
interactions. Then the set BP (K,N , BZP (K,N )) is prototypal for K �N under La

⊆.

Continuing with Example 10, one can check that the prototypal set for K1 and N1 is
{J0,J1,J2,J3}, where J0, J1, and J2 are as in the example and AJ3 = {x, y},
CJ3 = {b}, and RJ3 = {(x, d), (y, e)}.
We proceed to correctness of BP in capturing evolution in DL-LiteR, where we use the
following set FC[T ,A,N ](Ri) = {c | D(c) ∈ FA[T ,A,N ](Ri)}, that collects all the
constants that participate in the forbidden atoms.

Theorem 16. Let K = (T ,A), N be an evolution setting, T without direct role in-
teractions, and BP (K,N , BZP (K,N )) = {J0, . . . ,Jn} a prototypal set for K � N .
Then K � N under La

⊆ is expressible in SHOIQ and moreover

K � N = Mod
(
Ψ ∧

(
(T ,A0) ∨ · · · ∨ (T ,An)

))
,

where Ai is a DL-LiteR ABox such that Ji is a canonical model for (T ,Ai), Ψ =
∀R�.(Φ1 � Φ2), where R� is the top role (which is present in OWL 2) and

Φ1 ≡
�

Ri∈TR

�

cj∈FC[Ri]

⎡⎢⎣(∃Ri.{cj} � (≤ 1R.�)
)
�
(
∃Ri.{cj} �

⊔
B(x)∈rootat

T (∃Ri(x))

¬{x} 	 B
)⎤⎥⎦ ,

Φ2 ≡
�

R(a,b)∈AA

⎡⎢⎣¬({a} � ∃R.�) 	
�

C(a)∈rootat
T (∃R(a))∩fclT (A)

{a} � C

⎤⎥⎦ .

What is missing in the theorem above is how to compute the ABoxes Ais. One can do
it using a similar procedure to the one of constructing Jis, with the difference that one
has to take the original ABox A instead of Ican as the input. Note that A may include
negative atoms, like ¬B(c), which should be treated in the same way as positive ones.

Continuing with Example 10, the ABoxes A0 and A1 are as follows:

A0 = {C(d), C(e), C(b)}; A1 = {A(x), C(e), C(b), R(x, d)}.



Capturing Instance Level Ontology Evolution for DL-Lite 335

A2 and A3 can be built in the similar way. Note that only A0 is in DL-LiteR, while
writing A1, . . . ,A3 requires variables in ABoxes. Variables, also known as soft con-
stants, are not allowed in DL-LiteR ABoxes, while present in DL-LiteRS ABoxes. Soft
constants x are constants not constrained by the Unique Name Assumption: it is not
necessary that xI = x. Since DL-LiteRS is tractable and first-order rewritable [12],
expressing A1 in DL-LiteRS instead of DL-LiteR does not affect tractability.

Note that the number of prototypes is exponential in the number of constants, and
therefore the size of the SHOIQ theory described in Theorem 16 is also exponential
in the number of constants.

Capturing La
⊆ Semantics for DL-LiteR KBs with Direct Role Interactions. In this gen-

eral case the BP procedure does return prototypes but not all of them. To capture the
La
⊆ for such KBs one should iterate BP over (already constructed) prototypes until no

new prototypes can be constructed. Intuitively the reason is that BP deletes forbidden
atoms (atoms of FA) and add new atoms of the form R(a, b) for some triggered dually-
affected role R which may in turn trigger another dually-affected role, say P , and such
triggering may require further modifications, already for P . This further modification
require a new run of BP. For example, if we have ∃R− � ¬∃P− in the TBox and we set
R(a, b) in a prototype, say Jk, this modification triggers role P and we should run BP
recursively with the prototype Jk as if it was the zero prototype. We shall not discuss
the general procedures in more details due to space limit.

5.4 Practical Considerations on La
⊆ Evolution

As a summary of Sections 4 and 5, we now discuss how one can compute La
⊆-evolution

of DL-LiteR KBs in practice. For an evolution setting K and N consider the following
procedure of computing K′ such that Mod(K′) = K � N :

1. Check whether K is in DL-Litepr
R . This test can be done in polynomial time, see

Section 4.
2. If K is in DL-Litepr

R , then K′ is in DL-Litepr
R and can be computed in polynomial

time using the algorithm AlignAlg as described in Theorem 2 of Section 4.
3. If K is not in DL-Litepr

R , then check whether any dually-affected role of K is trig-
gered by N . This test can be done in polynomial time, see Section 5.1.

4. If the test of Case 3 fails, then K′ is in DL-LiteR and can be computed as in Case 2.
5. If the test of Case 3 succeeds, then K′ is in SHOIQ, but not in DL-LiteR, and

can be computed using prototype-based techniques as described in Theorem 16.
The size of this K′ is polynomial in the number of prototypes for K �N . Since the
number of prototypes is worst-case exponential in the number of constants in A,
the size of K′ could be exponential in |K ∪ N|.

The case when computation of K′ can be intractable is of K with dually-affected roles
triggered by N . It is unclear how often this case may occur in practice. While the
tractable case of DL-Litepr

R where we disallow assertions of the form ∃R � ¬A seems
to be practical, since it extends the (first-order fragment) of RDFS.

We now discuss a way to approximate K � N with a DL-LiteR KB when this set
is not expressible in DL-LiteR. Let K = (T ,A) and N be an evolution setting, then a
DL-LiteR KB Kc = (T ,Ac) is a certain La

⊆-approximation of K�N if Ac = {F | K �
N |= F}. We called Kc certain since it resembles certain answers for queries over KBs.
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Proposition 17. Let K, N be an evolution setting. Then the certain La
⊆-approximation

of K � N exists, unique, and can be computed in non-deterministic exponential time.

Proof. Clearly all ABox assertions of Ac are over concepts, roles, and constants of K,
thus, there are at most a quadratic many (in |K ∪ N|) of them, and we can simply test
whether F ∈ Ac for each such assertion F . Since K � N is representable in SHOIQ,
this test can be reduced to the subsumption problem for SHOIQ (checking whether
K′ |= C(a) is equivalent to checking whether K′ |= {a} � C). Subsumption for
SHOIQ is NExpTime-complete and can be tested using the algorithms of [16].

The proposition above gives the upper bound for Kc computations. We do not know the
lower bound, but conjecture it to be in polynomial time. Note that NExpTime lower
bound for SHOIQ subsumption checking holds for arbitrarySHOIQ concepts, while
Theorem 16 gives us K′ with concepts of a specific kind. Moreover, the authors of [16]
argue that despite the high complexity of subsumption checking their algorithms should
behave well in many typically encountered cases. Note also that for DL-Litepr

R KBs
certain approximations in fact capture the evolution result, that is Mod(Kc) = K � N .

6 Conclusion

We studied model-based approaches to ABox evolution (update and revision) over
DL-LiteR and its fragment DL-Litepr

R , which both extend (first-order fragment of) RDFS.
DL-Litepr

R is closed under most of the MBAs, while DL-LiteR is not closed under any
of them. We showed that if the TBox of K entails a pair of assertions of the form
A � ∃R and ∃R− � ¬C, then an interplay of N and A may lead to inexpressibil-
ity of K � N . For DL-Litepr

R we provided algorithms how to compute evolution results
for six model-based approaches and approximate for the remaining two. For DL-LiteR
we capture evolution of KBs under a local model-based approach with SHOIQ using
novel techniques based on what we called prototypes. We believe that prototypes are
important since they can be used to study evolution for ontology languages other than
DL-LiteR. Finally, we showed how to approximate evolution when it is not expressible
in DL-LiteR using what we called certain approximations.

It is the first attempt to provide an understanding of inexpressibility of MBAs for DL-
Lite evolution. Without this understanding it is unclear how to proceed with the study
of evolution in more expressive DLs and what to expect from MBAs in such logics.
We also believe that our techniques of capturing semantics based on prototypes give a
better understanding of how MBAs behave.
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Querying OWL 2 QL and Non-monotonic Rules
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Abstract. Answering (conjunctive) queries is an important reasoning
task in Description Logics (DL), hence also in highly expressive ontology
languages, such as OWL. Extending such ontology languages with rules,
such as those expressible in RIF-Core, and further with non-monotonic
rules, integrating default negation as described in the RIF-FLD, yields
an even more expressive language that allows for modeling defaults, ex-
ceptions, and integrity constraints.

Here, we present a top-down procedure for querying knowledge bases
(KB) that combine non-monotonic rules with an ontology in DL-LiteR
– the DL underlying the OWL 2 profile OWL 2 QL. This profile aims
particularly at answering queries in an efficient way for KB with large
ABoxes. Our procedure extends the query-answering facility to KB that
also include non-monotonic rules, while maintaining tractability of rea-
soning (w.r.t. data complexity). We show that the answers are sound and
complete w.r.t. the well-founded MKNF model for hybrid MKNF KB K.

1 Introduction

Combining highly expressive ontology languages, such as OWL [9], (or their
underlying DL) and rules, such as in RIF-Core [3], is an important task in the
on-going standardization driven by the World Wide Web Consortium1 (W3C).
Both languages are quite different in terms of expressiveness and how decidability
is achieved, and providing a joint formalism is non-trivial, all the more if the
rules include mechanisms for non-monotonic reasoning, such as the NAF operator
described in the RIF-FLD [4].

Non-monotonic rules provide expressive features, such as the ability to model
defaults, exceptions, and integrity constraints, and its usefulness is frequently
being voiced. E.g., in [14], an ontology language is used for matching clinical
trials criteria with patient records, but one open problem is that medication of
patients, which is fully known, should be modeled by defaults.

Several approaches that combine rules and DL have been defined (see, e.g.,
[11,13] for an overview) but, among them, the approach of hybrid MKNF knowl-
edge bases [13], which is based on the logics of minimal knowledge and negation
as failure (MKNF) [12], is one of the most advanced. The integration of mono-
tonic and non-monotonic reasoning is seamless yet allows for a modular re-use
of reasoning algorithms of each of its components. Thus, hybrid MKNF is more
expressive than comparable approaches but at least as competitive in terms of
1 http://www.w3.org/

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 338–353, 2011.
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computation. At the cost of having a weaker form of reasoning, the well-founded
MKNF semantics for hybrid MKNF knowledge bases [11] achieves an even lower
computational (data) complexity in general. For example, if reasoning in the DL
is in PTIME, then the computation of the well-founded MKNF model remains
polynomial, while [13] is in NP. This is clearly preferable for large applications,
such as the one described in [14], which uses data of over 240,000 patients.

A further improvement in efficiency can be achieved if we query for informa-
tion in a top-down manner: instead of computing the entire model of a knowledge
base we could, e.g., just query for the medication of one patient ignoring all the
others. Queries are considered in the W3C with SPARQL [15] and answering
(conjunctive) queries is an important reasoning task in DL [7].

In [1], SLG(O) is introduced, which allows us to pose queries to a hybrid
MKNF KB and whose semantics is shown to correspond to that of [11]. The work
is based on an extension of SLG – a procedure for query-answering in normal
logic programs under the well-founded semantics resorting to tabling techniques
– that besides the operations for resolution in the rules, also incorporates calls to
a parametric oracle that deals with the reasoning task in the DL part of the KB.
It is shown that, if the number of answers of the oracle is appropriately restricted,
the favorable computational complexity of [11] is maintained. However, it is not
spelled out how these conditions are achieved for a concrete DL.

In this paper, we present a top-down procedure based on SLG(O) for query-
ing KB that combine non-monotonic rules with an ontology in DL-LiteR – the
DL underlying the OWL 2 profile OWL 2 QL. This profile aims particularly
at answering queries in an efficient way for KB with large ABoxes. It is thus
a natural choice as DL language for a procedure for query answering in KB
that, besides the ontology with large ABoxes, also includes the features of ex-
pressing defaults, constraints and exceptions, provided by non-monotonic rules.
Our procedure achieves that, while maintaining tractability of reasoning (w.r.t.
data complexity) on hybrid KB and reasoning in LOGSPACE on DL-LiteR alone.
In particular, query-answering is obtained by a combination of techniques from
top-down procedures in logic programs, and reasoning in relational databases
as done in DL-LiteR. We show that the answers are sound and complete w.r.t.
the well-founded MKNF model for hybrid MKNF knowledge bases K if K is
MKNF-consistent, and a paraconsistent approximation of that model otherwise.
As such, our work provides a way for querying KB consisting of an ontology in
the profile OWL 2 QL and a RIF dialect that allows for non-monotonic rules,
and, together with [10], such a query procedure for each tractable OWL profile.

2 Preliminaries

2.1 DL-LiteR

The description logic underlying OWL 2 QL is DL-LiteR, one language of the
DL-Lite family [5], which we recall in the following.

The syntax of DL-LiteR is based on three disjoint sets of individual names
NI, concept names NC, and role names NR. Complex concepts and roles can be
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formed according to the following syntax, where A ∈ NC is a concept name,
P ∈ NR a role name, and P− its inverse.

C −→ A | ∃R R −→ P | P− D −→ C | ¬C E −→ R | ¬R

A DL-LiteR knowledge base O = (T ,A) consists of a TBox T and an ABox
A. The TBox contains general inclusion axioms (GCI) of the form C � D, where
C and D are defined as above. Thus, the left and right hand sides of GCI are of
different expressiveness in DL-LiteR. Additionally, DL-LiteR TBoxes contain
role inclusion axioms (RI) of the form R � E where R and E are formed as
introduced above. Such axioms permit to express properties, such as symmetry.

The ABox contains assertions of the form A(a) and P (a, b) where A ∈ NC,
P ∈ NR, and a, b ∈ NI. Assertions C(a) for general concepts C are included by
adding A � C to the TBox and A(a) to the ABox for a new concept name A.

The semantics of DL-LiteR is based on interpretations I = (ΔI , ·I) consisting
of a nonempty interpretation domain ΔI and an interpretation function ·I that
assigns to each individual a a distinct2 element aI of ΔI , to each concept C a
subset CI , and to each role name R a binary relation RI over I. This can be
generalized to complex expressions as usual:

(P−)I = {(i2, i1) | (i1, i2) ∈ P I} (¬C)I = ΔI \ CI

(∃R)I = {i | (i, i′) ∈ RI} (¬R)I = Δ×Δ \RI

An interpretation I is a model of the GCI C � D if CI ⊆ DI . It is a model
of an RI R � E if RI ⊆ EI . I is also a model of an assertion A(a) (P (a, b)) if
aI ∈ AI ((aI , bI) ∈ P I). Given an axiom/assertion α we denote by I |= α that
I is a model of α. A model of a DL-LiteR KB O = (T ,A) is an interpretation
I such that I |= α holds for all α ∈ T and all α ∈ A. A KB O is satisfiable if it
has at least one model.

Standard reasoning tasks in DL-LiteR are polynomial in the size of the TBox,
and in LOGSPACE in the size of the ABox, i.e., in data complexity. The same holds
for answering conjunctive queries, but if we consider the combined complexity
(including the query), then answering conjunctive queries is NP-complete [5].

2.2 Well-Founded Semantics for Hybrid MKNF

Hybrid MKNF knowledge bases are introduced in [13] as a combination of non-
monotonic rules and a DL that is translatable into first-order logic, and in which
standard reasoning tasks, namely satisfiability and instance checking, are decid-
able. Here, we recall only the version with rules without disjunction in heads and
the computation of the complete well-founded MKNF model for such knowledge
bases [11], for which we define a top-down procedure for DL-LiteR. Recalling the
computation of the complete well-founded MKNF model is not strictly needed
for the definition of the top-down procedure itself, but we present it here since
2 Hence, the unique name assumption is applied and, as shown in [2], dropping it

would increase significantly the computational complexity of DL-LiteR.
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it provides valuable insights into the combined model for which we query. More-
over, the operator DKG, defined in this section, provides exactly the counterpart
of the oracle to the DL in the top-down procedure we present in this paper.

Definition 1. Let O be a DL knowledge base. A function-free first-order atom
P (t1, . . . , tn) such that P is ≈ or occurs in O is called a DL-atom; otherwise it
is called non-DL-atom. An MKNF rule r has the following form where H, Ai,
and Bi are function-free first-order atoms:

K H ← K A1, . . . ,K An,not B1, . . . ,not Bm (1)

K-atoms (resp. not-atoms) are atoms with a leading K (resp. not). A program
is a finite set of MKNF rules, and a hybrid MKNF knowledge base K is a
pair (O,P) and positive if m = 0 holds for all MKNF rules in K. The ground
instantiation of K is the KB KG = (O,PG) where PG is obtained from P by
replacing each rule r of P with a set of rules substituting each variable in r with
constants from K in all possible ways.

There is no restriction on the interaction between O and P , i.e., DL-atoms
may appear anywhere in the rules.

The semantics of K is based on a transformation of K into an MKNF formula
to which the MKNF semantics can be applied (see [11,12,13] for details). De-
cidability is achieved by applying the well-known notion of DL-safety, in which
each variable in a rule appears in at least one non-DL K-atom [13]. This es-
sentially restricts the application of rules to individuals explicitly appearing in
the knowledge base in consideration [13]. Instead of spelling out the technical
details of the original MKNF semantics [13] or its three-valued counterpart [11],
we focus on a compact representation of models for which the computation of
the well-founded MKNF model is defined3. This representation is based on a set
of K-atoms and π(O), the translation of O into first-order logic.

Definition 2. Let KG = (O,PG) be a ground hybrid MKNF knowledge base.
The set of K-atoms of KG, written KA(KG), is the smallest set that contains (i)
all ground K-atoms occurring in PG, and (ii) a K-atom Kξ for each ground not-
atom notξ occurring in PG. For a subset S of KA(KG), the objective knowledge
of S w.r.t. KG is the set of first-order formulas OBO,S = {π(O)}∪{ξ | K ξ ∈ S}.

The set KA(KG) contains all atoms occurring in KG, only with not-atoms
substituted by corresponding modal K-atoms, while OBO,S provides a first-order
representation of O together with a set of known/derived facts.

In the three-valued MKNF semantics, this set of K-atoms can be divided
into true, undefined and false modal atoms. Next, we recall operators from [11]
that derive consequences based on KG and a set of K-atoms that is considered
to hold. To further simplify notation, in the remainder of the paper we abuse
notation and consider all operators K implicit.
3 Strictly speaking, this computation yields the so-called well-founded partition from

which the well-founded MKNF model is defined (see [11] for details).
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Definition 3. Let KG = (O,PG) be a positive, ground hybrid MKNF knowledge
base. The operators RKG , DKG , and TKG are defined on subsets of KA(KG):

RKG(S) ={H | PG contains a rule of the form H ← A1, . . . An

such that, for all i, 1 ≤ i ≤ n, Ai ∈ S}
DKG(S) ={ξ | ξ ∈ KA(KG) and OBO,S |= ξ}
TKG(S) =RKG(S) ∪DKG(S)

The operator TKG is monotonic, and thus has a least fixpoint TKG ↑ ω. Trans-
formations can be defined that turn an arbitrary hybrid MKNF KB KG into a
positive one (respecting the given set S) to which TKG can be applied. To ensure
coherence, i.e., that classical negation in the DL enforces default negation in the
rules, two slightly different transformations are defined (see [11] for details).

Definition 4. Let KG = (O,PG) be a ground hybrid MKNF knowledge base and
S ⊆ KA(KG). The MKNF transform KG/S is defined as KG/S = (O,PG/S),
where PG/S contains all rules H ← A1, . . . , An for which there exists a rule
H ← A1, . . . , An,not B1, . . . ,not Bm in PG with Bj �∈ S for all 1 ≤ j ≤ m.
The MKNF-coherent transform KG//S is defined as KG//S = (O,PG//S),
where PG//S contains all rules H ← A1, . . . , An for which there exists a rule
H ← A1, . . . , An,not B1, . . . ,not Bm in PG with Bj �∈ S for all 1 ≤ j ≤ m and
OBO,S �|= ¬H. We define ΓKG(S) = TKG/S ↑ ω and Γ ′

KG
(S) = TKG//S ↑ ω.

Based on these two antitonic operators [11], two sequences Pi and Ni are
defined, which correspond to the true and non-false derivations.

P0 = ∅ N0 = KA(KG)
Pn+1 = ΓKG(Nn) Nn+1 = Γ ′

KG
(Pn)

Pω =
⋃

Pi Nω =
⋂

Ni

The fixpoints, which are reached after finitely many iterations, yield the well-
founded MKNF model [11].

Definition 5. The well-founded MKNF model of an MKNF-consistent ground
hybrid MKNF knowledge base KG = (O,PG) is defined as (Pω , KA(KG) \Nω).

If KG is MKNF-inconsistent, then there is no MKNF model, hence no well-
founded MKNF model.

We use a simple example adapted from [5] to illustrate this computation.
Example 1. Consider the hybrid MKNF KB K4 consisting of O:

Professor � ∃TeachesTo Student � ∃HasTutor
∃TeachesTo− � Student ∃HasTutor− � Professor

Professor � ¬Student HasTutor− � TeachesTo

and the rules (including the facts):
4 We use capital letters for DL-atoms and individuals. Note that K is not DL-safe,

but we assume that each rule contains implicitly, for all variables x appearing in the
rule, an additional atom o(x), and that K contains facts o(x), for every object x.
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hasKnownTutor(x) ← Student(x), HasTutor(x, y) (2)
hasUnknownTutor(x) ← Student(x),not HasTutor(x, y) (3)

Student(Paul)← HasTutor(Jane, Mary)← TeachesTo(Mary, Bill)←

We only consider the set KA(KG) for the computation, i.e., only the atoms
that actually appear in the ground rules and we abbreviate the names in this
example appropriately. Starting with P0 = ∅ and N0 = KA(KG), we compute
P1 = {S(P), HT(J, M), TT(M, B), S(J), S(B), HT(B, M), hKT(J), hKT(B)} and N1 = P1∪
{hUT(P), hUT(J), hUT(B)}. We continue with P2 = P1 ∪ {hUT(P)} and N2 = P2,
and these are already the fixpoints.We obtain that Jane and Bill have a known
tutor, while Paul has not. Other derivations, such as Professor(Mary) can be
obtained from the fixpoints and O. Note that rule (3) can be understood as a
default: it states that by default students have unknown tutors.

3 Queries in Hybrid MKNF

In [1], a procedure, called SLG(O), is defined for querying arbitrary hybrid
MKNF knowledge bases. This procedure extends SLG resolution with tabling
[6] with an oracle to O that handles ground queries to the DL-part of KG: given
the already derived information and O, the oracle returns a (possibly empty) set
of atoms that allows us, together with O and the already derived information, to
derive the queried atom. Recalling the full procedure would be beyond the scope
of this paper, so we just give an intuitive overview of the general procedure and
only point out the specific technical details that are required for the concrete
oracle to DL-LiteR in terms of an interface. All the details can be found at [1].

The general idea is that SLG(O) creates a forest of derivation trees starting
with the initial query. If the initial query is unifiable with a rule head, then
the rule body is added as a child node to the respective tree. In each such new
node, we consider each atom according to a given selection order, create new
trees, and try to resolve these so-called goals. Due to potential circularities in
the derivations, some goals may be delayed, possibly giving rise to conditional
answers. If we achieve an unconditional answer for such a goal, i.e., a leaf node
without any remaining goals, then the (instantiated) atom in the root is true,
and the goal is resolved. If no further operation is applicable, but no leaf node is
empty, then the root(s) corresponding to such a (set of) tree(s) is (are) considered
false. If a (default) negated atom notA is selected, then a tree for A is created:
if A succeeds then notA fails; otherwise notA is resolved.

If the queried/selected atom is a DL-atom, then a query is posed to an oracle,
which encapsulates reasoning in the DL part of the KB, to check whether the
DL-atom can be derived from the DL-part. For that purpose, all DL-atoms that
are already known to be true in the derivation forest are added to the ontology
before calling the oracle. It may happen that only a subsequent derivation step
contains the necessary information to derive the queried atom, so we would
have to call the oracle over and over again. To avoid this problem, rather than
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answering whether the queried atom is derivable, an oracle in SLG(O) returns
a set (conjunction) of atoms that, if proven true, would allow us to derive the
queried atom. This set is added as a child to the respective tree and treated like
the result of an operation on rules.

In the end, if we achieve an unconditional answer for the initial query, the
(instantiated) query is true; if all answers are conditional, then the query is
undefined; otherwise it is false. The following example shall clarify the idea.

Example 2. Consider again the hybrid MKNF knowledge base K from Example
1 and the query Student(Bill). A root Student(Bill) is created and since no
rule head is unifiable, we call the oracle. If TeachesTo(x, Bill) holds for some x,
then Student(Bill) would hold. Thus a child with the goal TeachesTo(x, Bill)
is added to the tree. Then, a new tree for TeachesTo(x, Bill) is created whose
root unifies with TeachesTo(Mary, Bill). We obtain an unconditional answer,
and, after resolving TeachesTo(x, Bill) in the tree with root Student(Bill), an
unconditional answer for Student(Bill), thus finishing the derivation.

Alternatively, consider the query hUT(P) (with abbreviations as in Example
1). Since the root of the corresponding tree is a non-DL-atom, only rules can be
considered, and, in fact, rule (3) is applicable. The resulting child contains two
goals, namely S(P) and notHT(P, y). Note that implicitly o(y) also occurs so that
y is ground when querying for not HT(P, y). A separate tree is created for S(P)
and easily resolved with the given fact. Then we consider any of the meanwhile
grounded not HT(P, y). A new tree is created for HT(P, y) (with ground y) but
neither the rules nor the oracle allow us to derive an unconditional answer and
eventually each such tree is failed, since there is no known tutor for P. If the tree
for HT(P, y) fails, then not HT(P, y) holds and can be resolved, which yields an
unconditional answer for hUT(P).

As already said, we only want to consider specifically the mechanism that pro-
vides the oracle for DL-LiteR, and here we only recall the relevant notions for
that task. We start by defining the reasoning task in consideration, namely DL-
safe conjunctive queries.

Definition 6. A (DL-safe) conjunctive query q is a non-empty set, i.e. conjunc-
tion, of literals where each variable in q occurs in at least one non-DL atom in q.
We also write q as a rule q(Xi) ← A1, . . . , An,not B1, . . . ,not Bm where Xi is
the (possibly empty) set of variables, appearing in the body, which are requested.

This guarantees that SLG(O) does always pose ground queries to the oracle,
avoiding problems with DL where conjunctive query answering is undecidable in
general, and, in particular, with inconsistent DL-LiteR KB that would simply
return arbitrary solutions [5] in opposite to our intentions (see Definition 8).

Now, we recall the definition of a complete oracle that provides the relation
for the intended derivation. We point out that Fn is the current derivation forest,
where n is increased with each applied SLG(O) operation. In it, IFn corresponds
to all already derived (true or false) atoms in a concrete derivation forest.
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Definition 7. Let K = (O,P) be a hybrid MKNF knowledge base, S a ground
goal, L a set of ground atoms that appear in at least one rule head in PG, and
I+
Fn

= IFn \{notA | notA ∈ IFn}. The complete oracle for O, denoted compTO,
is defined by compTO(IFn , S, L) iff O ∪ I+

Fn
∪ L |= S.

This notion of a complete oracle is used to define the SLG(O) operation that
handles the oracle calls to the DL (see [1] for notation of trees in SLG(O)).

– Oracle Resolution: Let Fn contain a tree with root node N = S :- |S,
where S is ground. Assume that compTO(IFn , S, Goals). If N does not have
a child Nchild = S :- |Goals in Fn then add Nchild as a child of N .

It is shown (in Theorem 5.3 of [1]) that answers to queries in SLG(O) correspond
to the hybrid MKNF well-founded model as in [11].

The complete oracle is unfortunately not efficient, in that it potentially creates
a lot of superfluous answers, such as supersets of correct minimal answers. This
problem is tackled with the introduction of a partial oracle [1].

Definition 8. Let KG = (O,PG) be a hybrid MKNF knowledge base, S a ground
goal, and L a set of atoms that are unifiable with at least one rule head in PG.
A partial oracle for KG, denoted pTO, is a relation pTO(IFn , S, L) such that if
pTO(IFn , S, L), then O ∪ I+

Fn
∪ L |= S and O ∪ I+

Fn
∪ L consistent. A partial

oracle pTO is correct w.r.t. compTO iff, for all MKNF-consistent KG, replacing
compTO in SLG(O) with pTO succeeds for exactly the same set of queries.

There are three main differences between complete and partial oracles. First, in
the latter we do not have to consider all possible answers, thus restricting the
number of returned answers for a given query. This is important, because, as
pointed out in [1], the favorable computational properties of the well-founded
MKNF model are only maintained if the number of returned answers is appro-
priately bounded. Second, only derivations based on a consistent O ∪ I+

Fn
∪ L

are considered. This removes all pointless attempts to derive an inconsistency
for an MKNF-consistent KB K. It also removes derivations based on explosive
behavior w.r.t. inconsistencies, which is why the correctness result of the partial
oracle is limited to MKNF-consistent KB. This may not be a problem, since it
has already been conjectured in [1] that the resulting paraconsistent behavior
should be beneficial in practice. Finally, instead of requiring ground sets L, we
admit sets of atoms that are unifiable with heads. This simplifies notation and
postpones the necessary grounding to be handled in SLG(O) w.r.t. the rules.

How such a partial oracle is defined for a concrete DL is not specified in [1]
and, in Section 5, we present a concrete oracle for DL-LiteR.

4 Satisfiability in DL-LiteR

For defining an oracle for DL-LiteR we rely on the reasoning algorithms provided
for DL-LiteR in [5]. The basic reasoning service to which all others are reduced is
satisfiability. Satisfiability of a DL-LiteR KB is checked by evaluating a suitable
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Boolean first-order logic query w.r.t. a canonical model of its ABox. We recall
the construction and evaluation of such a formula here specifically, since our
work is based on an adaptation of that algorithm. First, we recall the definition
of a canonical interpretation of the ABox from [5].

Definition 9. Let A be a DL-LiteR ABox. By db(A) = (Δdb(A), ·db(A)) we
denote the interpretation defined as follows:

– Δdb(A) is the nonempty set consisting of all constants occurring in A;
– adb(A) = a for each constant a;
– Adb(A) = {a | A(a) ∈ A} for each atomic concept A; and
– Rdb(A) = {(a, b) | R(a, b) ∈ A} for each atomic role R.

It is easy to see that db(A) is in fact a model of A and a minimal one [5].
This forms the basis for checking satisfiability in DL-LiteR, i.e., we are able

to reduce satisfiability to evaluating a Boolean FOL query.

Definition 10. Satisfiability in DL-LiteR is FOL-reducible if, for every TBox
T expressed in DL-LiteR, there exists a Boolean FOL query q, over the alphabet
of T , such that, for every nonempty ABox A, (T ,A) is satisfiable if and only if
q evaluates to false in db(A).

Now, a query is constructed, by first splitting all GCI into those with ¬ on
the right hand side (called negative inclusions (NI)) and those without (called
positive inclusions (PI)) and by considering the negative inclusions as a starting
point to compute all derivable negative inclusions.

Definition 11. Let T be a DL-LiteR TBox. We call NI-closure of T , denoted
by cln(T ), the set defined inductively as follows:

1. All negative inclusion assertions in T are also in cln(T ).
2. If B1 � B2 is in T and B2 � ¬B3 or B3 � ¬B2 is in cln(T ), then also

B1 � ¬B3 is in cln(T ).
3. If R1 � R2 is in T and ∃R2 � ¬B or B � ¬∃R2 is in cln(T ), then also
∃R1 � ¬B is in cln(T ).

4. If R1 � R2 is in T and ∃R−
2 � ¬B or B � ¬∃R−

2 is in cln(T ), then also
∃R−

1 � ¬B is in cln(T ).
5. If R1 � R2 is in T and R2 � ¬R3 or R3 � ¬R2 is in cln(T ), then also

R1 � ¬R3 is in cln(T ).
6. If one of the assertions ∃R � ¬∃R, ∃R− � ¬∃R−, or R � ¬R is in cln(T ),

then all three such assertions are in cln(T ).

A translation function from assertions in cln(T ) to FOL formulas is defined [5].

Definition 12. Let O be a DL-LiteR KB and cln(T ) the NI-closure of T . The
translation function δ from axioms in cln(T ) to first-order formulas is:

δ(B1 � ¬B2) = ∃x.γ1(x) ∧ γ2(x)
δ(R1 � ¬R2) = ∃x, y.ρ1(x, y) ∧ ρ2(x, y)

where γi(x) = Ai(x) if Bi = Ai, γi(x) = ∃yi.Ri(x, yi) if Bi = ∃Ri, and γi(x) =
∃yi.Ri(yi, x) if Bi = ∃R−; and ρi(x, y) = Pi(x, y) if Ri = Pi, and ρi(x, y) =
Pi(y, x) if Ri = P−

i .
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Require: DL-LiteR KB O = (T ,A)
Ensure: true if O is satisfiable, false otherwise

qunsat = ⊥
for all α ∈ cln(T ) do

qunsat = qunsat ∨ δ(α)
end for
if q

db(A)
unsat = ∅ then

return true
else

return false
end if

Fig. 1. Algorithm Consistent

The algorithm in Fig. 1 checks satisfiability of a DL-LiteR knowledge base O
by testing if qunsat is not satisfied if evaluated over db(A). Of course, if O is free
of negative inclusions, then the algorithm succeeds automatically.

With this, instance checking is straightforwardly obtained in [5] as a reduction
to satisfiability checking.

Theorem 1. Let O be DL-LiteR KB, and H either a general concept (with
ground argument ti) appearing in O where Â an atomic concept not appearing
in O or a role name or its inverse (with ground arguments ti) appearing in O and
Â an atomic role not appearing in O. Then O |= H(ti) iff O ∪ {Â � ¬H, Â(ti)}
is unsatisfiable.

Note that this theorem is a generalization of two separate theorems for con-
cepts and roles in [5] joined here for reasons of notation.

5 An Oracle for DL-LiteR

The material presented in Section 4 suffices to handle the bottom-up compu-
tation of the well-founded MKNF model w.r.t. DL-LiteR. In the subsequent
example, which we recall from [5], and which is a modification of Example 1
now without rules and with the facts turned into ABox assertions, we not only
present how satisfiability and instance checking work, but also intuitively sketch
the solution for defining an oracle.

Example 3. Consider the DL-LiteR KB O consisting of the axioms in the TBox:

Professor � ∃TeachesTo (4)
Student � ∃HasTutor (5)

∃TeachesTo− � Student (6)

∃HasTutor− � Professor (7)
Professor � ¬Student (8)

HasTutor− � TeachesTo (9)

and the simple ABox:

Student(Paul) HasTutor(Jane, Mary) TeachesTo(Mary, Bill). (10)
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For checking satisfiability, we consider db(A) with Δdb(A) = {Paul, Jane, Mary,
Bill} whose elements are all mapped to themselves, and the interpretation of
all concept and role names according to A, e.g., Studentdb(A) = {Paul} and
Professordb(A) = ∅.

Then, we compute cln(T ) as follows.

Professor � ¬Student (11)

∃HasTutor− � ¬Student (12)

∃TeachesTo− � ¬Professor (13)

∃TeachesTo � ¬Student (14)
∃HasTutor � ¬Professor (15)

Axiom 11 occurs in T , Axiom 12 follows from (11) and (7), Axiom 13 follows
from (11) and (6), and (14) and (15) follow from (9) and (12), respectively (13).

The translation function δ can be applied to each negative inclusion in cln(T ).

δ(Professor � ¬Student) = ∃x.Professor(x) ∧ Student(x) (16)

δ(HasTutor− � ¬Student) = ∃x.(∃yHasTutor(y, x)) ∧ Student(x) (17)

δ(TeachesTo− � ¬Professor) = ∃x.(∃yTeachesTo(y, x)) ∧ Professor(x) (18)
δ(TeachesTo � ¬Student) = ∃x.(∃yTeachesTo(x, y)) ∧ Student(x) (19)

δ(HasTutor � ¬Professor) = ∃x.(∃yHasTutor(x, y)) ∧ Professor(x) (20)

Considering db(A) and the disjunction of first-order formulas resulting from
the translation yields a successful test for satisfiability.

If we want to verify, e.g., Student(Paul), then we extend O with Â(Paul) and
Â � ¬Student resulting in O′, update db(A′) appropriately, and add three more
negative inclusions to cln(T ) resulting in cln(T ′):

Â � ¬Student ∃TeachesTo− � ¬Â ∃HasTutor � ¬Â

These axioms can again be translated, and it can be verified that the resulting
check yields unsatisfiability. From this, we derive that Student(Paul) holds.

δ(Â � ¬Student) = ∃x.Â(x) ∧ Student(x) (21)

δ(TeachesTo− � ¬Â) = ∃x.(∃yTeachesTo(y, x)) ∧ Â(x) (22)
δ(HasTutor � ¬Â) = ∃x.(∃yHasTutor(x, y)) ∧ Â(x) (23)

If we want to incorporate this into the top-down query procedure SLG(O),
then there are two possible ways for the concrete example. First, we may, e.g.,
query for Student(Paul) and the previously presented steps would derive this
from O alone, so that we would expect the empty answer for SLG(O). I.e.,
nothing needs to be added to O to derive the queried atom from O and an
unconditional answer is created in the tree for Student(Paul).

Alternatively, consider that the ABox is not present, but that, for simplicity,
the corresponding statements occur as rule facts as in Example 1. In this case,
we want the oracle to return a set of atoms, which if resolved prove the original
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query. Clearly, we can derive Student(Paul) if the satisfiability test for O fails.
This is the case if one of the disjuncts in q

db(A)
unsat is satisfiable, e.g., if there is an x

such that Professor(x) ∧ Student(x). Of course, it is counterintuitive to prove
that Paul is a student by showing that there is some other individual that is a
professor and a student, i.e., by deriving some inconsistency in the interaction
of O and the rules. Thus, all the disjuncts resulting from (16)–(20), do not yield
meaningful derivations. Instead they yield derivations based on some general
MKNF-inconsistency, which is not possible in a partial oracle (cf. Definition 8).

However, if we resolve the disjuncts resulting from (21)–(23) with Â(Paul),
then we obtain more meaningful answers that can be used in the derivation tree
for Student(Paul). Namely, Student(Paul) itself is obtained, which is immedi-
ately discarded in SLG(O) since Student(Paul) is already a child in this tree,
and (∃yTeachesTo(y, Paul)) and (∃yHasTutor(Paul, y)) are also obtained as
possible children. Both do not contribute to the derivation of Student(Paul) it-
self, which is in fact obtained from the rule fact, but if we query for Student(Jane)
or Student(Bill), then in each case one of the two goals unifies with a fact in
the given rules.

The insights gained with this example can be formalized in the algorithm
(Fig. 2) that provides an oracle for DL-LiteR. We only have to formalize the
resolution step of the newly introduced query atom with each of the results of
applications of δ. The result of such a resolution step is either a ground (unary
or binary) atom or a binary atom with one existentially quantified variable.
To check whether adding this atom to O and the already derived information
remains consistent, we additionally introduce a uniform notion that turns the
new atom into DL notation.

Definition 13. Let O be a DL-LiteR KB, α an axiom in cln(T ), and δ(α) =
∃x.(C1 ∧C2) such that H is unifiable with mgu5 θ with Ci, for some i, in δ(α).
Then res(δ(α), H) is defined as (C2)θ if i = 1, and (C1)θ otherwise. The DL
representation resDL(δ(α), H) of res(δ(α), H) is defined depending on the form
of res(δ(α), H):

resDL(δ(α), H) =

⎧⎪⎨⎪⎩
res(δ(α), H) if res(δ(α), H) is a ground atom
(∃R)(a) if res(δ(α), H) = ∃y.R(a, y) for ground a

(∃R−)(a) if res(δ(α), H) = ∃y.R(y, a) for ground a

We recall that assertions for complex concepts such as (∃R)(a) are represented
by A(a) and A � ∃R for a new concept name A. This encoding may also affect
atoms appearing in I+

Fn
which is why we directly incorporate I+

Fn
into O in Fig. 2

to avoid a more complicated notation.
The algorithm itself proceeds as outlined in the example. It checks first whether

O together with the already proven true knowledge yields a satisfiable knowl-
edge base. If not, the algorithm stops and returns the empty set; thus, O is not

5 most general unifier
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Require: DL-LiteR KB O = (T ,A), which already contains I+
Fn

, and a ground atomic
query q = H(ti)

Ensure: a set L of Li such that O ∪ Li |= H(ti) with O ∪ Li consistent
L = ∅
qunsat = ⊥
for all α ∈ cln(T ) do

qunsat = qunsat ∨ δ(α)
end for
if q

db(A)
unsat �= ∅ then
L = ∅

else
qinst = qunsat

T ′ = T ∪ {Â 
 ¬H}
A′ = A∪ {Â(ti)}
O′ = (T ′,A′)
for all α ∈ cln(T ′) \ cln(T ) do

qinst = qinst ∨ δ(α)
end for
if q

db(A′)
inst �= ∅ then
L = {∅}

else
for all α ∈ cln(T ′) \ cln(T ) do

O′′ = O ∪ {resDL(δ(α), Â(ti))}
quns = qunsat

for all β ∈ cln(T ′′) \ cln(T ) do
quns = quns ∨ δ(β)

end for
if q

db(A′′)
uns = ∅ then
L = L ∪ {res(δ(α), Â(ti))}

end if
end for

end if
return L

end if

Fig. 2. Algorithm DL-LiteR Oracle

used for further derivations. Otherwise, it proceeds with an instance check for
the query, i.e., by checking for unsatisfiability of the extended knowledge base,
and, in the case of success, returns a set containing only the empty answer,
hence, an unconditional answer in the respective tree of SLG(O). If the in-
stance check fails, then, for all newly introduced axioms in cln(T ′), it is verified
whether resDL(δ(α), Â(ti)) does not cause an inconsistency if added to O and
the already derived knowledge. If this is successful then the corresponding atom
res(δ(α), Â(ti)) is included in the set of returned answers, which if proven true,
allow us to derive the considered query.

We show that this algorithm provides a correct partial oracle for DL-LiteR
w.r.t. SLG(O).
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Theorem 2. The algorithm DL-LiteR Oracle is sound and complete, i.e., the
returned answers in L correspond to the definition of a partial oracle for DL-
LiteR and the algorithm allows the computation of all the minimal sets L ac-
cording to the partial oracle for DL-LiteR.

Proof. We consider O∪I+
Fn
∪L |= q where O∪I+

Fn
∪L is consistent (Definition 8)

and q is the queried atom.
We show soundness, i.e., we show that the returned answers in L correspond

to the definition of a partial oracle for DL-LiteR.
If the algorithm returns L = ∅, then O ∪ I+

Fn
is not consistent, which means

that the result from the algorithm is sound for this case. Otherwise, if the algo-
rithm returns L = {∅}, then the instance check for the query succeeds and in
this case (for consistent O ∪ I+

Fn
as checked) O ∪ I+

Fn
|= q holds, which is also

a sound answer. Finally, if the algorithm returns L = {L1, . . . , Ln}, then the
direct instance check failed, but O∪ I+

Fn
∪Li is consistent and O∪ I+

Fn
∪Li |= q

holds because the addition of L to I+
Fn

would exactly enable the instance check
to succeed (see Theorem 1).

To show completeness, we have to show that the algorithm enables us to
compute all the minimal sets L according to the partial oracle for DL-LiteR.
First, if O ∪ I+

Fn
is not consistent, then the partial oracle does not return any

answer and this is covered by the returned empty set L in the algorithm. Then,
if O ∪ I+

Fn
∪ L |= q holds for empty L, then the only minimal answer for the

partial oracle is the empty set. The algorithm DL-LiteR Oracle returns exactly
only the empty set. It remains to be shown that the correctness result holds
for nonempty L as well. So suppose that L′ is a nonempty minimal set such
that O ∪ I+

Fn
∪ L′ |= q and O ∪ I+

Fn
∪ L′ is consistent. First, any minimal set

can only consist of one atom due to the restricted syntax of GCI in DL-LiteR.
Furthermore, joining O ∪ I+

Fn
∪ L′ and q = H(ti) together with Â � ¬H and

Â(ti) yields an inconsistent DL-LiteR KB O1, hence a successful instance check
for q (Theorem 1). If we remove L′, then the KB is consistent but the check
for consistency would still compute all axioms such that the boolean disjunctive
query quns w.r.t. O1 without L′ would be unsatisfiable as such, but satisfiable
upon addition of L′, i.e., indicate a successful instance check. This is exactly what
the algorithm DL-LiteR Oracle computes and, for consistent O∪ I+

Fn
∪L′, L′ is

returned as one of the answers. Note that none of the α ∈ cln(T ) is considered
since if one of these succeeds, the entire knowledge base is inconsistent. Thus,
considering only α ∈ cln(T ′) \ cln(T ) suffices to find all possible sets L, since
res is applicable by construction in each such case. ��

Building on the results on computational complexity in DL-LiteR ([5]), we
can show that the algorithm ensures that the oracle is polynomial.

Theorem 3. Let K = (O,P) be a hybrid MKNF knowledge base with O in DL-
LiteR. An SLG(O) evaluation of a query q in the algorithm DL-LiteR Oracle is
decidable with combined complexity PTIME and with data complexity LOGSPACE.

Proof. We know from the proof of Theorem 43 in [5] that the combined com-
plexity for computing the disjunctive formula using δ on α in cln(T ) is polyno-
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mial, while the evaluation w.r.t. db(A) is in LOGSPACE. Consequently, instance
checking and checking satisfiability for DL-LiteR is in PTIME and LOGSPACE re-
spectively. The algorithm DL-LiteR Oracle applies one such satisfiability check
for O∪ IFn and conditionally a further one for the instance check. Then, condi-
tionally a set of (polynomially many in combined complexity) δ(α) is processed
(each in the worst case containing a further satisfiability check, which is a slight
extension of the first). We conclude that the combined complexity of DL-LiteR
Oracle is in PTIME and the data complexity LOGSPACE. ��

Intuitively, this result is achieved because GCI and RI are of a particular
restricted form, so that the oracle only returns single atoms, and does not need
to compute minimal subsets of arbitrary size in the power set of all atoms.

Consequently, we obtain the computational complexity of answering DL-safe
conjunctive queries in hybrid MKNF knowledge bases with a DL-LiteR DL part.

Theorem 4. Let K = (O,P) be a hybrid MKNF knowledge base with O in DL-
LiteR. Answering a DL-safe conjunctive query q in SLG(O) is decidable with
data complexity PTIME and LOGSPACE if P is empty.

Proof. This is a direct consequence of Theorem 5.4 in [1] and Theorem 3 and
the fact that, for nonempty P , PTIME from the rules includes LOGSPACE. ��

Hence, reasoning can still partially be done with relational databases.

Theorem 5. Let K = (O,P) be a consistent hybrid MKNF knowledge base
with O in DL-LiteR. The answer to a DL-safe conjunctive query q in SLG(O)
corresponds to the well-founded MKNF model.

Proof. The result follows from Theorem 5.3 in [1] and Theorem 2. ��

If K is MKNF-inconsistent, then there is no well-founded MKNF model, but
we obtain a paraconsistent approximation. Consider that the KB from Example
1 is part of a larger KB that is MKNF-inconsistent, but the inconsistency is
not related to the predicates shown in the example, i.e., no rule or GCI links
predicates from the example to those causing the inconsistency. Then, querying
for atoms from Example 1 yields the same results as if K was MKNF-consistent.

6 Conclusions

In [10] we provided a concrete procedure for KB with non-monotonic rules and
an ontology in the DL REL, a fragment of the DL underlying OWL 2 EL. This
slightly easier to obtain procedure relies, after preprocessing, on translating the
DL to rules rather than on defining an oracle in the true sense of [1] as done
here for DL-LiteR. We note that the resulting data complexity is identical, but
higher than the one for DL-LiteR, simply because it has a lower complexity
than REL in [10]. By translating the DL into rules, one can also easily obtain a
procedure for DLP [8] – the DL underlying OWL 2 RL.
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With the results in this paper, query-answering procedures that do not jeop-
ardize tractability are now available for MKNF KB with rules and ontologies
for the DL underlying all the three OWL2 profiles defined by W3C. As the
next step, we want to provide an implementation of our work, building on XSB6

and QuOnto/Mastro7. Moreover, OWL 2 QL has some expressive features not
contained in DL-LiteR and an extension is considered for future work.

References

1. Alferes, J.J., Knorr, M., Swift, T.: Queries to Hybrid MKNF Knowledge Bases
Through Oracular Tabling. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 1–16. Springer, Heidelberg (2009)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1–69 (2009)

3. Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D. (eds.):
RIF Core Dialect. W3C Candidate Recommendation (June 22, 2010)

4. Boley, H., Kifer, M. (eds.): RIF Framework for Logic Dialects. W3C Candidate
Recommendation (June 22, 2010), http://www.w3.org/TR/rif-fld/

5. Calvanese, D., de Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

6. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. J. ACM 43(1), 20–74 (1996)

7. Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Answering conjunctive queries in
the SHIQ description logic. J. Artif. Intell. Res. 31, 150–197 (2008)

8. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logics. In: Proc. of the World Wide Web
Conference (WWW 2003), pp. 48–57. ACM (2003)
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Markus Krötzsch1 and Sebastian Speiser2

1 Department of Computer Science, University of Oxford, UK
����������	
���������������

2 Institute AIFB, Karlsruhe Institute of Technology, DE
��	��	����
�	��

Abstract. Numerous forms of policies, licensing terms, and related conditions
are associated with Web data and services. A natural goal for facilitating the re-
use and re-combination of such content is to model usage policies as part of
the data so as to enable their exchange and automated processing. This paper
thus proposes a concrete policy modelling language. A particular diÆculty are
self-referential policies such as Creative Commons ShareAlike, that mandate that
derived content is published under some license with the same permissions and
requirements. We present a general semantic framework for evaluating such re-
cursive statements, show that it has desirable formal properties, and explain how
it can be evaluated using existing tools. We then show that our approach is com-
patible with both OWL DL and Datalog, and illustrate how one can concretely
model self-referential policies in these languages to obtain desired conclusions.

1 Introduction

Semantic technologies facilitate the sharing and re-use of data and associated services,
but in practice such uses are often governed by a plethora of policies, licensing terms,
and related conditions. Most data and service providers reserve certain rights, but an
increasing number of providers also choose usage terms that encourage the re-use of
content, e.g. by using a Creative Commons1 license. Even such policies still impose
restrictions, and it has been estimated that 70% � 90% of re-uses of Flickr images
with Creative Commons Attribution license actually violate the license terms [29]. A
possible reason for frequent violations is that checking license compliance is a tedious
manual task that is often simply omitted in the process of re-using data.

A natural goal therefore is to accurately model usage policies as part of the data so as
to enable their easy exchange and automated processing. This resonates with multiple
topical issues in Semantic Web research. On the one hand, it is increasingly acknowl-
edged that the distribution of semantic data and services may also require transparent
licensing for such content [33,10]. This closely relates to the wider goal of semanti-
cally representing provenance information about the origin and context of data items.
Not surprisingly, the W3C Incubator Group on Provenance also lists support for usage
policies and licenses of artefacts in their requirements report [9].
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On the other hand, modelling of policy information is also promising as an applica-
tion area for semantic technologies [17,7]. Capturing the variety of relevant conditions
involves domain-specific concepts such as “non-commercial” or “fair use” but also
(when thinking about distribution policies that are internal to an organisation) levels
of confidentiality, and personal access permissions. Semantic technologies o�er power-
ful tools and methodologies for developing shared conceptualisations for such complex
modelling problems.

This paper presents a new policy modelling language to address the specific chal-
lenges of this domain. A primary task is to enable the computation of policy contain-
ment, i.e. the automatic decision whether all uses that are allowed by one policy are
also allowed by another [8]. But some policies go a step further and require such con-
tainments to hold as part of their condition. A well-known example are the Creative
Commons ShareAlike licenses which mandate that content is published under some li-
cense that involves the same permissions and requirements – including the requirement
to share under such licenses only. Such self-referential policies introduce recursive de-
pendencies and a form of meta-modelling not found in ontology languages like OWL.

Our main contributions to solving this problem are as follows.

(1) We develop the syntax and semantics of a general policy modelling language. Our
formalisation is guided by an analysis of the requirements for a policy (meta) model
that supports self-referential policies as given by the Creative Commons licenses.

(2) We show that this policy language has desirable formal properties under reasonable
syntactic restrictions on policy conditions and background theories. In particular
we establish how to utilise standard first-order reasoning in a non-trivial way for
computing conclusions under our new semantics.

(3) Using this connection to first-order logic, we instantiate this general policy lan-
guage for the Web Ontology Language OWL and for the basic rule language Data-
log. Both cases lead to expressive policy representation languages that can readily
be used in practice by taking advantage of existing tools. Concretely, we show how
to express the well-known Creative Commons licenses and verify that the expected
relationships are derived.

Section 2 introduces our main use case and Section 3 presents a basic vocabulary to
model policies. In Section 4 we discuss challenges in modelling self-referential policies
formally. We introduce a formal policy semantics in Section 5 and apply it to our use
case in Section 6. Related work is discussed in Section 7. The technical results at the
core of this paper are not obvious and require a notable amount of formal argumentation.
However, the focus of this presentation is to motivate and explain the rationale behind
our proposal. Formal proofs and further details are found in an extended report [20].

2 Use Case: Creative Commons ShareAlike

To motivate our formalisation of policies we discuss some common requirements based
on the popular Creative Commons (CC) licenses. CC provides a family of license mod-
els for publishing creative works on the Web, which share the common goal of enabling
re-use as an alternative to the “forbidden by default” approach of traditional copyright
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law. Each license specifies how the licensed work may be used by stating, e.g., in which
cases it can be further distributed (shared) and if derivative works are allowed.

The most permissive CC license is Creative Commons Attribution (CC BY), which
allows all types of uses (sharing and derivation) provided that the original creator of the
work is attributed. Various restrictions can be added to CC BY:

– NoDerivs (ND): the work can be used and redistributed, but it must remain un-
changed, i.e., no derivations can be created.

– NonCommercial (NC): re-use is restricted to non-commercial purposes.
– ShareAlike (SA): derived works have to be licensed under the identical terms.

The CC ShareAlike restriction is particularly interesting, as it does not only restrict
processes using the protected data artefact, but the policy of artefacts generated by those
processes. ShareAlike is formulated in legal code as follows:

“You may Distribute or Publicly Perform an Adaptation only under: (i) the
terms of this License; (ii) a later version of this License [...]; (iii) a Creative
Commons jurisdiction license [...] that contains the same License Elements as
this License [...]”2

Thus derived artefacts can only be published under some version of the exact same CC
license. This could easily be formalised by simply providing an exhaustive list of all
licenses that are currently admissible for derived works. In this case, policies would be
identified by their name, not by the permissions and restrictions that they impose.

This e�ect can be desired, e.g. for the GPL which thus ensures its “viral” distribution.
However, the name-based restriction is not intended for Creative Commons, as noted by
Lessig who originally created CC: rather, it would be desirable to allow the combination
of licenses that share the same intentions but that have a di�erent name, e.g. to spec-
ify that an artefact must be published under a license that allows only non-commercial
uses instead of providing a list of all (known) licenses to which this characterisation ap-
plies [21]. To overcome this incompatibility problem, we propose content-based policy
restrictions that are based on the allowed usages of a policy.

3 Schema for Modelling Policies

Before we can formally specify the semantics of a policy language that can formalise
the “intention” of a policy like CC, we need some basic conceptual understanding of the
modelling task, and also some shared vocabulary that enables the comparison of di�er-
ent licenses. In this section, we provide a high-level schema that we use for modelling
policies in this paper.

In general, we understand a policy as a specification that defines what one is allowed
to do with an artefact that has this policy. Thus, a policy can be viewed as a collec-
tion of admissible usages. In order to align with the terminology of the Open Prove-
nance Model OPM [23] below we prefer to speak of admissible “processes” as the
most general type of use. The admissible processes can be viewed as “desired states”

2 Section 4(b) in 
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Fig. 1. Informal view of a simple provenance model

(in the sense of “states of the world” such as when an artefact has been published with
suitable attribution), which corresponds to the notion of goal-based policies as defined
by Kephart and Walsh [19].

To specify the conditions of a policy, we need a model for further describing such
usage processes and their relationships to concrete artefacts. This model in particular
must represent the origin of the artefact, and the context in which it has been published.
Such provenance information can be described in various ways, e.g. with a provenance
graph that specifies the dependencies between processes and the artefacts they use and
generate. Here we use the very simple provenance model illustrated informally in Fig. 1.
This base model can of course be further specialised for specific applications and other
use cases; we just require a minimal setup for our examples.

The provenance model re-uses the vocabulary elements artefact, process, used, was-
GeneratedBy, and wasTriggeredBy from the Open Provenance Model. For our partic-
ular application, we further split processes into derivations (processes that generate a
new artefact) and other usages that only use artefacts without change. To cover the CC
use case, we introduce the hasPurpose property relating a usage to its purpose, e.g.,
stating that a usage was non-commercial. The hasPolicy property assigns to an arte-
fact a policy, which means that all processes using the artefact are (legally) required to
comply to its policy.

According to OPM, a process p1 wasTriggeredBy another process p2, if p1 can only
have started after p2 started. So, somewhat contrary to intuition, the “triggering” is
rather a precondition but not a necessary cause of the triggered one. A usage restriction
that requires attribution would thus be formalised as a policy requiring that the usage
process wasTriggeredBy an attribution process, and not the other way around.

The provenance model provides a basic vocabulary for specifying information about
artefacts and policies. To realise content-based restrictions we further want to talk about
the relationships of policies. For example, ShareAlike requires the value of hasPolicy
to refer to a policy which allows exactly the same uses as the given CC SA license.
This subsumption between policies is called policy containment, and we introduce a
predicate containedIn to express it. Informally speaking, the fact containedIn(p� q) can
also be read as: any process that complies with policy p also complies with policy q.
When allowing policy conditions to use containedIn, the question whether or not a
process complies to a policy in turn depends on the evaluation of containedIn. Our
goal therefore is to propose a formal semantics that resolves this recursive dependency
in a way that corresponds to our intuitive understanding of the policies that occur in
practice.
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4 Challenges of Defining a Semantics for Policies

For formalising our above understanding of policies, we use the syntax of first-order
logic as a general framework. Thus, our earlier ‘classes’ and ‘properties’ become pred-
icates of arity 1 and 2, respectively. A policy that represents a set of allowed processes
then corresponds to a formula �[x] with one free variable x, representing the set of in-
dividuals that make �[x] true when assigned as values to x.3 For example, a policy p
that allows no uses other than derivations that generate artefacts with policy p can be
described as:

p : Derivation(x) � �y�(wasGeneratedBy(y� x) � hasPolicy(y� p))� (1)

More generally, we can use containedIn to allow derived artefacts to use any policy that
is at least as restrictive as p:

p : Derivation(x) � �y�(wasGeneratedBy(y� x) �

�z�(hasPolicy(y� z) � containedIn(z� p)))�
(2)

A collection of such policy definitions p : �p[x] will be called a policy system. Given
a policy system with definitions p : �p for all policy names p � NP, we can formalise
some general restrictions that conform to our intuition:

�x�conformsTo(x� p) � �p[x] for all p � NP� (3)

�x� y�containedIn(x� y) � �z�(conformsTo(z� x) � conformsTo(z� y))� (4)

Formula (3) defines conformsTo to relate processes to the policies they conform to.
Please note the di�erence between conformsTo (actual semantic conformance) and
hasPolicy (legally required conformance). Formula (4) ensures that containedIn re-
lates two policies exactly if fewer (or at most the same) processes conform to the first,
i.e. if the first policy is at least as restrictive as the second. The set of these two types of
sentences (for a given set of policy names NP) is denoted by Tct.

Unfortunately, these formulae under first-order semantics do not lead to the intended
interpretation of policies. Consider the policy (2), and a second policy q that is de-
fined by exactly the same formula, but with p replaced by q. Intuitively, p and q
have the same conditions but merely di�erent names, so they should be in a mutual
containedIn relationship. Indeed, there are first-order models of Tct where this is the
case: if containedIn(p� q) holds, then �x��p[x] � �q[x] is also true. However, this is
not the only possible interpretation: if containedIn(p� q) does not hold, then �x��p[x] �
�q[x] is not true either. First-order logic does not prefer one of these interpretations, so
in consequence we can conclude neither containedIn(p� q) nor �containedIn(p� q).

Working with first-order interpretations still has many advantages for defining a se-
mantics, in particular since first-order logic is widely known and since many tools
and knowledge representation languages are using it. This also enables us to specify
additional background knowledge using first-order formalisms of our choice, e.g. the
OWL DL ontology language. However, we would like to restrict attention to first-order

3 We assume basic familiarity with first-order logic. Formal definitions are given in [20].
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models that conform to our preferred reading of containedIn. Logical consequences
can still be defined as the statements that are true under all of the preferred interpre-
tations, but undesired interpretations will be ignored for this definition. Our goal of
defining the semantics of self-referential policies thus boils down to defining the “de-
sired” interpretations of a given first-order theory that uses containedIn. To do this, we
propose a semantics for policy containment that, intuitively speaking, always prefers
containedIn(p� q) to hold if this is possible without making additional unjustified as-
sumptions. For illustration, consider the following policy q that further restricts p from
(2) to non-commercial uses:

q : Derivation(x) � �w�(hasPurpose(x�w) � NonCommercial(w)) �

�y�(wasGeneratedBy(y� x) � �z�(hasPolicy(y� z) � containedIn(z� q)))�
(5)

Though the policy q is clearly more restrictive than p, there still is a first-order interpre-
tation that satisfies containedIn(p� q) by simply assuming that all things that conform
to p happen to have non-commercial uses only. Nothing states that this is not the case,
yet we do not want to make such assumptions to obtain more containedIn conclusions.

We thus distinguish basic predicates such as NonCommercial and hasPolicy from
the two “special” predicates containedIn and conformsTo. Basic predicates are given
by the data, and represent the available information, and their interpretation should not
be considered a matter of choice. Special predicates in turn should be interpreted to
reflect our intended understanding of policy containment, and as shown in the above
example it is often desirable to maximise containedIn entailments. In other words, we
would like to ensure that the consideration of a policy system does not lead to new
logical consequences over basic predicates – merely defining license conditions should
not increase our knowledge of the world. More formally: the policy semantics should be
conservative over first-order semantics w.r.t. sentences that use only basic predicates.

Unfortunately, this is not easy to accomplish, and indeed Theorem 1 only achieves a
limited version of this. One reason is that even Tct may entail undesired consequences.
Consider policies as follows (we use abstract examples to highlight technical aspects):

p : A(x) � containedIn(p� q) q : B(x)� (6)

This policy system entails containedIn(p� q). Indeed, if containedIn(p� q) would not
hold, then nothing would conform to p by (3). But the empty set is clearly a subset of
every other set, hence containedIn(p� q) would follow by (4). Thus all interpretations
that satisfy Tct must satisfy �x�A(x) � containedIn(p� q) � B(x), and thus �x�A(x) �
B(x) is a consequence over basic predicates. Clearly, the mere definition of licenses
should not entail that some otherwise unrelated class A is a subclass of B.

5 A Formal Language for Policy Definitions

In order to address the challenges discussed in the previous section, we now formally
define a policy language. More precisely, we define a language for policies and a first-
order language that is to be used for background theories. These definitions are intended
to be very general to impose only those restrictions that we found necessary to obtain a
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well-behaved semantics. Section 6 shows how this general framework can be instanti-
ated in various well-known modelling languages.

The basic restriction that we impose on the logic is connectedness. Intuitively, this
ensures that a formula can only refer to a connected relational structure of individuals.
In our setting the conformance of a process to a policy thus only depends on the charac-
teristics of individuals directly or indirectly reachable from the process. We argue that
this is a small restriction. It might even be a best practice for “controlled” modelling in
an open environment like the Web, as it ensures that the classification of any object is
based only on its “environment” and not on completely unrelated individuals.

Our formal definition is reminiscent of the Guarded Fragment (GF) of first-order
logic [4] and indeed it can be considered as a generalization of GF, though without
the favourable formal properties that motivated GF. We first define open connected
formulae (with free variables) and then closed ones. We write �[x] to indicate that �
has at most the free variables that occur in x (or possibly less). For technical reasons,
our first definition distinguishes “guard predicates” that must not use constant symbols
from “non-guard predicates” where constants are allowed:

Definition 1. Consider a first-order signature � where each predicate in � is marked
as a guard predicate or as a non-guard predicate. The connected open fragment COF of
first-order logic over � is the smallest set of formulae over � that satisfies the following
properties:

1. Every atomic formula p(t) with t a vector of terms that contain at least one variable
belongs to COF, provided that t contains only variables if p is a guard predicate.

2. If �1 and �2 are in COF then so are ��1, �1 � �2, �1 	 �2, and �1 � �2.
3. Consider a formula �[x� y] in COF, and a conjunction �[x� y] � �1[x� y] � � � � �

�n[x� y] of atomic formulae �i that contain only guard predicates and variables,
such that x, y are both non-empty and do not share variables. Then the formulae

�y��[x� y] � �[x� y] �y��[x� y] � �[x� y]�

are in COF provided that for each variable y in y, there is some variable x in x and
some atom �i[x� y] where both x and y occur.

The distinction of guard and non-guard predicates is important, but a suitable choice
of guard predicates can be easily made for a given formula set of formulae in COF by
simply using exactly those predicates as guards that do not occur in atomic formulae
with constants. The only predicate that we really need to be a non-guard is containedIn.
Therefore, we will omit the explicit reference to the signature � in the following and
simply assume that one signature has been fixed.

Definition 2. The connected fragment CF of first-order logic consists of the following
sentences:

– Every formula without variables is in CF.
– If �[x] is a COF formula with one free variable x, then �x��[x] and �x��[x] are in

CF.
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We will generally restrict to background theories that belong to CF. As discussed in
Section 6 below, large parts of OWL DL and Datalog fall into this fragment. A typical
example for a non-CF sentence is the formula ��x�A(x) 	 ��x�B(x). Also note that the
formulae (3) and (4) of Tct are not in CF – we consider them individually in all our
formal arguments. On the other hand, the policy conditions (1), (2), (5), and (6) all are
in COF. Using the terminology of connected formulae, we can define policy conditions,
policy descriptions, and policy systems that we already introduced informally above:

Definition 3. Let NP be a set of policy names. A policy condition � for NP is a for-
mula that may use an additional binary predicate containedIn that cannot occur in
background theories, and where:

– � is a COF formula with one free variable,
– � contains at most one constant symbol p � NP that occurs only in atoms of the

form containedIn(y� p) or containedIn(p� y),
– every occurrence of containedIn in � is positive (i.e. not in the scope of a negation)

and has the form containedIn(y� p) or containedIn(p� y).

A policy description for a policy p � NP is a pair 
p� �� where � is a policy condi-
tion. A policy system P for NP is a set of policy descriptions that contains exactly one
description for every policy p � NP.

This definition excludes the problematic policy p in (6) above while allowing (1),
(2), and (5). Moreover, it generally requires containedIn to be a non-guard predicate.

We define the semantics of policy containment as the greatest fixed point of an opera-
tor introduced next. Intuitively, this computation works by starting with the assumption
that all named policies are contained in each other. It then refers to the policy defini-
tions to compute the actual containments that these assumptions yield, and removes all
assumptions that cannot be confirmed. This computation is monotone since the assump-
tions are reduced in each step, so it also has a greatest fixed point.

Definition 4. Consider a set of CF sentences T (background theory), a set of policy
names NP that includes the top policy p� and the bottom policy p�, and a policy system
P for NP such that 
p���(x)�� 
p��(x)� � P.4 Let Tci be the following theory:

Tci � ��x� y� z�containedIn(x� y) � containedIn(y� z) � containedIn(x� z)�

�x�containedIn(x� p�)��x�containedIn(p�� x)��

For a set C � N2
P, define CI(C) � �containedIn(p� q) � 
p� q� � C�. An operator

PT : �(N2
P) � �(N2

P),where �(N2
P) is the powerset of N2

P, is defined as follows:

PT (C) � �
p� q� � 
p� �p�� 
q� �q� � P and T � Tci � CI(C) �� �x��p[x] � �q[x]��

Proposition 1. The operator PT has a greatest fixed point gfp(PT ) that can be obtained
by iteratively applying PT to N2

P until a fixed point is reached. More concretely, the
greatest fixed point is of the form Pn

T (N2
P) for some natural number n � �NP�

2 where Pn
T

denotes n-fold application of PT .

4 As usual, we consider ��� as unary predicates that are true�false for all individuals.



362 M. Krötzsch and S. Speiser

The fact that PT requires the existence of policies p� and p� is not restricting the ap-
plicability of our approach since the according standard policy declarations can always
be added. Using the greatest fixed point of PT , we now define what our “preferred”
models for a policy system and background theory are.

Definition 5. Given a policy system P, a P-model for a theory T is a first-order inter-
pretation � that satisfies the following theory:

� �� T � Tci � CI(gfp(PT )) � Tct� (7)

where Tci and CI(gfp(PT )) are as in Definition 4, and where Tct is the collection of all
sentences of the form (3) and (4). In this case, we say that � P-satisfies T. A sentence �

is a P-consequence of T, written T ��P �, if � �� � for all P-models � of T .

It is essential to note that the previous definition uses a fixed point computation only
to obtain a minimal set of containments among named policies that must be satisfied by
all P-models. It is not clear if and how the semantics of P-models could be captured by
traditional fixed point logics (cf. Section 7). At the core of this problem is that policy
conformance is inherently non-monotonic in some policies that we want to express.
A policy p might, e.g., require that the policy of all derived artefacts admits at least
all uses that are allowed by p. Then the fewer uses are allowed under the p, the more
policies allow these uses too, and the more uses conform to p. This non-monotonic
relationship might even preclude the existence of a model.

The policy semantics that we defined above is formal and well-defined for all policy
systems and background theories, even without the additional restrictions of Defini-
tion 2 and 3. However, three vital questions have to be answered to confirm that it is
appropriate for our purpose: (1) How can we compute the entailments under this new
semantics? (2) Does this semantics avoid the undesired conclusions discussed in Sec-
tion 4? (3) Does the semantics yield the intended entailments for our use cases? The
last of these questions will be discussed in Section 6. Questions (1) and (2) in turn are
answered by the following central theorem of this paper:

Theorem 1. Consider a theory T and a policy system P. For every � that is a CF
formula over the base signature, or a variable-free atom (fact) over the predicates
containedIn or conformsTo we have:

T� Tci�CI(gfp(PT ))� T�

ct �� � i� T ��P �� (8)

where Tci and CI(gfp(PT )) are defined as in Definition 4, and where T�

ct is the collection
of all sentences of the form (3).

Let us first discuss how Theorem 1 answers the above questions.

(1) The theorem reduces P-entailment to standard first-order logic entailment. Since
gfp(PT ) can be computed under this semantics as well, this means that reasoning
under our semantics is possible by re-using existing tools given that one restricts
to fragments of (CF) first-order logic for which suitable tools exist. We pursue this
idea in Section 6.
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(2) The theorem asserts that all CF formulae that are P-entailments are entailed by the
first-order theory T�Tci�CI(gfp(PT )). It is easy to see that Tci and CI(gfp(PT )) only
a�ect the interpretation of formulae that use containedIn. All other CF formulae
are P-entailments of T if and only if they are first-order entailments of T . Thus,
new entailments over base predicates or even inconsistencies are not caused by
considering a policy system.

The proof of Theorem 1 is not straightforward. At its core, it hinges on the fact that
every model � of T � Tci � CI(gfp(PT )) can be extended into a P-model �̂ of T that
satisfies no containedIn or conformsTo facts that have not already been satisfied by �.
Constructing this P-model requires a number of auxiliary constructions centred around
the idea that, for every policy containment not in CI(gfp(PT )), one can find a witness
(a process conforming to the one policy but not to the other) in some model of T �

Tci � CI(gfp(PT )). This witness (and all of its environment) is then copied into the
P-model that we want to construct. This is only feasible since the CF formulae in T
are inherently “local” and will not change their truth value when extending the model
by new (disjoint) individuals. After enough witnesses have been included to refute all
non-entailed containedIn facts, the construction of �̂ is completed by defining suitable
extensions for conformsTo where care is needed to do this for “unnamed” policies so
that Tct is satisfied. A full formal argument is found in the technical report [20].

6 Practical Policy Languages

In this section, we provide concrete instantiations of the general formalism introduced
above. The CF fragment still is overly general for practical use, in particular since the
computation of entailments in this logic is undecidable which precludes many desired
applications where policy containment would be checked automatically without any
user interaction.5 However, Theorem 1 asserts that we can generally evaluate formal
models under the semantics of first-order logic which is used in many practical knowl-
edge representation languages. By identifying the CF fragments of popular modelling
formalisms, we can therefore obtain concrete policy modelling languages that are suit-
able for specific applications.

There are various possible candidates for knowledge representation languages that
can be considered under a first-order semantics and for which good practical tool sup-
port is available. Obvious choices include the Web Ontology Language OWL under its
Direct Semantics [32], and the rule language Datalog under first-order semantics [3]
which we will discuss in more detail below.

As we will explain for the case of Datalog, one can also model policy conditions
as (conjunctive�disjunctive) queries with a single result, given that the query language
uses a first-order semantics. Query evaluation is known to be diÆcult for expressive
modelling languages, but can be very eÆcient when restricting to a light-weight back-
ground theory. A possible example is the combination of SPARQL for OWL [11] with

5 This is easy to see in many ways, for example since (as noted below) CF allows us to ex-
press description logics like ����, whereas CF does not impose the regularity or acyclicity
conditions that are essential for obtaining decidability of reasoning in these logics [15].
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the lightweight OWL QL or OWL RL languages [32]. The below cases thus can only
serve as an illustration of the versatility of our approach, not as a comprehensive listing.

6.1 Modelling Policies in OWL DL

The Direct Semantics of OWL 2 is based on description logics which in turn are based
on the semantics of first-order logic [32]. The ontology language OWL 2 DL for which
this semantics is defined can therefore be viewed as a fragment of first-order logic to
which we can apply the restrictions of Section 5. The standard translation to first-order
logic (see, e.g., [14]) produces formulae that are already very close to the syntactic form
of CF sentences described above. Moreover, OWL class expressions are naturally trans-
lated to first-order formulae with one free variable, and are thus suitable candidates for
expressing policies. Policy containment then corresponds to class subsumption check-
ing – a standard inferencing task for OWL reasoners. The binary predicates of our sim-
ple provenance model, as well as the special predicates containedIn and conformsTo
can be represented by OWL properties, whereas unary predicates from the provenance
model correspond to primitive OWL classes.

Some restrictions must be taken into account to ensure that we consider only ontolo-
gies that are CF theories, and only classes that are valid policy conditions. Nominals
(enumerated classes as provided by ����������� in OWL) are expressed in first-order
logic using constant symbols, and must therefore be excluded from background ontolo-
gies. On the other hand nominals must be used in containedIn in policy descriptions
(in OWL this particular case can conveniently be expressed with ������	
��
��).
Besides nominals, the only non-connected feature of OWL 2 that must be disallowed is
the universal role (��������������������). On the other hand, cardinality restric-
tions are unproblematic even though they are usually translated using a special built-in
equality predicate � that we did not allow in first-order logic in Section 5. The reason is
that � can easily be emulated in first-order logic using a standard equality theory [20],
so that all of our earlier results carry over to this extension.

To apply Theorem 1 for reasoning, we still must be able to express Tci of Definition 4
in OWL. Transitivity of containedIn is directly expressible, and the remaining axioms
can be written as follows:6

� � � containedIn��p�� � � � containedIn���p��

Note that the represented axioms are not in CF, and likewise the restriction to nominal-
free OWL is not relevant here.

Concrete policies are now easily modelled. The public domain (PD) policy that al-
lows every type of usage and derivation is expressed as:

PD: Usage � Derivation �

Processes compliant to CC BY are either usages that were triggered by some attribu-
tion, or derivations for which all generated artefacts have only policies that also require

6 Throughout this section we use the usual DL notation for concisely writing OWL axioms and
class expressions; see [14] for an extended introduction to the relationship with OWL 2 syntax.
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attributions, i.e., which are contained in BY:

BY: (Usage � �wasTriggeredBy�Attribution) �

(Derivation � �wasGeneratedBy�1�� hasPolicy�� containedIn��BY�)�

To account for the modular nature of CC licenses, it is convenient to re-use class ex-
pressions as the one for BY. Thus, we will generally write CBY to refer to the class
expression for BY, and similarly for the other policies we define. To define NoDerivs
(ND) licenses that allow all processes that are not derivations, we introduce CND as an
abbreviation for Process � �Derivation. We can thus express CC BY-ND as

BY-ND: CBY � CND�

The ShareAlike (SA) condition cannot be modelled as an independent building block,
as it refers directly to the policy in which it is used. As an example, we model the
condition for the CC BY-SA policy as a requirement that all policies of all generated
artefacts are equivalent to BY-SA, i.e., they are contained in BY-SA and BY-SA is
contained in them:

BY-SA: CBY � �wasGeneratedBy�1�� hasPolicy�(� containedIn��BY-SA� �

� containedIn�1��BY-SA�)�

To validate the basic practicability of this modelling approach, we used the OWL
reasoner HermiT7 to compute the fixed point semantics of the policy system. We then
conducted some basic tests with the formalised CC policies.8 Not surprisingly, it can
be observed that the fixed point of PT is reached after just 2 iterations, which is sig-
nificantly less than the rough upper bound of �NP �

2 which was 49 in case of the 7 CC
licenses. In general, one may presume that even big numbers of policies do rarely ex-
pose a linear dependency that would lead to long iterations for reaching a fixed point.

As a basic example of how to apply automated conformance checking, we modelled
for every combination (porig� pderiv) of Creative Commons licenses a derivation which
uses an artefact with policy porig and generates a new artefact with policy pderiv. If such
a derivation is compliant to porig, we know that pderiv is a valid license for derivations
of porig licensed artefacts. The results (as expected) agree with the oÆcial Creative
Commons compatibility chart.9

It can be noted that, besides its use for conformance checking, the computation of
containedIn can also assist in modelling policies. For example, one can readily infer
that any ShareAlike (SA) requirement is redundant when a NoDerivs (ND) requirement
is present as well: adding SA to any ND license results in an equivalent license, i.e. one
finds that the licenses are mutually contained in each other.

7 

��������	���
��	����	������
8 For reasons of space, we did not include all formalisations for all CC licenses

here; the complete set of example policies for OWL and Datalog is available at


�����	���	��������
�	���������	�
��	������� ������	�����

9 see Point 2.16 in 

�����������	�
��	������������!"# , accessed 15th June 2011

http://www.hermit-reasoner.com/
http://people.aifb.kit.edu/ssp/creativecommons_policies.zip
http://wiki.creativecommons.org/FAQ
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6.2 Modelling Policies in Datalog

Datalog is the rule language of function-free definite Horn clauses, i.e., implications
with only positive atoms and a single head atom. It can be interpreted under first-order
semantics [3]. The syntax corresponds to first-order logic with the only variation that
quantifiers are omitted since all variables are understood to be quantified universally.
Datalog rules can thus be used to express a background theory. Policies can be expressed
by conjunctive or disjunctive queries, i.e., by disjunctions and conjunctions of atomic
formulae where one designated variable represents the free variable that refers to the
conforming processes, while the other variables are existentially quantified.

Again we have to respect syntactic restrictions of Section 5. Thus we can only use
rules that are either free of variables, or that contain no constants. In the latter case, all
variables in the rule head must occur in its body (this is known as safety in Datalog), and
the variables in the rule body must be connected via the atoms in which they co-occur.
For policy queries, we also require this form of connection, and we allow constants in
containedIn. The (non-CF) theory Tci of Definition 4 is readily expressed in Datalog.

Containment of conjunctive and disjunctive queries is decidable, and can be reduced
to query answering [2]. Namely, to check containment of a query q1 in a query q2, we
first create for every conjunction in q1 (which is a disjunction of conjunctive queries)
a grounded version, i.e., we state every body atom in the conjunction as a fact by uni-
formly replacing variables with new constants. If, for each conjunction in q1, these new
facts provide an answer to the query q2, then q1 is contained in q2. Note that Datalog
systems that do not support disjunctive query answering directly can still be used for
this purpose by expressing disjunctive conditions with multiple auxiliary rules that use
the same head predicate, and querying for the instances of this head.

As above, the simplest policy is the public domain (PD) license:

PD: Usage(x) 	 Derivation(x)�

Here and below, we always use x as the variable that represents the corresponding pro-
cess in a policy description. CC BY can now be defined as follows:

BY: (Usage(x) � wasTriggeredBy(x� y) � Attribution(y)) 	

(Derivation(x) � wasGeneratedBy(z� x) �

hasPolicy(z� v) � containedIn(v�BY)) �

This formalisation alone would leave room for derivations that are falsely classified as
compliant, since the condition only requires that there exists one artefact that has one
contained policy. Further artefacts or policies that violate these terms might then exist.
We can prevent this by requiring hasPolicy to be functional and wasGeneratedBy to
be inverse functional (as before, we assume that � has been suitably axiomatised, which
is possible in Datalog; see [20] for details):

v1 � v2 � hasPolicy(x� v1) � hasPolicy(x� v2)�

z1 � z2 � wasGeneratedBy(z1� x) � wasGeneratedBy(z2� x) �

Using this auxiliary modelling, we can easily express BY-ND and BY-SA as well [20].
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7 Related Work

The formalisation of policies and similar restrictions has been considered in many
works, but the relationship to our approach is often limited. For example, restrictions
in Digital Rights Management (DRM) systems can be specified in a rights expression
language such as ODRL [16]. Policy containment or self-referentiality is not considered
there. Similarly, ccREL o�ers an RDF representation for Creative Commons licenses
but uses a static name-based encoding that cannot capture the content-based relation-
ships that we model [1]. Using rules in the policy language AIR [18], the meaning
of ccREL terms has been further formalised but without attempting to overcome the
restrictions of name-based modelling [30].

Bonatti and Mogavero consider policy containment as a formal reasoning task, and
restrict the Protune policy language so that this task is decidable [8]. Reasoning about
policy conformance and containment also motivated earlier studies by the second au-
thor, where policies have been formalised as conjunctive queries [31]. Our present work
can be viewed as a generalisation of this approach.

Other related works have focussed on di�erent aspects of increasing the expressive-
ness of policy modelling. Ringelstein and Staab present the history-aware PAPEL policy
language that can be processed by means of a translation to Datalog [27]. The data-
purpose algebra by Hanson et al. allows the modelling of usage restrictions of data and
the transformation of the restrictions when data is processed [13].

Many knowledge representation formalisms have been proposed to accomplish non-
classical semantics (e.g. fixed point semantics) and meta-modelling (as present in our
expression of containment as an object-level predicate). However, both aspects are usu-
ally not integrated, or come with technical restrictions that do not suit our application.

Fixed point operators exist in a number of flavours. Most closely related to our setting
are works on fixed point based evaluation of terminological cycles in description logic
ontologies [5,25]. Later works have been based on the relationship to the �-calculus,
see [6, Section 5.6] for an overview of the related literature. As is typical for such
constructions, the required monotonicity is ensured on a logical level by restricting
negation. This is not possible in our scenario where we focus on the entailment of im-
plications (policy containments). Another approach of defining preferred models where
certain predicate extensions have been minimised�maximised is Circumscription [22].
This might provide an alternative way to define a semantics that can capture desired
policy containments, but it is not clear if and how entailments could then be computed.

Meta-modelling is possible with first- and higher-order approaches (see, e.g., [24]
for an OWL-related discussion) yet we are not aware of any approaches that provide
the semantics we intend. Glimm et al. [12], e.g., show how some schema entailments
of OWL 2 DL can be represented with ontological individuals and properties, but the
classical semantics of OWL would not yield the desired policy containments.

For relational algebra, it has been proposed to store relation names as individuals, and
to use an expansion operator to access the extensions of these relations [28]. This allows
for queries that check relational containment, but based on a fixed database (closed
world) rather than on all possible interpretations (open world) as in our case.
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8 Conclusions and Future Work

To the best of our knowledge, we have presented the first formal language for modelling
self-referential policies. A particular advantage of our approach is that it can be instan-
tiated in more specific knowledge representation formalisms, such as rule or ontology
languages, to take advantage of existing tools for automated reasoning.

This opens up a number of directions for practical studies and exploitations. Refined
provenance models, better tool support, and best practices for publishing policies are
still required. On the conceptual side it would also be interesting to ask if our CF-based
syntactic restrictions could be further relaxed without giving up the positive properties
of the semantics.
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Abstract. In this paper we address the problem of scalable, native and adaptive
query processing over Linked Stream Data integrated with Linked Data. Linked
Stream Data consists of data generated by stream sources, e.g., sensors, enriched
with semantic descriptions, following the standards proposed for Linked Data.
This enables the integration of stream data with Linked Data collections and fa-
cilitates a wide range of novel applications. Currently available systems use a
“black box” approach which delegates the processing to other engines such as
stream/event processing engines and SPARQL query processors by translating
to their provided languages. As the experimental results described in this paper
show, the need for query translation and data transformation, as well as the lack of
full control over the query execution, pose major drawbacks in terms of efficiency.
To remedy these drawbacks, we present CQELS (Continuous Query Evaluation
over Linked Streams), a native and adaptive query processor for unified query
processing over Linked Stream Data and Linked Data. In contrast to the existing
systems, CQELS uses a “white box” approach and implements the required query
operators natively to avoid the overhead and limitations of closed system regimes.
CQELS provides a flexible query execution framework with the query processor
dynamically adapting to the changes in the input data. During query execution, it
continuously reorders operators according to some heuristics to achieve improved
query execution in terms of delay and complexity. Moreover, external disk access
on large Linked Data collections is reduced with the use of data encoding and
caching of intermediate query results. To demonstrate the efficiency of our ap-
proach, we present extensive experimental performance evaluations in terms of
query execution time, under varied query types, dataset sizes, and number of par-
allel queries. These results show that CQELS outperforms related approaches by
orders of magnitude.

Keywords: Linked Streams, RDF Streams, Linked Data, stream processing, dy-
namic query planning, query optimisation.

� This research has been supported by Science Foundation Ireland under Grant
No. SFI/08/CE/I1380 (Lion-II), by the Irish Research Council for Science, Engineering
and Technology (IRCSET), by the European Commission under contract number FP7-2007-
2-224053 (CONET), by Marie Curie action IRSES under Grant No. 24761 (Net2), and by the
Austrian Science Fund (FWF) project P20841.

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 370–388, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Native and Adaptive Approach for Unified Process of Linked Stream 371

1 Introduction

Sensing devices have become ubiquitous. Mobile phones (accelerometer, compass, GPS,
camera, etc.), weather observation stations (temperature, humidity, etc.), patient moni-
toring systems (heart rate, blood pressure, etc.), location tracking systems (GPS, RFID,
etc.), buildings management systems (energy consumption, environmental conditions,
etc.), and cars (engine monitoring, driver monitoring, etc.) continuously produce infor-
mation streams. Also on the Web, services like Twitter, Facebook and blogs, deliver
streams of (typically unstructured) real-time data on various topics. The heterogeneous
nature of such diverse streams makes their use and integration with other data sources
a difficult and labor-intensive task, which currently requires a lot of “hand-crafting.”

To address some of the problems, there have been efforts to lift stream data to a
semantic level, e.g., by the W3C Semantic Sensor Network Incubator Group1 and
[12,32,37]. The goal is to make stream data available according to the Linked Data
principles [10] – a concept that is known as Linked Stream Data [31]. This would al-
low an easy and seamless integration, not only among heterogenous sensor data, but
also between sensor and Linked Data collections, enabling a new range of “real-time”
applications.

However, one distinguishing aspect of streams that the Linked Data principles do not
consider is their temporal nature. Usually, Linked Data is considered to change infre-
quently. Data is first crawled and stored in a centralised repository before further pro-
cessing. Updates on a dataset are usually limited to a small fraction of the dataset and
occur infrequently, or the whole dataset is replaced by a new version entirely. Query pro-
cessing, as in traditional relational databases, is pull based and one-time, i.e., the data is
read from the disk, the query is executed against it once, and the output is a set of results
for that point in time. In contrast, in Linked Stream Data, new data items are produced
continuously, the data is often valid only during a time window, and it is continually
pushed to the query processor. Queries are continuous, i.e., they are registered once and
then are evaluated continuously over time against the changing dataset. The results of a
continuous query are updated as new data appears. Therefore, current Linked Data query
processing engines are not suitable for handling Linked Stream Data. It is interesting to
notice that in recent years, there has been work that points out the dynamics of Linked
Data collections [35]. Although at a much slower pace compared to streams, it has been
observed that centralised approaches will not be suitable if freshness of the results is
important, i.e., the query results are consistent with the actual “live” data under certain
guarantees, and thus an element of “live” query execution will be needed [34]. Though
this differs from stream data, some of our findings may also be applicable to this area.

Despite its increasing relevance, there is currently no native query engine that sup-
ports unified query processing over Linked Stream and Linked Data inputs. Available
systems, such as C-SPARQL [9], SPARQLstream [14] and EP-SPARQL [3], use a
“black box” approach which delegates the processing to other engines such as
stream/event processing engines and SPARQL query processors by translating to their
provided languages. This dependency introduces the overhead of query translation and
data transformation. Queries first need to be translated to the language used in the un-

1 http://www.w3.org/2005/Incubator/ssn/

http://www.w3.org/2005/Incubator/ssn/
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derlying systems. The data also needs to be transformed to feed into the system. For
instance, in C-SPARQL and SPARQLstream, the data is stored in relational tables and
relational streams before any further processing, and EP-SPARQL uses logic facts. This
strategy also does not allow full control over the execution plan nor over the implemen-
tation of the query engine’s elements. Consequently, the possibilities for query optimi-
sations are very limited.

To remedy these drawbacks, we present CQELS (Continuous Query Evaluation over
Linked Streams), a native and adaptive query processing engine for querying over uni-
fied Linked Stream Data and Linked Data. In contrast to the existing systems, CQELS
uses a “white box” approach. It defines its own native processing model, which is imple-
mented in the query engine. CQELS provides a flexible query execution framework with
the query processor dynamically adapting to changes in the input data. During query ex-
ecution, it continuously reorders operators according to some heuristics to achieve im-
proved query execution in terms of delay and complexity. External disk access on large
Linked Data collections is reduced with the use of data encoding and caching of inter-
mediate query results, and faster data access is obtained with indexing techniques. To
demonstrate the efficiency of our approach, we present extensive experimental perfor-
mance evaluations in terms of query execution time, under varied query types, dataset
sizes, and number of parallel queries. Results show that CQELS performs consistently
well, and in most cases outperforms related approaches by orders of magnitude.

The remainder of this paper is organised as follows: Section 2 discusses our contri-
bution in relation to relational database management systems, data stream management
systems, Linked Data processing, and Linked Stream Data processing. Our processing
model is described in Section 3, and the query engine is discussed in Section 4. Sec-
tion 5 presents an experimental evaluation of our approach, and Section 6 provides our
conclusions and a brief discussion about ongoing work and next steps.

2 Related Work

RDF stores. A fair amount of work on storage and query processing for Linked Data
is available, including Sesame [13], Jena [38], RISC-3X [28], YARS2 [23], and Oracle
Database Semantic Technologies [16]. Most of them focus on scalability in dataset size
and query complexity. Based on traditional database management systems (DBMSs),
they typically assume that data changes infrequently, and efficiency and scalability are
achieved by carefully choosing appropriate data storage and indexing optimised for
read access, whereas stream data is characterised by high numbers and frequencies
of updates. The Berlin SPARQL benchmark2 shows that the throughput of a typical
triple store currently is less than 200 queries per second, while in stream applications
continuous queries need to be processed every time there is a new update in the data,
which can occur at rates up to 100,000 updates per second. Nevertheless, some of the
techniques and design principles of triple stores are still useful for scalable processing
of Linked Stream Data, for instance some of the physical data organisations [1,13,38]
and indexing schemas [16,23,28].

2 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/

http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
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Data stream management. Data stream management systems (DSMSs) such as
STREAM [4], Aurora [15], and TelegraphCQ [26] were built to overcome limitations
of traditional database management systems in supporting streaming applications [20].
The STREAM system proposes CQL [4] (Continuous Query Language) which extends
standard SQL syntax with new constructs for temporal semantics and defines a mapping
between streams and relations. The query engine consists of three components: opera-
tors, that handle the input and output streams, queues, that connect input operators to
output operators, and synopses, that store the intermediate states needed by continuous
query plans. In the Aurora/Borealis project [15] users can compose stream relationships
and construct queries in a graphical representation which is then used as input for the
query planner. TelegraphCQ introduces StreaQuel as a language, which follows a differ-
ent path and tries to isolate temporal semantics from the query language through exter-
nal definitions in a C-like syntax. TelegraphCQ also uses a technique called Eddies [6],
which continuously reorders operators in a query plan as it runs, adapting to changes in
the input data. DSMSs perform better compared to traditional DBMSs in the context of
high volumes of updates. Even though DSMSs can not directly process Linked Stream
Data, such processing is still possible by translating the queries and mapping the data to
fit into the data storage. This is currently done by available systems that process Linked
Stream Data. The CQELS query engine, on the other hand, can directly process Linked
Stream Data, yielding consistently better performance, as we will demonstrate later on
in the paper.

Streams and semantics. Semantic Streams [37] was among the first systems to pro-
pose semantic processing of streams. It uses Prolog-based logic rules to allow users to
pose declarative queries over semantic interpretations of sensor data. Semantic System
S [12] proposes the use of the Web Ontology Language (OWL) to represent sensor data
streams, as well as processing elements for composing applications from input data
streams. The Semantic Sensor Web project [8,32] also focuses on interoperability be-
tween different sensor sources, as well as providing contextual information about the
data. It does so by annotating sensor data with spatial, temporal, and thematic semantic
metadata. Research like the one carried by W3C Semantic Sensor Network Incubator
Group3 aims at the integration of stream data with Linked Data sources by following
the Linked Data principles for representing the data. In parallel, the concept of Linked
Stream Data was introduced [31], in which URIs were suggested for identifying sensors
and stream data.

In contrast to these approaches, our work focuses on the efficient processing of
Linked Stream Data integrated with other Linked Data sources. Existing work with this
focus comprises Streaming SPARQL [11], C-SPARQL [9], SPARQLstream [14], and
EP-SPARQL [3] as the main approaches. They all extend SPARQL with sliding window
operators for RDF stream processing. Streaming SPARQL simply extends SPARQL to
support window operators without taking into account performance issues regarding
the choice of the data structures and the sharing of computing states for continuous ex-
ecution. Continuous SPARQL (C-SPARQL) proposes an execution framework built of
top of existing stream data management systems and triple stores. These systems are
used independently as “black boxes.” In C-SPARQL, continuous queries are divided

3 http://www.w3.org/2005/Incubator/ssn/

http://www.w3.org/2005/Incubator/ssn/
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into static and dynamic parts. The framework orchestrator loads bindings of the static
parts into relations, and the continuous queries are executed by processing the stream
data against these relations. C-SPARQL is not designed for large static data sets, which
can degrade the performance of the stream processing considerably.

Along the same lines, SPARQLstream also translates its SPARQLstream language to
another relational stream language based on mapping rules. Event Processing SPARQL
(EP-SPARQL), a language to describe event processing and stream reasoning, can
be translated to ETALIS [3], a Prolog-based complex event processing framework.
First, RDF-based data elements are transformed into logic facts, and then EP-SPARQL
queries are translated into Prolog rules. In contrast to these systems, CQELS is based on
a unified “white box” approach which implements the required query operators for the
triple-based data model natively, both for streams and static data. This native approach
enables better performance and can dynamically adapt to changes in the input data.

3 Processing Model

The adaptive processing model of CQELS captures all the aspects of both data mod-
elling and query processing over Linked Stream Data and Linked Data in one single
theoretical framework. It defines two types of data sources, RDF streams and RDF
datasets, and three classes of operators for processing these types of data sources. Oper-
ators used in a query are organised in a data flow according to defined query semantics,
and the adaptive processing model provides functions to reorder the query operators
to create equivalent, more efficient data flows. The details of the processing model are
described in the following.

3.1 Definitions

In continuous query processing over dynamic data, the temporal nature of the data is
crucial and needs to be captured in the data representation. This applies to both types of
data sources, since updates in Linked Data collections are also possible. We define RDF
streams to represent Linked Stream Data, and we model Linked Data by generalising
the standard definition of RDF datasets to include the temporal aspect.

Similar to RDF temporal [22], C-SPARQL, and SPARQLstream, we represent tem-
poral aspects of the data as a timestamp label. We use t ∈ N to indicate a logical
timestamp to facilitate ordered logical clocks for local and distributed data sources as
done by classic time-synchronisation approaches [24]. The issues of distributed time
synchronization and flexible time management are beyond the scope of this paper. We
refer the reader to [19,27,33] for more details.

Let I , B, and L be RDF nodes which are pair-wise disjoint infinite sets of Informa-
tion Resource Identifiers (IRIs), blank nodes and literals, and IL = I ∪ L, IB = I ∪B
and IBL = I ∪B ∪ L be the respective unions. Thereby,

1. A triple (s, p, o) ∈ IB × I × IBL is an RDF triple.
2. An RDF dataset at timestamp t, denoted by G(t), is a set of RDF triples valid at

time t. An RDF dataset is a sequence G = [G(t)], t ∈ N, ordered by t. When it
holds that G(t) = G(t+1) for all t ≥ 0, we call G a static RDF dataset and denote
Gs = G(t).
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3. An RDF stream S is a bag of elements 〈(s, p, o) : [t]〉, where (s, p, o) is an RDF
triple and t is a timestamp. S≤t denotes the bag of elements in S with timestamps
≤ t, i.e., {〈(s, p, o) : [t′]〉 ∈ S | t′ ≤ t}.

Let V be an infinite set of variables disjoint from IBL. A mapping is a partial func-
tion μ : V → IBL. The domain of μ, dom(μ), is the subset of V where μ is defined.
Two mappings μ1 and μ2 are compatible if ∀x ∈ dom(μ1)∩dom(μ2), μ1(x) = μ2(x).

A tuple from (IB ∪ V ) × (I ∪ V ) × (IBL ∪ V ) is a triple pattern. For a given
triple pattern P , the set of variables occurring in P is denoted as var(P ) and the triple
obtained by replacing elements in var(P ) according to μ is denoted as μ(P ). A graph
template T is a set of triple patterns.

3.2 Operators

Our processing model takes as input RDF datasets and RDF streams containing possibly
infinite numbers of RDF triples, applies a query Q and continuously produces outputs.

In processing Q, snapshots of the input at discrete times t, i.e., finite amounts of
data, are used in the evaluation of the query. This requires dedicated operators to (i)
take snapshots of the input and filter its valid part w.r.t. some condition, (ii) operate on
the finite, intermediate data, and (iii) convert the final results back into a stream. The
required operators are called window, relational, and streaming operators.

Window Operators. These operators extract triples from an RDF stream or dataset
that match a given triple pattern and are valid within a given time window. Similar to
SPARQL, we define a triple matching pattern operator on an RDF dataset at timestamp
t as

[[P, t]]G = {μ | dom(μ) = var(P ) ∧ μ(P ) ∈ G(t)}.

A window operator [[P, t]]ωS is then defined by extending the operator above as fol-
lows.

[[P, t]]ωS = {μ | dom(μ) = var(P ) ∧ 〈μ(P ) : [t′]〉 ∈ S ∧ t′ ∈ ω(t)}.

where ω(t) : N → 2N is a function mapping a timestamp to a (possibly infinite) set of
timestamps. This gives us the flexibility to choose between different window modes [5].
For example, a time-based sliding window of size T can be expressed as ωRANGE (t) =
{t′ | t′ ≤ t ∧ t′ ≥ max(0, t − T )}, and a window that extracts only events happening
at the current time corresponds to ωNOW (t) = {t}. Moreover, we can similarly define
triple-based windows that return the latest N triples ordered by the timestamps.

We define a result set Γ as a function from N∪{−1} to finite but unbounded bags of
mappings, where Γ (−1) = ∅. A discrete result set Ω = Γ (t), t ≥ 0, denotes the bag
of mappings at time t. Discrete result sets are the input of relational operators described
below.

Relational Operators. Our processing model supports the operators found in traditional
relational database management systems [18]. Similar to the semantics of SPARQL [29],
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the operators work on the mappings from discrete result sets. As an example, given two
discrete result sets, Ω1 and Ω2, the join and union operators are defined as

Ω1 � Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 are compatible }
Ω1 ∪Ω2 = {μ | μ ∈ Ω1 ∨ μ ∈ Ω2}.

Streaming Operators. Similarly to the relation-to-stream operator of CQL [5], we de-
fine an operator, based on some patterns, to generate RDF streams from result sets.
From a graph template T, that provides a set of triple patterns, and a result set Γ , a
streaming operator C is defined as

C(T, Γ ) =
⋃
t≥0

{〈μ(P ) : [f(t)]〉 | μ ∈ Γ (t) \ Γ (t− 1) ∧ P ∈ T},

where f : N → N is a function mapping t to a new timestamp to indicate when we want
to stream out the result. In the simplest case, f is the identity function, indicating that
triples are streamed out immediately.

Query Semantics. Operators of a query are organised in a data flow. A data flow D is a
directed tree of operators, whose root node is either a relational or a streaming operator,
while leaves and intermediate nodes are window and relational operators, respectively.

Suppose the inputs to the leaves of D are RDF streams S1, . . . , Sn (n ≥ 1) and RDF
datasets G1, . . . , Gm (m ≥ 0). The query semantics of D is then defined as follows:
If the root of D is a streaming (resp., relational) operator, producing a stream S (resp.,
result set Γ ), then the result of D at time t is S≤t (resp., Γ (t)), which is produced
by recursively applying the operators comprising D to S≤t

1 , . . . , S≤t
n and G1, . . . , Gm.

Next we introduce the “localisation scenario” to illustrate the query semantics of our
processing model. This scenario will also be used in following sections of the paper.

Localisation scenario: Consider a group of people wearing devices that constantly
stream their locations in a building, i.e., in which room they currently are, and as-
sume we have information about the direct connectivity between the rooms, given
by a static RDF dataset G with triples of the form P3 = (?loc1, conn, ?loc2),
where GS = {(r1, conn, r2), (r1, conn, r3), (r2, conn, r1), (r3, conn, r1)}. Also as-
sume that people’s locations are provided in a single stream S with triples of form
(?person , detectedAt , ?loc). We are interested in answering the following continuous
query: “Notify two people when they can reach each other from two different and di-
rectly connected rooms.”

Figure 1a depicts a possible data flow D1 for the query in the localisation scenario.
It suggests to extract two windows from stream S using the functions ω1 = ωNOW and
ω2 = ωRANGE . The former looks at the latest detected person, and the latter monitors
people during the last T logical clock ticks by which we can assume that they are still
in the same room. For the example, we assume T = 2. Let Γ 1 and Γ 2 be the outputs of
the window operators. We use the triple patterns Pi = (?person i, detectedAt , ?loci) for
i = 1, 2 at the window operators; hence, mappings in Γ i are of the form {?personi �→
pid , ?loci �→ lid}.

The join �12 of discrete result sets from Γ 1 and Γ 2 in Figure 1a gives us the output
result set in Γ 3 to check the reachability based on the latest detected person. After
joining elements of Γ 3 with those of Γ 4 (the direct connectivity between locations
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Fig. 1. Possible data flows for the query in the localisation scenario

Table 1. Input and output of D1 as time progresses

t S Γ 1 Γ 2 Sout

0 〈(m0, dA, r1) : [0]〉 {?p1 �→ m0, ?�1 �→ r1} {?p2 �→ m0, ?�2 �→ r1} ∅

1
〈(m0, dA, r1) : [0]〉 {?p2 �→ m0, ?�2 �→ r1}
〈(m1, dA, r2) : [1]〉 {?p1 �→ m1, ?�1 �→ r2} {?p2 �→ m1, ?�2 �→ r2} 〈(m0, reaches, m1) : [1]〉

2
〈(m0, dA, r1) : [0]〉
〈(m1, dA, r2) : [1]〉 {?p2 �→ m1, ?�2 �→ r2} 〈(m0, reaches, m1) : [1]〉
〈(m2, dA, r1) : [2]〉 {?p1 �→ m2, ?�1 �→ r1} {?p2 �→ m2, ?�2 �→ r1} 〈(m1, reaches, m2) : [2]〉

3

〈(m0, dA, r1) : [0]〉
〈(m1, dA, r2) : [1]〉 〈(m0, reaches, m1) : [1]〉
〈(m2, dA, r1) : [2]〉 {?p2 �→ m2, ?�2 �→ r1} 〈(m1, reaches, m2) : [2]〉
〈(m3, dA, r2) : [3]〉 {?p1 �→ m3, ?�1 �→ r2} {?p2 �→ m3, ?�2 �→ r2} 〈(m2, reaches, m3) : [3]〉
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provided by G) via �124, we have the result set Γ to answer the query. To return this
result in terms of a stream Sout , the operator C is used at the root of D1.

Table 1 shows the input/output of D1 as time progresses. To reduce space consump-
tion, we use abbreviations as follows: dA for detectedAt , ?p for ?person , and ?� for
?loc.

3.3 Adaptation Strategies

A data flow contains inner relational operators which can be reordered to create new
equivalent data flows. For instance, Figures 1a and 1b show two equivalent data flows
for the query in the localisation scenario. With respect to each alternative, an operator
might have a different next/parent operator. For example, [[P1, t]]ω1

S has �12 as its parent
in D1 while in D2, its parent is �41.

In a stream processing environment, due to updates in the input data, during the
query lifetime the engine constantly attempts to determine the data flow that currently
provides the most efficient query execution. We propose an adaptive query processing
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Fig. 2. Dynamically choose the next operator after Γ 1 at timestamps 0 and 1

mechanism similar to Eddies [6], which continuously routes the outputs of an opera-
tor to the next operator on the data flow. The routing policy will dynamically tell the
operator what is the next operator it should forward data to, as shown in Algorithm 1.

Algorithm 1. route(routingEntry, O, t)
Input: routingEntry : timestamped triple/mapping, O : operator, t : timestamp
Ω := compute(routingEntry , O, t)
if O is not root then

nextOp := findNextOp(O, t)
for μ ∈ Ω do route(μ,nextOp, t)

else deliver Ω

Function route(routingEntry , O, t) is used to recursively apply the operator O on a
mapping or timestamped triple routingEntry and to route the output mappings to the
next operator. It uses the following primitives:

– compute(routingEntry, O, t): apply O, a window, relational, or streaming opera-
tor, to routingEntry , a timestamped triple or a mapping, at timestamp t, and return
a discrete result set.

– findNextOp(O, t): find the next operator to route the output mapping to, at times-
tamp t, based on a given routing policy.

The routing policy decides the order in which the operators are executed at runtime.
There are many ways to implement a routing policy. However, choosing the optimal
order on every execution is not trivial. We are investigating mechanisms for dynamic
cost-based optimisation. Preliminary findings are reported in [25]. A possible solution,
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common to DBMSs, is a cost-based strategy: the routing policy computes an estimated
“cost” to each possible data flow, and chooses the one with the smallest cost. While the
definition of cost is not fixed, it is usually measured by estimating the number of output
mappings the operator will produce.

The following example illustrates how the adaptation strategies work as a whole.

Example 1. Consider again the query in the localisation scenario at timestamps 0 and 1,
and assume the routing policy implemented is the cost-based strategy mentioned above.
Figure 2 illustrates the decision of which operator to choose next after extracting the
latest triple at Γ 1. In this figure, two simplified versions of D1 and D2 are on the left.
On the right hand side, we show the input/output of the join operators �12 and �41. At
timestamp 0, |Γ 1(0)| = |Γ 2(0)| = 1 as the first triple is streamed into the system. It
is preferable at this point to use D1, i.e., to join Γ 1(0) with Γ 2(0) using �12 because
the intermediate result Γ 3(0) has size 1. If we follow D2 then joining Γ 1(0) with
Γ 4(0) using �41 yields Γ 5(0) with size 2. However, at t = 1, D2 is preferred because
|Γ 3(1)| = 2 and |Γ 5(1)| = 1.

4 CQELS’s Query Engine

The CQELS query engine implements the model introduced in Section 3. Continuous
queries can be registered using our CQELS language, an extension of the declarative
SPARQL 1.1 language, which is described next. We then explain the details of the en-
gine. We show how data is encoded for memory savings, how caching and indexing are
used for faster data access, and how operators and the routing policy are implemented.
Before moving onto the query language, we first need to introduce our second scenario,
the “conference scenario,” which is also used in the evaluation section.

Conference scenario: This scenario is based on the Live Social Semantics experiment
presented in [2]. We extend the localisation scenario by considering that people are
now authors of research papers and they are attending a conference. These authors
have their publication information stored in a DBLP dataset. To enhance the conference
experience, each participant would have access to the following services, which can all
be modelled as continuous queries:

(Q1) Inform a participant about the name and description of the location he just en-
tered,

(Q2) Notify two people when they can reach each other from two different and directly
connected (from now on called nearby) locations,

(Q3) Notify an author of his co-authors who have been in his current location during
the last 5 seconds,

(Q4) Notify an author of the editors that edit a paper of his and have been in a nearby
location in the last 15 seconds,

(Q5) Count the number of co-authors appearing in nearby locations in the last 30 sec-
onds, grouped by location.
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4.1 CQELS Language

Based on our query semantics, we introduce a declarative query language called CQELS
by extending the SPARQL 1.1 grammar4 using the EBNF notation. We add a query
pattern to apply window operators on RDF Streams into the GraphPatternNotTriples
pattern.
GraphPatternNotTriples ::=GroupOrUnionGraphPattern | OptionalGraphPattern

|MinusGraphPattern |GraphGraphPattern|StreamGraphPattern
| ServiceGraphPattern | Filter | Bind

Assuming that each stream is identified by an IRI as identification, the Stream-
GraphPattern pattern is defined as follows.
StreamGraphPattern ::= ‘STREAM’ ‘[’ Window ‘]’ VarOrIRIref ‘{’TriplesTemplate‘}’

Window ::= Range | Triple | ‘NOW’ | ‘ALL’

Range ::= ‘RANGE’ Duration (‘SLIDE’ Duration)?

Triple ::= ‘TRIPLES’ INTEGER
Duration ::= (INTEGER ‘d’ | ‘h’ | ‘m’ | ‘s’ | ‘ms’ | ‘ns’)+

where VarOrIRIRef and TripleTemplate are patterns for the variable/IRI and triple
template of SPARQL 1.1, respectively. Range corresponds to a time-based window
while Triple corresponds to a triple-based window. The keyword SLIDE is used for
specifying the sliding parameter of a time-based window, whose time interval is speci-
fied by Duration . More details of the syntax are available at
http://code.google.com/p/cqels/.

Given the CQELS language defined above, we can represent the five queries from
the conference scenario as follows, where $Name$ is replaced by a constant when in-
stantiating the query.5

SELECT ?locName ?locDesc
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM<http://deri.org/streams/rfid> [NOW] {?person lv:detectedAt ?loc}
GRAPH <http://deri.org/floorplan/>{?loc lv:name ?locName. ?loc lv:desc ?locDesc}
?person foaf:name ‘‘$Name$’’. }

Query Q1

CONSTRUCT {?person1 lv:reachable ?person2}
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM<http://deri.org/streams/rfid>[NOW] {?person1 lv:detectedAt ?loc1}
STREAM<http://deri.org/streams/rfid>[RANGE 3s]{?person2 lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2} }

Query Q2

SELECT ?coAuthName
FROM NAMED <http://deri.org/floorplan/>
WHERE {

STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc}
STREAM <http://deri.org/streams/rfid> [RANGE 5s] {?coAuth lv:detectedAt ?loc}
{ ?paper dc:creator ?auth. ?paper dc:creator ?coAuth.

?auth foaf:name ‘‘$Name$’’. ?coAuth foaf:name ?coAuthorName}
FILTER (?auth != ?coAuth) }

Query Q3

4 http://www.w3.org/TR/sparql11-query/#grammar
5 For the sake of space we omit the PREFIX declarations of lv, dc, foaf, dcterms and swrc.

http://code.google.com/p/cqels/
http://www.w3.org/TR/sparql11-query/#grammar
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SELECT ?editorName
WHERE {

STREAM <http://deri.org/streams/rfid> [TRIPLES 1] {?auth lv:detectedAt ?loc1}
STREAM <http://deri.org/streams/rfid> [RANGE 15s] {?editor lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/> {?loc1 lv:connected ?loc2}
?paper dc:creator ?auth. ?paper dcterms:partOf ?proceeding.
?proceeding swrc:editor ?editor. ?editor foaf:name ?editorName.
?auth foaf:name ‘‘$Name$’’ }

Query Q4

SELECT ?loc2 ?locName count(distinct ?coAuth) as ?noCoAuths
FROM NAMED <http://deri.org/floorplan/>
WHERE {
STREAM<http://deri.org/streams/rfid>[TRIPLES 1]{?auth lv:detectedAt ?loc1}
STREAM<http://deri.org/streams/rfid>[RANGE 30s]{?coAuth lv:detectedAt ?loc2}
GRAPH <http://deri.org/floorplan/>{?loc2 lv:name?locName.loc2 lv:connected?loc1}
{?paper dc:creator ?auth. ?paper dc:creator ?coAuth. ?auth foaf:name ‘‘$Name$’’}
FILTER (?auth != ?coAuth)}
GROUP BY ?loc2 ?locName

Query Q5

4.2 Data Encoding

When dealing with large data collections, it is very likely that data will not fit into
the machine’s main memory for processing, and parts of it will have to be temporarily
stored on disk. In the particular case of RDF data, with IRIs or literals stored as strings,
a simple join operation on strings could generate enough data to trigger a large number
of disk reads/writes. However, these are among the most expensive operations in query
processing and should be avoided whenever possible. While we cannot entirely avoid
disk access, we try to reduce it by encoding the data such that more triples can fit into
main memory.

We apply dictionary encoding, a method commonly used by triple stores [1,16,13].
An RDF node, i.e., literal, IRI or blank node, is mapped to an integer identifier. The
encoded version of an RDF node is considerably smaller than the original, allowing
more data to fit into memory. Moreover, since data comparison is now done on integers
rather than strings, operations like pattern matching, perhaps the most common operator
in RDF streams and datasets, are considerably improved.

However, in context of RDF streams, data is often fed into the system at a high rate,
and there are cases when the cost of updating a dictionary and decoding the data might
significantly hinder the performance. Therefore, our engine does not encode the RDF
nodes into dictionary if they can be represented in 63 bits. As such, a node identifier is
presented as a 64-bit integer. The first bit is used to indicate whether the RDF node is
encoded or not. If the RDF nodes does not have to be encoded, the next 5 bits represent
the data type of the RDF node (e.g. integer, double or float) and the last 58 bits store its
value. Otherwise, the RDF node is stored in the dictionary and its identifier is stored in
the remaining 63 bits.

4.3 Caching and Indexing

While data encoding allows a smaller data representation, caching and indexing aim at
providing faster access to the data. Caching is used to store intermediate results of sub-
queries over RDF data sets. Indexing is applying on top of caches, as well as on output
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mapping sets from window operators, for faster data look-ups. Similar to data ware-
houses, cached data is initially kept on disk with indexes and only brought to memory
when needed.

In continuous query processing, RDF datasets are expected to have a much slower
update rate than RDF streams. Therefore, the output of a sub-query over an RDF dataset
rarely changes during a series of updates of RDF streams. Based on this observation, as
soon as a query is registered, we materialise the output of its sub-queries over the RDF
datasets and store them in a cache that is available to the remaining query operators.
Thereby, a possibly large portion of the query does not need to be re-executed when
new stream triples arrive.

To keep the cache updated, we use triggers to notify changes in the RDF datasets. The
CQELS engine has a triple store that allows the engine to load and update RDF datasets
as named graphs. This triple store provides triggers that will notify the engine to update
the respective cached data. For the RDF datasets that are not loaded, we manually set
a timer to trigger an update. At the moment, a cache update is done by recomputing
the full sub-query as a background process and replacing the old cached data by the
new results as soon as they are ready. We are investigating adaptive caching [7] and
materialised view maintenance [21] techniques to create more efficient cache updating
mechanisms.

For faster lookups on the cache, indexes are built on the variables shared among the
materialised sub-queries and other operator’s inputs. We use similar indexing schemas
as in popular triple stores [13,16,23,28,38]. Vigals et al. [36] showed that, in stream
processing, building hash tables for multi-way joins can accelerate the join operation.
Therefore, we also index data coming from window operators, which are the input to
the relational operators. Similar to caching, there is an update overheard attached to
indexes. In CQELS, the decision to create an index is as follows: cache data is always
indexed. For data coming from window operators, an index is maintained as long as it
can be updated faster than the window’s stream rate. If this threshold is reached, the
index is dropped, and the relational operators that depend on this index will be replaced
by equivalent ones that can work without indexes.

4.4 Operators and Routing Policy

To recap, the CQELS processing model contains three groups of operators: window, re-
lational and streaming operators. In the current implementation, we support two types
of window operators: triple-based window and sliding window. We implement all rela-
tional operators needed to support the CQELS language. In particular, one of the join
operators is a binary index join that uses indexing for faster processing. The implemen-
tation of the streaming operator is rather simple: as soon as a mapping arrives at the
streaming operator, it simply binds the mapping to the graph template, then sends the
output triples, tagged with the time they were created, to the output stream.

To allow adaptive query execution, our engine currently support a “cardinality-based”
routing policy, based on some heuristics. For a given query, the engine keeps all possible
left-deep data flows that start with a window operator. For instance, Figure 3 shows
the four data flows that are maintained for the query in the localisation scenario from
Section 3.
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Fig. 3. Left-deep data flows for the query in the localisation scenario

Algorithm 2. findNextOp(O, t)
Input: O : operator, t : timestamp
nextOp := null
for unaryOp ∈ nextUnaryOp(O) do

if unaryOp is a filter operator then return unaryOp else nextOp := unaryOp

mincard := +∞
for binaryOp ∈ nextBinaryOpOnLeftDeepTree (O) do

if mincard > card(binaryOp.rightChildOp, t) then
mincard := card(binaryOp.rightChildOp, t)
nextOp := binaryOp

return nextOp

Algorithm 2 shows the findNextOp function used in the current routing policy (see
Algorithm 1). It applies two simple heuristics: the first one, common in DBMSs, pushes
operators like filters closer to the data sources. The rationale here is that the earlier we
prune the triples that will not make it to the final output, the better, since operators will
then process fewer triples. The second looks at the cardinality of the operators’ output
and sorts them in increasing order of this value, which also helps in reducing the number
of mappings to process.

Function nextUnaryOp(O) returns the set of possible next unary operators that O
can route data to, while nextBinaryOpOnLeftDeepTree(O) returns the binary ones.
Examples of unary operators are filters and projections, and they can be directly exe-
cuted on the output produced by O. Binary operators, such as joins and unions, have
two inputs, called left and right child, due to the tree shape of the data flows. O will
be the left child, since the data flows are all left-deep. The right child is given by the
rightChildOp attribute. For each binary operator, we obtain the cardinality of the right
child at time t from card(binaryOp.rightChildOp , t). We then route the output of O
to the one whose cardinality function returns the smallest value.

5 Experimental Evaluation

To evaluate the performance of CQELS, we compare it against two existing systems that
also offer integrated processing of Linked Streams and Linked Data – C-SPARQL [9]
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and ETALIS [3].6 Note that EP-SPARQL is implemented on top of ETALIS. We first
planned to express our queries in EP-SPARQL, which would then be translated into
the language used in ETALIS. However, the translation from EP-SPARQL to ETALIS
is currently not mature enough to handle all queries in our setup, so we decided to
represent the queries directly in the ETALIS language. We also considered compar-
ing our system against SPARQLstream [14], but its current implementation does not
support querying on both RDF streams and RDF dataset. Next, we describe our exper-
imental setup, and then report and discuss the results obtained. All experiments pre-
sented in this paper are reproducible. Both systems and datasets used are available at
http://code.google.com/p/cqels/.

5.1 Experimental Setup

We use the conference scenario introduced in Section 4. For the stream data, we use
the RFID-based tracking data streams provided by the Open Beacon community.7 The
data is generated from active RFID tags, the same hardware used in the Live Social
Semantics deployment [2]. The data generator from SP2Bench [30] is used to create
simulated DBLP datasets. We have also created a small RDF dataset, 172 triples, to
represent the connectivity between the locations given in the Open Beacon dataset.

The experiments were executed on a standard workstation with 1 x Quad Core In-
tel Xeon E5410 2.33 GHz, 8GB memory, 2 x 500GB Enterprise SATA disks, running
Ubuntu 11.04/x86_64, Java version “1.6”, Java HotSpot(TM) 64-Bit Server VM, and
SWI-Prolog 5.10.4. The maximum heap size on JVM instances when running CQELS
and C-SPARQL was set to 4GB. For ETALIS, the global stack size is also 4GB.

We evaluate performance in terms of average query execution time. At each run, after
registering the query, we stream a number of triples into the system and every time the
query is re-executed we measure its processing time. We then average these values over
multiple runs.

The queries used follow the templates specified in Section 4.1. They were selected
in a way that cover many operators with different levels of complexity, for instance
joins, filters and aggregations. One query instance is formed by replacing $Name$ in
the template with a particular author’s name from the DBLP dataset. We have performed
the following three types of experiments:

Exp.(1) Single query: For each of the Q1, Q3, Q4 and Q5 templates we generate 10
different query instances. For query template Q2, since it has no constants, we
create one instance only. Then we run each instance at a time and compute the
average query execution time.

Exp.(2) Varying size of the DBLP dataset: We do the same experiment as in (1) but
varying the numbers of triples of the DBLP dataset, ranging from 104 to 107

triples. We do not include Q2 in this experiment, since it does not involve the
DBLP dataset.

6 We would like to thank the C-SPARQL, ETALIS, and SPARQLstream teams for their sup-
port in providing their implementations and helping us to understand and correctly use their
systems.

7 http://www.openbeacon.org/

http://code.google.com/p/cqels/
http://www.openbeacon.org/
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Table 2. Average query execution time for single queries (in milliseconds)

Q1 Q2 Q3 Q4 Q5

CQELS 0.47 3.90 0.51 0.53 21.83
C-SPARQL 332.46 99.84 331.68 395.18 322.64
ETALIS 0.06 27.47 79.95 469.23 160.83

 0.01

 0.1

 1

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

av
g.

 q
ue

ry
 e

xc
. t

im
e 

(m
s)

 -
 lo

g 
sc

al
e

Number of triples from DBLP

Q1

CQELS
C-SPARQL

ETALIS

 0.1

 1

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

av
g.

 q
ue

ry
 e

xc
. t

im
e 

(m
s)

 -
 lo

g 
sc

al
e

Number of triples from DBLP

Q3

CQELS
C-SPARQL

ETALIS

 10

 100

 1000

 10000

10k 100k 1M 2M 10M

av
g.

 q
ue

ry
 e

xc
. t

im
e 

(m
s)

 -
 lo

g 
sc

al
e

Number of triples from DBLP

Q5

CQELS
C-SPARQL

ETALIS

Fig. 4. Average query execution time for varying sizes of simulated DBLP dataset

Exp.(3) Multiple queries: For query templates Q1, Q3 and Q4, we register 2M query
instances at the same time, with 0 ≤ M ≤ 10, and execute them in parallel.

In experiments Exp.(1) and Exp.(3), the numbers of triples from DBLP is fixed to
105.

5.2 Results and Analysis

Table 2 shows the results for Exp.(1). We can see that, for most of the cases, CQELS
outperforms the other approaches by orders of magnitude; sometimes it is over 700 times
faster. The only exception is query Q1, where ETALIS is considerably faster. The reason
is that ETALIS supports three consumption policies, namely recent, chronological, and
unrestricted, where recent is very efficient for queries containing only simple filters on the
stream data. For more complex queries, the performance of ETALIS drops significantly.
C-SPARQL is currently not designed to handle large datasets, which explains its poor
performance in our setup. CQELS, on the other hand, is able to constantly deliver great
performance, due to its combination of pre-processing and adaptive routing policy.

The results from Exp.2 are shown in Figure 4, for query templates Q1, Q3 and Q5.
The results for query template Q4 are very similar to those from query template Q3, so
we omit them for the sake of space.

We can see how the performance is affected when the size of the RDF dataset in-
creases. For both ETALIS and C-SPARQL, not only does the average execution time
increase with the size of the RDF dataset, but they are only able to run up to a certain
number of triples. They can execute queries with a RDF dataset of 1 million triples, but
at 2 million ETALIS crashes and C-SPARQL does not respond. CQELS’ performance
is only marginally affected by the RDF dataset’s size, even for values as high as 10 mil-
lion triples, and the performance gains sometimes were three orders of magnitude. This
is mainly due to the cache and indexes used for storing and accessing pre-computed
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Fig. 5. Average query execution time when running multiple query instances

intermediate results. We have observed that the size of the cache, which stores the co-
authors and editors of a certain author, does not increase linearly with the size of the
dataset. Moreover, by using indexes on this cache, the access time of a mapping in-
creases only logarithmically with the cache size. This behaviour shows the importance
of having such cache and index structures for efficient query processing.

As a scalability test, we wanted to analyse how the systems perform with a number
of queries running in parallel. Figure 5 presents the results for Exp.(3). Again, ETALIS
delivers the best performance when there is no join operator on the stream data (Q1).
But, for the other cases, the number of queries it can handle in parallel is very limited
(less than 10). Both C-SPARQL and CQELS can scale to a large number of queries, but
in C-SPARQL queries face a long execution time that exceeds 100 seconds, while in
CQELS, even with 1000 queries running, the average execution time is still around one
second. This scalability is mainly due to our encoding technique, which allows more
efficient use of main memory, consequently reducing read/write disk operations.

In summary, our experimental evaluation shows the great performance of CQELS,
both in terms of efficiency and scalability. Its query engine, with the cache, index, and
routing policy, adapts well to different query complexities and it can scale with the size
of the RDF datasets. Our encoding technique enhances memory usage, which is crucial
when handling multiple queries. Even though ETALIS performed better for simpler
queries, CQELS performs consistently well in all the experiments, and in most cases
outperforms the other approaches by orders of magnitude.

6 Conclusions

This paper presented CQELS, a native and adaptive approach for integrated process-
ing of Linked Stream Data and Linked Data. While other systems use a “black box”
approach which delegates the processing to existing engines, thus suffering major ef-
ficiency drawbacks because of lack of full control over the query execution process,
CQELS implements the required query operators natively, enabling improved query ex-
ecution. Our query engine can adapt to changes in the input data, by applying heuristics
to reorder the operators in the data flows of a query. Moreover, external disk access on
large Linked Data collections is reduced with the use of data encoding, and caching/in-
dexing enables significantly faster data access. Our experimental evaluation shows the
good performance of CQELS, in terms of efficiency, latency and scalability. CQELS
performs consistently well in experiments over a wide range of test cases, outperform-
ing other approaches by orders of magnitude.
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Our promising results indicate that an integrated and native approach is in fact nec-
essary to achieve the required query execution efficiency. For future work, we plan to
improve the performance of CQELS further. Query optimisation in adaptive query pro-
cessing is still an open problem under active research [17]. We have already started
investigating cost-based query optimisation policies [25] and we plan to look into adap-
tive caching [7] and materialised view maintenance [21] to enhance the efficiency of
our query execution algorithms.
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Abstract. The increasing availability of large RDF datasets offers an
exciting opportunity to use such data to build predictive models using
machine learning algorithms. However, the massive size and distributed
nature of RDF data calls for approaches to learning from RDF data in
a setting where the data can be accessed only through a query interface,
e.g., the SPARQL endpoint of the RDF store. In applications where the
data are subject to frequent updates, there is a need for algorithms that
allow the predictive model to be incrementally updated in response to
changes in the data. Furthermore, in some applications, the attributes
that are relevant for specific prediction tasks are not known a priori and
hence need to be discovered by the algorithm. We present an approach
to learning Relational Bayesian Classifiers (RBCs) from RDF data that
addresses such scenarios. Specifically, we show how to build RBCs from
RDF data using statistical queries through the SPARQL endpoint of the
RDF store. We compare the communication complexity of our algorithm
with one that requires direct centralized access to the data and hence
has to retrieve the entire RDF dataset from the remote location for pro-
cessing. We establish the conditions under which the RBC models can
be incrementally updated in response to addition or deletion of RDF
data. We show how our approach can be extended to the setting where
the attributes that are relevant for prediction are not known a priori,
by selectively crawling the RDF data for attributes of interest. We pro-
vide open source implementation and evaluate the proposed approach on
several large RDF datasets.

1 Introduction

The Semantic Web as envisioned by Berners-Lee, Hendler, and others [14,3] aims
to describe the semantics of Web content in a form that can be processed by
computers [5,2]. A key step in realizing this vision is to cast knowledge and data
on the Web in a form that is conducive to processing by computers [15]. Resource
Description Framework (RDF) ([23] for a primer) offers a formal language for
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describing structured information on the Web. RDF represents data in the form
of subject-predicate-object triples, also called RDF triples, which describe a
directed graph where the directed labeled edges encode binary relations between
labeled nodes (also called resources). RDF stores or triple stores and associated
query languages such as SPARQL [26] offer the means to store and query large
amounts of RDF data. Over the past decade, RDF has emerged as a basic
representation format for the Semantic Web [15]. Cyganiak [8] estimated in 2010
that there are 207 RDF datasets containing over 28 billion triples published in
the Linked Open Data cloud.

The increasing availability of large RDF datasets on the web offers unprece-
dented opportunities for extracting useful knowledge or predictive models from
RDF data, and using the resulting models to guide decisions in a broad range of
application domains. Hence, it is natural to consider the use of machine learning
approaches, and in particular, statistical relational learning algorithms [11], to
extract knowledge from RDF data [17,4,28]. However, existing approaches to
learning predictive models from RDF data have significant shortcomings that
limit their applicability in practice. Specifically, existing approaches rely on the
learning algorithm having direct access to RDF data. However, in many settings,
it may not be feasible to transfer data a massive RDF dataset from a remote
location for local processing by the learning algorithm. Even in settings where
it is feasible to provide the learning algorithm direct access to a local copy of
an RDF dataset, algorithms that assume in-memory access to data cannot cope
with RDF datasets that are too large to fit in memory. Hence, there is an urgent
need for approaches to learning from RDF data in a setting where the data can
be accessed only through a query interface, e.g., the SPARQL endpoint for the
RDF store. In applications where the data are subject to frequent updates, there
is a need for algorithms that allow the predictive model to be incrementally up-
dated in response to changes in the data. Furthermore, in some applications,
the attributes that are relevant for specific prediction tasks are not known a pri-
ori and hence need to be discovered by the algorithm. We present an approach
to learning Relational Bayesian Classifiers from RDF data that addresses such
scenarios.

Our approach to learning Relational Bayesian Classifiers (RBCs) from RDF
data adopts the general framework introduced by Caragea et al. [6] for trans-
forming a broad class of standard learning algorithms that assume in memory
access to a dataset into algorithms that interact with the data source(s) only
through statistical queries or procedures that can be executed on the remote
data sources. This involves decomposing the learning algorithm into two parts:
(i) a component that poses the relevant statistical queries to a data source to ac-
quire the information needed by the learner; and (ii) a component that uses the
resulting statistics to update or refine a partial model (and if necessary, further
invoke the statistical query component). This approach has been previously used
to learn a variety of classifiers from relational databases [20] using SQL queries
and from biomolecular sequence data [19]. It has recently become feasible to use
a similar approach to learning RBCs from RDF data due to the incorporation
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of support for aggregate queries in SPARQL. (SPARQL 1.1 supports aggregate
queries whereas SPARQL 1.0 does not).

We show how to learn RBCs from RDF data using only aggregate queries
through the SPARQL endpoint of the RDF store. This approach does not re-
quire in-memory access to RDF data to be processed by the learning algorithm,
and hence can scale up to very large data sets. Because the predictive model
is built using aggregate queries against a SPARQL endpoint, it can be used to
learn RBCs from large remote RDF stores without having to transfer the data to
a local RDF store for processing (in general, the cost of retrieving the statistics
needed for learning is much lower than the cost of retrieving the entire dataset).
Under certain conditions which we identify in the paper, we show how the RBC
models can be incrementally updated in response to changes (addition or dele-
tion of triples) from the RDF store. We further show how our approach can
be extended to the setting where the attributes that are relevant for prediction
are not known a priori, by selectively crawling the RDF data for attributes of
interest. We have implemented the proposed approach into INDUS [21], an open
source suite of learning algorithms, that learn from massive data sets only us-
ing statistical queries. We describe results of experiments on several large RDF
datasets that demonstrate the feasibility of the proposed approach to learning
RBCs from RDF stores.

