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Abstract. We present a theorem prover ArgoCLP based on coherent
logic that can be used for generating both readable and formal (machine
verifiable) proofs in various theories, primarily geometry. We applied the
prover to various axiomatic systems and proved tens of theorems from
standard university textbooks on geometry. The generated proofs can be
used in different educational purposes and can contribute to the growing
body of formalized mathematics. The system can be used, for instance,
in showing that modifications of some axioms do not change the power
of an axiom system. The system can also be used as an assistant for
proving appropriately chosen subgoals of complex conjectures.

1 Introduction

Geometry has initiated a number of revolutions in mathematics. Also, it has
always had a very important role in mathematical education because of paradig-
matic reasoning that it requires. For a similar reason, for decades it has been a
challenging domain for computer theorem proving, with most attention payed to
Euclidean geometry. As early as from 1950’s, there were interesting approaches
to automated proving of geometry theorems, but real successes came in last
decades of twentieth century. For example, theorem provers for Euclidean geom-
etry based on Wu’s method automatically proved hundreds of complex theorems
[7] and this method is often considered the most efficient method for automated
theorem proving overall. Today, there are two main directions in computer the-
orem proving in geometry:

– Interactive theorem proving using proof assistants such as Isabelle [29] or
Coq [38]. The proofs in this context are made mainly manually, but are au-
tomatically verified by a computer. Interactive proving is often very demand-
ing and time consuming, it requires an experienced user, and it is typically
non-trivial to reuse pieces of existing proofs. Even more, since there is no
automation (or it is of a very limited power), if one wants to formulate and
prove the same theorem in just a slightly modified theory, that would often
require doing the same amount of work all over again.
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– Automated theorem proving using algebraic methods (such as Wu’s method
[41] or Gröbner bases method [5,23]) or coordinates-free methods (such as
the area method [10] or the full-angle method [11]). In this context, proofs
are often generated very efficiently, but they are far from traditional, human-
readable proofs.

The above two directions have somewhat different motivations: the former aims
at building a corpus of verified mathematical knowledge, while the latter aims
at applications in education (e.g., within dynamic geometry software) or in in-
dustry (when it is more important to know that a certain conjecture is valid
than to have its proof). Nevertheless, there are also goals in the intersection of
the above two directions. It would be beneficial (both for the growing body of
formalized mathematics and for educational purposes) to have formal, machine
verifiable geometry proofs automatically generated, if possible — efficiently and
in the traditional geometry manner. In this paper we address these combined
goals and describe our, coherent logic based, theorem prover ArgoCLP (Auto-
mated Reasoning GrOup Coherent Logic Prover) that automatically generates
traditional, human readable, but in the same time formal proofs of geometry the-
orems (for various axiom systems). The generated step-by-step proofs are very
similar to the proofs given in standard geometry textbooks. A suitable domain
of the prover are foundational properties typically expressed in terms of appli-
cations of individual axioms. Hence, we do not aim at conjectures involving, for
instance, metrical quantities, typically successfully proved by algebraic provers.
Instead, we primarily aim at automatically proving that certain modifications
of some axioms do not change the power of an axiom system. In addition, we
believe that our theorem prover can serve as a machine assistant that can help
mathematicians to prove complex theorems suitably broken apart into several
smaller ones.

Organization of the paper. In Section 2 we give brief background information
on some geometry axiomatizations, on formal mathematics, and on coherent
logic. In Section 3 we present our algorithms for proving theorems in coherent
logic, in Section 4 we briefly discuss the implementation of our theorem prover
ArgoCLP, and in Section 5 we present applications of our prover to four axiom
systems for Euclidean space geometry. In Section 6 we discuss the related work
and in Section 7 we draw final conclusions and present some of the ideas for
further work.

2 Background

Axiomatizations of Geometry. Euclid, with his book “Elements”, is considered
to be the first who systematically presented and used an axiomatic method
in mathematics [19]. He succeeded to derive, using purely logical rules, many
geometry properties that were known long time before him. This system, partly
naive from today’s point of view, was used for centuries.

In 1899, in his seminal book “Der Grundlagen der Geometrie”, Hilbert pro-
posed a new axiom system to elementary geometry that fixed many flaws and
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weaknesses of Euclid’s system [20]. This Hilbert’s work is one of the landmarks
for XX century mathematics, but it is still not up to contemporary standards.
The axiom system uses three sorts of primitive objects: points, lines and planes,
while the set of axioms is divided into five groups (incidence axioms, axioms of
order, axioms of congruence, axioms of parallels, and continuity axioms). Each
group of axioms is accompanied with some fundamental theorems that can be
proved using preceding axioms. One of more modern variants of Hilbert’s system
was given by Borsuk and Szmielev [4].

In mid-twenty century, Tarski presented a new, first-order axiomatisation (ac-
tually — several variants) for elementary geometry (with continuity features
weaker compared to Hilbert’s geometry), along with a decision procedure for
that theory [37,34]. Tarski’s axiom system is very simple: it is based only on one
sort of primitive objects — points, it has only two predicates and eleven axioms.

Formal Mathematics. Over the last years, in all areas of mathematics and com-
puter science, with a history of huge number of flawed published proofs, formal,
machine verifiable proofs (given in object-level form — in terms of axioms and in-
ference rules) have been gaining more and more importance. Formal proofs have
important role in management of mathematical knowledge (e.g., in digitization of
mathematical heritage), in education and e-learning, but also in industrial appli-
cations where correctness of some algorithms or calculations is critical. There are
growing efforts in developing formal proofs, with many extremely complex theo-
rems proved, with repositories of proved theorems, and also with many software
tools for producing and checking formal proofs. Among the most popular theorem
proving assistants (systems that implement formal logic and verify proofs) nowa-
days are Isabelle1 [29], Coq2 [38], Mizar3 [39], and HOL-light4 [18]. The level of
automation in proof assistants is typically very limited.

