

Lecture Notes in Artificial Intelligence 6877

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Pascal Schreck Julien Narboux
Jürgen Richter-Gebert (Eds.)

Automated Deduction
in Geometry
8th International Workshop, ADG 2010
Munich, Germany, July 22-24, 2010
Revised Selected Papers

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Pascal Schreck
LSIIT, Pôle API
Boulevard Sébastien Brant, BP 10413
67412 Illkirch Cédex, France
E-mail: schreck@unistra.fr

Julien Narboux
LSIIT, Pôle API
Boulevard Sébastien Brant, BP 10413
67412 Illkirch Cédex, France
E-mail: narboux@unistra.fr

Jürgen Richter-Gebert
Technische Universität München, Zentrum Mathematik (M10)
Lehrstuhl für Geometrie und Visualisierung
Boltzmannstraße 3
85748 Garching, Germany
E-mail: richter@ma.tum.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-25069-9 e-ISBN 978-3-642-25070-5
DOI 10.1007/978-3-642-25070-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011940216

CR Subject Classification (1998): I.2.3, I.3.5, F.4.1, F.3, G.2-3, D.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

From July 22 to July 24, 2010, the Technische Universität München, Germany,
hosted the eighth edition of the now well-established ADG workshop dedicated
to Automatic Deduction in Geometry. From the first edition, which was held
in Toulouse in 1996, to ADG 2010, a slow mutation has taken place. The work-
shop that was formerly centered around computer algebra became a larger forum
where several communities could exchange new ideas coming from various do-
mains, such as computer algebra, logic, computer-assisted proof, combinatorial
geometry or even software development, but all focused on proof in geometry.

ADG 2010 was a fruitful meeting where 19 papers, from 22 submissions, were
selected for presentation after a review process involving at least two reviewers
per article. The set of presentations was completed by an invited talk given
by Robert Joan-Arinyo from the Universitat Politècnica de Catalunya, Spain.
ADG 2010 was also an enjoyable meeting thanks to the rigorous and flawless
organization of the Munich team (see the Organizing Committee list).

After the meeting, a new call for papers was launched, accepting contributions
not necessarily related to a presentation at ADG 2010.

The present volume of the LNAI series is the result of this selection process,
which includes a new review process and discussions within the Program Com-
mittee. It is composed of 13 papers which present original research reflecting
the current state of the art in this field. The following categorization proposes
a key to understanding the papers. But, obviously as with all categorizations, it
is rather arbitrary and it should not be taken strictly. Most papers can indeed
also be considered from a radically different point of view.

Three papers deal with incidence geometry using some kind of combinatoric
argument. Susanne Apel and Jürgen Richter-Gerbert explore two ways to auto-
matically prove a geometric theorem by discovering cancellation patterns. Do-
minique Michelucci studies incidence geometry leading to two papers: one deals
with an abstract notion of line and the other concerns human readable proofs in
geometry.

Three papers fall in the domain of computer algebra. Daniel Lichtblau studies
a problem related to the locus of the midpoint of a triangle in a corner, which
is a variant of the “penny in a corner” problem, by using numeric, formal and
graphical tools. Pavel Pech exposes a method to automatically prove theorems
related to inequalities in geometry. Yu Zou and Jingzhong Zhang propose a way
to generate readable proofs using the so-called Mass Point Method involving
barycentric calculations with real or complex masses.

Four papers are more related to software implementation. Michael Gerhaüser
and Alfred Wassermann present a Web-integrated software for dynamic geom-
etry which includes a Gröbner-based tool able to compute plane loci. Fadoua
Ghourabi, Tetsuo Ida and Asem Kasem expose methods to produce readable

VI Preface

proofs of theorem within the Origami problematics. Pedro Quaresma describes
TGTP—a library of problems for automated theorem proving in geometry. Phil
Scott and Jacques Fleuriot present the concurrent implementation of a forward
chaining algorithm in the Isabelle/HOL framework.

Last but not least, logic and proof assistants are the subject of three papers
of this book. Following his own work on non-standard analysis, Jacques Fleuriot
explores the foundations of discrete geometry in Isabelle/HOL. Laurent Fuchs
and Laurent Théry represent here both the Coq and the geometric algebra com-
munities by presenting the formalization in Coq of Grassmann Caley Algebra
and its application to automatize the production of proofs in projective geom-
etry. Sana Stojanović, Vesna Pavlović and Predrag Janičić expose a framework
where coherent logic is used to implement a geometric prover able to deliver
readable proofs.

Our gratitude goes to the Chairs of the previous editions of ADG. We thank
them for their guidance and for having made ADG what it is now. We would
also to thank the Program Committee and the numerous referees who did a lot
of work to improve the quality of the workshop and of this book.

July 2011 Pascal Schreck

Organization

Organizing Committee

Jürgen Richter-Gebert (Germany), Chair
Jutta Niebauer (Germany)

Program Committee

Pascal Schreck (France), Chair
Hirokazu Anai (Japan)
Francisco Botana (Spain)
Jacques Fleuriot (UK)
Xiao-Shan Gao (China)
Predrag Janičić (Serbia)
Deepak Kapur (USA)
Ulrich Kortenkamp (Germany)
Montserrat Manubens (Spain)
Dominique Michelucci (France)
Bernard Mourrain (France)

Julien Narboux (France)
Pavel Pech (Czech Republic)
Tomás Recio (Spain)
Georg Regensburger (Austria)
Jürgen Richter-Gebert (Germany)
Meera Sitharam (USA)
Thomas Sturm (Spain)
Dongming Wang (France)
Bican Xia (China)

Invited Speaker

Robert Joan-Arinyo (Spain)

External Reviewers

Xiaoyu Chen
Oliver Labs
Filip Maric
Vesna Pavlović
Phil Scott

Sana Stojanović
John Sullivan
Hitoshi Yanami
Lu Yang
Christoph Zengler

Table of Contents

Cancellation Patterns in Automatic Geometric Theorem Proving 1
Susanne Apel and Jürgen Richter-Gebert

Exploring the Foundations of Discrete Analytical Geometry in
Isabelle/HOL . 34

Jacques Fleuriot

A Formalization of Grassmann-Cayley Algebra in Coq and Its
Application to Theorem Proving in Projective Geometry 51

Laurent Fuchs and Laurent Théry

Automatic Calculation of Plane Loci Using Gröbner Bases and
Integration into a Dynamic Geometry System . 68

Michael Gerhäuser and Alfred Wassermann

Proof Documents for Automated Origami Theorem Proving 78
Fadoua Ghourabi, Tetsuo Ida, and Asem Kasem

The Midpoint Locus of a Triangle in a Corner . 98
Daniel Lichtblau

Some Lemmas to Hopefully Enable Search Methods to Find Short
and Human Readable Proofs for Incidence Theorems of Projective
Geometry . 118

Dominique Michelucci

What Is a Line ? . 132
Dominique Michelucci

On One Method of Proving Inequalities in Automated Way 152
Pavel Pech

Thousands of Geometric Problems for Geometric Theorem Provers
(TGTP) . 169

Pedro Quaresma

An Investigation of Hilbert’s Implicit Reasoning through Proof
Discovery in Idle-Time . 182

Phil Scott and Jacques Fleuriot

X Table of Contents

A Coherent Logic Based Geometry Theorem Prover Capable of
Producing Formal and Readable Proofs . 201

Sana Stojanović, Vesna Pavlović, and Predrag Janičić

Automated Generation of Readable Proofs for Constructive Geometry
Statements with the Mass Point Method . 221

Yu Zou and Jingzhong Zhang

Author Index . 259

Cancellation Patterns

in Automatic Geometric Theorem Proving

Susanne Apel� and Jürgen Richter-Gebert

Technical University of Munich, Department of Mathematics,
Boltzmannstr. 3, 85748 Garching, Germany

Abstract. This article is about the equivalence of two seemingly differ-
ent methods for proving incidence theorems in projective geometry. The
first proving method is essentially an algebraic certificate for the non-
existence of a counterexample—via biquadratic final polynomials [13].
For the second method the theorems of Ceva and Menelaus are elemen-
tary building blocks and are used as faces of an oriented topological
2-cycle, with their geometric structure on the edges identified appropri-
ately. The fact that the cycle finally closes up translates into the proof
of the theorem. We start by formalizing both methods. After this we
present a bijective translation process that establishes the equivalence
of the two methods. The proving methods and the translation process
will be illustrated by a (quite well-natured) example. Using our methods
one gains additional structural insight in the purely algebraic proofs (bi-
quadratic final polynomials) by reconstructing an underlying topological
structure of the proof.

1 Introduction

A quite general strategy for automatic proving in geometry can be paraphrased
as follows: “Translate the hypotheses and the conclusion of a theorem into
polynomials—search for an algebraic dependence which shows that the conclu-
sion can be derived from the hypotheses”. Various theorem provers follow this
general strategy. Depending on the concrete setup the main emphasis here is
either on the algebraic translation process (like determinant or exterior algebra
based approaches [13,17,20] or the “Area method” [8,9,10,11,7]) or on the pro-
cess of finding dependencies (like in Groebner bases based approaches or Ritt’s
characteristic set method), or on both. Despite the fact that the latter class
of methods is more general, it suffers from the effect that these proofs are of-
ten only checkable by a computer, and there may be no explicit control over
non-degeneracy conditions.

In this article we will deal with two proving techniques for which the main
emphasis is on finding an algebraic translation of a geometric theorem in a way
that a theorem can be proved by comparably simple cancellation arguments.

� The author gratefully acknowledge the support of the TUM’s Thematic Graduate
Center TopMath at Technische Universität München.

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 1–33, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

2 S. Apel and J. Richter-Gebert

Both methods are capable of generating human readable proofs that often pro-
vide additional insight in the structure of the theorem under consideration. The
first method we will deal with is known as the binomial proving technique (com-
pare [13,3]). It has its origins in the automatic generation of non-realizability
proofs for oriented matroids [2] and has proven to be a powerful tool in this
context. The second method is known as Ceva-Menelaus-technique [16] and is
based on cyclic, manifold like structures build from triangles that are induced by
the incidence structure of the geometric theorem. These cycles shed additional
light on the structure of the theorems.

In fact it turns out that both methods are essentially equivalent (under the
mild assumption that one is allowed to add auxiliary points in generic position,
to impose natural consistency and generic non-degeneracy assumptions on the
theorem and to express the conclusion by an equivalent one). In fact, the equiva-
lence of both methods is surprising. To see this one has to know that the binomial
proving method creates many equations of the form “products of determinants
= products of determinants” and then—more or less blindly—searches for a de-
pendence among these expressions by solving a rather big system of associated
linear equations. Compared to this a Ceva-Menelaus proof is much more struc-
tured and in a sense synthetic. It consists of a concrete combinatorial manifold
composed from triangles whose vertices are associated with certain vertices of
the configuration (for details see below). Each triangle of the manifold is asso-
ciated to either a Ceva or a Menelaus configuration. The fact that two triangles
share an edge will be interpreted on two different levels. In the geometry of the
theorem it corresponds to the fact that a certain coincidence holds, on an alge-
braic level it translates into the cancellation of a certain term. By this incidences
become associated with possible algebraic cancellations. The cycle structure of
the oriented manifold then translates to the existence of a global cancellation
pattern that proves the theorem. Compared to the binomial proving technique
this method is by far more structured and at first sight seems to be much more
restrictive. Nevertheless it turns out that whenever a binomial proof is found
the cancellation pattern (in a non-obvious way) translates into the existence of
a manifold on which a Ceva-Menelaus proof can be based and vice versa.

In the following sections we will demonstrate the two proving techniques and
the translation method, along with an instructive (though still well-natured)
example. We will also introduce the concept of a base graph (see [4]) that plays
a crucial role in the translation process.

2 Definitions: Theorems and Proving Techniques

We will exemplify some concepts of this article in the case of a simple running
example. This is the well known theorem of Pappos in its real projective version
as illustrated in Figure 1. Whenever we use it we will refer to the labeling of
this picture. In a very precise sense Pappos’s theorem is the smallest theorem
that is only based on incidence relations between points and lines. For a more
complicated example see [16]. Pappos’s theorem states that if we have two triples

Cancellation Patterns in Automatic Geometric Theorem Proving 3

9
8

4 5

7

6

1
2 3

Fig. 1. The claim of Pappos’s theorem is that the white points are collinear

{1, 2, 3} and {4, 5, 6} of collinear points then the points 7, 8 and 9 as constructed
in Figure 1 are collinear as well (provided that in the construction process no
degeneracy like intersecting two identical lines arises). Similarly one can say that
as long as no two lines in the theorem coincide the collinearity of the eight triples

H =
{
{1, 2, 3}, {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, {4, 5, 6}, {3, 4, 8}, {2, 6, 7}, {3, 5, 7}

}
implies the collinearity of C = {7, 8, 9}. In our modeling of an incidence assertion
T = (H,B, C) we will express the hypotheses by a set H of triples of points,
indicating which points should be collinear, along with a set B of triples (the
non-degeneracy conditions) that should not be collinear. The conclusion will be
expressed by a single triple C. One should keep in mind that formulating an
assertion does not claim anything about its validity. We call the list of points
P = (p1, . . . , pn) with concrete coordinates an instance of the assertion if it
satisfies the collinearities H and the non-collinearities B. The assertion T is
valid (and by this becomes a theorem), if for every instance of T also the triple
indicated by the conclusion C is collinear.

In the geometry literature quite frequently geometric theorems are stated
without specific information on non-degeneracy conditions. So in a very strict
sense it often happens that theorems are simply stated falsely, since some implic-
itly assumed and sometimes obvious non-degeneracy conditions may be missing.
In our setup we will impose certain generic non-degeneracy assumptions that are
derived directly from H and C. These generic non-degeneracies will mainly as-
sert that different points on a line of the theorem are also geometrically distinct
and that two lines through a theorem point are also distinct. Only in very rare
cases it will be necessary to add additional non-degeneracy assumptions beyond
these generic ones. Details on the representation of incidence theorems will be
given later in Section 2.2.

2.1 The Binomial Proving Method

Let us now explain how a binomial proof works. Our entire considerations will
be valid for incidence theorems in projective planes over an arbitrary field K.
However, to be more illustrative we here focus on the real projective plane RP

2.

4 S. Apel and J. Richter-Gebert

We will assume that we have an index set En := {1, . . . , n} whose members
serve as the labels of corresponding point configuration P = (p1, . . . , pn) ∈
R3·n (here each point is represented by its homogeneous coordinates). We use
[a, b, c]P := det(pa, pb, pc) as a shortcut for the determinant of the homogeneous
coordinates of three points. Later on we will use [a, b, c], without a subscript as a
purely formal symbol, that models the behavior of an abstract determinant. In
the real projective plane we have that the triple of points labeled by {a, b, c} is
collinear if and only if [a, b, c]P = 0. Now for each collinearity {a, b, c} ∈ H in the
hypotheses of a theorem, the binomial proving method considers equations of
the form [a, b, x]P [a, c, y]P = [a, b, y]P [a, c, x]P , the biquadratic equations. Usually
we will assume that the points x and y are not incident with the line abc,
but for the moment this is not yet important. We can interpret biquadratic
equations as fragments of Grassmann-Plücker relations in the following way.
Since for arbitrary points in RP

2 the Grassmann-Plücker relation

[a, b, c]P [a, x, y]P − [a, b, x]P [a, c, y]P + [a, b, y]P [a, c, x]P = 0

always holds (see for instance [15]), we get the equivalence

[a, b, x]P [a, c, y]P = [a, b, y]P [a, c, x]P ⇐⇒
(
{a, b, c} or {a, x, y} are collinear

)
.

Observe that the above statement is invariant under a simultaneous exchange of
b ↔ x and c ↔ y.

The binomial proving method (see references [14,13,3]) now creates (usually
by an algorithm) binomial expressions from the collinearity hypotheses H and
from the conclusion C in a way that “obviously” the conclusion can be expressed
by a combination of the hypotheses. A proof of Pappos’s theorem along these
lines may look as follows. From the set H of collinearities we can conclude the
following eight biquadratic equations.

{1, 2, 3} collinear =⇒ [1, 2, 4]P [1, 3, 7]P = [1, 2, 7]P [1, 3, 4]P ,
{1, 5, 9} collinear =⇒ [1, 5, 4]P [1, 9, 7]P = [1, 5, 7]P [1, 9, 4]P ,
{1, 6, 8} collinear =⇒ [1, 8, 4]P [1, 6, 7]P = [1, 8, 7]P [1, 6, 4]P ,
{2, 4, 9} collinear =⇒ [4, 2, 7]P [4, 9, 1]P = [4, 2, 1]P [4, 9, 7]P ,
{4, 5, 6} collinear =⇒ [4, 5, 7]P [4, 6, 1]P = [4, 5, 1]P [4, 6, 7]P ,
{3, 4, 8} collinear =⇒ [4, 8, 7]P [4, 3, 1]P = [4, 8, 1]P [4, 3, 7]P ,
{2, 6, 7} collinear =⇒ [7, 2, 1]P [7, 6, 4]P = [7, 2, 4]P [7, 6, 1]P ,
{3, 5, 7} collinear =⇒ [7, 5, 1]P [7, 3, 4]P = [7, 5, 4]P [7, 3, 1]P .

The derived equations are automatically valid for every instance of Pappos’s
theorem. We now assert (as additional non-degeneracy assumptions) that all
determinants that occur in these expressions are non-zero. This is not a strong
restriction. As one can easily check this only implies that the lines in Figure 1 do
not coincide. Now, multiplying all left sides and all right sides of these equations
and canceling determinants that occur on both sides (we can do this since we
assumed that they are non-zero) we are left with

[7, 8, 4]P [7, 9, 1]P = [7, 8, 1]P [7, 9, 4]P

Cancellation Patterns in Automatic Geometric Theorem Proving 5

This in turn is again a biquadratic equation and so it is equivalent to the fact
that either {7, 8, 9} is collinear or that {7, 1, 4} is collinear. The first one is the
desired conclusion. The second possibility has to be excluded by another non-
degeneracy condition that {1, 4, 7} is non-collinear. All in all this argument shows
that under the assumptions—which are encoded by the eight Pappos hypothesis
collinearities H and a non-degeneracy list B (which contains all the triples cor-
responding to determinants in the above equations together with {1, 4, 7})— in
every instance also the collinearity of the conclusion C = {7, 8, 9} is established.

We are now going to formalize this proving pattern for general incidence
theorems. For this we start by formalizing the exact notion of a theorem.

Definition 1. A real projective incidence assertion T on n points is a triple
(H,B, C) such that:

• H,B ⊂
{
{i, j, k} | 1 ≤ i < j < k ≤ n

}
• C = {a, b, c} with 1 ≤ a < b < c ≤ n and C /∈ H.

A point configuration P = (p1, . . . , pn) in RP2 is called an instance of T if
[i, j, k]P = 0 for all {i, j, k} ∈ H and [i, j, k]P �= 0 for all {i, j, k} ∈ B. If in
addition for every instance P = (p1, . . . , pn) of T also [a, b, c]P = 0 holds, then
T is called a valid assertion or a theorem.

Later on we will consider only theorems satisfying additional consistency as-
sumptions (we will call them theorems in canonic saturated form). However, for
the time being it is sufficient to just stick to the above more general definition.
Formalizing the notion of a biquadratic proof we have to face an additional
technical problem. In the proof the determinants play merely the role of formal
symbols. It is never necessary to actually evaluate a determinant since the can-
cellation process entirely takes place on the level of the determinants. To deal
with this we will introduce formal symbols (called brackets) [a, b, c] (without
subscript) that will play the role of formal determinants and inherit from real
determinants only the properties that are relevant for our proofs. In particular
these symbols should satisfy the alternating determinant rules:

[a, b, c] = [b, c, a] = [c, a, b] = −[b, a, c] = −[c, b, a] = −[a, c, b].

Furthermore for the signature we must impose the canonical rule “− · − = +”.
There are several approaches to deal with formal determinant-like expressions
as we need them for our purposes. One approach was introduced by Neil White
[20] and is known as the bracket ring. There one defines a ring over all formal
determinant symbols and “mods out” all natural relations known to hold (per-
mutation rules, Grassmann-Plücker relations, collinearities.) The other one is
due to Andreas Dress and Walter Wenzel [4,5,6,18,19]. They define several vari-
ations of what is known as the Tutte group of a matroid. There all calculations
take place in a group (not a ring). A symbol ε with the property ε2 = 1 is intro-
duced playing the role of a formal “−1”. Equality of product terms is expressed
as certain fractions in this group being 1. While in the bracket ring approach
it is easy to deal with formal Grassmann-Plücker relations, in the Tutte group

6 S. Apel and J. Richter-Gebert

approach there is a natural notion of division (fractions will turn out to be im-
portant later in this article). Our approach will be close to the one of Dress and
Wenzel, however restricted to the necessities of our treatment.

We will introduce a multiplicative group in which identifications are made
that model the above rules. The (formal) brackets that are allowed to occur
in this group are those that correspond to the non-degeneracy assumptions in
B, since these brackets posses a natural multiplicative inverse. An additional
special element ε will play the role of a formal −1. We define a set of formal
group elements (brackets):

Br(B) :=
{
[a, b, c] | {a, b, c} ∈ B

}
∪ {ε}.

We consider the free Abelian (multiplicatively written) group FB = (Br(B), ·)
over these elements and define a subgroup that models the determinant identi-
ties:

AB :=
〈{

[a, b, c]
[b, c, a]

| {a, b, c} ∈ B
}
∪
{

ε · [a, b, c]
[b, a, c]

| {a, b, c} ∈ B
}
∪
{
ε2
}〉

.

Here 〈. . .〉 denotes the group generated by elements in FB. For each instance P
(over the reals) for which all the brackets in B are non-zero there is a natural
homomorphism ΦP from the factor group BB := FB/AB to (R \ {0}, ·) induced
by the relations ΦP ([a, b, c]) = [a, b, c]P and ΦP (ε) = −1.

The collinearities stated in the hypotheses H imply (via the formal equivalent
of Grassmann-Plücker relations) additional relations that we can impose on BB.
We collect such elements of BB that must be 1 due to collinearity conditions H
in a set HH,B.

HH,B :=
{

[a, b, x][a, c, y]
[a, b, y][a, c, x]

∈ BB

∣∣∣ {a, b, c} ∈ H; x, y ∈ En

}
The fractions occurring in this set are derived from the equations [. . .][. . .] =
[. . .][. . .] we considered so far. Under our canonical homomorphism ΦP the images
of elements of HH,B will automatically turn out to be 1 for every instance of
T = (H,B, C). As an immediate consequence of the definitions we get:

Lemma 1. Let P be an instance of T = (H,B, C) and ΦP be the corresponding
homomorphism, then for every element α ∈ HH,B we have ΦP (α) = 1.

Now we define a similar set of fractions CC,B that express the conclusion:

CC,B :=
{

[a, b, x][a, c, y]
[a, b, y][a, c, x]

∈ BB

∣∣∣ {a, b, c} = C; {a, x, y} ∈ B
}

Again we get an immediate consequence of our definitions.

Lemma 2. Let P be an instance of T = (H,B, C) and ΦP be the correspond-
ing homomorphism. If we there is α ∈ CC,B with ΦP (α) = 1 then the triple
corresponding to C must be collinear in P .

Cancellation Patterns in Automatic Geometric Theorem Proving 7

Now a binomial proof of T = (H,B, C) corresponds to identifying an element
of CC,B as an element in the subgroup 〈HH,B〉.

Definition 2. A binomial proof for an incidence assertion T = (H,B, C) con-
sists of α ∈ HH,B and bi ∈ HH,B pairwise distinct (for 1 ≤ i ≤ k, k ∈ N0) and
an exponent vector (e1, . . . , ek) ∈ Nk

0 which witness CC,B ∩ 〈HH,B〉 �= ∅, i.e.

α = be1
1 · be2

2 · · · bek

k

In addition the exponent vector (e1, . . . , ek) ∈ Nk
0 is assumed to be be minimal

with this property and with respect to the partial order induced by “<” compo-
nentwise. The elements of HH,B ∪ CC,B are called biquadratic fractions.

As a direct consequence of Lemma 1 and Lemma 2 we get:

Theorem 1. If a projective incidence assertion T = (H,B, C) has a binomial
proof, then it is a theorem.

Let us spend a word on the automated finding of a proof with the above struc-
ture. If we consider a collinearity of three points (a, b, c) and consider all binomial
expressions that arise from considering three term Grassmann-Plücker relations
involving these three points and two other configuration points there are alto-
gether 3 ·

(
n−3

2

)
biquadratic equations that are consequences of this hypothesis.

For Pappos’s theorem this makes altogether 8 · 3 ·
(
6
2

)
= 360 relations coming

from all hypotheses. Then one has to search for a way to express a binomial
equation representing the conclusion as a combination of these hypotheses. This
problem can in principle be attacked by solving systems of linear equations (for
this consider the exponent vectors of the bracket equations involved). In [14] a
detailed complexity analysis of this scenario is given that also includes a few
tricks to cut down the hypothesis space.

Nevertheless finding a cancellation pattern falls back to an algorithmic process
on an in general quite huge (though still polynomial-sized) space of binomials
describing the hypotheses. It seems kind of unreasonable to consider every possi-
ble cancellation pattern between these equations. A big question is whether one
can take advantage of the incidence structure in advance and by this cut down
the algorithmic complexity of the search process.

2.2 How to Represent a Theorem?

As we already mentioned, non-degeneracy conditions like non-coinciding points,
or non-coinciding lines are quite often implicitly assumed without stating them
explicitly. We here will introduce a set of generic non-degeneracies that are
directly generated from the set H and the conclusion C, which will model exactly
these assumptions. In fact, if we use these generic non-degeneracy assumptions
they will ensure that sufficiently many brackets in the equations of potential
binomial proof will not vanish (see [14]). We will introduce a notion of saturation
for the collinearities H, which models that trivial conclusions are already taken.

8 S. Apel and J. Richter-Gebert

In addition we impose consistency conditions on the non-degeneracy assumptions
B. We start by explaining the saturation process. Under the assumption that all
points on a line are distinct one can conclude from {a, b, c}, {b, c, d} ∈ H that pa,
pb, pc, pd lie on a common line in each instance P = (p1, . . . , pn). So we could
w.l.o.g. assume that {a, b, d} ∈ H, too. The collinearities H are saturated, if

{a, b, c} ∈ H and {b, c, d} ∈ H =⇒ {a, b, d} ∈ H.

Note that we still require C /∈ H, even after saturation. We now can express
the generic non-degeneracy assumptions. For this we first consider a set A =
A(H, C) of triples, which is made saturated by the same rule but with groundset
H ∪ {C}.

We define the A-flat (i.e. the maximal sets of dependent elements) supported
by a triple {a, b, c} ∈ A by

f({a, b, c}) := {i | {a, b, i} ∈ A} .

f is well-defined and does not depend on the order of a, b, c since A is saturated.
We call these A-flats derived lines and collect them in a set G

G :=
{
f({a, b, c}) | {a, b, c} ∈ A

}
.

The derived lines correspond to the lines visible in the drawing of an instance of
the theorem. Within this setting we also require a consistency for the set B of
non-degeneracy conditions. The idea is as follows: we can paraphrase {a, b, c} ∈
B as pc not lying on the line spanned by pa, pb. So if there is another (different)
point pi (1 ≤ i ≤ n) on this line, [a, i, c]P will not evaluate to zero either. We
will call B consistent if

{a, b, c} ∈ B and {a, b, i} ∈ A ⇒ {a, i, c} ∈ B

Now we are able to describe the generic non-degeneracy assumptions B(A). They
ensure that no two (derived) lines collapse if they meet in a theorem point. This
is only the dual version of the assumption that no two points on a line indicated
by H should coincide. So B(A) consists of all triples which would indicate a
collapse of two lines (see also Figure 2).

B(A) :=
{
{a, b, c}

∣∣∃G, H ∈ G with |G ∩H | = 1

and a ∈ G \H, b ∈ H \G, c ∈ H ∪G
}

Observe that if for a configuration the generic non-degeneray assumptions B(A)
are satisfied and a derived line G intersects at least one other derived line H , then
automatically all points on G are distinct. Isolated lines that are not incident
with another derived line cannot be of any relevance for the theorem, and we
can w.l.o.g. neglect them completely. Furthermore the non-degeneracies B(A)
are by definition automatically consistent. From now on, we will consider only
theorems in canonic saturated form as defined as follows.

Cancellation Patterns in Automatic Geometric Theorem Proving 9

Fig. 2. Two non-degeneracy triples (white points)

Definition 3. Let T = (H,B, C) be a theorem and let A = A(H, C) be defined
as above. We say that it is in canonic saturated form, if

• the set H is saturated,
• with B(A) defined as above B(A) ⊆ B,
• B is consistent,
• there is no derived line which is disjoint from any other derived line,
• B and A are disjoint.

Remark 1. If one prefers not to deal with generically generated non-degeneracies
one may weaken the assumptions on B and not require that B(A) ⊂ B but only
the consistency of B. In this case, one has to additionally ensure that no two
points on common derived lines can coincide in any instance. However, if one
wants to derive a binomial proof in this wider setup, one has to explicitly ensure
every non-degeneracy of brackets involved in biquadratic fractions—in contrast
to the situation with B(A).

It might be the case that the conclusion line contains more than three points.
In this case there are several triples of points which can play the role of the con-
clusion. It might also be the case that we can conclude other collinearities from
C and H by applying the rules that saturate sets of triples about collinearities.
Theorems with C changed in this way are considered as equivalent:

Definition 4. Let T = (H,B, C) be a real projective theorem. Then a theorem
T ′ = (H,B, C′) is equivalent to T if C′ ∈ A(H, C) and C ∈ A(H, C′).

2.3 The Ceva-Menelaus Proving Method

The Idea: We now discuss another proving method that by definition considers
only cancellation patterns of points that are in a certain sense “close” in the
incidence graph of the theorem. For this proving method consider the well known
(affine) theorems of Ceva and Menelaus:

– Ceva’s theorem states that if in a triangle the sides are cut by three con-
current lines that pass through the corresponding opposite vertex, then the
product of the three (oriented) length ratios along each side equals 1.

– Menelaus’s theorem states that this product is −1 if the cuts along the sides
come from a single line.

Both situations are illustrated in Figure 3.

10 S. Apel and J. Richter-Gebert

a b

c

z

yd

x

a b

c

z

y

x

Ceva’s Thm:
|ax|
|xb| ·

|by|
|yc| ·

|cz|
|za| = 1 Menelaus’s Thm:

|ax|
|xb| ·

|by|
|yc| ·

|cz|
|za| = −1

Fig. 3. Theorems of Ceva and Menelaus

For the moment we assume that in any instance P of a Ceva or Menelaus
configuration each point p is finite and represented by special homogeneous co-
ordinates of the form (px, py, 1). Then the concrete determinant [a, b, c]P for the
instance P equals 2 ·area(a, b, c) and we can express the ratios of oriented lengths
on a line also by ratios of suitable determinants.

|ax|
|xb| =

[a, u, v]P
[b, v, u]P

where u and v span a line which intersects ab in x (1)

(compare this also with the “area principle” of [7,8,9,10]). Using this identity we
can rewrite the expressions in the theorems of Ceva and Menelaus as quotients
of products of determinants. By this we obtain almost trivial proofs of these two
theorems. (Observe that the numerator and denominator of the expressions ob-
viously cancel up to the corresponding sign—for the labeling see again Figure 3):

[a, d, c]P
[b, c, d]P

· [b, d, a]P
[c, a, d]P

· [c, d, b]P
[a, b, d]P

= +1 ⇐⇒ [a, c, d]P
[b, c, d]P

· [b, a, d]P
[c, a, d]P

· [c, b, d]P
[a, b, d]P

= −1

(2)
in the Ceva case and

[a, d, e]P
[b, e, d]P

· [b, d, e]P
[c, e, d]P

· [c, d, e]P
[a, e, d]P

= −1 ⇐⇒ [a, d, e]P
[b, d, e]P

· [b, d, e]P
[c, d, e]P

· [c, d, e]P
[a, d, e]P

= +1

(3)
in the Menelaus case, where d and e are two arbitrary distinct points on the line
x, y, z. Observe that all these equations can again be modeled in the language
of the multiplicative group BBwith B appropriately chosen.

We will call the terms on the right in (2) resp. (3) Ceva or Menelaus expres-
sions, respectively. It is important to notice that in these expressions each point
occurs as often in the numerator as in the denominator. By this the expression
becomes projectively invariant (i.e. it is stable under projective transformations
and rescaling of the homogeneous coordinates). This follows from standard ar-
guments for bracket invariants [15]. So we can drop the assumption that the
points were represented in the standard embedding of the form (px, py, 1). Also
the expressions are invariant under various obvious permutations of the points
involved (cyclic rotation of a, b, c, transposition of d, e in the Menelaus case).

Cancellation Patterns in Automatic Geometric Theorem Proving 11

By introducing determinants we also eliminated the explicit occurrence of the
edge points x, y and z from the representations of the algebraic expression. They
are represented implicitly by the corresponding cutting lines. (We will use this
terminology of edge points and cutting lines later on.)

We will now describe the fundamental idea of a Ceva-Menelaus proof. For
this idea the edge points will play a crucial role. We start by explaining the
argument on the level of oriented lengths. Later on we will have to switch to the
bracket representation in order to make the connection to binomial proofs. As a
binomial proof, a Ceva-Menelaus proof does also work with specified cancellation
patterns. However, here the primary objects are ratios of determinants. The
construction technique presented below will produce incidence theorems whose
proof is already implicitly given by their construction. The following process
illustrates the argument:

Start with any triangulated oriented combinatorial 2-manifold. The structure
of this manifold serves as a kind of frame for the construction of an incidence
theorem. Consider this manifold as being realized by flat triangles (it does not
matter if these triangles intersect, coincide or are coplanar as long as they rep-
resent the combinatorial structure of the manifold, i.e. triangles that share an
edge in the manifold must also share an edge in the geometric realization). Since
we here deal with theorems in the plane, we embed these triangles in R2. Let us
be concrete and take the projection of a tetrahedron (a, b, c, d) to R2. Now we
chose one additional point on each of the edges of the realized manifold. So in
our example we choose six points u, v, w, x, y, z, one on each of the edges of the
projected tetrahedron. Assume that for three of the faces these points satisfy
Ceva’s condition. Then they automatically satisfy Ceva’s condition also for the
last face—an incidence theorem.

a c

d

b

u
v

w
x

y + a c

d

b

u
v

w
x

z = a c

d

b

u
v

w
x

y z

The proof of this theorem is almost obvious from the algebraic characterization
of Ceva’s condition. Consider the following formula that arises by multiplying
the four Ceva conditions.(

|au|
|ub| ·

|bv|
|vc| ·

|cy|
|ya|

)
·
(
|cw|
|wd| ·

|dx|
|xa| ·

|ay|
|yc|

)
·

(
|ax|
|xd| ·

|dz|
|zb| ·

|bu|
|ua|

)
·
(
|bz|
|zd| ·

|dw|
|wc| ·

|cv|
|vb|

)
= 1. (4)

This formula obviously already holds on a symbolic level, since each of the ori-
ented lengths occurs once in the numerator and once in the denominator. On

12 S. Apel and J. Richter-Gebert

the other hand each of the four factors being 1 states the Ceva condition for one
of the faces. Thus three of these conditions imply the last one. The essential fact
about the structure of this proof is that whenever two faces meet in an edge the
two corresponding ratios cancel. In general we obtain:

For any triangulated oriented 2-manifold we may choose a point on each
edge such that for every except one face either a Ceva or a Menelaus
condition is generated. Then the edge points of the last triangle auto-
matically support a Ceva or Menelaus configuration such that the total
number of Menelaus configurations will be even.

Notice: for stating equations like (4) we need the orientability of the manifold:
it is necessary to equip each triangle with an orientation in such a way that
triangles traverse a common edge in different directions. Many details on this
proving pattern can be found in [16].

Instead of “filling the last triangle” there is also a different way of looking
at this proving method. The essence of the argument is that if triangles sup-
porting Ceva or Menelaus configurations are glued along their edges such that
corresponding edge points along edges are identified, then the corresponding
edge ratios along the edges cancel. So finally consider such a structure having a
boundary. The product of the corresponding ratios of this of the boudary must
be either +1 or −1 depending on whether the number of Menelaus configura-
tions involved is even or odd. The fact that the final triangle can be consistently
equipped with a Ceva or Menelaus configuration comes from the fact that the
product along a 3-cycle of boundary edges is +1 or −1. The same argument can
be applied to arbitrary cycle lengths along a boundary. For a 2-cycle we obtain
the following version of the same argument:

Assume that in a triangulated oriented 2-manifold each triangle is
equipped with a Ceva or a Menelaus configuration such that for all but
one of the edges the corresponding edge points of adjacent triangles are
identified. Then, if the number of Menelaus configurations is even, the
two edge points on the final edge coincide automatically.

We will see that this version of the argument is already very close to the con-
struction of binomial proofs.

Ceva-Menelaus-theorems: We will call an incidence structure constructed in the
way we just described a CM-theorem (independent from our previous notion of
a theorem from Section 2.2). We briefly summarize all the important points we
need for such a theorem. First we collect the necessities of the framing manifold
like structure.1

(i) An index set VM = {v1, . . . , vn} that plays the role of the vertices
of the underlying manifold like structure.

1 There is also an alternative way to formulate these by triangulated CW complexes,
but we will avoid these rather subtle topological approach here.

Cancellation Patterns in Automatic Geometric Theorem Proving 13

(ii) A list of abstract triangles T = (t1, . . . , tk); ti ∈ V 3
M; |ti| = 3.

A triangle is explicitly allowed to occur multiple times in this list.
(iii) The oriented edges of a triangle t = (i, j, k) are ∂(t) := {(i, j), (j, k), (k, i)}.
(iv) In the family of all edges of triangles there should exist a (further on fixed)

matching such that each edge (a, b) is matched with an edge with same
endpoints but in opposite direction (b, a) (this models the gluing process).

(v) The chosen matching induces a graph structure with nodes in T ,
where two triangles are connected if they are matched by at least one edge.
This graph must be connected.

(vi) For each triangle in t ∈ T we must specify whether it is of type
C (Ceva) or of type M (Menelaus).

(vii) The number of Menelaus triangles must be even.

So far these properties just encode the underlying triangle structure. They do
not carry incidence information yet. We now add incidence information by intro-
ducing edge points and Ceva or Menelaus configurations for each triangle. For
this we also have to specify what should be considered as an instance of the so
far purely combinatoric description of this framework. For the frame described
above this is just an assignment of positions in R2 for every vertex in V (triangles
may even collapse completely). We assume that there are γ triangles of type C
and μ triangels of type M. We now need:

(viii) An index set EM = {e1, . . . , ek} with one index for each of the pairs
of matched edges.

(ix) An index set CM = {c1, . . . , cγ} one for each triangle of type C.
(x) An index set MM = {m1, . . . , m2μ} two for each triangle of type M.

An instance of the overall structure is an assignment of coordinates in R2 to the
points of VM, EM, CM and MM such that

• For each edge point ei the corresponding representation is collinear with the
two endpoints of the corresponding edge. (Note that this also covers the case
in which the two endpoints of the edge coincide).

• For type C triangles the three lines joining edge points to the opposite tri-
angle vertex meet in the representation of the corresponding Ceva point ci.

• The three edge points of any triangle of type M are collinear. A line through
these three points is spanned by the two corresponding points in MM.

• Each edge point is not allowed to coincide with either of the endpoints of the
corresponding edge. This ensures suitable non-degeneray of the instance. In
particular this implies that Ceva points are not allowed to be on the edges
of their triangle.

Our earlier considerations on cancellation patterns show that for finding an in-
stance of a CM-theorem we do not have to care about the very last incidence. It
will be satisfied automatically. The reason for this is the previously described can-
cellation pattern on the oriented edge ratios. The non-degeneracy assumptions
ensure that all lengths that occur and all brackets involved in our cancellation
argument are indeed non-zero. For details see [1,16].

14 S. Apel and J. Richter-Gebert

2.4 Modeling Theorems by Ceva-Menelaus Constructions

Assume that a geometric theorem is given that was generated by the process de-
scribed in the preceding paragraphs (so its proof is implicit by the construction).
We now want to discuss the question when such a theorem corresponds to a real
projective incidence theorem described in canonic saturated form T = (H,B, C)
as introduced in Section 2.2. It is clear that affine proving methods for incidence
theorems translate into projective ones because we can w.l.o.g. assume that all
points are finite. To prove a theorem given by T = (H,B, C) by a CM-theorem
we will associate the points of T to the points of M in such a way that the
hypotheses of T—i.e. B and H—will certify that every instance of T is auto-
matically an instance of M. The conclusion C of T must be such that it can be
interpreted as a closing condition of the CM-theorem. By construction a CM-
theorem comes along with four sets of points (VM, EM, CM and MM), and
with certain collinearity conditions involving them. The points of T are taken
from an index set En. We will see that the vertices VM of the frame of the CM-
theorem, the Ceva points CM and the Menelaus points MM will be taken from
this index set En. It may happen that some edge points in EM of a CM-theorem
are implicitly present by the intersection of two lines and need not be associated
to points in En. Details will be explained in the next few paragraphs.

Let M be a CM-theorem with vertex set VM, Ceva/Menelaus points CM,
MM and edge points EM. Furthermore let T = (H,B, C) be a theorem in
saturated canonic form. Since T is saturated we have a natural notion of flats
of collinear points (each triple of points of a H-flat will correspond to a triple
in the saturated H). A subset S ⊆ En is called H-collinear if all three-element
subsets of S are in the collinearity hypotheses H. Note that by this definition also
sets of cardinality less than three are automatically H-collinear. Each element
in VM∪CM∪MM and some points in EM will correspond to an element of En.
Thereby the same point in En may play multiple of these roles. We will model
this correspondence by a mapping f : VM ∪ CM ∪ MM → En. This mapping
will be extended later on to some of the edge points. We define this mapping
in a way that instances of the theorem T will automatically be instances of the
CM-theorem M. For better readability we will set x := f(x). So if x is a point
label in M then x is the corresponding label in the theorem T .

The definition of an instance of an CM-theorem requires certain points to
be collinear (the edge point with the two corresponding endpoints of the edge
and the collinearities coming from the Ceva or Menelaus constructions). These
collinearities should be induced by corresponding collinearities from T . For this
we have to see how the triples in H interact with the incidence structure of M.
We have to examine the situation that occurs around the edge along which two
triangles are glued. We first single out one matched pair of edges in M that will
later on play the role of the conclusion of the theorem. For all other edges we
now consider the situation of the two triangles adjacent to this edge. Assume
that the two triangles are (a, b, c) and (a, c, d) in M (compare Figure 4). They
have the edge (a, c) in common which they traverse in opposite directions. On
this edge there is an edge point z.

Cancellation Patterns in Automatic Geometric Theorem Proving 15

Fig. 4. Combinatoric possibilities that the subconfigurations of two glued triangles fit
together

For each of the two triangles we have a corresponding cutting line that cuts
(a, c) in the point z ∈ EM. We can specify two specific points spanning each
line (in the drawing l, k and u, v—they may coincide with other points of the
configuration). They come from the corresponding lines in the Ceva or Menelaus
configurations and will be called canonical cutting points—a term we will use
frequently later on. In the case of a Ceva triangle these two points are the central
Ceva point (taken from CM) and the point opposite to the edge (taken from VM).
In the case of a Menelaus triangle these are two points spanning the Menelaus
line (both taken from MM). The required non-degeneracies on instances of M
are implied by:2

• The triples {k, l, a} and{k, l, c} as well as {u, v, a} and {u, v, c} lie in B.

Now two fundamentally different situations may arise depending on whether the
two cutting lines already coincide as a consequence of the collinearities in H or
not. These situations correspond to the two situations shown in Figure 4. We
say that the situation around the edge is properly represented by T if one of the
following two cases arises:

1. The map f is extended to map f(z) = z and the sets {a, c, z}, {k, l, z},
{u, v, z}, are all H-collinear in T . (This is the situation in which z is a part
of the theorem.)

2. The set {k, l, u, v} is H-collinear in T . (This is the situation in which z is
implicitly present as intersection of two lines.)

If all but one edge of M are properly presented by the mapping f and the
theorem T and these non-degeneracy requirements are met then automatically
every instance of T will induce a corresponding instance ofM. The construction
of the CM-theorem M implies that the last coincidence for the so far excluded
edge is satisfied automatically.

Now for the conclusion of T . We have to associate this conclusion with the sit-
uation around the so far excluded edge ofM. Again there are different combina-
torial situations in which the conclusion is represented by this final coincidence.

2 Observe that these requirements ensure, that all brackets in all Ceva resp. Menelaus
expressions involved do not vanish.

16 S. Apel and J. Richter-Gebert

Fig. 5. Combinatoric possibilities to encode the conclusion (indicated by bent lines)

The three possible situations are shown in Figure 5. The construction of the
CM-theoremM tells us that the edge and the two cutting lines coming from the
two triangles adjacent to it must have a point in common—this is the conclusion
inM. If there is a corresponding proper edge point in which the three lines meet,
we can model this easily in terms of T = (H,B, C)—see cases 1. and 2. below. If
not, by the construction ofM we only know that both cutting lines have a point
with the edge in common in every instance. A way to conclude a non-trivial
collinearity of points is to assume, that both lines have another different point
r in common. So both lines collaps in any instance—modelled by case 3. below.
The triangles are taken to be (a, b, c) and (a, c, d) with corresponding edge point
z ∈ EM and the cutting lines are spanned by l, k and u, v. As before these points
may partially coincide. We say that the conclusion is properly presented if one
of the following cases arises.

1. The map f is extended to map f(z) = z, C = {a, c, z}, each of the sets
{l, k, z} and {u, v, z} is H-collinear, and {k, z, u} ∈ B.

2. The map f is extended to map f(z) = z, C = {k, l, z}, each of the sets
{a, c, z} and {u, v, z} is H-collinear, and {a, c, k} ∈ B.

3. There is an r ∈ En such that each of the {r, u, v} and {r, k, l} is H-collinear,
C indicates the collapse of bothH-flats, and {a, c, r} ∈ B.3

3 Fractions, Groups and Graphs

We now aim at showing the equivalence of the two methods. For the entire section
let T = (H,B, C) be a theorem in canonic saturated form. We will relate the
both proving techniques on the level of underlying group calculations as well as
on the level of a so called base graph—a diagrammatic tool that helps to visualize
the cancellation patterns. For this we define a set QB of formal fractions in BB:

QB :=
{

[a, b, c]
[d, e, f]

∈ BB

∣∣∣ |{a, b, c} ∩ {d, e, f}| = 2
}

.

These fractions may be interpreted as ratios of oriented lengths (compare Sec-
tion 2.3). There are formal equations of elements of QB that obviously evaluate
3 Recall the definition for a set being H-collinear. It is a typical case which will also

arises later on in a proof for Pappos’s theorem, that k = r = u.

Cancellation Patterns in Automatic Geometric Theorem Proving 17

to 1 or ε in BB. For instance we have [x,y,a]
[x,y,b] ·

[x,y,b]
[x,y,c] ·

[x,y,c]
[x,y,a] = 1. Recall that this

is the expression that was related to Menelaus’s theorem. Similarly the equation
[d,c,a]
[d,c,b] ·

[d,a,b]
[d,a,c] ·

[d,b,c]
[d,b,a] = ε resembles Ceva’s expression. On the other hand the

biquadratic fractions, i.e. the elements of HH,B ∪ CC,B, can be expressed as the
product of two elements in QB. So the set QB is our starting point to relate the
two worlds of proving methods.

3.1 The Base Graph Γ

We introduce a diagrammatic way to deal with products of such fractions. The
understanding of both proving methods on the level of the base graph Γ (T) of
a given theorem T = (H,B, C) will be the key to see the equivalence between
the proving methods. The idea behind Γ (T) is that this graph shall have the
elements of B as nodes. Two nodes are joined by an edge if the triples differ
by exactly one element. This approach is closely related to the work of Dress
and Wenzel [4,5,6,19]. In contrast to us they used the bases of the matroid of
a concrete instance P as vertices of a graph Γ (P). In this approach it can be
shown that Γ (P) has the helpful property of being a Maurer Graph as defined
there.This property was motivated by [12] and revived in [19]. Unfortunately,
we here have only the partial information encoded in a theorem T = (H,B, C).
So, if P is an instance of T then Γ (T) is a subgraph of Γ (P). In general Γ (T)
will not be a Maurer Graph. We consider Γ (T) to be directed in the way that
each edge is contained in Γ in both directions.

Γ (T) :=
(
B,
{
(A, B)

∣∣∣A, B ∈ B, |A ∩B| = 2
})

In what follows we will consider various subgraphs in Γ (T). Each edge of Γ (T)
may be considered as a graphical equivalent of an element inQB. We will consider
the directed edge ({a, b, x}, {a, b, y}) as representing [a,b,x]

[a,b,y] . Here the order inside
the brackets (and thereby the permutation rules and the sign) are left aside
since they have no resemblance on the level of Γ (T). Roughly speaking, the
edge is directed from the numerator to the denominator. Conversely, we can also
interpret any collection of edges in Γ as product of ratios of brackets.

Later on, we will consider two edges canceled if they are traversed in different
directions. This models the fact that multiplying a bracket ratio by its inverse will
provide a cancellation. In order to visualize also products where some ratios occur
multiply, we also have to consider weighted subgraphs Sδ of Γ (T). Here δ is a
weight function giving each edge in S a value in N. This allows us to draw several
copies of the same edge. We will make heavily use of the (affine) interpretation
for the objects given in (1) in the next sections. This is no restriction since by a
suitable projective transformation we can always assume that all points involved
are finite. Next we illustrate the basic building blocks of both proving methods
within the base graph Γ (T). We will see later on that the building blocks of
both proving methods complement each other in the base graph.

18 S. Apel and J. Richter-Gebert

←→ ←→

Fig. 6. The two kinds of triangles that can arise in Γ and how they are interpreted
using (1)

3.2 Triangles in Ceva-Menelaus Proofs Are Triangles in Γ

As mentioned before, the Ceva and Menelaus expressions (2) and (3) correspond
to triangles in Γ (T) due to the brackets involved in these expressions (see Fig-
ure 6). However, the combinatorial type of these triangles is different for Ceva
and Menelaus configurations—and corresponds to the two possible combinatorics
for a 3-cycle in Γ . In a Ceva triangle four points are involved and each triangle
contains the Ceva center point. In a Menelaus triangle five points are involved
and each bracket contains the two spanning points of the Menelaus line. Observe
that this interpretation associates an edge in the graph triangle with an edge of
the Ceva or Menelaus triangle by using again the interpretation given in (1). So
the points spanning the cutting line of this edge correspond to the two points
that are shared by the bases joined by the corresponding edge in Γ (T). This
property is another characterisation for the canonical cutting points for an edge
as introduced earlier.

3.3 Biquadratic Fractions Are Quadrangles in Γ

Consider a biquadratic fraction α = [b,a,x][b,c,y]
[b,a,y][b,c,x] , i.e. an element in HH,B ∪ CC,B.

By definition, all brackets involved belong to B. In Γ , the index triples corre-
sponding to the brackets in this fraction are the vertices of a quadrangle in Γ (T).
If we want to write α as products of elements in QB, we have to split α. There
are two different ways for this each one corresponds to singling out a specific
pair of opposite edges in this quadrangle. We get the two possibilities:

[b, a, x]
[b, c, x]

· [b, c, y]
[b, a, y]

or
[b, a, x]
[b, a, y]

· [b, c, y]
[b, c, x]

. (5)

We investigate the left expression a bit closer (the other one can be treated anal-
ogously). The corresponding picture in Γ is given in Figure 7. Vertices occurring
in the numerators are drawn in white, the other ones in black. There is more in-
formation about the expression, which is not visualized in this quadrangle: there
must be a collinear triple by which the expression is contained in HH,B ∪ CC,B.
(Hence, not every quadrangle in Γ corresponds to a biquadratic fraction). In the
style of Lemma 2 and using Grassmann-Plücker relations we get:

Cancellation Patterns in Automatic Geometric Theorem Proving 19

←→ or

Fig. 7. The split biquadratic fraction [b,a,x]
[b,c,x]

[b,c,y]
[b,a,y]

visualized in Γ and realized by points

Fact 1. For α = [b,a,x][b,c,y]
[b,a,y][b,c,x] ∈ BB and an instance P = (p1, . . . , pn) holds:

ΦP (α) = 1 ⇔ {pa, pb, pc} or {pb, px, py} are collinear ⇔ [b, a, x]P
[b, c, x]P

=
[b, a, y]P
[b, c, y]P

We now want to find an affine interpretation by applying (1) to both hand-sides
of the right equation. Doing this we see, that a biquadratic fraction indicates
an equality of oriented length ratios both along the edge ac for every instance
satisfying the equation. Thus, the points b and x resp. b and y play the role
of points spanning the cutting line for both parts of a biquadratic fraction. So
a biquadratic fraction exchanges one of the points spanning the cutting line,
without changing the length ratio. The different situations are visualized in Fig-
ure 7 and correspond directly to Fact 1. We see that this closely resembles the
situations in Figure 4 and Figure 5. While a single biquadratic fraction is able
to exchange one point on a cutting line the situation in those figures deals with
the more general equality of oriented length ratios, with two potentially disjoint
pairs (k, l) and (u, v) spanning the cutting lines.

3.4 Chains of Quadrangles

Fortunately, we can model the more general case of exchanging arbitrary cutting
points by considering several biquadratic fractions which successively change the
points spanning the cutting line. They form a picture like ↑······↓↑······↓↑······↓ in the base
graph. This corresponds to a product of biquadratic fractions α1, . . . , αk. Here
each αi = τiρi is split in in two fractions τi, ρi ∈ QB with the additional property
ρi = (τi+1)−1 for i ∈ {1, . . . , k − 1}. Multiplying all these biquadratic fractions
we end up with the more general bracket ratio that expresses the exchange of
two arbitrary pairs of cutting points:

1 1︷ ︸︸ ︷ ︷ ︸︸ ︷
(τ1 · ρ1) · (τ2 · ρ2) · (τ3 · ρ3) · · · (τk · ρk)︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

α1 α2 α3 αk

= τ1 · ρk.

Such a sequence α1, . . . , αk of biquadratic fractions with these properties will
further on be called a chain. We define C forming a closed chain in the same
way by in addition requiring ρk = (τ1)−1.

20 S. Apel and J. Richter-Gebert

Lemma 3. In every instance P in which all ΦP (α1) = . . . = ΦP (αk) = 1 we
must have ΦP (τ1) = . . . = ΦP (τk) and in particular ΦP (τ1) = ΦP (ρk)−1.

Proof. Use the rightmost equivalence in Fact 1 for each ΦP (αi) = 1 (1 ≤ i ≤ k).

In each of the fractions τi there is exactly one letter (say a) in which the numer-
ator differs from the denominator (let the new letter there be c). The structure
of the binomial fractions implies that in each of the τi these two differing letters
are the same. Thus each τi expresses an oriented length ratio along the edge ac.
The lemma above shows that under ΦP all length ratios expressed by the τi are
identical. To emphasise the relation to this edge we say α1, . . . , αk forms a chain
along the edge ac.

Any such chain of split biquadratic fractions can be interpreted as a successive
exchange of one of the points, which span the cutting line. Each step corresponds
to one of the situations in Figure 7: We either exchange a point on the same
cutting line or we pivot to another cutting line. So in total we pass from two
cutting points to two other ones. With this terminology we can state two tech-
nical lemmata about the structure of binomial proofs. We will need them also
as technical tools later on.

Lemma 4. Let α = be1
1 · be2

2 · · · bek

k be a binomial proof for a theorem T =
(H,B, C) in canonic saturated form. Let C be a sequence of biquadratic fractions
taken from the set {α−1, b1, . . . , bk} which forms a chain along the edge ac. If
{a, c, z} ∈ A and {a, c, z′} ∈ A are collinear triples belonging to fractions in C,
then z = z′.

Proof. Let C = (α1, . . . , αm) be the chain. Let αi = [a,xi,zi][c,yi,zi]
[c,xi,zi][a,yi,zi]

. Then the
collinear triple of αi is either {a, c, zi} (second case in Figure 7) or {xi, yi, zi}
(first case in Figure 7). W.l.o.g. we may assume that the collinear triple of α1 is
{a, c, z}, the collinear triple of αm is {a, c, z′}, and furthermore that the collinear
triples of αi are of the form {xi, yi, zi} for i = 2, . . . , m− 1 (if this were not the
case we may just consider some suitable subchain of C). Since we have a chain the
collinear triples of successive αi, αi+1 for i = 2, . . . , m− 2 must have two points
in common. By our saturation assumption this implies that all points xi, yi, zi

for i = 2, . . . , m−1 must lie on a common line (a cutting line of ac). Futhermore
we must have z1 = z and zm = z′. So either z = z′ or these two points span the
cutting line. However the latter would be a contradiction to the collinearities
{a, c, z}, {a, c, z′} and the non-degeneracy assumptions B that prevent ac to be
identical to the cutting line in any biquadratic fraction.

Lemma 5. Let T = (H,B, C) be a theorem in canonic saturated form. There
can be no binomial proof α = be1

1 · be2
2 · · · b

ek

k such that there is a closed chain
using elements from the set {α−1, b1, . . . , bk}.

Proof. Assume on the contrary that we have such a chain and that this chain is
along the edge ac. Furthermore let [b,a,x]

[b,c,x] ·
[b,c,y]
[b,a,y] be the way one has to rewrite

α in order to draw the chain in Γ . So either {x, b, y} ∈ B, C = {a, b, c} or

Cancellation Patterns in Automatic Geometric Theorem Proving 21

{a, b, c} ∈ B, C = {x, b, y}. The rest of the proof by contradiction can be done
by a case distinction on the indicated shape of C, and similar arguments as in
the last lemma and an additional case distinction. We omit the technical details.

4 Equivalence!

4.1 How to Derive a Ceva-Menelaus Proof from a Binomial Proof

The main question of this section is: Given a theorem T = (H,B, C) in canonic
saturated form along with a binomial proof, how to construct a Ceva-Menelaus
proof for an equivalent theorem. Most of our considerations will be performed
on the level of the base graph Γ . The main strategy will be to take the differ-
ent quadrangles corresponding to biquadratic fractions and—like a combinatoric
puzzle—by gluing them create cycles that can be translated into Ceva-Menelaus
structures. If all these cycles are triangles they directly correspond to Ceva’s or
Menelaus’s theorem and this translation process will be comparably easy. Un-
fortunately there are situations in which these cycles can become considerably
longer. There will be two principle ways of how to deal with such situations:

• We can add two generic points to the theorem and thereby also enlarge Γ (T)
in a trivial way. In this case we can find a Ceva-Menelaus proof by further
decomposition of the long cycles.

• Alternatively, we can treat these long cycles as first class citizens and see
that they themselves encode theorems. We will call them Γ -cycle theorems.
We can consider them as additional building blocks in our manifold proofs.

Here we will mainly consider the first option and make some brief remarks on
the second option later on. So now we model the augmentation of T with two
generic points. This leads to a new theorem T ′ with enlarged groundset En+2.
For reasons of better readability we write g and h for the generic points n + 1
and n+2. These points can be interpreted as not lying on any derived line of the
theorem. So we define the set B′ to be the set B extended by all triples of the
form {a, b,g}, {a, b,h}, {a,g,h} for each element {a, b, c} of B and each order of
a, b and c.

Observe that B′ is still in saturated form.4 We now want to derive a Ceva-
Menelaus proof from the given biquadratic proof. We allow ourselves to prove
a theorem equivalent to T ′ = (H,B′, C) with the two generic points added.
We have seen that both types of proofs can be considered as calculations with
elements from the set of fractions QB. The equivalence proof will be mainly a
matter of regrouping these fractions.

To start with, we will illustrate the approach in the case of our running ex-
ample, Pappos’s theorem, and its biquadratic proof presented in Section 2.1.

4 The set A remains unchanged. When checking the consistency constraints for the
additional triples in B′ it is helpful to remember that B separates any two points
on a common derived line.

22 S. Apel and J. Richter-Gebert

Fig. 8. Visualization of the cancellation patterns in the biquadratic proof of Pappos’s
theorem in Γ (T). Edges labeled with the same capital letter are identified. The bi-
quadratic fraction with dotted lines encodes the conclusion.

This proof can be considered as the product of eight biquadratic fractions (ex-
pressing the hypotheses) being equal to another one (expressing the conclusion).
Equivalently we may write it as:

(
[124]
[127]

[137]
[134]

)
·
(

[154]
[157]

[197]
[194]

)
·
(

[184]
[187]

[167]
[164]

)
·
(

[427]
[421]

[491]
[497]

)
·
(

[457]
[451]

[461]
[467]

)
·(

[487]
[481]

[431]
[437]

)
·
(

[721]
[724]

[764]
[761]

)
·
(

[751]
[754]

[734]
[731]

)
·
(

[781]
[784]

[794]
[791]

)
= 1

The fact that we have a biquadratic proof implies that each bracket occurs in
the numerator as often as in the denominator. From every binomial proof α =
be1
1 ·be2

2 · · · b
ek

k a similar equation 1 = be1
1 ·be2

2 · · · b
ek

k ·α−1 can be derived. We name
this equation (∗). As a product of split biquadratic fractions the different factors
induce a (weighted) subgraph in Γ . See Figure 8 for the case of Pappos’s theorem.
Just like in Figure 7 we also indicated which ratios of brackets belong together
via a biquadratic fraction. The fraction encoding the conclusion is emphasized
by using dotted lines.

Regrouping the fractions: In this (very special!) case of Pappos’s theorem, equa-
tion (∗) and the splitting indicated in Figure 8 imply cancellation cycles in Γ
which are already triangles. By our considerations of Section 3.2, they can di-
rectly be interpreted as Ceva or Menelaus triangles. We get exactly six Ceva con-
figurations. The biquadratic fractions indicate which triangles should be glued

Cancellation Patterns in Automatic Geometric Theorem Proving 23

Fig. 9. The six big equilateral triangles in the picture correspond to the six Ceva
configurations that arise in the proof together with the central Ceva point. Opposite
sides of the hexagon have to be identified, such that the edges are traversed in opposite
directions. So the overall topology of the proof is a torus.

together. They model the exchange of a single point on a cutting line. The result
is shown in Figure 9. This structure should be considered as the frame of a CM-
theorem. Each of the six triangles thereby is of type C (Ceva). The structure
of the underlying manifold is a combinatorial torus composed of six triangles;
opposite edges of the hexagon have to be identified. The presence of five of the
Ceva configurations implies the presence of the last one (which can be considered
as the final incidence of Pappos’s theorem).

In fact, one has to look a bit closer to rediscover Pappos’s theorem from this
proof, since many edge points used in the CM-theorem do not play a role in
Pappos’s theorem. To see this consider Figure 10. The first picture visualizes
the framing manifold of the CM-theorem. Opposite sides of the hexagon have
to be identified. The second picture shows the situation after the identification.
A careful investigation of the biquadratic fractions involved shows that we are
always in the left case in Figure 7, in which the edge points are not part of
the theorem and can be removed from the drawing. Therefore none of the edge
points in the CM-theorem is mapped to a point in Pappos’s theorem. Something
similar holds for the lines supporting the triangle: they only contain two theorem
points and are of no relevance for the theorem. Therefore they can be omitted
in the picture, too. Now we are left with a drawing of Pappos’s theorem (third
picture) and one can easily check that we really found a Ceva-Menelaus proof
for it.

Back to the general case: Also in the general case, the equation corresponding
to (∗) indicates a weighted subgraph Sδ of Γ consisting of cycles. However, the
above conversion is special in three different ways. Firstly, in general the cycles
that occur may be larger than triangles. Secondly, the biquadratic fractions
matching the edges of two cycles may in general be replaced by a whole chain of
quadrangles with each quadrangle representing a biquadratic fraction (compare
Section 3.3). Thirdly, we have to deal with multiple edges in Sδ. Multiple edges
correspond to fractions that are used more than once in the cancellation pattern.
As before δ is the weight function that expresses these multiplicities.

24 S. Apel and J. Richter-Gebert

Fig. 10. Extracting Pappos’s theorem from the Ceva-Menelaus proof

We first deal with the problem of large cycles and consider Sδ. As mentioned
before, we now consider edges canceled if they are traversed in different direc-
tions. So any 2-cycle vanishes. At this point, a vanishing 2-cycle stands for two
biquadratic fractions which are adjacent in a chain (and the inner edges cancel).
So we are left with cycles of length ≥ 3. If possible, we decompose cycles of
length ≥ 4 into smaller cycles. This means modifying the subgraph Sδ of Γ (T)
together with its weight function δ by introducing new pairs of opposite edges.
We may introduce such a 2-cycle, between two non-adjacent edges in a cycle in
Sδ, whenever the corresponding vertices have two labels in common (thus are
connected in Γ (T)). So we are left with irreducible cycles of unknown length.
Here irreducible means that the cycle cannot be decomposed in Γ (T) into smaller
cycles. So there can be no multiple edge in irreducible cycle, since they could
be decomposed otherwise. Hence the irreducible cycles are (ordinary) subgraphs
of Γ (T). For ordinary cycles being irreducible implies that no two non-adjacent
vertices of a cycle are connected in Γ (T). If we were in a base graph Γ (P) of an
instance P , by results from [4] and [12] and some relatively simple considerations
on the fact that the matroid underlying the instance is (simple and) realizable
all irreducible cycles were of length 3. However, we are dealing with Γ (T) and
many of the edges present in Γ (P) may be missing. So we are forced to deal with
the remaining irreducible cycles (of length ≥ 4) by other means, since the partial
information of B may not suffice to decompose Γ (T). As mentioned before there
are two strategies to dealing with them.

Two Additional Generic Points: In this approach we will find a Ceva-
Menelaus proof of a theorem equivalent to T ′ = (H,B′, C). Of course the col-
lection of irreducible cycles found above is also a subgraph of the even bigger
graph Γ (T ′) in which two generic points have been added. In fact these two
points in general position added before introduce enough new bases and edges
in Γ (T ′) = Γ ((H,B′, C)) that arbitrarily large cycles become decomposable, if
they are already a subgraph of Γ (T). A very general example for this method
is given in Figure 11. To the large cycle of length m (drawn with thick lines) we
first add a corona of bases only involving the generic point g. This introduces a
ring of m Menelaus triangles adjacent to the irreducible cycle followed by a ring
of m Ceva triangles adjacent to them. The vertices of the non-matched edges of
these Ceva triangles all share point g. The two vertices of such an edge have one

Cancellation Patterns in Automatic Geometric Theorem Proving 25

Fig. 11. An example for decomposing an irreducible cycle

more point in common. Finally considering bases of the form (x,g,h) helps to
fill the remaining hole of the structure by Ceva and Menelaus triangles.

It is not hard to verify that this pattern works for arbitrary irreducible cycles
in Γ (T). So we managed to decompose all cycles in (∗) with length ≥ 4 into
triangles. Just as in the previous example these triangles will all indicate Ceva
and Menelaus triangles. We will now start to check the formal requirements
for a Ceva-Menelaus proof as stated in Section 2.3. By construction we already
meet some requirements for the framing manifold like structure. The collection
of graph triangles just found gives us: a list of triangles (one for each graph
triangle), but without explicit matching. It also gives an orientation and a type
(C or M) induced by the interpretation given in Section 3.2. Therefore we can
determine sets CM and MM. As soon as we can find a matching, we also can
explicitly describe VM. The interpretation of VM as vertices of graph triangles
as described in Section 3.2 will induce a function f : VM ∪ CM ∪MM → En+2.
Furthermore, the vertices of the graph triangles lie by definition in B′. On the
other hand, this gives us exactly the required non-degeneracies needed in Ceva-
Menelaus proofs—they encoded that the vertices of an edge are not incident
with the cutting line.