The rest of the paper is organized as follows: Section 2 introduces a precise
formulation of the problem of learning RBCs from RDF data. Section 3 describes
how to build RBCs from RDF data using only aggregate queries. Section 4
identifies the conditions under which it is possible to incrementally update an
RBC learned model from an RDF store in response to updates to the underlying
RDF store. Section 5 presents an analysis of the communication complexity
of learning RBCs from RDF stores. Section 6 describes how to extend to the
setting where the attributes that are relevant for prediction are not known a
priori, by selectively crawling the RDF data for attributes of interest. Section 7
describes results of experiments with several RDF datasets that demonstrate the
feasibility proposed approach. Finally Sec. 8 concludes with a summary and a
brief discussion of related work.

2 Problem Formulation

In this section we formulate the problem of learning predictive models from RDF
data. Assume there are pairwise disjoint infinite sets I, B, L and V (IRIs, Blank
nodes, Literals and Variables respectively). A triple (s, p, o) ∈ (I ∪B)× I × (I ∪
B ∪ L) is called an RDF triple. In this triple, s is the subject, p the predicate,
and o the object. An RDF graph is a set of RDF triples.

As a running example for the following definitions, we consider the RDF
schema for the movie domain as shown in Fig. 1. We wish to predict whether a
movie receives more than $2M in its opening week.

Definition 1 (Target Class). Given an RDF graph G, a target class is a
distinguished IRI of type rdfs:Class in G. For example, Movie.
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Fig. 1. RDF schema for the movie domain

Definition 2 (Instances). Given an RDF graph G and a target class T , the
instances of T , denoted T (G) is the set {x : (x, rdf:type, T ) ∈ G}.

Definition 3 (Attribute). Given an RDF graph G and a target class T , an
attribute A (of a target class T ) is a tuple of IRIs (p1, . . . , pn) such that the
domain of p1 is T , the range of pi is the domain of pi+1, and the range of pn is
a literal. For example, (hasActor, foaf, yearOfBirth). We also refer the range of
the attribute A as the range of pn.

Definition 4 (Attribute Graph). Given an instance x of the target class T
in the RDF graph G and an attribute A = (p1, . . . , pn), the attribute graph of the
instance x, denoted by A(x), is the union of the sets of triples that match the
Basic Graph Pattern [26]

((x, p1, ?v1) AND (?v1, p2, ?v2) AND . . . AND (?vn−1, pn, ?vn)) (1)

where vi ∈ V are variables.
Given an additional literal value a, we also define a filtered attributed graph,

denoted A(x, a), which includes the filter constraint FILTER(?vn = a) in the
graph pattern (1). Further, if A is a tuple of attributes (A1, . . . , An), then we
define A(x) to be (A1(x), . . . , An(x))

Definition 5 (Target Attribute). Given an RDF graph G and a target class
T , a target attribute is a distinguished attribute denoted by C. For example,
(openingReceipts).

C(x) is intended to describe the class label of the instance x, hence we assume
that each instance has exactly one class label, i.e., |C(x)| = 1 for every x ∈ T (G).
Given a target attribute C = (p1, . . . , pn), we define v(C, x) to be the value of
?vn matched by the graph pattern (1).

Definition 6 (Class Label). Given a target attribute C = (p1, . . . , pn), the
set of class labels is the the range of pn. For brevity we denote this set by C.
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Definition 7 (RDF Dataset). An RDF dataset D is a tuple (G, T ,A, C)
where G is an RDF graph, T a target class in G, A a tuple of attributes, and C is
a target attribute. We also denote the tuple (T ,A, C) as Desc(D) corresponding
to the descriptor of the dataset.

Definition 8 (Induced Attribute Graph Dataset). Given an RDF dataset
D = (G, T ,A, C), its induced attribute graph dataset, denoted I(D), is defined
as {(A(x), v(C, x)) : x ∈ T (G)}.

We now formalize the the problem of learning from RDF data.

Problem 1. Given an RDF dataset D = (G, T ,A, C) and its induced attribute
graph dataset I(D), a hypothesis class H , and a performance criterion P , the
learning algorithm L outputs a classifier h ∈ H that optimizes P . The input to
the classifier h is A(x) where x is an instance of a target class T , and the output
h(x) ∈ C is a class label.

3 Learning from RDF Data

We reduce the problem of learning from RDF data to the problem of learning
from multiset attribute data which is defined below. This reduction allows for ap-
plication of algorithms for learning from multiset attribute data (e.g. Relational
Bayesian Classifier [25]) to this setting. Given an RDF dataset D = (G, T ,A, C)
and its induced attribute graph dataset I(D), consider an attribute A and the
attribute graph A(x) of an instance x ∈ T (G). The attribute graph A(x) can be
viewed as a directed acyclic graph (DAG) rooted in x, and here we are interested
in only the leaves of this DAG. The following definition captures this notion.

Definition 9 (Leaf). Given an attribute Ai, we define the leaf function
L(Ai(x)) that returns the multiset of leaves of Ai(x), such that each leaf a ∈
Ai(x) is replaced with n copies of a where n is the number of unique paths from
x to a. For brevity we write L(Ai(x)) as Li(x) and L(Ai(x, a)) as Li(x, a).

Also, we overload the leaf function on a tuple of attributes A = (A1, . . . , An)
by L(A(x)) = (L1(x), . . . ,Ln(x)).

Using the leaf function, we reduce I(D) into a multiset attributed datasetM(D) =
{(L(A(x)), v(C, x)) : x ∈ T (G)}. To learn fromM(D) we focus our attention on
Relational Bayesian Classifiers (RBC) motivated from modeling relational data
[25]. RBC assumes that attribute multisets are independent given the class, and
the most probable class of an instance is given by:

hRBC(x) = argmax
c∈C

p(c)
∏

i

p(Li(x) : c) (2)

Several methods to estimate the probabilities p(Li(x) : c) are described
in [25]:
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– Aggregation: p̂agg(Li(x) : c) = p̂(agg(Li(x)) : c), where agg is an aggrega-
tion function such as min, max, average for continuous attributes; and mode
for discrete attributes.

– Independent Value: p̂ind(Li(x) : c) =
∏

a∈Li(x)p̂(a : c), which assumes each
value in the multiset is independently drawn from the same distribution
(attribute value independence).

– Average Probability: p̂avg(Li(x) : c) =
∑

a∈Li(x)p̂(a: c)

|Li(x)| , which also assumes
attribute value independence as in Independent Value, however during infer-
ence the probabilities are averaged instead of multiplied.

For estimating the parameters in (2), we assume that the learner does not have
access to the RDF graph G but instead only has knowledge T ,A, and C. In
addition, we assume that the RDF store answers statistical queries over the
RDF graph G which in our setting correspond to aggregate SPARQL queries
submitted to a SPARQL endpoint. Given a descriptor Desc(D) = (T ,A, C)
where C = (c1, . . . , cm) we assume that the RDF store supports the following
type of primitive queries:

(Q1) S(G, T ) = |T (G)|, the number of instances of target type T in G. This
corresponds to the SPARQL query:

SELECT COUNT(*) WHERE { ?x rdf:type <T> . }

(Q2) S(G, T , C = c) = |{x ∈ T (G) : v(C, x) = c}|, the number of instances of
target type T in which the target attribute takes the class label c. This
corresponds to the SPARQL query:

SELECT COUNT(*) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

}

(Q3) S(G, T , C = c, Ai) =
∑

x∈T (G) and v(C,x)=c |Li(x)|. Assuming the attribute
Ai = (p1, . . . , pj) this corresponds to the SPARQL query:

SELECT COUNT(*) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

?x <p1> ?v1 . ... ?vj-1 <pj> ?vj .

}

(Q4) S(G, T , C = c, Ai = a) =
∑

x∈T (G) and v(C,x)=c |Li(x, a)|. Assuming the
attribute Ai = (p1, . . . , pj) this corresponds to the SPARQL query:

SELECT COUNT(*) WHERE {

?x rdf:type <C> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

?x <p1> ?v1 . ... ?vj-1 <pj> a .

}

(Q5) S(G, T , C = c, Ai, agg, [vl, vh]). Given a range [vl, vh] this corresponds to
the SPARQL query:
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SELECT COUNT(*) WHERE {

{ SELECT (agg(?vj) AS ?aggvalue) WHERE {

?x rdf:type <T> .

?x <c1> ?c1 . ... ?cm-1 <cm> c .

OPTIONAL { ?x <p1> ?v1 . ... ?vj-1 <pj> ?vj . }

} GROUP BY ?x

} FILTER(?aggvalue >= vl && ?aggvalue <= vh)

}

We now proceed to describe how an RBC can be built using the supported
SPARQL queries without requiring access to the underlying dataset. The RBC
estimates the following probabilities from training data:

1. p̂(c)
2. p̂(agg(Ai) : c) for each attribute Ai where aggregation is used to estimate

probabilities. For simplicity, we discretize the aggregated values and prede-
termine the bins prior to learning. Hence, we estimate p̂(agg(Ai) ∈ [vl, vh] :
c) for each bin [vl, vh]

3. p̂(a : c) where a is in the range of Ai, for each attribute Ai where independent
value or average probability is used to estimate the probabilities.

The above three probabilities can be estimated (using Laplace correction for
smoothing) as follows:

1. p̂(c) = S(G,T ,c)+1
S(G,T )+m where m is the number of class labels

2. p̂(agg(Ai) ∈ [vl, vh] : c) = S(G,T ,C=c,Ai,agg,[vl,vh])+1
S(G,T ,c)+m where m is the number

of bins (ranges)
3. p̂(a : c) = S(G,T ,C=c,Ai=a)+1

S(G,T ,C=c,Ai)+m where a is in the range of Ai and m is the size
of range of Ai

Hence, it is possible to learn RBCs from an RDF graph by interacting with
the RDF store only through SPARQL queries. This approach does not require
access to the underlying dataset and in most practical settings requires much less
bandwidth as compared to transferring the data to a local store for processing
(see Sec. 5).

4 Updatable Models

In many settings, the RDF store undergoes frequent updates i.e., addition or
deletion of sets of RDF triples. In such settings, it is necessary to update the
predictive model to reflect the changes in the RDF store used to build the model.
While in principle, the algorithm introduced in Sec. 3 can be re-executed each
time there is an update to the RDF store, it is of interest to explore more
efficient solutions for incrementally updating the RBC model by updating only
the relevant statistics.

Given a dataset D and a learning algorithm L, let L(D) be a predictive model
built from the dataset D. Let θ be a primitive query required over the dataset
D to build L(D).
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Definition 10 (Updatable Model [19]). Given datasets D1 and D2 such that
D1 ⊆ D2, we say that a primitive query θ is updatable iff we can specify functions
f and g such that:

1. θ(D2) = f(θ(D2 −D1), θ(D1))
2. θ(D1) = g(θ(D2), θ(D2 −D1))

We say that the predictive model constructed using L is updatable iff all primitive
queries required over the dataset D to build L(D) are updatable.

The following propositions show that the primitive query (Q1) of the RBC model
is updatable, whereas the rest of the queries are not updatable. Hence, in general,
the RBC model is not updatable.

Proposition 1. The primitive query S(G, T ) is updatable.

Proof. This query counts the number of instances of target type T in G, which is
the cardinality of {x : (x, rdf:type, T ) ∈ G}. Since G1 ⊆ G2 we have S(G2, T ) =
S(G2 − G1, T ) + S(G1, T ), and also S(G1, T ) = S(G2, T )− S(G2 − G1, T ).

Proposition 2. The primitive query S(G, T , C = c, A = a) is not updatable.

Proof. We prove by showing a counter example. Let the target class be T , the
target attribute be C = (c1), an attribute A = (p1, . . . , pi, . . . , pn), and sup-
pose we have the following RDF graphs: S1 = {(x, rdf:type, T ), (x, c1, c)}, S2 =
{(x, p1, o1), . . . , (oi−1, pi, oi)} , and S3 = {(oi, pi+1, oi+1), . . . , (on−1, pn, a)}. Sup-
pose the graph before update is G1 = S1 ∪ S2 and after an insertion of S3 the
graph becomes G2 = S1 ∪ S2 ∪ S3. For brevity let θ(G) = S(G, T , C = c, A = a).
We will show that there exists no functions f for the query θ(G2), which counts
the total number of leaves of A(x, a) such that x has the class label c. In G2

the attribute graph A(x) is S2 ∪ S3, and hence θ(G2) = 1. However, A(x) is
partitioned among S2 and S3, so θ(G1) = 0 and θ(G2 − G1) = 0, therefore in
this case f(θ(G2 − G1), θ(G1)) = f(0, 0) = 1 = θ(G2). Now consider another case
where initially the graph is G3 = S1 and after insertion of S3 the graph becomes
G4 = S1∪S3. In this case we have θ(G4) = 0, θ(G3) = 0, and θ(G4−G3) = 0, and
so f(0, 0) = 0. Since a function can not map an input to more than one output,
this shows that there exists no function f to maintain the query result.

Similarly, can show that the primitive queries S(G, T , C = c), S(G, T ,
C = c, A), and S(G, T , C = c, A, agg, [vl, vh]) are not updatable.

Corollary 1. RBC model is not updatable.

The proof of Prop. 2 shows that when an attribute graph is partitioned across
multiple updates, there exists no function to update the required counts. This
raises the question as to whether we can ensure updatability by requiring that
each update involves only complete attribute graphs. However, this require-
ment is not sufficient for the query to be updatable. To see why, consider
G1 = {(x, rdf:type, T ), (x, c1, c), (x, p1, o), (o, p2, a)} and G2 − G1 =
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{(y, rdf:type, T ), (y, c1, c), (y, p1, o), (o, p2, b)}, then f(0, 1) = 2. The extra count
from θ(G2) is due to o being shared between two datasets despite the fact that
each attribute graph is complete. This motivates the restriction of not allow-
ing the update to reuse certain subjects or objects. We formalize this notion as
follows.

Definition 11 (Clean Update). Assume G1 ⊆ G2, and let V (G) = {s :
(s, p, o)
∈ G} ∪ {o : (s, p, o) ∈ G} denote the set of all subjects and objects of an RDF
graph G. An update (from G1 to G2 by insertion, or from G2 to G1 by deletion)
is said to be clean if [∀(s, p, o) ∈ G2][s /∈ V (G1)∩ V (G2 −G1)]. That is, triples in
G2 − G1 share objects with only the leaves of attribute graphs in G1.

Proposition 3. RBC models are updatable if every update is clean.

Proof. Let D1 and D2 be two RDF datasets such that D1 ⊆ D2. We first consider
the primitive query θ(G) = S(G, T , C = c, A = a). Since every update is clean,
the attribute graphs A(x) for all attributes in A, and all instances x ∈ T (G1) and
x ∈ T (G2 − G1) remain the same after insertion (or deletion). Hence, M(D2) =
M(D1) ∪M(D2 −D1) and similarly M(D1) = M(D2)−M(D2 −D1) for the
multiset attributed dataset reductions. It follows that θ(G2) = θ(G1)+θ(G2−G1)
and θ(G1) = θ(G2) − θ(G2 − G1). Similar argument also holds true for the other
queries used for learning a RBC.

Thus, RBC model can be updated incrementally in a restricted setting where
every update is clean in the sense defined above. When clean updates are not
available, RBC models can still be incrementally updated if we are willing to
sacrifice some accuracy; and rebuild the model periodically by querying the
entire RDF store, with the frequency of rebuild chosen based on the desired
tradeoff between computational efficiency and model accuracy. Regardless of
whether the RBC model is updatable or not, answering of aggregate queries from
RDF stores answering can be optimized using an aggregate view maintenance
algorithm [16]. Since we assume that the data descriptor does not change as
frequently as the data, the aggregate queries needed by the RBC model can be
set up and maintained as views on the RDF store.

5 Communication Complexity

In this section, we analyze the communication complexity, i.e., the amount of
data transfer needed to build an RBC model. We compare the communication
complexity of building an RBC model from RDF data in the following two
scenarios: (i) posing statistical queries needed for learning the model against
a remote RDF store which is the approach proposed in this paper; and (ii)
retrieving the entire RDF dataset from a remote RDF store for local processing.

Given an RDF dataset D = (G, T ,A, C) where A = (A1, . . . , An). Suppose
the RDF store holds the RDF graph G, and let |G| denotes the size of this graph.
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The communication complexity in scenario (ii) is simply O(|G|). We now analyze
the communication complexity in scenario (i). Let lC denotes the length of tuple
C, let rC denotes the size of range of C, and let lA denotes the maximum length
of an attribute tuple. Also let r1

A denotes the maximum number of bins of those
attributes estimated by aggregation, let r2

A denotes the maximum size of range
of the remaining attributes, and we define rA to be max(r1

A, r2
A).

The size of query expressed in SPARQL, is O(1) for (Q1), O(lC) for (Q2), and
O(lC + lA) for (Q3), (Q4), and (Q5). Further, to estimate the probabilities to
build an RBC, the following number of calls for each query described in Sec. 3
are required:

(Q1) one.
(Q2) rC , once for each class label.
(Q3) rC · n, once for each class label and each attribute.
(Q4) O(rC · n · rA), once for each class label, each attribute, and each value of

the attribute.
(Q5) O(rC · n · rA), same as (Q4).

Therefore, the total complexity is O(1) + O(lCrC) + O((lC + lA)rCn)+
O((lC + lA)rC · n · rA) + O((lC + lA)rC · n · rA) = O((lC + lA)rC · n · rA). In
Sec. 7.1 we provide results of experiments which show that O((lC + lA)rC ·n ·rA)
is usually less than O(|G|) in practice.

6 Selective Attribute Crawling

In previous sections we have considered the problem of learning RBCs given
an RDF dataset D = (G, T ,A, C) in the setting where the learner has direct
access to T ,A, and C, but not G. Here we consider a more general problem
where the learner does not have a priori knowledge of A. This requires the
learner to interact with the RDF store containing G in order to determine A
(e.g. by crawling and selecting attributes) that best optimizes a predetermined
performance criterion P . Since the number of attributes in an RDF store can be
arbitrarily large we specify an additional constraint Z to guarantee termination
(e.g. number of attributes crawled, number of queries posed, time spent, etc.).

Problem 2. Given an RDF dataset without attributes, D = (G, T , C), a hypoth-
esis class H , a performance criterion P , and constraint Z, the learning algorithm
L outputs the following while respecting Z: (i) The selected tuple of attributes
A, and (ii) a classifier h ∈ H that optimizes P .

For simplicity, we focus the setting where the constraint Z specifies the maximum
the number of attributes crawled. We consider the problem of identifying A of
cardinality at most Z so as to optimize P . This problem is a variant of the
well-studied feature subset selection problem [22,12], albeit in a setting where
the set of features is a priori unknown. Identifying attributes one at a time to
optimize P can be seen as a search over a tree rooted at T , where the edges
are IRIs of properties and the nodes are the domain/range of properties, and an
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attribute corresponds to a path from the root to an RDF literal (a leaf in this
tree). To complete the specification of the search problem, we need to specify
operations for expanding a node to generate its successors and define the scoring
function for evaluating nodes. Expanding a node consists of querying (i) the set
of distinct properties outgoing from a node, (ii) the range of each property,
and (iii) the type of each range (e.g. numeric, string, non-literal), each of which
can be expressed as SPARQL queries. We define the score of a node based on
the degree of correlation of the node with the target attribute C. Specifically,
for each attribute (represented by a leaf), we compute mutual information [7]
between it and the the target attribute C. The score of an internal node is
defined (recursively) as a function of its descendants, e.g. average of the scores
of its children.

Formally, the score of an attribute A is:

Score(A) =
∑

C=c,A=a

p(A = a, C = c) log2

p(A = a, C = c)
p(A = a)p(C = c)

(3)

These probabilities can also be estimated based on the queries described in
Sec. 3. Given this framework, a variety of alternative search strategies can be
considered, along with several alternative scoring functions.

7 Experiments

We conduct three experiments each with a different goal. The first measures
the communication complexity using the LinkedMDB [13] dataset. The second
experiment combines the US Census dataset with a government dataset to eval-
uate the accuracy of models using different attribute crawling strategies. Finally
we demonstrate learning of RBC from another government dataset through a
live SPARQL endpoint.

7.1 Communication Complexity Experiment

The goal of this experiment is to measure the communication complexity under
two different approaches described in Sec. 5.

Dataset and Experiment Setup. The IMDB dataset is a standard bench-
mark that has been used to evaluate probabilistic relational models including
RBCs [25]. The task is to predict whether a movie receives more than $2M in
its opening week. We used LinkedMDB [13], which is an RDF store extracted
from IMDB, with links to other datasets on the Linked Open Data cloud [8].
We used links to Freebase1 which includes foaf property to the Person class
and three properties of class Person. Fig. 1 shows the RDF schema of the
extracted dataset. Since LinkedMDB does not have openingReceipts, we add

1 http://www.freebase.com

http://www.freebase.com
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Fig. 2. Comparison of size of data trans-
fer for Experiment 7.1

Fig. 3. Comparison of two crawling
strategies for Experiment 7.2

them by crawling the IMDB website2; also for the Freebase data, we parse
the yearOfBirth property for each Person from the dateOfBirth property. We
extract 20 movies which are released after 2006 such that each movie has at
least one actor, one director, and one producer. The target class is Movie and
the target attribute is (openingReceipts). We consider a total of 10 attributes:
(runtime), and (h, foaf, a) where h ∈ {hasActor, hasDirector, hasProducer}
and a ∈ {yearOfBirth, gender, hasAward}.

To show the growth of data transfer, we prepared 20 subsets of the dataset
by corresponding to 1 to 20 movies. A movie instance consists of the URI of
the movie and all reachable linked data for it. For communication complexity of
learning RBC from RDF stores using statistical queries, we used the proposed
approach to build an RBC for each subset and logged the SPARQL queries sent,
saved the log in a plain text format, and measured the size of the logs. We
compared the results with the communication complexity of learning RBC by
first retrieving the data from a remote store for local processing as measured by
the size of the corresponding dataset in RDF/XML format on disk.

Results. Figure 2 shows that the size of the raw data exceeds that of the
query when there are more than three movie instances in the dataset. We also
considered the case where the RDF store compresses the raw data before transfer,
and in this case the size of the compressed raw data exceeds that of the query
when there are more than 90 movie instances.

7.2 Selective Attribute Crawling Experiment

The goal of this experiment is to evaluate the accuracy of RBC models built using
different attribute crawling strategies. Recall that in this setting the learner is
only given a SPARQL endpoint of the RDF store, the target class, and the target
attribute.
2 http://www.imdb.com

http://www.imdb.com
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Dataset and Experiment Setup. In this experiment we use datasets from
Data.gov and US census 2000. The target class is 52 US states and we wish to
predict whether a state’s violent crime rate is over 400 per 100,000 population,
which is from dataset 311 of the Data-gov project [9]. We link this with the US
Census 2000 dataset for the corresponding states. This dataset was converted
to over 1 billion RDF triples by [27]. Part of its RDF schema is shown in [27].
It uses a property as a way to sub-divide the population, and a number at
a leaf represents the population that satisfies the conditions (properties) on
the path from root. In our experiment we normalize by dividing every number
of a state by the state’s total population. We vary the maximum number of
attributes to be crawled. We set the constraint to be the number of attributes the
learner is allowed to crawl. We apply two different attribute crawling strategies
(described below) separately and build RBC models using the crawled attributes.
To measure the accuracy of the built models, we randomly partition 52 states
into 13 groups (of 4 states each) and perform cross validation. That is, for each
group, the 4 states in the group are held out and used for prediction, and the
remaining are used for training the model. The overall accuracy is the total
number of correct predictions divided by the number of states (52).

We experiment with two crawling strategies: BreadthFirst (BFS) and Best-
First. BFS chooses the node with the least depth to expand and BestFirst chooses
the node that has the highest score as defined in Sec. 6.

Results. As shown in Fig. 3, BestFirst outperforms BFS with the exception of
the case where the number of attributes is 5. We examined the crawled attributes
for BestFirst from for choices of Z from 20 to 45, and found that the strategy
focused on expanding the households property. This is because attribute selection
is guided by mutual information between a candidate attribute and the target
class. The sub-divisions of this property may provide very minimal additional
information compared to the first one crawled in this group, and hence they may
not contribute to the predictive accuracy. One way to circumvent this problem
is to use a scoring function to that measures the amount of information gain
resulting from a candidate attribute given all the attributes that have already
been chosen. Another approach is to penalize the attributes based on the depth
of search. A third approach is to use the marginal improvement in the accuracy
of the RBC classifier resulting from inclusion of the attribute to decide whether
to retain it. Other alternatives worth exploring include different search strategies
such as Iterative Deepening Search (IDS) [18].

7.3 Live Demonstration

The goal of this experiment is to demonstrate learning of RBC from a government
dataset through a live SPARQL endpoint3 hosted on Rensselaer Polytechnic
Institute [10]. This endpoint supports aggregate and nested queries proposed in
SPARQL 1.1.
3 http://logd.tw.rpi.edu/sparql

http://logd.tw.rpi.edu/sparql
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Dataset and Experiment Setup. We used a Health Information National
Trends Survey (HINTS) [24] from NCI which has been converted into RDF as
part of the Data-gov project [9]. The survey represents a cross-sectional study
of health media use and cancer-related knowledge among adults in the United
States, and it has been used by [1] to study associations of covariates with
different smoking statuses. There are 12080 participants across two years (2003
and 2005), represented by 623544 total number of RDF triples, and the raw
RDF data (as TTL dump) has a size 35.9MB on disk. The task in our setting
is to predict the smoking status (never, former, or current) of a participant
from 16 other attributes such as race, sex, household income, and education.
The dataset is propositional in nature although represented in RDF format;
that is, every attribute has exactly one value in terms of the reduced multiset
attribute data, hence the task reduces to learning of a conventional Naive Bayes
classifier. Nevertheless, the experiment demonstrates learning of RBC from large
and remote RDF store by querying its SPARQL endpoint.

Results. A total of 159 queries were posed to the live SPARQL endpoint, and
the model was learned in approximately 30 secs, using 2.8 GHz processor with
4 GB memory, and the network download and upload speed is approximately 3
Mbps.

8 Summary and Related Work

Summary. The emergence of RDF as a basic data representation format for
Semantic Web has led to increasing availability of all kinds of data in RDF.
Transforming this data into knowledge calls for approaches to learning predictive
models from massive RDF stores in settings where (i) the learning algorithm can
interact with the data store only through a SPARQL endpoint; (ii) the model
needs to be updated in response to updates to the underlying RDF store; and
(iii) the attributes that can be used to build the predictive models are not known
a priori and hence need to be identified by crawling the RDF store. We have
introduced an approach to learning predictive models from RDF stores in such
settings using Relational Bayesian Classifiers (RBCs) as an example. We have
implemented our solutions in an open source system available as part of the
INDUS toolkit for learning predictive models from massive data sets [21] and
demonstrated the its feasibility using experiments with several RDF datasets.

Related Work. The work on SPARQL-ML [17] extends SPARQL with data
mining support to build classifiers, including statistical relational models such as
RBC from RDF data. Other works on learning predictive models from RDF data
include [4] and [28]. In [4] kernel machines are defined over RDF data where fea-
tures are constructed by ILP-based dynamic propositionalization. In [28] RDF
triples are represented as entries in a Boolean matrix, and matrix completion
methods are used to train the model and predict unknown triples off-line. How-
ever, all the approaches assume that the learner has direct access to RDF data.
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In contrast, our approach does not require the learning algorithm to have direct
access to RDF data, and relies only on the ability of the RDF store to answer
aggregate SPARQL queries.
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Abstract. The MapReduce framework has proved to be very efficient
for data-intensive tasks. Earlier work has tried to use MapReduce for
large scale reasoning for pD∗ semantics and has shown promising results.
In this paper, we move a step forward to consider scalable reasoning on
top of semantic data under fuzzy pD∗ semantics (i.e., an extension of
OWL pD∗ semantics with fuzzy vagueness). To the best of our knowl-
edge, this is the first work to investigate how MapReduce can help to
solve the scalability issue of fuzzy OWL reasoning. While most of the
optimizations used by the existing MapReduce framework for pD∗ se-
mantics are also applicable for fuzzy pD∗ semantics, unique challenges
arise when we handle the fuzzy information. We identify these key chal-
lenges, and propose a solution for tackling each of them. Furthermore,
we implement a prototype system for the evaluation purpose. The exper-
imental results show that the running time of our system is comparable
with that of WebPIE, the state-of-the-art inference engine for scalable
reasoning in pD∗ semantics.

1 Introduction

The Resource Description Framework (RDF) is one of the major representation
standards for the Semantic Web. RDF Schema (RDFS) is used to describe vocab-
ularies used in RDF descriptions. However, RDF and RDFS only provide a very
limited expressiveness. In [3], a subset of Ontology Web Language (OWL) vo-
cabulary (e.g., owl:sameAs) was introduced, which extends the RDFS semantics
to the pD∗ fragment of OWL. Unlike the standard OWL (DL or Full) semantics
which provides the full if and only if semantics, the OWL pD∗ fragment follows
RDF(S)’s if semantics. That is, the OWL pD∗ fragment provides a complete set
of entailment rules, which guarantees that the entailment relationship can be
determined within polynomial time under a non-trivial condition (if the target
graph is ground). It has become a very promising ontology language for the Se-
mantic Web as it trades off the high computational complexity of OWL Full and
the limited expressiveness of RDFS.

Recently, there is an increasing interest in extending RDF to represent vague
information on Web. Fuzzy RDF allows us to state to a certain degree, a triple
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is true. For example, (Tom, eat, pizza) is true with degree at least 0.8. How-
ever, Fuzzy RDF (or fuzzy RDFS) has limited expressive power to represent
information in some real life applications of ontologies, such as biomedicine and
multimedia. In [4], we extended the OWL pD∗ fragment with fuzzy semantics to
provide more expressive power than fuzzy RDF(S). In that work, we focused on
some theoretical problems, such as the complexity issues, without providing an
efficient reasoning algorithm for the new semantics. Since fuzzy pD∗ semantics
is targeted to handle large scale semantic data, it is critical to provide a scalable
reasoning algorithm for it.

Earlier works (e.g. [12]) have proved that MapReduce is a very efficient
framework to handle the computation of the closure containing up to 100 billion
triples under pD∗ semantics. One may wonder if it is helpful to scalable rea-
soning in fuzzy pD∗ semantics. It turns out that this is a non-trivial problem
as the computation of the closure under fuzzy pD∗ semantics requires the com-
putation of the Best Degree Bound (BDB) of each triple. The BDB of a triple
is the greatest lower bound of the fuzzy degrees of this triple. Although most
of the optimizations for reasoning with MapReduce in pD∗ semantics are also
applicable for the fuzzy pD∗ semantics, unique challenges arise when we handle
the fuzzy information.

In this paper, we first identify some challenges to apply the MapReduce frame-
work to deal with reasoning in fuzzy pD∗ semantics. We then propose an algo-
rithm for fuzzy pD∗ reasoning by separately considering fuzzy D rules and fuzzy
p rules. After that, we propose the map function and the reduce function for
several fuzzy pD∗ rules that may cause difficulties. Finally, we implement a pro-
totype system to evaluate these optimizations. The experimental results show
that the running time of our system is comparable with that of WebPIE [12]
which is the state-of-the-art inference engine for OWL pD∗ fragment.

2 Background Knowledge

In this section, we first introduce the fuzzy pD∗ entailment rule set in Section 2.1,
then explain the MapReduce framework for reasoning in OWL pD∗ fragment in
Section 2.2.

2.1 Fuzzy RDF and Fuzzy pD∗ Reasoning

A fuzzy RDF graph is a set of fuzzy triples which are in form of t[n]. Here t is
a triple, and n ∈ (0, 1] is the fuzzy degree of t.

Fuzzy pD∗ semantics, given in [4], extends pD∗ semantics with fuzzy semantics
so that there is a complete and sound entailment rule set in fuzzy OWL pD∗

fragment. We list part of them in Table 1 by excluding some naive rules. The
notion of a (partial) closure can be easily extended to the fuzzy case.

The key notion in fuzzy pD∗ semantics is called the Best Degree Bound (BDB)
of a triple. The BDB n of an arbitrary triple t from a fuzzy RDF graph G is
defined to be the largest fuzzy degree n such that t[n] can be derived from G by
applying fuzzy pD∗-entailment rules, or 0 if no such fuzzy triple can be derived.
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Table 1. Difficult part of fuzzy pD∗-entailment rules

Condition Conclusion
f-rdfs2 (p, domain, u)[n] (v, p, w)[m] (v, type, u)[n ⊗ m]
f-rdfs3 (p, range, w)[n] (v, p, w)[m] (v, type, w)[n ⊗ m]
f-rdfs5 (v, subPropertyOf, w)[n] (w, subPropertyOf, u)[m] (v, subPropertyOf, u)[n ⊗ m]
f-rdfs7x (p, subPropertyOf, q)[n] (v, p, w)[m] (v, q, w)[n ⊗ m]
f-rdfs9 (v, subClassOf, w)[n] (u, type, v)[m] (u, type, w)[n ⊗ m]
f-rdfs11 (v, subClassOf, w)[n] (w, subClassOf, u)[m] (v, subClassOf, u)[n ⊗ m]
f-rdfs12 (v, type, ContainerMembershipProperty)[n] (v, subPropertyOf, member)[n]
f-rdfs13 (v, type, Datatype)[n] (v, subClassOf, Literal)[1]
f-rdfp1 (p, type, FunctionalProperty)[n] (u, p, v)[m] (u, p, w)[l] (v, sameAs, w)[l ⊗ m ⊗ n]
f-rdfp2 (p, type, InverseFunctionalProperty)[n]

(u, p, w)[m] (v, p, w)[l] (u, sameA, v)[l ⊗ m ⊗ n]
f-rdfp3 (p, type, SymmetricProperty)[n] (v, p, w)[m] (w, p, v)[n ⊗ m]
f-rdfp4 (p, type, TransitiveProperty)[n] (u, p, v)[m] (v, p, w)[l] (u, p, w)[n ⊗ m ⊗ l]
f-rdfp5(ab) (v, p, w)[n] (v, sameAs, v)[1], (w, sameAs, w)[1]
f-rdfp6 (v, sameAs, w)[n] (w, sameAs, v)[n]
f-rdfp7 (u, sameAs, v)[n] (v, sameAs, w)[m] (u, sameAs, w)[n ⊗ m]
f-rdfp8ax (p, inverseOf, q)[n] (v, p, w)[m] (w, q, v)[n ⊗ m]
f-rdfp8bx (p, inverseOf, q)[n] (v, q, w)[m] (w, p, v)[n ⊗ m]
f-rdfp9 (v, type, Class)[n] (v, sameAs, w)[m] (v, subClassOf, w)[m]
f-rdfp10 (p, type, Property)[1] (p, sameAs, q)[m] (p, subPropertyOf, q)[m]
f-rdfp11 (u, p, v)[n] (u, sameAs, u′)[m] (v, sameAs, v′)[l] (u′, p, v′)[n ⊗ m ⊗ l]
f-rdfp12(ab) (v, equivalentClass, w)[n] ⇒ (v, subClassOf, w)[n],(w, subClassOf, w)[n]
f-rdfp12c (v, subClassOf, w)[n] (w, subClassOf, v)[m] (v, equivalentClass, w)[min(n, m)]
f-rdfp13(ab) (v, equivalentProperty, w)[n] ⇒ (v, subPropertyOf, w)[n], (w, subPropertyOf, w)[n]
f-rdfp13c (v, subPropertyOf, w)[n] (w, subPropertyOf, v)[m] (v, equivalentClass, w)[min(n, m)]
f-rdfp14a (v, hasValueOf, w)[n] (v, onProperty, p)[m] (u, p, w)[l] (u, type, v)[n ⊗ m ⊗ l]
f-rdfp14bx (v, hasValueOf, w)[n] (v, onProperty, p)[m] (u, type, v)[l] (u, p, w)[n ⊗ m ⊗ l]
f-rdfp15 (v, someValueFrom, w)[n] (v, onProperty, p)[m]

(u, p, x)[l] (x, type, w)[k] (u, type, v)[n ⊗ m ⊗ l ⊗ k]
f-rdfp16 (v, allValuesfrom, w)[m] (v, onProperty, p)[n]

(u, type, v)[l] (u, p, x)[k] (x, type, w)[n ⊗ m ⊗ l ⊗ k]

2.2 MapReduce Algorithm for pD∗ Reasoning

MapReduce is a programming model introduced by Google for large scale data
processing [1]. A MapReduce program is composed of two user-specified func-
tions, map and reduce. When the input data is appointed, the map function scans
the input data and generates intermediate key/value pairs. Then all pairs of key
and value are partitioned according to the key and each partition is processed
by a reduce function.

We use an example to illustrate how to use a MapReduce program to apply
a rule. Here, we consider Rule rdfs2 which reads:

(p, domain, u), (v, p, w) ⇒ (v, type, u)

The map function scans the data set, and checks every triple if it has the form
(p, domain, u) or (v, p, w). If a triple has the form (p, domain, u), then the map
function generates an output (key=p, value={flag=’L’, u}). While a triple in
the form of (v, p, w) is scanned, the map function generates an output (key=p,
value={flag=’R’, v}). The reduce function gets all outputs of the map function
that share the same key together. Then it enumerates all values with flag ’L’ to
get all u and enumerates all values with flag ’R’ to get all v. For each pair of u
and v, the reduce function generates a new triple (v, type, u) as output.

There are several key factors to make a MapReduce program efficient. Firstly,
since the map function operates on single pieces of data without dependencies,
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partitions can be created arbitrarily and can be scheduled in parallel across many
nodes. Secondly, the reduce function operates on an iterator of values since the
set of values is typically too large to fit in memory. So the reducer should treat
the values as a stream instead of a set. Finally, all the outputs of mappers
sharing the same key will be processed by the same reduce function. Therefore,
the reducer that processes one popular key will run very slowly. The mappers’
output keys should be carefully designed to ensure that the sizes of all partitions
should be balanced.

Due to these reasons, the naive implementations of rules may be very inef-
ficient. In [12] and [13], several optimizations are proposed that improve the
performance of inference in OWL pD∗ fragment significantly. We list them as
follows.

– Loading schema triples in memory. Since the set of schema triples is
generally small enough to fit in memory, when performing a join over schema
triples, we can load them into memory. Then, the join can be performed
directly between the loaded data and the in-memory schema triples.

– Data grouping to avoid duplicates. Some RDFS rules may generate
duplicates. However, using carefully designed algorithms, such duplicates
can be avoided.

– Ordering the RDFS rule applications. Arbitrarily applying the rules
will result in a fixpoint iteration. For RDFS rules, such a fixpoint iteration
can be avoided by applying rules in a specific order.

– Transitive algorithm. An efficient algorithm to calculate the transitive
closure is designed, which will produce a minimal amount of duplicates and
minimize the number of iterations.

– Sameas algorithm. For OWL pD∗ fragment, [12] uses the canonical repre-
sentation to deal with the sameas rules. This method greatly reduces both
the computation time and the space required.

– someValuesFrom and allValuesFrom algorithm. In both rules involve
someValuesFrom and allValuesFrom, three joins among four triples are
needed. However, two of the four triples are schema triples so that they
can be loaded into memory. Furthermore by choosing the output key, the
map function will generate balanced partitions for the reduce function.

3 MapReduce Algorithm for Fuzzy pD∗ Reasoning

In this section, we first illustrate how to use a MapReduce program to apply a
fuzzy rule. Then, we give an overview of the challenges in fuzzy pD∗ reasoning
when applying the MapReduce framework. Finally, we present our solutions to
handle these challenges.

3.1 Naive MapReduce Algorithm for Fuzzy Rules

We consider rule f-rdfs2 to illustrate our naive MapReduce algorithms:
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Algorithm 1. map function for rule f-rdfs2
Input: key, triple
1: if triple.predicate == ’domain’ then
2: emit({p=triple.subject}, {flag=’L’, u=triple.object, n=triple.degree};
3: end if
4: emit({p=triple.predicate}, {flag=’R’, v=triple.subject, m=triple.degree};

Algorithm 2. reduce function for rule f-rdfs2
Input: key, iterator values
1: unSet.clear();
2: vmSet.clear();
3: for value ∈ values do
4: if value.flag == ’L’ then
5: unSet.update(value.u, value.n);
6: else
7: vmSet.update(value.v, value.m);
8: end if
9: end for

10: for i ∈ unSet do
11: for j ∈ vmSet do
12: emit(null, triple(i.u, ’type’, j.v, i.n⊗j.m));
13: end for
14: end for

(p, domain, u)[n], (v, p, w)[m]⇒ (v, type, u)[n⊗m]

In this rule, we should find all fuzzy triples that are either in the form of
(p, domain, u)[n] or in the form of (v, p, w)[m]. A join should be performed
over the variable p. The map and reduce functions are given in Algorithms 1
and 2 respectively. In the map function, when a fuzzy triple is in the form of
(p, domain, u)[n] (or (v, p, w)[m]), the mapper emits p as the key and u (or v)
along with the degree n (or m) as the value. The reducer can use the flag in
the mapper’s output value to identify the content of the value. If the flag is
’L’ (or ’R’), the content of the value is the pair (u, n) (or the pair (v, m)). The
reducer uses two sets to collect all the u, n pairs and the v, m pairs. After all
pairs are collected, the reducer enumerates pairs (u, n) and (v, m) to generate
(u, type, v)[n⊗m] as output.

3.2 Challenges in Fuzzy pD∗ Reasoning

Even though the fuzzy pD∗ entailment rules are quite similar to the pD∗ rules,
several difficulties arise when we calculate the BDB for each triple by applying
the MapReduce framework. We summarize these challenges as follows:

Ordering the rule applications. In fuzzy pD∗ semantics, the reasoner might
produce the duplicated triple with different fuzzy degrees before the fuzzy BDB
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triple is derived. For example, suppose the data set contains a fuzzy triple t[m],
when we derive a fuzzy triple t[n] with n > m, a duplicate is generated. When
duplicates are generated, we should employ a duplicate deleting program to
reproduce the data set to ensure that only the fuzzy triples with maximal de-
grees are in the data set. Different rule applications’ order will result in different
number of such duplicates. To achieve the best performance, we should choose
a proper order to reduce the number of duplicates. For instance, the subprop-
erty rule (f-rdfs7x) should be applied before the domain rule (f-rdfs2); and the
equivalent class rule (f-rdfp12(abc)) should be considered together with the sub-
class rule (f-rdfs9, f-rdfs10). The solution for this problem will be discussed in
Section 3.3.

Shortest path calculation. In OWL pD∗ fragment, the three rules, rdfs5
(subproperty), rdfs11 (subclass) and rdfp4 (transitive property) are essentially
used to calculate the transitive closure over a subgraph of the RDF graph. In
fuzzy OWL pD∗, when we treat each fuzzy triple as a weighted edge in the RDF
graph, then calculating the closure by applying these three rules is essentially a
variation of the all-pairs shortest path calculation problem. We have to find out
efficient algorithms for this problem. In Section 3.4, we will discuss the solutions
for rules f-rdfs5 and f-rdfs11, while discuss rule f-rdfp4 in Section 3.5.

Sameas rule. For OWL pD∗ fragment, the traditional technique to handle the
semantics of sameas is called canonical representation. Rules rdfp6 and rdfp7 en-
force that sameas is a symmetric and transitive property, thus the sameas closure
obtained by applying these two rules is composed of several complete subgraphs.
The instances in the same subgraph are all synonyms, so we can assign a unique
key, which we call the canonical representation, to all of them. Replacing all the
instances with its unique key results in a more compact representation of the
RDF graph without loss of completeness for inference.

However, in the fuzzy pD∗ semantics, we cannot choose such a canonical
representation as illustrated by the following example. Suppose we use the min
as the t-norm function. Given a fuzzy RDF graph G containing seven triples:

(a, sameas, b)[0.8] (b, sameas, c)[0.1] (c, sameas, d)[0.8]
(a, range, r)[0.9] (u, b, v)[0.9] (c, domaine)[1] (u′, d, v′)[0.9]
From this graph, we can derive (v, type, r)[0.8]. Indeed, we can derive (b,

range, r)[0.8] by applying rule f-rdfp11 over (a, sameas, b)[0.8], (a, range, r)[0.9]
and (r, sameas, r)[1.0]. Then we can apply rule f-rdfs3 over (b, range, r)[0.8]
and (u, b, v)[0.9] to derive (v, type, r)[0.8].

In this graph, four instances, a, b, c and d are considered as synonyms in the
classical pD∗ semantics. Suppose we choose c as the canonical representation,
then the fuzzy RDF graph is converted into the following graph G′ containing
four fuzzy triples:

(c, range, r)[0.1] (u, c, v)[0.1] (c, domaine)[1] (u′, c, v′)[0.8]
From this graph, we can derive the fuzzy triple (v, type, r)[0.1], and this is

a fuzzy BDB triple from G′, which means we cannot derive the fuzzy triple,
(v, type, r)[0.8]. The reason is that after replacing a and b with c, the fuzzy
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information between a and b, e.g. the fuzzy triple (a, sameas, b)[0.8], is missing.
Furthermore, no matter how we choose the canonical representation, some in-
formation will inevitably get lost during the replacement. We will discuss the
solution for this problem in Section 3.6.

3.3 Overview of the Reasoning Algorithm

Our main reasoning algorithm is Algorithm 3, which can be separated into two
phases: the first phase (line 3) applies the fuzzy D rules (from f-rdfs1 to f-rdfs13),
and the second phase (lines 7 to line 9) applies the fuzzy p rules (from rdfp1
to rdfp16). However, since some fuzzy p rules may generate some fuzzy triples
having effect on fuzzy D rules, we execute these two phases iteratively (line 2 to
line 11) until a fix point is reached (line 4 to line 6).

In the first phase, we consider the following order of rule applications such
that we can avoid a fix point iteration. Firstly, we apply the property inheritance
rules (f-rdfs5 and f-rdfs7), so that domain rule (f-rdfs2) and range rule (f-rdfs3)
can be applied consecutively without loosing any important fuzzy triples. Then
the class inheritance rules (f-rdfs9 and f-rdfs11) along with the rest rules are
applied together. Similar techniques have been used in [13] for RDFS. Compared
with [13], our algorithm relies on the computation of rules f-rdfs5, f-rdfs7, f-rdfs9
and f-rdfs11. We will discuss this point in the next section.

For the fuzzy p rules, there is no way to avoid a fixpoint iteration. So we employ
an iterative algorithm to calculate the p closure. In each iteration, the program
can be separated into five steps. In the first step, all non-iterative rules (rules
f-rdfp1, 2, 3, 8) are applied. The second step processes the transitive property
(rule f-rdfp4) while the sameas rules (rule f-rdfp6, 7, 10, 11) are applied in the
third step. The rules related to equivalentClass, equivalentProperty and
hasValue are treated in the fourth step, because we can use the optimizations for
reasoning in OWL pD∗ fragment to compute the closure of these rules in a non-
iterative manner. The someValuesFrom and allValuesFrom rules are applied in
the fifth step which needs a fixpoint iteration. The first step and the last two
steps can employ the same optimization discussed in [12]. We will discuss the
solution to deal with transitive property in Section 3.5. Finally the solution to
tackle sameas rules will be discussed in Section 3.6.

3.4 Calculating subClassOf and subPropertyOf Closure

Rules f-rdfs5, 6, 7, f-rdfp13(abc) process the semantics of subPropertyOf prop-
erty while rules f-rdfs9, 10, 11 and f-rdfp12(abc) mainly concern the semantics
of subClassOf property. Since they can be disposed similarly, we only discuss
the rules that are relevant to subClassOf. Since f-rdfs10 only derives a triple
(v, subClassOf, v)[1] which will have no affect on other rules, we only consider
rules f-rdfs5, 7 and f-rdfp12(abc).

We call the triples in the form of (u, subClassOf, v)[n] to be subClassOf
triples. The key task is to calculate the closure of subClassOf triples by applying
rule f-rdfs11. Since the set of subClassOf triples is relatively small, we can
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Algorithm 3. Fuzzy pD∗ reasoning
1: first time = true;
2: while true do
3: derived = apply fD rules();
4: if derived == 0 and not first time then
5: break;
6: end if ;
7: repeat
8: derived = apply fp rules();
9: until derived == 0;

10: first time = false;
11: end while

Algorithm 4. Calculate the subClassOf closure
1: for k ∈ I do
2: for i ∈ I and w(i, k) > 0 do
3: for j ∈ I and w(k, j) > 0 do
4: if w(i, k) ⊗ w(k, j) > w(i, j) then
5: w(i, j) = w(i, k) ⊗ w(k, j);
6: end if
7: end for
8: end for
9: end for

load them into memory. We can see that calculating the subClassOf closure
by applying rule f-rdfs11 is indeed a variation of the all-pairs shortest path
calculation problem, according to the following property:

Property 1. For any fuzzy triple in the form of (u, subClassOf, v)[n] that
can be derived from the original fuzzy RDF graph by only applying rule f-rdfs11,
there must be a chain of classes w0 = u, w1, ..., wk = v and a list of fuzzy
degrees d1, ..., dk where for every i = 1, 2, ..., k, (wi−1, subClassOf, wi)[dk] is in
the original fuzzy graph and n = d1 ⊗ d2 ⊗ ...⊗ dk.

So we can use the FloydCWarshall style algorithm given in Algorithm 4 to
calculate the closure. In the algorithm, I is the set of all the classes, and w(i, j)
is the fuzzy degree of triple (i, subClassOf, j). The algorithm iteratively update
the matrix w. When it stops, the subgraph represented by the matrix w(i, j) is
indeed the subClassOf closure.

The worst-case running complexity of the algorithm is O(|I|3), and the algo-
rithm uses O(|I|2) space to store the matrix w. When |I| goes large, this is unac-
ceptable. However, we can use nested hash map instead of 2-dimension arrays to
only store the positive matrix items. Furthermore, since 0⊗n = n⊗0 = 0, in line
2 and line 3, we only enumerate those i and j where w(k, i) > 0 and w(k, j) > 0.
In this case, the running time of the algorithm will be greatly reduced.

After the subClassOf closure is computed, rules f-rdfs9 and f-rdfs11 can be
applied only once to derive all fuzzy triples: for rule f-rdfs9 (or f-rdfs11), when
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Algorithm 5. map function for rule f-rdfp4
Input: length, triple=(subject, predicate, object)[degree], n

if getTransitiveDegree(predicate) == 0 then
return;

end if
if length ==2n−2 or length == 2n−1 then

emit({predicate, object}, {flag=L, length, subject, degree};
end if
if length > 2n−2 and length ≤ 2n−1 then

emit({predicate, subject}, {flag=R, length, object, degree};
end if

we find a fuzzy triple (i, type, v)[n] (or (i, subClassOf, v)[n]), we enumerate all
classes j so that w(v, j) > 0 and output a fuzzy triple (i, type, j)[n⊗w(v, j)] (or
(i, subClassOf, j)[n⊗ w(v, j)]).

For rule f-rdfp12(abc), since equivalentClass triples are also schema triples,
we load them into memory and combine them into the subClassOf graph.
Specifically, when we load a triple (i, equivalentClass, j)[n] into memory, if
n > w(i, j) (or n > w(j, i)), we update w(i, j) (or w(j, i)) to be n . Af-
ter the closure is calculated, two fuzzy triples (i, equivalentClass, j)[n] and
(j, equivalentClass, i)[n] are output for each pair of classes i, j ∈ I, if n =
min(w(i, j), w(j, i)) > 0.

3.5 Transitive Closure for TransitiveProperty

The computation of the transitive closure by applying rule f-rdfp4 is essentially
calculating the all-pairs shortest path on the instance graph. To see this point,
we consider the following property:

Property 2. Suppose there is a fuzzy triple (p, Type, TransitiveProperty)[n]
in the fuzzy RDF graph G, and (a, p, b)[m] is a fuzzy triple that can be derived
from G using only rule f-rdfp4. Then there must be a chain of instances u0 =
a, u1, ..., uk = b and a list of fuzzy degree d1, ..., dk such that m = d1 ⊗ n⊗ d2 ⊗
...⊗ n⊗ dk, and for every i = 1, 2, ..., k, (ui−1, p, up)[di] is in the original fuzzy
RDF graph. Furthermore, in one of such chains, ui �= uj, if i �= j and i, j ≥ 1.

We use an iterative algorithm to calculate this transitive closure. In each itera-
tion, we execute a MapReduce program using Algorithm 5 as the map function
and Algorithm 6 as the reduce function.

We use getTransitiveDegree(p) function to get the maximal n such that
(p, type, TransitiveProperty)[n] is in the graph. Since these triples are schema
triples, we can load them into memory before the mappers and reducers are exe-
cuted. In the map function, n is the number of iterations that the transitive clo-
sure calculation algorithm already executes. Since for any fuzzy triple (a, p, b)[m],
there is at least one chain u0 = a, u1, ..., uk = b according to Property 2, we use
variable length to indicate the length of the shortest chain of (a, p, b)[m]. At the
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Algorithm 6. reduce function for rule f-rdfp4
Input: key, iterator values

left.clear();
right.clear();
for value ∈ values do

if value.flag == ’L’ then
left.update(value.subject, {value.degree, value.length});

else
right.update(value.object, {value.degree, value.length});

end if
end for
for i ∈ left do

for j ∈ right do
newLength = i.length + j.length;
emit(newLength, triple(i.subject, key.predicate, j.object,

i.degree ⊗ j.degree⊗ getTransitiveDegree(key.predicate)));
end for

end for

beginning of the algorithm, for every triple (a, p, b)[n] in the fuzzy RDF graph,
length is assigned to be one.

If (a, p, b)[m] has a chain u0, u1, ..., uk with length k, and it can be derived from
(a, p, t)[m1] and (t, p, b)[m2] in the n-th iteration, then we have m1 + m2 = m,
m1 = 2n−2 or 2n−1, and 2n−2 < m2 ≤ 2n−1. We can prove the integer equation
m1 + m2 = m has a unique solution satisfying m1 = 2n−2 or m1 = 2n−1, and
2n−2 < m2 ≤ 2n−1. Thus for such a chain, the triple (a, p, b)[m] will be generated
only once. As a consequence, a fuzzy triple will be generated at most as many
times as the number of chains it has. In most circumstances, every fuzzy triple
will be generated only once.

Furthermore, based on the above discussion, if a fuzzy triple (a, p, b)[m] has
a chain with length 2n−1 < l ≤ 2n, it will be derived within n iterations. As
a consequence, the algorithm will terminate within log N iterations where N is
the number of all instances in the graph.

3.6 Handling SameAs Closure

The rules related to sameas are f-rdfp5(ab), 6, 7, 9, 10 and 11. Rules f-rdfp5(ab)
are naive rules which can be implemented directly. The conclusion of Rule f-
rdfp9 can be derived by applying rules f-rdfs10 and f-rdfp11. Rule f-rdfp10 allows
replacing the predicate with its synonyms. Thus we only consider the rules f-
rdfp6 and f-rdfp7, and the following variation of rule f-rdfp11, called f-rdfp11x:

(u, p, v)[n], (u, sameas, u′)[m], (v, sameas, v′)[l], (p, sameas, p′)[k]
⇒ (u′, p′, v′)[n⊗m⊗ l ⊗ k]
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The first two rules only affect the computation of sameas closure, and the
rule f-rdfp11x influences the other rules’ computation.

For convenience, we call a fuzzy triple in the form of (i, sameas, j)[n] a sameas
triple. We further call the sameas triples with fuzzy degree 1 the certain sameas
triples, and the others with fuzzy degree less than 1 the vague sameas triples.
The sameas problem is caused by those vague sameas triples. Thus for certain
sameas triples, the canonical representation technique is still applicable. In real
applications, such as Linking Open Data project, most of the sameas triples
are certain in order to link different URIs across different datasets. Thus the
traditional technique will be helpful to solve the problem.

However, the fuzzy pD∗ semantics allows using sameas triples to represent the
similarity information. For these triples, we must store all of them and calculate
the sameas closure using rules f-rdfp6 and f-rdfp7 to ensure the inference to be
complete.

Materializing the result by applying the rule f-rdfp11x will greatly expand the
dataset which may cause fatal efficiency problems. To accelerate the computa-
tion, we do not apply rule f-rdfp11x directly. Instead, we modify the algorithms
for other rules to consider the effect of rule f-rdfp11x.

In the following, we use rule f-rdfs2 mentioned in 3.1 as an example to illustrate
the modification. In rule f-rdfs2, two fuzzy triples join on p. Considering rule f-
rdfp11x, if the dataset contains a fuzzy triple (p, sameas, p′)[n], then we can
make the following inference by applying f-rdfp11x and f-rdfs2:

(p, domain, u)[m], (v, p′, w)[k], (p, sameas, p′)[n]⇒ (v, type, u)[n⊗m⊗ k]

We use Algorithm 7 to replace Algorithm 1 as the map function. The difference
is that Algorithm 7 uses a loop between line 2 and line 5 instead of line 2 in
Algorithm 1. In practice, vague sameas triples are relatively few. Thus we can
load them into memory and compute the sameas closure before the mappers are
launched. When the mapper scans a triple in the form of (p, domain, u)[m], the
mapper looks up the sameas closure to find the set of fuzzy triples in the form
of (p, sameas, p′)[n]. For each pair (p′, n), the mapper outputs a key p′ along
with a value {flag=’L’, u=triple.object, m ⊗ n}. While processing key p′, the
reducer will receive all the values of u and m ⊗ n. Furthermore, the reducer
will receive all values of v and k outputted by the mapper in line 7. Thus the
reducer will generate fuzzy triples in the form of (v, type, u)[n⊗m⊗k] as desired.
Similarly we can modify the algorithms for other rules to consider the effect of
rule f-rdfp11x.

Finally, we discuss the sameas problem while processing the rules f-rdfp1 and
f-rdfp2, since they generate sameas triples. We only discuss the rule f-rdfp1 since
the other is similar. Consider a fuzzy graph G containing the following n + 1
fuzzy triples:

(a, p, b1)[m1] (a, p, b2)[m2] ... (a, p, bn)[mn]
(p, type, FunctionalProperty)[k]
By applying the rule f-rdfp1, we can derive n(n − 1)/2 fuzzy triples in the

form of (bi, sameas, bj)[k ⊗mi ⊗mj ].
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Algorithm 7. map function for rules f-rdfs2 and f-rdfp11
Input: key, triple
1: if triple.predicate == ’domain’ then
2: for (subject, sameas, p′)[n] is in the sameas closure do
3: m = triple.degree;
4: emit({p=p’}, {flag=’L’, u=triple.object, m ⊗ n};
5: end for
6: end if
7: emit({p=triple.predicate}, {flag=’R’, v=triple.subject, k=triple.degree};

4 Experiment

We implemented a prototype system based on the Hadoop framework1, which is
an open-source Java implementation of MapReduce. Hadoop uses a distributed
file system, called HDFS2 to manage executions details such as data transfer,
job scheduling, and error management.

Since there is no system supporting fuzzy pD∗ reasoning, we run our system
over the standard LUBM data, and validate it against the WebPIE reasoner
which supports inference of Horst fragment to check the correctness of our algo-
rithms. Our system can produce the same results as WebPIE. Furthermore, we
build some small fuzzy pD∗ ontologies, and a naive inference system for valida-
tion purpose. Our system can produce the same results on all these ontologies.

The experiment was conducted in a Hadoop cluster containing 25 nodes. Each
node is a PC machine with a 4-core, 2.66GHz, Q8400 CPU, 8GB main-memory,
3TB hard disk. In the cluster, each node is assigned three processes to run map
tasks, and three process to run reduce tasks. So the cluster allows running at
most 75 mappers or 75 reducers simultaneously. Each mapper and each reducer
can use at most 2GB main-memory.

4.1 Datasets

Since there is no real fuzzy RDF data available, we generate synthesis fuzzy
ontology, called fpdLUBM3, for experimental purpose. Our system is based on a
fuzzy extension of LUBM [2], called fLUBM, which is used for testing querying
ability under fuzzy DL-Lite semantics in [7]. The fLUBM dataset adds two fuzzy
classes, called Busy and Famous. The fuzzy degrees of how an individual belongs
to these classes are generated according to the number of courses taught or taken
by the individual, and the publications of the individual respectively.

However, since there is no hierarchy among these fuzzy classes, we cannot use
fLUBM to test our reasoning algorithm. To tackle this problem, we further added
six fuzzy classes, VeryBusy, NormalBusy, LessBusy, VeryFamous, NormalFamous
and LessFamous. Given an individual i, suppose its membership degree w.r.t.
1 http://hadoop.apache.org/
2 http://hadoop.apache.org/hdfs/
3 Available at http://apex.sjtu.edu.cn/apex_wiki/fuzzypd

http://apex.sjtu.edu.cn/apex_wiki/fuzzypd
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class Busy (the fuzzy degree how i belongs to class Busy) is bi. If bi < 0.5,
we add a fuzzy triple (i, type, LessBusy)[bi/0.5] into the dataset; if 0.5 ≤
bi < 0.7, we generated a fuzzy triple (i, type, NormalBusy)[bi/0.7]; other-
wise, we generate a fuzzy triple (i, type, VeryBusy)[b]. We added two fuzzy
triples, (LessBusy, subClassOf, Busy)[0.5] and (VeryBusy, subClassOf,
Busy)[1.0] to the TBox. Similarly, we can generate the fuzzy triples related
to Famous.

We further added a transitive property call youngerThan to test calculation of
the transitive closure. In each university ontology, we assigned a randomly gen-
erated age to each student. Then we generated n youngerThan triples. For each
triple, we randomly chose two different students i and j satisfying agei < agej,
and added a fuzzy triple (i, youngerThan, j)[agei/agej] into the data set.

Finally, we added a TBox triple to assert that emailAddress is an inverse
functional property. In fact, e-mail is usually used for identifying a person online.
Furthermore, for each faculty f , since we know the university from which he got
his bachelor degree, we picked one email address e belonging to an undergraduate
student in that university, and added a triple (f, emailAddress, e)[d] into
the data set. Here we assigned the fuzzy degrees d to be either 1.0 or 0.9. Then
sameas triples were derived using the semantics of inverseFunctionalProperty.
We set the probability when d = 0.9 to be 1%, so that a small set of vague sameas
triples can be generated. Similarly, we can generate other emailAddress triples
according to the master and doctoral information similarly.

4.2 Experimental Results

Comparison with WebPIE. We compared the performance of our system
with that of the baseline system WebPIE4. We run both systems over the same
dataset fpdLUBM8000. The results are shown in Table 2. Notice that the dataset
is a fuzzy dataset, for WebPIE, we simply omit the fuzzy degree, and submit
all crisp triples to the system. So our system (FuzzyPD) output a little more
triples than WebPIE, because our system also updates the fuzzy degrees. The
running time difference between our system and WebPIE is from -5 to 20 min-
utes. However, since a Hadoop job’s execution time is affected by the statuses of
the machines in the cluster, several minutes’ difference between the two systems
is within a rational range. Thus we conclude that our system is comparable with
the state-of-the-art inference system.

Scalability. To test the scalability of our algorithms, we run two experiments. In
the first experiment, we tested the inference time of our system over datasets with
different sizes to see the relation between the data volume and the throughput.
In the second experiment, we run our system over fpdLUBM1000 dataset with
different number of units (mappers and reducers) to see the relation between the
processing units and the throughput. Furthermore, in the second experiment, we
set the number of mappers to be the same as the number of reducers. Thus a
total number of 128 units means launching 64 mappers and 64 reducers.
4 We fix some bugs in the source code which will cause performance problem.
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Table 2. Experimental results of
our system and WebPIE

Number of Time of Time of
Universities FuzzyPD WebPIE

1000 38.8 41.32

2000 66.97 74.57

4000 110.40 130.87

8000 215.48 210.01

Table 3. Scalability over number of mappers

Number Time Speedup
of units (minutes)

128 38.80 4.01
64 53.15 2.93
32 91.58 1.70
16 155.47 1.00

Table 4. Scalability over data volume

Number of Input Output Time Throughput
universities (MTriples) (MTriples) (minutes) (KTriples/second)

1000 155.51 92.01 38.8 39.52
2000 310.71 185.97 66.97 46.28
4000 621.46 380.06 110.40 57.37
8000 1243.20 792.54 215.50 61.29

The results for the first experiment can be found in table 4. From the table, we
can see that the throughput increases significantly while the volume increases.
The throughput while processing fpdLUBM8000 dataset is 50% higher than the
throughput while processing dataset containing 1000 universities. We attribute
this performance gain to the platform startup overhead which is amortized over
a larger processing time for large datasets. The platform overhead is also re-
sponsible for the non-linear speedup in Table 3 which contains the results of the
second test. Figure 1 gives a direct illustration of the overhead effect. In Figure 1,
if we subtract a constant from the time dimension of each data point, then the
time is inversely proportional to the number of units. Since the running time
should be inversely proportional to the speed, after eliminating the effect of the
platform overhead, the system’s performance speeds up linearly to the increase
of number of units.

5 Related Work

[10] is the first work to extend RDFS with fuzzy vagueness. In [4], we further
propose the fuzzy pD∗ semantics which allows some useful OWL vocabularies,
such as TransitiveProperty and SameAs. In [11] and [6], a more general frame-
work called annotated RDF to represent annotation for RDF data and a query
language called AnQL were proposed.

As far as we know, this is the first work on applying the MapReduce frame-
work to tackle large scale reasoning in fuzzy OWL. Pan et al. in [7] propose a
framework of fuzzy query languages for fuzzy ontologies. However, they mainly
concerns the query answering algorithms for these query languages over fuzzy
DL-Lite ontologies. Our work concerns the inference problem over large scale
fuzzy pD∗ ontologies.
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We briefly discuss some related work on scalable reasoning in OWL and RDF.
None of them takes into account of fuzzy information.

Schlicht and Stuckenschmidt [8] show peer-to-peer reasoning for the expres-
sive ALC logic but focusing on distribution rather than performance. Soma and
Prasanna [9] present a technique for parallel OWL inferencing through data
partitioning. Experimental results show good speedup but only on very small
datasets (1M triples) and runtime is not reported.

In Weaver and Hendler [14], straightforward parallel RDFS reasoning on a
cluster is presented. But this approach splits the input to independent parti-
tions. Thus this approach is only applicable for simple logics, e.g. RDFS without
extending the RDFS schema, where the input is independent.

Newman et al. [5] decompose and merge RDF molecules using MapReduce
and Hadoop. They perform SPARQL queries on the data but performance is
reported over a dataset of limited size (70,000 triples).

Urbani et al. [13] develop the MapReduce algorithms for materializing RDFS
inference results. In [12], they further extend their methods to handle OWL
pD∗ fragment, and conduct experiment over a dataset containing 100 billion
triples.

6 Conclusion

In this paper, we proposed MapReduce algorithms to process forward infer-
ence over large scale data using fuzzy pD∗ semantics (i.e. an extension of OWL
Horst semantics with fuzzy vagueness). We first identified the major challenges
to handle the fuzzy information using the MapReduce framework, and proposed
a solution for tackling each of them. Furthermore, we implemented a prototype
system for the evaluation purpose. The experimental results show that the run-
ning time of our system is comparable with that of WebPIE, the state-of-the-art
inference engine for large scale OWL ontologies in pD∗ fragment. As a future
work, we will apply our system to some applications, such as Genomics and
multimedia data management.
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Abstract. Blank nodes are defined in RDF as ‘existential variables’ in the same
way that has been used before in mathematical logic. However, evidence suggests
that actual usage of RDF does not follow this definition. In this paper we thor-
oughly cover the issue of blank nodes, from incomplete information in database
theory, over different treatments of blank nodes across the W3C stack of RDF-
related standards, to empirical analysis of RDF data publicly available on the
Web. We then summarize alternative approaches to the problem, weighing up
advantages and disadvantages, also discussing proposals for Skolemization.

1 Introduction

The Resource Description Framework (RDF) is a W3C standard for representing in-
formation on the Web using a common data model [18]. Although adoption of RDF is
growing (quite) fast [4, § 3], one of its core features—blank nodes—has been sometimes
misunderstood, sometimes misinterpreted, and sometimes ignored by implementers,
other standards, and the general Semantic Web community. This lack of consistency
between the standard and its actual uses calls for attention.

The standard semantics for blank nodes interprets them as existential variables, de-
noting the existence of some unnamed resource. These semantics make even simple
entailment checking intractable. RDF and RDFS entailment are based on simple entail-
ment, and are also intractable due to blank nodes [14].

However, in the documentation for the RDF standard (e.g., RDF/XML [3], RDF
Primer [19]), the existentiality of blank nodes is not directly treated; ambiguous phras-
ing such as “blank node identifiers” is used, and examples for blank nodes focus on
representing resources which do not have a natural URI. Furthermore, the standards
built upon RDF sometimes have different treatment and requirements for blank nodes.
As we will see, standards and tools are often, to varying degrees, ambivalent to the exis-
tential semantics of blank nodes, where, e.g., the standard query language SPARQL can
return different results for two graphs considered equivalent by the RDF semantics [1].

Being part of the RDF specification, blank nodes are a core aspect of Semantic Web
technology: they are featured in several W3C standards, a wide range of tools, and
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:GrandSlamTournament

_:b3

_:b1
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:TennisPlayer
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name

:Federer

“Roger Federer”

_:b2wins

wins

wins

year

event

event

year

event :Wimbledon

:FrenchOpen

:Wimbledon type

type

type

Fig. 1. An RDF graph for our running example. In this graph, URIs are preceded by ‘:’ blank
nodes by ‘_:’ and literals are enclosed in quotation marks.

hundreds of datasets across the Web, but not always with the same meaning. Dealing
with the issue of blank nodes is thus not only important, but also inherently complex and
potentially costly: before weighing up alternatives for blank nodes, their interpretation
and adoption—across legacy standards, tools, and published data—must be considered.

In this paper, we first look at blank nodes from a background theoretical perspective,
additionally introducing Skolemization (§ 3). We then look at how blank nodes are used
in the Semantic Web standards: we discuss how they are supported, what features rely
on them, issues surrounding blank nodes, and remarks on adoption (§ 4). Next, we look
at blank nodes in publishing, their prevalence for Linked Data, and what blank node
graph-structures exist in the wild (§ 5). Finally, in light of the needs of the various
stakeholders already introduced, we discuss proposals for handling blank nodes (§ 6).

Throughout this document, we use the the RDF graph given in Figure 1 to illustrate
our discussion. The graph states that the tennis player :Federer won an event at the
:FrenchOpen in 2009; it also states twice that he won :Wimbledon, once in 2003.

2 Preliminaries

We follow the abstract representation [13,20] of the formal RDF model [14,18]. This
means we will consider standard notation for the sets of all URIs (U), all literals (L) and
all blank nodes (B), all being pairwise disjoint. For convenience of notation, we write
UBL for the union of U, B and L, and likewise for other combinations. In general, we
write (s, p, o) for an RDF triple, and assume that (s, p, o) ∈ UB×U×UBL.

For the purposes of our study, we define an interpretation of a graph as per [20],
but without considering literals or classes since they are irrelevant for the study of
blank nodes. Also, we do not consider the use of vocabularies with predefined se-
mantics (e.g., RDFS or OWL). Graphs that do not use such vocabularies are called
simple. More precisely, define a vocabulary as a subset of UL. Given an RDF graph
G, denote by terms(G) the set of elements of UBL that appear in G, and denote by
voc(G) the set terms(G)∩UL. Then an interpretation I over a vocabulary V is a tuple
I = (Res, Prop, Ext, Int) such that: (1) Res is a non-empty set of resources, called the
domain or universe of I; (2) Prop is a set of property names (not necessarily disjoint
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from or a subset of Res); (3) Ext : Prop → 2Res×Res, a mapping that assigns an exten-
sion to each property name; and (4) Int : V → Res ∪ Prop, the interpretation mapping,
a mapping that assigns a resource or a property name to each element of V , and such
that Int is the identity for literals. Given an interpretation mapping Int and a function
A : B → Res, we define the extension function IntA : V ∪ B → Res ∪ Prop as the
extension of Int by A, that is, IntA(x) = Int(x) if x ∈ V , and IntA(x) = A(x) if x ∈ B.
Based on interpretations, we have the fundamental notion of model:

Definition 1. An interpretation I = (Res, Prop, Ext, Int) is a model of G if I is an
interpretation over voc(G) and there exists a function A : B→ Res such that for each
(s, p, o) ∈ G, it holds that Int(p) ∈ Prop and (IntA(s), IntA(o)) ∈ Ext(Int(p)).

The existentiality of blank nodes is given by the extension A above. We say that a
graph is satisfiable if it has a model. Simple RDF graphs are trivially satisfiable thanks
to Herbrand interpretations [14], in which URIs and literals are interpreted as their
(unique) syntactic forms instead of “real world” resources. This will be important in
distinguishing Skolemization in first-order logic from Skolemization in RDF.

Recall that in the context of RDF a subgraph is a subset of a graph. Then a graph G
is lean if there is no map h : UBL→ UBL that preserves URIs and literals (h(u) = u
for all u ∈ UL) such that the RDF graph obtained from G by replacing every element
u mentioned in G by h(u), denoted by h(G), is a proper subgraph of G; otherwise, the
graph is non-lean and (formally speaking) contains redundancy. For instance, the graph
G in Figure 1 is non-lean as the triple (_:b3, event, :Wimbledon) is redundant: if h maps
_:b3 to _:b1 and is the identity elsewhere, then h(G) is a proper subgraph of G.

3 Theoretic Perspective

In this section we look at theoretic aspects of blank nodes, focusing on background
theory with respect to existentials (§ 3.1) and Skolemization (§ 3.2) in first-order logic.

3.1 Existential Variables

As per Section 2, the existentiality of blank nodes is given by the extension function A
for an interpretation mapping Int. We now show that this interpretation of blank nodes
can be precisely characterized in terms of existential variables in first-order logic.

Let G be an RDF graph. We define Th(G) to be a first-order sentence with a ternary
predicate triple as follows. Let V be an infinite set of variables disjoint with U, L and B,
and assume that ρ : ULB→ ULV is a one-to-one function that is the identity on UL.
Now, for every triple t = (s, p, o) in G, define ρ(t) as the fact triple(ρ(s), ρ(p), ρ(o)),
and define Th(G) as ∃x1 · · · ∃xn (

∧
t∈G ρ(t)), where x1, . . ., xn are the variables from

V mentioned in
∧

t∈G ρ(t). Then we have the following equivalence between the notion
of entailment for RDF graphs and the notion of logical consequence for first-order logic.

Theorem 1 ([9]). Given RDF graphs G and H , it holds that G |= H if and only if
Th(G) |= Th(H). ��

This theorem reveals that the implication problem for RDF can be reduced to implica-
tion for existential first-order formulae without negation and disjunction.



424 A. Mallea et al.

RDF implication in the presence of existentials is NP-Complete [14,26]. However,
Pichler et al. [22] note that for common blank node morphologies, entailment be-
comes tractable. Let G be a simple RDF graph, and consider the (non-RDF) graph
blank(G) = (V, E) as follows: V = B ∩ terms(G) and E = {(b, c) ∈ V × V | b �= c
and there exists P ∈ terms(G) such that (b, P, c) ∈ G or (c, P, b) ∈ G}. Thus,
blank(G) gives an undirected graph connecting blank nodes appearing in the same triple
in G. Let G and H denote two RDF graphs with m and n triples respectively. Now, per-
forming the entailment check G |= H has the upper bound O(n2 + mn2k), where
k = tw(blank(H))+1 for tw(blank(H)) the treewidth of blank(H) [22]. Note that we
will survey the treewidth of blank node structures in published data in Section 5.1.2,
which gives insights into the expense of RDF entailment checks in practice.

3.2 Skolemization

In first-order logic (FO), Skolemization is a way of removing existential quantifiers
from a formula in prenex normal form (a chain of quantifiers followed by a quantifier-
free formula). The process was originally defined and used by Thoralf Skolem to gen-
eralize a theorem by Jacques Herbrand about models of universal theories [5].

The central idea of Skolemization is to replace existentially quantified variables for
“fresh” constants that are not used in the original formula. For example, ∃x∀y R(x, y)
can be replaced by ∀y R(c, y) where c is a fresh constant, as this new formula also
states that there exists a value for the variable x (in fact, x = c) such that R(x, y)
holds for every possible value of variable y. Similarly, ∀x∃y (P (x) → Q(y)) can be
replaced by ∀x(P (x) → Q(f(x))), where the unary function f does not belong to the
underlying vocabulary, as in this case we know that for every possible value of variable
x, there exists a value of variable y that depends on x and such that P (x) → Q(y)
holds. When the original formula does not have universal quantifiers, only constants
are needed in the Skolemization process; since only existential quantifiers are found
in simple RDF graphs (see Definition 1), we need only talk about Skolem constants.
However, if Skolemization was used to study the satisfiability of logical formulae in
more expressive languages (e.g., OWL), Skolem functions would be needed.

The most important property of Skolemization in first-order logic is that it preserves
satisfiability of the formula being Skolemized. In other words, if ψ is a Skolemization
of a formula ϕ, then ϕ and ψ are equisatisfiable, meaning that ϕ is satisfiable (in the
original vocabulary) if and only if ψ is satisfiable (in the extended vocabulary, with the
new Skolem functions and constants). Nevertheless, this property is of little value when
Skolemizing RDF graphs since we recall that all simple RDF graphs are satisfiable.

4 Blank Nodes in the Standards

We now look at the treatment of blank nodes in the RDF-related standards, viz. RDF
syntaxes, RDFS, OWL, RIF and SPARQL; we also cover RDB2RDF and SPARQL 1.1.

4.1 RDF Syntaxes

We first give general discussion on the role of blank nodes in RDF syntaxes.
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Support for blank nodes. All RDF syntaxes allow blank nodes to be explicitly la-
beled; in N-Triples, explicit labeling is necessary. Explicit labels allow blank nodes to
be referenced outside of nested elements and thus to be used in arbitrary graph-based
data even though the underlying syntaxes (e.g., XML) are inherently tree-based. Note
that we will study cyclic blank node structures in published data later in Section 5.1.2.

Features requiring blank nodes. Blank nodes play two major (and related) roles in all
but the N-Triples syntax. First, aside from N-Triples, all syntaxes passively default to
representing resources as blank nodes when optional URIs are omitted. Second, blank
nodes are also used in shortcuts for n-ary predicates and RDF lists (aka. containers) [14,
§ 3.3.1] in Turtle and RDF/XML, as well as containers [14, § 3.3.2] and reification [14,
§ 3.3.1] in RDF/XML. For example, the Turtle shortcut:

:GrandSlam :order (:AustralianOpen :FrenchOpen :Wimbledon :USOpen) .

represents an RDF list. This would be equivalently representable in Turtle’s square-
bracket syntax (left), and full verbose forms (right) as follows:

:GrandSlam :order
[ rdf:first :AustralianOpen ; rdf:rest
[ rdf:first :FrenchOpen ; rdf:rest
[ rdf:first :Wimbledon ; rdf:rest
[ rdf:first :USOpen ; rdf:rest rdf:nil ]]]]

:GrandSlam :order _:b1 .
_:b1 rdf:first :AustralianOpen .
_:b2 rdf:first :FrenchOpen .
_:b3 rdf:first :Wimbledon .
_:b4 rdf:first :USOpen .

_:b1 rdf:rest _:b2 .
_:b2 rdf:rest _:b3 .
_:b3 rdf:rest _:b4 .
_:b4 rdf:rest rdf:nil .

In the two shortcut notations, the labels of the “structural” blank nodes are left implicit.
Similar shortcuts using unlabeled blank nodes hold for n-ary predicates, reification and
containers in RDF/XML. Note that such shortcuts can only induce “trees” of blank
nodes; e.g., _:b1 :p _:b2 . _:b2 :p _:b1 . cannot be expressed without explicit labels.

Issues with blank nodes. Given a fixed, serialized RDF graph (i.e., a document), la-
beling of blank nodes can vary across parsers and across time. Checking if two repre-
sentations originate from the same data thus often requires an isomorphism check, for
which in general, no polynomial algorithms are known (cf. e.g. [6] in the RDF con-
text). Further, consider a use-case tracking the changes of a document over time; given
that parsers can assign arbitrary labels to blank nodes, a simple syntactic change to the
document may cause a dramatic change in blank node labels, making precise change
detection difficult (other than on a purely syntactic level). We note that isomorphism
checking is polynomial for “blank node trees” (e.g., as generated for documents with-
out explicit blank node labels) [17].

In practice. Parsers typically feature a systematic means of labeling blank nodes based
on the explicit blank node labels and the order of appearance of implicit blank nodes.
The popular Jena Framework1 offers methods for checking the RDF-equivalence of two
graphs. We will further discuss blank nodes in publishing in Section 5.

4.2 RDF Schema (RDFS)

RDF Schema (RDFS) is a lightweight language for describing RDF vocabularies, which
allows for defining sub-class, sub-property, domain and range relations between class

1 http://jena.sourceforge.net/

http://jena.sourceforge.net/
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and property terms (as appropriate). The RDFS vocabulary—incl., e.g., rdfs:domain,
rdfs:range, rdfs:subClassOf and rdfs:subPropertyOf—is well-defined by means of a (nor-
mative) model-theoretic semantics, accompanied by a (non-normative) set of entailment
rules to support inferencing [14,20].

Support for blank nodes. RDFS entailment is built on top of simple entailment, and
thus supports an existential semantics for blank nodes.

Features requiring blank nodes. Blank nodes are used as “surrogates” for literals
through entailment rules LG/GL in [14]. This is necessary for completeness of the entail-
ment rules w.r.t. the formal semantics such that literal terms can “travel” to the subject
position of triples by means of their surrogates [14]; for instance, the triples

:Federer atp:name ‘‘Roger Federer’’ . atp:name rdfs:range atp:PlayerName .

entail the triple _:bFederer rdf:type atp:PlayerName by the RDFS rules LG and RDFS2 [14].
Here, the “surrogate” blank node _:bFederer represents the actual literal, whereas the di-
rect application of rule RDFS2 (without LG) would result in a non-valid RDF triple
having a literal in the subject position; viz. “Roger Federer” rdf:type atp:PlayerName .

Issues with blank nodes. Existential semantics for blank nodes makes RDFS entail-
ment NP-Complete [14,13,26,20]. Further, ter Horst [26] showed that the RDFS en-
tailment lemma in the non-normative section of the RDF Semantics is incorrect: blank
node surrogates are still not enough for the completeness of rules in [14, § 7], where
blank nodes would further need to be allowed in the predicate position. For example,
consider the three triples (1) :Federer :wins _:b1, (2) :wins rdfs:subPropertyOf _:p, and (3)
_:p rdfs:domain :Competitor, we still cannot infer the triple :Federer rdf:type :Competitor,
since the required intermediate triple :Federer _:p _:b1 is not valid in RDF.

In practice. To overcome the NP-completeness of simple entailment, RDFS rule-based
reasoners often apply Herbrand interpretations over blank nodes such that they de-
note their own syntactic form: this “ground RDFS entailment” is equisatisfiable and
tractable [26]. Avoiding the need for (or supplementing) literal surrogates, reasoners
often allow various forms of “generalized triples” in intermediate inferencing steps,
with relaxed restrictions on where blank nodes and literals can appear [26,11].

4.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a more expressive language than RDFS (but
which partially re-uses RDFS vocabulary). With the advent of OWL 2, there are now
eight standard profiles of OWL. OWL Full and OWL 2 Full are given an RDF-Based Se-
mantics [24] and so are compatible with arbitrary RDF graphs, but are undecidable [11].
OWL Lite, OWL DL, OWL 2 EL, OWL 2 QL and OWL 2 RL are given a Direct Se-
mantics based on Description Logics (DL) formalisms and are decidable [11], but are
not compatible with arbitrary RDF graphs. Further, OWL 2 RL features the OWL 2
RL/RDF entailment ruleset: a partial axiomatization of the RDF-Based Semantics.

Support for blank nodes. The RDF-Based Semantics is built on top of simple en-
tailment [24], and considers blank nodes as existentials. The OWL Direct Semantics
does not treat blank nodes in assertions, where special DL-based existentials are instead
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supported; e.g., the implicit assertion that :Federer won “something” can be expressed
in the DL axiom Federer ∈ ∃wins.� (i.e., on a level above blank nodes).

Features requiring blank nodes. For the DL-based (sub)languages of OWL, blank
nodes are used to map between DL-based structural syntaxes and RDF representations:
the structural syntaxes feature special n-ary predicates represented with blank nodes in
RDF. For example, the DL concept ∃wins.� is expressed structurally as ObjectSomeVal-

uesFrom(OPE(:wins) CE(owl:Thing)), which maps to the following three RDF triples:

_:x a owl:Restriction . _:x owl:someValuesFrom owl:Thing . _:x owl:onProperty :wins .

Blank nodes are also required to represent RDF lists used in the mapping, e.g., of OWL
union classes, intersection classes, enumerations, property chains, complex keys, etc.
An important aspect here is the locality of blank nodes: if the above RDF representa-
tion is valid in a given graph, it is still valid in an Open World since, e.g., an external
document cannot add another value for owl:onProperty to _:x.

Issues with blank nodes. Once RDF representations are parsed, DL-based tools are
agnostic to blank nodes; existentials are handled on a higher level. RDF-based tools en-
counter similar issues as for RDFS; e.g., OWL 2 RL/RDF supports generalized
triples [11] (but otherwise gives no special treatment to blank nodes).

In practice. Rule-based reasoners—supporting various partial-axiomatizations of the
RDF-Based Semantics such as DLP [12], pD* [26] or OWL 2 RL/RDF [11]—again
often apply Herbrand interpretations over blank nodes. ter Horst proposed pD*sv [26]
which contains an entailment rule with an existential blank node in the head to support
owl:someValuesFrom, but we know of no system supporting this rule.

4.4 SPARQL Protocol and RDF Query Language (SPARQL)

SPARQL [23] is the standard query language for RDF, and includes an expressive set
of query features. An important aspect of SPARQL is the notion of Named Graphs:
SPARQL querying is defined over a dataset given as {G0, (u1, G1), . . . , (un, Gn)}
such that u1, . . . , un ∈ U, and G0, . . . , Gn are RDF graphs; each pair (ui, Gi) is called
a named graph and G0 is called the default graph.

Support for blank nodes. With respect to querying over blank nodes in the dataset,
SPARQL considers blank nodes as constants scoped to the graph they appear in [23,
§ 12.3.2]. Thus, for example, the query:

SELECT DISTINCT ?X WHERE { :Federer :wins ?X . ?X :event :Wimbledon . }

issued over the graph depicted in Figure 1 would return
{
{(?X, _:b1)}, {(?X, _:b3)}

}
as distinct solution mappings, here effectively considering blank nodes as constants.
Interestingly, SPARQL 1.1—currently a Working Draft—introduces a COUNT aggre-
gate, which, with an analogue of the above query, would answer that :Federer won an
event at :Wimbledon twice. Posing the same COUNT query over a lean (and thus RDF
equivalent [14]) version of Figure 1 would return once.

Features requiring blank nodes. SPARQL uses blank nodes in the query to represent
non-distinguished variables, i.e., variables which can be arbitrarily bound, but which
cannot be returned in a solution mapping. For example:
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SELECT ?p WHERE { ?p :wins _:t . _:t :event :Wimbledon . _:t :year _:y . }

requests players who have won some Wimbledon event in some year (viz., :Federer).2

We note that such queries can be expressed by replacing blank nodes with fresh query
variables. A special case holds for CONSTRUCT templates which generate RDF from
solution mappings: a blank node appearing in a query’s CONSTRUCT clause is replaced
by a fresh blank node for each solution mapping in the resulting RDF.

Issues with blank nodes. A practical problem posed by blank nodes refers to “round-
tripping”, where a blank node returned in a solution mapping cannot be referenced in a
further query. Consider receiving the result binding (?X, _:b1) for the previous DISTINCT

query; one cannot ask a subsequent query for what year the tournament _:b1 took place
since the _:b1 in the solution mapping no longer has any relation to that in the originating
graph; thus, the labels need not correspond to the original data. Further, SPARQL’s
handling of blank nodes can cause different behavior for RDF-equivalent graphs, where,
e.g., leaning a graph will affect results for COUNT.

In practice. Where round-tripping is important, SPARQL engines often offer a special
syntax for effectively Skolemizing blank nodes. For example, ARQ3 is a commonly
(re)used SPARQL processor which supports a non-standard <_:b1> style syntax for
terms in queries, indicating that the term can only be bound by a blank node labeled
“b1” in the data. Virtuoso4 [8] supports the <nodeID://b1> syntax with similar purpose,
but where blank nodes are only externalized in this syntax and (interestingly) where
isBlank(<nodeID://b1>) evaluates as true.

4.5 RDB2RDF

In the last 10 years, we have witnessed an increasing interest in publishing relational
data as RDF. This has resulted in the creation of the RDB2RDF W3C Working Group,
whose goal is to standardize a language for mapping relational data into RDF [7,2].
Next we show the current proposal of the Working Group about the use of blank nodes
in the mapping language.

Support for blank nodes. The input of the mapping language being developed by
the RDB2RDF Working Group is a relational database, including the schema of the
relations being translated and the set of keys and foreign keys defined over them. The
output of this language is an RDF graph that may contain blank nodes.

Features requiring blank nodes. The RDF graph generated in the translation process
identifies each tuple in the source relational database by means of a URI. If the tuple
contains a primary key, then this URI is based on the value of the primary key. If the
tuple does not contain such a constraint, then a blank node is used to identify it in the
generated RDF graph [2].

Issues with blank nodes. In the mapping process, blank nodes are used as identifiers
of tuples without primary keys [2], and as such, two of these blank nodes should not be

2 Further note that blank nodes are scoped to Basic Graph Patterns (BGPs) of queries.
3 http://jena.sourceforge.net/ARQ/
4 http://virtuoso.openlinksw.com/

http://jena.sourceforge.net/ARQ/
http://virtuoso.openlinksw.com/
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considered as having the same value. Thus, the existential semantics of blank nodes in
RDF is not appropriate for this use.

5 Blank Nodes in Publishing

In this section, we survey the use of blank nodes in RDF data published on the Web.
The recent growth in RDF Web data is thanks largely to the pragmatic influence of
the Linked Data community [4,15], whose guidelines are unequivocal on the subject of
blank node usage; in a recent book, Bizer et al. [15] only mention blank nodes in the
section entitled “RDF Features Best Avoided in the Linked Data Context”, as follows:

“The scope of blank nodes is limited to the document in which they appear, [...]
reducing the potential for interlinking between different Linked Data sources.
[...] it becomes much more difficult to merge data from different sources when
blank nodes are used, [...] Therefore, all resources in a data set should be
named using URI references.” —[15, § 2.4.1]

With this (recent) guideline discouraging blank nodes in mind, we now provide an em-
pirical study of the prevalence of blank nodes in published data (§ 5.1.1), and of the
morphology of blank nodes in such data (§ 5.1.2). Finally, we briefly discuss the results
of a poll conducted on public Semantic Web mailing lists (§ 5.2).

5.1 Empirical Survey of Blank Nodes in Linked Data

With the previous guidelines in mind, we now present an empirical survey of the preva-
lence and nature of blank nodes in Linked Data published on the Web. Our survey is
conducted over a corpus of 1.118 g quadruples (965 m unique triples) extracted from
3.985 m RDF/XML documents through an open-domain crawl conducted in May 2010.
The corpus consists of data from 783 different pay-level domains, which are direct sub-
domains of either top-level domains (such as dbpedia.org), or country code second-level
domains (such as bbc.co.uk). We performed a domain-balanced crawl: we assign a queue
to each domain, and in each round, poll a URI to crawl from each queue in a round-
robin fashion. This strategy led to 53.2% of our raw data coming from the hi5.com FOAF
exporter, which publishes documents with an average of 2,327 triples per document: an
order of magnitude greater than the 140 triple/doc average from all other domains [16].
Note that this corpus represents a domain-agnostic sample of RDF published on the
Web. The bias of sampling given by the dominance of hi5.com is important to note; thus,
along with measures from the monolithic dataset, we also present per-domain statistics.
Details of the crawl and the corpus are available (in significant depth) in [16, § 4].

5.1.1 Prevalence of Blank Nodes in Published Data
We looked at terms in the data-level position of triples in our corpus: i.e., positions
other than the predicate or object of rdf:type triples which are occupied by property and
class terms respectively. We found 286.3 m unique terms in such positions, of which
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Table 1. Top publishers of blank nodes in our corpus

# domain bnodes %bnodes LOD?
1 hi5.com 148,409,536 87.5 X
2 livejournal.com 8,892,569 58.0 X
3 ontologycentral.com 2,882,803 86.0 X
4 opiumfield.com 1,979,915 17.4 X
5 freebase.com 1,109,485 15.6 �
6 vox.com 843,503 58.0 X
7 rdfabout.com 464,797 41.7 �
8 opencalais.com 160,441 44.9 �
9 soton.ac.uk 117,390 19.1 �

10 bbc.co.uk 101,899 7.4 �

165.4 m (57.8%) were blank nodes, 92.1 m (32.2%) were URIs, and 28.9 m (10%) were
literals. Each blank node had on average 5.233 data-level occurrences (the analogous
figure for URIs was 9.41 data-level occurrences: 1.8× that for blank nodes). Each blank
node occurred, on average, 0.995 times in the object position of a non-rdf:type triple,
with 3.1 m blank nodes (1.9% of all blank nodes) not occurring in the object position;
conversely, each blank node occurred on average 4.239 times in the subject position
of a triple, with 69 k (0.04%) not occurring in the subject position.5 Thus, we surmise
that (i) blank nodes are prevalent on the Web; (ii) most blank nodes appear in both the
subject and object position, but occur most prevalently in the former, possibly due to
the tree-based RDF/XML syntax.

Again, much of our corpus consists of data crawled from high-volume exporters
of FOAF profiles—however, such datasets are often not considered as Linked Data,
where, e.g., they are omitted from the Linked Open Data (LOD) cloud diagram due to
lack of links to external domains.6 Table 1 lists the top ten domains in terms of pub-
lishing unique blank nodes found in our corpus; “%bnodes” refers to the percentage
of all unique data-level terms appearing in the domain’s corpus which are blank nodes;
“LOD?” indicates whether the domain features in the LOD cloud diagram. Of the 783
domains contributing to our corpus, 345 (44.1%) did not publish any blank nodes. The
average percentage of unique terms which were blank nodes for each domain—i.e.,
the average of %bnodes for all domains—was 7.5%, indicating that although a small
number of high-volume domains publish many blank nodes, many other domains pub-
lish blank nodes more infrequently. The analogous figure including only those domains
appearing in the LOD cloud diagram was 6.1%.

5.1.2 Structure of Blank Nodes in Published Data

As per Section 3.1, checking G |= H has the upper bound O(n2 + mn2k), where k is
one plus the treewidth of the blank node structure blank(H) [22]. Intuitively, treewidth

5 We note that in RDF/XML syntax—essentially a tree-based syntax—blank nodes can only ever
occur once in the object position of a triple unless rdf:nodeID is used, but can occur multiple
times in the subject position.

6 See http://lod-cloud.net/

http://lod-cloud.net/
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provides a measure of how close a given graph is to being a tree; for example, the
treewidth of trees and forests is 1, the treewidth of cycles is 2 (a cycle is “almost” a
tree: take out an edge from a cycle and you have a tree) and the treewidth of a complete
graph on n vertexes is n − 1. A detailed treatment is out of scope, but we refer the
interested reader to [22]. However, we note that all graphs whose treewidth is greater
than 1 are cyclic. From this, it follows that simple entailment checking only becomes
difficult when blank nodes form cycles:

“[...] in practice, an RDF graph contains rarely blank nodes, and even less
blank triples.7 Hence, most of the real RDF graphs are acyclic or have low
treewidth such as 2, and the entailment can be tested efficiently [...].” —[22,
§ 4]

To cross-check this claim, we ran the following analysis over all documents (RDF
graphs) in our corpus. For each document G, we extracted blank(G) and separated
out the connected components thereof using a UNION-FIND algorithm [25]. We found
918 k documents (23% of all documents) containing blank nodes, with 376 k (9% of
all documents) containing “non-reflexive” blank triples. We found a total of 527 k non-
singleton connected components, an average of 1.4 components per document with
some blank triple. We then checked the treewidth of all 527 k components using the
QUICKBB algorithm [10], where the distribution of values is given in Table 2. Notably,
98.4% of the components are acyclical, but a significant number are cyclical (treewidth
greater than 1). One document8 contained a single component C with 451 blank nodes
and 887 (undirected) edges and a treewidth of 7. Figure 2 renders this graph, where
vertexes are blank nodes and edges are based on blank triples; for clarity, we collapse
groups of n disconnected vertexes with the same neighbors into single nodes labeled n
(note that these are not n-cliques).

We conclude that the majority of documents surveyed contain tree-based blank node
structures. However, a small fraction contain complex blank node structures for which
entailment is potentially very expensive to compute.

Table 2. tw distribution

treewidth # components
1 518,831
2 8,134
3 208
4 99
5 23
6 –
7 1 Fig. 2. C where tw(C) = 7

7 In the terminology of [22], a blank triple is an element of B× U × B.
8 http://www.rdfabout.com/rdf/usgov/congress/people/B000084

http://www.rdfabout.com/rdf/usgov/congress/people/B000084
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5.2 Survey of Publishing

To further understand how blank nodes are used, we made a simple poll9 asking users
what is their intended meaning when they publish triples with blank nodes. Herein,
we briefly discuss the results, and we refer the interested reader to the web page for
more details. We sent the poll to two W3C’s public mailing lists: Semantic Web and
Linked Open Data, and got 88 responses. In order to identify active publishers, we
asked participants to indicate which datasets appearing in the LOD cloud (if any) they
have contributed to; 10 publishers claimed contributions to a current LOD dataset.

At the top of the web page, before the questions, we explicitly stated that “. . . the
poll is trying to determine what you intend when you publish blank nodes. It is not a
quiz on RDF Semantics. There is no correct answer”.

In the first question, we asked participants in which scenarios they would publish a
graph containing (only) the following triple: :John :telephone _:b. We chose the :telephone
predicate as an abstract example which could be read as having a literal or URI value.
Participants were told to select multiple options which would cover their reason(s) for
publishing such a triple. The options were: (1.a) John has a tel. number whose value
is unknown; (1.b) John has a tel. number but its value is hidden, e.g., for privacy; (1.c)
John has no tel. number; (1.d) John may or may not have a tel. number; (1.e) John’s
number should not be externally referenced; (1.f ) I do not want to mint a URI for the
tel. number; and (1.g) I would not publish such a triple. The results were as follows:

1.a 1.b 1.c 1.d 1.e 1.f 1.g
all (88) 46.6% 23.9% 0% 2.3% 18.2% 37.5% 41.0%

lod (10) 20% 0% 0% 0% 0% 30% 70%

In the second, we asked participants to select zero or more scenarios in which they
would publish a graph containing (only) the following triples: :John :telephone _:b1,

_:b2. The options were (2.a) John does not have a tel. number; (2.b) John may not have
a tel. number; (2.c) John has at least one tel. number; (2.d) John has two different tel.
numbers; (2.e) John has at least two different tel. numbers; and (2.f ) I would not publish
such triples. The results were as follows:

2.a 2.b 2.c 2.d 2.e 2.f
all (88) 0% 0% 23.9% 23.9% 35.2% 50.0%

lod (10) 0% 0% 0% 10% 40% 70%

The poll had an optional section for comments; a number of criticisms (∼12) were
raised about the :telephone example used and the restriction of having only one or two
triples in the graph. This leaves ambiguity as to whether the participant would publish
blank nodes at all (intended) or would not publish that specific example (unintended).
Thus, we note that answers 1.g and 2.f might be over-represented. Also, one concern
was raised about the “right” semantics of blank nodes in RDF (namely, that John has
a telephone number, without saying anything about our knowledge of the number) not
being an alternative; this was a deliberate choice.

9 http://db.ing.puc.cl/amallea/blank-nodes-poll

http://db.ing.puc.cl/amallea/blank-nodes-poll
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Table 2. Implications of existential semantics, local constants semantics and total absence of
blank nodes in theoretical aspects, standards and publishing

standard issue Existential Local constants No Blank Nodes

T
H

E
O

R
Y RDF

entailment NP-Complete X NP-Complete X PTime �
equivalence NP-Complete X NP-Complete X PTime �

RDFS entailment NP-Complete X NP-Complete X PTime �

S
T

A
N

D
A

R
D

S

Syntaxes shortcuts no change � no change � Sk. scheme ∼
OWL RDF mapping no change � no change � needs attention X
RIF — — — — — — —

SPARQL
semantics mismatch X aligns � aligns �
query syntax no change � may need attention ∼ may need attention ∼
round tripping Sk. scheme ∼ Sk. scheme ∼ no change �

RDB2RDF no primary key mismatch X aligns � Sk. scheme ∼

P
U

B
L

.

RDF
unknown values no change � no change � Sk. scheme ∼
legacy data ambiguous ∼ unambiguous � unambiguous �

Despite the limitations of the poll, we can see that blank nodes are not typically pub-
lished with the intent of a non-existent/non-applicable semantics (1c,1d,2b). Obvious
as it might be, the most conclusive result is that blank nodes are a divisive issue.

6 Alternative Treatments of Blank Nodes

Having covered the various desiderata for blank nodes across the several stakeholders,
we now consider some high-level alternatives in light of the discussion thus far. Table
2 summarizes the implications of three conceptual paradigms for blank nodes in dif-
ferent aspects of theory and practice. In the column “Existential”, we consider blank
nodes with the current semantics of RDF (existential variables). In the column “Local
constants” we consider blank nodes as constants with local scope. In the last column,
we assume that blank nodes are eliminated from the standard.

The approaches in the second and third columns often require an agreed Skolemiza-
tion scheme or at least the definition of frame conditions/best practices that guarantee
non-conflicting Skolemization across the Web (when considering to eliminate blank
nodes in published datasets) or within implementations (when merging datasets with
“local constants”). Wherever we state “Sk. scheme”, we refer to issues which may be
solved by such agreed mechanisms used to generate globally unique URIs from syntax
with implicit or locally scoped labels. We discuss the practicalities of (and proposals
for) such schemes in Section 6.1. The core principle here is that locally-scoped artifacts
can not “interfere” with each other across documents. For example, to enable syntactic
shortcuts in the absence of blank nodes (i.e., when the RDF universe consists of UL),
the URIs generated must be globally unique to ensure that legacy resources are not
unintentionally referenced and redefined when labels are not given.

In terms of the SPARQL query syntax, the use of blank nodes is purely syntactic
and is decoupled from how RDF handles them. Even if blank nodes were discontinued,
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the blank node syntax in queries could still be supported (though a fresh syntax may
be preferable). In terms of SPARQL round tripping, we refer to enabling blank nodes
(either local or existential) to persist across scopes, where one possible solution is,
again, Skolemization schemes. Note that SPARQL 1.1 will allow to “mint” custom
URIs in results as an alternative to blank nodes.

For RDB2RDF mappings where no primary key is available, when removing blank
nodes completely, the problem is again essentially one of implicit labeling, where a
(possibly specialized) Skolemization scheme would be needed. We note that, unlike for
existentials, a constant semantics for blank nodes would align better with the underlying
semantics of the database.

For RDF legacy data, our intention is to note that for a consumer, how ad-hoc data
should be interpreted remains ambiguous in the presence of non-leanness. Again, taking
our original example and assuming it has been found on the Web, with the existential
blank node semantics it is not clear whether leaning the data would honor the intent of
the original publisher. Deciding whether to lean or not may then, e.g., affect SPARQL
query answers. For the other alternatives, leanness is not possible and so the ambiguity
disappears. Conversely, we note that in a practical sense, publishers do not lose the
ability to state unknown values in the absence of existential variables; such values can
be expressed as unique constants which have no further information attached. Finally,
we note that Table 2 does not quite cover all concrete alternatives. One other possibility
we considered was not allowing blank nodes to ever be explicitly labeled, such that they
form trees in the syntaxes, essentially enforcing all graphs to have a blank-treewidth of
1. Note that some syntaxes (like Turtle and RDF/XML without nodeID) guarantee a
tree-structure for blank nodes. As discussed in Sections 3.1 & 4.1, this would make the
isomorphism-checks and simple and RDF(S) entailment-checks tractable, although still
with an implementational cost.

6.1 Skolemization Schemes

The following ideas have been proposed as recommended treatment of blank nodes in
RDF. They do not necessarily require changes in the standards—or at least not to the
semantics of RDF—but are intended as guidelines for publishers (i.e., “best practices”).
We will consider a set S of Skolem constants, such that every time Skolemization oc-
curs, blank nodes are replaced with elements of S. Different alternatives will consider
different behaviors and nature for this set.

6.1.1 S ⊆ U, Centralized
The idea of this alternative is to offer a centralized service that “gives out” fresh URIs
upon request, ensuring uniqueness of the generated constants on a global scale. For-
mally, there would be a distinguished subset of the URIs, S ⊆ U, such that all Skolem
constants belong to S. Every time the service gets a request, it returns an element s ∈ S
such that s has not been used before. This is very similar to what URL shorteners do10.
Since the returned constants are also URIs, they can be used in published documents.

It is not clear who should pay and take responsibility for such a service (the obvious
candidate being the W3C). The costs of bandwidth and maintenance can be too high.

10 See, for example, http://bit.ly/ or http://is.gd/.

http://bit.ly/
http://is.gd/
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For example, the system should be able to cope with huge individual requests (see
table 1). Also, the very idea of centralizing a service like this seems to go against the
spirit of the Semantic Web community, though this might not be relevant for everyone.
Further, the mere existence of such a system will not guarantee that users will only
use this option when Skolemizing. Publishers will still have the freedom of using other
methods to replace blank nodes with constants of their own choice.

6.1.2 S ⊆ U, Decentralized
Similar to the previous case, but with no central service, so each publisher will generate
their constants locally. This has been discussed already by the RDF Working Group11

and by the general community through the public mailing list of the Semantic Web
Interest Group12. In both cases, the proposal is to establish a standard (but voluntary)
process for generating globally unique URIs to replace blank nodes for querying, pub-
lishing and performing other operations with RDF graphs. A requirement of this pro-
cess is that it contains a best practice that avoids naming conflicts between documents.
Naming conflicts on the Web are typically avoided by pay level domains, since they
guarantee a certain level of “authority”[16]. Along these lines, at the time of writing,
the proposal of the RDF Working Group is to add a small section on how to replace
blank nodes with URIs to the document “RDF Concepts” [18, §6.6]. The idea would be
that blank nodes are replaced with well-known URIs [21] with a registered name that
is to be decided (probably “genid” or “bnode”) and a locally-unique identifier, which
would make a globally-unique URI, since publishers would only be supposed to use
their own domains. For example, the authority responsible for the domain example.com
could mint the following URI for a blank node:

http://example.com/.well-known/bnode/zpHvSwfgDjU7kXTsrc0R

This URI can be recognized as the product of Skolemization. If desired, a user could
replace it with a blank node. Moreover, publishers can encode information about the
original blank node in the identifier, such as the name of the source graph, the label of
the blank node in that graph, and the date-time of Skolemization.

It should be noted though that, although no central control authority is needed for
such decentralized Skolemization, this proposal would allow third parties malicious,
non-authoritative use of bnode-URIs which are not in their control (i.e. outside their
domain): the often overlooked “feature” of blank nodes as local constants not modifi-
able/redefinable outside the graph in which they are published would be lost.

7 Conclusions

In this paper, we have provided detailed discussion on the controversial and divisive
issue of blank nodes. Starting with formal considerations, we covered treatment of blank
nodes in the W3C standards, how they are supported, and what they are needed for. The
main use-case for blank nodes is as locally-scoped artifacts which need not be explicitly

11 See http://www.w3.org/2011/rdf-wg/wiki/Skolemisation.
12 See http://www.w3.org/wiki/BnodeSkolemization.

http://www.w3.org/2011/rdf-wg/wiki/Skolemisation
http://www.w3.org/wiki/BnodeSkolemization
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labeled. We also looked at how blank nodes are being published in Linked Data, where
they are perhaps more prevalent than the best-practices would suggest; we also note that
although rare, complex structures of blank nodes are present on the Web.

Informed by our earlier discussion, we proposed and compared three conceptual
paradigms for viewing blank nodes. The first one is rather radical and involves eliminat-
ing blank nodes from the standard, with the additional consequences of having to deal
with legacy data and with possible changes in other standards that rely on blank nodes in
one way or another. The second one consists in standardizing the already widespread in-
terpretation of blank nodes as local constants; most standards (like OWL and SPARQL)
would not need to change at all. The third one is twofold: keeping the existential nature
of blank nodes in RDF, and ensuring this is the meaning that other standards follow, for
example, by means of a best-practices document; in this case, even if SPARQL were to
follow the notions of leanness and entailment, query answering would not be expensive
in most cases due to a good structure for blank nodes in currently published data. In
all these alternatives, a Skolemization scheme would be handy as an aid for publishers
to update their would-be obsolete data. Finally, we note that no alternative stands out
as “the one solution to all issues with blank nodes”. Discussion is still open and pro-
posals are welcome, but as the amount of published data grows rapidly, a consensus is
very much needed. However, in the absence of an undisputed solution, the community
may need to take an alternative which might not be the most beneficial, but the least
damaging for current and future users.
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Abstract. We propose a novel application of clustering analysis to iden-
tify regularities in the usage of entities in axioms within an ontology.
We argue that such regularities will be able to help to identify parts of
the schemas and guidelines upon which ontologies are often built, espe-
cially in the absence of explicit documentation. Such analysis can also
isolate irregular entities, thus highlighting possible deviations from the
initial design. The clusters we obtain can be fully described in terms of
generalised axioms that offer a synthetic representation of the detected
regularity. In this paper we discuss the results of the application of our
analysis to different ontologies and we discuss the potential advantages
of incorporating it into future authoring tools.

1 Introduction

Ontologies are often built according to guidelines or schemas that give rise to
repeating regularities in the use of entities in axioms. Recognising those regular-
ities is important in understanding the ontology and assuring that it conforms
to the schemas. A regular ontology shows organisation of the knowledge and
thus its coherence. For example, in the wine ontology1, all the wines at the in-
dividual level are described in similar ways; they have a particular type of wine
and there are property assertions defining their body, origin, maker, flavour etc.
The inspection of these regularities can give an insight into the construction of
the ontology. By looking at the description of some wines, the user can have an
insight about the template that was used to describe them. Deviations from this
regular design might either be legitimate exceptions in the regularities or defects
in modelling. For example, the individual TaylorPort does not have any property
assertions referring to its origin, as this is defined on its type (Port SubClassOf

locatedIn value PortugalRegion). Having a mechanism that can help to isolate such
deviations could be a useful tool for quality assurance.

It is, however, difficult to trace irregularities and regularities by eye, especially
in big ontologies. The reasoner can check the satisfiability of concepts in the
ontology, and there are tools [9,5] that provide explanations for unsatisfiabilities

1 http://www.w3.org/TR/owl-guide/wine
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and other entailments. However, they cannot trace irregularities in the design as
these are not logical errors.

Ontology environments such as Protégé-4, Swoop, NeOn Toolkit and Top
Braid Composer provide some structural information about the ontology through
visualisations, such as hierarchies and panels showing the usage of the entities.
The task of spotting regularities in the usage of axioms in entity descriptions is,
however, not supported beyond this basic exposure of usage.

Ontology engineering has adopted the idea of design patterns [4] to capture
accepted modelling solutions to common issues [2,3]. Patterns of axioms, how-
ever, can exist throughout an ontology without being an accepted design pattern.
In this paper we focus on the general notion of patterns. In the remainder of the
paper we will refer to them as regularities. Such a regularity is illustrated in the
following axioms in the wine ontology:

α1 = PinotBlanc EquivalentTo wine and

(madeFromGrape value PinotBlancGrape) and (madeFromGrape max 1 Thing)

α2 = CabernetSauvignon EquivalentTo wine and (madeFromGrape value

CabernetSauvignonGrape) and (madeFromGrape max 1 Thing)

The regularity can be expressed with the abstract axiom:

α = ?xWine EquivalentTo wine and

(madeFromGrape some ?xGrape) and (madeFromGrape max 1 Thing)

where ?xWine = {PinotBlanc, CabernetSauvignon }, ?xGrape ={PinotBlancGrape, Caber-

netSauvignonGrape} are variables holding similar entities.
We present a novel framework for inspecting such regularities and cluster-

ing entities in the ontology according to these kinds of regularities. Clustering
is a common scientific approach for identifying similarities [13]. The proposed
method is based on capturing similar usage of the entities; such similar entities
are expected to result in the same cluster. The description of the clusters is pro-
vided in abstract forms; axioms containing meaningful placeholders (e.g. ?xWine

EquivalentTo wine and (madeFromGrape some ?xGrape) and (madeFromGrape max 1

Thing)). With such a framework, tools could help the inspection of regularities
when attempting to comprehend ontologies, where information on the design
style and schemas is often poorly documented and not represented explicitly in
the ontology itself.

Efforts for developing or transforming ontologies using patterns are reported
in [12], [2]. In [7], the use of the Ontology Pre-Processor Language (OPPL) as a
means of embedding knowledge patterns in OWL ontologies is presented. How-
ever, little work is known in the field of regularity detection in ontologies. In [11]
an analysis of collections of OWL ontologies with the aim of determining the
frequency of several combined name and graph patterns is described. However,
this work mainly focuses on lexical patterns, with some additional examination
on how these apply in the taxonomy hierarchy. It does not explicitly involve
identification of regularities in axiom usage. There appears to be no framework
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that can identify regularities in the axioms of an ontology and highlight entities
that have been designed according to these regularities.

2 Clustering Framework

The purpose of cluster analysis is to divide data into groups (clusters) that are
meaningful, useful or both [13]. Our particular problem is to partition the set
of entities in an ontology according to their usage, i.e.: entities in the same
cluster occur with similar axioms playing similar roles. Cluster analysis relies
on the notion of distance to quantify how similar (or dissimilar) and, therefore,
how close or far apart two entities are in the clustering space. In the literature
there are several clustering techniques; we chose agglomerative clustering and
we report an informal description of the algorithm we used in Algorithm 1. In
our algorithm, the implementation of step 1, and in particular, the distance
adopted to compute the proximity matrix is the most important aspect of the
implementation and the main focus of the rest of this section; steps 2–7 are
typical steps for agglomerative cluster analysis and are not explained further.
However, in our implementation, the algorithm will continue agglomerating until
the distance between all possible pairs of elements in the two closest clusters is
less than 1.

Algorithm 1. Clustering algorithm
Require: A set of entities.
Ensure: A set of clusters.

1: Compute the proximity matrix {matrix containing the values of the distance be-
tween all entities}

2: Assign to the current set of clusters the set of singleton clusters, each representing
an input entity.

3: repeat
4: Merge the closest two clusters, replace them with the result of the merge in the

current set of clusters.
5: Update the proximity matrix, with the new distance between the newly created

cluster and the original ones.
6: until The stopping criterion is met
7: return The current set of clusters.

In the approach taken here, the calculation of the distance is based on the sim-
ilarity of the structure of the axioms in the ontology. For axiom comparison, we
transform them into a more abstract form following a place-holder replacement
policy. We will define the notion of similar structure of axioms more formally in
the following, and show how this leads to the particular distance we adopted for
our cluster analysis.

Comparing axioms: Let us consider the Pizza Ontology2. Its main scope is
pizzas and their toppings along with other information such as the country of
2 http://www.co-ode.org/ontologies/pizza/

http://www.co-ode.org/ontologies/pizza/
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origin for each pizza, the spiciness of some toppings, or their classification as
vegetables, fish, or meat. Among other things, in this ontology, we observe that
all the topping classes are used as fillers in axioms like:

aPizza SubClassOf hasTopping some aTopping

aPizza SubClassOf hasTopping only (aTopping or anotherTopping or . . . )

In other words, classes like MozzarellaTopping and TomatoTopping seem sim-
ilar because they appear as fillers of an existential restriction on the property
hasTopping within a sub-class axiom where the left-hand side is a pizza. They
also appear as disjuncts in a universal restriction on the same property in an-
other sub-class axiom whose left-hand side is, again, a pizza. Likewise, pizzas in
this ontology tend to appear on the left-hand side of sub-class axioms describ-
ing their toppings, base, and country of origin. Therefore, our cluster analysis
should, in the case of the pizza ontology, put together all toppings in a single
cluster, pizzas in another, and countries of origin in a third one and so on. More
formally, we need to introduce a distance that quantifies the difference between
the usage of two entities in a set of axioms (ontology).

Definition 1. [Place-holder replacement] Let O be an ontology and let Φ =
{owlClass, owlObjectProperty, owlDataProperty, owlAnnotationProperty,
owlIndividual, *} be a set of six symbols that do not appear in the signature3

of O - sig(O). A place-holder replacement is a function φ : sig(O) → sig(O) ∪ Φ
satisfying the following constraints: Consider e ∈ O then φ(e) =

– e or * or owlClass if e is a class name;
– e or * or owlObjectProperty if e is a object property name;
– e or * or owlDataProperty if e is a data property name;
– e or * or owlAnnotationProperty if e is a annotation property name;
– e or * or owlIndividual if e is an individual property name.

We define the particular placeholder replacement φS as φS(e)=

– owlClass if e is a class name;
– owlObjectProperty if e is an object property name;
– owlDataProperty if e is a data property name;
– owlAnnotationProperty if e is an annotation property name;
– owlIndividual if e is an individual property name.

Definition 2. [Place-holder replacement in axioms] Let O be an ontology, α ∈
O one of its axioms and φ a place-holder replacement function. We define φAx

as a function that for the input α returns a new axiom by applying φ to all the
entities e ∈ sig(α).

Example 1. Let our O be the Pizza ontology mentioned above and let us define
φ as follows. ∀e ∈ O, φ(e)=
3 For signature here we mean the set of class names, data/object/annotation property

names, individuals referenced in the axioms of an ontology O.
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– * if e ∈ {Margherita, Capricciosa}4;
– φS(e) otherwise;

Let us now compute the values of φAx(α) for some of the axioms in O

– α = Margherita DisjointWith Cajun, φAx(α)= * DisjointWith owlClass;
– α = Capricciosa DisjointWith Cajun, φAx(α)= * DisjointWith owlClass;
– α = Margherita SubClassOf hasTopping some TomatoTopping,

φAx(α)= * SubClassOf owlObjectProperty some owlClass;
– α = Capricciosa SubClassOf hasTopping some TomatoTopping,

φAx(α)= * SubClassOf owlObjectProperty some owlClass;

We have defined the replacement function that transforms the axioms into ab-
stractions and we can proceed with the measure of the distance.

Distance measure: We define the distance function as follows:

Definition 3. [Distance] Let O be an ontology, e1 and e2 be two entities from
sig(O) and φ a place-holder replacement function. We denote Axφ(e) the set
{φAx(α), α ∈ O, e ∈ sig(α)}, i.e: the set of pace-holder replacements for the
axioms in O that reference e.

We define the distance between the two entities, dφ(e1, e2) as:

d(e1, e2) =
|(Axφ(e1) ∪ Axφ(e2)| − |Axφ(e1) ∩ Axφ(e2))|

|(Axφ(e1) ∪ Axφ(e2)|

From this we can observe that ∀O, φ, e1, e2 : 0 ≤ dφ(e1, e2) ≤ 1. The place-holder
replacement function φ is a way to control the granularity of our distance.

Example 2. Let ourO be the Pizza ontology again and let us define φ1 as follows.
∀e ∈ O, φ1(e)=

– * if e ∈ {TomatoTopping, PizzaBase};
– φS(e) otherwise;

Let us now compute the values of φ1Ax(α) for a pair of axioms in O

– α = Margherita SubClassOf hasTopping some TomatoTopping,
φ1Ax(α) = owlClass SubClassOf owlObjectProperty some *;

– α = Pizza SubClassOf hasBase some PizzaBase,
φ1Ax(α) = owlClass SubClassOf owlObjectProperty some *.

This means that dφ1(TomatoTopping, PizzaBase) < 1 as |Axφ1(e1)∩Axφ1(e2)| > 0
and, therefore, |(Axφ1(e1) ∪ Axφ1(e2)| − |Axφ1(e1) ∩ Axφ1(e2)| < |(Axφ1(e1) ∪
Axφ1(e2)|.

The consequence would be that our distance dφ1 does not separate as cleanly
as possible TomatoTopping (and likewise several sub-classes of PizzaTopping)
from PizzaBase. Let us now compare it with another place-holder replacement
function, φ2, defined as follows:
4 The * placeholder represents entities, which distance is computed. We denote this

placeholder for keeping track of the position of the entities in the referencing axioms.
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– * if e ∈ {TomatoTopping, PizzaBase};
– e if e is a object property name;
– φS(e) otherwise;

Then our φ2Ax for the same values for α will be:

– α = Margherita SubClassOf hasTopping some TomatoTopping,
φ2Ax(α) = owlClass SubClassOf hasTopping some *;

– α = Pizza SubClassOf hasBase some PizzaBase,
φ2Ax(α) = owlClass SubClassOf hasBase some *

This will keep dφ2(TomatoTopping, PizzaBase) = 1

Changing the granularity of the place-holder replacement function produces
more or less sensitive distance functions. The two extremes are replacing every
entity with a place-holder or not replacing any of them. Whilst the former pro-
duces a distance that is far too tolerant and puts together entities that seem
unrelated, the latter will most likely result in a distance that scores 1 (maximal
distance) for most entity pairs. In this work we propose a tradeoff where we
delegate the decision of whether to replace an entity in an axiom to a measure
of its popularity with respect to the other entities in the same kind of axiom
within the ontology. More formally:

Definition 4 (Popularity). Let O be an ontology, e ∈ sig(O) an entity. The
place-holder replacement function φS

Ax for the axioms of O will extract the
structure of each axiom.

Given an axiom α ∈ O, let us define the set Axα = {β ∈ O, φS
Ax(β) =

φS
Ax(α)}, that is, the set of axioms in O that have the same structure as α.
We can, finally, define popularity πAxα of an entity f ∈ sig(O)as

πAxα(f) = |{β∈Axα,f∈sig(β)}|
|Axα|

that is, the number of axioms in Axα that reference f over the size of Axα

itself.

We can plug-in popularity as defined above into a place-holder replacement
function and therefore in our distance as follows: When computing a distance
between two entities, namely e1 and e2, for each axiom α where either occurs,
the function replaces e1 or e2 with * and decides whether to replace the other
entities with a place-holder depending on their popularity across all the axioms
that have the same structure as α.

Definition 5 (Popularity based place-holder replacement). Let O be an
ontology, e ∈ sig(O) an entity, and α ∈ O an axiom. Let Axα and πAxα be re-
spectively the set of axioms sharing the same structure as α and the popularity
metric defined in Definition 4. Finally, let σ be a function that we call popu-
larity criterion and maps a popularity value into the set {true, false}.

∀f ∈ sig(O), we define our function as follows: φα
e (f)
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– * if f = e;
– f if σ(πAxα(f)) = true;
– φS(f) otherwise.

We can now use the popularity based place-holder replacement defined above
in our distance (Definition 3). Given two entities e1 and e2 according to the
formula we need to compute Axφ(e1) and Axφ(e2). For every axiom α in the
ontology O that references e1 (resp. e2), we compute φAx(α) = φα

e1Ax(α) (resp.
φAx(α) = φα

e2 Ax(α)). Informally, for each axiom, we compute our replacement
function based on the popularity of the entities across the set of axioms sharing
the same structure as the axiom we are currently considering. In the definition
above we deliberately parameterised the decision criterion to make our distance
framework independent from any particular implementation. In this work, how-
ever, we compute a confidence interval [l, u] for the mean value of πAxα . (95%
confidence). We assume the variance is unknown; therefore in order to com-
pute the area under the distribution function (z), we use the values for the t
distribution, rather than the normal one in the formulas:

l = M − z · sd√
N

, u = M + z · sd√
N

where with sd we denote the standard deviation and with M the mean com-
puted on the set of entities (whose size is N) in the ontology. If the popularity
of a given entity is greater than u then we assign true to our σ (see Definition 5),
false otherwise.

Example 3. Once again, let our ontology be the Pizza ontology and let us use
as our place-holder replacement function φ, the one in Definition 5 (based on
popularity). Let us compute the replacements for the same axioms as in Exam-
ple 2. We omit the calculations but the confidence interval for the popularity
when applied to such axioms are such that the only entities which will not be
replaced are: hasTopping and TomatoTopping, therefore:

– α = Margherita SubClassOf hasTopping some TomatoTopping,
φ1Ax(α) = owlClass SubClassOf hasTopping some *;

– α = Pizza SubClassOf hasBase some PizzaBase,
φ1Ax(α) = owlClass SubClassOf owlObjectProperty some *.

The extensive usage of object property hasTopping in this particular kind of
axiom is the reason why our place-holder replacement function deems it as im-
portant and preserves it in the replacement result.

We observe, however, that deciding replacements based on confidence inter-
vals is strongly dependant on the quality of the sample data. TomatoTopping,
for instance, in the example above, is judged popular too. The reason is that
all pizzas in the ontology have TomatoTopping (and MozzarellaTopping) among
their toppings. Conversely, the formula correctly spots that several other enti-
ties (Margherita, Pizza, hasBase, . . . ) are not relevant when dealing with axioms
presenting a particular structure (owlClass SubClassOf owlObjectProperty some
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owlClass). We claim that this is preferable w.r.t. making an a priori decision,
maybe based on users’ intuitions, on what should be replaced and when.

Agglomerative hierarchical clustering: To complete the discussion of our
implementation for Algorithm 1, we need to illustrate how we update the dis-
tances in our proximity matrix at every agglomeration and what we use as
our stopping criterion. For the former we use the Lance-Williams formula (see
Section 8.3.3 in [13] - page 524). This formula computes the distance between
cluster Q and R, where R is the result of a merger between clusters A and B,
as a function of the distances between Q, A, and B. The distance between two
sets (clusters) is a function of the distance between their single elements. There
are several approaches to compute this, each corresponds to a different value
configuration of the coefficients in the general Lance-Williams formula. In the
experiments described in the following sections, we used the so-called centroid
configuration5.

As its stopping criterion, our implementation uses a heuristic decision:

Definition 6 (Agglomerate decision function). Let O be an ontology and d
a distance function. We define the function aggd : 2sig(O)×2sig(O) → {true, false}
as follows: Given E = {e1, e2, . . . , en} and F = {f1, f2, . . . , fm} be two clusters,
aggd(E, F ) =

– false if ∃1 ≤ i ≤ n(∃1 ≤ j ≤ m : d(ei, fj) = 1);
– true otherwise.

The algorithm terminates when no pair in the current set of clusters returns true
for the Agglomeration decision function aggd, defined above. When clustering
the Pizza ontology, our implementation returns 17 clusters containing over 110
entities in total; these include: a cluster for the toppings that are used in pizzas;
one for the named pizzas (pizza with a name and a description of their toppings);
and one for the country of origin of the toppings.

As intuitive these groups may seem, given the average familiarity people have
with the pizza domain, this represents a cluster analysis based on the actual
usage of the entities in the ontology. In this example clusters seem to follow the
taxonomy quite well, however, as we shall see in the next section this may not be
the case. Performing this kind of analysis can indeed reveal common use between
entities that are far apart in the taxonomical hierarchy.

Description of the clusters: Once the clusters are available, the axioms that
reference entities in the same cluster can be generalised and provide a more
abstract view on the entire cluster. We can define a generalisation as a simple
substitution of an entity with a variable within an axiom. More formally

Definition 7 (Generalisation). Let O be an ontology, E = {e ∈ sig(O)} a set
of entities, and α ∈ O an axiom. Let us now choose a symbol (variable name),
5 Although vaguely related, not to be confused with a centroid in the K-means cluster

analysis - see Chapter 8 in [13].
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say ?x. We generalise over E with ?x in α (g(α, E, ?x)) when we replace every
element of E in α with ?x.

In the definition above, as well as in the remainder of the paper, we will borrow
the syntax for variables from OPPL6, a declarative language for manipulating
OWL ontologies [6]. However, for the purpose of this paper, it is sufficient to
say that an OPPL variable can be: Input or Non generated, i.e.: they can
replace entities in axioms of the corresponding type (there are OPPL variables
for each type of entity in a signature); Generated, i.e: their value is the result
of an expression depending on other variables.

Example 4 (Generalised Pizzas). Let O be our Pizza ontology and let cluster1 be
the cluster of all the toppings used in pizzas obtained using our cluster analysis
above, and cluster2 be the cluster of all pizzas. Given α = Margherita SubClassOf

hasTopping some TomatoTopping:

– g(α, cluster1, ?cluster1) = Margherita SubClassOf hasTopping some ?cluster1;
– g(α, cluster2, ?cluster2) = ?cluster2 SubClassOf hasTopping some TomatoTopping;

or composing the two

– g(g(α, cluster2, ?cluster2), cluster1, ?cluster1) = ?cluster2 SubClassOf hasTopping

some ?cluster1

where ?cluster1 and ?cluster2 are two variables of type class. (In OPPL: ?cluster1
:CLASS, ?cluster2:CLASS).

Generalisations provide a synthetic view of all the axioms that contribute to
generate a cluster of entities. Each of these axioms can indeed be regarded as
an instantiation of a generalisation, as they can be obtained by replacing each
variable in g with entities in the signature of the ontology.

3 Results and Evaluation

Four ontologies (AminoAcid 7, OBI8, a module of the SNOMED-CT9 containing
axioms about hypertension and KUPO10) were selected for testing the clustering
framework; Table 1 summarises some results.

The AminoAcid ontology has been developed internally, allowing comments
on the clusters from the ontology’s authors. The remaining ontologies are docu-
mented, enabling further analysis and evaluation of the clusters and regularities.
All of the selected ontologies preexisted the clustering framework. A quantitive
analysis was also performed on 85 ontologies from the BioPortal11 repository for
6 http://oppl2.sourceforge.net
7 http://www2.cs.man.ac.uk/ mikroyae/2011/

iswc/files/amino-acid-original.owl
8 http://purl.obolibrary.org/obo/obi.owl
9 http://www2.cs.man.ac.uk/ mikroyae/2011/iswc/files/

sct-20100731-stated Hypertension-subs module.owl
10 http://www.e-lico.eu/public/kupkb
11 http://bioportal.bioontology.org/

http://oppl2.sourceforge.net
http://www2.cs.man.ac.uk/~mikroyae/2011/iswc/files/amino-acid-original.owl
http://www2.cs.man.ac.uk/~mikroyae/2011/iswc/files/amino-acid-original.owl
http://purl.obolibrary.org/obo/obi.owl
http://www2.cs.man.ac.uk/~mikroyae/2011/iswc/files/sct-20100731-stated_Hypertension-subs_module.owl
http://www2.cs.man.ac.uk/~mikroyae/2011/iswc/files/sct-20100731-stated_Hypertension-subs_module.owl
http://www.e-lico.eu/public/kupkb
http://bioportal.bioontology.org/
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Table 1. Clustering results on the four selected ontologies

Ontology name No of Clusters No of Clustered entities Cluster coverage per
generalisation (%)

AminoAcid 16 77 (84%) 78
OBI 445 2832 (70%) 70

KUPKB 26 470 (44%) 51
SNOMED-CT 77 420 (80%) 62

which clusters were computed in less than 3 minutes. The framework was tested
with the asserted information of the ontologies, for analysing the regularities of
their construction.

The number of clusters in Table 1 shows that in most cases more than 50%
of the entities in the ontologies were clustered. In principal, the union of the
generalisations describes the cluster, thus a single generalisation might not be
necessarily applicable for all the values in the cluster. However, in all four ontolo-
gies the majority of the values in a cluster is covered by a single generalisation
(cluster coverage percentiles in Table 1).

The results in all of the ontologies are of similar impact and can be found in
detail online12. In this section, however, we will highlight some cases from each
ontology.

Inspecting regularities: We detected regularities in all four ontologies and we
evaluate them by referring to their documentation or ontology authors. In OBI
ontology, ?cluster7 includes 47 T cell epitopes of specific type that are equivalent
classes. The structure of the definition of these terms is similar. To demonstrate
this regularity we will consider two classes from ?cluster7, the “epitope specific
killing by T cells” and the “epitope specific T cell activation”. These classes appear
on the left hand side of the axioms:

α = ’epitope specific killing by T cells’ EquivalentTo ’T cell mediated cytotoxicity’

and (’process is result of’ some ’MHC:epitope complex binding to TCR’)

α = ’epitope specific T cell activation’ EquivalentTo ’T cell activation’

and (’process is result of’ some ’MHC:epitope complex binding to TCR’)

The generalisation for these axioms is:

g(α) = cluster7 EquivalentTo ?cluster8 and (’process is result of’ some cluster91)

where ?cluster8 = {’T cell mediated cytotoxicity’, ’T cell activation},
?cluster91 = {’MHC:epitope complex binding to TCR’}

?cluster8, ?cluster91 are placeholders for the corresponding classes, while the
object property ’process is result of’ does not belong to any cluster, thus it is not
represented by a placeholder.