Readable formal proofs and Isar. Most of the theorem proving assistants use proof
scripts that explicitly list all axioms and inference rules used in every single proof
step. Despite many results and successes in formalizing fragments of mathemat-
ics and computer science, they are still not used by a wide scientific community.
The Intelligible semiautomated reasoning (Isar) approach to readable formal proof
documents [40] aims to bridge the gap between internal notions of proof given by
state-of-the-art interactive theorem proving systems and an appropriate level of
abstraction for user-level work. Isar is an alternative to traditional proof tactic
scripts, as it provides a proof language interface layer which is much more read-
able for the users. The Isabelle/Isar system provides an interpreter for the Isar for-
mal proof document language, and readable Isar proof documents are converted
and executed as series of low-level Isabelle inference steps. Therefore, Isar allows
the user to express proofs in a somewhat human-friendly way, but they are still
automatically verifiable by the underlying proof system.

1 http://www.cl.cam.ac.uk/research/hvg/Isabelle/
2 http://coq.inria.fr/
3 http://www.mizar.org
4 http://www.cl.cam.ac.uk/~jrh13/hol-light/

http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://coq.inria.fr/
http://www.mizar.org
http://www.cl.cam.ac.uk/~jrh13/hol-light/
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Coherent Logic. Coherent logic (CL) was initially defined by Skolem and in
recent years it gained new attention [2,15,3]. CL allows certain existential quan-
tifications so it can be considered as an extension of resolution logic. In contrast
to the resolution method, the conjecture being proved is kept unchanged and di-
rectly proved (refutation, Skolemization and transformation to clausal form are
not used). Proofs in CL are natural and intuitive and reasoning is constructive,
so proof objects can be easily obtained [2]. Therefore, CL is a suitable frame-
work for producing both readable and formal proofs. A number of theories and
theorems can be formulated directly and simply in CL.

Formally, CL is a fragment of first-order logic (FOL) consisting of formulae
of the following form:

A1(x) ∧ . . . ∧ An(x) ⇒ ∃y1 B1(x, y1) ∨ . . . ∨ ∃ym Bm(x, ym)

which are implicitly universally quantified and where: 0 ≤ n, 0 ≤ m, x denotes a
sequence of variables x1, x2, . . . , xk, Ai (for 1 ≤ i ≤ n) denotes an atomic formula
(involving some of the variables from x), yj denotes a sequence of variables
yj
1, y

j
2, . . . , y

j
kj

, and Bj (for 1 ≤ j ≤ m) denotes a conjunction of atomic formulae
(involving some of the variables from x and yj). There are no function symbols
with arity greater than 0. Function symbols of arity 0 are called constants. A
witness is a new constant, not appearing in axioms used nor in the conjecture
being proved. The name constant covers both constants that are parts of the
signature and witnesses. A term is a constant or a variable. An atomic formula
is either ⊥ or p(t1, . . . , tn), where p is a predicate symbol of arity n and ti
(1 ≤ i ≤ n) are terms. An atomic formula over constants is called a fact.

The only inference rules (in the style of natural deduction, a variant of the
rules given in [3]) used in CL are as follows:

A1(a) ∧ . . . ∧ An(a)

Ai(a)
∧E

A1 ∨ . . . ∨ An

[A1]....
B . . .

[An]
....
B

B
∨E

⊥
A

efq

A1(a) . . . An(a) A1(x) ∧ . . . ∧ An(x) ⇒ ∃y1 B1(x, y1) ∨ . . . ∨ ∃ym Bm(x, ym)

B1(a, w1) ∨ . . . ∨ Bm(a, wm)
ax

where a is a vector of constants and wj (for 1 ≤ j ≤ m) are vectors of witnesses
(i.e., fresh constants). When applied, the rule ∧E infers Ai(a) for each i such
that 1 ≤ i ≤ n. The rule (ax) is applied only if there are no vectors wj of
constants such that B1(a, w1) ∨ . . . ∨ Bm(a, wm) holds.

A formula

A1(x) ∧ . . . ∧ An(x) ⇒ ∃y1 B1(x, y1) ∨ . . . ∨ ∃ym Bm(x, ym)

is a CL-theorem, if from premises A1(a), . . . , An(a) (where a denotes a sequence
of fresh constants) all conjuncts of a formula Bj(a, w) can be derived for some
j (1 ≤ j ≤ m) and for some vector of constants w.
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There is a breadth-first proof procedure for coherent logic that is sound and
complete: a coherent formula F can be proved if and only if F is true in all
Tarskian models (with non-empty domains) of the set of the axioms and the
facts A1(a), . . . , An(a) [2].

It can be proved that any first-order formula can be translated into a CL
formula with preserved satisfiability [32]. This translation itself is not always
constructive (i.e., it may rely on steps that involve classical logic).

Notice that the definition of CL does not involve negation. A single fact ¬A
can be represented in the form A ⇒ ⊥, but this translation is not applicable in a
general case. In order to reason about negated facts, for every predicate symbol
R, typically a new symbol R is introduced that stand for ¬R and the following
axiom is used [32]: R(x) ∧ R(x) ⇒ ⊥.