The remaining requirements are mostly concerned with the way triangles are
glued. We fix a binomial proof 1 = be1

1 · be2
2 · · · bek

k ·α−1 for the following consider-
ations. So if we take any edge in one of the graph triangles just found we want to
find an edge in another graph triangle to glue to it (i.e. we search for the matching
of the edges). To do so we track how the edge got into the cycle in Γ . If it originates
from the decomposition of a bigger cycle, it has to cancel with another edge and

26 S. Apel and J. Richter-Gebert

we found its counterpart. Otherwise it will be part of a (split) biquadratic fraction
in (∗). So the other part of the fraction (which is also an edge) has to be part of
the cancellation pattern, too. This edge in turn is either an edge of an triangle or
it vanishes by the decomposition rules. If it vanishes we can restart the game with
the edge responsible for this cancellation process. Thus by induction, we discover
a (maximal) chain of biquadratic fractions in the cancellation pattern. It has to
end somewhere5 and the last edge is the counterpart of the edge we started with.
If we iterate this process for every edge in the irreducible cycles, we can find a
matching. It induces VM. Observe that the induced orientations on the matched
edges have opposite directions by the way we split biquadratic fractions. Further-
more, the graph structure with a node for each triangle induced by the matching
as described in Section 2.3 is connected. Assuming the contrary, one connected
component would induce a proper subfamily S of the binomial proof that gives a
complete cancellation pattern, in conflict to the definition of a biquadratic proof
(the exponent vectors there were minimal).

Now consider two matched edges (a, c) and (c, a). Say that k, l resp. u, v
are the canonical cutting points induced by the triangles. We want to show
that the situation around the edge is properly represented (see Section 2.3 and
Figure 4). If the graph edges corresponding to (a, c) and (c, a) form 2-cycles,
then {k, l} = {u, v} and {k, l, u, v} is H-collinear. So now we can assume that
the graph edges are connected via biquadratic fractions in (∗). Due to Lemma 5,
there will be exactly one pair of matched triangles where this chain contains
α−1, the fraction expressing the conclusion. This pair will play the role of the
conclusion in the CM-proof. All remaining pairs of edges are glued with chains
of fractions contained in {b1, . . . , bk}. As discussed in Section 3.3, such a chain
induces a situation which resembles one of the pictures in Figure 4. The fact
that biquadratic fractions in {b1, . . . , bk} come along with a collinear triple in H
and the fact that H is saturated ensures that also the formal requirements for
the proper representation are met. (The details are similar, but also easier as in
the following considerations.)

Now we want to analyse the conclusion edges. Lemma 5 ensures that the edges
really exist and do not vanish in Γ . Say

α−1 =
[b, a, x]
[b, c, x]

· [b, c, y]
[b, a, y]

, (6)

split in the same way as it occurs in (∗) and expressed in terms of the existing
preimages of f . So (a, c) is the conclusion edge. By investigating the conclusion
chain—name it C—in detail we will see that it is exactly an equivalent formu-
lation of the conclusion being properly represented (corresponding to Figure 5).
So it should be no surprise, that we will have to do a case distinction. We will
speak of left and right ends of the chain to tell them apart. Let l, k resp. u, v
be the canonical cutting points at the left resp. right end of the chain, which
are the edges directly corresponding to the conclusion edges in triangles on our
manifold like structure.
5 Since we started with a non-vanishing edge. Vanishing edges always vanish in pairs.

Cancellation Patterns in Automatic Geometric Theorem Proving 27

Case (1): C = {a, b, c} and {x, b, y} ∈ B. With z ∈ EM the corresponding edge
point and z := b this case will match with Figure 5 (left) and resembles the
first possibility for the conclusion in Ceva-Menelaus proofs. The details are: In
no fraction between α−1 and an edge at the end of the chain C, the cutting
line can be changed due to Lemma 4. Since each fraction comes along with a
triple in H and since H is saturated we can conclude that {k, l, z = b, x} and
{u, v, z, y} are H-collinear. W.l.o.g. k �= z and u �= z.6 The following scheme
indicates how we can exploit B being consistent, triples on the top of the arrows

indicate H-collinear sets: {x, z, y} {k,z,x}−→ {k, z, y} {u,z,y}−→ {k, z, u}. In total we
meet the requirements for the first possibility of the conclusion being properly
represented.

Case (2): C = {x, b, y} and {a, b, c} ∈ B.

Case (2a): No biquadratic fraction in C has {a, c, w} as collinear triple (for any
w ∈ En). With this we can conclude, that (w.l.o.g) {b, k, l, x} and {b, u, v, y}
are H-collinear. So C indicates a collaps of both lines. With r := b this is exactly
the third case in the definition of a Ceva-Menelaus proof.

Case (2b): There is a biquadratic fraction in C which {a, c, w} ∈ H as collinear
triple (for any w ∈ En). The fraction α−1 cannot be located between two frac-
tions in C with collinear triple {a, c, w}.7 So w.l.o.g. {a, c, w} is a collinear triple
in C only on the right side of α−1. So on this side {w, u, v} is H-collinear. From
the fractions between α−1 and where {a, c, w} is first (seen from the left side)
collinear triple and by Lemma 4 we can conclude that {b, y, w} is H-collinear.
From the left side we conclude that {k, l, x, b} is H-collinear.

The collinearity of C′ := {k, l, w} can be deduced from this information together
with C = {x, b, y} ad vice versa. So (H,B′, C′) is an equivalent formulation of
the theorem (H,B′, C). In addition we can deduce {a, c, k} ∈ B (w.l.o.g. k �= w)
and fulfill the requirements in the second possibility of a Ceva-Menelaus proof.
The deduction is again indicated by the scheme

{a, b, c} {a,c,w}−→ {a, w, b} {w,b,k}−→ {a, w, k} {a,w,c}−→ {a, c, k}.

The only thing left to show is that the number of Menelaus triangles is even.
The total number of triangles is even, since otherwise, there could not exist a
matching of edges. So it is sufficient to show that the number of Ceva triangels
is even. So we can reformulate our claim: Form the Ceva or Menelaus expression
(as indicated in (2) or (3) and with this order of indices inside the brackets) and
multiply them. All ratios in (2) or (3) have the shape [a, c,d]

[b, c,d] (for some elements
a, b, c, d ∈ En). The number of Ceva triangles is even if and only if this products
equals 1.

To show this, we undo all we did so far without permuting indices inside the
brackets and by this simplify the expression: consider only the edge ratios of

6 Since: {a, k, l} ∈ B =⇒ k �= l =⇒ w.l.o.g k �= z. Analogously for u �= z.
7 Otherwise, we could construct a closed chain contradicting Lemma 5.

28 S. Apel and J. Richter-Gebert

a

b

c
d

e

f

z1

z2

y1

y2

x2

x1

Fig. 12. A Γ -cycle theorem that corresponds to a certain 6-cycle of bases. It can be
used to derive another proof of Pappos’s theorem.

those triangles added by decomposing an irreducible cycle. We know by con-
struction that in the product a lot of ratios cancel and we are left with the edge
ratios of the irreducible cycle. If we proceed in this way of thinking we will end
up just with the cancelling cycles Sδ we started with. They were—up to a per-
mutation of indices—the left side of (∗). But by considering the ratios in a split
biquadratic fraction as in (5) and the shape of ratios present, we see that we can
permute the indices to obtain the left side of (∗) without changing the sign. And
the right side of the equation (∗) is 1.

Considering Irreducible Cycles in Γ as Theorems: We now want to
leave the path just seen which uses the generic points and indicate another way
to treat the irreducible cycles in Γ . Another, in a sense more compact approach
is to consider those cycles themselves as fundamental objects and evaluate their
role in the assembling of our manifold like structures. They encode theorems
similar to Ceva’s or Menelaus’s theorems, we call them Γ -cycle theorems. They
can be proved by our previous decomposition argument by glueing Ceva and
Menelaus triangles. The structure of these Γ -cycle theorems is simple: Take any
(irreducible) cycle in Γ , form the corresponding expression of ratios of brackets.
It forms a product which equals 1.

Again we may interpret this equation on the level of ratios of lengths. The
bracket expression gives another almost trivial proof for the Γ -cycle theorem.
Although the proofs of such theorems are simple and straight forward they give
rise to surprising theorems on the level of length ratios. A natural task is to enu-
merate such Γ -cycle theorems (up to isomorphism and only irreducible cycles).
If one does so one finds that there are two such theorems for 3-cycles, one for
4-cycles, two for 5-cycles, five for 6-cycles, ten for 7-cycles and 23 for 8-cycles.8

8 The enumeration together with a geometric analysis of the theorems will be com-
pleted in a forthcoming paper.

Cancellation Patterns in Automatic Geometric Theorem Proving 29

One example of particular beauty is shown in Figure 12. It corresponds to the
6-cycle

{a, b, c} → {b, c, d} → {c, d, e} → {d, e, f} → {e, f, a} → {f, a, b} → {a, b, c}.

Expressed in terms of length ratios this implies for the incidence configuration
of Figure 12 that

|a, x1|
|x1, d|

· |d, x2|
|x2, a|

· |b, y1|
|y1, e|

· |e, y2|
|y2, b|

· |c, z1|
|z1, f |

· |f, z2|
|z2, c|

= 1

This implies that if x1 = x2 and y1 = y2 we must also have z1 = z2. This is
another proof of Pappos’s theorem. In Γ , the coincidence of points corresponds
to gluing opposite sides of the hexagon representing the above 6-cycle: Again
the structure of a torus!

4.2 From a Ceva-Menelaus Proof to a Binomial Proof

So far we explained how a binomial proof can be transferred into a Ceva-
Menelaus proof. The opposite direction is comparably simple. Let T = (H,B, C)
be a real projective incidence theorem in canonical saturated form with a Ceva-
Menelaus proof given. So we are given sets VM, CM, MM and EM, a list of
triangles T together with indicated types (C or M), a matching on the edges, a
location for the conclusion singled out and a function f that specifies the relation
of En and the Ceva-Menelaus construction. They meet all the requirements of
Section 2.3. By Section 3.2 the triangles in T correspond to triangles in Γ via
the corresponding Ceva or Menelaus expressions. For each pair of edges glued to-
gether in the Ceva-Menelaus proof, we want to connect the corresponding edges
in Γ with biquadratic fractions. Roughly speaking, collecting all these fractions
will give us a binomial proof for a theorem T ′ = (H,B, C′) equivalent to T .

Now consider two triangles glued together along the edge (a, c) and with
edge point z ∈ EM (and (a, c) not the conclusion edge). Let k, l resp. u,
v be the canonical cutting points in the triangles corresponding to (a, c). So
({a, k, l} , {c, k, l}) and ({c, u, v)} , ({a, u, v}) are the graph edges corresponding
to the edge (a, c) in both triangles. We want to express [a,k,l]

[c,k,l]

[c,u,v]
[a,u,v] as a product

of biquadratic fractions. By the assumptions on the matching in Ceva-Menelaus
proofs and our considerations of Section 3.2 we can successively exchange the
points spanning the cutting line via biquadratic fractions. Together with the fact
that B is consistent we can conclude, that in each intermediate step, the triples
occurring lie in B.

We exemplify this in the case where f is extended to z and {l, k, z} and
{u, v, z} and {a, c, z} are H-collinear (left picture in Figure 4—the other case
can be done similarly). W.l.o.g k �= z and u �= z. Consider the biquadratic
fractions:

30 S. Apel and J. Richter-Gebert

[a, k, l]
[c, k, l]

[c, k, z]
[a, k, z]

,
[a, k, z]
[c, k, z]

[c, u, z]
[a, u, z]

,
[a, u, z]
[c, u, z]

[c, u, v]
[a, u, v]

(7)

Since {a, k, l}, {c, k, l}, {a, u, v}, {c, u, v} ∈ B and since B is consistent, the frac-
tions are indeed elements in BB. Bearing in mind the definition for {l, k, z} resp.
{u, v, z} resp. {a, z, c} being H-collinear, the fractions either evaluate to 1 or are
elements of HH,B due to {l, k, z} ∈ H resp. {u, v, z} ∈ H resp. {a, z, c} ∈ H.
Multiplying the fractions gives the desired expression.

We collect all those biquadratic fractions for any two glued edges in our man-
ifold like structure which do not model the conclusion. If we multiply all these
fractions (with the order of indices inside the brackets as just stated) the chains
just produced cancel and we are exactly left with fractions corresponding to the
triangles in the graph we started with (compare (2) and (3) and Figure 6). So
in BB these brackets cancel in 3-cycles and leave a factor ε for each Ceva con-
figuration. Since the overall number of Ceva configurations is even, in total we
are left with a 2-cycle along the conclusion edge. More precisely: if we call the
conclusion edge (a, c) and let k, l resp. u, v be the canonical cutting points in
the associated triangles, then due to cancellation this overall product must have
the form:

[c, k, l]
[a, k, l]

[a, u, v]
[c, u, v]

(8)

If we do the same translation process as for the normally glued edges as far as
possible (with the given hypotheses), we will be left with a biquadratic fraction
encoding an equivalent conclusion. So we have to differentiate between the dif-
ferent possibilities to encode a conclusion in a Ceva-Menelaus proof (compare
also Figure 5). Therefore let z ∈ EM be the edge point corresponding to the
edge (a, c).

Case (1): f is extended to map f(z) = z, C = {a, c, z}, {l, k, z} and {u, v, z}
are H-collinear, {k, z, p} ∈ B. With the same considerations as before we can
again conclude that the rightmost and the leftmost fractions in (7) are inHH,B or
evaluate to 1. Multiplying them with (8), we are left with the biquadratic fraction
in the middle of (7) which lies in CC,B since C = {a, c, z} and {k, z, u} ∈ B.
If we collect all biquadratic fractions used we found the desired certificate for
CC,B ∩ 〈HH,B〉 �= ∅.

Case (2): f is extended to map f(z) = z, C = {k, l, z}, {a, c, z} and {u, v, z}
are H-collinear, {a, c, k} ∈ B. Again assume w.l.o.g. k �= z and u �= z. Multiply
expression (8) by the elements

[c, u, z]
[a, u, z]

[a, k, z]
[c, k, z]

,
[c, u, v]
[a, u, v]

[a, u, z]
[c, u, z]

of HH,B gives
[c, k, l]
[a, k, l]

[a, k, z]
[c, k, z]

which is an element of CC,B due to {a, c, k} ∈ B. In total we found a certificate
for CC,B ∩ 〈HH,B〉 �= ∅. For the fractions lying in HH,B we need also B being
saturated.

Cancellation Patterns in Automatic Geometric Theorem Proving 31

Case (3): C indicates the collaps of the two H-flats given by the H-collinear
sets {r, u, v} and {r, k, l} (with an r ∈ En). Furthermore holds {a, c, r} ∈ B.
Multiplying expression (8) with the elements

[c, k, r]
[a, k, r]

[a, k, l]
[c, k, l]

,
[c, u, v]
[a, u, v]

[a, u, r]
[c, u, r]

of HH,B gives
[c, k, r]
[a, k, r]

[a, u, r]
[c, u, r]

,

an element in CC′,B with C′ := {k, r, u}. This gives a certificate for CC′,B ∩
〈HH,B〉 �= ∅ and proofs the equivalent theorem T ′ := (H,B, C′).

It is clear that we can also modify the certificates found to obtain a (minimal)
binomial proof.

5 Conclusion

We will close this paper with a few remarks and questions that we consider
relevant and worth a further investigation.

1. On glue and matter: There is a nice duality between the binomial and the
Ceva-Menelaus proving techniques: In the Ceva-Menelaus construction we saw
that by multiplying biquadratic fractions we can pass from one pair of (canonical)
spanning points to the others. So one could say that the (chains of) biquadratic
fractions are the glue in the Ceva-Menelaus world. On the other hand, if we
transfer a binomial proof to a Ceva-Menelaus proof, we can consider the can-
cellation patterns to consist of triangles (which correspond to Ceva or Menelaus
triangles)—at least in the approach with g and h. So here the Ceva-Menelaus
triangles play the role of the glue.

2. Finding Ceva-Menelaus proofs: Our translation process is capable to trans-
late a binomial proof (which itself can be found algorithmically) to a Ceva-
Menelaus proof. Nevertheless so far we know of no good algorithm that is capable
of producing a Ceva-Menelaus proof directly from T = (H,B, C). The ultimate
goal here would be to find an algorithm that uses the incidence structure of
the configuration directly to extract a very small search tree for unveiling the
underlying manifold proof.

3. Some proofs are nicer than others: Our considerations show that an algo-
rithm that is capable of finding a Ceva-Menelaus proof cannot be more powerful
than the known algorithms for finding binomial proofs (see [13]). But we could
try to find an (efficient) algorithm which transfers a binomial proof into a Ceva-
Menelaus proof. Ceva-Menelaus proofs are in a sense more visual. They provide
a manifold structure that serves as a framework for the proof of the theorem. In a
way looking at a Ceva-Menelaus proof one directly “sees” that a theorem is true.
Since there are several degrees of freedom in the proof, it could be an interesting
task to find an algorithm that produces the “most beautiful” Ceva-Menelaus
proof based on a binomial proof.

4. What are interesing Γ -cycle theorems? Γ -cycle theorems form a natural
class of geometric theorems with almost trivial proofs. Classify them!

32 S. Apel and J. Richter-Gebert

5. Is there a genus of an incidence theorem? The manifold proofs come along
with a natural topology. In particular we have seen two proofs of Pappos’s the-
orem and both beared the structure of a torus. Is the topological type of the
proof an invariant of the theorem? So far we were not able to find Ceva-Menelaus
proofs for Pappos’s theorem that had a different topological type (as long as we
exclude the possibility of adding additional generic points).

6. Where is the complexity? All our algorithms can find proofs in polynomial
time. However proving of incidence theorems is provably hard, since one can
in principle encode NP-hard problems. So if P �= NP there must be theorems
that are not provable by these two methods. Is there still a way to add auxil-
iary points to those configurations such that manifold proofs become available?
The complexity of finding the proof would then be hidden in finding the right
auxiliary constructions.

References

1. Apel, S.: A comparison of Binomial proofs and Ceva-/Menelaus proofs for real
projective incidence theorems, Bachelor Thesis, TU Munich (2009)

2. Bokowski, J., Richter, J.: On the finding of final polynomials. Europ. J. Combina-
torics 11, 21–34 (1990)

3. Crapo, H., Richter-Gebert, J.: Automatic proving of geometric theorems. In:
White, N. (ed.) Invariant Methods in Discrete and Computational Geometry, pp.
107–139. Kluwer Academic Publishers, Dordrecht (1995)

4. Dress, A.W.M., Wenzel, W.: Endliche Matroide mit Koeffizienten. Bayreuth. Math.
Schr. 24, 94–123 (1978)

5. Dress, A.W.M., Wenzel, W.: Geometric Algebra for Combinatorial Geometries.
Adv. in Math. 77, 1–36 (1989)

6. Dress, A.W.M., Wenzel, W.: Grassmann-Plücker Relations and Matroids with Co-
efficients. Adv. in Math. 86, 68–110 (1991)

7. Fearnley-Sander, D.: Plane Euclidean Reasoning. In: Wang, D., Yang, L., Gao,
X.-S. (eds.) ADG 1998. LNCS (LNAI), vol. 1669, pp. 86–110. Springer, Heidelberg
(1999)

8. Grünbaum, B., Shephard, G.C.: Ceva, Menelaus, and the Area Principle. Mathe-
matics Magazine 68, 254–268 (1995)

9. Grünbaum, B., Shephard, G.C.: A new Ceva-type theorem. Math. Gazette 80,
492–500 (1996)

10. Grünbaum, B., Shephard, G.C.: Ceva, Menelaus, and Selftransversality. Geome-
triae Dedicata 65, 179–192 (1997)

11. Grünbaum, B., Shephard, G.C.: Some New Transversality Properties. Geometriae
Dedicata 71, 179–208 (1998)

12. Maurer, S.B.: Matroid basis graphs I. J. Combin. Theory B 14, 216–240 (1973)
13. Richter-Gebert, J.: Mechanical theorem proving in projective geometry. Annals of

Mathematics and Artificial Intelligence 13, 139–172 (1995)
14. Richter-Gebert, J.: On the Realizability Problem of Combinatorial Geometries –

Decision Methods, Doktoral Thesis, TU Darmstadt (1992)
15. Richter-Gebert, J.: Perspective on Projective Geometry, p. 580. Springer, Heidel-

berg (2011)

Cancellation Patterns in Automatic Geometric Theorem Proving 33

16. Richter-Gebert, J.: Meditations on Ceva’s Theorem. In: Davis, C., Ellers, E. (eds.)
The Coxeter Legacy: Reflections and Projections, pp. 227–254. American Mathe-
matical Society, Fields Institute (2006)

17. Sturmfels, B.: Algorithms in Invariant Theory. Springer, Wien (1993)
18. Wenzel, W.: A Group-Theoretic Interpretation of Tutte’s Homotopy Theory. Adv.

in Math. 77, 27–75 (1989)
19. Wenzel, W.: Maurer’s Homotopy Theory fo Even Δ-Matroids and Related Com-

binatorial Geometries. J. Combin. Theory A 71, 19–59 (1995)
20. White, N.: The Bracket Ring of Combinatorial Geometry I. Transactions AMS 202,

79–95 (1975)

Exploring the Foundations of Discrete Analytical

Geometry in Isabelle/HOL

Jacques Fleuriot

Centre for Intelligent Systems and their Applications
School of Informatics, University of Edinburgh,

EH8 9AB, United Kingdom
jdf@inf.ed.ac.uk

Abstract. This paper gives an overview of the formalization of the
Harthong-Reeb integer number system (HRω) in the proof-assistant Is-
abelle. The work builds on an existing mechanization of nonstandard
analysis and describes how the basic notions underlying HRω can be re-
covered and shown to have their expected properties, without the need
to introduce any axioms. We also look at the formalization of the well-
known Euler method over the new integers and formally prove that the
algorithmic approximation produced can be made to be infinitely-close
to its continuous counterpart. This enables the discretization of contin-
uous functions and of geometric concepts such as the straight line and
ellipse and acts as the starting point for the field of discrete analytical
geometry.

Keywords: discrete geometry, nonstandard analysis, Harthong-Reeb
numbers, Euler method, mechanical theorem proving, Isabelle.

1 Introduction

The Harthong-Reeb number system HRω is a well-established discrete model of
the continuum [10] stemming from nonstandard analysis (NSA) [15]. It can pro-
vide a systematic framework in which a continuous function, e.g. an ellipse, can
be discretized and the results then shown to be equivalent to the original con-
tinuous function through the use of rigorous arguments based on infinitesimals
and infinitely large numbers.

In this work, we carry out a rigorous formalization of HRω in the proof as-
sistant Isabelle [13]. This is both an exercise in formalized mathematics and a
means of extending the number systems available for reasoning about geometric
problems in the theorem prover. In some past work [7,4], we already combined
NSA with geometry to formally explore the properties of novel infinitesimal and
infinite geometric notions. Although the current work is in the same spirit, we do
not claim to have established any of the mathematical foundations but merely
to be verifying some of the interesting results that a team of people have been
producing recently in discrete geometry [1,2,9].

As a result, our article deliberately follows in structure much of the exposition
given by Chollet et al. [2], which purposefully revisits the original NSA approach

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 34–50, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Exploring the Foundations of DAG in Isabelle/HOL 35

to discrete analytical geometry (DAG). We examine their approach and show
that their results can be rigorously mechanized in Isabelle/HOL as a conservative
extension of our existing theories i.e. without introducing any new axioms.

2 On Nonstandard Analysis in Isabelle

The development of nonstandard analysis in Isabelle [8] is based on the ex-
tensional approach, first introduced by Robinson [15]. The system contains new
types of numbers which are nonstandard extensions of the usual number systems.
Thus, the hypernaturals N∗ and hyperreals R∗ are the extensions of the natural
N and real numbers R, respectively, and contain new, well-defined notions such
as infinitely large numbers and infinitesimals. In Isabelle, all the nonstandard
number systems are obtained through the so-called ultrapower construction [8].

While we shall not delve into the details of the development of NSA in Is-
abelle (the interested reader may consult a number of papers on this [8,6]), we
wish to note that this approach differs from the one that is usually used in the
presentation of the Harthong-Reeb numbers, where a minimal, axiomatic form
of nonstandard analysis, related to Nelson’s Internal Set Theory (IST) [12], is
preferred [1]. We note also that the aim of the current work is not to advocate our
version of NSA as an alternative to the one that is usually used but to show that
the Harthong-Reeb number system, its properties, and use can be formalized as
conservative extensions of our existing mechanization.

2.1 Nonstandard Numbers

In the axiomatic version of NSA, a new predicate lim(x) is introduced to indicate
that a number x is limited (the predicate standard(x) is also often used e.g.
in IST). Informally, this enables the theory to distinguish between what the
extensional version of NSA would classify as finite and infinite nonstandard
numbers. If we consider the hypernaturals, for instance, then the limited numbers
are just the familiar natural numbers — denoted by Nats in Isabelle — while the
non-limited numbers correspond to the infinitely large hypernaturals, denoted
by HNatInfinite in Isabelle. Using this idea, we can straightforwardly define the
set of limited hyperreal numbers in Isabelle/HOL:1

Limited = {x :: hypreal. ∃n ∈ Nats. |x| < hypreal of hypnat n}

where hypreal of hypnat (n) is the function that embeds a limited hypernatural
number (cf. a finite natural number) in the hyperreals. We note here the need
for such embedding functions that enable one type of number to be mapped
into another type. These are pervasive to our formalization as the simply-typed
system of Isabelle does not allow subtyping. For the rest of this paper, though,
unless essential, we shall omit these functions from our descriptions.

1 In Isabelle, x :: τ means that x is of type τ .

36 J. Fleuriot

Now, our existing theories of NSA in Isabelle already define the notion of
finite hyperreal numbers:

HFinite = {x :: hypreal. ∃r ∈ R. |x| < r}

and we easily prove using the Archimedean properties of the reals that the sets
HFinite and Limited are in fact equal. This means that we can use all our existing
theorems about finite hyperreals when dealing with limited numbers in Isabelle.

In a similar fashion, we define various other sets of numbers [16] and in each
case prove that they are simply variants of already mechanized definitions:

– InfiniteLarge = {x. ∀n ∈ Nats. n < |x|} = {x. ∀r ∈ R. r < |x|}.
– InfiniteSmall = {x. ∀n. |x| < inverse (Suc n)} = {x. ∀r ∈ R. 0 < r → |x| < r}.
– Appreciable = −(InfiniteSmall ∪ InfiniteLarge), − denoting set complement.

where InfiniteSmall denotes the set of numbers smaller than any real numbers
i.e. infinitesimals.

2.2 Two New Relations on the Hyperreals

Aside from the usual relations, such as equality and ordering, and the usual
operations, such as addition, multiplication, and inverse, it is possible to define
new relations on the hyperreals. In particular, a crucial one that arises from the
existence of infinitely small numbers is the infinitely close relation:

inf close :: [hypreal, hypreal]⇒ bool (infixl ≈ 50)
(x ≈ y) ≡ (x− y) ∈ InfiniteSmall

This relation, which is easily shown to be an equivalence relation, has numerous
properties with respect to the usual relations and algebraic operations on num-
bers that are already formalized in Isabelle [8]. We can also use it to relax the
partial ordering that ≤ imposes on the hyperreals and introduce a new relation:

less inf close :: [hypreal, hypreal]⇒ bool (infixl <∼ 50)
(x<∼ y) ≡ (x < y) ∨ (x ≈ y)

With these definitions mechanized, the next step is to formalize the actual
Harthong-Reeb numbers (HRω) and show that, within our current interpreta-
tion, the operations and relations on HRω have the expected properties.

3 The Harthong-Reeb System

The construction of HRω requires as unit an infinitely large natural number ω (i.e.
a positive infinite integer), whose existence could be asserted via an axiom [1],
but which in our case can be picked from our existing set of infinite hypernaturals

Exploring the Foundations of DAG in Isabelle/HOL 37

NatInfinite. As we wish to pick a fixed but arbitrary infinite hypernatural number
as our ω, we use the Hilbert epsilon operator to do so:

ω ≡ (εn. n ∈ HNatInfinite)

This ensures that none of our definitions or proofs involving ω actually depend
on its value but merely on its existence. Once this is done, we capture directly
the notion of limited integers at the scale ω [1]:

HRω :: hypint set

HRω = {x. ∃n ∈ Nats. |x| ≤ nω}

where the type hypint denotes the type of hyperintegers Z∗. Thus, HRω is just a
subset of Z∗ in our current formalization (although we could go one step further
and define it as a new Isabelle type in its own right).

Next, we define various relations and algebraic operations that can be used on
HRω. These include equality and ordering at the scale ω, addition, multiplication,
inverse, as well as zero 0ω and the unit 1ω:

eq mega :: [hypint, hypint]⇒ bool (infixl =ω 50)
(x =ω y) ≡ (∀n ∈ N. n |x− y| ≤ ω)

le omega :: [hypint, hypint]⇒ bool (infixl ≤ω 50)
(x ≤ω y) ≡ (x ≤ y ∨ x =ω y)

less omega :: [hypint, hypint]⇒ bool (infixl <ω 50)
(x <ω y) ≡ (∃n ∈ N. ω < n(y − x))

omegazero :: hypint

0ω ≡ 0
omegaone :: hypint

1ω ≡ ω

uminus omega :: hypint⇒ hypint (−ω [81]80)
−ω x ≡ −x

inverse omega :: hypint⇒ hypint (inverseω) where

inverseω x ≡
⌊

ω2

x

⌋
add omega :: [hypint, hypint]⇒ hypint (infixl +ω 65)

x +ω y ≡ x + y

mult omega :: [hypint, hypint]⇒ hypint (infixl ω 70)

x×ω y ≡
⌊xy

ω

⌋
Note that our definitions are actually over the hyperintegers rather than the
subset HRω. This is not a problem, and in fact, we can formally prove that many

38 J. Fleuriot

of the properties hold independently of HRω. For instance, aside from proving
that =ω is an equivalence relation and that ≤ω is reflexive, anti-symmetric, and
transitive, we also mechanize the following (expected) theorems directly over
Z∗:2

– ¬x <ω x
– x ≤ω y ↔ x <ω y ∨ x =ω y

– x <ω y ↔ x <ω y ∨ x =ω y
– �x =ω x′; y =ω y′; x ≤ω y� =⇒ x′ ≤ω y′ which, though “easy to see” [16],

required some effort to prove formally.

We also show that the algebraic operations are well-behaved over HRω by deriv-
ing all the expected closure rules:

– x ∈ HRω =⇒ −ω x ∈ HRω

– �x ∈ HRω; y ∈ HRω� =⇒ x + y ∈ HRω

– x ∈ HRω ⇒ inverseω x ∈ HRω

– �x ∈ HRω; y ∈ HRω� =⇒ x×ω y ∈ HRω

While the first two rules are trivially proved, the last two require somewhat more
work as they involve case-splits on the variables involved.

With this done, we then mechanize all the additional properties — the com-
mutativity and associativity of addition and multiplication, the existence of addi-
tive and multiplicative identities (0ω and 1ω respectively,) and inverses (−ω and
inverseω respectively), and the distributivity of multiplication over addition —
required to demonstrate that HRω form a field. With the exception of the proofs
involving multiplication and the inverse operation, the properties are all straight-
forward to prove. For these two operations, though, we need to decompose the
hyperreals into their integral and fractional parts using the floor operation. In
particular, our NSA theory defines the fractional part of a hyperreal as follows:

hpart :: hypreal⇒ hypreal

{x} ≡ x− hypreal of hypint �x� (1)

As an illustration, we can consider the proof of the following theorem as mech-
anized in Isabelle:

�¬(x =ω 0ω); x ∈ HRω� =⇒ x×ω (inverseω x) =ω 1ω

Proof. From the definition of 1ω, multiplication, inverse, and =ω, the conclusion

becomes:

n

∣∣∣∣∣∣
⎢⎢⎢⎣ x

⌊
ω2
x

⌋
ω

⎥⎥⎥⎦ − ω

∣∣∣∣∣∣ ≤ ω

2 Note that in Isabelle the notation �α1, . . . , αn� =⇒ β can be informally read as “if
α1 ∧ . . . ∧ αn then β”.

Exploring the Foundations of DAG in Isabelle/HOL 39

where n is an arbitrary limited (finite) natural number. Using definition (1), we
can replace the floor function once to get:

n

∣∣∣∣∣∣
x
⌊

ω2
x

⌋
ω

−
⎧⎨⎩ x

⌊
ω2
x

⌋
ω

⎫⎬⎭ − ω

∣∣∣∣∣∣ ≤ ω

which simplifies to:

n

∣∣∣∣∣∣x
⌊

ω2

x

⌋
− ω

⎧⎨⎩ x
⌊

ω2
x

⌋
ω

⎫⎬⎭ − ω2

∣∣∣∣∣∣ ≤ ω2

and using (1) again (where appropriate) and simplifying, we have:

n

∣∣∣∣∣∣−x

{
ω2

x

}
− ω

⎧⎨⎩ x
⌊

ω2
x

⌋
ω

⎫⎬⎭
∣∣∣∣∣∣ ≤ ω2

and using the triangle equality (and some arithmetic), the goal becomes:

n

∣∣∣∣∣x
{

ω2

x

}∣∣∣∣∣ + n

∣∣∣∣∣∣ω
⎧⎨⎩ x

⌊
ω2
x

⌋
ω

⎫⎬⎭
∣∣∣∣∣∣ ≤ ω2

2
+

ω2

2

which means having to prove: n
∣∣∣x{ ω2

x

}∣∣∣ ≤ ω2
2 and n

∣∣∣∣∣∣
⎧⎨⎩ x

⌊
ω2
x

⌋
ω

⎫⎬⎭
∣∣∣∣∣∣ ≤ ω2

2 .

Since for any x, we have 0 ≤ {x} < 1, and n < ω for all limited n, the second
subgoal is easily proved, while the first one becomes n |x| ≤ ω2

2 . Now, since
x ∈ HRω, this means that |x| ≤ mω for some limited m. Thus, n |x| ≤ nmω ≤ ω2

2 ,
since both n and m are limited. �

A number of other theorems, some of them given by Wallet [16], are also mech-
anized:

– �x =ω x′; y =ω y′; x ≤ω y� =⇒ x +ω x′ +ω y′
– �u ∈ HRω; x =ω y� =⇒ u×ω x =ω u×ω y
– �x ∈ HRω; y ∈ HRω; x′ ∈ HRω; y′ ∈ HRω; x =ω x′; y =ω y′; x ≤ω y�

=⇒ x +ω x′ ≤ω y +ω y′
– �x ∈ HRω; x′ ∈ HRω;¬(x =ω 0ω);¬(x′ =ω 0ω); x =ω x′�

=⇒ inverseω x =ω inverseω x′

We note the need for the assumption ¬(x′ =ω 0ω) in the last theorem, which
seems to have been omitted in the paper by Wallet [16].

3.1 From HRω to the (Limited) Hyperreals and Back

The next step in our formalization is to relate HRω to our existing limited hy-
perreals. This can be done through the formalization of two maps [1]:

Limited of HR :: hypint⇒ hypreal

ϕω(x) ≡ x

ω
HR of Limited :: hypreal ⇒ hypint

ψω(x) ≡ �ωx�

40 J. Fleuriot

We note here that the two functions are defined over the hyperintegers and the
hyperreals respectively. However, the following easily mechanized lemmas show
that the maps behave as expected:

– z ∈ HRω =⇒ ϕω(z) ∈ Limited

– x ∈ Limited =⇒ ψω(x) ∈ HRω

We then verify the claim [1] that ϕω is an isomorphism from the system (HRω, =ω

,≤ω, +ω,×ω) to (Limited,≈, <∼ , +,×) and that ψω is the inverse isomorphism
by mechanizing all of the following theorems:

– ϕω(0ω) ≈ 0, ϕω(1ω) ≈ 1 and ψω(0) =ω 0ω, ψω(1) =ω 1ω

– x =ω y ↔ ϕω(x) ≈ ϕω(y)
– x ≤ω y ↔ ϕω(x)<∼ϕω(y)
– ϕω(ψω(x)) ≈ x and ψω(ϕω(z)) =ω z

– ϕω(x +ω y) ≈ ϕω(x) + ϕω(y) and ψω(x + y) =ω ψω(x) +ω ψω(y)
– ϕω(x ×ω y) ≈ ϕω(x)× ϕω(y) and

�x ∈ Limited; y ∈ Limited� =⇒ ψω(x× y) =ω ψω(x)×ω ψω(y) ()
– x ∈ Limited⇒ ∃z ∈ HRω. ϕω(z) ≈ x and (†)

y ∈ HRω =⇒ ∃x ∈ Limited. ψω(x) =ω y

Most of these properties are fairly easy to formalize, with the exception of (†),
which required some more effort since it involves unfolding the various defini-
tions and working with the floor function. We note also that theorem () is not
provable without explicitly stating that all the numbers involved are limited.
Finally, it may be worth remarking on the similarity between theorem (†) and a
well-know theorem of NSA known as the Standard Part theorem:

x ∈ Limited =⇒ ∃r ∈ R. x ≈ r

although (†) is much stronger since for any limited hyperreal, it tells us that we
can find a Harthong-Reeb integer infinitely close to it.

4 Arithmetizing and Mechanizing Euler’s Method

Consider the problem of approximating a continuous function y = f(x) on x ≥ a
which satisfies the differential equation

y′ = F (x, y)

and the initial condition
y(a) = b

in which b is a given constant. There is a well-known geometrical method devel-
oped by Euler [3] to prove that the initial value problem given by these equations

Exploring the Foundations of DAG in Isabelle/HOL 41

has a solution. This may given by the following set of recursive equations (we
follow a presentation similar to our main source [1] here):⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x0 = a
xn+1 = xn + h

y0 = b
yn+1 = yn + hF (xn, yn)

(2)

Thus, geometrically, beginning from the starting point y0, the algorithm takes
a (small) step h along the tangent at x0 to give the new point y1. This rea-
soning is then repeated for y1 and so on, thereby computing the approxima-
tion y0, y1, y2, y3, . . . to the original function y = f(x). It can be shown that,
if y = f(x) is C2 and f is Lipschitz then, as h decreases to zero, the error
|y(xn)− yn| also decreases to zero i.e. the Euler method converges.

The next step in our formalization is to capture (2) above in our Isabelle
framework. We do so directly using Isabelle’s primitive recursive package. We
first specify a step function:

hEulerStep :: hypreal⇒ hypreal ⇒ nat⇒ hypreal
hEulerSteph a 0 = a
| hEulerSteph a (Sucn) = hEulerSteph a n + h

(3)

and then the actual Euler method approximation (or Euler scheme):3

hEulerScheme : : (hypreal⇒ hypreal⇒ hypreal)
⇒ hypreal⇒ hypreal⇒ hypreal⇒ nat⇒ hypreal

hEulerScheme F h a b 0 = b
| hEulerScheme F h a b (Sucn) = hEulerSchemeF h a b n

+hF (hEulerSteph a n) (hEulerSchemeF h a b n)
(4)

Note that we define (3) and (4) over the hyperreals as we wish to consider the
behaviour of (2) with infinitely small steps h and, intuitively, the hyperreals
of our extensional NSA theory can be viewed as the reals obtained using the
internal version of NSA (cf. Section 2.1).

4.1 Formally Verifying an Arithmetization at the Scale ω

With (3) and (4) formalized, the next step is to provide an alternative, discrete
version of the Euler scheme over HRω that can be shown to be infinitely close
to (4) under the mapping ϕω. For this, we can use the definition provided by
Chollet et al. as a candidate discrete scheme [1], namely:

3 Note that our Isabelle functions are curried so instead of F (x, y), we write F x y.

42 J. Fleuriot ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X0 = A
Xn+1 = Xn + α

Y0 = B
Yn+1 = Yn + Fω(Xn, Yn)÷ β

(5)

where ÷ denotes Euclidean division, A ≡ �ωa� = ψω(a), B ≡ �ωb� = ψω(b), and
Fω(Xn, Yn) ≡

⌊
ωF (Xn

ω , Yn

ω)
⌋

= ψω(F (ϕω(Xn), ϕω(Yn))) is an arithmetization
or discretization of F (Xn, Yn). The interested reader should consult the article
[1] from which (5) is extracted for some further motivation. These functions are
formalized recursively as follows:

HR EulerStep :: hypint⇒ hypreal ⇒ nat⇒ hypint
HR EulerStep α a 0 = ψω(a)
| HR EulerStep α a (Suc n) = HR EulerStep α a n + α

(6)

and

HR EulerScheme :: (hypreal⇒ hypreal⇒ hypreal) ⇒ hypint
⇒ hypint⇒ hypreal⇒ hypreal⇒ nat⇒ hypint

HR EulerSchemeF α β a b 0 = ψω(b)
| HR EulerSchemeF α β a b (Suc n) = HR EulerSchemeF α β a b n

+ ψω(F (ϕω(HR EulerStep α a n)) (ϕω(HR EulerSchemeF α β a b n))) div β
(7)

We note that the Isabelle definitions (6) and (7) capture scheme (5) exactly.
Now, to formally prove that (5) is an arithmetization of (2), we need to show
that:

– ϕω(A) ≈ a,
– ϕω(B) ≈ b, and
– ϕω(Yn) ≈ yn, which boils down to proving ϕω(Fω(Xn, Yn)) ≈ F (xn, yn)

when doing a proof by induction on n

given that xn ≡ Xn

ω = ϕω(Xn), yn ≡ Yn

ω = ϕω(Yn), and ω = αβ, where β is an
infinitely large divisor of ω. The first two parts of the arithmetization proof are
trivially mechanized as follows:

– ϕω(HR EulerStepα a 0) ≈ hEulerSteph a 0
– ϕω(HR EulerSchemeF α β a b 0) ≈ hEulerSchemeF h a b 0, a simple conse-

quence of the fact that ϕω(ψω(b)) ≈ a.

The third property is trickier and its mechanization will be discussed next. For-
mulated in Isabelle, we wish to mechanically prove, given that β ∈ HNatInfinite
and ω = αβ that:

ϕω(HR EulerScheme f α β a b n) ≈ hEulerScheme f
1
β

a b n (8)

Exploring the Foundations of DAG in Isabelle/HOL 43

We proceed by induction on the (standard) natural n. The base case is trivially
discharged (as expected). Now for the step case, given the induction hypothesis:

ϕω(HR EulerScheme f α β a b n) ≈ hEulerScheme f
1
β

a b n

we need to prove:

ϕω(HR EulerScheme f α β a b n+
ψω(F (ϕω(HR EulerStepα a n)) (ϕω(HR EulerSchemeF α β a b n))) div β)

≈ hEulerScheme f 1
β a b n + 1

β F (hEulerStep 1
β a n) (hEulerSchemeF 1

β a b n)

Since ϕω is additive and �x ≈ y; x′ ≈ y′� =⇒ x + x′ ≈ y + y′, the goal reduces
to:

ϕω(ψω(F (ϕω(HR EulerStep α a n)) (ϕω(HR EulerSchemeF α β a b n))) div β)
≈ 1

β F (hEulerStep 1
β a n) (hEulerSchemeF 1

β a b n)

By unfolding the definitions of ϕω and of ψω and using the fact that x div y =⌊
x
y

⌋
=
⌊

1
yx
⌋

for x, y ∈ Z∗, this can be rewritten to:

1
ω

(⌊
1
β

⌊
ωF
(

HR EulerStep α a n
ω

)(
HR EulerScheme F α β a b n

ω

)⌋⌋)
≈ 1

β F
(
hEulerStep 1

β a n
)(

hEulerSchemeF 1
β a b n

)
and using �x� = x− {x} from (1), this becomes:

1
ω

1
β

⌊
ωF
(

HR EulerStep α a n
ω

)(
HR EulerScheme F α β a b n

ω

)⌋
− 1

ω

{
1
β

⌊
ωF
(

HR EulerStep α a n
ω

)(
HR EulerScheme F α β a b n

ω

)⌋}
≈ 1

β F
(
hEulerStep 1

β a n
)(

hEulerSchemeF 1
β a b n

)
Since 0 ≤ {x} < 1 for any x, and 1

ω is infinitely large, this reduces to:

1
βω

⌊
ωF
(

HR EulerStep α a n
ω

)(
HR EulerScheme F α β a b n

ω

)⌋
≈ 1

β F
(
hEulerStep 1

β a n
)(

hEulerSchemeF 1
β a b n

)
and using (1) again:

1
βω

⎛⎜⎜⎝
ωF
(

HR EulerStep α a n
ω

)(
HR EulerScheme F α β a b n

ω

)
−
{
ωF
(

HR EulerStep α a n
ω

)(
HR EulerScheme F α β a b n

ω

)}
⎞⎟⎟⎠

≈ 1
β F
(
hEulerStep 1

β a n
)(

hEulerSchemeF 1
β a b n

)

44 J. Fleuriot

and simplifying:

F
(

HR EulerStep α a n
ω

)(
HR EulerScheme F α β a b n

ω

)
≈ F

(
hEulerStep 1

β a n
) (

hEulerSchemeF 1
β a b n

)
At this point in our mechanical proof though, we faced a difficulty as we could
not proceed further with our existing hypotheses. The problem was a missing
assumption about the continuity of F (which is assumed but does not seem to be
used explicitly in the pen-and-paper proof [1]). This can be captured by having:

∀xyx′y′. x ≈ x′ ∧ y ≈ y′ → f x y ≈ f x′ y′

as an extra fact. Our goal now becomes the following 2 subgoals:

1
ω HR EulerStep α a n ≈ hEulerStep 1

β a n

1
ω HR EulerSchemeF α β a b n ≈ hEulerSchemeF 1

β a b n

which are easily proved since the second one is just the induction hypothesis
while the first one becomes:

1
ω

(�ωa�+ nα) ≈ a +
n

β

This last subgoal can be discharged since 1
ω �ωa� ≈ a and 1

ωnα = n
β from our

assumption that ω = αβ. The theorem once mechanized looks thus:

�β ∈ HNatInfinite; ω = αβ; ∀xyx′y′. x ≈ x′ ∧ y ≈ y′ → f x y ≈ f x′ y′�
=⇒ ϕω(HR EulerScheme f α β a b n) ≈ hEulerScheme f 1

β a b n

This result formally proves that, under the given assumptions, the Euler scheme
(5) over HRω is an arithmetization at the scale ω of the initial scheme (2) over
R∗. We also note that our result differs slightly from the one by Chollet et al. [1]
in that we did not require α to be an infinitely large hypernatural (in fact, this
does not seem to be required for the proof if we assume that β is an infinitely
large divisor of ω).

4.2 Interpreting the Arithmetization at the Scale β

As discussed by Chollet et al. [1], in the arithmetized Euler scheme (5), if α is
taken to be infinitely large then the solution (Xn, Yn) returned is a sequence of
infinitely distant points since Xn+1 = Xn +α. In order to obtain points that are
closer together, the authors perform a scaling that allows (5) to be interpreted
at an intermediary scale. This is achieved by assuming that α = β, thereby mak-
ing ω = β2, and moving from the scale ω to the scale β by mapping every element

Exploring the Foundations of DAG in Isabelle/HOL 45

x ∈ HRω to an element x ÷ β since moving from HRω to HRβ can be achieved

by taking the map ψβ(ϕω(x)) =
⌊
β x

ω

⌋
=
⌊

x
β

⌋
= x÷ β.

This leads to a new discrete Euler scheme, which involves the quotient and
remainder of integers in HRω under Euclidean division. Thus, we need to decom-
pose every x ∈ HRω as follows:

z = z̃β + ẑ

where ẑ = z ÷ β and ẑ = z mod β. The following arithmetization of the Euler
scheme (2) “computed at the scale ω = β2 and interpreted at the intermediary
scale β” [1] is then given (without proof):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃0 = A÷ β

X̃n+1 = X̃n + 1

Ŷ0 = B mod β

Ŷn+1 = (Ỹn + F̃n)mod β

Ỹ0 = B ÷ β

Ỹn+1 = Ỹn + (Ỹn + F̃n)÷ β

(9)

where A ≡
⌊
β2a
⌋
, B =

⌊
β2b
⌋

and

F̃n ≡ Fω(X̃nβ + Amod β, Ỹnβ + Ŷn)÷ β

≡
⌊
ωF
(

X̃nβ+Amod β
ω , Ỹnβ+Ŷn

ω

)⌋
÷ β

≡ ψω(F (ϕω(X̃nβ + Amod β), ϕω(Ỹnβ + Ŷn))) ÷ β

In (9), the variables of interest are X̃i and Ỹi since the sequence of pairs (X̃i, Ỹi) is
the graph of a discrete function Y (X) that is meant to approximate our original
continuous function y = f(x).

The next steps in our mechanization therefore involve the formalization of this
new scheme and then proving that it is an arithmetization of the initial scheme
(2). The representation of (9) in Isabelle is slightly more complicated than that
of (5) though as it involves mutually recursive functions. Nevertheless, with a
little bit of effort, we can capture the step function as:

HR EulerStepScale : : hypreal⇒ hypint⇒ hypnat⇒ hypint
HR EulerStepScalea β 0 =

⌊
β2a
⌋
÷ β

|HR EulerStepScalea β (Suc n) = HR EulerStepScalea β n + 1
(10)

and the quotient and remainder approximations as:

46 J. Fleuriot

function
HR EulerSchemeMod :: (hypreal ⇒ hypreal ⇒ hypreal) ⇒ hypint ⇒ hypreal ⇒ hypreal ⇒ nat ⇒ hypint
and
HR EulerSchemeDiv :: (hypreal ⇒ hypreal ⇒ hypreal) ⇒ hypint ⇒ hypreal ⇒ hypreal ⇒ nat ⇒ hypint
HR EulerSchemeMod F β a b 0 =

⌊
β2b
⌋

mod β
| HR EulerSchemeDiv F β a b 0 =

⌊
β2b
⌋ ÷ β

| HR EulerSchemeMod F β a b (Suc n) =
(HR EulerSchemeMod F β a b n
+ ψω(F (ϕω(HR EulerStepScale a β n × β +

⌊
β2a

⌋
modβ))

(ϕω(HR EulerSchemeDiv F β a b n × β + HR EulerSchemeMod F β a b n))) ÷ β)mod β
| HR EulerSchemeDiv F β a b (Suc n) =

HR EulerSchemeDiv F β a b n
+ (HR EulerSchemeMod F β a b n

+ ψω(F (ϕω(HR EulerStepScale a β n × β +
⌊
β2a

⌋
modβ))

(ϕω(HR EulerSchemeDiv F β a b n × β + HR EulerSchemeMod F β a b n))) ÷ β) ÷ β
(11)

We can prove the correctness of (9) by formally relating (11) to (7), which we
know to be the arithmetized version of (2). The following theorems, all mecha-
nized in Isabelle by inductive proofs, help demonstrate this:

– ω = β2 =⇒ HR EulerStepScalea β n = HR EulerStep β an÷ β
– ω = β2 =⇒ HR EulerSchemeDiv F β a b n = HR EulerScheme F β β a b n÷ β
– ω = β2 =⇒ HR EulerSchemeMod F β a b n = HR EulerScheme F β β a b n mod β

From the last two theorems, we thus have that:

ω = β2 =⇒ HR EulerSchemeF β β a b n =
HR EulerSchemeDiv F β a b n× β + HR EulerSchemeModF β a b n

which verifies the correctness of (11). With this final Euler scheme set up, we
can now look at Reveillès’ notion of a discrete analytic line [14], which acted
as the starting point of a new approach in discrete geometry know as discrete
analytical geometry [1].

5 A Verified Arithmetization of the Straight Line

We consider a straight line L in R∗ with equation y = cx + d where c ∈ Limited
and d ∈ Limited. This is characterized by the differential equation:

y′ = F (x, y) = c

and the initial condition:
y(0) = d

By plugging these values in our Isabelle definition(s) (11) and using rewriting,
we trivially derive:

ω = β2 =⇒ HR EulerSchemeDiv (λxy. c)β 0 d Suc n =
HR EulerSchemeDiv (λxy. c)β 0 d n +
(HR EulerSchemeMod (λxy. c)β 0 d n +

⌊
β2c
⌋
÷ β)÷ β

and

ω = β2 =⇒ HR EulerSchemeMod (λxy. c)β 0 d Suc n =
(HR EulerSchemeMod (λxy. c)β 0 d n +

⌊
β2c
⌋
÷ β)÷ β

Exploring the Foundations of DAG in Isabelle/HOL 47

which, along with HR EulerStepScale 0 β 0 = X̃0 = 0, corresponds to the following
scheme, computed at the scale β2 and interpreted at the scale β:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̃0 = 0
X̃n+1 = X̃n + 1

Ŷ0 =
⌊
β2d
⌋

mod β

Ŷn+1 = (Ỹn +
⌊
β2c
⌋
÷ β)mod β

Ỹ0 =
⌊
β2d
⌋
÷ β

Ỹn+1 = Ỹn + (Ỹn +
⌊
β2c
⌋
÷ β)÷ β

(12)

These derivations therefore verify the arithmetized scheme given by Chollet et
al. for the straight line [1].

Now, assuming that the sequence of pairs (X̃i, Ỹi) corresponds to the discrete
function Y (X), then the latter should approximate our original line y = cx + d.
We demonstrate that this is indeed the case by first mechanizing the following
theorem in Isabelle:
ω = β2 =⇒

HR EulerSchemeDiv (λxy. c) β 0 d n =

⌊
�β2c	÷β

β
(HR EulerStepScale 0β n) +

�β2d	
β

⌋
which means that the discrete function Y (X) is given by:

ω = β2 =⇒ Y (X) =

⌊⌊
β2c
⌋
÷ β

β
X +

⌊
β2d
⌋

β

⌋
(13)

The mechanical proof is similar to the pen-and-paper one [1] and only involves
rewriting. As can be seen, the points given by (13) are those that are incident
or just below the line Lβ given by y = (

⌊
β2c
⌋
÷ β)/βx +

⌊
β2b
⌋
/β, about which

we also prove the following theorems:

β ∈ HNatInfinite =⇒ �βc� ÷ β

β
≈ c and β ∈ HNatInfinite =⇒

⌊
β2d
⌋

β
≈ βd

This verifies the claim that for d = 0 the line Lβ is infinitely close to the original
line L [1] i.e. that the algorithm (12) produces a discrete line that is an infinitely
good approximation of the original line. And finally, since{
�β2c	÷β

β
(HR EulerStepScale 0β n) +

�β2d	
β

}
=(

�β2c	÷β

β

)
HR EulerStepScale 0β n−HR EulerSchemeDiv (λxy.c)β 0 b n +

�β2b	
β

we trivially have:

ω = β2 =⇒
0 ≤

(⌊
β2c
⌋
÷ β
)
HR EulerStepScale 0 β n−

βHR EulerSchemeDiv (λxy.c)β 0 b n +
⌊
β2b
⌋
≤ β

48 J. Fleuriot

This inequality leads to Reveillès original notion of an analytic discrete line
[14,1], a concept that set the commencement of discrete analytical geometry and
seems a fitting point to end the current detailed description of the formalization.

6 Discussion

Although much of this paper focused on the formalization of the framework for
discrete analytical geometry and its properties, it is worthwhile to place these
results within the broader context of mechanized geometric reasoning and formal
verfication. In mechanizing scheme (9), for instance, we have effectively derived
a general algorithm that can be used to discretize geometric objects so that
they can be represented by discrete sets of points in a digitized setting such as
a computer screen. The nonstandard formulation enables us to verify formally
that the algorithm, when applied to particular geometric objects, ultimately
yields correct, infinitely-close approximations of said objects i.e. we can obtain
near-perfect approximation, if we allow the Euler method to take infinitely small
steps.

Moreover, starting from the notion of a discrete line, as given in this paper,
various of its properties can be derived that are the discrete counterparts of the
usual Euclidean geometry axioms (e.g. a version of the axiom that two points
determine a unique discrete line and a version of Euclid’s Parallel Postulate). In
fact, all the usual Euclidean notions and theorems can be recovered for suitably
defined discrete objects [14]. This results in a so-called ideal discrete geometry
– a perfect discretization of Euclidean geometry – which we are (further) for-
malizing in Isabelle/HOL. In this, for instance, one considers a discrete square
screen of width ω and introduces a new, extended notion of points known as
big-points [14]. The big-point of an integer point A is then a collection of points
corresponding to the infinitesimal neighbourhood of A and can easily be shown,
through the use of various concepts described in the current paper, to behave
like the points encountered in continuous geometry. Big-points, along with other
notions (such as the shadow of a discrete line), make the foundations that we
have presented essential and of immediate relevance to explicit geometric rea-
soning in the idealized setting and we hope to report on this aspect of the work
soon.

7 Conclusion and Further Work

This paper gave an overview of our mechanized treatment of the Harthong-
Reeb number system, and of the ensuing geometric approximation algorithms,
using the nonstandard analysis theory of Isabelle. In particular, we used the
paper by Chollet, Wallet, Fuchs, Largeteau-Skapin and Andres as a blueprint to
guide our development. All the results up to their discussion of the constructive
nature of the Harthong-Reeb line are fully verified (although we did not present
the arithmetization of the exponential function in this paper).

Exploring the Foundations of DAG in Isabelle/HOL 49

This successful mechanization is not entirely surprising since the original treat-
ment of discrete analytical geometry had NSA at its core and the paper by
Chollet et al. is meant to revisit this formally. However, it is still pleasing to see
how a (pen-and-paper) mathematical framework can be realised rigorously and
conservatively in a theorem prover. We hope to use these new theories to inves-
tigate the arithmetization of other geometric figures such as the ellipse [2] and
formally derive the theoretical results that follow (e.g. connectivity properties).
As already remarked in Section 6, we are also mechanizing many of the geomet-
ric results presented by Reveillès in one of his early papers [14]. The latter uses
an external version of NSA which is identical to the one in Isabelle, making the
formalization especially faithful.

As a final remark, we note that a related effort was started in Coq [11] prior
to ours and, in fact, provided some of the motivation for starting the current
mechanization. However, despite some initial similarities, the two projects have
quite different goals: the Coq effort is much more ambitious and closer to the
philosophy that underlies the Harthong-Reeb system since it provides hope of
an approach that can harness the inherently constructive nature of the model
[9,1]. Our mechanization, for its part, is based on a non-constructive approach to
NSA and should be viewed more as a mathematical and geometrical exploration
rather than one aimed at yielding executable programs via proofs.

Acknowledgements. I wish to thank Laurent Fuchs for introducing me to this
research area. His enthusiastic discussion of their approach motivated the current
attempt to explore their results and link my own formalization to theirs. I also
wish to thank the GALAPAGOS project for providing me with the opportunity
to discuss some of the ideas further. Finally, I would like to thank the referees
for their useful feedback.

References

1. Chollet, A., Wallet, G., Fuchs, L., Largeteau-Skapin, G., Andres, E.: Insight in
discrete geometry and computational content of a discrete model of the continuum.
Pattern Recognition 42(10), 2220–2228 (2009)

2. Chollet, A., Wallet, G., Andres, E., Fuchs, L., Largeteau-Skapin, G., Richard, A.:
Ω-Arithmetization of Ellipses. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A.,
Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026,
pp. 24–35. Springer, Heidelberg (2010)

3. Collected Work of L. Euler, vol. 11 (1913), vol. 12 (1914)
4. Fleuriot, J.D., Paulson, L.C.: A Combination of Nonstandard Analysis and Ge-

ometry Theorem Proving, With Application to Newton’s Principia. In: Kirchner,
C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 3–16. Springer,
Heidelberg (1998)

5. Fleuriot, J.D., Paulson, L.C.: Proving Newton’s Propositio Kepleriana Using Ge-
ometry and Nonstandard Analysis in Isabelle. In: Wang, D., Yang, L., Gao, X.-S.
(eds.) ADG 1998. LNCS (LNAI), vol. 1669, pp. 47–66. Springer, Heidelberg (1999)

6. Fleuriot, J.: On the Mechanization of Real Analysis in Isabelle/HOL. In: Aagaard,
M.D., Harrison, J. (eds.) TPHOLs 2000. LNCS, vol. 1869, pp. 145–161. Springer,
Heidelberg (2000)

50 J. Fleuriot

7. Fleuriot, J.: Theorem Proving in Infinitesimal Geometry. Logic Journal of the
IGPL 9(3) (2001)

8. Fleuriot, J.: A Combination of Geometry Theorem Proving and Nonstandard Anal-
ysis with Application to Newton’s Principia. Springer, Heidelberg (2001)

9. Fuchs, L., Largeteau-Skapin, G., Wallet, G., Andres, E., Chollet, A.: A First Look
into a Formal and Constructive Approach for Discrete Geometry Using Nonstan-
dard Analysis. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI
2008. LNCS, vol. 4992, pp. 21–32. Springer, Heidelberg (2008)

10. Harthong, J.: Une théorie du Continu. La MathéMatique Non Standard. Editions
du CNRS, 307–329 (1989)

11. Magaud, N., Chollet, A., Fuchs, L.: Formalizing a Discrete Model of the Continuum
in Coq From a Discrete Geometry Perspective. In: Proceedings of the Automated
Deduction in Geometry Workshop, Munich (2010)

12. Nelson, E.: Internal set theory: A new approach to nonstandard analysis. Bulletin
of the American Mathematical Society 83(6), 1165–1198 (1977)

13. Paulson, L.C.: Isabelle - A Generic Theorem Prover. Springer, Heidelberg (1994)
14. Reveillès, J.-P., Richard, D.: Back and Forth Between Continuous and Discrete

For The Working Computer Scientist. Annals of Mathematics and Artifical Intel-
ligence 16, 89–152 (1996)

15. Robinson, A.: Non-standard analysis. North-Holland (1966)
16. Wallet, G.: Integer Calculus on the Harthong-Reeb Line. Revue Arima (9), 517–536

(2008)

A Formalization of Grassmann-Cayley Algebra
in Coq and Its Application

to Theorem Proving in Projective Geometry�

Laurent Fuchs1 and Laurent Théry2

1 XLIM-SIC UMR CNRS 6172 - Poitiers University, France
Laurent.Fuchs@sic.univ-poitiers.fr

2 INRIA Sophia Antipolis - Méditerranée, France
Laurent.Thery@inria.fr

Abstract. This paper presents a formalization of Grassmann-Cayley
algebra [6] that has been done in the Coq [2] proof assistant. The for-
malization is based on a data structure that represents elements of the
algebra as complete binary trees. This allows to define the algebra prod-
ucts recursively. Using this formalization, published proofs of Pappus’
and Desargues’ theorem [7,1] are interactively derived. A method that
automatically proves projective geometric theorems [11] is also translated
successfully into the proposed formalization.

1 Introduction

A well-known application of Grassmann-Cayley algebra is automated theorem
proving in projective geometry (see for example [1,4,10]). The usual method is
to translate incidence statements of projective geometry into Grassmann-Cayley
expressions. These expressions are then translated into bracket polynomials (i.e.
the ring of projective invariants [17]). Finally, the bracket polynomial is factorised
to get back an equivalent expression in Grassmann-Cayley algebra.

Our motivation in using a proof assistant such as Coq [2] is to capture in a
single system all the various aspects of Grassmann-Cayley algebra: we want an
abstract generic model on which we can not only reason but also perform both
numerical and symbolical evaluations.

Hence, our formalization lets us not only formally check the manipulations
of expressions within Grassmann-Cayley algebra but also compute with these
very same expressions. De facto, it makes explicit the link between the abstract
mathematical object and its applications. In the Coq proof assistant, proofs can
be conducted interactively step by step or, using programmed tactics, the ex-
pressions can be reduced in a systematic manner. Note that, in our setting, most
proofs are parametrized by the dimension of the algebra. So, our development is
generic.

Once the formalization of the Grassmann-Cayley algebra is achieved, two
kinds of proofs are considered. First some proofs are conducted interactively
� This work has been supported by the ANR Galapagos.

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 51–67, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

52 L. Fuchs and L. Théry

following step-by-step what can be found in the literature, such as the proof of
the Pappus’ theorem in [7] or the proofs of Desargues’ theorem in [1]. The second
kind of proofs are conducted automatically following a method published in [11].
All the examples proposed in [11] have been tested successfully.

In future work, we also plan to connect our formalization with other ap-
proaches of incidence geometry, such as those based over ranks [12,13,14]. So,
our work can be seen as a first step in the study of the formal correctness of
automated proof methods in incidence geometry.

This paper is organized as follows. Section 2 introduces Grassmann-Cayley al-
gebra and our choices for the formalization. Section 3 explains how the Grassmann-
Cayley is formalized, how the algebra elements are represented and how the
products are defined. Section 4 describes how the formalization can be use to prove
theorems of incidence geometry, interactively and automatically.

2 Formal Grassmann-Cayley Algebra

Usually, in the literature, the products (join and meet) of the Grassmann-Cayley
algebra are introduced by given equations defining their properties. So, they
could have been defined in Coq using such an axiomatic approach. However,
the main drawback of doing so is that we completely lose the computational
aspect of this algebra. In particular, the axiomatic approach gives no hint of
how the algebra could actually be implemented on a computer.

For this reason, we favor the definitional approach where the algebra opera-
tions are defined as recursive functions over the dimension of the algebra. First,
we define a model, i.e. a data-structure that represents elements of the algebra.
Then, on this model, we define the usual algebra operations (the join product,
the meet product and the duality) and prove that they fulfill the axioms that are
used to defined them in the literature. As this representation is quite unusual,
we spend some time to detail our data-structure and the related operations.

2.1 The Underlying Vector Space

The Grassmann-Cayley algebra Gn is defined by adding a second product, the
meet product, to the Grassmann algebra (or exterior algebra) of a vector space
of dimension n, V , over a field K [6,1] where the join product (or the exterior
product) is defined.

In order to have a concrete representation of the vectors of V , we need to
represent them as n-tuples of Kn. This imposes a basis for V , say the canon-
ical basis ei

n
= (δi,0, . . . , δi,i, . . . , δi,n−1) where i = 0, . . . , n − 1 and δi,j is the

Kronecker symbol. Then V is seen as the set of n-tuples, Kn.
As we will see this choice also induces the definition of a basis for Gn and this

leads to an important change of view in the presentation of the algebra compared
to the usual coordinate-free presentation. The elements are represented via their
coordinates.

A Formalization of Grassmann-Cayley Algebra in Coq and Its Application 53

However, in the Coq proof assistant, this does not force us to deal only with
numerical computations. As all the axiomatic properties of the algebra opera-
tions are proved, we can also reason symbolically using the coordinate-free pre-
sentation. Hence, we obtain an abstract generic model on which both numerical
and symbolical evaluations can be performed.