In [10], a methodology for developing ’analyte assay’ terms in OBI using a tem-
plate based on spreadsheets is described. The clustering framework, gave such a

12 http://www2.cs.man.ac.uk/~mikroyae/2011/iswc/

http://www2.cs.man.ac.uk/~mikroyae/2011/iswc/
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cluster of classes (cluster35) and their descriptions in the form of generalisations
highlighting their commonalities. For example, there are 13 axioms in cluster35
covered by the following generalisation, which describes the analyte assays that
are used to “achieve a planned objective”:

g(α) = ?cluster35 SubClassOf ?cluster117 some ?cluster16

Example instantiation: α= ’genotyping assay’ SubClassOf achieves planned objective

some ’sequence feature identification objective’

In [8] the design process of the KUP ontology is explained and two main
patterns are described for generating the cell types in the ontology. The results
of the clustering framework showed such clusters of cells and clusters of classes
used as fillers of the properties describing the cells (e.g. participates in, part of).
Two example generalisations capturing these regularities are:

1. g(α) = ?cluster13 EquivalentTo ?cluster27 and (part of some ?cluster2),

where ?cluster13, ?cluster27, ?cluster2 : CLASS, ?cluster27 = {cell}
Example Instantiation:

α = ’bladder cell’ EquivalentTo cell and (part of some ’bladder’)

2. g(α) = ?cluster1 SubClassOf (participates in some ?cluster16) and (participates in

some ?cluster19), where ?cluster1, ?cluster16, ?cluster19 : CLASS

Example Instantiation:

α= ’kidney interstitial fibroblast’ SubClassOf (participates in some ’cytokine production’)

and (participates in some ’extracellular matrix constituent secretion’)

Each one of these generalisations corresponds to a different cluster in the
ontology. Also, these regularities were described in [8]. The first regularity is en-
capsulated in the description of the first pattern and the second regularity is en-
capsulated in the description of the second pattern. Additional regularities were
also detected that refer to longer conjunctions of the previous generalisations (e.g.
a conjuction of part of relationships on the right hand side of the axiom).

In addition, the clustering framework gave an alternative view based on the
similar usage of the entities in the ontology. It could selectively reveal repeating
structures in the ontology that were more difficult to inspect manually. For
example, in SNOMED the highlighted classes of Figure 1(a) are grouped in the
same cluster and their similar definition is given by the generalisation of Figure
1(b). However, the inspection of regularities through navigation in the class
hierarchy is not an easy task because of the high level of nesting and complexity
of the hierarchy. The form of regularity of Figure 1(b) is also described in the
technical guide of the ontology [1](section 17.2.2., page 180).

Fully covered generalisations: As it has been shown in Table 1 a single
generalisation does not necessarily apply to all of the values in the cluster.

However, there are cases that an individual generalisation can be applicable
to all values of its cluster. Such an example is shown in Figure 2, taken from
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(a) Classes of ?cluster18 as shown in
Protégé class hierarchy view. The simi-
lar entities do not appear to be siblings
in the class hierarchy.

Generalisation:

g(α) = ?cluster18 EquivalentTo ?cluster4

and ?cluster6

and (RoleGroup some

((?cluster10 some ?cluster2)

and (?cluster74 some ?cluster16)))

where

?cluster6, ?cluster18, ?cluster4, ?cluster2,

?cluster16 : CLASS

?cluster10, ?cluster74 : OBJECTPROPERTY.

Example Instantiation:

α = SCT 79537002 EquivalentTo SCT 118681009

and SCT 387713003

and (RoleGroup some

((SCT 260686004 some SCT 129284003))

and (SCT 363704007 some SCT 113331007)))

SCT 79537002: ’Operation on endocrine

system (procedure)’

SCT 118681009: ’Procedure on

endocrine system (procedure)’

SCT 387713003: ’Surgical procedure (procedure)’

SCT 260686004: ’Method (attribute)’

SCT 129284003: ’Surgical action (qualifier value)’

SCT 113331007: ’Procedure site (attribute)’

SCT 113331007: ’Structure of endocrine

system (body structure)’

(b) Generalisation and example instantia-
tion of ?cluster18

Fig. 1. View and description of entities of cluster18 in SNOMED hierarchy

the AminoAcid ontology. The first generalisation covers more than one axiom
corresponding to a single entity in ?cluster1 (an example instantiation is shown
in Figure 2). All the amino acids in the ontology are described following the
same template, expressed by the set of 4 generalisations of Figure 2, abstracting
202 axioms. This is a clear indication of the impact the abstraction can achieve
when trying to comprehend the ontology. The information that describes these
entities is gathered in one place and expressed in a synthetic and meaningful
way. That is, because each variable represents a cluster of entities. For example,
the ontology engineer by looking the instantiation of the first generalisation
understands that cluster5 holds all the physicochemical properties of the amino
acids and cluster2 holds all the fillers of these properties.

An analysis of the generalisation coverage and axiom coverage for 85 ontolo-
gies from BioPortal is presented in Figure 3(a) and Figure 3(b) respectively. The
results of Figure 3 show that there are ontologies, which have cluster coverage
higher than 30% and in many cases the average number of instantiations per gen-
eralisation exceeds 20. It should be marked that most of the ontologies that have
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Values:

?cluster1 : CLASS

?cluster1 = {Alanine, Arginine, Aspartate,

Cysteine, Glutamate, Glutamine, Histidine,

Isoleucine, Leucine, Lysine, Methionine,

Phenylalanine, Proline, Serine, Threonine,

TinyAromaticAminoAcid, Tryptophan,

Tyrosine, Valine, Glycine}

Generalisations:

1.?cluster1 SubClassOf ?cluster5 some ?cluster3

2.?cluster1.IRI?cluster7”constant”

3.?cluster1 SubClassOf AminoAcid

4.DisjointClasses:’set(?cluster1.VALUES)’

where ?cluster3 : CLASS,

?cluster7 : ANNOTATIONPROPERTY,

?cluster5 : OBJECTPROPERTY

Example Instantiations:

for the value ?cluster1 = {Alanine}
1.Alanine SubClassOf hasSize some Tiny

Alanine SubClassOf hasSideChainStructure

some Aliphatic

Alanine SubClassOf hasCharge some Neutral

Alanine SubClassOf hasPolarity some Non-Polar

Alanine SubClassOf hasHydrophobicity

some Hydrophobic

2.Alanine label “Alanine”

3.Alanine SubClassOf AminoAcid

4.DisjointClasses: Alanine, Cysteine, Aspartate,

Glutamate,Phenylalanine, Glycine, Histidine,

Isoleucine,Lysine, Leucine, Methionine,

Asparagine, Proline, Glutamine, Arginine, Serine,

Threonine, Valine, Tryptophan, Tyrosine

Fig. 2. Values, generalisations and example instantiation of ?cluster1 in the AminoAcid
Ontology

a high cluster coverage percentile they also have a high average number of in-
stantiations per generalisation. For example, in ontology 34 the cluster coverage
per generalisation is 87% and the average number of axioms per generalisation is
560. These cases show that very few generalisations can summarise big number
of axioms and can give an inclusive description of the clusters in the ontology.

Inspecting irregularities: In the example of Figure 2, we notice that a possible
value of ?cluster1 is the TinyAromaticAminoAcid. This value is covered only by
the third generalisation. The axioms describing this class are:

1. TinyAromaticAminoAcid EquivalentTo AminoAcid and hasSize some Tiny

2. TinyAromaticAminoAcid SubClassOf AminoAcid

The second axiom is redundant causing the TinyAromaticAminoAcid class to
result in the same cluster with the amino acids. By removing this axiom, the
TinyAromaticAminoAcid no longer is a value of ?cluster1. This irregularity is a
design defect.

However, there were cases that entities were not included in a cluster because
their description was a deliberate exception in the regularity. E.g., in SNOMED,
the ’Surgical insertion - action (qualifier value)’ is not included in cluster16 as it is
not used in a regular axiom like the ’Transplantation - action (qualifier value)’:

α = ’Transplantation (procedure)’ EquivalentTo ’Procedure by method (procedure)’ and

(RoleGroup some (’Method (attribute)’ some ’Transplantation-action (qualifier value)’)),

g(α) = ?cluster30 EquivalentTo ’Procedure by method (procedure) and (RoleGroup some

(?cluster74 some ?cluster16)))
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(a) average cluster coverage per generalisation

(b) average instantiations per generalisation

Fig. 3. Graph showing selected clustering results for 85 ontologies in BioPortal

Values:

?cluster6 : CLASS

?cluster6 = {SmallHydrophilicAminoAcid,

SmallHydrophobicAminoAcid,

SmallNonPolarAminoAcid, SmallPolarAminoAcid,

SmallPositiveAminoAcid},

Generalisation :

g(α) = ?cluster6 EquivalentTo ?cluster2 and ?cluster9

where cluster2, cluster9 : CLASS

Example instantiation:

α = SmallPositiveAminoAcid EquivalentTo

PositiveChargedAminoAcid and SmallAminoAcid

Fig. 4. Values, generalisations and
example instantiation of ?cluster6 in
the AminoAcid Ontology

Values:

?cluster8 = {TinyHydrophobicAminoAcid,

TinyNonPolarAminoAcid, TinyPolarAminoAcid}
Generalisation :

g(α) = ?cluster8 EquivalentTo AminoAcid

and (?cluster5 some ?cluster10)

and (?cluster5 some ?cluster3)

where ?cluster3 = {Tiny (CLASS)}
?cluster5 : OBJECTPROPERTY,

?cluster10 : CLASS.

Example instantiation:

α2 = TinyPolarAminoAcid EquivalentTo

AminoAcid and hasSize some Tiny

and hasPolarity some Polar

Fig. 5. Values, generalisations and
example instantiation of ?cluster8 in
the AminoAcid Ontology

To evaluate the sensitivity of the framework, we edited regular axioms of the
ontologies to check if these can be identified by the algorithm. In the AminoAcid
ontology these irregularities already existed. In particular, cluster6 and cluster8
include equivalent classes in the ontology, which are used to categorise the amino
acids according to their chemical properties. The equivalent classes are grouped
into different clusters according to their regular usage and description. In Figures
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4, 5 the description of cluster6 and cluster8 is presented respectively. Cluster6
includes small amino acids with an additional chemical property. On the other
hand, cluster8 has a different design from this of cluster6 (e.g. it would be expected
to be α =TinyPolarAminoAcid EquivalentTo TinyAminoAcid and PolarAminoAcid). For

preserving a regular design in the ontology, the terms of cluster8 are transformed
similar to the design of terms of cluster6. This change has an impact on the
clustering; the number of clusters is decreased, but these are more homogenous.

For the rest of the three ontologies, we removed 2 axioms that appear to have
a regularity and check if the clustering framework corresponded to these changes.
All the entities of which regular axioms were modified were discarded from their
initial cluster because the regularity no longer existed.

4 Conclusions and Future Work

We presented a framework for identifying regularities and clustering the entities
in an ontology according to these regularities. The application of the approach to
4 ontologies detected regularities that were expected to be found. These findings
we confirm and evaluate through access to the ontology authors or the published
documentation from the ontology’s authors. The framework also provided an al-
ternative presentation of an ontology based on its regularities, giving an insight
about the major components of its construction. The generalisations provided
a meaningful abstract form of axioms, in which each variable was representing
a cluster of similar entities. This abstraction has potential as a tool for com-
prehension of an ontology, as it manages to summarise axioms in a coherent
way. The method tended to give good coverage of an ontology’s axioms within
clusters, suggesting that it could show the significant portions of the ontology.
The analysis on the BioPortal ontologies also highlighted such cases. That not
all axioms are clustered is also meaningful; not all axioms can be part of reg-
ularities and those that do not cluster can indicate deviations from a style or
simply deliberate authoring techniques. Either reason could be informative to a
person comprehending an ontology.

The evaluation showed that changing regularities affected clustering results.
Altering referencing axioms of entities that belonged to a cluster either caused
them to be regrouped in a different cluster or their exclusion from any clus-
ter. This shows the method to be sensitive to changes and a potential tool for
helping authors to “ tidy up” their ontology. Future work will include the devel-
opment of plugins for the Protégé editor for supporting the development process
dynamically through access to these features.

The inspection of regularities in known ontologies helped us to derive knowl-
edge patterns when they existed. We expect that the further exploitation of the
generalisation forms and the examination of possible combinations of these can
lead to the induction of patterns in the ontology (e.g. like the pattern describing
the amino acids in Figure 2). Future work will also involve alternative decisions
of a transformation policy and of a clustering algorithm. Although the current
implementation, which is based on a popularity transformation, produced ad-
equate results, it will be worth examining other techniques that can generate
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homogenous and well defined clusters. The inspection of regularities in known
ontologies helped us to derive knowledge patterns when they existed.

Our use of a basic clustering approach has a demonstrable use in finding reg-
ularities and irregularities in an ontology. It has potential for offering authors a
means to gain generalisation of the major portions of an ontology; to detect de-
viations from a given style of representation and to facilitate the comprehension
of what can be large and complex logical artefacts. As ontologies using OWL
can be large and complex, the provision of techniques to manage this complexity,
especially when attempting to understand an ontology’s construction, should be
an important addition to an ontology author’s toolbox.
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Abstract. Triple stores are the backbone of increasingly many Data Web appli-
cations. It is thus evident that the performance of those stores is mission critical
for individual projects as well as for data integration on the Data Web in gen-
eral. Consequently, it is of central importance during the implementation of any
of these applications to have a clear picture of the weaknesses and strengths of
current triple store implementations. In this paper, we propose a generic SPARQL
benchmark creation procedure, which we apply to the DBpedia knowledge base.
Previous approaches often compared relational and triple stores and, thus, settled
on measuring performance against a relational database which had been con-
verted to RDF by using SQL-like queries. In contrast to those approaches, our
benchmark is based on queries that were actually issued by humans and applica-
tions against existing RDF data not resembling a relational schema. Our generic
procedure for benchmark creation is based on query-log mining, clustering and
SPARQL feature analysis. We argue that a pure SPARQL benchmark is more use-
ful to compare existing triple stores and provide results for the popular triple store
implementations Virtuoso, Sesame, Jena-TDB, and BigOWLIM. The subsequent
comparison of our results with other benchmark results indicates that the per-
formance of triple stores is by far less homogeneous than suggested by previous
benchmarks.

1 Introduction

Triple stores, which use IRIs for entity identification and store information adhering to
the RDF data model [9] are the backbone of increasingly many Data Web applications.
The RDF data model resembles directed labeled graphs, in which each labeled edge
(called predicate) connects a subject to an object. The intended semantics is that the ob-
ject denotes the value of the subject’s property predicate. With the W3C SPARQL stan-
dard [17] a vendor-independent query language for the RDF triple data model exists.
SPARQL is based on powerful graph matching allowing to bind variables to fragments
in the input RDF graph. In addition, operators akin to the relational joins, unions, left
outer joins, selections and projections can be used to build more expressive queries [18].
It is evident that the performance of triple stores offering a SPARQL query interface is
mission critical for individual projects as well as for data integration on the Web in

� This work was supported by a grant from the European Union’s 7th Framework Programme
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general. It is consequently of central importance during the implementation of any Data
Web application to have a clear picture of the weaknesses and strengths of current triple
store implementations.

Existing SPARQL benchmark efforts such as LUBM [16], BSBM [4] and SP2 [18]
resemble relational database benchmarks. Especially the data structures underlying these
benchmarks are basically relational data structures, with relatively few and homoge-
neously structured classes. However, RDF knowledge bases are increasingly heteroge-
neous. Thus, they do not resemble relational structures and are not easily representable
as such. Examples of such knowledge bases are curated bio-medical ontologies such
as those contained in Bio2RDF [2] as well as knowledge bases extracted from unstruc-
tured or semi-structured sources such as DBpedia [10] or LinkedGeoData [1]. DBpe-
dia (version 3.6) for example contains 289,016 classes of which 275 classes belong
to the DBpedia ontology. Moreover, it contains 42,016 properties, of which 1335 are
DBpedia-specific. Also, various datatypes and object references of different types are
used in property values. Such knowledge bases can not be easily represented according
to the relational data model and hence performance characteristics for loading, querying
and updating these knowledge bases might potentially be fundamentally different from
knowledge bases resembling relational data structures.

In this article, we propose a generic SPARQL benchmark creation methodology. This
methodology is based on a flexible data generation mimicking an input data source,
query-log mining, clustering and SPARQL feature analysis. We apply the proposed
methodology to datasets of various sizes derived from the DBpedia knowledge base.
In contrast to previous benchmarks, we perform measurements on real queries that
were issued by humans or Data Web applications against existing RDF data. We eval-
uate two different methods data generation approaches and show how a representative
set of resources that preserves important dataset characteristics such as indegree and
outdegree can be obtained by sampling across classes in the dataset. In order to ob-
tain a representative set of prototypical queries reflecting the typical workload of a
SPARQL endpoint, we perform a query analysis and clustering on queries that were
sent to the official DBpedia SPARQL endpoint. From the highest-ranked query clus-
ters (in terms of aggregated query frequency), we derive a set of 25 SPARQL query
templates, which cover most commonly used SPARQL features and are used to gener-
ate the actual benchmark queries by parametrization. We call the benchmark resulting
from this dataset and query generation methodology DBPSB (i.e. DBpedia SPARQL

Benchmark). The benchmark methodology and results are also available online1. Al-
though we apply this methodology to the DBpedia dataset and its SPARQL query log
in this case, the same methodology can be used to obtain application-specific bench-
marks for other knowledge bases and query workloads. Since the DBPSB can change
with the data and queries in DBpedia, we envision to update it in yearly increments and
publish results on the above website. In general, our methodology follows the four key
requirements for domain specific benchmarks are postulated in the Benchmark Hand-
book [8], i.e. it is (1) relevant, thus testing typical operations within the specific domain,
(2) portable, i.e. executable on different platforms, (3) scalable, e.g. it is possible to run
the benchmark on both small and very large data sets, and (4) it is understandable.

1 http://aksw.org/Projects/DBPSB
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We apply the DBPSB to assess the performance and scalability of the popular triple
stores Virtuoso [7], Sesame [5], Jena-TDB [15], and BigOWLIM [3] and compare our
results with those obtained with previous benchmarks. Our experiments reveal that the
performance and scalability is by far less homogeneous than other benchmarks indi-
cate. As we explain in more detail later, we believe this is due to the different nature of
DBPSB compared to the previous approaches resembling relational databases bench-
marks. For example, we observed query performance differences of several orders of
magnitude much more often than with other RDF benchmarks when looking at the run-
times of individual queries. The main observation in our benchmark is that previously
observed differences in performance between different triple stores amplify when they
are confronted with actually asked SPARQL queries, i.e. there is now a wider gap in
performance compared to essentially relational benchmarks.

The remainder of the paper is organized as follows. In Section 2, we describe the
dataset generation process in detail. We show the process of query analysis and cluster-
ing in detail in Section 3. In Section 4, we present our approach to selecting SPARQL
features and to query variability. The assessment of four triple stores via the DBPSB is
described in Sections 5 and 6. The results of the experiment are discussed in Section 7.
We present related work in Section 8 and conclude our paper in Section 9.

2 Dataset Generation

A crucial step in each benchmark is the generation of suitable datasets. Although we
describe the dataset generation here with the example of DBpedia, the methodology we
pursue is dataset-agnostic.

The data generation for DBPSB is guided by the following requirements:

– The DBPSB data should resemble the original data (i.e., DBpedia data in our case)
as much as possible, in particular the large number of classes, properties, the het-
erogeneous property value spaces as well as the large taxonomic structures of the
category system should be preserved.

– The data generation process should allow to generate knowledge bases of various
sizes ranging from a few million to several hundred million or even billion triples.

– Basic network characteristics of different sizes of the network should be similar, in
particular the in- and outdegree.

– The data generation process should be easily repeatable with new versions of the
considered dataset.

The proposed dataset creation process starts with an input dataset. For the case of DB-
pedia, it consists of the datasets loaded into the official SPARQL endpoint2. Datasets
of multiple size of the original data are created by duplicating all triples and changing
their namespaces. This procedure can be applied for any scale factors. While simple,
this procedure is efficient to execute and fulfills the above requirements.

For generating smaller datasets, we investigated two different methods. The first
method (called “rand”) consists of selecting an appropriate fraction of all triples of

2 Endpoint: http://dbpedia.org/sparql, Loaded datasets: http://wiki.dbpedia.org/
DatasetsLoaded
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Table 1. Statistical analysis of DBPSB datasets

Indegree Outdegree Indegree Outdegree No. of No. of
Dataset w/ literals w/ literals w/o literals w/o literals nodes triples

Full DBpedia 5.45 30.52 3.09 15.57 27,665,352 153,737,776
10% dataset (seed) 6.54 45.53 3.98 23.05 2,090,714 15,267,418
10% dataset (rand) 3.82 6.76 2.04 3.41 5,260,753 16,739,055
50% dataset (seed) 6.79 38.08 3.82 18.64 11,317,362 74,889,154
50% dataset (rand) 7.09 26.79 3.33 10.73 9,581,470 78,336,781

the original dataset randomly. If RDF graphs are considered as small world graphs, re-
moving edges in such graphs should preserve the properties of the original graph. The
second method (called “seed”) is based on the assumption that a representative set of
resources can be obtained by sampling across classes in the dataset. Let x be the de-
sired scale factor in percent, e.g. x = 10. The method first selects x% of the classes
in the dataset. For each selected class, 10% of its instances are retrieved and added to
a queue. For each element of the queue, its concise bound description (CBD) [19] is
retrieved. This can lead to new resources, which are appended at the end of the queue.
This process is iterated until the target dataset size, measured in number of triples, is
reached.

Since the selection of the appropriate method for generating small datasets is an im-
portant issue, we performed a statistical analysis on the generated datasets for DBpedia.
The statistical parameters used to judge the datasets are the average indegree, the aver-
age outdegree, and the number of nodes, i.e. number of distinct IRIs in the graph. We
calculated both the in- and the outdegree for datasets once with literals ignored, and an-
other time with literals taken into consideration, as it gives more insight on the degree
of similarity between the dataset of interest and the full DBpedia dataset. The statistics
of those datasets are given in Table 1. According to this analysis, the seed method fits
our purpose of maintaining basic network characteristics better, as the average in- and
outdegree of nodes are closer to the original dataset. For this reason, we selected this
method for generating the DBPSB.

3 Query Analysis and Clustering

The goal of the query analysis and clustering is to detect prototypical queries that were
sent to the official DBpedia SPARQL endpoint based on a query-similarity graph. Note
that two types of similarity measures can been used on queries, i. e. string similari-
ties and graph similarities. Yet, since graph similarities are very time-consuming and
do not bear the specific mathematical characteristics necessary to compute similarity
scores efficiently, we picked string similarities for our experiments. In the query anal-
ysis and clustering step, we follow a four-step approach. First, we select queries that
were executed frequently on the input data source. Second, we strip common syntactic
constructs (e.g., namespace prefix definitions) from these query strings in order to in-
crease the conciseness of the query strings. Then, we compute a query similarity graph
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from the stripped queries. Finally, we use a soft graph clustering algorithm for com-
puting clusters on this graph. These clusters are subsequently used to devise the query
generation patterns used in the benchmark. In the following, we describe each of the
four steps in more detail.

Query Selection. For the DBPSB, we use the DBpedia SPARQL query-log which con-
tains all queries posed to the official DBpedia SPARQL endpoint for a three-month
period in 20103. For the generation of the current benchmark, we used the log for the
period from April to July 2010. Overall, 31.5 million queries were posed to the end-
point within this period. In order to obtain a small number of distinctive queries for
benchmarking triple stores, we reduce those queries in the following two ways:

– Query variations. Often, the same or slight variations of the same query are posed
to the endpoint frequently. A particular cause of this is the renaming of query vari-
ables. We solve this issue by renaming all query variables in a consecutive sequence
as they appear in the query, i.e., var0, var1, var2, and so on. As a result, distin-
guishing query constructs such as REGEX or DISTINCT are a higher influence on
the clustering.

– Query frequency. We discard queries with a low frequency (below 10) because they
do not contribute much to the overall query performance.

The application of both methods to the query log data set at hand reduced the number
of queries from 31.5 million to just 35,965. This reduction allows our benchmark to
capture the essence of the queries posed to DBpedia within the timespan covered by the
query log and reduces the runtime of the subsequent steps substantially.

String Stripping. Every SPARQL query contains substrings that segment it into dif-
ferent clauses. Although these strings are essential during the evaluation of the query,
they are a major source of noise when computing query similarity, as they boost the
similarity score without the query patterns being similar per se. Therefore, we remove
all SPARQL syntax keywords such as PREFIX, SELECT, FROM and WHERE. In addition,
common prefixes (such as http://www.w3.org/2000/01/rdf-schema# for RDF-
Schema) are removed as they appear in most queries.

Similarity Computation. The goal of the third step is to compute the similarity of
the stripped queries. Computing the Cartesian product of the queries would lead to a
quadratic runtime, i.e., almost 1.3 billion similarity computations. To reduce the run-
time of the benchmark compilation, we use the LIMES framework [13]4. The LIMES
approach makes use of the interchangeability of similarities and distances. It presup-
poses a metric space in which the queries are expressed as single points. Instead of
aiming to find all pairs of queries such that sim(q, p) ≥ θ, LIMES aims to find all pairs
of queries such that d(q, p) ≤ τ, where sim is a similarity measure and d is the corre-
sponding metric. To achieve this goal, when given a set of n queries, it first computes

3 The DBpedia SPARQL endpoint is available at: http://dbpedia.org/sparql/ and the
query log excerpt at: ftp://download.openlinksw.com/support/dbpedia/

4 Available online at: http://limes.sf.net
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√
n so-called exemplars, which are prototypical points in the affine space that subdivide

it into regions of high heterogeneity. Then, each query is mapped to the exemplar it is
least distant to. The characteristics of metrics spaces (especially the triangle inequality)
ensures that the distances from each query q to any other query p obeys the following
inequality

d(q, e) − d(e, p) ≤ d(q, p) ≤ d(q, e) + d(e, p), (1)

where e is an exemplar and d is a metric. Consequently,

d(q, e) − d(e, p) > τ⇒ d(q, p) > τ. (2)

Given that d(q, e) is constant, q must only be compared to the elements of the list of
queries mapped to e that fulfill the inequality above. By these means, the number of
similarity computation can be reduced significantly. In this particular use case, we cut
down the number of computations to only 16.6% of the Cartesian product without any
loss in recall. For the current version of the benchmark, we used the Levenshtein string
similarity measure and a threshold of 0.9.

Clustering. The final step of our approach is to apply graph clustering to the query
similarity graph computed above. The goal of this step is to discover very similar groups
queries out of which prototypical queries can be generated. As a given query can obey
the patterns of more than one prototypical query, we opt for using the soft clustering
approach implemented by the BorderFlow algorithm5.

BorderFlow [12] implements a seed-based approach to graph clustering. The default
setting for the seeds consists of taking all nodes in the input graph as seeds. For each
seed v, the algorithm begins with an initial cluster X containing only v. Then, it expands
X iteratively by adding nodes from the direct neighborhood of X to X until X is node-
maximal with respect to a function called the border flow ratio. The same procedure is
repeated over all seeds. As different seeds can lead to the same cluster, identical clusters
(i.e., clusters containing exactly the same nodes) that resulted from different seeds are
subsequently collapsed to one cluster. The set of collapsed clusters and the mapping
between each cluster and its seeds are returned as result. Applying BorderFlow to the
input queries led to 12272 clusters, of which 24% contained only one node, hinting
towards a long-tail distribution of query types. To generate the patterns used in the
benchmark, we only considered clusters of size 5 and above.

4 SPARQL Feature Selection and Query Variability

After the completion of the detection of similar queries and their clustering, our aim is
now to select a number of frequently executed queries that cover most SPARQL features
and allow us to assess the performance of queries with single as well as combinations
of features. The SPARQL features we consider are:

– the overall number of triple patterns contained in the query (|GP|),
– the graph pattern constructors UNION (UON), OPTIONAL (OPT),

5 An implementation of the algorithm can be found at http://borderflow.sf.net
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1 SELECT * WHERE {
2 { ?v2 a dbp-owl:Settlement ;
3 rdfs:label %%v%% .
4 ?v6 a dbp-owl:Airport . }
5 { ?v6 dbp-owl:city ?v2 . }
6 UNION
7 { ?v6 dbp-owl:location ?v2 . }
8 { ?v6 dbp-prop:iata ?v5 . }
9 UNION

10 { ?v6 dbp-owl:iataLocationIdentifier ?v5 . }
11 OPTIONAL { ?v6 foaf:homepage ?v7 . }
12 OPTIONAL { ?v6 dbp-prop:nativename ?v8 . }
13 }

Fig. 1. Sample query with placeholder

– the solution sequences and modifiers DISTINCT (DST),
– as well as the filter conditions and operators FILTER (FLT), LANG (LNG), REGEX

(REG) and STR (STR).

We pick different numbers of triple patterns in order to include the efficiency of JOIN
operations in triple stores. The other features were selected because they frequently oc-
curred in the query log. We rank the clusters by the sum of the frequency of all queries
they contain. Thereafter, we select 25 queries as follows: For each of the features, we
choose the highest ranked cluster containing queries having this feature. From that par-
ticular cluster we select the query with the highest frequency.

In order to convert the selected queries into query templates, we manually select a
part of the query to be varied. This is usually an IRI, a literal or a filter condition. In
Figure 1 those varying parts are indicated by %%v%% or in the case of multiple varying
parts %%vn%%. We exemplify our approach to replacing varying parts of queries by using
Query 9, which results in the query shown in Figure 1. This query selects a specific
settlement along with the airport belonging to that settlement as indicated in Figure 1.
The variability of this query template was determined by getting a list of all settlements
using the query shown in Figure 2. By selecting suitable placeholders, we ensured that
the variability is sufficiently high (≥ 1000 per query template). Note that the triple
store used for computing the variability was different from the triple store that we later
benchmarked in order to avoid potential caching effects.

For the benchmarking we then used the list of thus retrieved concrete values to re-
place the %%v%% placeholders within the query template. This method ensures, that (a)
the actually executed queries during the benchmarking differ, but (b) always return re-
sults. This change imposed on the original query avoids the effect of simple caching.

5 Experimental Setup

This section presents the setup we used when applying the DBPSB on four triple stores
commonly used in Data Web applications. We first describe the triple stores and their
configuration, followed by our experimental strategy and finally the obtained results.
All experiments were conducted on a typical server machine with an AMD Opteron
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1 SELECT DISTINCT ?v WHERE {
2 { ?v2 a dbp-owl:Settlement ;
3 rdfs:label ?v .
4 ?v6 a dbp-owl:Airport . }
5 { ?v6 dbp-owl:city ?v2 . }
6 UNION
7 { ?v6 dbp-owl:location ?v2 . }
8 { ?v6 dbp-prop:iata ?v5 . }
9 UNION

10 { ?v6 dbp-owl:iataLocationIdentifier ?v5 . }
11 OPTIONAL { ?v6 foaf:homepage ?v7 . }
12 OPTIONAL { ?v6 dbp-prop:nativename ?v8 . }
13 } LIMIT 1000

Fig. 2. Sample auxiliary query returning potential values a placeholder can assume

6 Core CPU with 2.8 GHz, 32 GB RAM, 3 TB RAID-5 HDD running Linux Kernel
2.6.35-23-server and Java 1.6 installed. The benchmark program and the triple store
were run on the same machine to avoid network latency.

Triple Stores Setup. We carried out our experiments by using the triple stores Virtu-
oso [7], Sesame [5], Jena-TDB [15], and BigOWLIM [3]. The configuration and the
version of each triple store were as follows:

1. Virtuoso Open-Source Edition version 6.1.2: We set the following memory-related
parameters: NumberOfBuffers = 1048576, MaxDirtyBuffers = 786432.

2. Sesame Version 2.3.2 with Tomcat 6.0 as HTTP interface: We used the native stor-
age layout and set the spoc, posc, opsc indices in the native storage configuration.
We set the Java heap size to 8GB.

3. Jena-TDB Version 0.8.7 with Joseki 3.4.3 as HTTP interface: We configured the
TDB optimizer to use statistics. This mode is most commonly employed for the
TDB optimizer, whereas the other modes are mainly used for investigating the op-
timizer strategy. We also set the Java heap size to 8GB.

4. BigOWLIM Version 3.4, with Tomcat 6.0 as HTTP interface: We set the entity
index size to 45,000,000 and enabled the predicate list. The rule set was empty. We
set the Java heap size to 8GB.

In summary, we configured all triple stores to use 8GB of memory and used default val-
ues otherwise. This strategy aims on the one hand at benchmarking each triple store in
a real context, as in real environment a triple store cannot dispose of the whole memory
up. On the other hand it ensures that the whole dataset cannot fit into memory, in order
to avoid caching.

Benchmark Execution. Once the triple stores loaded the DBpedia datasets with different
scale factors, i.e. 10%, 50%, 100%, and 200%, the benchmark execution phase began.
It comprised the following stages:

1. System Restart: Before running the experiment, the triple store and its associated
programs were restarted in order to clear memory caches.
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2. Warm-up Phase: In order to measure the performance of a triple store under nor-
mal operational conditions, a warm-up phase was used. In the warm-up phase,
query mixes were posed to the triple store. The queries posed during the warm-
up phase were disjoint with the queries posed in the hot-run phase. For DBPSB, we
used a warm-up period of 20 minutes.

3. Hot-run Phase: During this phase, the benchmark query mixes were sent to the
tested store. We kept track of the average execution time of each query as well as
the number of query mixes per hour (QMpH). The duration of the hot-run phase in
DBPSB was 60 minutes.

Since some benchmark queries did not respond within reasonable time, we specified
a 180 second timeout after which a query was aborted and the 180 second maximum
query time was used as the runtime for the given query even though no results were
returned. The benchmarking code along with the DBPSB queries is freely available6.

6 Results

We evaluated the performance of the triple stores with respect to two main metrics: their
overall performance on the benchmark and their query-based performance.

The overall performance of any triple store was measured by computing its query
mixes per hour (QMpH) as shown in Figure 4. Please note that we used a logarithmic
scale in this figure due to the high performance differences we observed. In general,
Virtuoso was clearly the fastest triple store, followed by BigOWLIM, Sesame and Jena-
TDB. The highest observed ratio in QMpH between the fastest and slowest triple store
was 63.5 and it reached more than 10 000 for single queries. The scalability of stores did
not vary as much as the overall performance. There was on average a linear decline in
query performance with increasing dataset size. Details will be discussed in Section 7.

We tested the queries that each triple store failed to executed withing the 180s time-
out and noticed that even much larger timeouts would not have been sufficient most of
those queries. We did not exclude the queries completely from the overall assessment,
since this would have affected a large number of the queries and adversely penalized
stores, which complete queries within the time frame. We penalized failure queries with
180s, similar to what was done in the SP2-Benchmark [18]. Virtuoso was the only store,
which completed all queries in time. For Sesame and OWLIM only rarely a few partic-
ular queries timed out. Jena-TDB had always severe problems with queries 7, 10 and
20 as well as 3, 9, 12 for the larger two datasets.

The metric used for query-based performance evaluation is Queries per Second (QpS).
QpS is computed by summing up the runtime of each query in each iteration, dividing
it by the QMpH value and scaling it to seconds. The QpS results for all triple stores and
for the 10%, 50%, 100%, and 200% datasets are depicted in Figure 3.

The outliers, i.e. queries with very low QpS, will significantly affect the mean value
of QpS for each store. So, we additionally calculated the geometric mean of all the
QpS timings of queries for each store. The geometric mean for all triple stores is also
depicted in Figure 4. By reducing the effect of outliers, we obtained additional informa-
tion from this figure as we will describe in the subsequent section.

6 https://akswbenchmark.svn.sourceforge.net/svnroot/akswbenchmark/
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Fig. 3. Queries per Second (QpS) for all triple stores for 10%, 50%, 100%, and 200% datasets

Fig. 4. QMpH for all triple stores (left). Geometric mean of QpS (right).
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7 Discussion

This section consists of three parts: First, we compare the general performance of the
systems under test. Then we look individual queries and the SPARQL features used
within those queries in more detail to observe particular strengths and weaknesses of
stores. Thereafter, we compare our results with those obtained with previous bench-
marks and elucidate some of the main differences between them.

General Performance. Figure 4 depicts the benchmark results for query mixes per
hour for the four systems and dataset sizes. Virtuoso leads the field with a substantial
head start of double the performance for the 10% dataset (and even quadruple for other
dataset sizes) compared to the second best system (BigOWLIM). While Sesame is able
to keep up with BigOWLIM for the smaller two datasets it considerably looses ground
for the larger datasets. Jena-TDB can in general not deliver competitive performance
with being by a factor 30-50 slower than the fastest system.

If we look at the geometric mean of all QpS results in Figure 4, we observe similar
insights. The spreading effect is weakened, since the geometric mean reduces the effect
of outliers. Still Virtuoso is the fastest system, although Sesame manages to get pretty
close for the 10% dataset. This shows that most, but not all, queries are fast in Sesame
for low dataset sizes. For the larger datasets, BigOWLIM is the second best system and
shows promising scalability, but it is still by a factor of two slower than Virtuoso.

Scalability, Individual Queries and SPARQL Features. Our first observation with re-
spect to individual performance of the triple stores is that Virtuoso demonstrates a good
scaling factor on the DBPSB. When dataset size changes by factor 5 (from 10% to
50%), the performance of the triple store only degrades by factor 3.12. Further dataset
increases (i.e. the doubling to the 100% and 200% datasets) result in only relatively
small performance decreases by 20% and respectively 30%.

Virtuoso outperforms Sesame for all datasets. In addition, Sesame does not scale as
well as Virtuoso for small dataset sizes, as its performance degrades sevenfold when the
dataset size changes from 10% to 50%. However, when the dataset size doubles from
the 50% to the 100% dataset and from 100% to 200% the performance degrades by just
half.

The performance of Jena-TDB is the lowest of all triple stores and for all dataset
sizes. The performance degradation factor of Jena-TDB is not as pronounced as that of
Sesame and almost equal to that of Virtuoso when changing from the 10% to the 50%
dataset. However, the performance of Jena-TDB only degrades by a factor of 2 for the
transition between the 50% and 100% dataset, and reaches 0.8 between the 100% and
200% dataset, leading to a slight increase of its QMpH.

BigOWLIM is the second fastest triple store for all dataset sizes, after Virtuoso.
BigOWLIM degrades with a factor of 7.2 in transition from 10% to 50% datasets, but
it decreases dramatically to 1.29 with dataset size 100%, and eventually reaches 1.26
with dataset size 200%.

Due to the high diversity in the performance of different SPARQL queries, we also
computed the geometric mean of the QpS values of all queries as described in the pre-
vious section and illustrated in Figure 4. By using the geometric mean, the resulting
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values are less prone to be dominated by a few outliers (slow queries) compared to
standard QMpH values. This allows for some interesting observations in DBPSB by
comparing Figure 4 and 4. For instance, it is evident that Virtuoso has the best QpS
values for all dataset sizes.

With respect to Virtuoso, query 10 performs quite poorly. This query involves the
features FILTER, DISTINCT, as well as OPTIONAL. Also, the well performing query 1
involves the DISTINCT feature. Query 3 involves a OPTIONAL resulting in worse per-
formance. Query 2 involving a FILTER condition results in the worst performance of
all of them. This indicates that using complex FILTER in conjunction with additional
OPTIONAL, and DISTINCT adversely affects the overall runtime of the query.

Regarding Sesame, queries 4 and 18 are the slowest queries. Query 4 includes UNION
along with several free variables, which indicates that using UNION with several free
variables causes problems for Sesame. Query 18 involves the features UNION, FILTER,
STR and LANG. Query 15 involves the features UNION, FILTER, and LANG, and its per-
formance is also pretty slow, which leads to the conclusion that introducing this combi-
nation of features is difficult for Sesame. Adding the STR feature to that feature combi-
nation affects the performance dramatically and prevents the query from being success-
fully executed.

For Jena-TDB, there are several queries that timeout with large dataset sizes, but
queries 10 and 20 always timeout. The problem with query 10 is already discussed with
Virtuoso. Query 20 contains FILTER, OPTIONAL, UNION, and LANG. Query 2 contains
FILTER only, query 3 contains OPTIONAL, and query 4 contains UNION only. All of
those queries run smoothly with Jena-TDB, which indicates that using the LANG feature,
along with those features affects the runtime dramatically.

For BigOWLIM, queries 10, and 15 are slow queries. Query 10 was already prob-
lematic for Virtuoso, as was query 15 for Sesame.

Query 24 is slow on Virtuoso, Sesame, and BigOWLIM, whereas it is faster on Jena-
TDB. This is due to the fact that most of the time this query returns many results.
Virtuoso, and BigOWLIM return a bulk of results at once, which takes long time. Jena-
TDB just returns the first result as a starting point, and iteratively returns the remaining
results via a buffer.

It is interesting to note that BigOWLIM shows in general good performance, but al-
most never manages to outperform any of the other stores. Queries 11, 13, 19, 21 and
25 were performed with relatively similar results across triple stores thus indicating
that the features of these queries (i.e. UON, REG, FLT) are already relatively well sup-
ported. With queries 3, 4, 7, 9, 12, 18, 20 we observed dramatic differences between the
different implementations with factors between slowest and fastest store being higher
than 1000. It seems that a reason for this could be the poor support for OPT (in queries
3, 7, 9, 20) as well as certain filter conditions such as LNG in some implementations,
which demonstrates the need for further optimizations.

Comparison with Previous Benchmarks. In order to visualize the performance improve-
ment or degradation of a certain triple store compared to its competitors, we calculated
the relative performance for each store compared to the average and depicted it for each
dataset size in Figure 5. We also performed this calculation for BSBM version 2 and ver-
sion 3. Overall, the benchmarking results with DBPSB were less homogeneous than the
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Fig. 5. Comparison of triple store scalability between BSBM V2, BSBM V3, DBPSB

results of previous benchmarks. While with other benchmarks the ratio between fastest
and slowest query rarely exceeds a factor of 50, the factor for the DBPSB queries (de-
rived from real DBpedia SPARQL endpoint queries) reaches more than 1 000 in some
cases.

As with the other benchmarks, Virtuoso was also fastest in our measurements. How-
ever, the performance difference is even higher than reported previously: Virtuoso
reaches a factor of 3 in our benchmark compared to 1.8 in BSBM V3. BSBM V2 and
our benchmark both show that Sesame is more suited to smaller datasets and does not
scale as well as other stores. Jena-TDB is the slowest store in BSBM V3 and DBPSB,
but in our case they fall much further behind to the point that Jena-TDB can hardly be
used for some of the queries, which are asked to DBpedia. The main observation in our
benchmark is that previously observed differences in performance between different
triple stores amplify when they are confronted with actually asked SPARQL queries,
i.e. there is now a wider gap in performance compared to essentially relational bench-
marks.

8 Related Work

Several RDF benchmarks were previously developed. The Lehigh University Bench-
mark (LUBM) [16] was one of the first RDF benchmarks. LUBM uses an artificial
data generator, which generates synthetic data for universities, their departments, their
professors, employees, courses and publications. This small number of classes limits
the variability of data and makes LUMB inherent structure more repetitive. Moreover,
the SPARQL queries used for benchmarking in LUBM are all plain queries, i.e. they
contain only triple patterns with no other SPARQL features (e.g. FILTER, or REGEX).
LUBM performs each query 10 consecutive times, and then it calculates the average re-
sponse time of that query. Executing the same query several times without introducing
any variation enables query caching, which affects the overall average query times.
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Table 2. Comparison of different RDF benchmarks

LUBM SP2Bench BSBM V2 BSBM V3 DBPSB
RDF stores DLDB-OWL, ARQ, Redland, Virtuoso, Sesame, Virtuoso, 4store, Virtuoso,
tested Sesame, SDB, Sesame, Jena-TDB, BigData Jena-TDB,

OWL-JessKB Virtuoso Jena-SDB Jena-TDB BigOWLIM
BigOwlim Sesame

Test data Synthetic Synthetic Synthetic Synthetic Real
Test queries Synthetic Synthetic Synthetic Synthetic Real
Size of tested 0.1M, 0.6M, 10k, 50k, 250k, 1M, 25M, 100M, 200M 14M, 75M,
datasets 1.3M, 2.8M, 1M, 100M, 5M, 150M, 300M

6.9M 25M
Dist. queries 14 12 12 12 25
Multi-client – – x x –
Use case Universities DBLP E-commerce E-commerce DBpedia
Classes 43 8 8 8 239 (internal)

+300K(YAGO)
Properties 32 22 51 51 1200

SP2Bench [18] is another more recent benchmark for RDF stores. Its RDF data is
based on the Digital Bibliography & Library Project (DBLP) and includes information
about publications and their authors. It uses the SP2Bench Generator to generate its
synthetic test data, which is in its schema heterogeneity even more limited than LUMB.
The main advantage of SP2Bench over LUBM is that its test queries include a variety
of SPARQL features (such as FILTER, and OPTIONAL). The main difference between
the DBpedia benchmark and SP2Bench is that both test data and queries are synthetic
in SP2Bench. In addition, SP2Bench only published results for up to 25M triples, which
is relatively small with regard to datasets such as DBpedia and LinkedGeoData.

Another benchmark described in [14] compares the performance of BigOWLIM and
AllegroGraph. The size of its underlying synthetic dataset is 235 million triples, which
is sufficiently large. The benchmark measures the performance of a variety of SPARQL
constructs for both stores when running in single and in multi-threaded modes. It also
measures the performance of adding data, both using bulk-adding and partitioned-
adding. The downside of that benchmark is that it compares the performance of only
two triple stores. Also the performance of each triple store is not assessed for different
dataset sizes, which prevents scalability comparisons.

The Berlin SPARQL Benchmark (BSBM) [4] is a benchmark for RDF stores, which
is applied to various triple stores, such as Sesame, Virtuoso, and Jena-TDB. It is based
on an e-commerce use case in which a set of products is provided by a set of vendors
and consumers post reviews regarding those products. It tests various SPARQL features
on those triple stores. It tries to mimic a real user operation, i.e. it orders the query in a
manner that resembles a real sequence of operations performed by a human user. This is
an effective testing strategy. However, BSBM data and queries are artificial and the data
schema is very homogeneous and resembles a relational database. This is reasonable
for comparing the performance of triple stores with RDBMS, but does not give many
insights regarding the specifics of RDF data management.
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A comparison between benchmarks is shown in Table 2. In addition to general pur-
pose RDF benchmarks it is reasonable to develop benchmarks for specific RDF data
management aspects. One particular important feature in practical RDF triple store us-
age scenarios (as was also confirmed by DBPSB) is full-text search on RDF literals.
In [11] the LUBM benchmark is extended with synthetic scalable fulltext data and cor-
responding queries for fulltext-related query performance evaluation. RDF stores are
benchmarked for basic fulltext queries (classic IR queries) as well as hybrid queries
(structured and fulltext queries).

9 Conclusions and Future Work

We proposed the DBPSB benchmark for evaluating the performance of triple stores
based on non-artificial data and queries. Our solution was implemented for the DBpedia
dataset and tested with 4 different triple stores, namely Virtuoso, Sesame, Jena-TDB,
and BigOWLIM. The main advantage of our benchmark over previous work is that
it uses real RDF data with typical graph characteristics including a large and heteroge-
neous schema part. Furthermore, by basing the benchmark on queries asked to DBpedia,
we intend to spur innovation in triple store performance optimisation towards scenarios,
which are actually important for end users and applications. We applied query analy-
sis and clustering techniques to obtain a diverse set of queries corresponding to feature
combinations of SPARQL queries. Query variability was introduced to render simple
caching techniques of triple stores ineffective.

The benchmarking results we obtained reveal that real-world usage scenarios can
have substantially different characteristics than the scenarios assumed by prior RDF
benchmarks. Our results are more diverse and indicate less homogeneity than what is
suggested by other benchmarks. The creativity and inaptness of real users while con-
structing SPARQL queries is reflected by DBPSB and unveils for a certain triple store
and dataset size the most costly SPARQL feature combinations.

Several improvements can be envisioned in future work to cover a wider spectrum
of features in DBPSB:

– Coverage of more SPARQL 1.1 features, e.g. reasoning and subqueries.
– Inclusion of further triple stores and continuous usage of the most recent DBpedia

query logs.
– Testing of SPARQL update performance via DBpedia Live, which is modified sev-

eral thousand times each day. In particular, an analysis of the dependency of query
performance on the dataset update rate could be performed.

In addition, we will further investigate the data generation process in future work, in
particular based on recent work such as [6].
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Abstract. Observational studies in the literature have highlighted low levels of 
user satisfaction in relation to the support for ontology visualization and 
exploration provided by current ontology engineering tools. These issues are 
particularly problematic for non-expert users, who rely on effective tool support 
to abstract from representational details and to be able to make sense of the 
contents and the structure of ontologies.  To address these issues, we have 
developed a novel solution for visualizing and navigating ontologies, KC-Viz, 
which exploits an empirically-validated ontology summarization method, both 
to provide concise views of large ontologies, and also to support a ‘middle-out’ 
ontology navigation approach, starting from the most information-rich nodes 
(key concepts). In this paper we present the main features of KC-Viz and also 
discuss the encouraging results derived from a preliminary empirical 
evaluation, which suggest that the use of KC-Viz provides performance 
advantages to users tackling realistic browsing and visualization tasks. 
Supplementary data gathered through questionnaires also convey additional 
interesting findings, including evidence that prior experience in ontology 
engineering affects not just objective performance in ontology engineering tasks 
but also subjective views on the usability of ontology engineering tools.  

Keywords: Ontology Visualization, Key Concepts, Ontology Summarization, 
Ontology Navigation, Ontology Engineering Tools, Empirical Evaluation. 

1   Introduction 

Browsing ontologies to make sense of their contents and organization is an essential 
activity in ontology engineering. This is particularly the case today, as the significant 
increase in the number of ontologies available online means that ontology engineering 
projects often include a reuse activity, where people first locate ontologies which may 
be relevant to their project – e.g., by using ontology search engines, such as Sindice 
[1] or Watson [2], and then examine them to understand to what extent they provide 
solutions to their modelling needs.  
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In addition, ontologies are no longer developed and used exclusively by specialized 
researchers and practitioners. On the contrary, as ontologies are increasingly used in a 
variety of scenarios, such as research, healthcare, and business, more and more 
domain experts and other relatively inexperienced users are involved in the ontology 
engineering process, especially in the context of community-wide ontology 
development activities [3]. 

However, evidence gathered through observational studies [4] indicates low levels 
of user satisfaction with the tool support currently available to users for visualizing 
and navigating ontologies, in particular in relation to the lack of effective mechanisms 
for ‘content-level visualization’, including support for selective visualization of 
ontology parts, summaries, and overviews [4]. Needless to say, these problems affect 
in particular inexperienced users, who rely on effective tool support to abstract from 
representational details and make sense of the contents and the structure of ontologies.  

Attempting to address these issues, we have developed a novel solution for 
visualizing and navigating ontologies, KC-Viz, which builds on our earlier work on 
key concepts extraction [5], both as a way to provide concise overviews of large 
ontologies, and also to support a ‘middle-out’ ontology navigation approach, starting 
from the most information-rich nodes1 (key concepts). Building on its ability to 
abstract out from large ontologies through key concept extraction, KC-Viz provides a 
rich set of navigation and visualization mechanisms, including flexible zooming into 
and hiding of specific parts of an ontology, history browsing, saving and loading of 
customized ontology views, as well as essential interface customization support, such 
as graphical zooming, font manipulation, tree layout customization, and other 
functionalities. KC-Viz is a core plugin of the NeOn Toolkit and can be downloaded 
from http://neon-toolkit.org. 

In this paper we introduce KC-Viz and we present the results from a preliminary 
empirical evaluation, which suggest that the use of KC-Viz provides performance 
advantages to users tackling realistic browsing and visualization tasks. Moreover, we 
also report on additional findings gathered through questionnaires, which offer a 
number of other insights, including evidence that prior experience in ontology 
engineering affects not just objective performance in ontology engineering tasks but 
also subjective views on the usability of ontology engineering tools.  

2   Approaches to Visualizing and Navigating Ontologies 

2.1   Literature Review 

The issue of how best to support visualization and navigation of ontologies has 
attracted much attention in the research community. As Wang and Parsia emphasize 
[6], “effective presentation of the hierarchies can be a big win for the users”, in 
particular, but not exclusively, during the early stages of a sensemaking2 process, 

                                                           
1 In the paper we will use the terms ‘node’, ‘concept’, and ‘class’ interchangeably to refer to 

classes in an ontology. 
2 In the rest of the paper we will use the term ‘sensemaking’ to refer to a specific ontology 

engineering task, where the user is primarily concerned with understanding the contents and 
overall structure of the ontology, i.e., acquiring an overview of the concepts covered by the 
ontology and the way they are organized in a taxonomy.  
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when a user is trying to build an initial mental model of an ontology, focusing less on 
specific representational details than on understanding the overall organization of the 
ontology. In particular, as discussed in [7], there are a number of functionalities that 
an effective visualization system needs to support, including (but not limited to) the 
ability to provide high level overviews of the data, to zoom in effectively on specific 
parts of the data, and to filter out irrelevant details and/or irrelevant parts of the data. 

An approach to addressing the issue of providing high level overviews of 
hierarchical structures focuses on maximizing the amount of information on display, 
through space-filling solutions, such as those provided by treemaps [8]. Treemaps 
have proved to be a very successful and influential visualization method, used not just 
to represent conceptual hierarchies but also to visualize information in several 
mainstream sectors, including news, politics, stock market, sport, etc.  However, 
while treemaps define a clever way to provide concise overviews of very large 
hierarchical spaces, they are primarily effective when the focus is on leaf nodes and 
on a particular dimension of visualization, in particular if colour-coding can be used 
to express different values for the dimension in question. However, as pointed out in 
[6], treemaps are not necessarily effective in supporting an understanding of 
topological structures, which is what is primarily needed in the ontology sensemaking 
context highlighted earlier. 

State of the art ontology engineering toolkits, such as Protégé3 and TopBraid 
Composer4, include visualization systems which use the familiar node-link diagram 
paradigm to represent entities in an ontology and their taxonomic or domain 
relationships. In particular, both the OwlViz visualizer in Protégé and the ‘Graph 
View’ in TopBraid make it possible for users to navigate the ontology hierarchy by 
selecting, expanding and hiding nodes. However OwlViz arguably provides more 
flexibility, allowing the user to customize the expansion radius and supporting 
different modalities of use, including the option of automatically visualizing in 
OwlViz the current selection shown in the Protégé Class Browser. 

SpaceTree [9], which also follows the node-link diagram paradigm, is able to 
maximize the number of nodes on display, by assessing how much empty space is 
available. At the same time it also avoids clutter by utilizing informative preview 
icons. These include miniatures of a branch, which are able to give the user an idea of 
the size and shape of an un-expanded subtree at a very high level of abstraction, while 
minimizing the use of real estate.  

Like treemaps, CropCircles [6] also uses geometric containment as an alternative 
to classic node-link displays. However, it tries to address the key weakness of 
treemaps, by sacrificing space in order to make it easier for users to understand the 
topological relations in an ontology, including both parent-child and sibling relations. 
An empirical evaluation comparing the performance of users on topological tasks 
using treemaps, CropCircles and SpaceTree showed that, at least for some tasks, users 
of CropCircles performed significantly better than those using treemaps [6]. However, 
SpaceTree appears to perform significantly better than either treemaps or CropCircles 
on node finding tasks.  

                                                           
3  http://protege.stanford.edu/ 
4  http://www.topquadrant.com/products/TB_Composer.html 
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A number of ‘hybrid’ solutions also exist, such as Jambalaya [10] and Knoocks 
[11], which attempt to combine the different strengths of containment-based and 
node-link approaches in an integrated framework, by providing both alternative 
visualizations as well as hybrid, integrated views of the two paradigms.  

The group of techniques categorized in [12] as “context + focus and distortion” 
are based on “the notion of distorting the view of the presented graph in order to 
combine context and focus. The node on focus is usually the central one and the rest 
of the nodes are presented around it, reduced in size until they reach a point that they 
are no longer visible” [12]. These techniques are normally based on hyperbolic views 
of the data and offer a good trade-off – a part of the ontology is shown in detailed 
view, while the rest is depicted around. A good exemplar of this class of approaches is 
HyperTree [13].  

Finally, we should also consider in this short survey the most ubiquitous and least 
visual class of tools, exemplified by plugins such as the Class Browser in Protégé and 
the Ontology Navigator in the NeOn Toolkit. These follow the classic file system 
navigation metaphor, where clicking on a folder opens up its sub-folders. This 
approach is ubiquitous in both file system interfaces and ontology engineering tools 
and, in the case of ontologies, it allows the user to navigate the ontology hierarchy 
simply by clicking on the identifier of a class, to display its subclasses, and so on. 
While superficially a rather basic solution, especially when compared to some of the 
sophisticated visual metaphors that can be found in the literature, this approach can be 
surprisingly effective for two reasons: i) it is very familiar to users and ii) it makes it 
possible to display quite a lot of information in a rather small amount of space, in 
contrast with node-link displays, which can be space-hungry. As a result it is not 
surprising that these interfaces often perform better in evaluation scenarios than the 
graphical alternatives. For instance, the evaluation reported in [14] shows that 
subjects using the Protégé Class Browser fared better than those using alternative 
visualization plugins in a number of ontology engineering tasks.  

2.2   Discussion 

It is clear from the review in the previous section that different approaches exhibit 
different strengths and weaknesses and that in general the effectiveness of a particular 
solution depends on the specific task it is being used for. For example, the evaluation 
presented in [6] suggests that CropCircles may perform well in ‘abstract’ topological 
tasks, such as “Find the class with the most direct subclasses”, but SpaceTree appears 
to be better in locating a specific class. As already mentioned, here we are primarily 
concerned with the ontology sensemaking task, so what we are looking for is effective 
support for the user in quickly understanding what are the main areas covered by the 
ontology, how is the main hierarchy structured, etc.  

The problem is a particularly tricky one because, once an ontology is large enough, 
it is not possible to show its entire structure in the limited space provided by a 
computer screen and therefore a difficult trade-off needs to be addressed. On the one 
hand the information on display needs to be coarse-grained enough to provide an 
overview of the ontology, thus ensuring the user can maintain an overall mental 
model of the ontology. On the other hand, an exploration process needs to be 
supported, where the user can effectively home in on parts of the ontology, thus 
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changing the level of analysis, while at the same time not losing track of the overall 
organization of the ontology. In sum, we can say that the main (although obviously 
not the only) issue is one of reconciling abstraction with focus.  

However, a problem affecting all the approaches discussed in the review is that all 
of them essentially use geometric techniques to providing abstraction, whether it is 
the use of a hyperbolic graph, geometric containment, or the miniature subtrees 
provided by SpaceTree.   

In contrast with these approaches, human experts are able to provide effective 
overviews of an ontology, simply by highlighting the key areas covered by the 
ontology and the classes that best describe these areas. In particular, the work reported 
in [5] provides empirical evidence that there is a significant degree of agreement 
among experts in identifying the main concepts in an ontology, and it also shows that 
our algorithm for key concept extraction (KCE) is also able to do so, while 
maintaining the same level of agreement with the experts, as they have among 
themselves [5]. Hence, the main hypothesis underlying our work on KC-Viz is that 
effective abstraction mechanisms for ontology visualization and navigation can be 
developed by building on the KCE algorithm, thus going beyond purely geometric 
approaches and focusing instead on displaying the concepts which are identified as 
the most useful for making sense of an ontology.  

3   Overview of KC-Viz 

3.1   Key Concept Extraction 

Our algorithm for key concept extraction [5] considers a number of criteria, drawn 
from psychology, linguistics, and formal knowledge representation, to compute an 
‘importance score’ for each class in an ontology. In particular, we use the notion of 
natural category [15], which is drawn from cognitive psychology, to identify 
concepts that are information-rich in a psycho-linguistic sense. Two other criteria are 
drawn from the topology of an ontology: the notion of density highlights concepts 
which are information-rich in a formal knowledge representation sense, i.e., they have 
been richly characterized with properties and taxonomic relationships, while the 
notion of coverage states that the set of key concepts identified by our algorithm 
should maximize the coverage of the ontology with respect to its is-a hierarchy5. 
Finally, the notion of popularity, drawn from lexical statistics, is introduced as a 
criterion to identify concepts that are likely to be most familiar to users.  

The density and popularity criteria are both decomposed in two sub-criteria, global 
and local density, and global and local popularity respectively. While the global 
measures are normalized with respect to all the concepts in the ontology, the local 
ones consider the relative density or popularity of a concept with respect to its 
surrounding concepts in the is-a hierarchy. The aim here is to ensure that ‘locally 
significant’ concepts get a high score, even though they may not rank too highly with 
respect to global measures.  

Each of the seven aforementioned criteria produces a score for each concept in the 
ontology and the final score assigned to a concept is a weighted sum of the scores 
                                                           
5 By ‘is-a hierarchy’ here, we refer to the hierarchy defined by rdfs:subClassOf relations. 
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resulting from individual criteria. As described in [5], which provides a detailed 
account of our approach to key concept extraction, the KCE algorithm has been 
shown to produce ontology summaries that correlate significantly with those 
produced by human experts.  

3.2  Exploring Ontologies with KC-Viz 

Normally, a KC-Viz session begins by generating an initial summary of an ontology, 
to get an initial ‘gestalt’ impression of the ontology. This can be achieved in a number 
of different ways, most obviously by i) selecting the ontology in question in the 
‘Ontology Navigator’ tab of the NeOn Toolkit, ii) opening up a menu of options by 
right clicking on the selected ontology, and then iii) choosing Visualize Ontology  
Visualize Key Concepts, through a sequence of menus. Figure 16 shows the result 
obtained after performing this operation on the SUMO ontology, a large upper level 
ontology, which comprises about 4500 classes. The version used in these examples 
can be downloaded from http://www.ontologyportal.org/SUMO.owl.  

 

Fig. 1. Initial visualization of the SUMO ontology 

The summary shown in Figure 1, which has been  generated by the KCE algorithm, 
includes 16 concepts because we have set the size of our ontology summary to 15 and 
the algorithm has automatically added the most generic concept, owl:Thing, to ensure 
that the visualization displays a connected graph. If we wish to display more or less 

                                                           
6  As shown in Figure 1, KC-Viz is based on the node-link diagram paradigm. However, as 

correctly pointed out by an anonymous reviewer, the KCE algorithm can in principle be used 
with alternative visualization styles, and indeed this is something we plan to explore in the 
future. The rationale for adopting the node-link diagram paradigm in the first instance is that 
this is a familiar representation for users and we wish to test our hypothesis that the use of 
key concepts can succeed in equipping this approach with effective abstraction mechanisms.  
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succinct graphs, we can do so by changing the size of the ontology summary. The 
solid grey arrows in the figure indicate direct rdfs:subClassOf links, while the dotted 
green arrows indicate indirect rdfs:subClassOf links. As shown in the figure, by 
hovering the mouse over an indirect rdfs:subClassOf links, we can see the chain of 
rdfs:subClassOf relations, which have been summarized by the indirect link. In this 
case, we can see that an indirect rdfs:subClassOf link in the display summarizes the 
chain of direct rdfs:subClassOf relations, [Process -> Physical -> Entity -> 
owl:Thing]. 

In order to help users to quickly get an idea of the size of a particular part of the 
ontology, for each node displayed, KC-Viz shows two numbers, indicating the 
number of direct and indirect subclasses.  We refer to these as subtree summaries. For 
instance, Figure 1 tells us that class Process has 10 direct subclasses and 879 indirect 
ones. More information about a class can be found by hovering over the node in 
question, as shown in Figure 2. Alternatively, if a more thorough analysis of the 
definition is required, the user can right-click on the node and then select the Inspect 
menu item, to open up the definition of the class in the Entity Properties View of the 
NeOn Toolkit. 

Once an initial visualization is produced, it is possible to use it as the starting point 
for a more in-depth exploration of the various parts of the ontology. To this purpose, 
KC-Viz provides a flexible set of options, allowing the user to control at a rather fine-
grained level the extent to which she wishes to open up a particular part of the 
ontology. For example, let’s assume we wish to explore the subtree of class Process in 
more detail, to get a better understanding of the type of processes covered by the 
ontology. Figure 3 shows the menu which is displayed, when right-clicking on class 
Process and selecting Expand. In particular, the following four options (corresponding 
to the four panes of the window shown in Figure 3) for customizing node expansion 
are available: 

 

Fig. 2. Tooltips provide additional information about a class  

• Whether to open up the node using taxonomic relations, other relations (through 
domain and range), or any combination of these. That is, while we primarily use 
KC-Viz to support sensemaking, focusing on taxonomic relations, KC-Viz can 
also be used to visualize domain (i.e., non taxonomic) relations. 

• Whether or not to make use of the ontology summarization algorithm, which in 
this case will be applied only to the selected subtree of class Process. As in the 
case of generating a summary for the entire ontology, the user is given the option 
to specify the size of the generated summary. Here it is important to emphasize 
that this option makes it possible to use KC-Viz in a ‘traditional’ way, by 
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expanding a tree in a piecemeal way, without recourse to key concept extraction. 
This is especially useful when dealing with small ontologies, or when the user is 
aware that only a few nodes will be added by the expansion operation, even 
without recourse to the KCE algorithm. 

• Whether or not to limit the range of the expansion – e.g., by expanding only to 1, 
2, or 3 levels. 

• Whether to display the resulting visualization in a new window (‘Hide’), or 
whether to add the resulting nodes to the current display. In the latter case, some 
degree of control is given to the user with respect to the redrawing algorithm, by 
allowing her to decide whether she wants the system to redraw all the nodes in 
the resulting display (Redraw), or whether to limit the freedom of the graph 
layout algorithm to rearrange existing nodes (Block Soft, Block Hard). The latter 
options are particularly useful in those situations where expansion only aims to 
add a few nodes, and the user does not want the layout to be unnecessarily 
modified – e.g., because she has already manually rearranged the nodes 
according to her own preferences. In our view, this feature is especially 
important to avoid the problems experienced by users with some ‘dynamic’ 
visualization systems, where each node selection/expansion/hiding operation 
causes the system to rearrange the entire layout, thus making it very difficult for 
a user to retain a consistent mental map of the model. 

 

Fig. 3. Options for further exploration starting from class Process  

The result of expanding the subtree under class Process, using key concepts with 
the size of the summary set to 15, with no limit to the expansion level, while hiding 
all other concepts, is shown in Figure 4. 

While the flexible expansion mechanism is the key facility provided by KC-Viz to 
support exploration of ontology trees under close user control, a number of other 
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functionalities are also provided, to ensure a comprehensive visualization and 
navigation support.  These include: 

 

• A flexible set of options for hiding nodes from the display. 
• Integration with the core components of the NeOn Toolkit, including the Entity 

Properties View and Ontology Navigator. This means that it is possible to click 
on nodes in KC-Viz and highlight them in these components, as well as clicking 
on items shown in the Ontology Navigator and adding them to the visualization 
in KC-Viz.  

• A dashboard, shown in Figure 5, which allows the user to move back and forth 
through the history of KC-Viz operations, to modify the formatting of the layout, 
and to save the current display to a file, among other things. 

• A preferences panel, which allows the user to set defaults for the most common 
operations and also enables her to switch to a more efficient (but sub-optimal) 
algorithm when dealing with very large ontologies.  

 

Fig. 4. Expanding class Process by key concepts  

 

Fig. 5. The KC-Viz dashboard 

4   Empirical Evaluation 

4.1  Experimental Setup 

4.1.1   Tool Configurations 
In order to gather initial data about the performance of KC-Viz, we have carried out a 
preliminary empirical evaluation, which required 21 subjects to perform four ontology 
engineering tasks, involving ontology exploration. The 21 subjects were drawn from 
the members of the Knowledge Media Institute, the Computer Science Department at 
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the University of Bologna, and Isoco iLab and were randomly allocated to three 
different groups, labeled A, B, and C, where each group used a particular 
configuration of ontology engineering tools.  

In particular members of group A carried out the tasks using the NeOn Toolkit 
v2.5, without any visualization support. More precisely, they were only allowed to 
use the search functionality, the Ontology Navigator and the Entity Properties View. 
The role of this group was to provide a baseline to the experiment, providing us with 
some data on how effectively people can tackle ontology exploration tasks, without 
any visualization support.  The members of Group C were asked to solve the tasks 
using KC-Viz7, together with the search functionality provided by the NeOn Toolkit. 
To ensure a separation between groups A and C, members of the latter group were 
explicitly forbidden from using the Ontology Navigator for exploration, although they 
were allowed to use it as an interface between the search facility in the NeOn Toolkit 
and KC-Viz8. Finally, the members of Group B carried out the tasks using the Protégé 
4 environment, v4.1.0, in particular using the search functionality, the class browser 
and the OwlViz plugin. This configuration was chosen for three reasons: i) we wanted 
to compare KC-Viz to a robust tool, widely used in concrete projects by members of 
the ontology engineering community9, to maximize the value of the experiment to the 
community; ii) while OwlViz uses the same node-link paradigm as KC-Viz, its design 
is rather different from KC-Viz; and iii) having considered the visualizers available in 
other state of the art ontology engineering tools, such as the NeOn Toolkit (Kaon 
Visualizer) and TopBraid (Graph View), we subjectively concluded that OwlViz 
appears to provide a more user friendly and flexible functionality, than the 
comparable ones available in TopBraid and the NeOn Toolkit.  

4.1.2   Exploration Tasks 
For the tasks we used a smaller version of the SUMO ontology, compared to the one 
referred to in section 4, which comprises 630 classes10. SUMO was chosen because, 
as an upper-level ontology, it is reasonable to expect most people to have familiarity 
with the notions it covers, in contrast with highly specialized ontologies in technical 
domains. This particular version of SUMO was chosen for a number of reasons: 

 

• After running a couple of pilots, it became obvious that the ontology provided 
enough complexity to challenge the subjects and to potentially provide data 
about the effectiveness of different tool configurations. 

• An ontology with thousands, rather than hundreds, of nodes would have required 
more time for the experiment, potentially reducing the number of subjects 
willing to take part. 

                                                           
7 The members of Group C used version 1.3.0 of the KC-Viz plugin, which is part of the core 

set of plugins included with version 2.5 of the NeOn Toolkit. 
8 The search facility in the NeOn Toolkit locates an entity in the Ontology Navigator and then 

the user can use the “Visualize in KC-Viz” menu item, to add the located entity to the current 
KC-Viz display. 

9  To our knowledge Protégé is the most widely used ontology engineering environment 
currently available.  

10 This can be found at http://www.ontologyportal.org/translations/SUMO.owl 
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• The more complex the ontology, the higher the risk that a high number of 
subjects (many of whom could not be considered as experienced ontology 
engineers) would not complete the task, thus potentially reducing the number of 
useful data points.  

The tasks given to the subjects are shown in Table 1. This set of tasks was designed to 
ensure coverage of different exploration strategies, which are typically required in the 
context of a sensemaking activity11. Task 1 can be seen as a ‘pure’ topological task, 
along the lines of the tasks used in the evaluation described in [6], in the sense that it 
asks the user to locate a node with a specific topological property. Task 2 is similar to 
Task 1, however it also requires the user to examine, as a minimum, the labels of the 
classes, rather than considering them only as abstract nodes in a node-link diagram. 
Tasks 3 and 4 require a mix of top-down and bottom-up exploration of the ontology 
and in addition Task 4 requires the user to understand part of the ontology at a deeper 
level than mere topological structure. Moreover, Task 4 also allowed us to test to 
what extent tools are able to help when the ontology has a non-standard 
conceptualization, which may easily confuse users, whether experts or novices. In 
particular, the SUMO ontology models class CurrencyCoin as a subclass of class 
Text, which is something many people could find surprising.  

 

Table 1. Ontology Engineering Tasks 

T1. Which class has the highest number of direct subclasses in the ontology? 
T2. What is the most developed (i.e., has the biggest subtree) subclass of class Quantity 
found in the ontology at a concrete level of granularity (i.e.,  do not consider abstract 
classes which have the term ‘quantity’ in their id)? 
T3. Find three subclasses of Agent, at the most abstract level possible (under Agent of 
course), which are situated at the same level in the hierarchy as each other, and are also 
subclasses of CorpuscularObject. 
T4. We have two individual entities (a particular copy of the book War&Peace and a 
particular 5p coin). Find the most specific classes in the ontology, to which they belong, 
say P1 and P2, and then identify the most specific class in the ontology, say C1, which is 
a superclass of both P1 and P2 – i.e., the lowest common superclass of both P1 and P2. 

 
For each task, the subjects were given a 15 minutes time slot. If they were not able 

to solve a particular task within 15 minutes, that task would be recorded as ‘fail’. 
Before the experiment, every subject filled a questionnaire, answering questions about 
his/her expertise in ontology engineering, knowledge representation languages, and 
with various ontology engineering tools, including (but not limited to) NeOn and 
Protégé. None of the subjects had much direct experience with the SUMO ontology. 

                                                           
11 It is important to emphasize that there is no direct mapping between KC-Viz features and the 

evaluation tasks chosen for this study. This is not accidental, as we are not interested in 
performing experiments on tasks which are artificially manufactured for KC-Viz. In addition, 
to ensure repeatability, the evaluation tasks used in this study are rather fine-grained and are 
associated to precise performance criteria. 
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4.1.3   Session Setup 
At the beginning of the session a subject would be briefed about the purpose of the 
experiment. To avoid biases in favour or against a particular tool, subjects were 
simply told that the purpose of the experiment was “to test different configurations of 
ontology engineering tools”. The subject would then be given a tutorial (max 10 
minutes) about the specific set of tools he/she would be using. The tutorial was given 
by the person in charge of the experiment (the ‘administrator’). In total four 
administrators were used. To minimize differences between the tutorials given by 
different administrators, these were given a precise list of the features that ought to be 
shown to each specific group. For the tutorial we used the Pizza ontology v1.5, which 
can be found at http://www.co-ode.org/ontologies/pizza/2007/02/12/. 

After the tutorial, the subjects were asked to do a ‘warm-up task’. This was exactly 
the same as T1, however it was carried out on a rather small ontology, AKTLite, a 
subset of the AKT reference ontology12, which has been used in a variety of projects 
and applications for representing data about academic organizations. While the AKT 
ontology contains 170 classes, the AKTLite ontology only contains 85 classes. The 
AKTLite ontology consists of two sub-ontologies, AKT Support and AKT Portal, and 
can be found at http://technologies.kmi.open.ac.uk/KC-Viz/evaluation/AKTLite.zip13. 
The subjects were given 10 minutes to solve the warm-up task. 

All the tasks, including the warm-up task, were recorded using screen capture 
software. After completing the task, the subjects were asked to fill a SUS usability 
questionnaire14 and to provide qualitative data about their experience with the 
particular tool configuration they used, including overall impression of the tool, 
strengths and weaknesses, etc. Finally, the subjects in groups A and B were given a 
demo of KC-Viz and asked to provide feedback about the tool. This allowed us to get 
feedback about KC-Viz from all 21 participants in the evaluation.  

4.2   Results 

4.2.1   Task Performance 
Out of 84 tasks in total (4 * 21), 71 were completed within the 15 minutes time limit, 
while 13 tasks were not completed, a 15.47% percentage failure. The 13 failures were 
distributed as follows: 5 in group A (NTK), 6 in group B (OwlViz), and 2 in group C 
(KC-Viz). Table 2 shows the average time taken by each group in each task, as well 
as the total averages across groups and tasks15. As shown in the table, on each of the 
four tasks the fastest mean performance was with KC-Viz, whose overall mean 
performance was about 13 minutes faster than OWLViz, which in turn was about two 

                                                           
12 http://www.aktors.org/publications/ontology/ 
13 For the sake of repeatability all tools and all ontologies used in the evaluation are publicly 

available online, while the tasks carried out in the evaluation are described in this paper. 
14 http://www.usabilitynet.org/trump/documents/Suschapt.doc 
15 For tasks not completed within the time limit, we consider a 15 minutes performance.  This 

could be modified to consider ‘penalties’, such as a 5 minutes penalty for a non-completed 
task.  However, adding such penalties does not lead to meaningful changes in the 
interpretation of the data, other than increasing the performance gap between the KC-Viz 
group and the others.  
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minutes faster than NTK. The mean performance time for OwlViz was faster than 
NTK for task 3, slower for the others. Although not significant, the difference in total 
time taken across the four tasks with the three different tools appeared to be 
approaching significance, F(2, 20) = 2.655, p = 0.098. 

The difference in performance across the three tools on Task 1, was statistically 
significant F(2, 20) = 9.568, p < 0.01. A Tukey HSD pairwise comparison revealed a 
significant difference between both KC-Viz and NTK (p < 0.01) and KC-Viz and 
OwlViz (p < 0.01), however not between NTK and OwlViz. Although mean 
performance was faster for KC-Viz across the board, performance differences on the 
other three tasks did not reach statistical significance. By some margin, the least 
significant result was found for Task 4 (p = 0.755). As discussed earlier, Task 4 
involved more problem solving steps than the other tasks (i.e., finding direct parent 
classes for suggested instances and then their common parent) and an answer that was 
counter-intuitive to many of the subjects (i.e., a CurrencyCoin being a subclass of 
Text). Due to the more complex nature of the problem, we hypothesize that other 
factors, beyond the features provided by a particular ontology engineering tool, 
influenced performance on this task.  

Nevertheless these results suggest advantages for KC-Viz in supporting users in 
such realistic browsing and visualization tasks. In particular it is reasonable to assume 
that increasing the sample size beyond the seven per condition in the current study 
could be expected to lead to statistical significance for overall performance and 
possibly also for other individual tasks. 

Table 2. Experimental results (in min:secs) 

  NTK OWLViz KCViz Overall 

  mean s.d. mean s.d. mean s.d. mean s.d. 

Task 1 12:03 02:51 12:19 04:16 05:10 03:07 09:50 04:44 

Task 2 06:43 04:45 07:20 03:55 04:03 02:15 06:02 03:52 

Task 3 11:00 05:31 07:24 04:27 06:25 05:06 08:16 05:12 

Task 4 08:01 05:56 08:23 05:28 06:17 05:15 07:34 05:21 

Total 37:47 15:02 35:26 15:36 21:55 10:32 31:43 15:01 

 
It is interesting to note that it is the first task that most clearly distinguished the 

performance of KC-Viz relative to the other tools. This was the first of the four tasks 
that used the SUMO ontology. Performance on this task would therefore have 
involved developing some initial overall conceptualization of the ontology, its 
structure, size and scope, as well as finding ways to navigate it. It is possible therefore 
that the use of KC-Viz is particularly effective, when users are confronted with large 
and unfamiliar ontologies. 

4.2.2   Other Quantitative Findings 
Usability scores were calculated using the SUS formula for each of the three 
conditions – see Table 3. The mean usability score was slightly higher for KC-Viz, 
though very similar across the three tools and not statistically significant.  
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Table 3. Usability scores 

 NKT OwlViz KC-Viz 
mean s.d. mean s.d. mean s.d. 

Usability 
score 

26.9 5.1 25.7 4.3 27.1 5.8 

 
However, for each subject, two sub-scores were calculated from the experience 

questionnaire. The first seven questions in the questionnaire are related to experience 
with ontologies and ontology languages. The scores on these questions were summed 
to give a measure of ontology experience. The scores on the final six questions were 
summed to give a score related to experience with ontology engineering tools.  

A positive correlation was found between the ontology experience score and the 
usability score, r = 0.546, p < 0.05, while a significant correlation was not found 
between the score for experience with tools and the usability score.  This appears to 
indicate that perceived usability probably reflects the greater ability of subjects, who 
are more experienced in the use of ontologies, to adapt to the features, and 
compensate for the shortcomings, of whatever tool provided for the task. These 
findings also suggest that the results of usability questionnaires in this kind of 
evaluations should be treated with much caution and ideally triangulated with other 
sources of data. 

The ontology experience score also had a significant negative correlation with the 
total time spent across the four tasks (i.e. the higher the ontology experience, the 
lower the time to complete the task), r = -0.476, p < 0.05, as well as on task 3, r = -
0.511, p < 0.05. Correlation between experience of ontology engineering tools and 
task performance was statistically significant for task 1 (r = -0.469, p < 0.5) and task 3 
(r = -0.452), and was close to significance on overall performance (r = -0.410, p = 
0.065). 

These findings suggest that prior experience with both ontologies and associated 
tools increases task performance regardless of the toolset used. The deeper 
understanding that the expert has of the underlying ontological constructs and the 
heuristics and techniques developed through experience allows the expert to more 
easily interpret and adapt to whatever tool is provided. Therefore, both differences in 
performance and usability judgements can be expected to be harder to find when 
testing with experts than when testing with users with lower levels of experience. 

Given the effect of experience on usability judgements and performance, an 
analysis was conducted to verify that performance differences across the three tools 
were not due to a skewed distribution of experience across the three conditions. 
However, experience scores were similar across the subjects in the three conditions 
and were not statistically significant. This demonstrates that variation in performance 
across the tools was not due to a bias in the distribution of experience across the three 
conditions. 

4.2.3   Qualitative Results 
As already mentioned, the free text questions on the post-task questionnaire elicited 
views on the perceived strengths and weaknesses of the tool used by each subject. 
Additionally, subjects who did not use KC-Viz provided feedback following a demo. 
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A grounded theory approach [16] was used to build categories of comments that 
either expressed positive feedback, offered criticism, or suggested improvements. 
Categories were discarded when they only contained comments from a single subject. 
Because of the page limit constraint on this paper, we do not have enough space here 
to discuss this analysis in detail, hence we only highlight the main findings. 

The three main categories of positive comments concerned the flexible support 
provided by KC-Viz to manipulate the visual displays; the abstraction power enabled 
by the KCE algorithm; and the value of the subtree summaries provided by KC-Viz.  
These results are encouraging in the sense that they provide some initial indication 
that there is probably a direct causal link between the use of key concepts as an 
abstraction mechanism and the good performance of KC-Viz on the evaluation tasks, 
even though these were not designed specifically to map directly to KC-Viz features. 

The three main categories of negative comments included: criticism of the tree 
layout algorithm used by KC-Viz, which does not allow display rotation and at times 
generates overlapping labels; the lack of transparency of the KCE algorithm, which 
does not allow the user to configure it, or to clarify why a node is considered more 
important than others; and the lack of integration between KC-Viz and 
reasoning/query support in the NeOn Toolkit.  

5   Conclusions 

Exploring a large ontology, particularly when it is unfamiliar to the user, can be 
characterized as information foraging [17]. Information foraging theory, drawing on 
ecological models of how animals hunt for food, proposes the notion of information 
scent. An animal foraging for food will follow a scent in order to locate a promising 
patch rich in sources of food. Analogously, an information forager will follow an 
information scent in order to locate rich information sources. In a hypertext 
environment, the name of a link, a preview of the information source, or even the 
source URL may give the information forager clues as to the potential profitability of 
following the link. This helps the forager to choose between alternative paths in the 
search for information. 

The support provided by KC-Viz for displaying key concepts and using these as 
the basis for further exploration can be seen as assisting information foraging from an 
ontology. In particular, the flexible set of options provided by KC-Viz for 
manipulating the visualization enables the user to construct a view on the ontology 
that allows them to compare the information scent of different paths through the 
ontology and control how they pursue these paths. Key concepts use a number of 
factors to estimate the importance of a particular class and therefore provide means 
for estimating the potential profitability of an information scent. In addition, subtree 
summaries provide a topological clue as to the potential profitability of a class.  

This perspective might help explain why KC-Viz was found to be particularly 
advantageous when exploring a large ontology for the first time and indeed both key 
concepts and subtree summaries were highlighted as strengths of the approach, while 
the lack of these kinds of abstraction/summarization mechanisms were identified by 
users as a deficit of both the NTK and OwlViz configurations. 
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The empirical study also offers lessons learned for future evaluations of ontology 
browsing and visualization tools. In particular it showed that significant prior 
experience in ontology engineering enables users to adapt well to different tool 
configurations and perform well regardless of the specific configuration they are 
using. In addition, it also showed that experts can have relatively positive usability 
judgments of interfaces. Both of these observations suggest that users having a broad 
range of expertise should be gathered for usability testing and that the results from 
experiments that fail to triangulate multiple sources of data, including usability scores, 
task performance and qualitative feedback, should be treated with caution. 

Our future work has two broad strands. First of all, we intend to further develop 
KC-Viz, taking on board the feedback gathered during the evaluation.  In particular, 
improving the layout algorithm, opening up the KCE algorithm to users, and 
integrating KC-Viz with ontology reasoning and querying are all priorities for 
development. In addition, we also intend to capitalize on the 21 videos collected 
during the evaluation, both to undertake a fine-grained analysis of the navigational 
strategies employed by users, and also to uncover possible misconceptions revealed in 
the use of the various ontology tools. It is hoped that from these analyses we will then 
be able to generate additional design recommendations for future versions of KC-Viz.  
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Abstract. When ontological knowledge is acquired automatically, quality con-
trol is essential. We consider the tightest possible approach – an exhaustive man-
ual inspection of the acquired data. By using automated reasoning, we partially
automate the process: after each expert decision, axioms that are entailed by the
already approved statements are automatically approved, whereas axioms that
would lead to an inconsistency are declined. Adequate axiom ranking strategies
are essential in this setting to minimize the amount of expert decisions.

In this paper, we present a generalization of the previously proposed rank-
ing techniques which works well for arbitrary validity ratios – the proportion
of valid statements within a dataset – whereas the previously described ranking
functions were either tailored towards validity ratios of exactly 100% and 0%
or were optimizing the worst case. The validity ratio – generally not known a
priori – is continuously estimated over the course of the inspection process. We
further employ partitioning techniques to significantly reduce the computational
effort. We provide an implementation supporting all these optimizations as well
as featuring a user front-end for successive axiom evaluation, thereby making
our proposed strategy applicable to practical scenarios. This is witnessed by our
evaluation showing that the novel parameterized ranking function almost achieves
the maximum possible automation and that the computation time needed for each
reasoning-based, automatic decision is reduced to less than one second on aver-
age for our test dataset of over 25,000 statements.

1 Introduction

Many real-world applications in the Semantic Web make use of ontologies in order
to enrich the semantics of the data on which the application is based. As a popular
example, consider DBpedia, which consists of structured information from Wikipedia.
DBpedia uses a background ontology, which defines the meaning of and relationships
between terms. For example, if two terms are related via the property river, the first one
can be inferred to be an instance of the class Place and the latter one of the class River.

In order to guarantee very high quality standards, the DBpedia background ontol-
ogy has been created manually. For many applications, however, the time requirements
of a completely manual knowledge acquisition process are too high. An additional ap-
plication of (semi-) automatic knowledge acquisition methods such as ontology learn-
ing or matching is, therefore, often considered to be a reasonable way to reduce the
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expenses of ontology development. The results produced by such automatic methods
usually need to be manually inspected either partially, to estimate the overall quality of
the resulting data, or to the full extent, to keep the quality of the developed ontology
under control.

So far, the knowledge representation community has been focusing on restoring the
consistency of ontologies enriched with new axioms as done in various belief revision
and repair approaches, see, e.g., [1,10]. Thereby, new axioms not causing inconsistency
are treated as valid facts, which do not require further inspection. Our goal is to sup-
port a more restrictive quality control process in which a domain expert inspects a set
of candidate axioms and decides for each of them whether it is a desired logical con-
sequence. Based on this decision, we automatically discard or include yet unevaluated
axioms depending on their logical relationships with the already evaluated axioms. In
the following, we call this interactive process ontology revision.

Throughout the paper, we use the following running example, which we write in
OWL’s functional-style syntax using an imaginary prefix ex to abbreviate IRIs:

Example 1. Let us assume that we have already confirmed that the axioms, which state
subclass relations between classes, belong to the desired consequences:

SubClassOf(ex:AluminiumNitrideNanotube ex:AluminiumNitride)

SubClassOf(ex:AluminiumNitride ex:NonOxideCeramics)

SubClassOf(ex:NonOxideCeramics ex:Ceramics)

SubClassOf(ex:Ceramics ex:MaterialByMaterialClass)

SubClassOf(ex:MaterialByMaterialClass ex:Material)

SubClassOf(ex:Material ex:PortionOfMaterial)

SubClassOf(ex:Material ex:TangibleObject)

We further assume that the following axioms, which define several different types for
the individual ex:nanotube1, are still to be evaluated:

ClassAssertion(ex:AluminiumNitrideNanotube ex:nanotube1) (1)

ClassAssertion(ex:AluminiumNitride ex:nanotube1) (2)

ClassAssertion(ex:NonOxideCeramics ex:nanotube1) (3)

ClassAssertion(ex:Ceramics ex:nanotube1) (4)

ClassAssertion(ex:MaterialByMaterialClass ex:nanotube1) (5)

ClassAssertion(ex:Material ex:nanotube1) (6)

ClassAssertion(ex:PortionOfMaterial ex:nanotube1) (7)

ClassAssertion(ex:TangibleObject ex:nanotube1) (8)

If Axiom (8) is declined, we can immediately also decline Axioms (1) to (6) assum-
ing OWL or RDFS reasoning since accepting the axioms would implicitly lead to the
undesired consequence (8). Note that no automatic decision is possible for Axiom (7)
since it is not a consequence of Axiom (8) and the already approved subsumption ax-
ioms. Similarly, if Axiom (1) is approved, Axioms (2) to (8) are implicit consequences,
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which can be approved automatically. If we start, however, with declining Axiom (1),
no automatic evaluation can be performed. It can, therefore, be observed that

– a high grade of automation requires a good evaluation order, and
– approval and decline of an axiom has a different impact.

Which axioms have the highest impact on decline or approval and which axioms can
be automatically evaluated once a particular decision has been made can be determined
with the help of algorithms for automated reasoning, e.g., for RDFS or OWL reason-
ing. One of the difficulties is, however, that it is not known in advance, which of the
two decisions the user makes. In our previous work [8], we tackle this problem by
showing that, if the quality of the acquired axioms is known, a prediction about the
decision of the user can be made: if the quality is high, the user is likely to approve an
axiom. Hence, axioms that have a high impact on approval should be evaluated with
higher priority. For low quality data, the situation is reversed. We measure the quality
by means of the validity ratio, i.e., the percentage of accepted axioms, and show in [8]
that, depending on the validity ratio of a dataset, different impact measures used for
axiom ranking are beneficial. In this paper, we extend the previous results in several
directions:

– First, we generalize the ranking functions proposed in [8], which are tailored to-
wards validity ratios of 100% and 0% by parametrizing the ranking function by
an estimated validity ratio. In our evaluation, we show that the revision based on
the novel ranking function almost achieves the maximum possible automation. The
gain is particularly important for datasets with a validity ratio close to 50%, since
the currently existing ranking function for those datasets only optimizes the worst
case and does not fully exploit the potential of automation.

– Second, since the expected validity ratio is not necessarily known in advance, we
suggest a ranking function where the validity ratio is learned on-the-fly during the
revision. We show that, even for small datasets (50-100 axioms), it is worthwhile
to rank axioms based on this learned validity ratio instead of evaluating them in
a random order. Furthermore, we show that, in case of larger datasets (e.g., 5,000
axioms and more) with an unknown validity ratio, learning the validity ratio is par-
ticularly effective due to the law of large numbers, thereby making the assumption
of a known or expected validity ratio unnecessary. For such datasets, our experi-
ments show that the proportion of automatically evaluated axioms when learning
the validity ratio is nearly the same (difference of 0.3%) as in case where the valid-
ity ratio is known in advance.

Even for not very expressive knowledge representation formalisms, reasoning is an ex-
pensive task and, in an interactive setting as described above, a crucial challenge is to
minimize the number of expensive reasoning tasks while maximizing the number of
automated decisions. In our previous work [8], we have developed decision spaces –
data structures, which exploit the characteristics of the logical entailment relation be-
tween axioms to maximize the amount of information gained by reasoning. Decision
spaces further allow for reading off the impact that an axiom will have in case of an
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approval or decline. In this paper, we extend the latter work by combining decision
spaces with a partitioning technique in order to further improve the efficiency of the
revision process. It is interesting to observe that partitioning intensifies the effective-
ness of decision spaces, since it increases the relative density of dependencies between
axioms considered together during the revision.

We further present revision helper: an interactive application supporting ontology
revision. We evaluate the proposed techniques and demonstrate that even for expressive
OWL reasoning, an interactive revision process is feasible with on average 0.84 seconds
(7.4 reasoning calls) per expert decision, where the automatic evaluation significantly
reduces the number of expert decisions.1

The remainder of this paper is organized as follows. Next, we describe relevant pre-
liminaries. Section 3 describes the proposed new ranking function and how the validity
ratio can be learned during the revision. Section 4 introduces partitioning as a way of
optimizing the efficiency of the revision process. We then evaluate the approach in Sec-
tion 5 and present the user front-end of revision helper in Section 6. In Section 7, we
discuss the existing related approaches and then conclude in Section 8.

2 Preliminaries

In this section, we introduce the basic notions that are relevant to the revision of an
ontology. The ontologies that are to be revised can be written in standard semantic
web languages such as RDFS or OWL. We focus, however, on OWL 2 DL ontolo-
gies.

The revision of an ontology O aims at a separation of its axioms (i.e., logical state-
ments) into two disjoint sets: the set of intended consequences O|= and the set of unin-
tended consequences O�|=. This motivates the following definitions.

Definition 1 (Revision State). A revision state is defined as a tuple (O,O|=,O�|=) of on-
tologies with O|= ⊆ O,O�|= ⊆ O, and O|= ∩ O�|= = ∅. Given two revision states (O,O|=1 ,O�|=1 )
and (O,O|=2 ,O�|=2 ), we call (O,O|=2 ,O�|=2 ) a refinement of (O,O|=1 ,O�|=1 ), if O|=1 ⊆ O|=2 and
O�|=1 ⊆ O�|=2 . A revision state is complete, if O = O|= ∪ O�|=, and incomplete otherwise.
An incomplete revision state (O,O|=,O�|=) can be refined by evaluating a further axiom
α ∈ O\ (O|=∪O�|=), obtaining (O,O|=∪{α},O�|=) or (O,O|=,O�|=∪{α}). We call the resulting
revision state an elementary refinement of (O,O|=,O�|=).

Since we expect that the deductive closure of the intended consequences in O|= must not
contain unintended consequences, we introduce the notion of consistency for revision
states. If we want to maintain consistency, a single evaluation decision can predeter-
mine the decision for several yet unevaluated axioms. These implicit consequences of
a refinement are captured in the revision closure.

Definition 2 (Revision State Consistency and Closure). A (complete or incomplete)
revision state (O,O|=,O�|=) is consistent if there is no α ∈ O�|= such that O|= |= α. The

1 Anonymized versions of the used ontologies and the revision helper tool can be downloaded
from http://people.aifb.kit.edu/nni/or2010/Interactive_Ontology_Revision/

http://people.aifb.kit.edu/nni/or2010/Interactive_Ontology_Revision/
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Algorithm 1. Interactive Ontology Revision

Data: (O,O|=0 ,O�|=0 ) a consistent revision state
Result: (O,O|=,O�|=) a complete and consistent revision state

1 (O,O|=,O�|=)← clos(O,O|=0 ,O�|=0 );
2 while O|= ∪ O�|= � O do
3 choose α ∈ O \ (O|= ∪ O�|=);
4 if expert confirms α then
5 (O,O|=,O�|=)← clos(O,O|= ∪ {α},O�|=);
6 else
7 (O,O|=,O�|=)← clos(O,O|=,O�|= ∪ {α}) ;

revision closure clos(O,O|=,O�|=) of (O,O|=,O�|=) is (O,O|=c ,O�|=c ) with O|=c := {α ∈ O | O|= |=
α} and O�|=c := {α ∈ O | O|= ∪ {α} |= β for some β ∈ O�|=}.

We observe that, for a consistent revision state (O,O|=,O�|=), the closure clos(O,O|=,O�|=)
is again consistent and that every further elementary refinement of clos(O,O|=,O�|=) is
also consistent; furthermore, any consistent and complete refinement of (O,O|=,O�|=) is
a refinement of clos(O,O|=,O�|=) [8, Lemma 1]. Algorithm 1 employs these properties
to implement a general methodology for interactive ontology revision. Instead of ini-
tializing O|=0 and O�|=0 with the empty set, one can initialize O|=0 with already approved
axioms, e.g., from a previous revision, and O�|=0 with declined axioms from a previous
revision and with axioms that express inconsistency and unsatisfiability of classes (or
properties), which we assume to be unintended consequences.

In line 3, an axiom is chosen that is evaluated next. As motivated in the introduction,
a random decision can have a detrimental effect on the amount of manual decisions.
Ideally, we want to rank the axioms and choose one that allows for a high number
of consequential automatic decisions. The notion of axiom impact captures how many
axioms can be automatically evaluated when the user approves or declines an axiom.
Note that after an approval, the closure might extend both O|= and O�|=, whereas after a
decline only O�|= can be extended. We further define ?(O,O|=,O�|=) as the number of yet
unevaluated axioms and write |S | to denote the cardinality of a set S :

Definition 3 (Impact). Let (O,O|=,O�|=) be a consistent revision state with α ∈ O and
let ?(O,O|=,O�|=) := |O \ (O|= ∪ O�|=)|. For an axiom α, we define

the approval impact impact+(α) = ?(O,O|=,O�|=) − ?(clos(O,O|= ∪ {α},O�|=)),
the decline impact impact−(α) = ?(O,O|=,O�|=) − ?(clos(O,O|=,O�|= ∪ {α})),

the guaranteed impact guaranteed(α) = min(impact+(α), impact−(α)).

We further separate impact+(α) into the number of automatic approvals, impact+a(α),
and the number of automatic declines, impact+d(α):

impact+a(α) = |{β ∈ O | O|= ∪ {α} |= β}|,
impact+d(α) = |{β ∈ O | O|= ∪ {α, β} |= γ, γ ∈ O�|=}|.
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Table 1. Example axiom dependency graph and the corresponding ranking values

(1)impact+ →
(2)

(3)

(4)guaranteed →
(5)guaranteed →
(6)

(7)impact− → (8)

Axiom impact+a impact+d impact− guaranteed
(1) 7 0 0 0
(2) 6 0 1 1
(3) 5 0 2 2
(4) 4 0 3 3
(5) 3 0 4 3
(6) 2 0 5 2
(7) 0 0 6 0
(8) 0 0 6 0

Note that impact+(α) = impact+a(α) + impact+d(α). The function impact+ privileges
axioms, for which the number of automatically evaluated axioms in case of an accept
is high. Going back to our running example, Axiom (1), which yields 7 automatically
accepted axioms in case it is accepted, will be ranked highest. The situation is the oppo-
site for impact−. It privileges axioms, for which the number of automatically evaluated
axioms in case of a decline is high (Axioms (7) and (8)). The function guaranteed priv-
ileges axioms with the highest guaranteed impact, i.e., axioms with the highest number
of automatically evaluated axioms in the worst-case (Axioms (4) and (5)). Table 1 lists
the values for all ranking functions for the axioms from Example 1.

Which ranking function should be chosen for an ontology revision in order to max-
imize the amount of automatic decisions depends on the expected validity ratio within
the axiom set under revision. For a validity ratio of 100% the function impact+ is the
most effective, whereas for a validity ratio of 0%, impact− clearly performs best. In
cases when the expected validity ratio is close to 50%, the guaranteed impact can be
used to get a reasonable compromise between impact+ and impact−. The ranking func-
tions do, however, not adapt to validity ratios that divert from these extremes. We ad-
dress this in the next section, by introducing a parametrized ranking function.

Since computing such an impact as well as computing the closure after each eval-
uation (lines 1, 5, and 7) can be considered very expensive due to the high worst-case
complexity of reasoning, we developed decision spaces [8] as auxiliary data structures
which significantly reduce the cost of computing the closure upon elementary revisions
and provide an elegant way of determining high impact axioms. Intuitively, a decision
space keeps track of the dependencies between the axioms, i.e., if an axiom β is entailed
by the approved axioms together with an unevaluated axiom α, then an “entails” rela-
tionship is added linking α to β. Similarly, if adding β to the approved axioms together
with an unevaluated axiom α would yield an inconsistency, then a “conflicts” relation-
ship is established between α to β. We show a simplified graph capturing the entails
relation for our running example on the left-hand side of Table 1 (the conflicts relation
for the example is empty). Note that the entails relation is transitive and reflexive, but
for a clearer presentation, we show a transitively reduced version of the graph. From
this graph we can see, for example, that if we approve Axiom (5), then we can automat-
ically approve Axioms (6) to (8) as indicated by the (entails) edges in the graph. Thus,
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decision spaces allow for simply reading-off the consequences of revision state
refinements upon an approval or a decline of an axiom, thereby reducing the required
reasoning operations. Furthermore, updating a decision space after an approval or a
decline can be performed more efficiently compared to a recomputation of all depen-
dencies.

3 Parametrized Ranking

In order to motivate the introduction of the parametrized ranking and to clarify its dif-
ference to the three previously proposed ranking functions, we now consider so-called
key axioms for a path in the entails-graph of the decision space: an axiom α on a path p
is a key axiom for p if

1. any axiom β on p such that α entails β is correct and
2. any axiom γ on p such that γ entails α is incorrect.

It can be observed that each path is such that there is at least one and there are at most
two key axioms (one axiom in case all axioms on the path are correct or incorrect).
Intuitively, by making a decision about the key axioms of a path first, we can auto-
matically make a decision for all remaining axioms on the path. While these decisions
are made, we might also automatically find conflicts and perform further automatic de-
clines. Conflicts allow, however, for fewer automatic decisions. Hence we focus on the
entails paths in the decision space. From this perspective, the behavior of impact+ in a
tree-shaped structure corresponds to the search for such a key axiom starting from the
source axioms with only outgoing entails edges, while the behavior of impact− corre-
sponds to the search from the sink axioms with only incoming entails edges. On the
other hand, the behavior of guaranteed corresponds to binary search. For instance, if
we assume that in our example, Axioms (1) and (2) are incorrect and we choose Ax-
iom (4) among the two highest ranked axioms under the guaranteed ranking function,
then Axioms (5) to (8) will be automatically evaluated, leaving us with Axioms (1)
to (3). This time, Axiom (2) will receive the highest ranking value (1 in contrast to 0
for Axioms (1) and (3)). After another expert decision, Axiom (1) will remain, which
is ranked with 0. Therefore, after each expert decision, the remaining axioms are again
divided into more or less equally large sets until the set of unevaluated axioms is empty.
The improvement achieved by guaranteed in comparison to a revision in random or-
der becomes more and more visible with the growing size of the set of unevaluated
axioms forming a connected decision space graph, since, in this scenario, the prob-
ability of incidentally choosing an axiom with the above specified property becomes
lower.

Under the assumption that the dataset in the example has a validity ratio of 75%, the
ranking technique guaranteed will (theoretically) require 2.8 expert decisions. This is
an average for the different possible choices among the highest ranked axioms assum-
ing that these have the same probability of being chosen. In contrast to that, impact+

will require 3 expert decisions, while impact− will require even 7 decisions. It is ob-
vious that if the expected validity ratio would have been taken into account, the
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corresponding ranking strategy would choose Axioms (2) and (3) and require only two
expert decisions. In the following, we generalize the ranking techniques impact+ and
impact−, which assume the expected validity ratio to be 100% and 0%, respectively, to
a ranking technique, which is parametrized by the actual expected validity ratio. The
new ranking technique then chooses axioms based on the expected validity ratio for the
dataset.

The goal of the parametrized ranking is to privilege axioms that are most probably
key axioms under the assumption that the validity ratio is R. While in Example 1, Ax-
ioms (2) and (3) would be the clear choice, in an arbitrary graph, more than two axioms
can have such a property. Interestingly, the examination of decision space structures
computed within our experiments indicates that the number of possible axioms with
such a property is close to two within the connected components of such graphs.

3.1 The Ranking Function norm

We now define the ranking function normR according to the above set goals. We first
normalize the number of automatic approvals and declines to values between 0 and 1.
Since in the case of an approval we can possibly accept and decline axioms, we split the
approval impact accordingly. We can then normalize the obtained values with respect
to the expected validity ratio which allows for choosing an axiom that behaves best
according to our expectation.

Definition 4. Let O ? be a connected component of the decision space and R the ex-
pected validity ratio. The normalized impact functions are:

impact+a
N =

1 + impact+a

|O ?| , impact+d
N =

impact+d

|O ?| , impact−N =
1 + impact−

|O ?| .

The ranking functions norm+a
R , norm+d

R and norm−R are then defined by

norm+a
R = −|R−impact+a

N |, norm+d
R = −|1−R−impact+d

N |, norm−R = −|1−R−impact−N |.
Finally, the ranking function normR is:

normR = max(norm+a
R , norm+d

R , norm−R).

Note that we do not add 1 for impact+d
N since the axiom itself is not declined, i.e., we

capture just the “side-effect” of accepting another axiom. Table 2 shows the compu-
tation of norm0.75 for Example 1. The function norm+a

R captures how the fraction of
automatically accepted axioms deviates from the expected overall ratio of wanted con-
sequences, e.g., accepting Axiom (2) or (4) deviates by 12.5%: for the former axiom
we have automatically accepted too many axioms, while for the latter we do not yet
have accepted enough under the premise that the validity ratio is indeed 75%. Since
Example 1 does not allow for automatic declines after an approval, the function norm+d

R
shows that for each accept, we still deviate 25% from the expected ratio of invalid
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Table 2. The values for norm0.75 and the intermediate functions (shown in percentage)

(1)

(2)

(3)

(4)

(5)

(6)

(7) (8)

Axiom impact+a
N impact+d

N impact−N norm+a
0.75 norm+d

0.75 norm−0.75 norm0.75

(1) 100.0% 0.0% 12.5% -25.0% -25.0% -12.5% -12.5%
(2) 87.5% 0.0% 25.0% -12.5% -25.0% 0.0% 0.0%
(3) 75.0% 0.0% 37.5% 0.0% -25.0% -12.5% 0.0%
(4) 62.5% 0.0% 50.0% -12.5% -25.0% -25.0% -12.5%
(5) 50.0% 0.0% 62.5% -25.0% -25.0% -37.5% -25.0%
(6) 37.5% 0.0% 75.0% -37.5% -25.0% -50.0% -25.0%
(7) 12.5% 0.0% 87.5% -62.5% -25.0% -62.5% -25.0%
(8) 12.5% 0.0% 87.5% -62.5% -25.0% -62.5% -25.0%

axioms, which is 1 − R. The function norm−R works analogously for declines. Hence,
normR is defined in a way that it takes the greatest value if the chance that all wanted
(unwanted) axioms are accepted (declined) at once becomes maximal.

Note that the expected validity ratio needs to be adjusted after each expert decision,
to reflect the expected validity ratio of the remaining axioms. For instance, after Ax-
iom (2) has been declined, norm1.00 needs to be applied to rank the remaining axioms.
If, however, Axiom (3) has been accepted, norm0.00 is required. Note that employing
norm0.00 for ranking yields the same behavior as impact−. On the other hand, norm1.00

corresponds to impact+ in case no conflicting axioms are involved.

3.2 Learning the Validity Ratio

Users might only have a rough idea of the validity ratio of a dataset in advance of the
revision or the validity ratio might not be known at all. Hence, it might be difficult
or impossible to decide upfront which R should be used for normR. To address this
problem, we investigate how efficient we can “learn” the validity ratio on-the-fly. In
this setting, the user gives an estimate for R (or we use 50% as default) and with each
revision step, R is adjusted based on the number of accepted and declined axioms. Thus,
the algorithm tunes itself towards an optimal ranking function, which relieves the user
from choosing a validity ratio. We call the according ranking function dynnorm as it
dynamically adapts the estimated validity ratio over the course of the revision.

In our experiments, we show that, already for small datasets, dynnorm outperforms
random ordering and, in case of sufficiently large datasets, the estimate converges to-
wards the actual validity ratio, thereby making the assumption of a known validity ratio
unnecessary.

4 Partitioning

Since reasoning operations are very expensive (the reasoner methods take 99.2% of
the computation time in our experiments according to our profiling measurements), we
combine the optimization using decision spaces with a straight-forward partitioning
approach for ABox axioms (i.e., class and property assertions):
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Definition 5. Let A be a set of ABox axioms, ind(A) the set of individual names used
in A, then A is connected if, for all pairs of individuals a, a′ ∈ ind(A), there exists a
sequence a1, . . . , an such that a = a1, a′ = an, and, for all 1 ≤ i < n, there exists a
property assertion in A containing ai and ai+1. A collection of ABoxes A1, . . . ,Ak is a
partitioning of A if A = A1 ∪ . . . ∪Ak, ind(Ai) ∩ ind(A j) = ∅ for 1 ≤ i < j ≤ k, and
eachAi is connected.

In the absence of nominals (OWL’s oneOf constructor), the above described partitions
or clusters of an ABox are indeed independent. Thus, we take each partition separately,
join the partition with the TBox/schema axioms and perform the revision. In order to
also partition TBox axioms or to properly take axioms with nominals into account, the
signature decomposition approach by Konev et al.[6] could be applied. This approach
partitions the signature of an ontology (i.e., the set of occurring class, property, and
individual names) into subsets that are independent regarding their meaning. The re-
sulting independent subsets of the ontology can then be reviewed independently from
each other analogously to the clusters of ABox axioms used in our evaluation. We show
in our experiments that:

– In particular in case of large datasets containing several partitions, the additional
optimization based on partitioning significantly reduces the computational effort.

– Partitioning intensifies the effectiveness of decision spaces, since the density of
entailment and contradiction relations are significantly higher within each partition
than the density within a set of independent partitions.

5 Experimental Results

We evaluate our revision support methodology within the project NanOn2 aiming at
ontology-supported literature search. During this project, a hand-crafted ontology mod-
eling the scientific domain of nano technology has been developed, including sub-
stances, structures, and procedures used in that domain. The ontology, denoted here
with O, is specified in the Web Ontology Language OWL 2 DL [11] and comprises
2,289 logical axioms. This ontology is used as the core resource to automatically an-
alyze scientific documents for the occurrence of NanOn classes and properties by the
means of lexical patterns. When such classes and properties are found, the document
is automatically annotated with those classes and properties to facilitate topic-specific
information retrieval on a fine-grained level. In this way, one of the project outputs is a
large amount of class and property assertions associated with the NanOn ontology. In
order to estimate the accuracy of such automatically added annotations, they need to
be inspected by human experts, which provides a natural application scenario for our
approach. The manual inspection of annotations provided us with sets of valid and in-
valid annotation assertions (denoted by A+ and A−, respectively). To investigate how
the quality and the size of each axiom set influences the results, we created several dis-
tinct annotation sets with different validity ratios |A+|/(|A+| + |A−|). As the annotation
tools provided rather reliable data, we manually created additional frequently occurring

2 http://www.aifb.kit.edu/web/NanOn
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Table 3. Revision results of norm in comparison with other ranking functions for the sets L1-L5

validity ratio optimal norm best previous random
L1 90% 65.6% 65.4% (impact+) 65.4% 41.7%
L2 76% 59.8% 55.8% (impact+) 59.9% 35.8%
L3 50% 47.8% 47.6% (guaranteed) 36.5% 24.4%
L4 25% 59.9% 59.8% (impact−) 54.9% 37.6%
L5 10% 63.9% 63.9% (impact−) 63.9% 40.3%

wrong patterns and applied them for annotating texts to obtain datasets with a lower
validity ratio.

For each set, we applied our methodology starting from the revision state (O∪O− ∪
A+ ∪ A−,O,O−) with O containing the axioms of the NanOn ontology and with O−
containing axioms expressing inconsistency and class unsatisfiability. We obtained a
complete revision state (O∪O− ∪A+ ∪A−,O∪A+,O− ∪A−) where on-the-fly expert
decisions about approval or decline were simulated according to the membership inA+
orA−. For computing the entailments, we used the OWL reasoner HermiT.3

For each set, our baseline is the reduction of expert decisions when axioms are eval-
uated in random order, i.e., no ranking is applied and only the revision closure is used
to automatically evaluate axioms. For this purpose, we repeat the experiments 10 times
and compute the average values of effort reduction. The upper bound for the in principle
possible reduction of expert decisions is obtained by applying the optimal ranking as
suggested by the“impact oracle” for each axiom α that is to be evaluated:

KnownImpact(α) =

⎧
⎪⎪⎨
⎪⎪⎩

impact+(α) if α ∈ A+,
impact−(α) if α ∈ A−.

5.1 Evaluation of norm

To compare the effectiveness of the three previously proposed impact measures and the
new impact measure, we created five sets of annotations L1 to L5, each comprising
5,000 axioms and validity ratios varying from 10% to 90%.

Table 3 shows the results for the different ranking techniques: the column optimal
shows the upper bound achieved by using the impact oracle, norm shows the reduc-
tion for our novel ranking parametrized with the actual validity ratio, best previous
shows the best possible value achievable with the previously introduced ranking func-
tions impact+, guaranteed and impact−, and, finally, the column random states the effort
reduction already achieved by presenting the axioms in random order.

The results show that norm consistently achieves almost the maximum effort reduc-
tion with an average difference of 0.1%. The previously introduced ranking functions
only work well for the high and low quality datasets, as expected. For the dataset with
the validity ratio of 50%, norm achieves an additional 11.1% of automation by using
the parametrized ranking.

3 http://www.hermit-reasoner.com
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Table 4. Revision results for datasets S 1 to S 5, M1 to M5, and L1 to L5

validity ratio optimal norm dynnorm0.50 dynnorm1.00 dynnorm0.00 random
S 1 90% 72.4% 72.4% 58.6% 72.4% 65.5% 40.8%
S 2 77% 68.6% 65.7% 57.1% 62.9% 48.6% 38.2%
S 3 48% 65.1% 65.1% 65.1% 60.3% 61.9% 22.0%
S 4 25% 68.3% 68.3% 64.6% 63.4% 67.1% 37.6%
S 5 10% 72.5% 72.5% 71.6% 67.6% 72.5% 29.2%
M1 91% 66.4% 66.0% 66.2% 66.4% 65.6% 40.8%
M2 77% 60.0% 60.0% 59.6% 59.8% 59.2% 38.2%
M3 44% 40.8% 40.6% 40.4% 40.6% 40.4% 22.0%
M4 25% 60.0% 60.0% 59.6% 59.2% 59.8% 37.6%
M5 10% 53.2% 53.0% 52.8% 52.8% 53.2% 29.2%
L1 90% 65.6% 65.4% 65.4% 65.4% 65.3% 41.7%
L2 76% 59.8% 59.8% 59.8% 59.8% 59.9% 35.8%
L3 50% 47.8% 47.6% 47.4% 47.2% 47.3% 24.4%
L4 25% 59.9% 59.8% 59.8% 59.8% 59.8% 37.6%
L5 10% 63.9% 63.9% 63.9% 63.8% 63.9% 40.3%

In general, the actual difference in performance achieved by the more precise para-
metrized ranking increases with the increasing average maximum path length within
connected decision space graphs. To see this, consider again the decision space shown
in Table 1 and 2. It is clear that the distance between the highest ranked axioms for
different ranking functions increases with the increasing height of the presented tree.

5.2 Evaluation of dynnorm

In order to evaluate our solution for situations where the validity ratio is unknown or
only very rough estimates can be given upfront, we now analyze the effectiveness of
the dynamically learning ranking function dynnorm. For this, we created the following
annotation sets in addition to the datasets L1 − L5:

– small datasets S 1 to S 5 with the size constantly growing from 29 to 102 axioms and
validity ratios varying from 10% to 90%,

– medium-sized datasets M1 to M5 with 500 axioms each and validity ratios varying
from 10% to 91%.

Table 4 shows the results of the revision: the columns optimal and random are as de-
scribed above, the column norm shows the results that we would obtain if we were to
assume that the validity ratio is known and given as parameter to the norm ranking
function, the columns dynnorm0.50, dynnorm1.00 and dynnorm0.00 show the results for
starting the revision with a validity ratio of 50%, 100%, and 0%, respectively, where
over the course of the revision, we update the validity ratio estimate.

We observe that, in case of small datasets (S i), the deviation from norm (on average
5%) as well as the dependency of the results on the initial value of the validity ratio are
clearly visible. However, the results of dynnorm are significantly better (45.0%) than
those of a revision in random order. It is also interesting to observe that the average
deviation from norm decreases with the size of a dataset (6.9%, 10.5%, 2.7%, 3.3%,
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1.9% for S 1 to S 5, respectively) and that the probability of a strong deviation is lower
for datasets with an extreme validity ratio (close to 100% or 0%).

For medium-sized and large datasets (Mi and Li), the deviation from norm (on aver-
age 0.3% for both) as well as the dependency on the initial value of the validity ratio
are significantly lower. We conclude that

– ranking based on learning validity ratio is already useful for small datasets (30-
100 axioms), and improves significantly with the growing size of the dataset under
revision;

– in caseof largedatasets, theperformancedifferencebetweenthe resultswith avalidity
ratio known in advance and a learned validity ratio almost disappears, thereby making
the assumption of a known average validity ratio not necessary for axiom ranking.

5.3 Computational Effort

During our experiments, we measured the average number of seconds after each ex-
pert decision required for the automatic evaluation and ranking as well as the average
number of reasoning calls. If we compute the average values for the revision based on
dynnorm ranking for all 15 datasets, the revision takes on average 0.84 seconds (7.4 rea-
soning calls) after each expert decision. In the case of small datasets, partitioning yields
additionally an improvement by an order of magnitude in terms of reasoning calls. For
medium-sized datasets, the first step out of on average 153 evaluation steps took al-
ready 101,101 reasoning calls (ca. 3 hours) even when using decision spaces. Without
the decision spaces, the required number of reasoning calls would be more than 500,000
judging from the required reasoning calls to build the corresponding decision space in
the worst case. For this reason, we did not try to run the experiment for large datasets,
which would require more than 50 million reasoning calls without decision spaces. In
contrast to that, the average number of required reasoning calls for a complete revision
of the sets M1 to M5 amounts to 3,380. The revision of datasets L1 to L5 required over-
all on average 16,175 reasoning calls, which corresponds to between 6 and 7 reasoning
calls per evaluation decision. We can summarize the evaluation results as follows:

– The proposed reasoning-based support performs well in an interactive revision pro-
cess with on average 0.84 seconds per expert decision.

– In particular in case of large datasets containing several partitions, the additional
optimization based on partitioning significantly reduces the computational effort.

– Decision spaces save in our experiments on average 75% of reasoner calls. As mea-
sured in case of small datasets, partitioning further intensifies the effect of decision
spaces and we save even 80% of reasoner calls.

6 User Front-End

Figure 1 shows the user front-end of the revision helper tool. It allows the user to load
the set O of axioms under revision and save or load an evaluation state for the currently
loaded set O. Thereby, the user can interrupt the revision at any time and proceed later
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Fig. 1. Revision Helper GUI

on. If partitioning is activated, revision helper shows the partitions one after another and
the revision of each partition is independent from the revision of all other partitions.

By default, revision helper initializes the set O�|= of undesired statements with the
minimal set of statements expressing the inconsistency of the ontology or unsatisfia-
bility of its classes. The set of desired statements O|= can be initialized by loading an
arbitrary ontology. A statement can be evaluated by choosing one of the values Accept
or Decline, and it can be excluded from the revision process by choosing Exclude. The
latter option should be used if the meaning of a statement is not clear and the user can-
not decide whether to accept or to decline it. After the statement has been evaluated, it
disappears from the revision list as well as all statements that could be evaluated auto-
matically, unless the checkbox Propagate Decisions is deactivated. The ranking strategy
used for sorting the statements can be selected or deactivated at any time and is taken
into account after the next evaluation decision. At any stage of the revision, it is possible
to export the current set O|= of accepted statements as an ontology. For the export, we
exclude, however, axioms with which O|= has been initialized at the beginning of the
revision.

7 Related Work

We are aware of two approaches for supporting the revision of ontological data based
on logical appropriateness: an approach by Meilicke et al.[7] and another one called
ContentMap by Jiménez-Ruiz et al.[5]. Both approaches are applied in the context of
mapping revision. An extension of ContentMap called ContentCVS [4] supports an in-
tegration of changes into an evolving ontology.

In all of these approaches, dependencies between evaluation decisions are deter-
mined based on a set of logical criteria each of which is a subset of the criteria that
can be derived from the notion of revision state consistency introduced in Def. 1.
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In contrast to our approach, the focus of ContentMap and ContentCVS lies within
the visualization of consequences and user guidance in case of difficult evaluation
decisions. These approaches selectively materialize and visualize the logical conse-
quences caused by the axioms under investigation and support the revision of those
consequences. Subsequently, the approved and declined axioms are determined in cor-
respondence with the revision of the consequences. The minimization of the manual
and computational effort required for the revision is out of scope. In contrast to our ap-
proach, which requires at most a polynomial number of entailment checks, ContentMap
and ContentCVS require an exponential number of reasoning operations compared to
the size of the ontology under revision. The reason for this is that ContentMap is based
on the computation of justifications, i.e., sets of axioms causing an entailment, and, in
the worst-case, there can be exponentially many justifications for a particular statement.

Similarly to our approach, Meilicke et al. aim at reducing the manual effort of map-
ping revision. However, their results are difficult to generalize to the revision of on-
tologies, since the notion of impact is defined based on specific properties of mapping
axioms. For every mapping axiom possible between the entities of the two mapped on-
tologies O1 and O2, they define the impact as the corresponding number of possible
entailed and contradicting mapping axioms. The assumption is that the set of possi-
ble mapping axioms and the set of possible axioms in O1 and O2 are mostly disjoint,
since axioms in O1 and O2 usually refer only to entities from the same ontology, while
mapping axioms are assumed to map only entities from different ontologies. In case
of ontology revision in general, no such natural distinction criteria for axioms under
revision can be defined. Moreover, in contrast to our approach, Meilicke et al. abstract
from the interactions between more than one mapping axiom.

Another strand of work is related to the overall motivation of enriching ontologies
with additional expert-curated knowledge in a way that minimizes the workload of the
human expert: based on the attribute exploration algorithm from formal concept analy-
sis (FCA) [3], several works have proposed structured interactive enumeration strategies
of inclusion dependencies or axioms of certain fragments of description logics which
then are to be evaluated by the expert [9,2]. While similar in terms of the workflow, the
major difference of these approaches to ours is that the axioms are not pre-specified but
created on the fly and therefore, the exploration may require (in the worst case expo-
nentially) many human decisions.

8 Summary

In our previous work [8], we established the theoretical ground for partially automated
interactive revision of ontologies. In this paper, we present the implementation of the
approach including an optimization based on partitioning, which significantly reduces
the required computational effort. We further define a generalization of the previously
proposed ranking techniques, called norm, which is parametrized by the expected va-
lidity ratio. The ranking function norm works well for any validity ratio, whereas the
previous functions were tailored towards validity ratios of 100% or 0%. We define a
variant of norm, called dynnorm, which can be used without knowing the validity ratio
beforehand: starting with an initial estimate, e.g., 50%, the estimate is more and more
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refined over the course of the revision. We evaluate our implementation in a revision
of ontology-based annotations of scientific publications comprising over 25,000 state-
ments and show that

– All claims made in [8] hold also in case of large datasets under revision; on average,
we were able to reduce the number of required evaluation decisions by 36% when
the statements were reviewed in an arbitrary order, and by 55.4% when the ranking
techniques suggested in [8] were used.

– The proposed reasoning-based support is feasible for an interactive revision pro-
cess requiring on average less than one second after each expert decision in our
evaluation.

– The parametrized ranking technique proposed in this paper almost achieved the
maximum possible automation (59.4% of evaluation decisions) thereby reducing
the manual effort of revision by 59.3%. The gain is particularly important for
datasets with a validity ratio close to 50%, since for those datasets the potential of
automation was not fully exploited by the other ranking techniques. In our exper-
iments, we managed to achieve an additional 11.1% of automation for the dataset
with the validity ratio of 50% by using the parametrized ranking.

– In case of large datasets with an unknown validity ratio, learning the validity ratio
is particularly effective due to the law of large numbers. In our experiments, the
proportion of automatically evaluated statements is nearly the same as in case where
the validity ratio is known a priori and is used as a fixed parameter of norm, thereby
making the assumption of known average validity ratio not necessary for axiom
ranking.

As part of our future work, we intend to study more general partitioning methods, e.g.,
[6], to increase the applicability of the partitioning optimization. Another interesting
approach in this direction would also be to study the effects of separating the ontology
into parts that are not logically independent. In such a case, we might miss automatic
decisions, but the potential performance gain, due to the reasoning with smaller subsets
of the ontology, might compensate for this drawback.

Acknowledgments. This work is supported by the German Federal Ministry of
Education and Research (BMBF) under the SAW-project NanOn.
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Abstract. We aim at providing a complementary layer for the web se-
mantics, catering for bottom-up phenomena that are empirically observ-
able on the Semantic Web rather than being merely asserted by it. We
focus on meaning that is not associated with particular semantic descrip-
tions, but emerges from the multitude of explicit and implicit links on the
web of data. We claim that the current approaches are mostly top-down
and thus lack a proper mechanisms for capturing the emergent aspects of
the web meaning. To fill this gap, we have proposed a framework based
on distributional semantics (a successful bottom-up approach to mean-
ing representation in computational linguistics) that is, however, still
compatible with the top-down Semantic Web principles due to inherent
support of rules. We evaluated our solution in a knowledge consolidation
experiment, which confirmed the promising potential of our approach.

1 Introduction

The Semantic Web has been designed for asserting meaning of things mostly
in a top-down manner (via explicit specifications of RDF descriptions or on-
tologies). We conjecture that there is also another, bottom-up meaning of the
web (both the ‘semantic’ and ‘human’ one). Similarly to the meaning of natural
languages arising from the complex system of interactions between their indi-
vidual speakers [1], we conceive the bottom-up web semantics as consisting of
implicit patterns. In the Semantic Web case, though, the complex patterns of
meaning emerge from a simple language of countless triple statements, which
may come from the evolving Linked Open Data cloud, but also from the human
web (mediated to machines by methods like data or text mining).

The proposed alternative way of looking at the Semantic Web can bring bet-
ter solutions to problems in areas like knowledge consolidation (by which we
basically mean clustering of related entities and properties). For instance, in our
CORAAL prototype (see http://coraal.deri.ie), users can search for prop-
erties linking particular life science entities (like genes or diseases). CORAAL
� This work has been supported by the ‘Ĺıon II’ project funded by SFI under Grant
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extracts all the underlying statements automatically from text, which leads to
thousands of properties occurring only in very small number of triples. This may
result in too specific query answers and user frustration, as they have to struggle
to figure out how to get more general information. Imagine one wants to know
more about organs involved in the production of a hormone H. A query for that
can look like H secreted in ?x. However, such a query may retrieve only a single
result. More results could be retrieved via related properties like excreted in or
produced in, but it is rather tedious to try all such possibilities without knowing
precisely how exactly one should ask. A solution grouping extracted content into
more general inter-related clusters would significantly improve the user satisfac-
tion and efficiency, as hitting a single property would also reveal all the related
ones. Yet for achieving such a consolidation, one needs to know not (only) what
is meant by the statements at the level of the particular documents (which is
covered by the current approaches). What is more important (and less explored)
are the minuscule contextual features distributed across the whole data set (e.g.,
properties and 〈 subject, object 〉 tuples that tend to co-occur at a larger scale
with sufficient significance). This is what constitutes the global evidence of what
is actually meant by the data set at large (and not just asserted at the level of
local semantic descriptions). By capturing these aspects, one can consolidate the
little scattered chunks of related knowledge in an empirically valid manner. As
detailed in Section 2, we lack a comprehensive solution for this, though.

Therefore we have proposed (in Section 3) a framework stemming from recent
advances in distributional semantics. This sub-field of computational linguis-
tics is based on a hypothesis that “a word is characterized by the company it
keeps” [2]. In our case, we can rephrase this to characterise the meaning of a
thing on the web by the company of things linked to it. In order for such mean-
ing to be representative, though, we have to analyse the ‘company’ across as
much content as possible. To do so, we employ an approach utilising simple, yet
universal and powerful tensor-based representation of distributional semantics
proposed in [3]. We adapt it to the Semantic Web specifics and show how one can
execute rules on the top of it, which effectively leads to a smooth combination
of the bottom-up (distributional) and top-down (symbolic) approaches to the
representation of meaning. Apart of that, we dedicate a substantial a part of the
paper (Section 4) to an experimental application of our approach to automated
consolidation of knowledge in life sciences. We conclude the paper in Section 5.

2 Related Work

We define emergent meaning of Semantic Web expressions using tensors to eluci-
date various distributional effects, which stems from the comprehensive approach
in [3]. However, we extended this approach with a symbolic (rule-based) layer in
order to combine it with the top-down Semantic Web principles. A tensor-based
representation of the Semantic Web data was presented for instance in [4], which,
however, focuses mostly on ranking and decomposition, not on providing generic
means for an analysis of various bottom-up semantics phenomena. Approaches to
induction of implicit patterns or schemata from data are also related to our work
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(particular examples include [5] and [6] in the fields of databases and Semantic
Web, respectively). Yet these approaches are usually focused on rather limited
sets of problems (e.g., query optimisation or concept induction) and thus are
not as comprehensive and theoretically uniform as our framework. The NELL
project [7] aims at incremental and continuous induction of triple patterns from
the web data, which is a goal very similar to ours. The main differences are that
NELL needs manually provided seeds of knowledge and a slight supervision in
the form of pruning. Also, the type of extracted patterns is limited to instances
of fixed generic relations in NELL, whereas we allow for bottom-up inference of
rather varied and dynamic set of phenomena. Works like [8] or [9] deal with emer-
gent semantics, but they mostly investigate how to gather the semantics (from
ontologies or simple peer-to-peer interactions in heterogeneous data systems).
Less attention is paid to how the semantics can be uniformly represented and
utilised later on. Finally, our experiment in knowledge consolidation is closely
related to ontology matching [10] and life science data integration [11]. Most of
the ontology matching algorithms are designed to operate at the schema level,
though, and not at the data level that is most pertinent to our work. Regarding
extant methods for knowledge integration in life sciences, majority of them uses
quite a limited set of specifically tuned lexical or structural similarities. Thus
our approach can provide for a more adaptive and empirically driven data-based
integration in this context.

3 Distributional Web Semantics

The proposed distributional web semantics framework has two major layers – the
bottom-up and top-down one. The former caters for the implicit meaning, while
the latter allows for adding more value to the bottom-up analysis by utilising
the current Semantic Web resources (e.g., RDF Schema or ontologies). A general
way of using the framework follows this pipeline: (1) convert a set of simple RDF
documents into the internal distributional representation; (2) extract interesting
patterns from it; (3) make use of extant top-down semantic resources to mate-
rialise more implicit knowledge by means of inference (optional); (4) utilise the
results to improve the quality of the initial RDF data set. The last step can
consist of exporting the distributional patterns as RDF statements to be added
to the input data (e.g., as links between the entities or properties found to be
similar). Alternatively, one can present the patterns directly to users along the
original data set to facilitate its machine-aided augmentation.

3.1 Bottom-Up Layer

Source Representation. The basic structure of the bottom-up layer is a so
called source (or graph) representation G, which captures the co-occurrence of
things (i.e., subjects and objects) within relations (i.e., predicates) across a set of
documents (i.e., RDF graphs). Let Al, Ar be sets representing left and right ar-
guments of binary co-occurrence relationships (i.e., statements), and L the types
of the relationships. Al, Ar, L correspond to sets of RDF subjects, objects and
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predicates, respectively. Furthermore, let P be a set representing provenances of
particular relationships (i.e., graph names). We define the source representation
as a 4-ary labeled tensor G ∈ R|Al|×|L|×|Ar|×|P |. It is a four-dimensional array
structure indexed by subjects, predicates, objects and provenances, with values
reflecting a frequency or weight of statements in the context of particular prove-
nance sources (0 if a statement does not occur in a source). For instance, if a
statement (al, l, ar) occurs k-times in a data source d (a single graph or a set of
graphs in general), then the element gal,l,ar ,d of G will be set to k to reflect it.
More details are illustrated in the following example.

Example 1. Let us consider 7 statements (acquired from biomedical texts):

(protein domain , different, protein), (protein domain, type, domain), (gene, different,
protein), (internal tandem duplications, type, mutations), (internal tandem duplications,
in, juxtamembrane), (internal tandem duplications, in, extracelullar domains), (protein
domain, type, domain)

with provenances D1, D1, D2, D3, D3, D3, D4, respectively. The source representation
(using statement occurrence frequencies as values) is:

s ∈ Al p ∈ L o ∈ Ar d ∈ P gs,p,o,d

protein domain different protein D1 1
protein domain type domain D1 1

gene different protein D2 1
internal tandem duplications type mutations D3 1
internal tandem duplications in juxtamembrane D3 1
internal tandem duplications in extracelullar domains D3 1

protein domain type domain D4 1

We omit all zero values and use the tabular notation as a convenient and concise
representation of a 4-dimensional tensor, with the three first columns for indices and
the fourth one for the corresponding value.