3 ArgoCLP Proof Procedures

In this section we describe proof procedures that are used or can be used in our
theorem prover ArgoCLP for CL (a description of the implemented procedures
and techniques is given in Section 4). It is a generic theorem prover for coherent
logic, so it can use any set of coherent axioms (not just geometrical). Sorts can
be used (but, alternatively, corresponding unary predicates may be used).

Having in mind applications in geometry,5 we will use axioms of the form
R(x) ∨ R(x) (where R is a predicate symbol) that are special instances of the
tertium non datur axiom schema. This addition still keeps the reasoning within
the intuitionistic setting and do not compromise completeness of the breadth-
first proof procedure or completeness of the proof procedures to be presented.

3.1 Basic Proof Procedure

An alternative to the breadth-first proof procedure is a simple proof procedure
with forward chaining and with iterative deepening. Axioms are applied accord-
ing to the inference rule (ax) given in Section 2. Definitions available are used
as they were axioms. The axioms are applied in the waterfall manner: when one
axiom has been successfully applied, then search for applicable axioms starts
again from the first axiom. All constants are enumerated and there is a dedi-
cated counter s that controls applications of axioms — an axiom can be applied
only if all of its (universally quantified) variables are matched with constants
whose order is less then s. Initially, s equals the number of constants appearing
in the premises of the conjecture. The value s is increased once no axiom can be
applied and the proof procedure continues. If no axiom can be applied anymore
and the conjecture has not been proved, this means that the conjecture is not
CL-theorem (however, for non-CL-theorems the proof procedure may not termi-
nate). It can be proved (in a similar manner as it was proved for the breadth-first
procedure in [2]) that this proof procedure is sound and complete: a coherent
5 Proofs of many conjectures of Hilbert style geometry require instances of the tertium

non datur axiom schema [13].
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formula F can be proved if and only if F is true in all Tarskian models (with
non-empty domains) of the set of the axioms and the facts A1(a), . . . , An(a) [2].
In addition, it can be proved that this proof procedure is sound and complete
with respect to the inference system given in Section 2, i.e., a formula F can be
proved if and only if F is CL-theorem.

Despite the completeness property, proving some conjectures in some theories
is practically impossible with this basic proof procedure (i.e., impossible with
reasonable memory and time resources).

3.2 Improved Proof Procedure

Efficiency of the basic proof procedure given above can be improved in a number
of ways, while still preserving completeness. Here some possible improvements
are listed, all of which aim at keeping control on the search space (i.e., on the
number of introduced witnesses) and decreasing to some extent a combinatorial
explosion (caused by derived facts that are irrelevant).

Ordering of axioms. The axioms are grouped into the following groups (it is
assumed that n ≥ 0 (n > 0 for the third and the fourth group), m > 1,
and that one group of axioms excludes previous groups that are its special
cases):
non-productive non-branching axioms: axioms of the form:

A1(x) ∧ . . . ∧ An(x) ⇒ B(x)
non-productive branching axioms: axioms of the form:

A1(x) ∧ . . . ∧ An(x) ⇒ B1(x) ∨ . . . ∨ Bm(x)
productive non-branching axioms: axioms of the form:

A1(x) ∧ . . . ∧ An(x) ⇒ ∃y B(x, y)
productive branching axioms: axioms of the form:

A1(x) ∧ . . . ∧ An(x) ⇒ ∃y1 B1(x, y1) ∨ . . . ∨ ∃ym Bm(x, ym)
strongly productive non-branching axioms: axioms of the form:

∃y B(y)
strongly productive branching axioms: axioms of the form:

∃y1 B1(y1) ∨ . . . ∨ ∃ym Bm(ym)
Axioms can be automatically assigned their types and are used in the proving
process with priorities given to the groups as in the above ordering. There
is no imposed ordering of axioms within a group (although their ordering
within groups can also impact efficiency).

Early pruning. When testing an axiom for applicability, it is not necessary
to instantiate all its variables and only then check if all relevant facts were
already derived. Instead, a check for relevant facts can be performed as soon
as possible, in order to enable early rejection of some axiom instances and
pruning of the search space. For instance, when applying the following axiom:

∀x : line ∀y : line ∀X : point ∀Y : point
(incident(X, x) ∧ incident(Y, x) ∧ incident(X, y) ∧ incident(Y, y) ∧ X 
= Y
⇒ x = y)
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instead of matching x, y, X , and Y with all admissible constants, x and
X will be first unified with admissible constants, and the matching will
backtrack immediately if the fact instantiated from incident(X, x) has not
been already derived. Generally, relevant facts are checked as soon as all
involved arguments have been instantiated.

Breaking axioms that introduce several witnesses. As said in Section 2,
an axiom like:

∀x : line ∃X : point ∃Y : point (incident(X, x) ∧ incident(Y, x) ∧ X 
= Y )

will not be applied for a specific line a (instantiating x) if there are already
constants A : point and B : point such that incident(A, a), incident(B, a),
and A 
= B. However, for efficiency reasons, it is beneficial not to apply the
above axiom even if there is a constant A : point such that incident(A, a)
holds, and there is no constant B : point such that incident(B, a) and A 
= B
(because it would introduce two new points C and D). Instead, the following
variant of the above axiom should be used:

∀x : line ∀X : point (incident(X, x) ⇒ ∃Y : point (incident(Y, x) ∧ X 
=
Y ))

Therefore, instead of one axiom, two axioms will be used, with the general
one having lower priority. The same mechanism can be applied for all axioms
that involve more than one existential quantifier. Breaking such axioms into
several versions is not always straightforward as in the above example. For
example, the axiom:

∃X : point ∃Y : point ∃Z : point ∃U : point noncoplanar(X, Y, Z, U)

should be broken into four axioms, with one of them:

∀X : point ∀Y : point ∀Z : point ∃U : point noncoplanar(X, Y, Z, U)

However, this conjecture is invalid (in Euclidean geometry) and an additional
premise (noncolinear(X, Y, Z)) is required. Because of this, if an axiom can
be broken into several variants, each of them should be proved (again by the
CL prover) before being used. If some variant cannot be proved (i.e., if it
cannot be proved within some time limit), the user may be asked to modify
it. Notice that additional axioms introduced in this way actually change the
original axiom system, but since the new axiom system is equivalent to the
original one (each of its axioms can be proved as a theorem by the other
one and vice versa), this modification is legitimate (the new axioms can be
considered only as lemmas).