2.2 The Join Product

The first step is to define the join product denoted by ∨. It is an associative
antisymmetric bilinear product and it can be defined axiomatically by:

a ∨ a = 0 λa ∨ b = λ(a ∨ b)
b ∨ a = −a ∨ b (a + b) ∨ c = a ∨ c + b ∨ c

(1)

where a and b are vectors of Kn.
The join product a ∨ b of two vectors a and b is non-zero if and only if a and

b are linearly independent. If a ∨ b is non-zero, it is a grade 2 element of the
algebra. More generally, if {a1, . . . , ak} are linearly independent vectors of Kn

then a1 ∨ · · · ∨ ak is an element of grade k. Such elements, that are join product
of vectors, are called extensors or decomposable k-vectors. Not all elements of
grade k are extensors, they could be linear combination of extensors. In that
case they are called homogeneous vectors or k-vectors. Elements that are linear
combination of elements with different grades are the general elements of the
algebra. They are called multi-vectors.

On the basis elements {e0
n
, . . . , en−1

n
} of Kn, the join product has the following

two behaviors:

ei
n
∨ ei

n
= 0 ei

n
∨ ej

n
= −ej

n
∨ ei

n
.

This gives the graded structure of Gn. The join product of k basis elements
generates the subspace of grade k homogeneous elements. Considering G3, this
means that:

{1} generates the elements of grade 0.
{e0

3,e1
3,e2

3} generates the elements of grade 1.
{e0

3 ∨ e1
3, e0

3 ∨ e2
3, e1

3 ∨ e2
3} generates the elements of grade 2.

{e0
3 ∨ e1

3 ∨ e2
3} generates the elements of grade 3.

Hence, Gn can be seen as a vector space of dimension 2n. Our model is a rep-
resentation of this vector space that allows a computational definition of the
products of the Grassmann-Cayley algebra.

2.3 The Meet Product

Retrieving the Bracket. Usual presentation of the Grassmann-Cayley alge-
bra [6,1,18] defines a bracket over the vector space V . Given n vectors a1, . . . , an

the bracket [a1, . . . , an] is a non-degenerate multilinear alternating n-form, tak-
ing its values into the field K.

54 L. Fuchs and L. Théry

The use of the canonical basis of the vector space Kn defines a bracket implic-
itly. The set of elements of grade n generated by e0

n
∨ · · · ∨ en−1

n
is isomorphic to

the set of elements of grade 0 via the linear map defined by i(e0
n∨ · · ·∨ en−1

n) = 1.
This linear map defines a non-degenerate multilinear n-form over the vectors of
Kn that is actually a determinant.

Hence, the choice of the canonical basis defines a bracket. This allows us
to retrieve the usual definition of the Grassmann-Cayley algebra. This link is
used in section 4.2 to introduce automated proof techniques into our formaliza-
tion.

The Hodge Star. Moreover, as i(e0
n
∨ · · · ∨ en−1

n
) = [e0

n
, . . . , en−1

n
] = 1, the

canonical basis is said to be unimodular [1]. Then, the Hodge star defined as
follows:

∗(eρ(0)
n
∨n . . . ∨n eρ(i)

n
) = eρ(i+1)

n
∨n . . . ∨n eρ(n−1)

n

where ρ is an even permutation, satisfies the following properties (see [1]):

(i) ∗ maps extensors of grade k to extensors of grade n− k,
(ii) ∗(1) = e0

n
∨ · · · ∨ en−1

n
and ∗(e0

n
∨ · · · ∨ en−1

n
) = 1,

(iii) ∗(∗(A)) = (−1)k(n−k)A if A is of grade k.

The Hodge star realizes the duality between the meet and the join products [1].
Hence, the following definition of the meet product, denoted ∧, can be adopted:

∗(A ∨ B) = ∗(A) ∧ ∗(B) and ∗ (A ∧ B) = ∗(A) ∨ ∗(B).

Thus, in the algebra G3, the meet product can be defined over the basis elements
by the table

∧ 1 e0
3 e1

3 e2
3 e0

3 ∨ e1
3 e0

3 ∨ e2
3 e1

3 ∨ e2
3 e0

3 ∨ e1
3 ∨ e2

3

1 0 0 0 0 0 0 0 1
e0
3 0 0 0 0 0 0 1 e0

3

e1
3 0 0 0 0 0 −1 0 e1

3

e2
3 0 0 0 0 1 0 0 e2

3

e0
3 ∨ e1

3 0 0 0 1 0 e0
3 e1

3 e0
3 ∨ e1

3

e0
3 ∨ e2

3 0 0 −1 0 −e0
3 0 e2

3 e0
3 ∨ e2

3

e1
3 ∨ e2

3 0 1 0 0 −e1
3 −e2

3 0 e1
3 ∨ e2

3

e0
3 ∨ e1

3 ∨ e2
3 1 e0

3 e1
3 e1

3 e0
3 ∨ e1

3 e0
3 ∨ e2

3 e1
3 ∨ e2

3 e0
3 ∨ e1

3 ∨ e2
3

3 Data-Structures

The programming language of Coq proof assistant [3] is a functional language
with dependent types. It is then particularly suitable for the development of
abstract algebra. In order to have a generic formalization, our development is
parametrized by an abstract field K and its usual operations:

A Formalization of Grassmann-Cayley Algebra in Coq and Its Application 55

Structure FieldParams := {
K : Set ;
0 : K ;
1 : K ;

_ ?
= _ : K → K → bool ;
- _ : K → K ;

_ + _ : K → K → K ;
_ * _ : K → K → K ;
_ −1 : K → K

}

Note that even if every type in Coq is equipped with a propositional equality, i.e.
for two elements x and y in K the proposition x = y expresses that they are equal
with respect to Leibnitz equality, we have an explicit equality test x ?= y that lets
us decide on this equality. This capability is crucial when defining algorithms
over elements of K. Along with this parametric definition of K, there is an
associated set of axioms that gives the usual basic properties of the operations
(associativity, commutativity, distributivity and neutral elements).

From now on, all our definitions are taking this field K and another parameter n
for the dimension as parameters. They follow the same pattern: they are defined
recursively on the dimension n. For a data-structure D, this means that its
version Dn+1 for the n + 1 dimension is going to be expressed in term of Dn. In
this work, only the primitive pairing construct of Coq is used: if a1 is of type
T1 and a2 of type T2, (a1, a2) is of type T1 × T2.

3.1 Representing the Vector Space Kn

As a first example, here is how the vectors of Kn are defined for n �= 0:

Definition Kn := if n = 1 then K else K x Kn−1.

Compare to traditional programming where vectors would be represented as
arrays, here we use recursion and pairing to mimic this data-structure. The
type1 K1 is equivalent to K, K2 to K × K and K3 to K × (K × K) and an
element of K3 is represented by (x1, (x2, x3)).

Operations on this data-structure are also defined recursively. For example,
addition of two vectors of dimension n is defined recursively as follows:

Definition x +n y := if n = 1 then x + y else
let (x1,x2) := x and (y1,y2) := y in
(x1 + y1 , x2 +n−1 y2).

If the parameter n is one, the two elements belong to K so we can add them
using the addition on K, otherwise each element can be decomposed into an
1 The exponent n is changed into an index for notational purpose.

56 L. Fuchs and L. Théry

element of K and an element of one dimension less and the resulting pair can be
composed by adding the elements of K on the left and using a recursive call on
the right. To end the vector space structure, scalar multiplication can be defined
in a similar way:

Definition k .
n y := if n = 1 then k * x else

let (x1,x2) := x in (k * x1 , k .
n−1 x2).

3.2 Representing the Algebra Gn

Representing elements of Gn, the Grassmann-Cayley of dimension n, follows
exactly the same schema. This time, instead of a linear data-structure, binary
trees are used:

Definition Gn := if n = 0 then K else Gn−1 x Gn−1.

The type G0 is equivalent to K, G1 to K×K, G2 to (K×K)×(K×K). Elements
of Gn are binary trees of height n. They have 2n leaves. This corresponds to the
fact that Gn is a vector space of dimension 2n.

The sum and the scalar multiplication for the vector space structure are de-
fined recursively over the dimension as follows:

Definition x +n y := if n = 0 then x + y else
let (x1,x2) := x and (y1,y2) := y in
(x1 +n−1 y1 , x2 +n−1 y2).

Definition k .
n y := if n = 0 then k * x else

let (x1,x2) := x in (k .
n−1 x1 , k .

n−1 x2).

The equality test is defined in the same way:

Definition x ?
=

n
y := if n = 0 then x ?

= y

let (x1,x2) := x and (y1,y2) := y in
(x1

?=
n−1

y1) && (x2
?=

n−1
y2).

In this definition the operator && is a special notation used in this paper for the
logical and to avoid confusion with the meet product.

Figure 1 explains how the basis components of Gn are mapped to the binary
structure. The leaves contain the coefficients. For example, the grade 2 element
of G3,

2.(e0
3 ∨ e1

3) + 3.(e1
3 ∨ e2

3)

is represented as (((0, 2), (0, 0)), ((3, 0), (0, 0))) and the multi-vector of G3,

2.(e0
3 ∨ e2

3) + 3.e1
3 + 4.1

A Formalization of Grassmann-Cayley Algebra in Coq and Its Application 57

e0
3 ∨ e1

3 ∨ e2
3

e2
3

e0
3 ∨ e1

3

e2
3/

e1
3

e0
3 ∨ e2

3

e2
3

e0
3

e2
3/

e1
3/

e0
3

e1
3 ∨ e2

3

e2
3

e1
3

e2
3/

e1
3

e2
3

e2
3

1

e2
3/

e1
3/

e0
3/

Fig. 1. Mapping of the multi-vector coefficients to the leaves of the binary tree

is represented as (((0, 0), (2, 0)), ((0, 3), (0, 4))). Here the sign sum indicates that
an element of Gn is a linear combination of the basis components.

For a tree of height n, at the level i, a move toward the left child inserts
the basis element ei

n into the join product, while a move toward the right child
insures that this element is not present. Then, on a path from the root of the
tree to a leaf a move toward the left child increases the grade by one, while a
move toward the right child leaves it unchanged. Hence, the left-most leaf of a
tree of height n contains the grade n coefficient of an element of Gn while the
right-most leaf contains the coefficient of the grade 0 part.

This binary tree structure also allows to increase the dimension of an element
x of Gn by injecting it to Gn+1. This is done with the function injGn by simply
pairing the binary tree of height n with all its leaves containing 0, denoted 0n,
and x:

Definition injGn x := (0n , x).

This operation does not change the grade of x, but it shifts the basis components.
The basis component ei

n ∨ · · · ∨ ei+k
n is mapped to the basis component ei+1

n+1 ∨
· · · ∨ ei+k+1

n+1 .
From the mapping of the multi-vector coefficients and the injection function,

the pairing of two elements x and y of Gn can be interpreted in terms of an
element of Gn+1. The pair (x, y) represents the element

e0
n+1 ∨ injGn

x +n+1 injGn
y. (2)

This means that pairing two elements x and y inserts the basis component e0
n+1

into the shifted basis component of x. This puts all the coefficients of x into the
left part of the tree.

Now, the field K is injected into the binary tree structure representing Gn

with the following functions:

Definition injn,K k := if n = 0 then k else (injn−1,K 0,injn−1,K k).

Definition 0n := injn,K 0.

Definition 1n := injn,K 1.

58 L. Fuchs and L. Théry

Hence, the tree representing zero has all its leaves set to 0, while the tree repre-
senting one has only its right-most leaf set to 1.

Using the injection of K into Gn, we can define the injection of the elements
of Kn into Gn:

Definition injKn x := if n = 0 then 0 else
if n = 1 then (x , 0) else
let (x1,x2) := x in (injn−1,K x1 , injKn−1 x2).

Note that, as K0 is not defined, a special case is introduced for n = 0 send-
ing any element to zero. Let us take a concrete example to explain how this
injection works. An element of K3 is represented by a triplet (x1, (x2, x3)). The
element (((0, 0), (0, x1)), ((0, x2), (x3, 0))) of G3 is its image by the injection. For
an element of Kn, the coordinates xi are the coefficients of the basis elements
ei

n.
We can also directly exhibit a base {e0

n
, e1

n
, . . . , en−1

n
} for the vectors of Gn, i.e.

the image by the injection injKn of the base of Kn induced by the coordinates.
Again, this is defined recursively:

Definition ei
n := if n = 0 then 1n else

if i = 0 then (1n−1,0n−1) else (0n−1, ei − 1
n − 1).

If we go back to the relation between K3 and G3, the base of K3 induced by the
coordinates is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Then, we have

e0
3 = (((0, 0), (0, 1)), ((0, 0), (0, 0))) which corresponds to (1, 0, 0),

e1
3 = (((0, 0), (0, 0)), ((0, 1), (0, 0))) which corresponds to (0, 1, 0),

e2
3 = (((0, 0), (0, 0)), ((0, 0), (1, 0))) which corresponds to (0, 0, 1).

When they are injected respectively into Gn and Gn+1, the basis elements of Kn

and Kn+1 are related by ei + 1
n + 1 = injGn ei

n
. Hence, in terms of trees, the basis

element ei
n

is the right child of the basis element ei+1
n+1. In the previous example,

we can observe the left zero tree in the representation of e2
3 and e1

3 indicating
that e2

3 = injG2
e1
2 and e1

3 = injG2
e0
2. This is coherent with interpretation of the

pairing of two elements of Gn (see the relation (2)).
At the moment, from the point of view of the properties that can be for-

mally proved, only the usual properties of vector space for Kn and Gn and the
properties of morphism of the different injections can be derived.

3.3 Join Product

The next step is to define the join product as a binary tree operation. To explain
the definition, we use equation (2) and the mandatory properties expressed by
the axioms (1) in section 2.2.

A Formalization of Grassmann-Cayley Algebra in Coq and Its Application 59

The idea is to define the join product recursively over the dimension. To do so,
we decompose the product x∨n y in terms of pairing and using the relation (2),
we obtain:

x ∨n y = (x1, x2) ∨n (y1, y2)
= (e0

n
∨n injGn−1

x1 +n injGn−1
x2) ∨n (e0

n
∨n injGn−1

y1 +n injGn−1
y2)

Then, using the axioms (1), we obtain:

(x1, x2) ∨n (y1, y2) = e0
n
∨n injGn−1

x1 ∨n injGn−1
y2

+n injGn−1
x2 ∨n e0

n ∨n injGn−1
y1

+n injGn−1
x2 ∨n injGn−1

y2.
(3)

In the second term in the sum of the right part of this latter expression, the
factor e0

n
needs to be commuted with injGn−1

x2 in order to be able to factorize
the expression with e0

n and to get an expression that corresponds to a pairing.
However, the join product is anti commutative and we must pay attention to

sign changes into the factors. For example, if x is an homogeneous element of
grade k, we have ei

n ∨ x = (−1)k . x ∨ ei
n. We want to generalize this property

and have a conjugate function, noted x , such that ei
n
∨ x = x ∨ ei

n
for all x in

Gn. Here is the definition of such a function:

Definition x n := if n = 0 then x else
let (x1,x2) := x in (-x1

n-1 , x2
n-1).

Now expression (3) can be rewritten as:

(x1, x2) ∨n (y1, y2) = e0
n ∨n (injGn−1

x1 ∨n injGn−1
y2

+n injGn−1
x2

n ∨n injGn−1
y1)

+n injGn−1
x2 ∨n injGn−1

y2.
(4)

Using the definition of the injection injG , we get:

(x1, x2) ∨n (y1, y2) = e0
n ∨n (injGn−1

(x1 ∨n−1 y2 +n−1 x2
n−1 ∨n−1 y1))

+n injGn−1
(x2 ∨n−1 y2).

(5)

This leads to the following recursive definition of the join product:

Definition x ∨n y := if n = 0 then x * y else
let (x1, x2) := x and (y1, y2) := y in
(x1 ∨n−1 y2 +n−1 x2

n-1 ∨n−1 y1, x2 ∨n−1 y2)

From this definition, we have proved formally that this join product verifies its
basic properties (associativity, bilinearity and anti commutativity) defined by
the axioms (1).

60 L. Fuchs and L. Théry

3.4 Meet Product

In order to define the meet product, we follow exactly the same path than for
the join product. We generalize the fact that, for an homogeneous element x of
grade k of Gn, we have ei

n ∧ x = (−1)(n−k) . x ∧ ei
n and define a dual version

of the conjugate function, noted x d, such that ei
n ∧ x = x d ∧ ei

n.

Definition x dn := if n = 0 then x else
let (x1,x2) := x in (x1

dn−1 , -x2
dn−1).

Again, with this auxiliary function, the meet product can be defined recursively
as follows:

Definition x ∧n y := if n = 0 then x * y else
let (x1, x2) := x and (y1, y2) := y in
(x2 ∧n−1 y2, x1 ∧n−1 y2 +n−1 x2 ∧n−1 y1

dn-1)

Note that our recursive approach avoids the use of bracket algebra to define
the meet product so that our formalization works internally and independently
from the bracket algebra framework. As for the join product, it is quite direct
to derive the basic properties of the meet product formally from its definition.

3.5 Duality

The Hodge star operator presented in section 2.3 is also defined recursively over
the dimension as follows:

Definition *n(x) := if n = 0 then x else
let (x1, x2) = x in (*n−1(x2

n-1), *n−1(x)).

Note that in our representation, upto sign flips, the Hodge star just reverses the
leaves of the binary tree. For example in G3, the dual of the element

(((x1, x2), (x3, x4)), ((x5, x6), (x7, x8)))

is the reverse element with two sign flips

(((x8, x7), (−x6, x5)), ((x4,−x3), (x2, x1))).

Because of these sign flips, the Hodge star is not an involution. For homogeneous
elements, the following theorem (corresponding to property (iii) in section 2.3)
is proved into our formalization using the defined Hodge star:

Lemma dual_invo: ∀n k v, if homk
n v then *n(*n(v)) = (-1)k(n−k) .

n v.

A Formalization of Grassmann-Cayley Algebra in Coq and Its Application 61

where homk
n

tests if an element is homogeneous and is defined as follows:

Definition homk
n x := if n = 0 then (k = 0 ‖ x ?

= 0) else
let (x1,x2) := x in
(if k = 0 then x1

?=
n−1

0n−1 else homk−1
n−1 x1) && homk

n−1 x2.

As previously, the notation ‖ is a special notation for the logical or to avoid
confusion with the join product.

Due to our choice of the underlying vector space basis, the Hodge star imple-
ments the duality between the join product and the meet product (see section 2.3
and reference [1]). Then the following theorems are proved within our Coq for-
malization:

Lemma dual_prod: ∀n v1 v2, *n(v1 ∨n v2) = *n(v1) ∧n *n(v2).
Lemma dual_dprod: ∀n v1 v2, *n(v1 ∧n v2) = *n(v1) ∨n *n(v2).

This proves that the join product and the meet product are correctly defined.
At this point, Grassmann-Cayley algebra could already be considered as for-

malized in the Coq proof assistant.

4 Theorem Proving in Projective Geometry

In this section, we first show how we can use our formalization of Grassmann-
Cayley algebra to model the geometry of incidence. Then, in a second step, we
show how proofs in this setting can be fully automatized within Coq.

4.1 Modeling the Geometry of Incidence

Now that we have Grassmann-Cayley algebra in Coq, we can use it to represent
theorems in projective geometry. All this is standard and can be found by exam-
ple in [18] or in [15] chapter 3. We just explain how this has been instantiated
to our formalization. We work over an arbitrary field K and restrict ourselves
to G3. We take a conservative approach and consider only non-degenerated con-
figurations for constructed points. In this setting, points are vectors, so in our
case we are going to use our injection from K3 to G3:

Definition point K := K3.

To define the fact that a point p1 is the intersection of the line composed of p2

and p3 and the line composed of p4 and p5, we simply implement it by saying
that using the join to create the line and the meet to perform the intersection:

Definition p1 is the intersection of [p2,p3] and [p4,p5] :=
inj3,K p1 = (injK3 p2 ∨3 injK3 p3) ∧3 (injK3 p4 ∨3 injK3 p5).

62 L. Fuchs and L. Théry

Note that the equality imposes the meet product to be a point, so the lines to
be defined and intersecting.

To define the fact that a point p1 is on the line composed of p2 and p3, we
simply implement it by saying that the line is well-defined, i.e. the join product
of p2 and p3 is not zero, and the joint product of the three points is zero:

Definition p1 is free on [p2,p3] :=
(injK3 p2) ∨3 (injK3 p3) �= 03

and
(injK3 p1) ∨3 (injK3 p2) ∨3 (injK3 p3) = 03.

Finally, we consider the collinearity of three points and the concurrency of three
lines:

Definition {p1,p2,p3} are collinear :=
(injK3 p1) ∨3 (injK3 p2) ∨3 (injK3 p3) = 03.

Definition {[p1,p2],[p3,p4],[p4,p5]} are concurrent :=
((injK3 p1) ∨3 (injK3 p1)) ∧3

((injK3 p3) ∨3 (injK3 p4)) ∧3

((inj3,K p4) ∨3 (injK3 p5)) = 03.

With these definitions, we can start stating some classic theorems of geometry
of incidence. First, let us consider Pappus’ theorem:

Theorem Pappus: ∀ a b c a′ b′ c′ p q r: point K,
if p is the intersection of [a,b′] and [a′,b] and

q is the intersection of [b,c′] and [b′,c] and
r is the intersection of [c,a′] and [c′,a] and
{a,b,c} are collinear and {a′,b′,c′} are collinear

then {p,q,r} are collinear.

Introducing the universal quantification and eliminating the points p, q and r,
we are left with proving that2:

if a ∨ b ∨ c = 0 and a′ ∨ b′ ∨ c′ = 0 then
(a ∨ b′ ∧ a′ ∨ b) ∨ (b ∨ c′ ∧ b′ ∨ c) ∨ (b ∨ c′ ∧ b′ ∨ c) = 0

Remaining inside the algebra and applying the basic properties it is possible to
prove this statement interactively in Coq. For this, we have followed of the proof
given in [7]. This requires 10 interactions where the prover is guided in order to
apply the symbolic manipulations that leads to the proof.
2 We voluntarily omit the injections and the indices to make the expression more

legible.

A Formalization of Grassmann-Cayley Algebra in Coq and Its Application 63

A more involved proof is Desargues’ theorem. It can be stated as:

Theorem Desargues: ∀ a b c a′ b′ c′: point K,
if p is the intersection of [a,b] and [a′,b′] and

q is the intersection of [a,c] and [a′,c′] and
r is the intersection of [b,c] and [b′,c′] and

then
{p,q,r} are collinear

iff
{a,b,c} are collinear or {a,b,c} are collinear or
{[a,a′],[b,b′],[c,c′]} are concurrent.

Again, introducing the universal quantification and eliminating the points p, q
and r, we are left with proving that:

(a ∨ b ∧ a′ ∨ b′) ∨ (a ∨ c ∧ a′ ∨ c′) ∨ (b ∨ c ∧ b′ ∨ c′) = 0
iff
a ∨ b ∨ c = 0 or a′ ∨ b′ ∨ c′ = 0 or a ∨ a′ ∧ b ∨ b′ ∧ c ∨ c′ = 0

In order to prove this interactively, this time we have followed the paper proof
given in [1]. The proof is more intricate and has required 60 interactions with
the prover.

4.2 Automating Proofs

Proving the last two theorems is very satisfying because it shows that our algebra
can be manipulated symbolically within Coq but clearly we are at the limit of
what is bearable for a user to prove interactively. So, the next step is to automate
the proof of such theorems. For this, we are going to introduce bracket algebra
and follow the path of [11].

Bracket algebra and its relation with Grassmann-Cayley is a well-known
topic [6,1]. Here, we are just going to explain how it has been introduced in
our setting. For the moment, this has only been implemented for G3 but we
believe that this could be easy generalised to Gn for an arbitrarily n. In the
following, in order to increase legibility we will systematically omit the indices
and the injections, so for example (injK3 p1 ∨3 injK3 p2) will be noted (p1 ∨ p2)
only. A bracket is a function that takes three points and returns an element of
our field K. Its definition is the following:

Definition [p1,p2,p3] := dC (p1 ∨ p2 ∨ p3).

where dC stands for the dual of the constant component, i.e the left-most leaf of
the tree-structure given in Figure 1 of page 57. The usual relations between the
bracket, the join product and the meet product in G3 are derived.

64 L. Fuchs and L. Théry

Lemma bracket_defE: ∀p1 p2 p3,
p1 ∨ p2 ∨ p3 = [p1,p2,p3] . e0 ∨ e1 ∨ e2.

Lemma bracket_defl: ∀p1 p2 p3,p1 ∧ (p2 ∨ p3) = [p1,p2,p3] . 1.

We have also formally proved that it behaves as a determinant:

Lemma bracket0l: ∀p1 p2, [p1,p1,p2] = 0

Lemma bracket_swapl: ∀p1 p2 p3,[p1,p2,p3] = − [p2,p1,p3].

Lemma bracket_swapr: ∀p1 p2 p3,[p1,p2,p3] = − [p1,p3,p2].

Lemma bracket_free: ∀α β p1 p2 p3 p4 p5,
if p1 = α . p4 + β . p5

then [p1,p2,p3] = α ∗ [p4,p2,p3] + β ∗ [p5,p2,p3].

In order to automate as described in [11], we are going to restrict ourselves
to a specific skeleton of proofs. The goals we are going to be able to prove
automatically have the following shape:

∀p1 p2 . . . pm, if H1 and . . . Hn then {pi, pj , pk} are collinear

where the His are either the construction of a free point on a line

pj is free on [pr,ps]

or the construction of an intersection

pj is the intersection of [pr,ps] and [pt,pu].

How does the automatic procedure proceed? As the conclusion is a collinearity
property, it can be turned into an equality to zero of a bracket expression by the
following lemma that is a direct consequence of the lemma bracket_defE:

Lemma collinear_bracket: ∀p1 p2,
{p1,p2,p3} are collinear iff [p1,p2,p3] = 0

Then, the constructed points are progressively eliminated from the assumptions
to obtain a bracket expression. Two lemmas are used corresponding to each
construction. In the first case, the assumption is the construction of a free point
on a line. The following lemma can be proved thanks to the conservative approach
we observed:

Lemma online_def: ∀p1 p2 p3,
if p1 is free on [p2,p3] then ∃ α β,p1 = α . p2 + β . p3

A Formalization of Grassmann-Cayley Algebra in Coq and Its Application 65

Coupled with the lemma bracket_free, this lets us remove the free point from
all bracket expressions. In the second case, the assumption is the construction of
an intersection then the second rule3 given in [11] is used to remove the point:

Lemma bracket_expand: ∀p1 p2 p3 p4 p5 p6 p7,
if p1 is the intersection of [p4,p5] and [p6,p7] then
[p1, p2, p3] = −[p4, p2, p3] ∗ [p5,p6,p7] + [p5,p2,p3] ∗ [p4,p6,p7].

Once all the eliminations of constructed points have been performed, we get an
expression that contains sums and products of bracket of initial points and the αs
and the βs introduced by the eliminations of the free points. So for the theorem
to be true generically, this expression must be equal to zero modulo Plücker
relations (see [11]). In order to simplify the obtained expression a contraction
rule is used in [11]). In our setting it is stated as:

Lemma contraction_v0: ∀p1 p2 p3 p4 p5,
[p1,p2,p3] ∗ [p1,p4,p5]− [p1,p2,p5] ∗ [p1,p4,p3] = [p1,p2,p4] ∗ [p1,p3,p5].

Surprisingly applying this rule unrestrictively as a rewrite rule from left to right
as described in [11] is very effective. However, it is not sufficient in our setting to
prove all the given examples. To fix this problem, we implement a normalisation
method that is very expensive but is known to be complete. This captures the
remaining examples. The method is based on an implicit ordering of the initial
points p1 < p2 < · · · < pi. Applying some permutation, brackets can always be
ordered with respect to this order: [pi,pj ,pk] with pi < pj < pk.

The order can be lifted to brackets [pi,pj ,pk] ≤ [pi′ ,pj′ ,pk′] if pi ≤ pi′ and
pj ≤ pj′ and pk ≤ pk′ . The normalisation proceeds in trying to order the product
of brackets from the smallest to the largest. For this, we consider the product of
two brackets [pi,pj ,pk] ∗ [pi′ ,pj′ ,pk′]. Without loss of generality, we can suppose
that pi ≤ pi′ . There are only two situations where this product is not ordered:

1. pi < pi′ and pj′ < pj

2. pi ≤ pi′ and pj < pj′ and pk′ < pk (or equivalently pi < pi′ and pj ≤ pj′ and
pk′ < pk)

The first rewrite rule takes care of the first case and assures that the resulting
expression has every first two elements of brackets in a product properly ordered.

Lemma split3b_v1: ∀pi pi′ pj pj′ pk pk′,
[pi,pj,pk] ∗ [pi′,pj′,pk′] =

[pi,pi′,pj′] ∗ [pj,pk,pk′]− [pi,pi′,pk′] ∗ [pj,pk,pj′]+
[pi,pj′,pk′] ∗ [pj,pk,pi′].

3 This rule corresponds to the elimination of the area method [9].

66 L. Fuchs and L. Théry

The second rewrite rule takes care of the second case and insures that the re-
sulting products of brackets are all properly ordered.

Lemma split3b_v2: ∀pi pi′ pj pj′ pk pk′,
[pi,pj,pk] ∗ [pi′,pj′,pk′] =

[pi,pj,pi′] ∗ [pk,pj′,pk′]− [pi,pj,pj′] ∗ [pk,pi′,pk′]+
[pi,pj,pk′] ∗ [pk,pi′,pi′].

5 Conclusion

We have described how our formalization of Grassmann-Cayley algebra has been
achieved. It is a generic one: it is parametrized both by the underlying field K
and by the dimension n. A snapshot of the formalization with a complete zipped
archive is available at

http://www-sop.inria.fr/marelle/GeometricAlgebra.

Recursive definitions have played a central role in this formalization. Elements of
the algebra are represented as binary trees. With this representation, operations
like the meet, the join and the duality can be described as recursive functions in a
very direct way. The nice thing about defining these operations in a proof assistant
like Coq is that not only can we compute with them like in any programming
language but also we can reason about them. This lets us derive all the standard
properties of Cayley-Grassmann operations. Our implementation is then verified:
we have a certified computational model of Grassmann-Cayley algebra.

One of the most satisfying part of this formalization is, without a doubt,
the instantiation that has been done in order to prove Pappus’ and Desargues’
theorem as proposed in [7] and [1]. We have been capable of justifying formally
every step of the paper proofs. Moreover, the method that automatically proves
projective geometric theorems proposed in [11] has also be translated successfully
into our formalization. An efficient Coq tactic has been developed. This makes
us very confident in the potential of our formalization.

In addition to the formalization of the Grassmann-Cayley algebra basics prop-
erties, we have also considered other useful operations such as contraction 〈φ, v〉
of a linear form φ on a vector v and factorisation have also been formalized.

As already mentioned in the introduction, we are very interested in studying
the links with other formalized approaches of incidence geometry such as those
based over ranks [14,13].

Finally, we also plan to develop our formalization to capture the powerful
framework of the geometric algebra [8,5].

References
1. Barnabei, M., Brini, A., Rota, G.C.: On the Exterior Calculus of Invariant Theory.

Journal of Algebra 96, 120–160 (1985)
2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development,

Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2004)

http://www-sop.inria.fr/marelle/GeometricAlgebra

A Formalization of Grassmann-Cayley Algebra in Coq and Its Application 67

3. Coq development team: The Coq Proof Assistant Reference Manual, Version 8.2.
LogiCal Project (2008), http://coq.inria.fr

4. Crapo, H., Richter-Gebert, J.: Automatic proving of geometric theorems. In: White
[16], pp. 167–196

5. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An
Object Oriented Approach to Geometry. Morgan Kauffmann Publishers (2007)

6. Doubilet, P., Rota, G.C., Stein, J.: On the foundations of combinatorial theory. IX.
Combinatorial methods in invariant theory. Studies in Applied Mathematics 53,
185–216 (1974)

7. Hawrylycz, M.: A geometric identity for Pappus’ theorem. Proceedings of the Na-
tional Academy of Sciences U.S.A. 91(8), 2909 (1994)

8. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Lan-
guage for Mathematics and Physics. In: Fundamental Theories of Physics, vol. 5,
Kluwer Academic Publishers (1984)

9. Janicic, P., Narboux, J., Quaresma, P.: The Area Method: a Recapitulation. Jour-
nal of Automated Reasoning (2010) (published online)

10. Li, H.: Algebraic Representation, Elimination and Expansion in Automated Geo-
metric Theorem Proving. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930,
pp. 106–123. Springer, Heidelberg (2004)

11. Li, H., Wu, Y.: Automated short proof generation for projective geometric theo-
rems with Cayley and bracket algebras: I. Incidence geometry. Journal of Symbolic
Computation 36(5), 717–762 (2003)

12. Magaud, N., Narboux, J., Schreck, P.: Formalizing Projective Plane Geometry in
Coq. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 141–162.
Springer, Heidelberg (2011)

13. Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq
using ranks. In: Proceedings of the ACM Symposium on Applied Computing SAC
2009, ACM, ACM Press (March 2009),
http://lsiit.u-strasbg.fr/Publications/2009/MNS09

14. Michelucci, D., Schreck, P.: Incidence constraints: A combinatorial approach. In-
ternational Journal of Computational Geometry & Applications 16(5-6), 443–460
(2006)

15. Sturmfels, B.: Algorithms in Invariant Theory. Springer, New York (1993)
16. White, N.L. (ed.): Invariants Methods in Discrete and Computational Geometry.

Kluwer, Dordrecht (1995)
17. White, N.L.: A tutorial on Grassmann-Cayley algebra. In: Invariants Methods in

Discrete and Computational Geometry [16], pp. 93–106
18. White, N.L.: Geometric applications of the Grassmann-Cayley algebra. In: Hand-

book of Discrete and Computational Geometry, pp. 881–892. CRC Press, Inc.,
Boca Raton (1997)

http://coq.inria.fr
http://lsiit.u-strasbg.fr/Publications/2009/MNS09

Automatic Calculation of Plane Loci

Using Gröbner Bases and Integration
into a Dynamic Geometry System

Michael Gerhäuser and Alfred Wassermann

University of Bayreuth
Department of Mathematics, 95440 Bayreuth, Germany

{michael.gerhaeuser,alfred.wassermann}@uni-bayreuth.de

Abstract. We describe the integration of a well known algorithm for
computing and displaying plane loci based on ideal elimination using
Gröbner bases in the dynamic geometry software JSXGraph. With our
approach it is not only possible to determine loci depending on other loci
but it is also possible to extend JSXGraph to deal with loci depending
on arbitrary plane algebraic curves. For Gröbner bases calculations we
use CoCoa, a computer algebra system with its focus on computations
in commutative algebra.

Keywords: dynamic geometry system, gröbner bases, automatic dis-
covery of plane loci.

1 Introduction

The term “Dynamic Geometry System” (DGS) describes software programs
which can be used to construct and display geometric configurations. The key
characteristic of such software, expressed by the word “dynamic”, is that uncon-
strained elements can be moved freely across the whole drawing board while the
other elements are adjusted automatically satisfying existing constraints. One of
the features which are present in nearly every modern DGS is the calculation
of loci out of a set of free or constrained points, “glued” together by a set of
geometric relations. However, all but one of the free points should be fixed to
their current location while determining a locus. One of the constrained points
is called the drawer and it is bound to another object, e.g. a circle or a line
or a function plot. However, the implementation of the algorithm described in
this paper requires the point to be bound to an algebraic curve. The locus point
should depend on this drawer.

A simple way to display the locus of a constrained point is to automatically
move the drawer and trace the locations of the locus point. This gives us a set of
sample points which can be interpolated to draw a smooth loci curve. This simple
algorithm is implemented and used in many DGS, e.g. GEONExT1, GeoGebra2,
1 http://geonext.de
2 http://geogebra.org

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 68–77, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Loci Computation with JSXGraph 69

and Cinderella3. The advantage of this approach is its efficiency. Unfortunately
when using this method, in some cases parts of the locus get lost as is shown in
Figure 1. Additionally, the locus line equation is not part of the result but there
are ways to calculate it as well [13].

Fig. 1. Some parts of the four-bar-linkage locus get lost in GEONExT(left hand side)
and are preserved in JSXGraph (right hand side)

This behavior is due to the continuity problem [12] and due to possibly oc-
curring complex coordinates in some of the dependent points. In most DGS the
calculation of intersection points is done by simply determining the intersection
points coordinates. If a circle is involved in an intersection there are two inter-
section points which can’t be algebraically distinguished. Therefore, those two
intersection points in fact live only on a semicircle and will jump over the other
half of the circle if they get near to one of the transition points.

In the construction shown in Figure 1, I is the intersection point of the circle
d and the circle around the drawer D. While we are moving D on circle c, it
may occur that I is not real anymore, i.e. its coordinates are complex, but the
midpoint T between D and I still is real, but is not shown by most DGS. The
only DGS we know that take care of this problem are Cinderella and GeoGebra.

2 Calculating Loci with Gröbner Bases

2.1 The Algorithm

To get around the continuity problem in the successor of GEONExT which will
be based on JSXGraph, we integrated an exact algorithm for the calculation of
plane loci. This method uses Gröbner bases to calculate the implicit algebraic
equation of the locus and then plots the corresponding curve. Every point bound
by geometric constraints fulfills one or two algebraic equations. If we write down
all the algebraic equations we get a system of polynomial equations (SPE). By
subtracting the right hand sides of the equations we can homogenize the SPE and
interpret it as an ideal in an appropriate polynomial ring. Using the Buchberger
3 http://cinderella.de

70 M. Gerhäuser and A. Wassermann

algorithm we then compute the Gröbner basis of this ideal. From that we obtain
an elimination ideal which eventually leads us to the algebraic equation of the
variety that contains the locus curve we searched for. For an introduction on
Gröbner bases theory see [1,5,7,8,9].

This algorithm itself is not the original work of the authors of this article. It
was firstly described in [2] using the ideas in [15], and remotely used in [4]. As
the algorithm is described there very well we will give only a short description
by example here.

2.2 Example

Given the construction from Figure 1 we first choose coordinates for all points.
With the notation in the construction on the right hand side of Figure 1 we get

A = (−1.5, 1.5), B = (2.5, 0.5), D = (d1, d2), T = (t1, t2), I = (i1, i2) . (1)

To set up the system of polynomial equations we have to take a look at the
geometric constraints of the dependent points, e.g. Point D lives on the circle
around A with radius 2, or algebraically spoken

(d1 − a1)2 + (d2 − a2)2 = 22 . (2)

The intersection point I lies on the circle d around B with radius 3
2 and the

circle around I with radius 4. Hence, I fulfills the equations

(i1 − b1)2 + (i2 − b2)2 =
9
4

(3)

and
(i1 − d1)2 + (i2 − d2)2 = 42 . (4)

Doing the same for the locus point T we get

d1i2 − t2d1 − i1d2 + i1t2 + t1d2 = 0 (5)

as well as
(i1 − t1)2 + (i2 − t2)2 = (d1 − t1)2 + (d2 − t2)2 . (6)

We now can interpret the system of polynomial equations consisting of equations
(2) to (6) as an ideal I in the polynomial ring Q[d1, d2, i1, i2, t1, t2].

Calculating the Gröbner basis results in generators that we will not show here
for the sake of brevity. But using this special basis we are able to eliminate the
variables d1, d2, i1, and i2. In other words we can determine easily the fourth
elimination ideal which is generated by an algebraic equation in the variables t1
and t2:

J = (128t61 + 384t41t
2
2 + 384t21t

4
2 + 128t62 − 384t51 − 768t41t2 − 768t31t

2
2

− 1536t21t
3
2 − 384t1t

4
2 − 768t52 + 128t41 + 2560t31t2 + 3328t21t

2
2 (7)

+ 2560t1t
3
2 + 3200t42 − 192t31 − 5232t21t2 − 5568t1t

2
2 − 8304t32

+ 2458t21 + 2672t1t2 + 6442t22 − 1170t1 + 4122t2 − 3483) .

Loci Computation with JSXGraph 71

3 Integration of Locus Computation in JSXGraph

3.1 JSXGraph

JSXGraph4 is a DGS implemented in JavaScript. It uses either Scalable Vec-
tor Graphics (SVG) or Vector Markup Language (VML) or HTML5 Canvas to
draw geometric constructions. This enables JSXGraph to run in any major web
browser and therefore, it can be used on a wide variety of devices like deskop
computers, laptops, tablets and smartphones with many different operating sys-
tems [10]. The feature set includes Euclidean geometry, conic sections, function
plotting, integration, interactive ode solving, turtle graphics, charts. Importing
constructions made with GEONExT, GeoGebra, or Intergeo is possible, too.

A construction like the one in Figure 1 is done in JSXGraph with the following
JavaScript commands:

board = JXG.JSXGraph.initBoard(’jxgbox’, {
boundingbox:[-4, 6, 10, -4],
keepaspectratio: true

});

p1 = board.create(’point’, [0, 0]);
p2 = board.create(’point’, [6, -1]);
c1 = board.create(’circle’, [p1, 2]);
c2 = board.create(’circle’, [p2, 1.5]);
g1 = board.create(’glider’, [6, 3, c1]);
c3 = board.create(’circle’, [g1, 4]);
g2 = board.create(’intersection’, [c2,c3,0]);
m1 = board.create(’midpoint’, [g1,g2]);

loc = board.create(’locus’, [m1]);

3.2 Calculating Loci with JSXGraph

Because some of the broad range of devices JSXGraph is intended to run on do
not have high computing powers and the fact that there are a lot of very efficient
algorithms for calculating Gröbner bases already implemented we decided to use
one of these implementations remotely via the XMLHttpRequest object. The loci
calculation in JSXGraph is implemented straightforward:

1. Collect the elements the locus depends on
2. Choose a coordinate system
3. Generate polynomial equations from geometric restrictions
4. Upload the equation system to the server
5. Calculate the elimination ideal
6. Calculate the variety generated by the elimination ideal

4 http://jsxgraph.uni-bayreuth.de/ and https://sourceforge.net/projects/jsxgraph/

72 M. Gerhäuser and A. Wassermann

7. Return the variety and the polynomials generating the
elimination ideal to JSXGraph

8. Display the variety containing the locus

JSXGraph keeps track of all dependencies between the elements of a construc-
tion. We use this knowledge to collect only those elements which are required
to calculate the locus. This helps keeping the polynomial equation system
generated in step 3 clean and small and thus speeds up the calculations in
step 5.

By default JSXGraph uses the actual position of the free points and generates
symbolic coordinates for the dependent ones. However, the user can choose one
point to be (0, 0) and additionally another point either (x, 0) or (1, 0) to simplify
the generated polynomials which in some cases speeds up the calculation:

board.options.translateToOrigin = true;
board.options.toOrigin = p1;

This will cause point A to be considered as (0, 0) all the time even if the user
drags A to another place.

If the construction only consists of free points and elements of the following
classes, JSXGraph can generate the polynomial equations all by its own. Semi-
algebraic elements like a segment will be replaced by their algebraic equivalent:

– Glider on a circle, a line, or another locus
– Intersection points: circle/circle, circle/line, line/line, line/locus, circle/locus,

and locus/locus.
– Midpoint
– Parallel line and point
– Perpendicular line and point
– Circumcircle and circumcenter

Fig. 2. Gliders on a cubic function can be used to generate a locus

Loci Computation with JSXGraph 73

Nevertheless, if further elements are required, JSXGraph can easily be ex-
tended by providing an user defined generatePolynomial() method. Consider a
construction like the one in Figure 2 where we are looking for the locus of a
midpoint of a glider living on a cubic function and an intersection point of two
circles. To achieve that we have to override the generatePolynomial() method of
the curve object (called c in our example) which represents the cubic function:

c.generatePolynomial = function(p) {
return [’(’ + p.symbolic.x + ’)^3 - (’ + p.symbolic.y + ’)’];

};

After the system of polynomial equations has been generated successfully it is
transferred to a web server where CoCoA [6] is used to calculate the elimination
ideal. In a second step the variety generated by the elimination ideal is drawn
with matplotlib [11]. The resulting set of points is then packed together with the
locus equation and sent back to the browser.

Back in JSXGraph the set of points is drawn and the equation is stored for
further locus computations. This enables us to intersect the just calculated locus
with lines and circles or even other loci or to put a glider on a computed locus
and use it for the calculation of other loci. After the calculation the locus is
frozen, i.e. it is not recalculated as long as the free points the locus depends on
are not moved whereas other points may be moved without triggering an update
of the locus.

4 An Idea for Speed Improvements

In Figure 3 we see an extension of the limaçon of Pascal [4]. The extension
includes two points which introduce four new variables and these four new poly-
nomials

E = {(u5 − u3)2 + (u6 − u4)2 − 9,

(u5 − 8)2 + (u6 − 8)2 − 16,

u4x− u3u5 + yu5 − u3y + u3u6 − xu6,

u2
3 − 2u3x + u2

4 − 2u4y − u2
5 + 2u5x− u2

6 + 2u6y}

to the existing set of generators

B = {(u3 − u1)2 + (u4 − u2)2 − 9,

3u3 − 3u1 + u4u1 − 8u4 + 8u2 − u3u2,

(u1 − 8)2 + (u2 − 8)2 − 16}.

Now we can compute the locus directly eliminating u1, . . . , u8 at (B ∪E) or we
can eliminate u1, u2 from (B) first and use the reduced Gröbner basis L of the
resulting elimination ideal and eliminate u3, . . . , u8 at (L ∪ E).

74 M. Gerhäuser and A. Wassermann

Fig. 3. Extended version of the limaçon of Pascal: Additional to the construction used
to compute the limaçon we have a circle around T which intersects in C with the circle
around B. The algebraic curve is the locus of the midpoint E of C and T .

Fig. 4. Dependency graph of the construction seen in Figure 3. The numbers next to
some of the nodes show the number of equations that particular point adds to the
polynomial equation system.

In general, the results of the direct approach and the split generators approach
are not guaranteed to be the same. But in this case we are calculating two loci
where the drawer of the second locus is bound to the first locus. Hence, as long
as we make sure the intermediate result is a locus, too, we should be fine.

Loci Computation with JSXGraph 75

To check if the calculation can be split up we have to take a look at the de-
pendencies of the geometric construction. A dependency graph for the extended
limaçon is shown in Figure 4 with the free points in squares and the dependant
points in circles. Looking at the dependant points we see that E and C depend
on T only. This means we can split the calculation of the locus of E by computing
the locus of T first.

The benefit of this approach is the slightly lower time it sometimes takes to
calculate the locus which is due to the smaller ideals.

Back to the limaçon example, determining the extended locus consecutively
takes about 0.4sec instead of 0.8sec in our setup from above: JSXGraph with
CoCoA and the lexicographic order. This measurement also includes the over-
head, i.e. the time used to generate and upload the polynomials, to calculate and
plot the elimination ideal with matplotlib and in JSXGraph. Additional mea-
sures in Singular, Mathematica, and Magma without the overhead generated by
JSXGraph confirm this observation. However, in the different computer algebra

Fig. 5. A counterexample: C is a glider on the circle around A. D is an intersection
point of the circle k2 around C and the line l through A and B. k3 is a circle around
the midpoint E of C and D which intersects with l in F . We are looking for the locus
of the midpoint G of E an F .

76 M. Gerhäuser and A. Wassermann

systems mentioned the gap between the times consumed by the direct and the
consecutive computation differs.

Limaçon Extension Total Directly
JSXGraph + CoCoA 76.5ms 331.8ms 408.3ms 836.3ms
Singular <=10ms 26.5ms 26.5ms 117.8ms
Mathematica 7.1ms 103.2ms 110.3 418.0ms
Mathematica (EliminationOrdering) 7.9ms 76.7ms 84.6ms 137.8ms
Magma 1.7ms 53.7ms 55.4ms 138.9ms

Unfortunately, it is also possible that the calculation takes much longer when
using this approach. An example is shown in Figure 5.

5 Conclusion

The biggest difference between this approach of calculating and displaying plane
loci to the relatively simple approach mentioned in the introductory section can
be seen in Figure 1. There are no parts of the locus missing, because the con-
struction of the locus is not done by simulating the user dragging around the
drawer point, but it is calculated using algebraic methods. Hence, it doesn’t mat-
ter if any of the dependent points’ coordinates are real or not, all the real points
of the locus are displayed. The continuity problem is by-passed because in the
algebraic equations both intersection points are a solution of the corresponding
equations.

In the above example this was an advantage, but sometimes this introduces
new branches to our locus which we may not want to appear. One of those cases
can be seen in Figure 6 which shows an egg curve. Strictly speaking there are two
egg curves in this picture, because the point E was introduced by intersecting
the circle around D with the line through A and C. The algorithm considers
both intersection points because it simply cannot distinguish them. Or – more
generally spoken – semi-algebraic objects are treated as their algebraic equiva-
lent which results in a superset containing the locus but not always being the
exact locus. Degenerated conditions in a construction also introduce additional
branches which is not always desired.

Another point to mention about this algorithm is the time it consumes. While
most of the rather small examples take only a few milliseconds the calculation
the egg curve locus seen in Figure 6. takes about 20 seconds on a Intel Pentium
Core 2 Duo T5250 which is a rather long time. Unfortunately, loci depending on
at least three or four dependant points including the locus point and the drawer
usually take way too long to be computed in a reasonable amount of time.
However, most of the loci used in educational environments can be determined
in a reasonable amount of time.

Loci Computation with JSXGraph 77

Fig. 6. The egg curve is plotted twice, because the intersection point E originated from
an intersection with the circle around D

References

1. Becker, T., Weispfenning, V.: Gröbner bases: a computational approach to com-
mutative algebra. Springer, Heidelberg (1993)

2. Botana, F., Valcarce, J.L.: A software tool for the investigation of plane loci. Math-
ematics and Computers in Simulation 61(2), 139–152 (2003)

3. Botana, F.: A Web-Based Intelligent System for Geometric Discovery. In: Sloot,
P.M.A.,Abramson,D.,Bogdanov,A.V.,Gorbachev,Y.E.,Dongarra,J.,Zomaya,A.Y.
(eds.) ICCS 2003, Part I. LNCS, vol. 2657, pp. 801–810. Springer, Heidelberg (2003)

4. Botana, F., Abánades, M.A., Escribano, J.: Computing Locus Equations for Stan-
dard Dynamic Geometry Environments. In: Shi, Y., van Albada, G.D., Dongarra,
J., Sloot, P.M.A. (eds.) ICCS 2007, Part II. LNCS, vol. 4488, pp. 227–234. Springer,
Heidelberg (2007)

5. Buchberger, B.: Introduction to Gröbner Bases. In: Buchberger, B., Winkler, F.
(eds.) Gröbner bases and applications. London Mathematical Society Lecture Note
Series. Cambridge University Press (1998)

6. CoCoA: a system for doing Computations in Commutative Algebra,
http://cocoa.dima.unige.it

7. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, New
York (2008)

8. Fröberg, R.: An Introduction to Gröbner Bases. John Wiley & Sons (1997)
9. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University

Press (1999)
10. Gerhäuser, M., Miller, C., Valentin, B., Wassermann, A., Wilfahrt, P.: JSXGraph:

Dynamic Mathematics Running on (nearly) Every Device. To be published in The
Electronic Journal of Mathematics and Technology

11. Hunter, J.D.: Matplotlib: A 2D Graphics Environment. In: Computing in Science
& Engineering, vol. 9, pp. 90–95. IEEE Computer Society, Los Alamitos (2007)

12. Kortenkamp, U.: Foundations of Dynamic Geometry. Dissertation (1999)
13. Lebmeir, P., Richter-Gebert, J.: Recognition of Computationally Constructed Loci.

In: Botana, F., Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 52–67.
Springer, Heidelberg (2007)

14. Pilgrim, M.: Dive Into Python. APress (2004)
15. Recio, T., Vélez, M.P.: Automatic Discovery of Theorems in Elementary Geometry.

Journal of Automated Reasoning, 63–82 (1999)

http://cocoa.dima.unige.it

Proof Documents

for Automated Origami Theorem Proving

Fadoua Ghourabi1, Tetsuo Ida1,�, and Asem Kasem2

1 Department of Computer Science
University of Tsukuba

Tsukuba 305-8573, Japan
{ghourabi,ida}@cs.tsukuba.ac.jp

2 Faculty of Informatics and Communications Engineering
Yarmouk Private University

Daraa, Syria
a-kasem@ypu.edu.sy

Abstract. A proof document for origami theorem proving is a record
of entire process of reasoning about origami construction and theorem
proving. It is produced at the completion of origami theorem proving as a
kind of proof certificate. It describes in detail how the whole process of an
origami construction and the subsequent theorem proving are carried out
in our computational origami system. In particular, it describes logical
and algebraic transformations of the prescription of origami construction
into mathematical models that in turn become amenable to computation
and verification. The structure of the proof document is detailed using
an illustrative example that reveals the importance of such a document
in the analysis of origami construction and theorem proving.

1 Introduction

In this paper, we are interested in computational origami, a discipline of study-
ing mathematical and computational aspects of origami (paper folding). It com-
prises, among others, the studies of theories of fold, modeling of origami by
logical, algebraic and symbolic methods, computer simulation of paper fold, and
proving the correctness of geometrical properties of the constructed origami. In
particular, we will address the issues of managing automated geometrical origami
theorem proving.

It is well known that the set of basic fold operations proposed by Huzita,
often referred to as Huzita’s axiom set [7,10] or as Huzita’s fold principle to be
more precise [11], is more powerful than Euclidean tools, i.e. straightedge and
compass (abbreviated to SEC hereafter). Huzita’s fold principle is more powerful
than SEC in the sense that we can construct a larger class of points of coincidence
by applying Huzita’s fold principle than by SEC [3]. Therefore, the class of the

� This research is supported by the JSPS Grants-in-Aid for Scientific Research (B)
No. 17300004 and for Exploratory Research No. 19650001.

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 78–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Proof Documents for Automated Origami Theorem Proving 79

shapes formed by connecting the coincidences is richer than that of the shapes
formed by SEC. The trisector of an arbitrary angle is a famous example that
is constructible by origami, but not by SEC [15,2]. This shows the importance
of deeper and more extensive mathematical study of theories of origami in both
foundational and application-oriented domains.

Another interesting aspect of origami is its algorithmic one. The construction
is described by a sequence of fold steps, each of which can be specified by Huzita’s
fold principle. The prescription of the construction of the origami is akin to
a program. By obeying the commands of folds, of the form of application of
Huzita’s fold principle, we can construct a desired shape of an origami. It is
not only a human origamist but also the software empowered by high-quality
graphics and symbolic and numeric capabilities, that can construct an origami.
Subsequently, we should be able to verify the construction, as programs need to
be verified.

2 Motivation

Our interest in mathematical aspects of origami coupled with the above observa-
tion led us to design and implement a computational origami system called Eos
(e-origami system) [9]. While we used Eos for several years as an assistant for
studying origami, we found it extremely important to keep record of our inter-
actions with Eos; the record showing which step of constructions creates what
shape of the origami, and what geometrical properties are added to the origami;
and then how the accumulated geometrical properties are transformed into log-
ical and algebraic expressions. Finally, we should check what algebraic method
with specific parameters can be used for proving the origami theorems that we
eventually would like to obtain. The construction, reasoning about geometrical
and algebraic properties and theorem proving are not separate; they actually are
interleaved and the cycle of construction-reasoning-proving is repeated several
times with differing parameters. The record of these activities would tend to be
scattered, unless we have means to documenting the activities systematically.

For this purpose, we incorporated the functionality of generating the proof
document into Eos. The proof document records the entire activities of origami
construction and theorem proving with Eos. It also serves as a proof certificate.
The development required redesigning and reimplementing several core compo-
nents of Eos. In this paper we explain the structure and the content of the proof
document of Eos.

The organization of the rest of the paper is as follows. In Section 3, we give
the overview of the research activities related to origami theorem proving. In
Section 4, we explain how reasoning about origami construction and theorem
proving is performed in our computational framework using Eos. Then in Sec-
tion 5, we show the steps of proving whose output constitutes the essential
contents of the proof document. In Section 6, we explain in detail the structure
of the proof document. Finally, we conclude with remarks on further direction
of research.

80 F. Ghourabi, T. Ida, and A. Kasem

3 State of the Art of Origami Theorem Proving

Before we start describing the proof document, the discussion about the state
of the art is due. Although the history of the research on the automated the-
orem proving is long, the automated theorem proving focussing on origami is
relatively new. One of the earliest attempts, which the second author of the
present paper was involved with, was to design a system communicating among
origami constructor and reasoner, the geometrical theorem prover and general
theorem prover Theorema [13]. We computationally construct an origami; then
the geometry of the origami is sent to the geometrical prover, which generates
the algebraic representation of the origami, and the algebraic representation is
sent to Theorema [4]. Theorema performs a few logical and algebraic manipu-
lations and computes the Gröbner bases. Theorema produces a proof text as a
sequence of formulas together with statements in a natural language.

As the three components are implemented in Mathematica [16], they can easily
share the algebraic expressions and their data structures. However, our later
experiences show that we need tighter interactions between them, for the sake
of analysis of correspondence between symbolic, logical and algebraic structures
that are derived from origami geometry.

Although not directly related but influenced, we should mention a geometrical
theorem proving system Geother [14]. Basically, Geother provides an interface to
represent dynamic geometrical shapes and a language to prove properties about
them. Moreover, the system can detect subsidiary conditions of geometrical the-
orems (thanks to Wu-Ritt formalism [17]) and transform them into legible state-
ments. The geometrical construction and the proof are two independent parts
in Geother. As we mentioned in the motivation, we would like to gain the extra
advantage from designing a computational origami system where construction
and proof can be integrated more tightly.

Our approach is algebraic. We also see the importance of logical approach,
exemplified by GeoProof system [12]. It allows interactive geometrical construc-
tions and interactive proof assistance. To perform the proof, the user can choose
either algebraic methods or Coq proof assistance [1]. Employing a proof assistant
such as Coq, in addition to the algebraic provers, is a possible future extension
of our system.

4 Reasoning about Origami

In the generation of a proof document, we are concerned with all facets of rea-
soning during the entire process of origami construction and theorem proving.
Let us briefly discuss the operations of reasoning about origami.

4.1 Algorithm of Origami Construction and Proving

Let i denote the i-th step of the origami construction, Oi be the origami at
step i of the construction, and Ψi be the geometrical property associated with

Proof Documents for Automated Origami Theorem Proving 81

Oi. Suppose that we construct an origami Ok. The origami reasoning process is
abstractly described by the following Algorithm Ori.

Algorithm Ori

1. [Initialization]
Let i := 1; Define initial origami Oi; Ψi :=True;

2. [Construction]

While (Oi �= Ok) do
li := f(Oi, ai);
Ψi := Ψi∧ (li = �f(Oi, ai) �);
Fold Oi along li and obtain Oi+1;
Compute Ψi+1 from Oi and Oi+1;
i := i + 1;

3. [Conclusion formation]
Define the property Φ to be established.

4. [Additional assumption formation]
Define an additional assumption Ψi+1 and i := i + 1, if needed to establish
Φ;

5. [Proving]
Prove the proposition Ψ1 ∧ · · · ∧ Ψi ⇒ Φ;

The reasoning about origami consists of the above five phases. The first phase is
the initialization, where a sheet of origami of specified size and colors is defined.
The sheet of origami has two sides, usually with different colors.

The second is the construction phase. It is the iteration of folds or unfolds. The
expression f(Oi, ai) describes the operation of finding the line, called fold line,
along which the origamiOi is folded or unfolded. Since unfold is a special kind of
fold, i.e. fold along the same line as the one for the previous fold in an opposite
direction, we will generally use the word fold to mean both fold and unfold
operations, unless the operation is definitely unfold. The parameter sequence ai

is a sequence of points and lines. The result of the evaluation of f(Oi, ai) is an
object representing a line. The expression �f(Oi, ai) � is the unevaluated form of
f(Oi, ai). The sequence �f(O1, a1) �, . . ., � f(Ok−1, ak−1) � is a program of the
construction of the origami Ok. The unevaluated variables in the expression will
be treated as universally quantified variables in the proof phase. Each Ψi+1 is a
formula of the first-order predicate logic describing the geometrical properties of
Oi+1 relative to Oi.

The third and fourth phases are usually combined into one [Theorem forma-
tion] phase. In certain geometrical constructions, additional conditions may be
necessary to establish the conclusion Φ (often called goal). For instance, proving
certain properties involving a triangle would require the non-collinearity of the
vertices of the triangle.

82 F. Ghourabi, T. Ida, and A. Kasem

The last phase deals with theorem proving. Since we are interested in computer-
assisted (semi-)automated theorem proving, we will use appropriate algebraic
methods. Currently, we use Gröbner basis computation (GB) and the cylindrical
algebraic decomposition (CAD) methods.

In the following, we show an example of computing each Ψi in the process of
origami construction.

4.2 A Simple Example of Construction

We show a simple example of construction that follows the way that Eos, and
therefore proof document, manages its information for construction and subse-
quent proving. We start the origami construction with an initial square sheet of
origami and fold the origami to bring point A onto point D. Then we unfold the
origami. The created origami shapes are shown in Fig. 1. The steps 1 - 3 are a
typical prologue of origami constructions, e.g. of origami construction of a regu-
lar heptagon [13]. These three steps generate the following Ψis. The subscript i is
attached automatically to denote the geometrical objects of the origami created
at step i, e.g. point A at the step i by Ai.

Ψ1 := PPSupQ[A1, D1, line11]
Ψ2 := OnLineQ[E2, line11] ∧ OnLineQ[E2, A1D1] ∧

OnLineQ[F2, line11] ∧ OnLineQ[F2, B1C1] ∧
A2=Reflection[A1, line11] ∧ B2=Reflection[B1, line11] ∧
C2=C1 ∧ D2=D1 ∧ UnfoldQ[line11]

Ψ3 := A3=Reflection[A2, line11] ∧ B3=Reflection[B2, line11] ∧
C3=C2 ∧ D3=D2 ∧ E3=E2 ∧ F3=F2 ∧ A3C3 = line23

(a) O1 (b) O2 (c) O3

Fig. 1. Fold to bring A to D, and unfold

Formulas Ψis are conjunction of predicates (many of them are equalities). They
are purely geometrical statements and independent of the coordinate system.
The predicate PPSupQ[A1, D1, line11] in Ψ1 states that line11 is the fold line
to superpose the points A and D. PPSupQ stands for Point-Point Superposition. It
corresponds to f(O1, a1) in Algorithm Ori.

Proof Documents for Automated Origami Theorem Proving 83

Ψ2 is the conjunction of the predicates whose geometrical meaning is as follows:

– OnLineQ[E2, line11] states that point E at step 2 is on the fold line line11

and the same is true for point F at step 2. Points E and F are constructed at
step 2 as the coincidences of the fold line line11 and the lines obtained
by extending the edges AD and BC of origami O1, respectively. Likewise
the other two predicates OnLineQ[E2, A1D1] and OnLineQ[F2, B1C1] are
obtained.

– The predicate A2=Reflection[A1, line11] states that point A2 is the re-
flection of A1 over the fold line line11. The reflections of A1 and B1 occur
when we fold the origami at step 2.

– Points C and D are not moved by the fold operation. This is expressed by the
equalities in the conjunction C2=C1 ∧ D2=D1.

– The next operation is unfold along the line line11, which the predicate
UnfoldQ[line11] describes.

Fig. 2. Fold along the line
AC

The first six predicates in Ψ3 show the effects of the
unfold. Points A and B are reflected back across the
fold line line11 and points C, D, E and F at step 3
are not moved. The last predicate A3C3 = line23,
which shows the introduction of the fold line line2,
describes the fold operation at step 4. We fold along
the line passing through the points A and C, i.e. fold
line line2 at step 4, moving the left side of ray −→AC
as shown in Fig. 2.

4.3 Fold Principle

We now explain briefly how Algorithm Ori is realized in Eos. We use the Math-
ematica frontend for the interaction with Eos. Users specify the command that
folds the origami along the fold line computed by f(Oi, ai) in the syntax of
Mathematica function calls. Ois are stored in the global memory of Eos and
hence not included in the parameters of the command. The top-level read-eval
loop of the Mathematica frontend interprets the input command and outputs
the next origami.

We adopted Huzita’s fold principle to specify the fold operations. Table 1
gives the list of the fold commands. Function HO1 is the realization of Huzita’s
seven basic fold operations. Some parameters of HO are syntactically sugared to
improve the readability. Those parameters define the fold line. Note that not all
the operations are necessary; the first to the fifth, and the seventh fold operations
are special instance of the sixth operation. Nevertheless, we provide all of them
for the convenience of users and for the ease of proving. For instance, HO[m, n]
is equivalent to HO[P , n, Q, n], when m is a line passing through points P and
Q.

1 HO stands for Huzita Ori.

84 F. Ghourabi, T. Ida, and A. Kasem

Table 1. HO commands

Fold command Meaning

HO[H , Through→ {P, Q}] Fold along the line passing through points P and Q,
moving point H .

HO[P , Q] Fold to superpose points P and Q.

HO[m, n] Fold to superpose lines m and n.

HO[m, Through → P] Fold along the line passing through point P to su-
perpose line m with itself .

HO[P , m, Through → Q] Fold along the line passing through point Q to su-
perpose point P and line m.

HO[P , m, Q, n] Fold to superpose point P and line m, and point Q
and line n.

HO[P , m, n] Fold to superpose point P and line m, and line n
with itself.

4.4 Program of Construction

While constructing the origami, we do not need to reason about the origami in a
fundamental level as shown in Algorithm Ori. An origami programming language
called Orikoto is provided for this purpose [5]. Besides the HO commands,
Orikoto provides commands for managing origamis. Some of them will be
explained where they are used.

In Orikoto we write a program that constructs the sequence of origamis in
Figs. 1 and 2 by executing the following program:

BeginOrigami[];
HO["A", "D"];
Unfold[];
HO["D", Through→ {"A", "C"}];

BeginOrigami[] producesO1 in Fig. 1(a). This corresponds to the initialization
phase of Algorithm Ori. Next, HO["A", "D"] is applied to O1. This corresponds
to the first loop of construction phase. We use double quoted point names, as
in "A" and "D", to refer to the points in Orikoto to distinguish them from
ordinary Mathematica variables. In the first loop, O2, shown in Fig. 1(b), is
produced and Ψ2 is computed. Ψ2 is saved in the Eos memory and later used to
produce the proof document. In the second loop, Unfold[] is executed, O3 in
Fig. 1(c) is produced and Ψ3 is computed. The last predicate in Ψ3 comes from
the execution of the next command HO["D", Through→ {"A", "C"}].

Proof Documents for Automated Origami Theorem Proving 85

4.5 Program of Proving

Referring to the reasoning about origami of the simple example of subsection
4.2, at the last step of the origami reasoning, we try to prove that the length of
segment DG is equal to the length of segment BG. We prove this by issuing the
commands:

Goal[Distance["D", "G"]^2 == Distance["B", "G"]^2];
Prove["Equal Distance", StrongLineCC -> True];

At the end of the execution of Prove command, the proof document titled “Proof
Document for Equal Distance” will be generated. The keyword StrongLineCC
-> True is needed in this case to specify the coefficients a, b and c of line
equation ax + by + c = 0 are constrained to be by the condition b(−1 + b) =
0 ∧ (−1 + a)(−1 + b) = 0 ∧ a2 + 1 = 0. This constraint is discussed further in
Subsection 5.7.