Corpus Representation. The source tensor is merely a low-level data repre-
sentation preserving the association of statements with their provenance con-
texts. Before allowing for actual distributional analysis, the data have to be
transformed into a more compact structure C called corpus representation.
C ∈ R|Al|×|L|×|Ar| is a ternary (three-dimensional) labeled tensor, devised ac-
cording to [3] in order to provide for a universal and compact distributional
representation for the proposed bottom-up web semantics framework. A cor-
pus C can be constructed from a source representation G using functions a :
R × R → R, w : P → R, f : Al × L × Ar → R. For each C element cs,p,o,
cs,p,o = a(

∑
d∈P w(d)gs,p,o,d, h(s, p, o)), where gs,p,o,d is an element of the source

tensor G and the a, f, w functions act as follows: (1) w assigns a relevance de-
gree to each source; (2) f reflects the relevance of the statement elements (e.g.,
a mutual information score of the subject and object within the sources); (3) a
aggregates the result of the w, f functions’ application. This way of construct-
ing the elements of the corpus tensor from the low-level source representation
essentially aggregates the occurrences of statements within the input data, re-
flecting also two important things – the relevance of particular sources (via the w
function), and the relevance of the statements themselves (via the f function).
The specific implementation of the functions is left to applications – possible
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examples include (but are not limited to) ranking (both at the statement and
document level) or statistical analysis of the statements within the input data.
In Section 4.1, we provide a detailed description of a particular source-to-corpus
conversion we used in the evaluation experiment.

Example 2. A corpus corresponding to the source tensor from Example 1 can be
represented (again in a tabular notation) as given below. The w values were 1 for all
sources and a, f aggregated the source values using relative frequency (in a data set
containing 7 statements).

s ∈ Al p ∈ L o ∈ Ar cs,p,o

protein domain different protein 1/7
protein domain type domain 2/7

gene different protein 1/7
internal tandem duplications type mutations 1/7
internal tandem duplications in juxtamembrane 1/7
internal tandem duplications in extracelullar domains 1/7

Corpus Perspectives.The elegance and power of the corpus representation
lays in its compactness and universality that, however, yields for many diverse
possibilities of the underlying data analysis. The analysis are performed using
a process of so called matricisation of the corpus tensor C. Essentially, matri-
cisation is a process of representing a higher-order tensor using a 2-dimensional
matrix perspective. This is done by fixing one tensor index as one matrix dimen-
sion and generating all possible combinations of the other tensor indices within
the remaining matrix dimension. In the following we illustrate the process on
the simple corpus tensor from Example 2. Detailed description of matricisation
and related tensor algebra references can be found in [3].

Example 3. When fixing the subjects (Al set members) of the corpus tensor from
Example 2, one will get the following matricised perspective (the rows and columns
with all values equal to zero are omitted here and in the following examples):

s/〈p, o〉 〈d, p〉 〈t, dm〉 〈t, m〉 〈i, j〉 〈i, e〉
protein domain 1/7 2/7 0 0 0

gene 1/7 0 0 0 0
internal tandem duplications 0 0 1/7 1/7 1/7

.

The abbreviations d, p, t, dm,m, i, j, e stand for different, protein, type, domain, mu-
tations, in, juxtamembrane, extracellular domains. One can clearly see that the
transformation is lossless, as the original tensor can be easily reconstructed from the
matrix by appropriate re-grouping of the indices.

The corpus tensor matricisations correspond to vector spaces consisting of
elements defined by particular rows of the matrix perspectives. Each of the
vectors has a name (the corresponding matrix row index) and a set of fea-
tures (the matrix column indices). The features represent the distributional
attributes of the entity associated with the vector’s name – the contexts ag-
gregated across the whole corpus. Thus by comparing the vectors, one es-
sentially compares the meaning of the corresponding entities emergently de-
fined by the underlying data. For exploring the matricised perspectives, one
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can uniformly use the linear algebra methods that have been successfully ap-
plied to vector space analysis tasks for the last couple of decades. Large fea-
ture spaces can be reliably reduced to a couple of hundreds of the most sig-
nificant indices by techniques like singular value decomposition or random
indexing (see http://en.wikipedia.org/wiki/Dimension_reduction for de-
tails). Vectors can be compared in a well-founded manner by various metrics
or by the cosine similarity (see http://en.wikipedia.org/wiki/Distance or
http://en.wikipedia.org/wiki/Cosine_similarity, respectively). This way
matrix perspectives can be combined with vector space analysis techniques in
order to investigate a wide range of semantic phenomena related to synonymy,
clustering, ambiguity resolution, taxonomy detection or analogy discovery. In
this introductory paper, we focus only on clustering of similar entities (subjects
and/or objects) and properties. The following example explains how to perform
these particular types of analysis.

Example 4. Let us add two more matrix perspectives to the s/〈p, o〉 one provided in
Example 3. The first one represents the distributional features of objects (based on the
contexts of predicates and subjects they tend to co-occur with in the corpus):

o/〈p, s〉 〈d, pd〉 〈t, pd〉 〈d, g〉 〈t, itd〉 〈i, itd〉
protein 1/7 0 1/7 0 0
domain 0 2/7 0 0 0

mutations 0 0 0 1/7 0
juxtamembrane 0 0 0 0 1/7

extracellular domains 0 0 0 0 1/7

.

d, pd, t, g, itd, i stand for different, protein domain, type, gene, internal tandem dupli-
cations, in. Similarly, the second perspective represents the distributional features of
properties:

p/〈s, o〉 〈pd, p〉 〈pd, d〉 〈g, p〉 〈itd, m〉 〈itd, j〉 〈itd, ed〉
different 1/7 0 1/7 0 0 0

type 0 2/7 0 1/7 0 0
in 0 0 0 0 1/7 1/7

.

itd, pd, p, d, g,m, j, ed stand for internal tandem duplications, protein domain, protein,
domain, gene, mutations, juxtamembrane, extracellular domains.

The vector spaces induced by the matrix perspectives s/〈p, o〉 and o/〈p, s〉 can
be used for finding similar entities by comparing their corresponding vectors. Us-
ing the cosine vector similarity, one finds that sims/〈p,o〉(protein domain, gene) =

1
7

1
7√

( 1
7 )2+( 2

7 )2
√

( 1
7 )2

.
= 0.2972 and simo/〈p,s〉(juxtamembrane, extracel-lular domains)

=
1
7

1
7√

( 1
7 )2

√
( 1
7 )2

= 1. These are the only non-zero similarities among the subject and

object entities present in the corpus. As for the predicates, all of them have a zero
similarity. This quite directly corresponds to the intuition a human observer can get
from the data represented by the initial statements from Example 1. Protein domains
and genes seem to be different from proteins, yet protein domain is a type of domain
and gene is not, therefore they share some similarities but are not completely equal ac-
cording to the data. Juxtamembranes and extracellular domains are both places where
internal tandem duplications can occur, and no other information is available, so they
can be deemed equal until more data comes. Among the particular predicates, no pat-
terns as clear as for the entities can be observed, therefore they can be considered
rather dissimilar given the current data.

http://en.wikipedia.org/wiki/Dimension_reduction
http://en.wikipedia.org/wiki/Distance
http://en.wikipedia.org/wiki/Cosine_similarity
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3.2 Top-Down Layer

A significant portion of the expressive Semantic Web standards (RDFS, OWL)
and widely used extensions (such as N3, cf. http://www.w3.org/DesignIssues/
Notation3.html) can be expressed by conjunctive rules (see http://www.w3.
org/TR/rdf-mt/), http://www.w3.org/TR/owl2-profiles/ or [12]). To allow
for a seamless combination of this top-down layer of the Semantic Web with the
bottom-up principles introduced in the previous section, we propose a straight-
forward adaptation of state of the art rule-based reasoning methods.

Conjunctive rules can be described as follows in the ‘language’ of the bottom-up
semantics. Let S = R|Al∪V |×|L∪V |×|Ar∪V | be a set of corpus tensors with their in-
dex domains (Al, L, Ar) augmented by a set of variables V . Then (L,R, w), where
L,R ∈ S, w ∈ R, is a rule with an antecedent L, a consequent R and a weight w.
The values of the rule tensors are intended to represent the structure of the rule
statements – a non-zero value reflects the presence of a statement consisting of
the corresponding indices in the rule. However, the antecedent tensor values can
also specify the weights of the relationship instances to be matched and thus fa-
cilitate uncertain rule pattern matching. The weights can be used to set relative
importance of rules. This is especially useful when combining rules from rule sets
of variable relevance – one can assign higher weights to rule coming from more
reliable resources and the other way around. We assume the weights to be set ex-
ternally – if this is not the case, they are assumed to be 1 by default.

Example 5. An RDFS entailment rule for transitivity can be stated in N3 as: {?x
rdfs:subClassOf ?y . ?y rdfs:subClassOf ?z } => {?x rdfs:subClassOf ?z }.
The rule is transformed to the tensor form as:

(

s ∈ Al ∪ V p ∈ L ∪ V o ∈ Ar ∪ V ls,p,o

?x rdfs : subClassOf ?y 1
?y rdfs : subClassOf ?z 1

,

s ∈ Al ∪ V p ∈ L ∪ V o ∈ Ar ∪ V rs,p,o

?x rdfs : subClassOf ?z 1
, 1 ).

Rules can be applied to a corpus by means of Algorithm 1. The particular rule-
based reasoning method we currently use is a modified version of the efficient
RETE algorithm for binary predicates [13]. The conditionT rees() function in
Algorithm 1 generates a set of trees of antecedent conditions from a rule set R.

Algorithm 1. Rule Evaluation
1: RESULTS ← ∅
2: FOREST ← conditionTrees(R)
3: for T ∈ FOREST do
4: for (I,R, w) ∈ matches(T ) do
5: R′ ← w · materialise(I,R)
6: RESULTS ← RESULTS ∪ R′

7: end for
8: end for
9: return

∑
X∈RESULTS X

http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/owl2-profiles/
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Example 6. For instance, let us imagine the following rule set (described in N3 again):
R1 : {?x rdfs:subClassOf ?y . ?y rdfs:subClassOf ?z } => {?x rdfs:subClas-

sOf ?z}. R2 :{?x rdfs:subClassOf ?y . ?z rdf:type ?x} => {?z rdf:type ?y}.
For simplicity, we assume the weights of the rules R1, R2 to be 1.0. Given this rule
set, the conditionTrees() function returns a single tree with a root condition ?x

rdfs:subClassOf ?y and the ?y rdfs:subClassOf ?z, ?z rdf:type ?x conditions as
the root’s children. The tree leafs (i.e., children of the root’s children) then point to
the consequents and weights of the rules R1, R2, respectively.

The rule condition forest allows for optimised incremental generation of all
possible corpus instance assignments to the variables in the rule conditions – each
condition is being evaluated only once even if it occurs in multiple rules. The
generation of instance assignments for particular condition variables is realised
by the function matches() in Algorithm 1. It produces tuples (I,R, w), where
I is an assignment of instances to the antecedent variables along a particular
root-leaf path in the given tree T . R, w are then the rule consequent and weight
in the leaf of the corresponding instance assignment path.

The function materialise() takes the computed instance assignment I and
applies it to the consequent R. The values of the materialised consequent tensor
R′ are computed as rs,p,o = �{ci1,i2,i3 |(i1, i2, i3) ∈ I} for each (s, p, o) element
of the consequent that has a non-zero value in the original R tensor. The ci1,i2,i3

elements of the tensor C (the corpus representation, i.e., knowledge base) corre-
spond to all statements in the instantiated rule conditions along the assignment
path I. Finally, the � operation is an application of a fuzzy conjunction (t-norm,
cf. http://en.wikipedia.org/wiki/T-norm) to a set of values1. The result of
Algorithm 1 is a sum of all the tensors resulting from the particular consequent
materialisations weighted by the corresponding rule weights.

Example 7. To exemplify an iterative rule materialisation (knowledge base closure),
let us add two more elements to the corpus from Example 2 (the weights are purely
illustrative):

Al L Ar value

domain rdfs : subClassOf molecular structure 2/9
molecular structure rdfs : subClassOf building block 1/9

.

If we assume that the type relation from the previous examples is equivalent to
the rdf:type relation from the rule R2 in Example 6, we can apply the R1, R2

rules to the extended corpus representation with the following results. After assign-
ing instances to the antecedent variables, the only instance path leading towards R1

in the condition tree consists of the statements domain rdfs:subClassOf molecular

structure and molecular structure rdfs:subClassOf building block. The R2

branch generates four possible instance paths. The root can have two values:
domain rdfs:subClassOf molecular structure, molecular structure rdfs:subC-

lassOf building block. Similarly for the child – there are two statements in the

1 Note that although the minimum t-norm, t(a, b) = min(a, b), can be applied to any
positive values in the corpus representation tensors with the intuitively expected
(fuzzy-conjunctive) semantics, any other t-norm, such as the product one, t(a, b) =
ab, would lead to rather meaningless results if the tensor values were not normalised
to the [0, 1] interval first.

http://en.wikipedia.org/wiki/T-norm
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corpus that fit the corresponding condition: protein domain rdf:type domain and
internal tandem duplications rdf:type mutations. When using the minimum t-
norm we can enrich the knowledge base by the following materialised consequents:

s ∈ Al p ∈ L o ∈ Ar rs,p,o

domain rdfs : subClassOf building block 1/9
protein domain rdf : type molecular structure 2/9

.

If we apply Algorithm 1 again, we get one more new statement:

s ∈ Al p ∈ L o ∈ Ar rs,p,o

protein domain rdf : type building block 2/9
.

After that the corpus representation already remains stable (its closure has been com-
puted), as no further application of the rules produces new results.

4 Evaluation

In the evaluation, we addressed life sciences, a domain where the information
overload is now more painful than ever and where efficient data/knowledge in-
tegration can bring a lot of benefit [11]. Specifically, we looked into knowledge
consolidation, by which we mean—at the abstract level—grouping of possibly
isolated, yet related simple facts into more general chunks of knowledge with
similar meaning. Drilling down to a more concrete level of the actual experi-
ments, we applied the framework proposed in this paper to clustering of entities
(i.e., subjects and objects) and relations based on their distributional features
within a corpus of input resources. We considered two types of inputs – existing
linked data sets and statements extracted from texts associated with the linked
data sets. Details on the data, experiments, evaluation methods and results are
provided in the corresponding sections below.

4.1 Method

Data.Thefirst type of dataweusedwere fourRDFdocuments (parts of theLinked
Open Data cloud) thatwere converted into RDF from manually curated life science
databasesandservedontheD2Rwebsite (http://www4.wiwiss.fu-berlin.de/).
To keep the data set focused, we chose resources dealing with drugs and diseases:
Dailymed, Diseasome, Drugbank and Sider (see http://goo.gl/c0Dqo,
http://goo.gl/sbq8E, http://goo.gl/ydMSD and http://goo.gl/LgmlF,
respectively).This data set is referred toby theLDidentifier in the rest of thepaper.
We pre-processed the data as follows. Most importantly, we converted the identi-
fiers of entities to their human-readable names to facilitate the evaluation. Also,
we added new statements for each explicitly defined synonym in the LD data set by
“mirroring” the statements of the descriptions associated with the corresponding
preferred term. More technical details are available at http://goo.gl/38bGK (an
archive containing all the data, source code and additional descriptions relevant to
the paper).

The second data set we used was generated from the textual content of the
LD documents, which contain many properties with string literal objects rep-
resenting natural language (English) definitions and detailed descriptions of the

http://www4.wiwiss.fu-berlin.de/
http://goo.gl/c0Dqo
http://goo.gl/sbq8E
http://goo.gl/ydMSD
http://goo.gl/LgmlF
http://goo.gl/38bGK
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entries (e.g., drugbank:pharmacology describes the biochemical mechanism of
drug functions). We extracted the text from all such properties, cleaned it up
(removing spurious HTML mark-up and irregularities in the sentence segmen-
tation) and applied a simple NLP relation extraction pipeline on it, producing
a data set of extracted statements (XD in the following text). In the extraction
pipeline we first split the text into sentences and then associated each word in
a sentence with a corresponding part-of-speech tag. The tagged sentences were
shallow-parsed into a tree structure with annotated NPs (noun phrases). These
trees were then used to generate statements particular statements as follows.
From any NP1 [verb|preposition]+ NP2 sequence in the parsed tree, we created
subject from NP1, object from NP2 and predicate from the intermediate verb
or prepositional phrase. Additional statements were generated by decomposing
compound noun phrases. More details and examples are out of scope here, but
we made them available for interested readers as a part of the data package
provided at http://goo.gl/38bGK.

Concerning the size of the experimental data, the linked data sets contained
ca. 630 thousand triples, 126 properties and around 270 thousands of simple
entities (i.e., either subjects or objects) corresponding to almost 150 thousands
of unique identifiers (i.e., preferred labels). The size of the extracted data set was
around 3/4 of the linked data one, however, the number of extracted properties
was much higher – almost 35 thousand. Apart of the LD, XD data sets, we
also prepared their LD−, XD− alternatives, where we just ‘flattened’ all the
different properties to uniform links. We did so to investigate the influence the
multiple property types have on the distributional web semantics features within
the experiments.

Knowledge Consolidation. Before performing the knowledge consolidation,
we had to incorporate the RDF data (the LD, XD sets) into the framework
introduced in Section 3, i.e., to populate the graph and source representation
tensors G,C (separate tensors for each of the LD, XD, LD−, XD− data sets).
The G indices were filled by the lexical elements of triples and by the corre-
sponding source graph identifiers (there were five provenance graphs – one for
each of the four linked data documents and one for the big graph of extracted
statements). The G values were set to 1 for all elements gs,p,o,d such that the
statement (s, p, o) occurred in the graph d; all other values were 0. To get the
C tensor values cs,p,o, we multiplied the frequency of the (s, p, o) triples (i.e.,∑

d∈P gs,p,o,d) by the point-wise mutual information score of the (s, o) tuple
(see http://en.wikipedia.org/wiki/Pointwise_mutual_information for de-
tails on the mutual information score theory and applications). This method is
widely used for assigning empirical weights to distributional semantics represen-
tations [3], we only slightly adapted it to the case of our “triple corpora” by using
the frequencies of triple elements and triples themselves. As we were incorporat-
ing triples from documents with equal relevance, we did not use any specific prove-
nance weights in the C tensor computation. After the population of the corpus ten-
sor, we used its s/〈p, o〉, o/〈p, s〉 perspectives for generating similar entities and the
p/〈s, o〉 perspective for similar properties, proceeding exactly as described in Ex-

http://goo.gl/38bGK
http://en.wikipedia.org/wiki/Pointwise_mutual_information
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ample 4. A cluster of size x related to a vectoru in a perspective π was generated as
a set of up to x most similar vectors v such that simπ(u,v) > 0. Our implementa-
tion of the large scale tensor/matrix representation and analysis is open source and
available as a part of the data package provided at http://goo.gl/38bGK. Note
that one might also employ rules in the knowledge consolidation experiments, for
instance to materialise more implicit statements providing additional features for
the distributional analysis. However, a comprehensive evaluation of such a com-
bined approach does not fit into the scope of this paper, therefore we will elaborate
on it in a separate technical report.

To evaluate the entity consolidation, we employed a gold standard – MeSH
(see http://www.nlm.nih.gov/mesh/), a freely available controlled vocabulary
and thesaurus for life sciences. MeSH is manually designed and covers a lot of
disease, gene and drug terms, therefore the groups of related things within its
taxonomical structure are a good reference comparison for artificially generated
clusters of entities from the same domain2. To the best of our knowledge, no sim-
ilar applicable gold standard that would cover our property consolidation data
sets exists, thus we had to resort to manual assessment of the corresponding
results. As a baseline, we used randomly generated clusters of entities and prop-
erties. Other baseline methods are possible, such as various ontology matching
techniques [10]. However, these methods are designed rather for ‘schema-level’
matching between two semantic resources. Their application to the ‘data-level’
consolidation of many statements possibly contained in a single resource is a
research question in its own right, which we leave for future work.
Evaluation Metrics. For the entity clustering evaluation, we first need a ‘gold
standard’ similarity between two terms, based on their paths in the MeSH taxon-
omy3. Every MeSH entry (and its synonyms) are associated with one or more tree
codes. These take form of alphanumeric tree level identifiers divided by dots that
determine the position of particular entries in the MeSH trees. The path from the
root (most generic term in a category) to a given entry corresponds to its tree code
read from left to right. For instance,abdominalwall and groinhaveMeSHtree codes
A01.047.050 and A01.047.365, which means they have a path of length 2 in com-

2 Weconsidered, e.g.,GO, aswell as vaccine anddisease ontologies from theOBOdataset
for the gold standard. Unfortunately, either the coverage of the ontologies w.r.t. the ex-
perimental dataset was worse than for MeSH, or the definition of ‘gold standard’ simi-
larities was trickier (requiring possibly substantial further research) due to additional
relations and/or rather complex (OWL) semantics. Thus, for the time being, we chose
to focus on something simpler, but representative and already convincing.

3 This essentially edge-based approach is motivated by the similarity measures com-
monly used in the context of life science knowledge bases [14]. A possible alternative
would be a node-based similarity utilising the information content measure (also dis-
cussed in detail in [14]). However, the computation of the information content depends
on a clear distinction between classes (or concepts) and instances (or terms) in the data
set. In our case, this is rather difficult – an instance term can become a class term as
soon as it becomes a type of another term in an extracted statement. Therefore an ap-
plication of a node-based (or a hybrid node-edge) similarity would require additional
investigations that unfortunately do not fit the rather limited scope of this paper.

http://goo.gl/38bGK
http://www.nlm.nih.gov/mesh/
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mon from their tree’s root (going from Body Regions through Abdomen with the
respective tree codes A01, A01.047). The length of the path shared by two terms
can be used as a simple and naturally defined similarity measure – the bigger the
relative portion of the MeSH root path shared by two terms, the closer—i.e., more
similar—they are in the MeSH hierarchy.

More formally, we can define a MeSH similarity measure sM between two
terms s, t as follows. If s and t do not share any node in their tree paths,
sM (s, t) = 0. If any of the s, t tree paths subsumes the other one, sM (s, t) = 1.
In the remaining cases, sM (s, t) = kmax(|p(s)|,|p(t)|)−|mcp(s,t)|, where k ∈ (0, 1) is
a coefficient, p(x) refers to the tree path of a term x and mcp(s, t) is a maximum
common path shared between the tree paths of s, t. For our experiment, we chose
coefficient k = 0.9, which provides for clearly visible but not too abrupt changes
in the similarity values. Note that the particular choice of k is rather cosmetic
as it does not influence the descriptive power of the results, it only changes the
absolute values of the similarity.

To assess the clusters computed in the entity consolidation experiments, we de-
fined the overlap (o) and quality (q) evaluation measures: o(C) = |{t|t∈M∧t∈C}|

|C| ,

q(C) =
∑

(s,t)∈comb2(CM ) sM (s,t)

|comb2(CM )| , where C is the cluster (a set of terms) being
measured, M is a set of all MeSH terms, CM = {t|t ∈M ∧ t ∈ C} are all terms
from C that are in MeSH as well, comb2(CM ) selects all combinations of two dif-
ferent terms from CM , and, finally, sM is the MeSH term similarity. If CM = ∅,
q(C) = 0 by definition. The overlap is an indication of how many terms from
MeSH are contained in a cluster, while the quality is the actual evaluation mea-
sure that tells us how good the part of the cluster covered by the gold standard is
(i.e., how close it is to the structure of the manually designed MeSH thesaurus).
The quality is computed as an average similarity of all possible combinations of
term pairs in a cluster that are contained in MeSH. Such a measure may seem
to be a little restrictive when the MeSH-cluster overlap is low. However, the
low overlap is not as much caused by the noise in the clusters as by insufficient
coverage of the gold standard itself, which is quite a common problem of gold
standards in as dynamic and large domains as life sciences [11].

Since we lack a proper gold standard for the property consolidation exper-
iment, the corresponding evaluation measures will inevitably be a slightly less
solid than the ones for entity clustering. We base them on human assessment of
two factors – an adequacy (aq) and accuracy (ac) of property clusters. Given a
property cluster C, ac = |C|−|N |

|C| , aq = |R|
|C|−|N | , where N is a set of properties

deemed as noise by a human evaluator, and R is a set of properties considered to
be relevant to the seed property the cluster was generated from. For the manual
evaluation of the property consolidation experiment, we used two human experts
(one bioinformatician and one clinical researcher). They both had to agree on
determining whether properties are not noise and whether they are relevant. For
the opposite decisions, a single vote only was enough to mark the corresponding
property as a true negative result (thus making the evaluation rather pessimistic
in order to reduce the likelihood of bias).
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In both entity and property consolidation experiments, we randomly selected
10 batches of 10 terms that served as cluster seeds for each evaluated cluster
size, and computed the arithmetic means of the metrics of all the clusters. Thus
we made sure that the results closely approximated the whole data set (for the
automatic evaluation with gold standard, at least 75% of the particular results
in all the selected batches were differing from the mean value by less than 5%,
although some fluctuations were present in the manual evaluation). We tested
several different sizes of the generated clusters – 10<, 10, 25, 50, 100, 250, 500.
The 10< clusters contained terms related to the seed term with a similarity of at
least 0.75 (no such cluster was larger than 10 when abstracting from synonyms).
Most interesting clusters were of size up to 50, bigger sizes already converged to
the random baseline.

4.2 Results and Discussion

The evaluation results are summarised in Table 1. The first column represents
labels of the experimental data sets. The EC, PC parts of the labels indicate the
entity and property consolidation experiments. XD and LD refer to the usage
of the extracted and linked data sets. The − superscripts refer to flattened,
“property-less” data sets. Finally, EC-BL, PC-BL-LD, PC-BL-XD refer to the
particular random baseline experiments. The columns of Table 1 represent the
evaluation measures per each tested cluster size.

Firstly we will discuss the results of property clustering. To reduce the al-
ready quite substantial workload of the human evaluators, we considered only
clusters of size up to 50. The accuracy of the LD batch was obviously 1, since
the properties were manually defined there. The adequacy of clustering was best
(0.875) for small, crisp LD clusters (with a rather strict similarity threshold
of 0.75), while for bigger clusters without a similarity threshold restriction, it
was decreasing, yet still significantly better than the baseline. For the extracted
data set (XD), roughly one half of extracted properties was deemed to be ac-
curate. Out of these, around 46.4% in average were adequate members of the
analysed property clusters, which is quite promising, as it would allow for re-
duction of the space of about 35, 000 extracted properties to several hundreds
with an error rate around 50%. This may not be enough for a truly industry-
strength solution, but it could already be useful in prototype applications if

Table 1. Results summary

cl. size 10< 10 25 50 100 250 500
metric o q o q o q o q o q o q o q

EC-LD 0.021 0.071 0.048 0.103 0.024 0.070 0.017 0.064 0.019 0.052 0.031 0.071 0.019 0.062

EC-LD− 0.075 0.248 0.055 0.176 0.060 0.285 0.066 0.258 0.079 0.242 0.086 0.237 0.084 0.199
EC-XD 0.021 0.045 0.016 0.047 0.022 0.042 0.030 0.081 0.029 0.064 0.023 0.050 0.037 0.073

EC-XD− 0.053 0.127 0.038 0.109 0.049 0.121 0.046 0.109 0.067 0.127 0.072 0.130 0.091 0.092
EC-BL 0.011 0.000 0.020 0.000 0.040 0.000 0.044 0.110 0.064 0.130 0.067 0.118 0.066 0.119

metric aq ac aq ac aq ac aq ac aq ac aq ac aq ac

PC-LD 0.875 1.000 0.603 1.000 0.578 1.000 0.596 1.000 N/A N/A N/A N/A N/A N/A
PC-BL-LD 0.134 1.000 0.140 1.000 0.048 1.000 0.027 1.000 N/A N/A N/A N/A N/A N/A
PC-XD 0.417 0.448 0.593 0.550 0.395 0.429 0.450 0.589 N/A N/A N/A N/A N/A N/A
PC-BL-XD 0.016 0.497 0.027 0.450 0.017 0.523 0.024 0.511 N/A N/A N/A N/A N/A N/A
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Fig. 1. Dependency of the cluster quality on their sizes

extended by result filtering (e.g., ranking). Examples of interesting property
clusters we generated are: C1 = {secreted in, excreted in, appear in, detected in,
accounted for in, produced in, eliminated in}, C2 = {from, following from, gath-
ered from}, C3 = {increase, increased by, diminish}. C1 appears to be related
to production/consumption of substances in organs, C2 to origin of substances
in location and C3 to quantity change. More examples are available in the data
package at http://goo.gl/38bGK.

To discuss the entity clustering results, let us have a look at Figure 1, which
shows the dependency of the quality (q) measure on the cluster sizes for all the
evaluated data sets. The dotted green line (circle markers) represents the baseline
(EC-BL), while the red and black lines (square/plus and diamond/cross markers)
are for the extracted and linked open data sets, respectively (EC-XD/EX-XD−,
EC-LD/EC-LD−). The solid lines are for original data sets (with properties),
whereas the dashed lines indicate resources with properties reduced to mere links.
One can immediately see that the results of entity consolidation are significantly
better in terms of quality than the baseline for clusters of size up to 25. This
holds for all evaluated data sets and thus demonstrates a clear contribution of
our approach. This is, we believe, not the most interesting thing, though. Quite
surprisingly, the data sets flattened to mere links between entities (the dotted
lines) produce much better results than the original resources with multiple
property types. This is especially the case of flattened linked data resources (the
dashed black line), which perform better than the baseline for all cluster sizes.
Another counterintuitive finding is that the flattened automatically extracted
resources (red dashes) perform better than the manually created linked data sets
(without flattened properties). For clusters of size 50 and bigger, the flattened
extracted batch oscillates around the random baseline, while both batches with
actual properties are consistently worse.

http://goo.gl/38bGK
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It would be easy to say that the reason for such results is that the properties
in triples do not have any semantics that can be empirically useful. This would
be quite a controversial claim in the Semantic Web context, though, and we
believe that it is most likely false, as the properties have been proven useful
in countless other applications already. Alternative explanation could be that
particular authors of the original linked data resources used the properties in a
rather haphazard way when contributing to the knowledge base, thus introducing
noise at a larger scale. This might partly be a culprit of the observed results,
but there is yet another, perhaps more intriguing and plausible hypothesis: what
if the empirical similarities induced by the full and flattened data are actually
different? The gold standard similarity imposed by the MeSH thesaurus may be
directly related to its taxonomy structure. The flattened resources may produce
a related, rather simple ‘subsumption’ type of distributional similarity, while
the resources with multiple property types can give rise to a more complex
‘structural’ similarity. This could be the reason for a better fit of the flattened
data to the gold standard. Also, it could explain the poor (i.e., worse than
random) performance of the full-fledged data sets for larger cluster sizes. In these
cases, the flattened resources may be producing bigger clusters of more general
and more specific (but still related) terms, whereas the other type of similarity
just increases the noise by adding more and more specific and mutually unrelated
structural sub-clusters. Experimenting with alternative similarity measures for
the comparison of the results with the gold standard should help to clarify these
rather surprising results. Apart of the hypothetical explanations mentioned so
far, also the actual method of computing the corpus representation values (see
Section 3.1) may play a significant role here. Whatever the actual reasons for
the obtained results are, we believe that a further investigation of the suggested
hypotheses could lead to interesting findings about more fundamental principles
of the web semantics than investigated in this introductory paper.

5 Conclusion and Future Work

We have proposed to complement the currently prevalent top-down approaches
to web semantics by an additional distributional layer. This layer allows for so far
unexplored representation and analysis of bottom-up phenomena emerging from
the Semantic Web resources. We demonstrated the usefulness of our framework
by applying it to an experiment in consolidation of life science knowledge. The
results showed promising potential of our approach and, in addition, revealed
unexpected findings that are inspiring for futher research.

Our next plans include an experiment with a full-fledged combination of the
top-down and bottom-up semantics (i.e., with rule-based materialisations in the
loop). We will also explore a far wider range of the distributional semantics phe-
nomena within various practical applications (e.g., automated thesaurus con-
struction, rule learning or discovery of analogies). Then we want to engage in
a continuous collaboration with sample users to assess qualitative aspects and
practical value of tools based on our work. Finally, we want to ensure web-scale
applicability of our approach by its distributed and parallel implementations.
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Abstract. What is the most intuitive way of organizing concepts for de-
scribing things? What are the most relevant types of things that people
use for describing other things? Wikipedia and Linked Data offer knowl-
edge engineering researchers a chance to empirically identifying invari-
ances in conceptual organization of knowledge i.e. knowledge patterns.
In this paper, we present a resource of Encyclopedic Knowledge Pat-
terns that have been discovered by analyizing the Wikipedia page links
dataset, describe their evaluation with a user study, and discuss why it
enables a number of research directions contributing to the realization
of a meaningful Semantic Web.

1 Introduction

The realization of the Web of Data (aka Semantic Web) partly depends on the
ability to make meaningful knowledge representation and reasoning. Elsewhere
[5] we have introduced a vision of a pattern science for the Semantic Web as
the means for achieving this goal. Such a science envisions the study of, and
experimentation with, knowledge patterns (KP): small, well connected units of
meaning which are 1) task-based, 2) well-grounded, and 3) cognitively sound.
The first requirement comes from the ability of associating ontology vocabu-
laries or schemas with explicit tasks, often called competency questions [7]: if
a schema is able to answer a typical question an expert or user would like to
make, it is a useful schema. The second requirement is related to the ability of
ontologies to enable access to large data (which typically makes them successful)
as well as being grounded in textual documents so as to support semantic tech-
nology applications that hybridize RDF data and textual documents. The third
requirement comes from the expectation that schemas that more closely mirror
the human ways of organizing knowledge are better. Unfortunately, evidence for
this expectation is only episodic until now for RDF or OWL vocabularies [5].

Linked data and social web sources such as Wikipedia give us the chance to
empirically study what are the patterns in organizing and representing knowl-
edge i.e. knowledge patterns. KPs can be used for evaluating existing methods
and models that were traditionally developed with a top-down approach, and
open new research directions towards new reasoning procedures that better fit

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 520–536, 2011.
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the actual Semantic Web applications need. In this study, we identify a set of
invariances from a practical, crowd-sourced repository of knowledge: Wikipedia
page links (wikilinks), which satisfy those three requirements, hence constituting
good candidates as KPs. We call them Encyclopedic Knowledge Patterns (EKP)
for emphasizing that they are grounded in encyclopedic knowledge expressed as
linked data, i.e. DBpedia1, and as natural language text, i.e. Wikipedia2. We
have collected such set of EKPs in an open repository3. EKPs are able to an-
swer the following (generic) competency question:

What are the most relevant entity types that provide an effective and
intuitive description of entities of a certain type?

For example, when describing “Italy” (a country), we typically indicate its neigh-
bor countries, cities, administrative regions, spoken languages, etc. The EKP for
describing countries should then include such a set of entity types: the most
relevant for describing a country. We assume EKPs as cognitively sound because
they emerge from the largest existing multi-domain knowledge source, collabo-
ratively built by humans with an encyclopedic task in mind. This assumption is
bound to our working hypothesis about the process of knowledge construction
realized by the Wikipedia crowds: each article is linked to other articles when
explaining or describing the entity referred to by the article. Therefore, the arti-
cle’s main subject can be said to be soundly and centrally related to the linked
articles’ main subjects. DBpedia, accordingly with this intuition, has rdf-ized
a) the subjects referred to by articles as resources, b) the wikilinks as relations
between those resources, and c) the types of the resources as OWL classes.

Hypotheses. Assuming that the articles linked from a Wikipedia page consti-
tute a major source of descriptive knowledge for the subject of that page, we
hypothesize that (i) the types of linked resources that occur most often for a
certain type of resource constitute its EKP (i.e., the most relevant concepts to
be used for describing resources of that type), and (ii) since we expect that any
cognitive invariance in explaining/describing things is reflected in the wikilink
graph, discovered EKPs are cognitively sound.

Contribution. The contribution of this paper is twofold: (i) we define an EKP
discovery procedure, extract 184 EKPs, and publish them in OWL2 (ii) we
support our hypotheses through a user-based evaluation, and discuss a number
of research directions opened by our findings.

The paper is organized as follows: Section 2 discusses related work, Section 3
describes the resources we have used and the basic assumptions we have made,
Section 4 focuses on the results we have gathered, Section 5 presents a user study
for the evaluation and fine-tuning of EKPs, and Section 6 draws conclusions and
gives an overview of research directions we are concentrating upon.

1 http://dbpedia.org
2 http://en.wikipedia.org
3 The EKP repository is available at http://stlab.istc.cnr.it/stlab/WikiLinkPatterns
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2 Related Work

To the best of our knowledge this work is the first attempt to extract knowledge
patterns (KPs) from linked data. Nevertheless, there is valuable research on
exploiting Wikipedia as a knowledge resource as well as on creating knowledge
patterns.

Knowledge patterns. [5] argues that KPs are basic elements of the Semantic
Web as an empirical science, which is the vision motivating our work. [4,16]
present experimental studies on KPs, focusing on their creation and usage for
supporting ontology design with shared good practices. Such KPs are usually
stored in online repositories4. Contrary to what we present in this work, KPs
are typically defined with a top-down approach, from practical experience in
knowledge engineering projects, or extracted from existing, e.g. foundational,
ontologies. These KPs are close to EKPs, but although some user-study proved
that their use is beneficial in ontology design [3], yet they miss some of the aspects
that we study here: evaluation of their cognitive soundness, and adequacy to
provide access to large-scale linked data. [14] presents a resource of KPs derived
from a lexical resource i.e., FrameNet [2]. In future work, we plan a compared
analysis between EKPs and other KPs.

Building the web of data. Research focusing on feeding the Web of Data is
typically centered on extracting knowledge from structured sources and trans-
forming it into linked data. Notably, [8] describes how DBpedia is extracted from
Wikipedia, and its linking to other Web datasets.

Another perspective is to apply knowledge engineering principles to linked
data in order to improve its quality. [18] presents YAGO, an ontology extracted
from Wikipedia categories and infoboxes that has been combined with taxonomic
relations from WordNet. Here the approach can be described as a reengineer-
ing task for transforming a thesaurus, i.e. Wikipedia category taxonomy, to an
ontology, which required accurate ontological analysis.

Extracting knowledge from wikipedia. Wikipedia is now largely used as a
reference source of knowledge for empirical research. Research work from the
NLP community, e.g., [20,9,15], exploits it as background knowledge for increas-
ing the performance of algorithms addressing specific tasks. Two approaches are
close to ours. [6] presents a method for inducing thesauri from Wikipedia by
exploiting the structure of incoming wikilinks. The graph of wikilinks is used
for identifying meaningful terms in the linked pages. In contrast, in our case we
exploit outgoing wikilinks, as well as the full potential of the linked data seman-
tic graph for identifying semantic entities as opposed to terms. [19] presents a
statistical approach for the induction of expressive schemas for RDF data. Sim-
ilarly to our study, the result is an OWL ontology, while in our experiment we
extract novel schemas from wikilink structures that are encoded in RDF. Some
studies have produced reusable results for improving the quality of the Web of
4 E.g. the ontology design patterns semantic portal,
http://www.ontologydesignpatterns.org

h
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Data. We mention two notable examples: [13,1], which address the extraction
of relations between Wikipedia entities, and [12] that presents a multi-lingual
network of inter-connected concepts obtained by mining Wikipedia.

3 Materials and Methods

Our work grounds on the assumption that wikilink relations in DBpedia, i.e.
instances of the dbpo:wikiPageWikiLink property5, convey a rich encyclopedic
knowledge that can be formalized as EKPs, which are good candidates as KPs [5].

Informally, an EKP is a small ontology that contains a concept S and its
relations to the most relevant concepts Cj that can be used to describe S.

Representing invariances from wikipedia links. For representing wikilink
invariances, we define path (type) as an extension of the notion of property path6:

Definition 1 (Path). A path (type) is a property path (limited to length 1 in
this work, i.e. a triple pattern), whose occurrences have (i) the same rdf:type

for their subject nodes, and (ii) the same rdf:type for their object nodes. It is
denoted here as:

Pi,j = [Si, p, Oj ]

where Si is a subject type, p is a property, and Oj is an object type of a triple. In
this work, we only extract paths where p=dbpo:wikiPageWikiLink. Sometimes
we use a simplified notation [Si, Oj ], assuming p = dbpo:wikiPageWikiLink.

We extract EKPs from paths (see Definition 2), however in order to formalize
them, we perform a heuristic procedure to reduce multi-typing, to avoid redun-
dancies, and to replace dbpo:wikiPageWikiLink with a contextualized object
property. In practice, given a triple s dbpo:wikiPageWikiLink o, we construct
its path as follows:

– the subject type Si is set to the most specific type(s) of s
– the object type Oj is set to the most specific type(s) of o
– the property p of the path is set to the most general type of o

For example, the triple:

dbpedia:Andre Agassi dbpo:wikiPageWikiLink dbpedia:Davis Cup

would count as an occurrence of the following path:

PathAgassi,Davis = [dbpo:TennisPlayer, dbpo:Organisation, dbpo:TennisLeague]

Figure 1 depicts such procedure for the path PathAgassi,Davis:
5 Prefixes dbpo:, dbpedia:, and ka: stand for
http:dbpedia.org/ontology/, http:dbpedia.org/resource/
and http://www.ontologydesignpatterns.org/ont/lod-analysis-path.owl,
respectively.

6 In SPARQL1.1 (http://www.w3.org/TR/sparql11-property-paths/) property paths
can have length n, given by their route through the RDF graph.

http:dbpedia.org/ontology/
http:dbpedia.org/resource/
http://www.ontologydesignpatterns.org/ont/lod-analysis-path.owl
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Fig. 1. Path discovered from the triple dbpedia:Andre Agassi dbpo:wikiPageWikiLink

dbpedia:Davis Cup

– dbpo:TennisPlayer is the subject type because it is the most specific type
of dbpedia:Andre Agassi, i.e., dbpo:TennisPlayer� dbpo:Person;

– dbpo:TennisLeague is the object type because it is the most specific type
of dbpedia:Davis Cup, i.e., dbpo:TennisLeague � dbpo:SportsLeague �
dbpo:Organisation

– dbpo:Organisation is the property of the path because it is the most general
type of dbpedia:Davis Cup.

Indicators. We use a set of indicators that are described in Table 1. Their
application and related interpretation in this work are discussed in the following
sections.

Table 1. Indicators used for empirical analysis of wikilink paths

Indicator Description
nRes(C) number of resources typed with a certain class C, |{ri rdf:type C}|
nSubjectRes(Pi,j) number of distinct resources that participate in a path as subjects, |

{(si rdf:type Si) ∈ Pi,j = [Si, p, Oj ]}|
pathPopularity(Pi,j , Si) The ratio of how many distinct resources of a certain type participate as subject in a path

to the total number of resources of that type. Intuitively, it indicates the popularity of a
path for a certain subject type, nSubjectRes(Pi,j = [Si, p, Oj ]) divided by nRes(Si)

nPathOcc(Pi,j) number of occurrences of a path Pi,j = [Si, p, Oj ]
nPath(Si) number of distinct paths having a same subject type Si, e.g. the number of paths having

dbpo:TennisPlayer as subject type
AvPathOcc(Si) sum of all nPathOcc(Pi,j) having a subject type Si divided by nPath(Si) e.g. the avarage

number of occurrences of paths having dbpo:Philosopher as subject type

Boundaries of Encyclopedic Knowledge Patterns. We choose the bound-
aries of an EKP by defining a threshold t for pathPopularity(Pi,j, Si). Accord-
ingly, we give the following definition of EKP (Si) for a DBpedia type Si.

dbpedia:Andre_Agassi dbpo:wikiPageWikiLink dbpedia:Davis_Cup
dbpedia:Andre_Agassi dbpo:wikiPageWikiLink dbpedia:Davis_Cup
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Definition 2 (Encyclopedic Knowledge Patterns). Let Si be a DBpedia
type, Oj (j = 1, .., n) a list of DBpedia types, Pi,j = [Si, p, Oj] and t a threshold
value.
Given the triples:

dbpedia:s dbpedia-ont:wikiPediaWikiLink dbpedia:o

dbpedia:s rdf:type dbpedia:Si

dbpedia:o rdf:type dbpedia:Oj

we state that EKP (Si) is a set of paths, such that

Pi,j ∈ EKP (Si) ⇐⇒ pathPopularity(Pi,j, Si) ≥ t (1)

We hypothesize values for t in Section 4, and evaluate them in Section 5.

OWL2 formalization of EKPs. We have stored paths and their associ-
ated indicators in a dataset, according to an OWL vocabulary called knowledge
architecture7. Then, we have generated the Encyclopedic Knowledge Patterns
(EKPs) repository8 by performing a refactoring of the knowledge architecture
data into OWL2 ontologies). Given the namespace ekp: and an EKP (Si) =
[Si, p1, O1], . . . , [Si, pn, On], we formalize it in OWL2 by applying the following
translation procedure:

– the name of the OWL file is ekp:9 followed by the local name of S e.g.,
ekp:TennisPlayer.owl. Below we refer to the namespace of a specific EKP
through the generic prefix ekpS:;

– Si and Oj j = 1, . . . , n are refactored as owl:Class entities (they keep their
original URI);

– pj keep their original URI and are refactored as owl:ObjectProperty enti-
ties;

– for each Oj we create a sub-property of pi+n, ekpS : Oj that has the
same local name as Oj and the ekpS: namespace; e.g.
ekp:TennisPlayer.owl#TennisLeague.

– for each ekpS :Oj we add an owl:allVauesFrom restriction to Si on ekpS :
Oj , with range Oj .

For example, if PathAgassi,Davis (cf. Figure 1) is part of an EKP, it gets formal-
ized as follows:

Prefix: dbpo: <http://dbpedia.org/ontology/>
Prefix:

ekptp: <http://www.ontologydesignpatterns.org/ekp/TennisPlayer.owl#>
Ontology: <http://www.ontologydesignpatterns.org/ekp/TennisPlayer.owl>
Class: dbpo:TennisPlayer

SubClassOf:

7 http://www.ontologydesignpatterns.org/ont/lod-analysis-path.owl
8 The EKP repository is available at http://stlab.istc.cnr.it/stlab/WikiLinkPatterns.
9 The prefix ekp: stands for the namespace
http://www.ontologydesignpatterns.org/ekp/.

ekp:TennisPlayer.owl#TennisLeague
h
h
h
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Table 2. Dataset used and associated figures

Dataset Description Indicator Value
DBPO DBpedia ontology Number of classes 272

dbpedia instance types en
Resource types i.e.
rdf:type triples

Number of resources having a DBPO
type

1,668,503

rdf:type triples 6,173,940

dbpedia page links en Wikilinks triples Number of resources used in wikilinks 15,944,381
Number of wikilinks 107,892,317

DBPOwikilinks
Wikilinks involving
only resources typed
with DBPO classes

Number of resources used in wikilinks 1,668,503
Number of wikilinks 16,745,830

ekptp:TennisLeague only dbpo:TennisLeague
Class: dbpo:TennisLeague
ObjectProperty: ekptp:TennisLeague

SubPropertyOf: dbpo:Organisation
...

Materials. We have extracted EKPs from a subset of the DBpe-
dia wikilink dataset (dbpedia page links en), and have created a new
dataset (DBPOwikilinks) including only links between resources that are
typed by DBpedia ontology version 3.6 (DBPO) classes (15.52% of the
total wikilinks in dbpedia page links en). DBPOwikilinks excludes a lot
of links that would create semantic interpretation issues, e.g. images
(e.g. dbpedia:Image:Twitter 2010 logo.svg), Wikipedia categories (e.g.
dbpedia:CAT:Vampires in comics), untyped resources
(e.g. dbpedia:%23Drogo), etc.

DBPO currently includes 272 classes, which are used to type
10.46% of the resources involved in dbpedia page links en. We also use
dbpedia instance types en, which contains type axioms, i.e. rdf:type triples.
This dataset contains the materialization of all inherited types (cf. Section 4).
Table 2 summarizes the figures described above.

4 Results

We have extracted 33,052 paths from the English wikilink datasets, however
many of them are not relevant either because they have a limited number of
occurrences, or because their subject type is rarely used. In order to select the
paths useful for EKP discovery (our goal) we have considered the following
criteria:

– Usage in the wikilink dataset. The resources involved in dbpedia page links en
are typed with any of 250 DBPO classes (out of 272). Though, we are inter-
ested in direct types10 of resources in order to avoid redundancies when count-
ing path occurrences. For example, the resource dbpedia:Ludwik Fleck has
three types dbpo:Scientist;dbpo:Person;owl:Thing because type asser-
tions in DBpedia are materialized along the hirerachy of DBPO. Hence, only

10 In current work, we are also investigating indirectly typed resource count, which
might lead to different EKPs, and to empirically studying EKP ordering.
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dbpo:Scientist is relevant to our study. Based on this criterion, we keep
only 228 DBPO classes and the number of paths decreases to 25,407.

– Number of resources typed by a class C (i.e., nRes(C)). Looking at the
distribution of resource types, we have noticed that 99.98% of DBPO classes
have at least 30 resource instances. Therefore we have decided to keep paths
whose subject type C has at least nRes(C)=30.

– Number of path occurrences having a same subject type (i.e.,
nPathOcc(Pi,j)). The average number of outgoing wikilinks per re-
source in dbpedia page links en is 10. Based on this observation and on
the previous criterion, we have decided to keep paths having at least
nPathOcc(P )=30*10=300.

After applying these two criteria, only 184 classes and 21,503 paths are re-
tained. For example, the path [Album,Drug] has 226 occurrences, and the type
dbpo:AustralianFootballLeague has 3 instances, hence they have been
discarded.

EKP discovery. At this point, we had each of the 184 classes used as subject
types associated with a set of paths, each set with a cardinality ranging between
2 and 191 (with 86.29% of subjects bearing at least 20 paths). Our definition of
EKP requires that its backbone be constituted of a small number of object types,
typically below 10, considering the existing resources of models that can be con-
sidered as KPs (see later in this section for details). In order to generate EKPs
from the extracted paths, we need to decide what threshold should be used for se-
lecting them, which eventually creates appropriate boundaries for EKPs. In order
to establish some meaningful threshold, we have computed the ranked distribu-
tions of pathPopularity(Pi,j, Si) for each selected subject type, and measured
the correlations between them. Then, we have fine-tuned these findings by means
of a user study (cf. Section 5), which had the dual function of both evaluating
our results, and suggesting relevance criteria for generating the EKP resource.
Our aim is to build a prototypical ranking of the pathPopularity(Pi,j, Si) of the
selected 184 subject types, called pathPopularityDBpedia, which should show
how relevant paths for subject types are typically distributed according to the
Wikipedia crowds, hence allowing us to propose a threshold criterion for any
subject type. We have proceeded as follows.

1. We have chosen the top-ranked 40 paths (Pi,j) for each subject type (Si),
each constituting a pathPopularity(Pi,j, Si). Some subject types have less
than 40 paths: in such cases, we have added 0 values until filling the gap.
The number 40 has been chosen so that it is large enough to include not
only paths covering at least 1% of the resources, but also much rarer ones,
belonging to the long tail.

2. In order to assess if a prototypical ranking pathPopularityDBpedia would
make sense, we have performed a multiple correlation between the different
pathPopularity(Pi,j, Si). In case of low correlation, the prototypical ranking
would create odd effects when applied to heterogeneous rank distributions
across different Si. In case of high correlation, the prototype would make
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Fig. 2. Distribution of pathPopularityDBpedia: the average values of popularity rank
i.e., pathPopularity(Pi,j, Si), for DBpedia paths. The x-axis indicates how many paths
(on average) are above a certain value t of pathPopularity(P,S).

sense, and we can get reassured that the taxonomy we have used (DBPO in
this experiment) nicely fits the way wikilinks are created by the Wikipedia
crowds.

3. We have created a prototypical distribution pathPopularityDBpedia that is
representative for all Si distributions. Such a distribution is then used to hy-
pothesize some thresholds for the relevance of Pi,j when creating boundaries
for EKPs. The thresholds are used in Section 5 to evaluate the proposed
EKPs with respect to the rankings produced during the user study.

In order to measure the distribution from step 2, we have used the Pearson cor-
relation measure ρ, ranging from -1 (no agreement) to +1 (complete agreement),
between two variables X and Y i.e. for two different Si in our case. The correla-
tion has been generalized to all 16,836 pairs of the 184 pathPopularity(Pi,j, Si)
ranking sets (184 ∗ 183/2), in order to gather a multiple correlation. The value
of such multiple correlation is 0.906, hence excellent.

Once reassured on the stability of pathPopularity(Pi,j, Si) across the different
Si, we have derived (step 3) pathPopularityDBpedia, depicted in Figure 2.

In order to establish some reasonable relevance thresholds,
pathPopularityDBpedia has been submitted to K-Means Clustering, which
generates 3 small clusters with popularity ranks above 22.67%, and 1 large
cluster (85% of the 40 ranks) with popularity ranks below 18.18%. The three
small clusters includes seven paths: this feature supports the buzz in cognitive
science about a supposed amount of 7±2 objects that are typically manipulated
by the cognitive systems of humans in their recognition tasks [11,10]. While the
7 ± 2 conjecture is highly debated, and possibly too generic to be defended,
this observation has been used to hypothesize a first threshold criterion:
since the seventh rank is at 18.18% in pathPopularityDBpedia, this value of
pathPopularity(Pi,j, Si) will be our first guess for including a path in an EKP.
We propose a second threshold based on FrameNet [2], a lexical database,
grounded in a textual corpus, of situation types called frames. FrameNet is
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Table 3. Sample paths for the subject type Album: number of path occurrences, distinct
subject resources, and popularity percentage value

Path nPathOcc(Pi,j) nSubjectRes(Pi,j) pathPopularity(Pi,j, Si) (%)
[Album,Album] 170,227 78,137 78.89
[Album,MusicGenre] 108,928 68,944 69.61
[Album,MusicalArtist] 308,619 68,930 69.59
[Album,Band] 125,919 62,762 63.37
[Album,Website] 62,772 49,264 49.74
[Album,RecordLabel] 56,285 47,058 47.51
[Album,Single] 114,181 29,051 29.33
[Album,Country] 40,296 25,430 25.67

currently the only cognitively-based resource of potential knowledge patterns
(the frames, cf. [14]). The second threshold (11%) is provided by the average
number of frame elements in FrameNet frames (frame elements roughly corre-
spond to paths for EKPs), which is 9 (the ninth rank in pathPopularityDBpedia

is at 11%). The mode value of frame elements associated with a frame is 7,
which further supports our proposal for the first threshold. An example of the
paths selected for a subject type according to the first threshold is depicted
in Tab. 3, where some paths for the type Album are ranked according to
their pathPopularity(Pi,j, Si). In Section 5 we describe an evaluation of these
threshold criteria by means of a user study.

Threshold criteria are also used to enrich the formal interpretation of
EKPs. Our proposal, implemented in the OWL2 EKP repository, considers
the first threshold as an indicator for an existential quantification over an
OWL restriction representing a certain path. For example, [Album,MusicGenre]
is a highly-popular path in the Album EKP. We interpret high-popularity
as a feature for generating an existential interpretation, i.e.: Album �
(∃MusicGenre.MusicGenre). This interpretation suggests that each resource
typed as an Album has at least one MusicGenre, which is intuitively correct.
Notice that even if all paths have a pathPopularity(Pi,j, Si) of less that 100%,
we should keep in mind that semantic interpretation over the Web is made
in open-world, therefore we feel free to assume that such incompleteness is a
necessary feature of Web-based knowledge (and possibly of any crowd-sourced
knowledge).

5 Evaluation

Although our empirical observations on DBpedia could give us means for defining
a value for the threshold t (see Definition 2 and Section 4), we still have to
prove that emerging EKPs provide an intuitive schema for organizing knowledge.
Therefore, we have conducted a user study for making users identify the EKPs
associated with a sample set of DBPO classes, and for comparing them with
those emerging from our empirical observations.

User study. We have selected a sample of 12 DBPO classes that span so-
cial, media, commercial, science, technology, geographical, and governmental
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Table 4. DBPO classes used in the user-study and their related figures

DBPO class type nRes(S) nPath(Si) AvPathOcc(Si)
Language 3,246 99 29.27
Philosopher 1,009 112 18.29
Writer 10,102 172 15.30
Ambassador 286 85 15.58
Legislature 453 83 25.11
Album 99,047 172 11.71
Radio Station 16,310 151 7.31
Administrative Region 31,386 185 11.30
Country 2,234 169 35.16
Insect 37,742 98 9.16
Disease 5,215 153 12.10
Aircraft 6,420 126 10.32

domains. They are listed in Table 4. For each class, we indicate the number
of its resources, the number of paths it participates in as subject type, and the
average number of occurrences of its associated paths. We have asked the users
to express their judgement on how relevant were a number of (object) types (i.e.,
paths) for describing things of a certain (subject) type. The following sentence
has been used for describing the user study task to the users:

We want to study the best way to describe things by linking them to other
things. For example, if you want to describe a person, you might want to link
it to other persons, organizations, places, etc. In other words, what are the
most relevant types of things that can be used to describe a certain type of
things?

We asked the users to fill a number of tables, each addressing a class in the
sample described in Table 4. Each table has three columns:

– Type 1 indicating the class of things (subjects) to be described e.g. Country;
– A second column to be filled with a relevance value for each row based on

a scale of five relevance values, Table 5 shows the scale of relevance values
and their interpretations as they have been provided to the users. Relevance
values had to be associated with each element of Type 2;

– Type 2 indicating a list of classes of the paths (i.e. the object types) in which
Type 1 participates as subject type. These were the suggested types of things
that can be linked for describing entities of Type 1 e.g. Administrative
Region, Airport, Book, etc.

By observing the figures of DBPO classes (cf. Table 4) we realized that the
entire list of paths associated with a subject type would have been too long to be
proposed to the users. For example, if Type 1 was Country, the users would have
been submitted 169 rows for Type 2. Hence, we decided a criterion for selecting
a representative set of such paths. We have set a value for t to 18% and have
included, in the sample set, all Pi,j such that pathPopularity(Pi,j, Si) ≥ 18%.
Furthermore, we have also included an additional random set of 14 Pi,j such
that pathPopularity(Pi,j, Si) < 18%.

We have divided the sample set of classes into two groups of 6. We had ten
users evaluating one group, and seven users evaluating the other group. Notice
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Table 5. Ordinal (Likert) scale of rele-
vance scores

Relevance score Interpretation
1 The type is irrelevant;
2 The type is slightly irrelevant;
3 I am undecided between 2 and 4;
4 The type is relevant but can be op-

tional;
5 The type is relevant and should be used

for the description.

Table 6. Average coefficient of concor-
dance for ranks (Kendall’s W) for the
two groups of users

User group Average inter-rater
agreement

Group 1 0.700
Group 2 0.665

that the users come from different cultures (Italy, Germany, France, Japan, Ser-
bia, Sweden, Tunisia, and Netherlands), and speak different mother tongues. In
practice, we wanted to avoid focusing on one specific language or culture, at the
risk of reducing consensus.

In order to use the EKPs resulting from the user study as a reference for next
steps in our evaluation task, we needed to check the inter-rater agreement. We
have computed the Kendall’s coefficient of concordance for ranks (W ), for all an-
alyzed DBPO classes, which calculates agreements between 3 or more rankers as
they rank a number of subjects according to a particular characteristic. Kendall’s
W ranges from 0 (no agreement) to 1 (complete agreement). Table 6 reports such
values for the two groups of users, which show that we have reached a good con-
sensus in both cases. Additionally, Table 7 reports W values for each class in
the evaluation sample.

Table 7. Inter-rater agreement computed with Kendall’s W (for all values p < 0.0001)
and reliability test computed with Cronbach’s alpha

DBPO class Agreement Reliability DBPO class Agreement Reliability
Language 0.836 0.976 Philosopher 0.551 0.865
Writer 0.749 0.958 Ambassador 0.543 0.915
Legislature 0.612 0.888 Album 0.800 0.969
Radio Station 0.680 0.912 Administrative Region 0.692 0.946
Country 0.645 0.896 Insect 0.583 0.929
Disease 0.823 0.957 Aircraft 0.677 0.931

Evaluation of emerging DBpedia EKPs through correlation with user-
study results: how good is DBpedia as a source of EKPs? The second step
towards deciding t for the generation of EKPs has been to compare DBpe-
dia EKPs to those emerging from the users’ choices. DBpedia EKP (Si) would
result from a selection of paths having Si as subject type, based on their as-
sociated pathPopularity(Pi,j, Si) values (to be ≥ t). We had to compare the
pathPopularity(Pi,j, Si) of the paths associated with the DBPO sample classes
(cf. Table 4), to the relevance scores assigned by the users. Therefore, we needed
to define a mapping function between pathPopularity(Pi,j, Si) values and the
5-level scale of relevance scores (Table 5).

We have defined the mapping by splitting the pathPopularityDBpedia dis-
tribution (cf. Figure 2) into 5 intervals, each corresponding to the 5 relevance
scores of the Likert scale used in the user-study. Table 8 shows our hypothesis
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Table 8. Mapping between wlCoverageDBpedia intervals and the relevance score scale

pathPopularityDBpedia interval Relevance score
[18, 100] 5
[11, 18[ 4
]2, 11[ 3
]1, 2] 2
[0, 1] 1

Table 9. Average multiple
correlation (Spearman ρ) be-
tween users’ assigned scores, and
pathPopularityDBpedia based
scores

User group Correl. with DBpe-
dia

Group 1 0.777
Group 2 0.717

Table 10. Multiple correlation coefficient
(ρ) between users’s assigned score, and
pathPopularityDBpedia based score

DBPO class Correl.
users /
DBpedia

DBPO class Correl.
users /
DBpedia

Language 0.893 Philosopher 0.661
Writer 0.748 Ambassador 0.655
Legislature 0.716 Album 0.871
Radio Station 0.772 Administrative Region 0.874
Country 0.665 Insect 0.624
Disease 0.824 Aircraft 0.664

of such mapping. The hypothesis is based on the thresholds defined in Section
4. The mapping function serves our purpose of performing the comparison and
identifying the best value for t, which is our ultimate goal. In case of scarce corre-
lation, we expected to fine-tune the intervals for finding a better correlation and
identifying the best t. Based on the mapping function, we have computed the
relevance scores that DBpedia would assign to the 12 sample types, and calcu-
lated the Spearman correlation value (ρ) wich ranges from −1 (no agreement) to
+1 (complete agreement) by using the means of relevance scores assigned by the
users. This measure gives us an indication on how precisely DBpedia wikilinks
allow us to identify EKPs as compared to those drawn by the users. As shown in
Table 9, there is a good correlation between the two distributions. Analogously,
Table 10 shows the multiple correlation values computed for each class, which
are significantly high. Hence, they indicate a satisfactory precision.

We can conclude that our hypothesis (cf. Section 1) is supported by these
findings, and that Wikipedia wikilinks are a good source for EKPs. We have
tested alternative values for t, and we have found that our hypothesized mapping
(cf. Table 8) provides the best correlation values among them. Consequently, we
have set the threshold value for EKP boundaries (cf. Definition 2) as t = 11%.

6 Discussion and Conclusions

We have presented a study for discovering Encyclopedic Knowledge Patterns
(EKP) from Wikipedia page links. In this study we have used the DBPO classes
to create a wikilink-based partition of crowd-sourced encyclopedic knowledge
expressed as paths of length 1, and applied several measures to create a boundary
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around the most relevant object types for a same subject type out of wikilink
triples.

Data have been processed and evaluated by means of both statistical analysis
over the paths, and a user study that created a reference ranking for a subset of
subject types and their associated paths. Results are very good: stable criteria
for boundary creation (high correlation of path popularity distributions across
subject types), large consensus among (multicultural) users, and good precision
(high correlation between users’ and EKP rankings).

The 184 EKP so generated have been formalized in OWL2 and published, and
can be used either as lenses for the exploration of DBpedia, or for designing new
ontologies that inherit the data and textual grounding provided by DBpedia and
Wikipedia. Also data linking can take advantage of EKPs, by modularizing the
datasets to be linked.

There are many directions that the kind of research we have done opens up:
some are presented in the rest of this section.

Applying EKPs to resource concept maps. An application of EKPs is
the creation of synthetic concept maps out of the wikilinks of a resource. For
example, a concept map of all wikilinks for the resource about the scientist
dbpr:Ludwik Fleck contains 44 unordered resources, while a concept map cre-
ated with a lens provided by the Scientist EKP provides the 13 most typical
resources with explicit relations. We should remark that EKPs typically (and in-
tentionally) exclude the “long tail” features of a resource, which sometimes are
important. Investigating how to make these relevant long tail features emerge
for specific resources and requirements is one of the research directions we want
to explore.

Wikilink relation semantics. An obvious elaboration of EKP discovery is to
infer the object properties that are implicit in a wikilink. This task is called
relation discovery. Several approaches have been used for discovering relations
in Wikipedia, (cf. Section 2, [9] is an extensive overview), and are being inves-
tigated. Other approaches are based on the existing semantic knowledge from
DBpedia: three of them are exemplified here because their results have already
been implemented in the EKP resource.

Induction from infobox properties. For example, the path
[Album,MusicalArtist] features a distribution of properties partly re-
ported in Table 11. There is a clear majority for the producer property,
but other properties are also present, and some are even clear anomalies
(e.g. *[Album,dbprop:nextAlbum,MusicalArtist]11). In general, there are
two typical situations: the first is exemplified by [Album,MusicalArtist],
where the most frequent property covers only part of the possible seman-
tics of the wikilink paths. The second situation is when the most frequent
property is maximally general, and repeats the name of the object type, e.g.
[Actor,dbprop:film,Film]. In our EKP resource, we add the most frequent

11 * indicates a probably wrong path.
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Table 11. Sample paths for the subject type Album from the infobox DBpedia dataset,
with their frequency. Some paths are clear mistakes.

Path nPathOcc(Pi,j)
[Album,dbprop:producer,MusicalArtist] 3,413
[Album,dbprop:artist,MusicalArtist] 236
[Album,dbprop:writer,MusicalArtist] 46
[Album,dbprop:lastAlbum,MusicalArtist] 35
*[Album,dbprop:nextAlbum,MusicalArtist] 33
[Album,dbprop:thisAlbum,MusicalArtist] 27
[Album,dbprop:starring,MusicalArtist] 20

properties from the infobox dataset as annotations, accompanied by a frequency
attribute.

Induction from top superclasses. For example, the path
[Album,MusicalArtist] can be enhanced by inducing the top superclass
of MusicalArtist, i.e. Person, as its property. This is possible either
in RDFS, or in OWL2 (via punning). The path would be in this case
[Album,Person,MusicalArtist]. This solution has not precision problems,
but is also quite generic on the semantics of a wikilink.

Punning of the object type. For example, the path [Album,MusicalArtist]
can be enriched as [Album,MusicalArtist,MusicalArtist]. This solution is
pretty uninformative at the schema level, but can be handy when an EKP is used
to visualize knowledge from wikilinks, for example in the application described
above of a resource concept map, where resources would be linked with the name
of the object type: this results to be very informative for a concept map user. In
our EKP resource, we always reuse the object type as a (locally defined) object
property as well.

Additional approaches we have conceived would exploit existing resources
created by means of NLP techniques (e.g. WikiNet, [12]), or by game-based
crowdsourcing (e.g. OpenMind [17]).

Intercultural issues. Given the multilingual and multicultural nature of
Wikipedia, comparison between EKPs extracted from different versions of
Wikipedia is very interesting. We have extracted EKPs from English and Ital-
ian versions, and we have measured the correlation between some English- and
Italian-based EKPs. The results are encouraging; e.g. for the subject type Album
the Spearman correlation between the top 20 paths for Italian resources and
those for English ones is 0.882%, while for Language is 0.657%. This despite the
fact that Italian paths have lower popularity values than English ones, and much
fewer wikilinks (3.25 wikilinks per resource on average).

Schema issues. DBPO has been generated from Wikipedia infoboxes. The
DBpedia infobox dataset contains 1,177,925 object property assertions, and their
objects are also wikilinks. This means that 7.01% of the 16,745,830 wikilink
triples that we have considered overlap with infobox triples. This is a potential
bias on our results, which are based on DBPO; however, such bias is very limited:
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removing 7% of the wikilinks is not enough to significantly decrease the high
correlations we have found.

Finally, one might wonder if our good results could be obtained by us-
ing other ontologies instead of DBPO. We are experimenting with wik-
ilink paths typed by Yago [18], which has more than 288,000 classes,
and a broader coverage of resources (82% vs. 51.9% of DBPO). Work-
ing with Yago is very interesting, but also more difficult, since it ap-
plies multityping extensively, and the combinatorics of its paths is or-
ders of magnitude more complex than with paths typed by DBPO. Sam-
ple Yago paths include e.g.: [Coca-ColaBrands,BoycottsOfOrganizations],
[DietSodas,LivingPeople]. Those paths are domain-oriented, which is a
good thing, but they also share a low popularity (ranging around 3% in top
ranks) in comparison to DBPO classes. In other words, the skewness of Yago
pathPopularity(Pi,j, Si) is much higher than that of DBPO, with a very long
tail. However, the clustering factor is not so different: a Yago EKP can be created
e.g. for the class yago:AmericanBeerBrands, and its possible thresholds pro-
vided by K-Means Clustering appear very similar to the ones found for DBPO
EKPs: we should only scale down the thresholds, e.g. from 18% to 1%.
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Abstract. Referential qualities are qualities of an entity taken with ref-
erence to another entity. For example the vulnerability of a coast to sea
level rise. In contrast to most non-relational qualities which only depend
on their host, referential qualities require a referent additional to their
host, i.e. a quality Q of an entity X taken with reference to another en-
tity R. These qualities occur frequently in ecological systems, which make
concepts from these systems challenging to model in formal ontology. In
this paper, we discuss exemplary resilience, vulnerability and affordance
as qualities of an entity taken with reference to an external factor. We sug-
gest an ontology design pattern for referential qualities. The design pat-
tern is anchored in the foundational ontology DOLCE and evaluated using
implementations for the notions affordance, resilience and vulnerability.

1 Introduction

Environmental problems are major challenges of the 21st century and occur in
all parts of the world on local, regional and global scales, especially in face of cli-
mate variability. The rate of global environmental change is surpassing response
and without action to mitigate its drivers and enhance societal resilience, these
changes will retard economic, social, environmental and developmental goals [16].
According to the International Council for Science [16], to meet this challenge,
what is required is a robust information infrastructure that can combine data
and knowledge both past and present with new observations and modeling tech-
niques to provide integrated, interdisciplinary datasets and other information
products. One key functionality within this infrastructure is to assess vulnera-
bility and resilience.

Before such an infrastructure can be realized, there is a need to sort out the
bottleneck that occurs on the conceptual level with notions such as vulnerability
and resilience. In an attempt to introduce ecological concepts to formal ontology,
the problem of modeling qualities arises. In addition to their host, qualities in
the ecological domain often depend on external entities. A recurring pattern is a
quality Q of an entity X taken with reference to another entity R. These qualities
have one host and cannot exist without an external factor. To name just one
example, the vulnerability of a coast cannot be assessed per se, but only with
respect to an external threat, like the vulnerability to sea level rise. So we have

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 537–552, 2011.
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the vulnerability of a coast with reference to sea level rise. Yet, vulnerability is
not considered a relational quality, but is attributed to the coast. Furthermore,
the same coast has different vulnerabilities with reference to different external
factors (e.g., a hurricane or an oil-spill).

Modeling qualities that inhere in more than one host represents a concep-
tual quandary that applies to ecological notions but it appears in many other
fields that deal with systems (e.g. economic systems, social systems, communi-
cation networks). We take a look at the notions of resilience, vulnerability and
affordance, which lack formal definitions. An approach that can model referen-
tial qualities in ontologies can lead to these concepts being implementable and
thereby usable in semantic web applications.

This paper therefore brings into focus the research question “how can refer-
ential qualities be modeled in ontologies?”. To solve the quandary, an Ontology
Design Pattern (ODP) [8] is suggested as a template to model different referen-
tial qualities. This work draws from Kuhn’s [20,21] Semantic Reference Systems.
Semantic Reference Systems provide a theory of how categories in an ontology
can be described with reference to other, already established categories. At the
same time the theory of Semantic Reference Systems paves the road to make
these ecological qualities operational. A high level formalization of the Ontology
Design Pattern as well as an OWL-DL1 implementation is carried out by the
authors. Both are aligned to the Descriptive Ontology for Linguistic and Cogni-
tive Engineering (DOLCE) [23]. The ecological qualities resilience, vulnerability
and affordance serve to illustrate applications of the suggested ODP.

This paper proceeds by outlining the background on non-relational qualities,
relational qualities and Ontology Design Patterns in Sect. 2. Subsequently, Sec-
tion 3 motivates this research by discussing three examples of referential qual-
ities. Section 4 describes the Ontology Design Pattern for referential qualities
and its implementation in OWL-DL. The implementation of the examples are
discussed in Sect. 5. In Sect. 6 the conducted research is evaluated against the
use cases as well as analytically. Finally, Sect. 7 concludes the paper.

2 Background

This section introduces the notions of non-relational qualities and relational
qualities with respect to DOLCE as well as the idea of the ODP approach.

2.1 Non-relational and Relational Qualities

In philosophy there exist several dichotomies of qualities (or properties), they
are labeled for example “intrinsic-extrinsic”, “relational-non-relational”, “unary-
n-ary” (cf. eg., [38]). The differences between these distinctions are sometimes
hard to grasp for non-experts, as for instance many standard examples of non-
relational qualities are intrinsic and unary (e.g. color of a rose), and many
1 The description logic (DL) variant of the web ontology language (OWL). See
http://www.w3.org/TR/owl-guide/ for more information. All websites referred to
in this paper were last accessed on 21.06.2011.

http://www.w3.org/TR/owl-guide/
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standard examples of relational qualities are extrinsic and binary (e.g. gravi-
tational attractions). However, there exist intrinsic relational qualities and ex-
trinsic non-relational qualities. In the following we will introduce the relational
non-relational distinction, as we perceive this one as the most intuitive to non-
experts in metaphysics. We only mention the intrinsic-extrinsic distinction as
additional criterion when necessary.

Non-Relational Qualities. Non-relational qualities can be modeled in
DOLCE. In essence, this can be seen as an ODP in itself, even though to our
knowledge it is never officially declared as such. The design pattern for modeling
qualities in DOLCE follows the EQQS (Endurant, Quality, Quale, Spaces) pat-
tern described in [22]. The pattern comprises four categories. An endurant2 (E)
that serves as host for the quality (Q), with a quale (Q) that is located in a
quality-space (S). In DOLCE all entities are particulars [23]. Every particular
endurant has its own particular qualities. For example, we can say that two boys
have the same height, however, in DOLCE each boy has his own distinct height
quality. This allows qualities to change, for instance, if the boys grow, especially
when they grow at different rates and do not have the same heights as adults any
more. To make the distinct qualities operational, a quale is needed. The quale is
a representation of the quality in a quality space. For example, in a meter space
the height quality of the two boys is reflected by the same quale. The quale is
modeled as a region in a quality-space, which allows certain computations,
depending on the structure of the space. An illustration of the DOLCE quality
ODP is shown in Fig. 1. The formal relation and implementation of the quality
ODP can be found in [23].

Endurant

Quality Quale Quality-Space

inherent

 1 

 0..* 

has-quale
 1..*  0..* 

r-location
 1..*  1 

Fig. 1. UML class diagram of the quality ODP in DOLCE. A quality inheres in an
endurant. The quality has a quale that is located in a quality space.

Relational Qualities. Relational qualities inhere in more than one host. This
is not allowed in DOLCE, where the quality can only inhere in one host. For ex-
ample the solubility of a substance in a liquid cannot be expressed in the EQQS
pattern in DOLCE, because the solubility inheres in both, the substance and the
2 Throughout the paper we use truetype fonts like quality to refer to categories in a

formal ontology.
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liquid. DOLCE falls short modelling qualities like solubility, distance, direction
[29]. Qualities that depend on two entities are often extrinsic and relational.
They usually qualify a relation between two entities. The formal relation that
expresses a relational quality has more than two entities, namely the quality
and the hosts. Therefore, a direct implementation in Description Logics is not
possible. However, there exists a logical ontology design pattern to transform
n-ary relations expressed in a more expressive logic into OWL [26]. This pat-
tern can be used to encode relational qualities as well. Nonetheless, this model
diverts from the DOLCE EQQS pattern for qualities, and it violates DOLCE’s
constraint that a quality can only inhere in one host.

2.2 Ontology Design Patterns

Ontology Design Patterns are recurring structures in ontologies. Similar to de-
sign patterns in software engineering they provide templates to specific problems
in engineering ontologies. The first patterns were not designed from scratch but
emerged in ontologies. A first account of this phenomenon in ontology engineer-
ing along with a framework to document and classify ontology design patterns
was given by Gangemi [8]. Gangemi and Presutti [10] list different types of
ontology design patterns, depending on their intended use. They distinguish be-
tween Structural ODPs, Reasoning ODPs, Presentation ODPs, Correspondence
ODPs, Lexico-Syntactic ODPs and Content ODPs for example. The details on
these different ODPs can be found in [10] or looked up on the website ontology-
designpatterns.org. In this paper we are only interested in Content ODPs, and
will refer to them as “ODP” for short. They can be defined as:

[Content ODPs] are distinguished ontologies. They address a specific set
of competency questions, which represent the problem they provide a
solution for. Furthermore, [Content ODPs] show certain characteristics,
i.e. they are: computational, small, autonomous, hierarchical, cognitively
relevant, linguistically relevant, and best practises. [10, p. 231]

Most important in this definition is that Content ODPs are small ontologies.
Gangemi and Presutti [10] also suggest a new paradigm for ontology engineer-
ing, based on small modular Content ODPs, which form that backbone of a
new ontology. The website ontologydesignpatterns.org is a community portal
intended to serve as hub for finding and contributing ODPs of all types.

3 Examples

In this section, we discuss the salience of affordance, resilience and vulnerabil-
ity as well as the problems that occur on the conceptual level when modeling
these notions.. A major problem is still, that these qualities cannot be modelled
in formal ontology. This hinders modelling ecological systems in information
infrastructures.
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3.1 Resilience

The notion of resilience originated within the Ecology domain through the work
of Holling [15]. From its beginning in ecology, resilience has transcended across
various disciplines such as Sustainable Science, Disaster Management, Climate
Change and Psychology [1,36,18,13] as it is deemed a salient concept pertaining
to systems in face of adversity. Holling [15] ascertained that ecological resilience
is a characteristic of ecosystems to maintain themselves in face of disturbance.
In other words, resilience can be viewed as a quality of a system.

After four decades of the resilience debate, the concept still remains on the
abstraction level. Instead of domains moving into an operational direction, there
is a constant re-invention of the wheel that hinders research. This impediment
can be attributed to the lack of a common lexicon across domains [24]. Walker
et al. [35] state that in order for resilience to be operational we have to consider
resilience in a specific context ‘from what to what’, for example the resilience
of corn in South Africa to the impacts of drought. This specificity brings into
focus the problem of having a quality that is dependent on a referent and the
limitations of DOLCE in this regard.

Since the inception of resilience in Ecology, several definitions across disci-
plines have emerged. Holling initially described resilience in contrast to stability:

Resilience determines the persistence of relationships within a system
and is a measure of the ability of these systems to absorb changes of
state variable, driving variables, and parameters and still persist. [15, p.
17]

In an attempt to disambiguate resilience, we [6] suggested a generalized definition
of resilience for the ecological and socio-ecological domain:

The ability of a system to cope with an external factor that undermines
it, with the system bouncing back. [6, p. 121]

This definition was proven to be compatible with definitions given by the Re-
silience Alliance (c.f. [5]) and by the United Nations International Strategy for
Disaster Reduction (c.f. [34, Annex1 p. 6]). To our knowledge, no attempts have
been made to model resilience as quality in DOLCE.

Resilience has been linked to vulnerability as both concepts aim to understand
socio-ecological systems in face of disturbance.

3.2 Vulnerability

Vulnerability can be described according to [27] as the extent to which a natural
or social system is susceptible to sustaining damage, for example from climate
change. As societies aim to enhance resilience in face of global climate change,
the assessment of vulnerability solely, provides a one sided approach to foster
adaptation strategies. Consequently, there is a need for the convergence of both
theoretical and practical approaches of both concepts [24].
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The MONITOR3 project embarked on the challenge of developing a risk on-
tology to act as a reference framework for risk management. The concept of
vulnerability was modeled and defined as the quality of the objects of an envi-
ronment, which determines damage, given a defined hazardous event [19].

3.3 Affordances

The notion of affordance was introduced by Gibson [11,12]. Gibson defined af-
fordances as follows:

The affordance of anything is a specific combination of its substance and
its surfaces taken with reference to an animal [11, p. 67]

[A]ffordances are properties of things taken with reference to an observer
[12, p. 137]

For example, a chair offers a sitting affordance to a human and a hollow tree has
a shelter affordance to a bat or owl. Yet, there exists no definition of affordances
that is commonly agreed-upon. Affordances are often seen as either relational
qualities, that exist as relation between the environment and the agent (e.g.
[32]), or as qualities of (an object in) the environment taken with reference to
the agent. The latter view would benefit from an ODP for referential qualities.
Definitions supporting the latter view have been given for example by Heft [14,
p. 3] and Turvey [33, p. 174].

Today affordances play an important role, not only in their original field of
psychology, but they are applied for example in design [25], robotics [31], navi-
gation and way-finding [30] and similarity analysis [17]. However, the potential
of affordances is far from exploited. One reason for this is that affordances are
challenging to model in formal theories, especially ontologies for the semantic
web. The first author has recently suggested to model affordances as qualities
in DOLCE [28]. However, in the cases where affordances were modeled in ontol-
ogy, the reference to the observing agent was not made explicit. This takes away
the key idea of an affordance.

4 An Ontology Design Pattern for Referential Qualities

In the cases addressed in this paper, we do not need to violate the constraint
of a unique host, but we need to extend the quality pattern by a referent en-
tity that is required for the quality. Therefore, qualities like affordance, resilience
and vulnerability are not relational and they are not of the kind of non-relational
qualities that fit the DOLCE EQQS pattern. They have one host entity, but an
additional referent that is necessary for the quality to exist. However, Ellis sug-
gested distinct (extrinsic) qualities that objects have in virtue of outside forces
[7, as discussed in [38]]. The notion of force comes very close to the terminol-
ogy of definitions for vulnerability and resilience, and it also fits the dynamic
3 see http://www.monitor-cadses.org/

http://www.monitor-cadses.org/


An Ontology Design Pattern for Referential Qualities 543

and potential nature of affordances. A referential quality could then be called a
non-relational extrinsic quality.

The resulting pattern can be described as EQRQS pattern with an endurant
(E), a quality (Q), a referent entity (R), a quale (Q) and a quality-space
(S). The referent is characterized as playing a special referent-role.

The remainder of the section presents the Ontology Design Pattern for ref-
erential qualities. In the classification of the Ontology Pattern Initiative4 this
pattern is a Content Ontology Design Pattern. We do not suggest referential
qualities as distinct type of quality to be considered in metaphysics, but intend
to give knowledge engineers and domain scientists a practical tool to model the
described qualities and to be able to account for qualities that do not solely
depend on one or more host entities. For practical reasons the scope of this
discussion is mostly limited to DOLCE [23] and its commitments.

In the following the ODP for referential qualities is introduced according to
the Content ODP Frame suggested in [8]. This frame provides eleven slots to
introduce a new Content ODP.

UML Diagram. Figure 2 shows the UML diagram of the referential quality
design pattern.

Endurant

Quality Quale Quality-Space

Referent Referent-Role

inherent-in

 1 

 0..* 

has-quale
 1..*  0..* 

r-location
 1..*  1 

specifically-constantly-dependent-on

 0..* 

 1..* 

plays-ref
 1..*  1..* 

Fig. 2. UML class diagram of the referential quality ODP. The relations are to be read
starting from the category quality or from left to right

Generic Use Case (GUC). The referential quality pattern’s overall aim is to
enable modeling of qualities that have one major host but existentially depend
on some external factor.This is a recurring pattern of concepts in Ecology, Eco-
nomics, Natural Disaster Management, Climate Change, Computer Science, just
to name a few. The generic pattern can be phrased as “a quality Q of an entity
X taken with reference to another entity R”. These qualities occur in particu-
lar when following system-theoretic approaches to model a domain. A system is

4 see http://ontologydesignpatterns.org

http://ontologydesignpatterns.org
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described not only by its elements but also by relations and interdependencies
between these elements [2]. In such systems there often exist qualities that an
entity has by virtue of an external factor. For this paper, attention is brought to
ecological systems, however, the pattern is not restricted to the domain of ecol-
ogy, but is kept generic enough to be used in the other aforementioned domains
as well.

Local Use Case(s). The local uses cases are equivalent to the examples de-
scribed in Sect. 3. The referential quality pattern should be capable to account
for:

– an affordance as quality of an object taken with reference to an observer.
– resilience as the capacity of a sysem to cope with an external factor.
– vulnerability as the quality of an object with respect to a potential damage.

Affordance, resilience and vulnerability lack a formal ontological definition that
makes the concepts operational and allows a consideration of these concepts in
and across information systems. Even though conceptual definitions exist, there
is a dearth in formal ontological solutions that will allow for semantic integration
of information sources and models.

Logic Addressed. The Ontology Design Pattern is modeled in the Unified
Modeling Language (UML), it is then encoded in Description Logic and imple-
mented in the Web Ontology Language OWL-DL.

Reference Ontologies. The Ontology Design Pattern uses DOLCE Lite5 as
upper level ontology. As this pattern provides a template to model certain types
of qualities, this paper uses especially the DOLCE category qualities. In addi-
tion to DOLCE Lite we use the Extended Descriptions and Situations module6

to specify a role.

Specialized Content ODPs. The ODP for referential qualities is a special-
ization of the quality ODP in DOLCE. Masolo and Borgo have discussed several
approaches to model qualities in formal ontology [22]. In DOLCE, a quality de-
pends on one host entity. The quality invokes a quale, i.e. a magnitude of the
quality. The quale is located in an abstract quality space. DOLCE uses a frame-
work of entity, quality, quale and quality-space [23]. This ODP extends
the DOLCE EQQS pattern with a referent.

Composed Content ODPs. The ODP for referential qualities does not for-
mally compose of other ODPs in its most general form. Nonetheless, the pattern
can be seen to compose of the quality pattern that is specialized with a role
pattern. Unfortunately, there is no role pattern that is general enough to allow
endurants, perdurants or qualities to play the referent role. There exist patterns
for special roles, for example the Objectrole7, that can be used to model the
role part of the referential quality pattern. Hence, in case the referent-role

5 http://www.loa-cnr.it/ontologies/DOLCE-Lite.owl
6 http://www.loa-cnr.it/ontologies/ExtendedDnS.owl
7 see http://ontologydesignpatterns.org/wiki/Submissions:Objectrole

http://ontologydesignpatterns.org/wiki/Submissions:Objectrole
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is played by a physical-object, the pattern is implemented as composition of
the DOLCE quality pattern and the Objectrole pattern.

A special case occurs when the referent is a referential-quality itself,
then the pattern can be recursively applied to realize a composition of various
referential quality patterns.

Formal Relation. Referential Quality(e, q, ql, qs, r, rr), where e is an en-
durant, perdurant or quality, q is a referential quality that inheres in e, ql is a
quale of q in the quality space qs, r is an endurant, perdurant or quality that
plays a referent-role rr for the referential quality q.

Sensitive Axioms.
Referential Quality(e, q, r) =df QU(q)
∧ (ED(e) ∨ PD(e) ∨QU(e)) ∧ inheres(q, e)
∧ (ED(r) ∨ PD(r) ∨QU(r)) ∧ ∧ (∃Φ, s : subsumes(Θ, Φ) ∧ Φ(s))
∧ specifically− constantly − dependent− on(q, r)
∧ plays− ref(r, s)

where Θ is the category Role in DOLCE. Note that according to the DOLCE
definition of constant specific dependence, q and r can not be equivalent [23,
Dd(70), p. 31].

Explanation. Many existing approaches to model a quality that depends on
an external factor lead to unsatisfactory results. The referential quality design
pattern suggests a practical approach to model such qualities that is compatible
with DOLCE. The DOLCE pattern for qualities comes with qualia and quality-
spaces. This already anticipates a future operationalization of these qualities.

OWL(DL) encoding (Manchester syntax, excerpt8)
Class: referent-role

SubClassOf :
edns:role

Class: referential-quality
SubClassOf :

dol:quality
and (dol:specifically-constantly-dependent-on

some (rq:plays-ref some rq:referent-role))

5 Implementation of Affordance, Resilience and
Vulnerability

This section presents the exemplary implementations of vulnerability taken with
reference to a hazardous event, resilience taken with reference to an external
factor, and an affordances taken with reference to an agent. These examples
8 the complete implementation along with the examples presented in this

paper encoded in the OWL Manchester Syntax are available online at
http://www.jensortmann.de/ontologies/odp4refprop.html

http://www.jensortmann.de/ontologies/odp4refprop.html
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Endurant

Vulnerability Defined-Damage Extent

Damage Potential Referent-Role

inherent-in

 1 

 0..* 

has-quale
 1..*  0..* 

specifically-constantly-dependent-on

 0..* 

 1..* 

plays-ref
 1..*  1..* 

Fig. 3. UML class diagram of vulnerability in the MONITOR project, modeled ac-
cording to the referential quality ODP

demonstrate potential applications. However, the ontological choices made to
restrict the host and referent of the quality do not necessarily reflect the full
scope of the modeled concepts.

The implementation of vulnerability is based on results from the MONITOR
project. Hence, it comprises of the referential-quality vulnerability, that
is specifically constantly dependent on a damage-potential9. The MONITOR
project describes damage potential as a quality of the environment. In our im-
plementation we only model the damage potential as quality, but do not model
an environment explicitly. From the MONITOR account of vulnerability we con-
cluded that the quale of vulnerability is a defined damage extent, which resides
in a special quality space for damage extents. damage-extent is a subcategory
of quale. Our implementation does not make the quality space explicit. Figure
3 shows the UML diagram of the vulnerability implementation.

As an example of how to apply vulnerability as a referential quality, we
implemented a small set of instances that reflect the vulnerability of a so-
ciety to an earthquake for the case of Haiti. We introduced a subcategory
society of agent, because we treat the society as one whole, abstracting from
its constituting institutions, government and people. The category society
has one individual called haitian-society. The vulnerability individual is
called haitian-vulnerability-to-earthquake and is member of the newly
introduced subcategory vulnerability-to-earthquake. The referent-role
is played by an individual haitian-damage-potential that we simply intro-
duce as member of quality. The quale of vulnerability is a member of the
defined-damage-extent, which is labeled as earthquake-damage-extent. The
quale requires further characterization. It could stand for a damage assessed in
monetary value or number of injured and dead. The quality space would be mod-
eled accordingly, for example as metric space for money, or as space for counts
in the case of victim numbers.

9 Note that MONITOR uses generic dependence here.
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Object

Affordances Agent

Referent-Role

Effectivity

inherent-in inherent-in

specifically-constantly-dependent-on

specifically-constantly-dependent-on

plays-ref

plays-ref

Fig. 4. UML class diagram of an affordance modeled according to the referential quality
ODP. For better clarity the cardinalities are not depicted here, but are the same as in
Fig. 2. Instead, the associations are directed in this diagram.

The implementation of resilience is based on [6]. It classifies resilience
as referential-quality. Aiming for a general account, we leave the exter-
nal factor as well as the host for resilience unspecified and resort to the category
spatio-temporal-particular in DOLCE. We have implemented a specific ex-
ample and made it available online, further details are left out here.

The implementation of an affordance is based on Turvey’s [33] definition of
an affordance contrasted with an effectivity. Therefore the implementation com-
prises two referential-qualities: affordance and effectivity. Both are
implemented as direct subcategories of referential-quality. The implemen-
tation enforces the referent of an affordance to be the host of an effectivitiy,
which in turn needs to be a DOLCE agent. To do justice to Turvey’s dis-
positional nature of affordance, the referent of the effectivity must host
the affordance. Figure 4 illustrates the implementation of affordance as UML
diagram.

An additional exemplary implementation with individuals of a concrete af-
fordance serves to make the affordances example more graspable and easier
to evaluate. One of the most cited investigation of an affordance is Warren’s
[37] account of the stair-climbing affordance that is provided by a step with
a riser height to a person with matching leg-length. The implementation of
stair-climbability introduces two new categories for the stair-climbing affordances
and for the stair-climbing effectivity. Individuals exist for the physical-object
step1 that hosts the referential-quality step1-climbability-affordance
and depends on the agent Susan with the effectivity leg-length10. Two
referent-role individuals fill the respective object-property slots for the in-
dividuals of affordance and effectivity. Qualia and quality spaces are not
modeled in the stair-climbing example.

10 The leg length as effectivity is an abstraction that Warren [37] made in his model.
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6 Evaluation

There is no strict methodology to evaluate ODPs as yet but only some criteria,
such as reusability, to assess the success of an ODP [10]. Therefore, a full evalu-
ation of the suggested ODP cannot be given at this stage. However, this section
will shed some light on how well the ODP solved the local use-cases and asses
some analytical criteria taken form information systems evaluation.

6.1 Evaluation of the ODP against the Local Use Cases

The ontological account of vulnerability is taken from the MONITOR project.
It fits the referential quality pattern nearly perfectly. The only difference is that
MONITOR suggests a generic dependence between vulnerability and its host,
whereas the referential quality pattern requires a constant specific dependence.
We chose the specific dependence to express that a particular referential quality
depends on a particular referent, but not on a category of referents. Additionally,
generic dependence cannot be implemented in OWL-DL, the target language of
this ODP. Furthermore, the choice of specific or generic dependence seems to boil
down to the philosophical stance on the environment as being shared or being
individual. This issue is out of scope of this paper, but both views are supported
in the literature. Especially, Turvey’s [33] use of singular forms suggests that his
objects of discourse are particulars, not universals.

The example of vulnerability to an earthquake could be implemented in
DOLCE. Nonetheless, in a real scenario this example has to be integrated with
domain ontologies that account for earthquakes. However, the evaluation should
rather prioritize the potential for application in a real project like MONITOR.
Here we find our pattern is compatible with the ontology suggested in MONI-
TOR, and can lend support to their modeling decisions.

The implementation of resilience as category in DOLCE was straight forward
and directly captures the general definition of resilience [6]. A small example
showed that it is possible to create individuals that reflect the resilience of a
society to sea-level rise. However, the implementations of resilience and also
vulnerability do not make these concepts fully operational as yet. The definitions
of structured quality spaces are still missing. As soon as qualia and structures
are identified in the domain qualia and quality spaces can be defined. Probst
[29] suggested a classification of structured quality spaces and an approach to
model them in DOLCE.

The challenge in the affordance use case was to model an affordance as prop-
erty of a thing taken with reference to an observer [12]. The ODP gives a direct
implementation of this in modeling the affordance as quality of an object that
is specifically constantly dependent on an agent. The effectivity is modeled as
quality of the agent who plays the referent role. An actual realization of one
example of a stair-climbing affordance showed that it is possible and feasible to
implement affordances with this ODP in DOLCE and that this implementation
complies with a well-established theory of affordances. The affordance example
also demonstrates how two referential quality patterns can be composed.
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6.2 Analytical Evaluation

In [4], the authors suggested five criteria to evaluate information systems: Signif-
icance, internal validity, external validity, confirmability/objectivity and reliabil-
ity/dependability/auditability. Information system engineering is close enough
to ontology engineering and the suggested categories are defined broad enough
to use them to evaluate the ODP for referential qualities.

Significance. Referential qualities can be deemed as important building blocks
of domain ontologies that account for systems or networks. The whole idea of an
ontology design pattern is to turn the theoretical significance of a concept such
as referential quality, into a practical significance. The pattern provides a small
modular extension to DOLCE that allows to account for these qualities. The
authors make clear that the theory of referential qualities is not a contribution to
metaphysics, and that the aim is rather to give domain experts a handy template
to model common structures in their domain. The practical significance can only
be evaluated in terms of the adoption and use of this pattern in the future. The
MONITOR project already employs this pattern, without making the pattern
itself explicit. The authors own ongoing work on resilience and affordances will
also benefit from this pattern.

Internal Validity. The implementation of the three local use cases demonstrates
that the ODP works and can be applied in practice. A comparison with relational
and non-relational qualities and their respective modeling approaches has revealed
the shortcomings of modelling these qualities in formal ontology with respect to
requirements stated in the literature on affordances, resilience and vulnerability.
The ODP for referential qualities overcomes these shortcomings.

External Validity. The ODP extends an existing pattern for non-relational
qualities and uses DOLCE. The implementation of the use-cases conforms with
theory in the domain, but rival theories exist that might require a different
pattern. The findings in this paper are compatible with for example the specifi-
cation suggested in the MONITOR project [19] and in Warren’s stair climbing
experiment [37].

In general, the idea of ODPs and modularity in ontologies is to increase the
reusability of ontologies. This pattern is intentionally kept simple to achieve
this goal. The nature of ODPs is to make the theory transferable. However,
boundaries for the use have not been suggested. The authors see a huge potential
for application in a variety of domains that deal with systems and networks in
any form. Both authors are currently employing the pattern in their ongoing
thesis work.

Confirmability/Objectivity. The design pattern is introduced in a formal
way according to [8]. An OWL-DL implementation of the ODP and of the exam-
ples is available online. The theory of referential qualities is inspired by ecological
systems and the language used by domain scientist in ecology. An ecological bias
cannot be ruled out. Furthermore, the commitment to DOLCE and its way of
modeling qualities and qualia implies a cognitive bias of the theory.
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Reliability/Dependability/Auditability. The research objective has been
made clear in natural language. A detailed description of the OPD is available
in formal and natural language. The basic constructs can be easily retrieved from
the ODP frame given in Sect. 4, while the implementations are available online.

7 Conclusion and Future Work

This paper formally introduced an Ontology Design Pattern for referential qual-
ities. We have discussed the idea of referential qualities and introduced the pat-
tern according to a suggested frame. Three use cases demonstrated the practi-
cability of the pattern. Finally, the paper evaluated the patterns with respect to
the use cases together with its general engineering grounds. The pattern is kept
general and simple to ensure a flexible and easy application. The pattern has
the potential to facilitate ontological modeling of ecological systems. It thereby
paves the way for a stronger integration of ecological models and datasets.

Future work will be at first a further application and exploration of the ODP.
A promising aspect of referential qualities is their compatibility with Kuhn’s
Semantic Reference Systems [20,21] and Probst’s semantic reference system for
observations and measurements of qualities [29]. This opens the door for the
operationalization that the presented concepts still lack. Operationalisation en-
tails the physical and mental measurement of a concept relative to a reference
framework [3]. The process of operationalization is an important step to a clear
understanding of a concept. Finally, one of the reviewers suggested to consider
the Description and Situations Ontology [9] as alternative to the comparably
strong commitment to DOLCE.
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Abstract. The purpose of data browsers is to help users identify and
query data effectively without being overwhelmed by large complex graphs
of data. A proposed solution to identify and query data in graph-based
datasets is Pivoting (or set-oriented browsing), a many-to-many graph
browsing technique that allows users to navigate the graph by starting
from a set of instances followed by navigation through common links.
Relying solely on navigation, however, makes it difficult for users to find
paths or even see if the element of interest is in the graph when the points
of interest may be many vertices apart. Further challenges include finding
paths which require combinations of forward and backward links in order
to make the necessary connections which further adds to the complexity
of pivoting. In order to mitigate the effects of these problems and en-
hance the strengths of pivoting we present a multi-pivot approach which
we embodied in tool called Visor. Visor allows users to explore from mul-
tiple points in the graph, helping users connect key points of interest in
the graph on the conceptual level, visually occluding the remainder parts
of the graph, thus helping create a road-map for navigation. We carried
out an user study to demonstrate the viability of our approach.

Keywords: Data browsing, graph-data, pivoting, interaction.

1 Introduction

Challenges in browsing large graphs of data are rich: large numbers of ontology
concepts, high entropy and diversity in links between individual data instances,
often makes it hard for users to understand both the overall content of a dataset,
as well as understand and find the particular bits of the data that might be of
interest. Such problems can often overshadow the benefits of interacting over
large highly inter-connected data. The goal of data browsers has been, in part, to
tackle the problem of making sense of such rich and complex domains. A common
technique that has been adopted by a number of data browsers for exploring large
graphs of data is pivoting (otherwise known as set-oriented browsing). Pivoting
leverages the rich semantic descriptions within the data to extend the commonly
used one-to-one browsing paradigm to a many-to-many navigation for data.
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In this paper we focus on several commonly observed design patterns found
in pivot-based data browsers: (1) exploration is often restricted to starting from
a single point in the data, (2) navigation is typically supported in a single direc-
tion, and (3) immediate instance level exploration is regularly preferred without
gaining familiarity with the domain or setting the exploration context first. We
argue that these characteristics impose a number of limitations: in the case of
(1) they reduce flexibility and therefore the ability to quickly find data that are
related to the initial set multiple hops away, in the case of (2) they reduce the ex-
pressivity of the browser, and in the case of (3) the absence of an overview of the
domain to be explored can often lead to difficulties in retracing exploration steps
as well as make potential alternative exploration paths difficult to recognise. In
this paper we introduce a novel approach we call multi-pivot which extends the
traditional pivoting techniques to mitigate the aforementioned limitations. We
approach we designed a demonstrator tool named Visor and carried out a user
study to test the viability of our approach.

The outline of the paper is as follows. In the following section we examine
related work in the area of pivot-based data browsers, and discuss these limi-
tations in more detail. In Section 3 we discuss our approach, and lay out key
design requirements in our approach. Section 4 describes Visor, a tool which we
developed to test the multi-pivot technique. In Section 5 we carry out an evalu-
ation study to test the viability of our approach and discusses the implications
for design. The paper concludes with a summary of our work and planned future
work.

2 Related Work

Pivoting, as an interaction method, has been adopted by a number of data
browsers. Tabulator [3] can be considered an early pioneer of pivoting. Users
browse data by starting from a single resource following links to other resources.
Tabulator allows users to select patterns by selecting fields in the explored con-
text and tabulate any results that are following the same pattern. Explorator
[2] uses pivoting as a metaphor for querying, where users select subjects, ob-
jects and predicates to create sets of things, subsequently combining them with
unions and intersections operations. The Humboldt browser [12] provides a list
of instances and faceted filters from which the user can either choose to pivot or
refocus. Parallax [10] shows the set of instances, accompanied by a list of facets
for filtering and a list of connections showing the available properties that can be
used in a pivoting operation. In VisiNav [7] users can drag and drop properties
and instances in order to pivot and filter through results. A common characteris-
tic of these interfaces is the notion that pivoting never occurs in branching i.e. a
user cannot pivot with two different properties from the current focus and keep
the context of both trails of exploration. Parallax, however, supports branching
to some extent in the tabular view where generating a table allows this feature.
gFacet [8] also mitigates the problem of branching; exploration starts from a set
of instances and multiple properties can be selected to surface related sets of in-
stances. The lists of instances, generated through successive pivoting operations,
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are used as facets and spatially arranged in a graph visualisation. Finding rela-
tionships between remote it typically unsupported by these browsers. RelFinder
[9] allows finding relationships on the instance level, but not on the concep-
tual level. Fusion [1] offers discovery of relationships however the framework is
designed more for programmers rather than non-technical end users.

2.1 Limitations of Pivot-Based Browsers

In the following we expand our discussion of the aforementioned limitations. To
better illustrate these, we consider the following example: a user exploring the
DBpedia [4] dataset to find basketball players, their affiliation to radio stations,
the radio frequency of these stations, and the cities from which they operate.
Figure 1a depicts the subset of the domain that is needed to answer the given
query. Figure 1b, on the other hand, depicts the entire domain of the dataset1

from which the subset domain needs to be surfaced in order to answer the given
query in our scenario. We highlight the specific problems through describing a
hypothetical exploration process provided by a typical pivot-based data browser.

(a) Subdomain of Interest (b) Entire Domain

Fig. 1. (a) A portion of the DBPedia ontology showing how instances of the classes
Basketball Players, Basketball Teams, Radio Stations and Cites are connected. (b)
A graph visualisation of the DBPedia ontology showing which concepts are related.
Each node represents a class and each arc means that there is at least one property
connecting instances between two classes.

Exploration starts for a single point. In a standard pivot-based browser,
exploration of a dataset begins with a particular set of instances. The initial set
of instances usually pertains to instances from a certain class that is typically
found through a keyword search. In our example, we can start our exploration
from either ”Basketball players” or ”Radio stations”. Once the initial instances
are shown, users are presented with a number of properties which can be se-
lected to pivot and simultaneously get all the instances which are related to
the instances in the first set through that property. In such a way navigation

1 http://wiki.dbpedia.org/Ontology

http://wiki.dbpedia.org/Ontology
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through the graph is facilitated. Let us suppose that ”Basketball players” or
”Radio stations” are commonly used keywords for our query, which would sur-
face the corresponding two classes of instances. At this point we can choose to
start with the instances of either class as our initial set. Suppose we choose, for
example, ”Basketball players”. As can be seen from Figure 1a we need to per-
form two pivoting operations to get to ”Radio stations”. Since the two are not
directly linked we need to do a little bit exploring to find out the ways ”Basket-
ball players” are related to ”Radio stations”. Unfortunately, no cues are given
to guide us in which direction to start exploring so we can connect them with
”Radio stations”. In a situation where the domain is unfamiliar this presents a
problem. Property labels, which are used to show to what is being navigated, do
not hold any information about the path two or three arcs way of the current set
of instances. The problem is further exacerbated when a high number of possible
choices for pivoting is present and the number of choices increases exponentially
if the relating instances of interest are multiple arcs way.

Navigation is uni-directional. The direction of pivoting in pivot-based
browsers is often uni-directional i.e. navigation is enabled only from outgoing
links from the instances in the current focus. The restriction can sometimes
limit the query expressivity of the interface. In our example (refer to Figure 1a)
we notice that whatever set of instances we start from (”Basketball players”
or ”Radio Stations” alike) we cannot pivot in a single direction to all the sets
of instances we need, since the direction of the links we require for pivoting in
”Basketball teams” are all incoming links.

Exploration and domain overview absence. Current pivoting practices are
predominantly instance-centric. As such overexposing instance data, filtering and
repeated pivoting operations, can often times result in lack of overview about
the sub-domain being explored as part of the exploration. The general lack of
overview that can often lead to unseen relations in the data and therefore con-
tribute to a lack of understanding about the domain being explored. Research
from the HCI community suggest that when confronted with complex informa-
tion spaces, information-seeking interfaces should follow the Visual Information
Seeking Mantra [14]: overview first, zoom and filter, then details-on-demand.
The complexity and size of large datasets suggests that using such a paradigm
might suitable for data browsers.

3 Multi-pivot Approach

In the previous section we pointed out several challenges to standard pivoting as
an interaction technique for exploring graph-based data. The aim of our research
was to ascertain whether we can fashion an interaction model that mitigates
these limitations and test if the solution we propose will introduce any major
usability problems for end users. We integrated our ideas into a tool that followed
four design requirements (R1 - R4):
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R1. Exploration can be initiated by selecting multiple items of
interest. Rather than being limited in starting from a single point, we wanted
users to be able to start from multiple points of interest, and discover how the
selected points of interest are connected with each other. As an analogy, we
considered a puzzle solving example. When solving a puzzle, the solvers can
start piecing the puzzle from multiple points: they can select several different
pieces, find pieces that match, create several greater pieces and then piece these
together to slowly gain an understanding of the overall picture. Similarly, we
wanted users to grab different portions of the domain simultaneously, navigate
either back or forth using either normal links or back-links, build their own sub-
set of the domain related to their interest. Since there was no central point where
the exploration starts and users would be able to pivot freely from anywhere in
any direction we named this approach a multi-pivot.

R2. Overview first, instance data on demand. We didn’t want to overbur-
den users by immediately exposing instance data during exploration. Rather we
wanted them to always have an overview of their exploration path and be able
to quickly access the individual instance data if required.

R3. Allow navigation to be bi-directional. In addition to being able to
start from multiple points, we wanted to support navigation in both directions.
Additionally, we wanted to enable users to execute queries which paths include
both forward and backward links.

R4. Creating custom spreadsheets as a way to query data. Once users
have created and explored a sub-domain of the dataset they can query the sub-
domain for instance data. Querying is done by assembling custom created spread-
sheets from instance data by choosing among the concepts in the sub-domain
and specifying the relationships between them. We choose spreadsheets as an
representation, because its relative familiarity among non-technical data users.
An additional motivator was that these spreadsheets can than be exported in a
variety of formats which can be picked up and reused in different applications.
For example, they can be published as an visualisation using ManyEyes [15] or
published on the Web as a standalone dataset using an Exhibit [11].

4 User Interface

In order to test the approach outlined in Section 3 we developed a demonstrator
tool called Visor2. Visor is a generic data explorer that can be configured on any
SPARQL endpoint. For the purposes of testing and evaluating Visor we made an
initial deployment on the DBPedia3 SPARQL endpoint. The following sections
describe the user experience in Visor. Throughout the section we refer to specific
areas where the description of the UI meets the design characteristics outlined
in Section 3.
2 A demo version of Visor is available online at http://visor.psi.enakting.org/
3 http://dbpedia.org

http://visor.psi.enakting.org/
http://dbpedia.org
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Fig. 2. Generating a subset of the DBPedia ontology generated by selecting concepts
in the ontology in Visor. Selected concepts (e.g. ”Basketball Players”) are coloured in
green, while suggested concepts are coloured in gray. Arcs between two collection with
a blue node in the middle indicates links between items (e.g. ”Basketball players” have
a direct relationships with ”Basketball teams”.

4.1 Data and Ontology Exploration

In Visor, exploration starts by selecting ontological classes of interest (named
collections in Visor). Users can choose from collections either by viewing an
entire list of all the known collections or browse in the hierarchical view of the
collections. The collections are listed in a panel on the right hand side of the
user interface (Figure 2c). Alternatively a search bar is provided where the user
can execute a keyword search to get results to both individual instances and
collections in the data.

Instead of choosing a single collection as a starting point for exploration, Visor
allows users to select multiple collections simultaneously. The UI represents a
canvas where a graph rendering of selected collections takes place. The graph
rendering consists of the following nodes:

– Selected collections. Collections selected through the collections menu or
searched are rendered with the title of the collection on top (Figure 2a).

– Relations. If there are properties linking the instances between two selected
collections we indicate to the user that items from these collections are inter-
related by displaying an arc with a blue node in the middle (Figure 2b).
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Fig. 3. Inspectors showing various information about the concepts in the ontology.
Information about ”Basketball Players” is shown in (a), and information about a par-
ticular basketball player (in this case Magic Johnson) is shown in (b). The various links
that exist between ”Basketball players” and ”Basketball teams” is shown in (c).

The number in middle of the blue node is a indicator of the total number
of properties (named relations in Visor) that link instances between the
two collections in either direction. We adopted this approach to mitigate
generating a large and incomprehensible graph [13]. This is true in cases
where datasets include classes with a large number of links between them.

– Intermediary collections. In some cases there are no properties linking
two collections. In such a circumstance, Visor tries to find the shortest path
in the ontology by seeking an intermediate collection to which both selected
collections can be linked from. If there is none, a path with two intermediary
collections is looked up. The process is repeated until a path is found. Cur-
rently, Visor finds the first shortest path it can find and suggests it to the user
by adding it to the current graph. While multiple shortest paths might exist,
Visor recommends only the first one it finds. In cases where users want to
find another path in the ontology they can simply select another collection,
and the interface will attempt to link the last selected collection to all other
selected collections. In such a way we ensure that whatever collections are
selected the resulting sub-ontology is always connected and thus query-able.
To distinguish selected and intermediary collections the latter are coloured
in grey and are smaller in size.
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Fig. 4. Displaying properties in the collec-
tion ispector that link from or to items of a
collection

The graph representation is ren-
dered using a force directed layout
and can be zoomed and dragged to
improve visibility. Each node can be
double clicked which opens up differ-
ent inspector windows. These allow to
view details about the sub-domain. In
the following we describe the different
kind of inspectors in Visor.

Collection inspector. Double click-
ing on the collections brings up a col-
lection inspector (Figure 3a). The in-
spector shows the individual instances
which are part of the collection, a
description of the collection if one
is available, and a list showing the
possible properties that items from
that collection can have. In Visor, ob-
ject and datatype properties are listed
separately. Object properties (or rela-
tions) are shown together with a cor-
responding collection to which they
link (Figure 4). Furthermore object
properties linking to and from other
collection are show in separate lists
(Figure 4). Users can than add these
classes to the canvas. In such a way
we support bi-directional set-oriented navigation, however in Visor we do so on
the ontology level which serves as a potential roadmap for querying (Design re-
quirement R3). Users can also view filters of items in the inspector by selecting
any property (object or datatype). This shows the instances that only have that
property and show the corresponding property value.

Item inspector. Clicking on any of the items in the collection inspector opens
up an item inspector where all the data pertaining to the individual instance is
shown (Figure 3c). A predefined lens is used to render the individual resource,
including rendering images if any exist, a description of the item and the data
associated with that item. If geographic coordinates are found for the item for
example, a map is presented to the user. Additionally we show the collections
that include the item. In the data panel, links to other resources opens the item
inspector associated with that item. In such a way browsing from one item to
another item is also supported in Visor.

Relations inspector. The relation nodes (the blue nodes in the visualisation)
can also be inspected to quickly access properties that interlink items from two



Connecting the Dots: A Multi-pivot Approach to Data Exploration 561

collections (Figure 3b). Clicking on any of the relations will display the items
from both collections that are linked with that property.

With selecting collections users can create a subset of the ontology which
is composed of concepts of their interest without restricting them to selecting a
single collection and use navigation (Design requirement R1). With the inspector
windows users can surface up the data on demand (Design requirement R2) to
explore how collections are related, what are their individual instances, and if
required inspect the instances themselves.

4.2 Spreadsheet Creation

Once a subset of the ontology is selected the user can query this information
space by creating custom spreadsheets based on the selecting concepts and rela-
tions from the ontology subset (Design requirement R4). After the spreadsheet
has been created users can export their custom made data collection in a for-
mat of their particular liking. Currently we support exporting data in CSV and
JSON formats, however the system is extendable and multiple formats may be
supported. In the following we describe the query interface and procedure for
creating custom spreadsheets.

Main collection. The ”Create a table” button located in the top menu of the
UI opens up a query interface which guides users in selecting things from the
previously explored domain (Figure 5).

The first step in creating a spreadsheet is selecting the main collection i.e.
the collection that will be the focus of the spreadsheet (Figure 5a). This will
instantiate a spreadsheet with a single column (the main column) composed of
the instances from the main collection. All subsequent columns added to the
table will be facets of the first column each created by specifying a path showing
how the items of the newly created column are related to the items in the first
column.

Adding columns. Once the main collection is selected, adding additional
columns is the next step. The first choice of columns are the datatype prop-
erties of the main collection shown in Figure 5b. Users can select a property
and click on the ”Add column” button to add the column to the table. By de-
fault when a column is added, Visor queries and tries to find a corresponding
value for all the instances in the main collection. If such a value does not exist
a ”No value” cell informs users that the item in the main column does not have
that property. The default option corresponds to generating a SPARQL query
with an OPTIONAL statement. To filter for non-empty values users can check the
”Show only” option before adding the column. In such a way user have the flex-
ibility of selecting which columns are optional and which are mandatory to have
a value in each cell. Additionally users can also choose the ”Count” option to
count the values in a cell in the corresponding to the item in the main column.
Similarly, selecting the ”Count” option corresponds to having a COUNT query in
the SPARQL query.
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Fig. 5. Spreadsheet creating/query interface in Visor. Users start from selecting the
main collection (a), datatype properties (b), columns other collections in the sub-
ontology by specifying relations to the main collection (c) and (d). A preview of the
columns in shown in (e).

Defining column paths. Users can also select to add columns based on other
collection in the current sub-domain. The query interface allows users to specify
a path that connects items from the main collection to items in the newly added
column. This can be implemented in two ways:

1. The first way is by using a path creation tool (Figure 5c). The path creation
tool starts a path with the first element in the path being the main collection.
Users can than select a collection that is related to the main collection using
a drop-down list of available choices (Figure 6). Once a relating collection
is selected, a property that links them is selected again from a selection
of choices in a drop-down list. Then another collection can be chained to
the previous one and again a property between them is specified and so on.
When a column is added based on the specified path the column pertains
to instances from the last collection in the path. We note that in the path
creation tool enables users to connect the collections by properties going in
both direction (the left and right arrows shown in Figure 5c,d).

2. To help speed up the process an alternative way of adding columns is sup-
ported in the UI. Each tab relates to a concept in the sub-ontology. Each
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Fig. 6. Specifying a path from main collection to an arbitrary collection in Visor

tab panel contains suggested paths for reaching that node (Figure 5d). It
basically list all the paths from the main collection to the collection spec-
ified in the tab. Then users need only to specify the properties in-between
the collections. This will save users time, as well as give cues into all the
different ways items from two collections can be related.

At any time users can update the current spreadsheet to monitor their
progress. An overview of selected columns is shown to the user (Figure 5e)
which allows to backtrack on choices made as well as rearrange the ordering.
The spreadsheet also supports filtering for specific values in a column. Once
users are satisfied with their custom spreadsheet they can choose to export it in
a number of different formats.

4.3 Implementation

The implementation in Visor is composed of a front end (UI) and back-end
system. The UI is based on HTML5 and Javascript together with the jQuery
library4. For visualising the ontology we relied on the Protovis visualisation
toolkit [5]. The Visor back-end server is a Python/Django application that serves
data in a JSON format to the front-end by exposing a RESTful interface. Thus
the UI side of the application does not rely on any raw SPARQL query generation
or parsing SPARQL results.

5 User Study

In order to ascertain whether people will be able to learn and use Visor we
conducted a user study. The purpose of our study was two fold: (1) we wanted
to test if there was any major issues in the ability of users to comprehend and use
our UI and (2) identify specific usability problems and areas where interaction
can be improved. Thus, our goal was to test if our approach was viable.

5.1 Study Design and Procedure

For our study we recruited ten participants through an email advertisement
among graduate students at the University of Southampton. Seven of the par-
ticipants were male and three female and their ages ranged between 21-41. We
wanted to have a diverse group of users with respect to knowledge of Semantic
4 http://jquery.com/

http://jquery.com/
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Web/Linked Data technologies and see if there were any particular difficulties
among users with different skill levels. We asked them to rate their knowledge
of Semantic Web/Linked Data technologies on a scale of one to three, one being
”very basic understanding or no knowledge”, two being ”some knowledge and
understanding”, and three being ”high or expert knowledge”. To gain further
insight in their skills, we also asked them to rate their knowledge on the same
scale to several specific areas: Linked Data application development, (2) Use of
SPARQL, and (3) Ontology Engineering and/or data authoring. Calculating the
averages of the responses by participants 50.25% or roughly half or the partici-
pants had no or very little understanding of Semantic/Linked data technologies,
30% or about 3 participants had intermediary knowledge and 17.5% or about 2
participants had expert knowledge.

For our study we relied on a cooperative protocol analysis or ”think aloud”
method [6]. We choose this method because we wanted to pinpoint any potential
usability issues introduced by the design requirements R1-R4 and get the users
insight into what were the problems.

Each participant went through a study session that took approximately one
hour to complete. A session was structured in the following way. First, the par-
ticipant was shown a 6 minute video5 tutorial of Visor. The tutorial explained
the terminology of the UI and showed a complete example worked out in Visor.
Second, the participants were handed 3 written tasks to complete. During this
time the ”think aloud” protocol was observed, and we recorded the users screen
and audio. Finally, participants were required to fill in a questionnaire, in or-
der to reflect and give feedback based on all the entire session with questions
targeting specific portions of the UI.

Two of the tasks were structured tasks i.e. the users we given a concrete
task with a clear result. The tasks were given with increasing difficulty: the first
task required a three column table with generated with one-hop links in a single
direction, while the second required more column, specifying a loop pattern, and
setting paths with bi-directional patterns. One example task was the following:

In a history course you are required to find which royals from which countries
have intermarried. You decide that you will need a table showing: All the
royals you can find, which country these royals were born, the royals who
are spouses of the royals, and the country the spouses were born.

The third task was unstructured i.e. we gave users a general area to browse and
explore and come up with some data of their particular interest. The task was
to find some data pertaining to Scientists, Universities, and Awards.

5.2 Results

During the task we focused primarily on three things: (1) Observing user be-
haviour during data finding tasks, (2) observing when users chose to view the

5 The video is available at: http://vimeo.com/24174055

http://vimeo.com/24174055
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actual instance data and for what reasons, and (3) observing what problems
participants experienced when attempting to create their spreadsheets.

Data finding. When searching for collections to build up their sub-domain for
answering their tasks most participants (nine out of ten) choose to use multiple
collection selection rather than use navigation after selecting their first collec-
tion. Only when the the resulting connections contained intermediary nodes that
did not meet the requirements of the sub-domain did they resort to navigating
to other potentially useful collections. This was particularly the case during the
exploratory task. Most users used a keyword search option to search for collec-
tions. Beyond using it for finding collections participants suggested additional
ways search can be useful for finding additional data. For example, one user
commented that the use of synonyms would be helpful to find collections. An-
other user, for example, wanted to search for a particular instance during the
exploratory task because the user wasn’t sure in which collection that particular
item can be found. Beyond searching for instances and collection we observed
that some users tried looking up things that we currently did not support e.g.
searching for relations. For example, one user thought that there might be a
collection named ”Spouses” before realising that it might be a relation instead.

Showing instance data. We also observed users to see how much would they
need to view the underlying instance data during various stages and across differ-
ent tasks. We concentrated our observations on two things. One was to observe
if users needed to examine the underlying data during the initial exploration
phase when the user was building a sub-domain of the data. Second we wanted
to test if they can specify relationships that were three or more hops away with-
out seeing the intermediary data that relates them. During the structured tasks
we found that users did spend very little time or no time exploring the gen-
erated sub-domains with the inspector tools. Six participants chose to directly
open the spreadsheet creation tool mentioning that they felt confident they had
everything they needed to answer the query. Three others noted that they just
wanted to open up the inspectors to explore and but mentioned no particular
reason except for just casual exploration. While we observed a slight increase
during the exploratory tasks we did observe that the spreadsheet creation tool
was used as an exploratory tool as well. When creating their spreadsheet more
than half of the participants chose to view their progression with each added
column. At the start of the sessions, novice and intermediary users reported dif-
ficulties in grasping how paths worked, but once explained they felt confident in
generating paths two or more hops away without viewing the intermediary data.

Spreadsheet creation. As expected, users found the spreadsheet creation tool
was the most difficult part of the interface the user to learn and use. Some sug-
gested better integration with the visualisation by either selecting or being able
to drag and drop directly from the graph into the header row of the spreadsheet.
While for the two expert participants and one non-expert specifying direction of
the relationship made sense, for most other participants, specifying the direction
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of the relationship seamed irrelevant. When asked what they would prefer, most
of them responded that they would like a single list of how to relate two collec-
tions instead of two separate lists. However we did not observe that users had
any difficulties in specifying paths where bi-directional patterns occurred. When
faced with the choice of using the template paths or create the paths manually,
the preference of participants were split among the two choices. Participants
recommended, however, that rather than specifying a new path every time they
would have been able to reuse paths from existing columns which were sub-paths
of the new path.

Task completion and survey. Task completion was generally high: eight out
of ten participants were able to complete the all the tasks and create spreadsheets
to the specified requirements of each task. Overall we found that the users were
able to easily learn and create their spreadsheets after the one hour session.
After going through the tasks, participants were asked to submit a survey rate
the overall difficulty of using the tool on a Likert scale of one to five. Two
participants reported that the found the tool very easy (1) to use, six reported
it easy (2), one user reported it average (3) and one user reported it difficult (4)
to use. When asked to rate specific components of the UI most participants (8
of 10) reported that the graph visualisation useful and easy to use while they
gave the spreadsheet creation tool an average (3.2) score.

5.3 Implications for Design

Based on the results we compiled a set of recommendations which we encourage
future designers to consider when designing data-centred exploration interfaces.

Integrate keyword search with direct manipulation techniques. The
approach in this paper gave more flexibility than standard browsers by enabling
users to select multiple points of interest. We noticed that users not only took
advantage of this flexibility, they even wanted more freedom when trying to
find the portion of the data domain that is of their interest. We suggest that
rather than being able to just add multiple collections, users should be able to
search more freely for thing such as properties, instance data and view how they
are relevant in the already explored data. Therefore we suggest integrating key-
word search techniques with direct manipulation techniques as a possible way
of providing flexibility in finding data during initial exploration. So far direct
manipulation techniques have been mostly focused on supporting only direct
manipulation techniques for navigating graph data, while interfaces supporting
keyword search have focused on entity retrieval or question answering. We en-
courage future designers of data browsers to consider closely integrating keyword
search with the direct manipulation features of the data browser.

Support bidirectional navigation. In our related work section we noted that
a lot of interfaces support navigation in a single direction i.e. only form outgoing
properties which limits the expressivity of the queries that can be answered
by the data browsing UI. While we realise that from an implementation point
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supporting finding back-links on the open Web of Data is much harder task
than when the data is contained in a single store, our study showed that from
an interaction point of view supporting both does not have any significant impact
on users when browsing.

Show data on demand. One of the thing our study showed was that users
can browse and query for data without relying too much on always viewing the
data. We recommend that when future UI designers of data browser develop
their tools they use less screen real estate on showing too much instance data at
once, or at least give several views to users. Retaining context while exploring
or combining querying with visual aids can be utilised to give overview of the
exploration path and make querying easier.Users should, however, always retain
the option of viewing the instance data of current result of the exploration at
any time.

6 Conclusion

In this paper, we examined some of the interaction challenges associated with
pivoting as a exploration technique for data browsers. We also presented Visor,
a tool for users to create custom spreadsheets by exploring a dataset using a
combination of multiple selections as well as link navigation. With Visor we
have shown a flexible way of finding data in large graphs and presented an
overview-first data-on-demand approach to browsing data.

Our future work includes extending Visor based on the recommendations we
laid out in this paper. We plan on adding additional features to further increase
the flexibility for understanding complex data domains. Our plan is to support
multiple potentially complementary ways of finding data including better in-
tegration with keyword search as well as more visual aids. We then intend to
extend our evaluation with comparing and measuring support of different data-
seeking tasks in UIs supporting different navigation and exploration techniques
to better understand for what kind of task what exploration model works best.
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Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS,
vol. 5887, pp. 182–187. Springer, Heidelberg (2009)

10. Huynh, D.F., Karger, D.R.: Parallax and companion: Set-based browsing for the
data web. In: WWW Conference. ACM (2009)

11. Huynh, D.F., Karger, D.R., Miller, R.C.: Exhibit: lightweight structured data pub-
lishing. In: Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, pp. 737–746. ACM, New York (2007)

12. Kobilarov, G., Dickinson, I.: Humboldt: Exploring linked data (2008)
13. Schraefel, m.c., Karger, D.: The pathetic fallacy of rdf. In: International Workshop

on the Semantic Web and User Interaction, SWUI 2006 (2006)
14. Shneiderman, B.: The eyes have it: a task by data type taxonomy for informa-

tion visualizations. In: Proceedings of IEEE Symposium on Visual Languages,
pp. 336–343 (September 1996)

15. Viegas, F.B., Wattenberg, M., van Ham, F., Kriss, J., McKeon, M.: Manyeyes:
a site for visualization at internet scale. IEEE Transactions on Visualization and
Computer Graphics 13, 1121–1128 (2007)



strukt—A Pattern System for Integrating

Individual and Organizational Knowledge Work

Ansgar Scherp, Daniel Eißing, and Steffen Staab

University of Koblenz-Landau, Germany
{scherp,eissing,staab}@uni-koblenz.de

Abstract. Expert-driven business process management is an established
means for improving efficiency of organizational knowledge work. Implicit
procedural knowledge in the organization is made explicit by defining
processes. This approach is not applicable to individual knowledge work
due to its high complexity and variability. However, without explicitly
described processes there is no analysis and efficient communication of
best practices of individual knowledge work within the organization. In
addition, the activities of the individual knowledge work cannot be syn-
chronized with the activities in the organizational knowledge work.

Solution to this problem is the semantic integration of individual
knowledge work and organizational knowledge work by means of the
pattern-based core ontology strukt. The ontology allows for defining and
managing the dynamic tasks of individual knowledge work in a formal
way and to synchronize them with organizational business processes. Us-
ing the strukt ontology, we have implemented a prototype application for
knowledge workers and have evaluated it at the use case of an architec-
tural office conducting construction projects.

1 Introduction

There is an increasing interest in investigating means for improving quality and
efficiency of knowledge work [6]. An established means for improving efficiency of
organizational knowledge work is expert-driven business process management [1].
The implicit procedural knowledge found within the organization is made explicit
by defining and orchestrating corresponding business processes (cf. [15]). By this,
procedural knowledge of the organization is explicitly captured and made acces-
sible for analysis, planning, and optimization. Important supplement to organi-
zational knowledge work is individual knowledge work. It is present in domains
in which acquiring and applying new knowledge plays a central role such as re-
search, finance, and design [14]. Due to its complexity and variability, individual
knowledge work is typically not amenable to planning. In addition, activities
of individual knowledge work that occur only rarely do not justify the effort of
business process modeling. Nevertheless, it seems to be worthwhile to consider
individual knowledge work from the perspective of business process optimization.
Even if the activities of individual knowledge work are not entirely accessible to
planning, they are often embedded in organizational business processes defining,
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e.g., some constraints on the activities, deadlines, communication partners, and
others [20]. Individual knowledge work often contains some sub-activities that
actually provide a fixed structure and thus can be explicitly planned, e.g., to
obtain approval for some activities in a large construction project [20]. These
activities of individual knowledge work need to be synchronized with the orga-
nizational knowledge work. However, today’s models for business processes and
weakly structured workflows do not allow for representing such an integration
of the activities.

Solution to this problem is the semantic integration of individual knowledge
work and organizational knowledge work based on the pattern-based core ontol-
ogy strukt1. The strukt ontology allows for modeling weakly structured workflows
of individual knowledge work in a formal and precise way. It allows for decom-
posing the tasks of the individual knowledge work into sub-tasks, which again
can be structured along a specific order of execution and dependencies between
the tasks. The tasks can be semantically connected with any kinds of documents,
information, and tools of a particular domain. In addition, the strukt ontology
provides for modeling structured workflows of organizational knowledge work
and combing the weakly structured workflows with the structured ones. The on-
tology is used in the strukt application that allows knowledge workers to collab-
oratively create, modify, and execute the dynamic tasks of individual knowledge
work and to synchronize them with organizational business processes.

The need for integrating individual and organizational knowledge work is mo-
tivated by a scenario of an architectural office in Section 2. Based on the scenario,
the requirements on the strukt ontology are derived in Section 3. In Section 4,
existing models and languages for business process modeling and weakly struc-
tured workflows are compared to the requirements. The pattern-based design of
the core ontology strukt is described in Section 5. An example application of the
ontology design patterns defined in strukt is provided in Section 6. The strukt
application for collaboratively executing tasks of individual knowledge work and
synchronizing it with business processes is presented in Section 7, before we
conclude the paper.

2 Scenario

The scenario is based on a real architectural office. The work in the architec-
tural office is highly knowledge oriented as the acquisition and application of
knowledge plays a crucial role in planning and conducting construction projects.
One finds some organizational business processes in the architectural office that
are repeated with each project. Figure 1 depicts an excerpt of typical steps in
the process of planing an apartment construction in Business Process Modeling
Notation (BPMN) [17]. Subsequent to the activity Initiate construction project
(a) are the activities Prepare building application (b) and File building applica-
tion (c). The activities are strictly separated from each other and executed in
a determined, sequential order. The resource (d) defines the input and output
1 strukt comes from the German word Struktur and means structure in English.
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Fig. 1. Example Business Process of the Architectural Office

documents of an activity. In the case of the activity Prepare building applica-
tion these documents are, e.g., the building application form and all required
attachments. The activity Prepare building application is associated with the role
Construction draftsman (e), whereas the other activities are conducted by roles
like Construction manager, Structural engineer, or Planner. Branches are used to
represent parallel activities (f) and conditions (g). Besides the processes within
the company also the communication with external project partners is explicitly
captured (h).