Dealing with equality. For theories involving equality, the axioms of equality
are not used explicitly. Instead, equivalence classes of equality of constants
are maintained. Thanks to this, it suffices to work only with a canonical
representative of a class instead of all objects that belong to that class. In
the beginning of the proving process, every object represents its own class
and the classes are maintained using Tarjan’s union-find structures [36].



208 S. Stojanović, V. Pavlović, and P. Janičić

For example, if there are constants A : point, p : line, q : line and
α : plane such that incident(A, p), incident(q, α), and p = q hold, the fol-
lowing axiom can be applied:

∀X : point ∀x : line ∀χ : plane (incident(X, x) ∧ incident(x, χ) ⇒
incident(X, χ))

and, for X = A, x = p, χ = α, the fact incident(A, α) can be derived.
Namely, for this instantiation of variables, when checking if the fact
incident(p, α) hold, the representatives of p and α are first determined —
say, q and α — and since incident(q, α) holds, the axiom can be applied.
Although the axioms of equality are not used explicitly during the search
process, they are used in building a proof trace from which a full (machine
verifiable) proof object can be constructed.

Dealing with symmetrical predicate symbols. ApredicateR is symmetrical
(in argument positions i and j) if it holds (universal quantification is assumed):

R(x1, . . . , xi, . . . , xj , . . . , xn) ⇔ R(x1, . . . , xj , . . . , xi, . . . , xn)

For symmetrical predicates, only representatives of facts can be considered.
For instance, instead of storing both colinear(A, B, C) and colinear(C, B, A),
it suffices to store only colinear(A, B, C). A representative of a class of facts
can be determined in the following way: using the ordering of constants,
sort arguments in symmetrical positions, and choose the minimum as the
representative. This step is performed whenever a fact over a symmetrical
predicate should be checked. This mechanism can be used in conjunction
with the mechanism of equivalence classes w.r.t. equality to further reduce
the number of facts stored. Like the equality axioms, statements ensuring
that a predicate is symmetrical are not used during the search process, but
they are used in building the proof trace from which a full (machine verifi-
able) proof object can be constructed.

For example, if there are constants A : point, B : point, C : point and D :
point with the ordering A < B < C < D, and the facts noncolinear(C, B, D)
and colinear(A, D, C) derived, if the fact A = B is derived, the equivalence
classes of these two objects will be merged and a contradiction can be de-
tected. Namely, if A is the representative of a class containing A and B,
by using the equivalence classes, the representative of noncolinear(C, B, D)
is noncolinear(C, A, D), and, by symmetry properties, its representative is
noncolinear(A, C, D). By symmetry, the representative of colinear(A, D, C)
is colinear(A, C, D), so, from noncolinear(A, C, D) and colinear(A, C, D),
a contradiction can be derived.

Whether a predicate is symmetrical can be checked automatically (in the
preprocessing phase): all relevant conjectures are generated and then tried
to be proved. Instead of proving conjectures for all permutations of symmet-
rical arguments, it is sufficient to prove conjectures for permutation group
generators. For instance, when trying to prove that the predicate coplanar is
symmetrical on all four arguments, it is sufficient to prove conjectures only
for permutation group generators (universal quantification is assumed):
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coplanar(x1, x2, x3, x4) ⇔ coplanar(x2, x3, x4, x1)
coplanar(x1, x2, x3, x4) ⇔ coplanar(x2, x1, x3, x4)

Reuse of proved theorems. Proved conjectures that a predicate is symmet-
rical (along with their proofs) are used within wider proofs. However, this
can be done also for other theorems of the theory proved by the system.

Even with all these techniques, many complex theorems cannot be proved in a
reasonable time. Also, generated proofs contain many irrelevant derivations.

3.3 Techniques That Do Not Preserve Completeness

In order to improve efficiency of the prover, at least for some conjectures, some
techniques that do not preserve completeness may be used:

Restriction on branching axioms. Branching axioms of the form R(x) ∨
R(x) are generated and used only for primitive (and not for defined) predi-
cates. (Moreover, it can be proved that for some of defined predicates omit-
ting axioms of the given form does not violate completeness.)

Restriction on axioms. In the proof procedure, only axioms that involve just
predicates occurring in the conjecture are used. Another, relaxed variant of
this restriction is: in the proof procedure, only axioms that involve at least
one predicate occurring in the conjecture are used.