5 Method of Proving

5.1 Overview

The geometrical theorem that we prove with Eos is of the form:

∀ U ∀ X Ψ1 ∧ · · · ∧ Ψk ⇒ Φ (5.1)

where U is a sequence of independent variables and X is a sequence of dependent
variables. To prove the theorem given in (5.1), we take an arbitrary but fixed
sequences U , then we prove by contradiction the following:

∀ X Ψ1 ∧ · · · ∧ Ψk ⇒ Φ. (5.2)

This is equivalent to showing that the following is false:

∃ X Ψ1 ∧ · · · ∧ Ψk ∧ (¬Φ) (5.3)

The formula (5.3) can be disproved by showing that no instance of X exists that
satisfy:

Ψ1 ∧ · · · ∧ Ψk ∧ (¬Φ) (5.4)

5.2 Need for Proof Document

In its purely geometrical form, many of the origami geometrical theorems cannot
be proved easily by mere symbolic logical reasoning. In our framework, algebraic
transformation of the geometrical formulas is the essential part of the automated
theorem proving. Once the geometrical formulas are transformed to algebraic
ones, powerful symbolic and algebraic methods, such as GB and CAD, can be
employed effectively.

86 F. Ghourabi, T. Ida, and A. Kasem

With Eos we proceed in the following way:

1. Geometric reasoning
(a) local geometrical inference on the formulas of the first-order logic
(b) collecting all the predicates
(c) eliminating the formulas that are unnecessary for the proof
(d) forming equivalence classes of lines and points
(e) identifying collinearity among points

2. Algebraic manipulation
(a) assigning coordinates to points, introducing dependent (local) variables
(b) generating polynomials with appropriate ordering among the variables
(c) performing algebraic optimization
(d) forming a system of algebraic equalities (and inequalities)
(e) calling the appropriate algebraic methods

The generation of the algebraic representation requires insights, and the proof
document should be used to assist in the investigation of the process of the
algebraic transformation. Also, for better understanding of the process of con-
struction and proof, the reading of complex algebraic computations should be
facilitated.

Furthermore, optimization is an important issue for higher performance of the
automated proofs of origami geometrical problems. Origami folds lead to the cre-
ation of new points and lines on the origami paper, which grow exponentially
by the progress of paper folds. For algebraic representation of these points and
lines, it is important to keep the number of equations and variables as small as
possible. Proving using the Gröbner basis method for instance is highly depen-
dent on the number of variables and polynomials. Besides, the order of variables
used to compute the Gröbner bases greatly affects the computation time. We
also experienced that the proof process itself might be repeated several times, by
modifying small parts in the process, and looking at the final effects. The proof
document helps in archiving the proof trials, comparing them, and investigating
several aspects of the given problem.

Therefore, the proof document consists of several sections to explain how the
origami is constructed, geometrically and algebraically treated and proved. The
human-readable document assists us to answer questions like:

– What geometrical properties do the polynomials represent?
– How relations are deduced?
– Which further optimizations can be applied?
– What are the reasons for proof failure?

Roughly speaking, the proof document answers those questions by recording the
input/output of the phases of the computation outlined above.

With these observations in mind, we will explain those steps in sequence, in
more details in the next subsections.

Proof Documents for Automated Origami Theorem Proving 87

5.3 Local Geometrical Inference

The inferences on the predicates at construction steps i and i + 1 are necessary
for the following reason. At construction step i, we compute the fold line. On
the transition of step i to step i + 1, we fold origami Oi and create origami
Oi+1. Only at step i + 1 we know which points have been moved. Based on
the generated equalities of points at step i and step i + 1, we can deduce the
following:

1. Pi+1 = Qi if Pi and Qi are specified to be superposed at step i, and Pi is
moved.

2. OnLine[Pi+1, li] if Pi and line li are specified to be superposed at step i,
and Pi is moved.

Then the above predicates are added, if applicable, to each Ψi+1.

5.4 Transformation to Logical Formula

Each Ψi, i = 1, . . . , k is the conjunction of predicates, and Φ is a quantifier-free
formula of the first-order predicate logic. After specifying independent variables
U , we take all the other points and lines to be quantified variables and let them
be variables X. The result is the formula (5.1). We transform the formula (5.4) to
a logically equivalent conjunctive normal form, which is then used for further log-
ical and algebraic transformation. The transformation from this logical formula
into the algebraic formula is straightforward. However, most likely this would
result in unwieldily large algebraic expressions. If they are used as the input to
the Gröbner basis computation or the cylindrical algebraic decomposition, the
computation may swamp all the available resources at hand. The elimination of
unnecessary predicates is the next step to take.

5.5 Elimination of Unnecessary Predicates

In order to construct a point in the origami to be used in the specification of
further fold operations, we first have to make a fold to construct a fold line.
The needed point is created as the intersection of the fold line and the existing
creases and edges. The fold entails movements of some constructed points, and
the non-movements of the other points. As we saw in the example of subsection
4.2, these movements and non-movements generate formulas, some of which may
be unnecessary to prove the goal. To eliminate unnecessary formulas, we define
a weakly needed atomic formula.

Let T (A) denote the set of geometrical objects (terms) occurring in an atomic
formula A (atom for short).

– An atom is needed if it is a sub-formula of the goal.
– An atom is weakly needed if it is needed.
– An equality Pi = Qj is weakly needed if j ≥ i∧Qj ∈ T (A) for some weakly

needed atom A.

88 F. Ghourabi, T. Ida, and A. Kasem

– An equality Reflection(Pi, l) = Qj is weakly needed if j ≥ i∧Qj ∈ T (A) for
some weakly needed atom A.

– An atom A other than the equalities above is weakly needed if T (A)∩T (B) �=
∅ for some weakly needed atom B.

Those atoms that are not weakly needed are eliminated. Let us denote the re-
sulting formula after the elimination by

χ := φ1 ∧ · · · ∧ φj , where φi, i = 1, . . . , j are literals.

Formula χ is the one that is subjected to the algebraic transformation.

5.6 Forming Equivalence and Collinear Relations

At the end of geometric transformation, we collect the equalities from χ, and
generate equivalence classes of points and lines that occur in the equalities.
Furthermore, we detect the collinearity relations on the points.

Equivalence classes of points are important to reduce the number of dependent
variables. For example, points {X1, . . . , Xn} that belong to the same equivalence
class will be assigned the same coordinate (x, y)2.

5.7 Algebraic Manipulation

Algebraic transformation of the logical formulas was discussed in detail in our
previous publication [6]. The overall procedure is as follows. We use the cartesian
coordinate system.

– Assigning the coordinates to the points, we use the equivalence relations
among the points to ensure that the superposing points are given the same
coordinates.

– For each fold line and line extended from the segment, we assign the equality
of the form ax + by + c = 0 together with the condition

b(−1 + b) = 0 ∧ (−1 + a)(−1 + b) = 0 (5.5)

where a, b and c are freshly generated variables. For some theorems, we need
the following stronger conditions in order to avoid the solutions of a in C:

b(−1 + b) = 0 ∧ (−1 + a)(−1 + b) = 0 ∧ a2 + 1 �= 0

The variables are ordered for the purpose of Gröbner basis computation. The
variables are ordered genetically. We call a sequence of variables X genetically
ordered, if for every pair of variables v and w in the sequence X, we have v ≤ w if
v and w are assigned to geometrical objects V and W (i.e. points and lines in this

2 Later on in the ProofDoc, we see three dimensional coordinates. For the theorem
proving two-dimensional ones are all we need, but Eos will also perform (partial)
3D origami folds.

Proof Documents for Automated Origami Theorem Proving 89

case), respectively, where V is constructed at the step earlier or the same step of
the construction of W . This ordering experimentally gives better performance
of Göbner basis computation in most of the cases.

The algebraic expressions generated from the predicates can be rational func-
tions of Q[U, X]. Depending on the Gröbner basis computation libraries, we
would need some more algebraic manipulation of the rational functions to ob-
tain the set of polynomials of K[X], where K is Q[U].

6 Proof Document

At the end of the proof, Eos generates a proof document, abbreviated to Proof-
Doc hereafter, that provides detailed information about the construction and
proof processes. A ProofDoc is organized as a Mathematica3 notebook and struc-
tured as the nested content cells of sections and subsections, which correspond
roughly to the items outlined in the previous subsections. The feature of nested
cells of Mathematica notebooks helps to read lengthy ProofDocs by opening and
closing only the nested cells that we are focusing to study.

6.1 Structure of Proof Document

We will explain the structure of ProofDocs using the one produced for the proof
of Morley’s theorem [8]. Figure 4 shows the ProofDoc that is popped up during
the execution of the Orikoto program code given in Fig. 3 after the construction
of a Morley’s equilateral triangle. The colored cells are used for formatting the
program as it appears in the ProofDoc. The essential code for proving consists
of non-colored cells, in which additional assumption is declared, independent
variables are specified as part of coordinate mapping, and the prove command
is issued. In the call of Prove, we specify various parameters for Gröbner basis
computation.

When the ProofDoc is generated, its cells are not fully open. We see the title
and headers of sections, and other short items of information that the readers of
the ProofDoc can immediately see without opeing the inner cells. They are about
the author, starting time of the computation, software version of Mathematica,
and the result of computation. Figure 4 is the ProofDoc for Morley’s theorem
after opening most of section cells to show the headers of the subsections. The
title “Proof Document of Morley’s theorem by Abe’s construction” and the name
of the author come from the parameters of Prove command.

6.2 Program, Prover Computation and Result Sections

The information that would immediately interest the reader of the ProofDoc are
the construction problem, the method that was used for the proof and whether
proof is successful or not. These are the contents of “Program”, “Prover Com-
putation” and “Result” sections of the ProofDoc.
3 Mathematica 8.0 is used at the time of writing the paper.

90 F. Ghourabi, T. Ida, and A. Kasem

Fig. 3. Proof code for Morley’s Theorem by Abe’s method

Proof Documents for Automated Origami Theorem Proving 91

Fig. 4. Structure of ProofDoc

92 F. Ghourabi, T. Ida, and A. Kasem

In Fig. 4, “Program” section contains the cells of commands that have been
used in the construction and the proof, e.g. HO commands, Prove command
and other commands for manipulating origamis. The cells are organized as the
usual Mathematica. We can reproduce the result once again later by executing
all the cells in “Program” section, if necessary. This will reproduce yet another
ProofDoc for Morley’s Theorem.

Based on the generated algebraic relations, and the user specified options,
Eos chooses the suitable proof engine. Currently, it chooses either GB or CAD.
As outlined in Fig. 4, the “Computation of Theorem Prover” section records the
inputs to the proof engine, in the case of GB, such as the set of polynomials and
the genetically ordered variables.

The final section of ProofDoc records the output of the theorem prover; proved
or failure to prove, and the time taken for computation. The cell of the Result
section of the ProofDoc is open by default to show the result of the proof. The
details are kept enclosed in “Geometrical reasoning” and “Algebraic transfor-
mation” sections.

6.3 Geometrical Reasoning Section

The results of the computations explained in Sections 5.3 - 5.6 are documented
in “Geometrical reasoning” section of ProofDoc. The formulas that are deduced
from local geometrical inference are listed in “Geometrical inferences” subsec-
tion. The geometrical properties accumulated throughout the construction are
recorded in “Geometrical operations and relations at each step” subsection. They
correspond to the Ψis that define the construction steps. The predicates in Ψi

are organized in cells. Furthermore, these predicates are expressed in a natural
language for readability. In Fig. 5, we show Ψ7 and Ψ8, i.e. the geometrical prop-
erties that hold at steps 7 and 8 of construction of Morley’s equilateral triangle.
Table 2 shows some of the statements in English and their original predicate
forms.

As we mentioned in Section 5.5, not all the generated predicates are needed for
the proof. In the ProofDoc, “Elimination of unnecessary predicates” subsection
lists the predicates that are eliminated and “Geometrical relations” subsection
lists the predicates that are necessary for the proof, i.e. χ given in Subsection 5.5.
Finally, the two remaining subsections list the formed equivalence classes and
the inferred relations of collinearity.

6.4 Algebraic Transformation Section

The section “Algebraic transformation” has several subsections. A part of this
section is shown in Fig. 6. The subsection “Variable assignment” shows the vari-
ables assigned to each geometrical object (i.e. point or line) that is involved in
the proof process. The variables on the right hand, i.e. variables of the coordi-
nates of the points and the coefficients of the lines are used to form polynomials
to be input to the proof engine (GB or CAD). For instance, we see that line

Proof Documents for Automated Origami Theorem Proving 93

Fig. 5. Part of subsection “Geometrical operations and relations at each step”

94 F. Ghourabi, T. Ida, and A. Kasem

Table 2. Translation of predicates in natural language

Statement in ProofDoc Predicate

P is the reflection of Q
over l

P = Reflection[Q, l]

Superpose P and m, and Q
and n over l

PLPLSupQ[P, m, Q, n, l]

P is on the line passing

through Q and R
OnLineQ[P, QR]

Unfold along l UnfoldQ[l]

Note:

– Parameter l denotes a fold line.
– The predicate symbol PLPLSupQ stands for two Point-Line Superpositions.

line11 is defined by the equation a1x + b1y + c1 = 0 and the coordinate
assignments for A1 and E1 are (x39, y39) and (x41, y41), respectively.

The “Algebraic relations” subsection, shown in Fig. 6, records the algebraic
expressions (equalities, inequalities and disequalities) generated from the predi-
cates. We create hyperlinks to link the geometrical properties to their algebraic
forms, and vice versa. This allows easier navigation in the ProofDoc and tells the
geometrical meanings of the polynomials. We will explain the algebraic forms
inserted in the cells of subsection “Algebraic relations” that appear in Fig. 6.
The algebraic equations in the first cell comes from predicate A1E1=line11. The
second cell is a conjunction of two equalities that comes from the equality pred-
icate D2 = Reflection[D1, line11], where the coordinates of D1 and D2 are
(x18, y18) and (x1, y1), respectively. This is also indicated by the tooltip below
the cell. The tooltip pops up when the mouse pointer is placed on the cell to
provide a detailed explanation of the polynomial equalities. Moreover, when we
click on the content of this cell, our focus of attention hyper-jumps to the corre-
sponding cell in “Geometrical relations” subsection. The algebraic expression of
D2 = Reflection[D1, line11] is derived in the following way. The point that
is the reflection of D1 over line11 has the following coordinates:

(
−a12x18 + b12x18− 2a1(c1 + b1y18)

a12 + b12
,
−2b1(c1 + a1x18) + a12y18− b12y18

a12 + b12
)

Since point D2 and the reflected point are equal, we obtain:

−a12x18 + b12x18− 2a1(c1 + b1y18)
a12 + b12

− x1 = 0 (6.1)

−2b1(c1 + a1x18) + a12y18− b12y18
a12 + b12

− y1 = 0 (6.2)

Proof Documents for Automated Origami Theorem Proving 95

Fig. 6. Parts of the section “Algebraic transformation”

Using the line coefficient conditions (5.5), we multiply both sides of equations
(6.1) and (6.2) by a12 + b12, and obtain the algebraic expression in Fig. 6.

In Fig. 4, “Occurrence check of inequalities” subsection shows whether in-
equalities are generated by the algebraic transformation. The presence of in-
equalities would requires CAD computation. In Morley’s theorem, only equalities
are involved, and therefore Gröbner bases method is used.

7 Conclusion

The proof document is a computer-generated document that assists origamists
working in computational origami to reason about origami theorems. It doc-
uments the whole process of computational origami construction and proving

96 F. Ghourabi, T. Ida, and A. Kasem

using Eos. It is a Mathematica notebook and makes full use of the functionalities
of Mathematica such as nested cell structures. The functionality of generating
the proof document is implemented as part of Eos.

In Eos, we reason about 2D origami. A possible direction of further research
would be the extension of our logical and algebraic formalization to cover 3D
origami. Other direction would be to apply other proving methods. Wu-Ritt’s
method could be applied to the algebraic formalism of origami construction. It
may bring the extra advantage of discovering the degenerate cases that may be
overlooked during the proof formulation. Furthermore, incorporating deductive
capability of logic-based proof assistants is a possible extension of Eos system.

References

1. The Coq Proof Assistant, http://coq.inria.fr/

2. Pearson, K.R., Jones, A., Morris, S.A.: Abstract Algebra and Famous Impossibili-
ties. Springer, Heidelberg (1991)

3. Alperin, R.C.: A Mathematical Theory of Origami Constructions and Numbers.
New York Journal of Mathematics 6, 119–133 (2000)

4. Buchberger, B., Dupre, C., Jebelean, T., Kriftner, F., Nakagawa, K., Văsaru, D.,
Windsteiger, W.: The Theorema Project: A Progress Report. In: Symbolic Com-
putation and Automated Reasoning (Calculemus 2000), St. Andrews, Scotland,
pp. 98–113 (2000)

5. Ghourabi, F., Ida, T.: Orikoto: A Language for Origami Construction and Theo-
rem Proving. In: Frontiers of Computer Science in China (2010); (Submitted, the
extended abstract was presented in the fifth International Conference on Origami
in Science, Mathematics and Education (5OSME)

6. Ghourabi, F., Ida, T., Takahashi, H., Marin, M., Kasem, A.: Logical and Algebraic
View of Huzita’s Origami Axioms with Applications to Computational Origami.
In: Proceedings of the 22nd ACM Symposium on Applied Computing (SAC 2007),
Seoul, Korea, pp. 767–772 (2007)

7. Huzita, H.: Axiomatic Development of Origami Geometry. In: Proceedings of the
First International Meeting of Origami Science and Technology, pp. 143–158 (1989)

8. Ida, T., Kasem, A., Ghourabi, F., Takahashi, H.: Morley’s theorem revisited:
Origami construction and automated proof. Journal of Symbolic Computa-
tion 46(5), 571–583 (2011)

9. Ida, T., Takahashi, H., Marin, M., Ghourabi, F., Kasem, A.: Computational Con-
struction of a Maximum Equilateral Triangle Inscribed in an Origami. In: Iglesias,
A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 361–372. Springer, Hei-
delberg (2006)

10. Justin, J.: Résolution par le pliage de l’équation du troisième degré et applications
géométriques. In: Proceedings of the First International Meeting of Origami Science
and Technology, pp. 251–261 (1989)

11. Kasem, A., Ghourabi, F., Ida, T.: Origami Axioms and Circle Extension. In: Pro-
ceedings of the 26th Symposium on Applied Computing, pp. 1106–1111. ACM
press (2011)

12. Narboux, J.: A Graphical User Interface for Formal Proofs in Geometry. Journal
of Automated Reasoning 39(2), 161–180 (2007)

http://coq.inria.fr/

Proof Documents for Automated Origami Theorem Proving 97

13. Robu, J., Ida, T., Ţepeneu, D., Takahashi, H., Buchberger, B.: Computational
Origami Construction of a Regular Heptagon with Automated Proof of Its Cor-
rectness. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763,
pp. 19–33. Springer, Heidelberg (2006)

14. Wang, D.: GEOTHER 1.1: Handling and Proving Geometric Theorems Automat-
ically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 194–215.
Springer, Heidelberg (2004)

15. Wantzel, P.L.: Recherches sur les moyens de connaitre si un problème de géométrie
peut se résoudre avec la règle et le compas. Journal de Mathématiques Pures et
Appliquées, 366–372 (1984)

16. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media (2003)
17. Wu, W.T.: Basic Principles of Mechanical Theorem Proving in Elementary Geom-

etry. Journal of Automated Reasoning 2, 221–252 (1986)

The Midpoint Locus of a Triangle in a Corner

Daniel Lichtblau

Wolfram Research, Inc.
100 Trade Center Dr.

Champaign, IL 61820 USA
danl@wolfram.com

Abstract. We are given an equilateral triangle with vertices constrained
to lie in each of the three positive octant coordinate planes (colloquially,
“a triangle in a corner”). We wish to describe the locus of points covered
by the midpoint of the triangle, as the vertices range over configurations
allowed by the above constraint. This locus comprises a solid region. We
use numerical and graphical methods, and also computational algebra,
to find the boundary surface and visualize this locus.

Keywords: Constraint geometry, implicit surfaces, nonlinear systems.

1 Introduction

A Putnam Exam problem from 1948 [2] asks for the locus of a circle center
when the circle is constrained so that it is simultaneously tangent to the non-
negative parts of the three coordinate planes (the “penny in a corner” problem).
A recent variant on this is the “tile in a corner” problem, as discussed by [3].
In this note I discuss a variant, first proposed in [3], wherein our object is an
equilateral triangle. We constrain each vertex to lie in one of the positive octant
coordinate planes with no two lying in the interior of the same such plane.
We wish to understand the locus spanned by the triangle midpoint. We will
show both numeric and algebraic methods for discovering this locus. Our results
include direct computation of the polynomials that define its boundary. They
comprise the first complete solution to the problem under consideration.

The problem itself is perhaps not of great significance beyond mathematical
curiosity. But one can readily imagine constrained geometric problems of a simi-
lar nature, but having practical interest. Areas that come to mind include object
avoidance in path planning, motion of objects within larger objects (e.g. atoms
within molecules), construction/placement of mobile sculptures, etc.. See also
[8] for some related applications. Our expectation is that the tools we develop
for this might similarly be useful in such more general settings.

I thank Jack Wetzel for introducing me to this problem and inviting me to
speak about it at a UIUC geometry seminar. I thank both Jack and Wacharin
Wichiramala for email discussions of some of the finer points. In particular,
Wichiramala (private communication) has indicated some methods that are of
independent interest for finding parts of the locus boundary. I thank Michael

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 98–117, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Midpoint Locus of a Triangle 99

Trott, Brett Champion, and Yu-Sung Chang for assistance with some of the
graphics. I thank the organizers of ADG 2010 for their hospitality and for the
overall quality of the workshop. I thank the anonymous referees of both drafts for
raising several interesting points and making numerous constructive suggestions.
These include, but are not limited to, requests for discussion of important inverse
problems.

Mathematica [10] code for our computations may be found in the appendix.

2 Setting up the Problem

The primary contribution of this paper is to phrase the problem in a way that
is computationally tractable. To this end we first set up an algebraic problem.

We will denote our midpoint as M = {xm, ym, zm}. The vertices will be
{xj , yj, zj} for 1 ≤ j ≤ 3. We restrict vertices to coordinate planes by setting ap-
propriate vertex coordinates to zero. Note that we will not enforce non-negativity
until later. We use (quadratic) equations for edge lengths that enforce that the
triangle be equilateral, and we also have linear equations relating midpoint co-
ordinates to the vertex coordinates. Here are the defining polynomials.

−3xm + x2 + x3

−3ym + y1 + y3

−3zm + z1 + z2

x2
2 + y2

1 + z2
1 + z2

2 − 2z1z2 − 1
x2

3 + y2
1 + y2

3 − 2y1y3 + z2
1 − 1

x2
2 − 2x3x2 + x2

3 + y2
3 + z2

2 − 1

We have six polynomials. We are interested in the midpoint variables, as func-
tions of the vertex coordinates. For this purpose we will regard those latter as
parameters. In the remainder of this paper, “variables” refers to the midpoint
coordinates and “parameters” to the vertex coordinates unless otherwise stated.
We will eliminate three of these parameters so that our midpoint is defined,
implicitly, in terms of the remaining three. We obtain the set of polynomials
below.

−6x3xm + 6y1ym − 18z2
m + 18z2zm + 2x2

3 − 4y2
1 − 4z2

2 + 1
6x3xm − 18y2

m + 18y1ym − 6z2zm − 4x2
3 − 4y2

1 + 2z2
2 + 1

18x3xm − 18x2
m − 6y1ym + 6z2zm − 4x2

3 + 2y2
1 − 4z2

2 + 1

That we have three equations in the three midpoint coordinates tells us to expect
that the locus they span will be a solid. We will confirm this numerically below.
Our eventual goal will be to determine the enveloping surface of this solid. We
observe here that this solid locus is in contrast to the constrained circle and tile
problems, wherein the locus of interest lies on a surface (a sphere, in the case
of the classic “penny in a corner”) [2,3]. We also point out that the boundary
surface pieces will be defined in implicit form as polynomials (which we will
compute). This follows from the fact that boundary components are part of the
discriminant variety [4] of the polynomial system.

100 D. Lichtblau

3 Approximating the Locus with a Graphic-Numeric
Method

Our secondary contribution is to develop symbolic-numeric and graphical meth-
ods to approximate the region of interest. This is useful in its own right, and
moreover will help us to see how the algebraic surfaces we later compute actually
fit together.

First we will find a large number of solutions to the system of equations. We
do this by selecting random values in a suitable range for three of the vertex
parameters, and solving from that for all other variables of interest. We will
use the original system rather than the above elimination set, even though that
latter is in some sense simpler. The reason is that we will need to enforce the
non-negativity of our vertex coordinates, and we cannot do so without explicitly
solving for them. (We might have all midpoints non-negative, but still have
one or more vertices with negative coordinate values. This would violate our
configuration constraints. We must be able to remove such solutions, hence we
must have values for all vertex as well as midpoint coordinates.)

We can get six times as many valid solutions, and obtain a more accurate pic-
ture, simply by enforcing the natural symmetry of the problem. We can permute
any vertex pair, or all three vertices, of any given configuration and still have a
valid configuration. This means the midpoint coordinates have symmetry under
the action of S3. We utilize this to expand our solution “point cloud” by a factor
of six.

It is quite difficult to see detail. In particular one cannot readily visualize
contours or get an understanding of whether and where the solid folds into

Fig. 1. A point cloud of the midpoint locus

Midpoint Locus of a Triangle 101

itself. So we will next obtain a better picture using an approximate region plot.
We define a point as being inside or outside based on proximity to the points in
our region that we computed above.

This is, admittedly, a bit crude, and will have the effect of both expanding
the surface and softening any sharp contours. It also carries the risk of omit-
ting “thin” sections, where we perhaps found insufficiently many solutions to
accurately sample the region. One could ameliorate this in two ways. One is to
recognize that these thin parts tend to be near boundary surface intersections,
many of which arise when more than one of our vertex parameter variables are
near zero. So we could simply sample more heavily in such regions by constrain-
ing some of the random vertex value ranges more tightly. Another way to more
reliably enclose the surface would be to use a larger setting for proximity to
our computed points. While this will overly inflate the region, in many practical
applications that is not a bad thing to do. For example, in collision avoidance,
coming “close” is also to be avoided since physical systems always have some
looseness in their actual constraints. Hence one would do well to work with a
modest enlargement of the danger zone.

All that stated, we will see later that this approximation does in fact provide
a quite reasonable picture of the actual region boundary. For purposes of orien-
tation we note that the origin is “pointed to” by the extruding middle in the
figure on the left.

Fig. 2. The approximated region

It looks like something from a sci-fi movie. This is in part from the edge
artifact; the solid has boundary seams in the coordinate planes, near which it
is quite thin. Our randomization did not suffice to find many solutions in the
thin regions. The actual region will not have the jaggedness we see in these
approximations.

102 D. Lichtblau

Perhaps surprisingly, given that we began with but three quadratic and three
linear equations, the bounding surface for our region is by no means simple.

4 Solving Algebraically

We now proceed to determine the implicit equations of the algebraic surfaces
that bound the triangle midpoint locus. We first ignore positivity constraints on
the vertex parameters, and just look for extremal values of a midpoint coordinate
when vertices lie in open sets of our parameter space. The reason we pursue this
path is as follows. While we might hope to enforce non-negativity of our vertex
parameters by replacing them with their squares, we would run into two forms
of added computational complexity. One is that we might get spurious surface
parts corresponding to complex-valued solutions (we might have this problem
anyway, but that turns out not to happen). The second is that, as we will see,
the eventual result has several components. Were we to compute them all as
one polynomial, the size would be considerably larger, in terms of degree and
number of terms, than is the sum of their separate sizes. Not surprisingly, this
manifests as increased difficulty in the actual computation; an attempt along
these lines showed no success after a day of run time.

We use the reduced system (the one with three vertex coordinates eliminated).
We will explicitly regard the midpoint coordinates as functions of the remaining
vertex parameters. We then use implicit differentiation of the defining equations
in order to form a linear system of the partial derivatives of the midpoint co-
ordinate functions in terms of both the vertex parameters and the midpoint
coordinates themselves (see the appendix for code to do this). We solve this
system for the partial derivatives of the midpoint coordinates.

We will next create a vector equation involving Lagrange multipliers (see [5]
for a similar approach to a constrained geometry problem arising in number
theory). This will give three new equations and two new variables (the multipli-
ers), thus cutting dimension by one. To understand what follows, recall that our
three vertex parameters–the independent variables in this formulation–are each
subject only to the weak inequality constraint of non-negativity. One can find
extremal values of the dependent variables by separately considering the depen-
dent variable space boundary i.e. setting one independent variable to zero (which
we will do later) and its open interior (where they are all strictly positive). It is
this latter that we handle here.

Consider what happens when we fix the values of two midpoint coordinates,
say xm and ym. The remaining coordinate zm is now constrained to take values
on an interval, and the midpoint moves on a vertical segment. We want to “ex-
tremize” these zm values. This is simply a case of one function in our parameters,
zm, varying subject to (two) equality constraints (since the other two dependent
variables, which are also functions of the parameters, are held fixed). It is well
known that such a problem can be handled via Lagrange multipliers. Specifically,
the gradient of zm (the vector of partial derivatives of zm with respect to the
vertex parameters) must be a linear combination of scalar multipliers times each
of the gradient vectors of xm and ym.

Midpoint Locus of a Triangle 103

We remark that another approach would be to find the vanishing set of the
Jacobian of our midpoint variables as functions of the vertex parameters. This
is mathematically equivalent to ours, insofar as the Jacobian vanishes exactly
when there is a linear dependency among the gradient vectors. We prefer our
formulation because it reduces degree, though at the expense of introducing more
equations and variables.

We also point out that this relatively simple formulation is related to the
setting of discriminant varieties [4]; a difference is that we look at the projection
of our system onto the variables of interest rather than the underlying parameter
space.

Here is the full set of polynomials. (More correctly, these are rational func-
tions, but we will impose that the common denominator not vanish and this will
give the algebraic variety we seek.)

2x2
3 − 6xmx3 − 4y2

1 − 4z2
2 − 18z2

m + 6y1ym + 18z2zm + 1,
−4x2

3 + 6xmx3 − 4y2
1 − 18y2

m + 2z2
2 + 18y1ym − 6z2zm + 1,

−4x2
3 + 18xmx3 − 18x2

m + 2y2
1 − 4z2

2 − 6y1ym + 6z2zm + 1,
(ymx2

3 − 2z2λ2x
2
3 + 4zmλ2x

2
3 + 5xmy1x3 − 6xmymx3 − 5y1z2λ1x3+

7ymz2λ1x3 + 8y1zmλ1x3 − 12ymzmλ1x3 + 5xmz2λ2x3 − 12xmzmλ2x3−
6x2

my1 − x2
3y1 + 9x2

mym + 9xmy1z2λ1 − 15xmymz2λ1 − 15xmy1zmλ1+
27xmymzmλ1 − 3x2

mz2λ2 + 9x2
mzmλ2)/

(3(3x3y1z2 − 5xmy1z2 − 5x3ymz2 + 9xmymz2 − 5x3y1zm+
9xmy1zm + 9x3ymzm − 18xmymzm)),

(2x3y
2
1 − 4xmy2

1 + z2λ1y
2
1 − zmλ1y

2
1 − 5x3ymy1 + 12xmymy1 − 5ymz2λ1y1+

6ymzmλ1y1 − 5x3z2λ2y1 + 8xmz2λ2y1 + 7x3zmλ2y1 − 12xmzmλ2y1+
3x3y

2
m − 9xmy2

m + 6y2
mz2λ1 − 9y2

mzmλ1 + 9x3ymz2λ2−
15xmymz2λ2 − 15x3ymzmλ2 + 27xmymzmλ2)/

(3(3x3y1z2 − 5xmy1z2 − 5x3ymz2 + 9xmymz2 − 5x3y1zm+
9xmy1zm + 9x3ymzm − 18xmymzm)),

(−2y1λ1z
2
2 + 4ymλ1z

2
2 + x3λ2z

2
2 − xmλ2z

2
2 + 5x3y1z2 − 7xmy1z2−

8x3ymz2 + 12xmymz2 + 5y1zmλ1z2 − 12ymzmλ1z2 − 5x3zmλ2z2+
6xmzmλ2z2 − 9x3y1zm + 15xmy1zm + 15x3ymzm − 27xmymzm − 3y1z

2
mλ1+

9ymz2
mλ1 + 6x3z

2
mλ2 − 9xmz2

mλ2)/
(3(3x3y1z2 − 5xmy1z2 − 5x3ymz2 + 9xmymz2 − 5x3y1zm+

9xmy1zm + 9x3ymzm − 18xmymzm))

We now find the implicit surface algebraically, by eliminating from our system
the multipliers and the vertex coordinates. We will use a Gröbner basis compu-
tation for this task (see appendix for code).

16− 672x2
m + 9432x4

m − 37800x6
m − 155439x8

m + 680400x10
m + 3055968x12

m+
3919104x14

m + 1679616x16
m − 672y2

m + 19728x2
my2

m − 245592x4
my2

m+
...

16796160x4
mz12

m − 15396480y2
mz12

m − 62145792x2
my2

mz12
m + 16796160y4

mz12
m +

3919104z14
m + 8398080x2

mz14
m + 8398080y2

mz14
m + 1679616z16

m

104 D. Lichtblau

We omitted 40 lines for brevity. The full polynomial occupies an entire page. It
has total degree 16 and 165 terms. The largest coefficient in magnitude has ten
digits. Inspection reveals all exponents are of even degree. If we consider the set
of all such polynomials, we realize this one contains every possible monomial.
Hence it is dense when restricted to this class.

The first thing one should ask is whether it factors. A simple computation
(see the code appendix) will show it does not factor over the rationals. Indeed, it
is also absolutely irreducible, that is, irreducible over the complexes (or, equiv-
alently for a polynomial with rational coefficients, irreducible over the algebraic
closure of the rationals). This can be shown using, for example, a method de-
scribed in [7].

As an aside we mention that one might be interested in the singular set,
that is, where the gradient vanishes, as this contains the self intersections. A
computation of the Gröbner basis takes about four minutes in Mathematica to
produce a projection curve onto a coordinate plane (that is, we eliminate one
variable). It has degree 53 in each of the remaining variables, and total degree
58. The largest coefficient is around 30 digits.

5 Visualizing the Algebraic Surface

We have an irreducible algebraic surface. Parts of it in the positive octant of
real space will bound our triangle midpoint locus. We now plot this surface. The
broad part in the view on the right is oriented away from the origin.

Fig. 3. Two views of one boundary surface

This is a complicated surface; I refer to it as the “Wetzel pretzel”. By rotating
the algebraic surface, and/or showing it superposed on the region plot, it is not
difficult to see how they approximately coincide.

Midpoint Locus of a Triangle 105

It is clear from geometric considerations that certain parts of the algebraic
surface should be correct even for the inequality-constrained problem. That is,
the complex algebraic geometry setting should suffice to give the real algebraic
geometry bounding surface. Specifically, the part of the surface outermost in the
first octant (that is, where all three coordinates are relatively large), is unaffected
by the inequalities, because it arises from vertex configurations wherein all three
vertices are in open sets in their respective coordinate planes of the first octant.

We remark that as our algebraic approach does not take into account in-
equality constraints, it does not fully reflect the real algebraic geometry of the
problem at hand. This was necessitated by computational considerations. We
could, as mentioned earlier, use squares to represent our (non-negative) triangle
vertices. This gives rise to a variable elimination problem we were not able to
handle. Cylindrical decomposition methods likewise foundered. This is not sur-
prising, as the resulting polynomial would of necessity contain every component
of the boundary as factors. We will see below that there are six more, and when
multiplied by the one already seen above it becomes considerably larger.

6 The Rest of the Boundary

We used Lagrange multipliers to extremize a coordinate of our midpoints, where
midpoint coordinates are all defined implicitly as algebraic functions of some
vertex parameters. We can regard those latter as living in a “parameter space”.
In enforcing inequality constraints–specifically, that vertices lie in the positive
octant–we have created a boundary for our parameter space. So we need to also
allow for the possibility that some of the extreme coordinates come from the
boundary parts of the parameter space. We now handle this case.

This part of the boundary arises exactly when a second vertex coordinate is
zero, that is, when it lies on a positive coordinate axis rather than the interior of
a positive coordinate plane. For example, the set of polynomials we would use to
find the part of the boundary where x2 vanishes can be obtained from the initial
polynomial system simply by setting that variable to zero. Note that such sets
themselves have a lower dimensional boundary, where the remaining coordinate
goes from positive to negative at the origin. It is easy to see that these boundary
edges are arcs traced by the midpoint when one vertex is pinned to the origin.

We remark that algebraically we are simply restricting to that part of the
parameter space where weak inequalities become equalities. This could also be
viewed in the context of a discriminant variety [4].

We eliminate the parameters (that is, the non-midpoint coordinates) to get our
polynomial defining a new piece of the boundary. Straightforward code for this
is in the appendix. This part of the boundary has six equivalent components. We
show the equation defining one of them. The others are obtained by permuting
the variables.

20736x8
m + 41472y2

mx6
m + 10368z2

mx6
m − 6912x6

m + 20736y4
mx4

m+
1296z4

mx4
m − 10368y2

mx4
m + 10368y2

mz2
mx4

m − 5184z2
mx4

m+
864x4

m − 3456y4
mx2

m − 864z4
mx2

m + 864y2
mx2

m + 864y2
mz2

mx2
m+

648z2
mx2

m − 48x2
m + 144y4

m + 144z4
m − 24y2

m − 144y2
mz2

m − 24z2
m + 1

106 D. Lichtblau

As noted above, this is still not faithful to the inequality constraints of having
vertices in the first octant. Indeed, it gives something that has symmetry across
all octants. Nonetheless, we know that parts of it will correspond to our desired
surface, because parts come from an open set in the restricted parameter space
wherein one vertex is on a positive coordinate axis, and the other two are in
the interior of their respective positive coordinate planes. This is why we did
not have to enforce non-negativity. The price we pay is that we have, in our
algebraic surface, parts that we do not want. The advantage, however, was that
the computations were quite simple to perform.

We now graph this. The indented part points toward the origin. One might see
that this surface intersects the coordinate planes in a way that appears similar
to that of the boundary surface we found earlier. This is no accident. These
intersection curves correspond to midpoint loci wherein two triangle vertices lie
on coordinate axes and the third is strictly inside its designated coordinate plane.
As such sets form curves, and provide the only means by which the midpoint
can lie on a coordinate plane, the implication is that the surfaces from figures 3
and 4 must meet at these curves.

Fig. 4. The rest of the midpoint locus boundary

We now show slices of both the algebraic surfaces and the geometric region.
While the latter is approximated, this will still give a good idea of how the
two fit together. The slices are planar cuts with xm taking constant values from
0.015 to about 0.6 in increments of 0.07. The top slices show the region nearest
the y − z coordinate plane, with increasing values of xm as we proceed left-to-
right and downward. The dashed blue curves demarcate the extremal surface
we computed, and the solid red curves the six boundary components found by
setting vertex coordinates individually to zero. That is to say, these curve sets
respectively correspond to the first and second boundary surfaces we found and
graphed earlier.

The slice views of figure 5 indicate two things of importance. One is that
the approximation function we derived from the point cloud gives a reasonably
faithful rendering of the region. This we deduce from seeing the green regions

Midpoint Locus of a Triangle 107

Fig. 5. Several midpoint locus slices along the x axis

mostly fill in, and only barely overflow, the boundary curves. The other impor-
tant item is that the way in which the boundary surfaces fit together to define
the region is quite complicated. In the bottom middle slice, for example, we see
green beneath the blue boundary at the top (expected), and bounded by red
on each side (unsurprising). But then it dips under red curves and hits the blue
again along the bottom left. This means the extremal surface (the one found via
Lagrange multipliers) contains both maximal and minimal values. It also means
the region is above some, but not everywhere all, of the six surface pieces that
came from setting vertex coordinates separately to zero (that is, forcing a vertex
onto an edge). An implication is that it will be difficult to determine an exact
region from inequality predicates based on the polynomials defining the surface
boundaries.

Finally we show the two boundaries together, using opacity to allow us to see
through one to the other. This is at best an imperfect rendition, but gives an
idea of how they fit together to enclose the midpoint locus.

108 D. Lichtblau

Fig. 6. Two views of the outer and inner boundary surfaces superimposed

7 Inverse Problems

One inverse problem relevant to this study is to understand the vertex locus that
gives rise to the midpoint locus. It suffices for this purpose to find those vertex
values that give the extreme midpoint values, that is, the boundary set we have
found above. This comprises an important part of the discriminant variety. It
might be of interest in, say, the setting of motion planning where we might need
to be concerned about such parameter values.

It turns out that this can be done using the same methods as for finding the
midpoint extremal values. Recall that to find the lower boundary of the mid-
points, we simply fixed in turn each of the (generally positive) vertex parameters
to zero. We then eliminated the remaining parameters to obtain a polynomial
in the midpoint variables alone. To find corresponding ”surfaces” in the space
of vertex parameters, one would instead eliminate the three midpoint variables
from the same systems of equations, retaining now some vertex parameters.

A small subtlety is that we still eliminate those vertex coordinate parameters
we had effectively removed in our preliminary computations (when we solved
for three in terms of the other three). This has the beneficial effect of keeping
our parameter region to three dimensions, making it thus amenable to graphical
analysis. It is also useful because this reduced space aptly captures the fact that,
due to algebraic constraints, there are only three degrees of freedom. When all is
done we have six surfaces. Three of them are trivial, occurring when each in turn
of the retained vertex variables is zero. The other three surfaces are modest sized
polynomials in the retained vertex variables, and correspond to setting each in
turn of the eliminated vertex variables to zero.

One can similarly obtain a description of the vertex parameter space that
gives midpoint values on that part of the boundary surface found via Lagrange
multipliers. Again, one simply changes roles of vertex parameters and midpoint
variables, eliminating the latter instead of the former (of course we still elimi-
nate the Lagrange multipliers). This computation is about as strenuous as its

Midpoint Locus of a Triangle 109

midpoint surface counterpart. It gives a result comparable in size, and with an
eerily similar surface plot.

A second inverse problem of interest is to compute vertex coordinates when
given a midpoint location. A more general, and more important, form of this
problem is to compute a one dimensional locus of vertex coordinates that takes
a midpoint from one given position to another. This is the sort of computation
that arises in collision avoidance and path planning. It is referred to in the
literature as the “reachability problem”.

We start with a simple example of finding vertices that give a particular
midpoint location. We solve the initial polynomial system by plugging in specific
values for the midpoint and solving for the vertex coordinates. If we started with
a midpoint in the locus then at least one solution must be real-valued. We remark
that generically there are eight solutions in C3 (since there are 8 for random
choices of midpoint), so in fact there must be at least two that are real-valued
(though one such need not have all vertex coordinates non-negative). It seems
moreover that for all midpoint choices there are exactly two such real solutions
to the vertices, one of which might have negative values. It would be interesting
to have a geometric understanding of this phenomenon.

For the midpoint (0.3, 0.4, 0.5) the vertex coordinates (x2, x3, y1, y3, z1, z2)
(in this order) can occupy either of two sets of values. They are, respectively
(to three digits), (0.324, 0.576, 0.886, 0.314, 0.584, 0.916) and (0.716, 0.184,
0.536, 0.665, 0.974, 0.526). The first thing to realize is that both are valid vertex
coordinate positions, so there are indeed two distinct ways to place the triangle
and have its midpoint at (0.3, 0.4, 0.5). The midpoint location (0.2, 0.3, 0.4), in
contrast, gives rise only to the positive vertex (0.872, 0.328, 0.063, 0.837, 0.542,
0.058). The second real-valued solution has one coordinate slightly negative,
hence that vertex lies in the wrong octant.

Next we describe a simple way to find a path from one midpoint to the other.
We use the two midpoints above to illustrate. We simply subdivide the segment
between the two into several parts. We solve the inverse problem to find vertex
values, then connect them to form a path between vertices. We remark, first, that
this will not work at all if the segment connecting the midpoints does not lie in
the valid locus (recall that said locus is not convex). Assuming the segment is in
the range of validity, there remains a more subtle issue. A vertex set might not
connect smoothly from source to target. We show this below. Using one set of
vertex values for midpoint (0.3,0.4,0.5) we get a smooth path taking the triangle
to the unique one with midpoint (0.4,0.3,0.2) (figure 7). The other triangle with
midpoint (0.3,0.4,0.5) does not connect smoothly in this manner: one sees jumps
in the vertex paths on the right side.

The code used to compute and graph these paths follows the ideas described
above. It is omitted from the code appendix for brevity.

A natural question is how to find paths in vertex space that connect an ar-
bitrary pair of triangles. Such a computation would arise, for example, in mo-
tion planning when the target is not necessarily near to the starting point. We

110 D. Lichtblau

Fig. 7. Continuous and discontinuous paths from one midpoint to another

outline a method that uses differential equations. See [1] for a similar approach
to motion planning.

We are given the triangle initial and destination vertices. We will move the for-
mer to the latter while enforcing that the vertices stay in the non-negative parts
of their respective coordinate planes, and that the triangle remains equilateral at
all times. One aspect of keeping the vertices in legal ranges is automatic: by our
formulation, a component of each will remain at zero. The non-negativity will be
influenced by a repulsion term that grows as a vertex approaches a coordinate
axis, but also shrinks as it approaches its destination point. This is important
since that destination might actually be on or near an axis, hence it must be
possible for the vertex to arrive there.

We will enforce the length constraints by insisting that, for any pair of vertices,
the difference in their velocities along the direction of the connecting edge must
vanish. This gives three differential conditions. As we have six generically non-
zero vertex parameters we must provide exactly three more equations.

We will again work with first derivatives (velocities, in physical terms) as this
makes the task easier for the numerical ODE solver than, say, working with sec-
ond derivatives (physically manifesting as forces). Since we cannot specify the
velocities of all six parameters we will only use, for each vertex, its velocity in
the direction between that vertex (at a given time) and its destination point.
We provide velocity components between vertices and their destinations propor-
tional to the distance between them. These serve as “attractors”. In addition we
consider velocities that in effect repel vertices from the coordinate axes so they
cannot become negative. We take the components of these in the direction we
use (between vertex and target position) and add that to the attractive velocity
already described. This gives our other three differential conditions. As the sys-
tem uses six first derivatives, we only require six initial conditions and they of
course are provided by the initial position of the six vertex parameters.

Midpoint Locus of a Triangle 111

We illustrate this method by computing a smooth transition between the
second pair of configurations used above. We will show the path a bit differently
this time, using a succession of points to give the path. This is useful because it
is not the individual paths that matter so much as how they are synchronized.
That is to say, if we are to plan a constrained motion then we not only must
know the path on which each vertex will travel but also need to keep track of
where it is at given times.

We show the starting midpoint as a red point and the termination midpoint as
green. One sees that the paths are by no means straight, and vertex components
may at times move in the “wrong” direction. It is readily checked that the
algebraic constraints (that the triangle keep its shape at all times) are met to
within the tolerance of machine precision ODE solver (around 10−8 in this case).

We remark that variations on this could be considered. One might, for ex-
ample, work in a differential algebraic system setting, enforcing the equilateral
triangle constraints via algebraic equations rather than vanishing velocity com-
ponents. Also one might in some problems wish to work with forces rather than
velocities, and this could entail either finding consistent initial velocities, or work-
ing with a boundary value problem since the target values are known in advance.
Finally we observe that the repelling terms might, in extreme cases, not suffice
to enforce the con-negativity constraints. A robust solver would thus need to
use ”event detection” to catch vertices going into a disallowed region. It might

Fig. 8. Continuous and discontinuous paths from one midpoint to another

112 D. Lichtblau

then either restart with stronger repulsion terms, or continue with a constraint
that the appropriate vertex coordinate remain at zero until the corresponding
velocity component becomes positive (which would also require event detection).

8 Summary and Open Questions

We presented several methods of visualizing the locus of points of an equilateral
triangle with vertices constrained to lie in positive octant, and one on each of
the three coordinate planes. Using symbolic methods we derived algebraic ex-
pressions corresponding to the boundaries of that region. Taking a different ap-
proach, with hybrid (symbolic-numeric) methods for equation solving, we found
numerous solutions, retaining the ones that satisfied the appropriate constraints.
We then used computational geometric and numeric methods to construct an
approximation of the geometric region from this large point cloud of midpoint
positions. With all this we were able to show how the algebraic surfaces matched
the approximated region. We also addressed some interesting inverse problems
related to this study.

To keep this to reasonable size, we did not show some of the other possible
ways to visualize the algebraic surfaces together with the approximated geo-
metric region. For example, one can get pictures of the “fit” by cutting away
surface parts, and showing the result together with the point cloud or the ap-
proximated region derived therefrom. Another direction might be to punch holes
in the algebraic surfacein order to see through to regions of interest.

We mention that one might wish to apply more powerful tools for handling
such problems. For example, computational geometry methods could perhaps to
“take apart” the algebraic surface, removing pieces at self intersections that do
not correspond to the desired region boundary. Another nice capability would be
to form a bounding surface directly from the point cloud. This might provide a
better approximation than we were able to obtain using a proximity approxima-
tion. Such graphical methods utilize both symbolic and numeric processing and
therefore present interesting opportunities for future development in the area of
geometric computation.

We now pose several questions that lead to related areas of inquiry.
How might one show algorithmically that the region we found is topologically

equivalent to the three dimensional ball? It is of course obvious from the graphics,
but it does not seem to follow immediately from the way the geometry is set
up. It would be nice to have a proof based either on computational or geometric
methods.

Is the region star-shaped? (If so, this would suffice to show the topology is
trivial.) We conjecture that the region is star-shaped with respect to the point
obtained when the three vertices are all placed symmetrically in their respective
octant planes.

Is there a simple way to obtain a good outer approximation to the convex
hull? This might be of use e.g. in motion planning problems where one wishes
to avoid the region.

Midpoint Locus of a Triangle 113

Is there a convenient way, using algebraic inequalities, to show where the var-
ious components of the boundary surface end? This would involve computing
the intersection curves. One would then need to compute points on those curves
which delimit where they are “active” as surface boundaries. Finding these alge-
braically, and putting together all the information to see only the surface parts
that are themselves “active” as midpoint locus boundaries, might provide an
interesting symbolic computation counterpart to the graphical or computational
geometry possibilities alluded to above. We remark that the task of finding the
surface intersection curves is computationally feasible for this particular prob-
lem. But it is an open question as to how useful they will be, in implicit form, for
the task of better delimiting the boundary surface components. As mentioned
in the code appendix, at least one such curve is quite unwieldy.

9 Appendix: Mathematica Code

We now provide explicit Mathematica code used to set up the computations,
create the graphics, etc.

These first lines set up the polynomial system.

midpt = {xm, ym, zm} ;midpt = {xm, ym, zm} ;midpt = {xm, ym, zm} ;
coords = {x, y, z};coords = {x, y, z};coords = {x, y, z};
ptcoords = Map[Table[Subscript[#, j], {j, 3}]&, coords];ptcoords = Map[Table[Subscript[#, j], {j, 3}]&, coords];ptcoords = Map[Table[Subscript[#, j], {j, 3}]&, coords];
pts = Transpose[ptcoords];pts = Transpose[ptcoords];pts = Transpose[ptcoords];
vals = MapIndexed[(Subscript[#1, #2[[1]]] = 0)&, coords];vals = MapIndexed[(Subscript[#1, #2[[1]]] = 0)&, coords];vals = MapIndexed[(Subscript[#1, #2[[1]]] = 0)&, coords];
polys = Numerator[Together[Flatten[{Mean[pts]−midpt, Map[#.#− 1&,polys = Numerator[Together[Flatten[{Mean[pts]−midpt, Map[#.#− 1&,polys = Numerator[Together[Flatten[{Mean[pts]−midpt, Map[#.#− 1&,

Flatten[Table[pts[[j]]− pts[[k]], {j, Length[pts]− 1},Flatten[Table[pts[[j]]− pts[[k]], {j, Length[pts]− 1},Flatten[Table[pts[[j]]− pts[[k]], {j, Length[pts]− 1},
{k, j + 1, Length[pts]}], 1]]]]]; }{k, j + 1, Length[pts]}], 1]]]]]; }{k, j + 1, Length[pts]}], 1]]]]]; }

We compute the elimination basis as below.

elims = {z1, x2, y3} ;elims = {z1, x2, y3} ;elims = {z1, x2, y3} ;
params = Complement[DeleteCases[Flatten[pts], 0], elims];params = Complement[DeleteCases[Flatten[pts], 0], elims];params = Complement[DeleteCases[Flatten[pts], 0], elims];
gbrat = GroebnerBasis[polys, midpt, elims,gbrat = GroebnerBasis[polys, midpt, elims,gbrat = GroebnerBasis[polys, midpt, elims,
CoefficientDomain → RationalFunctions,CoefficientDomain→ RationalFunctions,CoefficientDomain→ RationalFunctions,
MonomialOrder→ EliminationOrder]MonomialOrder→ EliminationOrder]MonomialOrder→ EliminationOrder]

We find random points in the region using the code below. The idea is to select
random values for the parameters, and then solve for the triangle midpoint
values. As discussed earlier, we use the original set of polynomials so we can
readily check vertex values from eliminated parameters to make sure the result
comes from a positive octant configuration.

vertices = RandomReal[{0, 1}, {25000, 3}];vertices = RandomReal[{0, 1}, {25000, 3}];vertices = RandomReal[{0, 1}, {25000, 3}];
substs = Map[Thread[params→ #]&, vertices];substs = Map[Thread[params→ #]&, vertices];substs = Map[Thread[params→ #]&, vertices];
vars = Complement[Variables[polys], params];vars = Complement[Variables[polys], params];vars = Complement[Variables[polys], params];

First we find all possible solutions. This takes several minutes to solve 10,000
systems of nonlinear polynomial equations, using version 8 of Mathematica.

114 D. Lichtblau

Timing[solns = Flatten[Map[NSolve[polys/.#, vars]&, substs], 1];]Timing[solns = Flatten[Map[NSolve[polys/.#, vars]&, substs], 1];]Timing[solns = Flatten[Map[NSolve[polys/.#, vars]&, substs], 1];]
{785.884, Null }

Next we select only the ones that satisfy our configuration constraints.

mdptsols = Pick[midpt/.solns, Apply[And,mdptsols = Pick[midpt/.solns, Apply[And,mdptsols = Pick[midpt/.solns, Apply[And,
Map[(Head[#]===Real&&# ≥ 0)&, vars/.solns, {2}], {1}]];Map[(Head[#]===Real&&# ≥ 0)&, vars/.solns, {2}], {1}]];Map[(Head[#]===Real&&# ≥ 0)&, vars/.solns, {2}], {1}]];

We symmetrize to expand our valid points by a factor of six, then plot the
resulting point cloud.

symmdptsols = Flatten[Map[Permutations, mdptsols], 1];symmdptsols = Flatten[Map[Permutations, mdptsols], 1];symmdptsols = Flatten[Map[Permutations, mdptsols], 1];
ptreg = ListPointPlot3D[symmdptsols, BoxRatios→ 1]ptreg = ListPointPlot3D[symmdptsols, BoxRatios→ 1]ptreg = ListPointPlot3D[symmdptsols, BoxRatios→ 1]

Here we form our region function, for use in plotting a reasonable approxima-
tion to the boundary. For computational speed we use an octree structure This
is provided in Mathematica by the function Nearest. It will allow a plotting
function to determine quickly whether a given point is to be regarded as inside
the region under consideration.

nf = Nearest[symmdptsols];nf = Nearest[symmdptsols];nf = Nearest[symmdptsols];
inRegion[pt : { Real, Real, Real}, eps Real]:=inRegion[pt : { Real, Real, Real}, eps Real]:=inRegion[pt : { Real, Real, Real}, eps Real]:=
TrueQ[Norm[nf[pt, 1][[1]]− pt] < eps]TrueQ[Norm[nf[pt, 1][[1]]− pt] < eps]TrueQ[Norm[nf[pt, 1][[1]]− pt] < eps]

reg = RegionPlot3D[inRegion[{x, y, z}, .015], {x, 0, .6}, {y, 0, .6}, {z, 0, .6},reg = RegionPlot3D[inRegion[{x, y, z}, .015], {x, 0, .6}, {y, 0, .6}, {z, 0, .6},reg = RegionPlot3D[inRegion[{x, y, z}, .015], {x, 0, .6}, {y, 0, .6}, {z, 0, .6},
Mesh→ False, PlotPoints→ 30]Mesh→ False, PlotPoints→ 30]Mesh→ False, PlotPoints→ 30]

We now set up the Lagrange multiplier system of polynomials.

varsub = Map[#→ #[Sequence@@params]&, midpt];varsub = Map[#→ #[Sequence@@params]&, midpt];varsub = Map[#→ #[Sequence@@params]&, midpt];
fullrats = gbrat/.varsub;fullrats = gbrat/.varsub;fullrats = gbrat/.varsub;
reversesub = Map[Reverse, varsub];reversesub = Map[Reverse, varsub];reversesub = Map[Reverse, varsub];
ratderivs = Flatten[Map[D[fullrats, #]&, params]];ratderivs = Flatten[Map[D[fullrats, #]&, params]];ratderivs = Flatten[Map[D[fullrats, #]&, params]];
derivvars = Cases[Variables[ratderivs], Derivative[][][]];derivvars = Cases[Variables[ratderivs], Derivative[][][]];derivvars = Cases[Variables[ratderivs], Derivative[][][]];
derivs = First[Solve[(ratderivs/.reversesub) == 0, derivvars]];derivs = First[Solve[(ratderivs/.reversesub) == 0, derivvars]];derivs = First[Solve[(ratderivs/.reversesub) == 0, derivvars]];

We form our gradients and use them in the Lagrange multipliers.

grad[v]:=Map[D[v/.varsub, #]&, params]/.derivsgrad[v]:=Map[D[v/.varsub, #]&, params]/.derivsgrad[v]:=Map[D[v/.varsub, #]&, params]/.derivs
lambdas = {λ1, λ2} ;lambdas = {λ1, λ2} ;lambdas = {λ1, λ2} ;
auxpolys = Flatten [Together [grad [zm]− lambdas. {grad [xm] , grad [ym]}]] ;auxpolys = Flatten [Together [grad [zm]− lambdas. {grad [xm] , grad [ym]}]] ;auxpolys = Flatten [Together [grad [zm]− lambdas. {grad [xm] , grad [ym]}]] ;
fullpolys = Join[gbrat, auxpolys];fullpolys = Join[gbrat, auxpolys];fullpolys = Join[gbrat, auxpolys];

We find the implicit surface by an elimination of variables, using GroebnerBasis.
The settings are based on a method described in [9,6].

Timing[implicit = First[Timing[implicit = First[Timing[implicit = First[
GroebnerBasis[fullpolys, midpt, Join[lambdas, params], Sort→ True,GroebnerBasis[fullpolys, midpt, Join[lambdas, params], Sort→ True,GroebnerBasis[fullpolys, midpt, Join[lambdas, params], Sort→ True,
Method→ {“GroebnerWalk”, “EarlyEliminate”→ True}]];]Method→ {“GroebnerWalk”, “EarlyEliminate”→ True}]];]Method → {“GroebnerWalk”, “EarlyEliminate”→ True}]];]
{3.14852, Null }

This is quite a large polynomial. The first thing one should ask is whether it
factors. We check below that it is irreducible over the rationals. In Mathematica

Midpoint Locus of a Triangle 115

one can readily use the function FactorList for this purpose. It gives a result
as a list of elements of the form {poly, expon}, where the first factor is explicitly
numeric. Thus if the length is two, and the second exponent is one, then the
polynomial did not factor. We check this explicitly below.

Length[fax = FactorList[implicit]]Length[fax = FactorList[implicit]]Length[fax = FactorList[implicit]]
{fax[[1]], fax[[2, 2]]}{fax[[1]], fax[[2, 2]]}{fax[[1]], fax[[2, 2]]}

2
{{1, 1}, 1}

We can graph the algebraic surface as below. As it is complicated, we use some
non-default options to speed the process.

g = Compile [{{xm, Real} , {ym, Real} , {zm, Real}} , Evaluate[implicit]] ;g = Compile [{{xm, Real} , {ym, Real} , {zm, Real}} , Evaluate[implicit]] ;g = Compile [{{xm, Real} , {ym, Real} , {zm, Real}} , Evaluate[implicit]] ;
g1[xm Real, ym Real, zm Real]:=g[xm, ym, zm];g1[xm Real, ym Real, zm Real]:=g[xm, ym, zm];g1[xm Real, ym Real, zm Real]:=g[xm, ym, zm];
cp1 = ContourPlot3D[cp1 = ContourPlot3D[cp1 = ContourPlot3D[
g1 [xm, ym, zm] == 0, {xm, 0, .6} , {ym, 0, .6} , {zm, 0, .6} ,g1 [xm, ym, zm] == 0, {xm, 0, .6} , {ym, 0, .6} , {zm, 0, .6} ,g1 [xm, ym, zm] == 0, {xm, 0, .6} , {ym, 0, .6} , {zm, 0, .6} ,
MaxRecursion→ 0, PlotPoints→ 40, Mesh→ False,MaxRecursion→ 0, PlotPoints→ 40, Mesh→ False,MaxRecursion→ 0, PlotPoints→ 40, Mesh→ False,
ContourStyle→ RGBColor[0.137255, 0.913725, 1]];ContourStyle→ RGBColor[0.137255, 0.913725, 1]];ContourStyle→ RGBColor[0.137255, 0.913725, 1]];

We now produce the polynomials that define the other parts of the boundary.
These arise, as explained above, from forcing one vertex coordinate to lie on one
or the other boundary axis of its octant face.

allparams = Complement[Variables[polys], midpt];allparams = Complement[Variables[polys], midpt];allparams = Complement[Variables[polys], midpt];
boundary = Table[First[GroebnerBasis[boundary = Table[First[GroebnerBasis[boundary = Table[First[GroebnerBasis[
Join[polys, {allparams[[j]]}], midpt, allparams,Join[polys, {allparams[[j]]}], midpt, allparams,Join[polys, {allparams[[j]]}], midpt, allparams,
MonomialOrder→ EliminationOrder]],MonomialOrder→ EliminationOrder]],MonomialOrder→ EliminationOrder]],
{j, Length[allparams]}];{j, Length[allparams]}];{j, Length[allparams]}];

We can plot this as below.

cp2 = ContourPlot3D[cp2 = ContourPlot3D[cp2 = ContourPlot3D[
Evaluate[boundary == 0], {xm, 0, .6} , {ym, 0, .6} , {zm, 0, .6} ,Evaluate[boundary == 0], {xm, 0, .6} , {ym, 0, .6} , {zm, 0, .6} ,Evaluate[boundary == 0], {xm, 0, .6} , {ym, 0, .6} , {zm, 0, .6} ,
MaxRecursion→ 0, PlotPoints→ 30, Mesh→ None,MaxRecursion→ 0, PlotPoints→ 30, Mesh→ None,MaxRecursion→ 0, PlotPoints→ 30, Mesh→ None,
ContourStyle→ Lighter[Red], Lighting→ “Neutral”];ContourStyle→ Lighter[Red], Lighting → “Neutral”];ContourStyle→ Lighter[Red], Lighting → “Neutral”];

We remark that one can compute projections of the curves where the bottom
surfaces intersect the top one. For example:

Timing[intersect1 = GroebnerBasis[Timing[intersect1 = GroebnerBasis[Timing[intersect1 = GroebnerBasis[
{boundary[[1]], implicit}, {xm, ym} , {zm} ,{boundary[[1]], implicit}, {xm, ym} , {zm} ,{boundary[[1]], implicit}, {xm, ym} , {zm} ,
MonomialOrder→ EliminationOrder];]MonomialOrder→ EliminationOrder];]MonomialOrder→ EliminationOrder];]
{5.73113, Null}

The result is quite large, having total degree 62 and coefficients as large as 30
digits or so.

Here we prepare two dimensional slices

bottomslices = Table[boundary, {xm, .015, .6, .07}];bottomslices = Table[boundary, {xm, .015, .6, .07}];bottomslices = Table[boundary, {xm, .015, .6, .07}];
bottomplots = Map[bottomplots = Map[bottomplots = Map[

116 D. Lichtblau

ContourPlot[# == 0, {ym, 0, .6} , {zm, 0, .6} ,ContourPlot[# == 0, {ym, 0, .6} , {zm, 0, .6} ,ContourPlot[# == 0, {ym, 0, .6} , {zm, 0, .6} ,
MaxRecursion→ 1, PlotPoints→ 25,MaxRecursion→ 1, PlotPoints→ 25,MaxRecursion→ 1, PlotPoints→ 25,
ContourStyle→ {Thickness[.004]}ContourStyle→ {Thickness[.004]}ContourStyle→ {Thickness[.004]}
ColorFunction→ Function[{x, y, f}, Red]]&,ColorFunction→ Function[{x, y, f}, Red]]&,ColorFunction→ Function[{x, y, f}, Red]]&,

bottomslices];bottomslices];bottomslices];

topslices = Table[implicit, {xm, .015, .6, .07}];topslices = Table[implicit, {xm, .015, .6, .07}];topslices = Table[implicit, {xm, .015, .6, .07}];
topplots = Map[topplots = Map[topplots = Map[
ContourPlot[# == 0, {ym, 0, .6} , {zm, 0, .6} ,ContourPlot[# == 0, {ym, 0, .6} , {zm, 0, .6} ,ContourPlot[# == 0, {ym, 0, .6} , {zm, 0, .6} ,
MaxRecursion→ 1, PlotPoints→ 25,MaxRecursion→ 1, PlotPoints→ 25,MaxRecursion→ 1, PlotPoints→ 25,
ColorFunction→ Function[{x, y, f}, Blue],ColorFunction→ Function[{x, y, f}, Blue],ColorFunction→ Function[{x, y, f}, Blue],
ContourStyle→ {Thickness[.004], Dashed}]&,ContourStyle→ {Thickness[.004], Dashed}]&,ContourStyle→ {Thickness[.004], Dashed}]&,

topslices];topslices];topslices];

midslices = Table[x, {x, .015, .6, .07}];midslices = Table[x, {x, .015, .6, .07}];midslices = Table[x, {x, .015, .6, .07}];
midplots = Map[midplots = Map[midplots = Map[
RegionPlot[inRegion[{#, y, z}, .015], {y, 0, .6}, {z, 0, .6},RegionPlot[inRegion[{#, y, z}, .015], {y, 0, .6}, {z, 0, .6},RegionPlot[inRegion[{#, y, z}, .015], {y, 0, .6}, {z, 0, .6},
ColorFunction→ Function[{x, y, z}, Green],ColorFunction→ Function[{x, y, z}, Green],ColorFunction→ Function[{x, y, z}, Green],
MaxRecursion→ 0, PlotPoints→ 50]&,MaxRecursion→ 0, PlotPoints→ 50]&,MaxRecursion→ 0, PlotPoints→ 50]&,

midslices];midslices];midslices];

This next line generates the actual slices we showed earlier.

Map[Show, Transpose[{midplots, topplots, bottomplots}]]Map[Show, Transpose[{midplots, topplots, bottomplots}]]Map[Show, Transpose[{midplots, topplots, bottomplots}]]
This last graphic puts the surfaces together, using opacity to allow one to better
see how they bound the region of interest.