The organizational knowledge work is already well described on the level of
business processes. However, the core area of the architectural office’s activities
is insufficiently captured. For example, activities such as Prepare building appli-
cation or Draw construction consist of a large number of sub-activities and are
usually collaboratively executed by multiple persons. These activities of individ-
ual knowledge work are characterized by high complexity and variability when
executing the tasks. As an example, we consider the business process Prepare
building application of Figure 1 in more detail: For preparing a building applica-
tion one has to fill a corresponding application form. This form requires some
attachments such as ground plan, site plan, and others that are used to prepare
the administrative permit for the construction project. Depending on the type
of building construction, however, different attachments are needed. In addition,
the construction projects may have specific requirements to be considered like
terrestrial heat, timber construction, accessibility, and others. In some cases a
complete structural engineering calculation has to be conducted at application
time whereas this is not required in other cases.
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3 Requirements to strukt Ontology

We have derived the requirements to the strukt ontology from the scenario in
Section 2 as well as from related work in information systems research such
as [12,11,20,15]. We briefly discuss each requirement and provide a reference
number REQ-<number>.

Weakly Structured Workflows (REQ-1 ): Individual knowledge work is
characterized by a high complexity and variability [12]. Resources and activities
for conducting tasks are often not known a priori (see Section 2). A support for
representing weakly structured workflows is needed that can be adapted during
execution time without violating the consistency of other running processes.

Support for Structured Workflows (REQ-2 ): Despite the high flexibility
of indidivual knowledge work, there are also some organizational requirements
and framework directives that need to be strictly followed (see scenario in Sec-
tion 2). Thus, support is needed to represent structured workflows in the sense
of traditional business process management [11].

Integrating Weakly Structured and Structured Workflows (REQ-3 ):
Within an organization there is typically a need to represent both weakly struc-
tured workflows and structured workflows (see Section 2). Today’s models and
systems, however, lack in formally integrating weakly structured workflows and
structured workflows and thus cannot benefit from this integration. In order to
leverage the strength of both weakly structured and structured workflows, an
appropriate model must be able to formally integrate and synchronize them into
a common workflow.

Workflow Models and Instances (REQ-4): Distinguishing workflow mod-
els and workflow instances is a common feature of traditional business process
models [20]. In individual knowledge work, however, such a distinction is often
not made as the individual knowledge work is high in complexity and variability.
However, also from the execution of weakly structured workflows one can learn
some generic procedural knowledge. Thus, also for weakly structured workflows
the distinction between instance and model should be made. In addition, it shall
be possible to modify a workflow instance without affecting its workflow model
or other workflow instances. In addition, it shall be possible to derive workflow
models from executed workflow instances.

Descriptive Workflow Information (REQ-5): Structured workflows and
weakly structured workflows are characterized by the resources involved. A core
ontology for integrating individual and organizational knowledge work should
therefore support describing the necessary information for the workflow exe-
cution, like resources used, processed, or created (which is a central aspect in
particular for individual knowledge work [15]), the tools applied, the status of
the workflow execution, as well as scheduling information (cf. Section 2).
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4 Comparing Models for Knowledge Work

We analyze and evaluate existing models for structured workflows and weakly
structured workflows with respect to the requirements introduced in Section 3.
The traditional business process models like BPMN [17] and extended Event-
driven Process Chain (EPC) [18] are available as semantic models in form of
the sBPMN [13] and sEPC [13] ontologies. However, they still lack support for
representing weakly structured workflows and thus are less applicable to our
problem. Also OWL-S [22] shares these characteristics of traditional business
process models. Ad-hoc and weakly structured models like the Process Meta-
Model (PMM) [2] and the Task-Concept-Ontology (TCO) [19] do not require a
strictly determined process flow like the traditional business process models and
may be automatically extracted from natural language descriptions [10]. Such
models are suitable to represent individual knowledge work. However, the lack
of formal precision and missing integration with traditional business processes
hinder their reuse.

The DOLCE+DnS Plan Ontology (DDPO) [8] provides a rich axiomatiza-
tion and formal precision. It obtains its high level of formal precision from the
foundational ontology DOLCE [3] and specializes the ontology design pattern
Descriptions and Situations (DnS). The central concepts defined in the DDPO
are Plan, Goal, Task, and PlanExecution [8]. A Plan is a description of at least
one Task and one agentive role participating in the task. In addition, a Plan has
at least one Goal as a part. A Goal is a desire that shall be achieved. Tasks are
activities within plans. They are used to organize the order of courses. Finally,
PlanExecutions are actual executions of a plan, i.e., they are real-world situations
that satisfy a Plan. It is in principle possible to represent both traditional work-
flows as well as weakly structured workflows using the DDPO. However, DDPO
does not distinguish structured and weakly structured workflows (REQ-3 ) and
does not support descriptive workflow information (REQ-5 ). REQ-4 is present
in DDPO but not explicitly specified. Nevertheless, due to its high formality
and using the foundational ontology DUL as basis, the DDPO is well suited for
extensions and serves as basis for our work.

In conclusion, one can say that none of the existing models fulfill all require-
ments stated to strukt. Traditional business process models miss representing
weakly structured workflows of individual knowledge work. On contrary, weakly
structured workflows are in principle enabled to represent the activities of indi-
vidual knowledge work. However, they lack the formal precision required and do
not allow for an integration with traditional business process models. The DDPO
model differs from the other models insofar as it in principle allows for modeling
both organizational business processes and activities of individual knowledge
work. In addition, it enables integration with other systems due to its formal
nature. Thus, it is used as basis in our work and will be adapted and extended
towards the requirements stated in Section 3.
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5 Pattern-Based Core Ontology strukt

The foundational ontology DOLCE+DnS Ultralight (DUL) [3] serves as basis
for the core ontology strukt. Foundational ontologies like DUL provide a highly
axiomatized representation of the very basic and general concepts and relations
that make up the world [16]. As such, foundational ontologies are applicable to a
wide variety of different fields. Foundational ontologies like DUL follow a pattern-
oriented design. Ontology design patterns [9] are similar to design patterns in
software engineering [7]. Adapted from software engineering, an ontology design
pattern provides (i) a description of a specific, recurring modeling problem that
appears in a specific modeling context and (ii) presents a proven, generic solution
to it [4,7]. The solution consists of a description of the required concepts, their
relationships and responsibilities, and the possible collaboration between these
concepts [4]. An ontology design pattern is independent of a concrete application
domain [7] and can be used in a variety of different application contexts.

In the following, we briefly introduce the patterns of DUL that are of par-
ticular interest in this work:2 The Descriptions and Situations Pattern provides
a formal specification of context [16]. The Description concept formalizes the
description of a context by using roles, parameters, and other concepts. The
Situation represents an observable excerpt of the real world that satisfies the
Description. By using the Descriptions and Situations Pattern, different views
onto the same entities can be formally described. The patterns of the core on-
tology strukt are based on the Descriptions and Situations Pattern. This means
that they reuse or specialize concepts or relations defined in the pattern. The
foundational ontology DOLCE+DnS Ultralight provides a specialization of the
DDPO [8] (see Section 4) for planning activities, called the Workflow Pattern.
Central entity of the Workflow Pattern is the Workflow concept that formalizes
the planning of processes. The Workflow concept is specialized from DDPO’s
Plan, which itself is derived from Description of the Descriptions and Situations
Pattern. The WorkflowExecution concept represents the concrete execution of a
workflow instance. It is derived from DDPO’s PlanExecution, which is a special-
ization of Situation. The Task Execution Pattern formalizes the processing of
tasks in activities. The Role Task Pattern enables association of roles to tasks.
The Part-of Pattern represents the (de-)composition of entities into wholes and
parts [21]. The Sequence Pattern describes the order of entities through the
relations precedes, follows, directlyPrecedes, and directlyFollows.

A core ontology refines a foundational ontology towards a particular field by
adding detailed concepts and relations [16]. However, core ontologies are still ap-
plicable in a large variety of different domains. The core ontology strukt reuses
and specializes different ontology design patterns that DUL offers. Central pat-
terns of the core ontology strukt are the Weakly Structured Workflow Pattern
(REQ-1 ), the Structured Workflow Pattern in combination with the Transition
Pattern (REQ-2 ), the Workflow Integration Pattern to integrate weakly struc-
tured workflows and structured workflows (REQ-3 ), and the Workflow Model

2 For a detailed description we refer to http://ontologydesignpatterns.org/

http://ontologydesignpatterns.org/
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Pattern for differentiating workflow models and workflow instances (REQ-4 ).
Weakly structured workflows and structured workflows can be further described
by applying strukt’s Condition Pattern, Resource Pattern, Status Pattern, and
Scheduling Pattern (REQ-5 ). Each pattern of the core ontology strukt solves a
specific modeling problem that distinguishes it from the other patterns. However,
strukt is not just a collection of some otherwise independent ontology design pat-
terns. Rather, the set of ontology design patterns strukt defines relate to each
other and are designed to be applied together. Such a set of related patterns
is called a pattern system [4]. The core ontology strukt can be applied in vari-
ous domains that need to represent knowledge work and workflows, respectively.
Finally, strukt can be extended by domain ontologies such as an architectural
ontology or financial administration ontology. In the following, we describe the
patterns of the strukt ontology.

5.1 Weakly Structured Workflow Pattern

The Weakly Structured Workflow Pattern depicted in Figure 2 refines the generic
Workflow Pattern of DUL. The concept WeaklyStructuredWorkflow specializes
the Workflow concept of DUL’s Workflow Pattern. Using the defines relation,
different Roles and Tasks are defined. Roles abstract from the characteristics,
skills, or procedures relevant for the execution of a specific task and allows
for differentiating Agents and Objects participating in activities (see Role Task
Pattern of DUL). The classifies relation determines the Role of an Object in the
context of a specific workflow. The concept Agent is a specialization of the Object
concept and describes the entity acting such as a person. Objects and Agents are
defined as participants of an Action by using the hasParticipant relation. Tasks are
used to sequence activities [8]. They structure a workflow into different sub-tasks
relevant for the workflow execution and can be hierarchically ordered (see Task
Execution Pattern of DUL). Tasks are associated to Actions using the relation
isExecutedIn. Action is a specialization of DUL’s Event and describes the actual
processing of a task. Tasks can be ordered using the precedes relation. The order
of tasks may be underspecified, i.e., the actual sequence of processing may only be
determined on a short-term basis and day-to-day requirements when executing
the workflow. Thus, a strict order of processing the tasks is not enforced and the
order may even change during execution time.

In knowledge-intensive activities, it may not be possible to define a priori
all details of a complex task. Thus, the Weakly Structured Workflow Pattern
allows for defining additional (sub-)tasks during the execution of the workflow
using the hasPart relation. A Task is associated with a Role using the isTaskOf
relation (see Part-of Pattern of DUL). Also Actions can be decomposed using
the relation hasPart. Typically, the decomposition of an Action is bound with
the decomposition of the corresponding Task.

The goal that is to be reached by executing a workflow is represented
using the Goal concept and associated to WeaklyStructuredWorkflow using the
hasComponent relation. It can be further decomposed into sub-goals using the
hasPart relation. Goals are explicitly associated to corresponding sub-tasks
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Fig. 2. Weakly Structured Workflow Pattern

using the relatesTo relation. The Goal concept is central to the weakly structured
workflow pattern and is used by the Workflow Integration Pattern described in
Section 5.4 to link the Weakly Structured Workflow Pattern with the Structured
Workflow Pattern.

5.2 Structured Workflow Pattern and Transition Pattern

The Structured Workflow Pattern provides a formal specification of traditional
business processes (see Section 4). It is applied in combination with the Tran-
sition Pattern that defines the transitions between processes, i.e., the Events.
Thus, the Structured Workflow Pattern is an abstraction from the concepts of
traditional business process models.

Figure 3 depicts the Structured Workflow Pattern. It specifies the concepts
StructuredWorkflow and StructuredWorkflowExecution as specialization of DUL’s
Workflow and WorkflowExecution concepts. This eases the integration with the
Weakly Structured Workflow Pattern that specializes the same concepts and
thereby supports the integration of individual and organizational knowledge
work. The distinction between StructuredWorkflow and StructuredWorkflowExecu-
tion reflects the two phases of traditional business process management, namely
the definition phase and execution phase [23]. In the definition phase, existing
business processes are captured and orchestrated into a (semi-)formal business
process model. In the execution phase, the previously created process model is
implemented.

Using the defines relation, the StructuredWorkflow specifies the Roles, Tasks,
EventTypes, and TransitionTypes of the workflow as in the definition phase. Roles
determine the roles played by Objects such as Agents participating in processes
of the workflow. The roles are associated with some concrete Tasks using the
isTaskOf relation. The TransitionType is part of the Transition Pattern and al-
lows for formally defining the transition between two concepts, which classify
processes represented by DUL’s Event concept. The concepts TransitionAction,
Event, and Object constitute the entities of the workflow execution phase. Like
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the WeaklyStructuredWorkflow concept, also the StructuredWorkflow concept de-
fines a Goal concept, which captures the goal of the workflow.

The transitions between business processes are defined using the Transition
Pattern. It provides the four basic transition types [18,17,5] sequence, condition,
fork, and join, defined as specializations of the generic Transition Pattern. The
Sequence Transition Pattern specifies a strict sequence of process execution as
depicted in Figure 4(a). The corresponding operator in BPMN is shown in Fig-
ure 4(b). The Sequence Transition Pattern defines a SequenceTransitionType as
specialization of the generic TransitionType. It determines a strict sequential or-
der of execution of two EventTypes. Thus, the SequenceTransitionAction connects
exactly two concrete business processes represented as Events. The Condition-
based Transition Pattern models process executions that are bound to some
process conditions. The Fork Transition Pattern is used to model fork/join tran-
sitions.
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5.3 Condition Pattern, Resource Pattern, Status Pattern, and
Scheduling Pattern

The workflows specified using the Weakly Structured Workflow Pattern and
Structured Workflow Pattern can be further described with information about
the conditions, resources, status, and scheduling of activities. Information about
conditions for executing an activity are added by combining the Weakly Struc-
tured Workflow Pattern or Structured Workflow Pattern with the Condition
Pattern. The Condition Pattern allows for defining some preconditions and post-
conditions such as that a document needs to be signed. Using the Resource Pat-
tern, one can define if an activity produces a resource (create), uses a resource
(without exactly knowing if the resource is modified or not), views a resource
(without modifying it, i.e., read), edits a resource (update), consumes a resource
(delete), or locks a resource. The status of activities and processes can be set
to active, inactive, or finished using the Status Pattern. The pattern can be ex-
tended to domain specific requirements such as initiated, suspended, and failed.
Activities may have to be executed at a specific time and/or place. This can be
represented using the Scheduling Pattern.

5.4 Workflow Integration Pattern

The integration of individual knowledge work and organizational knowledge work
is conducted using the Workflow Integration Pattern specialized from DUL’s
Workflow Pattern and is depicted in Figure 5. The alignment of the concepts de-
fined in the Weakly Structured Workflow Pattern and the Structured Workflow
Pattern is supported by using the Workflow Pattern of DUL as common model-
ing basis. As described in Section 5.1 and Section 5.2, it is possible to associate
a Goal to each Task using the relatesTo relation. The Goal concept is connected
to the workflow via the hasComponent relation. Using the Goal concept, a formal
mapping of weakly structured workflows and structured workflows can be con-
ducted. It is based on the assumption that if some individual knowledge work
is carried out in the context of an organizational business process or vice versa,
they share a common Goal. Finally, the association between concrete activities
carried out in the individual knowledge work and organizational knowledge work
is established through the relatesTo relation that connects the Goals with Tasks in
the Weakly Structured Workflow Pattern and the Structured Workflow Pattern.

5.5 Workflow Model Pattern

The Workflow Model Pattern allows for explicitly distinguishing workflow mod-
els and workflow instances for both, weakly structured workflows and structured
workflows. To create a workflow model, the Workflow Model Pattern is able to
represent on a generic, i.e., conceptual level, the flow of Tasks, their dependen-
cies, and the resources required. In contrast to the traditional business process
modeling (see Section 4), however, the workflow instances created from a work-
flow model do not need to be strictly in accordance with the model. This is in
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particular important for weakly structured workflows that can be adapted to the
requirements of a concrete execution situation.

Figure 6 depicts the Workflow Model Pattern. It consists of two parts, one for
the WeaklyStructuredWorkflowModel and one for the StructuredWorkflowModel.
In the case of the StructuredWorkflowModel, subclasses of Role, Task, and Tran-
sitionType are defined as valid components of the workflow model definition. For
weakly structured workflow models, only Roles and Tasks can be defined.

6 Example Application of the strukt Core Ontology

The application of the strukt core ontology is shown at the example of an apart-
ment construction by the architectural office introduced in Section 2. Figure 7
(bottom part) depicts the application of the Weakly Structured Workflow Pat-
tern wsw-prepare-building-application-1 for preparing a building application. It
defines the Tasks t-compute-statics-1 and t-create-groundplan-1. The relation isEx-
ecutedIn classifies the individuals a-compute-statics-1 and a-create-groundplan-1
as Actions, executing the tasks. The isTaskOf relation specifies that the task
t-compute-statics-1 has to be conducted by an agent playing the role of a Struc-
turalEngineer r-structural-engineer-1, here the NaturalPerson tmueller-1. The Nat-
uralPerson tmueller-1 is specified as participant of the Action a-compute-statics-1.
The participant of the Action a-create-groundplan-1 is not specified.
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The weakly structured workflow belongs to the organizational business pro-
cess depicted in Figure 7 (top part) using the Structured Workflow Pattern. It
models an excerpt of the business process shown in Figure 1 of the scenario in Sec-
tion 2. The StructuredWorkflow sw-residential-object-1 defines the Tasks t-prepare-
building-application-1 and t-file-building-application-1, the SequenceTransitionType
tt-sequence-1, and the role r-draftsman-1. The tasks t-prepare-building-application-
1 and t-submit-application are connected in a sequence using the relations direct-
lyPrecedes and directlyFollows of t-sequence-1. The Role r-draftsman-1 is con-
nected using the isTaskOf relation with the Task t-prepare-building-application-1.
In the context of this workflow, the NaturalPerson tmueller-1 acts as r-draftsman-1.
The Actions a-prepare-building-application-1, a-sequence-1, and a-submit-applica-
tion-1 constitute the execution of the Tasks and SequenceTransitionType, respec-
tively. The integration of the weakly structured workflow wsw-prepare-building-
application-1 and structured workflow sw-construction-project-1 is conducted by
defining g-prepare-building-application-1 as Goal of the t-prepare-building-applica-
tion-1 task. The Goal g-prepare-building-application-1 is then connected with the
Weakly Structured Workflow wsw-prepare-building-application-1 using the has-
Component relation. As described above, the wsw-prepare-building-application-1



strukt—A Pattern System for Integrating Individual 581

wswm-prepare-
building-application-1:
WeaklyStructured
WorkflowModel

CreateGroundplanComputeStaticsStructural
Engineer

dul:defines

dul:isTaskOf dul:precedes

Fig. 8. Application of the Workflow Model Pattern

captures the individual activities, concrete sub-tasks, and roles involved in ac-
tually writing the building application.

An instance of a workflow such as the example of the weakly structured
workflow wsw-prepare-building-application-1 in Figure 7 (bottom part) can be
abstracted to a workflow model using the Workflow Model Pattern. As shown
in Figure 8, the abstraction from a workflow instance to a model is basically
the upper part of the Descriptions and Situations Pattern of DUL. In our ex-
ample, the WeaklyStructuredWorkflowModel wswm-prepare-building-application-1
consists of the domain-specific concepts of the role StructuralEngineer, the two
tasks ComputeStatics and CreateGroundplan, and the relations.

As shown in Figure 7, using the patterns of struct allows for modeling and inte-
grating structured workflows and weakly structured workflows. Using the ontol-
ogy design pattern Descriptions and Situations as design principle for represent-
ing workflows in strukt allows for modifying workflow instances without affecting
the original workflow model. This is achieved by contextualizing the workflow in-
stances using the individuals sw-construction-project-1 and wsw-prepare-building-
application-1. Other instances of the same WeaklyStructuredWorkflow like a wsw-
prepare-building-application-2 can have different roles and tasks defined for the
actual execution and the tasks can be executed in different order.

7 Prototype Application

The prototype application supports individual and organizational knowledge
work and their combination. It instantiates the pattern of the strukt ontology.
A domain-specific construction ontology aligned to DUL is used to describe
the roles such as manager, draftsman, and engineer. The user interface for the
individual knowledge worker is depicted in Figure 9. It consists of a task space for
managing the weakly structured workflows with their tasks and sub-tasks. The
task space allows for receiving details of a task, create new tasks, modify tasks,
save a workflow instance as workflow model, instantiating a workflow model, and
deleting tasks and workflows, respectively.

The left hand side of the screenshot depicted in Figure 9 shows example weakly
structured workflows from the architecture scenario presented in Section 2. The
tasks and subtasks of a weakly structured workflow can be shown by clicking on
the small triangle symbol next to the task like the Building application Mornhinweg
Inc example. Important details of a task are shown on the right hand side of the
screenshot such as deadlines, appointments, and others. Tasks can be marked
as finished by clicking on the checkbox on the left to the task name. When
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Fig. 9. Task Space for the Individual Knowledge Worker

there is a lock symbol in the checkbox (indicated as small box), the task cannot
be accomplished due to unfulfilled dependencies (indicated by the arrows). For
example, the task Calculate structural analysis cannot be processed as the tasks
Draw elevation plan and Draw ground plan are not completed. Optional tasks are
indicated with the keyword (opt). The order of tasks in a weakly structured
workflow can be changed by the knowledge worker using simple drag and drop
interaction. The right hand side of the screenshot in Figure 9 provides details
of a task such as its status and the responsible agent. Additional agents can be
added as well as the responsibility of tasks can be forwarded. Thus, the strukt
prototype enables a collaborative execution of a weakly structured workflow by
multiple knowledge workers. Further details can be investigated using the tab
Tools showing the tools used to process a task and the tab Conditions showing
detailed information about the conditions associated with the task, e.g., when a
specific role needs to sign a specific document.

In order to abstract a workflow model from a workflow instance, the strukt
application provides the workflow transformation menu depicted in Figure 10.
It allows for defining the components of the workflow model. To this end, all
components of the workflow instance to be transformed are depicted in a ta-
ble. Each row of the table represents a task of the weakly structured workflow.
Subtasks are indicated by indentions. The columns Task, Conditions, Optional,
Role conditions, Documents, and Tools show the details of the tasks relevant
for creating a workflow model. Tasks can be removed from the workflow at this
point from the transformation process. In addition, the order of tasks can be
changed by drag and drop interaction and new tasks can be added.

We have implemented a simple workflow management system in our strukt
prototype. It provides a test environment for synchronizing the activities in
the weakly structured workflows and some pre-defined business processes of the
architectural office. A user interface is not provided as it is assumed that strukt
is integrated in an existing business process engine with its own interface.
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Fig. 10. Transformation Menu for Creating a Workflow Model from an Instance

8 Conclusions

We have presented an approach for integrating individual knowledge work and
organizational knowledge work by means of the pattern-based core ontology
strukt. The core ontology strukt defines several ontology design patterns for cap-
turing weakly structured workflows of individual knowledge work and structured
workflows in the context of organizational knowledge work. A formal alignment
and synchronization of the activities in individual knowledge work and orga-
nizational knowledge work is conducted by basing on the DOLCE+DnS Plan
Ontology [8]. Concrete instances of weakly structured workflows can be trans-
formed into generic workflow models, enabling reuse of procedural knowledge.
On basis of the strukt ontology, we have developed a prototypical software sys-
tem for the collaborative planning and execution of weakly structured workflows
and applied it to the use case of an architectural office. The strukt prototype
connects with a simple workflow management system to synchronize the flexible,
individual knowledge work with the strict execution of business processes. This
work has been co-funded by the EU in FP7 in the ROBUST project (257859).
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Abstract. In this paper we present FedBench, a comprehensive bench-
mark suite for testing and analyzing the performance of federated query
processing strategies on semantic data. The major challenge lies in the
heterogeneity of semantic data use cases, where applications may face
different settings at both the data and query level, such as varying data
access interfaces, incomplete knowledge about data sources, availability
of different statistics, and varying degrees of query expressiveness. Ac-
counting for this heterogeneity, we present a highly flexible benchmark
suite, which can be customized to accommodate a variety of use cases
and compare competing approaches. We discuss design decisions, high-
light the flexibility in customization, and elaborate on the choice of data
and query sets. The practicability of our benchmark is demonstrated by
a rigorous evaluation of various application scenarios, where we indicate
both the benefits as well as limitations of the state-of-the-art federated
query processing strategies for semantic data.

1 Introduction

Driven by the success of the Linking Open Data initiative, the amount of se-
mantic data that is published on the Web in the form of RDF is increasing at
a tremendous pace. While offering great potentials for innovative applications
that integrate heterogeneous data from different sources, on the data manage-
ment side, this development comes along with a variety of new challenges, last
but not least due to the sheer amount of data that may be utilized by such appli-
cations. Most research contributions in the context of RDF data processing have
focused on the problem of query evaluation over local, centralized repositories
(see e.g. [2, 24, 19]) – and for these scenarios different benchmarks have been pro-
posed [11, 6, 21]. Accounting for the decentralized nature of the Semantic Web,
though, one can observe an ongoing shift from localized to federated semantic
data processing, where independent endpoints provide data, and semantic data
applications utilize both local repositories and remote data sources at the same
time to satisfy their information needs. In response to this paradigm shift, dif-
ferent federated RDF processing strategies – targeted at different use cases and
application scenarios – have been proposed [15, 14, 16, 9, 17].

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 585–600, 2011.
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With distributed semantic data processing becoming increasingly important,
we identify a clear need for a benchmark tailored to the problem of federated
semantic data query processing. We employ a broad definition of semantic data,
which includes Linked Data sources, datasets, and ontologies represented in
RDF. The main challenge here lies in the diversity and heterogeneity of se-
mantic data use cases, and the demands they pose to a benchmark: First, we
can observe heterogeneity at data level along several dimensions: applications
are facing different physical distribution of datasets, different interfaces for data
access, incomplete knowledge about the existence of entry points into the Web of
data, and different types of metadata and statistics. Apart from the challenges
at data level, applications may also exhibit different demands w.r.t. query eval-
uation, including aspects such as query languages, expressiveness, and ranking.

The overall setting in which a concrete semantic data application is settled
may have severe impact on query processing strategies. Ultimately, there cannot
exist a single “one-size-fits-all” benchmark to measure each and every aspect of
an application – or to compare the performance of orthogonal federated query
processing strategies. Hence, taking an existing benchmark and distributing its
data across several endpoints may cover some, but not all challenges that arise
in the context of federated semantic data processing. What is needed instead is
a collection of customizable benchmark scenarios that accommodate a multitude
of dimensions as well as essential challenges – and from which one can choose
data sets, queries, and settings that fit the specific needs.

Contributions. (1) Based on a review of federated query processing scenarios
our community has dealt with so far, we discuss orthogonal dimensions at data
and query level that can be used to classify existing approaches. (2) Accounting
for the heterogeneity of these dimensions, we present a rich collection of queries,
data, and data statistics, which can be flexibly combined and customized. This
makes our benchmark generic enough to cover a broad range of use cases, such
as testing the performance of the underlying federation approach, data access
mechanisms, static optimization based on metadata and statistics, queries with
varying characteristics, and many more. All queries and datasets were carefully
chosen to reflect a variety of domains, query patterns, and typical challenges in
query processing (in particular in distributed settings). While some of the queries
were specifically designed to test and vary in these aspects, others were taken
from prototypical, domain-specific use cases (e.g. in the Life Science domain)
built by participants in other projects. (3) In order to show the flexibility and
illustrate the broad range of scenarios covered by FedBench, we provide results
for selected scenarios and implementations, identifying areas where ongoing work
is required. Our results are published in a Wiki, where we also maintain data,
statistics, queries, and scenarios. We invite researchers and benchmark users to
customize and extend the benchmark suite according to their own needs.

We point out that the resulting benchmark suite is available online1, including
a flexible and extensible Open Source Java-based evaluation framework.

1 See http://fbench.googlecode.com/
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Related Work. Apart from benchmarks that target structural properties of
RDF schemas (such as [18]), several benchmarks for RDF, RDFS, and OWL
data processing have been proposed. The Lehigh University Benchmark [11],
for instance, has been designed to test the reasoning capabilities of systems
over a single ontology. The SPARQL-specific, use-case driven Berlin SPARQL
Benchmark [6] comes with a set of queries implementing meaningful requests on
top of an eCommerce scenario modeled in RDF. Complementary, the SPARQL
Performance Benchmark (SP2Bench) [21] puts a stronger focus on language-
specific features of the SPARQL query language, addressing optimization in
complex scenarios. None of the above benchmarks considers federation at data
level, nor does provide data collections consisting of multiple interlinked datasets.

To the best of our knowledge, the only work addressing the latter issue was
our previous work in [13], which – focusing on selected federation approaches –
served as a starting point for designing FedBench. Going far beyond this initial
work, in this paper we present a holistic benchmark suite, including a variety
of new data and query sets, new scenarios such as Linked Data access (i.e., via
HTTP requests), an automated evaluation framework (with support for various
metrics like counting the number of requests, automated evaluation, interfaces for
connecting new systems etc.), a discussion and classification of state-of-the-art
approaches, a discussion of statistics, as well as novel experiments and findings.

Our benchmark has been designed to be compatible with the current state-of-
the-art in Linked Data query processing. In particular, in our benchmark we use
queries defined in SPARQL 1.0, without requiring specific extensions for explicit
specification of the endpoint services as proposed by the SPARQL 1.1 federation
extensions. To our knowledge, there is currently no public implementation of the
SPARQL 1.1 federation extension [1]. Examples of systems expected to support
SPARQL 1.1 federation in future releases include SPARQL DQP [5], Sesame [7],
and FedX [23]. While in this paper we focus on SPARQL 1.0 features, on our
project page we also provide SPARQL 1.1 versions of the benchmark queries,
ready to be used as soon as implementations become available.

An analysis and comparison of the structure of different semantic data sets
and benchmarks from the Linked Data domain is presented in [8]. It shows
that artificial datasets used in benchmarks are typically highly structured, while
Linked Data are less structured. They conclude that benchmarks should not
solely rely on artificial data but also consider real world datasets. Resuming this
discussion, in Section 3.1 we will present an analysis and comparison of our data
sets using the methods proposed in [8].

Outline. In the next section, we identify and discuss essential dimensions of fed-
erated semantic data processing, which form the groundwork for the benchmark
suite presented in this paper. Next, in Section 3 we motivate benchmark design
goals and present the suite in detail, namely benchmark datasets (Section 3.1),
covering aspects such as their properties and associated statistics, benchmark
queries and their properties (Section 3.2), as well as the benchmark driver (Sec-
tion 3.3). We turn towards a comprehensive evaluation of concrete application
scenarios in Section 4 and wrap up with some concluding remarks in Section 5.
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2 Heterogeneity of Semantic Data Use Cases

To date, several approaches to semantic data query processing have been studied,
comprising both centralized and decentralized settings. Centralized approaches,
where all data is periodically crawled and stored locally, come with the merits of
high controllability and reliability. While Google and the likes have shown that
this is a successful approach for dealing with Web documents that primarily
comprise text, it has also been adopted for semantic data, where projects like
Factforge2 collect large amounts of RDF(S) data in centralized stores.

If federation is set up dynamically or the underlying sources exhibit high up-
date rates, though, it may not be affordable to keep imported semantic data
up-to-date. Then, decentralized, federated query processing strategies are re-
quired, typically implemented on top of public SPARQL endpoints or directly
on Linked Data accessible via HTTP requests. In the best case, not only the ex-
istence of data sources but also detailed statistics can be assumed and exploited
for optimization [14]. A stronger relaxation is to assume only partial knowledge
about the sources, e.g. past information that is stored and employed for future
runs, thereby obtaining more entry points and hints to explore unknown sources
in a goal-directed fashion. In fact, it has been shown that already little knowl-
edge obtained at runtime can be used to adaptively correct the query processing
strategy chosen at compile time, to improve performance [16]. In the worst case,
engines have to deal with federated scenarios where no data and knowledge are
available, so queries have to be processed based on iterative URI lookups [15].

In summary, previous approaches reveal several dimensions along the data
and query level, which we use to characterize approaches. They determine the
challenges, including the major issues of centralized vs. decentralized process-
ing and knowledge about datasets discussed above. At data level, we identify
heterogeneity along the following dimensions:

(D1) Physical Distribution: Federated query processing systems may either
access and process global data from the Web, process locally stored data
sources, or mix up both paradigms connecting local with global data.

(D2) Data Access Interface: Semantic data may be accessible through dif-
ferent interfaces. There may be native repositories, SPARQL endpoints, and
Linked Data accessible through HTTP requests. These interfaces provide
different access paths to the data, ranging from iterators at data level, URI
lookups, to expressive queries in different languages.

(D3) Data Source Existence: In particular in Linked Data scenarios, not all
sources may be known a priori. Hence, applications may have only few entry
points into the data graph, which can be used to iteratively deep-dive by
exploring links (see for instance the setting described in [16]).

(D4) Data Statistics: In the best case, advanced statistical information about
properties, counts, and distributions in the form of histograms for all data
sets are available; in the worst case – in particular if data is not stored locally
– only few or no information about the data sources may be given.

2 http://ontotext.com/factforge/
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The concrete setting an application faces at data level – i.e., the classification
within dimension (D1)–(D4) – implies challenges in data processing and imposes
an upper bound on the efficiency in query processing: applications built on top
of local repositories exploiting detailed statistical knowledge for query optimiza-
tion, for instance, are generally faster than applications that rely on federated
Linked Data accessible via HTTP lookups, where network delay and incomplete
knowledge about data sets impose hard limits on query efficiency.

Apart from the challenges at data level, applications may also face differ-
ent challenges at query level. Like the dimensions at data level, also those at
query level drive the challenges behind semantic data applications and should
be covered in a benchmark. In particular, we identify the following dimensions.

(Q1) Query Language: The expressiveness of the query language needed by
applications may vary from case to case: while some applications get around
with simple conjunctive queries, others may rely on the full expressive power
of RDF query languages, such as the de facto standard SPARQL [20, 22].

(Q2) Result Completeness: Certain applications may rely on complete re-
sults, while others cannot afford it when responsiveness is first priority. In
particular in Linked Data scenarios where complete knowledge cannot be
assumed (s.t., beginning from some entry points, further sources have to be
discovered via online link traversal) not all data sources may be found [15,
16].

(Q3): Ranking: Applications may be interested in queries that enable ranking
according to some predefined metrics, or maybe only in top-k results.

3 FedBench: Benchmark Description

In order to support benchmarking of the different scenarios that emerge along
all the dimensions, FedBench consists of three components, all of which can
be customized and extended to fit the desired scenario: (i) multiple datasets,
(ii) multiple query sets, and (iii) a comprehensive evaluation framework. We
first elaborate on the datasets and statistics (addressing dimension (D4)), then
present the queries (addressing dimensions (Q1)–(Q3)), and conclude with a
discussion of our evaluation framework, which addresses dimensions (D1)–(D3).

3.1 Benchmark Data

Accounting for the heterogeneity of semantic data use cases, we provide three
data collections, each consisting of a number of interlinked datasets. The data
collections have been selected to represent both real-world and artificial data
federations over multiple representative semantic datasets. The collections differ
in size, coverage, and types of interlinkage. Two of them are subsets of the Linked
Open Data cloud: The first spans different domains of general interest, represent-
ing typical scenarios of combining cross-domain data with heterogeneous types
of interlinkage; the second contains datasets from the Life Science area, repre-
senting a federation scenario in a very domain-specific setting. Additionally, we
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use a partitioned synthetic data collection, whose advantage lies in the ability to
simulate federations of varying size with well-defined characteristics of the data.

General Linked Open Data Collection. This first data collection consists of
datasets from different domains: DBpedia is a central hub in the Linked Data
world, containing structured data extracted from Wikipedia. Many datasets are
linked to DBpedia instances. GeoNames provides information about geographic
entities like countries and cities. Jamendo is a music database containing infor-
mation about artists, records, tracks, publishers and publication dates. Linked-
MDB exhibits details about films, genres, actors, producers, etc. and connects
its instances to the corresponding DBpedia entities. The New York Times
dataset contains about 10,000 subject headings covering different topics, which
are linked with with people, organizations and locations. Finally, the Semantic
Web Dog Food dataset provides information about Semantic Web conferences
of the past years, including paper descriptions, authors, and so on.

Life Science Data Collection. In this collection, we again included the DBpe-
dia subset from the General Linked Open Data dataset as a central hub. KEGG
(Kyoto Encyclopedia of Genes and Genomes) contains data about chemical com-
pounds and reactions, with a focus on information relevant for geneticists. It is
published in a number of separate modules; in the dataset we included the mod-
ules KEGG Drug, Enzyme, Reaction and Compound. Next, ChEBI (Chemical
Entities of Biological Interest) is a dictionary of molecular entities focused on
“small” chemical compounds, describing constitutionally or isotopically distinct
atoms, molecules, ions, ion pairs, radicals, radical ions, complexes, conformers,
etc. DrugBank is a bioinformatics and cheminformatics resource that combines
detailed drug (i.e. chemical, pharmacological, and pharmaceutical) data with
comprehensive drug target (i.e. sequence, structure, and pathway) information.
The datasets are linked in different ways: Drugbank is linked with DBpedia via
owl:sameAs statements, and other datasets are linked via special properties,
e.g. Drugbank links to KEGG via the property keggCompoundId. KEGG and
Drugbank can be joined via identifiers of the CAS database (Chemical Abstract
Service). Some links are implicit by the use of common identifiers in literal values,
e.g. the genericName in Drugbank corresponds to the title in ChEBI.

SP2Bench is a synthetic dataset generated by the SP2Bench data genera-
tor [21], which mirrors vital characteristics (such as power law distributions
or Gaussian curves) encountered in the DBLP bibliographic database. The data
generator provides a single dataset, from which we created a collection by clus-
tering by the types occurring in the dataset, finally obtaining 16 sub-datasets
(for persons, inproceedings, articles, etc.) that can be deployed independently in
a distributed scenario. The data collection consists of 10M triples in total.

Metadata and Statistics about data sources are important for identifying
suitable data sources for answering a given query, as well as for query optimiza-
tion. They can be used to parametrize the benchmark along dimension (D4).
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Table 1. Basic Statistics of Datasets1

Collection Dataset version #triples #subj. #pred. #obj. #types #links strct.

DBpedia subset2 3.5.1 43.6M 9.50M 1063 13.6M 248 61.5k 0.19
NY Times 2010-01-13 335k 21.7k 36 192k 2 31.7k 0.73

Cross LinkedMDB 2010-01-19 6.15M 694k 222 2.05M 53 63.1k 0.73
Domain Jamendo 2010-11-25 1.05M 336k 26 441k 11 1.7k 0.96

GeoNames 2010-10-06 108M 7.48M 26 35.8M 1 118k 0.52
SW Dog Food 2010-11-25 104k 12.0k 118 37.5k 103 1.6k 0.43

DBpedia subset2 3.5.1 43.6M 9.50M 1063 13.6M 248 61.5k 0.19
Life KEGG 2010-11-25 1.09M 34.3k 21 939k 4 30k 0.92
Sciences Drugbank 2010-11-25 767k 19.7k 119 276k 8 9.5k 0.72

ChEBI 2010-11-25 7.33M 50.5k 28 772k 1 - 0.34

SP2Bench SP2Bench 10M v1.01 10M 1.7M 77 5.4M 12 - 0.76

1All datasets are available at http://code.google.com/p/fbench/.
2Includes the ontology, infobox types plus mapped properties, titles, article categories with labels,
Geo coordinates, images, SKOS categories, and links to New York Times and Linked Geo Data.

Some Linked Data sources provide basic VoiD [3] statistics such as number of
triples, distinct subjects, predicates, objects, and information about the vocab-
ulary and links to other sources. Table 1 surveys such basic statistics for our
datasets. These and other statistics (such as predicate and type frequency, his-
tograms, full pattern indexes obtained by counting all combinations of values in
triple patterns, full join indexes obtained by counting all join combinations, and
link statistics) can be exploited by engines in the optimization process.

Duan et al. [8] introduced the notion of structuredness, which indicates whether
the instances in a dataset have only a few or all attributes of their types set. They
show that artificial datasets are typically highly structured and “real” datasets
are less structured. As shown in the last column of Table 1, the structuredness
(range [0, 1]) varies for our datasets, e.g. DBpedia has a low structuredness value
whereas Jamendo and KEGG are highly structured.

3.2 Benchmark Queries

There are two reasonable options for the design of benchmark queries [10]:
language-specific vs. use case driven design. The query sets we propose cover
both dimensions. We choose SPARQL as a query language: It is known to be
relationally complete, allowing us to encode a broad range of queries with vary-
ing complexity, from simple conjunctive queries to complex requests involving
e.g. negation [4, 20, 22]. We restrict ourselves on general characteristics, pointing
to the FedBench project page for a complete listing and description.

Life Science (LS) and Cross Domain Queries (CD). These two query
sets implement realistic, real-life use cases on top of the cross-domain and life
science data collection, respectively. Their focus is on federation-specific aspects,
in particular (1) number of data sources involved, (2) join complexity, (3) types
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Example, Life Science Query 4: For all drugs
in DBpedia, find all drugs they interact with,
along with an explanation of the interaction.

Example, Cross Domain Query 5: Find the
director and the genre of movies directed by
Italians.

SELECT ?Drug ?IntDrug ?IntEffect WHERE {
?Drug rdf:type dbpedia-owl:Drug .
?y owl:sameAs ?Drug .
?Int drugbank:interactionDrug1 ?y .
?Int drugbank:interactionDrug2 ?IntDrug .
?Int drugbank:text ?IntEffect . }

SELECT ?film ?director ?genre WHERE {
?film dbpedia-owl:director ?director.
?director dbpedia-owl:nationality dbpedia:Italy .
?x owl:sameAs ?film .
?x linkedMDB:genre ?genre . }

This query includes a star-shaped sub pattern of
drugs which is connected via owl:sameAs link to
DBpedia drug entities.

A chain-like query for finding film entities (in
LinkedMDB and in DBpedia) linked via owl:sameAs
and restricted on genre and director.

Example, Linked Data Query 4: Find authors of papers at the ESWC 2010 conference who
were also involved in the conference organization.

SELECT * WHERE {
?role swc:isRoleAt <http://data.semanticweb.org/conference/eswc/2010> .
?role swc:heldBy ?p .
?paper swrc:author> ?p .
?paper swc:isPartOf ?proceedings .
?proceedings swc:relatedToEvent <http://data.semanticweb.org/conference/eswc/2010> }

Fig. 1. Selected Benchmark Queries

of links used to join sources, and (4) varying query (and intermediate) result
size. Figure 1 exemplarily discusses three queries taken from these query sets.

SP2Bench Queries (SP). Next, we reuse the queries from the SP2Bench
SPARQL performance benchmark, which were designed to test a variety of
SPARQL constructs and operator constellations, but also cover characteristics
like data access patterns, result size, and different join selectivities. Some of the
SP2Bench queries have high complexity, implementing advanced language con-
structs such as negation and double negation. They are intended to be run on
top of the distributed SP2Bench dataset described in Section 3.1. A thorough
discussion of the queries and their properties can be found in [21].

Table 2. Query Characteristics. Operators: And (“.”), Union, Filter, Optional; Mod-
ifiers: Distinct, Limit, Of fset, OrderBy; Structure: Star, Chain, Hybrid

Life Science (LS) SP2Bench (SP) Linked Data (LD)
Op. Mod. Struct. #Res. #Src Op. Mod. Struct. #Res. #Src Op. Mod. Struct. #Res.

1 U - - 1159 2 1 A - S 1 11 1 A - C 309
2 AU - - 333 4 2 AO Or S >500k 12 2 A - C 185
3 A - H 9054 2 3a AF - S >300k 16 3 A - C 162
4 A - H 3 2 3b AF - S 2209 16 4 A - C 50
5 A - H 393 3 3c AF - S 0 16 5 A - S 10
6 A - H 28 3 4 AF D C >40M 14 6 A - H 11
7 AFO - H 144 3 5a AF D C >300k 14 7 A - S 1024

Cross Domain (CD) 5b AF D C >300k 14 8 A - H 22
1 AU - S 90 2 6 AFO - H >700k 16 9 A - C 1
2 A - S 1 2 7 AFO D H >2k 14 10 A - C 3
3 A - H 2 5 8 AFU D H 493 16 11 A - S 239
4 A - C 1 5 9 AU D - 4 16
5 A - C 2 5 10 - - - 656 12
6 A - C 11 4 11 - LOfOr - 10 8
7 A - C 1 5
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Linked Data Queries (LD). Today’s Linked Data engines typically focus on
basic graph patterns (Conjunctive Queries). Therefore, all LD queries are basic
graph pattern queries, designed to deliver results when processing Linked Data in
an exploration-based way (cf. the bottom-up strategy described in Section 4.1).

Queries LD1–LD4 use the SW Dog Food dataset to extract information about
conference and associated people. LD1–LD3 all contain a single URI to be used
as a starting-point for exploration-based query processing, whereas LD4 has two
URIs that could be used to speed up processing by starting the exploration from
multiple points in the Linked Data graph (cf. Figure 1). The other queries operate
on DBpedia, LinkedMDB, NewYork Times, and the Life Science collection. In
summary, the Linked Data queries vary in a broad range of characteristics, such
as number of sources involved, number of query results, and query structure.

Query Characteristics. Table 2 surveys the query properties, showing that
they vastly vary in their characteristics. We indicate the SPARQL operators
used inside the query (Op.), the solution modifiers that were used additionally
(Sol.), categorize the query structure (Struct.), roughly distinguishing different
join combinations – like subject-subject or subject-object joins – leading to dif-
ferent query structures commonly referred to as star-shaped, chain, or hybrid
queries, and indicate the number of results (#Res.) on the associated datasets
(we provide an estimated lower bound when the precise number is unknown).
In addition, we denote the number of datasets that potentially contribute to the
result (#Src) , i.e. those that match at least one triple pattern in the query.
Note that the number of data sets used for evaluation depends on the evalua-
tion strategy (e.g., an engine may substitute variable bindings at runtime and,
in turn, some endpoints would no longer yield results for it), or intermediate
results delivered by endpoints may be irrelevant for the final outcome. We ob-
serve that the (LS) queries typically address 2–3 sources, the (CD) queries up to
5 sources, while the (SP) queries have intermediate results in up to 16 sources
(where, however, typically only few sources contribute to the result).

3.3 Benchmark Evaluation Framework

To help users executing FedBench in a standardized way and support parametriza-
tion along the dimensions from Section 2, we have developed a Java benchmark
driver, which is available in Open Source. It provides an integrated execution
engine for the different scenarios and is highly configurable. Using the Sesame3

API as a mediator, it offers support for querying local repositories, SPARQL end-
points, and Linked Data in a federated setting. Systems that are not built upon
Sesame can easily be integrated by implementing the generic Sesame interfaces.

The driver comes with predefined configurations for the benchmark scenar-
ios that will be discussed in our experimental results. Custom scenarios can be
created intuitively by writing config files that define properties for data con-
figuration and other benchmark settings (query sets, number of runs, timeout,
output mediator, etc). In particular, one can specify the types of repositories
3 http://www.openrdf.org/
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(e.g., native vs. SPARQL endpoints), automatically load datasets into reposito-
ries (while measuring loading time), and execute arbitrary queries while simulat-
ing real-world conditions like execution via HTTP with a customizable network
delay. Combining this flexibility with the predefined data and query sets thus
allows the user to customize the benchmark along the dimensions relevant for
the setting under consideration. Designed with the goal to position the bench-
mark as an ongoing community effort, the underlying evaluation framework is
Open Source and has been designed with extensibility in mind at different lev-
els. In particular, it is easy to specify complex evaluation settings by means of
simple configuration files (i.e., without code modifications), plug in new systems,
implement new metrics, evaluate and visualize results, etc.

To standardize the output format, the driver ships two default mediators for
writing results in CSV and RDF; for the latter we have implemented an Infor-
mation Workbench [12] module to visualize benchmark results automatically.

4 Evaluation

The central goal of our experimental evaluation is to demonstrate the usefulness
of our benchmark suite. Thus, in order to show that our framework is a useful
tool to assess strengths and weaknesses in a variety of semantic data use cases,
we investigate different scenarios that vary in the dimensions sketched in Sec-
tion 2, in particular in data distribution, access interfaces, and query complexity.
For space limitations, aspects (Q2) Result Completeness and (Q3) Ranking are
not covered; further, there are currently no systems that improve their behavior
when an increasing amount of statistics are provided, so (D4) Data Statistics
could only be assessed by comparing systems that make use of different statis-
tics. All experiments described in the following are supported by our benchmark
driver out-of-the-box and were realized by setting up simple benchmark driver
config files specifying data and query sets, setup information, etc. We refer the
interested reader to [23] for additional results on other systems, such as DARQ
and FedX. We start with a description of the scenarios, then discuss the bench-
mark environment, and conclude with a discussion of the evaluation results.

4.1 Description of Scenarios

(A) RDF Databases vs. SPARQL Endpoints. This first set of scenarios
was chosen to demonstrate the capabilities of FedBench to compare federation
approaches for data stored in local RDF databases or accessible via SPARQL
endpoints. In particular, they were designed to test how dimensions (D1) Physical
Distribution of data and (D2) Data Access Interfaces affect query evaluation
while the remaining dimensions are fixed across the scenarios, namely

(A1) centralized processing, where all data is held in a local, central store, vs.
(A2) local federation, where we use a federation of local repository endpoints,

all of which are linked to each other in a federation layer, vs.
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(A3) a federation of SPARQL endpoints, also linked to each other in a com-
mon local federation layer, pursuing the goal to test the overhead that is
imposed by the SPARQL requests exchanged over the associated HTTP
layer.

For all scenarios, we carried out experiments with the Sesame 2.3.2 engine using
AliBaba version 2.0 beta 3, a federation layer for the Sesame framework which
links integrated federation members together. In addition, we carried out ex-
periments with the SPLENDID federation system from [9]. In contrast to the
AliBaba federation, the latter uses statistical data about predicates and types
to select appropriate data sources for answering triple patterns, which offers a
wide range of optimization opportunities. Patterns that need to be sent to the
same source are grouped and the join order between them is optimized with a
dynamic programming approach, using e.g. the number of distinct subjects and
objects per predicate to estimate the cardinality of intermediate results. The
evaluation strategy relies on hash joins to allow for parallel execution and to re-
duce the number of HTTP requests, instead of sending individual result bindings
to endpoints in a nested-loop join.

(B) Linked Data. Complementing the previous scenarios, we also evaluated
a Linked Data scenario, where the data is distributed among a large number of
sources that can only be retrieved using URI lookup and queries are evaluated
on the combined graph formed by the union of these sources. Hence, in this
setting the focus is on the knowledge about (D3) Data Source Existence. When
all relevant sources are known, all of them are retrieved using their URIs before
executing the query on the retrieved data (top-down) [14]. Another scheme that
does not require a priori knowledge about data sources is an exploration-based
approach [15]. Here, the query is assumed to contain at least one constant that
is a URI. This URI is then used for retrieving the first source, and new sources
are iteratively discovered in a bottom-up fashion starting with links found in
that source (bottom-up). The (mixed) approach in [16] combines bottom-up and
top-down to discover new sources at runtime as well as leverage known sources.

All three approaches in scenario (B) were evaluated based on the Linked
Data query set (LD) using the prototype system from [16], which implements a
stream-based query processing engine based on symmetric hash join operators.
Note that all three approaches yield complete results (by design of the queries).

4.2 Setup and Evaluation Metrics

All experiments were carried out on an Integrated Lights-Out 2 (ILO2) HP server
ProLiant DL360 G6 with 2000MHz 4Core CPU and 128KB L1 Cache, 1024KB
L2 Cache, 4096KB L3 Cache, 32GB 1333MHz RAM, and a 160GB SCSI hard
drive. They were run on top of a 64bit Windows 2008 Server operating system
and executed with a 64bit Java VM 1.6.0 22 (all tested systems were Java-based).
In the centralized setting (A1) we reserved a maximum of 28GB RAM to the
VM, while in the distributed settings we assigned 20GB to the server process
and 1GB to the client processes (i.e., the individual endpoints). Note that we run



596 M. Schmidt et al.

 0.01

 0.1

 1

 10

 100

 1000

CD1 CD2 CD3 CD4 CD5 CD6 CD7

E
va

lu
at

io
n 

T
im

e 
(s

)

E
va

lu
at

io
n 

E
rr

or

E
va

lu
at

io
n 

E
rr

or

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

Centralized Store (Sesame)
Local Federation (AliBaba)

Endpoint Federation (AliBaba)
Endpoint Federation (SPLENDID)

 0.01

 0.1

 1

 10

 100

 1000

LS1 LS2 LS3 LS4 LS5 LS6 LS7

E
va

lu
at

io
n 

T
im

e 
(s

)

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

Centralized Store (Sesame)
Local Federation (AliBaba)

Endpoint Federation (AliBaba)
Endpoint Federation (SPLENDID)

CD1 CD2 CD3 CD4 CD5 CD6 CD7 LS1 LS2 LS3 LS4 LS5 LS6 LS7
Endpoint Federation (AliBaba) 27 22 93k (372k) (117k) 6k 2k 13 61 (410) 21k 17k (130) (876)
Endpoint Federation (SPLENDID) 22 9 20 (9) 15 2465 492 2 49 9 10 4778 322 4889

Fig. 2. Scenario (A): Evaluation Time (top) and Number of Requests to Endpoints
(bottom) for the Cross Domain and Life Science Queries

all tests against local SPARQL endpoints, one for each federation member, to
avoid unpredictable effects like network delay and high load of remote sources.

All query mixes in each setup have been run three times with a timeout of ten
minutes per query. We report on the average total time over all runs. Queries
that failed (e.g. with a system-internal exception) or delivered an unsound or
incomplete result are indicated by “Evaluation Error”. To exclude the influence
of cold start effects, for each setup we ran a “ramp-up” query mix prior to query
evaluation. We executed each query set separately and in order, counting the
number of results (but not materializing them on disk). In addition to the eval-
uation time, we counted the number of requests sent to the individual endpoints
(which is supported by our benchmark driver out-of-the-box).

For the Linked Data scenario, a CumulusRDF4 Linked Data server was used
to deploy the dataset on the local network. Both the server process and the
Linked Data server were started with a maximum of 10GB RAM reserved. To
simulate internet conditions, an artificial delay of 750ms was introduced, which
resembles typical response times of current Linked Data servers.

4.3 Experimental Results

Figure 2 summarizes our results for the cross domain (CD) and life science (LS)
queries in scenarios (A1)–(A3). The two plots visualize evaluation time, while
the table at the bottom shows the number of requests sent by the systems to
the federation members (numbers in parentheses are lower bounds for queries
that failed due to timeout). Comparing Sesame and AliBaba first, we observe
that the centralized approach in almost all cases outperforms the local federation
approach, for 5 out of 14 queries even by an order of one magnitude or more (the
time for the centralized store for queries CD2 and LS4 was about 1ms, which
is not visible in the diagram). We observe an additional performance overhead
for the AliBaba SPARQL Endpoint federation approach, which delivered results

4 http://code.google.com/p/cumulusrdf/
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only for 8 out of the 14 queries. Upon closer investigation, we could identify
several reasons for the poor performance of the AliBaba federation approaches:

• Due to lack of statistics, effective join order optimization is often impossible,
resulting in a high number of triples being exchange in the federation.

• Also caused by the lack of statistics, the AliBaba federation layer iteratively
sends triple patterns to all federation members, to obtain candidate bind-
ings for free variables. These bindings are then instantiated in the remaining
part of the query, subsequently sending instantiated triple patterns to the
federation members in a nested-loop fashion. This often results in a very
high number of requests to the federation members (cf. the table at the bot-
tom), which cause the high evaluation time. Given that AliBaba’s strategy is
identical in the local and SPARQL Endpoint federation scenario, the results
indicate an enormous overhead imposed by the HTTP layer in the SPARQL
Endpoint federation, typically in the order of one magnitude or more.

• Sesame’s ability to deal with parallelization is limited. In the SPARQL End-
point scenario, where our driver simulates endpoints by servlets that process
incoming HTTP requests, we experimented with different degrees of paral-
lelization. When instantiating more than 5–10 worker threads for answering
the queries (each having its own repository connection), we could observe
a performance drop down, manifesting in high waiting times for the worker
threads, probably caused by Sesame’s internal locking concept.

For the SPLENDID federation, we can observe that the number of HTTP re-
quests is significantly lower: in contrast to AliBaba, which evaluates the query
starting with a single triple pattern and iteratively substitutes results in sub-
sequent patterns, SPLENDID also generates execution plans which send the
patterns independently to relevant endpoints and join them together locally, at
the server. Therefore, SPLENDID still returns results where AliBaba’s naive
nested-loop join strategy times out. For queries CD3, CD5, LS4 and LS6 it even
beats the local federation.

Figure 3 summarizes our results in the SP2Bench scenario. We observe that
even the centralized Sesame store has severe problems answering the more com-
plex queries, which is in line with previous investigations from [21].5 Except
for the outlier query SP1, the trends are quite similar to those observed in the
(LS) and (CD) scenario, with the centralized scenario being superior to the local
federation, which is again superior to the SPARQL Endpoint federation. Query
SP1 is a simple query that asks for a specific journal in the data set. It can be
answered efficiently on top of the local federation, because the federation is split
up by type and the journals are distributed across only two federation mem-
bers, so the system benefits from the parallelization of requests. In summary,
the SP2Bench experiments show that, for more complex queries and federation
among a larger number of federation members (as indicated in Table 2), current
federation approaches are still far from being applicable in practice.
5 In the experiments from [21] Sesame was provided with all possible index combina-

tions, whereas in these experiments we use only the standard indices. This explains
why in our setting Sesame behaves slightly worse than in the experiments from [21].
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Fig. 3. Scenario (A): Results of SP2Bench Queries
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Figure 4 visualizes our results for the Linked Data scenario (B). Regarding
overall query time, the bottom-up and mixed approaches behave similarly: both
perform run-time discovery and the mixed strategy cannot use its partial knowl-
edge to restrict sources, but only to load relevant sources earlier. This leads to
earlier result reporting, but is not reflected in the overall query time. In some
cases the mixed approach is even slightly worse than bottom-up, due to the over-
head imposed by using local source indices. The top-down approach, though, is
able to restrict the number of sources to be retrieved, leading to better query
times in many cases. For example, for query LD8 the query time for bottom up
evaluation is 19.1s, while top-down requires 4.2s, an improvement of 75%, made
possible by the lower number of sources retrieved in the top-down scenario.

Overall, the top-down approach uses its centralized-complete knowledge to
identify relevant sources and exclude non-relevant sources. In a dynamic scenario,
though, such as Linked Data, it may be infeasible to keep local indexes up-to-
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date, so exploration-based approaches like bottom-up or the mixed approach,
which do not rely on complete knowledge, may be more suitable.

5 Conclusion

As witnessed by the evaluation, our benchmark is flexible enough to cover a
wide range of semantic data application processing strategies and use cases,
ranging from centralized processing over federation to pure Linked Data pro-
cessing. Clearly, our experimental analysis is not (and does not intend to be)
complete with respect to covering all existing systems and solutions – yet we
have provided a flexible benchmark suite that can be used and extended by
others to evaluate alternative approaches, systems, and scenarios.

Extensions we are planning to address in future work particularly include
queries targeted at the new SPARQL features that will be published in the com-
ing SPARQL 1.1 release such as aggregation, nested subqueries, and built-in
support for federation. Further, given that the current data sets and queries
focus on instance data and query answering over ground RDF graphs, exten-
sions for testing reasoning capabilities (e.g., over RDFS and OWL data) in a
distributed setting are left as future work. With our flexible framework, though,
it is straightforward to incorporate such scenarios with little effort, and we invite
the community to contribute to FedBench with own data and query sets.

Finally, our evaluation has revealed severe deficiencies of today’s federation
approaches, which underline the practicability of FedBench. As one of our major
findings, data statistics – which are explicitly included in our benchmark suite
– play a central role in efficient federated data processing: as indicated by our
results, they are crucial in optimization to minimize the size of results shipped
across federation members and requests exchanged within the federation.

Acknowledgments. Research reported in this paper was partially supported
by the German BMBF in the project CollabCloud. http://collabcloud.de/
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Abstract. Motivated by the ongoing success of Linked Data and the
growing amount of semantic data sources available on the Web, new chal-
lenges to query processing are emerging. Especially in distributed settings
that require joining data provided by multiple sources, sophisticated op-
timization techniques are necessary for efficient query processing. We
propose novel join processing and grouping techniques to minimize the
number of remote requests, and develop an effective solution for source
selection in the absence of preprocessed metadata. We present FedX, a
practical framework that enables efficient SPARQL query processing on
heterogeneous, virtually integrated Linked Data sources. In experiments,
we demonstrate the practicability and efficiency of our framework on a
set of real-world queries and data sources from the Linked Open Data
cloud. With FedX we achieve a significant improvement in query perfor-
mance over state-of-the-art federated query engines.

1 Introduction

In recent years, the Web more and more evolved from a Web of Documents to a
Web of Data. This development started a few years ago, when the Linked Data
principles[3] were formulated with the vision to create a globally connected data
space. The goal to integrate semantically similar data by establishing links be-
tween related resources is especially pursued in the Linking Open Data initiative,
a project that aims at connecting distributed RDF data on the Web. Currently,
the Linked Open Data cloud comprises more than 200 datasets that are inter-
linked by RDF links, spanning various domains ranging from Life Sciences over
Media to Cross Domain data.

Following the idea of Linked Data, there is an enormous potential for inte-
grated querying over multiple distributed data sources. In order to join infor-
mation provided by these different sources, efficient query processing strategies
are required, the major challenge lying in the natural distribution of the data.
A commonly used approach for query processing in this context is to integrate
relevant data sets into a local, centralized warehouse. However, accounting for
the decentralized structure of the Semantic Web, recently one can observe a
paradigm shift towards federated approaches over the distributed data sources
with the ultimate goal of virtual integration[8, 13, 14, 16]. From the user per-
spective this means that data of multiple heterogeneous sources can be queried
transparently as if residing in the same database.

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 601–616, 2011.
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While there are efficient solutions to query processing in the context of RDF
for local, centralized repositories [5, 15, 23], research contributions and frame-
works for federated query processing are still in the early stages. Available sys-
tems offer poor performance, do not support the full SPARQL standard, and/or
require local preprocessed metadata and statistics. The problem we deal with
in this work is to find optimization techniques that allow for efficient SPARQL
query processing on federated Linked Data. Our goal is to provide optimizations
that do not require any preprocessing – thus allowing for on-demand federation
setup – and that are realizable using SPARQL 1.0 language features. Given that
in a distributed setting communication costs induced by network latency and
transfer of data are a considerable factor, we claim that reducing the number of
(remote) requests that are necessary to answer a query must be minimized. Thus,
join processing strategies as well as other sophisticated optimization approaches
are needed to find an appropriate solution.

In summary, our contributions are:

• We propose novel optimization techniques for federated RDF query processing
(Section 3), including new join processing strategies for query processing
targeted at minimizing the number of requests sent to federation members,
mechanisms to group triple patterns that can be exclusively evaluated at
single endpoints, and an effective approach for source selection without the
need of preprocessed metadata.

• We present FedX (Section 4), a practical framework allowing for virtual inte-
gration of heterogeneous Linked Open Data sources into a federation. Our
novel sophisticated optimization techniques combined with effective vari-
ants of existing approaches constitute the FedX query processing engine and
allow for efficient SPARQL query processing. Linked Data sources can be
integrated into the federation on-demand without preprocessing.

• We evaluate our system (Section 5) using experiments with a set of real-world
queries and data sources. We demonstrate the practicability and efficiency
of our framework on the basis of real data from the Linked Open Data cloud
and compare our performance to other competitive systems.

2 Related Work
Driven by the success of Linked Data, recently various solutions for federated
query processing of heterogeneous RDF data sources have been discussed in the
literature. A recent overview and analysis of federated data management and
query optimization techniques is presented in [6]. [9, 10] discuss the consumption
of Linked Data from a database perspective. Federated query processing from a
relational point of view has been studied in database research for a long time
[11, 21]. Although the architectures and optimization approaches required in the
context of RDF query processing have the same foundation, several problems
arise due to differences in the data models.

Generally, in the context of Linked Data query processing, we can distin-
guish (a) bottom-up strategies that discover sources during query processing by
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following links between sources, and (b) top-down strategies that rely on upfront
knowledge about relevant sources [7, 12]. Several bottom-up techniques including
active discovery of new sources based on Linked Data HTTP lookups have been
proposed in the literature [8, 13]. New relevant sources are discovered at run-
time by following URIs of intermediate results using an iterator-based pipelining
approach [8] or using the novel Symmetric Index Hash Join operator [13].

In our work, we focus on top-down strategies, where the relevant sources are
known, hence guaranteeing sound and complete results over a virtually inte-
grated data graph. In the research community various systems implementing
these strategies have been proposed. DARQ [16] is a query engine allowing for
SPARQL query processing on a number of (distributed) SPARQL endpoints.
DARQ uses so-called service descriptions to summarize capabilities and statis-
tics of data providers. This information is used in the optimization steps for
source selection, i.e. sources for a triple pattern are determined based on predi-
cate index lookups. Consequently, DARQ restricts query processing to queries in
which all predicates are bound. A similar approach is employed in SemWIQ [14].
SemWIQ uses a concept-based approach and performs source selection based on
type information of RDF entities available in a local dynamic catalog. SemWIQ
requires that all subjects in a SPARQL query are variables. In addition, the type
of each subject must be explicitly or implicitly known. In contrast to previous
systems, our solution does not need any local preprocessed metadata since a
different technique is employed for source selection. This makes it suitable for
on-demand federation setup and practical query processing. Moreover, there is
no limitation with respect to the SPARQL query language.

The W3C’s SPARQL Working Group started to work on language extensions
targeting the requirements and challenges arising in the context of distributed
SPARQL processing. In a recent working draft1, they propose the SERVICE oper-
ator, which allows for providing source information directly within the SPARQL
query. In addition, BINDING clauses are introduced, which make it possible to
efficiently communicate constraints to SPARQL endpoints. [2] provides a for-
mal semantics for these features and presents a system called SPARQL DQP,
which is capable of interpreting the new SERVICE keyword. SPARQL DQP does
not need any preprocessed metadata, however, requires the endpoint to inter-
pret SPARQL 1.1, which is typically not implemented in existing endpoints, as
SPARQL 1.1 is currently available as a W3C working draft only.

In contrast to SPARQL DQP, FedX does not require any SPARQL 1.1 exten-
sions and achieves automatic source selection over a set of defined sources (which
can be dynamically extended) without additional input from the user. Thus, query
formulation is more intuitive for the user, while query processing in most cases is
as efficient as with manual specification of service providers. In fact, this is not a
restriction: when implementing the SPARQL 1.1 federation extensions in a future
release, FedX can exploit the SERVICE keyword for improved source selection and
use the BINDING clauses to further optimize queries.

1 http://www.w3.org/TR/sparql11-federated-query/
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Statistics can influence performance tremendously in a distributed setting.
The VoID vocabulary (Vocabulary of Interlinked Datasets) [1] allows to specify
various statistics and features of datasets in a uniform way at the endpoint.
In addition, the SPARQL Working Group proposes the SPARQL 1.1 service
descriptions2, which allow discovery of basic information about the SPARQL
service. Although these (remote) statistics are a good foundation for various
optimizations, the expressiveness is limited to basic statistics, such as the number
of triples or distinct subjects. Currently, we focus on optimizations without these
statistics, yet we are planning to incorporate them in a future release.

3 Optimization Techniques for Federated Linked Data

In a federated setting with distributed data sources it is important to optimize
the query in such a way that the number of intermediate requests is minimized,
while still guaranteeing fast execution of the individual requests. While we sup-
port full SPARQL 1.0, our optimization techniques focus on conjunctive queries,
namely basic graph patterns (BGPs). A BGP is a set of triple patterns, a triple
pattern being a triple (subject, predicate, object) with variables in zero
or more positions.

Given that the SPARQL semantics is compositional, our strategy is to apply
the optimizations to all conjunctive subqueries independently (including, e.g.,
BGPs nested inside OPTIONAL clauses) to compute the intermediate result
sets. Since we aim at a practical federation framework capable of on-demand
configuration, we additionally focus on optimizations that do not require pre-
processed metadata and that are realizable using SPARQL 1.0.

In practice, there are two basic options to evaluate a SPARQL query in a
federated setting: either (1) all triple patterns are individually and completely
evaluated against every endpoint in the federation and the query result is con-
structed locally at the server or (2) an engine evaluates the query iteratively
pattern by pattern, i.e., starting with a single triple pattern and substituting
mappings from the pattern in the subsequent evaluation step, thus evaluating
the query in a nested loop join fashion (NLJ). The problem with (1) is that, in
particular when evaluating queries containing non-selective triple patterns (such
as e.g. (?a,sameAs,?b)), a large amount of potentially irrelevant data needs to
be shipped from the endpoints to the server. Therefore, we opt for the second
approach. The problem with (2), though, is that the NLJ approach causes many
remote requests, in principle one for each join step. We show that, with careful
optimization, we can minimize the number of join steps (e.g., by grouping triple
patterns) and minimize the number of requests sent in the NLJ approach.

3.1 Federated Query Processing Model

In our work, we focus on top-down strategies, where a set of user-configured
sources is known at query time, hence guaranteeing sound and complete results
over a virtually integrated data graph. Figure 1 depicts our federated query

2 http://www.w3.org/TR/sparql11-service-description/
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processing model, which closely follows the common workflow for general dis-
tributed query processing [11]. First, the SPARQL query is parsed and trans-
formed into an internal representation (cf. Figure 2). Next, the relevant sources
for each triple pattern are determined from the configured federation members
using SPARQL ASK requests in conjunction with a local cache (Section 3.2).
The remaining optimization steps include join order optimization (Section 3.3)
as well as forming exclusive groups (Section 3.4). The outcome of the optimiza-
tion step is the actual query execution plan. During query execution, subqueries
are generated and evaluated at the relevant endpoints. The retrieved partial re-
sults are aggregated locally and used as input for the remaining operators. For
iterative join processing the bound joins technique (Section 3.5) is applied to
reduce the number of remote requests. Once all operators are executed, the final
query result is returned to the client.

SPARQL Request Query Result

Parsing Source Selection Query Execution
(Bound Joins)

Global Optimizations
(Groupings + Join Order)

SPARQL
Endpoint 1 . . .

Subquery Generation:
Evaluation at

Relevant Endpoints

Local

Aggregation of

Partial ResultsCache

Per Triple Pattern

SPARQL ASK queries

SPARQL
Endpoint 2

SPARQL
Endpoint N

Fig. 1. Federated Query Processing Model

As a running example, Figure 2 depicts Life Science query 6 from our bench-
mark collections (Section 5) and illustrates the corresponding unoptimized query
plan. The query computes all drugs in Drugbank3 belonging to the category “Mi-
cronutrient” and joins computed information with corresponding drug names
from the KEGG dataset4. A standard SPARQL query processing engine imple-
menting the NLJ technique evaluates the first triple pattern in a single request,
while the consecutive joins are performed in a nested loop fashion meaning that
intermediate mappings of the left join argument are fed into the right join pattern
one by one. Thus, the number of requests directly correlates with the number
of intermediate results. In a federation, it must additionally be ensured that the
endpoints appear virtually integrated in a combined RDF graph. This can in
practice be achieved by sending each triple pattern to all federation members,
using the union of partial results as input to the next operator.

3.2 Source Selection

Triple patterns of a SPARQL query need to be evaluated only at those data
sources that can contribute results. In order to identify these relevant sources, we
3 http://www4.wiwiss.fu-berlin.de/drugbank/
4 http://kegg.bio2rdf.org/sparql
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SELECT ?drug ?title WHERE {

?drug drugbank:drugCategory drugbank-category:micronutrient .

?drug drugbank:casRegistryNumber ?id .

?keggDrug rdf:type kegg:Drug .

?keggDrug bio2rdf:xRef ?id .

?keggDrug purl:title ?title .

}

π ?drug,?title

��
��

��
��

(?drug, d:drugCat, d:micronutr) (?drug, d:cas, ?id)

(?keggDrug, rdf:type, kegg:Drug)

(?keggDrug, bio2rdf:xRef, ?id)

(?keggDrug, dc:title, ?title)

Fig. 2. Life Science Query 6 and the Corresponding Unoptimized Query Plan

use an effective technique, which does not require preprocessed metadata: before
optimizing the query, we send SPARQL ASK queries for each triple pattern to the
federation members and, based on the results, annotate each pattern in the query
with its relevant source(s). Although this technique possibly overestimates the
set of relevant data sources (e.g., for (?s, rdf:type, ?o) any data source will
likely match during source selection, however, during join evaluation with actual
mappings substituted for ?s and ?o there might not be results), in practical
queries many triple patterns are specific to a single data source. Note also that
FedX uses a cache to remember binary provenance information (i.e., whether
source S is relevant/irrelevant for a triple pattern) in order to minimize the
number of remote ASK queries.

Source selection has been discussed in previous works, e.g., [7, 14, 16]. How-
ever, existing approaches either require extensive local metadata or are too
restrictive with respect to the SPARQL query language. In DARQ [16], for
instance, relevant sources are determined using predicate lookups in so-called
preprocessed service descriptions, hence requiring all predicates to be bound
in a SPARQL query. The SPARQL 1.1 federation extension requires to spec-
ify sources in the query using the SERVICE keyword. In our approach we do not
oblige the user to specify sources, while still offering efficient query computation.

3.3 Join Ordering

The join order determines the number of intermediate results and is thus a
highly influential factor for query performance. For the federated setup, we pro-
pose a rule-based join optimizer, which orders a list of join arguments (i.e., triple
patterns or groups of triple patterns) according to a heuristics-based cost estima-
tion. Our algorithm uses a variation of the variable counting technique proposed
in [22] and is depicted in Algorithm 1. Following an iterative approach it deter-
mines the argument with lowest cost from the remaining items (line 5-10) and
appends it to the result list (line 13). For cost estimation (line 6) the number of
free variables is counted considering already bound variables, i.e., the variables
that are bound through a join argument that is already ordered in the result list.
Additionally, we apply a heuristic that prefers exclusive groups (c.f. Section 3.4)
since these in many cases can be evaluated with the highest selectivity.
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Algorithm 1. Join Order Optimization

order(joinargs: list of n join arguments) {
1: left ← joinargs
2: joinvars ← ∅
3: for i = 1 to n do
4: mincost ← MAX V ALUE
5: for all j ∈ left do
6: cost ← estimateCost(j, joinvars)
7: if cost < mincost then
8: arg ← j
9: mincost ← cost
10: end if
11: end for
12: joinvars ← joinvars ∪ vars(arg))
13: result[i] ← arg
14: left ← left − arg
15: end for
16: return result }

3.4 Exclusive Groups

High cost in federated query processing results from the local execution of joins
at the server, in particular when joins are processed in a nested loop fashion.
To minimize these costs, we introduce so-called exclusive groups, which play a
central role in the FedX optimizer:

Definition 1. Let t1 . . . tn be a set of triple patterns (corresponding to a conjunctive
query), S1 . . . Sn be distinct data sources, and St the set of relevant sources for triple
pattern t. For s ∈ {S1, . . . , Sn} we define Es := {t | t ∈ {t1..tn} s.t. St = {S} } as the
exclusive groups for source S, i.e. the triple patterns whose single relevant source is S.

Exclusive groups with size ≥ 2 can be exploited for query optimization in a feder-
ated setting: instead of sending the triple patterns of such a group sequentially to
the (single) relevant source, we can send them together (as a conjunctive query),
thus executing them in a single subquery at the respective endpoint. Hence, for
such groups only a single remote request is necessary, which typically leads to a
considerably better performance because the amount of data to be transferred
through the network and the number of requests often can be minimized by
evaluating the subquery at the endpoint. This is because in many cases triple
patterns that are not relevant for the final result are filtered directly at the end-
point, and on the other hand because the communication overhead of sending
subqueries resulting from a nested loop join is avoided entirely. Correctness is
guaranteed as no other data source can contribute to the group of triple patterns
with further information.

In Figure 3, we illustrate the optimized query execution plan for our running
example. During source selection, we annotate each triple pattern with its rele-
vant sources and identify two exclusive groups, denoted as

∑
excl. For this query,

we can reduce the number of local joins from four to just two.

3.5 Bound Joins

By computing the joins in a block nested loop fashion, i.e., as a distributed
semijoin, it is possible to reduce the number of requests by a factor equivalent to
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π ?drug,?title

��
��∑

excl

@ drugbank
(?drug, d:drugCat, d:micronutr.)

@ drugbank

(?drug, d:cas, ?id)

@ drugbank

∑
excl

@ KEGG
(?keggDrug, rdf:type, kegg:Drug)

@ KEGG

(?keggDrug, bio2rdf:xRef, ?id)

@ KEGG

(?keggDrug, dc:title, ?title)

@ drugbank, KEGG, dbpedia

Fig. 3. Execution Plan of Life Science Query 6 (Including Optimizations)

the size of a block, in the following referred to as an input sequence. The overall
idea of this optimization is to group a set of mappings in a single subquery using
SPARQL UNION constructs. This grouped subquery is then sent to the relevant
data sources in a single remote request. Finally, some post-processing is applied
locally to retain correctness. We propose the bound join technique and discuss
the technical insights below.

In the following, we illustrate bound join processing for the triple pattern
(?S, name, ?O). For the example, assume that values for ?S have been com-
puted yielding the input sequence I :=[?S=Person1,?S=Person2,?S=Person3].
Further, let us assume that the database (where we evaluate the triple pattern)
contains the RDF triples t1=(Person1, name, ‘Peter’) and t2=(Person3,
name, ‘Andreas’). When evaluating the query sequentially for the bindings in
the input sequence I, we obtain the result depicted in Figure 4 a). While the
naive NLJ approach requires distinct subqueries for each input mapping substi-
tuted into the triple pattern (e.g., Person1, name, ?O), our bound join solution
allows to evaluate the complete input sequence in a single grouped subquery. The
concrete subquery for this example is depicted in Figure 4 b).

To guarantee correctness of the final result, we have to address three issues
within the subquery: (1) we need to keep track of the original mappings, (2) pos-
sibly not all triple patterns yield results, and (3) the results of the subquery may
be in arbitrary order. Our solution to this is an effective renaming technique: we
annotate variable names in the subquery with the index of the respective map-
ping from the input sequence, e.g., for the first input mapping the constructed
bound triple pattern is (Person1, name, ?O 1). This renaming technique al-
lows to implicitly identify correspondences between partial subquery results and
input mappings in a post-processing step. Figure 4 c) depicts the results of this
subquery evaluated against our sample database. In the post-processing step
the final result is reconstructed by matching the retrieved partial results to the

a) Expected Result b) SPARQL subquery c) Subquery result

?S ?O
Person1 Peter
Person3 Andreas

SELECT ?O_1 ?O_2 ?O_3 WHERE {
{ Person1 name ?O_1 } UNION
{ Person2 name ?O_2 } UNION
{ Person3 name ?O_3} }

?O 1 ?O 2 ?O 3
Peter

Andreas

Fig. 4. Sample execution for bound join processing of (?S, name, ?O)
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corresponding input mapping using the index annotation in the variable name,
and then performing the inverse renaming. In our running example, for instance,
variable ?O 1 is linked to the first position in the input sequence; therefore, the
binding from ?O 1 to ‘Peter’ is combined with the first binding for ?S in the
input sequence, yielding the first result in Figure 4 a). Bound join processing
can be trivially generalized to an input sequence of N mappings. For a detailed
formalization and a technical discussion we refer the interested reader to [19].

A similar technique is discussed in [6, 24]. The authors propose to use a
distributed semijoin sending the buffered mappings as additional conditions in
a SPARQL FILTER expression. Although the theory behind this technique is
similar to bound joins, in practice it is far less efficient than using UNIONs. We
observed that for many available SPARQL endpoints the whole extension for
a triple pattern is evaluated prior to applying the FILTER expressions. In the
working draft for SPARQL 1.1 federation extensions, the W3C proposes the
BINDINGS keyword to efficiently communicate constraints in the form of map-
pings to SPARQL endpoints, allowing to process sets of mappings corresponding
to a block in a single subquery. We achieve a distributed semijoin without re-
quiring this feature, using only SPARQL 1.0 language constructs. Clearly, our
approach can easily be extended to utilize SPARQL 1.1 BINDINGS in the future.

4 FedX - Implementation

Having introduced various optimizations for distributed federated query process-
ing on Linked Data, in this section we present FedX5, a solution implementing
the previously discussed techniques. FedX represents a practical solution for ef-
ficient federated query processing on heterogeneous, virtually integrated Linked
Data sources. The practicability of FedX has been demonstrated in various sce-
narios in the Information Workbench6 [20].

4.1 Architecture and Design

FedX has been developed to provide an efficient solution for distributed query
processing on Linked Data. It is implemented in Java and extends the Sesame
framework with a federation layer. FedX is incorporated into Sesame as SAIL
(Storage and Inference Layer), which is Sesame’s mechanism for allowing seam-
less integration of standard and customized RDF repositories. The underlying
Sesame infrastructure enables heterogeneous data sources to be used as end-
points within the federation. On top of Sesame, FedX implements the logics for
efficient query execution in the distributed setting utilizing the basic Sesame
infrastructure (i.e., query parsing, Java mappings, I/O components) and adding
the necessary functionality for data source management, endpoint communica-
tion and – most importantly – optimizations for distributed query processing.

5 http://www.fluidops.com/FedX
6 http://www.fluidops.com/information-workbench/
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In FedX, data sources can be added to a federation in the form of any im-
plementation of a Sesame repository. Standard implementations are provided
for local, native Sesame repositories as well as for remote SPARQL endpoints.
Furthermore, customized mediators can be integrated by implementing the ap-
propriate Sesame interface. With these mediators different types of federations
are possible: SPARQL federations integrating (remote) SPARQL endpoints, local
federations consisting of native, local Sesame repositories, or hybrid forms. In the
SPARQL federation, communication with the endpoints is done using HTTP-
based SPARQL requests, while in the local case the native Java interfaces are
employed. In the remainder of this paper, we focus on SPARQL federations.

4.2 Parallelization

Query processing in a federated, distributed environment is highly parallelizable
meaning that different subqueries can be executed at the data sources concur-
rently. FedX incorporates a sophisticated parallelization infrastructure, which
uses a multithreaded worker pool to execute the joins, i.e., bound joins (Sec-
tion 3.5), and union operators in a highly parallelized fashion. In addition, we
employ a pipelining approach such that intermediate results can be processed in
the next operator as soon as they are ready – yielding higher throughput.

The parallelization architecture in FedX is realized by means of a Scheduler
implementation managing a set of ParallelTasks and a pool of WorkerThreads.
A ParallelTask refers to a prepared subquery to be executed at a particular
data source. As an example, consider a task representing a single step of a nested
loop join. In the scheduler, all tasks are maintained in a FIFO queue that the
workers pull new tasks from. To reduce synchronization costs, worker threads
are paused when they are idle, and notified when there are new tasks available.
Note that only a single worker thread is notified if a new task arrives to avoid
unnecessary synchronization overhead. Moreover, worker threads only go to sleep
when there are no further tasks in the queue to avoid context switches. After
experimenting with different configurations, we defined 25 worker threads for
the scheduler as default.

4.3 Physical Join and Union Operators

For the physical JOIN operator, we tested with two variants: (1) parallel execu-
tion using a simple nested loop join and (2) our bound join technique, which we
call controlled worker join (CJ) and controlled bound worker join (CBJ), respec-
tively. Both variants generate tasks for each (block) nested loop iteration and
submit them to the scheduler (Section 4.2). The scheduler then takes care of the
controlled parallel execution of the tasks. For both, the CJ and CBJ implemen-
tation, synchronization is needed because the partial results of tasks belonging
to the same join are merged, i.e., all partial results of a particular join are added
to the same result set. In SPARQL federations, where (remote) requests cause
a certain base cost, the CBJ operator improves performance significantly (see
Section 5.2 for details) because the number of requests can be reduced tremen-
dously. This is also the default implementation used in a SPARQL federation.
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Note that in local federations with native Sesame stores the first approach, i.e.,
the CJ operator, outperforms bound joins because simple subqueries with a sin-
gle triple pattern only, can be evaluated faster. This is because the data source
can be accessed through native Java interfaces using Sesame’s getStatements
method, i.e., without prior SPARQL query construction.

Similarly, we provide two implementations for the UNION operator: a syn-
chronous union (SU) and a controlled worker union (CU). The synchronous
union executes its operands in a synchronous fashion, i.e., one union task after
the other, thus avoiding synchronization overhead. In contrast, the controlled
worker union executes the particular operands using the above described par-
allelization infrastructure (Section 4.2). The decision which implementation to
use in a particular setup depends on the tradeoff between synchronization over-
head and execution cost of an operand. In a remote setup, for instance, FedX
benefits from parallel execution of a union since network latency and HTTP
overhead typically outweigh synchronization costs. Note that union in this con-
text does not solely refer to the SPARQL UNION operator but also to subqueries,
which have to be evaluated at several relevant data sources resulting in a union
of intermediate results. Consequently, for a SPARQL federation the controlled
worker union is the implementation of choice, and for a local federation unions
are evaluated using the synchronous union implementation. Note that SPARQL
UNIONs are always executed in the parallelization architecture described above.

5 Evaluation

In this section, we evaluate FedX and analyze the performance of our optimiza-
tion techniques. With the goal of assessing the practicability of our system, we
run various benchmarks and compare the results to state-of-the-art federated
query processing engines. In our benchmark, we compare the performance of
FedX with the competitive systems DARQ and AliBaba7 since these are compa-
rable to FedX in terms of functionality and the implemented query processing
approach. Unfortunately, we were not able to obtain a prototype of the system
presented in [2] for comparison.

5.1 Benchmark Setup

As a basis for our evaluation we use FedBench8 [17], a comprehensive bench-
mark suite, which in contrast to other SPARQL benchmarks[4, 18] focuses on
analyzing the efficiency and effectiveness of federated query processing strategies
over semantic data. FedBench covers a broad range of scenarios and provides a
benchmark driver to perform the benchmark in an integrative manner.

We select the Cross Domain (CD) as well as the Life Science (LS) data collec-
tions from the FedBench benchmark. The reason for our choice lies in the nature
of the queries and data sets: both query sets implement realistic queries on top of
real-world data from the Linked Open Data cloud. The queries focus on aspects
7 http://www.openrdf.org/
8 FedBench project page: http://code.google.com/p/fbench/
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Table 1. Query characteristics of benchmark queries (a) and datasets used (b): Number
of triple patterns (#Tp.), data sources (#Src) and results (#Res); number of triples
included in datasets (#Triples) and preprocessing time for DARQ Service Description
(SD) in hh:mm:ss

a) Query Characteristics b) Datasets

Cross Domain (CD) Life Science (LS) #Triples DARQ SD
#Tp. #Src #Res #Tp. #Src #Res DBpedia 43.6M 01:05:46

1 3 2 90 1 2 2 1159 NYTimes 335k 00:00:09
2 3 2 1 2 3 4 333 LinkedMDB 6.15M 01:07:39
3 5 5 2 3 5 3 9054 Jamendo 1.05M 00:00:20
4 5 5 1 4 7 2 3 GeoNames 108M n/a
5 4 5 2 5 6 3 393 KEGG 1.09M 00:00:18
6 4 4 11 6 5 3 28 Drugbank 767k 00:00:12
7 4 5 1 7 5 3 144 ChEBI 7.33M 00:01:16

relevant for query processing over multiple sources and vary in join complexity,
query result size, the number of data sources involved, and structure (i.e., star
shaped, chain, or hybrid). Figure 2 in Section 3.1 depicts Life Science query 6
as an example; for space reasons we refer the interested reader to the FedBench
project page for the complete query set. To give a better understanding of the
queries, we summarize some characteristics in Table 1 a). In particular, we depict
the number of triple patterns, reference the number of results on the domain’s
data sets, and an estimate of the relevant data sources (possibly overestimated).

The used data sources in the two scenarios are part of the Linked Open
Data cloud. Table 1 b) summarizes the included data collections. Details to the
datasets and various advanced statistics are provided at the FedBench project
page. To ensure reproducibility and reliability of the service, we conducted our
experiments on local copies of the SPARQL endpoints using the infrastructure
provided by FedBench, i.e. for each data source a local process is started publish-
ing the respective data as individual SPARQL endpoint; we did not introduce
an additional delay to simulate network latency. All federation engines access
the data sources via the SPARQL protocol.

For the respective scenarios, we specify the relevant data sources as feder-
ation members upfront (Cross Domain: DBpedia, NYTimes, LinkedMDB, Ja-
mendo, GeoNames; Life Sciences: KEGG, Drugbank, ChEBI, DBpedia). Note
that DARQ required additional preprocessing of the service descriptions, which
are needed for their source selection approach. The duration of this preprocessing
is depicted in Table 1 b). Even with 32GB RAM provided, a service description
for GeoNames could not be generated with DARQ’s tools. Hence, we had to
omit the evaluation of DARQ for queries CD6 and CD7 (which require data
from GeoNames). Thus, the federation for the Cross Domain scenario had one
member less for DARQ.

All experiments are carried out on an HP Proliant DL360 G6 with 2GHz
4Core CPU with 128KB L1 Cache, 1024KB L2 Cache, 4096KB L3 Cache, 32GB
1333MHz RAM, and a 160 GB SCSI hard drive. A 64bit Windows 2008 Server
operating system and the 64bit Java VM 1.6.0 22 constitute the software envi-
ronment. Sesame is integrated in version 2.3.2 and AliBaba’s 2.0b3 build was
used. In all scenarios we assigned 20GB RAM to the process executing the query,
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i.e. the query processing engine that is wrapped in the FedBench architecture.
In the SPARQL federation we additionally assign 1GB RAM to each individual
SPARQL endpoint process. For all experiments we defined a timeout of 10 min-
utes and all queries are executed 5 times, following a single warm-up run. All
systems are run in their standard configurations.

5.2 Experimental Results

Figure 5 summarizes our experimental results of the Cross Domain and Life Sci-
ence scenarios in a SPARQL federation. We depict the average query runtimes
for AliBaba, DARQ, and FedX in Figure 5 a). As an overall observation, we find
that FedX improves query performance significantly for most queries. Only in
Query CD2 DARQ outperforms FedX. The reason is that FedX’ exclusive group
optimization in this query is more expensive than using simple triple patterns
because the used SPARQL endpoint is more efficient for simple triple patterns
for very small intermediate result sets (which is the case in this query as each
triple pattern yields only a single result). For many queries the total runtime is
improved by more than an order of magnitude. Moreover, timeouts and evalua-
tion errors for this set of realistic queries are removed entirely. The improvement
is best explained by the reduction in the number of requests, for which we pro-
vide a detailed analysis below. With our optimization techniques, we are able
to reduce the number of requests significantly, e.g., from 170,579 (DARQ) and
93,248 (AliBaba) to just 23 (FedX) for query CD3. Such a reduction is made pos-
sible by the combined use of our optimization approaches, in particular source
selection, exclusive groups, join reordering, and bound joins. Note that query
CD2 and LS2 are not supported in DARQ since the query contains an unbound
predicate, and that CD6 and CD7 are omitted since we were not able to generate
the service description with 32GB RAM.

To measure the influence of caching the results of ASK requests during source
selection, we performed a benchmark with activated and deactivated cache. The
results are summarized in Figure 5 b). We observe that there is a slight overhead
due to the additional communication. However, even with these ASK requests
FedX significantly outperforms the state-of-the art systems for most queries.
Our source selection technique – which in contrast to DARQ does not need
preprocessed metadata – thus is effective in the federated setting.

Figure 5 c) summarizes the total number of requests sent to the data sources
during query evaluation in the SPARQL federation. In particular, we indicate
the results for AliBaba and DARQ, as well as for FedX with a nested loop imple-
mentation of the controlled worker join (CJ) and in the bound join variant using
the controlled worker bound join (CBJ). These numbers immediately explain the
improvements in query performance of FedX. With our optimization techniques,
FedX is able to minimize the number of subqueries necessary to process the
queries. Consider as an example query CD5: FedX is able to answer this query
in just 18 requests, while DARQ needs 247,343. This is obviously immediately
reflected in query runtime, which is just 0.097s in the case of FedX and 294.890s
for DARQ. Note that the timeouts and the long runtimes of AliBaba and DARQ
are easily explained with the number of requests sent to the endpoints.
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a) Benchmark Results
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SPARQL Federation (AliBaba)
SPARQL Federation (DARQ)
SPARQL Federation (FedX)

AliBaba DARQ FedX
CD1 0.125 x 0.015
CD2 0.807 0.019 0.330
CD3 >600 >600 0.109
CD4 >600 19.641 0.100
CD5 # 294.890 0.097
CD6 17.499 x 0.281
CD7 3.623 x 0.324
LS1 1.303 0.053 0.047
LS2 0.441 x 0.016
LS3 >600 133.414 1.470
LS4 20.370 0.025 0.001
LS5 12.504 55.327 0.480
LS6 # 3.236 0.034
LS7 # >600 0.481

x not supported

# evaluation error

b) Caching in FedX c) Number of Requests d) Join Operators
No Caching Caching AliBaba DARQ FedX CJ FedX CBJ CJ CBJ

CD1 0.044 0.015 CD1 27 x 7 7 CD1 0.016 0.015
CD2 0.374 0.330 CD2 22 5 2 2 CD2 0.349 0.330
CD3 0.219 0.109 CD3 (93,248) (170,579) 63 23 CD3 0.203 0.109
CD4 0.134 0.100 CD4 (372,339) 22,331 69 38 CD4 0.134 0.100
CD5 0.131 0.097 CD5 (117,047) 247,343 35 18 CD5 0.115 0.097
CD6 0.508 0.281 CD6 6,183 x 2,457 185 CD6 1.560 0.281
CD7 0.449 0.324 CD7 1,883 x 1,508 138 CD7 1.336 0.324
LS1 0.062 0.047 LS1 13 1 1 1 LS1 0.053 0.047
LS2 0.038 0.016 LS2 61 x 38 18 LS2 0.025 0.016
LS3 2.202 1.470 LS3 (410) 101,386 14,221 2059 LS3 5.435 1.470
LS4 0.018 0.001 LS4 21,281 3 3 3 LS4 0.001 0.001
LS5 0.633 0.480 LS5 16,621 2,666 6,537 458 LS5 2.146 0.480
LS6 0.063 0.034 LS6 (130) 98 315 45 LS6 0.103 0.034
LS7 0.686 0.481 LS7 (876) (576,089) 5,027 485 LS7 1.763 0.481

Fig. 5. Experimental Results of Cross Domain (CD) and Life Science (LS) Queries
in SPARQL Federation: a) Benchmark Results of AliBaba, DARQ, and FedX. b) In-
fluence of Caching ASK Requests for Source Selection. c) Total Number of Requests
sent to Endpoints; Parentheses Indicate Timeouts after 10min or Evaluation Errors. d)
Comparison of Join Operator Implementations in the SPARQL Federation: Controlled
Worker Join (CJ), Controlled Worker Bound Join (CBJ). All Runtimes in Seconds.

In Figure 5 d) we compare the physical join operators of the controlled worker
join (CJ) and controlled worker bound join (CBJ), which use the NLJ and bound
joins (BNLJ) technique, respectively. We observe that the CBJ implementation
significantly improves performance over the simple CJ variant since in a SPARQL
federation we tremendously benefit from the reduction in the number of requests
due to bound joins.

6 Conclusion and Outlook

In this paper, we proposed novel optimization techniques for efficient SPARQL
query processing in the federated setting. As revealed by our benchmarks, bound
joins combined with our grouping and source selection approaches are effective
in terms of performance. By minimizing the number of intermediate requests, we
are able to improve query performance significantly compared to state-of-the-
art systems. We presented FedX, a practical solution that allows for querying
multiple distributed Linked Data sources as if the data resides in a virtually
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integrated RDF graph. Compatible with the SPARQL 1.0 query language, our
framework allows clients to integrate available SPARQL endpoints on-demand
into a federation without any local preprocessing. While we focused on optimiza-
tion techniques for conjunctive queries, namely basic graph patterns (BGPs),
there is additional potential in developing novel, operator-specific optimization
techniques for distributed settings (in particular for OPTIONAL queries), which
we are planning to address in future work. As our experiments confirm, the opti-
mization of BGPs alone (combined with common equivalence rewritings) already
yields significant performance gains.

Important features for federated query processing are the federation exten-
sions proposed for the upcoming SPARQL 1.1 language definition. These allow
to specify data sources directly within the query using the SERVICE operator, and
moreover to attach mappings to the query as data using the BINDINGS operator.
When implementing the SPARQL 1.1 federation extensions for our next release,
FedX can exploit these language features to further improve performance. In
fact, the SPARQL 1.1 SERVICE keyword is a trivial extension, which enhances
our source selection approach with possibilities for manual specification of new
sources and gives the query designer more control.

Statistics can influence performance tremendously in a distributed setting.
Currently, FedX does not use any local statistics since we follow the design goal
of on-demand federation setup. We aim at providing a federation framework, in
which data sources can be integrated ad-hoc, and used immediately for query
processing. In a future release, (remote) statistics (e.g., using VoID [1]) can be
incorporated for source selection and to further improve our join order algorithm.

Acknowledgments. Research reported in this paper was partially supported
by the German BMBF in the project CollabCloud. http://collabcloud.de/

References

1. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets
- on the design and usage of void. In: Linked Data on the Web Workshop (LDOW
2009), in Conjunction with WWW 2009 (2009)

2. Buil-Aranda, C., Corcho, O., Arenas, M.: Semantics and Optimization of the
SPARQL 1.1 Federation Extension. In: Antoniou, G., Grobelnik, M., Simperl, E.,
Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS,
vol. 6644, pp. 1–15. Springer, Heidelberg (2011)

3. Berners-Lee, T.: Linked data - design issues (2006),
http://www.w3.org/DesignIssues/LinkedData.html (retrieved August 25,
2011)

4. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. Int. J. Semantic Web Inf.
Syst. 5(2), 1–24 (2009)

5. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: CSSW. LNI,
vol. 113, pp. 59–68. GI (2007)

6. Görlitz, O., Staab, S.: Federated Data Management and Query Optimization for
Linked Open Data. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data
Management 1. SCI, vol. 331, pp. 109–137. Springer, Heidelberg (2011)

http://collabcloud.de/
http://www.w3.org/DesignIssues/LinkedData.html


616 A. Schwarte et al.

7. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.-U., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: WWW (2010)

8. Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL Queries over the Web of
Linked Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

9. Hartig, O., Langegger, A.: A database perspective on consuming linked data on
the web. Datenbank-Spektrum 10, 57–66 (2010)

10. Hose, K., Schenkel, R., Theobald, M., Weikum, G.: Database Foundations for Scal-
able RDF Processing. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S.,
Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS,
vol. 6848, pp. 202–249. Springer, Heidelberg (2011)

11. Kossmann, D.: The state of the art in distributed query processing. ACM Com-
puting Surveys 32(4), 422–469 (2000)

12. Ladwig, G., Tran, T.: Linked Data Query Processing Strategies. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer,
Heidelberg (2010)

13. Ladwig, G., Tran, T.: SIHJoin: Querying remote and local linked data. In: An-
toniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer,
P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 139–153. Springer,
Heidelberg (2011)
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Abstract. We present a new approach to adding closed world reasoning
to the Web Ontology Language OWL. It transcends previous work on
circumscriptive description logics which had the drawback of yielding an
undecidable logic unless severe restrictions were imposed. In particular,
it was not possible, in general, to apply local closure to roles.

In this paper, we provide a new approach, called grounded circum-
scription, which is applicable to SROIQ and other description logics
around OWL without these restrictions. We show that the resulting lan-
guage is decidable, and we derive an upper complexity bound. We also
provide a decision procedure in the form of a tableaux algorithm.

1 Introduction

The semantics of the Web Ontology Language OWL [8] (which is based on the
description logic SROIQ [9]) adheres to the Open World Assumption (OWA):
statements which are not logical consequences of a given knowledge base are not
necessarily considered false. The OWA is a reasonable assumption to make in the
World Wide Web context (and thus for Semantic Web applications). However,
situations naturally arise where it would be preferable to use the Closed World
Assumption (CWA), that is, statements which are not logical consequences of a
given knowledge base are considered false. Such situations include, for example,
when data is being retrieved from a database, or when data can be considered
complete with respect to the application at hand (see, e.g., [6,23]).

As a consequence, efforts have been made to combine OWA and CWA mo-
deling for the Semantic Web, and knowledge representation languages which
have both OWA and CWA modeling features are said to adhere to the Local
Closed World Assumption (LCWA). Most of these combinations are derived
from non-monotonic logics which have been studied in logic programming [10]
or on first-order predicate logic [19,20,24]. Furthermore, many of them are of
a hybrid nature, meaning that they achieve the LCWA by combining, e.g., de-
scription logics with (logic programming) rules. Please see [14, Section 4].

On the other hand, there are not that many approaches which provide a
seamless (non-hybrid) integration of OWA and CWA, and each of them has its
drawbacks. This is despite the fact that the modeling task, from the perspective
of the application developer, seems rather simple: Users would want to specify,

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 617–632, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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simply, that individuals in the extension of a predicate should be exactly those
which are necessarily required to be in it, i.e., extensions should be minimized.
Thus, what is needed for applications is a simple, intuitive approach to closed
world modeling which caters for the above intuition, and is also sound, complete
and computationally feasible.

Among the primary approaches to non-monotonic reasoning, there is one ap-
proach which employs the minimization idea in a very straightforward and intu-
itively simple manner, namely circumscription [19]. However, a naive transfer of
the circumscription approach to description logics, which was done in [2,3,6,7],
appears to have three primary drawbacks.

1. The approach is undedicable for expressive description logics (e.g., for the
description logic SROIQ) unless awkward restrictions are put in place. More
precisely, it is not possible to have non-empty TBoxes plus minimization of
roles if decidability is to be retained.

2. Extensions of minimized predicates can still contain elements which are not
named individuals (or pairs of such, for roles) in the knowledge base, which
is not intuitive for modeling (see also [6]).

3. Complexity of the approach is very high.

The undecidability issue (point 1) hinges, in a sense, also on point 2 above. In
this paper, we provide a modified approach to circumscription for description
logics, which we call grounded circumscription, that remedies both points 1 and
2.1 Our idea is simple yet effective: we modify the circumscription approach
from [2,3,6,7] by adding the additional requirement that extensions of minimized
predicates may only contain named individuals (or pairs of such, for roles). In a
sense, this can be understood as porting a desirable feature from (hybrid) MNKF
description logics [5,12,13,21] to the circumscription approach. In another (but
related) sense, it can also be understood as employing the idea of DL-safety [22],
respectively of DL-safe variables [17] or nominal schemas [4,15,16].

The paper is a substantial extension of the workshop paper [14] and will be
structured as follows. In Section 2, we introduce the semantics of grounded cir-
cumscription. In Section 3, we show that the resulting language is decidable.
Next, we provide a tableaux calculus in Section 4 to reason with grounded cir-
cumscription. We conclude with a discussion of further work in Section 5.

2 Local Closed World Reasoning with Grounded
Circumscription

In this section we describe LCW reasoning with grounded circumscription (GC)
and also revisit the syntax and semantics of the Description Logic ALC and ex-
tend it with GC. Some results in this paper also apply to many other description
logics besides ALC, and we will point this out in each case.

1 We are not yet addressing the complexity issue; this will be done in future work.
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2.1 The Description Logic ALC

Let NC , NR and NI be countably infinite sets of concept names, role names and
individual names, respectively. The set of ALC concepts is the smallest set that is
created using the following grammar where A ∈ NC denotes an atomic concept,
R ∈ NR is a role name and C, D are concepts.

C −→ � | ⊥ | A | ¬C | C �D | C �D | ∃R.C | ∀R.C

An ALC TBox is a finite set of axioms of the form C � D, called general
concept inclusion (GCI) axioms, where C and D are concepts. An ALC ABox is
a finite set of axioms of the form C(a) and R(a, b), which are called concept and
role assertion axioms, where C is a concept, R is a role and a, b are individual
names. An ALC knowledge base is a union of an ALC ABox and an ALC TBox

The semantics is defined in terms of interpretations I = (ΔI , .I), where ΔI is
a non-empty set called the domain of interpretation and .I is an interpretation
function which maps each individual name to an element of the domain ΔI and
interprets concepts and roles as follows.

�I = ΔI , ⊥I = ∅ , AI ⊆ ΔI , RI ⊆ ΔI ×ΔI

(¬C)I = ΔI \ CI , (C1 � C2)I = CI
1 ∩ CI

2 , (C1 � C2)I = CI
1 ∪ CI

2

(∀ r .C)I = {x ∈ ΔI | (x, y) ∈ rI implies y ∈ CI}
(∃ r .C)I = {x ∈ ΔI | there is some y with (x, y) ∈ rI and y ∈ CI}

An interpretation I satisfies (is a model of) a GCI C � D if CI ⊆ DI , a concept
assertion C(a) if aI ∈ CI , a role assertion R(a, b) if (aI , bI) ∈ RI . We say I
satisfies (is a model of) a knowledge base K if it satisfies every axiom in K. K
is satisfiable if such a model I exists.

The negation normal form of a concept C, denoted by NNF(C), is obtained
by pushing the negation symbols inward, as usual, such that negation appears
only in front of atomic concepts, e.g., NNF(¬(C �D)) = ¬C � ¬D.

Throughout the paper, we will often talk about L knowledge bases (L-KBs
for short), where L is some decidable description logic. When we do this, then
this indicates that the result does not only hold for L being ALC, but rather for
many decidable description logics around OWL. We will point out restrictions
in each case. For general background on various description logics, as well as for
established names (like ALC) for different description logics, see [1,9].

Besides widely known DL constructors, we will also make use of Boolean role
constructors (in limited form), which can be added to many description logics
without loss of decidability or even of complexity [25,28]. We also make limited
use of the concept product, written C×D with C, D concepts in L, which allows
a role to be constructed from the Cartesian product of two concepts, and which
can actually be eliminated in the presence of Boolean role constructors [16,26].
In terms of interpretations I, concept products are characterized by the equation
(C ×D)I = {(x, y) | x ∈ CI , y ∈ DI}.
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2.2 Grounded Circumscription

We now describe a very simple way for ontology engineers to model local closed
world aspects in their ontologies: simply use a description logic (DL) knowledge
base (KB) as usual, and augment it with meta-information which states that
some predicates (concept names or role names) are closed. Semantically, those
predicates are considered minimized, i.e., their extensions contain only what is
absolutely required, and furthermore only contain known (or named) individuals,
i.e., individuals which are explicitly mentioned in the KB. In the case of concept
names, the idea of restricting their extensions only to known individuals is similar
to the notion of nominal schema [4,16] (and thus, DL-safe rules [17,22]) and
also the notion of DBox [27], while the minimization idea is borrowed from
circumscription [19], one of the primary approaches to non-monotonic reasoning.

In the earlier efforts to carry over circumscription to DLs [2,3,6,7], circum-
scription is realized by the notion of circumscription pattern. A circumscription
pattern consists of three disjoint sets of predicates (i.e., concept names and role
names) which are called minimized, fixed and varying predicates, and a pref-
erence relation on interpretations.2 The preference relation allows us to pick
minimal models as the preferred models with respect to set inclusion of the
extensions of the minimized predicates.

Our formalism here is inspired by one of the approaches described by Makin-
son in [18], namely restricting the set of valuations to get more logical conse-
quences than what we can get as classical consequences. Intuitively, this approach
is a simpler version of the circumscription formalism for DLs as presented in [3,7]
in the sense that we restrict our attention only to models in which the exten-
sion of minimized predicates may only contain known individuals from the KB.
Furthermore, the predicates (concept names and role names) in KB are parti-
tioned into two disjoint sets of minimized and non-minimized predicates, i.e., no
predicate is considered fixed.3 The non-minimized predicates would be viewed
as varying in the more general circumscription formalism mentioned above.

The non-monotonic feature of the formalism is given by restricting models
of an L-KB such that the extension of closed predicates may only contain in-
dividuals (or pairs of them) which are explicitly occurring in the KB, plus a
minimization of the extensions of these predicates. We define a function Ind that
maps each L-KB to the set of individual names it contains, i.e., given an L-KB
K, Ind(K) = {b ∈ NI | b occurs in K}. Among all possible models of K that are
obtained by the aforementioned restriction to Ind(K), we then select a model
that is minimal w.r.t. concept inclusion or role inclusion, in accordance with the
following definition.

2 There is also a notion of prioritization which we will not use, mainly because we
are not convinced yet that it is a desirable modeling feature for local closed world
reasoning for the Semantic Web.

3 Fixed predicates can be simulated in the original circumscriptive DL approach if
negation is available, i.e., for fixed concept names, concept negation is required,
while for fixed role names, role negation is required. The latter can be added to
expressive DLs without jeopardizing decidability [16,28].
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Definition 1. A GC-L-KB is a pair (K, M) where K is an L-KB and M ⊆
NC∪Nr. For every concept name and role name W ∈M , we say that W is closed
with respect to K. For any two models I and J of K, we furthermore say that
I is smaller than (or preferred over) J w.r.t. M , written I ≺M J , iff all of the
following hold: (i) ΔI = ΔJ and aI = aJ for every a ∈ NI ; (ii) W I ⊆WJ for
every W ∈ M ; and (iii) there exists a W ∈ M such that W I ⊂ WJ

The following notion will be helpful.

Definition 2 (grounded model). Given a GC-L-KB (K, M), a model I of
K is called a grounded model w.r.t M if all of the following hold:
(1) CI ⊆ {bI | b ∈ Ind(K)} for each concept C ∈M ; and
(2) RI ⊆ {(aI , bI) | a, b ∈ Ind(K)} for each role R ∈M

We now define models and logical consequence of GC-L-KBs as follows.

Definition 3. Let (K, M) be a GC-L-KB. An interpretation I is a GC-model
of (K, M) if it is a grounded model of K w.r.t. M and I is minimal w.r.t. M , i.e.,
there is no model J of K with J ≺M I. A statement (GCI, concept assertion,
or role assertion) α is a logical consequence (a GC-inference) of (K, M) if every
GC-model of (K, M) satisfies α. Finally, a GC-L-KB is said to be GC-satisfiable
if it has a GC-model.

Note that every GC-model is also a grounded model. Moreover, in comparison
with the more general circumscription formalism for DLs as presented in [3,7],
every GC-model of a KB is also a circumscriptive model,4 hence every circum-
scriptive inference is also a valid GC-inference.

To give an example, consider the knowledge base K consisting of the axioms

hasAuthor(paper1, author1) hasAuthor(paper1, author2)
hasAuthor(paper2, author3) � � ∀hasAuthor.Author

Consider the following (ABox) statements: ¬hasAuthor(paper1, author3) and
(≤2 hasAuthor.Author)(paper1).5 Neither of them is a logical consequence of
K under classical DL semantics. However, if we assume that we have complete
information on authorship relevant to the application under consideration, then
it would be reasonable to close parts of the knowledge base in the sense of
the LCWA. In the original approach to circumscriptive DLs, we could close the
concept name Author, but to no avail. But if we close hasAuthor, we obtain
(≤2 hasAuthor.Author)(paper1) as a logical consequence. In addition, if we
adopt the Unique Name Assumption (UNA), ¬hasAuthor(paper1, author3) is
also a logical consequence of K. Even without UNA, we can still obtain this
as a logical consequence if we add the following axioms to K, which essentially

4 This can be seen, e.g., by a straightforward proof by contradiction.
5 The semantics is (≤n R.C)I = {x ∈ ΔI | |{y | (x, y) ∈ RI and y ∈ CI}| ≤ n};

this qualified number restriction is not part of ALC, though it makes a very good
example without depending on the UNA.
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forces the UNA:6 A1(author1); A2(author2); A3(author3); Ai � Aj � ⊥ for all
i �= j. With regard to this example, note that the closure of roles in the original
circumscriptive DL approach leads to undecidability [3]. The GC-semantics, in
contrast, is decidable even under role closure (see Section 3 below), and also
yields the desired inferences.

3 Decidability of Grounded Circumscription

As noted earlier, circumscription in many expressive DLs is undecidable [3].
Undecidability even extends to the basic DL ALC when non-empty TBoxes are
considered and roles are allowed as minimized predicates. Such a bleak outlook
would greatly discourage useful application of circumscription, despite the fact
that there is a clear need of such a formalism to model LCWA.

Our formalism aims to fill this gap by offering a simpler approach to cir-
cumscription in DLs that is decidable provided that the underlying DL is also
decidable. The decidability result is obtained due to the imposed restriction of
minimized predicates to known individuals in the KB as specified in Definition 3.
Let L be any standard DL. We consider the reasoning task of GC-KB satisfia-
bility: “given a GC-L-KB (K, M), does (K, M) have a GC-model?” and show in
the following that this is decidable.

Assume that L is any DL featuring nominals, concept disjunction, concept
products, role hierarchies and role disjunctions. We show that GC-KB satisfia-
bility in L is decidable if satisfiability in L is decidable.

Let (K, M) be a GC-L-KB. We assume that M = MA ∪Mr where MA =
{A1, . . . , An} is the set of minimized concept names and Mr = {r1, . . . , rm} is
the set of minimized role names. Now define a family of (n + m)-tuples as

G(K,M) = {(X1, . . . , Xn, Y1, . . . , Ym) | Xi ⊆ Ind(K), Yj ⊆ Ind(K)× Ind(K)}

with 1 ≤ i ≤ n, 1 ≤ j ≤ m. Note that there are(
2|Ind(K)|

)n

·
(
2|Ind(K)|2

)m

= 2n·|Ind(K)|+m·|Ind(K)|2 (1)

of such tuples; in particular note that G(K,M) is a finite set.
Now, given (K, M) and some G = (X1, . . . , Xn, Y1, . . . , Ym) ∈ G(K,M), let KG

be the L-KB consisting of all axioms in K together with all of the following
axioms, where the Ai and rj are all the predicates in M—note that we require
role disjunction and concept products for this.

Ai ≡
⊔
{a} for every a ∈ Xi and i = 1, . . . , n

rj ≡
⊔

({a} × {b}) for every pair (a, b) ∈ Yj and j = 1, . . . , m

Then the following result clearly holds.
6 The UNA can be enforced in an ALC KB by adding ABox statements Ai(ai), where

ai are all individuals and Ai are new concept names, to the knowledge base, together
with all disjointness axioms of the form Ai � Aj 
 ⊥ for all i �= j.
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Lemma 1. Let (K, M) be a GC-L-KB. If K has a grounded model I w.r.t.
M , then there exists G ∈ G(K,M) such that KG has a (classical) model J which
coincides with I on all minimized predicates. Likewise, if there exists G ∈ G(K,M)

such that KG has a (classical) model J , then K has a grounded model I which
coincides with J on all minimized predicates.

Now consider the set

G′
(K,M) = {G ∈ G(K,M) | KG has a (classical) model},

and note that this set is finite and computable in finite time since G(K,M) is
finite and L is decidable. Furthermore, consider G′

(K,M) to be ordered by the
pointwise ordering ≺ induced by ⊆. Note that the pointwise ordering of the
finite set G′

(K,M) is also computable in finite time.

Lemma 2. Let (K, M) be a GC-L-KB and let

G′′
(K,M) = {G ∈ G′

(K,M) | G is minimal in (G′
(K,M),≺)}.

Then (K, M) has a GC-model if and only if G′′
(K,M) is non-empty.

Proof. This follows immediately from Lemma 1 together with the following ob-
servation: Whenever K has two grounded models I and J such that I is smaller
than J , then there exist GI , GJ ∈ G′

(K,M) with GI ≺ GJ such that KGI and
KGJ have (classical) models I ′ and J ′, respectively, which coincide with I,
respectively, J , on the minimized predicates.

Theorem 1. GC-KB-satisfiability is decidable.

Proof. This follows from Lemma 2 since the set G′′
(K,M), for any given GC-KB

(K, M), can be computed in finite time, i.e., it can be decided in finite time
whether G′′

(K,M) is empty.

Some remarks on complexity are as follows. Assume that the problem of deciding
KB satisfiability in L is in the complexity class C. Observe from equation (1) that
there are exponentially many possible choices of the (n + m)-tuples in G(K,M)

(in the size of the input knowledge base). Computation of G′
(K,M) is thus in

ExpC, and subsequent computation of G′′
(K,M) is also in Exp. We thus obtain

the following upper bound.

Proposition 1. The problem of finding a GC-model (if one exists) of a given
GC-L-KB is in ExpC , where C is the complexity class of L. Likewise, GC-L-KB
satisfiability is in ExpC.

4 Algorithms for Grounded Circumscriptive Reasoning

We now present algorithms for reasoning with grounded circumscription. We
start with a tableaux algorithm to decide knowledge base GC-satisfiability and
then discuss how to extend it to other reasoning tasks. For simplicity of presen-
tation, we only consider GC-KB-satisfiability in ALC, but the procedure should
be adaptable to other DLs. Inspiration for the algorithm comes from [7,11].
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4.1 Decision Procedure for GC-Satisfiability in ALC
The algorithm is a tableaux procedure as usual where the expansion rules are
defined to be compatible with the semantics of the language, and for easier
reference, we call the resulting algorithm Tableau1. It starts with an initial graph
Fi constructed using the ABox of a given GC-ALC-KB (K, M), such that all
known individuals are represented as nodes along with their labels that consist of
the concepts that contain them in the ABox. Additionally, links are added for all
role assertions using labels that consist of the roles in the ABox assertion axioms.
We call this set of nodes and labels the initial graph. The creation of the initial
graph Fi is described in terms of the following steps called the initialization
process:

– create a node a, for each individual a that appears in at least one assertion
of the form C(a) in K (we call these nodes nominal nodes),

– add C to L(a), for each assertion of the form C(a) or R(a, b) in K,
– add R to L(a, b), for each assertion of the form R(a, b) in K,
– initialize a set T := {NNF(¬C �D) | C � D ∈ K}.

The algorithm begins with the initial graph Fi along with the sets T and M , and
proceeds by non-deterministically applying the rules defined in Table 1, a process
which can be understood as creating a candidate model for the knowledge base.
The −→TBox,−→�,−→∃ and −→∀ rules are deterministic rules, whereas the
−→�,−→GCC and −→GCR rules are non-deterministic rules, as they provide a
choice, with each choice leading to possibly a different graph. The algorithm
differs from the usual tableaux algorithm for ALC, as it provides extra −→GCC

and −→GCR non-deterministic rules, such that the candidate models are in fact
grounded candidate models as defined in Definition 2. The rules are applied
until a clash is detected or until none of the rules is applicable. A graph is said
to contain an inconsistency clash when one of the node labels contains both
C and ¬C, or it contains ⊥, and it is called inconsistency-clash-free if it does
not contain an inconsistency clash. The algorithm by application of the rules
upon termination generates a so-called completion graph. A notion of blocking
is required to ensure termination, and we define it as follows.

Definition 4 (Blocking). A non-nominal node x is blocked
1. if it has a blocked ancestor; or
2. if it has a non-nominal ancestor x′ such that L(x) ⊆ L(x′) and the path

between x′ and x consists only of non-nominal nodes.
In the second case, we say that x is directly blocked by the node x′. Note that
any non-nominal successor node of x is also blocked.

For a GC-ALC-KB (K, M), the tableau expansion rules when applied exhaus-
tively, generate a completion graph which consists of nodes, edges and their
labels, each node x of the graph is labeled with a set of (complex or atomic)
concepts and each edge (x, y) is labeled with a set of roles.

Lemma 3 (termination). Given any GC-ALC-KB (K, M), the tableaux pro-
cedure for (K, M) terminates.
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Table 1. Tableau1 expansion rules for GC-ALC-KBs (K, M). The first five rules are
taken directly from the ALC tableaux algorithm. Input: Fi, T and M .

−→TBox : if C ∈ T and C /∈ L(x)
then L(x) := L(x) ∪ {C}

−→
 : if C1 � C2 ∈ L(x), x is not blocked, and {C1, C2} �⊆ L(x)
then L(x) := L(x) ∪ {C1, C2}

−→� : if C1 � C2 ∈ L(x), x is not blocked, and {C1, C2} ∩ L(x) = ∅
then L(x) := L(x) ∪ {C1} or L(x) := L(x) ∪ {C2}

−→∃ : if ∃R.C ∈ L(x), x is not blocked, and x has no R-successor y
with C ∈ L(y)

then add a new node y with L(y) := {C} and L(x, y) := {R}
−→∀ : if ∀R.C ∈ L(x), x is not blocked, and x has an R-successor y

with C /∈ L(y)
then L(y) := L(y) ∪ {C}

−→GCC : if C ∈ L(x), C ∈ M, x /∈ Ind(K) and x is not blocked
then for some a ∈ Ind(K) do
1. L(a) := L(a) ∪ L(x),
2. if x has a predecessor y, then L(y, a) := L(y, a) ∪ L(y, x),
3. remove x and all incoming edges to x in the completion graph

−→GCR : if R ∈ L(x, y), R ∈ M and y is not blocked.
then initialize variables x′ := x and y′ := y, and do
1. if x /∈ Ind(K) then for some a ∈ Ind(K),L(a) := L(a) ∪ L(x),

x′ := a.
2. if y /∈ Ind(K) for some b ∈ Ind(K),L(b) := L(b) ∪ L(y) and

y′ := b
3. if x′ = a and x has a predecessor z,

then L(z, a) := L(z, a) ∪ L(z, x).
4. L(x′, y′) := L(x′, y′) ∪ {R}
5. if x′ = a remove x and all incoming edges to x and

if y′ = b remove y and all incoming edges to y
from the completion graph.

Proof. First note that node labels can only consist of axioms from K in NNF
or of subconcepts of axioms from K in NNF. Thus, there is only a finite set
of possible node labels, and thus there is a global bound, say m ∈ N, on the
cardinality of node labels.

Now note the following. (1) The number of times any rule can be applied to a
node is finite, since the labels trigger the rules and the size of labels is bounded
by m. (2) The outdegree of each node is bounded by the number of possible
elements of node labels of the form ∃R.C, since only the −→∃ rule generates
new nodes. Thus the outdegree is also bounded by m. Further, infinite non-
looping paths cannot occur since there are at most 2m possible different labels,
and so the blocking condition from Definition 4 implies that some node along
such a path would be blocked, contradicting the assumption that the path would
be infinite. (3) While the −→GCC rule and the −→GCR rule delete nodes, they
can only change labels of nominal nodes by possibly adding elements to nominal
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node labels. Since the number of possible elements of node labels is bounded
by m, at some stage application of the −→GCC rule or the −→GCR rule will no
longer add anything to nominal node labels, and then no new applications of
rules can be enabled by this process.

From (1), (2) we obtain a global bound on the size of the completion graphs
which can be generated by the algorithm, and from (3) we see that infinite
loops due to deletion and recreation of nodes cannot occur. Thus, the algorithm
necessarily terminates.

Before we show that the tableaux calculus is sound and complete, we define a
function called read function which will be needed for clarity of the proof and
verification of minimality of the models.

Definition 5 (read function). Given an inconsistency-clash-free completion
graph F , we define a read function r which maps the graph to an interpretation
r(F ) = I in the following manner. The interpretation domain ΔI contains all
the non-blocked nodes in the completion graph. Further, for each atomic concept
A, we set AI to be the set of all non-blocked nodes x for which A ∈ L(x). For
each role name R, we set RI to be the set of pairs (x, y) which satisfy any of the
following conditions:
– R ∈ L(x, y) and y is not blocked; or
– x is an immediate R-predecessor of some node z, and y directly blocks z

The mapping just defined is then lifted to complex concept descriptions as usual.

The second condition is due to the well-known technique of unraveling (see, e.g.,
[11]): while disregarding blocked nodes, an incoming edge from an immediate
R-predecessor x of the blocked node z is considered to be replaced by an edge
from the predecessor to the node y which directly blocks z. This accounts for
the intuition that a path ending in a blocked node stands for an infinite but
repetitive path in the model.

Lemma 4 (soundness). If the expansion rules are applied to a GC-ALC-KB
(K, M), such that they result in an inconsistency-clash-free completion graph F ,
then K has a grounded model I = r(F ). Furthermore, the extension AI of each
concept A ∈M under I coincides with the set {x | x ∈ Ar(F )}, the extension RI

of each role R ∈ M under I coincides with the set {(x, y) | (x, y) ∈ Rr(F )}, and
both these sets can be read off directly from the labels of the completion graph.

Proof. From the inconsistency-clash-free completion graph F , we create an in-
terpretation I = r(F ) where r is the read function defined in Definition 5. Since
the completion graph is free of inconsistency clashes, and the first five expansion
rules from Table 1 follow the definition of a model from Section 2, the resulting
interpretation is indeed a model of K.7 Moreover, the −→GCC and −→GCR rules
ensure that the extensions of minimized predicates contain only (pairs of) known
individuals. Hence, r(F ) = I is a grounded model of K w.r.t M , and Definition 5
shows how the desired extensions can be read off from the completion graph.
7 This can be proven formally by structural induction on formulas as in [11].
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Lemma 5 (completeness). If a GC-ALC-KB (K, M) has a grounded model
I, then the expansion rules can be applied to the initial graph Fi of (K, M) in
such a way that they lead to an inconsistency-clash-free completion graph F , and
such that the following hold.
– Δr(F ) ⊆ ΔI

– ar(F ) = aI for every nominal node a
– W r(F ) ⊆ W I for every W ∈M
– the extensions, under r(F ), of the closed concept and role names can be read

off from F as in the statement of Lemma 4.

Proof. Given a grounded model I for K w.r.t M , we can apply the completion
rules to Fi in such a way that they result in an inconsistency-clash-free comple-
tion graph F . To do this we only have to ascertain that, for any nodes x and
y in the graph, the conditions L(x) ⊆ {C | π(x) ∈ CI} and L(x, y) ⊆ {R |
(π(x), π(y)) ∈ RI} are satisfied, where π is mapping from nodes to ΔI . This
construction is very similar to the one in [11, Lemma 6], to which we refer for
details of the argument.

The remainder of the statement follows from the fact that the two conditions
just given are satisfied, and from the reading-off process specified in Lemma 4.

We have provided an algorithm that generates a set of completion graphs and
each inconsistency-clash-free completion graph represents a grounded model.
In fact (K, M) is GC-satisfiable if at least one of the completion graphs is
inconsistency-clash-free.

Theorem 2. Let (K, M) be a GC-ALC-KB. Then (K, M) has a grounded model
if and only if it is GC-satisfiable.

Proof. The if part of the proof is trivial.
We prove the only if part. For any grounded model I, let |MI | denote the

sum of the cardinalities of all extensions of all the minimized predicates in M ,
and note that, for any two grounded models I and J of K w.r.t. M , we have
|MJ | < |MI | whenever J ≺M I. Hence, for any grounded model I of K w.r.t.
M which is not a GC-model of (K, M), there is a grounded model J of K w.r.t.
M with J ≺M I and |MJ | < |MI |. Since |MI | > 0 for all grounded models I
(and because ≺M is transitive), we obtain that, given some grounded model I,
it is not possible that there is an infinite descending chain of grounded models
preferred over I. Consequently, there must be some grounded model J of K
w.r.t. M which is minimal w.r.t. |MJ | among all models which are preferred
over I. This model J must be a GC-model, since otherwise it would not be
minimal.

The following is a direct consequence of Lemmas 3, 4, 5, and Theorem 2.

Theorem 3. The tableaux algorithm Tableau1 presented above is a decision pro-
cedure to determine GC-satisfiability of GC-ALC-KBs.
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4.2 Inference Problems beyond GC-Satisfiability

Unlike in other description logics, common reasoning tasks such as concept sat-
isfiability or instance checking cannot be readily reduced to GC-satisfiability
checking.8 To cover other inference tasks, we need to extend the previously de-
scribed algorithm. To do this, we first describe a tableaux algorithm Tableau2
which is a modification of Tableau1, as follows. All computations are done with
respect to an input GC-ALC-KB (K, M).

(i) Initialization of Tableau2 is done on the basis of a inconsistency-clash-free
completion graph F , as follows. We create a finite set of nodes which is
exactly the domain ΔI of a grounded model I = r(F ). We distinguish be-
tween two different kinds of nodes, the I-nominal nodes, which are nodes
corresponding to some aI ∈ ΔI where a is an individual name, and the
remaining nodes which we call variable nodes. For initialization, we fur-
thermore add all information from the ABox of K to the graph and create
the set T from K, as in the initialization of Tableau1.

(ii) We modify the −→∃ rule as follows.

−→∃ : if ∃R.C ∈ L(x), and x has no R-successor y with C ∈ L(y)
then select an existing node y and

set L(y) := {C} and L(x, y) := {R}

The above change in the −→∃-rule enables us to restrict the graph to
contain only the nodes it was initialized with, which means new nodes are
not created.

(iii) We retain all other completion rules, however we dispose of blocking.
(iv) We retain the notion of inconsistency clash, and add a new notion of pref-

erence clash as follows. A graph F ′ obtained during the graph construction
performed by Tableau2 is said to contain a preference clash with I if at
least one of the following holds.
– W r(F ′) = W I for each predicate W ∈ M
– W r(F ′) ∩{aI | a an individual } �⊆W I for some concept name W ∈M
– W r(F ′)∩{(aI , bI) | a, b individuals } �⊆ W I for some role name W ∈M

Proposition 2. Tableau2 always terminates. If it terminates by constructing
an inconsistency- and preference-clash-free completion graph F ′, then r(F ′) is
preferred over I, i.e., it shows that I is not a GC-model. If no such graph F ′ is
found, then I has been verified to be a GC-model.

Proof. Termination is obvious due to the fact that no new nodes are created, i.e.,
the algorithm will eventually run out of choices for applying completion rules.

8 E.g., say we want to decide whether (K, M) GC-entails C(a). We cannot do this,
in general, by using the GC-satisfiability algorithm in the usual way, i.e., by adding
¬C(a) to K with subsequent checking of its GC-satisfiability. This is because in
general it does not hold that (K, M) does not GC-entail C(a) if (K ∪ ¬C(a), M) is
GC-satisfiable. This is due to the non-monotonic nature of circumscription.
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Now assume that the algorithm terminates by finding an inconsistency- and
preference-clash-free completion graph F ′. We have to show that r(F ′) is pre-
ferred over I, i.e., we need to verify the properties listed in Definition 1. ΔI =
Δr(F ′) holds because we initiate the algorithm with nodes being elements from
ΔI and no new nodes are created. In case nodes are lost due to the grounding
rules of Tableau2, we can simply extend Δr(F ′) with some additional elements
which are not otherwise of relevance for the model. The condition aI = ar(F ′)

for every aI ∈ Δr(F ′) holds because this is how the algorithm is initialized. The
remaining two conditions hold due to the absence of a preference clash.

For the last statement of the proposition, note that Tableau2 will non-deter-
ministically find an inconsistency- and preference-clash-free completion graph if
such a graph exists. This can be seen in a similar way as done in the proof of
Lemma 5.

We next use Tableau1 and Tableau2 together to create an algorithm which finds
GC-models for (K, M) if they exists. We call this algorithm GC-model finder.
The algorithm is specified as follows, on input (K, M).
1. Initialize and run Tableau1 on (K, M). If no inconsistency-clash-free com-

pletion graph is found, then (K, M) has no GC-model and the algorithm
terminates. Otherwise let F be the resulting completion graph.

2. Initialize Tableau2 from F and run it. If no inconsistency- and preference-
clash-free completion graph is found, then r(F ) is a GC-model of (K, M) and
the algorithm terminates with output r(F ). Otherwise let F ′ be the resulting
completion graph.

3. Set F = F ′ and go to step 2.

The loop in steps 2 and 3 necessarily terminates, because whenever step 2 finds
a completion graph F ′ as specified, then r(F ′) is preferred over r(F ). As argued
in the proof of Theorem 2, there are no infinite descending chains of grounded
models w.r.t. the preferred over relation, so the loop necessarily terminates. The
output r(F ) of the GC-model finder is a GC-model of (K, M), and we call F a
GC-model graph of (K, M) in this case.

Theorem 4. On input a GC-ALC-KB (K, M), the GC-model finder creates a
GC-model I of (K, M) if such a model exists. Conversely, for every GC-model
J of (K, M), there exist non-deterministic choices of rule applications in the
GC-model finder such that they result in a model I which coincides with J on
all extensions of minimized predicates.

Proof. The first statement follows from Propositon 2 together with the expla-
nations already given. The second statement follows due to Lemma 5, since
Tableau1 can already create the sought GC-model I.

We now consider the reasoning tasks usually known as instance checking, concept
satisfiability and concept subsumption. We provide a convenient way to utilize
the GC-model finder algorithm to solve these problems by use of another notion
of clash called entailment clash. The following definition describes the inference
tasks and provides the notion of entailment clash for each of them as well.
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Definition 6. For a GC-ALC-KB (K, M).

– Instance checking: Given an atomic concept C and an individual a in (K, M),
(K, M) |=GC C(a) if and only if aI ∈ CI for all GC-models I of (K, M).
For instance checking of C(a), a GC-model graph F is said to contain an
entailment clash if C ∈ L(a) in F .