4 ArgoCLP Implementation

The prover ArgoCLP is implemented in C++. It consists of around 5000 lines of
code, organized within 23 classes. Both the signature and the set of axioms are
imported into the program through files, so the prover can be used for different
CL theories. A conjecture is specified by:

Theory’s signature: names of sorts are stated after the keyword types, for
example:

types point line plane

followed by the list of predicate symbols given along with the list of types of
each argument. For example, the incidence predicate over points and lines
would be given as:

datatype inc_po_l point line

It is assumed that eq type denotes equality over two objects of a type type.
Set of axioms: axioms are given in the following form:

point(1) point(2) ~eq_point(1,2)
=> line(3) inc_po_l(1,3) inc_po_l(2,3)

(variables are represented by natural numbers, universal quantification is
assumed for variables appearing on the left hand side of the implication,
existential quantification is assumed for variables appearing only on the right
hand side of the implication).
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Set of definitions: definitions are used for convenience and have the same form
as axioms. For instance:

point(1) point(2) point(3) line(4)
inc_po_l(1,4) inc_po_l(2,4) inc_po_l(3,4)
=> colinear(1,2,3)

Conjecture: it is given in the same form as axioms. For example:
point(1) point(2) point(3) line(4)
inc_po_l(1,4) inc_po_l(2,4) bet(1,2,3)
=> inc_po_l(3,4)

Most of the techniques listed in Section 3.2 are already implemented within Ar-
goCLP: grouping and prioritizing axioms, early pruning, support for equality
reasoning, support for symmetrical predicates. Lemmas obtained by breaking
axioms that introduce several witnesses can be verified within the prover, but
their automated generation (with possible assistance of the user) is still under
development. Also, symmetrical predicates are used as explained, but automatic
detection of symmetrical predicates and automatic generation of required prop-
erties are not fully implemented yet.

The user can state (through a configuration file) which of the techniques from
Section 3.2 and Section 3.3 should be used in the proof search:

Equality flag indicates whether the built-in equality reasoning will be used.
Excluded middle flags indicate whether axioms of excluded middle are to be

used and, more specifically, if only axioms of excluded middle for primitive
predicate symbols (and not for defined ones) will be used.

Flags for non completeness-preserving techniques indicate whether only
axioms that involve only predicates occurring in the conjecture should be
used (this does not apply to equalities if the equality flag is set); whether
only axioms that involve at least one predicate occurring in the conjecture
should be used (this does not apply to equalities if the equality flag is set);
whether the dedicated counter s is being incremented before trying to apply
any of strongly productive axioms.

Along the proving process, ArgoCLP generates a proof trace with all relevant
information. This proof trace can be exported to different output formats. Cur-
rently, ArgoCLP can generate (formally verifiable) proof objects in Isabelle/Isar
form (that are accompanied by the axioms also exported from ArgoCLP), and
to even more readable, natural language form (in English, in LATEX format). In
addition, there is a mechanism for eliminating all inference steps from a proof
trace (including branching steps6) that were not relevant, yielding a ,,clean”
(often significantly shorter) proof trace. Such clean proof traces, can be again
exported to Isabelle/Isar or natural language form.

6 A branching step is relevant only if both branches use the assumed case, otherwise,
the branching can be eliminated and a branch that does not use the assumed case
can be kept.
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Example 1. Let us consider the following conjecture (of Hilbert-style Euclidean
geometry): for three lines p, q, and r and a plane α which contains them all
holds that if p 
= q and q 
= r and p and q do not intersect and q and r do not
intersect and if there exists a point A which belongs to the plane α and to the
lines p and r, then p = r.

The conjecture is specified in the following form:

premises

# TH_8

% for three lines and a plane which contains them all holds that

% if first and second are distinct and second and third are distinct

% and first and second do not intersect and second and third do not

% intersect and if there exists a point which belongs to the plane

% and to the first and third line, then first and third line are equal

line(1)

line(2)

line(3)

plane(4)

~eq_line(1,2)

~eq_line(2,3)

~int_l_l(1,2)

~int_l_l(2,3)

inc_l_pl(1,4)

inc_l_pl(2,4)

inc_l_pl(3,4)

point(5)

inc_po_pl(5,4)

inc_po_l(5,1)

inc_po_l(5,3)

conclusions

eq_line(1,3)

A key fragment of the generated (,,clean“) Isabelle/Isar proof generated by the
prover is given below.
...

lemma TH_8:

assumes "LI1 ~= LI2"

and "LI2 ~= LI3"

and "\<not>int_l_l LI1 LI2"

and "\<not>int_l_l LI2 LI3"

and "inc_l_pl LI1 PL1"

and "inc_l_pl LI2 PL1"

and "inc_l_pl LI3 PL1"

and "inc_po_pl PO1 PL1"

and "inc_po_l PO1 LI1"

and "inc_po_l PO1 LI3"

shows "LI1 = LI3"
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proof -

(*1*)

have "LI1 = LI3 \<or> LI1 ~= LI3"

using ax_g_ex_mid_3 [of "LI1" "LI3"]

by auto

(*2*) moreover

{ assume "LI1 = LI3"

(*3*)

from this

have ?thesis

by auto

} note note1 = this

(*4*) moreover

{ assume "LI1 ~= LI3"

(*5*) moreover

have "inc_po_l PO1 LI2 \<or> \<not>inc_po_l PO1 LI2"

using ax_g_ex_mid_7 [of "PO1" "LI2"]

by auto

(*6*) moreover

{ assume "inc_po_l PO1 LI2"

(*7*) moreover

from ‘LI1 ~= LI2‘ and ‘inc_po_l PO1 LI1‘ and ‘inc_po_l PO1 LI2‘

have "int_l_l LI1 LI2"

using ax_D5 [of "LI1" "LI2" "PO1"]

by auto

(*8*) moreover

from ‘int_l_l LI1 LI2‘ and ‘\<not>int_l_l LI1 LI2‘

have False

by auto

(*9*)

ultimately

have False

by auto

} note note2 = this

(*10*) moreover

{ assume "\<not>inc_po_l PO1 LI2"