Graphics3D[{{Opacity[0.35], First[cp1]}, {Opacity[0.55], First[cp2]}}]Graphics3D[{{Opacity[0.35], First[cp1]}, {Opacity[0.55], First[cp2]}}]Graphics3D[{{Opacity[0.35], First[cp1]}, {Opacity[0.55], First[cp2]}}]

Here we solve the inverse problem of locating vertex values that correspond to
a given midpoint location.

vsols = NSolve[polys/.Thread[midpt→ {.3, .4, .5}]];vsols = NSolve[polys/.Thread[midpt→ {.3, .4, .5}]];vsols = NSolve[polys/.Thread[midpt → {.3, .4, .5}]];
vertexsols = Pick[allparams/.vsols,vertexsols = Pick[allparams/.vsols,vertexsols = Pick[allparams/.vsols,
Apply[And, Map[(Head[#]===Real&&# ≥ 0)&, allparamsApply[And, Map[(Head[#]===Real&&# ≥ 0)&, allparamsApply[And, Map[(Head[#]===Real&&# ≥ 0)&, allparams

References

1. Chibisov, D., Mayr, E.W., Pankratov, S.: Spatial Planning and Geometric Op-
timization: Combining Configuration Space and Energy Methods. In: Hong, H.,
Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 156–168. Springer, Hei-
delberg (2006)

2. Gleason, A.M., Greenwood, R.E., Kelly, L.M.: The William Lowell Putnam Math-
ematical Competition Problems and Solutions: 1938-1964. Mathematical Associa-
tion of America (1980)

3. Jerrard, R.P., Wetzel, J.E.: Tile in a corner. Mathematics Magazine 82, 300–309
(2009)

4. Lazard, D., Rouillier, F.: Solving parametric polynomial systems. Journal of Sym-
bolic Computation 42, 636–667 (2007)

Midpoint Locus of a Triangle 117

5. Lichtblau, D.: Computing Curves Bounding Trigonometric Planar Maps: Symbolic
and Hybrid Methods. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI),
vol. 3763, pp. 70–91. Springer, Heidelberg (2006),
http://library.wolfram.com/infocenter/Conferences/7516/

6. Lichtblau, D.: Implicitization via the Gröbner walk (2007), slides:
http://library.wolfram.com/infocenter/Conferences/7512/

7. Lichtblau, D.: Polynomial GCD and factorization via approximate Gröbner bases.
In: SYNASC 2010: 12th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing, pp. 29–36. IEEE Press (2010)

8. Ruiz, O.E., Ferreira, P.M.: Algebraic geometry and group theory in geometric con-
straint satisfaction. In: Proceedings of the International Symposium on Symbolic
and Algebraic Computation, ISSAC 1994, pp. 224–233. ACM, New York (1994)

9. Tran, Q.-N.: Efficient Groebner walk conversion for implicitization of geometric
objects. Computer Aided Geometric Design 21, 837–857 (2004)

10. Wolfram Research. Mathematica 7 (2008)

http://library.wolfram.com/infocenter/Conferences/7516/
http://library.wolfram.com/infocenter/Conferences/7512/

Some Lemmas to Hopefully Enable Search

Methods to Find Short and Human Readable
Proofs for Incidence Theorems of Projective

Geometry

Dominique Michelucci

LE2I, UMR CNRS 5158, 9 av Alain Savary, BP 47870, 21078 Dijon cedex, France
Dominique.Michelucci@u-bourgogne.fr

Abstract. Search methods provide short and human readable proofs,
i.e. with few algebra, of most of the theorems of the Euclidean plane.
They are less succesful and convincing for incidence theorems of projec-
tive geometry, which has received less attention up to now. This is due to
the fact that basic notions, like angles and distances, which are relevant
for Euclidean geometry, are no more relevant for projective geometry.
This article suggests that search methods can also provide short and hu-
man readable proofs of incidence theorems of projective geometry with
well chosen notions, rules or lemmas. This article proposes such lemmas,
and show that they indeed permit to find by hand short proofs of some
theorems of projective geometry.

1 Introduction

What is a proof? In a first acceptation, a proof is a guarantee, a certificate
that some theorem holds; these proofs are very detailed and rigorous, e.g. they
account for degenerate cases. These proofs are not intended to be read or under-
stood by a human: they can be tedious computations, resorting to some algo-
rithms in Computer Algebra (Wu-Ritt method, Gröbner bases); the guarantee
is due to the correctness of the Computer Algebra program. Such proofs provide
certitudes, but do not always bring understanding or enlightenment. In a sec-
ond acceptation, a proof brings us (i.e. human beings) explanation, knowledge,
understanding, and even enlightenment: e.g. these proofs may suggest general-
izations, or apply to more general theorems. They must be easy to read and
understand. The shorter the proof, the better. Visual proofs are extreme ex-
amples of such proofs. Details such as degeneracies must not occlude the main
arguments of these proofs.

This paper considers the possibility for search methods to produce short and
human readable proofs (i.e. with as few algebra as possible) for theorems of
projective geometry, mainly for the projective plane. The hypothesis and the
conclusion of these theorems are point-line or point-conic incidences. An avenue
to compute short proofs is to apply powerful lemmas, in contrast to proofs of
the first kind which relies on long and tedious algebraic computations.

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 118–131, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Some Lemmas to Hopefully Enable Search Methods 119

Previous works: search methods [7,8,6,2,3,5,17] give human readable proofs
in Euclidean geometry with very few algebra. Many consider a typical figure to
prune the search combinatorial space and discard irrelevant degenerate cases in
the wake of 1959 Gelertner’s pioneering work [7,8,6]. However the ruleset of cur-
rent search methods is not well suited to prove incidence theorems of projective
geometry; for example angles, distances, similitudes, isometries are relevant for
Euclidean geometry, but not for projective geometry. Raymond Pouzergues [13]
(unfortunately in French only) proves by hand 2 dozens of incidence theorems in
the projective plane, relying on a variant of Pascal’s Mystical Hexagram theorem
as a main lemma, which he calls the hexamys theorem. Michelucci and Schreck
[11] automatize the search of hexamys. But they do not rely on a typical fig-
ure to prune the combinatorial space and to discard irrelevant degenerate cases,
and (with hindsight) their ruleset is not powerful as it could be; for instance
they do not use brianchons (hexamys duals, defined below). Richter-Gebert et
al proposed combinatorial-algebraic proofs [1,14] called binomial proofs.

This article proposes lemmas and rules which could make search methods able
to provide short and human readable proofs of incidence theorems of projective
geometry.

Only some of the proofs given below have been found after a computer search
(with an ad-hoc program). The proofs given below must be considered as an
empirical evidence that the rules or lemmas which are proposed indeed permit
to find short and human readable proofs of incidence geometry. This article does
not focus on the algorithmic part of combinatorial search methods. I will only
mention that a feature of theorems in projective geometry, and an issue (or an
opportunity?), is their big number of symmetries.

The plane of this article is as follows: §2 presents the main lemmas usable
in short proofs. Then §3 proves Desargue’s theorem, §4 proves Desargue’s the-
orem in the Cevian case, §5 proves the 3 chords theorem and a generalization,
§6 explicits the dual of this theorem, §7 proves the 3 circles theorem and its
generlization, §8 proves the 4 circles theorem and a generalization. §9 gives some
algorithmics to compute automatically this kind of proofs. §10 concludes.

2 Chasles, Pascal, Brianchon

Powerful lemmas enable short proofs. A main lemma which seems able to prove
a significant number of theorems involves cubic curves; it was first proved by
Michel Chasles and later generalized to curves of higher degree by Cayley and
Bacharach.

Lemma 1. In the projective complex plane, all cubic curves C which pass through
8 of the 9 (distinct) intersection points of 2 other cubic curves C1 and C2 (without
common component) also pass through the 9th point.

This theorem solves an apparent contradiction. On one hand, a cubic curve is
defined by 9 different points, under some genericity conditions (for instance, no
4 of the points lie on a common line, and no 7 of the points lie on a common

120 D. Michelucci

conic). On the second hand, after Bézout theorem, two cubic curves (without
common component) C1 and C2 in the complex projective plane intersect in
exactly 9 different points (in the generic case); but these 9 intersection points
do not define an unique cubic curve, because the two cubic curves C1 and C2

(and all linear combinations C(x, y, h) = tC1(x, y, h) + (1 − t)C2(x, y, h) where
Ci(x, y, h) = 0 is the homogeneous equation of the curve Ci) are different and
pass through the 9 points. The solution to this apparent dilemma is to realize
than the 9 intersection points are not independent. Actually they have rank 8,
in a sense precised in the following proof of Chasles’ theorem:

Proof. Assume points have homogeneous coordinates (x, y, h) in C3 \ (0, 0, 0).
Define φ : C3 → C10,

φ(x, y, h) = (x3, y3, h3, x2y, x2h, y2h, xy2, xh2, yh2, xyh)

Then every cubic curve has equation Q · φ(x, y, h) = 0, where · denotes the
Hermitian scalar product, and Q is a non zero vector in C10. Each cubic curve
is represented with an hyperplane in C10. Hyperplanes in C10 have rank 9. The
intersection of 2 hyperplanes (representing the intersection of 2 cubic curves)
has rank 8. Now, after Bézout’ theorem, two cubic curves intersect in 9 differ-
ent points in generic case. Thus the 9 intersection points φ(p1), φ(p2), . . . φ(p9)
between the 2 cubics have rank 8: only 8 of the 9 points are independent, and
the 9th lies in the vector space spanned by the 8 others.

Remark 1. Rank 10 matroids capture Chasles’ theorem. A method to prove in-
cidence theorems searches the matroids compatible with the hypothesis inci-
dences [11].

Fig. 1. From left to right: Pascal’, Pappus’, Brianchon’s theorems

Chasles’ theorem permit to prove the Pascal mystical hexagram theorem (Fig.1):

Theorem 1 (Pascal’s mystical hexagram). The opposite sides of an hexagon
inscribed in a conic curve meet in 3 colinear points.

Some Lemmas to Hopefully Enable Search Methods 121

Proof (with Chasles theorem). Let p0, p1, . . . p5 the 6 points on a conic. The 3
intersection points of opposite sides are i0 = p0p1 ∩ p3p4, i1 = p1p2 ∩ p4p5 and
i2 = p2p3 ∩ p5p0. Call C1 the cubic curve which is the union of the 3 lines p0p1,
p2p3 and p4p5. Call C2 the cubic curve which is the union of the 3 lines p1p2,
p3p4 and p5p0. C1 and C2 meet at the 9 intersection points p0, . . . p5, i0, i1, i2.
The cubic curve C is the union of the conic curve through the pis and of the
line i0i1. C passes through 8 of the 9 points (namely the pis and i0 and i1).
Thus after Chasles’ theorem, C also passes through the 9th point i2. Admitting
i2 does not lie on the conic (an example, i.e. a figure –also called a witness– is a
visual proof sufficient and very convenient for a human), i2 must lie on the line
i0i1.

Chasles’ theorem permits to prove Pappus’ theorem (Fig.1):

Theorem 2 (Pappus). 3 points p0, p2, p4 lie on a first line, and 3 points
p1, p3, p5 lie on a second line. Then the 3 intersection points i0 = p0p1∩p3p4, i1 =
p1p2 ∩ p4p5, i2 = p2p3 ∩ p5p0 are colinear.

Proof (with Chasles theorem). Define C1 and C2 as before: C1 is the cubic curve
which is the union of the 3 lines p0p1, p2p3 and p4p5. C2 is the cubic curve
which is the union of the 3 lines p1p2, p3p4 and p5p0. C1 and C2 meet at the 9
intersection points p0, . . . p5, i0, i1, i2. The cubic curve C is the union of the line
p0p2p4, the line p1p2p3, and the line i0i1. C passes through 8 of the 9 points,
thus it passes through the 9th point which is i2. Admitting i2 does not lie on
the lines p0p2p4 nor p1p3p5 (an example, i.e. a figure, is sufficient), i2 must lie
on the line i0i1.

Remark 2. This line of thought was introduced by Chasles. It has been somewhat
forgotten for the benefit of Bourbaki style. It is today revisited, for instance in
Richter-Gebert’s book [15].

Pouzergues reformulates Pascal’ theorem as follows:

Definition 1. An hexamys is an hexagon p0p1p2p3p4p5 such that opposite sides
meet in 3 colinear points (either 3 distinct colinear point, or 2 distinct points)
i0 = p0p1 ∩ p3p4, i1 = p1p2 ∩ p4p5 and i2 = p2p3 ∩ p5p0.

Theorem 3 (Hexamys). All permutations of an hexamys are hexamys.

Proof. Trivially, the 6 points of an hexamys lie on a conic, whatever the permu-
tation of the 6 points.

Pouzergues [13], then Michelucci and Schreck [11], use hexamys to prove inci-
dence theorems in the projective plane: a colinearity between 3 points i0, i1, i2
(together with 6 lines: d0, d

′
0 through i0, d1, d

′
1 through i1, d2, d

′
2 through i2) gen-

erates an hexamys, every permutation of which imply new colinearities. Hexamys
also permit to prove concurrences of 3 lines.

Instead or together with hexamys, it is possible to use Brianchons, from Bri-
anchon’s theorem. Brianchons permits to prove concurrence of lines. Brianchon’s
theorem (Fig.1) states that

122 D. Michelucci

Theorem 4 (Brianchon). If a conic is inscribed in an hexagon with vertices
p0p1p2p3p4p5 (i.e. the 6 lines p0p1, . . . p4p5, p5p0 of the hexagon are tangent to
the conic) then the 3 diagonal lines of the hexagon, namely p0p3, p1p4, p2p5, are
concurrent.

Proof. with Chasles. Omitted for conciseness.

It is possible to cancel all references to conics in Brianchon’s theorem, as we do
for Pascal’s.

Definition 2 (brianchon). A brianchon is an hexagon with lines d0d1d2d3d4d5

and vertices pi = di ∩ d(i+1)mod 6 and such that the 3 diagonal lines p0p3, p1p4,
p2p5 are concurrent.

Brianchon’s theorem can be restated as:

Theorem 5. Every permutation of the lines of a brianchon is a brianchon.

Fig. 2. Brianchon’s theorem: if p0, p1, p2, p3, p4, p5 is a brianchon, then p0, a = p0p1 ∩
p2p3, p2, b = p1p2 ∩ p3p4, p4, p5 is a brianchon as well

It suffices to prove this theorem for a transposition (an exchange), since trans-
positions generate the group of permutations (Fig.2).

Proof. with Pappus. A brianchon has vertices p0, p1, p2, p3, p4, p5 and lines
d0 = p0p1, . . . d5 = p5p0. Let us exchange lines d1 and d2, and prove that the
hexagon with lines d0, d2, d1, d3, d4, d5, and with vertices p0, p1, a = d0 ∩ d2 =
p0p1 ∩ p2p3, p2, b = d1 ∩ d3 = p1p2 ∩ p3p4, p4, p5 is a brianchon. So we need
to prove that the 3 diagonal lines p0b, ap4, p2p5 are concurrent. By hypothesis,
p0p3, p1p4, p2p5 concur in some point o. Apply Pappus’ theorem on the 3 colinear
points: p0, p1, a and on the 3 colinear points p4, p3, b; it implies that the 3 points:
p0p3∩p1p4 = o, p1b∩ap3 = p2, ap4∩p0b = x are colinear. Thus the point x lies on
ap4, on p0b and on op2 = p5p2. Thus the hexagon with vertices p0, a, p2, b, p4, p5

is a brianchon.

Some Lemmas to Hopefully Enable Search Methods 123

Fig. 3. The 2 triangles in perspective of Desargue’s theorem; the first hexamys with
points o, b′, b colinear by hypothesis; the second hexamys which proves that b′′, a′′, c′′

are colinear

Proof. by hexamys. Omitted for conciseness.

Proof. by Chasles. In the previous proof by Pappus’ theorem, replace Pappus’
theorem with its proof by Chasles.

Remark 3. A combinatorial search for brianchons (find 3 concurrent lines, and
2 points on each line) in a specified configuration permits to deduce new brian-
chons, and thus new triples of concurrent lines. It also permits to prove colin-
earities.

Another short proof of Brianchon’s theorem is

Proof. By duality: Brianchon’s theorem is the dual of Pascal’s theorem.

Indeed duality is another powerful lemma which yields short proofs. Duality
exchanges the roles of points and lines, preserving incidences. Gergonne [4] real-
ized first that all the theorems in the projective plane can be dualized. Duality
exchanges circles (conics, cubics) with dual circles (conics, cubics). A dual circle
(conic, cubic) is a set of lines tangent to a circle (conic, cubic). Duality is used
in §6.

3 Desargue’s Theorem

Desargue’s theorem (Fig. 3) is a combinatorial property of 5 planes in 3D, which
still holds after projection on any plane:

Theorem 6 (Desargue theorem). Let a, b, c and a′, b′, c′ be 2 triangles in
perspective, i.e. the 3 lines aa′, bb′, cc′ concur in a point o. Then the 3 inter-
section points between homologous sides: c′′ = ab ∩ a′b′, a′′ = bc ∩ b′c′, and
b′′ = ca ∩ c′a′ are colinear.

Proof (with dimension lifting). Assume the triangles abc and a′b′c′ lie in 2 dis-
tinct planes, in 3D, and are still in perspective when viewed from point o. Points
a, b, a′, b′ are coplanar (since lines aa′ and bb′ cross at o). Thus lines ab and a′b′

are coplanar and intersect at some point c′′ (possibly at infinity). Now, line ab
lies on plane abc, line a′b′ lies on plane a′b′c′, thus these 2 lines must intersect

124 D. Michelucci

Fig. 4. Left to right: the 2 triangles in perspective in the Cevian case (a′ lies on bc, etc);
c, a′′, u, a, c′′, v is an hexamys because opposite sides cross in 3 points b, b′, o colinear
by hypothesis; thus c, a, u, a′′, c′′, v is also an hexamys; thus b′′, a′, c′ are colinear

somewhere along the intersection line l of planes abc and a′b′c′. The same holds
for a′′ and b′′: they lie on l (here we use symmetry to factorize and shorten the
proof). Thus a′′, b′′, c′′ are colinear.

Remark 4. This proof is captured by rank 4 matroids. This kind of proof is used
in [9] (in [16]).

Proof (By hexamys (thus by Chasles)). Define u = a′b′ ∩ bc and v = ab ∩ b′c′.
(a, a′, u, c, c′, v) is an hexamys because its opposite sides meet in points o, b′, b,
aligned by hypothesis. Thus (a, c, u, a′, c′, v) is another hexamys, the opposite
sides of which meet in 3 aligned points: b′′, a′′, c′′.

4 Desargue’s in Cevian Case

In the cevian case of Desargue’s theorem (Fig.4), the two triangles are still in
perspective, but the vertices of one triangle lie on the edges of the second triangle.

Theorem 7 (Desargue in Cevian case). Again, 2 triangles abc and a′b′c′

are in perspective viewed from point o. Moreover each of the vertices a′, b′, c′ lies
on the corresponding side bc, ca, ab. As in the generic case, homologous sides
intersect at colinear points a′′ = bc ∩ b′c′, b′′ = ca ∩ c′a′, c′′ = ab ∩ a′b′.

Proof (with hexamys). The following proof (see Fig.4) needs only one hexamys
and is much simpler than the proof in [11]. It was found with a computer search.
Points a, b, c, o are given. As usual define a′ = oa ∩ bc, b′ = ob ∩ ac, c′ = oc ∩ ab.
Then define a′′ = bc ∩ b′c′, c′′ = ab ∩ a′b′, and here comes the unusual thing:
b′′ = a′′c′′ ∩ ac; thus a′′, b′′, c′′ are colinear but we have now to prove that b′′

indeed lies on a′c′. Pose u = oa ∩ b′c′, and v = oc ∩ a′b′. Then c, a′′, u, a, c′′, v is
an hexamys because its opposite sides intersect in b, b′, o colinear by hypothesis;
thus after permutation, c, a, u, a′′, c′′, v is also an hexamys; its opposite sides
intersect at points b′′, a′, c′, thus b′′ indeed lies on line a′c′.

Some Lemmas to Hopefully Enable Search Methods 125

Fig. 5. Left: The 3 pairwise common chords concur. Right: the dual theorem: The 3
homothety centres of pairwise circles are colinear. For readibility, only 3 centres and 1
line are displayed. Actually there are 6 centres, forming 4 lines.

5 The 3 Chords Theorem

Theorem 8 (The 3 chords theorem). Let A, B, C be 3 intersecting circles.
Apart cyclic points, A and B meet in points c, c′, A and C meet in points b, b′,
B and C meet in points a, a′. Then the 3 chord lines aa′, bb′, cc′ concur.

Remark 5. Circles are objects living in the Euclidean plane, not in the projective
plane. But we will replace circles by conic in a moment.

Proof. By Chasles. The cubic curve A′ is the union of circle A and line aa′.
The cubic curve B′ is the union of circle B and line bb′. The cubic curve C′ is
the union of circle C and line cc′. The 2 cubic curves A′ and B′ intersect in 9
points: a, b, c, a′, b′, c′, I, J, aa′ ∩ cc′ = o, where I and J are the two cyclic points
(they have homogeneous coordinates (1,±

√
−1, 0) and belong to all circles). The

cubic curve C′ passes through the first 8 of these points. By Chasles’ theorem,
C′ = C ∪ (cc′) passes also through the 9th point aa′ ∩ cc′ = o. Since o′ does not
lie on C (a witness, i.e. a figure, is a sufficient visual proof for a human), o′ lies
on line cc′. Thus the 3 chords are concurrent.

The usual proof is as follows: first the power of a point p relatively to a circle
C is defined; let l an arbitrary line through p which cuts C in points c and c′.
Then the power of p relatively to C is the product (c̄ − p̄)(c̄′ − p̄) where c̄, c̄′, p̄
are abscissas of points c, c′, p along the line. Then it is proved that the power is
independent on the line l, and that the line of the common chord of two circles
is the locus of points with equal power relatively to the 2 circles. Finally, if o
lies on the common chords of circle A and B, and of A and C, then o has equal
power relatively to circles A, B and C, thus o lies on the third common chord of
B and C. The proof is partly algebraic, but short enough to be human readable.
But it is hard to generalize this theorem. The proof by Chasles proves more than
this theorem. Actually, the proof by Chasles’ theorem proves the more general
theorem:

126 D. Michelucci

Theorem 9. Let A, B, C be 3 conics. All 3 conics pass through 2 common
distinct points (called I and J in the initial 3 chords theorem). A and B also
intersect in c and c′, B and C also intersect in a, a′, and A and C intersect in
b, b′. Then after the previous Chasles’ proof, the lines aa′, bb′ and cc′ concur.

We mention yet another proof of the 3 chords theorem: Chasles’ theorem lifts in
dimension 10, but dimension 3 is sufficient (and more intuitive):

Proof. Dimension lifting. Lift the Euclidean plane on the parabolic sheet z =
x2 + y2: L(x, y) = (x, y, z = x2 + y2). Cocyclic points in the plane become
coplanar points after lifting. The common chord of 2 circles A and B is the
projection on the plane Oxy of the intersection line between the 2 planes L(A),
L(B) of the lifted circles. Now, the 3 planes of L(A), L(B), L(C) in 3D intersect
in one common point.

6 The Dual of 3 Chords Theorem

Duality is illustrated with the dual of the 3 chords theorem, in Fig 5. Both
theorems and their proofs can be dualized.

Theorem 10 (Dual of the 3 chords theorem). Let A, B, C be 3 circles.
Lines a, a′ are common tangents to B and C, Lines b, b′ are common tangents
to A and C. Lines c, c′ are common tangents to A and B. Then the 3 intersection
points a ∩ a′, b ∩ b′, c ∩ c′ are colinear.

Proof (Usual proof). a ∩ a′, etc is the centre of the scaling (homothety, or ho-
mothecy, a non-rotating dilation) which maps circle B to C. This scaling is equal
to the composition of the scaling which maps circles B to A (with centre c∩ c′),
and the scaling which maps circles A to C (with centre b ∩ b′). These 2 scalings
leave globally invariant the line joining their centres c∩ c′ and b∩ b′. Thus c∩ c′

lies on this line, using the lemma: lines globally invariant through a scaling all
pass through the centre of the scaling.

For conciseness, the dualization of other theorems (Chasles’, theorem 9, etc) and
their proofs are left to the reader.

7 The 3 Circles Theorem

Theorem 11. The 3 circles theorem. Let a, b, c be the 3 vertices of a triangle.
Let a′ be any point on line bc, let b′ be any point on line ac, and c′ any point
on line ab. Let A be the circle through points a, b′, c′, let B be the circle through
points b, a′, c′, and C be the circle through points c, a′, b′. Then the 3 circles
A, B, C have another common point ω.

Proof. by Chasles. See Fig.6. Let A′ be the cubic which is the union of circle
A and line a′bc, B′ the cubic which is the union of circle B and line ab′c, and
C′ the cubic which is the union of circle C and line abc′. The 2 cubic curves A′

Some Lemmas to Hopefully Enable Search Methods 127

Fig. 6. Left: Three circles theorem: the 3 circles share a common point (other than the
2 cyclic points). Right: the 4 circles theorem, the four circles share a common point.

and B′ meet in 9 different points a, b, c, a′, b′, c′, I, J, ω where I, J are the 2 cyclic
points common to all circles, and ω is the intersection point of A ∩ B which is
not c′. The third cubic C′ passes through the first 8 of these 9 points. Thus after
Chasles’ theorem, it also passes through the 9th point ω. Thus the 3 circles share
a common point, ω.

Remark 6. Again, the proof by Chasles’ theorem proves more than the 3 circles
theorem, because the cyclic points I and J can be replaced with any generic
points. It proves the following theorem:

Theorem 12 (A triangle and 3 conics). Let a, b, c be 3 points, let a′, b′, c′

be 3 points with a′ ∈ bc, b′ ∈ ac, c′ ∈ ab. Let I, J be 2 generic distinct points
which do not lie on lines ab, ac, bc. Let A be the conic curve through 5 points
a, b′, c′, I, J , let B′ be the conic curve through 5 points b, a′, c′, I, J , let C′ be
the conic curve through 5 points c, a′, b′, I, J . Then the 3 conics share another
intersection point ω.

8 The 4 Circles Theorem

Theorem 13 (The 4 circles theorem.). Let a, b, c, d be 4 points in generic
position. Let f = ab ∩ cd, and f ′ = ac ∩ bd. Let Cab be the circle through a, b, f ;
let Ccd be the circle through a, b, f ; let Cbc be the circle through b, c, f ′; let Cad

be the circle through a, d, f ′. Then the 4 circles Cab, Ccd, Cbc, Cad share another
common point, which is not a cyclic point.

Proof (by Chasles). See Fig.6. Let C′
ab be the cubic curve which is the union of

Cab and line cdf ′; let C′
cd be the cubic curve which is the union of Ccd and line

abf ′; let C′
bc be the cubic curve which is the union of Cbc and line adf ; let C′

ad

be the cubic curve which is the union of Cad and line bcf ; then the 2 cubics C′
ab

and C′
cd intersect in 9 distinct points a, b, c, d, f, f ′, I, J, ω, where I, J are the two

cyclic points common to all circles, and ω is the other intersection point of circles
Cab and Ccd (the 3 other intersection points are f and I, J). The cubic curve

128 D. Michelucci

C′
bc passes through the 8 first of these 9 points, so after Chasles’ theorem, it also

passes through the 9th point, ω. Since ω does not lie on the line adf , component
of the cubic curve C′

bc (a figure or witness is a sufficient visual proof), it means
that ω lies on the other component of C′

bc, the circle Cbc. Similarly for the cubic
C′

ad, which is left to the reader (A symmetry argument, in fact a permutation,
can also be used).

Remark 7. Again, Chasles’ proof proves more: I and J can be generalized to
any (generic) points.

Theorem 14. Let a, b, c, d, i, j be any generic points and f = ad ∩ bc, f ′ =
ab ∩ cd. Points i and j generalize previous cyclic points I and J , they are any
point (i generic position). The 4 conics Cab, Ccd, Cbc, Cad share points i and j.
Moreover the conic Cab passes through a, b, f , the conic Ccd passes through c, d, f ,
the conic Cbc passes through b, c, f ′, the conic Cad passes through a, d, f ′. Then
the 4 conics share another common point ω.

Proof. In the previous proof by Chasles, replace I with i, and replace J with j.

9 Automatization

All previous proofs share the same combinatorial flavor and resort to the same
lemmas arguments (Pascal’, Chasles’, Brianchon’s theorems), which suggests
that the search of such proofs can be automatized with search methods [11]. It
will extend the naive algorithm in [11]: it also considers brianchons, and it relies
on a witness, i.e. it considers a typical figure to prune the combinatorial search
space and discard irrelevant degenerate cases.

In a nutshell, users provide (possibly interactively) the hypothesis and the
conclusion of a conjecture. Hypothesis and conclusion involve only incidences.
All incidences (point-circle incidences, point-conic incidences, point cubic inci-
dences) are internally reducible to point-line incidences: a circle is just a conic
passing through two constant points (the cyclic points), 6 points on the same
conic are an hexamys, and a cubic is the union of 3 distinct lines, or of a line
and a proper conic.

Users also provide a witness. A witness is a figure, which illustrates the con-
jecture to be proved, and where vertices (and possibly lines and conics) have
numerical coordinates (either rational, floating-point, interval), and names. H.
Gelernter is the first to rely on a witness to discover and prove geometric theo-
rems in 1959 [7,8,6,5]. More recently, witnesses are used to detect dependences
in systems of geometric constraints, and to decompose and solve systems of
geometric constraints [10,12].

The witness first permits to check that the user makes no mistake when spec-
ifying the hypothesis and the conclusion: the witness must satisfy the conjecture
(otherwise the conjecture has a counterexample, or more likely, the user makes
some mistake when specifying the problem). Also, when completing the figure
with (typically) intersection points between lines, the witness is used to check
that created intersection points are indeed new (different from the vertices) and

Some Lemmas to Hopefully Enable Search Methods 129

all distinct. Note that when two intersecting points, or a vertex and an inter-
section point are equal in the witness, it provides a conjecture, which the user
may try to prove, but not a fact. Conversely, when two intersecting points, or
a vertex and an intersection point, are numerically different1, this is considered
as a fact, and the witness is considered as a proof. In passing, we tried to prove
non colinearities and non concurrences with logic and some matroid rules, but
the computations are slow and the obtained proofs are long, tedious and boring;
the visual proof provided by the witness is the best in all aspects.

The proof searcher (”proof assistant” would be confusing) provides several
tools. One tool is a combinatorial and straightforward search of hexamys (as in
[11]) and brianchons which prove the conjecture. It is also possible to search to
apply Pappus’ or Desargue’s theorems.

When this search fails, users have two non exclusive possibilities: first, they can
ask the proof searcher to complete the figure with intersection points between two
lines (or conics) of the figure, or with lines joining two vertices; we already under-
lined the essential role played by the witness during the completion (the previous
method [11] used no witness, which is its main weakness: degeneracies could not
be handled). Second they can ask the prover to search for other conjectures, i.e.
other colinearities of 3 points or concurrences of 3 lines, which are not specified in
the hypothesis, but which are (numerically, and approximately) fulfiled in the wit-
ness. The proof searcher and users then interactively try to recursively prove these
conjectures. Proved conjectures are added to the hypothesis. The proof searcher
then checks if these enriched hypothesis contain an hexamys or a brianchon which
proves the initial conjecture. Of course, many tactics (backward chaining / for-
ward chaining) can be imagined and implemented, in the wake of search methods
[5]. Also, several classes of inner representations can be considered; for instance
one may imagine to rely on matroids [11,9], or a combination of several matroids
(rank 3 for lines, rank 6 for conics, rank 10 for cubics, plus some transition rules).
These questions deserve further study.

Fig. 7. Left: let l1, l2, l3 be three given concurrent lines; let p1, p2, p3 be 3 given points.
Find 3 points x1 ∈ l1, x2 ∈ l2, x3 ∈ l3 such that the line x1x2 passes through p12, the
line x2x3 passes through p23, and the line x1x3 passes through p13. Right: a construction
with ruler only, which relies on Desargue’ theorem.

1 Far enough from each other, say one pixel, to account for the numerical inaccuracy;
this heuristic is used in Cabri, Cindarella, and other dynamic geometry softwares.

130 D. Michelucci

10 Conclusion

In the hope to enable current search methods [5] to find short and human
readable proofs of incidence theorems in projective geometry, this article pro-
poses some rules, i.e. lemmas: Chasles, Pappus, Pascal and Brianchon’s theo-
rems which may be powerful enough. For conciseness, some relevant concepts
could not be mentioned: projectivities, perspectivities, colineations, homogra-
phies, involutions, cross ratios, etc, though Coxeter [4] relies only on them to
prove our lemmas, i.e. basic theorems of projective geometry: Pappus’, Pascal’,
Brianchon’s theorems, etc. Proofs à la Coxeter should also be considered and
computed, and compared with proofs proposed in this article.

Finally, short and human readable proofs should permit to automatically ex-
tract, and prove geometric constructions with ruler and compass, or with ruler
alone, for incidence problems like: solving the problem in Fig. 7, constructing
the intersection points of a given line and a conic given by 5 points, constructing
with the ruler only the second intersection point when the first is known, etc
(see Cabri web pages for solutions).

Acknowledgements. I thank the anonymous reviewers, for helpful comments
and the reference [15].

References

1. Apel, S., Richter-Gebert, J.: Cancellation patterns in automatic geometric theorem
proving. Talk at ADG 2010, Munich, Germany (July 2010)

2. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of readable proofs with
geometric invariants, ii. theorem proving with full-angles. J. Automated Reason-
ing 17, 325–347 (1996)

3. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: A deductive database approach to automated
geometry theorem proving and discovering. J. Autom. Reason. 25, 219–246 (2000)

4. Coxeter, H.: Projective Geometry. Springer, Heidelberg (1987)
5. Gao, X.-S.: Chapter 10: Search methods revisited. In: Gao, X.-S., Wang, D. (eds.)

Mathematics Mechanization and Application, pp. 253–272. Academic Press (2000)
6. Gelernter, H.: Realization of a geometry theorem proving machine. In: IFIP

Congress, pp. 273–281 (1959)
7. Gelernter, H.: Realization of a geometry-theorem proving machine. In: Siekmann,

J., Wrightson, G. (eds.) Automation of Reasoning 1: Classical Papers on Compu-
tational Logic 1957-1966, pp. 99–122. Springer, Heidelberg (1983)

8. Gelernter, H., Hansen, J.R., Loveland, D.W.: Empirical explorations of the
geometry-theorem proving machine. In: Siekmann, J., Wrightson, G. (eds.) Au-
tomation of Reasoning 1: Classical Papers on Computational Logic 1957-1966, pp.
140–150. Springer, Heidelberg (1983)

9. Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq
using ranks. In: Shin and Ossowski [16], pp. 1110–1115

10. Michelucci, D., Foufou, S.: Interrogating witnesses for geometric constraints solv-
ing. In: ACM Conf. Solid and Physical Modelling, San Francisco, pp. 343–348
(2009)

Some Lemmas to Hopefully Enable Search Methods 131

11. Michelucci, D., Schreck, P.: Incidence constraints: a combinatorial approach. Int.
J. Comput. Geometry Appl. 16(5-6), 443–460 (2006)

12. Michelucci, D., Schreck, P., Thierry, S.E.B., Fünfzig, C., Génevaux, J.-D.: Using
the witness method to detect rigid subsystems of geometric constraints in CAD. In:
SPM 2010: Proceedings of the ACM Conference on Solid and Physical Modeling,
Häıfa, Israël. ACM (September 2010)

13. Pouzergues, R.: Les hexamys, web document (2002) (in French)
14. Richter-Gebert, J.: Meditations on Ceva’s theorem. In: Davis, C., Ellers, E. (eds.)

The Coxeter Legacy: Reflections and Projections, pp. 227–254. Fields Institute
American Mathematical Society (2006)

15. Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour Through
Real and Complex Geometry. Springer, Heidelberg (2011)

16. Shin, S.Y., Ossowski, S. (eds.): Proceedings of the 2009 ACM Symposium on Ap-
plied Computing (SAC), Honolulu, Hawaii, USA, March 9-12. ACM (2009)

17. Wilson, S., Fleuriot, J.D.: Combining dynamic geometry, automated geometry the-
orem proving and diagrammatic proofs. In: Proceedings of the European Joint
Conferences on Theory and Practice of Software (ETAPS) Satellite Workshop on
User Interfaces for Theorem Provers (UITP), Edinburgh, UK (April 2005)

What Is a Line ?

Dominique Michelucci

Dijon University, LE2I, CNRS 5158, France
Dominique.Michelucci@u-bourgogne.fr

Abstract. The playground is the projective complex plane. The article
shows that usual, naive, lines are not all lines. From naive lines (level 0),
Pappus geometry creates new geometric objects (circles or conics) which
can also be considered as (level 1) lines, in the sense that they fulfil
Pappus axioms for lines. But Pappus theory also applies to these new
lines. A formalization of Pappus geometry should enable to automatize
these generalizations of lines.

1 Introduction: What Is a Line ?

There are several ways to automatize deduction in geometry. The one which is
investigated here is to extend the basic objects: i.e. lines and points, of some ge-
ometric theory. The playground is the complex plane projective geometry [1,6]:
only incidence properties are considered, two distinct lines always meet in one
point, two distinct proper conics always meet in four points. Since Pappus the-
orem will be used as the main axiom, let us call it the Pappus geometry.

The main idea is to see the Pappus geometry as a functor:

- its input are two types, point and line, which fulfill axioms A1, A2, A3 (given
below) of the Pappus geometry; the most important axiom is Pappus property,
A3; at the first time, points and lines are the basic, naive, ones; they can be
seen as symbols. It is well known that, due to the symmetry of axioms involving
points and lines, points and lines can be exchanged; it is the principle of duality.

- its output is a theory. A theory is a set of lemmas or theorems (Desargue,
Pascal, the 3-circle theorem, the 4-circle theorem, etc), their proofs, new objects
(like circles and conics), and proved algorithms (drawing the conic defined by
five points; computing with the ruler only the second intersection point of a line
and a conic, knowing the first intersection point; etc).

It turns out that some of these new objects (e.g. pair of inverse points, or conics
through three fixed points) generated by the theory can be considered as points
and lines, actually are points and lines, in the sense that they comply with
axioms for points and lines of the Pappus geometry.

Thus the Pappus functor can be applied a second time on these new points
and lines, which are no more the naive points and lines. But the previous theory
still holds, its proofs and algorithms are still valid: it will generate new theorems
(or extend existing ones) and new objects. This time the generated ”conics” will
be cubics or quartics; in spite of their higher degree, they are still defined with
five points.

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 132–151, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

What Is a Line ? 133

Again, some of the new objects can be considered as points and lines, because
it is (or it should be, see below) a theorem in the Pappus theory. Thus we can
apply the Pappus functor a third time. And so on.

In passing, note the similarity with compilers bootstrapping, i.e. compilers able
to compile themself. The latter is an evidence of correctness andpower of compilers.

If this approach can be formalized, say in Coq1, it would give a way to au-
tomatically generate an infinity of non-trivial theorems. Up to now, Coq only
proves already known theorems, it does not produce new ones. Also, if a dynamic
geometry program can be automatically extracted from this Coq software, this
dynamic geometry program would account for extended points and lines (con-
trarily to current dynamic geometry softwares).

Howewer, this approach imposes constraints on the Pappus theory: its proofs
must rely only on explicit axioms of the theory, and not on implicit axioms like
properties of naive points and lines, which should not be shared by non naive
points and lines. In principle, axiomatic geometry should satisfy this constraint,
by definition of the axiomatic approach... However, some theorems in projec-
tive geometry may have no such proof for the moment: it is often easier to find
algebraic proofs (with Gröbner bases, Chou’s method, etc) and these methods
assume properties (e.g. that conics are second degree algebraic curves) or coordi-
nates which no more hold for generalized points and lines. Second, Wu remarked
in his pioneering book [9] that classical proofs often neglect degeneracies. Also,
maybe some axioms are missing in the Pappus theory summarized in §2, but
only a formal implantation of Pappus theory, in Coq or another proof assistant,
will permit to detect the gaps. To give an idea, a possible missing axiom could
be: if a, b, c, d are four distinct points, not three on the same line, then the three
intersection points ab∩ cd, ac∩ bd, ad∩ bc are distinct and not on the same line.
Or it could be some ”trivial” matroid axiom which is missing.

Other predictable difficulties for an implementation in Coq are subtleties or
degeneracies which are neglected in this article: it focuses on the big picture.

Plane. §2 summarizes Pappus theory. Pappus theory considers only combi-
natorial properties, i.e. incidence theorems, like Pappus, Desargue, Pascal, etc.
§3 defines three times constrained conics (TTCC), and show that they can be
considered as lines. However, this proof does not lie in the Pappus theory: it does
not rely only on axioms A1, A2, A3 of the Pappus theory. An hexamys proof (see
[4] for examples of such proofs) would; but I have no such proof for the moment.
§4 give some standard constraints for a conic to be a circle, a parabola, etc. §5
presents several examples of TTCC. §6 illustrates how the Pappus functor may
extend theorems on non naive lines or conics. §7 sketches the generalization of
points. §8 presents several variants of planes, each of which manages degenera-
cies (the issues of parallel lines, points at infinity, non intersecting conics, etc)
in its own way. §9 concludes.

Some TTCC, and the fact they satisfy Pappus, Pascal, or Desargue’ theorems,
are illustrated in GeoGebra files available on internet2.

1 http://coq.inria.fr/
2 http://math.u-bourgogne.fr/michelucci/OCAML/GEOGEBRA/

http://coq.inria.fr/
http://math.u-bourgogne.fr/michelucci/OCAML/GEOGEBRA/

134 D. Michelucci

2 Pappus Geometry: A Summary

Pappus geometry is seen as a functor which takes two arguments, a type for lines
and a type for points. We do not know what are really lines and points, we only
know that they fulfil three axioms:

A1. Two distinct points define one line.
A2. Two distinct lines meet in one point.
A3. If three distinct points pi, i = 1, 2, 3, lie on a common line P , and three

distinct points q1, q2, q3 lie on a common line Q, with P and Q distinct, then the
three intersection points pi ∩ qj , i �= j, lie on a common line.

A3 could be called Pappus axiom.

Remark about A2: the complex projective plane is considered; it is the set of
3D complex lines incident to a given point, say the origin: this model does not
require points at infinity, so axioms do not have to consider or distinguish them.
It is only for the visualization of the (real part of the) projective plane that
this set of 3D lines is cut with any (affine) plane not passing through the origin;
points at infinity are introduced for the 3D lines which are parallel to the cutting
plane.

Pappus theory can now unfold from these three axioms.
Pappus axiom permits first to define projectivities between lines; a projectivity

γ from l to l′ is defined by three pairs (pi ∈ l, p′i = γ(pi) ∈ l′), where i ∈ 1, 2, 3.
The axis of the projectivity γ is the line through the three intersection points
pip

′
j∩p′ipj, i �= j, which are aligned after Pappus’ theorem. Let x, y be two points

on l and x′ = γ(x), y′ = γ(y); then xy′ ∩ x′y lies on the axis of the projectivity.
It permits to construct the image by γ of any point x on l, assuming three pairs
(pi, p

′
i = γ(pi)).

Coxeter’s book [1] provides combinatorial proofs of classical projective ge-
ometry theorems, which rely only on properties of projectivities. His book also
provides algebraic proofs, using computations on cartesian or homogeneous co-
ordinates or cross ratios.

By duality, it is possible to define a projectivity between two bundles L and
L′ of lines; a bundle of lines is the set of all lines passing through a common
point. The projectivity is defined by three pairs of lines (li ∈ L, l′i ∈ L′). A dual
construction permits to draw with the ruler only the image of any line of L.

One of the first theorems involves the harmonic conjugate.

Harmonic Conjugate Theorem. Let O, A, B be three aligned points. The
harmonic conjugate M of O, relatively to A and B, may be constructed in many
ways, using an auxilliary point S not on the line OAB, and a second auxilliary
point T on SA (T, S, A are distinct). Whatever S and T ∈ SA, M is fixed, and
depends only on O, A, B. If O is a point at infinity, M is the middle of A and
B. This theorem is illustrated in Fig. 5 and 9.

Projectivities can be generalized to homographies. An homography is defined
by four pairs of non aligned points and their images (pi, p

′
i), with i = 0, 1, 2, 3.

Homography of a line is a line, and the restriction of the homography to a line

What Is a Line ? 135

and its image is a projectivity. Define lij = pipj , l′ij = p′ip
′
j for i, j ∈ 0, 1, 2, 3.

Then the image of lij is l′ij , the image of lij ∩ lrs is l′ij ∩ l′rs, etc. It is possible to
draw with the ruler only the image of any point of the plane by the homography.

Another result in Pappus theory is due to Hessenberg, who proved that De-
sargue’ theorem is a consequence of A1, A2, A3:

Desargue’s Theorem (o, p1, p2, p3, q1, q2, q3). Three lines li, i = 1, 2, 3, concur
at o, and points o, pi, qi lie on li. Triangles p1p2p3 and q1q2q3 are said to be per-
spective (viewed from o). Then the three intersection points between homologous
sides pipj ∩ qiqj (with i �= j) lie on a common line.

Other theorems of Pappus theory involves conics. Of course we have first to
define conics. A possible definition uses Pascal’s theorem:

Here is a first definition of conic. Let p0, p1, p2, p3, p4 be five points, no four
on a common line. Then p0, p1, p2, p3, p4 define a unique conic, which is the set
of points p5 such that the three points p0p1 ∩ p3p4, p1p2 ∩ p4p5, and p2p3 ∩ p5p0

lie on a common line.
Raymond Pouzergues reformulates Pascal’s theorem eliminating any reference

to conics. He calls this the hexamys theorem (a shortcut for Pascal’s ”mystical
hexagram”).

Hexamys Theorem (p0, p1, p2, p3, p4, p5). Six points p0, p1, p2, p3, p4, p5 (no
four colinear) are an hexamys if, by definition, opposite sides cut in three points
along a common line. The hexamys theorem states that all permutations of an
hexamys are hexamys as well.

Hexamys theorem can be derived from Pappus [4].

Remark: when points p0p2p4 lie on a common line, and points p1p3p5 lie on an-
other common line, then p0, p1, p2, p3, p4, p5 is an hexamys: the three intersection
points of opposite sides p0p1∩p3p4, p1p2∩p4p5, and p2p3∩p5p0 lie on a common
line after Pappus property. Thus pairs of distinct lines are conics.

The hexamys theorem enables Pouzergues to prove a bunch of incidence theo-
rems: from collinearities of a given geometric configuration, the hexamys theorem
deduces new collinearities. Proofs are very short [4]. Moreover, these proofs lie
in the Pappus theory, i.e. they remain valid when naive points and lines are
replaced by non naive ones : the hexamys proofs only use Pascal theorem, which
is provable with Pappus theorem. For example, hexamys prove Desargue, and
the harmonic conjugate theorems.

Pouzergues gives another definition of conics. Define an involution α on a
line l: this involution is defined by four colinear points a, a′, b, b′ on l such that
α(a) = a′, α(b) = b′. Define two distinct points u, v not on l. The set of points p
such that α(up∩ l) = vp∩ l is a conic. Intuitively, l can be seen as the vanishing
line of the plane (or the line at infinity), thus points on l are directions, and
x′ = α(x ∈ l) is a the direction ”orthogonal” to x.

A third definition of conics can be useful. If L and L′ are two bundles of
lines (a bundle of lines is a set of lines all passing through a common point) in
homographic bijection β: β(l ∈ L) = l′ ∈ L′, then the set of intersection points
l ∩ β(l) is a conic.

136 D. Michelucci

Hexamys permit to prove the equivalence of all these definitions of conics.
Some special conics are circles. It turns out that circles are just conics which

pass through 2 special points. Classically, these 2 points are called the cyclic
points, and they are often represented with homogeneous coordinates (x, y, h)
equal to, for instance, (1,

√
−1, 0) and (−1,

√
−1, 0). Circles with center (xc, yc, 1)

and radius r have equations x2 + y2 + 2xcxh + 2ycyh + h2(x2
c + y2

c − r2) = 0,
which are satisfied by cyclic points, whatever xc, yc, r. However, cyclic points
may be replaced by any pair of distinct points, and all combinatorial theorems
(which do not mention metric properties, like angles or distances) still hold. For
instance this theorem.

Three Circles Theorem. (Fig. 10, 11, 12). Let a, b, c be three points, not on
a common line. a′ is a point on line (bc), b′ is a point on line (ac), c′ is a point
on line (ab). Let Ca be the circle circumscribed (CC) to a, b′, c′, Cb the CC to
b, a′, c′, and Cc the CC to c, a′, b′. Then Ca, Cb, Cc have a common point (other
than the 2 cyclic points).

A short proof is given in §6.1, but this proof does not lie in Pappus theory,
i.e. this proof is not precise enough to guarantee that it follows strictly from
the axioms of Pappus theory. A proof inside Pappus theory would apply to
generalized lines and circles.

A theory also provides algorithms.
An algorithm to draw a conic point by point relies on Pascal theorem. Let

a, b, c, d, e five points defining a conic. Let k = ab ∩ ed. Let D a line through k.
Define i = bc ∩D and j = cd ∩D. Then x = aj ∩ ie lies on the conic. When D
rotates around k, x draws the conic. To prove the correctness of this method,
just remark that abcdex is an hexamys.

Pascal’s theorem also gives an algorithm to find the second intersection point
between a line and a conic, passing through five points a, b, c, d, e. We want
the second intersection point between az and the conic. Define k = ab ∩ ed,
j = az ∩ cd, D = (jk), i = D ∩ bc. Then the second intersection point is az ∩ ei.

Pascal’s theorem gives an algorithm (not detailed here) to find the fourth
intersection point between two conics, when the three others are known. This
algorithm is useful for computing the intersection point between two non naive
lines, like TTCC.

3 Three Times Constrained Conics

For convenience, 2D points are represented with homogeneous complex coordi-
nates (x, y, h). Define

φ(x, y, h) = (x2, y2, h2, xy, xh, yh)

A conic equation is φ(x, y, h) . Q = 0 where Q is a non zero vector in a C

vector space with dimension 6 (the Hermitian scalar product is noted .). Each
time a conic Q is constrained to pass through a point p = (x, y, h), it imposes
a constraint on the vector Q (the same name is used for the conic and its rep-
resenting vector): φ(x, y, h) . Q = 0, i.e. the vector Q must be orthogonal to

What Is a Line ? 137

φ(p). Of course, the vector Q is determined, up to its norm, by five independent
orthogonality conditions, thus by five points. It is consistent with the fact that
conics are determined by five independent points.

But there are other constraints than passing through a specified point, which
make sense, and which give the same kind of orthogonality condition on the
vector Q representing a conic.

For instance, to specify that the conic Q is a circle, the vector Q must be
orthogonal to C1 = (1,−1, 0, 0, 0, 0) and to the vector C2 = (0, 0, 0, 1, 0, 0);
the orthogonality with C1 imposes that the coefficients of x2 and of y2 in the
equation of the conic Q are equal; the orthogonality with C2 imposes that the
coefficient of xy in this equation is 0. It is also possible to specify that the conic
is a parabola, or a circle orthogonal to a specified circle, or a circle with its center
on a specified line. The corresponding vectors are given below, §4.

Now, let C1, C2, C3 be three independent such constraints. Call a conic con-
strained with these three constraints a three times constrained conic, a TTCC
for short. These TTCC lies in a vector space with rank three : thus TTCC are 2D
lines (or 2D points with the duality argument). 2D lines fulfil Pappus property,
thus TTCC also. QED.

Unfortunately, the previous proof does not lie in the Pappus theory (it does
not use only axioms A1, A2, A3, it uses properties of vector spaces). A proof in
the Pappus theory (for instance, an hexamys proof) would permit to apply the
Pappus functor on TTCC considered as lines.

A last remark. The previous proof suggests that cubic curves constrained with
7 independent constraints, e.g. to pass through 7 specified points, could also be
considered as lines. Since a non constrained cubic is defined by 9 (independent)
points, a constrained cubic will be completely defined by two points, as naive
lines; this condition is needed in order for constrained cubics to be considered
as generalized lines. However:

- as for the conics, we need a definition of cubics which lie inside the Pappus
theory; I think it is possible.

- two cubics must intersect in one point (the 7 constrained point do not count);
this last constraint can not be satisfied: non constrained cubics cut in 9 points,
after Bézout theorem; subtracting the 7 constraints, constrained cubics cut in 2
points, not 1.

More generally, which degree d algebraic curves can be considered as extended
lines ?

The equation vector of an algebraic curve with degree d has e = (d+1)(d+2)/2
coordinates; it is a vector in a vectorial space of dimension (and rank) e. It is defined
by e−1 constraints, e.g. e−1 points lying on the curve. Assuming the corresponding
generalized line exists, it is defined by e − 3 fixed points (or other constraints);
moreover two generalized lines must cut in just one point, ignoring the e− 3 fixed
points; it means the two generalized lines meet in total at e− 2 points; but, after
Bézout theorem, two degree d curves meet in d2 points. Thus the degree d must

138 D. Michelucci

fulfil: d2 = e − 2 ⇔ d2 − 3d + 2 = 0 ⇔ d = 1 or d = 2. So only algebraic curves
with degree one or degre two can be considered as generalized lines.

There is here an apparent paradox, which may confuse the reader. The Pappus
functor, when applied to TTCC lines, will generate new ”conics”, which will be
cubics or quartics, and, if constrained three times, these curves can be considered
as lines... The solution to this apparent paradox is that lines which feed the
Pappus functor: naive lines, then TTCC, etc always lie in a vector space with
rank three, even when the dimension is greater than three (e.g. six for TTCC).

4 Conditions, or Vector-Based Constraints for Conics

For short, vector-based constraints for conics are called conditions.

x2 y2 h2 xy xh yh

C1 1 −1 0 0 0 0
C2 0 0 0 1 0 0

φ(+1, i, 0) 1 −1 0 i 0 0
φ(−1, i, 0) 1 −1 0 −i 0 0

C3 0 0 0 0 0 1
C4 1 0 −1 0 0 1
C5 0 1 0 0 0 0
C6 1 0 0 0 0 1

φ(p) = Cp x2
p y2

p h2
p xpyp xphp yphp

Fig. 1. Possible constraints on a conic vector Q. i is
√
−1.

Let Q = (a, b, c, d, e, f) be the vector representing a conic. The equation of
the conic is ax2 + by2 + ch2 + dxy + exh + fyh = 0. This section gives possible
constraints on the conic, they are summarized in table 1.

The conic passes through a point p = (xp, yp, hp) if Q is orthogonal to the
vector Cp = φ(p).

The conic is a circle if Q is orthogonal to C1 and C2. Orthogonality to C1

implies that a = b, orthogonality to C2 means coefficient of monomial xy is zero.
Equivalent conditions are that Q passes through cyclic points (±1, i, 0) (with
i2 = −1), thus Q is orthogonal to both φ(±1, i, 0).

The circle has its center on the line y = 0 if Q is orthogonal to C3.
The circle is orthogonal to the unit circle with equation x2 + y2 − 1 = 0 if Q

is orthogonal to C4 (proof: see Fig. 2).
The circle cuts the unit circle (i.e. x2 + y2 − 1 = 0) in two points symmetric

relatively to the origin (0, 0) if Q is orthogonal to C6. These circles have equations
x2 + y2 − 2ux− 2vy − 1 = 0, the center is (u, v) and the radius is R such that
R2 = 1 + u2 + v2.

The conic is a parabola with axis Oy if Q is orthogonal to C5 and C2, i.e. the
coefficients for y2 and xy are 0.

Some constraints do not give orthogonality conditions, for instance the tan-
gence of a circle Q to a prescribed line, say y = 0.

What Is a Line ? 139

1

(0, 0)

(u, v)r

Fig. 2. The circle with center (u, v) and radius r is orthogonal to the unit circle. Thus
u2 +v2 = 1+r2, after Pythagora. Its equation (in affine coordinates) is x2 +y2−2ux−
2vy + (u2 + v2 − r2) = 0, i.e. x2 + y2 − 2ux− 2vy + 1 = 0. Thus the coefficient for the
constant must equal the coefficient for x2, and for y2 in the homogeneous equation.

5 Examples of Non Naive Lines

§5.1 shows that circles through a given fixed point can be considered as lines. §5.2
shows that circles orthogonal to a given fixed circle and passing through a given
fixed point can be considered as lines. §5.3 shows that circles (or half circles)
with their centers lying on a given fixed line can be considered as lines. §5.4
shows that circles which cut the unit circle in two points symmetric relatively
to the origin can be considered as lines. §5.5 shows that parabolas with axis
parallel to a given fixed direction and passing through a given fixed point can
be considered as lines. §5.6 shows that conics passing through three given fixed
points can be considered as lines.

5.1 Circles through One Fixed Point

Let Ω be a fixed, arbitrary, point. Then circles (in the classical sense) through
Ω can be considered as lines. For convenience, such circles are called clines in
this section. Two distinct clines cut in one point (ignoring Ω and the two cyclic
points); it can happen that Ω is a double intersection point; in this case, one
may say that the two clines are parallel, and that they meet at a point at infinity,
which is Ω. Two distinct points (and distinct of Ω) define an unique cline. Clines
satisfy the Pappus property, as illustrated in Fig. 3.

Clines satisfy Pappus property: i.e. if p0, p1, p2 lie on a common cline, and
q0, q1, q2 lie on another common cline, then the three intersection points rij

between the cline piqj and pjqi, i �= j, lie on a common cline.
It has already been proved, but this new proof may be instructive. An inversion

relatively to any circle (say with radius 1) with center Ω maps points pi to point
p′i, points qj to points q′j , and points rij to points r′ij , and it maps clines to
naive lines not passing through Ω. Thus the points p′i, q′j , and r′ij satisfy the
Pappus property, i.e. the intersection points r′ij lie on the same line, call it R′.
The preimage of R′ by the inversion is a cline R; in the peculiar case where R′

140 D. Michelucci

Fig. 3. Clines fulfil Pappus property. They can be considered as lines.

pass through Ω, its preimage is R = R′, so it is a (degenerate) cline. In all cases,
the preimage R of R′ is a cline, thus the rij lie on a common cline, R. QED.

Thus all theorems of Pappus theory still hold when the word ”line” is replaced by
the word ”cline”. For instance the hexamys theorem holds. Define a C-hexamys
as a set of six points, no four on the same cline, such that opposite clines meet
in three points lying on a common cline. Then any permutation of the six points
is also a C-hexamys.

Fig. 4 illustrates Pascal’s theorem with clines. For simplicity, the six points
lie on a common circle (which does not pass through Ω). The three pairs of
opposite clines indeed lie on a common cline, i.e. they are cocyclic with Ω.

Fig. 4. Pascal theorem. Points pi lie on the magenta circle. The lines pipj are replaced
with clines (circles through Omega). The intersection points lie on a common cline (red
circle).

What Is a Line ? 141

Fig. 5. The harmonic conjugate theorem. Left: for given points O, A,B on a common
line, for any point S, for any point T on the line SA, the point M is invariant (hint:
M is the harmonic conjugate of O relatively to A,B; if O is a point at infinity, M is
the middle of AB. Right: all lines are replaced with clines, M is still invariant.

Fig. 5, Right, illustrates the harmonic conjugate theorem with clines.
What are conics in the Pappus of clines ? They are images of a naive conic by

an inversion, thus they are quartic curves, or cubic curves in degenerate cases
(the inversion center lies on the conic).

Remark. In the projective complex plane, the inversion is not defined on Ω.
It can be defined for other planes (§8). These details are predictable sources of
complications for a Coq implementation.

5.2 Orthogonal Circles

Circles orthogonal to a given fixed circle can be considered as lines. A difficulty
is due to the fact that such circles cut in two points. These two points are inverse
of each other and always come in pairs. Thus it is sufficient to consider these
pairs as generalized points. Another solution is to consider only one side (either
the inside, or the outside) of the given fixed circle.

5.3 Poincaré Half Circles Are Lines

Circles the centers of which lie on a given line, for example y = 0, can be
considered as lines. Fig. 6 illustrates the Pappus property for these generalized
lines. Points come in pairs, with a symmetry relatively to the line y = 0. To
define related generalized points, either only points and half circles above the
line y = 0 are considered, or pairs of symmetric points are considered.

In passing, the Poincaré model for the hyperbolic plane uses these half circles,
it is called the Poincaré half plane [8] (curiously, this book does not mention the
Pappusian feature of the Poincaré plane).

5.4 Other Circles

Circles which cuts the unit circle (having equation: x2 +y2−1 = 0) in two points
symmetric relatively to the origin (0, 0) can also be considered as generalized

142 D. Michelucci

Fig. 6. Circles with centers on a common line (e.g. y = 0) fulfil Pappus property.
Points come in pairs.

lines. Like all circles, their vector Q is orthogonal to C1 and C2; moreover their
vector Q is orthogonal to C6. They have equations x2+y2−2ux−2vy−1 = 0, their
center is (u, v), their radius is

√
1 + u2 + v2. Two distinct circles in this family

always meet in two antipodal points of the unit circle. Fig. 7 shows a bundle
of such circles. It illustrates the fact that all these circles belong to a bundle
generated by the unit circle x2 +y2−1 = 0 and a line with equation ux+vy = 0.
Thus all circles of this bundle pass through points (v/

√
u2 + v2,−u/

√
u2 + v2)

and (−v/
√

u2 + v2, u/
√

u2 + v2).
Points for these generalized lines are pair of naive points, which are symmetric

w.r.t. the origin.

Fig. 7. A bundle of circles. The thick circle and the thick line generate the bundle. The
full class of these circles is obtained when rotating the line.

What Is a Line ? 143

Another way to generate circles in this class is to compose two projections;
it also gives another proof of the fact that these circles are generalized lines;
first project naive lines in the plane to great circle on a 3D sphere, with the
center of the sphere as the center of projection. This projection maps each point
of the plane to two antipodal points on the sphere, which are equivalent. Then
apply a stereographic projection from the sphere to the (say, equatorial) plane,
i.e. the center of the projection is a pole of the sphere. The proof relies on easy
but tedious computations which are omitted for conciseness. Both projections
preserve incidences, thus the Pappus property holds for great circles on the
sphere, and for the final circles.

These circles are lines in the Beltrami model of the hyperbolic plane [8,2].

5.5 Some Parabolas Are Lines

Parabolas with a prescribed axis direction (say Oy) and passing through a given
fixed point can be considered as lines. They are completely defined with two
other points, like naive lines. These parabolas cut in at most one point (ignoring
the fixed common point, and the double point at infinity: (0, 1, 0)). As usual,
two parabolas non intersecting in the affine real plane do meet in the projective
complex plane.

5.6 Conics through Three Fixed Points Are Lines

The GeoGebra figure 8 illustrates that conics through three given distinct points
(non colinear) can be considered as lines: they fulfil A3, the Pappus axiom. They
also fulfil A1 and A2. Fig. 9 illustrates the harmonic conjugate theorem.

Fig. 8. Conics passing through three given distinct points (A, , B,C on the figure) fulfil
Pappus axioms. Thus they can be considered as lines.

144 D. Michelucci

Fig. 9. The harmonic conjugate theorem. Left: the harmonic conjugate theorem for
naive lines. Right: the harmonic conjugate theorem for conics passing through three
fixed points F1, F2, F3.

6 Playing with Some Theorems

This section illustrates how a Pappus functor may extend theorems, on three
examples.

6.1 Proof of the Three Circles Theorem

The three circles theorem is used as an example of a theorem, for which I know
no proof lying in the Pappus theory for the moment.

Three Circles Theorem. Let a, b, c be three points, not on a common line. a′

is a point on line (bc), b′ is a point on line (ac), c′ is a point on line (ab). Let
Ca be the circle circumscribed (CC) to a, b′, c′. Cb is the CC to b, a′, c′, and Cc

is the CC to c, a′, b′. Then Ca, Cb, Cc have a common point (other than the two
cyclic points).

A short proof is given here, but it does not lie inside Pappus theory. A proof
inside Pappus theory would permit to extend this theorem to generalized lines.

The proof considers lines. The lines of the triangle are indexed 1, 2, 3, see Fig.
10 for the definition of lines 5,6,7. By hypothesis, the points 1∩2, 2∩4, 4∩5, 5∩1
are cocylic, as well as the points 5 ∩ 6, 6 ∩ 3, 3 ∩ 1, 1 ∩ 5. We need to prove that
the points 2∩ 3, 3∩ 6, 6∩ 4, 4∩ 2 are cocyclic too. Note 1, 2,. . . 6 the orthogonal
symmetry relatively to line 1, 2, . . . 6.

We first need the lemma: the transform 5124 is a translation. I use the conven-
tion that in the transform 5124, the symmetry 5 is performed first, but anyway
it does not matter: the reader can uses the opposite convention when reading the
proof. In the transform 5124 = (51)(24), the transforms 51 and 24 are rotations;
51 is a rotation around 5 ∩ 1, with angle twice the angle between lines 5 and
1. Similarly, 24 is a rotation around 2 ∩ 4, with angle twice the angle between
lines 2 and 4. But opposite angles in a cocyclic quadrilateral are either opposite,
or their sum equals π. In both cases, the effect of rotations 51 and 24 on vec-
tors annihilate each other, so 5124 is just a translation. QED. The converse also
holds.

What Is a Line ? 145

2

2

11

6

5

4

3

3

Fig. 10. The three circles theorem. The three circles have a common point.

5

1 1

3

2

4

6

2
3

Fig. 11. Here we do not know that lines 4 and 6 are equal, we have to prove it. As in the
generic case, 6315 and 5124 are translations. Thus their composition (6315)(5124) =
6324 is a translation too. Circular permutations of a translation are translations too [3],
thus 3246 is a translation too. Moreover 32 and its inverse 23 are translations because
lines 2 and 3 are parallel in this special case. Thus (23)(3246) = 46 is a translation.
Thus lines 4 and 6 are parallel. But they have a common point (6 ∩ 5 and 4 ∩ 5), thus
they are equal. QED.

Similarly, 6315 is a translation.
Thus the composition (6315)(5124) = 63(1(55)1)24 = 6324 is a translation,

thus the four points 6 ∩ 3, 3 ∩ 2, 2 ∩ 4, 4 ∩ 6 are cocyclic. It is worth to mention
that this proof works also when the triangle 1, 2, 3 is degenerate, e.g. when lines
2 and 3 are parallel, as in Fig. 11.

Actually the three circles theorem still holds when circle are replaced with
conics passing through two distinct arbitrary points. See Fig. 12.

Another correct generalization of the three circles theorem is illustrated Fig.13.
It replaces Euclidean lines with conics passing through three distinct fixed (non

146 D. Michelucci

Fig. 12. A generalization of the three circles theorem. Circles are replaced with conics
passing through 2 distinct arbitrary points F1, F2. These three conics have a common
point (other than the two arbitrary points).

Fig. 13. An extension of the three circles theorem. Lines (AB, AC, BC) are replaced
with conics passing through three fixed points F1, F2, F3, and circles are replaced
with conics through two of the fixed three points, for instance F1 and F2. The three
generalized circles have a common point, different of F1 and F2.

aligned) points F1, F2 and F3, and replaces circles with conics through F1 and
F2. Then the three ”circles” have a common pont.