– Concept satisfiability: Given an atomic concept C in (K, M), C is GC-
satisfiable if and only if CI �= ∅ for some GC-model of (K, M). For checking
satisfiability of C, a GC-model graph F is said to contain an entailment
clash if C ∈ L(x) for any node x in F .

– Concept subsumption: Given concepts C and D in (K, M), (K, M) |=GC

C � D if and only if CI ⊆ DI for all models I in (K, M). Subsumption can
be reduced to concept satisfiability: GC-ALC-KB(K, M) |=GC C � D if and
only if C � ¬D is not GC-satisfiable.

We use the following process to solve these inference problems:
To determine if C(a) is entailed by a GC-ALC-KB (K, M), we invoke the

GC-model finder until we find a GC-model. If this non-deterministic procedure
results in a GC-model graph which does not contain an entailment clash, then
(K, M) �|=GC C(a). If no such GC-model graph can be generated this way, then
(K, M) |=GC C(a).

To determine if C is GC-satisfiable, we invoke the GC-model finder until
we find a GC-model. If this non-deterministic procedure results in a GC-model
graph which contains an entailment clash, then C is satisfiable. If no such GC-
model graph can be generated this way, then C is unsatisfiable.

5 Conclusion

We have provided a new approach for incorporating the LCWA into description
logics. Our approach, grounded circumscription, is a variant of circumscriptive
description logics which avoids two major issues of the original approach: Ex-
tensions of minimized predicates can only contain named individuals, and we
retain decidability even for very expressive description logics while we can allow
for the minimization of roles. We have also provided a tableaux algorithm for
reasoning with grounded circumscription.

While the contributions in this paper provide a novel and, in our opinion,
very reasonable perspective on LCWA reasoning with description logics, there
are obviously also many open questions. A primary theoretical task is to inves-
tigate the complexity of our approach. Of more practical relevance would be
an implementation of our algorithm with a substantial evaluation to investigate
its efficiency empirically. More work also needs to be done in carrying over the
concrete algorithm to description logics which are more expressive than ALC.

It also remains to investigate the added value and limitations in practice
of modeling with grounded circumscription. This will also shed light onto the
question whether fixed predicates and prioritization are required for applications.
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Abstract. Recently much attention has been directed to extending logic
programming with description logic (DL) expressions, so that logic pro-
grams have access to DL knowledge bases and thus are able to reason
with ontologies in the Semantic Web. In this paper, we propose a new
extension of logic programs with DL expressions, called normal DL logic
programs. In a normal DL logic program arbitrary DL expressions are
allowed to appear in rule bodies and atomic DL expressions (i.e., atomic
concepts and atomic roles) allowed in rule heads. We extend the key con-
dition of well-supportedness for normal logic programs under the stan-
dard answer set semantics to normal DL logic programs and define an
answer set semantics for DL logic programs which satisfies the extended
well-supportedness condition. We show that the answer set semantics for
normal DL logic programs is decidable if the underlying description logic
is decidable (e.g. SHOIN or SROIQ).

1 Introduction

In the development of Semantic Web languages we are concerned with two major
components: ontologies and rules. Ontologies describe terminological knowledge
and rules model constraints and exceptions over the ontologies. Since the two
components provide complementary descriptions of the same problem domain,
they are supposed to be integrated in some ways (e.g., [2,4,16,18,19]; see [3] for
a survey). The core of the Web ontology language OWL (more recently, OWL
2) [13,9] is description logics (DLs) [1] and thus in this paper we assume an
ontology is represented as a knowledge base in DLs.

Logic programming under the (standard) answer set semantics [8] is cur-
rently a widely used declarative language paradigm for knowledge representa-
tion and reasoning. A normal logic program Π consists of rules of the form
H ← A1, · · · , Am, not B1, · · · , not Bn, where H and each Ai and Bi are atoms.
Such a rule states that if the body A1, · · · , Am, not B1, · · · , not Bn holds, then
the head H holds. The semantics of Π is defined by answer sets, which are Her-
brand models of Π satisfying the well-supportedness condition [8,7]. Informally,

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 633–648, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



634 Y.-D. Shen and K. Wang

a Herbrand model I is well-supported if for any H ∈ I, there is a rule as above
from Π such that I satisfies the rule body and for no Ai the evidence of the truth
of Ai is circularly dependent on H in I. It is this well-supportedness condition
that lets rules in a logic program differ from formulas (implications) in classical
logic and guarantees that answer sets are free of circular justifications.

Recently, much attention has been directed to using logic programs to express
rules in the Semantic Web by extending logic programming under the answer set
semantics with DL expressions [4,16,19]. By allowing DL expressions to appear
in rules, logic programs have access to DL knowledge bases and thus are able
to reason with ontologies in the Semantic Web. Major current extensions of
logic programs with DL expressions include description logic programs (or dl-
programs) [4], DL+log [19] and disjunctive dl-programs [16].

Given an external DL knowledge base L, a dl-program extends a normal logic
program Π by adding dl-atoms to rule bodies as an interface to access to L [4].
A dl-atom is of the form DL[S1op1P1, · · · , SmopmPm; Q](t), where each SiopiPi

semantically maps a predicate symbol Pi in Π to a concept or role Si in L via
a special interface operator opi ∈ { ∪+ , ∪- , ∩- }, and Q(t) is a DL expression
which will be evaluated against L after the predicate mapping. For instance,
p(a)← DL[c ∪+ p, b ∩- q; c�¬b](a) is a rule, where the dl-atom queries L if a is in
the concept c but not in the concept b, given the mapping that for any x, if p(x)
is true then x is in c and if q(x) is false then x is not in b. Note that predicate
symbols in Π must be disjoint from predicate symbols (i.e., atomic concepts and
atomic roles) in L. Moreover, DL expressions are not allowed to appear in the
head of a rule, thus no conclusion about L can be inferred from Π .

It is necessary to allow DL expressions to occur in rule heads because DL
knowledge bases (ontologies) define only general terminological knowledge, while
additional constraints and exceptions over some DL concepts/roles must be de-
fined by rules. To avoid predicate mappings between L and Π and allow DL
expressions to appear in rule heads, another extension, called DL+log, is in-
troduced [19]. DL+log lets Π and L share some predicate symbols and allows
atomic DL expressions (i.e. atomic concepts and atomic roles) to appear either
in bodies or heads of rules without using any predicate mapping operators. One
restriction of this extension is that DL expressions are not allowed to appear
behind the negation operator not.

Disjunctive dl-programs [16] are a third extension of logic programs with DL
expressions. This extension allows atomic DL expressions to appear anywhere in
a rule, and has a semantics substantially different from that of DL+log.

For dl-programs, three answer set semantics are introduced in [4,5], called the
weak, strong, and FLP-reduct based semantics, respectively. These semantics
are proper extensions of the standard answer set semantics, but their answer
sets do not satisfy the well-supportedness condition and thus may incur circular
justifications by self-supporting loops. For DL+log, a semantics is defined with a
class of first-order models, called NM-models [19]. Such NM-models are not well-
supported models. For disjunctive dl-programs, an FLP-reduct based answer set
semantics is defined [16]. It is a proper extension of the standard answer set
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semantics, but its answer sets do not satisfy the well-supportedness condition
either and thus may also incur circular justifications.

Observe that the three major extensions of logic programs with DL expressions
have complementary features. In syntax, dl-programs allow arbitrary DL expres-
sions in rule bodies, while DL+log and disjunctive dl-programs allow atomic DL
expressions in rule heads. In semantics, in dl-programs and DL+log, DL concepts
and roles occurring in Π are all interpreted against the external DL knowledge
base L under the first-order semantics, while in disjunctive dl-programs, these
DL concepts and roles are all included in the Herbrand base of Π and inter-
preted under the answer set semantics. These observations suggest that it is
desirable to have a new extension of logic programs with DL expressions, which
allows arbitrary DL expressions in rule bodies and atomic DL expressions in rule
heads, and interprets DL concepts and roles occurring in Π flexibly in either of
the above ways. Moreover, as we mentioned earlier, well-supportedness is a key
condition of logic programming under the standard answer set semantics, so it is
desirable to extend this condition to logic programs with DL expressions. In fact,
the well-supportedness condition has recently been extended to dl-programs and
a new answer set semantics for dl-programs has been developed which satisfies
the extended well-supportedness condition [20].

Therefore, in this paper we advance one step further by introducing a fourth
extension of logic programs with DL expressions as follows: (1) Given an external
DL knowledge base L, we extend a normal logic program Π with DL expres-
sions relative to L by introducing rules of the form H ← A1, · · · , Am, not B1, · · · ,
not Bn, where H is an atom or an atomic DL expression, and each Ai and Bi

are either atoms or arbitrary DL expressions. We call this extension Π relative
to L a normal DL logic program. (2) We allow DL concepts and roles occurring
in Π to flexibly choose between first-order interpretations and Herbrand inter-
pretations, as described above. (3) We extend the well-supportedness condition
of the standard answer set semantics from normal logic programs to normal DL
logic programs, and define an answer set semantics which satisfies the extended
well-supportedness condition and thus whose answer sets are free of circular jus-
tifications. (4) We show that the answer set semantics for normal DL logic pro-
grams is decidable if the underlying description logic is decidable (e.g. SHOIN
or SROIQ [13,12]).

The paper is arranged as follows. Section 2 briefly reviews logic programs
and DL knowledge bases. Section 3 defines normal DL logic programs. Section
4 mentions related approaches, and Section 5 concludes with future work.

2 Preliminaries

2.1 Logic Programs

Consider a vocabulary Φ = (P,C), where P is a finite set of predicate symbols
and C a nonempty finite set of constants. A term is either a constant from C
or a variable. Predicate symbols begin with a capital letter, and constants with
a lower case letter. We use strings starting with X , Y or Z to denote variables.
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An atom is of the form P (t1, ..., tm), where P is a predicate symbol from P, and
ti is a term. A rule r is of the form

H ← A1, · · · , Am, not B1, · · · , not Bn (1)

where H and each Ai and Bi are atoms. Each Ai is called a positive literal,
and each not Bi called a negative literal. We use head(r) and body(r) to denote
the head H and the body A1, · · · , Am, not B1, · · · , not Bn, respectively. We also
use pos(r) to denote the positive literals A1, · · · , Am, and neg(r) to denote the
negative literals not B1, · · · , not Bn. Therefore, a rule r can simply be written
as head(r) ← body(r) or head(r) ← pos(r), neg(r).

A normal logic program Π consists of a finite set of rules. A ground instance
of a rule r is obtained by replacing every variable in r with a constant from C.
We use ground(Π) to denote the set of all ground instances of rules in Π . The
Herbrand base of Π , denoted HBΠ , is the set of all ground atoms P (t1, ..., tm),
where P ∈ P occurs in Π and ti is in C. Any subset of HBΠ is a Herbrand
interpretation (or interpretation for short) of Π . For an interpretation I, let
I− = HBΠ \ I and ¬I− = {¬A | A ∈ I−}.

An interpretation I satisfies a ground atom A ∈ HBΠ if A ∈ I, and I satisfies
not A if A �∈ I. For a rule r in ground(Π), I satisfies body(r) if for each (positive
or negative) literal l in body(r), I satisfies l; I satisfies r if I does not satisfy
body(r) or I satisfies head(r). I is a model of Π if I satisfies all r ∈ ground(Π).
A minimal model is a model that is minimal in terms of set inclusion.

Let ΠI = {A ← pos(r) | A ← pos(r), neg(r) ∈ ground(Π) and I satisfies
neg(r)}. Since ΠI has no negative literals in rule bodies, it has a least model.
The standard answer set semantics defines I to be an answer set of Π if I is the
least model of ΠI [8].

2.2 DL Knowledge Bases

We assume familiarity with the basics of description logics (DLs) [1], and for
simplicity consider SHOIN , a DL underlying the Web ontology language OWL
DL [13]. The approach presented in this paper can easily be extended to other
more expressive DLs such as SROIQ (a logical underpinning for OWL 2) [12,9],
and to DLs with datatypes such as SHOIN (D) and SROIQ(D).

Consider a vocabulary Ψ = (A ∪R, I), where A, R and I are pairwise disjoint
(denumerable) sets of atomic concepts, atomic roles and individuals, respectively.
A role is either an atomic role R from R or its inverse, denoted R−. General
concepts C are formed from atomic concepts, roles and individuals, according to
the following syntax:

C ::=� | ⊥ | A | {a} | C �C1 | C � C1 | ¬C | ∃R.C | ∀R.C | ≥n R | ≤n R

where A is an atomic concept from A, R is a role, a is an individual from
I, C and C1 are concepts, and n is a non-negative integer. An axiom is of the
form C � D (concept inclusion axiom), R � R1 (role inclusion axiom), Trans(R)
(transitivity axiom), C(a) (concept membership axiom), R(a, b) (role membership
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axiom), =(a, b) (equality axiom), or �=(a, b) (inequality axiom), where C, D are
concepts, R, R1 are atomic roles in R, and a, b are individuals in I. We use
C ≡ D to denote C � D and D � C.

A DL knowledge base L is a finite set of axioms. Since DLs are fragments
of first-order logic with equality, where atomic concepts (resp. roles) are unary
(resp. binary) predicate symbols, and individuals are constants, L has the first-
order semantics. When we say predicate symbols in L, we refer to atomic con-
cepts or atomic roles in L. L is consistent (or satisfiable) if L has a first-order
model. For an axiom F , the entailment relation L |= F is defined as in first-
order logic, i.e., L entails F if all models of L are models of F . Note that if L is
inconsistent, L entails everything.

A DL expression, also called a DL query in [4], which is allowed to appear in
rules of a logic program, is either (i) a concept inclusion axiom F or its negation
¬F ; or (ii) of the form C(t) or ¬C(t), where C is a concept, and t is a term (i.e.,
a variable or a constant); or (iii) of the form R(t1, t2) or ¬R(t1, t2), where R is a
role, and t1 and t2 are terms; or (iv) of the form =(t1, t2) or �=(t1, t2), where t1 and
t2 are terms. An atomic DL expression is either C(t) or R(t1, t2), where C is an
atomic concept and R an atomic role. For convenience, we denote a DL expression
by Q(t), where t denotes all terms occurring in the expression (e.g., t1 and t2 in
(iii)), and Q denotes the remaining part of the expression (e.g., R or ¬R in (iii)).

3 Normal DL Logic Programs

Let L be a DL knowledge base built over a vocabulary Ψ = (A ∪R, I), and
Π be a normal logic program built over Φ = (P,C). To extend Π with DL
expressions relative to L, we first extend Φ such that: (i) all constants in C are
individuals in I (i.e., C ⊆ I), so that constants occurring in DL expressions are
individuals, and (ii) some atomic concepts and roles in A ∪R are included in
P (as unary and binary predicate symbols, respectively), so that we can make
conclusions about them in the same way as other predicate symbols in P. To
ensure decidability, we require that P and C be finite. Let Ω = P ∩ (A ∪R)
denote the set of predicate symbols shared by Π and L.

Definition 1. Let L be a DL knowledge base. A normal DL logic program Π
with DL expressions relative to L consists of a finite set of rules of form (1),
where H is an atom, and each Ai and Bi are either atoms or DL expressions.

Note that when the predicate symbol of an atom in Π is in Ω, the atom is also
an atomic DL expression.

A ground instance of a rule (resp. a DL expression) in Π is obtained by
replacing all variables with constants in C. Let ground(Π) denote the set of
ground instances of all rules in Π . The Herbrand base HBΠ of Π relative to L
is the set of all ground atoms P (t1, ..., tm), where P ∈ P occurs either in Π or
in L and each ti is in C. Any subset of HBΠ is a Herbrand interpretation (or
simply interpretation) of Π relative to L. When the context is clear, we omit the
phrase “relative to L.”
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For an interpretation I, let I|Ω = {A ∈ I | the predicate symbol of A is in
Ω} and I−|Ω = {A ∈ I− | the predicate symbol of A is in Ω}. We say that I is
consistent with L if L∪I|Ω ∪¬I−|Ω is consistent. Note that when I is consistent
with L, L must be consistent.

Since DL expressions must be evaluated against L, the satisfaction relation
for normal logic programs needs to be extended to normal DL logic programs.
In the sequel, by a literal we refer to A or not A, where A is an atom or a DL
expression.

Definition 2. Let Π be a normal DL logic program with DL expressions relative
to a DL knowledge base L, I an interpretation, and l a ground literal. We use
I |=L l to denote that I satisfies l under L, which is defined as follows:

1. For a ground atom A ∈ HBΠ , which is not an atomic DL expression, I |=L A
if A ∈ I.

2. For a ground DL expression A, I |=L A if L ∪ I|Ω ∪¬I−|Ω |= A.
3. For a ground atom or a ground DL expression A, I |=L not A if I �|=L A.

For a rule r in ground(Π), I |=L body(r) if for each (positive or negative)
literal l in body(r), I |=L l; I |=L r if I �|=L body(r) or I |=L head(r). I is a model
of Π relative to L if I is consistent with L and I |=L r for all r ∈ ground(Π).
Note that when L is inconsistent, Π has no model relative to L.

Example 1. Let L = {¬B(a)} and Π = {A(X) ← not ¬(A � B)(X)}. Let
P = {A}, C = {a} and Ω = {A}. Note that ¬(A�B)(X) is a DL expression, and
A(X) is both an atom and an atomic DL expression. We have HBΠ = {A(a)}
and ground(Π) = {A(a) ← not ¬(A � B)(a)}. Π has two models relative to
L: I1 = ∅ and I2 = {A(a)}. For the rule r in ground(Π), I1 �|=L body(r),
I2 |=L body(r), and I2 |=L head(r).

3.1 Well-Supported Models

The notion of well-supportedness in logic programming is defined by Fages in
[7] as a key characterization of the standard answer set semantics. For a normal
logic program Π , an interpretation I is well-supported if there exists a strict
well-founded partial order ≺ on I such that for any A ∈ I, there is a rule
A ← body(r) in ground(Π) such that I satisfies body(r) and for every positive
literal B in body(r), B ≺ A. A binary relation ≤ is well-founded if there is
no infinite decreasing chain A0 ≥ A1 ≥ · · ·. A well-supported interpretation I
guarantees that every A ∈ I is free of circular justifications in I.

To extend Fages’ well-supportedness condition to normal DL logic programs
with DL expressions, we introduce a notion of up to satisfaction.

Definition 3. Let Π be a normal DL logic program with DL expressions relative
to a DL knowledge base L, I an interpretation consistent with L, and l a ground
literal. For any E ⊆ I, we use (E, I) |=L l to denote that E up to I satisfies
l under L, which is defined as follows: For any ground atom or ground DL
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expression A, (E, I) |=L A if for every F with E ⊆ F ⊆ I, F |=L A; (E, I) |=L

not A if for no F with E ⊆ F ⊆ I, F |=L A. For a rule r in ground(Π),
(E, I) |=L body(r) if for every literal l in body(r), (E, I) |=L l.

As the phrase “up to” suggests, for any ground (positive or negative) literal l,
(E, I) |=L l means that for all interpretations F between E and I, F |=L l. This
implies that the truth of l depends on E and ¬I− and is independent of atoms
in I \ E, since for any A ∈ I \ E and any interpretation F with E ⊆ F ⊆ I,
whether or not A is in F , F |=L l.

Theorem 1. Let l be a ground literal. For any E1 ⊆ E2 ⊆ I, if (E1, I) |=L l
then (E2, I) |=L l.

Proof: Straightforward from Definition 3. ��

Theorem 1 shows that the up to satisfaction is monotonic. In addition, it has
the following two properties.

Proposition 1. For any ground DL expression A, (E, I) |=L A iff L ∪ E|Ω
∪¬I−|Ω |= A.

Proof: (E, I) |=L A means that E ⊆ I and for every F with E ⊆ F ⊆ I, F |=L

A. Then, by Definition 2, (E, I) |=L A means that for every F with E ⊆ F ⊆ I,
L ∪ F |Ω ∪¬F−|Ω |= A. Note that F = E ∪ (F \ E) and F− = I− ∪ (I \ F ). So
(E, I) |=L A means that for every F with E ⊆ F ⊆ I,

L ∪ E |Ω ∪ ¬I− |Ω ∪ (F \ E) |Ω ∪ ¬(I \ F ) |Ω |= A (2)

Then, to prove this proposition it suffices to prove that the entailment (2) holds
for every F with E ⊆ F ⊆ I iff the following entailment holds:

L ∪E |Ω ∪ ¬I− |Ω |= A (3)

Note that for any model M of the left side of the entailment (2) or (3), we have
E ⊆ M ⊆ I.

Assume that the entailment (2) holds for every F with E ⊆ F ⊆ I. Let M be
a model of the left side of the entailment (3). Since E ⊆ M ⊆ I, M is a model
of the left side of the entailment (2), where F = M . Then, M is a model of A
(the right side of the entailment (2)). This means the entailment (3) holds.

Conversely, assume the entailment (3) holds. Let M be a model of the left
side of the entailment (2). M is also a model of the left side of the entailment (3)
and thus M is a model of A (the right side of the entailment (3)). This means
the entailment (2) holds. ��

Proposition 2. For any ground atom A ∈ HBΠ , which is not an atomic DL
expression, (E, I) |=L A iff A ∈ E; (E, I) |=L not A iff A �∈ I.

Proof: Straightforward from Definitions 3 and 2. ��

Next we extend the well-supportedness condition for normal logic programs to
normal DL logic programs by means of the up to satisfaction.
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Definition 4. Let Π be a normal DL logic program with DL expressions relative
to a DL knowledge base L, and I an interpretation consistent with L. I is well-
supported if there exists a strict well-founded partial order ≺ on I such that for
any A ∈ I, there exists E ⊂ I, where for every B ∈ E, B ≺ A, such that either
(i) L∪E|Ω ∪¬I−|Ω |= A, or (ii) there is a rule A← body(r) in ground(Π) such
that (E, I) |=L body(r).

The above conditions (i) and (ii) imply that the truth of A ∈ I is determined by
E and ¬I−. Since for every B ∈ E, B ≺ A, the truth of A is not circularly de-
pendent on itself. As a result, a well-supported interpretation I of Π guarantees
that every A ∈ I is free of circular justifications in I.

Observe in Definition 4 that due to the occurrence of DL expressions, some
A ∈ I may be supported by no rule A ← body(r) in ground(Π) such that
I |=L body(r). Instead, A is supported by L such that L ∪ I|Ω ∪¬I−|Ω |= A.
This is a special property of the well-supportedness condition for normal DL
logic programs. The next example further illustrates this property.

Example 2. Let L = {B(a), B � A} and Π = {A(X) ← C(X)}. Let P =
{A, C}, C = {a} and Ω = {A}. We have HBΠ = {A(a), C(a)} and ground(Π) =
{A(a) ← C(a)}. Π has two models relative to L: I1 = {A(a)} and I2 =
{A(a), C(a)}. Only I1 is a well-supported model, where for A(a) ∈ I1, we have
E = ∅ and condition (i) of Definition 4 holds. Note that there is no rule of the
form A(a) ← body(r) in ground(Π) such that I1 |=L body(r).

The following result shows that Definition 4 is a proper extension to Fages’
well-supportedness condition.

Theorem 2. Let L = ∅ and Π be a normal logic program without DL expres-
sions. An interpretation I is a well-supported model of Π relative to L iff I is a
well-supported model of Π under Fages’ definition.

Proof: Let I be an interpretation of Π relative to L. I is also an interpretation
of Π . Since L = ∅, for any A ∈ I the condition (i) of Definition 4 does not hold.
Since Π is a normal logic program without DL expressions, each Ai and Bi occur-
ring in the body of each rule r of the form A← A1, · · · , Am, not B1, · · · , not Bn

in ground(Π) are ground atoms. For such rules, I |=L body(r) iff every Ai is in
I and no Bi is in I.

Assume that I is a well-supported model of Π relative to L. By Definition 4,
there exists a strict well-founded partial order ≺ on I such that for any A ∈ I,
there exists E ⊂ I, where for every B ∈ E, B ≺ A, and there is a rule r as
above in ground(Π) such that (E, I) |=L body(r). Note that (E, I) |=L body(r)
implies E |=L body(r) and I |=L body(r), which implies that both I and E satisfy
body(r). This means that for every positive literal Ai in body(r), Ai ∈ E and
thus Ai ≺ A. As a result, for any A ∈ I, there is a rule r as above in ground(Π)
such that I satisfies body(r) and for every positive literal Ai in body(r), Ai ≺ A.
This shows that I is a well-supported model of Π under Fages’ definition.

Assume I is a well-supported model of Π under Fages’ definition. There exists
a strict well-founded partial order≺ on I such that for any A ∈ I, there is a rule r
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as above in ground(Π) such that I satisfies body(r) and for every positive literal
Ai in body(r), Ai ≺ A. Let E ⊂ I and for every Ai ∈ body(r), Ai ∈ E. Then, E
contains no Bi in body(r), since no Bi is in I. For any F with E ⊆ F ⊆ I, F
satisfies body(r) and thus F |=L body(r). That means (E, I) |=L body(r). As a
result, for any A ∈ I, there exists E ⊂ I, where for every B ∈ E, B ≺ A, and
there is a rule r as above in ground(Π) such that (E, I) |=L body(r). This shows
that I is a well-supported model of Π relative to L. ��

3.2 Well-Supported Answer Set Semantics

We define an answer set semantics for normal DL logic programs whose an-
swer sets are well-supported models. We first define an immediate consequence
operator.

Definition 5. Let Π be a normal DL logic program relative to a DL knowledge
base L, and I an interpretation consistent with L. For E ⊆ I, define

TΠ(E, I) ={A | A← body(r) ∈ ground(Π) and (E, I) |=L body(r)}.

By Theorem 1, when the second argument I is a model of Π , TΠ is monotone
w.r.t. its first argument E.

Theorem 3. Let Π be a normal DL logic program with DL expressions relative
to a DL knowledge base L, and I a model of Π relative to L. For any E1 ⊆ E2 ⊆
I, TΠ(E1, I) ⊆ TΠ(E2, I) ⊆ I.

Proof: For any A ∈ TΠ(E1, I), there is a rule A ← body(r) in ground(Π) such
that (E1, I) |=L body(r). Since E1 ⊆ E2, by Theorem 1, (E2, I) |=L body(r),
and thus A ∈ TΠ(E2, I). This shows TΠ(E1, I) ⊆ TΠ(E2, I). Since E2 ⊆ I, it
follows (I, I) |=L body(r) and A ∈ TΠ(I, I). Therefore, TΠ(E1, I) ⊆ TΠ(E2, I) ⊆
TΠ(I, I). Note that (I, I) |=L body(r) means I |=L body(r). Since I is a model of
Π relative to L, I |=L body(r) implies A ∈ I. This shows that when I is a model
of Π relative to L, every A ∈ TΠ(I, I) is in I. Hence, TΠ(E1, I) ⊆ TΠ(E2, I) ⊆
TΠ(I, I) ⊆ I. ��

Therefore, for any model I of Π relative to L, the sequence 〈T i
Π(∅, I)〉∞i=0, where

T 0
Π(∅, I) = ∅ and T i+1

Π (∅, I) = TΠ(T i
Π(∅, I), I), converges to a fixpoint, denoted

T α
Π (∅, I). This fixpoint has the following properties.

Theorem 4. Let I be a model of Π relative to L. (1) T α
Π (∅, I) ⊆ I. (2) L ∪

T α
Π (∅, I)|Ω ∪¬I−|Ω is consistent. (3) For any model J of Π relative to L with

J ⊂ I, T α
Π (∅, I) ⊆ T α

Π (∅, J) ⊆ J .

Proof: (1) It suffices to prove that for any i ≥ 0, T i
Π(∅, I) ⊆ I. It is obvious

for i = 0. Assume T k
Π(∅, I) ⊆ I for k ≥ 0. For i = k + 1, by Theorem 3,

T k+1
Π (∅, I) = TΠ(T k

Π(∅, I), I) ⊆ I. Therefore, T α
Π (∅, I) ⊆ I.

(2) Since I is a model of Π relative to L, L∪ I|Ω ∪¬I−|Ω is consistent. Since
T α

Π (∅, I) ⊆ I, L ∪ T α
Π (∅, I)|Ω ∪¬I−|Ω is also consistent.



642 Y.-D. Shen and K. Wang

(3) By Definition 3, for any rule body body(r) in ground(Π) and any E1

and E2 with E1 ⊆ E2 ⊆ J , if (E1, I) |=L body(r) then (E2, J) |=L body(r).
Then, by Definition 5, TΠ(E1, I) ⊆ TΠ(E2, J). Next we prove that for any i ≥ 0,
T i

Π(∅, I) ⊆ T i
Π(∅, J) ⊆ J . It is obvious for i = 0. Assume T i

Π(∅, I) ⊆ T i
Π(∅, J) ⊆ J

for any i ≤ k ≥ 0. For i = k + 1, by Theorem 3, T k+1
Π (∅, I) = TΠ(T k

Π(∅, I), I) ⊆
T k+1

Π (∅, J) = TΠ(T k
Π(∅, J), J) ⊂ J . Therefore, T α

Π (∅, I) ⊆ T α
Π (∅, J) ⊆ J . ��

We define answer sets for normal DL logic programs using the above fixpoint.

Definition 6. Let Π be a normal DL logic program relative to a DL knowledge
base L, and I a model of Π relative to L. I is an answer set of Π relative to L
if for every A ∈ I, either A ∈ T α

Π (∅, I) or L ∪ T α
Π (∅, I)|Ω ∪¬I−|Ω |= A.

It is immediate that when L = ∅, a model I is an answer set of Π relative to
L iff I = T α

Π (∅, I).
The answer set semantics for Π relative to L is then defined by answer sets of

Π . That is, a ground literal l is credulously (resp. skeptically) true in Π relative
to L if I |=L l for some (resp. every) answer set I of Π relative to L.

Example 3. Consider Example 1. For I1 = ∅, T α
Π (∅, I1) = ∅, so I1 is an answer set

of Π relative to L. For I2 = {A(a)}, T 0
Π(∅, I2) = ∅ and T 1

Π(∅, I2) = TΠ(∅, I2) = ∅,
so T α

Π (∅, I2) = ∅. For A(a) ∈ I2, A(a) �∈ T α
Π (∅, I2) and L ∪ T α

Π (∅, I2)|Ω ∪¬I−2 |Ω
�|= A(a). Thus I2 is not an answer set of Π relative to L.

Consider Example 2. For I1 = {A(a)}, T 0
Π(∅, I1) = ∅ and T 1

Π(∅, I1) =
TΠ(∅, I1) = ∅, so T α

Π (∅, I1) = ∅. For A(a) ∈ I1, A(a) �∈ T α
Π (∅, I1), but

L ∪ T α
Π (∅, I1)|Ω ∪¬I−1 |Ω |= A(a), so I1 is an answer set of Π relative to L.

It is easy to verify that I2 = {A(a), C(a)} is not an answer set of Π relative
to L.

The following result shows that answer sets must be minimal models.

Theorem 5. Let Π be a normal DL logic program with DL expressions relative
to a DL knowledge base L. If I is an answer set of Π relative to L, then I is a
minimal model of Π relative to L.

Proof: Assume, on the contrary, that I is not a minimal model relative to L. Let
J ⊂ I be a minimal model relative to L. By Theorem 4, T α

Π (∅, I) ⊆ T α
Π (∅, J) ⊆ J .

Let S = I \J . Note that S is not empty and for any A ∈ S, A �∈ T α
Π (∅, I). Since I

is an answer set of Π , for any A ∈ S, L∪T α
Π (∅, I)|Ω ∪¬I−|Ω |= A. Since J− ⊃ I−,

L∪J |Ω ∪¬J−|Ω |= A. Since every A ∈ S is in J−, L∪J |Ω ∪¬J−|Ω |= ¬A. This
means that L ∪ J |Ω ∪¬J−|Ω is not consistent, and thus J is not a model of Π
relative to L. We then have a contradiction. Therefore, I is a minimal model of
Π relative to L. ��

The next result shows that answer sets are exactly well-supported models.

Theorem 6. Let Π be a normal DL logic program with DL expressions relative
to a DL knowledge base L, and I a model of Π relative to L. I is an answer set
of Π relative to L iff I is a well-supported model of Π relative to L.
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Proof: Assume that I is an answer set relative to L. We can construct a level
mapping f : I → N , where N is an integer, as follows: For each A ∈ I, we
assign f(A) = i, where i ≥ 0 is the smallest number such that either L ∪
T i

Π(∅, I)|Ω ∪¬I−|Ω |= A or there is a rule A ← body(r) in ground(Π) such that
(T i

Π(∅, I), I) |=L body(r).
We then define a strict well-founded partial order ≺ on I such that for any

A, B ∈ I, B ≺ A iff f(B) < f(A). For each A ∈ I with f(A) = i, we always
have E = T i

Π(∅, I) ⊂ I, where for every B ∈ E, B ≺ A, such that either
L ∪ E|Ω ∪¬I−|Ω |= A or there is a rule A ← body(r) in ground(Π) such that
(E, I) |=L body(r). By Definition 4, I is a well-supported model relative to L.

Conversely, assume that I is a well-supported model relative to L. Then, there
exists a strict well-founded partial order ≺ on I such that for any A ∈ I, there
exists E ⊂ I, where for every B ∈ E, B ≺ A, such that either L ∪ E|Ω ∪¬I−|Ω
|= A or there is a rule A ← body(r) in ground(Π) such that (E, I) |=L body(r).
Such a partial order establishes a level mapping f : I → N so that for any A ∈ I,
A can be derived from some E ⊂ I at lower levels in the way as above. Next,
we show that for every A ∈ I at level i ≥ 0 we have E = T i

Π(∅, I) satisfying the
above conditions.

First, each A ∈ I at the lowest level (i = 0) does not depend on any other atom
B ∈ I, i.e., there is no B ∈ I with B ≺ A. By the assumption that there exists
E ⊂ I, where for every B ∈ E, B ≺ A, such that either L ∪ E|Ω ∪¬I−|Ω |= A
or there is a rule A ← body(r) in ground(Π) such that (E, I) |=L body(r), we
have E = ∅. Therefore, for each A ∈ I at level 0, we have E = T 0

Π(∅, I) which
satisfies the above conditions.

As the induction hypothesis, assume that for any i ≤ n and any A ∈ I at level
i, we have E = T i

Π(∅, I) such that either L∪E|Ω ∪¬I−|Ω |= A or there is a rule
A ← body(r) in ground(Π) such that (E, I) |=L body(r). Then, by Theorem 3,
for each A ∈ I at level i ≤ n, we have E = T n

Π (∅, I) which satisfies the above
conditions.

Consider A ∈ I at level n + 1. Then, there exists E ⊂ I, where for every
B ∈ E, B ≺ A, such that either (1) L ∪ E|Ω ∪¬I−|Ω |= A, or (2) there is a
rule A ← body(r) in ground(Π) such that (E, I) |=L body(r). Next, we show
that when using T n+1

Π (∅, I) to replace E, the conditions (1) and (2) still hold
for every A ∈ I at level n + 1.

For every B ∈ E, since B is at a level below n+1, by the induction hypothesis,
either (a) L ∪ T n

Π (∅, I)|Ω ∪¬I−|Ω |= B, or (b) there is a rule B ← body(r)
in ground(Π) such that (T n

Π (∅, I), I) |=L body(r). For case (a), we distinguish
between two cases: (i) B ∈ T n

Π (∅, I). In this case, if we replace B in E by
T n+1

Π (∅, I), the conditions (1) and (2) above still hold for each A ∈ I at level
n + 1. (ii) B �∈ T n

Π (∅, I). Then, for no i ≤ n, B ∈ T i
Π(∅, I); thus B is an

atomic DL expression. In this case, if we replace B in E by T n+1
Π (∅, I), the

condition (1) above still holds, since L ∪ T n
Π (∅, I)|Ω ∪¬I−|Ω |= B. Consider

the condition (2). (E, I) |=L body(r) means that for every F with E ⊆ F ⊆
I, F |=L body(r). Let us replace B in E by T n+1

Π (∅, I). Since B is a ground
atomic DL expression, by Proposition 1, (E\{B}∪T n+1

Π (∅, I), I) |=L B, because
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L ∪ (E \ {B} ∪ T n+1
Π (∅, I))|Ω ∪¬I−|Ω |= B. This shows that for any body(r),

(E \ {B} ∪ T n+1
Π (∅, I), I) |=L body(r) iff (E ∪ T n+1

Π (∅, I), I) |=L body(r). Then,
when (E, I) |=L body(r), (E ∪ T n+1

Π (∅, I), I) |=L body(r) and thus (E \ {B} ∪
T n+1

Π (∅, I), I) |=L body(r). This shows that after replacing B in E by T n+1
Π (∅, I),

the condition (2) above still holds, Therefore, if we replace B in E by T n+1
Π (∅, I),

the conditions (1) and (2) above still hold. For case (b), B ∈ T n+1
Π (∅, I). So if

we replace B in E by T n+1
Π (∅, I), the conditions (1) and (2) above still hold.

As a result, if we replace all B ∈ E by T n+1
Π (∅, I), the conditions (1) and

(2) above still hold. Therefore, for every A ∈ I at level n + 1. we have E =
T n+1

Π (∅, I) such that either L∪E|Ω ∪¬I−|Ω |= A or there is a rule A ← body(r)
in ground(Π) such that (E, I) |=L body(r).

Consequently, for every A ∈ I, either L ∪ T α
Π (∅, I)|Ω ∪¬I−|Ω |= A or A ∈

T α
Π (∅, I). This shows that I is an answer set of Π relative to L. ��

Example 4. Let L = ∅ and

Π : A(g). B(g) ← C(g). C(g)← ((A � ¬C) �B)(g).

Let P = {A, B, C}, C = {g} and Ω = {A, B, C}. HBΠ = {A(g), B(g), C(g)}
and ground(Π) = Π . Π has only one model relative to L, I = {A(g), B(g), C(g)}.
This model is not an answer set, since it is not a well-supported model of Π rel-
ative to L.

Note that we can use a fresh DL concept D to replace the DL expression
(A � ¬C) �B and add to L an axiom D ≡ (A � ¬C) �B. This yields

Π ′ : A(g). B(g)← C(g). C(g) ← D(g).
L′ : D ≡ (A � ¬C) �B.

Using the same P, C and Ω as above, Π ′ has the same answer sets relative to
L′ as Π relative to L.

The following result shows that this answer set semantics is a proper extension
to the standard answer set semantics for normal logic programs.

Theorem 7. Let L = ∅ and Π be a normal logic program without DL expres-
sions. An interpretation I is an answer set of Π relative to L iff I is an answer
set of Π under the standard answer set semantics.

Proof: By Theorem 6, I is an answer set of Π relative to L iff I is a well-
supported model of Π relative to L. By Theorem 2, I is a well-supported model
of Π relative to L iff I is a well-supported model of Π under Fages’ definition.
Then as shown in [7], the well-supported models of Π under Fages’ definition
are exactly the answer sets of Π under the standard answer set semantics. ��

3.3 Decidability Property

For a normal DL logic program Π with DL expressions relative to a DL knowl-
edge base L, the decidability of computing answer sets of Π relative to L depends
on the decidability of satisfiability of L. Since DLs are fragments of first-order
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logic, the satisfiability of L is undecidable in general cases. However, if L is built
from the description logic SHOIN or SROIQ, its satisfiability is decidable
[4,13,12].

Let L be a DL knowledge base built from a decidable description logic such
as SHOIN or SROIQ. Since HBΠ and ground(Π) are finite, it is decidable
to determine if an interpretation I is a model of Π relative to L. For any E ⊆ I
and any ground atom or DL expression A in ground(Π), it is decidable to
determine if (E, I) |=L A (resp. (E, I) |=L not A) holds, and thus it is decidable
to determine if (E, I) |=L body(r) holds for each rule r in ground(Π). Since
ground(Π) consists of a finite set of rules, it takes finite time to compute the
fixpoint T α

Π (∅, I). As a result, it is decidable to determine if an interpretation I is
an answer set of Π relative to L. Since Π has only a finite set of interpretations,
it is decidable to compute all answer sets of Π relative to L.

4 Related Work

Although many approaches to integrating rules and DLs have been proposed in
the literature [2,4,10,11,14,16,18,19], to the best of our knowledge dl-programs [4]
are the first framework which extends normal logic programs under the standard
answer set semantics to logic programs with arbitrary DL expressions relative to
an external DL knowledge base. Four different answer set semantics have been
defined for dl-programs. The first one, called weak answer set semantics [4], eas-
ily incurs circular justifications by self-supporting loops, so a second one, called
strong answer set semantics, was introduced [4]. Answer sets under the strong
answer set semantics are not minimal models of a dl-program, then a third one,
called FLP-reduct based answer set semantics, was proposed [5]. This semantics
is based on the concept of FLP-reduct from [6]. It turns out, however, that none
of the three answer set semantics extends the key well-supportedness condition
of the standard answer set semantics to dl-programs, so that their answer sets
may incur circular justifications by self-supporting loops. To resolve this prob-
lem, a fourth semantics, called well-supported answer set semantics, was recently
introduced [20], which extends the well-supportedness condition to dl-programs.
Dl-programs differ in fundamental ways from normal DL logic programs. First,
in a dl-program, Π and L share no predicate symbols, so DL expressions Q(t)
must occur together with predicate mapping operations SiopiPi. Note that in
dl-programs one cannot use only dl-atoms of the form DL[Q](t) to express all
DL expressions Q(t) because that would cut the knowledge flow from Π to L.
Second, in a dl-program, DL expressions (dl-atoms) are not allowed to occur in a
rule head, so no conclusions about L can be inferred from Π . Third, in this paper
we extend the well-supportedness condition to normal DL logic programs. The
extension process is similar to that in [20] by introducing an up to satisfaction
relation (Definition 3), but the formalization of the well-supportedness condi-
tion is significantly different. For dl-programs, since Π and L share no predicate
symbols, a model I of Π is well-supported if and only if for each A ∈ I there
is a rule A← body(r) in ground(Π) such that I satisfies body(r) and the evidence
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of the truth of body(r) is not circularly dependent on A in I. For normal DL
logic programs, however, the situation is much more complicated. As illustrated
in Example 2, since Π and L share some predicate symbols, a model I of Π
relative to L would be well-supported even if some A ∈ I is not supported by
any rule A← body(r) in ground(Π) such that I satisfies body(r). This presents
additional difficulties in formalizing the well-supportedness condition for normal
DL logic programs.
DL+log [19] (and its variant such as guarded hybrid knowledge bases [11]) is

closely related to but differs significantly from normal DL logic programs. Syn-
tactically, it divides predicate symbols into Datalog predicates and DL predicates.
The former type can only occur in Π , while the latter is not allowed to occur
(as DL expressions) behind the negation operator not. Semantically, it considers
first-order interpretations, instead of Herbrand interpretations, and defines a se-
mantics with a class of first-order models, called NM-models. In an NM-model,
DL predicates can take arbitrary truth values (as in first-order logic), but Data-
log predicates take truth values that must be minimal (as in logic programming)
when the truth values of all DL predicates are fixed. Consider a DL+log pro-
gram with Π = {B(g)← A(g)} and L = {A�C}. A, C must be DL predicates.
Let B be a Datalog predicate. This program has at least three NM-models:
I1 = {A(g), B(g)}, I2 = {A(g), B(g), C(g)} and I3 = {C(g)}. In contrast, if we
take Π as a normal DL logic program relative to L, where P = {B}, C = {g}
and Ω = ∅, Π has a unique well-supported model/answer set ∅ relative to L.

Disjunctive dl-programs [16] are closely related to normal DL logic programs,
but differ significantly at least in three ways. Let Π be a disjunctive dl-program
relative to L, where Π is built over a vocabulary Φ = (P,C), P is a finite set of
predicate symbols, and C is a nonempty finite set of constants. (1) All concepts
and roles occurring in Π are required to be included in P, so that all of them are
interpreted over the Herbrand base HBΠ of Π . This strict requirement does not
seem to be intuitive in some cases. For Example 4, since D is a fresh concept of L′

introduced to represent (A�¬C)�B, D is expected to be interpreted against L′

in first-order logic. But in a disjunctive dl-program, D must be included in P and
thus be interpreted over the Herbrand base HBΠ′ . (2) The semantics of disjunc-
tive dl-programs is based on FLP-reduct. Like the FLP-reduct based semantics
for dl-programs [5], this FLP-reduct based semantics for disjunctive dl-programs
yields answer sets that are minimal but not necessarily well-supported models.
For Example 4, let Π ′ be a disjunctive dl-program. I = {A(g), B(g), C(g), D(g)}
is an answer set of Π ′ relative to L′ under the FLP-reduct based semantics. Ob-
serve that the evidence of the truth of B(g), C(g), D(g) in the answer set can
only be inferred via a self-supporting loop B(g) ⇐ C(g) ⇐ D(g) ⇐ B(g). (3)
Disjunctive dl-programs allow only atomic DL expressions in rule bodies. We
cannot have a disjunctive dl-program with Π = {A← ¬A} and L = ∅, since ¬A
is not an atomic DL expression. One might think that this issue could be han-
dled by introducing a fresh concept B to represent the DL expression ¬A, which
yields a disjunctive dl-program with Π ′ = {A ← B} and L′ = {B ≡ ¬A}.
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However, this would produce an answer set I = {A}, which is not a well-
supported model of Π .

Extensions of logic programs with DL expressions, such as dl-programs,
DL+log, disjunctive dl-programs, and normal DL logic programs, are different
in fundamental ways from embeddings of rules and DLs into some unifying logic
formalisms, such as the embedding [2] to first-order autoepistemic logic [17] and
the embedding [18] to the logic of Minimal Knowledge and Negation as Failure
(MKNF) [15]. The two embeddings employ modal logics and transform rules Π
and DL axioms L to autoepistemic (resp. MKNF) logic formulas Π ′ and �L′ with
modal operators. Then, the semantics of Π and L is defined by the semantics of
Π ′ ∪ L′ under autoepistemic (resp. MKNF) modal logic.

5 Summary

We have introduced a new extension, called normal DL logic programs, of normal
logic programs with DL expressions relative to an external DL knowledge base.
In normal DL logic programs, arbitrary DL expressions are allowed to appear
in rule bodies and atomic DL expressions allowed in rule heads. We extended
the key condition of well-supportedness for normal logic programs under the
standard answer set semantics to normal DL logic programs and defined an an-
swer set semantics which satisfies the extended condition of well-supportedness.
As a result, answer sets under the well-supported semantics are free of circular
justifications. We show that the answer set semantics for normal DL logic pro-
grams is decidable if the underlying description logic is decidable (e.g. SHOIN
or SROIQ).

As future work, we will study computational properties of normal DL logic
programs w.r.t. different DLs, and extend normal DL logic programs to disjunc-
tive DL logic programs, where the head of a rule is a disjunction of atoms.
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Abstract. One challenge for Linked Data is scalably establishing high-
quality owl:sameAs links between instances (e.g., people, geographical
locations, publications, etc.) in different data sources. Traditional ap-
proaches to this entity coreference problem do not scale because they
exhaustively compare every pair of instances. In this paper, we pro-
pose a candidate selection algorithm for pruning the search space for
entity coreference. We select candidate instance pairs by computing a
character-level similarity on discriminating literal values that are chosen
using domain-independent unsupervised learning. We index the instances
on the chosen predicates’ literal values to efficiently look up similar in-
stances. We evaluate our approach on two RDF and three structured
datasets. We show that the traditional metrics don’t always accurately
reflect the relative benefits of candidate selection, and propose additional
metrics. We show that our algorithm frequently outperforms alternatives
and is able to process 1 million instances in under one hour on a single
Sun Workstation. Furthermore, on the RDF datasets, we show that the
entire entity coreference process scales well by applying our technique.
Surprisingly, this high recall, low precision filtering mechanism frequently
leads to higher F-scores in the overall system.

Keywords: Linked Data, Entity Coreference, Scalability, Candidate Se-
lection, Domain-Independence.

1 Introduction

One challenge for the Linked Data [4] is to scalably establish high quality
owl:sameAs links between instances in different data sources. According to the
latest statistics1, there are currently 256 datasets (from various domains, e.g.,
Media, Geographic, Publications, etc.) in the Linked Open Data (LOD) Cloud
with more than 30 billion triples and about 471 million links across different
datasets. This large volume of data requires automatic approaches be adopted
for detecting owl:sameAs links. Prior research to this entity coreference problem2

1 http://www4.wiwiss.fu-berlin.de/lodcloud/state/
2 Entity Coreference is also referred to as Entity Resolution, Disambiguation, etc.
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[1,10,15] has focused on how to precisely and comprehensively detect coreferent
instances and good results were achieved. However, one common problem with
previous algorithms is that they were only applied to a small number of instances
because they exhaustively compare every pair of instances in a given dataset.
Therefore, such algorithms are unlikely to be of practical use at the scale of
Linked Data. Although Sleeman and Finin [14] adopted a filtering mechanism
to select potentially matching pairs, their filter checks every pair of instances
by potentially having to consider all associated properties of an instance; this is
unlikely to scale for datasets with many properties.

To scale entity coreference systems, one solution would be to efficiently de-
termine if an instance pair could be coreferent by only comparing part of the
pair’s context, i.e., candidate selection. Other researchers have used the term
blocking [12] but with two different meanings: finding non-overlapping blocks of
instances such that all instances in a block will be compared to each other or
simply locating similar instance pairs. This second usage is what we refer to as
candidate selection in this paper. For an instance, we select other instances that
it could be coreferent with, i.e., selecting a candidate set of instance pairs. Sev-
eral interesting questions then arise. First, manually choosing the information
to compare might not work for all domains due to insufficient domain exper-
tise. Also, candidate selection should cover as many true matches as possible
and reduce many true negatives. Finally, the candidate selection algorithm itself
should scale to very large datasets.

In this paper, we propose a candidate selection algorithm with the properties
discussed above. Although our algorithm is designed for RDF data, it generalizes
to any structured dataset. Given an RDF graph and the types of instances to do
entity coreference on, through unsupervised learning, we learn a set of datatype
properties as the candidate selection key that both discriminates and covers the
instances well in a domain-independent manner. We then utilize the object values
of such predicates for candidate selection. In order to support efficient look-up for
similar instances, we index the instances on the learned predicates’ object values
and adopt a character level n-gram based string similarity measure to select
candidate pairs. We evaluate our algorithm on 3 instance categories from 2 RDF
datasets and on another 3 well adopted structured datasets for evaluating entity
coreference systems. Instead of only using traditional metrics (to be described
in Section 2) for evaluating candidate selection results, we propose to apply
an actual entity coreference system to the selected candidate pairs to measure
the overall runtime and the final F1-score of the coreference results. We show
that our proposed algorithm frequently outperforms alternatives in terms of the
overall runtime and the F1-score of the coreference results; it also commonly
achieved the best or comparably good results on the non-RDF datasets.

We organize the rest of the paper as following. We discuss the related work in
Section 2. Section 3 presents the process of learning the predicates for candidate
selection and Section 4 describes how to efficiently look up and select candidate
instance pairs by comparing the object values of the learned predicates. We
evaluate our algorithm in Section 5 and conclude in Section 6.
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2 Related Work

Several candidate selection algorithms have been proposed. Best Five [18] is a set
of manually identified rules for matching census data. However, developing such
rules can be expensive, and domain expertise may not be available for various
domains. ASN [21] learns dynamically sized blocks for each record with a man-
ually determined key. The authors claim that changing to different keys didn’t
affect the results but no data was reported. Marlin [3] uses an unnormalized
Jaccard similarity on the tokens between attributes by setting a threshold to 1,
which is to find an identical token between the attributes. Although it was able
to cover all true matches on some datasets, it only reduced the pairs to consider
by 55.35%.

BSL [12] adopted supervised learning to learn a blocking scheme: a disjunction
of conjunctions of (method, attribute) pairs. It learns one conjunction each time
to reduce as many pairs as possible; by running iteratively, more conjunctions
would be learned to increase coverage on true matches. However, supervised
approaches require sufficient training data that may not always be available.
As reported by Michelson and Knoblock [12], compared to using 50% of the
groundtruth for training, 4.68% fewer true matches were covered on some dataset
by training on only 10% of the groundtruth. In order to reduce the needs of
training data, Cao et. al. [5] proposed a similar algorithm that utilizes both
labeled and unlabeled data for learning the blocking scheme.

Adaptive Filtering (AF) [9] is unsupervised and is similar to our approach in
that it filters record pairs by computing their character level bigram similarity.
All-Pairs [2], PP-Join(+) [20] and Ed-Join [19] are all inverted index based ap-
proaches. All-Pairs is a simple index based algorithm with certain optimization
strategies. PP-Join(+) proposed a positional filtering principle that exploits the
ordering of tokens in a record. Ed-Join proposed filtering methods that explore
the locations and contents of mismatching n-grams. Silk [17] indexes ontology
instances on the values of manually specified properties to efficiently retrieve
similar instance pairs. Customized rules are then used to detect coreferent pairs.

Compared to Best Five and ASN, our approach automatically learns the can-
didate selection key for various domains. Unlike Marlin, our system can both
effectively reduce candidate set size and achieve good coverage on true matches.
Although BSL achieved good results on various domains, its drawbacks are that
it requires sufficient training data and is not able to scale to large datasets [13].
Cao et. al. [5] used unlabeled data for learning. However the supervised nature
of their method still requires a certain amount of available groundtruth; while
our algorithm is totally unsupervised. Similar to AF and Ed-Join, we also ex-
ploit using n-grams. However, later we show that our method covers 5.06% more
groundtruth than AF on a census dataset and it generally selects one order of
magnitude (or even more) fewer pairs than Ed-Join. All-Pairs and PP-Join(+)
treat each token in a record as a feature and select features by only considering
their frequency in the entire document collection; while we select the informa-
tion for candidate selection on a predicate-basis and consider both if a predicate
discriminates well and if it is used by a sufficient number of instances.
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The Ontology Alignment Evaluation Initiative (OAEI) [7] includes an instance
matching track that provides several benchmark datasets to evaluate entity coref-
erence systems for detecting equivalent ontology instances; however, some of the
datasets are of small scale and thus cannot sufficiently demonstrate the scala-
bility of a candidate selection algorithm. Three metrics have been well adopted
for evaluating candidate selection (Eq. 1): Pairwise Completeness (PC), Re-
duction Ratio (RR) and F-score (Fcs) [6,21]. PC and RR evaluate how many
true positives are returned by the algorithm and the degree to which it reduces
the number of comparisons needed respectively; Fcs is their F1-score, giving a
comprehensive view of how well a system performs.

PC =
|true matches in candidate set|

|true matches| , RR = 1− |candidate set|
N ∗M

(1)

where N and M are the sizes of two instance sets that are matched to one
another. As we will show in Section 5.3, when applied to large datasets (with
tens of thousands of instances), a large change in the size of the candidate set
may only be reflected by a small change in RR due to its large denominator.

3 Learning the Candidate Selection Key

As discussed, candidate selection is the process of efficiently selecting possibly
coreferent instance pairs by only comparing part of their context information.
Therefore, the information we will compare needs to be useful in disambiguating
the instances. For example, a person instance may have the following triples:

person#100 has-last-name “Henderson”
person#100 has-first-name “James”
person#100 lives-in “United States”

Intuitively, we might say that last name could disambiguate this instance from
others better than first name which is better than the place where he lives in.
The reason could be that the last name Henderson is less common than the
first name James ; and a lot more people live in the United States than those
using James as first name. Therefore, for person instances, we might choose
the object values of has-last-name for candidate selection. However, we need to
be able to automatically learn such disambiguating predicate(s) in a domain-
independent manner. Furthermore, the object values of a single predicate may
not be sufficiently disambiguating to the instances. Take the above example
again, it could be more disambiguating if we use both last name and first name.

Algorithm 1 presents the process for learning the candidate selection key, a
set of datatype predicates, whose object values are then utilized for candidate
selection. Triples with datatype predicates use literal values as objects. The
goal is to iteratively discover a predicate set (the candidate selection key) whose
values are sufficiently discriminating (discriminability) such that the vast ma-
jority of instances in a given dataset use at least one of the learned predicates
(coverage). The algorithm starts with an RDF graph G (a set of triples, <i,p,o>)
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Algorithm 1. Learn Key(G, C), G is an RDF graph, consisting a set of triples,
C is a set of instance types
1. key set ← a set of datatype properties in G
2. IC ← {i| < i,rdf:type, c >∈ G ∧ c ∈ C}
3. satisfied ← false
4. while not satisfied and key set �= ∅ do
5. for key ∈ key set do
6. discriminability ← dis(key, IC , G)
7. if discriminability < β then
8. key set ← key set − key
9. else

10. coverage ← cov(key, IC , G)
11. FL ← 2∗discriminability∗coverage

discriminability+coverage

12. score[key] ← FL

13. if FL > α then
14. satisfied ← true
15. if not satisfied then
16. dis key ← arg maxkey∈key set dis(key, IC , G)
17. key set ← combine dis key with all other keys
18. G ← update(IC, key set,G)
19. return arg maxkey∈key set score[key]

and it extracts all the datatype predicates (key set) and the instances (IC) of
certain categories (C) (e.g., person, publication, etc.) from G. Then, for each
predicate key ∈ key set, the algorithm retrieves all the object values of the key
for instances in IC . Next, it computes three metrics: discriminability, coverage
as shown in Equations 2 and 3 respectively and a F1-score (FL) on them.

dis(key, IC , G) =
|{o|t =< i, key, o >∈ G ∧ i ∈ IC}|
|{t|t =< i, key, o >∈ G ∧ i ∈ IC}|

(2)

cov(key, IC , G) =
|{i|t =< i, key, o >∈ G ∧ i ∈ IC}|

|IC |
(3)

Note, i and o represent the subject and object of a triple respectively. In the
learning process, we remove low-discriminability predicates. Because the dis-
criminability of a predicate is computed based upon the diversity of its object
values, having low-discriminability means that many instances have the same
object values on this predicate; therefore, when utilizing such object values to
look up similar instances, we will not get a suitable reduction ratio.

If any predicate has an FL (line 11) higher than the given threshold α, the
predicate with the highest FL will be chosen to be the candidate selection key.
If none of the keys have an FL above the threshold α, the algorithm combines
the predicate that has the highest discriminability with every other predicate to
form |key set|-1 virtual predicates, add them to key set and remove the old ones.
Furthermore, via the function update(IC , key set, G), for a new key, we concate-
nate the object values of different predicates in the key for the same instance to
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form new triples that use the combined virtual predicate as their predicate and
the concatenated object values as their objects. These new triples and predicates
are added to G. The same procedure can then be applied iteratively.

Worst case Algorithm 1 is exponential in the number of candidate keys because
of its two loops; but typically only a few passes are made through the outer loop
before the termination criteria is met in our current evaluations. For future work,
we will explore how to prune the initial list of candidate keys and reduce the
data complexity of functions dis and cov with sampling techniques.

4 Index Based Candidate Selection

With the learned predicates, for each instance, we present how to efficiently look
up similar instances and compute their similarity based on the objects of such
predicates. One simple approach is to compare the object values of the learned
predicates for all pairs of instances, e.g., comparing names for people instances.
However, this simple method itself might not even scale for large scale datasets.
So, we need a technique that enables efficient look-up for similar instances.

4.1 Indexing Ontology Instances

We adopt a traditional technique in Information Retrieval (IR) research, the
inverted index, to speed up the look-up process. Many modern IR systems allow
us to build separate indexes for different fields. Given an RDF graph G and the
datatype properties PR learned by Algorithm 1, we use this feature to build
indexes for the learned predicates, each of which has posting lists of instances
for each token in that field. For a learned predicate p ∈ PR, we extract tokens
from the object values of triples using p; for each such token tk, we collect all
instances that are subjects of at least one triple with predicate p and token
tk contained in its object value. With the learned predicates, each instance is
associated with tuple(s) in the form of (instance, predicate, value) by using the
learned predicates individually. We define a function search(Idx, q, pred) that
returns the set of instances for which the pred field matches the boolean query
q using inverted index Idx.

4.2 Building Candidate Set

With the index, Algorithm 2 presents our candidate selection process where
t is a tuple and t.v, t.p and t.i return the value, predicate and instance of t
respectively. For each tuple t, we issue a Boolean query, the disjunction of its
tokenized values, to the index to search for tuples (results) with similar values
on all predicates comparable to that of t. The search process performs an exact
match on each query token. is sim(t, t′) returns true if the similarity between
two tuple values is higher than a threshold.

First of all, we look up instances on comparable fields. For example, in one of
our datasets used for evaluation, we try to match person instances of both the
citeseer:Person and the dblp:Person classes where the key is the combination
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Algorithm 2. Candidate Selection(T ,Idx), T is a set of tuples using predicates
in the learned key; Idx is an inverted index
1. candidates ← ∅
2. for all t ∈ T do
3. query ← the disjunction of tokens of t.v
4. results ←

⋃
p∈Comparable(t.p)

search(Idx, query, p)

5. for all t′ ∈ results do
6. if is sim(t, t′) then
7. candidates ← candidates ∪ (t.i, t′.i)
8. return candidates

of citeseer:Name and foaf:Name. So, for a tuple, we need to search for similar
tuples on both predicates. Assuming we have an alignment ontology where map-
pings between classes and predicates are provided, two predicates p and q are
comparable if the ontology entails p � q (or vice versa).

To further reduce the size of the candidate set, it would be necessary to adopt
a second level similarity measure between a given instance (i) and its returned
similar instances from the Boolean query. Otherwise, any instance that shares a
token with i will be returned. In this paper, we compare three different definitions
of the function is sim. The first one is to directly compare (direct comp) two
tuple values (e.g., person names) as shown in Equation 4.

String Matching(t.v, t′.v) > δ (4)

where t and t′ are two tuples; String Matching computes the similarity between
two strings. If the score is higher than the threshold δ, this pair of instances
will be added to the candidate set. Although this might give a good pairwise
completeness by setting δ to be low, it could select a lot of non-coreference pairs.
One example is person names. Person names can be expressed in different forms:
first name + last name; first initial + last name, etc.; thus, adopting a low δ
could help to give a very good coverage on true matches; however, it may also
match people with the same family name and similar given names.

Another choice is to check the percentage of their shared highly similar tokens
(token sim) as shown in Equation 5:

|sim token(t.v, t′.v)|
min(|token set(t.v)|, |token set(t′.v)|) > θ (5)

where token set returns the tokens of a string; sim token is defined in Eq. 6:

sim token(si, sj) =
{tokeni ∈ token set(si)|∃tokenj ∈ token set(sj),

String Matching(tokeni, tokenj) > δ)} (6)

where si/j is a string and tokeni/j is a token from it. Without loss of generality,
we assume that the number of tokens of si is no greater than that of sj. The
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intuition is that two coreferent instances could share many similar tokens, though
the entire strings may not be sufficiently similar on their entirety. One potential
problem is that it may take longer to calculate because the selected literal values
could be long for some instances types (e.g., publication titles).

Instead of computing token level similarity, we can check how many character
level n-grams are shared between two tuple values as computed in Equation 7:

|gram set(n, t.v)
⋂

gram set(n, t′.v)|
min(|gram set(n, t.v)|, |gram set(n, t′.v)|) > θ (7)

where gram set(n, t.v) extracts the character level n-grams from a string. We
hypothesize that the n-gram based similarity measure is the best choice. The
intuition is that we can achieve a good coverage on true matches to the Boolean
query by examining the n-grams (which are finer grained than both tokens and
entire strings) while at the same time effectively reducing the candidate set
size by setting an appropriate threshold. We use min in the denominator for
Equations 5 and 7 to reduce the chance of missing true matches due to missing
tokens, spelling variations or misspellings (e.g., some tokens of people names
can be missing or spelled differently). When building/querying the index and
comparing the literal values, we filter stopwords, use lowercase for all characters
and ignore the ordering of the tokens and n-grams.

5 Evaluation

Our system is implemented in Java and we conducted experiments on a Sun
Workstation with an 8-core Intel Xeon 2.93GHz processor and 6GB memory.

5.1 Datasets

We evaluate our n-gram based approach on 2 RDF datasets: RKB3 [8] and
SWAT4. For RKB, we use 8 subsets of it: ACM, DBLP, CiteSeer, EPrints, IEEE,
LAAS-CNRS, Newcastle and ECS. The SWAT dataset consists of RDF data
parsed from downloaded XML files of CiteSeer and DBLP. Both datasets de-
scribe publications and share some information; but they use different ontologies,
and thus different predicates are involved. Their coverage of publications is also
different. We compare on 3 instance categories: RKB Person, RKB Publication
and SWAT Person. The groundtruth was provided as owl:sameAs statements
that can be crawled from RKB and downloaded from SWAT as an RDF dump
respectively. Since the provided groundtruth was automatically derived and was
incomplete and erroneous, we randomly chose 100K instances for each category,
applied our algorithm with different thresholds to get candidate selection results,
and manually checked the false positives/negatives to verify and augment the
groundtruth to improve their quality. We are in the process of completing SWAT
Publication groundtruth and will conduct relevant experiments for future work.
3 http://www.rkbexplorer.com/data/
4 http://swat.cse.lehigh.edu/resources/data/
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We also evaluate on 3 other structured datasets frequently used for evalu-
ating entity coreference systems. Each dataset has a pre-defined schema with
several attributes: name, date, etc. We convert them into RDF by treating each
attribute as a datatype property. The first one is the Restaurant dataset [16],
matching segmented online posts (records) from Fodors (331 records) to Zagat
(533 records) with 112 duplicates. It has 4 attributes: name, address, type and
city. Another dataset is the Hotel dataset [13] that has 5 attributes: name, rating,
area, price and date, matching 1,125 online hotel bidding posts from the Bidding
For Travel website5 to another 132 hotel information records from the Bidding
For Travel hotel guides with 1,028 coreferent pairs. The last one is dataset4 [9],
a synthetic census dataset, with 10K records and 5K duplicates within them-
selves. We remove the Social Security Number from it as was done in BSL [12]
to perform a fair comparison and match the 10K records to themselves.

5.2 Evaluation Methods and Metrics

In this paper, we adopt a two-phase approach for evaluating our proposed can-
didate selection algorithm. In phase one, we use the 3 well adopted metrics PC,
RR and Fcs from previous works [21,6] as discussed in Section 2. For phase
two, we adopt an actual entity coreference algorithm for detecting owl:sameAs
links between ontology instances [15] that measures the similarity of two in-
stances by utilizing the triples in an RDF graph as context information. Not only
does this context include the direct triples but also triples two steps away from
an instance. We apply our candidate selection technique on the RDF datasets
discussed in the previous section to select candidate pairs and run this algo-
rithm on the candidate sets to get the F-score of the coreference phase and
the runtime of the entire process, including indexing, candidate selection and
coreference.

As for parameter settings, for the learning process (Algorithm 1), there are
two parameters α, determining if a key could be used for candidate selection and
β, determining if a key should be removed. To show the domain independence
of our algorithm, we set them to be 0.9 and 0.3 respectively for all experiments.
We tested our algorithm on different α and β values and it is relatively insen-
sitive to β, but requires high values for α for good performance. When β is
low, only a few predicates are removed for not being discriminating enough;
when α is high, then we only select keys that discriminate well and are used
by most of the instances. For Algorithm 2, different similarity measures may
use different parameters. For Equations 4, 5, 6 and 7, we set θ to be 0.8; for
direct comp and token sim, we varied δ from 0.1 to 0.9 and report the best
results. We extract bigrams and compute Jaccard similarity for string matching
in all experiments.

5.3 Evaluation Results on RDF Datasets

From Algorithm 1, we learned the key for each RDF dataset as following:
5 www.BiddingForTravel.com
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RKB Person: full-name, job, email, web-addr and phone
RKB Publication: title
SWAT Person: citeseer:name and foaf:name

For RKB Person, full-name has good coverage but is not sufficiently discrimi-
nating; while the other selected predicates have good discriminability but poor
coverage. So, they were combined to be the key. For SWAT Person, neither of
the two selected predicates has sufficient coverage; thus both were selected.

We compare our method bigram (Eq. 7) to direct comp (Eq. 4) and token sim
(Eq. 5) that use different string similarity measures; we also compare to All-
Pairs [2], PP-Join(+) [20] and Ed-Join [19]; lastly, we compare to Naive [15]
that detects owl:sameAs links without candidate selection. Since Ed-Join is not
compatible with our Sun machine, we run it on a Linux machine (dual-core 2GHz
processor and 4GB memory), and estimate its runtime on the Sun machine by
examining runtime difference of bigram on the two machines. For coreference
results, we report a system’s best F-Score from threshold 0.1-0.9. We split each
100K dataset into 10 non-overlapping and equal-sized subsets, index each subset,
run all algorithms on the same input and report the average. We conduct a two-
tailed t-test to test the statistical significance on the results of the 10 subsets
from two systems. On average, there are 6,096, 4,743 and 684 coreferent pairs for
each subset of RKB Person, RKB Publication and SWAT Person respectively.

The results are shown in Table 1. Comparing within our own alternatives, for

Table 1. Candidate Selection Results on RDF Datasets |Pairs|: candidate set size;
RR: Reduction Ratio; PC: Pairwise Completeness; Fcs: the F1-score for RR and PC;
F-Score: the F1-Score of Precision and Recall for the coreference results; Total: the
runtime for the entire entity coreference process

Dataset System
Candidate Selection Coref

Total (s)|Pairs| RR(%) PC(%) Fcs(%) Time(s) F-score (%)

RKB Per

bigram (Eq. 7) 14,024 99.97 99.33 99.65 13.32 93.48 25.45
direct comp (Eq. 4) 104,755 99.79 99.82 99.80 14.00 92.55 51.04
token sim (Eq. 5) 13,156 99.97 98.52 99.24 15.72 93.37 27.13
All-Pairs [2] 680,403 98.64 99.76 99.20 1.34 92.04 195.37
PP-Join [20] 680,403 98.64 99.76 99.20 1.36 92.04 195.38
PP-Join+ [20] 680,403 98.64 99.76 99.20 1.39 92.04 195.42
Ed-Join [19] 150,074 99.70 99.72 99.71 1.73 92.38 72.79
Naive [15] N/A N/A N/A N/A N/A 91.64 4,765.46

RKB Pub

bigram (Eq. 7) 6,831 99.99 99.97 99.98 18.26 99.74 31.73
direct comp (Eq. 4) 7,880 99.98 99.97 99.97 22.23 99.68 36.74
token sim (Eq. 5) 5,028 99.99 99.80 99.89 79.91 99.70 88.96
All-Pairs [2] 1,527,656 96.94 97.95 97.44 3.93 98.59 877.80
PP-Join [20] 1,527,656 96.94 97.95 97.44 3.79 98.59 877.66
PP-Join+ [20] 1,527,656 96.94 97.95 97.44 4.00 98.59 877.87
Ed-Join [19] 2,579,333 94.84 98.57 96.67 409.08 99.04 1,473.47
Naive [15] N/A N/A N/A N/A N/A 99.55 34,566.73

SWAT Per

bigram (Eq. 7) 7,129 99.99 98.72 99.35 13.46 95.07 21.21
direct comp (Eq. 4) 90,032 99.82 99.86 99.84 14.30 95.06 51.33
token sim (Eq. 5) 6,266 99.99 96.81 98.37 16.58 95.07 23.70
All-Pairs [2] 508,505 98.98 99.91 99.44 1.00 95.06 108.89
PP-Join [20] 508,505 98.98 99.91 99.44 1.01 95.06 108.90
PP-Join+ [20] 508,505 98.98 99.91 99.44 1.04 95.06 108.92
Ed-Join [19] 228,830 99.54 99.79 99.66 1.48 95.01 51.66
Naive [15] N/A N/A N/A N/A N/A 95.02 12,139.60
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all datasets, both bigram and token sim have the best RR while direct comp
commonly has better PC. bigram selected almost as few pairs as token sim,
and always has better PC.

On RKB Person, bigram’s Fcs was not as good as that of direct comp and Ed-
Join; statistically, the difference between bigram and direct comp is significant
with a P value of 0.0106; the difference between bigram and token sim and All-
Pairs/PP -Join(+) is statistically significant with P values of 0.0004 and 0.0001
respectively. Also, by applying our entity coreference system to the selected pairs,
bigram has the best F-score that is statistically significant compared to that of
All-Pairs/PP -Join(+) with a P value of 0.0093.

We observed similar results on SWAT Person. For Fcs, the difference between
bigram to direct comp, token sim and Ed-Join is statistically significant with
P values of 0.0011, 0.0001 and 0.0263 respectively but not to All-Pairs/PP -
Join(+). Similarly, all other systems took longer to finish the entire process
than bigram. As for the F -score of the coreference results, we didn’t observe
any significant difference among the different systems.

On RKB Publication, bigram dominates the others in all aspects except for
|pairs|. For Fcs, except for direct comp, the difference between bigram and
others is statistically significant with P values of 0.0001. As for the corefer-
ence results, although no statistical significance was observed between bigram
and direct comp/token sim, statistically, bigram achieved a better F-score than
All-Pairs/PP -Join(+)/Ed-Join with P values of 0.0001. Similarly, adopting
bigram gave the best runtime.

Note that token sim took longer to finish than bigram even with fewer se-
lected pairs because it took longer to select candidate pairs. It would poten-
tially have to compare every pair of tokens from two strings, which was time-
consuming. This was even more apparent on RKB Publication where titles gen-
erally have more tokens than people names do.

Finally, we ran our coreference algorithm (Naive) on the subsets of each RDF
dataset. Although our proposed candidate selection algorithms were typically
slower than their competitors, they filtered out many more pairs, which led to
faster times for the complete system. Table 1 shows that using bigram was the
fastest of all options; it was 169.08, 529.65 and 938.30 times faster than Naive on
RKB Person, SWAT Person and RKB Publication; and by applying candidate
selection, the F-score of the coreference results doesn’t drop and even noticeably
better performance was achieved. For RKB Person and RKB Publication, the
improvement on the F-score is statistically significant with P values of 0.0020 and
0.0005. Such improvement comes from better precision: by only comparing the
disambiguating information selected by Algorithm 1, candidate selection filtered
out some false positives that could have been returned as coreferent by Naive.
E.g., Naive might produce a false positive for RKB Person for two frequent
co-authors, because the titles and venues of their papers are often the same;
however, by only considering their most disambiguating information, they could
be filtered out. In this case, candidate selection doesn’t only help to scale the
entire entity coreference process but also improves its overall F-score.



660 D. Song and J. Heflin

To further demonstrate the capability of our technique (bigram) in scaling
entity coreference systems, we run Naive with and without it on up to 20K
instances from each of the RDF datasets respectively and measure the speedup
factor, computed as the runtime without bigram divided by the runtime with it,
as shown in Figure 1. The runtime includes both the time for candidate selection

Fig. 1. Runtime Speedup by Applying Candidate Selection

and entity coreference. The entire coreference process was speeded up by 2 to
3 orders of magnitude. RKB Person shows less speedup than the others: first,
candidate selection found more pairs for RKB Person; second, RKB Person has
fewer paths than the other datasets, so there is less to prune.

5.4 Evaluation Results Using Standard Coreference Datasets

To show the generality of our proposed algorithm, we also evaluate it on three
non-RDF but structured datasets frequently used for evaluating entity corefer-
ence algorithms: Restaurant, Hotel and Census as described earlier. We learned
the candidate selection key for each dataset as following:

Restaurant: name
Hotel: name
Census: date-of-birth, surname and address 1

Here, we compare to five more systems: BSL [12], ASN [21], Marlin [3], AF [9]
and Best Five [18] by referencing their published results. We were unable to
obtain executables for these systems.

Here, we apply candidate selection on each of the three full datasets. First, the
scale of the datasets and their groundtruth is small. Also, each of the Restaurant
and the Hotel datasets is actually composed of two subsets and the entity coref-
erence task is to map records from one to the other; while for other datasets, we
detect coreferent instances within all the instances of a dataset itself. So, it is
difficult to split such datasets. We didn’t apply any actual coreference systems
to the candidate set here due to the small scale and the fact that we couldn’t
run some of the systems to collect the needed candidate sets. Instead, in order to
accurately reflect the impact of RR, we suggest a new metric RRlog computed
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as 1− log |candidate set|
log (N∗M) . In Table 1, on RKB Person, an order of magnitude differ-

ence in detected pairs between bigram and Ed-Join is only represented by less
than 1 point in RR; however, a more significant difference in the total runtime
was observed. With this new metric, bigram and Ed-Join have an RRlog of
46.13% and 32.77% respectively where the difference is now better represented
by 13.36%. We also compute a corresponding Fcs log using RRlog. For systems
where we reused reported results, we calculated |pairs| from their reported RR;
because BSL is supervised (thus the blocking was not done on the full dataset),
we assumed the same RR as if it was done on the full dataset.

Table 2 shows the results. Since not all systems reported results on all datasets,
we only report the available results here. Comparing within our own alternatives,

Table 2. Candidate Selection Results on Standard Coreference Datasets

Dataset System
Candidate Selection

|Pairs| RR(%) PC(%) Fcs(%) RR log(%) Fcs log(%)

Restaurant

bigram (Eq. 7) 182 99.90 98.21 99.05 56.92 72.07
direct comp (Eq. 4) 2,405 98.64 100.00 99.31 35.56 52.46
token sim (Eq. 5) 184 99.90 95.54 97.67 56.83 71.27
All-Pairs [2] 1,967 98.89 99.11 99.00 37.22 54.12
PP-Join [20] 1,967 98.89 99.11 99.00 37.22 54.12
PP-Join+ [20] 1,967 98.89 99.11 99.00 37.22 54.12
Ed-Join [19] 6,715 96.19 96.43 96.31 27.06 42.26
BSL [12] 1,306 99.26 98.16 98.71 40.61 57.45
ASN [21] N/A N/A <96 <98 N/A N/A
Marlin [3] 78,773 55.35 100.00 71.26 6.67 12.51

Hotel

bigram (Eq. 7) 4,142 97.21 94.26 95.71 30.06 45.58
direct comp (Eq. 4) 10,036 93.24 96.69 94.94 22.63 36.67
token sim (Eq. 5) 4,149 97.21 90.56 93.77 30.04 45.12
All-Pairs [2] 6,953 95.32 95.91 95.62 25.71 40.55
PP-Join [20] 6,953 95.32 95.91 95.62 25.71 40.55
PP-Join+ [20] 6,953 95.32 95.91 95.62 25.71 40.55
Ed-Join [19] 17,623 88.13 98.93 93.22 17.90 30.31
BSL [12] 27,383 81.56 99.79 89.76 14.20 24.86

Census

bigram (Eq. 7) 166,844 99.67 97.76 98.70 32.17 48.41
direct comp (Eq. 4) 738,945 98.52 98.08 98.30 23.77 38.27
token sim (Eq. 5) 163,207 99.67 96.36 97.99 32.30 48.38
All-Pairs [2] 5,231 99.99 100.00 99.99 51.70 68.16
PP-Join [20] 5,231 99.99 100.00 99.99 51.70 68.16
PP-Join+ [20] 5,231 99.99 100.00 99.99 51.70 68.16
Ed-Join [19] 11,010 99.98 99.50 99.74 47.50 64.30
AF [9] 49,995 99.9 92.7 96.17 38.97 54.87
BSL [12] 939,906 98.12 99.85 98.98 22.42 36.62
Best Five [18] 239,976 99.52 99.16 99.34 30.12 46.21

for all datasets, direct comp has the best PC; bigram and token sim have iden-
tical RR, but bigram always has better PC. Furthermore, bigram always has
the best Fcs log and has better RRlog on Restaurant and Hotel but only slightly
worse on Census than token sim.

Compared to other systems, on both Restaurant and Hotel, bigram has the
best RR, Fcs, RRlog and Fcs log, though its Fcs log was only slightly better than
that of All-Pairs/PP -Join(+). Also, with better RR, it only has slightly worse
PC than All-Pairs/PP -Join(+)/Marlin on Restaurant. Particularly, bigram
has significantly better RR (15.65% and 9.08% higher) than BSL and Ed-Join
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on Hotel; however it was not able to achieve a PC as good as these two systems
did. If we consider larger datasets, such a significant difference in RR may save a
great amount of runtime. Note that with the two new metrics, the impact of the
number of selected pairs becomes more apparent, which we believe more accu-
rately reflects its impact. On Census, All-Pairs/PP -Join(+) achieved the best
Fcs and Fcs log; while bigram still achieved better RR than BSL and BestF ive
with slightly worse PC. bigram only has a PC of 97.76% because our method
only performs exact look-ups into the index; however, in this synthetic dataset,
coreferent records were generated by modifying the original records, including
adding misspellings, removing white spaces, etc. Therefore, some of the corefer-
ent records couldn’t even be looked up. In future work, we will explore techniques
for efficient fuzzy retrieval to overcome this problem.

5.5 Scalability of Candidate Selection

Figure 2 presents the runtime by applying bigram on up to 1 million instances
of RKB Person, RKB Publication, SWAT Person and Census, showing that it
scales well on large scale datasets. Due to limited availability of high quality
groundtruth, we only measured the runtime. For SWAT Person, there are only
500K instances in the dataset. bigram scales better on RKB Person since few
instances actually use the selected predicates other than full-name. Note that

Fig. 2. Scalability of the Proposed Candidate Selection Algorithm

All-Pairs/PP-Join(+) couldn’t scale to 200K instances on any of these datasets
due to insufficient memory, though they fared significantly better Fcs on Census.

5.6 Discussion

One limitation of our algorithm is that it currently targets datasets that are
primarily composed of strings, and we adopt the same string similarity measure
for numeric values, e.g., telephone number. Given that a lot of telephone numbers
could be very similar to each other, counting the shared bigrams between two
such numbers might greatly increase candidate set size, particularly when the
data is primarily describing instances in the same geographic area.
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Another problem is that we currently perform exact match on each query
token when looking up similar instances with the index. This should work well
on datasets with decent data quality; however, when there are a lot of errors (e.g.,
misspellings, missing characters or tokens, etc.), our algorithm may not even be
able to retrieve all coreferent instances for a given instance. One possible solution
to this problem is to adopt fuzzy matching. We could compute the Soundex code
for each token and tokens with the same code are treated similar. For a given
token, we query the index with all its similar tokens.

Finally, although bigram was only tested on 1 million instances (which is
relatively small compared to the entire Linked data), it is larger than the number
of instances in many Linked Data sets. Also, the number of instances is much
smaller than the number of triples (e.g., DBPedia has 672 million triples but only
3.5 million instances), and we perform an initial filtering that instances must be
of comparable types. Assuming around 100 million instances exist in Linked Data,
they could be conservatively grouped into at least 10 sets of comparable types
with no more than 10 million instances each. Extrapolating from Figure 2, our
candidate selection could be computed in about 5.5 hours for each.

6 Conclusion

In this paper, we present an index based domain-independent candidate selection
algorithm for scalably detecting owl:sameAs links. We learn a set of predicates
for candidate selection through unsupervised learning. By indexing the instances
on the learned predicates’ object values, our algorithm is able to efficiently look
up similar instances. In the author, publication, restaurant, hotel and census
domains, using a bigram-based similarity measure, our algorithm almost always
had a better RR than all alternatives, and when a full entity coreference algo-
rithm was applied to the results, it led to the best F-score. As a result of its
high RR, it frequently runs the fastest. Interestingly, our technique enables the
overall system to produce coreference results with better F1-score by filtering
out possible false positives when comparing only on the most disambiguating in-
formation. In the future, we will apply our technique to other entity coreference
systems (e.g., [11]) to verify its capability of scaling those systems and improving
their overall performances. Also, instead of doing exact lookup into the index,
we are interested in exploring methods for efficient fuzzy retrieval.
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Abstract. Ontology matching is a task that has attracted considerable
attention in recent years. With very few exceptions, however, research in
ontology matching has focused primarily on the development of monolin-
gual matching algorithms. As more and more resources become available
in more than one language, novel algorithms are required which are ca-
pable of matching ontologies which share more than one language, or
ontologies which are multilingual but do not share any languages. In this
paper, we discuss several approaches to learning a matching function
between two ontologies using a small set of manually aligned concepts,
and evaluate them on different pairs of financial accounting standards,
showing that multilingual information can indeed improve the matching
quality, even in cross-lingual scenarios. In addition to this, as current
research on ontology matching does not make a satisfactory distinction
between multilingual and cross-lingual ontology matching, we provide
precise definitions of these terms in relation to monolingual ontology
matching, and quantify their effects on different matching algorithms.

Keywords: Multilingual and cross-lingual ontology matching, machine
learning, interoperability of financial information.

1 Introduction

Ontology matching is a discipline that has matured considerably over the last
years, which is shown by the fact that many ontology matching algorithms have
been successfully implemented and evaluated.1 However, while these algorithms
generally focus on using information in a single language that is shared by two
ontologies, multilingual and cross-lingual aspects of ontology matching are –
with the notable exception of [3,10] – still largely understudied. Assuming that
more and more ontological resources will become available on the Semantic Web
in more than one language, it is necessary to develop novel algorithms which
are able to leverage multilingual information in case it is available, as well as
capable of bridging the gap in case two ontological resources which do not share
any languages need to be matched.
1 See e.g. http://oaei.ontologymatching.org/
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In this paper, we present a new approach that relies on machine learning tech-
niques in order to match concepts in two ontologies using both multilingual and
cross-lingual information. As a very challenging use case, we have chosen finan-
cial accounting standards (fas) such as the United States Generally Accepted
Accounting Principles (us-gaap) or the German Grundsätze ordnungsmäßiger
Buchführung (gob) – not only because they represent a type of taxonomic re-
source that raises a number of methodological issues, but also because the lack
of interoperability of financial information across jurisdictional barriers is one
of the most central problems in the business domain.2 On the one hand, this is
because companies from different countries are required to report their financial
statements against different fas. As these use different financial concepts with
different interpretations, financial data reported against e.g. us-gaap cannot be
compared to financial data based on gob, as the concepts need to be matched
before any meaningful data integration can take place. On the other hand, fas
are frequently multilingual (i.e. annotated with more than one language) and
have more than one label per language, which raises the question as to how to
match financial concepts from ontologies sharing more than one language, or
concepts from ontologies which are multilingual but do not share any languages.
fas thus represent one of the primary obstacles to achieving interoperability,
and the impact of an approach that helps to solve this problem is expected to
be considerably high.

This paper addresses the afore-mentioned issues in several respects. Firstly,
we will give precise definitions of multilingual and cross-lingual ontology match-
ing in relation to monolingual ontology matching, and discuss general research
questions arising in such settings (Section 2). Moreover, we discuss several ap-
proaches which leverage multilingual and cross-lingual information in order to
learn a matching function between two ontologies, using a small set of manually
aligned financial concepts as training data. In contrast to the predominant view
of ontology matching as a classification problem (as e.g. in [4,9]), we understand
it as a ranking problem, similar to relevance ranking in information retrieval.
In particular, we describe a novel approach that trains a ranking support vec-
tor machine (see [5]) on relative preference constraints between a concept in a
source ontology and all possible concepts in a target ontology, with the goal of
ranking good matches higher than bad matches. The approach is described in
detail in Section 3 and evaluated on different pairs of fas in different scenarios,
in order to quantify the impact of multilingual and cross-lingual information on
the performance of ontology matching algorithms (see Section 4).

2 Background and Preliminaries

2.1 Monolingual, Multilingual and Cross-Lingual Ontology
Matching

Current research on ontology matching does not make a consistent distinction
between multilingual and cross-lingual ontology matching (see e.g. [3,6,10]). In
2 See http://www.xbrl.org/2010TechDiscussion/2010TechDiscussion.pdf
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the following, we will define these notions, based on the general definition of
ontology matching as “the process of finding relationships or correspondences
between entities of different ontologies” (cf. [2]). As the definitions focus on
those aspects of ontology matching which are relevant to multilingual and cross-
lingual scenarios, specific strategies – such as structure-based or instance-based
matching – will be ignored. Given a source ontology S and a target ontology T ,
the sets S(l) and T (l) of labels of S and T in a language l, and the sets LS and
LT of languages in S and T respectively, these notions can be defined as follows.

Definition 1. Monolingual ontology matching is the process of matching
entities in S and T by comparing the labels in S(l) and T (l) in a single language
l ∈ LS ∩ LT .

Definition 2. Multilingual ontology matching is the process of matching
entities in S and T by comparing the labels in S(li) and T (li) in at least two
languages li ∈ LS ∩ LT , with |LS ∩ LT | ≥ 2.

Definition 3. Cross-lingual ontology matching is the process of matching
entities in S and T either

a. by translating the labels in S(l) to at least one language l′ ∈ LT and com-
paring the labels in S(l′) with those in T (l′), or

b. by translating the labels in T (l) to at least one language l′ ∈ LS and com-
paring the labels in S(l′) with those in T (l′), or

c. by translating the labels S(l) and the labels T (l′) to at least one language
l′′ /∈ LS ∪ LT and comparing the labels in S(l′′) with those in T (l′′).

For example, given a source ontology S with labels in English, German and
Italian, monolingual ontology matching is a process that matches entities in S
to entities in a target ontology T1 with English labels by comparing the English
labels in S with those of T1. Multilingual ontology matching is a process that
matches entities in S with entities in a target ontology T2 with English and
German labels by considering the labels in English and German. Cross-lingual
ontology matching is a process that matches entities in S to entities in a target
ontology T3 with French labels either by translating the labels of S to French
(Definition 3a.), by translating the labels of the T3 to one of the languages in
LS (Definition 3b.), or by translating the labels of S and T to a third language
(Definition 3c.). We believe that e.g. what Fu et al. [3] refer to as “multilingual
ontologies” can thus be described more accurately as a cross-lingual matching
scenario involving two (or more) monolingual ontologies.

2.2 Financial Accounting Standards and XBRL

As was mentioned in the introduction, financial accounting standards (fas) dif-
fer between countries, and thus inhibit interoperability of financial information.
However, there have been important developments towards solving this problem
in recent years. From a technological perspective, the eXtensible Business Re-
porting Language (xbrl; [11]) solves the syntactic aspects of this interoperability
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issue by providing a common xml-based framework for expressing financial in-
formation. In xbrl, a fas is commonly referred to as a taxonomy, as it specifies –
among others – a hierachical structure according to which financial concepts ap-
pear in a financial statement (called presentation hierarchy in xbrl). In addition
to this, for financial concepts which determine monetary values, such taxonomies
specify how the value in question is to be calculated (e.g. “Assets” is the sum
of “Current assets” and “Non-current assets”). Similar to the hierarchical pre-
sentation structure, these calculations are recursive (e.g. “Non-current assets”
is, in turn, the sum of “Property, plant and equipment”, “Investment property”
etc.). This means that a monetary concept has a number of calculation items,
each of which may itself be calculated on the basis of further calculation items.
As such, we can distinguish between the direct calculation items of a monetary
concept (“Current assets” and “Non-current assets” for “Assets”), as well as the
elementary calculation items (e.g. “Investment property”), and likewise between
direct and elementary children in the case of the presentation hierarchy. Finally,
a concept can have more than one calculation, and more than one presentation.

The move towards xbrl has been a crucial development towards achieving
interoperability. However, it does not solve the conceptual aspects of the prob-
lem, as companies from different countries still use different vocabularies to file
their financial reports. Hence, the semantics of individual pieces of information is
still not interchangeable. The XBRL Europe Business Registers Working Group
(xebr wg) has approached this problem from a conceptual perspective, by defin-
ing a set of core financial concepts which are believed to be shared by most fas.
The main idea behind this is that if the taxonomy of core financial concepts
defines exact and close matches to the different national fas, financial informa-
tion reported against each individual fas becomes interoperable through these
mappings. While the work of the xebr wg is still ongoing, first manual matches
between the xebr core taxonomy and several national fas have already been
produced, and can thus be leveraged for the approach described in this paper.
Moreover, a very beneficial side-effect of the resource created by the xebr wg is
that it is possible to define matches between the individual taxonomies as well,
based on the manual matches to the core taxonomy. Since – as was mentioned
in the introduction – these taxonomies are frequently annotated in more than
one language, the xebr wg has created a valuable resource for the investigation
and evaluation of different multilingual and cross-lingual matching strategies.

2.3 Open Research Questions in Ontology Matching

Trojahn et al. [10] mention multilingual and cross-lingual ontology matching as
an open research issue. Below, we to explicate some of the research questions
arising in such scenarios, with a particular focus on the machine learning aspect.

Impact of machine translation in cross-lingual scenarios. Fu et al. [3] have argued
that the matching quality in cross-lingual scenarios strongly depends on the
translation quality of label translations generated by machine translation (mt)
tools. This certainly holds for the present study as well, since the choice of
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the mt system determines e.g. whether the Italian term “Conto economico” is
translated as “Income statement”3 or as “I count economical”4. The conclusion
of Fu et al. [3] is that good translation quality is a prerequisite for achieving good
quality cross-lingual ontology matches. While we do believe that this is true when
comparing cross-lingual ontology matching to monolingual ontology matching
with high-quality labels, it is worth investigating the possibility of translating
the labels of both ontologies to a third language, as it may be the case that the
quality difference between the labels can thus be reduced. In addition to this, in
a machine learning scenario, a learning algorithm may weight structure-based
similarity features higher in case string-based ones are found to be less predictive
or even unpredictive, thus reducing the importance of high-quality translations.

Impact of structural information in ontology matching. Previous work has al-
ready shown the importance of structural information in ontology matching (see
e.g. [2]). However, while it seems to be intuitively the case that algorithms capa-
ble of leveraging structural information should perform better than those which
do not have this kind of information available, the question in a machine learning
scenario is whether a learning algorithm which does not have access to structural
information can still learn a reasonably predictive matching function. Therefore,
a direct comparison between an algorithm using structural information with one
not using structural information is necessary in order to answer this question.

Aggregation of scores in multilingual scenarios. Matching concepts with annota-
tions in several languages, as well as several annotations within a single language,
raises a number of further questions. One of these is the question how the sim-
ilarity scores across different annotations should be aggregated within a single
language (intralingual aggregation) as well as between languages (interlingual
aggregation; cf. “composition” in [6]). For example, should the fact that one la-
bel of a concept CS in a language l is very similar to one label of a concept CT

in language l suffice to say that CS and CT are good matching candidates? Or
is the average over all labels within a language – averaged over all languages –
a better indicator? To illustrate the importance of the treatment of multilingual
information in ontology matching, consider the following example. The xbrl
taxonomy of the International Financial Reporting Standards 2009 specifies a
label “Total property, plant and equipment, gross” for the respective concept
PropertyPlantAndEquipment. In the Italian gaap, the corresponding concept
is called “Total tangible fixed assets”. Comparing only these two labels in a single
language would yield a very low similarity score, as the only overlap consists in
the word “total”. However, both taxonomies specify labels in Italian and French.
While the overlap in the Italian labels is still only marginally higher than in the
English ones (“Immobili, impianti e macchinari” vs. “Immobilizzazioni materi-
ali”), the French set of labels assures that the two concepts are in fact equivalent
(“Immobilisations corporelles” vs. “II Immobilisations corporelles”). This exam-
ple not only shows how vital multilingual information is for ontology matching,
3 Using Microsoft’s mt system Bing; http://www.microsofttranslator.com/
4 Using SDL FreeTranslation; http://www.freetranslation.com/
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. . . . . .︸ ︷︷ ︸
20 string-based features

︸ ︷︷ ︸
22 structural features

Fig. 1. Vector containing 42 features measuring the similarity between two concepts

but also that different strategies for intralingual and interlingual matching need
to be defined. In the following section, we present the main ideas of our approach,
as well as the features implementing the different strategies.

3 Machine Learning Approach to Ontology Matching

As was mentioned above, the general idea of our approach is to apply machine
learning techniques to ontology matching, based on the notion of ranking svms
as defined by Joachims [5]. In order to be able to apply this methodology, we are
in need of a set of manually matched concepts to train on, as well as features
representing the characteristics of each possible match. For the first issue, we
can resort to the work of the XBRL Europe Business Registers Working Group
(xebr wg), which is currently in the process of matching different fas to a set
of core concepts. For the second issue, we define an appropriate set of features
such that each combination of a source concept CS with a target concept CT

can be represented as a feature vector, as in Figure 1. As each of these specifies
the similarity between CS and CT , the value of each feature is between 0 and 1.

In total, we have thus defined 42 different features, comprising 20 string-
based features, as well as 22 structure-based ones. These will be discussed in
more detail below, before describing how the algorithm can be applied to the
resulting similarity vectors.

3.1 Definition of Feature Set

String-based features. Similar to most other approaches in the field, we make
use of a number of different string-based comparisons in order to measure the
similarity between to concepts. In particular, we use five different measures, each
of which represents a feature in the vector in Figure 1. Two similarity features
are based on the Levenshtein edit distance measure [2,8], where one is applied to
the labels of CS and CT , and the other one to the labels after their tokens have
been sorted. This is to cover cases like “Current assets” vs. “Assets, current”,
where the plain (unsorted) Levenshtein distance would be very high although
the labels are in fact very similar. Two further features use a bag-of-words cosine
similarity measure, one on the original labels and the other one after punctuation
has been removed. The fifth string-based measure uses the following substring
distance as implemented by Euzenat and Shvaiko [2].

simsubstr(label1, label2) =
2 ∗ |longest common sequence|

|label1|+ |label2|
(1)
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As mentioned in the previous section, we distinguish between different ways
of aggregating the scores within a language, as well as between languages. In
particular, we consider the best and average scores of all labels within a language,
as well as the best and average scores across all shared languages. Thus, in
order to cover these different intra- and interlingual matching strategies, we
have implemented four different aggregations for each of the above measures.
For example, the intralingual string similarity between the sets of labels of CS

and CT in a language k (i.e. CS(k) and CT (k)) using the Levenshtein measure
is calculated on the basis of both (2) for the average score simk

intra∼ over all
labels and (3) for the best score simk

intra+ of all labels.

simk
intra∼(CS(k), CT (k)) =

1
n ∗ m

n∑
i=1

m∑
j=1

simlev(liCS
, ljCT

) (2)

simk
intra+(CS(k), CT (k)) = max(simlev(l1CS

, l1CT
), . . . , simlev(lnCS

, lmCT
)) (3)

Each of these is then aggregated to yield the interlingual similarity scores. For
example, the interlingual score siminter∼/∼ between two concepts CS and CT

is calculated by taking the average similarity of the average intralingual simi-
larity scores over all n languages shared by S and T (i.e. |LS ∩ LT | = n), as
in (4), while the interlingual score siminter+/∼ takes the best similarity score
of all average intralingual scores. The scores siminter∼/+ and siminter+/+ are
analogous.

siminter∼/∼(CS , CT ) =
1
n

n∑
i=1

simi
intra∼(CS(i), CT (i)) (4)

siminter+/∼(CS , CT ) = max(sim1
intra∼(CS(1), CT (1)), (5)

. . . , simn
intra∼(CS(n), CT (n)))

We thus define string-based features, i.e. five measures with four aggregations.

Structural features. In addition to the string-based features, we have defined a
set of 22 features representing the structural similarity between two concepts. As
we cannot describe all of these features in depth, we limit ourselves to describing
the calculation of two types of features to which most of the other structural fea-
tures belong. In particular, we discuss the use of calculation information in S and
T by considering the sets of direct and elementary items in calculations of CS

and CT (i.e. Caldir
CS
×Caldir

CT
and Calele

CS
×Calele

CT
). The scores using presentation

information by considering direct and elementary children in the presentation
hierarchy are calculated analogously.
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Table 1. Matrix of string similarities between items of calculations of CS and CT

item1
CS

item2
CS

item3
CS

item4
CS

item1
CT

0.1 0.3 0.4 0.2
item2

CT
0.4 0.7 0.3 0.5

The scores for the first type of features are rather straightforward to calculate,
in that the average number5 of direct (or elementary) items in calculations of
a concept CS is compared with the corresponding number in calculations of
CT . For example, if CS has five direct calculation items and CT has three, then
simdir

cal#(CS , CT ) = 1− 5−3
5 = 0.6. Similar calculations are done for the minimal

and maximal number of elementary and direct calculation items. The second type
of structural feature combines structural information with string-based similarity
measures. In particular, we compare not the number of direct or elementary items
of the calculations of CS and CT , but their similarities in all languages under
consideration6. The motivation for this is that concepts whose components have
similar labels are expected to be similar, even if e.g. their own labels are very
different. Consider the similarity matrix of calculation items of CS and CT in
Table 1, which shows the pairwise string similarities between all calculation items
of CS and CT . In order to calculate a similarity value between CS and CT , we
apply a best-first algorithm to the matrix, which yields that item2

CS
is aligned

with item2
CT

(0.7) and item3
CS

with item1
CT

(0.4). As two calculation items have
not been aligned, we consider both as having 0.0 similarity with items in CT .
In other words, we divide the sum of the scores by max(|Caldir

CS
|, |Caldir

CT
|). This

results in an overall similarity of simdir
cal$(CS , CT ) = 0.7+0.4

4 = 0.275 for this
example. The scores for elementary calculation items are calculated similarly, as
well as the scores for children in the presentation hierarchy. As was mentioned
above, we have thus defined 22 structural features, arriving at a total of 42
features on which the ranking svm algorithm can be trained.

3.2 Learning the Matching Function

On the basis of the features just discussed, we can now represent all combinations
of concepts in S with concepts in T in terms of their similarity scores. Moreover,
since we want to apply the ranking SVM algorithm as developed by [5] in order
to learn the matching function, we need to specify relative relevance preferences
between the possible matches. As the xebr wg has defined exact matches as well
as broad and narrow matches, we can state preferences such that exact matches
of a concept CS should be ranked higher than broad and narrow matches, which
are in turn to be ranked higher than all other possible combinations of CS with
concepts in T . Therefore, we assign a target value of 3 to exact matches, 2 to broad

5 Recall from Section 2.2 that a concept can have more than one calculation and
presentation.

6 We have used the Levenshtein score of the pair of labels which matched best overall.



A Machine Learning Approach to Multilingual 673

and narrow matches, and 1 to all other combinations.7 Given the features and
similarity vectors as presented above, we can apply the ranking svm algorithm
described by Joachims [5], which produces an svm model predicting scores for
each input similarity vector. The matches can then be ranked such that those for
which the model predicts higher scores are ranked above those with lower scores.
In the experiments described in this paper, we have limited ourselves to learning
an svm with a linear kernel, which produces a single support vector.8

4 Evaluation

In order to make the impact of multilingual and cross-lingual information evi-
dent, we have defined several scenarios differing as to the type of language in-
formation they have available. As defined in Section 2, we differentiate between
monolingual matching (using one overlapping language), multilingual matching
(using at least two overlapping languages), and cross-lingual matching (involv-
ing the translation of at least one of the ontologies into at least one additional
language). In the latter case, we further distinguish between monolingual and
multilingual cross-lingual ontology matching. In addition to this, we investigate
a cross-lingual transfer scenario in which the algorithm is trained on two pairs of
taxonomies and evaluated on a third pair. The different scenarios are described
in Section 4.2. In order to be able to quantify the contribution of other types of
information to the matching process, such as the impact of structural features
and the availability of close matches, we have further defined different evaluation
settings differing with respect to the amount of information they can leverage.
These settings are described in 4.3. Sections 4.4 and 4.5 present and analyse the
results of the evaluation.

4.1 Data Set

Thanks to the fact that the xbrl Europe Business Registers Working Group
(xebr wg) has begun to manually match national financial accounting standards
to their taxonomy of core financial concepts, we are able to evaluate our matching
algorithms on the data produced by the xebr wg. In particular, we have used
version 5 of the xebr core taxonomy (xebr), the Italian Tassonomia relativa ai
Principi Contabili Italiani of 2011 (also called ITaliaCodiceCivile; itcc), and the
gaap taxonomy of the German Handelsgesetzbuch of 2011 (hgb). Table 2 lists
the sizes of the taxonomies and the languages available, as well as the matches
between them as defined by the xebr wg.
7 This means that we consider both broad and narrow matches as “close” matches,

since it did not seem reasonable to assume that narrow matches should generally be
ranked higher than broad matches or vice versa. See
http://www.cs.cornell.edu/people/tj/svm light/svm rank.html for implemen-
tational details of the tool used to train the ranking svm.

8 First experiments involving a radial basis function kernel have yielded significantly
worse results. For this reason, and due to the efficiency drawbacks compared to linear
kernels, they have been discarded so far.
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Table 2. Taxonomies used in the evaluation, with number of exact (and close) matches

Taxonomy Languages Concepts

xebr EN 269
itcc EN, FR, DE, IT 444
hgb EN, DE 3,146

xebr itcc hgb

xebr × 61 (77) 64 (475)
itcc 61 (77) × 29 (38)
hgb 64 (475) 29 (38) ×

Between xebr and itcc, the xebr wg has defined 61 exact and 77 close
matches, with 70 xebr concepts having at least one exact or close itcc match.
For xebr and hgb, 64 exact and 475 close matches were defined, with 67 xebr
concepts having at least one exact or close hgb match. Matches between itcc
and hgb were not explicitly created by the xebr wg. However, given that there
are matches from each of these taxonomies to xebr, we have applied a simple
heuristic in order to arrive at a mapping between the two. If an itcc concept
and a hgb concept were marked as an exact match of the same xebr concept,
we defined them as exact matches. If an itcc concept was marked as a close
match of an xebr concept, and this concept had an exact hgb concept match,
we marked them as close matches, and vice versa. After applying this heuristic,
we arrived at 29 exact and 38 close matches between itcc and hgb, all of which
were manually inspected and verified.

Regarding the structural content of the taxonomies, it needs to be said that
the xebr taxonomy does not define calculation information, but only provides
presentation information. This means that structural information in the xebr
/ itcc and xebr / hgb pairs is limited to leveraging presentation informa-
tion, while in the itcc / hgb both presentation and calculation information is
available. Finally, we have used an rdf conversion of the xbrl format in which
financial concepts are represented as rdf classes.

4.2 Matching Scenarios

Monolingual scenario. In the monolingual matching scenario, matching is done
on the basis of one overlapping language. As English is the only language present
in all taxonomies, we have used it for the monolingual matching scenario.

Multilingual scenario. As itcc and hgb are the only taxonomies in the data set
sharing more than one language, the multilingual scenario could only be applied
to this pair of taxonomies, using English and German labels.

Cross-lingual scenario, S translated (monolingual). As was mentioned above,
we distinguish different cross-lingual scenarios. In this first scenario, we have
removed the labels in S and T such that each contained labels only in one non-
overlapping language, in order to simulate a cross-lingual matching problem.
For the xebr to itcc pair, we isolated the Italian labels in T and translated
the English labels in S to Italian.9 For the pair xebr and hgb, we isolated the
German labels in T and translated the English labels in S to German, and for
the pair itcc to hgb, we translated the Italian labels in S to English.
9 All translations were done with the Microsoft mt system Bing.
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Cross-lingual scenario, S and T translated (monolingual). This second cross-
lingual scenario is similar to the previous one, except for the fact that we do
not translate the labels in S to a language in T , but instead translate the labels
of both S and T to a pivot language. The motivation behind this is to find out
whether the translation quality issues in cross-lingual scenarios can be mitigated
to some extent if the quality between both sets of labels is (at least assumed to
be) more similar. In this scenario, we have translated the English labels in xebr
as well as the Italian labels in itcc to German, and performed monolingual
matching. Similarly, for xebr to hgb, we have translated the English source
labels as well as the German target labels to Italian, and for the itcc to hgb
case the Italian source labels as well as the German target labels to English.

Cross-lingual scenario, S translated (multilingual). In the third cross-lingual sce-
nario, we have translated the labels in S to at least one other language existing
in T , and performed multilingual matching. In the xebr to itcc case, we have
translated the English labels in S to German and Italian, and performed multi-
lingual matching on English, German and Italian10. For xebr to hgb, we have
translated the English source labels to German and matched in English and Ger-
man. For the third pair, we first removed the English, French and German labels
from itcc, translated the remaining Italian labels to English and German, and
performed multilingual matching with the English and German labels in hgb.

Cross-lingual transfer learning scenario, S translated (multilingual). In the final
cross-lingual scenario, we wanted to investigate whether the matching function
learned on two pairs of taxonomies can be transferred to a third pair of tax-
onomies, using the similarity scores calculated in the previous scenario (cross-
lingual multilingual). In particular, for the xebr to itcc pair we trained the
ranking svm on the similarity scores between concepts in xebr and hgb, as well
as between itcc and hgb, and tested it on the scores for xebr and itcc. Simi-
larly, the xebr to hgb pair was trained on xebr to itcc and itcc to hgb, and
the itcc to hgb pair was trained on xebr to itcc and xebr to hgb respectively.

4.3 Evaluation Settings

In each of the scenarios just described, we have evaluated three different learning
settings as well as one baseline setting.11

AllInfo. In this setting, a matching function is trained and tested on all avail-
able information. In particular, it uses the similarity scores of exact and close
matches, as well as all structural features (i.e. similarity scores based on presen-
tation and calculation similarity). The matches in the test set are then ranked
according to the score assigned by the learned matching function.

10 Note that five entities in itcc needed to be translated as well, as they lacked either
an English or a German label. We assume this does not distort the results too much.

11 As the baseline setting does not involve learning, the baseline for the transfer scenario
is given by the score it yields in the cross-lingual multilingual setting.
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NoClose. This setting is similar to AllInfo except for the fact that it does not
use close matches for training and testing.

NoStruc. This setting is similar to AllInfo except for the fact that it does not
use structural information for training and testing. As was mentioned in Section
4.1, in the case of xebr/itcc and xebr/hgb this means that presentation infor-
mation is ignored, and in the case of itcc/hgb that presentation and calculation
information is ignored.

EqWeights. This is a baseline setting where the matching function is not
learned, but instead all features are assigned the same weight. In other words, the
matches are ranked simply according to their average score across all features.

4.4 Evaluation Results

The results presented in this section are based on the following configuration.
For each of the matching settings AllInfo, NoClose and NoStruc, we have
carried out a four-fold cross-validation (i.e. training on three folds and testing
on one fold). Each source concept in the training folds contained 20 similarity
vectors representing exact, close and random bad matches with concepts in the
target ontology, and they are the same 20 matches for all scenarios within one
pair of ontologies. In contrast to this, for each source concept in the test folds
the similarity vectors for all combinations with concepts in the target ontology
T is given. This means, for example, that for the taxonomy pair xebr and hgb
– with matches defined to 67 of 3,146 hgb concepts –, each validation iteration
is based on roughly 51 * 20 training examples, and evaluated on roughly 16 *
3,146 test examples (cf. Section 4.1 above).

As was mentioned in Section 3, we have used the algorithm developed by
Joachims [5] to train a ranking svm with a linear kernel. The developer of the
corresponding tool svmrank gives a default value for the regularization parameter
C (i.e. the trade-off between training error and margin) of 0.01 for “normal”
svms, and defines Crank = C ∗n (where n is the number of queries, i.e. concepts
in S) for ranking svms. Due to this dependence on the number of concepts in the
source ontology, and as the number of matches provided by the xebr wg – and
thus the number of source concepts that can be used for evaluation – differs for
each pair of taxonomies, Crank is different for each pair of taxonomies. However,
it should be noted that we have neither tried to optimize C for a given pair of
taxonomies, nor tried to find the optimal set of training samples. The results are
thus all based on the default value 0.01 for C, using a simple uniform random
sampling method that produces acceptable results for all taxonomy pairs. We
believe that this should make the results comparable.

Table 3 shows the results for the different matching settings. The column en-
titled “1” indicates the cases in which the matcher has ranked the exact match
at rank 1 (i.e. precision), “5” indicates that the times in which the exact match
was among the first 5 ranks, and analogously for column “10”. As was men-
tioned above, the baseline for each scenario is given by a matcher that uses the
average score over all similarity features (EqWeights). In addition to this, we
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Table 3. Results for monolingual, multilingual and cross-lingual matching scenarios

Scenario Setting xebr / itcc xebr / hgb itcc / hgb

1 5 10 1 5 10 1 5 10

Monolingual

AllInfo1 51.67 76.67 81.67 45.90 73.77 78.69 44.83 65.52 68.97

NoClose1 51.67 73.33 80.00 52.46 73.77 78.69 41.38 65.52 68.97

NoStruc1 46.67 66.67 76.67 50.82 72.13 78.69 41.38 55.17 58.62

EqWeights1 41.67 63.33 78.33 52.46 68.85 78.69 41.38 68.97 72.41

Multilingual

AllInfon – – – – – – 51.72 68.97 68.97

NoClosen – – – – – – 51.72 68.97 72.41

NoStrucn – – – – – – 44.83 55.17 65.52

EqWeightsn – – – – – – 44.83 72.41 75.86

Cross-lingual,
S and T
translated

AllInfoST
1 38.33 63.33 75.00 29.51 45.90 52.46 37.93 62.07 65.52

NoCloseST
1 35.00 56.67 75.00 32.79 45.90 52.46 41.38 55.17 65.52

NoStrucST
1 20.00 48.33 56.67 29.51 45.90 52.46 34.48 44.83 48.28

EqWeightsST
1 30.00 48.33 66.67 27.87 45.90 52.46 34.48 55.17 62.07

Cross-lingual,
S translated
to one
language

AllInfoS
1 35.00 56.67 63.33 27.87 42.62 47.54 34.48 65.52 68.97

NoCloseS
1 38.33 53.33 66.67 29.51 39.34 44.26 34.48 68.97 68.97

NoStrucS
1 28.33 53.33 53.33 29.51 40.98 47.54 41.38 51.72 55.17

EqWeightsS
1 30.00 53.33 58.33 24.59 39.34 42.62 41.38 65.52 68.97

Cross-lingual,
S translated
to several
languages

AllInfoS
n 56.67 78.33 86.67 49.18 70.49 75.41 44.83 65.52 72.41

NoCloseS
n 58.33 76.67 83.33 54.10 68.85 77.05 48.28 68.97 68.97

NoStrucS
n 46.67 70.00 81.67 44.26 68.85 75.41 48.28 58.62 65.52

EqWeightsS
n 40.00 71.67 81.67 47.54 70.49 73.77 48.28 65.52 68.97

Cross-lingual,
transfer

AllInfoStr
n 45.67 76.67 85.00 39.34 67.21 72.13 41.38 62.07 75.86

NoCloseStr
n 53.33 80.00 88.33 47.54 70.49 75.41 51.72 72.41 72.41

NoStrucStr
n 23.33 60.00 73.33 37.70 57.38 68.85 31.03 58.62 65.52

EqWeightsS
n 40.00 71.67 81.67 47.54 70.49 73.77 51.72 65.52 65.52

AROMA 38.33 – – 4.92 – – 3.45 – –

have aligned each pair of taxonomies with the state-of-the-art ontology aligner
AROMA [1], as it has been among the participants of the OAEI workshop series
in the past years, and as it was available for download. In order to provide a level
playing field for comparing the results, we have transformed all statements using
custom label types to rdfs:label statements, and the hierarchical presentation
information to rdfs:subClassOf (i.e. if x should appear above y in a financial
statement, then y rdfs:subClassOf x) before applying AROMA.

4.5 Discussion of Results

Impact of multilingual and cross-lingual labels. The results clearly indicate that
the performance goes up for almost all matchers if multilingual information is
available. This means that matching algorithms should be capable of leveraging
information in all overlapping languages in S and T . Interestingly, this also seems
to hold in cross-lingual scenarios, as the best results have been obtained in cross-
lingual multilingual scenarios. This is further supported by the very high scores
obtained in the cross-lingual transfer scenario.
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Impact of structural features. In almost all scenarios, the setting which did
not contain any structural information (NoStruc) performed considerably worse
than the settings which used structural information. This is as such an expected
result, as previous research has already shown the importance of structural in-
formation in ontology matching (see chapter 4.3 of Euzenat and Shvaiko [2]).

Impact of close matches. The settings ignoring close matches (NoClose) have
performed consistently better than the AllInfo setting in almost all scenarios.
While this may seem counter-intuitive at first sight, there is a reasonable ex-
planation for this. As close matches were also excluded from the test sets, the
probability of assigning rank 1 to the exact match seems to be higher, as there
are fewer candidates with high scores in the test set. As such, it seems reasonable
to assume that the close matches occupy some of the higher ranks in the AllInfo
settings, which would need to be verified in future experiments. Moreover, man-
ual analysis has revealed that close matches may even be less similar to a source
concept than bad matches. For example, combinations of the itcc source concept
TotaleAttivoCircolante (“total current assets”) with hgb target concepts
show that the similarity scores for the bad match bs.ass.fixAss (“Fixed as-
sets”) are higher than those for the close match bs.ass.other.comment (“Other
assets, disclosures”). While this may in principle be true for some combinations
of concepts, it may as well be an undesired side-effect of the fact that the map-
ping work of the xebr wg has not been completed yet, and that some of the bad
matches are in fact close (or even exact) matches which have not yet been classi-
fied as such. On the one hand, this assumption can be verified by comparing the
results of future experiments with the ones presented here. More importantly,
however, the (supposedly) bad matches which have been ranked higher than
exact or close matches can be used to speed up the work of the xebr wg, by
suggesting potential candidates not considered until now.

Comparison to baselines. Table 3 shows that the best setting in each taxonomy
pair clearly outperforms AROMA. In the cases of xebr/hgb and itcc/hgb,
AROMA has performed extraordinarily low, which is surprising given the fact
that the comparably reasonable score of 38.33% for xebr/itcc was obtained
using exactly the same default configuration. A possible explanation for this is
that the association rules approach followed by AROMA does not work well for
repetitive labels such as the ones found in fas. The results of the naive baseline
EqWeights are surprising as well, though in the opposite respect. While the
best setting outperforms the baseline in most scenarios, it is in some scenarios
as good as the best setting or better. A possible explanation is that we have not
attempted to optimize the learning parameters nor the training samples, and in
fact, the baseline can be outperformed by adjusting the parameters.

Summing up these findings, it seems best to translate the labels in the source
ontology to all languages available in the target ontology when trying to match
a monolingual source ontology to a multilingual target ontology. Moreover, in
most cases the settings in which both S and T have been translated perform
better than the settings in which only S has been translated. This suggests
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that issues with translation quality as mentioned by Fu et al. [3] can to some
extent be mitigated by translating to a pivot language. However, this claim
still needs to be supported by further evidence from several language pairs, as
the translation quality of mt systems varies greatly depending on the pair of
languages considered (cf. [7]).

5 Related Work

There have been a number of machine learning approaches to ontology matching,
such as the ones by Ichise [4] and Nezhadi et al. [9]. In particular, Ichise also
follows an svm-based approach, and Nezhadi et al. evaluate different learned
classifiers. In contrast to this, we approach the matching problem by assuming
that good matches should be ranked higher than bad ones, instead of attempting
to classify a specific pair of concepts as being either a match or no match.

Concerning multilingual and cross-lingual ontology matching, the socom
framework (Semantic-oriented cross-lingual ontology mapping; [3]) has presented
an approach to cross-lingual ontology matching. Similar to what has been dis-
cussed in this paper, they first translate the source ontology to the language of
the target ontology, and then apply monolingual matching strategies, which cor-
responds to cross-lingual ontology matching as defined in Definition 3a. above.
However, we are not aware of any attempts to combine this with multilingual
matching strategies (in the sense of Definitions 2 and 3c.), nor of an evaluation
of different cross-lingual matching scenarios at a scale presented in this paper.

6 Conclusion and Future Work

In this paper, we have presented a novel approach to ontology matching that
uses a ranking svm to learn a matching function that ranks good matches be-
tween two ontologies higher than bad matches. In addition to this, we have
provided a precise definition of multilingual and cross-lingual ontology match-
ing in relation to monolingual matching, and tried to quantify their effects on
the performance of different matching strategies. Our approach was evaluated
on different pairs of financial accounting standards in different languages, sim-
ulating both monolingual, multilingual and cross-lingual scenarios. The results
have shown that multilingual information can indeed improve the performance
of ontology matching algorithms, even in cross-lingual scenarios.

As was mentioned above, further work should go into optimising the learning
parameters of the ranking svm, in order to arrive at an estimate for the optimal
performance of the svm-based approach. This optimsation could then be at-
tempted for non-linear kernels as well, in order to be able to compare the results
obtained with each kernel. In addition to this, we have tried to use a uniform
sampling approach for all pairs of financial standards, although we have observed
that the performance of some pairs of taxonomies can be improved when choos-
ing different sampling strategies. As such, it seems reasonable to try to identify
the characteristics of the set of training samples that produces optimal results
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for a given pair of ontologies, in order to improve the composition of the train-
ing set. Finally, we have so far neglected deeper linguistic information in the
set of features. Here, it should be interesting to investigate the effects of includ-
ing similarity measures which leverage e.g. the terminological or morphological
structure of the labels.
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Abstract. The need for scalable query answering often forces Semantic
Web applications to use incomplete OWL 2 reasoners, which in some
cases fail to derive all answers to a query. This is clearly undesirable,
and in some applications may even be unacceptable. To address this
problem, we investigate the problem of ‘repairing’ an ontology T —that
is, computing an ontology R such that a reasoner that is incomplete for
T becomes complete when used with T ∪R. We identify conditions on T
and the reasoner that make this possible, present a practical algorithm
for computing R, and present a preliminary evaluation which shows that,
in some realistic cases, repairs are feasible to compute, reasonable in size,
and do not significantly affect reasoner performance.

1 Introduction

Answering SPARQL queries over RDF data sets structured using an OWL 2
ontology provides the basis for a large number of Semantic Web applications.
Such data sets can, however, be extremely large, and reasoning with OWL 2 DL
ontologies is known to be of high computational complexity. As a consequence,
complete reasoners—that is, reasoners such as Pellet, HermiT, and RACER that
are capable (modulo bugs) of correctly computing all answers to all queries for
all ontologies and datasets—often fail to deliver the required level of scalability.
Application developers thus often use scalable but incomplete reasoners—that is,
reasoners that, for some query, ontology, and dataset, fail to compute all answers
to the query. Examples of such incomplete reasoners include state of the art RDF
management systems, such as Jena [8], OWLim [6], DLE-Jena [9], and Oracle’s
Semantic Store [17], which typically provide completeness guarantees only for
ontologies expressed in the OWL 2 RL [11] profile of OWL 2 DL.

The lack of a completeness guarantee may be unacceptable for applications
in areas such as healthcare and defence, where missing answers may have seri-
ous consequences. Furthermore, even if an application can tolerate some level
of incompleteness, it is desirable to provide the highest level of completeness
that is compatible with the required scalability. Hence, techniques for improv-
ing the completeness of incomplete reasoners have recently been investigated.
A common approach is to materialise certain kinds of ontology consequences
before computing query answers. Such a solution does not require modifying
the internals of the reasoner since the relevant consequences can be added as
ontology axioms in a preprocessing step. In fact, systems such as DLE-Jena [9],

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 681–696, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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PelletDB,1 TrOWL [12], Minerva [7], and DLDB [4] internally use a complete
OWL 2 DL reasoner to transparently materialise certain axioms. Furthermore,
materialisation is used in approximation frameworks [12,2], where an OWL 2
DL ontology is projected into OWL 2 QL to allow for scalable reasoning.

Existing materialisation approaches, however, exhibit several important lim-
itations. First, materialisation is commonly performed without taking into ac-
count the capabilities of the incomplete reasoner and may thus introduce re-
dundant axioms. Second, to avoid a blowup in the ontology size, typically only
subsumptions between (named) classes are materialised. Third, the extent to
which materialisation improves a reasoner’s completeness is often unclear, par-
ticularly if the data set is large, frequently changing, or unknown in advance.

In this paper, we present a novel approach to materialisation that addresses
these limitations. Given an OWL 2 DL ontology T and a reasoner complete for
OWL 2 RL, we show how to compute a repair R of T for the given reasoner.
Intuitively, R is a set of OWL 2 RL consequences of T that, if added to T ,
allow the reasoner to become complete for T—that is, by using T ∪R as input,
the reasoner can correctly answer all queries w.r.t. T for all data sets. We focus
on achieving completeness w.r.t. ground certain answers (i.e., answers obtained
by matching query variables to named individuals). This is consistent with the
semantics of SPARQL, and it allows us to ensure the existence of a repair when-
ever T can be rewritten into an OWL 2 RL ontology. Our technique is ‘guided’
by both the input ontology and the reasoner, which limits the size of R and
ensures that adding R to T has minimal impact on the reasoner’s scalability.
Towards this goal, we proceed as follows.

In Section 3, similarly to our previous work [16,15], we devise a way of ab-
stracting concrete reasoners using a notion of a reasoning algorithm, and we
formalise the notion of an ontology repair for a reasoning algorithm.

In Section 4 we present a practical, two-step technique for computing a repair
of an OWL 2 DL ontology T for a reasoner complete for OWL 2 RL. We first
rewrite T into an OWL 2 RL ontology T ′ that is entailed by T and that preserves
all ground answers to arbitrary queries over T , regardless of the data. Based on
this rewriting, we subject the incomplete reasoner to a series of tests, whose
results identify the subset of the rewriting that constitutes a repair.

In Section 5 we demonstrate empirically that repairs can be computed in
practice for well-known ontologies and reasoners. Our experiments show that the
size of repairs is typically quite small, and that extending the original ontology
with a repair typically has a negligible impact on reasoner performance.

2 Preliminaries

In this paper we use the standard notions of constants, variables, (function-
free) atoms, sentences, substitutions, satisfiability, unsatisfiability, and entailment
(written |=) from first-order logic. An application of a substitution σ to a term,
atom, or formula α is written as σ(α). The falsum symbol (i.e., the symbol that
1 http://clarkparsia.com/files/pdf/pelletdb-whitepaper.pdf

http://clarkparsia.com/files/pdf/pelletdb-whitepaper.pdf
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is false in all interpretations) is written as ⊥. A datalog rule r is an expression
of the form B1 ∧ . . . ∧Bn → H where H is either ⊥ or an atom, each Bi is an
atom, and each variable occurring in H occurs in some Bi as well. The body
of r is the set body(r) = {B1, . . . , Bn}, and the head of r is head(r) = H . Both
head and body atoms can contain the equality predicate ≈, and head atoms
can also contain the inequality predicate �≈. A datalog rule is interpreted as
a universally-quantified first-order implication. It is well known that checking
whether a first-order theory entails a datalog rule can be realised as follows.

Proposition 1. Let F be a set of first-order sentences and let r be a datalog rule
such that body(r) = {B1, . . . , Bn} and head(r) = H. Then, for each substitution
σ mapping the variables of r to distinct constants not occurring in F or r, we
have F |= r if and only if F ∪ {σ(B1), . . . , σ(Bn)} |= σ(H).

2.1 OWL 2 DL and OWL 2 RL

We assume the reader to be familiar with the OWL 2 DL ontology language
[10]. For succinctness, we use the Description Logics (DL) notation to write
down OWL 2 DL axioms; please refer to [1] for an overview of the relationship
between DLs and OWL. As is common in the literature, we partition an OWL 2
DL ontology into a TBox (i.e., a finite set of axioms describing the classes and
properties in a domain of discourse) and an ABox (i.e., a finite set of facts). For
simplicity, we assume that all ABox assertions refer to classes and properties
only (i.e., that they do not contain complex class and property expressions); an
ABox is thus allowed to contain class and property assertions, equalities, and
inequalities, all of which can involve named and/or unnamed individuals.

OWL 2 RL [11] is a prominent profile of OWL 2 DL. Each OWL 2 RL ontology
can be translated into an equivalent datalog program using (a straightforward
extension of) the transformation presented in [3]. This close connection with
datalog makes OWL 2 RL a popular implementation target since OWL 2 RL
reasoners can be implemented by extending RDF triple stores with deductive
features. For simplicity, in this paper we assume that each OWL 2 RL axiom
α can be translated into a single datalog rule π(α); this can be ensured by
transforming axioms using de Morgan identities to eliminate disjunctions and
conjunctions in subclass and superclass positions, respectively.

Example 1. Consider the following OWL 2 DL ontology that describes the
organisation of a typical university.

∃take.Co � Student � take(x, y) ∧ Co(y) → Student(x) (1)
GradCo � Co � GradCo(x) → Co(x) (2)

PhDSt � GradSt � PhDSt(x) → GradSt(x) (3)
Student � Co � ⊥ � Student(x) ∧ Co(x) → ⊥ (4)

∃teach.� � Employee � teach(x, y) → Employee(x) (5)
GradSt � ∃take.GradCo (6)

ResAsst � PhDSt � ∃teach.LabPrac (7)
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According to the definition of OWL 2 RL [11], axioms (1)–(5) are OWL 2 RL
axioms, and so each axiom can be transformed into an equivalent datalog rule
shown on the righthand side. In contrast, axioms (6) and (7) contain an exis-
tential quantifier (someValuesFrom in OWL 2 jargon) in the superclass position,
so they cannot be translated into an equivalent datalog rule. The OWL 2 RL
profile therefore disallows axioms such as (6) and (7). ♦

2.2 Queries

A union of conjunctive queries (UCQ) Q with a query predicate Q is a datalog
program in which each rule contains Q in the head but not in the body. We
assume that query predicates do not occur in TBoxes and ABoxes.

Let Q be a UCQ with query predicate Q; let F be a set of first-order sentences;
let A be an ABox; let G be a class not occurring in F , A, and Q; let AG be the
ABox containing the class assertion G(a) for each individual a occurring in A;
and let QG be the UCQ obtained from Q by adding to the body of each rule
r ∈ Q the atom G(x) for each variable x occurring in r. A tuple of constants �a
is a certain answer to Q w.r.t. F and A if the arity of �a agrees with the arity
of Q and T ∪ A ∪Q |= Q(�a). The set of all certain answers of Q w.r.t. F and A
is written as cert(Q,F ,A). If Q is propositional (i.e., if the query is Boolean),
then cert(Q,F ,A) is either empty or it contains the tuple of zero length; in such
cases, we commonly write cert(Q,F ,A) = f and cert(Q,F ,A) = t, respectively.
Furthermore, �a is a ground certain answer to Q w.r.t. F and A if the arity of �a
agrees with the arity of Q and F ∪ A ∪QG ∪AG |= Q(�a). The set of all ground
certain answers of Q w.r.t. F and A is written as certG(Q,F ,A).

3 A Framework for Repairing OWL Ontologies

We now introduce the technical framework that the rest of this paper depends
on. In particular, in Section 3.1, we formalise the notion of a reasoning algorithm,
and in Section 3.2 we formalise the notion of an ontology repair.

3.1 Reasoning Algorithms

As in [16,15], we abstract concrete reasoners using a notion of a reasoning algo-
rithm. This has several benefits: it allows us to precisely specify the assumptions
that a reasoner must satisfy for our results to be applicable, it allows us to pre-
cisely define the notions of completeness and repair, and it allows us to prove
that our algorithm for repairing ontologies indeed guarantees completeness.

Definition 1. A reasoning algorithm ans is a computable function that takes
as input an arbitrary OWL 2 DL TBox T , an arbitrary ABox A, and either a
special unsatisfiability query ∗ or an arbitrary UCQ Q. The return value of ans
is defined as follows:

– ans(∗, T ,A) is either t or f; and
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– ans(Q, T ,A) is defined only if ans(∗, T ,A) = f, in which case the result is a
set of tuples each having the same arity as the query predicate of Q.

Intuitively, ans(∗, T ,A) asks the reasoner to check whether T ∪ A is unsatisfi-
able, and ans(Q, T ,A) asks the reasoner to evaluate Q w.r.t. T and A. If T ∪A
is unsatisfiable, then each tuple of the same arity as the query predicate of Q is
trivially an answer to Q; therefore, the result of ans(Q, T ,A) is of interest only
if ans(∗, T ,A) = f—that is, if ans identifies T ∪ A as satisfiable.

Example 2. Let rdf, rdfs, rl, and classify be reasoning algorithms that, given a
UCQ Q, an OWL 2 TBox T , and an ABox A, proceed as described next.

The algorithm rdf ignores T and evaluates Q w.r.t. A; more precisely, we
have rdf(∗, T ,A) = f and rdf(Q, T ,A) = cert(Q, ∅,A). Thus, rdf captures the
behaviour of RDF reasoners.

The algorithm rdfs constructs a datalog program Prdfs by translating each
RDFS axiom α in T into an equivalent datalog rule; then, rdfs(∗, T ,A) is always
answered as f; furthermore,Q is evaluated w.r.t. T andA by evaluating Prdfs over
A—that is, rdfs(Q, T ,A) = cert(Q,Prdfs,A). Thus, rdfs captures the behaviour
of RDFS reasoners such as Sesame.

The algorithm rl constructs a datalog program Prl by translating each OWL
2 RL axiom α in T into an equivalent datalog rule; then, rl(∗, T ,A) is answered
by checking whether Prl ∪ A is satisfiable—that is, rl(∗, T ,A) = t if and only
if Prl ∪ A |= ⊥; furthermore, Q is evaluated w.r.t. T and A by evaluating Prl

over A—that is, rl(Q, T ,A) = cert(Q,Prl,A). Thus, rl captures the behaviour of
OWL 2 RL reasoners such as Jena and Oracle’s Semantic Data Store.