(*11*) moreover

from ‘\<not>int_l_l LI1 LI2‘

have "\<not>int_l_l LI2 LI1"

using ax_nint_l_l_21 [of "LI1" "LI2"]

by auto

(*12*) moreover

from ‘\<not>inc_po_l PO1 LI2‘ and ‘inc_po_pl PO1 PL1‘ and ‘inc_l_pl LI2 PL1‘

and ‘inc_po_l PO1 LI1‘ and ‘inc_l_pl LI1 PL1‘ and ‘\<not>int_l_l LI2 LI1‘

and ‘inc_po_l PO1 LI3‘ and ‘inc_l_pl LI3 PL1‘ and ‘\<not>int_l_l LI2 LI3‘

have "LI1 = LI3"

using ax_E2 [of "PO1" "LI2" "PL1" "LI1" "LI3"]

by auto

(*13*) moreover
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from ‘LI1 = LI3‘ and ‘LI1 ~= LI3‘

have False

by auto

(*14*)

ultimately

have False

by auto

} note note3 = this

(*15*) from note2 and note3 and ‘inc_po_l PO1 LI2 | \<not>inc_po_l PO1 LI2‘

have False

by auto

(*16*)

ultimately

have False

by auto

} note note4 = this

(*17*) from note1 and note4 and ‘LI1 = LI3 | LI1 ~= LI3‘

have ?thesis

by auto

ultimately

show ?thesis

by auto

qed

The (,,clean“) proof generated in the natural language form (using the natural
language description of the theory’s signature), along with the natural language
formulation generated from the conjecture specification, is given below (in order
to have proofs that closely resemble proofs from mathematical textbooks, some
additional transformations of the proof were automatically made, so it can be
given in the reductio ad absurdum form).

Theorem TH 8:

Assuming that p 
= q, and q 
= r, and the line p is incident to the plane α, and
the line q is incident to the plane α, and the line r is incident to the plane α,
and the lines p and q do not intersect, and the lines q and r do not intersect,
and the point A is incident to the plane α, and the point A is incident to the
line p, and the point A is incident to the line r, show that p = r.

Proof:

Let us prove that p = r by reductio ad absurdum.
1. Assume that p 
= r.

2. It holds that the point A is incident to the line q or the point A is not
incident to the line q (by axiom of excluded middle).

3. Assume that the point A is incident to the line q.
4. From the facts that p 
= q, and the point A is incident to the line

p, and the point A is incident to the line q, it holds that the lines p and
q intersect (by axiom ax D5).
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5. From the facts that the lines p and q intersect, and the lines p and
q do not intersect we get a contradiction.

Contradiction.
6. Assume that the point A is not incident to the line q.

7. From the facts that the lines p and q do not intersect, it holds that
the lines q and p do not intersect (by axiom ax nint l l 21).
8. From the facts that the point A is not incident to the line q, and the

point A is incident to the plane α, and the line q is incident to the plane
α, and the point A is incident to the line p, and the line p is incident to
the plane α, and the lines q and p do not intersect, and the point A is
incident to the line r, and the line r is incident to the plane α, and the
lines q and r do not intersect, it holds that p = r (by axiom ax E2).
9. From the facts that p = r, and p 
= r we get a contradiction.
Contradiction.

Therefore, it holds that p = r.
This proves the conjecture.

Theorem proved in 9 steps and in 0.02 s.

5 Applications

We applied ArgoCLP prover to four axiom systems for Euclidean (space) geome-
try in a uniform manner. These are Hilbert’s system [20], Tarski’s system [37,34],
system given by Borsuk and Szmielev [4], and our system that is very close to
Borsuk’s one, but more suitable for CL-based proof procedure. We use the same
signature for all the systems (so we could try to prove the same theorems within
different systems), which is the union of all the sorts and the predicates used in each
of these systems. Of course, if one system does not involve some predicates, it can-
not be used for proving their properties (e.g., Tarski’s system cannot be used for
proving properties of incidence relations, since this system deals only with points).
We encoded all axioms from these four systems, except axioms of continuity (for
their complexity). Still, a large fragment of geometry can be built without them.
We reformulated some axioms in order to avoid complex defined notions such as
ray, half-plane, internal angle, etc, but we kept the original meaning of all axioms.

Encoding axioms in its own right is not trivial, because original formulations
are often inaccurate, with some conditions only implicitly assumed. For instance,
when Hilbert, in his axioms, uses the phrase “two points”, he assumes that
they are distinct (but does not explicitly state that). Meikle and Fleuriot also
underlined this problem [26]. There is a number of problems of this sort and
sometimes it is not trivial to show whether a modification would change the
set of theorems of the system. Here we do not aim at a thorough comparison
between these systems, but rather at illustrating the ArgoCLP prover and to
make first steps in showing what fragments of one system can be built within
some other system. The prover can also be used to show what modifications of
certain axioms can be made.
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We applied ArgoCLP on these axiom systems and on a number of theorems
from standard geometry courses.7 As expected, the results depended much on
the set of the axioms used. As an illustration, we list 14 theorems (including
some that were not proved by the prover within the time limit of 30 seconds)
and the obtained results for the four systems (the intended meaning of sorts and
predicates should be obvious from their names). All results were obtained with
one fixed configuration of the prover (only axioms that involve just predicates
occurring in the conjecture are used and only axioms of excluded middle for
primitive predicate symbols are used).