A Pappus functor should be able to automatically produce such non trivial
generalizations of the three circles theorem and the corresponding proofs.

What Is a Line ? 147

6.2 The Four Circles Theorem

Four Circles Theorem. It is also called Miquel’s four circles theorem. It states
that the four circles circumbscribed to three points of a complete quadrilateral
have a common point, see Fig.14.

I know no proof in Pappus theory up to now (a combinatorial search for hexamys
by computer should find one). Anyway, the theorem can be proved easily from
Chasles theorem: each circle union the ”opposite” line defines a cubic curve; the
four cubic curves meet in 8 common points: the two cyclic points and the six
points of the complete quadrilateral. Thus after Chasles theorem, these cubics
meet in another nineth point.

Another short and nice proof relies on orthogonal symmetries relatively to lines
of the complete quadrilateral, see Fig.14 for the names of the lines. By hypothesis,
ACUH is cocyclic, thus the transform ACUH is a translation. Idem for HV DA.
Thus the composition (ACUH)(HV DA) = ACUV DA is a translation as well.
Thus A(ACUV DA)A = CUV D is a translation too. Thus CUV D is cocyclic.
QED. Unfortunately this last proof can not be generalized to generalized lines.

A Pappus functor should be able to produce this non trivial generalization
(Fig. 15) of the four circles theorem. Let F1, F2, F3 be three distinct non aligned
points. The six points (which were the vertices of the complete quadrilateral
in the initial four circles theorem) are called Qi, i = 1, . . . 6, and there are four
conics. The conic K134 passes through points F1, F2, F3, Q1, Q3, Q4; the conic
K156 passes through points F1, F2, F3, Q1, Q5, Q6; the conic K235 passes through
points F1, F2, F3, Q2, Q3, Q5; the conic K246 passes through points F1, F2, F3, Q2,
Q4, Q6. Replace circles in the initial four circles theorems with conics passing
through points F1 and F2. Then the four conics: K134, K156, K235, K246 all pass
through another common point, Z in Fig. 15.

B

U

V
C

D

C

D

H

B
A

A

Fig. 14. Miquel’s four circles theorem: the four circles have a common point (distinct
of the two cyclic points)

148 D. Michelucci

Fig. 15. An extension of Miquel’s four circles theorem: lines are replaced with conics
through three fixed points F1, F2, F3, circles are replaced with conics through two of
the fixed points, namely F1 and F2. Then the four generalized circles have a common
point, Z in the figure.

6.3 A Butterfly Theorem

We conclude with this last theorem, Fig. 16. Let C be a fixed circle, and E
a point not on C. The symmetric to a point M ∈ C is by definition M ′ =
(EM) ∩ C. It is clearly an involution. The symmetry is extended to all points
in the plane with a Butterfly theorem which states that for all chords (A1, A2)
through M (where A1 ∈ C, A2 ∈ C), the symmetric chords (A′

1, A
′
2) passes

through a common point, which is M ′. Any conic can be used in place of the
circle C (for instance two lines, which gives a variant of Pappus theorem), and
the theorem still holds. For conciseness, no proof is provided. A Pappus functor
should be able to generalize (Fig. 16) this theorem and its proof (if it lies in
Pappus theory). A first generalization replaces linear chords with clines, i.e.
circles through a fixed point. Since this generalization reduces to applying some
inversion, it may be considered trivial. A second generalization is less obvious;
it replaces lines with conics through three fixed points F1, F2, F3, and the circle
C is replaced with a circle (or any conic) passing through F1 and F2.

Fig. 16. From left to right: a butterfly theorem, a first generalization, and a second one

What Is a Line ? 149

7 What Is a Point ?

This article mainly generalized lines. Another way to extend Pappus theory is
to generalize points. It is well known that, due to duality, lines and points can
be exchanged. It is conics which I will consider as points, in some sense.

A conic is represented with a non zero vector in a six dimensions vector space.
So it can be seen as a point in a projective space in five dimensions. We can say
that three conics Q1, Q2, Q3 are aligned iff there are non all zeros numbers
a1, a2, a3 such that a1Q1 + a2Q2 + a3Q3 = 0. Two distinct conics Q1 and Q2

generates a ”line of conics”, i.e. the set of conics equal to a1Q1 + a2Q2 for some
numbers a1, a2. To avoid ambiguity, call it a 2-bundle of conics.

Similarly, four conics are coplanar iff there are non all zeros numbers a1, a2,
a3, a4 such that a1Q1 + a2Q2 + a3Q3 + a4Q4 = 0. Three non aligned conics
generate a plane of conics, called a 3-bundle of conics.

A 3-bundle of conics is a Pappus plane, its points are conics. Thus all theorems
of the Pappus plane apply: Pappus, Desargue, Pascal, three-circle theorems, etc.
We can apply the Pappus functor.

8 Variants: A Zoo of Planes

For simplicity, we considered only the strongest axioms, so two distinct lines
always meet in one point, and two distinct proper conics always meet in four
points. It is the complex projective plane.

Weaker axioms, and other planes, are possible. For instance, we can accept
that two distinct lines meet in at most one point, and that two proper conics
meet in at most four points. The essential constraint is that no configuration
contradicts Pappus axiom, which can be rephrased as follows: if three distinct
points pi are aligned, and if three distinct points qj are aligned on another line,
and if the three intersection points rij = pi∩qj , i < j exist, then they are aligned.

This freedom of choice for axioms is related to the fact that the plane can
be coordinalized in several ways [6]. A point can be represented with two real
cartesian coordinates (x, y): it is the affine real plane, R2; it contains parallel
lines which do not meet. A point can be represented with homogenous real
coordinates (x, y, h) ∈ R3 \ (0, 0, 0), two colinear vectors representing the same
point; this representation can be made canonic, using only values zero and one
for the homogeneous coordinate h; points (x, y, 0) are points at infinity; this is
the real projective plane P 2(R); all pair of distinct lines meet in one point; but
two distinct proper conics can meet in less than four points because R is not
algebraically closed. Geometrically, P 2(R) is the set of 3D lines incident to a
given point, say the origin; to visualize the plane, the set of lines is cut with
an arbitrary plane not passing through the origin. To get more regularity, a
solution is to use complex coordinates, either cartesian coordinates (x, y) ∈ C2,
or homogeneous coordinates (x, y, h) ∈ C3\(0, 0, 0), i.e. P 2(C). Another classical
representation represents each point (x ∈ R, y ∈ R) of the plane with a complex
number c = x+iy ∈ C: this is the complex line C; if C is augmented with 1/0 for

150 D. Michelucci

convenience, the complex projective line P 1(C) is obtained: this plane has only
one point at infinity; through stereographic projection, this plane is mapped to
the sphere S2 (S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}) and its point at infinity
1/0 is mapped to the North pole (0, 0, 1) of the sphere. All these planes are
locally equivalent for their ”visible” part, but they are no more when points at
infinity or imaginary points are involved; also they have not the same topology.

Example. Consider the circle with center (−3, 0) and radius 1, and the circle
with center (3, 0) and radius 1. In the affine real plane R2, in the projective real
plane P 2(R), and in the complex projective line P 1(C), they do not intersect. In
the complex affine plane C2 (points are represented with (x ∈ C, y ∈ C)), they
intersect in two points: (0,±i

√
3). In the complex projective plane P 2(C), they

intersect in four points, the two previous ones, and the cyclic points (±i, 1, 0).
Remark. In the complex projective line P 1(C), inversions, for example: T (z) =

1/z and T ′(z) = 1/z, can be extended to their pole 0: the pole and the point
at infinity are inverse of each other. In the complex projective plane P 2(C), the
inversion: T (x, y) = (x/(x2 + y2), y/(x2 + y2)) (using cartesian coordinates for
short) can not be consistently extended to the point (0, 0): it is because P 2(C)
has a line at infinity, and not one point at infinity like P 1(C).

Remark. It is convenient to map P 1(C) to the sphere {(x, y, z) ∈ R3 | x2 +
y2 + z2− 1 = 0} with the stereographic projection s. For convenience, place the
plane P 1(C): c = x + iy horizontally at altitude z = 0; then the stereographic
projection maps c = (x, y, 0) to s(c) = (2x/(x2 + y2 + 1), 2y/(x2 + y2 + 1), (x2 +
y2 − 1)/(x2 + y2 + 1)). s(c) is the intersection point of the sphere and the line
(Nc), where N = (0, 0, 1) is the North pole of the sphere. Naive lines in P 1(C)
are mapped to circles on the sphere, all passing through N . The point at infinity
of P 1(C) is mapped to N . Some properties of P 1(C) are more easily seen on the
sphere, e.g. in P 1(C), the point at infinity 1/0 belongs to all (naive) lines; thus
non parallel lines (in the usual, naive sense) in P 1(C) cut in two points.

The ”Pappus tower” can likely be built with these planes. However, each
of them manages degeneracies (parallel lines, non intersecting conics, points at
infinity) in its own way, which may complicate implementations.

9 Conclusion

Two remarks before concluding:

- From another viewpoint, the content of this article is sometimes trivial. We
just apply many homographies and inversions to the whole naive Pappus plane,
so naive lines and naive conics are mapped to curves with arbitrary high degree.
What is essential is that all these transforms (homographies and inversions)
preserve incidences. More general non linear diffeomorphisms could be used as
well.

- Jürgens Richter-Gebert et al [5] show that tropical lines do not always fulfil
Pappus property.

In conclusion, this article considers the Pappus theory as a functor: its inputs
are points and lines which must fulfil axioms of Pappus geometry. The output

What Is a Line ? 151

is a set of proved theorems and methods, and new geometric objects, some of
which fulfil axioms of Pappus geometry. Theorems are incidence theorems, and
have a combinatorial flavor.

For this approach to work in practice, e.g. to be programmed in Coq, all
proofs must lie inside the Pappus theory, i.e. all proofs must use only axioms
of the Pappus theory. A computer combinatorial search inspired by the area
method or the full-angle method [7], but through the set of Hexamys (or their
duals, Brianchons) as in [4], and relying on some numerical example (a figure,
or a witness) like the area method to help prune the search space, may help find
such proofs in an automatic way.

This article was written with in mind a geometric formalization, i.e. theorems
and algorithms are proved applying the Pappus axiom, or the hexamys theorems,
or relying on properties of projectivities or homographies, like in Coxeter’s book
[1]. However a more algebraic approach can also be considered; for instance, lines
can be seen algebraically as vectors in some rank three vector space.

Acknowledgements. I thank the anonymous referees: their remarks and com-
ments helped me to improve the clarity of this article.

References

1. Coxeter, H.: Projective geometry. Springer, Heidelberg (1987)
2. Henle, M.: Modern Geometries: Non-Euclidean, Projective, and Discrete, 2nd edn.

Prentice Hall (2001)
3. Michelucci, D.: Isometry group, words and proofs of geometric theorems. In:

SAC 2008: Proceedings of the 2008 ACM Symposium on Applied Computing,
pp. 1821–1825. ACM, New York (2008)

4. Michelucci, D., Schreck, P.: Incidence constraints: a combinatorial approach. Int. J.
Comput. Geometry Appl. 16(5-6), 443–460 (2006)

5. Richter-Gebert, J., Sturmfels, B., Theobald, T.: First steps in tropical geometry
(2003)

6. Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour Through
Real and Complex Geometry. Springer, Heidelberg (2011)

7. Gao, X.s.: Search methods revisited. In: Mathematics Mechanization and Applica-
tion, ch. 10, pp. 253–272. Academic Press (2000)

8. Stahl, S.: The Poincaré Half-Plane. Jones and Bartlett Books in Mathematics (1993)
9. Wen-Tsün, W.: Mechanical Theorem Proving in Geometries - Basic Principles. Texts

and monographs in symbolic computation. Springer, Heidelberg (1994)

On One Method of Proving Inequalities

in Automated Way

Pavel Pech

Faculty of Education, University of South Bohemia,
Jeronýmova 10, 371 15 České Budějovice, Czech Republic

pech@pf.jcu.cz

Abstract. The paper describes proving geometric inequalities in auto-
mated way without cell decomposition. Firstly an overview of known
methods of proving inequalities is given including the method which is
based on reduction of a conclusion polynomial to the canonical form
modulo a hypotheses ideal. Then a parametrization method of proving
geometric inequalities is introduced. Further a method of proving geo-
metric inequalities which introduces an auxiliary polynomial is described.

Keywords: geometric inequalities, automated geometry theorem pro-
ving.

1 Introduction

Theory of automated theorem proving usually requires to translate a geometric
statement into an algebraic form in some coordinate system. Then one of proving
methods is applied (Gröbner bases, Wu–Ritt, Collins CAD,...). Besides this,
also coordinate-free methods of proving theorems are used. Many papers are
dealing with equality type statements, only few articles are devoted to proving
inequalities. The reason seems to be clear — proving inequalities is much more
intricate.

In this paper we will be concerned with geometric inequalities in polygons,
especially in triangles and quadrilaterals. Many such inequalities are described
in the well–known book by O. Bottema et al: Geometric inequalities [1] which
appeared in 1969 and in the book by Mitrinovič et al: Advances in geometric
inequalities [11] which appeared twenty years later. All inequalities in these two
books are proved classically. Since then many attempts to prove inequalities
in automated way were done. One of the most promising method is that com-
ing from L. Yang [22]. It is based on cell decomposition of a parametric space
similarly as Collins CAD method. Many inequalities from [1] were proved by
this method. Another two techniques — reduction of a polynomial to canonical
form modulo ideal and the Rabinowitsch/Seidenberg device which converts the
inequalities to equations by introducing new variables — are given in [4]. See
also [21].

There are also other automated methods of proving (algebraic) inequalities
as sos (sum of squares) method [16], [13], sds (successive difference substitution)
method [23], [24], [9] etc.

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 152–168, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

On One Method of Proving Inequalities in Automated Way 153

To prove geometric inequality automatically we usually need to carry out two
basic steps:

– To translate a geometric inequality into an algebraic inequality.
– To prove an algebraic inequality.

In the paper we will concentrate on the first step — the translation of a geometric
inequality into an algebraic inequality — and problems which may occur during
the translation. The second step — the proof of algebraic inequality — is beyond
our consideration.

The paper is organized as follows:
First we recall the method which is based on expressing a conclusion polyno-

mial modulo a hypotheses ideal together with a few examples, to realize problems
we encounter.

Then a parametrization of n-gons is described. It is shown how a parametriza-
tion of the side lengths of an n-gon can help by proving geometric inequalities.

Next a new method of proving geometric inequalities which uses an auxiliary
polynomial is introduced.

The methods we describe in this paper do not use cell decomposition of a
parametric space.

Throughout the paper we will use Gröbner bases (GB) and Wu–Ritt (WR)
approach, see [2], [3], [6], [7], [10], [14], [15], [17], [18], [19], [21].

2 Basic Method

We will deal with automated proving of geometric statements which are of the
form H ⇒ c, where H is a set of hypotheses of equality type and c is a conclusion
of inequality type. Let the given inequality be in the form

∀x (h1(x) = 0, h2(x) = 0, . . . , hr(x) = 0)⇒ (N(x) ≥ 0), (1)

where x = (x1, x2, . . . , xn), hi are polynomials with rational coefficients, and xi

are real numbers.
When proving geometric inequalities we can use the method which is based on

reduction of a conclusion polynomial to canonical form modulo the hypotheses
ideal [4].
In the method we distinguish two steps:

In the first step we carry out reduction of the conclusion polynomial N to
canonical form modulo the hypotheses ideal I = (h1, h2, . . . , hr). To do this we
introduce a slack variable t such that

N − t = 0. (2)

Considering the ideal J = (h1, h2, . . . , hr, N − t) we usually eliminate dependent
variables in the ideal J to express t in terms of independent variables (parame-
ters).

In the second step we try to express t in such a form from which its non-
negativity follows. Here we can use e.g. the theory of sos or sds.

154 P. Pech

Fig. 1. Proof of the Weitzeböck inequality

To see how this method works we start with the following example.

Example 1. Given a triangle ABC with side lengths a, b, c and the area P and
a triangle KLM with side lengths k, l, m and the area Q. Prove that

k2(−a2 + b2 + c2) + l2(a2 − b2 + c2) + m2(a2 + b2 − c2) ≥ 16 PQ. (3)

When the equality is attained?

The inequality (3) is known as the Neuberg–Pedoe inequality [11].

Proof. Let A = [x, y], B = [0, 0], C = [a, 0], K = [u, v], L = [0, 0], M = [k, 0],
Fig. 1. We express the side lengths a, b, c, k, l, m and the areas P, Q in algebraic
equations:

b = |CA| ⇒ h1 := (x− a)2 + y2 − b2 = 0,

c = |AB| ⇒ h2 := x2 + y2 − c2 = 0,

l = |MK| ⇒ h3 := (u− k)2 + v2 − l2 = 0,

m = |KL| ⇒ h4 := u2 + v2 −m2 = 0,

P = area ABC ⇒ h5 := 2P − ay = 0,

Q = area KLM ⇒ h6 := 2Q− kv = 0.

Introduce a slack variable t such that

h7 := k2(−a2 + b2 + c2) + l2(a2 − b2 + c2) + m2(a2 + b2 − c2)− 16PQ− t = 0.

We will proceed in the following manner:

1. We express the variable t in terms of independent variables x, y, a, u, v, k in
the ideal I = (h1, h2, . . . , h7). We also say that we reduce t to canonical form
modulo ideal I [4].

2. We write t in such a form from which its non-negativity follows.

On One Method of Proving Inequalities in Automated Way 155

To do this we eliminate dependent variables b, c, l, m, p, q in the ideal I =
(h1, h2, . . . , h7). Using GB approach, in the program CoCoA1 we get

Use R::=Q[x,y,a,u,v,k,b,c,l,m,p,q,t];
I:=Ideal((x-a)^2+y^2-b^2,x^2+y^2-c^2,(u-k)^2+v^2-l^2,
u^2+v^2-m^2,2p-ay,2q-kv,
k^2(-a^2+b^2+c^2)+l^2(a^2-b^2+c^2)+m^2(a^2+b^2-c^2)-16pq-t);
Elim(b..q,I);

the polynomial which leads to the equation

t = 2a2u2 + 2a2v2 − 4xauk − 4yavk + 2x2k2 + 2y2k2

which is equivalent to

t = 2(xk − ua)2 + 2(yk − va)2.

We expressed t in the form of the sum of squares, hence t ≥ 0.
The equality in (3) occurs iff t = 0 which is equivalent to xk − ua = 0

and yk − va = 0 which means that triangles ABC and KLM are similar. The
inequality (3) is proved.

Remark 1. We get the same result using WR approach with characteristic sets
and the Epsilon library2 [19], [18], using the same variable ordering as above.

Remark 2. If KLM is equilateral then k2 = 4Q/
√

3 and (3) transforms into the
Weitzenböck inequality [20]:

a2 + b2 + c2 ≥ 4
√

3P, (4)

where equality occurs iff a triangle ABC is equilateral.
We see that (4) is equivalent to

a2
√

3
4

+
b2
√

3
4

+
c2
√

3
4

≥ 3P,

where on the left side is the sum of areas of three equilateral triangles with side
lengths a, b, c. Then (4) can be demonstrated in the style proof without words,
see [12], Fig. 2. This proof without words method can be considered as another
powerful dynamic geometry tool of proving.

In the given example we could see the strength of the reduction of a conclusion
polynomial to the canonical form modulo hypotheses ideal. But be careful, the
same method can fail, see the next example which is from [1].

Example 2. Let a, b, c be the side lengths of a triangle. Then

2(a + b + c)(a2 + b2 + c2)− 3(a3 + b3 + c3 + 3abc) ≥ 0. (5)
1 Program CoCoA is freely distributed at http://cocoa.dima.unige.it
2 Program Geother is freely distributed at
http://www-calfor.lip6.fr/∼wang/epsilon/

156 P. Pech

Fig. 2. Weitzenböck inequality: a2√3
4

+ b2
√

3
4

+ c2
√

3
4
≥ 3P

Proof. Let us introduce an orthogonal system of coordinates so that A = [u, v],
B = [0, 0], C = [a, 0], Fig. 3. To prove (5) we translate the geometric situation
into the following algebraic equations:

b = |CA| ⇒ h1 := (u− a)2 + v2 − b2 = 0,

c = |AB| ⇒ h2 := u2 + v2 − c2 = 0.

Let

h3 := 2(a + b + c)(a2 + b2 + c2)− 3(a3 + b3 + c3 + 3abc)− t = 0,

where t is a slack variable. We express the left side of (5) modulo ideal I =
(h1, h2, h3) and get

Use R::=Q[u,v,p,q,a,b,c,t];
I:=Ideal((u-a)^2+v^2-b^2,u^2+v^2-c^2,2(a+b+c)(a^2+b^2+c^2)-
3(a^3+b^3+c^3+3abc)-t);
Elim(b..c,I);

the polynomial equation of the fourth degree in t

576u10a2 + 2980u8v2a2 + 6160u6v4a2 + 6360u4v6a2 + 3280u2v8a2 + 676v10a2 −
2880u9a3−11920u7v2a3−18480u5v4a3−12720u3v6a3−3280uv8a3 +3600u8a4+
11080u6v2a4 + 11400u4v4a4 + 3960u2v6a4 + 40v8a4 + 2880u7a5 + 8480u5v2a5 +
8000u3v4a5 + 2400uv6a5 − 8352u6a6 − 16820u4v2a6 − 9480u2v4a6 − 948v6a6 +

On One Method of Proving Inequalities in Automated Way 157

Fig. 3.

2880u5a7+5600u3v2a7+2400uv4a7+3600u4a8+3880u2v2a8+40v4a8−2880u3a9−
3280uv2a9+576u2a10+676v2a10−104u8at−416u6v2at−624u4v4at−416u2v6at−
104v8at + 416u7a2t + 1248u5v2a2t + 1248u3v4a2t + 416uv6a2t − 1656u6a3t −
4968u4v2a3t−4968u2v4a3t−1656v6a3t+3512u5a4t+7856u3v2a4t+4344uv4a4t−
3656u4a5t − 5952u2v2a5t − 2424v4a5t + 1944u3a6t + 2232uv2a6t − 416u2a7t −
656v2a7t−40ua8t+4u6t2 +12u4v2t2 +12u2v4t2 +4v6t2−12u5at2−24u3v2at2−
12uv4at2 + 112u4a2t2 + 200u2v2a2t2 + 88v4a2t2 − 204u3a3t2 − 188uv2a3t2 +
48u2a4t2 + 152v2a4t2 + 52ua5t2 − 4a6t2 + 16u2at3 + 16v2at3 − 16ua2t3 +
4a3t3 − t4 = 0

with unclear solution.
What happened? The resulting equation is not linear in t as in the previous

case. By the translation into algebra we obtain extraneous factors and the degree
of the polynomial is higher. This is caused by the presence of radicals when
expressing the side lengths b, c in the polynomial on the left in (5) in terms of
independent variables a, u, v.

To solve the last example we can use the method based on parametrization of
explored geometric objects, see the next section.

3 Parametrization of n-gons

A parametrization of a triangle is used by various authors, see [22], though they
do not call it so. We can also call it the auxiliary variables method similarly as
the auxiliary polynomial method, see the next section.

The fundamental problem of proving (in)equalities in a triangle given by its
three side lengths a, b, c is that a, b, c must obey triangle inequalities a+b−c ≥ 0,
b + c− a ≥ 0 and c + a− b ≥ 0 (here we admit also degenerate cases a + b− c =
0, . . .).

Basic Outline of the Parametrization Method:

Parametrization is a kind of change of variables that simplifies:

158 P. Pech

a) some basic restrictions (traditional and more complicated constraints about
the side lengths are replaced by the non-negativity of some other variables
through bijective mapping from an octant (in affine space x, y, z) to the
semialgebraic set in space a, b, c defined by the locus of (a, b, c) such that
a, b, c are the side lengths of a triangle).

b) the elimination polynomial (complicated in a, b, c easier in x, y, z).

To avoid triangle inequalities we express the side lengths a, b, c by non-negative
parameters x, y, z which do not have to obey triangle inequalities.

Theorem 1. Given a triangle with side lengths a, b, c. Then the side lengths
a, b, c can be expressed in terms of non-negative real numbers x, y, z which are
not subject to triangle inequalities.

Proof. Given a triangle with side lengths a, b, c we define x = c+a−b, y = a+b−c,
z = b+c−a. From the triangle inequalities it follows that x, y, z are non-negative
real numbers which are not subject to triangle inequalities. To see this let x, y, z
be arbitrary non-negative real numbers. Then a = (x + y)/2, b = (y + z)/2,
c = (z + x)/2.

Definition 1. Non-negative real numbers x, y, z from the previous theorem we
call parameters of a triangle with side lengths a, b, c.

By the Theorem 1 there is one to one correspondence between side lengths
a, b, c and parameters x, y, z. Namely given side lengths a, b, c we can determine
parameters x, y, z and conversely. Let us look at the Example 2 and prove it
using parametrization.

Proof of (5) — Example 2 continued. To prove the inequality

N := 2(a + b + c)(a2 + b2 + c2)− 3(a3 + b3 + c3 + 3abc) ≥ 0

we will parametrize the side lengths a, b, c of a triangle. Put c + a − b = x,
a + b− c = y, b + c− a = z.
Eliminating a, b, c in the ideal I = (a+ b− c−x, b+ c−a−y, c+a− b−z, N− t)
we get

t = 1/4(x3 − x2y − xy2 + y3 − x2z + 3xyz − y2z − xz2 − yz2 + z3). (6)

Now we are to show that t ≥ 0, where x ≥ 0, y ≥ 0, x ≥ 0. We will do it by sds
method [23]. Let us briefly show how this method works.

First suppose that x ≥ y ≥ z ≥ 0. We introduce new variables t1 ≥ 0, t2 ≥ 0,
t3 ≥ 0 so that

t1 = x− y x = t1 + t2 + t3
t2 = y − z or equivalently y = t2 + t3
t3 = z z = t3.

(7)

By elimination of x, y, z we get

On One Method of Proving Inequalities in Automated Way 159

Use R::=Q[x,y,z,t[1..3]];
K:=Ideal(1/4(x^3-x^2y-xy^2+y^3-x^2z+3xyz-y^2z-xz^2-yz^2+z^3),
x-(t[1]+t[2]+t[3]),y-(t[2]+t[3]),z-t[3]);
Elim(x..z,K);

t = 1/4(t31 + 2t21t2 + t21t3 + t1t2t3 + t22t3) (8)

from which non-negativity of t follows.
Another choice, for instance x ≥ z ≥ y ≥ 0 leads to relations x = t1 + t2 + t3,

z = t2 + t3, y = t3 which give the same result. Due to the symmetry of the
polynomial (6) we always get the same expression (8).3

The sign of equality in (5) occurs iff t = 0 which is equivalent to t1 = t2 =
t3 = 0. This means that a = b = c and the triangle is equilateral.

Remark 3. If a, b, c in (5) are arbitrary non-negative real numbers then the in-
equality does not hold! A counter-example a = 1, b = 1, c = 6.

Parametrization of a triangle enables to prove plenty of geometric inequalities,
e.g. those from [1]. Sometimes the situation can be more complicated. Let us
see the following example which is the well-known isoperimetric inequality for
n = 3.

Example 3. Given a triangle ABC with side lengths a, b, c and the area p. Prove
that

(a + b + c)2 − 12
√

3p ≥ 0. (9)

When the equality is attained?

Proof. We will show two ways of automated proofs, from which the first one
fails.

1st attempt - modulo ideal approach:

Let A = [u, v], B = [0, 0], C = [a, 0], Fig. 3. Then

b = |CA| ⇒ h1 := (u− a)2 + v2 − b2 = 0,

c = |AB| ⇒ h2 := u2 + v2 − c2 = 0,

p = area ABC ⇒ h3 := 2p− av = 0,

q =
√

3⇒ h4 := q2 − 3 = 0,

and let

h5 := (a + b + c)2 − 12
√

3p− t = 0,

where t is a slack variable. Then the elimination of dependent variables b, c, p in
the ideal I = (h1, h2, h3, h4, h5) gives

Use R::=Q[u,v,a,b,c,p,q,t];

3 This step can be done using the software TSDS which was developed by L. Yang
and Y. Yao.

160 P. Pech

I:=Ideal((u-a)^2+v^2-b^2,u^2+v^2-c^2,2p-av,q^2-3,
(a+b+c)^2-12qp-t);
Elim(b..p,I);

the polynomial which leads to the equation of fourth degree in t

384u4va3q +5760u2v3a3q +5376v5a3q− 768u3va4q− 5760uv3a4q +384u2va5q +
5376v3a5q − 1728u4v2a2 − 3456u2v4a2 − 1728v6a2 + 3456u3v2a3 + 3456uv4a3 −
5184u2v2a4 − 14272v4a4 + 3456uv2a5 − 1728v2a6 − 192u4vaqt − 384u2v3aqt −
192v5aqt + 384u3va2qt + 384uv3a2qt− 576u2va3qt− 2880v3a3qt + 384uva4qt−
192va5qt+64u4a2t+2688u2v2a2t+2624v4a2t−128u3a3t−2688uv2a3t+64u2a4t+
2624v2a4t+144u2vaqt2+144v3aqt2−144uva2qt2+144va3qt2−16u4t2−32u2v2t2−
16v4t2+32u3at2+32uv2at2−48u2a2t2−672v2a2t2+32ua3t2−16a4t2−24vaqt3+
8u2t3 + 8v2t3 − 8uat3 + 8a2t3 − t4 = 0

with unclear solution.

2nd attempt — parametric plus modulo ideal approach:

Now we will use a parametric approach to prove the inequality (9). Let the
coordinates of the vertices A, B, C and respective algebraic relations be the same
as in the previous attempt.

Put c+a−b = x, a+b−c = y, b+c−a = z. The elimination of u, v, a, b, c, p, q
in the ideal J gives

Use R::=Q[x,y,z,u,v,a,b,c,p,q,t];
J:=Ideal((u-a)^2+v^2-b^2,u^2+v^2-c^2,2p-av,q^2-3,c+a-b-x,a+b-c-y,
b+c-a-z,(a+b+c)^2-12qp-t);
Elim(u..q,J);

a quadratic equation
t2 + Bt + C = 0, (10)

where

B = −2(x + y + z)2,
C = (x3 + 3x2y + 3xy2 + y3 + 3x2z − 21xyz + 3y2z + 3xz2 + 3yz2 + z3)

(x + y + z). (11)

Unlike the Example 2 now the parameter t is not expressed linearly in (10).
In this case we can use formulas of Viète to investigate the signs of the roots

of (10).
For the roots t1, t2 we get t1 + t2 = −B and t1t2 = C, where both −B and

C are non-negative as we can verify by sds method. Thus we get t1 ≥ 0, t2 ≥ 0,
and the inequality (9) is proved.

The equality is attained iff the triangle is equilateral as from sds decomposition
of C follows.

In the next section we will show one more proof of this statement using a new
method based on the introduction of an auxiliary polynomial.

On One Method of Proving Inequalities in Automated Way 161

Remark 4. In the previous example both roots of the quadratic equation were
non-negative. In general we could use the method of Sturm to investigate signs
of roots of an algebraic equation. But it could happen that the roots of the
conclusion polynomial equation have different signs and we can not decide.

There are many parametrizations of a triangle. Expression of side lengths a, b, c
of a triangle ABC by coordinates u, v, a of the vertices A = [a, 0], B = [u, v],
C = [0, 0] can be considered as another parametrization. This parametrization
is as follows:

(u− a)2 + v2 = b2, u2 + v2 = c2.

In this case coordinates u, v, a are parameters, with a ≥ 0 and arbitrary u, v.
Parametrization of a quadrilateral is not known to me to date. It could help to
prove many inequalities between sides and diagonals of quadrilaterals.

Similarly, parametrization of a simplex in En has not been known yet. We
are able to parametrize only special cases of a simplex in En for instance an
orthocentric simplex, whose heights are concurrent. The parametrization of an
orthocentric tetrahedron in E3 is as follows [8]:

Theorem 2. Let ABCD be an orthocentric tetrahedron with edges a = |AB|,
b = |BC|, c = |CD|, d = |DA|, e = |AC|, f = |BD|. Then

a2 = x + y, b2 = y + z, c2 = z + u, d2 = u + x, e2 = x + z, f2 = y + u,

where x, y, z, u are parameters, is a parametrization.

We verify whether the parameters x, y, z, u obey the following identities which
characterize orthocentric tetrahedron:

a2 + c2 = b2 + d2 = e2 + f2.

It holds
a2 + c2 = b2 + d2 = e2 + f2 = x + y + z + u

and the identities are confirmed.
Conversely given arbitrary x, y, z, u we get

x = (d2+a2−f2)/2, y = (a2+b2−e2)/2, z = (b2+c2−f2)/2, u = (c2+d2−e2)/2.

Notice that parameters may also attain negative values.

4 Proving Inequalities by Introduction of Auxiliary
Polynomials

In this section we will introduce a method which can help us in proving geometric
inequalities. This method is based on the use of an auxiliary polynomial. We will
call it briefly the auxiliary polynomial method.

For the determination of definiteness of polynomials by factorization we will
need the important theorem [4]:

162 P. Pech

Theorem 3. Let f, g, h be polynomials in real variables x = (x1, x2, . . . , xn)
such that f = gh, where g and h have no common factors. Then

(∀x ∈ Rn : f ≥ 0)⇔ [(∀x ∈ Rn : g ≥ 0 ∧ h ≥ 0)∨ (∀x ∈ Rn : g ≤ 0 ∧ h ≤ 0)].

In the next example we demonstrate the strength of the auxiliary polynomial
method, whereas the method based on the reduction of a conclusion polynomial
to the canonical form modulo ideal fails.

Example 4. Let ABCD be a plane quadrilateral with side lengths a, b, c, d and
diagonals e, f. Prove that

(bc + ad)2 − e2(a2 + b2 + c2 + d2 − e2 − f2) ≥ 0. (12)

When the equality is attained?

The inequality (12) seems to be new. I did not find it anywhere.

Proof. Let A = [0, 0], B = [a, 0], C = [u, v], D = [w, z] and denote |AB| = a,
|BC| = b, |CD| = c, |DA| = d, |AC| = e |BD| = f, Fig. 4. Algebraic translation
of the side lengths a, b, c, d and diagonals e, f of ABCD is as follows:

b = |BC| ⇒ h1 := (u− a)2 + v2 − b2 = 0,

c = |CD| ⇒ h2 := (w − u)2 + (z − v)2 − c2 = 0,

d = |DA| ⇒ h3 := w2 + z2 − d2 = 0,

e = |AC| ⇒ h4 := u2 + v2 − e2 = 0,

f = |BD| ⇒ h5 := (w − a)2 + z2 − f2 = 0.

Let us denote

N := (bc + ad)2 − e2(a2 + b2 + c2 + d2 − e2 − f2).

We introduce a slack variable t to express the left side of the inequality (12):

h6 := N − t = 0.

We are to show that from h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0 the conclusion
t ≥ 0 follows.

Fig. 4.

On One Method of Proving Inequalities in Automated Way 163

Consider the ideal I = (h1, h2, h3, h4, h5) which describes the quadrilateral
ABCD.

1st attempt — modulo ideal approach:

By elimination of dependent variables b, c, d, e, f in the ideal J = (h1, h2, h3, h4,
h5, N − t) we get

Use R::=Q[a,b,c,d,e,f,u,v,w,z,t];
J:=Ideal((u-a)^2+v^2-b^2,(w-u)^2+(z-v)^2-c^2,w^2+z^2-d^2,u^2+v^2
-e^2,(w-a)^2+z^2-f^2,N-t);
Elim(b..f,J);

the quadratic polynomial in t

−8a3v3wz+16a2uv3wz−8a3uvw2z+8a2u2vw2z−8a2v3w2z+4a4u2z2−8a3u3z2+
4a2u4z2+8a3uv2z2−8a2u2v2z2+4a2v4z2+8a3v2wz2−16a2uv2wz2+8a2v2w2z2−
8a3uvz3+8a2u2vz3−8a2v3z3+4a2v2z4+4u3vwz−4a2uwt+4au2wt−4av2wt+
4a2w2t− 4auw2t− 4a2vzt + 8auvzt + 4a2z2t− 4auz2t− t2

with both negative and positive roots, e.g. the choice a = 3, u = 1, v = 2, w = 0,
z = 1 gives the roots t1 = 24, t2 = −24. Thus we cannot decide our statement
and the method fails at the moment.

2nd attempt — auxiliary polynomial approach:

Eliminating variables b, c, d, e, f in the ideal K = (h1, h2, h3, h4, h5, N) we get

Use R::=Q[a,b,c,d,e,f,u,v,w,z];
K:=Ideal((u-a)^2+v^2-b^2,(w-u)^2+(z-v)^2-c^2,w^2+z^2-d^2,u^2+v^2
-e^2,(w-a)^2+z^2-f^2,N);
Elim(b..f,K);

a polynomial S

S = a(−avw + 2uvw − vw2 + auz − u2z + v2z − vz2)2. (13)

which is non-negative (we suppose that a > 0). Realize that S = 0 represents
a circle k which is depicted in the Fig. 5, where circles k and k′ are symmetric
with respect to the line AC.

It is obvious that S ∈ K. On the other hand N �∈ L, where L = (h1, h2, h3, h4,
h5, S), as we easily verify. Therefore we search for an auxiliary polynomial M
in variables a, b, c, d, e, f such that MN belongs to the ideal L. Saturation of L
with respect to N gives

Use R::=Q[u,v,w,z,a,b,c,d,e,f];
L:=Ideal((u-a)^2+v^2-b^2,(w-u)^2+(z-v)^2-c^2,w^2+z^2-d^2,u^2+v^2
-e^2,(w-a)^2+z^2-f^2,S);
Elim(u..z,Saturation(L,Ideal(N)));

a polynomial M

M := (bc− ad)2 − e2(a2 + b2 + c2 + d2 − e2 − f2). (14)

164 P. Pech

Fig. 5. The angles by B and D in a quadrilateral ABCD are equal

We multiply N with M and search for an integer q > 0 such that MN q belongs
to the ideal L. The normal form NF(MN,L)

Use R::=Q[u,v,w,z,a,b,c,d,e,f];
L:=Ideal((u-a)^2+v^2-b^2,(w-u)^2+(z-v)^2-c^2,w^2+z^2-d^2,u^2+v^2
-e^2,(w-a)^2+z^2-f^2,S);
NF(M*N,L);

equals zero, hence MN ∈ L. Using the command GenRepr(MN,L) we find repre-
sentation of MN with respect to the ideal L

MN = f1h1 + f2h2 + · · ·+ f5h5 − 4aS,

where f1, . . . , f5 are some polynomials. As h1 = h2 = · · · = h5 = 0 we obtain
the identity

MN = −4aS,

from which MN ≤ 0 follows. Then from the Theorem and the fact that N−M =
4abcd > 0 we get N ≥ 0 and M ≤ 0. Realize that in addition we proved that
M ≤ 0.

The sign of equality in (12) is attained iff the sum of angles by the vertices
B and D of a quadrilateral ABCD equals 180◦ and B, D lie on the same side
of AC, see Fig. 6, whereas the equality in M ≤ 0 occurs iff the opposite an-
gles by the vertices B and D are equal and B, D lie on either side of AC, see
Fig. 5. This result follows from the decomposition of the variety of the ideal
L = (h1, h2, h3, h4, h5, S) into two non-degenerate irreducible components which
represent two circular arcs. The circle k is divided by the points A, C into two

On One Method of Proving Inequalities in Automated Way 165

Fig. 6. The sum of angles by B and D in a quadrilateral ABCD equals 180◦

arcs. The upper arc of the circle k belongs to the case M = 0, and the lower
arc to the case N = 0. The decomposition was carried out using the software
Epsilon based on WR approach.

The inequality (12) is proved.
Now we will summarize basic steps of the auxiliary polynomial method. Sup-

pose that I = (h1, h2, . . . , hr) is a hypotheses ideal and N is a conclusion poly-
nomial. We are to prove that N ≥ 0 (or N ≤ 0.)

Basic Steps of the Auxiliary Polynomial Method:

1. Eliminate dependent variables in the ideal (h1, h2, . . . , hr, N) to obtain a
polynomial S.

2. If S is not positively (or negatively) semidefinite the procedure terminates.
We can not apply it.

3. If S is positively (or negatively) semidefinite verify whether N ∈ L, where
L = (h1, h2, . . . , hr, S). If yes, then carry out a general representation of N
with respect to L and get the relation between N and S.

4. If S is positively (or negatively) semidefinite and N �∈ L then carry out
the saturation of L with respect to N. This should yield a positively (or
negatively) semidefinite polynomial M .

5. Verify for which integer q > 0, MN q ∈ L.
6. Express a general representation of MN q with respect to the ideal L.
7. Determine the resulting relation between MN q and S.
8. Decompose the variety of L into irreducible components in order to deter-

mine when the sign of equality is attained.

166 P. Pech

Remark 5. In the fifth step we usually get MN ∈ L, i.e., q = 1. To compute
polynomials M with MN in L the use of syzygies or quotients comes into con-
sideration.

Let as see the use of the auxiliary polynomial method in the Example 3.

Example 3 revisited

We are to prove that in a triangle the inequality

N := (a + b + c)2 − 12
√

3p ≥ 0

holds.

With the same notation as above consider the ideal I = (h1, h2, h3, h4). We will
eliminate variables x, y, p, q in the ideal K = (h1, h2, h3, h4, N) to obtain

Use R ::= Q[x,y,p,q,a,b,c];
K:=Ideal((x-a)^2+y^2-b^2,x^2+y^2-c^2,2p-ay,q^2-3,(a+b+c)^2-12qp);
Elim(x..q,J);

a polynomial S

S := (a+ b+ c)(7a3−6a2b−6ab2 +7b3−6a2c+15abc−6b2c−6ac2−6bc2 +7c3)

in dependent variables a, b, c.
By sds method we can prove that S ≥ 0. Further we verify that N does not

belong to L = (h1, h2, h3, h4, S).
Saturation of the ideal L with respect to N gives an auxiliary

Use R ::= Q[x,y,p,q,a,b,c];
L:=Ideal((x-a)^2+y^2-b^2,x^2+y^2-c^2,2p-ay,q^2-3,S);
Elim(x..y,Saturation(L,Ideal(N)));

polynomial M

M := (a + b + c)2 + 12qp

which is non-negative. Next we find out that MN belongs the ideal L. Finally
we express the product MN of polynomials M and N with respect to the ideal
L using the command GenRepr(MN,L) and obtain

MN = 4S.

Thus
((a + b + c)2 − 12pq)((a + b + c)2 + 12pq) ≥ 0

from which the inequality (9) follows.
The equality is attained iff S = 0 which by sds occurs iff a = b = c and the

triangle is equilateral.

On One Method of Proving Inequalities in Automated Way 167

5 Concluding Remarks

The described method which takes advantage of the saturation of the ideal with
respect to a polynomial to obtain an auxiliary polynomial is not complete. It
can be useful when other methods fail.

Method of parametrization of a triangle is successful in proving many geomet-
ric inequalities. We need to find similar parametrizations of n-gons and simplices
in En for n > 3.

In the examples above we presented geometric inequalities which were proved
mostly in a coordinate system. Perhaps in future we should concentrate on
coordinate-free methods.

Acknowledgments. The author wish to thank the referees for their valuable
and helpful suggestions.

The research is partially supported by the University of South Bohemia grant
GAJU 089/2010/S.

References

1. Bottema, O., et al.: Geometric inequalities, Groningen (1969)
2. Buchberger, B.: Groebner bases: an algorithmic method in polynomial ideal the-

ory. In: Bose, N.-K. (ed.) Multidimensional Systems Theory, pp. 184–232. Reidel,
Dordrecht (1985)

3. Chou, S.C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Com-
pany, Dordrecht (1987)

4. Chou, S.C., Gao, X.S., Arnon, D.S.: On the mechanical proof of geometry theorems
involving inequalities. Advances in Computing Research 6, 139–181 (1992)

5. Collins, G.E.: Quantifier elimination for the elementary theory of real closed fields
by cylindrical algebraic decomposition. LNCS, vol. 33, pp. 134–183. Springer,
Berlin (1975)

6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Springer, Berlin
(1997)

7. Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in
elementary geometry. Journal of Automated Reasoning 43, 203–236 (2009)

8. Gerber, L.: The orthocentric simplex as an extreme simplex. Pacific J. of Math. 56,
97–111 (1975)

9. Hou, X., Xu, S., Shao, J.: Some geometric properties of successive difference sub-
stitutions. Science China, Information Sciences 54, 778–786 (2011)

10. Kapur, D.: A Refutational Approach to Geometry Theorem Proving. Artificial
Intelligence Journal 37, 61–93 (1988)

11. Mitrinovic, D.S., Pecaric, J.E., Volenec, V.: Recent Advances in Geometric Inequal-
ities. Kluwer Acad. Publ., Dordrecht (1989)

12. Nelsen, R.: Proofs Without Words. MAA (1993)
13. Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry

Methods in Robustness and Optimization. PhD. thesis. California Institute of Tech-
nology, Pasadena, California (2000)

14. Pech, P.: Selected topics in geometry with classical vs. computer proving. World
Scientific Publishing, New Jersey (2007)

168 P. Pech

15. Recio, T., Sterk, H., Vélez, M.P.: Project 1. Automatic Geometry Theorem Prov-
ing. In: Cohen, A., Cuipers, H., Sterk, H. (eds.) Some Tapas of Computer Algebra,
Algorithms and Computations in Mathematics, vol. 4, pp. 276–296. Springer, Hei-
delberg (1998)

16. Reznick, B.: Some concrete aspects of Hilbert’s 17th Problem. Contemp. Math. 253,
257–272 (2000)

17. Wang, D.: Gröbner Bases Applied to Geometric Theorem Proving and Discover-
ing. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications. Lec-
ture Notes of Computer Algebra, pp. 281–301. Cambridge Univ. Press, Cambridge
(1998)

18. Wang, D.: Elimination Methods. Springer Wien, New York (2001)
19. Wang, D.: Elimination Practice. Software Tools and Applications. Imperial College

Press, London (2004)
20. Weitzenböck, R.: Math. Zeitschrift 5, 137–146 (1919)
21. Wu, W.-T.: Mathematics Mechanization. Science Press, Kluwer Academic Pub-

lishers, Beijing, Dordrecht (2000)
22. Yang, L., Zhang, J.: A Practical Program of Automated Proving for a Class of

Geometric Inequalities. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS
(LNAI), vol. 2061, pp. 41–57. Springer, Heidelberg (2001)

23. Yang, L.: Difference substitution and automated inequality proving. Journal of
Guangzhou Univ., Natural Science Edition 5(2), 1–7 (2006)

24. Yao, Y.: Termination od the sequence of SDS and machine decision for positive
semi-definite forms. arXiv:0904.4030v1 (2009)

Thousands of Geometric Problems

for Geometric Theorem Provers (TGTP)

Pedro Quaresma

CISUC, Department of Mathematics, University of Coimbra
3001-454 Coimbra, Portugal

pedro@mat.uc.pt

Abstract. Thousands of Geometric problems for geometric Theorem
Provers (TGTP) is a Web-based library of problems in geometry.

The principal motivation in building TGTP is to create an appro-
priate context for testing and evaluating geometric automated theorem
proving systems (GATP). For that purpose TGTP provides a centralised
common library of geometric problems with an already significant size
but aiming to became large enough to ensure meaningful system eval-
uations and comparisons. TGTP provides also a workbench were it is
possible to test any given geometric conjecture.

TGTP is independent of any given GATP. For each problem the code
for each GATP (whenever available) is kept in the library. A common
format for geometric conjectures, extending the i2g format, is being de-
veloped. This common format, plus a list of converters, one for each
GATP, will allow to test all the GATPs with all the problems in the
library.

TGTP is well structured, documented and with a powerful querying
mechanism, allowing an easy access to the information. All information in
the library, and also the supporting formats and tools are freely available.

TGTP aims, in a similar spirit of TPTP and other libraries, to provide
the automated reasoning in geometry community with a comprehensive
and easily accessible library of GATP test problems. The development
of TGTP problem library is an ongoing project.

Keywords: Library of problems in geometry, Geometric Automated
Theorem Proving.

1 Introduction

Automated theorem provers, applications, and libraries of problems are often
developed separately. In some cases, joint efforts of many of researchers led to
standards such as DIMACS (for propositional logic) [6] and SMT (for satisfia-
bility modulo theory) [1] and libraries of problems such as SATLIB (for propo-
sitional logic) [10], TPTP1 (for predicate logic) [21], SMT-lib (for satisfiability
modulo theory) [1] etc. Such efforts, standards, and libraries are fruitful for eas-
ier exchange of problems, ideas, and even program code. However, this is often
1 http://www.cs.miami.edu/~tptp

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 169–181, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.miami.edu/~tptp

170 P. Quaresma

very demanding and there are not many systems smoothly integrating libraries
of problems and theorem provers.

There are also several systems integrating dynamic geometry software (DGS),
GATPs, and a set of examples. For example: Java Geometry Expert2 (JGEX) is
a system that combines dynamic geometry, automated geometry theorem prov-
ing and visual dynamic presentation of proofs. It contains a large set of exam-
ples; GEOTHER3 is an environment for manipulating and proving geometric
theorems implemented in Maple. It contains a collection of theorems in both
elementary and differential geometry [22]; Ludi Geometrici4 has a vast library
of problems in the area of classical constructive (ruler and compass only) Eu-
clidean geometry. It does not provide a GATP so no formal proofs are provided;
GeoThms5 is a Web workbench in the field of constructive problems in Euclidean
geometry. It links DGSs and GATPs and contains a large library of geometry
problems [19]. Many of the DGSs, e.g. GeoGebra6 [8], Cabri7 , Cinderella8[15,20],
etc, DGSs/GATPs, e.g. GCLC [12], GeoView [2], GeoProof [16], Geometry Ex-
plorer [23], MMP/Geometer9 [9],GEX 9, Discover [3], and also GATPs like The-
orema [4] come with a (some times large) set of examples. However none of these
systems try to provide a common platform for meaningful system evaluations
and comparisons.

In the rest of this paper we present Thousands of Geometric problems for
geometric Theorem Provers (TGTP10) which is a Web-based library of GATP
test problems. It aims to become a comprehensive common library of problems
with a significant size and unambiguous reference mechanism, easily accessible
to all researchers in the automated reasoning in geometry community. TGTP
tries to address all relevant issues. In particular:

– is Web-based and is thus easily available to the research community;
– is easy to use;
– aims to provide a common format to conjectures in geometry;
– tries to cover the different forms of automated proving in geometry, e.g.

synthetic proofs and algebraic proofs;
– aims to become large enough for statistically significant testing. In its current

version it contains already over 180 problems;
– aims to become a comprehensive, up-to-date library;
– is independent of any particular GATP system;
– is well structured and documented. This allows effective and efficient use of

the library;

2 http://www.cs.wichita.edu/~ye/;
3 http://www-calfor.lip6.fr/~wang/GEOTHER/
4 http://www.polarprof.org/geometriagon/
5 http://hilbert.mat.uc.pt/GeoThms/
6 http://www.geogebra.org/cms/
7 http://www.cabri.com/
8 http://www.cinderella.de
9 http://www.mmrc.iss.ac.cn/~xgao/software.html

10 http://hilbert.mat.uc.pt/TGTP

http://www.cs.wichita.edu/~ye/
http://www-calfor.lip6.fr/~wang/GEOTHER/
http://www.polarprof.org/geometriagon/
http://hilbert.mat.uc.pt/GeoThms/
http://www.geogebra.org/cms/
http://www.cabri.com/
http://www.cinderella.de
http://www.mmrc.iss.ac.cn/~xgao/software.html
http://hilbert.mat.uc.pt/TGTP

Thousands of Geometric Problems for Geometric Theorem Provers (TGTP) 171

– documents each problem. This contributes to the unambiguous identification
of each problem;

– provides query mechanisms;
– provides a mechanism for adding new problems;
– provides a workbench for an easy testing of any given conjecture.

Paper Overview. Section 2 describes the TGTP system, its realm, the Web-
interface, the structure of the information, the queries, the performance informa-
tion. Section 3 talks about a common format for geometric conjectures. Section
4 discusses further work, and in Section 5 some final conclusions are drawn.

2 TGTP

Thousands of Geometric problems for geometric Theorem Provers (TGTP) is a
Web-based library of geometric problems for testing and evaluating geometric
automated theorem proving systems.

2.1 Realm

TGTP is a library of problems (conjectures) in geometry for GATP systems eval-
uation. TGTP aims to supply the automatic reasoning in geometry community
with a comprehensive library of GATPs problems.

The TGTP library is independent of any GATP system, for each problem
generic information is kept (see Section 2.3 for details) and, connected to this,
the code for the different GATPs that are already associated with the problem.

A common XML-format is being developed based in the author’s previous
experience [18] and in the i2g common file format [7], extending this last format,
allowing it to cope with conjectures. From this common format converters to
GATP specific formats will be written, which can be used to provide the GATPs
code whenever a specific realisation was not provided.

As said above TGTP stores, for each problem, some generic information,
namely the name of the problem, a short textual information, a formal statement
of the conjecture, a set of keywords and bibliographic references (some of this
fields are optional), this linked with powerful query mechanisms allows keeping
the list of problems coherent, avoiding duplications (see Section 2.3 for details).

The goal for building TGTP is, in a similar spirit of TPTP and other libraries,
to provide the GATP community with a centralised problem collection with an
easy access to all researchers. The TGTP aims to become a comprehensive up-
to-date library of problems for the GATPs testing and evaluation.

2.2 The Web Interface

The TGTP ’s Web interface aims to fulfil the goal of an easy availability of all
the information to the GATP community. It is structured in only three levels
(see Fig. 1), two, if we do not consider the entry level: a first level for login and

172 P. Quaresma

also to browse some generic info about the system (Help) and a second level
(after the login) divided in four sections plus a Logout option.

There are three different type of TGTP ’s users: anonymous/regular users,
contributors and the administrator. The administrator has access to a simple
interface that allows to see logging information and to do some administrative
duties.

The anonymous/regular user has access to the “public” interface. All the
access is given in terms of “see but do not touch” mode. Exception to this
is the Workbench ,where any user can test the problems with the already
installed provers. A personal scrapbook, i.e. a list of problems, is available. The
anonymous users will share a common list, the other (registered) users will have
his/her own list. This type of user has full access to the information and to the
downloadable materials.

Contributors will have, in addition to all the regular users’ features, the ability
to add new problems, i.e., in the section “Problems List” the contributors will
have the possibility of submit new problems and/or update the existing ones
(see markers (r)egular and (c)ontributer in Fig. 1)

Entry Level

Adminstration

(c)

Workbench Downloads LogoutDocuments/Help

(r)

read only read/write

Problems List

Users Login Help
Anonymous

Login

Fig. 1. Structure of the Web-page

The contributors can also produce a new set of evaluation data, i.e. a new set
of performance values for the different GATPs when run over the TGTP set of
problems. For instance, after the introduction of a new set of problems.

The TGTP shares with the GeoThms system the list of users.
The interface is divided in six main sections (see Fig. 1). The Administration

is the section reserved for administrative duties. The Logout section is for a well-
behaved exit, closing the Web-session and registering some information about
the time spent by the user in the system.

Thousands of Geometric Problems for Geometric Theorem Provers (TGTP) 173

The Documents/Help section contains documents, for instance, a list of bib-
liographic references about GATPs (in BibTEX format) cited, or not, in the
problems; a list of provers and a list of authors with information about GATPs
and its authors. It will also contain information regarding the use of TGTP :
manuals, frequently asked question list, How-Tos.

This section contains also the performance information regarding the GATPs
and the list of problems: number of attempts, number of proof attempts suc-
ceeded, i.e. the GATP has reached a conclusion within the time limit of 600s;
the percentage of success, and information of the CPU time spent in the proofs,
the minimum time, the maximum time, and the average time. The information
of each individual proof attempt is also displayed (see Section 2.5).

Also in this section is a link to the TGTP’s Forum, a place where TGTP’s
users can freely exchange information.

The Problem List section contains the list of all problems introduced up to
the present day. It is presented in a concise form: a list of 10 (or 20, or 50, or all)
lines with the unique identification problem, the name of the problem, a short
description (if present), and the number of proofs succeeded and the number of
proof attempts. Each line contains also a link to another Web-page where all the
info about the problem is presented.

For each problem it is possible to get all the details about it, and its proofs.
From this page it is possible to download the information about the problem in
textual form for an easy reading: its identification name, the submission date,
its name, a short description and a formal statement (in LATEX format), a list of
keywords and for each proof attempt its status, the GATP used, and the GATP
code.

The contributors can update/change the info on every existing problem in the
database. They have also the capability to add new problems, the insertion of
new problems is safeguarded with a validation step where a search for similar
problems, already in the database, is done.

It will also be possible to submit a list of new problems for a bulk insertion
into the database. The automatic processing of the list will be done with the
help of a given XML-format (see Appendix A).

It is also possible to query the database to look for a problem or a set of
related problems (see Section 2.4).

In the Workbench section it is possible to test conjectures with the “in-house”
GATPs. A user (of any type) will have a simple Web-editor to write the con-
jecture he/she wants to submit to one of the GATPs that are available in the
server, for now GCLCprover [13] and CoqAM [16]. The GATPs are called with a
600s time limit and after a successful run, or after 600s, the results of the proof
are made available.

The problems to be submit can be: new problems, written by the user; existing
problems, selected from TGTP list of problems, or from the personal scrapbook.
The scrapbook is unique to every user.

The Downloads section is the place where it is possible to download documents
related to the TGTP database itself and to GATP’s codes listing.

174 P. Quaresma

The TGTP database can be, with the exception of the tables with the infor-
mation of the TGTP users, downloaded in full, i.e. it is possible to download
a file with the result of a “mysqldump” command [17]. It is also possible to
download the entity-relationship diagram that describes the database (see Fig.2
for a condensed version of the ERD).

From this section the GATP’s codes listings are also available, i.e. a text file
with all the codes in the database related to any given GATP. This file is a
simple text file with a simple separator between each problem’s code. This lists
of problems is also available in a compressed file containing the list of problems
in XML format (see Appendix A) for an easy automatic parsing.

2.3 The List of Problems

The information is organised in five different aggregations (see Fig. 2). The
aggregations Conjectures and Proofs are the core of TGTP . In Conjectures we
have the list of all problems and in Proofs we have, for each problem, all its
proofs attempts.

The Users aggregation is used to control the access of registered (and anony-
mous) users to TGTP and to keep information about the user’s login history.
The workbench is connected to this section by the CodeTmpProver table.

The aggregations Measures of Efficiency and Statistics (a more correct name
should be Performance Information) have all the details about performance
information. In Statistics a snapshot of all the measures of efficiency, at a given
time, is kept. The purpose of this information is to keep an historical record
of the TGTP status allowing an evaluation of the problems/GATPs/TGTP
development along the years.

The TGTP table is used to keep track of different (majors) versions of TGTP .
Since TGTP shares with the GeoThms system the database of problems we

can also have, for many of the conjectures but not necessarily for all, the DGS’s
code for the geometric construction. The DGS constructions are only available
within the GeoThms system.

2.4 Queries

The list of problems can be queried in two ways: a simple query using MySQL’s
regular expressions and a more powerful using the full-text search of MySQL [17].
The first one is done over the name attribute of the table Conjectures after the
user has provided a word to be searched. This word will be matched against
any of the words in the list of words that constitute the conjectures names. The
second one is done over the attributes name, description, shortDescription
and keywords of the table Conjectures and allows, for a given input sentence,
to get the list of most similar sentences in either of the these attributes.

2.5 Performance Information

The TGTP database contains now (2011/06/17) 180 problems and contains
results of proof attempts from two GATP: CoqAM [16], and GCLCprover [13],

Thousands of Geometric Problems for Geometric Theorem Provers (TGTP) 175

demId

Prover Used

Computer Used

provers

proverId

demonstrations

TGTP codeTmpProver

authorproverteoId

logs

users

bibrefs

theorems

authors

measures

computer

computerUsed

statistics

bibrefs
USERS

bibtheorem

CONJECTURES

userId bibproofs

dateTime

STATISTICS

statisticsPerTheo

userLogs

userId

MEASURES EFFICIENCYPROOFS

TGTP 2011/1/10

Fig. 2. Structure of the data base (E-R diagram)

covering the methods: Wu’s method [24], Gröbner basis method [14] and area
method [11].

A new set of performance values is taken whenever a major change in TGTP
database occurs: a increase in the number of problems; a change in the computer
that is used to run the GATPs; a inclusion of a new GATP or a change in version
of an existing GATP. That is, all the data in the measures table is collected and
tagged with the current date and saved in the table statistics. If needed, new
measures of efficiency are taken, e.g. a new computer will imply a new set of
measures for all the problems times all the GATPs; a new GATP, or a new
version of an existing one, will imply a set of measures for all the problems with
that particular GATP. For new problems all the GATPs (whenever applicable)
are executed and the values added. A new version of TGTP is only relevant
for this issue if the change would imply new, hopefully improved, codes for the
problems, e.g. new converters, or a new version of the common format.

These snapshots of the information contained in TGTP and the fact that
any kind of change: a new problem, a new proof to an existing problem; a new
GATP, or a change in version of an existing GATP, etc, will add to the existing
information (not update the information but to add new one) will allow to trace
the evolution of a given GATP (through its changes of versions), or of a given
problem, or the TGTP system itself.

The values are taken per proof attempt (see Table 1), that is, for each pair
of problem and GATP’s code, the performance values of that attempt are saved
in the measures table. All the proofs attempts have a time limit of 600s after
which the process is killed by the operating system.

The proof status are : “Proved”; “Disproved”; “Failed to prove the conjec-
ture”; “Time-out: failed to prove the conjecture”, when the process is killed
before it reaches and end; “Maximal number of proof steps reached: failed to
prove the conjecture”, a limit that some GATPs (for example GCLC AM), have

176 P. Quaresma

themselves; “The conjecture out of scope of the prover”, whenever the GATP
could not deal with the problem, e.g. the provers based in the area method have
a limited range of problems that they can deal with (see [11] for details). The
correspondent numeric codes range from 1 to 6.

Table 1. Results of Proof Attempts (fragment)

Coq (AM) GCLC (AM) GCLC (WM) GCLC (GBM)
TheoId status time status time status time status time

GEO0230 4 600.021 4 1.468 4 605.362
GEO0231 1 17.89 3 0 2 0.004 3 0.224
GEO0232 3 0.024 2 0 3 0.004
GEO0233 3 0.252 1 0.044 1 1.392
GEO0234 1 1.07 1 0 1 0 1 0
GEO0235 4 600.44 1 1.4 2 0.008 3 0.004
GEO0236 4 600.29 4 600.17 2 1.668 1 5.22
GEO0237 4 600.6 3 0.788 1 0.048 4 599.169
GEO0238 4 601.27 1 0.032 1 0.024 1 0.092
GEO0239 1 0.004 1 0.008 4 609.362

Apart from this, per problem results, some overall values are also collected
(see Table 2). For each GATP the following measures are taken: the number of
proof attempts, i.e. the number of code entries contained in the database; the
number of times the GATP succeeded in proving (or disproving); the percentage
of success; and some measures of CPU times: the minimum time needed, the
maximum time needed, and the average time. This last values are taken only for
those cases where the time-out limit was not reached.

The script used to run the GATPs, imposing a time limit, and getting the
CPU time used by the GATPs, is this bash script:

#!/bin/bash
ulimit -t $1
/usr/bin/time --output=$2 -f "CPU time in seconds: %e" $3 $4 > $5

where ulimit and time are Linux tools to impose a time limit and to get the
CPU time spent by a given process respectively. The arguments of the script are:
the time limit (600s); the name of the file where the CPU time will be written;
the name of the GATP; the argument (code) to the GATP; and the file that will
receive (by a Linux redirection) all the output of the GATP.

After each run, a set of other scripts will parse the resulting files getting the
desired results.

3 Common File Format for Conjectures

In [18] an xml-suite for constructive descriptions of geometrical figures and
geometrical proofs is described. This format is used in the GeoThms system to

Thousands of Geometric Problems for Geometric Theorem Provers (TGTP) 177

Table 2. Overall Results

attempts succeeded %of success min max avg

Coq (AM) 76 68 0.89 0.73 213.71 17.698
GCLC (AM) 123 62 0.5 0 360.235 9.194
GCLC (WM) 96 88 0.92 0 6.404 0.422
GCLC (GBM) 96 56 0.58 0 112.319 5.393

provide a common format for its list of problems, and where the conversion of
this format to the DGSs/GATPs format is done via xslt files.

Since then, the i2g common file format of the Intergeo consortium was speci-
fied, which is a file format designed to describe any construction made with the
help a DGS [7].

Having this in mind we decided to adopt the i2g format and to extend it with
an xml-based format for geometrical proofs (from our previous work). As said
in [7] the Content Dictionaries [5] of OpenMath11 can be used to define a new
set of symbols, to describe geometric conjectures, and in this way to enrich the
expressive power of the i2g common file format (see Appendix B for details).

We intend to support the automatic conversion from this new extended com-
mon format to all the GATPs formats available in the TGTP system.

4 Future Work

The TGTP project is, and it will always be, an ongoing project. New problems
should be added to the existing list of problems, new GATPs, or new versions
of existing GATPs should be considered.

Apart from this long term commitment, there are short/medium term im-
provements to be done: the common format for GATPs and the corresponding
converters; direct conversions between the different GATPs (e.g. the Coq AM
and GCLCprover) for an optimized comparison between GATPs; improvements
in the performance information, namely the inclusion of graphical outputs for a
better reading; improvements in the documentation and the Web-page.

5 Conclusions

In the GeoThms system the author of this article and Predrag Janičić already
addressed some of the issues that are now being laid down for TGTP , namely
the xml common format, and the list of problems. Where the GeoThms goal
is to have a publicly accessible and widely used Internet based framework for
constructive geometry with a strong integration of DGSs, GATPs and a library of
problems, the TGTP goal is to provide the GATP community with a centralised
collection of problems, independent of any particular GATP system.

The development of TGTP problem library is an ongoing project, aiming to
provide all of the desired properties described above.
11 http://www.openmath.org/

http://www.openmath.org/

178 P. Quaresma

A List of Problems XML Format

The lists of problems (for each GATP) are available in files written in a simple
XML format for an easy automatic parsing. This format is used for the bulk
automatic insert of a given list of problems in the database, but it is also used
to assemble a file with all the conjectures in TGTP . This file is accessible to
download in the Web-page.

The XML format has the necessary tags to describe any given problem (an
load it into the database). The tags are self-explanatory, the example below
describes the format. The author of this article is open to any suggestions/im-
provements to this format that the readers might be willing to suggest.

<results>

<gatpid>

GATP id

</gatpid>

<result>

<userid>

Contributor Id (mandatory)

</userid>

<theoid>

Theorem Id (output file, in the input file it will be ignored)

</theoid>

<theoname>

Theorem Name (mandatory)

</theoname>

<description>

Theorem statement in LaTeX format (optional)

</description>

<shortDescription>

Theorem statement in text format (optional, but highly desirable)

</shortDescription>

<keywords>

<keyword>

keyword (list of keywords, optional, but highly desirable)

</keyword>

...