The algorithm classify first classifies T using a complete OWL 2 DL reasoner;
that is, it computes a TBox T ′ containing each subclass axiom A � B such
that T |= A � B, and A and B are (named) classes occurring in T . The algo-
rithm then proceeds as rl, but considers T ∪ T ′ instead of T ; more precisely,
classify(∗, T ,A) = rl(∗, T ∪ T ′,Ain) and classify(Q, T ,A) = rl(Q, T ∪ T ′,A). In
this way, classify captures the behaviour of OWL 2 RL reasoners such as DLDB
and DLE-Jena that try to be ‘more complete’ by materialising certain conse-
quences of T . ♦

Reasoning algorithms such as the ones specified in Example 2 are incomplete
for OWL 2 DL—that is, there exist inputs for which they fail to compute all
ground certain answers. These algorithms, however, are complete for a fragment
of OWL 2 DL: algorithms rl and classify are complete for OWL 2 RL inputs,
and algorithms rdf and rdfs are complete for RDF and RDFS, respectively. We
next formally define the notion of an algorithm being complete for a fragment
of OWL 2 DL (w.r.t. ground certain answers). Intuitively, for each UCQ, such
an algorithm computes at least all ground certain answers for the UCQ and the
part of the TBox that fits into the fragment in question.

Definition 2. Given an OWL 2 DL TBox T and a fragment L of OWL 2 DL,
T |L is the set of all L-axioms in T .
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Let ans be a reasoning algorithm, and let L be a fragment of OWL 2 DL. We
say that ans is complete for L if the following conditions hold for each OWL 2
DL TBox T , each UCQ Q, and each ABox A:

– T |L ∪ A |= ⊥ implies ans(∗, T ,A) = t; and
– ans(∗, T |L,A) = f implies certG(Q, T |L,A) ⊆ ans(Q, T ,A).

Note that an L-complete reasoning algorithm need not be sound (i.e., it may
compute answers that are not certain answers). Although virtually all existing
concrete reasoners are based on sound algorithms, their implementation may
be unsound due to bugs. The results presented in this paper, however, do not
require reasoning algorithms to be sound, so we can repair ontologies for concrete
reasoners even if they are unsound. This is important in practice since testing
reasoners for soundness is currently infeasible.

3.2 The Notion of a Repair

Intuitively, a repair of an OWL 2 DL TBox T for an algorithm ans is a TBox
R such that adding R to T allows ans to correctly compute all ground certain
answers for all UCQs and all ABoxes. For a repair to be useful, R should not
introduce new consequences—that is, R should be a logical consequence of T .
This intuition is captured by the following definition.

Definition 3. Let T be an OWL 2 DL TBox and let ans be a reasoning algo-
rithm. A repair of T for ans is an OWL 2 DL TBox R such that T |= R, and
the following conditions hold for each UCQ Q and each ABox A:

– T ∪ A |= ⊥ implies ans(∗, T ∪R,A) = t; and
– ans(∗, T ∪ R,A) = f implies certG(Q, T ,A) ⊆ ans(Q, T ∪R,A).

Example 3. Let T be the TBox containing axioms (1)–(7) from Example 1, let
A = {PhDSt(a), ResAsst(a)}, and let Q1 and Q2 be the following UCQs:

Q1 = {Student(x) → Q(x)} (8)
Q2 = {Employee(x) → Q(x)} (9)

One can check that certG(Q1, T ,A) = certG(Q2, T ,A) = {a}.
Consider now the algorithm rl from Example 2. Since axioms (6) and (7) are

not in OWL 2 RL, the axioms are ignored by the algorithm. Consequently,
Prl contains only the datalog rules corresponding to axioms (1)–(5), and so
rl(Q1, T ,A) = rl(Q2, T ,A) = ∅—that is, rl is not complete for T . One can, how-
ever, simulate the relevant consequences of axioms (6) and (7) using the OWL
2 RL TBox R1 containing the following axioms:

GradSt � Student � GradSt(x) → Student(x) (10)
ResAsst � PhDSt � Employee � ResAsst(x) ∧ PhDSt(x) → Employee(x) (11)

Clearly, T |= R1; hence, extending T with R1 does not change the consequences
of T . The addition of axioms (10) and (11) to T , however, changes the behaviour
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of algorithm rl; indeed, rl(Q1, T ∪ R1,A) = rl(Q2, T ∪ R1,A) = {a}. We show in
the following section that R1 is a repair of T for rl; that is, for an arbitrary UCQ
Q and ABox A, running algorithm rl on Q, T ∪R1, and A computes all ground
certain answers of Q w.r.t. T and A.

Next, consider the algorithm classify from Example 2. One can see that
classify(Q1, T ,A) = {a} but classify(Q2, T ,A) = ∅—that is, classify is also not
complete for T . Moreover, since classify is complete for OWL 2 RL, TBox R1 is
a repair of T for classify. Note, however, that the classification of T takes care
of axiom (10). Let R2 be the TBox containing only axiom (11). One can easily
see that rl(Q2, T ∪R2,A) = {a}; in fact, we show in the following section that
R2 is a repair of T for classify.

Finally, consider the algorithm rdfs form Example 2. In spite of the fact that
rdfs(Q1, T ∪ R1,A) = {a}, TBoxR1 is not a repair of T for rdfs: since (11) is not
an RDFS axiom, it is ignored by algorithm rdfs and so rdfs(Q2, T ∪R1,A) = ∅.
In fact, even if we take R′ to be the maximal set of RDFS axioms that logically
follow from T (which is finite for RDFS), we can see that rdfs(Q2, T ∪R′,A) = ∅;
consequently, no repair of T for rdfs exists. ♦

4 Repairing OWL 2 RL Reasoners

We now turn our attention to the problem of computing a repair for an OWL 2
DL TBox and a reasoning algorithm. In Section 4.1 we present a straightforward
way of repairing via so-called TBox rewritings, and in Section 4.2 we show how
to optimise repairs for reasoning algorithms that are complete for OWL 2 RL.

4.1 TBox Rewritings as Repairs

We next show that a repair of an OWL 2 TBox T for an algorithm ans can be
obtained by rewriting T into the fragment of OWL 2 DL that ans can handle.
Before proceeding, we first recapitulate the formal definition of a TBox rewriting.

Definition 4. Let T be an OWL 2 DL TBox and let L be a fragment of OWL
2 DL. An L-rewriting of T is a TBox T ′ in fragment L such that T |= T ′ and
the following conditions hold for each ABox A and each UCQ Q:

– T ∪ A |= ⊥ implies T ′ ∪ A |= ⊥; and
– certG(Q, T ,A) = certG(Q, T ′,A).

Note that, unlike T |L, an L-rewriting of T may not be a subset of T , and
may even be disjoint from T . Rewritings were introduced mainly to facilitate
reasoning in a complex ontology language by reasoning in a simpler language:
instead of reasoning directly with an OWL 2 DL TBox T , we compute a TBox
T ′ in a simpler fragment L such that, for an arbitrary UCQ Q and an arbitrary
ABox A, the ground certain answers of T and T ′ coincide; we can then answer
queries over T by applying to T ′ a reasoning algorithm complete for L.

Example 4. Let T be the TBox consisting of axioms (1)–(7). The OWL 2 RL
TBox T ′ consisting of axioms (1)–(5) and (10)–(11) is an OWL 2 RL rewriting
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of T . Thus, instead of answering a query over T using an OWL 2 DL reasoner,
we can answer the query over T ′ using an OWL 2 RL reasoner.

Note, however, that no RDFS rewriting of T exists: even if we take T ′′ to be
the maximal set of RDFS axioms that logically follow from T , for Q2 and A as
defined in Example 3 we have certG(Q2, T ′′, A) = ∅. ♦

The following proposition, the proof of which is straightforward, establishes
the connection between TBox rewritings and repairs. According to this propo-
sition, the TBox T ′ in Example 4 is a repair of T for algorithm rl.

Proposition 2. Let T be an OWL 2 TBox, let L be a fragment of OWL 2, and
let ans be a reasoning algorithm complete for L. If R is an L-rewriting of T ,
then R is a repair of T for ans.

Although this simple result provides us with a straightforward way of repairing
certain OWL 2 DL ontologies, as we discuss in the following section, repairs ob-
tained in this way can be unnecessarily large. Therefore, we develop a technique
that optimises a repair for the reasoner at hand.

4.2 Repairing a Class of Algorithms Complete for OWL 2 RL

Reasoners based on RDF triple stores and databases, such as Jena, OWLim,
Oracle’s Semantic Datastore and DLE-Jena, are typically complete at least for
OWL 2 RL. Therefore, in the rest of this section we focus on repairing an OWL
2 DL TBox T for a reasoner ans that is complete for OWL 2 RL.

By Proposition 2, we can solve the aforementioned problem by computing
an OWL 2 RL rewriting of T . Depending on the language that T is expressed
in, systems such as REQUIEM [13] and KAON2 [5] can compute a (possibly
disjunctive) datalog rewriting; now whenever the rewriting is a datalog program,
each datalog rule in the rewriting can always be ‘rolled-up’ into an OWL 2
RL axiom. Therefore, in order to simplify the presentation, we consider such
rewritings to be OWL 2 RL TBoxes rather than datalog programs.

Note, however, that, if an OWL 2 RL rewriting T ′ of T exists, it must capture
all OWL 2 RL consequences of T and can thus be very large; in fact, the size
of T ′ can in the worst case even be exponential in the size of T . Thus, to make
our approach practicable, it is desirable to reduce the size of a repair as much
as possible. This can be achieved in (at least) two ways.

First, rewritings often contain redundant axioms, so we can try to minimise
them—that is, we can identify a smallest subset of T ′ that is also a rewriting of T .
While minimisation can be computationally very expensive, as a bare minimum
we can eliminate from T ′ each axiom α for which T |rl |= α holds; this can be
straightforwardly checked using a sound and complete OWL 2 DL reasoner. A
repair obtained in this way does not contain axioms whose consequences can be
derived from T |rl by OWL 2 RL complete reasoning algorithms.

Second, we can exploit the fact that, while a reasoning algorithm might be
complete only for OWL 2 RL, the algorithm may actually take into account
some consequences of the axioms in T \ T |rl. Consider again algorithm classify
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from Example 2 and a TBox consisting of axioms (1)–(7). As shown in Example
4, a rewriting of this TBox consists of axioms (1)–(5) and (10)–(11); however, as
discussed in Example 3, only axiom (11) is needed to repair the TBox for classify.
Based on this observation, in the rest of this section we show how to reduce the
size of a repair beyond what is possible via minimisation of a rewriting.

In order to achieve this goal, we first introduce the notion of a datalog-
reproducible algorithm, which captures the class of reasoners to which our ap-
proach is applicable. This notion was inspired by an observation that many state
of the art reasoners that can handle (a fragment of) OWL 2 DL are based on
deductive database technologies: given a UCQ Q, a TBox T , and an ABox A,
these reasoners first ‘saturate’ A by adding all assertions that are entailed by
T ∪ A ; next, they answer Q by simply evaluating it over the saturated ABox.
The ABox saturation process depends only on T and A, and it can be charac-
terised at an abstract level as evaluating over A a datalog program that depends
only on T . This intuition is formalised by the following definition.

Definition 5. A reasoning algorithm ans is datalog-reproducible if, for each
OWL 2 DL TBox T , a datalog program PT exists such that the following holds:

– for each ABox A and each UCQ Q,
• ans(∗, T ,A) = t if and only if PT ∪ A |= ⊥, and
• ans(∗, T ,A) = f implies ans(Q, T ,A) = cert(Q,PT ,A); and

– algorithm ans is monotonic—that is, for all OWL 2 DL TBoxes T and T ′,
we have PT ∪T ′ |= PT .

If program PT contains predicates or individuals that do not occur in T , these
are considered to be ‘private’ to ans and are not accessible elsewhere (e.g., in
queries, TBoxes, and ABoxes).

Note that a datalog-reproducible reasoning algorithm does not need to con-
struct PT ; what matters is that some datalog program PT exists that charac-
terises the behaviour of the algorithm.

Example 5. Algorithms rdf, rdfs and rl from Example 2 explicitly construct a
datalog program PT , so they are clearly datalog-reproducible. Note, however,
that algorithm classify is also datalog-reproducible even through it does not
directly construct a datalog program: the algorithm’s behaviour can be charac-
terised by a program PT containing all rules corresponding to the axioms in T |rl
extended with the rule A(x) → B(x) for each pair of classes A and B occurring
in T such that T |= A � B. ♦

Note also that, even if a reasoner uses a particular datalog program as part
of its implementation, the actual rules of the program may not be available to
the users of the reasoner. For example, the rules used for reasoning by Oracle’s
Semantic Data Store are not publicly available; however, the reasoner can still
be considered datalog-reproducible as its external behaviour can be captured
using a datalog program. As we show next, our approach does not need to know
the actual rules in order to repair an ontology: it suffices to know that a suitable
datalog program exists.
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As we discuss next, not all reasoning algorithms are datalog-reproducible.

Example 6. Reasoning algorithms based on query rewriting (e.g., algorithms
underpinning the QuONTO reasoner) are not datalog-reproducible: although
they answer queries by first constructing a datalog program, this program de-
pends on both on the query and the TBox, and not on the TBox alone.

As another example, consider a reasoning algorithm that behaves as algorithm
rdf from Example 2, but that first removes from the input ABox each assertion
involving an individual whose IRI belongs to a certain predefined namespace.
(This could be done, e.g., for efficiency or trust reasons.) Fact ‘removal’ cannot
be represented using a monotonic theory, so this algorithm is clearly not datalog-
reproducible. ♦
We now show how to compute a repair of a TBox T for an algorithm ans that
is datalog-reproducible and complete for OWL 2 RL. Intuitively, the behaviour
of ans on T is characterised by a datalog program PT so, given an OWL 2 RL
rewriting T ′ of T , we can safely disregard each axiom in T ′ that is logically
entailed by PT . In other words, a repair of T for ans needs to contain only
the essential axioms of T ′—that is, the axioms that are not entailed by PT .
Furthermore, the rewriting T ′ is an OWL 2 RL TBox, so each axiom α ∈ T ′

corresponds to an equivalent datalog rule π(α); but then, by Proposition 1 we can
construct from π(α) an ABoxAα and a queryQα such that ans(Qα, T ,Aα) = t if
and only if PT |= α. A repairR of T for ans can thus be obtained as a TBox that
contains each axiom α ∈ T ′ such that ans(Qα, T ,Aα) = f. Since ans is complete
for OWL 2 RL and R is an OWL 2 RL TBox, extending T with R will allow
ans to recover the missing consequences of T and thus become complete.

Definition 6. Let T be an OWL 2 TBox, let T ′ be an OWL 2 RL rewriting of T ,
let ans be a datalog-reproducible reasoning algorithm, and let λ be a substitution
that maps each variable in the signature to a fresh individual. The essential
subset of T ′ for ans is the TBox R that contains each axiom α ∈ T ′ satisfying
the following conditions, where r = π(α) and Ar

λ = {λ(B) | B ∈ body(r)}:2

1. head(r) = ⊥ and ans(∗, T ,Ar
λ) = f; or

2. head(r) = H with H �= ⊥ and ans({λ(H) → Q}, T ,Ar
λ) = f, for Q a propo-

sitional query predicate.

Example 7. Let T contain axioms (1)–(7), and let T ′ be a rewriting of T that
contains axioms (1)–(5) and (10)–(11).

The essential subset of T ′ for algorithm rl from Example 2 contains (10) and
(11). For example, let α be axiom (10), so π(α) = r = GradSt(x) → Student(x).
Then for Ar

λ = {GradSt(a)} and Q = {St(a)→ Q} we have rl(Q, T ,Ar
λ) = f, so

α must be included into the essential subset of T ′. Analogous reasoning applies
to axiom (11).

In contrast, the essential subset of T ′ for algorithm classify contains only (11)
since, for Q and Ar

λ as defined above, we have classify(Q, T ,Ar
λ) = t. ♦

2 Note that π(α) is the translation of α into a datalog rule from Section 2.
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We next present the main result of this paper, which shows that essential
subsets can be used as repairs.

Theorem 8. Let T be an OWL 2 TBox, let T ′ be an OWL 2 RL rewriting of
T , let ans be a datalog-reproducible algorithm complete for OWL 2 RL, and let
R be the essential subset of T ′ for ans. Then, R is a repair of T for ans.

Proof. Assume that ans is complete for OWL 2 RL and let λ be a substitution
that maps each variable in the signature to a fresh individual.

We first show that PR |= R. To this end, let R1 be the subset of all rules
r ∈ R such that PR ∪ Ar

λ |= ⊥, and let R2 = R \ R1. Furthermore, let R1 be
the set of rules obtained by replacing the head atom in each rule in R1 with ⊥.
Since clearly R1 ∪R2 |= R, it suffices to show that PR |= R1 ∪R2. So, let r be
an arbitrary rule in R1 ∪R2.

– Assume that r ∈ R1. Then, by the definition of R1, we have PR ∪Ar
λ |= ⊥.

But then, since head(r) = ⊥, by Proposition 1 we have PR |= r, as required.
– Assume that r ∈ R2. Then, PR ∪ Ar

λ �|= ⊥. By the definition of datalog-
reproducible algorithms, then ans(∗,R,Ar

λ) = f. Furthermore, we clearly
have R ∪ Ar

λ |= λ(H), where H = head(r). Hence, certG(Q,R,Ar
λ) = t for

Q = {λ(H) → Q}. But then, since ans is complete for OWL 2 RL and R
is an OWL 2 RL TBox, we have that certG(Q,R,Ar

λ) ⊆ ans(Q,R,Ar
λ) for

each UCQ Q. Therefore, ans(Q,R,Ar
λ) = t, so by the definition of datalog-

reproducible algorithms we also have PR∪Ar
λ |= λ(H). But then, by Propo-

sition 1, we have PR |= r, as required.

We next show that, since R is an essential subset of T ′ for ans, we have
PT |= T ′ \ R. To this end, consider an arbitrary rule in r ∈ T ′ \ R. We have
the following possibilities:

– head(r) = ⊥. In this case, by the definition of essential subset we have that
ans(∗, T ,Ar

λ) = t and hence PT ∪ Ar
λ |= ⊥. But then, by Proposition 1 we

have PT |= r.
– head(r) = H where H �= ⊥. By the definition of essential subset, we have

ans({λ(H)→ Q}, T ,Ar
λ) = t. But then, by Proposition 1 we have PT |= r.

We now show that PT |= T ′ \ R and PR |= R imply PT ∪R |= T ′. Since we
have PT |= T ′ \ R, we also clearly have PT ∪R |= T ′; since PR |= R, we have
PT ∪ PR |= T ′ as well. Since ans satisfies the monotonicity property from Def-
inition 5, we have PT ∪R |= PT and PT ∪R |= PR; thus, PT ∪R |= PT ∪ PR. But
then, PT ∪R |= T ′, as required.

We finally use the fact that PT ∪R |= T ′ to show that the following properties
hold for each UCQ Q and each ABox A.

1. T ∪ A |= ⊥ implies ans(∗, T ∪ R,A) = t; and
2. ans(∗, T ∪ R,A) = f implies then certG(Q, T ,A) ⊆ ans(Q, T ∪ R,A).
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(Property 1). Assume that T ∪ A |= ⊥. Since T ′ is an OWL 2 RL rewriting of T ,
we have T ′ ∪A |= ⊥. But then, since PT ∪R |= T ′, we also have PT ∪R ∪ A |= ⊥,
as required.

(Property 2). Assume that ans(∗, T ∪ R,A) = f and consider an arbitrary tuple
�a ∈ certG(Q, T ,A). Since T ′ is an OWL 2 RL rewriting of T , then we have
�a ∈ certG(Q, T ′,A), so T ′ ∪A ∪QG ∪ AG |= Q(�a). But then, since PT ∪R |= T ′,
we also have that PT ∪R ∪ A ∪QG ∪ AG |= Q(�a). Furthermore, since PT ∪R is
a datalog program, we have that PT ∪R ∪A ∪Q |= Q(�a) and hence we have
�a ∈ cert(Q,PT ∪R,A); consequently, �a ∈ ans(Q, T ∪R,A), as required.

We finally show that R is a repair of T for ans. Since T ′ is an OWL 2
RL rewriting of T , we have T |= T ′; since R ⊆ T ′, we also have T |= R. This
together with Properties 1 and 2 implies our claim. ��

Theorem 8 and the observations made in Example 7 thus confirm our claims
from Example 3: axioms (10) and (11) constitute a repair of T for algorithm rl,
and axiom (11) alone constitutes a repair for algorithm classify.

5 Evaluation

We developed a prototype tool for computing repairs. Our implementation uses
the system REQUIEM [13] for the computation of TBox rewritings. We evalu-
ated our approach using the following two well-known ontologies.

First, we used the well-known Lehigh University Benchmark (LUBM) [4]—an
ontology extensively used for evaluating performance of ontology-based systems.
We used LUBM’s generator of large datasets and the supplied 14 test queries.

Second, we used a small subset of the GALEN ontology [14]—a complex
medical ontology. We used a subset of GALEN because REQUIEM was unable
to handle the full version of GALEN. Since we are not aware of a large ABox
or a data generator for GALEN, we created synthetic data by extending the
techniques for ABox generation from [16,15]; we thus obtained ABoxes with
(approximately) 2000, 4000, 8000, 16000 and 32000 assertions. Furthermore, we
tested the systems using four atomic queries presented in [15].

We evaluated the following reasoning systems: OWLim v2.9.1,3 Jena v2.6.34

and DLE-Jena v2.0.5

For each test ontology T and each reasoning system ans mentioned above, we
performed the following tasks.

1. We computed an OWL 2 RL rewriting Trew of the input TBox T and recorded
the time needed to complete this step.

2. As mentioned in Section 4.2, Trew can contain many axioms, so we minimised
Trew as follows. First, we eliminated each axiom α such that T |rl |= α. Second,

3 http://www.ontotext.com/owlim/
4 http://jena.sourceforge.net/
5 http://lpis.csd.auth.gr/systems/DLEJena/

http://www.ontotext.com/owlim/
http://jena.sourceforge.net/
http://lpis.csd.auth.gr/systems/DLEJena/
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Table 1. Repairing the LUBM ontology for OWLim, Jena and DLE-Jena

Ontology Trew Tmin Rowlim Rjena Rdle-jena

Ontology size 331 7 3 3 0
Time to compute ontology (in s) 4.7 7.9 3.3 6.3 14

for all pairs of distinct remaining axioms α1 and α2, we eliminated α2 if
T |rl ∪ {α1} |= α2. Let Tmin be the resulting set of axioms; clearly, T |rl ∪ Tmin

is still a rewriting of T . Note that Tmin can depend on the order in which we
select α1 and α2 in the second step; however, we did not notice significant
variance in our tests. We conducted all entailment checks using HermiT—a
sound and complete OWL 2 DL reasoner—and we recorded the time needed
to complete this step.

3. We extracted from Tmin the essential subset R for ans as described in Defini-
tion 6, and we recorded the time needed to complete this step. By Theorem
8, R is a repair of T for ans.

4. To estimate the effect that repairing T has on the performance of ans, we
proceeded as follows. We first applied ans to T and each corresponding data
set and query, and we recorded the load time, the query evaluation time, and
the number of certain answers returned. Next, we repeated the experiment
by applying ans to T ∪ R. The results obtained using T ∪ R are compared
against Pellet—a sound and complete OWL 2 DL reasoner.

The results of repairing LUBM are shown in Table 1. Although the initial rewrit-
ing is quite large, our procedure computes repairs for OWLim and Jena that
consist of only the following three axioms:

GradStudent � Student Director � Employee ResearchAssist � Employee

The repair for DLE-Jena is empty—that is, the system is already complete for
LUBM. This is due to the fact that the repair for OWLim and Jena consists only
of simple subclass axioms, all of which are derived by DLE-Jena’s preprocessing
phase (DLE-Jena is similar to the classify algorithm from Example 2). In all
cases computing the repair took less than 15 seconds.

For OWLim and Jena, Tmin\R is non-empty, which suggests that these systems
can process ‘more’ than just OWL 2 RL. We observed that, for many axioms
in Tmin \ R of the form A � B, TBox T contains an axiom A � B � ∃R.C. The
latter is not an OWL 2 RL axiom, so T |rl �|= A � B and A � B is not removed
from Tmin. The OWL 2 RL/RDF rules from [11], however, correctly handle the
conjunction in the superclass position—that is, given an assertion A(a), they
derive B(a) and ∃R.C(a). This effectively allows OWLim and Jena to use the
A � B ‘part’ of A � B � ∃R.C, so the repair does not need to contain A � B.
Thus, tailoring the repair to a particular reasoner can exploit the reasoning
capabilities of the reasoner at hand and thus produce smaller repairs.

We observed no measurable performance changes for OWLim and Jena after
repairing, which is not surprising since the repairs contained only a few simple
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Table 2. Repairing GALEN for OWLim, Jena and DLE-Jena

Ontology Trew Tmin Rowlim Rjena Rdle-jena

Ontology size 1666 291 11 10 5
Time to compute ontology (in s) 380 126 426 1586 -

Table 3. Number of certain answers for GALEN (without repairs)

2000 4000 8000 16000 32000

Queries J D O P J D O P O P O P O P

Q1 73 65 65 92 226 206 206 280 501 672 1281 1587 1379 1727
Q2 49 43 43 72 158 135 135 217 368 532 1008 1353 1148 1502
Q3 81 74 74 97 234 212 212 283 515 678 1301 1588 1355 1714
Q4 112 226 78 260 334 656 232 756 547 1687 1272 3463 1445 3706

J=Jena, D=DLE-Jena, O=OWLim, P=Pellet

axioms. Moreover, both OWLim and Jena are complete for the LUBM dataset
already when using the original TBox, so no change in the number of answers
produced was observed either.

The results of repairing GALEN are shown in Table 2. Again, the repair is
quite small, despite the fact that GALEN heavily uses features outside OWL 2
RL such as existential quantification. The repair, however, is more complex than
in the case of LUBM, containing axioms such as subsumptions between complex
class expressions with several nested existential quantifiers. As with LUBM, the
repair for DLE-Jena is smaller than the repairs for OWLim and Jena. Note,
however, that DLE-Jena ran out of memory while computing the repair from
Tmin; thus, since DLE-Jena is ‘more complete’ than Jena, we produced Rdle-jena

by applying Definition 6 to Rjena.
Table 3 shows the number of certain answers computed by each system for

each dataset, using the original GALEN TBox; please note that we could only
load datasets 2000 and 4000 into Jena and DLE-Jena. As expected, all systems
returned fewer answers than Pellet. Using the repaired TBoxes, however, all
systems returned the same number of certain answers as Pellet. Thus, repairing
an ontology can significantly improve the quality of answers that a reasoner
produces for a given ontology.

Table 4 shows the loading times for both the original and the repaired ontolo-
gies. As one can see, repairing the ontology leads to an increase in loading times
of about 20% on average. The times for the repaired ontology, however, are of
the same order of magnitude as the original times; hence, the increase in loading
time may be acceptable given that the systems then return complete answers.
Furthermore, OWLim is much faster than Pellet even on the repaired ontology,
which suggests that using an incomplete reasoner with a repaired ontology might
be more appropriate in practice than using a complete reasoner.

Table 5 shows the query answering times for the repaired ontology. Since all
systems perform reasoning during loading (i.e., they saturate the input ABox),
repairing the ontology produced no noticeable difference on the query answering



Repairing Ontologies for Incomplete Reasoners 695

Table 4. Loading times for original and repaired TBoxes (in ms)

2000 4000 8000 16000 32000

OWLim
T 1411 2328 3611 6000 6871

T ∪ R 1768 2807 4279 7815 8696

Pellet T 2598 4623 9596 11275 12086

Jena
T 25524 117524 - - -

T ∪ R 34000 139839 - - -

DLE-Jena
T 23198 138075 - - -

T ∪ R 24844 139129 - - -

Table 5. Query answering times for repaired GALEN (in ms)

2000 4000 8000 16000 32000

Queries J D O P J D O P O P O P O P

Q1 15 156 39 734 5 155 46 1765 41 5503 53 7460 50 8122
Q2 2 3 1 425 5 11 3 1226 6 2635 15 4271 17 4620
Q3 4 3 1 926 8 8 4 2711 100 6473 18 10188 20 11866
Q4 8 9 1 37 21 21 11 47 20 88 55 127 42 136

J=Jena, D=DLE-Jena, O=OWLim, P=Pellet

times. Note that all systems are much faster than Pellet, which again suggests
that using an incomplete reasoner with a repaired ontology might offer significant
advantages compared to using a complete reasoner.

6 Conclusions

In this paper, we studied the problem of repairing an ontology for a given in-
complete reasoner in a way that guarantees completeness. Our repairs guarantee
completeness w.r.t. ground certain answers independently of data and queries:
once an ontology has been repaired for a given system, the system will, for any
given query and data set, compute all ground certain answers that follow from
the original ontology. Our approach tries to limit the size of the repair as much
as possible. Our experiments suggest that repairs may indeed be very small,
and that their effect on system performance may be negligible. This allows ap-
plication designers to use highly scalable incomplete reasoners, but with the
guarantee that they produce the same answers as provably complete reasoners,
thus having the ‘the best of both worlds’.

We leave the extension of our techniques to more expressive DLs, as well as
a more extensive evaluation, for future work.
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Abstract. In this paper, we study watermarking methods to prove the
ownership of an ontology. Different from existing approaches, we pro-
pose to watermark not by altering existing statements, but by removing
them. Thereby, our approach does not introduce false statements into
the ontology. We show how ownership of ontologies can be established
with provably tight probability bounds, even if only parts of the ontology
are being re-used. We finally demonstrate the viability of our approach
on real-world ontologies.

1 Introduction

An ontology is a formal collection of world knowledge. Creating an ontology
usually involves a major human effort. In the case of manually constructed on-
tologies, human effort is needed to collect the knowledge, to formalize it and to
maintain it. The same applies to ontologies constructed by a community, such
as Freebase or DBpedia. In the case of automatically constructed ontologies, hu-
man effort comes in the form of scientific investigation and the development of
algorithms. Consequently, the creators of an ontology usually do not give away
the ontology for free for arbitrary use. Rather, they request their users to pay
for the content, to follow the terms of a specific license, or to give credit to the
creators of the ontology. In most cases, it is prohibited to re-publish the data,
or allowed only with proper acknowledgment.

This restriction is most obvious in the case of commercially sold ontologies
such as [9]: The use of the data is restricted by the sale contract. The contract
usually prohibits the re-publication of the data. Any dissemination of the data
into other data sets constitutes a breach of contract.

One might think that the picture would be different for the public ontologies
of the Semantic Web. The general spirit of the Semantic Web wants data to
be shared across application and community boundaries1. However, even the
ontologies of the Semantic Web are not available for arbitrary re-publication.
Table 1 shows some popular ontologies mentioned together with their licenses.
None of the ontologies is available in the public domain. All of them require
at least an acknowledgment when their data is re-published. It is considered
dishonest to sell or re-publish the data from an ontology elsewhere without
giving due credit to the original.

1 http://www.w3.org/2001/sw/

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 697–713, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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Some data sets are not freely available at all (see Table 1). The Wolfram
Alpha data set2, for example, can be queried through an API, but cannot be
downloaded. Its terms of use prohibit the systematic harvesting of the API to
re-create the data set. Any re-publication of a substantial portion of such data
constitutes a breach of the terms of use. Similar observations apply to trueknowl-
edge3 or the commercial version of Cyc [9]. In all of these cases, the extraction
and systematic dissemination of the data is prohibited.

Table 1. Common licenses for ontologies

License Conditions Ontologies

GFDL attribution, copyleft DBpedia [2]
GPL attribution, copyleft SUMO [10]
CC-BY attribution YAGO [15], Freebase, Geonames, OpenCyc [9]
CC-BY-ND attribution, no derivatives UniProt
– access under restrictions TrueKnowledge, KnowItAll, WolframAlpha, full Cyc [9]

This raises the issue of how we can detect whether an ontology has been
illegally re-published. We call a person who re-publishes an ontology (or part of
it) in a way that is inconsistent with its license an attacker. The attacker could,
e.g., re-publish the ontology under his own name or use parts of the ontology
in his own ontology without giving due credit. We call the source ontology the
original ontology and the re-published ontology the suspect ontology. We want
to solve the problem of ownership proof: How can we prove that the suspect
ontology contains part of the original ontology? Obviously, it is not sufficient to
state that the suspect ontology contains data from the original ontology. This
is because ontologies contain world knowledge, that anybody can collect. Take
the example of an ontology about scientists: the attacker could claim that he
also collected biographies of scientists and that he happened to produce the
same data set as the original ontology. A similar argument applies to ontologies
that have been derived from public sources. YAGO [15] and DBpedia [2], e.g.,
have both been extracted from Wikipedia. An attacker on DBpedia could claim
that he also extracted data from Wikipedia and happened to produce a similar
output.

One might be tempted to assume that we could simply publish the original
ontology with a time stamp (in the style of proof of software ownership). For
example, we could upload the ontology to a trusted external server. If someone
else publishes the same data later, then we could point to the original copy.
However, this does not prove our ownership. The other publisher could have had
the data before we published ours. The fact that he did not publish his data
cannot be used against him.

Therefore, a more sophisticated approach is needed to enable ownership proofs.
This is the goal of the present paper. We present an approach that uses digital
watermarking to detect whether a suspect ontology contains data derived from
2 http://www.wolframalpha.com/
3 http://www.trueknowledge.com/

http://www.wolframalpha.com/
http://www.trueknowledge.com/
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an original ontology. Watermarking techniques aim at hiding some relevant in-
formation in a data set, in an invisible or robust way. Finding such information
in a suspect data set acts as the proof of ownership. Several works consider wa-
termarking for relational databases by performing voluntarily alteration of data.
These approaches could be extended to ontologies. However, data alteration in-
variably decreases the precision of the ontology.

Therefore, we develop an alternative method that is specifically adapted to
the Semantic Web: We propose to watermark an ontology by removing carefully
selected statements before publishing. The suspect absence of these statements
in an ontology with a significant overlap will act as the proof of theft. We argue
that this does less harm than altering statements, because the Semantic Web
operates under the Open World Assumption: Most ontologies are incomplete.

More specifically, our contributions are as follows:

1. A formalization of the problem of ontological data re-publication,
2. An algorithm for watermarking ontologies, which allows detecting malicious

re-publication without harming the precision,
3. Extensive experiments that show the validity of our approach.

The rest of this paper is structured as follows: Section 2 summarizes related
work. Section 3 formalizes our scenario and lists different attack models. Section
4 presents our watermarking algorithm with a formal analysis. Section 5 details
our experiments before Section 6 concludes.

2 Related Work

In [4], the authors introduce named graphs as a way to manage trust and prove-
nance on the Semantic Web. Named graphs, however, cannot guard against the
misuse of ontologies that are publicly available.

One of the oldest attempts to prove ownership of factual data is the use of
fictitious entries in dictionaries. Since the 19th century, dictionaries, maps, en-
cyclopedias and directories have had occasional fake entries. The New Columbia
Encyclopedia, for example, contained an entry about a fictitious photographer
called Lillian Virginia Mountweazel. If such an entry ever appeared in another
encyclopedia, it was clear that the data was copied. To mark an ontology, how-
ever, it is not sufficient to add a single isolated entity, because an attacker can
simply remove unconnected entities.

A classical way to achieve ownership proofs is to apply watermarking tech-
niques. Some recent proposals have targeted ontologies [6]. This previous effort
uses a purely syntactical rewriting of the RDF XML source layout into an equiv-
alent layout to hide information. This approach can be circumvented by normal-
izing the XML file. This can be done, e.g., by loading the file into a tool such as
Protégé [11] and then saving it again as an XML document.

Quite a number of approaches have targeted semi-structured data [13] and re-
lational databases [1,14,7,8,12]. These works provide one way to prove ownership
of ontologies. Most of them are blind, i.e., they do not require the original data
set for detection. However, all of these approaches presume that the schema of
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the data is known. This is not necessarily the case on the Semantic Web. Some
ontologies (such as DBpedia or YAGO) have hundreds of relationships. An at-
tacker just has to map some of them manually to other relationships to obscure
the theft. We will develop approaches that can still identify the suspect data,
but in a non-blind way. Furthermore, the classical methods work by voluntarily
altering data. Therefore, we call these methods modification approaches in the
sequel. Such approaches could, e.g., change the birth year of Elvis Presley from
the year 1935 to the year 1936. While the introduced errors are only gradual
for numerical data, they are substantial for categorical data. Such an approach
could, e.g., change Elvis’ nationality from American to Russian. Apart from the
fact that an ontology owner will find it controversial to voluntarily alter clean
data, such an approach will also decrease the precision of the ontology with re-
spect to the real world. Furthermore, the altered facts can lead to contradictions
with other data sets. This is not only annoying to the user, but can also allow
the attacker to detect and remove the altered facts. Therefore, we present an
alternative approach in this paper, which works by deleting carefully selected
facts. Since the Semantic Web operates under the open world assumption, the
absence of true information is less harmful than the presence of false information.

3 Model

3.1 Watermarking

A watermarking protocol is a pair of algorithms (M,D), where M stands for
the marker and D the detector (Figure 1). Given an original ontology O and
a secret key K, the marker algorithm outputs a watermarked ontology O∗ =
M(O,K). Given a suspect ontology O′, the original ontology and the secret key,
the detector decides if O′ contains a mark, that is if D(O′, O,K) is true.

If O′ contains the mark, then it is assumed that O′ has indeed been derived
from O∗. However, the watermarking protocol may erroneously say that O′ has
been derived from O∗, even though O′ just contains the mark by chance. For

malevolent user

secret key

ontology owner’s side

proof
of ownership

users side

attacks

altered ontology

original
ontology

unfair reuse

watermarked
ontology

detector mapping

secret key

marker

lawful user

Fig. 1. Watermarking protocol for ontologies
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example, O′ may be a totally unrelated ontology. In this case, O′ is called a false
positive. Watermarking protocols are designed so that the probability of a false
positive is provably below a confidence threshold ξ. The parameter ξ is called
the security parameter of the protocol and is typically in the order of ξ = 10−6.

In an adversarial setting, the attacker can try to evade the detection of the
mark in the ontology by various means, including:

– Subset attack: The attacker uses only a subset of the stolen ontology.
For example, the attacker could choose a certain thematic domain from the
original ontology (such as, say, sports), and re-use only this portion. While
publishing just a few statements should be allowed, larger stolen parts should
be detected by the protocol.

– Union attack: The attacker merges the ontology with another one. For
example, the attacker could combine two ontologies about gene expressions,
thereby hiding the stolen ontology in a larger data set. A naive union attack
would keep facts from both ontologies, even if they are inconsistent with
each other.

– Intersection attack: The attacker keeps only ontology elements that are
found in another ontology. For example, an attacker could remove entities
from the stolen ontology that do not appear in a reference ontology.

– Comparison attack: The attacker compares the ontology to another data
source and eliminates inconsistent information. For example, the attacker
could cross-check birth dates of one ontology with the birth dates in a ref-
erence ontology and remove inconsistent dates.

– Random alteration attack: The attacker alters values, relations or enti-
ties. This action is limited as the attacker still desires valuable data.

The ability of the watermarking protocol to withstand these attacks is called its
robustness. Watermarking protocols are typically designed so that the probability
of a successful attack is provably below their security parameter ξ.

An attacker may also publish someone else’s ontology as part of an offensive
or illegal data set. An attacker may, e.g., take an ontology about chemistry and
publish it as part of a data set about weapons of mass destruction. If the ontol-
ogy was marked, it will appear as if the creator of the original ontology authored
the offensive data set. Our method can fend off this so-called copy attack.

3.2 Ontologies

An RDFS ontology over a set of entities (resources and literals) E and a set of
relation names R can be seen as a set of triples O ⊂ E × R × E. Each triple is
called a statement, with its components being called subject, predicate and object.
We will write e.name to refer to the identifier of the entity in the ontology. This
can be the URI (in case of a resource) or the string value (in case of a literal).
RDFS specifies certain semantic rules. These rules state that if the ontology
contains certain statements, certain new statements should be added to the
ontology. We call these added statements redundant and assume that redundant
statements have been removed from the ontology [5]. RDFS rules are strictly
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positive. Therefore, an RDFS ontology cannot become inconsistent if a statement
is removed or altered. This predestines RDFS ontologies for watermarking and
we leave more sophisticated ontology models for future work.

To prove that a suspect ontology O′ copied data from an original ontology
O, we will first have to determine whether O′ and O contain similar data. This
is a challenging task in itself, because it amounts to finding a mapping from O′

to O. This problem has attracted a lot of research in the context of the Web
of Linked Data [3]. Finding such a mapping is outside the scope of the present
paper. Here, we limit ourselves to 2 assumptions: (1) We know a partial mapping
function σ, which maps (some of) the entities of O′ to entities of O; (2) there
exists a partial mapping function σR, which maps the relations of O′ to relations
of O. Note that we do not need to know σR. Our method has been designed so
that it is transparent to the “schema” of the ontologies. We need the existence
of σR just to assure that O and O′ have some structural similarity. An inves-
tigator needs to find only σ. If the ontology was truly stolen, then the entities
will probably be recognizable in some way, because otherwise the stolen ontology
would be less useful. In the best case, σ will reflect mainly syntactic variations of
the identifiers and values. We note that the modification approaches like [1] also
require σ, because they determine the tuples to mark based on the value of the
primary key, which has to be available at detection. In addition, the modification
approaches also require the mapping of the schema, σR, which our approach does
not require. In the sequel, we assume that σ has been found and has been applied
to O′. We are now concerned with the question that follows: We want to prove
that O′ and O are similar not just by chance, but because O′ copied data from O.

3.3 Ethical Considerations

Ontologies represent world knowledge. Therefore, it is questionable whether one
can “own” such data. Can the creator have a copyright on the ontology, given
that it is nothing more than a collection of facts about the world? In this paper,
we do not deal with the legal implications of owning or copying ontologies. We
only provide a method to prove that one data source copied from another source
– independently of whether such behavior is considered legal or not.

Our approach will remove facts from the ontology before publishing. Then
the question arises whether it is honest to withhold information that one could
publish. However, an ontology always represents only part of reality. In most
cases, the creator of an ontology is not obliged to make it exhaustive. The Open
World Assumption of the Semantic Web makes the absence of information a
normal and tolerable circumstance.

In general, the watermarking of an ontology always remains a trade-off be-
tween the ability to prove ownership and the truthfulness of the data. One should
not willfully alter ontologies that are highly sensitive to even small misrepresen-
tations of reality, such as ontologies in the domain of medicine, security, or
aeronautics. However, unlike the modification approaches [1], our approach of
deleting facts can be applied even if truthfulness of the data has to be preserved,
as long as some incompleteness can be tolerated.
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4 Watermarking Ontologies

4.1 Watermarking Basics

Our starting point is a watermarking protocol from Agrawal et al. [1] for re-
lational databases. Their statistical watermarking uses cryptographically se-
cure pseudo-random number generators (CSPRNGs). A CSPRNG is a function
which, given an integer seed value, produces a sequence of pseudo-random bits.
The bits are pseudo-random in the sense that, without the seed, and given the
first k bits of a random sequence, there is no polynomial-time algorithm that
can predict the (k + 1)th bit with probability of success better than 50% [16].
A CSPRNG is a one-way-function. This means that, given a CSPRNG and a
sequence of random bits it produced, it is close to impossible to determine the
seed value that generated it. More formally, given a CSPNG f , for every ran-
domized polynomial time algorithm A, Pr[f(A(f(x))) = f(x)] < 1

p(n) for every
positive polynomial p(n) and sufficiently large n, assuming that x is chosen from
a uniform distribution [17]. In the following, we use a given CSPRNG G.

After G has been seeded with a value by calling G.seed(value), one can repeat-
edly call the function G.nextBit() to obtain the next bit in the random sequence.
By combining multiple calls to this function, we can construct a pseudo-random
integer value. The function that delivers a pseudo-random integer number greater
or equal to 0 and below a given upper bound k is denoted by G.nextInt(k).

Our watermarking algorithm makes use of a secret key. A secret key is a in-
teger number that is only known to the owner of the original ontology. We will
use the key as a seed value for G. We also make use of a cryptographically secure
hash function. A hash function is a function which, given an object, returns an
integer number in a certain range. A cryptographically secure hash function is
such that it is infeasible to find two inputs with the same output, or the inverse
of the output. We assume a given hash function, such as SHA, denoted hash. In
order to resist the aforementioned copy attack, we will first compute the secure
hash of the original ontology. All our subsequent computations will depend on
this hash, so that no attacker can pretend to own the watermarked version by
finding another ontology with the same watermarking.

4.1.1 Algorithm
Our watermarking method shall be transparent to relation names, because we do
not want to require an investigator to find a mapping of the schema. Therefore,
we define the notion of a fact pair. A fact pair of an ontology O is a pair of
entities 〈e1, e2〉, such that there exists r such that 〈e1, r, e2〉 ∈ O. Algorithm 1
marks an ontology by removing fact pairs. It takes as input the original ontology
O, a secret key K, and the number of facts delT otal to remove. The secret key
is an arbitrary chosen number. Section 4.2.1 will discuss how to find a suitable
value for delT otal. For each fact pair of the ontology, the algorithm seeds G with
the names of the entities, the hash of O, and K. If the next random integer
of G between 0 and the total number of fact pairs in O divided by delT otal
happens to be 0, the fact pair is removed. This removes delT otal facts from the
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Algorithm 1. subtractiveMark(orig. ontology O, secret key K, integer delT otal)
O∗ ← O
for all 〈e1, e2〉 ∈ πsubject,object(O) do

G.seed(e1.name ⊕ e2.name ⊕ hash(O) ⊕K)
if G.nextInt(|πsubject,object(O)|/delTotal) = 0 then

Remove 〈e1, ∗, e2〉 from O∗

end if
end for
return O∗

ontology4. Note that our algorithm does not consider the relation names at all.
After running Algorithm 1, the marked ontology O∗ is published. The original
ontology O is kept secret.

To detect whether a suspect ontology stole data from an original ontology, we
run Algorithm 2 on the original ontology O (without the mark) and the suspect
ontology O′ (after having applied the mapping from Section 3.2). The algorithm
runs through all fact pairs of O and computes the proportion of published fact
pairs that appear in the suspect ontology. It also computes the proportion of
removed fact pairs that appear in the suspect ontology. Since we only consider
fact pairs and not facts, a mapping of the relation names (the schema) is not
necessary. It is possible that the suspect ontology contains some of the fact pairs
that we removed from the original before publishing. This can be for two reasons:
Either the suspect ontology is innocent and just happens to have a thematic
overlap with our original, or the suspect ontology imported data from other
sources, thus complementing the facts we removed. The algorithm then compares
the ratio of removed fact pairs that appear in O′ to the ratio of published fact
pairs that appear in O. If O′ is innocent, these ratios should be the same. If the
ratio of deleted facts is lower than the ratio of published facts, and significantly
so, this indicates a theft and the algorithm will return true. It seems highly
counter-intuitive that the absence of a fact should prove theft of data. Yet, the
proof comes from the fact that the removed statements form a pattern of present
and absent facts in O. The probability that this pattern appears by chance in
another ontology is extremely low.

Let us detail the check of significance. The suspect ontology will cover a cer-
tain portion of facts of the original ontology. The central observation is that, if
this overlap is by chance, then the suspect ontology should cover the same por-
tion of published facts as it covers of the deleted facts, because the watermarking
is randomized. Thus, we have to determine whether any difference between these
two ratios is statistically significant. This is the last step in Algorithm 2. This
significance is determined by a χ2 test. Be pubTotal the total number of pub-
lished fact pairs. Be pubFound the number of published fact pairs that appear
in the suspect ontology. Be delT otal the total number of deleted fact pairs. Be
delFound the number of deleted fact pairs that appear in the suspect ontology

4 If less than delTotal facts got removed, we rerun the algorithm with a different key.
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Algorithm 2. subtractiveDetect(original O, suspect O′, key K, integer delT otal)
O∗ ← subtractiveMark(O,K, delT otal)
pubFound ← 0; delFound ← 0;
for all 〈e1, e2〉 ∈ πsubject,object(O) do

if 〈e1, e2〉 ∈ πsubject,object(O
′) then

if 〈e1, e2〉 ∈ πsubject,object(O
∗) then pubFound + +

else delFound + +
end if

end for
pubTotal ← |πsubject,object(O

∗)|
if delFound/delTotal ≥ pubFound/pubTotal then return false
return delFound/delTotal significantly different from pubFound/pubTotal

and be N = pubTotal + delT otal the total number of fact pairs. We get

χ2 =
N(delFound × (pubTotal − pubFound) − pubFound × (delTotal − delFound))2

(pubFound + delFound) × (N − pubFound − delFound) × delTotal × pubTotal
.

If χ2 > χ2(1, ξ), where ξ is the security parameter, then the two ratios are
not independent. Since the removal of the fact pairs was purely random, any
significant difference between the ratios indicates a dependence on the original
ontology. In the extreme case, the suspect ontology reproduces the published
facts and omits all (or nearly all) removed facts.

In order to be applicable, the standard χ2 test requires the total number of
samples to be greater than 100 and the expected number of samples for each
case to be greater than 5. Therefore, our algorithm returns true iff N > 100 and
(pubFound + delFound)× delT otal/N > 5 and χ2 > χ2(1, ξ).

4.2 Analysis

4.2.1 Impact
We are interested in how many fact pairs we have to remove in order to achieve
significance in the χ2 test. This number depends on the total number of fact
pairs N . It also depends on the types of attacks against which we want to
protect. The first property of an attack is the overlap ratio of found facts, ω =
(pubFound+delFound)/N . We choose ω = 1 if we want to protect only against
a theft of the complete ontology. We choose a smaller value if we want to protect
also against a theft of a sub-portion of the ontology. The second property of an
attack is the ratio of removed facts δ = delFound/delT otal that appear in the
stolen ontology. If the attacker just republishes our published ontology, δ = 0.
If he adds data from other sources, this can complement some of the facts we
removed. Ratio δ should be the proportion of removed facts that we expect
in the stolen ontology. If δ is larger, and ω is smaller, the protection is safer,
but the marking will remove more facts. Abbreviating delT otal = d, this yields
pubFound = ωN − δd, delFound = δd, pubTotal = N − d and thus
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χ2 =
N((ωN − δd)(1− δ)d− δd((1 − ω)N − (1 − δ)d))2

ωN(1− ω)Nd(N − d)
.

For χ2 > χ2(1, ξ), this yields

d >
Nω(1− ω)χ2(1, ξ)

N(δ(1− ω)− ω(1− δ))2 + ω(1− ω)χ2(1, ξ)
.

We have to impose N > 100 as a precondition for the χ2 test. We also have to
impose d > 5/(ω(1− ω)), i.e., d > 20 in the worst case. Finally, δ < ω, because
we cannot prove theft if the ratio of appearing deleted facts is greater than the
ratio of appearing published facts. As an example, take a choice of ξ = 10−6,
which leads to χ2(1, ξ) = 23.9284. Assuming an overlap ratio of ω = 1

2 , a fault
tolerance of δ = 0.2, and N = 30 × 106 fact pairs, we get d = 67, i.e., 67 fact
pairs have to be deleted from the ontology.

4.2.2 Robustness
In general, the χ2 test tends to err on the safe side, concluding independence
only in the presence of overwhelming evidence. Thus, our algorithm will sig-
nal theft only in very clear cases (“in dubio pro reo”). However, our algo-
rithm is also well-protected against attacks. First, a marked ontology is pro-
tected against intersection attacks. Intersection attacks can happen, e.g., when
an attacker wants to misuse someone else’s ontology to clean up his own noisy
data set. Since an intersection does not add facts, our marks survive such an
attack. The marked ontology is also protected against comparison attacks, be-
cause the ontologies we target generally suffer from incompleteness. Thus, a
fact that is absent in the original ontology but present in a reference ontol-
ogy will not raise suspicions. A marked ontology is also safe against subset
attacks, if ω is chosen smaller than the proportion of stolen facts. A union
attack, in contrast, could add information that fills up some of the removed
facts. In this case, the marks will be reduced to those portions of the ontol-
ogy that do not appear in the other ontology. By choosing 1 − δ equal to the
portion that we estimate to be proper to the ontology, and adjusting d ac-
cordingly, we can still guard against the union attack. Random alteration at-
tacks fall into the scope of the classical analysis of robustness [1]: an attacker
being ignorant on the positions of the deleted facts can only try at random
to delete more facts or fill missing ones. For this attack to be successful, a
large number of facts have to be altered, a much larger number than the wa-
termark algorithm used. Finally, an attacker can try to modify the fact pairs.
Deleted facts are of course not sensitive to this attack, but the number pubFound
can be altered. However, as the subset of published facts we are looking for
at detection are chosen pseudo-randomly, the attacker has no way to locate
them efficiently. The only valid strategy for the attacker is again to alter a
huge amount of fact pairs, which reduces drastically the quality of the stolen
ontology.
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Table 2. Number of facts that have to be marked
α = 0, ξ = 10−6 and N = 30 × 106

ω 50% 10% 5% 2.5% 0.5% 0.05%

Removing 24 215 456 935 4775 47900
Modifying 96 480 950 1900 9500 95000

4.2.3 Comparison to Modification Watermarking
The modification approach [1] changes a fact from the ontology. In the majority
of cases, it will change a correct fact to an incorrect fact. Thereby, precision
invariably suffers. In contrast, our approach does not decrease the precision of
the ontology at all. To see this, assume that O contains n statements, c of which
are correct. If a correct fact is deleted, which will happen in c

n of the cases, the
precision drops to c−1

n−1 . If an incorrect fact is deleted, the precision increases to
c

n−1 . Thus, on average, the precision is c
n ×

c−1
n−1 + n−c

n × c
n−1 , which is c

n , just as
before. As a comparison, the modification approaches have an average impact
of c

n ×
c−1
n + n−c

n × c
n (a modified correct fact turns incorrect, and a modified

incorrect fact will still be incorrect, while the number of total facts is the same).
Now let us consider the number of facts that have to be modified in the

classical approach. Assuming that δ = 0, ξ = 10−6 and N = 30 × 106, we used
the estimates in [1] to compute the number of tuples (fact pairs, in our setting)
that are required to be modified in order to resist a subset attack of parameter
ω. This leads to the numbers in Table 2.

The modification method hides a list of 0 and 1 on secretly chosen positions.
If such a position is not selected by the subset attack, the marked bit is lost,
whatever its value. But for our method, the subset attack has no impact on
already deleted facts. Therefore, the modification approach has to modify more
fact pairs than we have to delete. Overall, the number of facts that have to be
modified is comparable to the number of facts that have to be deleted. Given that
removal maintains precision, while modification does not, and that modification
yields false facts, the ontology owner might decide to remove instead of to modify.

5 Experiments

5.1 Applicability

5.1.1 Impact
We were interested in how applicable our method is to real world ontologies. For
this purpose, we collected 5 ontologies from the Semantic Web that cover a wide
range of complexity, size, and topics (Table 3): The core part of YAGO [15], the
manually supervised part of DBpedia [2], the Universal Protein Resource5, an
ontology about city finances (provided by the UK government6), and a subset of
the IMDb7. For each ontology, we report the number of facts, fact pairs, relations
5 http://www.uniprot.org/
6 http://data.gov.uk/
7 http://imdb.com/

http://www.uniprot.org/
http://data.gov.uk/
http://imdb.com/
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Table 3. Marking different ontologies

YAGO DBpedia UniProt Finance IMDb Modification

# relations 83 1,107 4 11 12
# instances 2,637,878 1,675,741 1,327 1,948 4,657,880
# facts 18,206,276 19,788,726 6,096 14,926 34,699,697
dup. objects 3,529,697 450,171 0 0 14,907
# fact pairs 14,676,579 19,338,555 6,096 14,926 34,685,090

Facts to remove
δ = 0, ω = 50% 24 24 24 24 24 [97]
δ = 0, ω = 5% 456 456 424 442 456 [975]
δ = 0, ω = 0.5% 4,775 4,774 2,677 3,618 4,775 [9700]
δ = 0, ω = 0.05% 47,820 47,825 - - 47,909 [97500]
δ = 10%, ω = 50% 37 37 37 37 37 N/A

and instances. We also report the number of entities that are connected to an ob-
ject by more than one relation. This number is usually small, except for YAGO,
where every entity has a label and a (mostly equivalent) preferred name. We
compute the number of facts that have to be removed to protect against various
subset attacks (ξ = 10−6). As a comparison, the last column gives the number
of alterations needed for the modification approach [1]. It is roughly independent
of the size of the data set. Values for the modification method are not given for
δ = 10%, because the scenario where the attacker irons out the marks has not
been considered in [1].

5.1.2 Removing the Marks
We were interested in how an attacker could try to identify the missing facts in
order to reinstate them. The attacker could, e.g., compare all instances of a class
and see whether some of them lack a relation that all the other instances have.
This entity is suspect from an attackers point of view, because he has to assume
that we deleted that relation. More precisely, we call an entity e suspect in an
ontology O, if there exists a class c, an entity e′, and a relation r, such that

e ∈ c, e′ ∈ c, |{e′′ : 〈e′, r, e′′〉}| > |{e′′ : 〈e, r, e′′〉}|.

We call a fact discreet if we can remove it without creating a suspect entity. We
computed the proportion of discreet facts, their relations and the proportion of
instances with at least one discreet fact (Table 4). Roughly half of the facts are
discreet, meaning that we can delete them without raising suspicions. Even if
the attacker correctly identifies the fact we removed, he cannot simply discard
the entity, because this would still keep the mark. Instead, he has to find the
correct value for the missing link to plug in the hole. This may be hard or even
close to impossible, because the attacker has no access to the original ontology
and cannot run the detection algorithm. Also, he does not know the ratio of
discreet facts. Furthermore, from the attacker’s point of view, nearly all instances
are suspect on the original data set already. Thus, nearly every instance could
potentially have been marked. Filling up what could be a hole would amount to
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Table 4. The ontologies from an attackers’ point of view

YAGO DBpedia UniProt Finance IMDb

discreet instances 99% 92% 74% 69% 97%
discreet facts 74% 86% 48% 39% 75%
discreet relations 96% 99% 50% 45% 92%
suspect instances 99% 99% 100% 75% 100%

reconstructing the ontology. The only exception to this rule is the finance data
set, which contains rather complete information (most entities have the maximal
number of links in their class). We note, however, that removing facts might still
be preferable to modifying facts in this ontology.

5.1.3 False Positive Detection
A risk with watermarking approaches is the occurrence of false positives. The

probability of considering a non-marked ontology suspect has to be bounded.
While this poses a problem for blind watermarking methods that do not rely on
the original for detection, it is very unlikely that a random ontology is signaled
as stolen by our approach, because our approach first checks that the overlap
of the suspect ontology with the original ontology is significant. Even in the
unlikely situation of a large overlap, the innocent suspect ontology will match
with published facts and deleted facts uniformly. Thus the ratio of deleted and
found facts will be similar, leading to a correct non-detection. This risk is taken
into account and formalized in the significance level of the χ2 test. We provide
next some subset attacks whose overlap is so small that our method does not
signal theft.

5.2 Robustness

5.2.1 Attack Simulations
To demonstrate the robustness of our watermarking, we simulated suspect on-
tologies that overlap only partially with the original ontology. This partial over-
lap could be due to an incomplete mapping σ or due to the fact that the attacker
chose to steal only a subset of the original. We watermarked the Finance ontology
with 30 removed facts. This should make the mark resistant to a partial overlap
of ω = 50% or more. We varied ω and created 10 random overlaps for each value
of ω. Figure 2 shows the average rate of successful detection (ξ = 10−6, δ = 0).
As predicted, any suspect ontology that overlaps more than half is identified as
stolen.

We also simulate suspect ontologies that do contain portions of the deleted
facts. This can be the case if the attacker merged the stolen ontology with
another data set. We removed 50 facts from the Finance ontology. At an overlap
of ω = 50%, this should protect the ontology up to δ = 15%. We varied δ and
simulated 10 random suspect ontologies for each value of δ. Figure 3 shows that
the rate of successful detection. As expected, the rate is 1 for δ ≤ 15%.
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with varying ω, (δ = 0)
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Fig. 3. Rate of successful detection
with varying δ (ω = 0.5)

5.2.2 Thematic Subset Attacks
Next, we analyze thematic subset attacks, i.e., attacks that steal a certain class
with all its instances and all their facts. We call such a set facts a theme. Table
5 shows populous classes in YAGO together with their number of fact pairs. We
computed the ratio ω and the number of fact pairs that would have to be deleted
in total (at ξ = 10−6). The numbers in brackets show the number of fact pairs
that the modification method would consume. Table 6 shows the same charac-
teristics for populous classes in DBpedia. The number of facts to delete fades
in comparison to YAGO’s 15m fact pairs in total and DBpedia’s 19m fact pairs
in total. We experimentally verified the subset attacks on DBpedia with 1000
removed facts, achieving significance levels of χ2 = 68, 18, 38, 51, 38, respectively.
This means that, with 1000 removed facts, we could detect all thematic subset
attacks except for the one on Television Episodes, because the subset is too small
for the chosen number of marks. This experiment confirms our predictions.

Table 5. Protecting different themes in YAGO

Theme # fact pairs ω Fact pairs to remove

δ = 0 δ = 1%

Person 10,594,790 72.19% 20 [67] 20
Village 582,984 3.97% 580 [1,225] 1,037
Album 588,338 4.01 % 574 [1,215] 1,020
Football player 1,200,459 8.18 % 269 [596] 350
Company 400,769 2.73% 854 [1,785] 2,129

5.2.3 Union Attacks
We wanted to evaluate how our method works if an attacker merges the stolen
ontology with another, possibly similar ontology. This might fill up some of the
removed facts and thus destroy our marks. We simulated attacks that steal a
certain theme from DBpedia and merge it into YAGO. We merged by matching
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Table 6. Protecting different themes in DBpedia

Theme # fact pairs ω Fact pairs to remove

δ = 0 δ = 1%

Album 120,7561 6.24% 360 [782] 511
TelevisionEpisode 342,277 1.77% 1,331 [2750] 7,035
Village 701,084 3.63% 637 [1345] 1,213
SoccerPlayer 924,299 4.78% 478 [1020] 764
Film 694,731 3.59% 644 [1360] 1,238

resources (DBpedia and YAGO use the same local identifiers with different pre-
fixes), matching identical strings and identical numbers, and matching numbers
that share the value (ignoring the unit). This yields an overlap of 1.6× 106 fact
pairs between the two ontologies.8 This overlap is 8% of DBpedia. This means
that 8% of the marks that we add to DBpedia can be filled up by merging with
YAGO. Hence, we have to choose δ > 8% in order to protect against a theft.

Table 7 shows the ontologies obtained from merging YAGO with a certain
theme from DBpedia. The table shows the total number of fact pairs of these
ontologies as well as the absolute and relative overlap with the original DBpedia.
The relative overlap corresponds to ω. The last column shows the number of fact
pairs that have to be removed from DBpedia to protect the theme, calculated
from ω and δ = 8%.

Table 7. Merging different themes of DBpedia into YAGO

YAGO + # fact pairs overlap overlap as % Fact pairs
DBpedia Theme with DBpedia of DBpedia (=ω) to remove

Album 15,920,534 2,831,716 15% 624
TelevisionEpisode 15,108,014 2,019,289 10% 5398
Village 15,399,557 2,310,784 12% 1583
SoccerPlayer 15,585,500 2,496,744 13% 1085
Films 15,369,042 2,280,321 12% 1583

We experimentally verified these theoretical results by marking DBpedia with
the removal of 2000 facts. Then, we stole different themes from the marked DBpe-
dia and merged them into YAGO. We ran our detection algorithm and obtained
significance levels of χ2 = 28, 15, 34, 47, and 31, respectively. This means that we
could successfully detect all thefts, except for the theft of the Television Episode

8 Part of the reason for the small overlap is the rather crude mapping (YAGO normal-
izes numbers to SI units, while DBpedia does not). However, manual inspection also
shows that YAGO knows many types for the entities, many labels, and some facts
that DBpedia does not know. DBpedia, in turn, captures many infobox attributes
that YAGO does not capture. The ontologies share just 1.4 million instances.
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theme. This set is smaller, so that it requires the removal of more facts, as pre-
dicted. This shows that our method works even if part of the mark is destroyed.

6 Conclusion

We have presented an alternative approach for the watermarking of ontologies.
Instead of altering facts, we remove facts. Thereby, we do not lower the preci-
sion of the ontology. We have shown that even on large ontologies, only a few
hundred facts have to be removed to guarantee protection from theft. Through
experiments, we have shown that our approach is well applicable to real world
ontologies. In the future, we intend to explore whether ontologies can also be
watermarked by adding artificial facts.
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Abstract. Annotation graph datasets are a natural representation of
scientific knowledge. They are common in the life sciences where genes
or proteins are annotated with controlled vocabulary terms (CV terms)
from ontologies. The W3C Linking Open Data (LOD) initiative and
semantic Web technologies are playing a leading role in making such
datasets widely available. Scientists can mine these datasets to discover
patterns of annotation. While ontology alignment and integration across
datasets has been explored in the context of the semantic Web, there is
no current approach to mine such patterns in annotation graph datasets.
In this paper, we propose a novel approach for link prediction; it is a pre-
liminary task when discovering more complex patterns. Our prediction
is based on a complementary methodology of graph summarization (GS)
and dense subgraphs (DSG). GS can exploit and summarize knowledge
captured within the ontologies and in the annotation patterns. DSG uses
the ontology structure, in particular the distance between CV terms, to
filter the graph, and to find promising subgraphs. We develop a scoring
function based on multiple heuristics to rank the predictions. We perform
an extensive evaluation on Arabidopsis thaliana genes.

Keywords: Link prediction, Graph summarization, Dense subgraphs,
Linking Open Data ontology alignment.

1 Introduction

Among the many ”killer apps” that could be enabled by the Linking Open Data
(LOD) initiative [2,20] and semantic Web technologies, the ability for scientists
to mine annotation graph datasets and to determine actionable patterns shows
great promise. A majority of the links in LOD datasets are at the instance level
as exemplified by the owl:sameAs relationship type. However, there has been a
rapid emergence of biological and biomedical datasets that are typically anno-
tated using controlled vacabulary (CV) terms from ontologies. For example, the
US NIH clinical trial data ClinicalTrial.gov has been linked to (1) PubMed
publications and Medical Subject Header (MeSH) terms; (2) drug names and
drug terms from RxNorm; (3) disease names and terms from Diseasome; etc.

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 714–729, 2011.
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Fig. 1. GO and PO annotations for gene CRY1

This has lead to a rich annotation graph dataset [8]. Semantic Web research has
laid the groundwork for research in link prediction and pattern discovery in the
context of annotation graph datasets as discussed next.

1.1 Motivating Example

Arabidopsis thaliana is a model organism and TAIR
http://www.arabidopsis.org/ is the primary source of annotated data for
Arabidopsis genes. Each gene in TAIR is marked up with CV terms from the
Gene Ontology and from the Plant Ontology. The resulting tripartite annotation
graph (TAG) is illustrated in Figure 1 where we visualize the annotations for
gene CRY1; PO terms are on the left and GO terms are on the right of CRY1. The
TAG has been enhanced to include relevant fragments of the GO and PO on-
tologies. As of October 2010 there were 18 GO and 36 PO annotations for CRY1.
The figure illustrates partial annotations (due to lack of space). The annotations
can be represented using an RDF class gene GO PO TAGtriplet as follows:

t1: (TAGtripletID rdf:type gene GO PO TAGtriplet)
t2: (TAGtripletID gene ID name-of-gene)
t3: (TAGtripletID GO ID uri-of-GO-CV-term)
t4: (TAGtripletID PO ID uri-of-PO-CV-term)

A scientist is typically interested in a set of genes of interest within a biological
context, e.g., flowering time genes or photomorphogenesis genes. Given the re-
sulting large annotation graph dataset, the scientist would like to be presented
with interesting patterns. For photomorphogenesis, a pattern may correspond to
the following 4 TAG triplets for CRY2 and PHOT1; note that we use a comma sep-
arated representation (gene, GO CV term, PO CV term), instead of the RDF
triples for ease of presentation and due to space constraints:

TAGtripletT1: (CRY2, GO 5773:vacuole, PO 13:cauline leaf)
TAGtripletT2: (CRY2, GO 5773:vacuole, PO 37:shoot apex)
TAGtripletT3: (PHOT1, GO 5773:vacuole, PO 13:cauline leaf)
TAGtripletT4: (PHOT1, GO 5773:vacuole, PO 37:shoot apex)
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Subsequently, she will explore the literature to understand the evidence. PHOT1
and CRY2 belong to two different groups of blue light receptors, namely pho-
totropins (PHOT1) and cryptochromes (CRY2). To date there has been no evidence
reported in the literature that confirm any interactions between these 2 groups.
A literature search identified 2 independent studies of interest [11,24] that pro-
vide some background evidence. The set of 4 TAG triplets, in conjunction with
the 2 studies, may lead her to design a set of bench experiments to validate the
potential interaction in the vacuole between CRY2 and PHOT1.

1.2 Challenges and Contributions

While scientists are interested in complex patterns, in this paper, we examine
a simpler task of link prediction. We predict edges between genes and GO CV
terms or edges between genes and PO CV terms. We briefly summarize the
challenges of link prediction for the annotation graph datasets. First, the TAG
is a layered graph. Layered graphs impose restrictions on the link prediction
process, e.g., the neighborhoods of two nodes in neighboring layers are disjoint
and only edges between neighboring layers should be predicted. This restriction
makes many popular prediction approaches ineffective as will be discussed.

The next challenge is the a heterogeneity of biological knowledge. As seen
in the previous example, a set of gene GO PO TAGtriplets forms a complex
and interesting cross-ontology pattern. The GO ontology is focused on universal
biological processes, e.g., DNA binding. It does not capture organism-specific
processes, e.g., leaf development. The PO ontology is designed to capture such
organism specific knowledge. Thus, a gene GO PO TAGtriplet, or a complex pat-
tern of multiple triplets, may be used to determine when a plant specific biolog-
ical phenomenon has a relationship with a ubiquitous biological process.

A related challenge is identifying an area or subgraph of the dataset to make
predictions or find patterns. Ontologies capture multiple relationship types be-
tween CV terms that can be exploited for prediction. GO supports multiple rela-
tionship types including is a, part of and regulates. From Figure 1, the GO CV
term blue light photoreceptor activity is part of blue light signaling
pathway which is a cellular response to blue light which is a response
to blue light. CRY1 is annotated with blue light photoreceptor activity
and response to blue light. PO has relationship types is a, part of and de-
velops from. Our challenge is to restrict the patterns of gene GO PO TAGtriplets
so that they favor GO CV terms (or PO CV terms) that are closely related.

Our observation is that the edges of each relationship type are not uniformly
distributed across the ontology structure. For GO, the edges of type is a are
dominant, and thus all the edges of any path in GO are more likely to be of
this type. The edges relevant to regulation are more densely placed in specific
areas of the ontology; thus, an edge of this type also has a greater probability
that an adjacent edge is of the same type. For PO, while neither is a nor part of
dominate, the edge distribution of these types are similarly concentrated so that
an edge of one type is more likely to have an adjacent edge of the same type.
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Based on these observations, our first attempt at prediction will use the topo-
logical shortest path distance on undirected graphs, between 2 CV terms, as a
proxy for relatedness. We note that this path length metric is affected by both
human annotation patterns and the ontology structure representing biological
knowledge, e.g., the depth of the tree along any branch. We will consider the
impact of the GO (PO) relationship type(s) on the path based distance met-
ric in future research. Our link prediction framework relies on 2 complemen-
tary approaches. Graph summarization (GS) is a minimum description length
(MDL) encoding that represents a graph with a signature and corrections. Such
a representation is intuitive for both explanation and visualization. Since anno-
tation graph datasets may be large and sparse, high quality predictions must
rely on finding good candidate regions or subgraphs. Dense subgraphs (DSG)
is a methodology to find such regions that include clique-like structures, i.e.,
cliques with missing edges. Variations of the dense subgraph whose nodes satisfy
some distance restriction is also useful to ensure possible relatedness of the CV
terms. Our research makes the following contributions:

– We develop a prediction framework that can be used for both unsupervised
or supervised learning. We focus on unsupervised learning in this paper. We
perform an extensive evaluation on the annotation graph of TAIR.

– Our evaluation illustrates the benefit of the DSG and the distance restriction
to identify a potential subgraph so as to increase prediction accuracy. We
further show that high values of the scoring function, or predicted edges with
high confidence, are correlated with increasing prediction accuracy.

Due to space limitations, our examples only involve TAGs; however, our pre-
diction framework is not limited to TAGs. We have applied our framework to
a layered graph of 5 layers; beyond 5 layers, we are unclear if the patterns and
predictions will be meaningful. We are also studying the clinical trial dataset;
this is a star graph with a clinical trial having links to PubMed publications,
MeSH terms, (disease) conditions, interventions (drugs or treatments), etc.

1.3 Related Work

Semantic Web research has addressed information integration using ontologies
and ontology alignment [9,25]. There are also multiple projects and tools for
annotation, e.g., Annotea/Amaya [10] and OntoAnnotate [20].

Graph data mining covers a broad range of methods dealing with the iden-
tification of (sub)structures and patterns in graphs. Popular techniques are,
amongst others, graph clustering, community detection and finding cliques. Our
work builds upon two complementary graph methods: graph summarization [23]
and dense subgraphs [27]. To the best of our knowledge, we are the first to
consider the synergy of these two approaches.

Link prediction is a subtask of link mining [21]; prediction in bipartite and tri-
partite graphs is also of interest [15,26]. Prediction methods can be supervised or
unsupervised. Supervised link prediction methods (e.g., [1,7,26]) utilize training
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and test data for the generation and evaluation of a prediction model. Unsu-
pervised link prediction in graphs is a well known problem [18]. There are two
types of approaches: methods based on node neighborhoods and methods using
the ensemble of all paths between two nodes. We discuss their disadvantages for
tripartite graphs in Section 3. Many approaches for predicting annotations in
the biological web are available [3,5,17]. The AraNet system [17] predicts GO
functional annotations for Arabidopsis using a variety of biological knowledge;
details are discussed with our evaluation in Section 4.

2 Problem Definition

A tripartite annotation graph (TAG) is an undirected layered tripartite
graph G = ((A, B, C), (X, Y )) with three pairwise disjoint sets of nodes A, B,
and C and two sets of edges X ⊆ A × B and Y ⊆ C × B. Figure 2 shows an
example of a TAG. For example, in the TAIR annotated graph, the node sets
A, B, and C correspond to POs, genes, and GOs, respectively. The sets of edges
then reflect gene annotations using POs (X) and GOs (Y ).

We study the link prediction problem for TAGs. Given a TAG G at time t1
and a future time t2, we assume that edges will be added during the transition
from the original graph G1 to the new graph G2, i.e., G1 = ((A, B, C), (X, Y ))

Fig. 2. Example of a TAG G = ((A,B, C), (X, Y )) with |A| = 13 PO nodes, |B| = 9
genes, and |C| = 3 GO nodes. The nodes are connected by |X| = 98 edges of type
A × B and |Y | = 10 edges of type C × B.
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and G2 = ((A, B, C), (X ∪ Xnew, Y ∪ Ynew)). The goal of link prediction is
to infer the set of new edges based on the original graph G1 only. Ideally the
predicted edges PX(G) and PY (G) are the added edges, i.e., PX(G) = Xnew

and PY (G) = Ynew.
For a given TAG G = ((A, B, C), (X, Y )) we refer to X and Y as the set of

observed edges. We call all other possible edges, i.e., ((A×B)−X) ∪ ((C×B)−Y )
potential edges. Predicted edges PX(G) and PY (G) and new edges are subsets
of the corresponding potential edges.

Note that we consider only edge additions and we do not consider node addi-
tions for the transition from G1 to G2. In biological terms, we plan to use prior
annotations to existing PO and GO nodes in G1 to predict new edges in G2. We
are not attempting to predict new annotations to new PO or GO nodes that do
not occur in G1.

3 Approach

Unsupervised link prediction in graphs is a well known problem, e.g., see [18] for
a survey on link prediction approaches in social networks. Basically there are two
types of approaches. Neighborhood-based approaches consider the sets of node
neighbors N(a) and N(b) for a potential edge (a, b) and determine a prediction
probability based on the (relative) overlap of these two sets. Methods based on
the ensemble of all paths aggregate all paths from a through b to a combined
prediction score. Shorter paths usually have a higher impact than longer paths
and the more paths exist the higher the score will be.

Unfortunately, these types of approaches are not suited to TAGs.
Neighborhood-based approaches will even fail for TAGs because the sets N(a)
and N(b) are disjoint. Given a tripartite graph G = ((A, B, C), (X, Y )) and a
potential edge (a, b) with a ∈ A and b ∈ B, the node neighbors of a are in B
(N(a) ⊆ B) and b’s neighbors are in A (N(b) ⊆ A) and therefore N(a)∩N(b) =
∅. On the other hand, path-based approaches are in general applicable for tripar-
tite graphs but will produce similar prediction scores for many potential edges
due to the structure of a tripartite graphs for two reasons. First, the minimal
path length for a potential edge (a, b) equals 3 because there are only two possi-
ble path types (a → b′ → c′ → b) or (a → b′ → a′ → b). Second, most potential

Fig. 3. The proposed link prediction framework combines graph summarization with
link prediction functions. The original TAG can be subject to an optional filter step to
identify dense subgraphs.
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edges will have multiple paths with length 3 because it is very likely in the anno-
tated biological web that any two genes b and b′ have (at least) one GO (a′) or
PO (c′) in common. Furthermore path-based approaches are not able to benefit
from the rich ontology knowledge because they do not distinguish paths between
the three layers (GO/genes/PO) and paths within the ontologies (PO, GO).

We therefore propose a different approach that employs graph summarization
that transforms a graph into an equivalent compact graph representation using
super nodes (groups of nodes) and super edges (edges between super nodes). The
summary reflects the basic pattern (structure) of the graph and is accompanied
by a list of corrections, i.e., deletions and additions, that express differences
between the graph and its simplified pattern. The idea of our link prediction
approach is that adding predicted edges reinforces the underlying graph pattern,
i.e., predicted edges are the missing building blocks for existing patterns.

Figure 4 illustrates a possible summarization of the graph shown in Figure 2.
The utilization of a graph summary has several advantages. First, the summary
gives a better understanding of the overall structure of the underlying graph
and may itself be used for visualization. Second, the corrections, foremost dele-
tions, are intuitive indicators for edge prediction. Third, the summary captures
semantic knowledge not only about individual nodes and their connections but
also about groups of related nodes.

Figure 3 illustrates the overall scheme of our approach. The input is a TAG G
and the output is a ranked list of predicted edges. Our approach consists of three
consecutive steps. The first step is optional and deals with the identification of
dense subgraphs, i.e., highly connected subgraphs of G like (almost) cliques.
The goal is to identify interesting regions of the graph by extracting a relevant
subgraph. Next, graph summarization transforms the graph into an equivalent
compact graph representation using super nodes (groups of nodes) and super
edges (edges between super nodes). The summarized graph is then input to the
last step. A prediction function computes prediction scores for potential edges
and returns a ranked list. Our approach is not limited to TAGs. A K-partite
layered graph can be first converted to a more general (bi-partite) graph before
creating a DSG and applying graph summarization.

3.1 Dense Subgraphs

Given an initial tripartite graph, a challenge is to find interesting regions of
the graph, i.e., candidate subgraphs, that can lead to accurate predictions. We
commence with the premise that an area of the graph that is rich or dense with
annotation is an interesting region to identify candidate subgraphs. For example,
for a set of genes, if each is annotated with a set of GO terms and/or a set of PO
terms, then the set of genes and GO terms, or the set of genes and PO terms,
form a clique. We thus exploit cliques, or dense subgraphs (DSG) representing
cliques with missing edges.

Density is a measure of the connectedness of a subgraph; it is the ratio of
the number of induced edges to the number of vertices in the subgraph. Even
though there are an exponential number of subgraphs, a subgraph of maximum
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density can be found in polynomial time [16,6,4]. In contrast, the maximum
clique problem to find the subgraph of largest size having all possible edges is
NP -hard; it is even NP hard to obtain any non-trivial approximation. Finding
densest subgraphs with additional size constraints is NP hard [13]; yet, they are
more amenable to approximation than the maximum clique problem.

Recall that our annotation graph is a tripartite graph G = ((A, B, C), (X, Y )).
We employ our approach in [27] and thus first transform the tripartite graph G
in the form of a bipartite graph G′ = (A, C, E) between the two sets A and
C of outer nodes in G. The bipartite graph is a weighted graph where each
edge e = (a, c) ∈ E is labeled with the number of nodes b ∈ B that have links
to a and c in the tripartite graph, i.e., (a, b) ∈ X and (c, b) ∈ Y . We then
compute a densest bipartite subgraph G′

dense = (A′, C′, E) by choosing subsets
A′ ⊂ A and C′ ⊂ C to maximize the density of the subgraph, which is defined
as w′(E)

|A|+|C| . Here w′(E) denotes the weight of the edges in the subgraph induced
by E. Finally, we build the dense tripartite graph Gdense out of the computed
dense bipartite graph G′

dense by adding all intermediate nodes b ∈ B that are
connected to at least one a ∈ A′ or c ∈ C′.

An interesting variation on the DSG includes a distance restriction accord-
ing to the ontology of nodes. In the annotated biological web (see Figure1) nodes
from PO and GO are hierarchically arranged to reflect their relationships (e.g.,
is-a or part-of). Assume we are given a distance metric dA (dC) that specifies
distances between pairs of nodes in set A (C). We are also given distance thresh-
olds τA(τC). The goal is to compute a densest subgraph G′

S that ensures that
for all node pairs of A (C) are within a given distance. For any pair of vertices
a1, a2 ∈ AS we have dA(a1, a2) ≤ τA, and the same condition holds for pairs of
vertices in CS , namely that for all c1, c2 ∈ CS we have dC(c1, c2) ≤ τC . We will
evaluate the influence of a distance restriction in Section 4.

The distance restricted DSG algorithm calls a routine with complexity O(n3 ·
log(n)), where n is the number of nodes in a valid distance-restricted subgraph;
it is called once for each pair of nodes in A, and for each pair in C. We have
also implemented a linear time greedy 2-approximation to DSG that greatly
outperforms our previous running time results reported in [27]; this solution was
previously reported in [4,14].

3.2 Graph Summarization

We start with the intuition that a summary of a tripartite graph is also a graph.
The summary must however include a compact representation that can be easily
visualized and that can be used for making predictions. While there are many
methods to summarize graphs, we focus on the graph summarization (GS) ap-
proach of [22,23]. Their graph summary is an aggregate graph comprised of
a signature and corrections. It is the first application of minimum description
length (MDL) principles to graph summarization and has the added benefit of
providing intuitive course-level summaries that are well suited for visualization
and link prediction.



722 A. Thor et al.

Fig. 4. Possible summary of the graph in Figure 2. The summary has 9 supernodes, 8
superedges, two deletions (PO 20030, CIB5) and (PHOT1, GO 5643) and 6 additions.

A graph summary of a graph G = ((A, B, C), (X, Y )) consists of a graph
signature Σ(G) and a set of corrections Δ(G). The graph signature is defined
as follows: Σ(G) = ((SAC , SB), SXY ). The sets SAC and SB are disjoint parti-
tionings of A∪C and B, respectively, that cover all elements of these sets. Each
element of SAC or SB is a super node and consists of one or more nodes of
the original graph. Elements of SXY are called super edges and they represent
edges between super nodes, i.e., SXY ⊆ SAC × SB. The second part of a sum-
mary is the sets of edge additions and deletions Δ(G) = (Sadd, Sdel). All edge
additions are edges of the original graph G, i.e., Sadd ⊆ X ∪ Y . Deletions are
edges between nodes of G that do not have an edge in the original graph, i.e.,
SDel ⊆ ((A ∪ C)× B)− (X ∪ Y ). Figure 4 depicts a possible summarization of
the graph shown in Figure 2.

The summarization algorithms makes sure that G ≡ (Σ(G), Δ(G)), i.e., the
original graph G can be reconstructed based on the graph summary and the
edge corrections Δ(G). The nodes A, B, and C are “flattened” sets of SAC

and SB, respectively. A super edge between two super nodes sAC ∈ SAC and
sB ∈ SB represents the set of all edges between any node of sAC and any
node of sB . The original edges can therefore be reconstructed by computing
the Cartesian product of all super edges with consideration of edge corrections
Δ(G). For example, X is therefore X = {(a, b)|a ∈ A ∧ b ∈ B ∧ a ∈ sAC ∧ b ∈
sB ∧ (sAC , sB) ∈ (SXY ∪ Sadd − Sdel)}.

Graph summarization is based on a two-part minimum description length
encoding. We use a greedy agglomerative clustering heuristic. At first, each node
belongs to its own supernode. Then, in each step, the pair of supernodes are
merged that result in the greatest reduction in representation cost. When the
cost of merging any pair becomes negative, the algorithm naturally terminates.
There are no parameters or thresholds to set. The complexity of the original
GS problem is currently unknown. However, if nodes are allowed to belong to
more than one super node (i.e., overlapping supernodes), the problem reduces
to finding the maximum clique in a graph, which is NP-hard.
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Fig. 5. Detail of Figure 4 for computing prediction scores for potential edges
(PO 20030, CIB5) and (GO 5773, CIB5)

The possible summaries of a graph will depend on the cost model used
for an MDL encoding. In general, the cost model is a triple (α, β, γ) that as-
signs weights to the number of superedges, deletions, and additions, respec-
tively. Graph summarization looks for a graph summary with a minimal cost of
C(G) = α · |SXY | + β · |Sadd| + γ · |Sdel|. A simple cost model that gives equal
weight to supernodes, superedges and corrections was used in [23] and was used
to produce Figure 4.

GS has time complexity O(d3
av · (dav + log(n) + log(dav))), where dav is the

average degree of the nodes [23]. The average degree in our datasets is low so
average running time is low.

3.3 Prediction Function

A prediction function is a function p : e �→ s ∈ [0, 1] that maps each potential
edge e of a TAG to a real value between 0 and 1. This value s is called prediction
score. The function p can be used for ranking all possible edges according to
their probability. Consider the graph summary Σ(G); let sAC and sB be the
corresponding super nodes of e. Note that this does not imply the existence
of an super edge between sAC and sB. The prediction score for an edge e ∈
((A∪C)×B)− (X ∪ Y ) is defined as p(e) = s(e) · c(e) and combines a so-called
supernode factor s(e) and a correction factor c(e). The supernode factor is
defined as follows:

s(e) =

⎧⎪⎨⎪⎩
1− |sAC×sB∩Sdel|

|sAC |·|sB | if e ∈ Sdel

|sAC×sB∩Sadd|
|sAC |·|sB | otherwise

For e ∈ Sdel the graph summary contains a super edge between sAC and sB.
The supernode factor determines the fraction of missing edges between the two
super nodes. The larger the super nodes and the smaller the number of deletions
are, the higher is the supernode factor. On the other hand, e /∈ Sdel implies that
there is no super edge between sAC and sB. The supernode factor then reflects
the fraction of additions in all possible edges between these two supernodes. The
larger the super nodes and the smaller the number of additions are, the lower is
the supernode factor. The correction factor for an edge e = (a, b) is as follows:

c(e) =
1

1 + |Scorr(a)| ·
1

1 + |Scorr(b)|
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Here Scorr(a) and Scorr(b) describe the set of corrections involving a and b,
respectively, i.e., Scorr(a) = {b′|b′ �= b ∧ (a, b′) ∈ Sdel ∪ Sadd} and Scorr(b) =
{a′|a′ �= a ∧ (a′, b) ∈ Sdel ∪ Sadd}. The correction factor accounts for the num-
ber of corrections that are relevant to a given edge. The higher the number of
corrections, the smaller the correction factor, and thus, the prediction score.

Figure 5 shows the relevant part of the example summarization of Figure 4 for
potential edges (PO 20030, CIB5) and (GO 5773, CIB5). The deletion (PO 20030,
CIB5) is the only deletion between the two supernodes and the size of the supern-
odes are 4 and 6, respectively. For (GO 5773, CIB5) there are two additions be-
tween the corresponding supernodes of size 1 and 6, respectively. The supernode
factors are therefore calculated as follows: s(PO 20030, CIB5) = 1− 1

4·6 = 23
24 and

s(GO 5773, CIB5) = 2
1·6 = 1

3 . The correction factors for the two example edges
are: c(PO 20030, CIB5) = 1

1+0 ·
1

1+0 = 1 and c(GO 5773, CIB5) = 1
1+2 ·

1
1+1 = 1

6 .
Finally, the overall prediction scores are: p(PO 20030, CIB5) = 23

24 · 1 ≈ 0.96 and
p(GO 5773, CIB5) = 1

3 ·
1
6 ≈ 0.06. In other words, the edge (PO 20030, CIB5)

seems to be a good prediction whereas edge (GO 5773, CIB5) does not.

4 Experimental Evaluation

4.1 Dataset Preparation

The Arabidopsis Information Resource (TAIR) consists of Arabidopsis thaliana
genes and their annotations with terms in the Gene Ontology (GO) and Plant
Ontology (PO). The entire TAIR dataset includes 34,515 genes, with 201,185
annotations to 4,005 GO terms and 529,722 annotations to 370 PO terms circa
October 2010. We created three subsets labeled ds1, ds2 and ds3, respectively.
Each dataset was constructed by choosing 10 functionally related genes associ-
ated with photomorphogenesis, flowering time and photosynthesis, respectively,
and expanding the graph to include all GO and PO terms. The statistics of these
3 dataset are shown in Table 6. Recall that we use the shortest path distance
between a pair of CV terms as a proxy for relatedness. To test the distance
restriction we create subgraphs ds1-DSG, etc. The impact of the distance re-
striction will be discussed in a later section.

4.2 Evaluation Methodology

We use a simple leave-K-out strategy to evaluate our link prediction approach.
Given a dataset, we remove 1 (up to K) edges that are selected at random from
the set of all edges. We then predict 1 (up to K) edges.

We report on precision. We consider precision at the Top 1 or P@1 when we
predict 1 edge and mean average precision (MAP) when we predict K edges [19].

To further study the quality of our prediction, we report on the scores pro-
duced by our scoring function. For those predictions in which we have the highest
confidence, i.e., those predictions are consistently above a threshold of the scor-
ing function, we report on the true positives (TP) and false positives (FP). A
TP is a correct prediction while a FP is an incorrect prediction.
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Fig. 6. Statistics of the 3 datasets
along with their dense subgraphs.

Fig. 7. MAP of predicting k annotations in
ds2 dense subgraphs. Distance restrictions
are (GO Distance, PO Distance).

As a baseline, we compute the Katz metric between any 2 pair of nodes [12].
The Katz metric is a path based measure equal to

∑∞
l=1 β� · paths�(x, y), where

paths�(x, y) is the number of paths between nodes x and y of length �. For our
experiments, we used β = .005. All potential edges were ranked and sorted by
the value of the Katz metric, creating a ranked list of predictions. This is labeled
dsi-Katz or dsi-DSG-Katz where the prefix dsi identifies the dataset.

Three following variations of our prediction approach were considered:

– dsi-GS: The prefix represents the dataset and the suffix indicates that there
was no DSG created and we only used graph summarization.

– dsi:DSG+GS: We created a DSG with no distance restrictions.
– dsi:DSG+GS(dP,dG): We created a DSG with a distance restriction of dP for

PO and a distance restriction of dG for GO.

We note that the DSG with no distance restriction results in the densest sub-
graph. Imposing a distance restriction may result in a less dense subgraph, but
possibly one with greater biological meaning. The cost model for graph sum-
marization is another experimental parameter, but one that we did not vary
in our experiments. Equal weights were given to supernodes, superedges and
corrections throughout all of our summarizations.

AraNet [17] created an extensive functional gene network for Arabidopsis
exploiting pairwise gene-gene linkages from 24 diverse datasets representing >
50 million observations. They report on prediction accuracy of GO biological
process CV terms for over 27,000 genes. Their prediction method computes a
score for each gene and association using its neighborhood and naive Bayes
estimation; this is similar in spirit to the Katz metric. Their results demonstrate
that for over 55% of gene annotation, their predictions (cumulative likelihood
ratio) were more significant compared to random prediction. A direct comparison
of our approach with AraNet was not possible since AraNet exploits significant
knowledge beyond GO and PO annotations. We note that the mean average
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(a) Precision of predicting 1 annotation (b) MAP of predicting k annotations

Fig. 8. Evaluation using different approaches across all datasets

precision (MAP) for our method and Katz reflect that the prediction accuracies
of all three methods appear to occur in a similar range; this is notable since Katz
and our method exploit only PO and GO annotation data.

4.3 Summary of Results

Baseline Analysis. Given a ranked list of predictions, precision at one (P@1)
provides a useful metric for evaluating the performance of the different ap-
proaches. To establish a baseline, Figure 8(a) reports on P@1 for the 3 datasets
for dsi-GS and dsi-Katz. The P@1 values are low for lower K values and increase
with higher K. This is expected since larger K provides a larger ground truth
and improves prediction accuracy. Both methods perform best on ds3 and show
the worst prediction accuracy on ds2. A visual examination of the datasets and
the graph summary intuitively illustrates the difference in performance across
the 3 datasets. For example, ds3 is the most dense dataset.

To complete the baseline analysis, we consider the Top K predictions as we
leave out K. Figure 8(b) reports on the mean average precision (MAP) of the
different approaches as a function of K. As expected MAP for Top K is higher
than the values for P@1 since we are making K predictions (and not 1 prediction
as before). We note that ds3-GS outperforms ds3-Katz. Both methods show the
least prediction accuracy for ds2.

Impact of Varying the Distance Restriction. The average distance between
a pair of GO CV terms in ds2 is 5.57. Of the 946 pairs, 402 are within distance
5 of each other; this is the distance restriction used in our previous experiments.
160 pairs are not connected at all, i.e., they are in different parts of the ontology.

Figure 7 reports on MAP for dsi-DSG+GS and dsi-DSG+Katz for vary-
ing PO and GO restrictions on dataset ds2. Method dsi-DSG+GS dominates
dsi-DSG+Katz over all distance restrictions. This is a very strong validation of
the prediction accuracy of our approach. Accuracy initially increases with in-
creasing (PO,GO) distance. The best accuracy was obtained with (5,5) after
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(a) Precision at 1 after removing k edges
from a subgraph

(b) MAP of k annotations after removing
k edges from a subgraph

Fig. 9. Comparison of our graph summarization approach with the Katz metric

which accuracy decreases, e.g., for a (6,6) distance restriction. Figure 9(a) re-
ports on P@1 for dsi-DSG+GS and dsi-DSG+Katz for the 3 datasets with distance
(5,5). Method dsi-DSG+GS dominates dsi-DSG+Katz for ds1 and ds2. Surpris-
ingly ds3-DSG+Katz outperforms ds3-DSG+GS for ds3. An examination of the
predictions indicates that ds3-DSG+GS makes an incorrect prediction which has
a high prediction score and is therefore ranked high. Since Figure 9(a) reports
on P@1, this has a significant penalty on the accuracy of ds3-DSG+GS.

Figure 9(b) reports on the mean average precision (MAP) for ds2 with dis-
tance restriction (5,5). Again, ds3-DSG+GS outperforms ds3-DSG+Katz, further
confirming the strength of our approach.

Confidence in Predictions. Our final experiment is to validate that high
confidence predictions result in more accurate predictions. High confidence pre-
dictions are those that receive a high prediction score. Table 1 reports on the
percentage of true positive (TP) and false positives (FP) for ds2-Katz, ds2-GS
and ds2-DSG+GS, bucketized by the range of prediction score. Note that for Katz,
we normalize the score from 0.0 to 1.0 prior to bucketization. The values on the
left represent the high confidence (high score) prediction buckets and the confi-
dence (score) decreases as we move to the right. As expected, the % of TP values
is greater than the % of FP values for high confidence buckets. The reverse is
true for low confidence buckets. This holds for all the methods. Further, the %
TP values for ds2-DSG+GS for the 2 left most buckets, 80% and 89%, dominates
the % TP values of ds2-GS (50% and 42%) and ds2-Katz (50% and 51%). The
% TP values for ds2-DSG+GS is overall higher than the other two methods ex-
cept for one exception (score between 0.7 to 0.8). These results confirm that
ds2-DSG+GS had both higher confidence scores and higher prediction accuracy,
compared to ds2-GS and ds2-Katz. This held across all 3 datasets and further
validates our prediction approach.
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Table 1. Percentage of true positives (TP) and false positives (FP) as a function of
the prediction score for predictions made on ds2 with DSG+GS(5,5), GS, and Katz

Score <1.0 <.90 <.80 <.70 <.60 <.50 <.40 <.30 <.20 <.10

TP ds2-Katz 50 51 77 18 11 4 1 3 6 0
FP ds2-Katz 50 49 23 82 89 96 99 97 94 100
TP ds2-GS 50 42 35 37 38 40 18 3 1 1
FP ds2-GS 50 58 65 63 62 60 82 97 99 99
TP ds2-DSG+GS 80 89 61 61 56 51 18 18 18 25
FP ds2-DSG+GS 20 11 39 39 44 49 82 82 82 75

5 Conclusions and Future Work

We presented a novel approach for link prediction in the layered annotation graph
datasets that employs graph summarization for link prediction. Furthermore,
the complementary method of identifying dense subgraphs helps find interesting
regions for high quality predictions. To the best of our knowledge, we are the first
to consider the synergy of these two approaches. Future work includes learning
GS cost models using supervised learning.
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Abstract. Both materialization and backward-chaining as different
modes of performing inference have complementary advantages and dis-
advantages.

Materialization enables very efficient responses at query time, but at
the cost of an expensive up front closure computation, which needs to be
redone every time the knowledge base changes. Backward-chaining does
not need such an expensive and change-sensitive precomputation, and is
therefore suitable for more frequently changing knowledge bases, but has
to perform more computation at query time.

Materialization has been studied extensively in the recent semantic
web literature, and is now available in industrial-strength systems. In
this work, we focus instead on backward-chaining, and we present an
hybrid algorithm to perform efficient backward-chaining reasoning on
very large datasets expressed in the OWL Horst (pD∗) fragment.

As a proof of concept, we have implemented a prototype called
QueryPIE (Query Parallel Inference Engine), and we have tested its
performance on different datasets of up to 1 billion triples. Our par-
allel implementation greatly reduces the reasoning complexity of a naive
backward-chaining approach and returns results for single query-patterns
in the order of milliseconds when running on a modest 8 machine cluster.

To the best of our knowledge, QueryPIE is the first reported
backward-chaining reasoner for OWL Horst that efficiently scales to a
billion triples.

1 Introduction

We are witnessing an exponential growth of semantically annotated data avail-
able on the Web. While a few years ago a large RDF dataset would consist of a
few hundred thousand triples, now a large dataset is in the order of billions of
triples. This growth calls for knowledge-base systems that are able to efficiently
process large amounts of data.

The community has provided tools to perform efficient materialization (i.e.
calculate the forward closure) using distributed techniques that can scale up to
hundreds of billion statements over reasonably expressive logics [14] but there are
use cases in which this technique is neither desirable nor possible. In particular,
when datasets are frequently updated, materialization is not efficient.
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Currently, there is no alternative to materialization that scales to relatively
complex logics and very large data sizes. Backward-chaining reasoning, which
does not require materialization, suffers from more complex query evaluation
that adversely affects performance and scalability. Thus, it has until now been
limited to either small datasets (usually in the context of expressive DL reason-
ers) or weak logics (RDFS inference).

To overcome this problem, we propose an hybrid method to perform backward-
chaining reasoning that calculates some derivations in a forward fashion while the
majority are computed on-the-fly during query time as necessary. This method
strikes a balance between the large pre-processing costs of materialization and
the complexity of pure backward-chaining reasoning. Thus, it allows us to do
more complex reasoning with competitive performance. Furthermore, our algo-
rithms have been designed to exploit the computational power of a compute
cluster.

The costs of reasoning depend on the logic we consider. In this paper, we will
consider the OWL Horst fragment [13], also known as the pD∗ ruleset. OWL
Horst is the most widely used complex fragment in Web-scale data to date, as
witnessed by our datasets which combine some of the most important parts of
the Linked Data Cloud.

Our method abstracts from the actual query language by describing and eval-
uating the reasoning system in terms of retrieving triples that match a given pat-
tern. As a proof of concept, we have implemented a prototype called QueryPIE
and tested its performance. QueryPIE has been built on top of the Ibis frame-
work [1] and it was launched on the DAS-4 cluster with up to 8 machines. As we
will describe later in the paper, the results indicate that our algorithms manage
to keep the query response time in the order of a few milliseconds over triple
stores of up to a billion statements.

The rest of the paper is organized as follows: In Section 2 we formalize our
problem while in Section 3 we give a brief overview of rule-based reasoning,
positioning our approach within this field. Next, in Section 4, we describe our
algorithms for performing efficient backward-chaining reasoning introducing key
optimizations. In Section 5 we evaluate the performance of the QueryPIE pro-
totype on real and benchmark data. Finally, in Sections 6 and 7 we report on
related work and we draw our conclusions.

2 Querying Complex Web-Scale Data

In this paper, we consider a scenario where a user queries a potentially huge and
rapidly changing knowledge base with information modeled in some expressive
ontology language. Even for a simple SPARQL such as

SELECT ?s WHERE { ?s :lives ’Amsterdam’ . ?s rdf:type Person . }

additional implicit information can be derived according to the formal semantics
of the underlying representation language and those consequences are commonly
retrieved from the knowledge base through some form of reasoning. In our case,
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we will study the specific problem when reasoning is invoked at query-time, i.e. at
the moment when the system searches for information in the knowledge base for
all triples that match (?s :lives ’Amsterdam’) and (?s rdf:type Person).
In this paper, we only consider simple conjunctions of triples in a query, which
means that we can assume that the input of the reasoning process is a single
triple pattern.

We will use the following simple definitions: as usual, a triple is a sequence
of three RDF terms, and a triple pattern is a sequence of three elements where
each of them is either a variable (in this case it is preceded by a ’?’) or an RDF
term. A query is a triple pattern. A ground triple pattern is a triple pattern
not containing any variables (i.e. a ground triple pattern is a triple). Triple
pattern P1 is more specific than triple pattern P2 (written (P1 < P2) if P1 can
be constructed from P2 by replacing all occurrences of at least one variable with
an RDF term.

Formally, the problem that we are addressing is the following: given a set of
axioms in the language OWL Horst (which we will call the knowledge base KB)
and a query Q as input, we want to derive all the ground triples T < Q that are
logically entailed by KB (see [13] for the definition of the entailment relation in
OWL Horst).

The most common form of reasoning in ontology languages such as OWL
Horst or OWL 2 RL is rule-based. It has been shown that all triples that are
entailed by a OWL Horst knowledge base are precisely those triples derivable by
the repeated application of a restricted set of rules defined by the language. In
the following section we will review some of the rule-based reasoning approaches
and the drawback with the current techniques with respect to our problem, which
lead to the development of the novel approach described in Section 4.

3 Rule-Based Reasoning

For the purpose of this paper, we consider rule-based reasoning as a process that
exhaustively applies a set of rules to a set of triples to infer some conclusions.
Rules can be applied either in a forward or in a backward way. The first case is
referred as materialization (or forward-chaining) while the second is referred as
backward-chaining.

With materialization, the rules are applied over the entire KB until all pos-
sible triples are derived, irrespective of the input query. The main advantage of
this method is that querying is simple and efficient after the closure has been
calculated since it does not require further inference. The main disadvantage is
that the closure needs to be updated at every change in the KB and this becomes
problematic when the KB is updated frequently or when queries are infrequent
compared to updates.

With backward-chaining, the rules are applied only over the strictly necessary
data that lead to the derivation of ground triples of the input query. Since
reasoning is only performed for the given query, updating the knowledge base is
cheap because there is no closure that needs to be recomputed. Unfortunately,
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this flexibility comes at a price: the system has to perform specific computations
for every query.

In this paper we focus on backward-chaining since currently there is no valid
technique that can scale to a large extent. We define backward-chaining reasoning
(or simply backward-chaining) over a ruleset R as a process that takes as input a
triple pattern Q (the query) and a knowledge base KB and returns as output a
set of triples C (the conclusions) such that each Ci ∈ C can be derived from KB
using the rules in R and Ci < Q (conclusions are instantiations of the query).
We call C the answer-set of the query Q: all triples Ci < Q that are entailed by
the KB by using R.

We consider the rules in the RDFS [6] and OWL Horst fragments. We report
in Table 1 the rules in these two fragments because we will frequently refer to
them. As we can see from this table, all rules have one or more triple patterns
as antecedents and exactly one consequent.

Regardless of the set of considered rules, backward-chaining first searches for
all rules with a consequent that is either compatible (i.e. contains variables in
the same position) or more specific than the query pattern. After this, it will
recursively look at the antecedents of these rules, regarding them as new query
patterns. In this way the reasoning process builds an and-or tree of all the
possible rules that might return some derivations.

(?S rdf:type Person)

Rule R5 OR

AND

OR

(?S rdf:type ?X)
(?X rdfs:subClassOf 

Person)

...

(?X rdfs:subPropertyOf 
rdf:type)

Rule R4

(?A ?X Person)

... Rule O3......

(Person ?X ?A)
(?X rdf:type 

owl:SymmetricProperty) AND

... ...

Fig. 1. Example of and-or reasoning tree

In Figure 1 we show an example of an and-or tree. Here, the derived triples
are generated by different rules (the OR level) only if all of their antecedents
are bound while respecting the shared variables (the AND level). The variable
bindings will be propagated to the higher levels until they reach the top of the
tree and can be returned as part of the answer-set. The reasoner dynamically
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Table 1. RDFS and OWL Horst rulesets

Antecedents Consequent

R1: p rdfs:domain x, s p o ⇒ s rdf:type x
R2: p rdfs:range x, s p o ⇒ o rdf:type x
R3: p rdfs:subPropertyOf q, q rdfs:subPropertyOf r ⇒ p rdfs:subPropertyOf r
R4: s p o, p rdfs:subPropertyOf q ⇒ s q o
R5: s rdf:type x, x rdfs:subClassOf y ⇒ s rdf:type y
R6: x rdfs:subClassOf y, y rdfs:subClassof z ⇒ x rdfs:subClassOf z
O1: p rdf:type owl:FunctionalProperty, u p v , u p w ⇒ v owl:sameAs w
O2: p rdf:type owl:InverseFunctionalProperty, v p u, w p u ⇒ v owl:sameAs w
O3: p rdf:type owl:SymmetricProperty, v p u ⇒ u p v
O4: p rdf:type owl:TransitiveProperty, u p w, w p v ⇒ u p v
O5: v owl:sameAs w ⇒ w owl:sameAs v
O6: v owl:sameAs w, w owl:sameAs u ⇒ v owl:sameAs u
O7a: p owl:inverseOf q, v p w ⇒ w q v
O7b: p owl:inverseOf q, v q w ⇒ w p v
O8: v rdf:type owl:Class, v owl:sameAs w ⇒ v rdfs:subClassOf w
O9: p rdf:type owl:Property, p owl:sameAs q ⇒ p rdfs:subPropertyOf q
O10: u p v, u owl:sameAs x, v owl:sameAs y ⇒ x p y
O11a: v owl:equivalentClass w ⇒ v rdfs:subClassOf w
O11b: v owl:equivalentClass w ⇒ w rdfs:subClassOf v
O11c: v rdfs:subClassOf w, w rdfs:subClassOf v ⇒ v rdfs:equivalentClass w
O12a: v owl:equivalentProperty w ⇒ v rdfs:subPropertyOf w
O12b: v owl:equivalentProperty w ⇒ w rdfs:subPropertyOf v
O12c: v rdfs:subPropertyOf w, w rdfs:subPropertyOf v ⇒ v rdfs:equivalentProperty w
O13a: v owl:hasValue w, v owl:onProperty p, u p w ⇒ u rdf:type v
O13b: v owl:hasValue w, v owl:onProperty p, u rdf:type v ⇒ u p w
O14: v owl:someValuesFrom w, v owl:onProperty p, ⇒ u rdf:type v

u p x, x rdf:type w
O15: v owl:allValuesFrom u, v owl:onProperty p, ⇒ x rdf:type u

w rdf:type v, w p x

builds such a tree until no rule can be further applied, or when the triple patterns
can be read from the knowledge base.

Since such reasoning is executed at query time, it must be efficient, and it
is crucial that this unfolding of the and-or tree is limited as much as possible.
Therefore, we are required to come up with some optimizations to reduce the
size of the and-or tree. In the next section, we will present some algorithms to
reduce the size of the tree and hence the execution time.

4 Optimizations for Backward-Chaining Reasoning

In this section, we propose two main optimizations that aim to reduce the and-or
tree complexity. These optimizations are:

– Precompute some reasoning branches that will appear often in the tree to
avoid their recomputation at query-time.

– Encourage early failure of branches, allowing to prune the and-or tree, by
using the precomputed branches.
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4.1 Precomputation of Reasoning Branches

If we look at the and-or tree in Figure 1, we notice that the execution of some rea-
soning branches depends less on the input than others. For example, the pattern
(?X rdfs:subPropertyOf rdf:type) is more generic than (?A ?X :Person),
because the latter refers to a specific term from the query. Another difference
between these two patterns is that the first corresponds to only terminological
triples while the second can match any triple. It was already empirically ver-
ified [15] that terminological triples are far less than the others on Web-data,
therefore, the first pattern will match with many fewer triples than the other.

We make a distinction between these two types of patterns, calling the first
terminological triple patterns. A terminological triple pattern is a triple pattern
which has as predicate or object a term from either the RDFS or the OWL
vocabularies.

These terminological patterns are responsible for a notable computational
cost that affects many queries. If we precompute all the ground instances of
these triple patterns that are entailed by the knowledge-base, then whenever
the reasoner needs such patterns it can use the precomputed results avoiding to
perform additional computation. This would simplify our task to only having
to perform reasoning on the non-terminological patterns. We call this simplified
form of reasoning terminology-independent reasoning since it can avoid reasoning
over terminological patterns.

Algorithm 1. Terminology-independent reasoning algorithm

ti-reasoner(Pattern pattern):
//Get rules where pattern is more specific than rule’s consequent
Rules applicableRules = ruleSet.applicable(pattern)

Results results = {}
for(Rule rule in applicableRules)
Patterns antecedents = rule.instantiate_antecedents(pattern)
for(Pattern antecedent : antecedents) //Perform reasoning to fetch all antecedents
if (antecedent != terminological)
antecedents.add(ti-reasoner(antecedent)) //Recursive call to the reasoner

antecedents.add(KnowledgeBase.read(antecedent))
results += rule.apply_rule(antecedents) //Apply the rule using the antecedents triples

return results

The terminology-independent reasoning algorithm is reported in pseudocode
in Algorithm 1. The terminology-independent reasoner will be faster than the
standard one, because it can avoid the reasoning on terminological patterns but
this algorithm is only complete if all entailed instances of these terminological
triple patterns have been added to the knowledge-base.

So now the problem becomes how to calculate all implied terminological
triples so that the terminology-independent reasoning is complete. Such pre-
computation cannot be calculated using traditional forward-chaining techniques
because the complexity of the ruleset is such that completeness cannot be reached
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unless we calculate the entire closure. For this task backward-chaining is more
appropriate but we have explained before that a naive approach does not scale
for its excessive computation requisites. To solve this issue and improve the per-
formance, we propose an algorithm to calculate the implied terminological triples
using the terminology-independent reasoner in an iterative manner. This algo-
rithm is reported in pseudocode in Algorithm 2. The first step in this method
consists of listing all the terminological patterns that should be calculated be-
forehand. Such a list depends on the ruleset and in our case these patterns are
reported in Table 2.

Then, the algorithm starts querying the knowledge base with the terminology-
independent reasoner using each pattern in the table. If the reasoner will produce
some derivation it will be immediately added to the knowledge base. This process
is repeated until no new triples can be inferred.

By querying the reasoner using the terminological patterns, we perform the
reasoning necessary to calculate the implicit terminological triples. Since the
derivation of a terminological triple might require other ground triples of other
terminological patterns that might not have been found yet, we need to repeat
this operation adding new derivations to the knowledge base until saturation.

In this way, the reasoning tree that leads to the derivation of an implicit
terminological triple is built bottom-up. The first time the system will derive
only the terminological triples that require only the existence of explicit ground
triples while other triples that depend on other implicit terminological triples
will be missed. However, at the next iteration the system will be able to use the
implicit triples derived before to infer new conclusions and reach completeness
when all queries return an empty set of results.

Algorithm 2. Closure of the terminological triple patterns

terminological_closure():
do {

InferredTriples = {}
for (Pattern pattern in terminological-patterns)

InferredTriples += ti-reasoner(pattern)
KnowledgeBase = KnowledgeBase + InferredTriples

} while (InferredTriples is not empty)

At that point, the answer-set for all terminological queries has been computed.
We will call this the terminological closure. After the terminological closure is
completed, the terminology-independent reasoner will be sound and complete. A
proof of these two properties goes beyond the scope of this paper but is available
online1.

4.2 Prune Reasoning Using the Precomputed Branches

The pre-calculation of the terminological closure allows us to implement another
optimization that can further reduce the size of the and-or tree by identifying
beforehand whether a rule can contribute to derive facts for the parent branch.
1 http://www.few.vu.nl/~jui200/papers/tr-iswc2011.pdf

http://www.few.vu.nl/~jui200/papers/tr-iswc2011.pdf
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Table 2. Terminological triple patterns considered for RDFS and OWL Horst fragment

(?X rdfs:subPropertyOf ?Y) (?X rdfs:subClassOf ?Y)

(?X rdfs:domain ?Y) (?X rdfs:range ?Y)

(?P rdf:type owl:FunctionalProperty) (?X owl:sameAs ?Y)

(?P rdf:type owl:InverseFunctionalProperty) (?X owl:inverseOf ?Y)

(?P rdf:type owl:TransitiveProperty) (?X rdf:type owl:Class)

(?P rdf:type owl:SymmetricProperty) (?X rdf:type owl:Property)

(?X owl:equivalentClass ?Y) (?X owl:onProperty ?Y)

(?X owl:hasValue ?Y) (?X owl:equivalentProperty ?Y)

(?X owl:someValuesFrom ?Y) (?X owl:allValuesFrom ?Y)

In this case, the triples in the terminological closure can be used for the
purposes of inducing early failures: the truth of these triples is easy to verify
since they have been precomputed and no inference is needed. Therefore, when
scheduling the derivation of rule-antecedents, we give priority to antecedents that
potentially match these precomputed triples so that if these cheap antecedents
do not hold, the rule will not apply anyway, and we can avoid the computation
of the more expensive antecedents of the rule for which further reasoning would
have been required.

To better illustrate this optimization, we proceed with an example. Suppose
we have the and-or tree described in Figure 1. In this tree, the reasoner fires
rule O3 (concerning symmetric properties in OWL) to be applied on the second
antecedent of rule R4.

In this case, Rule O3 will fire only if some of the subjects of the triples
part of (?X rdfs:subPropertyOf rdf:type) will also be the subject of triples
part of (?X rdf:type owl:SymmetricProperty). Since both patterns are more
specific than terminological patterns, we know beforehand all the possible ’?X’,
and therefore we can immediately perform an intersection between the two sets
to see whether this is actually the case. If there is an intersection, then the
reasoner proceeds executing rule O3, otherwise it can skip its execution since it
will never fire.

It is very unlikely that the same property appears in all the terminological
patterns, therefore by performing such intersections we are able to further reduce
the tree size not considering rules that will derive no conclusion.

5 Evaluation

To evaluate the methods described above, we have implemented a proof-of-
concept prototype called QueryPIE using the Java language and the Ibis frame-
work [1].

The Ibis framework provides a set of libraries which ease the development
of a parallel distributed application. We have used it to develop a distributed
reasoner which can work on a variable number of nodes. The data is indexed
with 4 indexes (spo, sop, pos, and ops) and partitioned across the nodes. The
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nodes load the data in the main memory, and, when the reasoner is invoked
with an input pattern, it builds the and-or tree and executes it on the relevant
data in the compute nodes. Then, the data is collected to one location and
returned to the user. We have used the Hadoop MapReduce framework [4] and
WebPIE [14] to create the data indexes and compute the sameAs closure and
consolidation, which is a common practice among reasoners [14]. All the code is
publicly available2.

A complete evaluation of our work is beyond the scope of this article. In
this section we report the results of a number of experiments that aimed to
understand the effectiveness and performance of our algorithms. The evaluation
of other aspects like scalability is left as future work.

The evaluation was performed on the DAS4 cluster3. Each node in this cluster
is equipped with at least 24 GB of main memory, two quad-core processors and
2 TB disk space. The nodes use a 10 Gbit/s ethernet connection. The input
consists of triples encoded in N-Triples format. Initially, we have compressed the
datasets using the technique presented in [16]. All tests were performed using 8
machines.

We have used three datasets for our experiments, one benchmark tool and
two real-world datasets. The artificial benchmark tool that we used is LUBM [5].
LUBM allows the generation of arbitrary numbers of triples. In our experiments
we have generated a dataset of about 1 billion triples. The other two real-world
datasets that we used are LLD4 and LDSR5. The first dataset is a collection
of biomedical data, taken from different sources, and it contains about 700 mil-
lion triples. LDSR is a collection of generic information, of about 860 million
triples. LDSR and LLD are among the largest single collections of triples that
are currently available on the Web of Data. All three datasets make use of OWL
modeling primitives.

Unfortunately, there is no standard set of queries on real-world datasets to
benchmark the reasoner6. Therefore, we had to choose a number of input pat-
terns and execute them in our prototype. In Table 3 we report the list of input
patterns used in this evaluation and refer to them through this section.

These example query patterns were chosen because:

– they all require inference (i.e. none of them appears in the datasets) with
the deliberate exception of pattern nr. 9;

– they are identical or similar7 to the query-patterns that would be generated
from the SPARQL queries that come as examples with LLD and LDSR;

– they differ in the size of the answer-set that they generate;
– they differ in the size of the inference tree that is required to derive them.

2 http://few.vu.nl/~jui200/files/querypie-1.0.0.tar.gz
3 http://www.cs.vu.nl/das4
4 LinkedLifeData, available at http://linkedlifedata.com/
5 Also known as FactForge, available at http://factforge.net/
6 Standard sets of queries exist for artificial datasets such as LUBM which we use, but

not for real-world datasets.
7 Some queries were slightly changed to evaluate different types of reasoning.

http://few.vu.nl/~jui200/files/querypie-1.0.0.tar.gz
http://www.cs.vu.nl/das4
http://linkedlifedata.com/
http://factforge.net/


QueryPIE: Backward Reasoning for OWL Horst 739

Table 3. List of the input patterns used in the evaluation

Pattern Dataset Pattern

1 LUBM ? ? University0
2 LUBM University0 hasAlumnus ?
3 LUBM ? rdf:type ResearchGroup
4 LUBM UndergradStudent0 rdf:type ?
5 LDSR ? rdf:type opencyc:Business
6 LDSR dbpedia:Arnold Sch...gger ? ?
7 LDSR ? rdf:type umbel:CompactCar
8 LDSR dbpedia:Lamborghini owl:sameAs ?
9 LLD ? rdf:type gene:Gene
10 LLD ? uniprot:pathway399...145 ? ?
11 LLD ? ? skos:definition
12 LLD ? rdf:type biopax:sequenceFeature

Initially we focused on the effectiveness of our algorithms and we calculated
the reduction of the and-or tree size caused by our optimizations on a set of
queries. The results and a more complete discussion are reported in subsec-
tion 5.1.

After this, we performed some experiments to evaluate whether the perfor-
mance of our method is competitive when compared to materialization, which
is currently the de-facto reasoning method over large data. Such comparison
was chosen because to the best of our knowledge there is no other OWL Horst
backward-chaining reasoner that works on large amounts of RDF data, and
therefore we are unable to perform a comparison of the absolute reasoning per-
formance of our algorithms. The results are discussed in subsection 5.2.

5.1 Effectiveness: Comparison against Naive Backward-Chaining

The main scope of our work was to reduce the size of the and-or tree as described
in sections 4.1 and 4.2, in order to decrease the runtime of the reasoning.

The optimizations and algorithms that we described are crucial to perform
backward-chaining reasoning on large data. Therefore, in order to evaluate their
impact on the performance, we manually calculated how large the tree would be
if we did not make any pre-calculation. For this purpose, every time the reasoner
had to process a pattern that was already pre-calculated, we added the tree that
was needed to calculate it during the initial phase. This method is in fact an
underestimate, because we could not deactivate the other optimization, therefore
in reality the gain is even higher than the one calculated.

Table 4 reports the actual number of leaves of the and-or tree with and without
the pre-calculation. The last column reports the obtained reduction ratio and
shows that the number of leaves (= the number of paths in the tree) shrinks by
one order of magnitude through our pre-calculation. This shows that our pre-
calculation is indeed very effective. For a very small cost in both data space and
upfront computation time (see table 5), we substantially reduce the search tree.
Apparently, the pre-calculation precisely captures small amounts of inferences
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Table 4. Estimated performance gain against naive backward-chaining

Input pattern #leaves with/out optimiz. Ratio

Pattern 1 21/174 8.29
Pattern 2 5/58 11.60
Pattern 3 2/3 1.50
Pattern 4 38/291 7.66

that contribute substantially to the reasoning costs because they are being used
very often.

As expected, we notice that the reduction ratio is not constant but changes
depending on the input pattern. Overall, the optimized reasoning algorithm
generated an and-or tree that is between 11.6-1.5 times smaller.

5.2 Performance: Comparison against Full Materialization

With materialization, typically the data provider computes the entire closure of
the data beforehand and then loads the input and derived data into a database-
like infrastructure where the users can query the data with no reasoning per-
formed on the fly. Here, we can distinguish two phases: the first, where the entire
closure is computed, and the second, where the user can query the data.

In this scenario, the first phase takes a lot of time because all the reasoning
must be performed while the second is much faster since only a lookup is per-
formed. Instead, in our case the first phase will be much faster, since we do not
calculate the entire closure but only a very small part that can be used to speed
up the reasoning later, but the second phase will be slower since we do perform
some reasoning.

Table 5. Comparison computation terminological closure against full materialization

Input Terminological closure Full material.
Time (sec.) # statms. Time (sec.) # statms.

LDSR (862M) 89 0.62M 10036 927M
LLD (694M) 332 7.06M 3931 330M
LUBM (1101M) 8 22 4526 495M

In Table 5 we report the reasoning execution time of our pre-calculated closure
against the execution time of calculating the entire closure for the datasets that
we consider. We have used WebPIE to compute the closure on the same number
of machines since it supports the same ruleset and has the best performance on
large data [14]. In this table, in the first part we report respectively the runtime
and the number of triples derived in the preprocessing stage of our algorithm
while in the second we report the same when we compute the entire closure.
From the table we observe, as expected, that our method is considerably faster



QueryPIE: Backward Reasoning for OWL Horst 741

Table 6. Performance comparison at query-time of our method against full-closure
approach

Pattern #Results #leaves Time query Time query Ratio
and-or tree back. reas. (ms.) full closure (ms.)

Pattern 1 75613 312 55.12 35.75 1.54
Pattern 2 37118 5 38.91 17.47 2.24
Pattern 3 2400836 2 1166.84 1017.85 1.15
Pattern 4 4 38 3.53 1.02 3.46
Pattern 5 26440 411 34.83 13.57 2.57
Pattern 6 4937 60 8.57 2.86 2.99
Pattern 7 182 3 3.38 3.32 1.02
Pattern 8 5 23 3.49 0.92 3.79
Pattern 9 4524379 1 1685.55 1680.87 1.00
Pattern 10 4 134 8.17 1.10 7.43
Pattern 11 0 72 7.00 1.01 6.93
Pattern 12 245831 4 100.89 98.97 1.02

than a traditional forward reasoner performing reasoning in about 5 minutes in
the worst case against the almost 3 hours necessary to compute the closure.

Thus, even in the worst case (LLD), the costs of our preprocessing stage
are only a fraction of computing the full closure, using the fastest approach for
closure computation known in the literature, and using the same hardware setup.

In the second phase (when performing the actual query) our approach will
be slower than engines that query a fully computed closure, since we must do
reasoning at query time and it is important to evaluate such cost.

A direct comparison of the performance with existing approaches is not ap-
propriate since the majority of the RDF stores has a single-machine architecture
and/or consider a different ruleset than ours. Therefore, since our purpose is to
evaluate the overhead caused by reasoning while keeping other factors constant,
we proceeded as follows. First, we launched a set of queries on our prototype
using the datasets with the terminological closure calculated beforehand. After
this, we loaded the full closure of the dataset (as derived with WebPIE), we com-
pletely disabled reasoning in our engine, and launched the same set of queries.
In this way, we kept the infrastructure constant and indirectly made a compari-
son with a forward reasoning scenario using the pre-calculated derivation on the
same infrastructure.

The results of this comparison are presented in Table 6. For every pattern
in the input we report the number of returned results, the number of leaves of
the and-or tree generated when reasoning was enabled (when querying the full
closure, the size of the tree is 1), the execution time when reasoning was enabled
and the execution time when reasoning was disabled with the full-closured data
used as input. The last column reports the ratio between the two execution
times, and represents the reasoning overhead.

We observe that the overhead varies from 1.00 to 7.43. This means that in the
best case reasoning does not introduce any overhead while in the worst it slows
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down the response time almost 7.5 times. However, even in that worst case, the
response time of the system is never more than a few milliseconds. The only
exceptions are patterns nr. 3 and 9, where the transport of the large number of
output triples completely dominates the calculation in both cases. Similarly as
before, there is no clear correlation between the input pattern and the response
time since it depends on the complexity of the reasoning involved. For example,
the pattern 1 generates an and-or tree with 312 leaves and it is only 1.54 times
slower whereas pattern 4 generates a tree with only 38 leaves but is 3.46 times
slower.

Overall, table 6 shows that the response time of our approach is competitive
with querying the forward closure, while table 5 shows that our upfront cost
is anywhere from 1 to 2 orders of magnitude smaller than the upfront cost of
forward reasoning.

It is interesting to evaluate when our approach becomes more attractive than a
full-closure approach. To this purpose, we calculated the average response time of
the selected queries for the datasets LDSR and LLD. These are respectively 12.57
and 450.40 milliseconds if reasoning is activated and 5.17 and 445.49 milliseconds
when querying the full closure. We used these values to estimate how many
queries a system is able to answer in a certain amount of time.

The full-closure approaches start answering the queries later because they
need to wait until the closure is computed (an upfront waiting time of close
to 1 hour on LLD and more than 3 hours on LDSR), while our approach can
start almost immediately to answer queries with an upfront waiting time of a
few minutes (see table 5). However, since the response time of our approach
is slower (because of reasoning), there will be a point after which the forward
approach has a lower total runtime over a large number of queries. For LDSR,
it takes about 1.42 million queries in order to gain back the costs of the initial
closure computation amounting to about 5 hours of continuous query-load. This
means that as soon as the update frequency of the data is lower than once every
5 hours, our method will be more efficient in total runtime, and more convenient
because of a much smaller upfront delay.8

In the case of LLD, the query times are more or less equal between both
approaches, while our method does keep the advantage of having only a 5 minute
startup time, instead of 1 hour. This makes our approach much more competitive
than before since now the full-closure approach will become convenient only after
733 thousand queries or 91 hours without any update.

6 Related Work

In previous work [15,14], we have shown scalable RDFS and OWL materializa-
tion for datasets up to 100 billion triples. There, the MapReduce programming
framework was used to encode the logic for the rulesets at hand, and a set of
optimizations was introduced to improve load balancing and the efficiency of the
8 This calculation assumes a maximal query-load. As soon as the query load is lower

than 100% utilization, the balance shifts even more in favor of backward reasoning.
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computation. In this paper, we depart from the full forward closure and take a
significant step in the direction of scalable backward-chaining reasoning.

In [17], straightforward parallel RDFS reasoning on a cluster is presented.
This approach replicates all schema triples to all processing nodes, partitions
instance triples arbitrarily and calculates the closure of each partition. Triples
extending the RDFS schema are ignored, thus the reasoning is incomplete.

In [8], a method for distributed reasoning with EL++ using MapReduce is
presented, which is applicable to the EL fragment of OWL 2. No experimental
results are provided.

The work on Signal/Collect [12], introduces a new programming paradigm,
targeted at handling graph data in a distributed manner. Although very promis-
ing, it is not comparable to our approach, since current experiments deal with
much smaller graphs and are performed on a single machine.

The operation of passing the query bindings to the lower branches of the
reasoning tree is likewise applied in the Magic Sets query rewriting technique [2]
and it is commonly referred as one type of sideways information passing strategy
(SIPS) [11]. However, while in the latter it is used to efficiently rewrite a query,
in our case we use it to prune the reasoning branches so that it becomes effective
only when combined with the schema closure.

In the context of RDF stores, in [10], backward-chaining reasoning for RDFS
on 4Store is presented. The authors show how they perform RDFS reasoning on
their architecture but do not report on more complex inferencing than RDFS.

The Jena RDF store [3] uses a hybrid reasoner at its core with a focus on lower
expressivity logics. The data store administrator can define so-called hybrid rules
which include conditions for firing rules in a backwards fashion. There are no
results for using Jena with a more complex ruleset.

The Virtuoso RDF store performs incomplete RDFS and OWL rule-based
reasoning. Some results are reported online9, but no experiments are reported
for scaling on the number of nodes or on datasets more complex than LUBM.

7 Conclusion and Future Work

Until now, all inference engines that can handle reasonably expressive logics over
very large triple stores have deployed full materialization. In the current paper,
we have broken with this mold, showing that it is indeed possible to do efficient
backward-chaining over large and reasonably expressive knowledge bases. The
key to our approach is two optimizations which substantially reduce the size
of the search space that must be navigated by a backward-chaining inference
engine.

The first optimization precomputes a small number of inferences which appear
very frequently in the derivation trees. By precomputing these inferences upfront
instead of during query-time, we reduce the size of the trees by an order of
magnitude. This of course re-introduces some amount of preprocessing (making
9 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

VOSArticleLUBMBenchmark

http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSArticleLUBMBenchmark
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/VOSArticleLUBMBenchmark
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our work strictly speaking a hybrid approach), but this computation is measured
in terms of minutes, instead of the hours needed for the full closure computation.

The second optimization exploits these precomputed triples, to further reduce
computation. It does that by giving priority to the evaluation of antecedents
that potentially match these precomputed triples. If there is no match, we can
avoid calculating the other more expensive antecedents that would have required
additional reasoning.

Performance analysis of our approach on three datasets varying from 0.7 bil-
lion to 1.1 billion triples shows that the query response-time for our approach
is competitive with that of full materialization, with response times in the low
number of milliseconds on our test query patterns, running on only a small clus-
ter of 8 machines. The small loss of response time is offset by the great gain in
not having to perform a very expensive computation of many hours before being
able to answer the first query.

Obvious next steps in future work would be to investigate how our algorithms
scale with the number of machines, and to understand the properties of the
knowledge base that influence both the cost of the limited forward computation
and the size of the inference tree. Since the proposed approach is not specifically
tailored around the OWL Horst ruleset, it would be interesting to extend our
prototype to support the OWL 2 RL [7] ruleset and evaluate its performance.

Also, it is worth to explore whether other techniques like memoization, other
SIP strategies [11], or ad-hoc query-rewriting techniques [9] can be exploited to
further improve the performance.

To the best of our knowledge, this is the first time that logically complete
backward-chaining reasoning over realistic OWL Horst knowledge bases of a
billion triples has been realized. Our results show that this approach is feasible,
opening the door to reasoning over much more dynamically changing datasets
than was possible until now.

Acknowledgments. We would like to thank Barry Bishop for reviewing our work.
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the COMMIT project.
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Abstract. Semantic Web data with annotations is becoming available,
being YAGO knowledge base a prominent example. In this paper we
present an approach to perform the closure of large RDF Schema anno-
tated semantic web data using standard database technology. In partic-
ular, we exploit several alternatives to address the problem of computing
transitive closure with real fuzzy semantic data extracted from YAGO in
the PostgreSQL database management system. We benchmark the sev-
eral alternatives and compare to classical RDF Schema reasoning, pro-
viding the first implementation of annotated RDF schema in persistent
storage.

Keywords: Annotated Semantic Web Data, Fuzzy RDF Schema, Tran-
sitive closure in SQL, Rules.

1 Introduction

The Semantic Web rests on large amounts of data expressed in the form of RDF
triples. The need to extend this data with meta-information like trust, prove-
nance and confidence [26,22,3] imposed new requirements and extensions to the
Resource Description Framework (Schema) [19] to handle annotations appropri-
ately. Briefly, an annotation v from a suitable mathematical structure is added
to the ordinary triples (s p o) obtaining (s p o) : v, annotating with v the state-
ment that subject s is related via property p to object o. The general semantics
of this RDFS extension has been recently addressed [21,22] improving the initial
work of [26], but only a memory-based Prolog implementation is available.