Theorem 1. ∀p : line ∀q : line (int(p, q) ⇒∃α : plane (inc(p, α) ∧ inc(q, α)))

Theorem 2. ∀p : line ∀q : line ∀A : point ∀B : point (p 
= q ∧
inc(A, p) ∧ inc(A, q) ∧ inc(B, p) ∧ inc(B, q) ⇒ A = B)

Theorem 3. ∀p : line ∀α : plane ∀A : point ∀B : point (¬inc(p, α) ∧
inc(A, p) ∧ inc(A, α) ∧ inc(B, p) ∧ inc(B, α) ⇒ A = B)

Theorem 4. ∀A : point ∀B : point ∀C : point (¬col(A, B, C) ⇒ A 
=
B ∧ A 
= C ∧ B 
= C)

Theorem 5. ∀A : point ∀B : point ∀C : point (¬col(A, B, C) ⇒
∃α : plane(inc(A, α) ∧ inc(B, α) ∧ inc(C, α)))

Theorem 6. ∀A : point ∀p : line (¬inc(A, p) ⇒ ∃α : plane (inc(A, α) ∧
inc(p, α)))

Theorem 7. ∀A : point ∀B : point ∀C : point ∀D : point ∀α : plane
(comp(A, B, C, D)∧ ¬col(A, B, C) ∧ inc(A, α) ∧ inc(B, α) ∧ inc(C, α) ⇒
inc(D, α))

Theorem 8. ∀p : line ∀q : line ∀r : line ∀A : point ∀α : plane
(p 
= q ∧ q 
= r ∧ inc(p, α) ∧ inc(q, α) ∧ inc(r, α) ∧ ¬int(p, q) ∧
¬int(q, r) ∧ inc(A, α) ∧ inc(A, p) ∧ inc(A, r) ⇒ p = r)

Theorem 9. ∀A : point ∀B : point ∀C : point ∀p : line (inc(A, p) ∧
inc(B, p) ∧ bet(A, B, C) ⇒ inc(C, p))

Theorem 10. ∀A : point ∀B : point ∀C : point (bet(A, B, C) ⇒
¬bet(A, C, B))

Theorem 11. ∀A : point ∀B : point (A 
= B ⇒ ∃C : point bet(A, C, B))

Theorem 12. ∀A : point ∀B : point cong(A, B, A, B)

Theorem 13. ∀A : point ∀B : point ∀C : point ∀D : point (cong(A, B, C, D)
⇒ cong(C, D, A, B))

Theorem 14. ∀A : point ∀B : point ∀C : point ∀D : point (cong(A, B, C, D)
⇒ cong(B, A, D, C))

7 The prover ArgoCLP, along with descriptions of the used theories and conjectures,
is available on-line from http://argo.matf.bg.ac.rs/downloads.html

http://argo.matf.bg.ac.rs/downloads.html
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Table 1. Performance of the prover; entries are given in the form time/n1/n2, where
n1 is the number of all axioms applied, and n2 is the number of axioms applied in a
,,clean“ proof (with eliminated all unnecessary steps) in the natural language form; ’-’
denotes timeout, NA denotes that the theorem does not belong to the language of the
theory; experiments were ran on PC Core 2Quad 2.4GHz with 4GB RAM, running
under Linux

# ARGO system Tarski’s system Borsuk’s system Hilbert’s system

1 - NA - -

2 0.01/5/3 NA 0.01/5/3 0.01/5/3

3 0.01/5/3 NA 0.01/5/3 0.01/5/3

4 - NA - -

5 0.01/27/1 NA 0.03/28/1 -

6 - NA 16.07/524/59 -

7 11.08/125/4 NA 8.09/119/4 -

8 0.01/12/9 NA 0.01/12/9 0.01/12/9

9 - NA - -

10 0.01/2/1 - 0.01/2/1 -

11 - - 0.07/71/8 -

12 0.01/5/2 0.01/6/2 0.01/6/2 -

13 0.25/13/3 0.16/24/3 0.22/24/3 -

14 1.26/26/7 0.52/30/7 0.57/30/7 -

6 Related Work

There is a number of axiom systems for Euclidean geometry. Most of them
are variants of Euclid’s, Hilbert’s or Tarski’s system and their comparison often
require subtle analyses [31,26,27]. Developing new axiom systems is still an active
research area, often motivated by machine formalizations. For instance, Avigad,
Dean, and Mumma recently proposed an axiomatization [1] that rather faithfully
captures basic ideas and methods of inference outlined in Euclid’s ”Elements“,
but in a rigorous manner.

A lot of efforts have been recently invested into formalization of geometry.
Dehlinger, Dufourd and Shreck worked on formalization of first two groups of
Hilbert’s Grundlagen in Coq proof assistant following an intuitionistic approach
[13]; they came to the conclusion that many theorems could not be proved this
way. Meikle and Fleuriot [26] formalized the first three groups of Hilbert’s ax-
iomatics in Isabelle/Isar. They showed that some Hilbert’s proofs relied on some
implicit assumptions (most often based upon a graphical presentation of the
problem) and in this way again emphasized the need of having formally verified
proofs. Narboux formalized [28] in Coq the first eight chapters of Tarski’s book
[34] and demonstrated that geometry of Tarski is suitable for mechanization be-
cause of its simplicity and production of less degenerated cases. There are also
other geometry related formalizations developed in Coq: Kahn’s formalization of
von Plato’s constructive geometry [30,22], Guilhot’s formalization of large por-
tions of high school geometry [17], Duprat’s formalisation of an axiom system
for compass and ruler geometry [14], formalization of projective geometry by
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Magaud, Narboux, and Schreck [24,25], etc. All of the mentioned formalizations
were done completely manually, with no automation involved.