</keywords>

<biblist>

<bibitem>

Bibliographic entry, in BibTeX format (optional)

</bibitem>

...

</biblist>

<DGSid>

<n> - the DGS id number (optional)

</DGSid>

<figcode>

DGS code for the rendering of the Geometric Construction (optional)

Thousands of Geometric Problems for Geometric Theorem Provers (TGTP) 179

</figcode>

<GATPid>

<n> - the GATP id

</GATPid>

<proofscode>

GATPs code

</proofscode>

</result>

...

</results>

The biblist and keywords lists may be empty.
The theoid tag is only meaningful when the XML file was generated by the

TGTP system. If provided in the input file it will be ignored, the system will
provide a unique identifier for each new problem disregarding any given value.

The DGSids are: (0,i2g),(2, Eukleides - 1.0.2), (3,GCLC - 9.00), (4,GeoGebra -
3.2.0.0). The GATPids are: (0,i2gGATP), (2,GCLC Area Method - 9.00), (4,COQ
Area Method - 1.0), (5,GCLC Wu’s Method - 9.00) and (6,GCLC Gröbner Basis
Method - 9.00).

B The Common Format for GATPs

The proof methods considered in TGTP for now are: the area method, the Wu’s
method and the Gröbner Basis method. Having that in mind, we begin to in-
troduce the symbols needed to support those methods. We have to consider
algebraic polynomials, the area method quantities, and the geometric conjec-
tures:

Algebraic Polynomials. The symbols needed for this can be imported from Open-
Math Polynomial CD Group “polygrp”12 which in turn use the symbols for
arithmetic operators from other CDs (e.g. the “arith1” CD).

Area Method Symbols. The Area Method introduce the ratio of directed seg-
ments, the signed area and the Pythagoras difference of triangles and rectangles.
Given that we will need to introduce:

sratio, signed_area3, signed_area4, pythagoras_difference3,
pythagoras_difference4

these symbols will be applied to points, the axiomatic elements of the area
method, which are in the i2g CD.

The area method needs also the symbol for equality and the operators of a
field (F, +, ·, 0, 1) of characteristic different from 2, these symbols can be found
in the CDs for arithmetic operators.

Symbols to express the non-degeneracy conditions [11] are also required.

12 http://www.openmath.org/cd/

http://www.openmath.org/cd/

180 P. Quaresma

Geometric Conjectures. Introducing geometric conjectures we need the sym-
bols for expressing conjectures, e.g. identical, collinear, perpendicular,
parallel, midpoint, etc.

And also the symbols for the proof itself: conjecture, prove, lemmas.
An example of a file in this format is given below:

<conjecture>
<equality>
<expression>
<signed_area3>
<point>P</point>
<point>Q</point>
<point>R</point>

</signed_area3>
</expression>
<expression>
<number>0.000000</number>
</expression>

</equality>
</prove>
</conjecture>

This is an ongoing project, any help will be welcome.

References

1. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: Gupta,
A., Kroening, D. (eds.) Proceedings of the 8th International Workshop on Satisfi-
ability Modulo Theories, Edinburgh, England (2010)

2. Bertot, Y., Guilhot, F., Pottier, L.: Visualizing geometrical statements with
GeoView. Electronic Notes in Theoretical Computer Science 103, 49–65 (2004)

3. Botana, F., Valcarce, J.L.: A dynamic-symbolic interface for geometric theorem
discovery. Computers and Education 38, 21–35 (2002)

4. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa,
K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema:
Towards computer-aided mathematical theory exploration. Journal of Applied
Logic 4(4), 470–504 (2006)

5. Davenport, J.H.: On writing OpenMath content dictionaries. SIGSAM Bul-
letin 34(2), 12–15 (2000)

6. DIMACS: Satisfiability suggested format (May 1993),
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/

7. Egido, S., Hendriks, M., Kreis, Y., Kortenkamp, U., Marquès, D.: i2g Common
File Format Final Version. Tech. Rep. D3.10, The Intergeo Consortium (2010)

8. Fuchs, K., Hohenwarter, M.: Combination of dynamic geometry, algebra and calcu-
lus in the software system geogebra. In: Computer Algebra Systems and Dynamic
Geometry Systems in Mathematics Teaching Conference 2004, pp. 128–133. Pécs,
Hungary (2004)

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/

Thousands of Geometric Problems for Geometric Theorem Provers (TGTP) 181

9. Gao, X.-S., Lin, Q.: MMP/Geometer - a Software Package for Automated Ge-
ometric Reasoning. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930,
pp. 44–66. Springer, Heidelberg (2004)

10. Hoos, H., Stützle, T.: SATLIB: An online resource for research on SAT. In: Gent,
I.P., Maaren, H.V., Walsh, T. (eds.) SAT 2000, pp. 283–292. IOS Press, Amsterdam
(2000)

11. Janičić, P., Narboux, J., Quaresma, P.: The Area Method: a recapitulation. Journal
of Automated Reasoning 7 (to appear, 2011), doi:10.1007/s10817-010-9209-7

12. Janičić, P.: GCLC — A Tool for Constructive Euclidean Geometry and More Than
That. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 58–73.
Springer, Heidelberg (2006)

13. Janičić, P., Quaresma, P.: System Description: GCLCprover + Geothms. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 145–150.
Springer, Heidelberg (2006)

14. Kapur, D.: Using Gröbner bases to reason about geometry problems. Journal of
Symbolic Computation 2(4), 399–408 (1986)

15. Kortenkamp, U., Richter-Gebert, J.: Using automatic theorem proving to improve
the usability of geometry software. In: Procedings of the Mathematical User-
Interfaces Workshop 2004 (2004)

16. Narboux, J.: A graphical user interface for formal proofs in geometry. Journal of
Automated Reasoning 39, 161–180 (2007)

17. Oracle: MySQL 5.5 Reference Manual, 5.5 edn. (January 2011), revision: 24956
18. Quaresma, P., Janičić, P., Tomašević, J., Vujošević-Janičić, M., Tošić, D.: XML-

Bases Format for Descriptions of Geometric Constructions and Proofs. In: Commu-
nicating Mathematics in The Digital Era, pp. 183–197. A. K. Peters, Ltd. (2008)

19. Quaresma, P., Janičić, P.: Geothms – a Web System for Euclidean Constructive
Geometry. Electronic Notes in Theoretical Computer Science 174(2), 35–48 (2007)

20. Richter-Gebert, J., Kortenkamp, U.: The Interactive Geometry Software Cin-
derella. Springer, Heidelberg (1999)

21. Sutcliffe, G.: The TPTP problem library and associated infrastructure. Jounal of
Automated Reasoning 43(4), 337–362 (2009)

22. Wang, D.: GEOTHER 1.1: Handling and Proving Geometric Theorems Automat-
ically. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 194–215.
Springer, Heidelberg (2004)

23. Wilson, S., Fleuriot, J.: Combining dynamic geometry, automated geometry the-
orem proving and diagrammatic proofs. In: Proceedings of the European Joint
Conferences on Theory and Practice of Software (ETAPS) Satellite Workshop on
User Interfaces for Theorem Provers (UITP). Springer, Heidelberg (2005)

24. Wu, W.T.: The characteristic set method and its application. In: Gao, X.S., Wang,
D. (eds.) Mathematics Mechanization and Applications, pp. 3–41. Academic Press,
San Diego (2000)

An Investigation of Hilbert’s Implicit Reasoning

through Proof Discovery in Idle-Time

Phil Scott and Jacques Fleuriot

Centre for Intelligent Systems and their Applications, Informatics Forum, University
of Edinburgh, 10 Crichton Street, Edinburgh, UK, EH8 9AB

phil.scott@ed.ac.uk, jdf@inf.ed.ac.uk

Abstract. In this paper, we describe how we captured and investigated
incidence reasoning in Hilbert’s Foundations of Geometry by using a
new discovery tool integrated into an interactive proof assistant. Our
tool exploits concurrency, inferring facts independently of the user with
the incomplete proof as a guide. It explores the proof space, contributes
tedious lemmas and discovers alternative proofs. We show how this tool
allowed us to write readable formalised proof-scripts that correspond
very closely to Hilbert’s prose arguments.

1 Introduction

The Foundations of Geometry [9] is the successor to the most influential mathe-
matical text in history [3], Euclid’s Elements [5], and is claimed to be the most
influential book on geometry written in the 20th century [1]. Hilbert sought to
close all the logical gaps of the Elements and

[...] to establish for geometry a complete, and as simple as possible,
set of axioms and to deduce from them the most important geometric
theorems.[9]

The logical rigour was supposedly ensured by stripping all interpretation from
the basic concepts, so that the words “point”, “line” and “plane” could be re-
placed by “table”, “chair” and “mug”. Weyl has since claimed that the de-
ductions which follow have no gaps [18], but in their attempt to formalise the
axiomatics and its elementary theorems, Meikle and Fleuriot found many miss-
ing lemmas [11]. Indeed, it is sufficient to note that Hilbert followed Euclid in
one pervasive omission: they both give proofs on an ambient plane when the
axioms characterise solid geometry [8].

Our aim is to completely formalise Hilbert’s axiomatics in an interactive proof
assistant, and investigate the space of missing lemmas. Our strategy has been to
integrate concurrent discovery tools which can systematically and collaboratively
explore that space and contribute the necessary lemmas automatically. This
should give us formalised proofs whose structure corresponds closely to the prose,
or else give us evidence that the prose arguments should be finer grained.

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 182–200, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

An Investigation of Hilbert’s Implicit Reasoning 183

2 Declarative Formalisation

Interactive proof assistants have been used extensively to verify theorems in ge-
ometry [6,10,12], and are generally needed for verification tasks where theorems
are so challenging that they cannot be solved in a timely fashion by unguided
automation, and instead require human assistance. They are also useful when we
wish to analyse axiomatic systems for which no sophisticated automated tools
are yet available, and to analyse the structure of informal proofs which such
tools fail to replicate.

The two main ways to approach interactive proof roughly divide into procedu-
ral and declarative1. In a procedural setting, automated tools, known as tactics,
are invoked on demand to simplify the current goal and advance the proof. By
carefully composing these tactics, the user can simplify a theorem all the way
back to its premises, thereby proving it.

The procedural approach involves explicitly stating the procedures needed to
transform an implicit proof state. In contrast, the declarative approach leaves the
procedures implicit, so that the user instead states the formulas which connect
premises to the desired conclusion. The challenge of declarative proof is to make
this connection fine-grained enough that the implicit and usually very generic
procedures are effective.

The resulting declarative proofs are therefore more readable, generally speak-
ing, than their procedural counterparts. Firstly, it is relatively easy to determine
the proof state at any point in the proof without knowing the details of the
automation. Secondly, proof commands are named after the mathematician’s
ordinary logical vocabulary. So declarative proofs can potentially resemble ordi-
nary textbook mathematics both structurally and syntactically. We can therefore
hope that they are potentially accessible to ordinary mathematicians, and not
just expert users of the respective systems.

It is for these reasons that we opted to formalise Hilbert’s text in the declar-
ative style. We want a readable, formally verified version of Hilbert’s text, and
we want to have a proof script whose logical structure can be analysed and
compared with the prose.

However, we found that declarative proof leaves little scope for proof explo-
ration. The user typically has to work out the correct inferential paths by hand,
and hope that the granularity is adequate for the proof tools. We hope to rectify
this with the discovery tool described in this paper.

3 HOL Light

Our chosen proof assistant, HOL Light [7], is an LCF-style prover [13], in which
proofs are carried out by invoking functions directly at the ML top-level. The
correctness of proofs is guaranteed via encapsulation. Theorem objects are ex-
posed by an abstract data type whose signature corresponds to the primitive
inference rules of a higher-order logic.
1 See Wiedijk [19] for some analysis of this distinction.

184 P. Scott and J. Fleuriot

The upshot is that we can express our proofs with the full support of ML,
and easily develop new tactics and tools. These tools are typically written in
embedded combinator languages [14], making them almost trivially interoperable
with each other and with the rest of ML.

The declarative proof language we are using is inspired by the purely declar-
ative proof system Mizar [4]. It is known as Mizar Light [19], and was developed
by Wiedijk and embedded in HOL Light as a set of further ML combinators. We
give an overview of its primitives in Figure 1. We have emphasised a declarative
semantics; that is, rather than describing how each primitive affects the state of
the prover, we describe what each primitive asserts at a given point in a script.

Primitive Meaning

theorem term Begins a proof of term.

assume term Asserts term as a justified
assumption at this point.

so Refers to the previous step as
justifying the current step.

have term Asserts term as derivable at this point.

consider vars st term Introduces vars witnessing
term.

by thms Refers to previously established theorems
thms as justifications for the current
step.

qed Asserts that the (sub)theorem is justified
at this point.

Fig. 1. An overview of Mizar Light

Inspired by HOL Light’s design, Wiedijk made the data structures used by
this language public, so that the Mizar Light system is highly customisable and
extensible: adding a new primitive is often as simple as defining a new function.
Indeed, we have added our own combinator obviously, which we describe in §6.

4 Incidence Reasoning

Hilbert’s axiomatic system is divided into five groups. After splitting conjunc-
tions, there are a total of twenty-three axioms. The first group, concerned with
incidence relations between the primitives point, line and plane, requires ten of
them, and as such, one would expect its axioms to feature significantly in proofs.
This was indeed the case in Meikle and Fleuriot’s formalisation [11], and the mat-
ter is especially clear in our own formalisation [16]. But in Hilbert’s prose, the
axioms are rarely cited. When we fill in the detail, we find the complex incidence
lemmas are appealed to sporadically, with some prose steps being justified by
overlapping sets of lemmas. In other words, the formalisation does not preserve
the structure of Hilbert’s original arguments.

An Investigation of Hilbert’s Implicit Reasoning 185

Our philosophy has been to justify Hilbert’s omission, and explain away the
complicated incidence reasoning as fussy detail which does nothing to enlighten
the reader of the core ideas behind his proofs. We wish, then, to eliminate this
reasoning from our proof scripts and leave it to automation. However, we do not
want to add ad-hoc proof automation to HOL Light, nor do we want algorithms
which cover both Hilbert’s implicit and explicit proof steps equally, since we wish
to analyse the latter. Instead, we need algorithms which systematically target
only the missing incidence reasoning.

4.1 Incidence Rules

We recovered the incidence reasoning using a forward-chaining discovery algo-
rithm, which can be parameterised by any given set of rules. Our rules, shown in
Figure 2, were derived directly from Hilbert’s first group of axioms, and govern
finite sets of collinear and planar points, rather than the primitives of points,
lines and planes. We favoured set-theoretic rules to drive the algorithm, since
the incidence reasoning in the Foundations of Geometry has a distinctly combi-
natorial flavour.

While these rules are given for arbitrary sets, they are only used by our tool
against finite sets built from the empty set and adjoin. Thus, we are only using
sets as a convenient representation. They do not give us additional reasoning
power above the elementary theory, and are effectively short-hand for a recur-
sively enumerable set of conjunctive and disjunctive rules governing Hilbert’s
primitive incidence relations. For example,

collinear{A, B, C} ↔ ∃a.A on a ∧B ona ∧C on a.

Note that under certain conditions, the rules (1), (4), (6), (10) and (11) are
interderivable with axioms I,1, I,2, I,4, I,5, I,6, while rules (4), (7), (9) and (11)
yield Hilbert’s two theorems from the first group (the axioms and theorems are
given in Appendix A).

To see an example of the correspondence, we first need to recover the concept
of a line and a plane in the following way: given two distinct points P and Q,
we will say that the line PQ is defined as a maximal collinear set of points
containing P and Q. Given three points P , Q and R which form a non-collinear
set, we say that the plane PQR is defined as a maximal planar set of points
containing P , Q and R.

In this way, rules (1) and (4) correspond to Hilbert’s first two axioms, which
assert that two points determine a line. Indeed, given distinct points P and
Q, we know from rule (1) that {P, Q} is collinear, and thus by rule (4), that
the (necessarily finite) union of all collinear sets containing P and Q must be
collinear and maximal. Moreover, given any two maximal collinear sets S and T
sharing P and Q, we know by rule (4) that S ∪ T is collinear and thus by the
maximality of each, that S = T . Thus, the points P and Q determine a unique
maximal collinear set: the line PQ.

186 P. Scott and J. Fleuriot

∀P Q. collinear {P, Q} (1)

∀S T.S ⊆ T ∧ collinear T −→ collinear S (2)

∀P Q R.¬ collinear {P, Q, R} −→ P �= Q ∧ P �= R ∧Q �= R (3)

∀S T P Q. collinear S ∧ collinear T

∧Q ∈ S ∧ P ∈ S ∧Q ∈ T ∧ P ∈ T ∧ P �= Q

−→ collinear(S ∪ T) (4)

∀S X Y P Q R. collinear S ∧ ¬ collinear{P, Q, R}
∧X ∈ S ∧ Y ∈ S ∧ P ∈ S ∧Q ∈ S ∧X �= Y

−→ ¬ collinear{X, Y, R} (5)

∀P Q R. planar {P, Q, R} (6)

∀S T.S ⊆ T ∧ planar T −→ planar S (7)

∀S. collinear S −→ planar S (8)

∀S T P. collinear S ∧ collinear T ∧ P ∈ S ∧ P ∈ T

−→ planar(S ∪ T) (9)

∀S T P Q. collinear S ∧ planar T

∧Q ∈ S ∧ P ∈ S ∧Q ∈ T ∧ P ∈ T ∧ P �= Q

−→ planar(S ∪ T) (10)

∀S T U. planar S ∧ planar T ∧ ¬ collinear U ∧ U ⊆ (S ∩ T)

−→ planar(S ∪ T) (11)

∀S T U P Q. collinear S ∧ collinear T ∧ ¬ collinear U

∧ U ⊆ (S ∪ T) ∧ P ∈ S ∧Q ∈ S ∧ P ∈ T ∧Q ∈ T

−→ P = Q (12)

Fig. 2. Incidence Rules

An Investigation of Hilbert’s Implicit Reasoning 187

4.2 Incidence and Pasch’s Axiom

Hilbert’s first proofs appear in Group II, and they make extensive use of an
axiom due to Pasch. This axiom asserts that any line a which enters a triangle
ABC on one side and does not meet any of the vertices, must leave by one of
the other two sides, such as in the case depicted in Figure 3.

A B

C

a

a

FF

D D

E

E

��

� �

Fig. 3. Axiom II,4

This is a complex axiom to apply. In terms of our point-set predicates, the
claim that a line cannot pass through any of the triangle’s vertices becomes three
claims of non-collinearity or the assertion that five points form three triangles.
Together with the triangle that is being intersected, this leaves us to prove the
existence of four triangles every time we apply Pasch’s Axiom. The matter is
formalised by deriving the following version of the axiom:

∀A B C D E.

between AD B ∧ ¬ collinear{A, B, C}
∧ ¬ collinear{A, D, E} ∧ ¬ collinear{B, D, E} ∧ ¬ collinear{C, D, E}
∧ planar{A, B, C, D, E}
−→ ∃F. collinear{D, E, F} ∧ (between AF C ∨ between B F C) (13)

The axiom is further complicated by its existential and disjunctive conclusion.
Every time this axiom is applied in Hilbert’s proofs, at least one of the disjuncts is
eliminated, by deriving a falsehood on its assumption. The existential is typically
eliminated by showing that the point in question is already witnessed. In all but
one case, Hilbert elides the case-splitting and the existential elimination, but in
our original Isabelle formalisation [16], explicit and complex incidence arguments
based on point sets were needed.

Finally note that it is assumed in Pasch’s Axiom that all points lie in a plane.
This fact needs to be derived whenever we apply Pasch’s Axiom, but as we
mentioned in §1, Hilbert almost never mentions planes in his proofs.

5 Idle-Time Discovery

Most of the logic involved in reproducing the first three proofs of Foundations
of Geometry involved finding the triangles which justify the applications of

188 P. Scott and J. Fleuriot

Pasch’s Axiom. This can be challenging, since the relevant axioms are elementary
beyond geometric intuition and do not always fit with the constraints apparent
in diagrams. It is not always obvious when the assumptions are strong enough
to derive the conditions on Pasch’s Axiom, or to determine which other triangles
could be shown to exist which might yield alternative ways to apply it. In fact,
the challenge had left us unnecessarily deviating from Hilbert’s prose in our ear-
lier formalisation. To alleviate the difficulties, we decided to leave the exhaustive
search to a computer, and implement automated discovery algorithms.

Now the automation available in most interactive theorem provers is invoked
on demand by the user when they evaluate individual proof steps. But when the
user writes the formal proof for the first time, or comes to edit it later, they will
spend most of their time thinking, consulting texts, backtracking and typing in
individual proof commands. The CPU is mostly idling during this process, and
we can exploit this idle time to run automated tools concurrently.

We wanted this tool to then complement the user’s own interactive and declar-
ative development of the proof. The automation thus identifies and derives im-
plicit facts which might interest the user, or even solves the goal outright, while
they investigate their own chains of deduction independently. They can perhaps
focus on high-level strategies that require human insight, while the automation
explores lower level mechanical details.

One interesting way we can allow these two independent systems — the hu-
man user and the machine automation — to cooperate is to focus on forward
derivations. When a user writes a declarative proof script in an interactive set-
ting, they invoke functions which add facts to a growing proof context. As these
facts are added, an automated tool can inspect them and choose whether to use
them as part of its own independent derivations.

The user, in turn, can inspect the facts derived by the automated tool, and
choose whether to use them as part of their derivations. The symmetry leads
to feedback. The user assists the automated tool by deriving new facts into the
proof context, and the automated tool assists the user by outputting its own
facts. These new facts are used by the user to produce more facts, and so on.
The two systems work continuously in tandem, assisting each other as they drive
forward towards the goal theorem.

6 Overview of the System

In a forthcoming paper [17], we define a generic discovery algebra and explain
how our incidence discovery tool is just one of its applications. The algebra
includes combinators which allow the user to combine forward-chaining, data-
driven search, filtering, customisable data-flow and term-rewriting, and allows
the user to lift arbitrary inference rules into the discovery mechanism.

The tools integrate with declarative proofs via the proof-context. The proof-
context is a data-structure containing, firstly, hypotheses, which represent

An Investigation of Hilbert’s Implicit Reasoning 189

intermediate facts explicitly derived during a declarative proof, and secondly,
the term which the user is trying to prove. Thus, one primitive in the algebra
pulls in the hypotheses from the context, thereby allowing the discovery to be
driven by the user’s explicitly inferred facts, while a filtering function halts all
further inference once the goal is found.

For incidence discovery, we compose these primitives with the incidence rules
from Figure 2, and use the term-rewriter to unfold conclusions involving finite
sets. We thereby derive all three-element non-collinear sets, the largest collinear
sets and the largest planar sets that can be inferred from the goal context. A
fixpoint is always reached, since our rules only work against a finite number of
points. The fixpoint is announced to the user, and the tool sleeps until the proof
context changes.

Since we are using an LCF style prover [13], we can ensure that the tool’s
derivations are fully-expansive [2]. This means that to carry out its derivations,
the tool applies the same ML functions available in the core system to generate
fully machine verified lemmas. These lemmas can then be seamlessly integrated
into the user’s proof script to produce a fully machine-checked proof.

The algorithm exploits laziness pervasively so that the front-end can output
facts to a separate terminal as they are generated, though it should be trivial
to write new front-ends and new mechanisms to filter out uninteresting facts.
We have also extended the Mizar Light proof language, as mentioned in §3,
by adding an obviously primitive. This combinator transforms an ordinary
declarative proof step into one which picks up the discovered theorems, and
adds them as justification2.

7 Analysing Hilbert’s Proofs

In this section, we discuss what we have learned about incidence reasoning with
point sets based on our discovery tool. We then discuss two proofs which re-
quired significant effort to formalise in Isabelle, and show what their HOL Light
formalisation looks like when written in tandem with our discovery tool. We
compare these new proofs with their prose counterparts, suggest weaknesses of
the prose, and discuss an alternative proof which the automation allowed us to
explore.

7.1 Theorem 4

We give the prose version of the proof of Theorem 4 as it appears in the tenth
edition of Foundations of Geometry:

THEOREM 4. Of any three points A, B, C on a line there always is one
that lies between the other two.

2 The tool will be made freely available once we are satisfied it is suitable for end-users.

190 P. Scott and J. Fleuriot

A B C

D

EF

G

Fig. 4. Proof of Theorem 4

PROOF. Let A not lie between B and C and let also C not lie between
A and B. Join a point D that does not lie on the line AC with B and
choose by Axiom II,2 a point G on the connecting line such that D lies
between B and G. By an application of Axiom II,4 [(Pasch’s Axiom)] to
the triangle BCG and to the line AD it follows that the lines AD and
CG intersect at a point E that lies between C and G . In the same way,
it follows that the lines CD and AG meet at a point F that lies between
A and G.

If Axiom II,4 is applied now to the triangle AEG and to the line CF
it becomes evident that D lies between A and E, and by an application
of the same axiom to the triangle AEC and to the line BG one realizes
that B lies between A and C.

Four applications of Pasch’s Axiom are needed to prove Theorem 4. In three
of them, Hilbert names the triangle and the line on which the axiom is applied
(the remaining application being a symmetry of the first). We have represented
this reasoning in our HOL Light formalisation by implementing a function of
two arguments: a triple of points defining a triangle and a pair of endpoints of
a line. The function uses these to specialise the first five quantified variables
in Pasch’s Axiom (rule (13) in §4.2), runs the discovery tool to a fixpoint, and
then returns the discovered theorems to be used as justification for the current
step. Since the tool automatically eliminates existentials and splits cases, one
of the disjuncts in the conclusion of Pasch’s Axiom can be eliminated and the
remaining disjunct fed as a justifying theorem.

Before we turn to our HOL Light formalisation, we consider our earlier Isabelle
formalisation. In Figure 5, we give an extract where we first apply Pasch’s Axiom,
and then, in the block introduced by moreover, we eliminate a disjunct from
its conclusion. Hilbert never mentions this elimination, and as with the rest of

An Investigation of Hilbert’s Implicit Reasoning 191

the formalisation, most of the missing steps are unilluminating, consisting of a
complex combination of tactics and picky variable instantiations that are not
reflected in the prose. Indeed, we had to use comments judiciously to show any
correspondence between the prose and the formal proof steps [16], which made
it difficult to justify the proofs as readable, even though they were written in a
declarative style.

with AxiomII4_col[of B G C D A]

‘¬collinear {B, C, G}‘ ‘¬collinear {A, B, D}‘

‘¬collinear {A, C, D}‘ ‘¬collinear {A, D, G}‘

and‘between B D G‘ obtain E

where "collinear {A, D, E}" and "(between B E C ∨ between G E C)"

by auto

moreover
{

assume "between B E C"

with ‘¬between B A C‘ have "A �= E" by auto

from ‘between B E C‘ and AxiomII1b[of B E C]

have "collinear {B, C, E}" by simp

with ‘collinear {A, B, C}‘ and ‘B �= C‘

have "collinear {A, B, C, E}"

by (blast intro: collinear_subset[where T = "{A, B, C} ∪ {B, C, E}"]

collinear_union)

with ‘collinear {A, D, E}‘ and ‘A �= E‘

have "collinear {A, C, D}"

by (blast intro: collinear_subset[where T = "{A,B,C,E} ∪ {A,D,E}"]

collinear_union)

}
Fig. 5. Some Isabelle formalisation

While the Isabelle proof ran to a total of sixty-nine complicated proof steps,
our new proof in Figure 6 has just nine lines, each readily understandable, and
matching the prose in an almost one-to-one fashion (the formalisation of theo-
rems exists triangle and g22 are given in Appendix B.3).

Alternative Proof. We should remark that in the first edition of the Founda-
tions of Geometry, Theorem 4 is only given as an axiom. This, despite Hilbert’s
claim:

[...] so far as the particular axioms of groups I, II, and IV are concerned,
it is easy to show that the axioms of these groups are each independent
of the other of the same group.

This was fixed by the tenth edition, which contains the above proof of Theorem 4,
attributed to Wald. This should be evidence enough that the theorem is not
trivially obvious, and so we decided to investigate further. Starting from the

192 P. Scott and J. Fleuriot

theorem collinear {A, B, C} ∧ A �= B ∧ A �= C ∧ B �= C

∧ ¬ between A C B ∧ ¬between B A C =⇒ between A B C

assume collinear {A, B, C} ∧ A �= B ∧ A �= C ∧ B �= C

∧ ¬ between A C B ∧ ¬between B A C

so consider D such that ¬collinear {A, B, D} by exists triangle

obviously3consider G such that between B D G by g22

consider E such that collinear {A, D, E} ∧ between C E G

by pasch on B,C,G and A,D

consider F such that collinear {C, D, F} ∧ between A F G

by pasch on A,B,G and C,D

have between A D E by pasch on A,E,G and C,F

have between A B C by pasch on A,C,E and B,G

qed

Fig. 6. Theorem 4 in HOL Light

same basic diagram, we added Pasch’s Axiom to our automated tool and used
the tool purely for proof discovery, allowing it to fill in the last four applications
of Pasch’s Axiom in Figure 6 autonomously.

We had to limit the search, since after adding Pasch’s Axiom, it is possible
to derive an infinity of points. Moreover, we were not interested in proofs that
were substantially longer than the original. We therefore allowed the discovery
tool to non-deterministically make four applications of Pasch’s Axiom against
all possible triangles and lines in the diagram, filtering for those applications
which were formally verified to derive the goal theorem. By incorporating some
basic proof-recording, we could later recover the triangles and lines against which
Pasch’s Axiom is applied.

From the recorded data, we extracted many “alternative” proofs, but, in fact,
most of these yield symmetries of the original. In some cases, two independent
applications of Pasch’s Axiom were applied in reverse order. In other cases, the
proof was identical to the original up to a relabelling of points. Only one new
proof was revealed up to symmetry. We give it now in a prose formulation with
an accompanying diagram (Figure 7).

DISCOVERED PROOF OF THEOREM 4.

Assume A, B and C are collinear, with A not between B or C and C
not between A or B. We find a point D off the line AC and extend it to
G using Axiom II,2. We then use Axiom II,4 on the triangle BCG and
the line AD to find the point E between C and G. We use Axiom II,4
on the triangle BEG and the line CD to find the point F between B
and E. We use the axiom again on the triangle ABE and the line CF
to show that D lies between A and E. Finally, we can use the axiom on
the triangle ACE and the line BG to find B between A and C.

3 Here we use our combinator (see §6) to pick up inequalities needed for axiom g22.

An Investigation of Hilbert’s Implicit Reasoning 193

A

B

C

D

EF

G

Fig. 7. Alternative Proof of Theorem 4

In both proofs, we first identify a point D off the line AC and extend the line
BD to G. This tells us that D lies between B and G, which gives us our first
opportunities to use Pasch’s Axiom. In both cases, our goal is to use this axiom
in order to place the point D between A and E, so that a final application of
Pasch’s Axiom to �ACE and the line BG will place B between A and C. The
two proofs only differ in how they find the point F , and how they use F to place
D between A and E.

Wald’s original proof has more symmetry than the new proof: E could be
replaced with F ; and it is clear that the third application of Pasch’s Axiom
could be made on �CFG and the line AE, instead of �AEG and the line CF .
Our proof makes it clear that, while E and F can be found symmetrically and
independently, only one of these points is distinguished in the final few steps.

It is worth drawing some attention to the subtlety of the incidence reasoning
here. We could have applied Pasch’s Axiom differently to find the point F , using
�CDG and the line BE. This would tell us that F lies on the line BE between
C and D (before, it told us that F lies on the line CD between B and E). Now
it might seem that we can use a symmetrical application of Pasch’s Axiom on
the same line BE and �ACD, which would solve the goal putting B between
A and C. But at this stage in the proof, we must consider the possibility that
BF exits �ACD between A and D. This possibility is not yet eliminable by
incidence reasoning alone.

This fact is not apparent in the proof. In his eleven uses of Pasch’s Axiom
across Theorems 3, 4 and 5, Hilbert only considers the case-split implied by
the axiom twice. And yet our formalisations show that it takes up a significant
amount of combinatorial reasoning about incidence. It is difficult to justify leav-
ing this complexity implicit, when it has consequences on the shape of the proof
which we find difficult to argue as obvious. The reasoning may be laborious,
but we demand rigour when the proofs supposedly contain no gaps. At the very
least, with machine-checked automation, we can be confident in the correctness
of the implicit steps.

194 P. Scott and J. Fleuriot

7.2 Theorem 5

The proof of Theorem 5 is split into three parts and is the most involved proof
given in Group II, taking up almost an entire page of the English translation of
Foundations of Geometry. Effectively, the theorem gives a transitivity property
for point ordering. As with Theorem 4, it was originally provided as an axiom
of Group II, but by the tenth edition, it had a proof based on one given by
Moore [15].

THEOREM 5. Given any four points on a line, it is always possible
to label them A, B, C, D in such a way that the point labeled B lies
between A and C and also between A and D, and furthermore, that the
point labeled C lies between A ad D and also between B and D.

PROOF. Let A, B, C, D be four points on a line g. The following will
now be shown:
1. If B lies on the segment AC and C lies on the segment BD then the
points B and C also lie on the segment AD. By Axioms I,3 and II,2
choose a point E that does not lie on g, [and] a point F such that E lies
between C and F . By repeated applications of Axioms II,3 and II,4 it
follows that the segments AE and BF meet at a point G, and moreover,
that the line CF meets the segment GD at a point H . Since H thus
lies on the segment GD and since, however, by Axiom II,3, E does not
lie on the segment AG, the line EH by Axiom II,4 meets the segment
AD, i.e. C lies on the segment AD. In exactly the same way one shows
analogously that B also lies on this segment.

A B C D

E

F

G

H

Fig. 8. Proof of Theorem 5

An Investigation of Hilbert’s Implicit Reasoning 195

We have only given the first part of Hilbert’s proof. We give its formalisation
in Figure 9. Again, the formalisations of named theorems are given in Ap-
pendix B.3.

theorem between A B C ∧ between B C D =⇒ between A C D

assume between A B C ∧ between B C D

obviously consider E such that ¬collinear {A, B, E} by

exists triangle

obviously consider F such that between C E F by g22

consider G such that between A G E by pasch on A,C,E and B,F

have between B G F by pasch on B,C,F and A,E

consider H such that collinear {C, E, H} ∧ between D H G

by pasch on B,D,G and C,F

have between A C D by pasch on A,D,G and E,H

qed

Fig. 9. Theorem 5 in HOL Light

Some Idle-Time Discoveries. We now describe some of the details of the
incidence reasoning needed to prove this theorem. We implemented our tool with
optional book-keeping, so that as it derived all the discovered facts, it retained
information about which rules had been applied when and in what order. The
results revealed fairly complicated chains of inference.

A B D

E

G

H

(a) Replace E with G

A B D

G

H

(b) Replace B with D

A D

G

H

(c) Replace D with H

A

E

G

H

(d) Replace G with E

Fig. 10. Finding �AEH from �ABE

196 P. Scott and J. Fleuriot

In the example of Figure 10, we must infer that three points A, E and H form
a triangle. Each of the steps shown corresponds to an application of rule (5) from
Figure 2 and can be understood as substituting points of a non-collinear triple
one-at-a-time, until we have rewritten the initial triangle �ABE to �AEH .

It might seem that we can just replace the point B with the point H to rewrite
�ABE to�AEH , but the triangle introduction rule requires a hypothesis about
an appropriate collinear set and an appropriate point inequality. So the inference
is indirect. At first, we can substitute G for E using the line AGE, producing
�ABG from�ABE. We then substitute D for B using the line ABD, and then
H for D using the line DGH . Finally, E and H are shown distinct on the basis
of �AGH and the line AGE, after which we can substitute H for G using the
line AGE.

The task of manually reproducing these steps in our original Isabelle for-
malisation had got the better of us, and we had not been able to realise this
particular chain of argument, though we had written many like it. At that time,
we had always found ourselves experimenting with different starting triangles
to get the right conclusions, and manually determining the instantiations for
the point variables in our rules. Now with our automated tool, the inferences
are automatically discovered, relieving us of the complex combinatorial steps on
which they depend and the error-prone task of finding them.

A Comparison with Hilbert’s Prose. Our new formalisation gives an almost
one-to-one correspondence between our formal proof and Hilbert’s prose, but
there are still differences which draw our attention.

Firstly, notice that in the prose, Hilbert compresses his applications of
Pasch’s Axiom (Axiom II,4):

By repeated applications of Axioms II,3 and II,4 it follows that the
segments AE and BF meet at a point G, and moreover, that the line
CF meets the segment GD at a point H .

We can see from our formal version that this becomes exactly three applications
of Pasch’s Axiom. While Hilbert does not give this number explicitly, it is implied
by a subtle use of language in the English translation: “the segments AE and BF
meet at a point G” while “the line CF meets the segment GD at a point H” (our
emphasis). Now if we are to show that two segments intersect, we must derive two
facts of betweeness, and therefore we need two applications of Pasch’s Axiom.
But if we are to show that a line and a segment intersect, we only need only
one fact of betweeness. It seems that Hilbert was aware of this detail, and chose
his words carefully, and as with Theorem 4, it indicates a subtlety of the logic
which is not immediately apparent from the diagram.

We were able to omit the final step, where Hilbert proves that B lies between
A and D. Hilbert implies this can be achieved by an analogous proof, but it is
actually a corollary of the above. Hilbert’s first axiom in the group tells us that
between A B C implies between C B A. Therefore, we take Theorem 5, swap A
and D, and swap B and C, and obtain the required result.

An Investigation of Hilbert’s Implicit Reasoning 197

Finally, we briefly mention the second part of the proof, which derives the
following:

2. If B lies on the segment AC and C lies on the segment AD then C
also lies on the segment BD and B also lies on the segment AD.

We omit the details of its formalisation. Suffice to say, we noticed the same neat
correspondence between our formal proof steps and Hilbert’s prose.

8 Conclusion and Further Work

We have described a way to combine concurrent proof discovery with declarative
interactive geometry theorem proving in a way which allows user and machine to
cooperate, continually supplying each other with facts that bring the proof-state
closer towards the goal.

We have shown how this tool can be used to capture incidence reasoning in
Hilbert’s Foundations of Geometry. It allows us firstly to investigate the proofs by
helping us understand the complexity involved in applying the axioms. Secondly,
we were able to use the tool to automatically discover fully-verified alternative
proofs. And finally, by integrating the tool’s results into the proof language of
HOL Light, we have shown how to create formally verified readable versions of
Hilbert’s proofs whose steps correspond almost one-to-one with the prose. From
this, we can suggest that Hilbert was justified in leaving gaps in his proofs,
since they serve no pedagogical purpose and do not capture the essential strat-
egy. Instead, they are just trivial combinatorial details to be left to automated
verification, and thus rightly left implicit.

As we make progress formalising Hilbert’s Foundations of Geometry, we ex-
pect to see more gaps in his prose, and these will yield case-studies for our tool.
As we find new ways to plug these gaps, we will be in a position to gather evi-
dence of the tool’s usefulness, and find ways to improve it. Furthermore, we will
be in a better position to analyse the logical rigour of Hilbert’s proofs, under-
standing his gaps either as more implicit and fussy combinatioral reasoning that
is justifiably omitted, or as genuine oversights. We also plan to use our tool in
a non-geometrical domain, trying to determine if our approach has broader use
to the theorem-proving community.

Our system is currently not designed for proof replay, where complete and
correct proof scripts are rerun in batch fashion. Here, we might find that without
the abundant idle time available in proof development, the discovery tool is too
inefficient to be worthwhile. Future work will improve this situation. In §7.2,
when describing the idle-time discoveries, we mentioned how the discovery can
run with book-keeping, so that we can recover the direct paths to the discovered
facts. Later, we shall investigate ways to automatically yet cleanly embed this
information in the final proof script.

Finally, we should note that our system currently focuses on sets of ground
facts initialised by the user, and most of our rules assume no complicated first-
order or higher-order reasoning. We want to consider cases where rules must be

198 P. Scott and J. Fleuriot

applied with universal hypotheses, such as inductive rules, and we want to con-
sider general ways that facts can be speculated, allowing us to infer implications,
carry out proofs-by-contradiction and perform boolean case-splits. It is not clear
whether Hilbert’s text will be a useful case-study for these extensions, so we may
need to move to a different setting.

Acknowledgements. We would like to thank our reviewers for their helpful
and detailed comments.

References

1. Birkhoff, G., Bennett, M.: Hilbert’s Grundlagen der Geometrie. Rendiconti del
Circolo Matematico di Palermo 36, 343–389 (1987)

2. Boulton, R.: Efficiency in a Fully-Expansive Theorem Prover. Ph.D. thesis. Cam-
bridge University (1993)

3. Boyer, C.B.: A History of Mathematics. John Wiley & Sons (1991)
4. de Bruijn, N.G.: The Mathematical Vernacular, a language for Mathematics with

typed sets. In: Dybjer, P., et al. (eds.) Proceedings from the Workshop on Pro-
gramming Logic, vol. 37 (1987)

5. Euclid: Elements (1998),
http://aleph0.clarku.edu/~djoyce/java/elements/elements.html

6. Hales, T.: Introduction to the Flyspeck Project,
http://drops.dagstuhl.de/opus/newlinevolltexte/2006/432/

pdf/05021.HalesThomas.Paper.432.pdf

7. Harrison, J.: HOL Light: a Tutorial Introduction. In: Srivas, M., Camilleri, A.
(eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

8. Heath, T.L.: Euclid: The Thirteen Books of The Elements, vol. 1. Dover Publica-
tions (1956)

9. Hilbert, D.: Foundations of Geometry. Open Court Classics, 10th edn. (1971)
10. Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq

using ranks. In: Symposium on Applied Computing, pp. 1110–1115 (2009)
11. Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In:

Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer,
Heidelberg (2003)

12. Meikle, L.I., Fleuriot, J.D.: Mechanical Theorem Proving in Computational Ge-
ometry. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763,
pp. 1–18. Springer, Heidelberg (2006)

13. Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

14. Milner, R., Bird, R.S.: The Use of Machines to Assist in Rigorous Proof [and
Discussion]. Philosophical Transactions of the Royal Society of London. Series A,
Mathematical and Physical Sciences 312(1522), 411–422 (1984)

15. Moore, E.H.: On the projective axioms of geometry. Transactions of the American
Mathematical Society 3, 142–158 (1902)

16. Scott, P.: Mechanising Hilbert’s Foundations of Geometry in Isabelle. Master’s
thesis. University of Edinburgh (2008)

17. Scott, P., Fleuriot, J.: Composable Discovery Engines for Interactive Theorem
Proving. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP
2011. LNCS, vol. 6898, pp. 370–375. Springer, Heidelberg (2011)

http://aleph0.clarku.edu/~djoyce/java/elements/elements.html
http://drops.dagstuhl.de/opus/newlinevolltexte/2006/432/pdf/05021.HalesThomas.Paper.432.pdf
http://drops.dagstuhl.de/opus/newlinevolltexte/2006/432/pdf/05021.HalesThomas.Paper.432.pdf

An Investigation of Hilbert’s Implicit Reasoning 199

18. Weyl, H.: David Hilbert and his mathematical work. Bulletin of the American
Mathematical Society 50, 635 (1944)

19. Wiedijk, F.: Mizar Light for HOL Light. In: Boulton, R.J., Jackson, P.B. (eds.)
TPHOLs 2001. LNCS, vol. 2152, pp. 378–394. Springer, Heidelberg (2001)

A Summary of Group I

A.1 Axioms

I,1 For every two points A, B there exists a line a that contains each of the
points A, B.

I,2 For every two points A, B there exits [sic] no more than one line that contains
each of the points A, B.

I,3 There exist at least two points on a line. There exist at least three points
that do not lie on a line.

I,4 For any three points A, B, C that do not lie on the same line there exits [sic]
a plane α that contains each of the points A, B, C. For every plane there
exists a point which it contains.

I,5 For any three points A, B, C that do not lie on one and the same line there
exists no more than one plane that contains each of the three points A, B,
C.

I,6 If two points A, B of a line a lie in a plane α then every point of a lies in
the plane α.

I,7 If two planes α, β have a point A in common then they have at least one
more point B in common.

I,8 There exist at least four points which do not lie in a plane.

A.2 Theorems

THEOREM 1. Two lines in a plane either have one point in common or none
at all. Two planes have no point in common, or have one line and otherwise no
other point in common. A plane and a line that does not lie in it either have one
point in common or none at all.

THEOREM 2. Through a line and a point that does not lie on it, as well as
through two distinct lines with one point in common, there always exists one
and only one plane.

B Summary of Group II

B.1 Axioms

II,1 If a point B lies between a point A and a point C then the points A, B, C
are three distinct points of a line, and B then also lies between C and A.

II,2 For two points A and C, there always exists at least one point B on the line
AC such that C lies between A and B.

200 P. Scott and J. Fleuriot

II,3 Of any three points on a line there exists no more than one that lies between
the other two.

II,4 Let A, B, C be three points that do not lie on a line and let a be a line in
the plane ABC which does not meet any of the points A, B, C. If the line
a passes through a point of the segment AB, it also passes through a point
of the segment AC, or through a point of the segment BC.

B.2 Theorems

THEOREM 3. For two points A and C there always exists at least one point D
on the line AC that lies between A and C.

THEOREM 4. Of any three points A, B, C on a line there always is one that
lies between the other two.

THEOREM 5. Given any four points on a line, it is always possible to label them
A, B, C, D in such a way that the point labeled B lies between A and C and
also between A and D, and furthermore, that the point labeled C lies between
A and D and also between B and D.

B.3 Some Formalisations

g22: ∀A C. ∃B. between A C B

exists triangle: ∀A B. A �= B =⇒ ∃C. ¬COLLINEAR A, B, C

A Coherent Logic Based Geometry Theorem

Prover Capable of Producing Formal and
Readable Proofs�

Sana Stojanović, Vesna Pavlović, and Predrag Janičić

Faculty of Mathematics, University of Belgrade
Studentski trg 16, 11000 Belgrade, Serbia
{sana,vesnap,janicic}@matf.bg.ac.rs

Abstract. We present a theorem prover ArgoCLP based on coherent
logic that can be used for generating both readable and formal (machine
verifiable) proofs in various theories, primarily geometry. We applied the
prover to various axiomatic systems and proved tens of theorems from
standard university textbooks on geometry. The generated proofs can be
used in different educational purposes and can contribute to the growing
body of formalized mathematics. The system can be used, for instance,
in showing that modifications of some axioms do not change the power
of an axiom system. The system can also be used as an assistant for
proving appropriately chosen subgoals of complex conjectures.

1 Introduction

Geometry has initiated a number of revolutions in mathematics. Also, it has
always had a very important role in mathematical education because of paradig-
matic reasoning that it requires. For a similar reason, for decades it has been a
challenging domain for computer theorem proving, with most attention payed to
Euclidean geometry. As early as from 1950’s, there were interesting approaches
to automated proving of geometry theorems, but real successes came in last
decades of twentieth century. For example, theorem provers for Euclidean geom-
etry based on Wu’s method automatically proved hundreds of complex theorems
[7] and this method is often considered the most efficient method for automated
theorem proving overall. Today, there are two main directions in computer the-
orem proving in geometry:

– Interactive theorem proving using proof assistants such as Isabelle [29] or
Coq [38]. The proofs in this context are made mainly manually, but are au-
tomatically verified by a computer. Interactive proving is often very demand-
ing and time consuming, it requires an experienced user, and it is typically
non-trivial to reuse pieces of existing proofs. Even more, since there is no
automation (or it is of a very limited power), if one wants to formulate and
prove the same theorem in just a slightly modified theory, that would often
require doing the same amount of work all over again.

� This work has been partly supported by the grant 174021 of the Ministry of Science
of Serbia and by the SNF SCOPES grant IZ73Z0 127979/1.

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 201–220, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

202 S. Stojanović, V. Pavlović, and P. Janičić

– Automated theorem proving using algebraic methods (such as Wu’s method
[41] or Gröbner bases method [5,23]) or coordinates-free methods (such as
the area method [10] or the full-angle method [11]). In this context, proofs
are often generated very efficiently, but they are far from traditional, human-
readable proofs.

The above two directions have somewhat different motivations: the former aims
at building a corpus of verified mathematical knowledge, while the latter aims
at applications in education (e.g., within dynamic geometry software) or in in-
dustry (when it is more important to know that a certain conjecture is valid
than to have its proof). Nevertheless, there are also goals in the intersection of
the above two directions. It would be beneficial (both for the growing body of
formalized mathematics and for educational purposes) to have formal, machine
verifiable geometry proofs automatically generated, if possible — efficiently and
in the traditional geometry manner. In this paper we address these combined
goals and describe our, coherent logic based, theorem prover ArgoCLP (Auto-
mated Reasoning GrOup Coherent Logic Prover) that automatically generates
traditional, human readable, but in the same time formal proofs of geometry the-
orems (for various axiom systems). The generated step-by-step proofs are very
similar to the proofs given in standard geometry textbooks. A suitable domain
of the prover are foundational properties typically expressed in terms of appli-
cations of individual axioms. Hence, we do not aim at conjectures involving, for
instance, metrical quantities, typically successfully proved by algebraic provers.
Instead, we primarily aim at automatically proving that certain modifications
of some axioms do not change the power of an axiom system. In addition, we
believe that our theorem prover can serve as a machine assistant that can help
mathematicians to prove complex theorems suitably broken apart into several
smaller ones.

Organization of the paper. In Section 2 we give brief background information
on some geometry axiomatizations, on formal mathematics, and on coherent
logic. In Section 3 we present our algorithms for proving theorems in coherent
logic, in Section 4 we briefly discuss the implementation of our theorem prover
ArgoCLP, and in Section 5 we present applications of our prover to four axiom
systems for Euclidean space geometry. In Section 6 we discuss the related work
and in Section 7 we draw final conclusions and present some of the ideas for
further work.

2 Background

Axiomatizations of Geometry. Euclid, with his book “Elements”, is considered
to be the first who systematically presented and used an axiomatic method
in mathematics [19]. He succeeded to derive, using purely logical rules, many
geometry properties that were known long time before him. This system, partly
naive from today’s point of view, was used for centuries.

In 1899, in his seminal book “Der Grundlagen der Geometrie”, Hilbert pro-
posed a new axiom system to elementary geometry that fixed many flaws and

A Coherent Logic Based Geometry Theorem Prover 203

weaknesses of Euclid’s system [20]. This Hilbert’s work is one of the landmarks
for XX century mathematics, but it is still not up to contemporary standards.
The axiom system uses three sorts of primitive objects: points, lines and planes,
while the set of axioms is divided into five groups (incidence axioms, axioms of
order, axioms of congruence, axioms of parallels, and continuity axioms). Each
group of axioms is accompanied with some fundamental theorems that can be
proved using preceding axioms. One of more modern variants of Hilbert’s system
was given by Borsuk and Szmielev [4].

In mid-twenty century, Tarski presented a new, first-order axiomatisation (ac-
tually — several variants) for elementary geometry (with continuity features
weaker compared to Hilbert’s geometry), along with a decision procedure for
that theory [37,34]. Tarski’s axiom system is very simple: it is based only on one
sort of primitive objects — points, it has only two predicates and eleven axioms.

Formal Mathematics. Over the last years, in all areas of mathematics and com-
puter science, with a history of huge number of flawed published proofs, formal,
machine verifiable proofs (given in object-level form — in terms of axioms and in-
ference rules) have been gaining more and more importance. Formal proofs have
important role in management of mathematical knowledge (e.g., in digitization of
mathematical heritage), in education and e-learning, but also in industrial appli-
cations where correctness of some algorithms or calculations is critical. There are
growing efforts in developing formal proofs, with many extremely complex theo-
rems proved, with repositories of proved theorems, and also with many software
tools for producing and checking formal proofs. Among the most popular theorem
proving assistants (systems that implement formal logic and verify proofs) nowa-
days are Isabelle1 [29], Coq2 [38], Mizar3 [39], and HOL-light4 [18]. The level of
automation in proof assistants is typically very limited.

Readable formal proofs and Isar. Most of the theorem proving assistants use proof
scripts that explicitly list all axioms and inference rules used in every single proof
step. Despite many results and successes in formalizing fragments of mathemat-
ics and computer science, they are still not used by a wide scientific community.
The Intelligible semiautomated reasoning (Isar) approach to readable formal proof
documents [40] aims to bridge the gap between internal notions of proof given by
state-of-the-art interactive theorem proving systems and an appropriate level of
abstraction for user-level work. Isar is an alternative to traditional proof tactic
scripts, as it provides a proof language interface layer which is much more read-
able for the users. The Isabelle/Isar system provides an interpreter for the Isar for-
mal proof document language, and readable Isar proof documents are converted
and executed as series of low-level Isabelle inference steps. Therefore, Isar allows
the user to express proofs in a somewhat human-friendly way, but they are still
automatically verifiable by the underlying proof system.

1 http://www.cl.cam.ac.uk/research/hvg/Isabelle/
2 http://coq.inria.fr/
3 http://www.mizar.org
4 http://www.cl.cam.ac.uk/~jrh13/hol-light/

http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://coq.inria.fr/
http://www.mizar.org
http://www.cl.cam.ac.uk/~jrh13/hol-light/

204 S. Stojanović, V. Pavlović, and P. Janičić

Coherent Logic. Coherent logic (CL) was initially defined by Skolem and in
recent years it gained new attention [2,15,3]. CL allows certain existential quan-
tifications so it can be considered as an extension of resolution logic. In contrast
to the resolution method, the conjecture being proved is kept unchanged and di-
rectly proved (refutation, Skolemization and transformation to clausal form are
not used). Proofs in CL are natural and intuitive and reasoning is constructive,
so proof objects can be easily obtained [2]. Therefore, CL is a suitable frame-
work for producing both readable and formal proofs. A number of theories and
theorems can be formulated directly and simply in CL.

Formally, CL is a fragment of first-order logic (FOL) consisting of formulae
of the following form:

A1(x) ∧ . . . ∧An(x)⇒ ∃y1 B1(x, y1) ∨ . . . ∨ ∃ym Bm(x, ym)

which are implicitly universally quantified and where: 0 ≤ n, 0 ≤ m, x denotes a
sequence of variables x1, x2, . . . , xk, Ai (for 1 ≤ i ≤ n) denotes an atomic formula
(involving some of the variables from x), yj denotes a sequence of variables
yj
1, y

j
2, . . . , y

j
kj

, and Bj (for 1 ≤ j ≤ m) denotes a conjunction of atomic formulae
(involving some of the variables from x and yj). There are no function symbols
with arity greater than 0. Function symbols of arity 0 are called constants. A
witness is a new constant, not appearing in axioms used nor in the conjecture
being proved. The name constant covers both constants that are parts of the
signature and witnesses. A term is a constant or a variable. An atomic formula
is either ⊥ or p(t1, . . . , tn), where p is a predicate symbol of arity n and ti
(1 ≤ i ≤ n) are terms. An atomic formula over constants is called a fact.

The only inference rules (in the style of natural deduction, a variant of the
rules given in [3]) used in CL are as follows:

A1(a) ∧ . . . ∧An(a)

Ai(a)
∧E

A1 ∨ . . . ∨ An

[A1]....
B . . .

[An]
....
B

B
∨E

⊥
A

efq

A1(a) . . . An(a) A1(x) ∧ . . . ∧ An(x) ⇒ ∃y1 B1(x, y1) ∨ . . . ∨ ∃ym Bm(x, ym)

B1(a, w1) ∨ . . . ∨ Bm(a, wm)
ax

where a is a vector of constants and wj (for 1 ≤ j ≤ m) are vectors of witnesses
(i.e., fresh constants). When applied, the rule ∧E infers Ai(a) for each i such
that 1 ≤ i ≤ n. The rule (ax) is applied only if there are no vectors wj of
constants such that B1(a, w1) ∨ . . . ∨Bm(a, wm) holds.

A formula

A1(x) ∧ . . . ∧An(x)⇒ ∃y1 B1(x, y1) ∨ . . . ∨ ∃ym Bm(x, ym)

is a CL-theorem, if from premises A1(a), . . . , An(a) (where a denotes a sequence
of fresh constants) all conjuncts of a formula Bj(a, w) can be derived for some
j (1 ≤ j ≤ m) and for some vector of constants w.

A Coherent Logic Based Geometry Theorem Prover 205

There is a breadth-first proof procedure for coherent logic that is sound and
complete: a coherent formula F can be proved if and only if F is true in all
Tarskian models (with non-empty domains) of the set of the axioms and the
facts A1(a), . . . , An(a) [2].

It can be proved that any first-order formula can be translated into a CL
formula with preserved satisfiability [32]. This translation itself is not always
constructive (i.e., it may rely on steps that involve classical logic).

Notice that the definition of CL does not involve negation. A single fact ¬A
can be represented in the form A ⇒ ⊥, but this translation is not applicable in a
general case. In order to reason about negated facts, for every predicate symbol
R, typically a new symbol R is introduced that stand for ¬R and the following
axiom is used [32]: R(x) ∧R(x) ⇒ ⊥.

3 ArgoCLP Proof Procedures

In this section we describe proof procedures that are used or can be used in our
theorem prover ArgoCLP for CL (a description of the implemented procedures
and techniques is given in Section 4). It is a generic theorem prover for coherent
logic, so it can use any set of coherent axioms (not just geometrical). Sorts can
be used (but, alternatively, corresponding unary predicates may be used).

Having in mind applications in geometry,5 we will use axioms of the form
R(x) ∨ R(x) (where R is a predicate symbol) that are special instances of the
tertium non datur axiom schema. This addition still keeps the reasoning within
the intuitionistic setting and do not compromise completeness of the breadth-
first proof procedure or completeness of the proof procedures to be presented.

3.1 Basic Proof Procedure

An alternative to the breadth-first proof procedure is a simple proof procedure
with forward chaining and with iterative deepening. Axioms are applied accord-
ing to the inference rule (ax) given in Section 2. Definitions available are used
as they were axioms. The axioms are applied in the waterfall manner: when one
axiom has been successfully applied, then search for applicable axioms starts
again from the first axiom. All constants are enumerated and there is a dedi-
cated counter s that controls applications of axioms — an axiom can be applied
only if all of its (universally quantified) variables are matched with constants
whose order is less then s. Initially, s equals the number of constants appearing
in the premises of the conjecture. The value s is increased once no axiom can be
applied and the proof procedure continues. If no axiom can be applied anymore
and the conjecture has not been proved, this means that the conjecture is not
CL-theorem (however, for non-CL-theorems the proof procedure may not termi-
nate). It can be proved (in a similar manner as it was proved for the breadth-first
procedure in [2]) that this proof procedure is sound and complete: a coherent
5 Proofs of many conjectures of Hilbert style geometry require instances of the tertium

non datur axiom schema [13].

206 S. Stojanović, V. Pavlović, and P. Janičić

formula F can be proved if and only if F is true in all Tarskian models (with
non-empty domains) of the set of the axioms and the facts A1(a), . . . , An(a) [2].
In addition, it can be proved that this proof procedure is sound and complete
with respect to the inference system given in Section 2, i.e., a formula F can be
proved if and only if F is CL-theorem.

Despite the completeness property, proving some conjectures in some theories
is practically impossible with this basic proof procedure (i.e., impossible with
reasonable memory and time resources).

3.2 Improved Proof Procedure

Efficiency of the basic proof procedure given above can be improved in a number
of ways, while still preserving completeness. Here some possible improvements
are listed, all of which aim at keeping control on the search space (i.e., on the
number of introduced witnesses) and decreasing to some extent a combinatorial
explosion (caused by derived facts that are irrelevant).

Ordering of axioms. The axioms are grouped into the following groups (it is
assumed that n ≥ 0 (n > 0 for the third and the fourth group), m > 1,
and that one group of axioms excludes previous groups that are its special
cases):
non-productive non-branching axioms: axioms of the form:

A1(x) ∧ . . . ∧An(x)⇒ B(x)
non-productive branching axioms: axioms of the form:

A1(x) ∧ . . . ∧An(x)⇒ B1(x) ∨ . . . ∨Bm(x)
productive non-branching axioms: axioms of the form:

A1(x) ∧ . . . ∧An(x)⇒ ∃y B(x, y)
productive branching axioms: axioms of the form:

A1(x) ∧ . . . ∧An(x)⇒ ∃y1 B1(x, y1) ∨ . . . ∨ ∃ym Bm(x, ym)
strongly productive non-branching axioms: axioms of the form:

∃y B(y)
strongly productive branching axioms: axioms of the form:

∃y1 B1(y1) ∨ . . . ∨ ∃ym Bm(ym)
Axioms can be automatically assigned their types and are used in the proving
process with priorities given to the groups as in the above ordering. There
is no imposed ordering of axioms within a group (although their ordering
within groups can also impact efficiency).

Early pruning. When testing an axiom for applicability, it is not necessary
to instantiate all its variables and only then check if all relevant facts were
already derived. Instead, a check for relevant facts can be performed as soon
as possible, in order to enable early rejection of some axiom instances and
pruning of the search space. For instance, when applying the following axiom:

∀x : line ∀y : line ∀X : point ∀Y : point
(incident(X, x) ∧ incident(Y, x) ∧ incident(X, y) ∧ incident(Y, y) ∧X �= Y
⇒ x = y)

A Coherent Logic Based Geometry Theorem Prover 207

instead of matching x, y, X , and Y with all admissible constants, x and
X will be first unified with admissible constants, and the matching will
backtrack immediately if the fact instantiated from incident(X, x) has not
been already derived. Generally, relevant facts are checked as soon as all
involved arguments have been instantiated.

Breaking axioms that introduce several witnesses. As said in Section 2,
an axiom like:

∀x : line ∃X : point ∃Y : point (incident(X, x) ∧ incident(Y, x) ∧X �= Y)

will not be applied for a specific line a (instantiating x) if there are already
constants A : point and B : point such that incident(A, a), incident(B, a),
and A �= B. However, for efficiency reasons, it is beneficial not to apply the
above axiom even if there is a constant A : point such that incident(A, a)
holds, and there is no constant B : point such that incident(B, a) and A �= B
(because it would introduce two new points C and D). Instead, the following
variant of the above axiom should be used:

∀x : line ∀X : point (incident(X, x) ⇒ ∃Y : point (incident(Y, x) ∧X �=
Y))

Therefore, instead of one axiom, two axioms will be used, with the general
one having lower priority. The same mechanism can be applied for all axioms
that involve more than one existential quantifier. Breaking such axioms into
several versions is not always straightforward as in the above example. For
example, the axiom:

∃X : point ∃Y : point ∃Z : point ∃U : point noncoplanar(X, Y, Z, U)

should be broken into four axioms, with one of them:

∀X : point ∀Y : point ∀Z : point ∃U : point noncoplanar(X, Y, Z, U)

However, this conjecture is invalid (in Euclidean geometry) and an additional
premise (noncolinear(X, Y, Z)) is required. Because of this, if an axiom can
be broken into several variants, each of them should be proved (again by the
CL prover) before being used. If some variant cannot be proved (i.e., if it
cannot be proved within some time limit), the user may be asked to modify
it. Notice that additional axioms introduced in this way actually change the
original axiom system, but since the new axiom system is equivalent to the
original one (each of its axioms can be proved as a theorem by the other
one and vice versa), this modification is legitimate (the new axioms can be
considered only as lemmas).

Dealing with equality. For theories involving equality, the axioms of equality
are not used explicitly. Instead, equivalence classes of equality of constants
are maintained. Thanks to this, it suffices to work only with a canonical
representative of a class instead of all objects that belong to that class. In
the beginning of the proving process, every object represents its own class
and the classes are maintained using Tarjan’s union-find structures [36].

208 S. Stojanović, V. Pavlović, and P. Janičić

For example, if there are constants A : point, p : line, q : line and
α : plane such that incident(A, p), incident(q, α), and p = q hold, the fol-
lowing axiom can be applied:

∀X : point ∀x : line ∀χ : plane (incident(X, x) ∧ incident(x, χ) ⇒
incident(X, χ))

and, for X = A, x = p, χ = α, the fact incident(A, α) can be derived.
Namely, for this instantiation of variables, when checking if the fact
incident(p, α) hold, the representatives of p and α are first determined —
say, q and α — and since incident(q, α) holds, the axiom can be applied.
Although the axioms of equality are not used explicitly during the search
process, they are used in building a proof trace from which a full (machine
verifiable) proof object can be constructed.

Dealing with symmetrical predicate symbols. ApredicateR is symmetrical
(in argument positions i and j) if it holds (universal quantification is assumed):

R(x1, . . . , xi, . . . , xj , . . . , xn) ⇔ R(x1, . . . , xj , . . . , xi, . . . , xn)

For symmetrical predicates, only representatives of facts can be considered.
For instance, instead of storing both colinear(A, B, C) and colinear(C, B, A),
it suffices to store only colinear(A, B, C). A representative of a class of facts
can be determined in the following way: using the ordering of constants,
sort arguments in symmetrical positions, and choose the minimum as the
representative. This step is performed whenever a fact over a symmetrical
predicate should be checked. This mechanism can be used in conjunction
with the mechanism of equivalence classes w.r.t. equality to further reduce
the number of facts stored. Like the equality axioms, statements ensuring
that a predicate is symmetrical are not used during the search process, but
they are used in building the proof trace from which a full (machine verifi-
able) proof object can be constructed.

For example, if there are constants A : point, B : point, C : point and D :
point with the ordering A < B < C < D, and the facts noncolinear(C, B, D)
and colinear(A, D, C) derived, if the fact A = B is derived, the equivalence
classes of these two objects will be merged and a contradiction can be de-
tected. Namely, if A is the representative of a class containing A and B,
by using the equivalence classes, the representative of noncolinear(C, B, D)
is noncolinear(C, A, D), and, by symmetry properties, its representative is
noncolinear(A, C, D). By symmetry, the representative of colinear(A, D, C)
is colinear(A, C, D), so, from noncolinear(A, C, D) and colinear(A, C, D),
a contradiction can be derived.

Whether a predicate is symmetrical can be checked automatically (in the
preprocessing phase): all relevant conjectures are generated and then tried
to be proved. Instead of proving conjectures for all permutations of symmet-
rical arguments, it is sufficient to prove conjectures for permutation group
generators. For instance, when trying to prove that the predicate coplanar is
symmetrical on all four arguments, it is sufficient to prove conjectures only
for permutation group generators (universal quantification is assumed):

A Coherent Logic Based Geometry Theorem Prover 209

coplanar(x1, x2, x3, x4) ⇔ coplanar(x2, x3, x4, x1)
coplanar(x1, x2, x3, x4) ⇔ coplanar(x2, x1, x3, x4)

Reuse of proved theorems. Proved conjectures that a predicate is symmet-
rical (along with their proofs) are used within wider proofs. However, this
can be done also for other theorems of the theory proved by the system.

Even with all these techniques, many complex theorems cannot be proved in a
reasonable time. Also, generated proofs contain many irrelevant derivations.

3.3 Techniques That Do Not Preserve Completeness

In order to improve efficiency of the prover, at least for some conjectures, some
techniques that do not preserve completeness may be used:

Restriction on branching axioms. Branching axioms of the form R(x) ∨
R(x) are generated and used only for primitive (and not for defined) predi-
cates. (Moreover, it can be proved that for some of defined predicates omit-
ting axioms of the given form does not violate completeness.)

Restriction on axioms. In the proof procedure, only axioms that involve just
predicates occurring in the conjecture are used. Another, relaxed variant of
this restriction is: in the proof procedure, only axioms that involve at least
one predicate occurring in the conjecture are used.