The feasibility of large scale classical RDFS reasoning and its extensions has
been shown in the literature [27,10,25,13,11]. In this paper we will show that the
inclusion of annotated reasoning naturally introduces some overhead but that
it is still possible to perform the closure of large annotated RDFS data in rea-
sonable amount of time. The major difficulty is the implementation of transitive
closure of RDF Schema subPropertyOf and subClassOf properties, with the
extra problem of maintaining the annotations since a careless implementation
might result in worst-case exponential runtime. For this reason, we discuss sev-
eral alternative approaches for implementing transitive closure of RDFS data
exploiting facilities present in modern relational database systems, particularly

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 746–761, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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recursive views. We selected PostgreSQL1 because of the mechanisms it pro-
vides as well as ease of integration with other Semantic Web triple stores and
reasoners, and use annotated data of the YAGO ontology [24] to evaluate our
contribution. The use of existing semantic web data is essential since current
“artificial” benchmarks like LUBM [7] do not reflect exactly the patterns of data
present in real applications [6]. All the data and code is made publicly available
at http://ardfsql.blogspot.com/, including instructions for replicating the
tests presented in the paper.

An advantage of our approach is that we present an entirely based SQL im-
plementation allowing practitioners to use our technique directly in their pre-
ferred standard RDBMS without external imperative code. To the best of our
knowledge, we present the first complete database implementation of the fuzzy
Annotated Resource Description Framework Schema and assess it with respect
to real ontologies. We justify that our approach is competitive and show that
semi-naive and a variant of semi-naive (differential) evaluation are not always
competitive for performing RDFS closures, especially when annotated data is
present.

In the next section, we start by overviewing the Annotated RDF Schema
framework. In Section 3 we address the issues storing (annotated) RDFS data
in persistent storage, and present our own encoding. Section 4 describes the
several closure algorithms for RDFS with annotated data whose benchmarking
is performed in Section 5. We proceed with comparisons to relevant work in
Section 6 and we finish the paper in Section 7 with conclusions and future work.

2 Annotated RDF Schema

In this section we shortly present the RDFS with Annotations [22] and we as-
sume good knowledge of the classical (or crisp) Resource Description Framework
(RDF). We ignore the model-theoretical aspects and focus on the inference rules
used to perform the closure. An annotation domain [22] is an algebraic structure
D = 〈L %,⊗,�,⊥〉 such that 〈L,%,�,⊥〉 is a bounded lattice (i.e. a lattice
with a � top and ⊥ bottom elements) and where operator ⊗ is a t-norm. A
t-norm is a generalization of the conjunction operation to the many-valued case,
obeying to the natural properties of commutativity, associativity, monotonicity
and existence of a neutral element (i.e. v ⊗� = �⊗ v = v).

The inference rules for annotated RDFS [22] can be found in Fig. 1 and where
sp, sc, type, dom and range are abbreviations for the RDF and RDFS prop-
erties rdfs:subPropertyOf, rdfs:subClassOf, rdf:type, rdfs:domain and
rdfs:range, respectively, which is known as the ρdf vocabulary or minimal
RDFS [16]. The rules are extensions of the set of crisp rules defined in [16] to han-
dle annotations; the original rules can be obtained by dropping the annotations
or equivalently using the algebraic domain D01 = 〈{0, 1},≤, min, 0, 1〉, which
corresponds to classical boolean logic. As standard practice, we drop reflexivity
rules which provide uninteresting inferences like that any class (property) is a
1 See http://www.postgresql.org/

http://ardfsql.blogspot.com/
http://www.postgresql.org/
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1. Subproperty 2. Subclass 3. Typing
(a) (A,sp,B):v1,(B,sp,C):v2

(A,sp,C):v1⊗v2

(b) (A,sp,B):v1,(X,A,Y ):v2
(X,B,Y ):v1⊗v2

(a) (A,sc,B):v1,(B,sc,C):v2
(A,sc,C):v1⊗v2

(b) (A,sc,B):v1,(X,type,A):v2
(X,type,B):v1⊗v2

(a) (A,dom,B):v1,(X,A,Y ):v2
(X,type,B):v1⊗v2

(b) (A,range,B):v1,(X,A,Y ):v2
(Y,type,B):v1⊗v2

4. Implicit Typing 5. Generalization
(a) (A,dom,B):v1,(C,sp,A):v2,(X,C,Y ):v3

(X,type,B):v1⊗v2⊗v3

(b) (A,range,B):v1,(C,sp,A):v2,(X,C,Y ):v3
(Y,type,B):v1⊗v2⊗v3

(X,A,Y ):v1,(X,A,Y ):v2
(X,A,Y ):v1∨v2

Fig. 1. Inference rules for annotated RDFS [22]

subclass (subproperty) of itself [16]. An important aspect of the inference rules is
that, with the exception of rules 1b) and 5), the conclusions of the rules produce
triples of the ρdf vocabulary.

In this paper we will restrict mostly to the annotation domain Dgoedel =
〈[0, 1],≤, min, 0, 1〉 where the t-norm is the minimum operator and the least
upper bound is the maximum operator corresponding to Goedel’s fuzzy logic [8],
obtaining the fuzzy RDFS framework in [21]. Our algorithms will work and
terminate with any t-norm in the [0, 1] interval. Termination is guaranteed in
these circumstances by our own results on fuzzy logic programming [5], and are
far from trivial since an infinitely-valued lattice is being used. In fact, one of
the distinctions between the work [26] and [22], is that the former is restricted
to finite annotation lattices while the latter allows infinite ones. A particularly
striking example of the problems that can occur is the use of real-valued product
t-norm which can generate “new” values from existing ones, contrasting to the
minimum t-norm that can only return existing annotations in the asserted data.

3 Persistent Storing of Annotated RDFS Data

We follow a hybrid approach for representing RDFS data in a relational database
with some optimizations. We use a vertically partitioned approach [1] for stor-
ing triples (in fact quads) having a table for each of the properties of the ρdf
vocabulary, and use a common table to store all the other triples (see Fig. 2).
The major differences to a classical relational RDFS representation is that we
add an extra column to represent the double valued annotations, and include a
column to store graph information in order to be compatible with SPARQL. The
schema used is very similar to the one of Sesame’s reported in [4] but we do not
use property-tables. The id column is the key of Triples table automatically
filled-in with a sequence, and ref column has been added to allow traceabil-
ity support to the reification vocabulary of RDF Schema but it is not used in
the current implementation. Moreover, we use a Resources table to reduce the
size of the database by keeping a single entry for each plain literal (nodet=1,
value="string", type="language tag" (or NULL)), typed literal (nodet=2,
value="string",type="URI type"), URI (nodet=3,value="URI",type=NULL)
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Fig. 2. Annotated RDFS table schema

or blank node (nodet=4, type="identifier", type=NULL) in any asserted data.
The Resources table is pre-initialized at database creation time with the ρdf
vocabulary in order to have known identifiers for these URIs, reducing joins.
Figure 2 shows only the table for rdf:type, being the schema of the remaining
tables for the properties of the ρdf vocabulary identical. In the common table
Triples, and ρdf tables rdf:type, rdfs:subPropertyOf, rdfs:subClassOf,
rdfs:domain and rdfs:range we only have an integer foreign key for the sub-
ject, property and object of each triple, making each row fixed-length.

Notice that this representation is very similar to the star schema used in data
warehouses where fact tables correspond to our triple and property specific tables
while dimension tables correspond to our resources table. Moreover as discussed
in [1], this representation has several advantages for query answering because it
reduces self-joins in tables, which will benefit from when implementing the infer-
ence rules presented in Section 3. The choice of a particular schema is not arbi-
trary and can have significative impact in performance (see [1]). Additionally, we
realized that under default database configuration and with the tested data sets,
indexing did not bring significant advantages for performing the annotated RDFS
closure for the data available, and therefore we do not include any on-disk indexes.

4 Closure of Annotated RDFS Data

In this section we discuss the techniques and algorithms we have developed to
perform the closure of Annotated RDFS data. We start by discussing the an-
notated RDFS specific generalization rule, and afterwards we discuss rule order
application. We conclude that the only recursive rules necessary are subproperty
and subclass transitivity (rules 1a and 2a), which can be implemented in any
current mainstream RDBMSs. The major difficulty is performing the transitive
closure with annotated data, for which we specify several algorithms.

4.1 Generalization Rule

The rule which has greater impact in the implementation is the generalization
rule which simply states whenever a triple is derived twice with different anno-
tations (s p o) : v1 and (s p o) : v2 then their annotations may be combined
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to obtain a triple with a greater annotation (s p o) : v1 ∨ v2, and the original
annotated triples can be removed. In the case of the [0, 1] interval ordered as
usual, this rule corresponds to keeping the annotated triple with maximum value,
deleting any other smaller annotated triple. It is important to realize that if sub-
sumed annotated triples are left in the database, then exponential behaviour can
be generated for some t-norms.

Example 1. Consider the following annotated RDFS database in the algebraic
domain Dprod = 〈[0, 1],≤,×, 0, 1〉 where the t-norm is the usual real-valued
multiplication.

(a0, sc, b0) : 3
1000 (a1, sc, b1) : 7

1000 (a2, sc, b2) : 13
1000

(a0, sc, c0) : 5
1000 (a1, sc, c1) : 11

1000 (a2, sc, c2) : 17
1000

(b0, sc, a1) : 1 (b1, sc, a2) : 1 (b2, sc, a3) : 1

(c0, sc, a1) : 1 (c1, sc, a2) : 1 (c2, sc, a3) : 1

There are 8 paths between a0 and a3 by selecting at each step a path via bi or
a ci, having assigned a different annotation obtained by multiplying the anno-
tations in the path edges going out of each ai, originating 8 subclass annotated
triples (a0, sc, a3) each with a different annotation. It is immediate to see that
the construction can be iterated more times with different prime-number based
annotations, obtaining an exponential number of subclass relations on the num-
ber of a nodes, all with different annotations. By applying the generalization
rule one can see that all but one of these annotated triples are redundant.

For this reason, our major concern will always be to never introduce in the
tables duplicated triples with different annotations. To achieve this we will exten-
sively resort to a mixture of SQL aggregations using MAX function, and in-built
the rule in the other rules. Therefore, we will only take care of domains over
the real-valued [0, 1] to achieve better performance, otherwise one would require
from the DBMS facilities to implement new aggregation functions2. The encod-
ing of inference rule 3a in SQL can be seen below, where i_graph is a parameter
with the graph identifier to be closed:

CREATE OR REPLACE FUNCTION Rule3a(i_graph integer) RETURNS integer AS $typa$
BEGIN

UPDATE "rdf:type" as r SET annotation=q.annotation FROM
(SELECT t.graph, t.subject, d.object, MAX(tnorm(d.annotation,t.annotation)) AS annotation
FROM "rdfs:domain" d INNER JOIN "Triples" t ON (d.subject=t.predicate)
WHERE d.graph=i_graph AND t.graph=i_graph
GROUP BY t.subject, d.object, t.graph ) AS q

WHERE (r.subject,r.object,r.graph)=(q.subject,q.object,q.graph) AND
r.annotation<q.annotation;

INSERT INTO "rdf:type" (
SELECT t.graph, t.subject, d.object, MAX(tnorm(d.annotation,t.annotation)) AS annotation
FROM "rdfs:domain" d INNER JOIN "Triples" t ON (d.subject=t.predicate)
WHERE d.graph=i_graph AND t.graph=i_graph AND

2 These are available in some commercial RDBMSs.
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NOT EXISTS (SELECT * FROM "rdf:type" AS old WHERE old.graph=i_graph
AND old.subject=t.subject AND old.object=d.object)

GROUP BY t.subject, d.object, t.graph );

RETURN 1;
END

First we update the table rdf:type table with the better inferred annotations
for already existing triples and afterwards we INSERT completely new triples
accordingly to the NOT EXISTS clause. Both statements only generate an anno-
tation for a given triple therefore not introducing redundant information. The
user-defined function tnorm implements in a stored function the intended t-norm
function (in our experiments, minimum).

4.2 Fixpoint Iteration and Rule Ordering

The rules present in Fig. 1 have to be iterated till a fixpoint is reached, i.e. no new
annotated triples are generated. A clever implementation does not require the
execution of the whole set of rules at a time. It is easy to see that rules depend
on each other (see Fig. 3) and rules can be ordered to reduce computation time.

Standard use 

dependencies 

Non-standard use 

dependencies 

Fig. 3. Dependency graph of annotated RDFS inference rules

The dependency graph of Fig. 3 is very similar to the one presented in [27]
with three distinctive features. First, we have the implicit typing rules, and we
show dependencies regarding “non-standard” use of ρdf vocabulary (the dashed
dependencies). More important is that we do not have to iterate the subclass
and subproperty inheritance rules (rules 1b and 2b) because of the following
result:
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Lemma 1. Subclass inheritance rule is idempotent3, and subproperty inheri-
tance is idempotent with standard use of vocabulary.

Proof. Consider two chained applications of rule 2b

1.
(A, sc, B) : v1, (X, type, A) : v2

(X, type, B) : v1 ⊗ v2
2.

(B, sc, C) : v3, (X, type, B) : v1 ⊗ v2

(X, type, C) : v1 ⊗ v2 ⊗ v3

However since the subclass relationship is closed with respect to rule 2a we
conclude that (A, sc, C) : v1⊗ v3 and thus we will get by one application of rule
2b that (X, type, C) : v1 ⊗ v2 ⊗ v3, by commutativity and associativity of ⊗:

(A, sc, B) : v1, (B, sc, C) : v3

(A, sc, C) : v1 ⊗ v3
3.

(A, sc, C) : v1 ⊗ v3, (X, type, A) : v2

(X, type, B) : v1 ⊗ v3 ⊗ v2

If in the subclass transitivity closure we get an annotation for (A, sc, C) : v4

such that v4 > v1 ⊗ v3 the inferred triple by chained application in step 2 will
be subsumed by the triple in corresponding step 3.

A similar argument shows the result for the case of subproperty inheritance,
but in this situation we have to guarantee that we cannot generate triples
where B = sp. However, this can only happens whenever we have a state-
ment (A, sp, sp) : v in the original graph, i.e. with non-standard use of the ρdf
vocabulary.

We believe that it has not been realized before in the literature that a single
application of rules 1b and 2b is necessary to generate all the triples, whenever
the subclass and subproperty relationships are closed, even though apparently it
is assumed to hold in [9] for the classical case. Therefore, we conclude that the
only recursive rules necessary to perform annotated RDFS closure are transitive
closures. This analysis carries over for the classical RDFS case as well.

Assuming standard use of the ρdf vocabulary we are guaranteed that rule 1b
inserts data only in table Triples, further simplifying its implementation.

4.3 Transitive Closure with Annotated Data

In order to conclude the implementation of annotated RDFS we just have to
consider transitivity of the subclass and subproperty relations. The definition of
transitive closure and shortest-path algorithms for databases has been addressed
in the literature [14,2,18,15].

To formalize our algorithms we will resort to an extension of the notion of
fuzzy binary relation [28]. A fuzzy binary relation R is a mapping R : U ×
U → [0, 1], associating to each pair of elements of the universe U a membership
degree in [0, 1]. This can be appropriately generalized to our setting by defining
annotated relations over annotated domain D = 〈L,%,⊗,�,⊥〉 as mappings
R : U × U → L.
3 By idempotent rule we mean that the rule will always produce the same results

whether it is applied once or several times, thus there is no need to apply it more
than once.
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Definition 1. Consider binary annotated relations R1 and R2 with universe
of discourse U × U and over annotated domain D = 〈L %,⊗,�,⊥〉. Define
composition R1 ◦R2 and union R1 ∨R2 of annotated relations R1 and R2 as:

(R1◦R2)(u, w)=
∨

v∈U

{R1(u, v)⊗R2(v, w)} (R1∨R2)(u, v)=R1(u, v)∨R2(u, v)

In the case of fuzzy annotated domains of the form D = 〈[0, 1],≤,⊗, 1, 0〉, we
can use relational algebra to implement the composition and union of annotated
relations. For ease of presentation we overload the symbols of ∨ and ◦:

Definition 2. Consider binary fuzzy annotated relations R1 and R2, repre-
sented in relational algebra by relations r1 ⊆ U × U × [0, 1] and r2 ⊆ U × U ×
[0, 1] with relational schema (sub, obj, ann) and obeying to functional dependency
sub obj → ann. Operations r1 ◦ r2 and r1 ∨ r2 are defined as:

r1 ◦ r2 = sub,objGMAX(ann) (
Πr1.sub as sub, r2.obj as obj, r1.ann⊗r2.ann as ann σr1.obj=r2.sub(r1 × r2))

r1 ∨ r2 = sub,objGMAX(ann)(r1 ∪ r2)

Using standard relational algebra notation, where Π is the projection operator,
G is the aggregation operator, σ the selection operator and × the Cartesian-
Product operation4. Finally ⊗ is the t-norm operation.

To simplify matters, we have assumed that only non-zero annotated information
will be present in the relations, reducing a lot the storage requirements. Since
0∨ v = v∨ 0 = v and 0⊗ v = v⊗ 0 = 0 we will be able to respect all the original
operations in relational algebra.

The transitived closure of annotated fuzzy binary relations R+ is defined by
the least fixpoint of the equation R+ = R∨(R+ ◦R), corresponding to determin-
ing shortest-paths between all nodes in a weighted graph. In Fig. 4 we present
five different ways of obtaining the annotated fuzzy relation R+, corresponding
to well-known transitive closure algorithms found in the literature [14,2,18,15].
The naive algorithm is a direct implementation of an iterated computation of
the fixpoint of the recursive definition. The popular semi-naive algorithm is an
improvement of the first algorithm, by at each step just propagating the changes
performed in the previous iteration. The differential semi-naive algorithm is
particularly optimized for relational database systems and was proposed and
implemented in the DLV DB system [25], which reduces the number of joins
necessary with respect to the semi-naive algorithm. The matrix algorithm cor-
responds to Warshall’s algorithm, and the logarithmic algorithm is a variant
specially constructed for reducing joins [18]. We show below the translation to
SQL of the Matrix method that will prove to be the best and more reliable
algorithm:

4 For the exact definition of these operators see any standard database manual,
e.g. [20].
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Naive algorithm

R+ = R
LOOP

R+ := R ∨ (R+ ◦ R)
WHILE R+ changes

Semi-naive algorithm

oldR := ∅
R+ = R
δ = R
WHILE δ �= ∅
oldR := R+

R+ := R+ ∨ δ ◦ R
δ := R+ − oldR

END

Differential semi-naive alg.

R+ = R
δ = R
LOOP

Δ := (R+ ◦ δ) ∨ (δ ◦ R+) ∨ (δ ◦ δ)
Δ := (Δ − δ) − R+

R+ := R+ ∨ δ
δ = Δ
WHILE δ �= ∅

Matrix algorithm

R+ = R
LOOP

R+ := R+ ∨ (R+ ◦ R+)
WHILE R+ changes

Logarithmic algorithm
R+ = R
Δ = R
δ = R
LOOP

δ := δ ◦ δ
Δ := R+ ◦ δ
R+ := R+ ∨ δ ∨ Δ
WHILE R+ changes

Fig. 4. Transitive closure algorithms for annotated binary relations

CREATE OR REPLACE FUNCTION MatrixRule2a(i_graph integer) RETURNS integer
DECLARE

nrow_upd integer;
nrow_ins integer;

BEGIN
LOOP
UPDATE "rdfs:subClassOf" as r SET annotation=a.annotation FROM (
SELECT q1.graph, q1.subject, q2.object, MAX(tnorm(q1.annotation,q2.annotation)) annotation
FROM "rdfs:subClassOf" AS q1 INNER JOIN "rdfs:subClassOf" AS q2 ON ( q1.object=q2.subject )
WHERE q1.graph=i_graph AND q2.graph=i_graph
GROUP BY q1.subject, q2.object, q1.graph

) AS a
WHERE (r.subject,r.object,r.graph)=(a.subject,a.object,a.graph) AND r.annotation<a.annotation;
GET DIAGNOSTICS nrow_upd = ROW_COUNT;

INSERT INTO "rdfs:subClassOf" (
SELECT q1.graph, q1.subject, q2.object, MAX(tnorm(q1.annotation,q2.annotation)) annotation
FROM "rdfs:subClassOf" AS q1 INNER JOIN "rdfs:subClassOf" AS q2 ON ( q1.object=q2.subject )
WHERE q1.graph=i_graph AND q2.graph=i_graph AND
NOT EXISTS (SELECT * FROM "rdfs:subClassOf" AS sc

WHERE sc.subject = q1.subject AND sc.object=q2.object AND sc.graph=q1.graph)
GROUP BY q1.subject, q2.object, q1.graph );
GET DIAGNOSTICS nrow_ins = ROW_COUNT;

IF (nrow_upd+nrow_ins=0) THEN
EXIT;

END IF;
END LOOP;

RETURN 1;
END
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As before the translation proceeds in two steps. First, we update the anno-
tation of any already existing rdfs:subClassOf triple. Afterwards, we insert
new rdfs:subClassOf triples of newly generated paths between nodes. In the
case of the classical transitive closure implementation, it is not necessary to have
the UPDATE statement, and that aggregation with GROUP BY to obtain the MAX
of t-norm combined annotations, and of course the annotations. Therefore it is
expected to have overhead with respect to the classical RDFS closure. We have
implemented all the algorithms being the translation of the formal descriptions
in Fig. 4 to SQL along the same lines.

5 Evaluation

In this section we present and discuss the results of the evaluation of the al-
gorithms that we have developed. We start presenting the evaluation methods
and the tests we have performed. First, we compare the several algorithms for
classical RDFS closure and compare to the DLV DB system [25]. We proceed by
performing the testing with the annotated version algorithms in order to test
effectiveness and obtain the overhead.

The algorithms were evaluated with respect to completeness and performance.
We started by guaranteeing that the RDFS closure algorithms produced the cor-
rect outputs, namely that the output does not have duplicate or missing triples
and, in the case of annotated graphs, that the annotations in each annotated
triple are correct. For that matter, we produced several small tests (that we be-
lieve are representative of at least most kinds of graphs) to test the correctness
of the implementation of each method. Afterwards we compared the number of
triples in the output of each method to each other and with the DLV DB system,
for the same test. Since every method, and DLV DB, returns the same amount of
triples for each test, we have reasons to believe in the correctness of our imple-
mentation. The second aspect of evaluation was the amount of time that each
method took to compute the closure for each test, which we now detail. The
tests were built from the data sets YAGO, YAGO2 and WordNet 2.0. We chose
YAGO and YAGO2 as our main sources of testing sets because YAGO contains
large amounts of data, annotated with values in the [0,1] interval, so its the ideal
dataset for the evaluation of annotated RDFS closure. Since WordNet was used
in past works as test data set, in order to be possible to compare with other
applications, we also tested the closure of this data set.

We devised six tests5 to the Recursive, Semi-naive, Matrix-based, Differential,
Logarithmic implementations and annotated versions. For the tests 1, 2, 3 and 4
only the code for the rule 2a) was executed since the objective of the tests is to
show the way the diferent implementations react to transitive closure. For the
remaining tests the full RDFS closure was computed. We also tested the closure
time using DLV DB. The description, sizes of the test sets and the output are
shown in Table 1.
5 The tested data and all the code needed to perform the tests is available at

http://ardfsql.blogspot.com/



756 C.V. Damásio and F. Ferreira

Table 1. Test sizes and specification

Test 1∗ 2∗ 3∗ 4∗ 5+ 6+

Input Size 0.066M 0.366M 0.599M 3.617M 0.417M 1.942M
Output Size 0.599M 3.617M 0.599M 3.617M 3.790M 4.947M
∗ - only transitive closure of rdfs:subClassOf
+ - full RDFS closure of the input data

Test 1: Contains rdfs:subClassOf data from YAGO in the WordNetLinks file.
Test 2: Contains all rdfs:subClassOf data from YAGO2.
Test 3: Contains the output graph from Test 1.
Test 4: Contains the output graph from Test 2.
Test 5: Full RDFS closure of a subset of YAGO, containing the subclass data of

the WordNetLinks file, all rdfs:subPropertyOf, rdfs:domain, rdfs:range triples
and the triples from relations created, givenNameOf, inTimeZone, isLeaderOf, is-
PartOf, isSubstanceOf.

Test 6: Full RDFS closure of the WordNet 2.0 Full data set.

The tests were performed using a Laptop with an Intel i5 2.27GHz processor,
4Gb of RAM and running Windows 7 64-bit. The PostgreSQL 9.0 database was
installed with default options, and no modification was made to the DB server.
The data for each test was stored in a new database with no use of commands
for the gathering of statistics. All database constraints were disabled and no
indexing was used. We repeated each test three times, and in this paper we
present the reasoning average time, excluding as usual data loading time.

Table 2. Results for the classical algorithms, time results presented in seconds

  1   2   3   4   5   6 

Time Deviation Time Deviation Time Deviation Time Deviation Time Deviation Time Deviation 

Matrix 32.33 0.45% 325.18 17.93% 8.93 11.00% 69.85 5.24% 85.49 5.24% 103.06 2.24% 

Logarithmic 41.99 1.23% 283.01 6.03% 60.50 0.59% 244.30 1.68% 89.02 1.45% 84.78 19.64% 

Differential 38.53 0.84% 507.70 43.84% 48.87 2.96% 402.00 5.81% 169.45 6.81% 99.07 25.00% 

Semi-Naive 142.10 1.04% 936.91 2.49% 40.83 0.38% 253.07 5.97% 188.66 3.57% 73.65 5.72% 

Recursive 12.18 0.62% 87.99 1.29% * * * * 65.71 2.35% 96.89 22.25% 

DLVdb 39.13 1.55% 327.36 7.72% 20.62 1.93% 133.54 3.37% 161.94 2.35% 179.14 4.35% 

* timeout 

The results for the classical algorithms for the six tests can be found in Ta-
ble 2, where the best results for each test are in bold. The recursive implementa-
tion, using built-in recursive views of PostgreSQL, is either very well-behaved or
extremely bad. In general, the semi-naive method has poor performance when
compared to the best algorithm in all tests, except for test 6. The differen-
tial semi-naive performs better than semi-naive in tests 1,2 and 5, where the
graph closure contains a large number of new triples obtained by transitive clo-
sure of the rdf:subClassOf relation. The semi-naive and differential semi-naive
methods have worse performance than the other algorithms, justifying also the
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comparatively bad timings of the DLV DB system which uses the differential
one. The logarithmic method can be very good but its behavior oscillates more
than the matrix method although they have similar performances.

The results of test 6 are particularly significant since in [27] the same task
is performed in a 32 cluster machine in more than 3 minutes. In test 6 the
five methods implemented by us have very similar times, in fact the algorithms
with worse performance so far (semi-naive and differential) seem to perform
much better than in test 5. This happens because the difference in graph closure
times between the implementations comes from the time taken evaluating the
transitive closure rules (rules 1a and 2a) and in test 6 the number of triples
in the rdfs:subPropertyOf and rdfs:subClassOf relations is not big enough
(respectivly 11 and 42) to show efficiency differences among transitive closure
algorithms.

We have also performed a partial test with larger data for the classical case
for determining the full RDFS closure of a larger subset of YAGO, containing all
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range triples all
rdf:type triples except those in “IsAExtractor”, plus the triples of the YAGO
relations bornOnDate, directed, familyNameOf, graduatedFrom, isMemberOf,
isPartOf, isSubstanceOf, locatedIn, and worksAt. This test has 5.505M input
triples generating 29.462M output triples. We have run the matrix and logarith-
mic methods obtaining 1547 seconds and 1947 seconds, respectively.

Table 3. Results for the annotated algorithms, time results presented in seconds

  1     2     3   

Time Deviation Overhead Time Deviation Overhead Time Deviation Overhead 

Matrix 113.06 3.52% 253% 1484.91 21.70% 356% 30.48 2.63% 241% 

Logarithmic 126.90 1.27% 202% 829.24 10.24% 193% 155.02 0.39% 156% 

Differential 163.36 4.86% 323% 1324.84 61.73% 160% 153.33 2.09% 213% 

Semi-Naive 230.15 1.94% 61.96% 2761.80 115.54% 195% 149.05 3.05% 265% 

Recursive 6679.70 57.74% 5496% * * * * * * 

  4     5     6   

Time Deviation Overhead Time Deviation Overhead Time Deviation Overhead 

Matrix 230.14 0.01 229% 272.59 4.74% 218% 336.92 20.74% 226% 

Logarithmic 1033.00 0.37 322% 223.04 3.71% 150% 341.63 35.34% 302% 

Differential 978.63 0.10 143% 458.25 1.04% 170% 337.37 8.97% 240% 

Semi-Naive 2177.60 1.16 760% 336.00 1.26% 78% 195.18 6.11% 165% 

Recursive * * * 6075.24 30.48% 914% 344.89 6.45% 245% 

* timeout 

The results for the annotated versions of the algorithm can be found in Table 3.
It is clear that the recursive version does not scale with annotations, which we
believe is due to the problem identified in Lemma 1. Most of the times the matrix
algorithm is better and the logarithmic algorithm suffers from large variance
problems. The differential algorithm is well-behaved in the case of the WordNet
test data but most of the times it is not competitive.

The overhead introduced by the annotated versions is consistently around
250% for the case of the matrix method. This is expected since more queries and
more complex are necessary to obtain the closure.
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We have also performed some tests using a different database server configu-
ration and indexes in specific tables. In these tests annotated and non annotated
versions of the algorithms have performed better than with default configura-
tion, in some cases three or four times faster. This leads us to believe that server
configuration optimization may lead to great improvement of performance of
these algorithms. This was expected and future work will be developed in order
to provide more definitive conclusions.

6 Comparison and Related Work

Current triple stores like Sesame6 and Jena7 apparently do not perform the
RDFS closure directly in the RDBMSs over stored data, and first load the data
into memory, perform the inferences and store them afterwards. Moreover, their
inference reasoning algorithms do not handle annotated data.

An extensive analysis of inferencing with RDF(S) and OWL data can be found
in the description of the SOAR system [10]. A first major distinction to our ap-
proach is that part of the information is kept in main-memory, basically to what
corresponds to our special tables for handling ρdf vocabulary and thus the tran-
sitive closure is performed in main memory, and no annotations are available.
However, SOAR has more rules and implements a subset of OWL inferences,
which we do not address here. It is used a technique call partial-indexing which
relies on pre-processing a comparatively small-sized T-box with respect to the
assertional data [11]. This terminological data extends the knowledge in our
rdfs:subClassof, rdfs:subPropertyOf, rdfs:domain, and rdfs:range prop-
erties, and is not the major concern of the authors.

A novel extension of the SOAR system has been reported with scalable and
distributed algorithms to handle particular annotations for dealing with trust/
provenance including blacklisting, authoritativeness and ranking [3]. They cover
a subset of the OWL 2 RL/RDF rules in order to guarantee a linear number of
inferences on the size of the assertional data. The computation of the transitive
closure of subclass and subproperty relations with annotations are performed by
semi-naive evaluation with specialized algorithms, and thus it is not comparable
to our approach.

Here we are not trying to assess query and storage trade-offs like [23] where
just part of the RDFS closure graph is stored and the remaining triples are
inferred at query time. However, we believe the same kind of balance still holds
for annotated RDFS Semantic Web data.

Our approach also differs from [12] since we do not allow neither SPARQL
querying nor change of entailment regime. A quite recent improvement of the
annotated Semantic Web framework has been made available at [17,29]. The
semantics have been extended with aggregate operators, and AnQL an exten-
sion of SPARQL to handle annotations has also been detailed with an available

6 See http://www.openrdf.org/
7 See http://jena.sourceforge.net/

http://www.openrdf.org/
http://jena.sourceforge.net/
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memory-based implementation in Prolog using constraint logic programming.
Since persistent storage is not supported we did not compare with this approach.

7 Conclusions and Future Work

In this paper we present a full relational database implementation of the an-
notated RDFS closure rules of [22] supporting any t-norm real-valued intervals,
namely in the unit interval [0, 1]. We have analysed the dependencies of infer-
ence rules and proved that recursion is solely necessary for performing transi-
tive closure of the subproperty and subclass relationships. We presented several
algorithms for performing the transitive closure with annotated data, and im-
plemented them in SQL. We performed practical evaluation of the several algo-
rithms over existing data of YAGO and Wordnet knowledge bases for the case
of minimum t-norm, and concluded that the matrix and logarithmic versions
have better average behaviour than the other versions in the case of annotated
data, but the logarithmic method is less reliable. The standard semi-naive eval-
uation shows poor performance, except when the subClassOf instances are in
small number. We have shown that our approach for the case of non-annotated
data has comparable or better performance than the DLV DB system, and that
the overhead imposed by annotations can be significant (from 150% to 350%).
The relative behaviour of the compared algorithms carries over from the non-
annotated to the annotated versions, except for the recursive algorithm. The
recursive annotated transitive closure algorithm is extremely bad behaved, con-
trary to the non-annotated one.

We plan to extend the experimental evaluation to the large graphs in the
Linked Data in order to confirm scalability of the techniques proposed as well as
to evaluate the effect of indexing structures. We also would like to evaluate the
impact of different t-norms in the running time of our algorithms. Moreover, since
our proposal relies on standard database technology we would like to explore
vendor specific facilities to improve performance of the developed system as
well as increase generality. We also intend to explore alternative memory-based
implementations and compare them with the current system.
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Abstract. As SPARQL endpoints are increasingly used to serve linked
data, their ability to scale becomes crucial. Although much work has been
done to improve query evaluation, little has been done to take advantage
of caching. Effective solutions for caching query results can improve scala-
bility by reducing latency, network IO, and CPU overhead. We show that
simple augmentation of the database indexes found in common SPARQL
implementations can directly lead to effective caching at the HTTP pro-
tocol level. Using tests from the Berlin SPARQL benchmark, we evaluate
the potential of such caching to improve overall efficiency of SPARQL
query evaluation.

1 Introduction

SPARQL endpoints are increasingly being used to provide access to large
amounts of linked data. As use increases, both in frequency and complexity, and
as the amount of data being served increases, scaling these systems to handle the
increased load is crucial. Much work has been done on improving performance
of SPARQL processors through more intelligent query planners, optimized index
structures, and parallelization. However, there has been little work on addressing
scalability through the use of caching.

Caching of query results can benefit both the SPARQL endpoint and the
client. When a client uses a conditional HTTP request to which the server re-
sponds with a “Not Modified” message, only the IO for the response header is
required. On the server, validating a conditional request is likely to be faster and
require fewer resources (both CPU time and working memory) than evaluating
the whole query. This allows the server to respond to more and/or more com-
plex queries given fixed resources (or, conversely, response to the same queries
with fewer resources). Moreover, if successfully validating a conditional request
is faster than evaluating the query, the client benefits not only from reduced
IO but also reduced latency and potentially by avoiding the need to parse the
response (if a client’s local cache is able to store a parsed representation).

The benefits of caching are only realized if both the client and server support
the caching protocol and if requests are repeatedly made for already-cached
results. Client-side support for caching is already available due to the widespread
support in HTTP libraries that are used to implement the SPARQL protocol.
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In the rest of this work, we propose how to enable support for caching in the
data structures used on the server. Because of the widespread support for HTTP
caching, and the high frequency of repeated queries, caching of SPARQL query
results has the potential to significantly improve efficiency. We restrict our work
to only consider caching at the HTTP level as the standard SPARQL Protocol
is defined in terms of HTTP1.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 reviews the caching features of HTTP. Section 4 defines “relevant” data
as it pertains to caching the result of a SPARQL query pattern, and introduces
the data structures and algorithms necessary for enabling caching in SPARQL
query evaluation. Section 5 presents experimental results showing the effects of
caching using the Berlin SPARQL Benchmark (BSBM). Section 6 concludes and
discusses possible future work.

2 Related Work

Using caching to increase scalability touches upon several areas research, in-
cluding statistical distributions of queries affecting their cacheability, indexing
structures used in Semantic Web query answering systems, and caching as it
relates to both the Semantic Web and to databases. In this section we discuss
work related to these areas.

Regarding the repetition of queries, work on analyzing web access logs by
Breslau, et al.[1] found that the statistical distribution of requests followed a
“Zipf-like distribution” with the distribution exponent varying between differ-
ent user communities. This finding suggests that caching can have a significant
impact on real-world access patterns because a large portion of requests are made
for a small set of resources. More recently, and related specifically to SPARQL
requests, Gallego, et al.[2] analyzed a set of SPARQL endpoint query logs, and
found a high degree of queries duplicated from the same hosts. However, Gallego,
et al. only mention the repeated queries in passing, without specific details on
the distribution of repeated queries.

There has been a trend in SPARQL systems to use search trees to efficiently
index RDF data (following similar use in relational databases) and to use many
indexes to support a range of access patterns. The YARS system[3] (and sub-
sequently Hexastore[4] and RDF-3X[5]) demonstrated the effectiveness of main-
taining many search tree indexes to provide direct access to RDF data match-
ing a certain triple- or quad-pattern. YARS made use of six B+ tree indexes
(〈SPOG〉, 〈POG〉, 〈OGS〉, 〈GSP 〉, 〈GP 〉, 〈OS〉) to cover all sixteen possible
quad-access patterns. Hexastore and RDF-3X, while only considering triples,
both made use of six indexes (〈SPO〉, 〈SOP 〉, 〈PSO〉, 〈POS〉, 〈OSP 〉, 〈OPS〉)
to provide complete indexing of triples, covering all eight triple access patterns

1 The SPARQL 1.0 Protocol is defined in terms of WSDL with bindings for HTTP
and SOAP. However, the SPARQL 1.1 Protocol is defined only for HTTP as there
was no widespread support for non-HTTP implementations.
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and all possible orderings. The design of 4store[6] makes use of only three indexes
(〈PS〉, 〈PO〉, 〈G〉), using RADIX tries for the 〈PS〉 and 〈PO〉 indexes2. While
all of these systems utilize search trees for performance, their use is restricted
only to indexing the RDF data. In our work, we make use of the search trees not
only to maintain many indexes over the RDF data but also to store additional
metadata about when that data was modified. As described in the following
sections, keeping such metadata allows a query processor to validate existing
cached query results.

Caching database query results has been studied widely. Goldstein and
Larson[7] show the potential of materializing views within a relational system
to dramatically improve performance of expensive queries. Both Amiri, et al.[8]
and Larson, Goldstein, and Zhou[9] addresses caching relational query results
using materialized views. Amiri, et al. perform caching in edge caches separate
from the origin database which reduces load on the origin server, but maintain-
ing consistency of cached results requires that the origin database propagate
every update, delete, and insert operation to all caches, making it unsuitable for
environments with high write throughput. Larson, Goldstein, and Zhou improve
upon the approach by Amiri, et al. by allowing more flexible materialization of
views, allowing the query optimizer to choose whether to evaluate the query on
the origin server even in the presence of cached data, and improving support
for parameterized queries. In contrast to these approaches, the fixed structure
of RDF data makes supporting caching much easier. No complex logic or knowl-
edge of database schemas is needed to determine which tables or columns might
benefit from caching as all data is structured in terms of triples.

Caching as it relates to the Semantic Web is a much more recent field of
study. The work on caching SPARQL query results by Martin, Unbehauen, and
Auer[10] shares the same goal and many details with our work (we frequently cite
this work herin as a source of common groundwork and greater detail) However,
they perform caching by coupling a caching layer with an existing SPARQL
processor. This has the benefit of portability across SPARQL implementations,
but incurs high cache maintenance costs and is suitable only for caches which
are tightly integrated with the underlying system and can intercept all write
operations (e.g. ISP caches or caches built into a user agent cannot be used).
Finally, the work in [10] deals with only a subset of SPARQL; in this work we
make specific note of several features of SPARQL that deserve special attention
in the context of caching.

Work by Hartig[11] shows performance improvements of using a local cache
in evaluating queries by linked data link traversal. This work is complementary
to ours in that both use caching to improve performance of query answering,
one over static linked data, the other over potentially dynamic data available
via structured queries.

2 4store actually maintains two RADIX tries for each predicate, but for our purposes
these may be understood as being equivalent to tries with P prepended to the actual
keys.
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3 HTTP Caching

In this section we introduce the caching features available in HTTP upon which
our system relies.

HTTP supports two primary caching mechanisms, allowing servers to explic-
itly indicate a caching expiration (with an Expires date or a max-age duration)
or indicating a cache validator (with a Last-Modified date or ETag value). Here
we concern ourselves only with cache validators – specifically, Last-Modified
dates – as they are a more natural fit for caching data that may be updated
in the database at any time. However, as they relate to our work, both the
Last-Modified and ETag headers may be understood as being effectively equiv-
alent as we do not use the more expressive “weak validation” that ETags allow.

The Last-Modified validator works as follows. A client user-agent requests
a resource (in this case a SPARQL query) to the server:

GET /sparql?query=SELECT... HTTP/1.1
Host: example.org

The server sends back a response whose header includes the Last-Modified
validator with a date indicating when the resource was last modified:

HTTP/1.1 200 OK
Last-Modified: Wed, 1 Jun 2011 12:45:15 GMT
Content-Type: application/sparql-results+xml

<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
...
</sparql>

At some point in the future, the client requests the resource again and, not-
ing that the response is cached from the last time it was requested, indicates
the request as conditional by using the If-Modified-Since header with the
previously returned validator date:

GET /sparql?query=SELECT... HTTP/1.1
Host: example.org
If-Modified-Since: Wed, 1 Jun 2011 12:45:15 GMT

If the resource has not changed since the validator date, the server sends a
response indicating that the already-cached content is still valid:

HTTP/1.1 304 Not Modified

Otherwise, the server responds as usual with a full response, including the re-
source content and any applicable cache validators (the updated Last-Modified
time).
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In terms of SPARQL, HTTP caching ought to make query results appear as
valid (“fresh”) so long as the query results do not change. Since determining
precisely if results to a query have changed may require re-evaluating the query
(negating one of the benefits of caching), we settle for a less strict condition:
caching ought to make the query results appear as valid so long as data “rel-
evant” to the query have not changed. Once a query result has been cached,
updates to “irrelevant” data in the SPARQL endpoint should have no affect on
the caching – upon re-submitting the query, the server should indicate that the
cached results are still valid. “Relevant” data being updated prior to the query
being re-submitted should result in the server re-evaluating the query and re-
turning fresh query results. In section 4.2 we define “relevant” and “irrelevant”
data.

4 Methodology

We propose modifying the search trees used to index RDF data in a simple way
to enable determining the effective modification time of data relevant to a query.
In the following sections we show how the modification time data stored in the
search trees can be maintained during database updates, and how the data can
be retrieved and used at query time. In determining what data is relevant to a
specific query, we extend the work done by Martin, Unbehauen, and Auer[10]
(what they call “Graph Pattern Solution Invariance”) to support the much more
expressive queries and graph patterns of SPARQL 1.13. This includes the use of
named graphs, property paths, and DESCRIBE queries.

In this work we assume that the SPARQL processor is built using a quad-store,
and that the SPARQL “RDF Dataset” is mapped directly to the statements
in the quad-store (with a special graph name representing the default graph).
This assumption simplifies the following discussion, but is not required by our
approach. The algorithms we present can be extended to work with arbitrary
mappings between RDF dataset and quad-store, or to work with graph-stores.

4.1 Search Tree Indexing

Search trees are a common data structure used to implement efficient access
to RDF data for varying access patterns. To determine the modification-time
(mtime) of “relevant” data in a search tree, we propose adding an mtime field to
each node in the search tree. During an update operation (insertion or deletion
of RDF data), we update the mtime field in each affected search tree node.
Moreover, during an update we ensure the mtime of each node in the tree is
greater than or equal to the mtime of all of its children. In this way, the mtime
of a node in the tree can be used as a conservative proxy value for the mtime of
any of its descendant nodes.

For each access pattern in a query, we can now determine an mtime after
which we can be assured that no update operation has affected data matching
3 http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/sparql11-query/
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Fig. 1. Example 〈SPO〉 search trees

the pattern. By calculating the maximum mtime over all the query access pat-
terns, we arrive at a single timestamp which is at least as recent as the actual
modification time of the query’s “relevant” data.

While different SPARQL systems make use of different types of search trees,
and use varying numbers of indexes, we propose a general solution that works
with any number of indexes and across a variety of tree types (we discuss specifics
of both B+ trees and tries). Although the caching results in our proposed system
are complete, soundness is affected by the choice of a specific search tree type
and number of available indexes. For example, fewer indexes, or the use of B+
trees versus tries, may cause some query results to appear as if they have changed
when in fact they haven’t. However, query results that are asserted as being the
same as cached results will always in fact be the same.
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Figure 1 shows both a B+ tree of order 4 and a trie with example data4. The
mtime of each tree node appears inside the circle attached to each node, and
shows the mtimes that result from this example 5-update sequence (with mtimes
starting at 1, and incrementing on subsequent operations):

1. Insert triple { a p b }
2. Insert triple { a q x }
3. Insert triple { c q z }
4. Insert triple { b p a }
5. Insert triple { b p c }

As can be seen, the trie maintains the correct mtime for each leaf node while
the mtimes in the B+ tree only indicate that the triples with subject a were not
updated by operation 5. We discuss the reasons for this unsoundness in section
4.3.

4.2 Relevant Data and Graph Patterns

We define data “relevant” to a SPARQL query as being data that may affect
the results of the query. Martin, Unbehauen, and Auer claim: “the solution of a
graph pattern stays the same at least until a triple, which matches any of the
triple patterns being part of the graph pattern, is added to or deleted from the
[graph].” This is true when considering only triple-patterns in the default graph,
but to support the full expressivity of SPARQL, we must extend this claim: The
solution of a query with a graph pattern stays the same at least until:

– a triple, which matches any of the triple patterns being part of the graph
pattern, is added to or deleted from the default graph

– a triple, which matches any of the triple patterns being part of a GRAPH
<iri> pattern, is added to or deleted from the <iri> named graph

– a triple, which matches any of the triple patterns being part of a GRAPH ?var
pattern, is added to or deleted from any named graph

– a triple is added to a new named graph and the graph pattern includes an
empty GRAPH ?var pattern

– a triple is removed from a named graph, leaving the graph empty, and the
graph pattern includes an empty GRAPH ?var pattern

– a triple, with predicate matching any part of a property path being part of
the graph pattern, is added to or deleted from the dataset

– a triple is added or removed from the dataset, and the graph pattern includes
a zero-length or negated property path

– a triple is added to or deleted from the dataset, and the query uses the
DESCRIBE form

We discuss each of these cases and how they relate to relevant data below.
4 The example data used here is comprised of triples for brevity; the handling of

mtimes is identical for quad data.
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Named Graph Patterns. As noted in [10], the addition or deletion of a triple
(to the default graph) may change the solutions of a graph pattern. To fully
support SPARQL datasets (which contain not just the default graph, but also
any number of named graphs), we must also consider graph patterns scoped
to a named graph. These patterns may either be scoped to a specific named
graph (using the GRAPH <iri> { ... }) syntax) or be scoped to any named
graph (using the GRAPH ?var { ... } syntax). For a graph pattern scoped to
a specific named graph, iri, the solutions to the graph pattern may change
with the addition or deletion of a triple matching the graph pattern to the
named graph iri. For a pattern scoped to any named graph, the solutions to
the pattern may change with the addition or deletion of a triple matching the
graph pattern to any named graph.

Empty Named Graph Patterns. Beyond graph patterns scoped to named
graphs, special handling is required for the empty named graph pattern:

SELECT ?g WHERE { GRAPH ?g {} }

This query returns the set of graph names in the dataset. The query has no
triple-patterns which might match triples being added or removed, yet its results
may change based on added or removed data. Specifically, adding a triple to a
new named graph, or removing the final triple from a named graph5 may change
the solutions to this pattern.

Paths. Property paths greatly increase the expressiveness of SPARQL, but as
they relate to relevant data, may be reduced to the matching of triple patterns.
We can partition property paths into two categories: fixed-length and variable-
length. Fixed-length property paths are those that can be syntactically repre-
sented by basic graph patterns (BGPs). Due to their equivalence with BGPs
(sets of triples), these paths can be handled the same as triple patterns.

Variable-length paths are those that cannot be reduced to BGPs, and may
rely on new algebraic operations to match data. These include zero-length paths
(?s <p>{0} ?o), zero-or-more paths (?s <p>* ?o), one-or-more paths (?s <p>+
?o), and negated paths (?s !<p> ?o). Due to their complexity, we discuss only
a subset of the expressivity of these path types.

With respect to “relevant” data, one-or-more paths with simple predicates
(those in which the + path operator applies to an IRI) can be reduced to triple
pattern matching with predicate-bound triple patterns. For example, the path
<s> <p>+ ?o has the same relevant data as the triple pattern ?s <p> ?o. Note
that while the subject is bound to <s> in the path pattern, it must be unbound
in the triple pattern equivalent as the path may be affected by triples where the
subject is not <s>.

Zero-length paths and negated paths require special attention. The zero-length
path connects a graph node (any subject or object in the graph) to itself. There-
fore, any insertion (deletion) in a graph may affect the results to a zero-length
5 Some SPARQL systems allow empty named graphs to exist. Removing all triples

from a named graph would not affect the set of graph names on such systems.
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path pattern by adding (removing) a node to the graph that didn’t exist before
(doesn’t exist after) the update. Similarly, a negated path ?s !<p> ?o implies
that any insertion or deletion not using the <p> predicate may impact the re-
sults. While the relevant data for such a negated path is a subset of all the data,
we assume that realistic datasets will contain a range of predicates and so the
relevant data will be very large (in many cases approximating the size of the
dataset itself). Therefore, we conservatively assume that the entire dataset is
relevant to a negated path pattern.

DESCRIBE Queries. DESCRIBE queries present a challenge in determining
relevant data. These queries involve matching a graph pattern just as SELECT
queries do (a DESCRIBE query without a WHERE clause being semantically equiva-
lent to one with an empty WHERE clause). However, the final results of a DESCRIBE
query depend on the WHERE clause and the algorithm used for enumerating the
RDF triples that comprise the description of a resource.

A näıve DESCRIBE algorithm would be to return all the triples in which the
resource appeared as the subject. For our purposes, this algorithm would make
this query:

DESCRIBE ?s
WHERE { ?s a <Class> }

roughly equivalent to a SELECT query with an additional triple pattern:

SELECT ?s ?p ?o
WHERE { ?s a <Class> .

?s ?p ?o }

Since most DESCRIBE algorithms will include at least these triples, and given
the course-grained nature of the triple pattern ?s ?p ?o (matching every triple
in the database), we consider the “relevant” data for a DESCRIBE query to be
all data in the database. We note that the work in [10] does not (and need
not) address this issue as that work is concerned with caching of graph pattern
results, not query results. Since the DESCRIBE query form takes graph pattern
results (or ground IRIs) as input, and outputs an implementation-dependent set
query results, the caching of query results must respect this process.

Given that the algorithm used for DESCRIBE queries is implementation de-
pendent, our definition of “relevant” data for DESCRIBE queries is intentionally
conservative and we do not discuss specific handling of DESCRIBE queries in any
further detail.

4.3 Maintaining and Probing Cache Status

In this section we briefly describe the algorithms used during update operations
to maintain the mtime field in the search tree. We then describe the probing
algorithm used to determine the effective mtime of the relevant data for a specific
query.
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Cache Maintenance. Maintaining the mtime field in the search tree is a simple
process:

1. Before each tree node is written to disk (due to an insertion of deletion),
update the node’s mtime to the current time.

2. For each node that is written to disk, write its parent to disk (thereby up-
dating its parent’s mtime).

This process will ensure our condition that every tree node’s mtime is greater
or equal to those of its descendants and can be used as the effective mtime of
descendant, relevant data.

We distinguish between the effective mtime of data matching an access pat-
tern, and that data’s actual mtime. As discussed in section 4.1, the specific data
structure used for the search tree affects the granularity (and therefore the ex-
pected accuracy) of the effective mtime. Due to their design, tries yield effective
mtimes that are exactly the same as the most recent mtime of data matching
an access pattern. B+ trees yield effective mtimes of matching data that may
be affected by any non-matching data that is co-located on a leaf node with
matching data.

During the update process, we note that the parent node(s) may already need
to be written to disk (in the case of a node split), so step 2 may already be
required on any given update. Moreover, an update at a leaf node in append-
only and counted B+ trees cause a cascade of writes up to the (possibly new)
root. In these cases, all IO incurred by the cache update algorithm is already
required by the update operation, and so the cost of maintaining the cache data
is effectively free.

Cache Probing. The algorithm used for probing a database index to retrieve
the effective mtime for a query is shown in algorithm 1. Given a query and a
set of available search tree indexes, for each access pattern in the query, the
algorithm probes the index that will yield the most accurate effective mtime,
and returns the most recent of the mtimes. The index that will yield the most
accurate effective mtime is the one with a key ordering that will allow descending
as deep into the tree as there are bound terms in the access pattern. If no such
index exists, a suitable replacement index is chosen that maximizes the possible
depth into the tree that some subset of bound terms in the access pattern will
allow. In the case of the completely unbound access pattern, the effective mtime
is the same as the mtime of the entire dataset and so can be retrieved from the
root node of any available index.

While this algorithm describes how the effective mtime of a query may be com-
puted, it is worth noting that the specific steps described may be implemented in
more or less efficient ways. For example, the algorithm calls for finding the low-
est common ancestor (LCA) of data matching the access pattern. For a system
using B+ trees, a näıve implementation might traverse the tree to find the leaves
with matching data and then walk up the tree to find the LCA. A more effi-
cient implementation could avoid having to find all leaves with matching data by
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Algorithm 1. Probe database for effective mtime of query results

Input: A SPARQL query graph pattern query, a set of available database
indexes indexes

Output: effectiveMtime, the effective modification time of relevant data for
the query

mtimes = ∅ ;1

foreach ap ∈ query do2

orderedIndexes = {i|i∈indexes,∃s⊆boundPositions(ap) s.t. the key order3

of i starts with s} ;
if |orderedIndexes| > 0 then4

index = argmax
i∈orderedIndexes

|s| ;
5

n = LCA of data matching ap in index ;6

mtimes = mtimes ∪ {mtime(n)} ;7

else8

i = any index in indexes ;9

mtimes = mtimes ∪ {mtime(root(i))} ;10

end11

end12

effectiveMtime = Max(mtimes) ;13

return effectiveMtime14

traversing tree edges until finding the LCA by using the bounds data contained
in internal nodes.

As discussed above and in section 4.1, the soundness of results is affected by
the choice of the search tree data structure used. B+ trees produce less sound
results as a result of maintaining less accurate effective mtimes. Tries will result
in more sound results as a result of being able to maintain accurate effective
mtimes. Even though tries maintain accurate effective mtimes, their use does not
guarantee perfectly sound cache validation as updates that affect data relevant
to a query may not change the results to that query. This can occur when the
relevant updated data does not appear in the query results due to join conditions,
filter expressions, or projection. In these cases, cache validation will fail and the
query must be evaluated again, despite accurate results already being cached.

One final case that is worth noting is the special case of determining the
effective mtime for an empty named graph pattern (GRAPH ?g ). As discussed
in section 4.2, this pattern returns the set of available named graphs. If the
set of available indexes are all covering indexes (using key orders that are just
permutations of subject, predicate, object, and graph), then there is no way to
determine an accurate effective mtime for this pattern. However, if there is an
available index over just 〈G〉, an accurate effective mtime for the set of named
graphs is stored in the 〈G〉 index root node.

5 Evaluation

We evaluated the potential impact on performance of query result caching by
implementing a simple SPARQL process in C with B+ tree indexes. To index
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data, we use the six index orderings 〈SPOG〉, 〈SGOP 〉, 〈POGS〉, 〈OGSP 〉,
〈OSPG〉, and 〈GPSO〉. We evaluated our system using a slightly modified ver-
sion of the Berlin SPARQL Benchmark6 using both the Explore (read-only) and
the Explore and Update (read-write) use cases. All BSBM evaluation was per-
formed on a dual Intel Xeon E5504 Quad Core 2.0GHz processor with 24GB of
memory, with 5 warmup runs, and 10 timed runs.

5.1 Modified Berlin SPARQL Benchmark

We believe the standard BSBM benchmark fails to account for the skewed dis-
tribution of real-world queries and so, following the work in Martin[10], modified
the benchmark test driver to use a Pareto distribution for benchmark queries.
The evaluation tests were performed with varying query repetition as represented
by the α parameter. We also modified the benchmark test driver to support
HTTP caching by storing query results when they are returned with caching
headers, and validating existing cached query results using conditional requests.

5.2 Explore Use Case

The Explore use case of BSBM consists of a set (“query mix”) of read-only
queries that simulate a consumer looking for product information in an e-commerce
setting. In our evaluation, this use case tests performance gains from caching on
a static dataset. No updates (neither relevant nor irrelevant) are performed and
so once cached, query results are always valid.

Figure 2 shows the performance improvement of our caching system on the
BSBM Explore use case (as a percentage increase over the same tests run without
the use of caching). The test was run with α distribution values ranging from
0.1 to 4.0, and shows between 35–650% increase in benchmark performance.

5.3 Explore and Update Use Case

The Explore and Update use case of BSBM consists of the same queries as in
the Explore use case, with occasional updates to the dataset representing new
products, reviews, and offers being added to, and old offers being removed from
the dataset. This use case tests performance gains from caching on both static
datasets (intra-query mix) and updated dataset (inter-query mix, after an update
set). The updates contain both relevant and irrelevant data to the queries in the
Explore use case.

Figure 3 shows the performance improvement of our caching system on the
BSBM Explore and Update use case, again with α distribution values ranging
from 0.1 to 4.0, and shows between 2–160% increase in benchmark performance.

5.4 Cost of Caching

To evaluate whether implementing our caching system increases overall process-
ing cost, we evaluated the difference in performance between two versions of
6 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
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our system. In one version (“nocache”), we compile our system without any
cache-supporting code. In the other (“cache-off”), caching support is included.
However, both of these versions were tested against the Explore and Update use
case with no caching support enabled in the test driver. In the cache-enabled
version, this tests both the cost of cache probing to generate the Last-Modified
response header during the explore phase and the cost of maintaining mtimes
during the update phase. As can be seen in figure 4, the cache-enabled system
performs roughly the same as the version without caching (executing at times
both slightly faster and slower than the baseline “nocache” system).

5.5 Discussion

The performance of this system is not competitive with existing SPARQL stores,
which achieve dramatically higher scores on the Berlin SPARQL benchmark. We
attribute this to our system being a testing implementation meant to demon-
strate our cache-supporting indexes and algorithms, not meant to compete head
to head with production systems. Specifically, our system uses a very basic B+
tree implementation with no optimization to reduce disk IO, and lacks any query
optimizer or memory management of database pages. We would have liked to
evaluate our caching approach using a more efficient implementation, but found
that modifying the low-level index structures with mtime fields and making
those fields available through many layers of API abstractions was very difficult.
Overall, we suggest attention should be paid to the large relative improvement
of performance with query result caching, not on the specific QMpH figure of
our implementation.

We believe our system’s lack of database page management may hurt overall
caching performance. The ability to cache database pages in memory would not
only improve overall performance, but in some cases would specifically improve
performance of the cache query (probe) algorithm. Specifically, in cases where the
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upper levels of index nodes reside entirely in memory, accessing the LCA nodes
that provide the mtime of relevant data may require no disk access whatsoever.

Conversely, a highly optimized system tuned for very fast pattern matching
and joins would narrow the performance gap between validating a conditional
query with cache probing and evaluating the query in full. This situation would
seem to provide less benefit from caching. However, this narrowing of perfor-
mance gap is only one aspect of the benefits from caching. Even on a very
efficient implementation, caching would still reduce the network IO required to
transfer the query results (which our evaluation does not address) and the mem-
ory usage on the server.

6 Conclusion

Caching of SPARQL query results is a promising approach to improving scal-
ability. In this paper we have shown that simple modification of the indexing
structures commonly used in SPARQL processors can allow fine-grained caching
of query results based on the freshness of data relevant to the query. We evalu-
ated this system using the Berlin SPARQL Benchmark and found that caching
can dramatically improve performance in the presence of repeated queries. More-
over, maintaining the data required for caching and using it to service conditional
query requests has low cost compared to fully evaluating queries.

In the future we hope to apply the presented caching structures and algorithms
to an existing, optimized SPARQL processor and evaluate it using much larger
datasets and more expressive queries than those provided by BSBM. We also
believe this work could be improved in many ways. The precision (and therefore
the soundness) of the cache probing algorithm might be improved by taking into
account the ways in which relevant data is combined and modified (e.g. using
joins, filters, and projection). In many cases, typical queries use only a subset of
available database indexes. Cache-enabled search trees for only the most frequent
access patterns could be augmented with non-tree indexes, allowing the system
to leverage the benefits of certain non-tree index structures while keeping the
precision of caching for frequent queries. Finally, other indexing structures might
also be modified to store similar fine-grained caching data, allowing informed
indexing structure choices while maintaining the benefits of caching.

Acknowledgements. We thank Timothy Lebo and Lee Feigenbaum for their
helpful comments and suggestions about this work.
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12. Guéret, C., Groth, P., Oren, E., Schlobach, S.: eRDF: A scalable framework for
querying the web of data, pp. 1–17 (October 2010)



dipLODocus[RDF]—Short and Long-Tail

RDF Analytics for Massive Webs of Data

Marcin Wylot, Jigé Pont, Mariusz Wisniewski, and Philippe Cudré-Mauroux
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Abstract. The proliferation of semantic data on the Web requires RDF
database systems to constantly improve their scalability and transac-
tional efficiency. At the same time, users are increasingly interested in
investigating or visualizing large collections of online data by performing
complex analytic queries. This paper introduces a novel database system
for RDF data management called dipLODocus[RDF] , which supports
both transactional and analytical queries efficiently. dipLODocus[RDF]

takes advantage of a new hybrid storage model for RDF data based on
recurring graph patterns. In this paper, we describe the general archi-
tecture of our system and compare its performance to state-of-the-art
solutions for both transactional and analytic workloads.

1 Introduction

Despite many recent efforts, the lack of efficient infrastructures to manage RDF
data is often cited as one of the key problems hindering the development of
the Semantic Web. Last year at ISWC, for instance, the two industrial keynote
speakers (from the New York Times and Facebook) pointed out that the lack
of an open-source, efficient and scalable alternative to MySql for RDF data was
the number one problem of the Semantic Web.

The Semantic Web community is not the only one suffering from a lack of
efficient data infrastructures. Researchers and practitioners in many other fields,
from business intelligence to life sciences or astronomy, are currently crumbling
under gigantic piles of data they cannot manage or process. The current crisis in
data management is from our perspective the result of three main factors: i) rapid
advances in CPU and sensing technologies resulting in very cheap and efficient
processes to create data ii) relatively slow advances in primary, secondary and
tertiary storage (PCM memories and SSD disks are still expensive, while modern
SATA disks are singularly slow–with seek times between 5ms and 10ms typically)
and iii) the emergence of new data models and new query types (e.g., graph
reachability queries, analytic queries) that cannot be handled properly by legacy
systems. This situation resulted in a variety of novel approaches to solve specific
problem, for large-scale batch-processing [10], data warehousing [20], or array
processing [8].

L. Aroyo et al. (Eds.): ISWC 2011, Part I, LNCS 7031, pp. 778–793, 2011.
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Nonetheless, we believe that the data infrastructure problem is particularly
acute for the Semantic Web, because of its peculiar and complex data model
(which can be modeled as a constrained graph, as a ternary or n-ary relation,
or as an object-oriented model depending on the context) and of the very differ-
ent types of queries a typical SPARQL end-point must support (from relatively
simple transactional queries to elaborate business intelligence queries). The re-
cent emergence of distributed Linked Open Data processing and visualization
applications relying on complex analytic and aggregate queries is aggravating
the problem even further.

In this paper, we propose dipLODocus[RDF] , a new system for RDF data
processing supporting both simple transactional queries and complex analytics
efficiently. dipLODocus[RDF] is based on a novel hybrid storage model considering
RDF data both from a graph perspective (by storing RDF subgraphs or RDF
molecules) and from a “vertical” analytics perspective (by storing compact lists
of literal values for a given attribute). dipLODocus[RDF] trades insert complexity
for analytics efficiency: isolated inserts and simple look-up are relatively complex
in our system due to our hybrid model, which on the other hand enables us to
considerably speed-up complex queries.

The rest of this paper is structured as follows: we start by discussing re-
lated work in Section 2. Section 3 gives a high-level overview of our system and
introduces our hybrid storage scheme. We give a more detailed description of
the various data structures in dipLODocus[RDF] in Section 4. We describe how
our system handles common operation like bulk inserts, updates, and various
types of queries in Section 5. Section 6 is devoted to a performance evaluation
study, where we compare the performance of dipLODocus[RDF] to state-of-the-art
systems both for a popular Semantic Web benchmark and for various analytic
queries. Finally, we conclude in Section 7.

2 Related Work

Approaches for storing RDF data can be broadly categorized in three subcate-
gories: triple-table approaches, property-table approaches, and graph-based ap-
proaches. Many approaches have been proposed to optimize RDF query process-
ing; we list below some of the most popular approaches and systems. We refer
the reader to recent surveys of the field (such as [15], [13], or [16]) for a more
comprehensive coverage.
Triple-Table Storage: since RDF data can be seen as sets of subject-predicate-
object triples, many early approaches used a giant triple table to store all data.
Our GridVine [2,7] system, for instance, uses a triple-table storage approach to
distribute RDF data over decentralized P2P networks using the P-Grid [1] dis-
tributed hash-table. More recently, Hexastore [21] suggests to index RDF data
using six possible indices, one for each permutation of the set of columns in
the triple table, leading to shorter response times but also a worst-case five-fold
increase in index space. Similarly, RDF-3X [17] creates various indices from a
giant triple-table, including indices based on the six possible permutations of the
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triple columns, and aggregate indices storing only two out of the three columns.
All indices are heavily compressed using dictionary encoding and byte-wise com-
pression mechanisms. The query executor of RDF-3X implements a dedicated
cost-model to optimize join orderings and determine the cheapest query plan
automatically.
Property-Table Storage: various approaches propose to speed-up RDF query pro-
cessing by considering structures clustering RDF data based on their properties.
Wilkinson et al. [22] propose the use of two types of property tables: one con-
taining clusters of values for properties that are often co-accessed together, and
one exploiting the type property of subjects to cluster similar sets of subjects
together in the same table. Chong et al. [6] also suggest the use of property ta-
bles as materialized views, complementing a primary storage using a triple-table.
Going one step further, Abadi et al. suggest a fully-decomposed storage model
for RDF: the triples are in that case rewritten into n two-column tables where n
is the number of unique properties in the data. In each of these tables, the first
column contains the subjects that define that property and the second column
contains the object values for those subjects. The authors then advocate the use
of a column-store to compactly store data and efficiently resolve queries.
Graph-Based Storage: a number of further approaches propose to store RDF data
by taking advantage of its graph structure. Yan et al. [23] suggest to divide the
RDF graph into subgraphs and to build secondary indices (e.g., Bloom filters) to
quickly detect whether some information can be found inside an RDF subgraph
or not. BitMat [4] is an RDF data processing system storing the RDF graph as a
compressed bit matrix structure in main-memory. gStore [24] is a recent system
storing RDF data as a large, labeled, and directed multi-edge graph; SPARQL
queries are then executed by being transformed into subgraph matching queries,
that are efficiently matched to the graph using a novel indexing mechanism.
Several of the academic approaches listed above have also been fully imple-
mented, open-sourced, and used in a number of projects (e.g., GridVine1, Jena2,
and RDF-3X3).

A number of more industry-oriented efforts have also been proposed to store
and manage RDF data. Virtuoso4 is an object-relational database system offering
bitmap indices to optimize the storage and processing of RDF data. Sesame5 [5] is
an extensible architecture supporting various back-ends (such as PostgreSQL) to
store RDF data using an object-relational schema. Garlik’s 4Store6 is a parallel
RDF database distributing triples using a round-robin approach. It stores triple
in triple-tables (or quadruple-tables more precisely). BigOWLIM7 is a scalable
RDF database taking advantage of ordered indices and data statistics to optimize

1 http://lsirwww.epfl.ch/GridVine/
2 http://jena.sourceforge.net/
3 http://www.mpi-inf.mpg.de/neumann/rdf3x/
4 http://virtuoso.openlinksw.com/
5 http://www.openrdf.org/
6 http://4store.org/
7 http://www.ontotext.com/owlim/

http://lsirwww.epfl.ch/GridVine/
http://jena.sourceforge.net/
http://www.mpi-inf.mpg.de/neumann/rdf3x/
http://virtuoso.openlinksw.com/
http://www.openrdf.org/
http://4store.org/
http://www.ontotext.com/owlim/
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queries. AllegroGraph8, finally, is a native RDF database engine based on a
quadruple storage.

3 System Rationale

Our own storage system in dipLODocus[RDF] can be seen as a hybrid structure
extending several of the ideas from above. Our system is built on three main
structures: RDF molecule clusters (which can be seen as hybrid structures bor-
rowing both from property tables and RDF subgraphs), template lists (storing
literals in compact lists as in a column-oriented database system) and an efficient
hash-table indexing URIs and literals based on the clusters they belong to.

Figure 1 gives a simple example of a few molecule clusters—storing informa-
tion about students—and of a template list—compactly storing lists of student
IDs. Molecules can be seen as horizontal structures storing information about
a given object instance in the database (like rows in relational systems). Tem-
plate lists, on the other hand, store vertical lists of values corresponding to
one type of object (like columns in a relational system). Hence, we say that
dipLODocus[RDF] is a hybrid system, following the terminology used for ap-
proaches such as Fractured Mirrors [19] or our own recent Hyrise system [12].
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Fig. 1. The two main data structures in dipLODocus[RDF] : molecule clusters, storing
in this case RDF subgraphs about students, and a template list, storing a list of literal
values corresponding to student IDs

8 http://www.franz.com/agraph/allegrograph/

http://www.franz.com/agraph/allegrograph/
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Molecule clusters are used in two ways in our system: to logically group sets
of related URIs and literals in the hash-table (thus, pre-computing joins), and to
physically co-locate information relating to a given object on disk and in main-
memory to reduce disk and CPU cache latencies. Template lists are mainly used
for analytics and aggregate queries, as they allow to process long lists of literals
efficiently. We give more detail about both structures below as we introduce the
overall architecture of our system.

4 Architecture

Figure 2 gives a simplified architecture of dipLODocus[RDF] . The Query Pro-
cessor receives the query from the client, parses it, optimizes it, and creates a
query plan to execute it. The hash-table uses a lexicographical tree to assign a
unique numeric key to each URI, stores metadata associated to that key, and
points to two further data structures: the molecule clusters, which are managed
by the Cluster Manager and store RDF sub-graphs, and the template lists, man-
aged by the Template Manager. All data structures are stored on disk and are
retrieved using a page manager and buffered operations to amortize disk seeks.
Those components are described in greater detail below.

4.1 Query Processor

The query processor receives inserts, updates, deletes and queries from the
clients. It offers a SPARQL [18] interface and supports the most common features
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Fig. 2. The architecture of dipLODocus[RDF]
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of the SPARQL query language, including conjunctions and disjunctions of triple
patterns and aggregate operations. We use the RASQAL RDF Query Library9

to parse both incoming triples serialized in XML, as well as to parse SPARQL
queries. New triples are then handed to the Template and Cluster managers to
be inserted into the database. As for incoming queries, after being parsed, they
are rewritten as query trees in order to be executed. The query trees are passed
to the Query Optimizer, which rewrites the queries to optimize their execution
plans (cf. below Section 5). Finally, the queries are resolved bottom-up, by ex-
ecuting the leaf-operators first in the query tree. Examples of query processing
are given below in Section 5.

4.2 Template Manager

One of the key innovations of dipLODocus[RDF] revolves around the use of declar-
ative storage patterns [9] to efficiently co-locate large collections of related values
on disk and in main-memory. When setting-up a new database, the database ad-
ministrator may give dipLODocus[RDF] a few hints as to how to store the data on
disk: the administrator can give a list of triple patterns to specify the root nodes,
both for the template lists and the molecule clusters (see for instance above Fig-
ure 1, where “Student” is the root node of the molecule, and “StudentID” is
the root node for the template list). Cluster roots are used to determine which
clusters to create: a new cluster is created for each instance of a root node in
the database. The clusters contain all triples departing from the root node when
traversing the graph, until another instance of a root node is crossed (thus, one
can join clusters based on the root nodes). Template roots are used to determine
which literals to store in template lists.

In case the administrator gives no hint about the root nodes, the system
inspects the templates created by the template manager (see below) and takes
all classes as molecule roots and all literals as template roots (this is for example
the case for the performance evaluation we describe in Section 6). Optimizing
the automated selection of root nodes based on samples of the input data and
an approximate query workload is a typical automated design problem [3] and
is the subject of future work.

Based on the storage patterns, the template manager handles two main opera-
tions in our system: i) it maintains a schema of triple templates in main-memory
and ii) it manages template lists. Whenever a new triples enters the system, it
is passed to the template manager, which associates template IDs correspond-
ing to the triple by considering the type of the subject, the predicate, and the
type of the object. Each distinct list of “(subject-type, predicate, object-type)”
defines a new triple template. The triple templates play the role of an instance-
based RDF schema in our system. We don’t rely on the explicit RDF schema
to define the templates, since a large proportions of constraints (e.g., domains,
ranges) are often omitted in the schema (as it is for example the case for the
data we consider in our experiments, see Section 6). In case a new template is
detected (e.g., a new predicate is used), then the template manager updates its
9 http://librdf.org/rasqal/

http://librdf.org/rasqal/
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StudentInstance

FirstName

Litteral

LastName

Litteral

StudentID
Is_a

Student
Class

Litteral

(Student032, FirstName, "Joe")

TID: 5

TID: 1

TID: 2

TID: 3
TID: 6

TID: 4

Schema Template and Template IDs (TIDs)

...
...

hash("Joe") -> TID5: (cluster032) Takes

Hash-Table

..., hash("Joe"),... ..., hash("Joe"),...

Clulster032 Template List 5

match

insert

Fig. 3. An insert using templates: an incoming triple (upper left) is matched to the
current RDF template of the database (right), and inserted into the hash-table, a
cluster, and a template list

in-memory triple template schema and inserts new template IDs to reflect the
new pattern it discovered. Figure 3 gives an example of a template. In case of
very inhomogeneous data sets containing millions of different triple templates,
wildcards can be used to regroup similar templates (e.g., “Student - likes - *”).
Note that this is very rare in practice, since all the datasets we encountered
so far (even those in the LOD cloud) typically consider a few thousands triple
templates at most.

The triple is then passed to the Cluster Manager, which inserts it in one or
several molecules. If the triple’s object corresponds to a root template list, the
object is also inserted into the template list corresponding to its template ID.
Templates lists store literal values along with the key of their corresponding
cluster root. They are stored compactly and segmented in sublists, both on
disk and in main-memory. Template lists are typically sorted by considering a
lexical order on their literal values—though other orders can be specified by
the database administrator when he declares the template roots. In that sense,
template lists are reminiscent of segments in a column-oriented database system.
Finally, the triple is inserted into the hash-table as well (see Figure 3 for an
example).

4.3 Cluster Manager

The Cluster Manager takes care of updating and querying the molecule clusters.
When receiving a new triple from the Template Manager, the cluster manager
inserts it in the corresponding cluster(s) by interrogating the hash-table (see Fig-
ure 3). In case the corresponding cluster does not exist yet, the Cluster Manager
creates a new molecule cluster, inserts the triple in the molecule, and inserts the
cluster in the list of clusters it maintains.

Similarly to the template lists, the molecule clusters are serialized in a very
compact form, both on disk and in main-memory. Each cluster is composed of two
parts: a list of offsets, containing for each template ID in the molecule the offset
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at which the keys corresponding for the template ID are stored, and the list of
keys themselves. Thus, the size of a molecule, both on-disk and in main-memory,
is #TEMPLATES + (KEY SIZE ∗#TRIPLES), where KEY SIZE is the
size of a key (in bytes), #TEMPLATES is the number of templates IDs in
the molecule, and #TRIPLES is the number of triples in the molecule (we
note that this storage structure is much more compact than a standard list of
triples). To retrieve a given information in a molecule, the system first determines
the position of the template ID corresponding to the information sought in the
molecule (e.g., “FirstName” is the sixth template ID for the “Student” molecule
above in Figure 3). It then jumps to the offset corresponding to that position
(e.g., 6th offset in our example), reads that offset and the offset of the following
template ID, and finally retrieves all the keys/values between those two offsets
to get all the values corresponding to that template ID in the molecule.

4.4 Hash-Table

The hash-table is the central index in dipLODocus[RDF] ; the hash-table uses a
lexicographical tree to parse each incoming URI or literal and assign it a unique
numeric key value. The hash-table then stores, for every key and every template
ID, an ordered list of all the clusters IDs containing the key (e.g., “key 10011,
corresponding to a Course object [template ID 17], appears in clusters 1011, 1100
and 1101”; see also Figure 3 for another example). This may sound like a pretty
peculiar way of indexing values, but we show below that this actually allows us
to execute many queries very efficiently simply by reading or intersecting such
lists in the hash-table directly.

5 Common Operations

Given the main components and data structures described above, we describe
below how common operation such as inserts, updates, and triple pattern queries
are handled by our system.

5.1 Bulk Inserts

Inserts are relatively complex and costly in dipLODocus[RDF] , but can be ex-
ecuted in a fairly efficient manner when considered in bulk; this is a tradeoff
we are willing to make in order to speed-up complex queries using our various
data structures (see below), especially in a Semantic Web or LOD context where
isolated inserts or updates are from our experience rather infrequent.

Bulk insert is a n-pass algorithm (where n is the deepest level of a molecule) in
dipLODocus[RDF] , since we need to construct the RDF molecules in the clusters
(i.e., we need to materialize triple joins to form the clusters). In a first pass,
we identify all root nodes and their corresponding template IDs, and create all
clusters. The subsequent passes are used to join triples to the root nodes (hence,
the student clusters depicted above in Figure 1 are built in two phases, one for the
Student root node, and one for the triples directly connected to the Student).
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During this operation, we also update the template lists and the hash-table
incrementally. Bulk inserts have been highly optimized in dipLODocus[RDF] , and
use an efficient page-manager to execute inserts for large datasets that cannot
be kept in main-memory.

5.2 Updates

As for other hybrid or analytic systems, updates can be relatively expensive
in dipLODocus[RDF] . We distinguish between two kinds of updates: in-place
and complex updates. In-place updates are punctual updates on literal values;
they can be processed directly in our system by updating the hash-table, the
corresponding cluster, and the template lists if necessary. Complex updates are
updates modifying object properties in the molecules. They are more complex
to handle than in-place updates, since they might require a rewrite of a list of
clusters in the hash-table, and a rewrite of a list of keys in the molecule clusters.
To allow for efficient operations, complex updates are treated like updates in
a column-store (see [20]): the corresponding structures are flagged in the hash-
table, and new structures are maintained in write-optimized structures in main-
memory. Periodically, the write-optimized structures are merged with the hash-
table and the clusters on disk.

5.3 Queries

Query processing in dipLODocus[RDF] is very different from previous approaches
to execute queries on RDF data, because of the three peculiar data structures
in our system: a hash-table associating URIs and literals to template IDs and
cluster lists, clusters storing RDF molecule clusters in a very compact fashion,
and template lists storing compact lists of literals. We describe below how a few
common queries are handled in dipLODocus[RDF] .

Triple Patterns: Triple patterns are relatively simple in dipLODocus[RDF] :
they are usually resolved by looking for a bound-variable (URI) in the hash-
table, retrieving the corresponding cluster numbers, and finally retrieving values
from the clusters when necessary. Conjunctions and disjunctions of triples pat-
terns can be resolved very efficiently in our system. Since the RDF nodes are
logically grouped by clusters in the hash-table, it is typically sufficient to read
the corresponding list of clusters in the hash table (e.g., for “return all students
following Course0”), or to intersect or take the union of several lists of clus-
ters in the hash table (e.g., for “return all students following Course0 whose
last names are D́oé’’) to answer the queries. In most cases, no join operation
is needed since joins are implicitly materialized in the hash-table and in the
clusters. When more complex join occurs, dipLODocus[RDF] resolves them using
standard hash-join operators.

Molecule Queries: Molecule queries or queries retrieving many values/
instances around a given instance (for example for visualization purposes) are
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also extremely efficient in our system. In most cases, the hash-table is invoked to
find the corresponding cluster, which contains then all the corresponding values.
For bigger scopes (such as the ones we consider in our experimental evaluation
below), our system can efficiently join clusters based on the various root nodes
they contain.

Aggregates and Analytics: Finally, aggregate and analytic queries can also
be very efficiently resolved by our system. Many analytic queries can be solved by
first intersecting lists of clusters in the hash-table, and then looking up values in
the remaining molecule clusters. Large analytic or aggregate queries on literals
(such as our third analytic query below, returning the names of all graduate
students) can be extremely efficiently resolved by taking advantage of template
lists (containing compact and sorted lists of literal values for a given template
ID), or by filtering template lists based on lists of cluster IDs retrieved from the
hash-table.

6 Performance Evaluation

To evaluate the performance of our system, we compared it to various RDF
database systems. The details of the hardware platform, the data sets and the
workloads we used are give below.

6.1 Hardware Platform

All experiments were run on a HP ProLiant DL360 G7 server with two Quad-
Core Intel Xeon Processor E5640, 6GB of DDR3 RAM and running Linux
Ubuntu 10.10 (Maverick Meerkat). All data were stored on recent 1.4 TB Serial
ATA disk.

6.2 Data Sets

The benchmark we used is one of the oldest and most popular benchmarks for Se-
mantic Web data called Lehigh University Benchmark (LUBM) [14]. It provides
an ontology describing universities together with a data generator and fourteen
queries. We used two data sets, the first one consisting of ten LUBM universities
(1’272’814 distinct triples, 315’003 distinct strings), and the second regrouping
one hundred universities (13’876’209 distinct triples, 3’301’868 distinct strings).

6.3 Workload

We compared the runtime execution for LUBM queries and for three analytic
queries inspired by an RDF analytic benchmark we recently proposed (the
BowlognaBench benchmark [11]). LUBM queries are criticized by some for their
reasoning coverage; this was not an issue in our case, since we focused on RDF DB
query processing rather than on reasoning capabilities. We keep an in-memory
representation of subsumption trees in dipLODocus[RDF] and rewrite queries au-
tomatically to support subclass inference for the LUBM queries. We manually
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rewrote inference queries for the systems that do not support such functionalities
(e.g., RDF-3X).

The three additional analytic/aggregate queries that we considered are as fol-
lows: 1) a query returning the professor who supervises the most Ph.D. students
2) a query returning a big molecule containing all triples within a scope of 2 of
Student0 and 3) a query returning all graduate students.

6.4 Methodology

As for other benchmarks (e.g., tpc-x 10) we include a warm-up phase before
measuring the execution time of the queries. We first run all the queries in
sequence once to warm-up the systems, and then repeat the process ten times
(i.e., we run in total 11 batches containing all the queries in sequence for each
system). We report the mean values for each query and each system below as well
as a 95% confidence interval on run times. We assumed that the maximum time
for each query shouldn’t exceed 2 hours (we stopped the tests if one query took
more than two hours to be executed). We compared the output of all queries
running on all systems to ensure that all results were correct.

We tried to do a reasonable optimization job for each system, by following the
recommendations given in the installation guides for each system. We did not
try to optimize the systems any further, however. We performed no fine-tuning
or optimization for dipLODocus[RDF] .

We avoided the artifact of connecting to the server, initializing the DB from
files and printing results for all systems; we measured instead the query execution
times only.

6.5 Systems

We compared our prototype implementation of dipLODocus[RDF] to five other
well-known database systems: Postgres, AllegroGraph, BigOWLIM, Jena, Vir-
tuoso, and RDF 3X. We chose those systems to have different comparison points
using well-known systems, and because they were all freely available on the Web.
We give a few details about each system below.

Postgres: We used Postgres 8.4 with Redland RDF Library 1.0.13; Postgres
is a well-known relational database, but as the numbers below show, it is
not optimized for RDF storage. We couldn’t run our 100-universities on it
because its load time took more than one week. It also had huge difficulties
to cope with some of the queries for the 10-universities data set. Since the
time of query execution was particularly long for this system, we ran each
query five times only and simply report the best run below.

AllegroGraph: We used AllegroGraph RDFStore 4.2.1 AllegroGraph unfor-
tunately poses some limits on the number of triples that can be stored for
the free edition, such that we couldnt load the big data set. It also showed
difficulty to deal with one query. For AllegroGraph, we prepared a SPARQL
Python script using libraries supported by the vendor.

10 http://www.tpc.org/

http://www.tpc.org/
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Fig. 4. Runtime ratios for the 10 universities data set

Fig. 5. Runtime ratios for the 100 universities data set

BigOWLIM: We used BigOWLIM 3.5.3436. OWLIM provides us with a java
application to run the LUBM benchmark, so we used it directly for our tests.

Jena: We used Jena-2.6.4 and the TDB-0.8.10 storage component. We created
the database by using the “tdbloader” provided by Jena. We created a Java
application to run and measure the execution time of each query.

Virtuoso: We used Virtuoso Open-Source Edition 6.1.3. Virtuoso supports
ODBC connections, and we prepared a Python script using the PyODBC
library for our queries.

RDF-3X: We used RDF-3X 0.3.5. For this system, we converted our dataset
to NTriples/Turtle. We also hacked the system to measure the execution
time of the queries only, without taking into account the initialization of the
database and turning off the print-outs.

6.6 Results

Relative execution times for all queries and all systems are given below, in
Figure 4 for 10 universities and in Figure 5 for 100 universities. Results are
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Fig. 6. Runtime ratios for 10 (left) and 100 (right) universities for the ana-
lytic/aggregate queries

dipLODocus AllegroGrap BigOwlim virtuoso rdf3x Jena dipLODocus BigOwlim virtuoso rdf3x Jena
q1 AVG 1.45E-05 1.09E-02 5.37E-02 1.29E-04 9.14E-04 1.20E-03 q1 AVG 1.73E-05 5.21E-02 4.38E-04 6.10E-04 1.30E-03

CI 6.47E-08 4.81E-05 6.27E-05 1.00E-06 2.23E-07 7.93E-06 CI 5.17E-08 5.35E-05 5.88E-07 3.53E-07 9.09E-06
q2 AVG 1.21E-02 1.14E+01 5.19E-01 4.96E-02 1.40E+00 2.19E-01 q2 AVG 1.27E-01 5.94E+00 4.83E+00 1.55E+01 2.27E+00

CI 5.63E-05 2.96E-03 9.04E-04 4.72E-05 1.85E-05 1.42E-04 CI 6.41E-05 3.79E-03 8.82E-04 1.52E-04 4.09E-04
q3 AVG 2.09E-05 3.78E-03 2.60E-03 1.10E-03 7.91E-04 1.10E-03 q3 AVG 3.14E-05 2.90E-03 3.75E-03 6.68E-04 1.00E-03

CI 9.57E-08 8.77E-06 1.32E-05 4.00E-06 1.11E-06 5.95E-06 CI 2.54E-08 1.07E-05 6.01E-07 1.56E-07 0.00E+00
q4 AVG 7.95E-05 4.62E+00 3.63E-02 1.82E-03 1.89E-03 2.20E-03 q4 AVG 8.33E-05 3.20E-01 2.91E-03 1.90E-03 2.20E-03

CI 3.17E-07 8.49E-04 1.18E-04 1.04E-06 2.22E-07 7.93E-06 CI 7.15E-08 5.44E-04 3.32E-06 1.29E-07 7.93E-06
q5 AVG 5.32E-05 4.74E+00 8.19E-01 2.08E-03 1.35E-03 2.90E-03 q5 AVG 5.34E-05 8.71E+00 5.65E-03 1.20E-03 3.10E-03

CI 2.56E-07 1.11E-03 2.89E-04 1.71E-05 3.89E-08 1.07E-05 CI 6.16E-08 2.28E-03 4.37E-06 1.61E-07 2.07E-05
q6 AVG 1.65E-02 1.40E+00 2.23E-01 6.22E-01 2.51E-02 5.52E-02 q6 AVG 1.42E-01 1.77E+00 1.56E+01 3.77E-01 7.61E-01

CI 8.65E-05 3.93E-04 8.00E-04 1.58E-03 8.81E-06 2.70E-04 CI 1.64E-05 1.15E-03 1.25E-02 5.24E-05 7.28E-03
q7 AVG 1.22E-03 7.03E+01 5.96E+00 1.55E-03 4.82E-03 7.14E-01 q7 AVG 2.63E-03 6.34E+01 3.11E-03 5.18E-02 7.46E+00

CI 3.21E-07 1.12E-02 2.18E-03 2.10E-06 5.04E-05 2.25E-04 CI 3.39E-05 1.55E-02 2.09E-06 9.53E-04 1.54E-03
q8 AVG 6.54E-03 5.09E+01 1.74E+00 5.47E-01 8.94E-03 5.43E-01 q8 AVG 6.34E-03 1.49E+01 3.80E+00 2.36E-02 5.26E+00

CI 2.21E-05 8.28E-03 7.10E-04 1.09E-03 1.57E-06 1.47E-03 CI 1.71E-06 3.93E-03 7.60E-04 6.69E-06 5.19E-03
q9 AVG 6.74E-02 longer than longer than 1.14E+00 1.83E-01 longer than q9 AVG 2.61E-01 longer than 1.45E+01 3.01E+00 longer than

CI 1.98E-06 two hours two hours 4.38E-03 9.06E-05 two hours CI 2.29E-05 two hours 1.92E-03 1.07E-03 two hours
q10 AVG 2.17E-05 4.80E+00 3.70E-03 8.93E-03 1.40E-03 1.00E-03 q10 AVG 1.68E-05 2.80E-03 8.54E-02 1.22E-03 1.20E-03

CI 7.32E-08 1.15E-03 9.09E-06 7.49E-06 1.80E-06 0.00E+00 CI 1.19E-08 7.93E-06 3.59E-06 1.49E-07 7.93E-06
q11 AVG 6.41E-05 6.04E-02 1.11E-02 2.54E-03 1.37E-03 1.60E-03 q11 AVG 6.00E-05 1.18E-02 1.83E-01 2.35E-03 1.50E-03

CI 2.32E-07 5.08E-04 5.95E-06 1.76E-05 3.25E-07 1.32E-05 CI 1.54E-08 7.93E-06 4.72E-05 7.76E-07 9.91E-06
q12 AVG 1.74E-05 8.81E-02 1.09E-02 2.14E-03 1.43E-03 2.10E-03 q12 AVG 1.79E-05 1.25E-02 8.81E-02 1.06E-03 2.30E-03

CI 5.19E-08 8.05E-05 5.95E-06 1.93E-06 2.70E-07 5.95E-06 CI 5.95E-09 3.68E-05 8.23E-05 1.06E-06 9.09E-06
q13 AVG 4.76E-05 2.85E-02 5.89E-02 3.82E-03 1.06E-03 1.00E-03 q13 AVG 5.62E-04 1.10E-01 2.91E-02 1.11E-03 1.30E-03

CI 1.18E-07 8.19E-05 5.71E-05 8.27E-07 7.82E-08 0.00E+00 CI 1.99E-08 2.39E-04 5.56E-05 1.01E-07 9.09E-06
q14 AVG 1.29E-02 1.17E+00 1.90E-01 5.37E-01 2.28E-02 3.62E-02 q14 AVG 1.41E-01 6.68E-01 1.33E+01 3.27E-01 5.98E-01

CI 6.00E-05 3.79E-04 2.17E-04 1.91E-03 9.93E-06 1.82E-04 CI 2.18E-06 1.21E-03 6.99E-03 1.30E-04 6.59E-03
a1 AVG 1.16E-03 not run not run 7.50E-01 9.93E-01 1.07E+03 a1 AVG 1.04E-02 not run 1.45E+01 9.93E+01 longer than

CI 2.24E-06 4.90E-04 3.90E-03 3.42E-02 CI 1.22E-07 6.52E-04 1.05E-03 two hours
a2 AVG 5.07E-05 not run not run 7.85E-04 1.28E-02 1.10E-03 a2 AVG 6.50E-05 not run 3.19E-03 1.16E-01 1.40E-03

CI 1.72E-07 4.62E-06 1.25E-05 5.95E-06 CI 1.54E-08 2.35E-06 1.21E-04 9.71E-06
a3 AVG 1.07E-02 not run not run 4.13E-01 1.10E-02 8.01E-02 a3 AVG 1.55E-01 not run 6.72E+00 1.49E-01 7.25E-01

CI 1.57E-07 2.30E-03 2.49E-06 7.00E-04 CI 2.65E-07 1.94E-03 3.61E-05 2.88E-03

dipLODocus AllegroGrap BigOwlim virtuoso rdf3x Jena dipLODocus BigOwlim virtuoso rdf3x Jena
Load Time 31s 13s 50s 88s 16s 98s 427s 748s 914s 214s 1146s

87MB 696MB 209MB 140MB 66MB 118MB 913MB 2012MB 772MB 694MB 1245MB

100 UNI -- Query Execution Time [s]

Load Time
size on disksize

10 UNI -- Query Execution Time [s]

Fig. 7. Absolute query execution and load times [s], plus size of the databases on disk
for both data sets

given as runtime ratios, with dipLODocus[RDF] taken as a basis for ratio 1.0
(i.e., a bar indicating 752.3 means that the execution time of that query on that
system was 752.3 times slower than the dipLODocus[RDF] execution). Figure 6
gives relative execution times for analytics executed on a selection of the fastest
systems. Absolute times with confidence intervals at 95%, database sizes on disk
and load times are given in Figures 7 for both datasets.

We observe that dipLODocus[RDF] is generally speaking very fast, both for bulk
inserts, for LUBM queries and especially for analytic queries. dipLODocus[RDF] is
not the fastest system for inserts, and produces slightly larger databases on
disk than some other systems (like RDF-3x), but performs overall very-well
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for all queries. Our system is on average 30 times faster than the fastest RDF
data management system we have considered (i.e., RDF-3X) for LUBM queries,
and on average 350 times faster than the fastest system (Virtuoso) on analytic
queries. Is is also very scalable (both bulk insert and query processing scale
gracefully from 10 to 100 universities).

7 Conclusions

In this paper, we have described dipLODocus[RDF] , a new RDF management sys-
tem based on a hybrid storage model and RDF templates to execute various kinds
of queries very efficiently. In our performance evaluation, dipLODocus[RDF] is on
average 30 times faster than the fastest RDF data management system we have
considered (i.e., RDF-3X) on LUBM queries, and on average 350 times faster
than the fastest system we have considered on analytic queries. More impor-
tantly, dipLODocus[RDF] is the only system to consistently show low processing
times for all the queries we have considered (i.e., our system is the only system
being able to answer any of the queries we considered in less than one second),
thus making it an extremely versatile RDF management system capable of effi-
ciently supporting both short and long-tail queries in real deployments.

This impressive performance can be explained by several salient features of our
system, including: its extremely compact structures based on molecule templates
to store data, its redundant structures to optimize different types of operations,
its very efficient ways of coping with disk and memory reads (avoiding seeks
and memory jumps as much as possible since they are extremely expensive on
modern machines), and its way of materializing various joins in all its data struc-
tures. This performance is counterbalanced by relatively complex and expensive
updates and inserts, which can however be optimized if considered in bulk.

In the near future, we plan to work on cleaning, proof-testing, and extending
our code base to deliver an open-source release of our system as soon as possi-
ble11. We also have longer-term research plans for dipLODocus[RDF] ; our next
research efforts will revolve around parallelizing many of the operations in the
system, to take advantage of multi-core architectures on one hand, and large
cluster of commodity machines on the other hand. Also, we plan to work on the
automated database design problem in order to automatically suggest sets of
optimal root nodes to the database administrator given some sample input data
and an approximate query workload.
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9. Cudré-Mauroux, P., Wu, E., Madden, S.: The Case for RodentStore, an Adaptive,
Declarative Storage System. In: Biennial Conference on Innovative Data Systems
Research, CIDR (2009)

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

11. Demartini, G., Enchev, I., Gapany, J., Cudré-Maurox, P.: BowlognaBench—
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Abstract. Data quality issues arise in the Semantic Web because data
is created by diverse people and/or automated tools. In particular, erro-
neous triples may occur due to factual errors in the original data source,
the acquisition tools employed, misuse of ontologies, or errors in ontol-
ogy alignment. We propose that the degree to which a triple deviates
from similar triples can be an important heuristic for identifying errors.
Inspired by functional dependency, which has shown promise in database
data quality research, we introduce value-clustered graph functional de-
pendency to detect abnormal data in RDF graphs. To better deal with
Semantic Web data, this extends the concept of functional dependency
on several aspects. First, there is the issue of scale, since we must con-
sider the whole data schema instead of being restricted to one database
relation. Second, it deals with multi-valued properties without explicit
value correlations as specified as tuples in databases. Third, it uses clus-
tering to consider classes of values. Focusing on these characteristics, we
propose a number of heuristics and algorithms to efficiently discover the
extended dependencies and use them to detect abnormal data. Experi-
ments have shown that the system is efficient on multiple data sets and
also detects many quality problems in real world data.

Keywords: value-clustered graph functional dependency, abnormal data
in RDF graphs.

1 Introduction

Data quality (DQ) research has been intensively applied to traditional forms
of data, e.g. databases and web pages. The data are deemed of high quality if
they correctly represent the real-world construct to which they refer. In the last
decade, data dependencies, e.g. functional dependency (FD) [1] and conditional
functional dependency (CFD) [2, 3], have been used in promising DQ research
efforts on databases. Data quality is also critically important for Semantic Web
data. A large amount of heterogeneous data is converted into RDF/OWL format
by a variety of tools and then made available as Linked Data1. During the
creation or conversion of this data, numerous data quality problems can arise.
1 http://linkeddata.org
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Some works [4–6] began to focus on the quality of Semantic Web data, but such
research is still in its very early stages. No previous work has utilized the fact
that RDF data can be viewed as a graph database, therefore we can benefit
from traditional database approaches, but we must make special considerations
for RDF’s unique features. Since the Semantic Web represents many points of
view, there is no objective measure of correctness for all Semantic Web data.
Therefore, we focus on the detection of abnormal triples, i.e., triples that violate
certain data dependencies. This in turn is used as a heuristic of a potential data
quality problem. We recognize that not all abnormal data is incorrect (in fact,
in some scenarios the abnormal data may be the most interesting data) and thus
leave it up to the application to determine how to use the heuristic.

A typical data dependency in databases is functional dependency [7]. Given a
relation R, a set of attributes X in R is said to functionally determine another
attribute Y , also in R, (written X → Y ), if and only if each X value is associated
with precisely one Y value. An example FD zipCode → state means, for any
tuple, the value of zipCode determines the value of state.

RDF data also has various dependencies. But RDF data has a very different
organization and FD cannot be directly applied because RDF data is not or-
ganized into relations with a fixed set of attributes. We propose value-clustered
graph functional dependency (VGFD) based on the following thoughts. First,
FD is formally defined over one entire relation. However RDF data can be seen
as extremely decomposed tables where each table is a set of triples for a single
property. Thus we must look for dependencies that cross these extremely de-
composed tables and extend the concept of dependency from a single database
relation to a whole data set. Second, the correlation between values is trivially
determined in a database of relational tuples. But in RDF data, it is non-trivial
to determine the correlation, especially for multi-valued properties. For example,
in DBPedia, the properties city and province do not have cardinality restrictions,
and thus instances can have multiple values for each property. This makes sense,
considering that some organizations can have multiple places. Yet finding the cor-
relation between the different values of city and province becomes non-trivial.
Third, traditionally value equality is used to determine FD. However, this is
not appropriate for real world, distributed data. Consider (1) for floating point
numbers, rounding and measurement errors must be considered. (2) Sometimes
dependencies are probabilistic in nature, and one-to-one value correspondences
are inappropriate. For example, the days needed for processing an order before
shipping for a certain product is usually limited to a small range but not an ex-
act value. (3) Sometimes certain values can be grouped to form a more abstract
value.

In sum, our work makes the following contributions.

– we automatically find optimal clusters of values
– we efficiently discover VGFDs over clustered values
– we use the clusters and VGFDs to detect outliers and abnormal data
– we conducts experiments on three data sets that validate the system
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The rest of the paper is as follows. Section 2 discusses related work. Section 3
describes how to efficiently discover VGFDs while Section 4 discusses categoriz-
ing property values for their use. Sections 5 and 6 give the experimental results
and the conclusion.

2 Related Work

Functional dependencies are by far the most common integrity constraints for
databases in the real world. They are very important when designing or analyzing
relational databases. Most approaches to find FD [8–10] are mainly based on
the concept of an agree set [11]. Given a pair of tuples, the agree set is all
the attributes for which these tuples have the same values. Since the search
for FDs occurs over a given relation and each tuple has at most one value for
each attribute, then each tuple can be placed into exactly one cluster where all
tuples in the cluster have the same agree set with all other tuples. Agree sets
are not very useful when applied to the extensions of RDF properties, which
are equivalent to relations with only two attributes (i.e. the subject and object
of the triple). Furthermore, many properties in RDF data are multi-valued and
so the correlation between values of different properties becomes more complex.
Finally, since most RDF properties are designed just for a subset of instances in
the data set, an agree set-based approach will partition many instances based
on null values is common.

RDF graphs are more like graph database models. The value functional
dependency (VFD) [12] defined for the object-oriented data model can have
multi-valued properties on the right-hand side, e.g. title → authors. However the
dependencies we envision can have multi-valued properties on both sides and our
system can determine the correlation between each value in both sets. The path
functional dependency (PFD) [13] defined for semantic data models considered
multiple attributes on a path, however the PFD did not consider multi-valued
attributes. FDXML is the FD’s counterpart in XML [14] where its left-hand side
is a path starting from the XML document root which essentially is another
form of a record in a database. Hartmann et al. [15] generalized the definitions
of several previous FDs in XML from a graph matching perspective.

As mentioned previously, the basic equality comparison of values used in FD
is limited in many situations. Algebraic constraints [16, 17] in database relations
are about the algebraic relation between two columns in a database and are often
used for query optimization. The algebraic relation can be +,−,×, /. However
these works are limited to numerical attribute values and the mapping function
can only be defined using several algebraic operators. The reason is that numer-
ical columns are more often indexed and queried over as selective conditions in
databases than strings. In contrast, we try to find a general mapping function
between the values of different properties, both numbers and strings. Addition-
ally, for the purpose of query optimization, they focus on pairs of columns with
top ranked relational significance, the major parts in each of these pairs and the
data related to dependencies that is often queried over, rather than all possible
pairs of properties and all pairs of values existing in the data set.
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Data dependencies have recently shown promise for data quality management
in databases. Bohannon et al. [1] focuses on repairing inconsistencies based on
standard FDs and inclusion dependencies, that is, to edit the instance via mini-
mal value modification such that the updated instance satisfies the constraints.
A CFD [2, 3] is more expressive than a FD because it can describe a depen-
dency that only holds for a subset of the tuples in a relation, i.e., those that
satisfy some condition. Fan et. al [2] gave a theoretical analysis and algorithms
for computing implications and minimal cover of CFDs; Cong et al. [3], similar
to Bohannon et al., focused on repairing inconsistent data. The CFD discovery
problem has high complexity; it is known to be more complex than the implica-
tion problem, which is already coNP-complete [2]. In contrast to them, we are
trying to both automatically find fuzzy constraints, i.e. those that hold for most
of the data, and report on exceptional data for applications. Our work incorpo-
rates advantages from both FD and CFD, i.e. fast execution and the ability to
tolerate exceptions.

With respect to data quality on the Semantic Web, Sabou et al. [4] evaluate
semantic relations between concepts in ontologies by counting the similar axioms
(both explicit and entailed) in online ontologies and their derivation length. For
instance data, previous evaluations mainly focused on two types of errors: explicit
inconsistency with the syntax of the ontologies and logical inconsistency that can
be checked by DL reasoners. However, many Linked Data ontologies do not fully
specify the semantics of the terms defined, and OWL cannot specify axioms that
only hold part of the time. Our work focuses on detecting abnormal semantic
data by automatically discovering probabilistic integrity constraints (IC). Tao et
al. [6] proposed an IC semantics for ontology modelers and suggested that it is
useful for data validation purposes. But the precursor problem of how to discover
these ICs is not addressed. Furber et al. [5] also noticed that using FD could be
helpful for data quality management on the Semantic Web, but do not give an
automatic algorithm to find such FDs and, more importantly, direct application
of FD to RDF data may not capture the unique characteristics of RDF data.

3 Discovering VGFDs

We begin with some definitions.

Definition 1. An RDF graph is G := 〈I, L, R, E〉, where three sets I, L and
R are instance, literal and relation identifiers and the set of directional edges is
E ⊆ I × R × (I ∪ L). Let G be the set of all possible graphs and G ∈ G. Let
R− = {r−|r ∈ R}.

Definition 2. A Path c in graph G is a tuple 〈I0, r1, I1, ..., rn, In〉 where Ii ∈
I, ri ∈ R ∪ R−, and ∀i, 0 � i < n, if ri ∈ R then (Ii, ri+1, Ii+1) ∈ E or if
ri+1 ∈ R− then (Ii+1, ri+1, Ii) ∈ E; ∀j, if i �= j then Ii �= Ij .

Paths are acyclic and directional, but can include inverted relations of the
form r−.
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Definition 3. A Composite Property (Pcomp) r◦ in graph G is r1◦r2...rn, where
∃I0, ..., In and 〈I0, r1, I1, ..., rn, In〉 is a Path in G. Let R◦ be all possible Pcomps.
Given r◦ ∈ R◦, Inst(r◦, G) = {〈I0, r

◦, In〉|〈I0, r1, I1, r2, I2, ..., rn, In〉 is a Path
in G}. Length(r◦) = n. ∀r ∈ R, r ∈ R◦ and Length(r) = 1.

Definition 4. A Conjunctive Property (Pconj) r+ in graph G is a set
{r1, r2, ..., rn} (written r1 + r2 + ... + rn), where ∀i, ri ∈ R◦ and ∃I ′ s.t. ∀1 ≤
i ≤ n, 〈I ′, ri, Ii〉 ∈ Inst(ri, G). Let R+ be all possible Pconjs. Size(r+) =∑

ri∈r+ Length(ri).

A Composite Property is a sequence of edges on a Path. The subject and object
of a Pcomp are the first and last objects on the Paths consisting of this sequence
of edges. Every property is a special case of Pcomp. A Conjunctive Property
groups a set of Pcomps that have a common subject I ′. Note, each original r ∈ R
is also r ∈ R◦ and each r◦ ∈ R◦ is also r◦ ∈ R+.

Definition 5. Given i ∈ I and r◦ ∈ R◦, V ◦(i, r◦) = {i′|∃〈i, r◦, i′〉 ∈
Inst(r◦, G)}. Given r+ ∈ R+, V +(i, r+) is a tuple 〈V ◦(i, r1), ..., V ◦(i, r1)〉 where
∀j, rj ∈ R+.

Given a Pcomp, value function V ◦ returns the objects connected with a subject
through Pcomp, and given a Pconj , the value function V + returns the set of
objects connected with a subject through Pconj .

Definition 6. Given i, j ∈ I and r◦ ∈ R◦, Dependency Equality (DE) be-
tween i and j on r◦ is: V (i, r◦) .= V (j, r◦) ⇐⇒ (∀x ∈ V ◦(i, r◦) ⇐⇒
∃y ∈ V ◦(j, r◦), C(x) = C(y)), where C(x) is the dependency cluster of x (dis-
cussed in Section 4). With a slight abuse of notation for DE, given r+ ∈ R+,
V +(i, r+) .= V +(j, r+) ⇐⇒ ∀rk ∈ r+, V ◦(i, rk) .= V ◦(j, rk).

Definition 7. A value-clustered graph functional dependency (VGFD) s in
graph G is X → Y , where X ∈ R+, Y ∈ R◦ and ∀i, j ∈ I, if V +(i, X) .=
V +(j, X) then V ◦(i, Y ) .= V ◦(j, Y ).

These definitions state that for all instances, if the values of the left-hand side
(LHS) Pcomp of a given VGFD satisfy Dependency Equality (DE), then there is a
DE on the right-hand side (RHS) Pconj . Note, due to the union rule of Armstrong’s
axioms used to infer all the functional dependencies, if α → β and α → γ hold,
then α→ βγ holds. Therefore, it is enough to define the VGFD whose right-hand
side (RHS) is each single element of a set of properties. In this work, DE includes
basic equality for both object and datatype property values, transitivity of the
sameAs relation for instances and clustering for datatype values.

Shown in Algorithm 1, this section introduces the VGFD search (line 8-15)
and the next section introduces value clustering (line 2-5) which is used to detect
dependencies. To efficiently discover a minimum set of VGFDs which is a cover
of the whole set of VGFDs, our approach essentially is computed level-wise.
Each level Li consists of VGFDs with LHS of size i (Fig. 1 gives an example).
The computation of VGFDs with smaller sets of LHS properties can be used
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Algorithm 1. Search V GFDs(G, α, β, γ), G = (I, L, R, E) is a graph; α is the
confidence threshold for a VGFD; β is the sampling size; γ is the threshold for
pre-clustering.
1: S ← ∅, C ← ∅
2: for each r ∈ R s.t. r is a datatype property do
3: groups ← Preclustering(Range(r),γ)
4: Cr ← Optimal Kmeans(Range(r), groups)
5: C ← C ∪ Cr

6: i = 0
7: Li ← ∅
8: repeat
9: i = i + 1

10: Li ← Generate Level with Static Pruning(Li−1, E)
11: for each s ∈ Li do
12: if Runtime Pruning(s, α, β, E, C) = FALSE then
13: if (M ← Compute V GFD(s, α, E, C)) �= ∅ then
14: S ← S ∪ (s,M) //M is the set of value mappings of s.
15: until Li = ∅ or i >= DEPTH LIMIT
16: return S

when computing children VGFDs that have a superset of those LHS properties.
A similar level-wise search was proposed for the Tane algorithm [9], but each
node in Tane corresponds to a subset of our nodes whose LHS is based on single
properties instead of Pcomps. In contrast, our nodes are finer grained which leads
to more opportunities for pruning. Our algorithm starts with level 0. On each
new level, it first generates possible VGFDs on this level based on the results
of previous levels and it also eliminates many potential VGFDs from further
consideration based on some easily computed heuristics (Section 3.1). Then,
a runtime pruning (Section 3.3) and a detailed computation (Section 3.2) are
conducted on each candidate VGFD. The whole process can terminate at a
specified level, or after all levels, although the latter is usually unnecessary and
unrealistic. The process returns each VGFD and its value mappings which is
used for detecting violations.

3.1 Heuristics for Static Pruning

We first define the discriminability for a property as the number of distinct values
divided by the sum of the property extension, and when it is compared between
properties, it is over the instances they have in common. Then, static pruning
heuristics used to eliminate potential VGFDs from further consideration are:

1. insufficient subject overlap between the LHS and the RHS,
2. the LHS or RHS has too high a discriminability,
3. the discriminability of the LHS is less than that of the RHS.

The information for rule 1 can be acquired from an ontology (e.g. using do-
main and range information) or a simple relational join on data. Here insufficient
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overlap means too few common subjects, e.g. 20. For rule 2, if the discriminability
is close to one, e.g. 0.95 which means 95%, the property functions like a superkey
in a database. Since such keys identify an individual, they are not useful for
detecting abnormal data. For rule 3, if there is a mapping between two such
properties, some values of the property with smaller discriminability must be
mapped to different values on the RHS which would not be a functional mapping.
In order to apply these heuristics, we make the additional observations:

1. The discriminability of a Pcomp (Pconj resp.) is generally no greater than (no
less than resp.) that of each property involved.

2. A Pconj (Pcomp resp.) cannot be based on two properties that have few
common subjects (objects and subjects resp.).

3. All children of a true VGFD on the level-wise search graph are also true
VGFDs, but are not minimal.

For example, given a Pcomp A ◦ B, its values all come from the values of B
and its extension is a subset of the Cartesian product between objects of A and
subjects of B, then its discriminability, i.e. the distinct values divided by the
usages, should be no greater than that of each component. A similar explanation
applies for Pconj in observation 1. An extension of the observation 2 is that a
Pconj cannot be followed by other properties in a property chain, e.g. (A+B)◦C,
since its values are tuples (e.g. the values of A + B) as opposed to the instances
and literals that are the subjects of another property (e.g. subjects of C).

A+C B A○C B A+D B A○D B A+B C A○B C A+D C A○D C A+B D A○B D A○C DA+C D

(A○B)+D C (A○B)○D C (A○D)+B C (A○D)+B C Level 3

Level 1

Level 2

Level 0

A B A C A D B A B C B D … …

… …

Fig. 1. An example of level-wise discovering process. We suppose that (1) property A
and B have few common subjects, (2) the discriminability of B is less than that of C
and (3) D has a high discriminability.

Fig.1 is an example showing how these heuristics are useful in the level-wise
searching. Each edge is from a VGFD to a VGFD with an LHS that is a superset
of the parent LHS and the two VGFDs have the same RHS. Note, our current
algorithm does not support the use of composite properties on the RHS. The
VGFDs pruned by the above heuristics are in dotted boxes and dotted lines
pointing to the children pruned. For this example, we make assumptions typical
of real RDF data. For instance, in DBPedia less than 2% of all possible pairs
of properties share sufficient common instances. So following our heuristics, four
VGFDs on level 1 are pruned: A → B is due to heuristic rule 1, B → C is due
to rule 3 and the other two are due to rule 2. Then the children of A → B and



Extending Functional Dependency to Detect Abnormal Data in RDF Graphs 801

A→ D are pruned due to the same reason as their parents. A+B → C on level
2 and (A ◦D) + B → C on level 3 are pruned due to the first assumption plus
the observation 2. Finally, A+D → C on level 2 and (A◦B)+D → C on level 3
are pruned due to the observation 1 and heuristic rule 2. From this example, we
can see simple conditions can reduce the level-wise search space greatly based
on these heuristics.

3.2 Handling Multi-valued Properties

The fundamental difference between VGFD and FD when computing VGFD
is that we consider multi-valued properties. When finding FDs in databases,
the multi-valued attributes either are not considered (if they are not in the
same relation), or the correlation of their values is given by having separate
tuples for each value. RDF frequently has multi-valued properties without any
explicit correlation of values, e.g. in DBPedia, more than 60% properties are
multi-valued. When computing a VGFD, we try to find a functional mapping

Table 1. The left table is the triple list. The right table is mapping count.

deptNo deptName

subject object subject object

A 1 A CS
A 2 A EE

B 1 B EE

C 2 C CS

D 2 D EE

Candidate Value Mapping Count

1→ EE 2
2→ EE 2
2→ CS 2
1→ CS 1

from each LHS value to an RHS value such that this mapping maximizes the
number of correlations. We consider any two values for a pair of multi-valued
properties that share a subject to be a possible mapping. Then we greedily
select the LHS value that has the most such mappings and remove all other
possible mappings for this LHS value. If multiple RHS values are tied for the
largest number of mappings, then we pick the one that appears in the fewest
mappings so far. Consider Table 1 which analyzes the dependency deptNo →
deptName. The triples are given to the left and each possible value mapping
and its maximal possible count are listed in descending order to the right. The
maximal count of 1 → EE is 2, because these two values co-occur for instances
A and B once for each. We first greedily choose mapping 1 → EE, because it
has the largest count among all mappings for depNo = 1. After this selection,
the mapping 1 → CS is removed since deptNo = 1 has been mapped. Then for
deptNo = 2, to maximize the number of distinct values being matched on both
sides, we choose (2, CS) since CS has been mapped to by fewer LHS values
than EE. Note the basic equality used here is a special case of cluster-based
Dependency Equality. For example, if CS and EE are clustered together, then
the mappings will be 1→ EECS and 2→ EECS, where EECS is the cluster.
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Our confidence in a VGFD depends on how often the data agree with it, i.e., the
total matches divided by the sum of the LHS’s extension, e.g. the VGFD above
has the confidence of 4/5 = 0.8. In this work, we set the confidence threshold
α = 0.9 to ensure that patterns are significant, while allowing for some variation
due to noise, input errors, and exceptions.

3.3 Run-time Pruning

In the worst case, the expensive full scan of value pairs must occur |R+ | · |R◦|
times. So we propose to use mutual information (MI) computed over sampled
value pairs for estimating the degree of dependency. In Algorithm 2, given a
candidate VGFD s X → Y , we start by randomly selecting a percentage β of
the instances. In line 2, for each instance i, we randomly pick a pair of values
from V +(i, X) and V ◦(i, Y ). Distribution() also applies the clusters CX and
CY and returns these pairs in lieu of the actual values. In information theory,
a MI IXY of two random variables X and Y is formally defined as IXY =∑

i

∑
j pi,j log (pi,j/pipj), where pi, pj are the marginal probability distribution

functions of X and Y , and pi,j is the joint probability distribution function of
X and Y respectively. Intuitively, MI measures how much knowing one of these
variables reduces our uncertainty about the other. Furthermore, the entropy
coefficient (EC), using MI, measures the percentage reduction in uncertainty
in predicting the dependent variable based on knowledge of the independent
variable. When it is zero, the independent variable is of no help in predicting
the dependent variable; and when it is one, there is a full dependency. The
EC is directional and EC(X |Y ) for predicting the variable X with respect to
variable Y is defined as IXY /EY , where EY is the entropy of variable Y , formally∑

j pj log 1/pj. Because IXY also can be expressed as EX + EY − EXY which
has a easier form to compute.

Algorithm 2. Runtime Pruning(s, α, β, E, C), s is a candidate VGFD X → Y ;
α is the confidence threshold for a VGFD; β is the sampling size as a percentage;
E is a set of triples. C is a set of cluster sets for each property.
1: I ← Sampling Subjects(s, β, E)// Sampled subjects shared by the LHS and RHS.

2: {(Xi, Yi)} ← Distribution(s, I,E, C) //A list of value pairs where each pair
consists of two single sampled values of LHS and RHS for the same subject.

3: EX = −
∑

distinct x∈{Xi}
|{Xi|Xi=x}|

|{Xi}|
· log |{Xi|Xi=x}|

|{Xi}|

4: EY = −
∑

distinct y∈{Yi}
|{Yi|Yi=y}|

|{Yi}|
· log |{Yi|Yk=i}|

|{Yi}|

5: EXY = −
∑

distinct (x,y)∈{(Xi,Yi)}
|{(Xi,Yi)|Xi=x∧Yi=y}|

|{(Xi,Yi)}|
· log |{(Xi,Yi)|Xi=x∧Yi=y}|

|{(Xi,Yi)}|
6: if (EX + EY − EXY )/EX < α − 0.2 then
7: return TRUE
8: return FALSE

We note that Paradies et al. [18] also used entropy to estimate the dependency
between two columns in databases. Since they want to determine attribute pairs
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that can be estimated with high certainty, i.e. focusing on precision of the pos-
itives, they need a complex statistical estimator. In contrast, our aim is a fast
filter that is good enough to remove most negatives, i.e. independent pairs, thus
a statistical estimator is not necessary. We can avoid missing positives by setting
a low enough threshold. In our experiments, the difference between EC for a 20%
sample and EC of full data is less than 0.15 on average and the estimated values
typically have higher ECs. For example, it is very rare that a VGFD estimated
lower than 0.7 has an actual value above 0.9. Therefore, a threshold of 0.2 less
than α (line 6) is a reasonable lower bound for filtering out independent pairs.

4 Clustering Property Values

As introduced in Section 1, we must cluster property values in order to discover
dependencies that allow for rounding errors, measurement errors, and distri-
butions of values. For object property values, clustering groups all identifiers
that stand for the same real world object by computing the transitive closure of
sameAs. The rest of this section discusses clustering the values for each datatype
property. This is used to determine Dependency Equality (Definition 6) between
two objects.

4.1 Pre-clustering

The pre-clustering process is a light-weight computation that provides two ben-
efits for finer clustering later: the minimum number of clusters and reserves
expensive distance calculations for pairs of points within the same pre-cluster.
Since the pre-clustering is used for VGFD discovery, there are three thoughts.
First, the values to be clustered are from various properties and have very dif-
ferent features. So the clustering process needs to be generic in two aspects:
(1) a pair-wise distance metric that is suitable for different types of values and
multiple feature dimensions, and (2) suitable for the most common distribution
in real world, i.e. the normal distribution. Second, we prefer a comparatively
larger number of clusters where elements are really close (if not, they may not
be clustered). The reason is that the clusters will be used as class types for de-
tecting dependencies. Larger values of k generate finer-grained class types, which
in turn allow us to generate more precise VGFDs, albeit at the risk of bluring
boundaries between classes and making it harder to discover some dependencies.
This point also makes our approach different from many other pre-clustering ap-
proaches, e.g. [19], because their results of pre-clustering can be overlapped and
rigid clustering later could merge these groups into fewer clusters.

Based on the above thoughts, specifically, given a list of values, the process first
selects a value that is closest to the center (we choose the mean for numeric values
and discuss strings in the next paragraph), and then moves it from the list to be
the centroid of a new group. Second, for each value on the list, if the distance
to this centroid is within the threshold (we use the standard deviation), it will
be moved from the list to a new group. Finally, the above process is repeated
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if the list is not empty. Thus the process generally finds the cluster around the
original center first, and then the clusters further away from the center. This is
much better than random selection, because if an outlier is selected, then most
instances remain on the list for clustering after this round of computation.

To compute the center and distance of string values, we compute the weight of
each token in a string according to its frequency in values for the property. Then
we pick the string that has the largest sum of weights divided by the number
of tokens in it as the center and the distance between two strings is the sum
of weights of the different tokens in them. The intuition is that by taking these
strings as a class, the most representative one is the one with the most common
words. For example, the property color in DBPedia has values “light green”,
“lime green”, etc. Then, the representative of these two strings is the common
word “green”. For “light green”, the distance to ”lime green” will be less than
that to “light red”, since ’‘red” and “green” are more common and have larger
weights.

4.2 Optimal k-Means Clustering

There are several popular clustering methods, e.g. k-Means, Greedy Agglomer-
ative Clustering, etc. However most of them need a parameter for the number
of resulting clusters. To automatically find the most natural/best clusters, we
designed the following unsupervised method of finding optimal clusters.

The approach is inspired by the gap statistic [20] which is used to cluster
numeric values with a gradually increasingly number of clusters. The idea is
that when we increase k to above the optimum, e.g. adding a cluster center in
the middle of an already ideal cluster, the pooled within-cluster sum of squares
around the cluster mean decreases more slowly than its expected rate. Thus the
gap between the expectation and actual improvement over different k will be in
a shape with an inflexion which indicates the best k. Our approach improves
upon this idea in three aspects: we start at the number of pre-clusters instead
of 1; in each round of k-Means, the initial centroids are selected according to
pre-clusters; and the distance computation is only made among points within
the same pre-cluster.

Our Optimal kMeans algorithm is presented as Algorithm 3. At first, k is
set to the number of pre-clusters. At each iteration, we increment k and select
k random estimated centroids mi, each of which starts a new cluster ci. Init()
selects the centroids from the pre-clusters in proportion to their sizes. In each
inner loop (line 8-13), every value is labeled as a member of the cluster whose
centroid has the shortest distance to this instance among all centroids that are
within the same pre-cluster as that value (line 10). Then each centroid is recom-
puted based on the cheap distance metric until the centroid does not change.
After each round of modified k-Means clustering, we compute the difference on
Gap(k) and stop the process if it is an inflexion point. Since the clustering is
used to detect abnormal data in which string values are expected to be caused
by accidental input or data conversion, in this clustering, we use edit distance
as the distance metric for string values as opposed to the above pre-clustering.
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Algorithm 3. Optimal kMeans(L, groups), L is a set of literal values; groups
is a set of pre-clustered groups of L.
1: k = |groups|
2: Gap(k) = Gap Statistic(groups)
3: tmpC ← groups
4: repeat
5: k = k + 1, C ← tmpC, tmpC ← ∅ //tmpC is the set of k clusters
6: for each i ≤ k do
7: Init(mi), ci ← ci ∪mi, tmpC ← tmpC ∪ ci //mi is the center of each cluster
8: repeat
9: for each x ∈ L do

10: ci ← ci ∪ arg minmi∈Group(x) Distance(x, mi)
11: for each i ≤ k do
12: mi = Mean(ci)
13: until ∀i ≤ k, mi converges
14: Gap(k) = Gap Statistic(tmpC)
15: until Gap(k) < Gap(k − 1)
16: return C

5 Experimental Results

For our experiments, we selected the Semantic Web Research Corpus2 (SWRC),
DBPedia and RKB3 data sets. All of them are widely used subsets of Linked
Data that cover different domains. Experiments were conducted on a Sun work-
station with 8 Xeon 2.8G cores and 6G memory. We observed that there are
few dependencies with an LHS size larger than four and that such dependencies
tend to have less plausible meanings. For this reason, we set the maximal size
of a VGFD to four in our experiments. Based on clusters and VGFDs, abnor-
mal data has two types: one is far away from other clusters and the other is a
violation of VGFDs. Specifically, in this work, a triple is reported as an outlier
if its value is the only element of some cluster whose distance to the nearest
cluster centroid is above twice of the average distances between all clusters for
this property. A triple is reported as abnormal due to violation of VGFDs only
when its value conflicts with a value mapping determined by some VGFD and
this value mapping is confirmed by other triple usages more than twice.

In our first experiment, we compared the overall performance of the system
on three data sets. The sampling size β used in runtime pruning is 20%. In Table
2, we can see that the running time appears to be more heavily influenced by
the number of properties than the data set size. Note that RKB has more triples
but fewer properties than DBPedia, and thus has more triples per property. This
leads to a longer clustering time, but thanks to static and runtime pruning, the
total time to find VGFDs is less.

Table 3 gives some VGFDs from the three data sets and their short descrip-
tions. In DBPedia, among 200 samples out of 2868 abnormal triples, 173 of them
2 http://data.semanticweb.org/
3 http://www.rkbexplorer.com/data/
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Table 2. System overall performance on SWRC, DBPedia and RKB data sets

SWRC DBPedia RKB

Number of Triples (M) / Properties 0.07 / 112 10 / 1114 38 / 54

Discovered VGFDs on Level 1 12 228 6
Discovered VGFDs on Level 2 37 304 3
Discovered VGFDs on Level 3 2 126 0
Discovered VGFDs on Level 4 0 53 0

Time for Clustering (s) 18 114 396
Time for Level 1 (s) 11 172 67
Time for Level 2 (s) 20 246 44
Time for Level 3 (s) 4 108 0
Time for Level 4 (s) 1 47 0

Total Time (s) / Discovered VGFDs 54 / 51 687 / 721 507 / 9
Reported Abnormal Triples 75 2868 227

Table 3. Some VGFDs from the three data sets. The first and second group of VGFDs
are of size 1 and 2. The third group is a set of VGFDs with clustered values.

VGFD Description
genus→family Organisms in the same genus also have the same family.
writer→genre A work’s writer determines the work’s genre.
teamOwner→chairman The teams with the same owner also have the same chairman.
composer→mediaType The works by the same composer have the same media type.
militaryRank→title The people of the same military rank also have the same title.
location→nearestCity The things on the same location have the same nearest city.
topic→primaryTopic The papers with the same topic have the same primary topic.
manufacturer+oilSystem The manufacturer and oil system determine the engine’s

→compressionRatio compression ratio.
publisher ◦ country The publisher’s country determines the language of that

→language published work.
article-of-journal+has-volume The volume number of a journal where an article is published

→has date determines the published date of this article.
faculty→budget The size of the faculty determines the budget range.
militaryRank→salary The military rank determines the range of salary.
occupation→salary The occupation determines the range of salary.
type→upperAge A school’s type determines the range of upper age.

(86.5%) are confirmed to be true errors in the original data. The correctness of
10 of the remaining triples was difficult to judge. SWRC and RKB have 51% and
62% precision respectively. We believe the lower precision for SWRC is because
it has a higher initial data quality and its properties have a much smaller set of
possible values than those of DBPedia.

We list a number of confirmed erroneous triples in Table 4. For example, the
first triple is reported as an outlier after automatic clustering. The second triple
violates the VGFD that a school’s type determines the cluster of its upper age,
because the triple’s subject is a certain type of school while its value is not in
the cluster of values for the same type of schools.

Next, to check the impact of our pruning algorithms, we performed an ab-
lation study using DBPedia that removes these steps. The left part of Table 5
shows that using static and runtime pruning respectively saves over 62% and
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Table 4. Some confirmed erroneous triples in the three data sets, where r, o, i, p, s are
prefixes for http://www.dbpedia.org/resource/, http://www.dbpedia.org/ontology/,
http://acm.rkbexplorer.com/id/, http://www.aktors.org/ontology/portal/ and
http://data.semanticweb.org/

1 <r:Shanghai Jiao Tong University, o:university/undergrad, 194323445>

2 <r:Harrow College, o:School/upperAge, 2009.0>

3 <r:Melbourne Grammar School, o:School/ranking, 2006.0>

4 <r:Google Maps, o:Work/language, r:Coverage details of Google Maps>

5 <r:Wiktionary, o:Work/language, r:History and development>

6 <r:Dembela, o:Place/coordinates, coord|N|W>

7 <r:Hutt Valley High School, o:EducationalInstitution/principal, r:2008>

8 <r:Wake Island, o:Island/country, r:United States Air Force>

9 <r:Albuquerque Plaza, o:Building/floorCount, 2221>

10 <r:varedo, o:City/province, r:Province of Milan>

11 <i:796511, p:has-date, to-10-01>

12 <i:journals/jair/DarwicheP97, p:has-date, 1998>

13 <s:person/bastian-quilitz, s:ns/swc/ontology#affiliation, research assistant>

14 <s:person/ulf-leser, s:ns/swc/ontology#affiliation, professor>

55% of time compared to using neither. Because they utilize different charac-
teristics, using them together saves 85% over neither. When we do not prune,
the few additional VGFDs discovered lead to fewer abnormal triples than those
discovered with pruning (on average 2.2 per VGFD vs. 3.97 per VGFD). Thus
the pruning techniques not only save time but do not affect the abnormality
detection much.

Table 5. The left table is showing the impact of our pruning techniques. The right
table is comparing our preclustering with an alternative called SortSeq on VGFDs
using the clusters and abnormal data found based on these VGFDs.

None Static Runtime Both

Time (s) 4047 1529 1817 687
VGFDs 746 741 729 721

Abnormal 2923 2915 2887 2868

Preclustering SortSeq

Time (s) 114 83
VGFDs 42 23

Abnormal 625 391

Besides pruning, we also checked the impact of our pre-clustering. Because our
approach is based on a generic pair-wise distance, we wanted to compare it with
a simpler one based on the linear ordering of values where the distance is just the
difference between numbers. After each iteration of clustering around the mean,
this alternative, referred to as SortSeq, recursively clusters on two remaining
value sets: one is above the mean and the other below the mean. To handle
strings in this approach, we sort them alphabetically and assign each a sequence
number. The right of Table 5 shows that VGFDs and abnormal data that are
based on the baseline clustering are both less than that of our approach. Among
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the VGFDs not found by the SortSeq, most are for string values. SortSeq finds
fewer VGFDs and less abnormal data, because it naively assumes that the more
common leading characters two strings have, the more similar they are. Thus, our
pre-clustering using cheap and generic computation captures the characteristics
of different property values.
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Fig. 2. The left is the effect of number of properties on the VGFD searching time. The
right is the effect of sampling size in runtime pruning on the VGFD searching time.

Knowing that pre-clustering and pruning are useful for the system, we sys-
tematically checked the trend of system performance, especially time, by using
these techniques. To be comparable on data set size, we picked subsets of prop-
erties from DBPedia. For each size, we randomly draw 10 different groups of
this size and average the time over 10 runs. The left of Fig. 2 shows that the
time for every level almost follows a linear trend. The right of Fig. 2 shows the
effect of sampling size β used in runtime pruning on the system. We see that the
running time is in linear proportion to the sampling size. As the VGFD curve
shows, β = 0.2 is sufficient to find most dependencies for DBPedia.

6 Conclusion

We have presented a system to detect Semantic Web data that are abnormal
and thus likely to be incorrect. Inspired by functional dependency in databases,
we introduce value-clustered graph functional dependency which has three fun-
damental differences with functional dependency in order to better deal with
Semantic Web data. First, the properties involved in a VGFD are across the
whole data set schema instead of a single relation. Second, property value cor-
relations, especially for multi-valued properties, are not explicitly given in RDF
data. Third, using clusters for values greatly extends the detection of dependen-
cies. Focusing on these unique characteristics, our system efficiently discovers
VGFDs and effectively detects abnormal data, as shown in experiments on three
Linked Data sets. In the future we plan to use subclass relationships to further
generalize object property values. We also would like to take into account other
features when clustering, for example the string patterns.
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