Automated theorem proving has a history more than fifty years long [8]. In 1959.
Gelernter created a geometry theorem prover that could find solutions to a large
number of problems taken from highschool textbooks in plane geometry [16]. The
biggest successes in automated theorem proving in geometry were achieved (i.e.,
the most complex theorems were proved) by algebraic theorem provers based on
Wu’s method [41,7] and Gröbner bases method [5,23,6]. However, instead of read-
able, traditional geometry proofs, these methods produce only a yes/no answer
with a corresponding algebraic argument. This is partly changed with
coordinate-free methods, such as the area method [10], the full angle method
[11,9], but for many conjectures these methods still deal with extremely complex
expressions involving certain geometry quantities. An approach based on deduc-
tive database and forward chaining works over a suitably selected set of higher-
order lemmas and can prove complex geometry theorems (yielding geometrical
proofs), but still has a smaller scope than algebraic provers [12]. Quaife used a
resolution theorem prover to prove theorems in Tarski’s geometry [33]. Some chal-
lenging conjectures were proved, but no formal or readable proofs were produced.

Coherent logic may serve as a framework that enables automated generation
of readable geometry proofs. It is well suited to foundational conjectures, close to
the level of axioms. To our knowledge, the first automated theorem prover using
CL was developed by Janičić and Kordić [21]. It used a fixed set of geometry
axioms close to Borsuk’s system [4] and was able to prove tens of foundational
theorems from standard geometry textbooks. No formal proofs were generated.
The system that we describe in this paper is related to this system but signifi-
cantly extends it and improves it in several directions.

Over the last several years, CL was explored and popularized by Marc Bezem
and his coauthors. Bezem and Coquand [2] developed in Prolog a CL prover
that generates proof objects in Coq (some of the problems solved by this CL
prover can be found on-line8). Berghofer and Bezem developed in ML an internal
prover for CL in Isabelle. It has several advantages to “external” provers: it uses
existing Isabelle’s infrastructure and excludes the need for converting from/to
“external” formats. Declarative programming languages such as Prolog and ML
are well suited to this kind of problems but they can result in a slow executable
code, so we believe that C++ implementation can tackle more realistic geometry
theorems. As we are aware of, the above provers have not been used for dealing
with fragments of geometry addressed in this paper.

7 Conclusions and Further Work

We presented a theorem prover ArgoCLP that uses coherent logic as its under-
lying logic and forward chaining and iterative deepening in its proof search. The
prover can be used for any theory with coherent axioms and for conjectures in the
coherent form. It can produce formal, machine verifiable proofs, but also readable
8 http://www.ii.uib.no/~bezem/GL/

http://www.ii.uib.no/~bezem/GL/
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proofs given in a natural language form, consisting of steps typical for traditional
geometry proofs, so they can be directly used in textbooks. We applied the prover
to various axiomatic systems for Euclidean geometry and proved tens of theorems
from standard university textbooks on geometry. Since the generated proofs are
both formal and readable, they can be used in different educational purposes, and
thanks to automation, the system can serve as a useful tool for building the body
of formalized mathematics. The system, in its current version, still does not aim
at proving all complex geometry theorems appearing in geometry textbooks, but
rather at proving foundational theorems (close to the axiom level) of moderate
hardness. For instance, a suitable problem for the prover would be checking if an
axiom A could be replaced by another version A′ (by proving A with A′ and the
rest of the system and by proving A′ with A and the rest of the system). This is
a very important issue for foundations of geometry — there are many axiom sys-
tems, sometimes with only slight modifications (following, for instance, different
interpretations of the author’s intention) and establishing their relationship could
be very demanding (while cannot be dealt by algebraic theorem provers). There-
fore, automation in this process is very much welcome. In addition, the system can
be used as an assistant for proving appropriately chosen subgoals of complex con-
jectures, in a manner that was already applied in proving Hessenberg’s theorem
by a CL-based theorem prover [3].

We are planning to further develop our prover as there is still much space
for improving efficiency. We have implemented a mechanism for cleaning up all
irrelevant proof steps from a proof trace, but this cleaning is done only post
festum, when the conjecture is already proved. We are planning to implement
a similar mechanism that would be applied during the proving process itself
since information about relevant/irrelevant facts can be useful in more efficient
search guiding in the remaining process (i.e., in future branches). We are also
planning to use techniques (e.g., backjumping and learning) used in other auto-
mated reasoning systems (e.g., SAT solvers) and we expect to obtain significant
speed-ups and significant increase in number of theorems that can be proved
within reasonable time limits. With a more efficient version of the prover, we
are planning to formalize significant portions of different geometries, including
the geometry developed by Avigad, Dean, and Mumma [1]. Instead of standard
geometry axioms, we will also consider using higher-level lemmas, as in the de-
ductive database method [12]. We are also planning to deeply explore different
variants of the most significant axioms systems and their relationship by au-
tomatically proving axioms of one systems as theorems within another system.
That work would answer a number of important questions about formulations
of axioms. The domain of our prover is not limited to geometry, so we will apply
it to other theories as well. In addition, we are planning to support input from
the TPTP form9 [35] and we are planning to add support for exporting proof
objects to other proof assistants (e.g., Coq). Suport for TPTP would enable us
to compare our prover with other coherent logic provers and also with other
automated theorem provers, e.g., resolution-based provers.

9 http://www.tptp.org

http://www.tptp.org
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