4 ArgoCLP Implementation

The prover ArgoCLP is implemented in C++. It consists of around 5000 lines of
code, organized within 23 classes. Both the signature and the set of axioms are
imported into the program through files, so the prover can be used for different
CL theories. A conjecture is specified by:

Theory’s signature: names of sorts are stated after the keyword types, for
example:

types point line plane

followed by the list of predicate symbols given along with the list of types of
each argument. For example, the incidence predicate over points and lines
would be given as:

datatype inc_po_l point line

It is assumed that eq type denotes equality over two objects of a type type.
Set of axioms: axioms are given in the following form:

point(1) point(2) ~eq_point(1,2)
=> line(3) inc_po_l(1,3) inc_po_l(2,3)

(variables are represented by natural numbers, universal quantification is
assumed for variables appearing on the left hand side of the implication,
existential quantification is assumed for variables appearing only on the right
hand side of the implication).

210 S. Stojanović, V. Pavlović, and P. Janičić

Set of definitions: definitions are used for convenience and have the same form
as axioms. For instance:

point(1) point(2) point(3) line(4)
inc_po_l(1,4) inc_po_l(2,4) inc_po_l(3,4)
=> colinear(1,2,3)

Conjecture: it is given in the same form as axioms. For example:
point(1) point(2) point(3) line(4)
inc_po_l(1,4) inc_po_l(2,4) bet(1,2,3)
=> inc_po_l(3,4)

Most of the techniques listed in Section 3.2 are already implemented within Ar-
goCLP: grouping and prioritizing axioms, early pruning, support for equality
reasoning, support for symmetrical predicates. Lemmas obtained by breaking
axioms that introduce several witnesses can be verified within the prover, but
their automated generation (with possible assistance of the user) is still under
development. Also, symmetrical predicates are used as explained, but automatic
detection of symmetrical predicates and automatic generation of required prop-
erties are not fully implemented yet.

The user can state (through a configuration file) which of the techniques from
Section 3.2 and Section 3.3 should be used in the proof search:

Equality flag indicates whether the built-in equality reasoning will be used.
Excluded middle flags indicate whether axioms of excluded middle are to be

used and, more specifically, if only axioms of excluded middle for primitive
predicate symbols (and not for defined ones) will be used.

Flags for non completeness-preserving techniques indicate whether only
axioms that involve only predicates occurring in the conjecture should be
used (this does not apply to equalities if the equality flag is set); whether
only axioms that involve at least one predicate occurring in the conjecture
should be used (this does not apply to equalities if the equality flag is set);
whether the dedicated counter s is being incremented before trying to apply
any of strongly productive axioms.

Along the proving process, ArgoCLP generates a proof trace with all relevant
information. This proof trace can be exported to different output formats. Cur-
rently, ArgoCLP can generate (formally verifiable) proof objects in Isabelle/Isar
form (that are accompanied by the axioms also exported from ArgoCLP), and
to even more readable, natural language form (in English, in LATEX format). In
addition, there is a mechanism for eliminating all inference steps from a proof
trace (including branching steps6) that were not relevant, yielding a ,,clean”
(often significantly shorter) proof trace. Such clean proof traces, can be again
exported to Isabelle/Isar or natural language form.

6 A branching step is relevant only if both branches use the assumed case, otherwise,
the branching can be eliminated and a branch that does not use the assumed case
can be kept.

A Coherent Logic Based Geometry Theorem Prover 211

Example 1. Let us consider the following conjecture (of Hilbert-style Euclidean
geometry): for three lines p, q, and r and a plane α which contains them all
holds that if p �= q and q �= r and p and q do not intersect and q and r do not
intersect and if there exists a point A which belongs to the plane α and to the
lines p and r, then p = r.

The conjecture is specified in the following form:

premises

TH_8

% for three lines and a plane which contains them all holds that

% if first and second are distinct and second and third are distinct

% and first and second do not intersect and second and third do not

% intersect and if there exists a point which belongs to the plane

% and to the first and third line, then first and third line are equal

line(1)

line(2)

line(3)

plane(4)

~eq_line(1,2)

~eq_line(2,3)

~int_l_l(1,2)

~int_l_l(2,3)

inc_l_pl(1,4)

inc_l_pl(2,4)

inc_l_pl(3,4)

point(5)

inc_po_pl(5,4)

inc_po_l(5,1)

inc_po_l(5,3)

conclusions

eq_line(1,3)

A key fragment of the generated (,,clean“) Isabelle/Isar proof generated by the
prover is given below.
...

lemma TH_8:

assumes "LI1 ~= LI2"

and "LI2 ~= LI3"

and "\<not>int_l_l LI1 LI2"

and "\<not>int_l_l LI2 LI3"

and "inc_l_pl LI1 PL1"

and "inc_l_pl LI2 PL1"

and "inc_l_pl LI3 PL1"

and "inc_po_pl PO1 PL1"

and "inc_po_l PO1 LI1"

and "inc_po_l PO1 LI3"

shows "LI1 = LI3"

212 S. Stojanović, V. Pavlović, and P. Janičić

proof -

(*1*)

have "LI1 = LI3 \<or> LI1 ~= LI3"

using ax_g_ex_mid_3 [of "LI1" "LI3"]

by auto

(*2*) moreover

{ assume "LI1 = LI3"

(*3*)

from this

have ?thesis

by auto

} note note1 = this

(*4*) moreover

{ assume "LI1 ~= LI3"

(*5*) moreover

have "inc_po_l PO1 LI2 \<or> \<not>inc_po_l PO1 LI2"

using ax_g_ex_mid_7 [of "PO1" "LI2"]

by auto

(*6*) moreover

{ assume "inc_po_l PO1 LI2"

(*7*) moreover

from ‘LI1 ~= LI2‘ and ‘inc_po_l PO1 LI1‘ and ‘inc_po_l PO1 LI2‘

have "int_l_l LI1 LI2"

using ax_D5 [of "LI1" "LI2" "PO1"]

by auto

(*8*) moreover

from ‘int_l_l LI1 LI2‘ and ‘\<not>int_l_l LI1 LI2‘

have False

by auto

(*9*)

ultimately

have False

by auto

} note note2 = this

(*10*) moreover

{ assume "\<not>inc_po_l PO1 LI2"

(*11*) moreover

from ‘\<not>int_l_l LI1 LI2‘

have "\<not>int_l_l LI2 LI1"

using ax_nint_l_l_21 [of "LI1" "LI2"]

by auto

(*12*) moreover

from ‘\<not>inc_po_l PO1 LI2‘ and ‘inc_po_pl PO1 PL1‘ and ‘inc_l_pl LI2 PL1‘

and ‘inc_po_l PO1 LI1‘ and ‘inc_l_pl LI1 PL1‘ and ‘\<not>int_l_l LI2 LI1‘

and ‘inc_po_l PO1 LI3‘ and ‘inc_l_pl LI3 PL1‘ and ‘\<not>int_l_l LI2 LI3‘

have "LI1 = LI3"

using ax_E2 [of "PO1" "LI2" "PL1" "LI1" "LI3"]

by auto

(*13*) moreover

A Coherent Logic Based Geometry Theorem Prover 213

from ‘LI1 = LI3‘ and ‘LI1 ~= LI3‘

have False

by auto

(*14*)

ultimately

have False

by auto

} note note3 = this

(*15*) from note2 and note3 and ‘inc_po_l PO1 LI2 | \<not>inc_po_l PO1 LI2‘

have False

by auto

(*16*)

ultimately

have False

by auto

} note note4 = this

(*17*) from note1 and note4 and ‘LI1 = LI3 | LI1 ~= LI3‘

have ?thesis

by auto

ultimately

show ?thesis

by auto

qed

The (,,clean“) proof generated in the natural language form (using the natural
language description of the theory’s signature), along with the natural language
formulation generated from the conjecture specification, is given below (in order
to have proofs that closely resemble proofs from mathematical textbooks, some
additional transformations of the proof were automatically made, so it can be
given in the reductio ad absurdum form).

Theorem TH 8:

Assuming that p �= q, and q �= r, and the line p is incident to the plane α, and
the line q is incident to the plane α, and the line r is incident to the plane α,
and the lines p and q do not intersect, and the lines q and r do not intersect,
and the point A is incident to the plane α, and the point A is incident to the
line p, and the point A is incident to the line r, show that p = r.

Proof:

Let us prove that p = r by reductio ad absurdum.
1. Assume that p �= r.

2. It holds that the point A is incident to the line q or the point A is not
incident to the line q (by axiom of excluded middle).

3. Assume that the point A is incident to the line q.
4. From the facts that p �= q, and the point A is incident to the line

p, and the point A is incident to the line q, it holds that the lines p and
q intersect (by axiom ax D5).

214 S. Stojanović, V. Pavlović, and P. Janičić

5. From the facts that the lines p and q intersect, and the lines p and
q do not intersect we get a contradiction.

Contradiction.
6. Assume that the point A is not incident to the line q.

7. From the facts that the lines p and q do not intersect, it holds that
the lines q and p do not intersect (by axiom ax nint l l 21).
8. From the facts that the point A is not incident to the line q, and the

point A is incident to the plane α, and the line q is incident to the plane
α, and the point A is incident to the line p, and the line p is incident to
the plane α, and the lines q and p do not intersect, and the point A is
incident to the line r, and the line r is incident to the plane α, and the
lines q and r do not intersect, it holds that p = r (by axiom ax E2).
9. From the facts that p = r, and p �= r we get a contradiction.
Contradiction.

Therefore, it holds that p = r.
This proves the conjecture.

Theorem proved in 9 steps and in 0.02 s.

5 Applications

We applied ArgoCLP prover to four axiom systems for Euclidean (space) geome-
try in a uniform manner. These are Hilbert’s system [20], Tarski’s system [37,34],
system given by Borsuk and Szmielev [4], and our system that is very close to
Borsuk’s one, but more suitable for CL-based proof procedure. We use the same
signature for all the systems (so we could try to prove the same theorems within
different systems), which is the union of all the sorts and the predicates used in each
of these systems. Of course, if one system does not involve some predicates, it can-
not be used for proving their properties (e.g., Tarski’s system cannot be used for
proving properties of incidence relations, since this system deals only with points).
We encoded all axioms from these four systems, except axioms of continuity (for
their complexity). Still, a large fragment of geometry can be built without them.
We reformulated some axioms in order to avoid complex defined notions such as
ray, half-plane, internal angle, etc, but we kept the original meaning of all axioms.

Encoding axioms in its own right is not trivial, because original formulations
are often inaccurate, with some conditions only implicitly assumed. For instance,
when Hilbert, in his axioms, uses the phrase “two points”, he assumes that
they are distinct (but does not explicitly state that). Meikle and Fleuriot also
underlined this problem [26]. There is a number of problems of this sort and
sometimes it is not trivial to show whether a modification would change the
set of theorems of the system. Here we do not aim at a thorough comparison
between these systems, but rather at illustrating the ArgoCLP prover and to
make first steps in showing what fragments of one system can be built within
some other system. The prover can also be used to show what modifications of
certain axioms can be made.

A Coherent Logic Based Geometry Theorem Prover 215

We applied ArgoCLP on these axiom systems and on a number of theorems
from standard geometry courses.7 As expected, the results depended much on
the set of the axioms used. As an illustration, we list 14 theorems (including
some that were not proved by the prover within the time limit of 30 seconds)
and the obtained results for the four systems (the intended meaning of sorts and
predicates should be obvious from their names). All results were obtained with
one fixed configuration of the prover (only axioms that involve just predicates
occurring in the conjecture are used and only axioms of excluded middle for
primitive predicate symbols are used).

Theorem 1. ∀p : line ∀q : line (int(p, q)⇒∃α : plane (inc(p, α) ∧ inc(q, α)))

Theorem 2. ∀p : line ∀q : line ∀A : point ∀B : point (p �= q ∧
inc(A, p) ∧ inc(A, q) ∧ inc(B, p) ∧ inc(B, q) ⇒ A = B)

Theorem 3. ∀p : line ∀α : plane ∀A : point ∀B : point (¬inc(p, α) ∧
inc(A, p) ∧ inc(A, α) ∧ inc(B, p) ∧ inc(B, α) ⇒ A = B)

Theorem 4. ∀A : point ∀B : point ∀C : point (¬col(A, B, C) ⇒ A �=
B ∧ A �= C ∧ B �= C)

Theorem 5. ∀A : point ∀B : point ∀C : point (¬col(A, B, C) ⇒
∃α : plane(inc(A, α) ∧ inc(B, α) ∧ inc(C, α)))

Theorem 6. ∀A : point ∀p : line (¬inc(A, p) ⇒ ∃α : plane (inc(A, α) ∧
inc(p, α)))

Theorem 7. ∀A : point ∀B : point ∀C : point ∀D : point ∀α : plane
(comp(A, B, C, D)∧ ¬col(A, B, C) ∧ inc(A, α) ∧ inc(B, α) ∧ inc(C, α) ⇒
inc(D, α))

Theorem 8. ∀p : line ∀q : line ∀r : line ∀A : point ∀α : plane
(p �= q ∧ q �= r ∧ inc(p, α) ∧ inc(q, α) ∧ inc(r, α) ∧ ¬int(p, q) ∧
¬int(q, r) ∧ inc(A, α) ∧ inc(A, p) ∧ inc(A, r) ⇒ p = r)

Theorem 9. ∀A : point ∀B : point ∀C : point ∀p : line (inc(A, p) ∧
inc(B, p) ∧ bet(A, B, C) ⇒ inc(C, p))

Theorem 10. ∀A : point ∀B : point ∀C : point (bet(A, B, C) ⇒
¬bet(A, C, B))

Theorem 11. ∀A : point ∀B : point (A �= B ⇒ ∃C : point bet(A, C, B))

Theorem 12. ∀A : point ∀B : point cong(A, B, A, B)

Theorem 13. ∀A : point ∀B : point ∀C : point ∀D : point (cong(A, B, C, D)
⇒ cong(C, D, A, B))

Theorem 14. ∀A : point ∀B : point ∀C : point ∀D : point (cong(A, B, C, D)
⇒ cong(B, A, D, C))

7 The prover ArgoCLP, along with descriptions of the used theories and conjectures,
is available on-line from http://argo.matf.bg.ac.rs/downloads.html

http://argo.matf.bg.ac.rs/downloads.html

216 S. Stojanović, V. Pavlović, and P. Janičić

Table 1. Performance of the prover; entries are given in the form time/n1/n2, where
n1 is the number of all axioms applied, and n2 is the number of axioms applied in a
,,clean“ proof (with eliminated all unnecessary steps) in the natural language form; ’-’
denotes timeout, NA denotes that the theorem does not belong to the language of the
theory; experiments were ran on PC Core 2Quad 2.4GHz with 4GB RAM, running
under Linux

ARGO system Tarski’s system Borsuk’s system Hilbert’s system

1 - NA - -

2 0.01/5/3 NA 0.01/5/3 0.01/5/3

3 0.01/5/3 NA 0.01/5/3 0.01/5/3

4 - NA - -

5 0.01/27/1 NA 0.03/28/1 -

6 - NA 16.07/524/59 -

7 11.08/125/4 NA 8.09/119/4 -

8 0.01/12/9 NA 0.01/12/9 0.01/12/9

9 - NA - -

10 0.01/2/1 - 0.01/2/1 -

11 - - 0.07/71/8 -

12 0.01/5/2 0.01/6/2 0.01/6/2 -

13 0.25/13/3 0.16/24/3 0.22/24/3 -

14 1.26/26/7 0.52/30/7 0.57/30/7 -

6 Related Work

There is a number of axiom systems for Euclidean geometry. Most of them
are variants of Euclid’s, Hilbert’s or Tarski’s system and their comparison often
require subtle analyses [31,26,27]. Developing new axiom systems is still an active
research area, often motivated by machine formalizations. For instance, Avigad,
Dean, and Mumma recently proposed an axiomatization [1] that rather faithfully
captures basic ideas and methods of inference outlined in Euclid’s ”Elements“,
but in a rigorous manner.

A lot of efforts have been recently invested into formalization of geometry.
Dehlinger, Dufourd and Shreck worked on formalization of first two groups of
Hilbert’s Grundlagen in Coq proof assistant following an intuitionistic approach
[13]; they came to the conclusion that many theorems could not be proved this
way. Meikle and Fleuriot [26] formalized the first three groups of Hilbert’s ax-
iomatics in Isabelle/Isar. They showed that some Hilbert’s proofs relied on some
implicit assumptions (most often based upon a graphical presentation of the
problem) and in this way again emphasized the need of having formally verified
proofs. Narboux formalized [28] in Coq the first eight chapters of Tarski’s book
[34] and demonstrated that geometry of Tarski is suitable for mechanization be-
cause of its simplicity and production of less degenerated cases. There are also
other geometry related formalizations developed in Coq: Kahn’s formalization of
von Plato’s constructive geometry [30,22], Guilhot’s formalization of large por-
tions of high school geometry [17], Duprat’s formalisation of an axiom system
for compass and ruler geometry [14], formalization of projective geometry by

A Coherent Logic Based Geometry Theorem Prover 217

Magaud, Narboux, and Schreck [24,25], etc. All of the mentioned formalizations
were done completely manually, with no automation involved.

Automated theorem proving has a history more than fifty years long [8]. In 1959.
Gelernter created a geometry theorem prover that could find solutions to a large
number of problems taken from highschool textbooks in plane geometry [16]. The
biggest successes in automated theorem proving in geometry were achieved (i.e.,
the most complex theorems were proved) by algebraic theorem provers based on
Wu’s method [41,7] and Gröbner bases method [5,23,6]. However, instead of read-
able, traditional geometry proofs, these methods produce only a yes/no answer
with a corresponding algebraic argument. This is partly changed with
coordinate-free methods, such as the area method [10], the full angle method
[11,9], but for many conjectures these methods still deal with extremely complex
expressions involving certain geometry quantities. An approach based on deduc-
tive database and forward chaining works over a suitably selected set of higher-
order lemmas and can prove complex geometry theorems (yielding geometrical
proofs), but still has a smaller scope than algebraic provers [12]. Quaife used a
resolution theorem prover to prove theorems in Tarski’s geometry [33]. Some chal-
lenging conjectures were proved, but no formal or readable proofs were produced.

Coherent logic may serve as a framework that enables automated generation
of readable geometry proofs. It is well suited to foundational conjectures, close to
the level of axioms. To our knowledge, the first automated theorem prover using
CL was developed by Janičić and Kordić [21]. It used a fixed set of geometry
axioms close to Borsuk’s system [4] and was able to prove tens of foundational
theorems from standard geometry textbooks. No formal proofs were generated.
The system that we describe in this paper is related to this system but signifi-
cantly extends it and improves it in several directions.

Over the last several years, CL was explored and popularized by Marc Bezem
and his coauthors. Bezem and Coquand [2] developed in Prolog a CL prover
that generates proof objects in Coq (some of the problems solved by this CL
prover can be found on-line8). Berghofer and Bezem developed in ML an internal
prover for CL in Isabelle. It has several advantages to “external” provers: it uses
existing Isabelle’s infrastructure and excludes the need for converting from/to
“external” formats. Declarative programming languages such as Prolog and ML
are well suited to this kind of problems but they can result in a slow executable
code, so we believe that C++ implementation can tackle more realistic geometry
theorems. As we are aware of, the above provers have not been used for dealing
with fragments of geometry addressed in this paper.

7 Conclusions and Further Work

We presented a theorem prover ArgoCLP that uses coherent logic as its under-
lying logic and forward chaining and iterative deepening in its proof search. The
prover can be used for any theory with coherent axioms and for conjectures in the
coherent form. It can produce formal, machine verifiable proofs, but also readable
8 http://www.ii.uib.no/~bezem/GL/

http://www.ii.uib.no/~bezem/GL/

218 S. Stojanović, V. Pavlović, and P. Janičić

proofs given in a natural language form, consisting of steps typical for traditional
geometry proofs, so they can be directly used in textbooks. We applied the prover
to various axiomatic systems for Euclidean geometry and proved tens of theorems
from standard university textbooks on geometry. Since the generated proofs are
both formal and readable, they can be used in different educational purposes, and
thanks to automation, the system can serve as a useful tool for building the body
of formalized mathematics. The system, in its current version, still does not aim
at proving all complex geometry theorems appearing in geometry textbooks, but
rather at proving foundational theorems (close to the axiom level) of moderate
hardness. For instance, a suitable problem for the prover would be checking if an
axiom A could be replaced by another version A′ (by proving A with A′ and the
rest of the system and by proving A′ with A and the rest of the system). This is
a very important issue for foundations of geometry — there are many axiom sys-
tems, sometimes with only slight modifications (following, for instance, different
interpretations of the author’s intention) and establishing their relationship could
be very demanding (while cannot be dealt by algebraic theorem provers). There-
fore, automation in this process is very much welcome. In addition, the system can
be used as an assistant for proving appropriately chosen subgoals of complex con-
jectures, in a manner that was already applied in proving Hessenberg’s theorem
by a CL-based theorem prover [3].

We are planning to further develop our prover as there is still much space
for improving efficiency. We have implemented a mechanism for cleaning up all
irrelevant proof steps from a proof trace, but this cleaning is done only post
festum, when the conjecture is already proved. We are planning to implement
a similar mechanism that would be applied during the proving process itself
since information about relevant/irrelevant facts can be useful in more efficient
search guiding in the remaining process (i.e., in future branches). We are also
planning to use techniques (e.g., backjumping and learning) used in other auto-
mated reasoning systems (e.g., SAT solvers) and we expect to obtain significant
speed-ups and significant increase in number of theorems that can be proved
within reasonable time limits. With a more efficient version of the prover, we
are planning to formalize significant portions of different geometries, including
the geometry developed by Avigad, Dean, and Mumma [1]. Instead of standard
geometry axioms, we will also consider using higher-level lemmas, as in the de-
ductive database method [12]. We are also planning to deeply explore different
variants of the most significant axioms systems and their relationship by au-
tomatically proving axioms of one systems as theorems within another system.
That work would answer a number of important questions about formulations
of axioms. The domain of our prover is not limited to geometry, so we will apply
it to other theories as well. In addition, we are planning to support input from
the TPTP form9 [35] and we are planning to add support for exporting proof
objects to other proof assistants (e.g., Coq). Suport for TPTP would enable us
to compare our prover with other coherent logic provers and also with other
automated theorem provers, e.g., resolution-based provers.

9 http://www.tptp.org

http://www.tptp.org

A Coherent Logic Based Geometry Theorem Prover 219

References

1. Avigad, J., Dean, E., Mumma, J.: A formal system for Euclid’s Elements. The
Review of Symbolic Logic (2009)

2. Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg
(2005)

3. Bezem, M., Hendriks, D.: On the Mechanization of the Proof of Hessenberg’s The-
orem in Coherent Logic. Journal of Automated Reasoning 40(1) (2008)

4. Borsuk, K., Szmielew, W.: Foundations of Geometry. Norht-Holland Publishing
Company, Amsterdam (1960)

5. Buchberger, B.: An Algorithm for finding a basis for the residue class ring of a
zero-dimensional polynomial ideal. PhD thesis. University of Innsbruck (1965)

6. Buchberger, B., et al.: Theorema: Towards computer-aided mathematical theory
exploration. Journal of Applied Logic (2006)

7. Chou, S.-C.: Mechanical Geometry Theorem Proving. D. Reidel Publishing Com-
pany, Dordrecht (1988)

8. Chou, S.-C., Gao, X.-S.: Automated reasoning in geometry. In: Handbook of Au-
tomated Reasoning. Elsevier (2001)

9. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Machine Proofs in Geometry. World Scien-
tific, Singapore (1994)

10. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Automated production of traditional proofs
for constructive geometry theorems. In: IEEE Symposium on Logic in Computer
Science LICS. IEEE Computer Society Press (1993)

11. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Automated generation of readable proofs
with geometric invariants, II. theorem proving with full-angles. Journal of Auto-
mated Reasoning 17 (1996)

12. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: A Deductive Database Approach to Auto-
mated Geometry Theorem Proving and Discovering. Journal Automated Reason-
ing 25(3) (2000)

13. Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-order intuitionistic formalization
and proofs in hilbert’s elementary geometry. In: Richter-Gebert, J., Wang, D. (eds.)
ADG 2000. LNCS (LNAI), vol. 2061, pp. 306–323. Springer, Heidelberg (2001)

14. Duprat, J.: Une axiomatique de la géométrie plane en coq. In: Actes des JFLA
2008, INRIA (2008)

15. Fisher, J., Bezem, M.: Skolem Machines and Geometric Logic. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 201–215. Springer,
Heidelberg (2007)

16. Gelernter, H., Hanson, J.R., Loveland, D.W.: Empirical explorations of the
geometry-theorem proving machine. In: Computers and Thought. MIT Press
(1995)

17. Guilhot, F.: Formalisation en coq d’un cours de géométrie pour le lycée. Journées
Francophones des Langages Applicatifs (2004)

18. Harrison, J.: Hol light: A Tutorial Introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

19. Heath, T.L.: The Thirteen Books of Euclid’s Elements. Dover Publications, New-
York (1956)

20. Hilbert, D.: Grundlagen der Geometrie, Leipzig (1899)
21. Janičić, P., Kordić, S.: EUCLID — the geometry theorem prover. FILOMAT 9(3)

(1995)

220 S. Stojanović, V. Pavlović, and P. Janičić

22. Kahn, G.: Constructive geometry according to Jan von Plato. Coq contribution.
Coq V5.10 (1995)

23. Kapur, D.: Using Gröbner bases to reason about geometry problems. Journal of
Symbolic Computation 2(4) (1986)

24. Magaud, N., Narboux, J., Schreck, P.: Formalizing Projective Plane Geometry in
Coq. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 141–162.
Springer, Heidelberg (2011)

25. Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq
using ranks. In: ACM Symposium on Applied Computing. ACM (2009)

26. Meikle, L.I., Fleuriot, J.D.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 319–334. Springer,
Heidelberg (2003)

27. Narboux, J.: Formalisation et automatisation du raisonnement géométrique en
Coq. PhD thesis. Université Paris Sud (2006)

28. Narboux, J.: Mechanical theorem proving in tarski’s geometry. In: Botana, F.,
Recio, T. (eds.) ADG 2006. LNCS (LNAI), vol. 4869, pp. 139–156. Springer, Hei-
delberg (2007)

29. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

30. von Plato, J.: The axioms of constructive geometry. Annals of Pure and Applied
Logic 76 (1995)

31. von Plato, J.: Formalization of Hilbert’s geometry of incidence and parallelism.
Synthese 110 (1997)

32. Polonsky, A.: Proofs, Types, and Lambda Calculus. PhD thesis. University of
Bergen (2011)

33. Quaife, A.: Automated development of Tarski’s geometry. Journal of Automated
Reasoning 5(1) (1989)

34. Schwabhuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der
Geometrie. Springer, Berlin (1983)

35. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4) (2009)

36. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
ACM 22(2) (1975)

37. Tarski, A.: What is elementary geometry? In: The Axiomatic Method, with Special
Reference to Geometry and Physics. North-Holland (1959)

38. The Coq development team. The Coq proof assistant reference manual, Version
8.2. TypiCal Project (2009)

39. Trybulec, A.: Mizar. In: Wiedijk, F. (ed.) The Seventeen Provers of the World.
LNCS (LNAI), vol. 3600, pp. 20–23. Springer, Heidelberg (2006)

40. Wenzel, M.T.: Isar - a Generic Interpretative Approach to Readable Formal Proof
Documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999)

41. Wu, W.-T.: On the decision problem and the mechanization of theorem proving in
elementary geometry. Scientia Sinica 21 (1978)

Automated Generation of Readable Proofs

for Constructive Geometry Statements
with the Mass Point Method

Yu Zou1 and Jingzhong Zhang1,2

1 College of Computer Science and Educational Software,
Guangzhou University, Guangzhou, 510006, China

zouyu20082008@126.com
2 Chengdu Institute for Computer Applications, Chinese Academy of Sciences,

Chengdu, 610041, China

Abstract. The existing readable machine proving methods deal with
geometry problems using some geometric quantities. In this paper, we
focus on the mass point method which directly deals with the geometric
points rather than the geometric quantities. We propose two algorithms,
Mass Point Method and Complex Mass Point Method, which can deal
with the Hilbert intersection point statements in affine geometry and
the linear constructive geometry statements in metric geometry respec-
tively. The two algorithms are implemented in Maple as provers. The re-
sults of hundreds of non-trivial geometry statements run by our provers
show that the mass point method is efficient and the machine proofs are
human-readable.

1 Introduction

In the past over thirty years since Wu’s method published in 1977, the research
and practice for automated theorem proving in geometry has been considerably
developed [1]. For statements in unordered geometry, the algebraic methods
(such as the characteristic set method, also known as Wu’s method [2,3], the
elimination method [4], the Gröbner basis method [5,6], the Clifford algebra ap-
proach [7] and the numerical methods [8,9] can effectively judge “True or False”,
while the area method [10,11] and the search methods [12] can moreover generate
readable proofs. Seeking for different automated proving methods will help us
to enrich the knowledge of automated reasoning and deepen our understanding
of geometry itself.

After the area method, some other methods to produce readable machine
proofs have been proposed, such as the vector method [13], the full-angle method
[14], the deductive database method [12], the geometric algebra method [15,16,17]
and the advanced invariants method proposed recently [18]. There are a few im-
plementations for these methods, and researches in these directions are going
on in depth. As known that all these methods deal with geometry problems
using the geometric quantities, but, to our knowledge, only the area method

P. Schreck, J. Narboux, and J. Richter-Gebert (Eds.): ADG 2010, LNAI 6877, pp. 221–258, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

222 Y. Zou and J. Zhang

has been developed as a complete machine proving algorithm, and moreover,
implementing the area method is usually a very challenging task.

We focus on the mass point method which directly deals with the geometric
points other than the geometric quantities. The main idea of the mass point
method is to express the hypotheses of a theorem using two or three starting
points and a set of constructive statements each of them introducing a new
point (similar to the area method), and to check whether or not the geometric
points (rather than the geometric quantities) appearing in the conclusion satisfy
a certain relationship (different from the area method). The proof is generated
by keeping finding, and recording the relationship of the newly introduced point
and the previously introduced points, and at last finding the relationship of all
points involved in the conclusion, along with the process of eliminating points.

The mass point method is also a coordinates-free and diagram-independent
method. It can be implemented as provers capable of provingmany difficult geome-
try theorems, including Pappus’ Theorem, Pascal’s Theorem, Feuerbach’s
Theorem and Morley’s Triangle Theorem. The generated proofs are indeedhuman-
readable and easily understoodby amathematician, andmoreover, each expression
in a proof has clear and intuitive geometrical meaning, although some of them may
involve seemingly huge expressions. Since we can apply arithmetic operations di-
rectly to geometric points, the algorithms and implementations for the mass point
method are much easier and more concise than that of the area method.

We propose two algorithms, Mass Point Method (MPM) and Complex Mass
Point Method (CMPM), which can deal with the Hilbert intersection point
statements in affine geometry and the linear constructive geometry statements
in metric geometry respectively. The results of hundreds of non-trivial statements
run by our provers show that the mass point method is not only efficient, but
also most proofs are human-readable. The algorithm CMPM is effective against
most constructive statements in unordered geometry, thus is another complete
algorithm which is different from the area method.

The paper is organized as follows: first, in Section 2 and Section 3, we provide
a detailed description for the mass point method, propose the algorithm MPM
and implement it in Maple as a prover which can generate the machine proofs
entirely automatically for the Hilbert intersection point statements in affine ge-
ometry. To deal with constructive statements in metric geometry, in Section 4
and Section 5, we then develop the complex mass point geometry, provide a
detailed description for the complex mass point method and propose another
algorithm CMPM which is also implemented in Maple as a prover for proving
the linear constructive geometry statements in metric geometry. In Section 6,
we summarize some data of 350 running examples and draw conclusions.

2 Mass Point Geometry

Mass point geometry, colloquially known as mass points, is usually taken as a
geometry problem-solving technique which applies the physical principle of the
center of mass to geometry problems involving triangles and intersecting cevians

Automated Generation of Readable Proofs for Constructive Geometry 223

[19]. Though modern mass point geometry was developed in the 1960s, the con-
cept has been found to have been used as early as 1827 by August Ferdinand
Möbius in his theory of homogenous coordinates [20]. The history and sources
for mass point geometry have already been described in [21,22].

2.1 Mass Point Geometry Preliminaries

The existing theory of mass points is usually defined according to the following
definitions [21,22,23]:

Mass Point : A mass point is a pair (m, P), also written as mP , including a
mass, m, a positive real number, and an ordinary point, P on a plane.

Coincidence: Two points mP and nQ coincide if and only if (iff) m = n and
P = Q.

Addition: The sum of two mass points mP and nQ has mass m+n and point R
where R is the point on PQ such that PR : RQ = n : m (also expressed by mP +
nQ = (m + n)R). In other words, R is the fulcrum point that perfectly balances
the points P and Q. Mass point addition is closed, idempotent, commutative,
and associative.

Scalar Multiplication: Given a mass point mP and a positive real scalar k,
scalar multiplication is defined to be k(m, P) = (km, P). Mass point scalar
multiplication is distributive over mass point addition.

Substraction: If m > n then mP = nQ+xX may be solved for unknown mass
point xX . Namely, xX = (m − n)R where P on RQ such that RP : PQ = n :
(m− n).

Mass point geometry involves systematically assigning “weights” to points, which
can then be used to deduce lengths, using the fact that the lengths must be
inversely proportional to their weight (just like a balanced lever). Additionally,
the point dividing the line has a mass equal to the sum of the weights on either
end of the line (like the fulcrum of a lever). Using mass points can greatly simplify
the proofs of many theorems which can also be solved using similar triangles,
vectors, or area ratios. There are many materials with plenty of examples solved
using mass points and many webpages at the WWW[21,22].

In essence, mass points involves using a local coordinate system to identify
points by the ratios into which they divide line segments, thus mass points are
closely related with barycentric coordinates or area coordinates.

In the following, we extend the previous mass point method and summarize
some useful propositions for mass point geometry.

2.2 Basic Propositions of Mass Point Geometry

Let IR be the field of the real numbers. If there is no special instruction below,
we always use capital English letters with or without subscripts to denote points
in the plane. We denote by AB a vector from A to B, by �ABC the triangle
ABC, and by SABC the signed area of oriented triangle ABC.

224 Y. Zou and J. Zhang

The propositions below are based on the following new definition for mass
point.

Definition 1. aP is called a mass point in mass point geometry, and xM −xN
is called a vector, where a, x ∈ IR, a �= 0, P, M and N are points in Euclidean
plane. If x = 0 or M = N , then xM − xN is called a zero vector.

As shown in the previous definitions for mass point, the mass of a mass point is
required to be a positive real number and there is actually no real substraction,
i.e., if mP = nQ + xX for unknown mass point xX , then xX is not denoted
by mP − nQ, because mP − nQ is not always significative, e.g., when m = n.
If we take substraction as the inverse operation of addition, then the concept
vector defined in Definition 1 ensures that the set of all mass points and vectors
with the addition operator “+” is an additive (Abelian) group, which enables us
to carry the addition operation among mass points freely, just like the way we
carry the arithmetic polynomial operations.

The following six propositions are the basic propositions required by our mass
point method.

Proposition 2.1. Let m + n �= 0, then (m + n)C = nA + mB iff C is a point
on line AB and AC : CB = m : n.

Notes. a) In fact, we have n(A−C) = m(C −B) from AC : CB = m : n, which
implies that (m + n)C = nA + mB; b) Let m

m+n = x, then C = (1 − x)A +
xB, which implies that any point on line AB could be denoted as the linear
combination of A, B uniquely depending on the value of x.

Proposition 2.2. There exist x, y, m, n satisfying x+ y = m + n = t(�= 0) such
that xA + yB = tO = mP + nQ iff O is the intersection of two lines AB and
PQ.

Proposition 2.3. xAB = yPQ iff xA− xB = yP − yQ.

Proposition 2.4. Any point P on plane ABC can be expressed as the linear
combination of A, B, C uniquely in the form P = aA + bB + (1− a− b)C.

Notes. In fact, (a, b, 1−a−b) is the area coordinates or barycentric coordinates of
P with respect to (wrt)�ABC. In the following text, P = aA+bB+(1−a−b)C
is called the standard form of P wrt A, B, C.

Proposition 2.5. Let P, Q and R be points on plane ABC, and P = aA+bB+
(1− a− b)C, Q = xA + yB + (1− x− y)C, R = sA + tB + (1− s− t)C, then

SPQR

SABC
=

∣∣∣∣∣∣
a b 1− a− b
x y 1− x− y
s t 1− s− t

∣∣∣∣∣∣ .

Proposition 2.6. P, Q and R are collinear iff SPQR = 0.

A direct derivation (omitted here) for the above propositions is not difficult.
Based on these propositions, we can effectively solve many complicated problems
which are usually difficult by using the previous techniques related to mass
points.

Automated Generation of Readable Proofs for Constructive Geometry 225

3 Mass Point Method

The mass point method is also a decision procedure for a fragment of constructive
geometry statements stated by sequences of specific geometric constructions. We
begin introducing the method by way of examples.

3.1 Introductory Examples

We here use two examples to illustrate how to use the basic propositions given
above to prove geometry theorems.

Example 1 (Theorem of Centroid). Let D, E and F be the midpoints of the sides
BC, CA and AB of triangle ABC respectively, G the intersection of AD and
BE. Show that C, F and G are collinear and AG

GD
= BG

GE
= CG

GF
= 2 (Fig. 1).

Fig. 1. Theorem of Centroid

The construction steps and proof steps:

1. Take three non-collinear points A, B and C arbitrarily;
2. Take the midpoint D of BC , by Proposition 2.1, 2D = B + C;
3. Take the midpoint E of CA , by Proposition 2.1, 2E = A + C;
4. Take the midpoint F of AB , by Proposition 2.1, 2F = A + B;
5. Take the intersection point G of AD and BE, by Proposition 2.2, step1 and

step2, we have A + 2D = B + 2E = 3G, and further, 3G = A + B + C .
6. The conclusions can be written as A + 2D = B + 2E = 3G = C + 2F . Here

we still need to find the relationship of G, F, C. By step4 and step5, noticing
that 3G = A + B + C = 2F + C, by Proposition 2.1, the conclusions hold.

Example 2 (Desargues’ Theorem). Given two triangles ABC and A1B1C1, if
the three lines AA1, BB1, CC1 meet in a point S, show that the three points
P = BC ∩B1C1, Q = CA ∩ C1A1 and R = AB ∩A1B1 are collinear (Fig. 2).

226 Y. Zou and J. Zhang

Fig. 2. Desargues’ Theorem

The construction steps and proof steps:

1. Take three non-collinear points A, B and C arbitrarily;
2. Take an arbitrary point S(�= A, B, C) on plane ABC, by Proposition 2.4, S

can be expressed as S = aA + bB + (1− a− b)C;
3. Take a point A1(�= S, A) on line SA arbitrarily, by Proposition 2.1, A1 can

be expressed as (1 + x)A1 = S + xA;
4. Take a point B1(�= S, B) on line SB arbitrarily, by Proposition 2.1, B1 can

be expressed as (1 + y)B1 = S + yB;
5. Take a point C1(�= S, C) on line SC arbitrarily, by Proposition 2.1, C1 can

be expressed as (1 + z)C1 = S + zC;
6. Take the intersection point P of BC and B1C1, by Proposition 2.2, step4

and step5, yB − zC = (1 + y)B1 − (1 + z)C1 = (y − z)P ;
7. Take the intersection point Q of AC and A1C1, by Proposition 2.2, step3

and step5, xA− zC = (1 + x)A1 − (1 + z)C1 = (x− z)Q;
8. Take the intersection point R of AB and A1B1, by Proposition 2.2, step3

and step4, xA− yB = (1 + x)A1 − (1 + y)B1 = (x− y)R;
9. To prove the conclusion, we need to find the relationship of P, Q, R. By step6,

step7 and step8, we have (y − z)P + (x − y)R = (x − z)Q, by Proposition
2.1, P, Q, R are collinear.

The two examples above briefly illustrate some key features of the mass point
method. Usually, when proving a geometry theorem using the mass point method,
we follow three steps:

Firstly, formulate the geometry theorem in a constructive way. Initially, three
free points are introduced, and each of the rest construction steps introduces a
new point.

Secondly, based on the basic propositions in Sect. 2.2, interpret the construc-
tions into mass point expressions; beginning from the second construction, try
to express the newly introduced points as the linear combination of the previ-
ously introduced points, keep gaining new mass point relations until the last
construction.

Automated Generation of Readable Proofs for Constructive Geometry 227

Finally, check whether the points involved in the conclusion satisfy certain
mass point relations.

3.2 The Hilbert Intersection Point Statements

The mass point method here is restricted to prove a special class of the construc-
tive geometry conjectures defined below, the Hilbert intersection point state-
ments.

Before developing the mass point method into the general machine proving
method for the Hilbert intersection point statements, we need to first describe the
set of available constructions and then the set of conjectures can be expressed.

The Constructions. Given below is the list of constructions covered by the
mass point method, along with the equivalent forms. The ndg-conditions are
omitted.

C1 Point(X): Take an arbitrary point X on a plane. Point X is a free point.
Taking the first three different free points A, B, C is usually denoted by

Points(A, B, C).

C2 Aratio(X, A, B, C, a, b): Having taken three free points A, B, C, take another
point X such that X = aA + bB + (1− a− b), where a, b are rational numbers,
independent variables or rational expressions.

C3 Lratio(X, A, B, r): Take a point X on line AB such that AX = rAB (or
X = (1 − r)A + rB), where r is a rational number, a rational expression or a
variable.

Taking a point X on line AB such that AX = rXB (or (1+r)X = A+rB) is
denoted by Mratio(X, A, B, r), where r is the same as Lratio(X, A, B, r); espe-
cially, Midpoint1(X, A, B) means taking the midpoint of AB (or 2X = A + B),
while Symmetry(X, A, B) means taking the symmetric point X of A wrt B (or
X = 2B −A).

C4 Pratio(X, U, A, B, r): Take a point X on the line passing from U and parallel
to line AB such that UX = rAB (or X = U + r(B−A)) where r is the same as
C3.

A special case of C4 is Parallel(X, U, A, B), which means taking a point X
such that XUAB is a parallelogram, i.e., UX = AB (or X = U + B −A).

C5 Inter(X, U, V, A, B): Take the intersection point X of line UV and line AB.

C6 Pinter(X, A, B, W, U, V, Y): Take the intersection point X of line AB and
the line passing from W and parallel to line UV .

228 Y. Zou and J. Zhang

This construction is equivalent to Parallel(Y, W, U, V)+Inter(X, W, Y, A, B),
where Y is a newly introduced point.

C7 PPinter(X, C, A, B, W, U, V, Y, Z): Take the intersection point X of the line
passing from C and parallel to line AB and the line passing from W and parallel
to line UV .

This construction is equivalent to Parallel(Y, C, A, B)+Parallel(Z, W, U, V)+
Inter(X, C, Y, W, Z), where Y, Z are newly introduced points.

The point X in each of the above constructions is said to be introduced by that
construction. C1 is called the initial construction. Thus the constructions in
Example 1 can be represented in terms of the given constructions above as fol-
lows: Points(A, B, C)(C1); Midpoint1(D, B, C)(C3); Midpoint1(E, C, A)(C3);
Midpoint1(F, A, B)(C3); Inter(G, A, D, B, E)(C5).

The Form of the Conclusions. Before we can describe a geometry statement
completely, it is necessary to explain how to express the conclusions.

Using the mass point method, all the constructions will be converted to some
mass point relations, and at last, most of the conclusions are also expressed as
mass point relations. For all kinds of conclusions, there are usually two kinds of
things we need to do: checking or calculating.

For instance, checking whether the two lines are parallel, whether three points
are collinear, whether a point is the midpoint of two other points as well as
whether two points coincide when using the identity method; moreover, calcu-
lating the ratio of two oriented segments on one line or on two parallel lines, the
ratio of two signed area of oriented triangles or quadrilaterals, and the rational
expressions of the ratios.

In fact, checking is to find the Boolean value and calculating is to find the
numerical value. The basic propositions in Sect. 2.2 provide us a method to check
the conclusions or to do the corresponding calculations.

Given below is the list of main predicates expressing geometry conclusions
covered by the mass point method.

– ifparallel(X, Y, A, B): Check whether XY is parallel to AB. If it holds,
then find the ratio t of them and output X − Y = t(A−B), else output the
corresponding non-parallel mark.

– ifmidpoint(C, A, B): Check whether C is the midpoint of AB. If it holds,
then output 2C = A + B, else output 2C �= A + B.

– ifcollinear(A, B, C): Check whether A, B and C are collinear and output
the corresponding mark.

– ifequal(X, Y): Check whether X coincides with Y . If it holds, then output
X = Y , else output X �= Y .

– ratio(A, B, X, Y): Find the signed ratio of two parallel segments AB, XY .
– arearatio2(A, B, C, X, Y, Z): Find the ratio of two signed area of oriented

triangles ABC and XY Z.

Automated Generation of Readable Proofs for Constructive Geometry 229

The Hilbert Intersection Point Statements. In the mass point method,
geometry statements have the following specific form.

Definition 2 (Hilbert Intersection Point Statement). A Hilbert intersec-
tion point statement, is a list S = (C1, C2, . . . , Ck, G) where

a) Ci, for i = 1, . . . , k, are constructions of this section such that the point
introduced by each Ci must be different from the points introduced by the
previous constructions and other points occurring in Ci must be introduced
by Cj(j = 1, . . . , j − 1); and

b) G = (E1, E2, . . .), is the conclusion of the statement, where Ei is one of the
predicates of conclusions.

The class of all Hilbert intersection point statements is denoted by CH.
For a statement S = (C1, C2, . . . , Ck, G) from CH, the ndg-conditions, which

are omitted here for the limitation of pages, must be satisfied.
Given the definition of statement of class CH, we can now describe Example 2

in this way: Points(A, B, C); Aratio(S, A, B, C, a, b); Mratio(A1, S, A, x); Mra-
tio(B1, S, B, y); Mratio(C1, S, C, z); Iner(P, B, C, B1, C1); Iner(Q, A, C, A1, C1);
Iner(R, A, B, A1, B1); ifcollinear(P, Q, R).

3.3 The Algorithm and Its Features

It can be seen from the examples in Sect. 3.1 that the crucial steps of the mass
point method are to eliminate some points from the existing mass point relations
to get a new mass point relation. Although the whole process of eliminating
points can proceed in an orderly manner, each time when we eliminate a point,
especially when we deal with an intersection of two lines, it seems that only by
resorting to human observation can we know which point(s) should be eliminated
and how the point(s) are eliminated. Therefore, the key to the design of algorithm
is how to implement all these steps automatically.

In this section, we present the mass point method’s algorithm.

Three Parts of the Algorithm. The mass point method can be developed as
an automated theorem proving method, whose algorithm is called Mass Point
Method (MPM) in this paper.

The algorithm MPM consists of three parts: the construction function set
(CFS), the aim function set (AFS) and the controller (MMC).

For each construction in Sect. 3.2, there is a corresponding homonymous con-
struction function in CFS.

For each predicate of conclusion in Sect. 3.2, there is also a corresponding
homonymous function in AFS.

Given a statement S = (C1, C2, . . . , Ck, G) in CH, the controller MMC reads
the constructions one by one; calls the corresponding function in CFS repeatedly
to deal with the constructions; and finally calls the corresponding function in
AFS to deal with the conclusion G.

230 Y. Zou and J. Zhang

Normalization. Generally, any non-trivial geometry statement would involve
at least three non-collinear points. In the mass point method, the three points
introduced by the initial construction, usually but not necessarily are A, B and
C, are called basis points. In the following, we prove that all points introduced by
the rest constructions in Sect. 3.2 could be expressed by the linear combination
of the basis points in the standard form.

Actually, the new point introduced by C2 is of the standard form; the point
introduced by C3 or C4 has been denoted as the linear combination of the
previously introduced points, and can further be expressed as the standard form,
given that all the previously introduced points are of the standard form; C6 and
C7 can be represented as a sequence of C4 and C5. Thus, it is left to discuss
C5.

The point X introduced by C5: Inter(X, U, V, P, Q) is the intersection of line
UV and line PQ. Let U, V, P, Q be of the standard form. Because each standard
form is corresponding to a ternary array (usually called the area coordinates),
and the four ternary arrays must be linearly dependent, thus there must be four,
not all zero, numbers or rational expressions m, n, r, s such that mU + nV =
rP + sQ. We only consider the non-degenerate case, i.e., m + n = r + s = t �= 0
and m · n · r · s �= 0, by Proposition B.2, tX = mU + nV = rP + sQ, then it is
easy to get the standard form of X wrt three basis points by representing X as
mU+nV

t or rP+sQ
t .

So far, we have proven that all the introduced points can be expressed as the
standard form wrt three basis points. For each point X , there is a correspond-
ing ternary array (a, b, c) with a + b + c = 1 and a, b, c being rational numbers,
rational expressions or independent variables. Obviously, three basis points are
corresponding to (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.

For mU + nV = rP + sQ, there are two degenerate cases:

a) If m + n = r + s = t �= 0 and m ·n · r · s = 0, then X must coincide with one
of U, V, P, Q, thus X is not a new point;

b) If m + n = r + s = t = 0, then it implies that line UV is parallel to line PQ,
thus it is impossible to produce a new point.

In the algorithm, case a) and case b) should be taken into account, i.e., when
one of them appears, the algorithm stops and reminds the user of checking the
validity of input.

Three Global Variables. If we have expressed each point as the standard
form, then we can label each point with its area coordinates. In this way, the
operations on the points such as addition, subtraction and scalar multiplication,
even the process of eliminating points can be converted into calculations of the
points’ area coordinates, which are applicable, and much easier for computer.

Now, what we need to consider is, firstly, how to store the points and their area
coordinates, and secondly, how to let the computer call the stored points and
their area coordinates accurately to carry calculation when needed. Additionally,

Automated Generation of Readable Proofs for Constructive Geometry 231

we also need to let the computer output the stored information in the form of
mass point relations.

Given a geometry statement, the number of points involved is finite. We can
use a list, named varlist, to store all points in the order in which the points are
introduced by constructions, and use another list, named coordlist, to store the
corresponding points’ area coordinates.

For example, in Example 1, varlist ={A, B, C, D, E, F, G}, coordlist =

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0,
1
2
,
1
2
), (

1
2
, 0,

1
2
), (

1
2
,
1
2
, 0), (

1
3
,
1
3
,
1
3
)}.

Notice that the location of a point in varlist is consistent with that of its area
coordinates in coordlist, thus the ith elements of varlist and coordlist can be
denoted by varlist[i] and coordlist[i] respectively. Knowing the location of a
point in varlist, we can call the point’s area coordinates of the corresponding
location in coordlist to do some desired computation.

Using this technique, for Example 1, when checking whether G, F, C are
collinear, we first search the locations of G, F, C respectively. Since G, F, C are
the seventh, sixth and third element in varlist above, then we call coordlist[7],
coordlist[6] and coordlist[3] to check if the determinant is equal to zero.

When storing the points into varlist one by one, we need a counter, named
pnts, to record the number of points in varlist. Each time when a construction
introduces a new point X : pnts → pnts + 1, varlist [pnts + 1] = X and co-
ordlist [pnts + 1] = vX , where vX is the area coordinates of X . The counter pnts
keeps increasing until the last construction. All these steps are done by functions
in CFS.

In algorithm MPM, pnts, varlist and coordlist are three global variables which
enable the controller MMC to implement all involved steps automatically.

Dealing with the Area Coordinates. In the mass point method, almost each
step involves calculation of the area coordinates. Given a geometry statement,
after all points are introduced, the functions in CFS have expressed all points
as the standard forms, while checking whether the conclusions hold or not is the
main work of functions in AFS.

Let vP be the area coordinates of P . Given follow are the main rulers, which
are embedded into the corresponding functions in AFS, to check conclusions by
dealing with the area coordinates.

– XY is parallel to AB iff vX − vY = t(vA − vB);
– C is the midpoint of AB iff 2vC = vA + vB ;
– A, B, C are collinear iff the determinant of the matrix (vA, vB, vC) formed

by vA, vB, vC equals zero or vA − vB = r(vA − vC);
– X coincides with Y iff vX = vY ;
– AB

XY
= vA−vB

vX−vY
;

– SABC

SXY Z
= |(vA,vB ,vC)|

|(vX ,vY ,vZ)| where |(vA, vB, vC)| and |(vX , vY , vZ)| are determinants.

232 Y. Zou and J. Zhang

The Algorithm MPM. Given a statement S = (C1, C2, . . . , Ck, G) in CH, the
mass point method checks whether it is a theorem or not, i.e., it checks whether
the points involved in the conclusion satisfy a certain mass point relation by
eliminating unrelated points. The points are introduced one by one, and each
point belongs to more than one mass point relations which are together taken
as the proof for the statement.

Algorithm: Mass Point Method
Input: S = (C1, C2, . . . , Ck, G) is a statement in CH.
Output: The algorithm produces mass point relations and checks whether S is
a theorem or not.

1. Initially, pnts = 0 , varlist is a null list and coordlist is also a null list;
2. After the initial construction Points(P1, P2, P3), pnts = 3 , varlist =
{P1, P2, P3}, coordlist = {(1, 0, 0), (0, 1, 0), (0, 0, 1)};

3. For i = 2, . . . , k, call the corresponding functions in CFS repeatedly to
process the construction Ci:
(a) Store the points into varlist ;
(b) Search and record the locations of previously introduced points involved

in Ci from varlist and call their area coordinates from coordilist;
(c) Express the newly introduced point as the linear combination of related

points and further as the standard form wrt the basis points;
(d) Store the newly introduced point’s area coordinates into coordilist;
(e) Output all related mass point relations;
(f) If there is no warning, then continue to run the next step;

4. Call the corresponding functions in AFS to process the conclusion G:
(a) Search and record the locations of all points involved in G from varlist ;
(b) Call the involved point’s area coordinates of the corresponding

locations in coordlist and check if the conclusion holds or not by
dealing with the area coordinates;

(c) Output related mass point relations or other related results.

3.4 Implementing the Algorithm MPM in Maple

In this section we briefly describe our implementation for the algorithm MPM.
We implement the algorithm MPM in Maple. Maple is a famous technical com-
puting software which is good at rapid computation and contains rich commands
which can be used directly.

All steps involved in the algorithm MPM can be easily implemented in Maple.
Two crucial steps, one is calling the stored points and their area coordinates
accurately to carry calculation and another one is dealing with an intersection
of two lines, are implemented as follows:

– the command Search in package ListTools can easily find the location of a
point in varlist, which makes it easy to call the point’s area coordinates of
the corresponding location in corrdlist ;

Automated Generation of Readable Proofs for Constructive Geometry 233

– the command LinearSolve in package LinearAlgebra can rapidly find the re-
lation of points U, V, A, B appearing in the construction Inter(X, U, V, A, B)
according to their area coordinates.

For each function in CFS and AFS, there are codes corresponding to it. In
order to satisfy all kinds of possible cases when checking conclusions, we write
as many checking functions as possible. All of the codes are integrated into a
big program which is called the MPMprover. After loading the program, just
input S = (C1, C2, . . . , Ck, G) directly in Maple and run, the machine proof can
be produced automatically.

To improve the readability of the machine proof, we ask the prover to insert
some signs, such as P = (AB) ∩ (UV), to tell what is going on in the proof. It
is also possible to add other kinds of signs. Each mass point relation is corre-
sponding to a certain function.

3.5 Running Examples

Here are two examples whose proofs are generated by the MPMprover entirely
mechanically.

Example 3 (Pappus’ Theorem). Let ABC and A1B1C1 be two lines, and P =
A1B ∩AB1, Q = A1C ∩AC1, R = B1C ∩ BC1. Then P, Q and R are collinear
(Fig. 3).

Example 4 (Butterfly Theorem for Quadrilaterals). Let ABCD be a quadrilat-
eral such that the intersection M of its diagonals is the midpoint of AC. Passing
through M two lines are drawn which meet the sides of ABCD at P, Q, R, S.
Let G = PR ∩AC, H = SQ ∩AC. Show that GM = MH (Fig. 4).

Notes. When reading the input to the MPMprover, it is not difficult to distin-
guish the functions in CFS and AFS. The obvious difference is that the initial
letters of functions in CFS are capital, while the initial letters of functions in
AFS are lowercase.

Table 1 below lists the time used to prove the examples in Section 3 by our
MPMprover in Maple 12 in an Intel Pentium(R) Dual-Core Machine
(CPU@E5200 2.5GHz, 2GB RAM, Windows Vista).

Table 1. Proving time of examples in Section 3

Examples Example1 Example2 Example3 Example4

Time used(s) 0.031 0.062 0.078 0.078

It is worth mentioning that the time used by the MPMprover to prove a
statement depends on two main factors: the number of free points and the num-
ber of times of two-line intersecting.

234 Y. Zou and J. Zhang

(a) Diagram for Pappus’ Theorem (b) Input to the MPMpro-
ver

(c) Machine proof for Pappus’ Theorem

Fig. 3. Pappus’ Theorem

Automated Generation of Readable Proofs for Constructive Geometry 235

(a) Diagram for Butterfly Theorem (b) Input to the MPM-
prover

(c) Machine proof for Butterfly Theorem

Fig. 4. Butterfly Theorem for Quadrilaterals

236 Y. Zou and J. Zhang

3.6 Further Discussion

So far we have presented a new readable machine proving method for geome-
try theorems, the mass point method, and proposed an algorithm, Mass Point
Method, for dealing with the Hilbert intersection point statements in affine ge-
ometry.

As stated above, we can handle constructive statements in affine geometry
successfully based on the basic propositions 2.1-2.6 of mass point geometry in
Sect.2.2, while it is not enough for us to use only these propositions for dealing
with all kinds of constructive statements in metric geometry.

For example, when proving the Orthocenter Theorem, i.e., given a triangle
ABC, letting H be the intersection of two heights CD and BE, it is not ap-
plicable for the MPMprover to prove AH⊥BC, since the propositions 2.1-2.6
neither contain the method to express the foot from a point to a certain line,
nor involve the method for checking whether two lines are perpendicular.

As known for proving statements in metric geometry, the area method needs to
introduce another geometric quantity – Pythagoras difference [10,11]. In Section
4 and Section 5, we will develop the complex mass point geometry and extend
the mass point method to the complex mass point method such that it is suitable
for dealing with constructive statements in metric geometry.

4 The Complex Mass Point Geometry

In order to handle more geometry problems by the mass point method, in this
section, we develop the complex mass point geometry. We first introduce the
basic idea of the complex mass point geometry and then give the related prop-
erties.

4.1 The Basic Idea

Let IR be the field of the real numbers. If there is no special instruction below,
we always use capital English letters with or without subscripts to denote points
in the plane. We denote by �ABC the triangle ABC, and by SABC the signed
area of oriented triangle ABC, by AB the vector from A to B, by |AB| the
distance of A and B and by �(AB, MN) the directed angle from line AB to line
MN .

The basic idea of the complex mass point geometry is based on the following
two facts:

1. As known to us, a complex number can be viewed as a point or position
vector in the complex plane, and given two complex numbers z1(�= 0) and
z2, there must be a complex number z such that z = z2

z1
= r · eiθ, i.e.,

z2 = r · eiθ · z1 where i2 = −1, θ is the rotation angle from z1 to z2 and
r = |z2|

|z1| is a nonnegative real number. Noticing the relationship of complex
numbers and vectors, for any two vectors AB(A �= B) and MN in Euclidean

Automated Generation of Readable Proofs for Constructive Geometry 237

plane, we can also depict their geometric relationship as MN = AB · r · eiθ,
where θ = �(AB, MN) is the directed angle formed by AB and MN and
r = |MN |

|AB| .
2. As defined by Definition 1 in Section 2, the difference of two mass points

with the same mass is regarded as a vector. Thus, AB and MN can also be
denoted by the difference of two points respectively.

Given the two above facts, the relationship of AB and MN can be expressed as
M−N = r·eiθ(A−B). Let r·eiθ = a+bi(a, b ∈ IR), then M−N = (a+bi)(A−B).

Let X be an arbitrary point different from A and B in Euclidean plane, then
for the two vectors AX and AB, there should be two real numbers u, v such that
A−X = (u + vi)(A−B), i.e., X = (1− u− vi)A + (u + vi)B.

For X = (1 − u− vi)A + (u + vi)B, there are two cases:

– if v = 0, then X = (1 − u)A + uB, by Propositions 2.1, X lies on line AB,
and A−X = u(A−B) or AX = uAB;

– if v �= 0, then it is obvious that the coefficients of A and B are complex
numbers. If we write X = (1 − u − vi)A + (u + vi)B as X = ((1 − u)A +
uB)+vi(B−A), letting D = (1−u)A+uB, then D lies on AB, AD = uAB
and X = D + vi(B−A). Further, if writing X = D + vi(B−A) in the form
of X −D = vi(B −A), then we have:
• if v > 0, then X −D = v · eπ

2 i · (B − A), thus XD⊥AB, i.e., D is the
foot from X to line AB, |XD| = v · |AB| and �(AB, XD) = π

2 ;
• if v < 0, then X−D = |v|·e−π

2 i·(B−A), thus XD⊥AB, |XD| = |v|·|AB|,
but �(AB, XD) = −π

2 .

The discussion above shows that the relative location of X with respect to (wrt)
A, B depends on the value of u, v in X = (1 − u − vi)A + (u + vi)B, i.e., X
lies on the line passing through point D and perpendicular to line AB such that
|XD| = |v| · |AB|, where D is a point on line AB such that AD : AB = u.
Moreover, when v > 0, the orientation of A−B −X is counterclockwise, which
is consistent with the sign of the signed area SABC ; when v = 0, X coincides
with D; when v < 0, the orientation of A−B −X is clockwise.

In this way, the geometric relationship of any three different points in Eu-
clidean plane could be depicted by a certain complex coefficient mass point
relation. The following definition is based on the above discussion.

Definition 3. Let D be a point on line AB, AD : AB = u, C be a point such
that CD⊥AB, |CD| = |AB| and SABC > 0. If X is a point on line CD such that
XD = vCD(v ∈ IR), then X = (1−u−vi)A+(u+vi)B or X−A = (u+vi)(B−A)
(Fig.5).

Obviously, by Definition 3, point C in Fig. 5 can be denoted as C = (1−u−i)A+
(u+i)B. Since X = (1−u−vi)A+(u+vi)B, then C−X = (1−v)i(B−A) which
depicts the metric relationship of two vectors CX and AB. Therefore, Definition
3 provides us a method to describe the metric relationship of any three points

238 Y. Zou and J. Zhang

Fig. 5. The basic idea for the complex mass point geometry

(not necessarily collinear) on the plane, and moreover, the metric relationship
of any two vectors (not necessarily parallel).

In Section 2, the coefficients of a mass point relation in mass point geometry
are real numbers, while in the above definition, the coefficients of A and B in
X = (1 − u − vi)A + (u + vi)B are complex numbers. Therefore, to make a
distinction between mass point geometry and the above idea, we propose a new
concept, complex mass point geometry.

For the concept of complex mass point geometry, it does not mean we have
complex mass point, so far as we are aware of, a single complex mass point does
not make any sense. But it is worth mentioning that, the coefficients of A, B, X
in X = (1− u− vi)A + (u + vi)B, i.e., 1− u− vi, u + vi, 1, can form a triangle
being similar to triangle ABX in the complex plane.

4.2 The Properties of the Complex Mass Point Geometry

Beginning from Definition 3, we can deduce many properties of the complex
mass point geometry which are necessary for us to deal with statements in metric
geometry.

Definition 4. Let P −Q = (x + yi)(B −A), then θ = arctan(| yx |) is called the
included angle formed by PQ and AB.

Proposition 4.1. Let A, B be two distinct points in Euclidean plane, then for
any point P of the same plane, there exists an unique real pairs (a, b) such that
P = (1 − a− bi)A + (a + bi)B.

Remark. In the following text, P = (1−a−bi)A+(a+bi)B is called the standard
form of P wrt A, B.

Proposition 4.2. Let C = (1 − u− vi)A + (u + vi)B.
(1) If v = 0, then C, A and B are collinear;
(2) If v > 0, then the orientation of A−B −C is counterclockwise; If v < 0,

then the orientation of A−B − C is clockwise;

Automated Generation of Readable Proofs for Constructive Geometry 239

(3) If v �= 0, when u = 0, ∠CAB = π
2 ; when u > 0, ∠CAB is an acute angle;

when u < 0, ∠CAB is an obtuse angle.

Proposition 4.3. Let C = (1 − u − vi)A + (u + vi)B, then X is the foot from
C to line AB iff X = (1− u)A + uB.

Proposition 4.4. Let P −Q = (x + yi)(M −N).
(1) If y = 0, x �= 0, then PQ ‖ MN ;
(2) If x = 0, y �= 0, then PQ ⊥ MN ;
(3) If |x+yi| = t, then |PQ| = t·|MN |; especially, when t = 1, |PQ| = |MN |.

Proposition 4.5. Let P = (1 −m − ni)A + (m + ni)B, Q = (1 − a − bi)A +
(a + bi)B. If PX ⊥ AB, QY ⊥ AB, X, Y are the feet, then

(1) PX : QY = n : b;
(2) If n �= b, then PQ and AB intersect at a point; let O = PQ ∩ AB, then

(n− b)O = nQ− bP .

Proposition 4.6. Let C = (1−a−bi)A+(a+bi)B, P = (1−x−yi)Q+(x+yi)R.
(1) If a

|b| = x
|y| , then ∠CAB = ∠PQR;

(2) If a
|b| = − x

|y| , then ∠CAB + ∠PQR = π;
(3) If a = x, b = ±y �= 0, then �CAB is similar to �PQR. Especially, when

|AB| = |QR|, �CAB is congruent to �PQR.

Proposition 4.7. Let P = (1− a− bi)S + (a + bi)R and P = (1− x− yi)Q +
(x + yi)R. If a = x = 0 or | ba | = |

y
x |, then P, Q, R and S are concyclic.

Definition 5. Let �CAB be similar to �PQR. If the orientation of A−B−C
is the same with that of P −Q−R, then �CAB is said to be normal similar
to �PQR, otherwise, �CAB is said to be inverse similar to �PQR.

Proposition 4.8. Let �CAB be similar to �PQR and C = (1 − a − bi)A +
(a + bi)B.

(1) If �PQR is normal similar to �ABC, then P = (1−a−bi)Q+(a+bi)R;
(2) If �PQR is inverse similar to �ABC, then P = (1−a+bi)Q+(a−bi)R.

Proposition 4.9. Let P = (1 − u − vi)Q + (u + vi)R, then the signed area of
oriented triangle PQR is SPQR = 1

2v · |QR|2.

A direct derivation for the above propositions is not difficult. The definitions
and propositions above allow expressing all kinds of geometry properties in Eu-
clidean geometry (in form of mass point relations) such as collinearity of three
points, parallelism of two lines, perpendicularity of two lines, etc. Based on the
propositions in this section and those propositions in Section 2, we can effectively
deal with statements in metric geometry.

5 Complex Mass Point Method

Similar to the mass point method, we begin introducing the complex mass point
method by way of examples.

240 Y. Zou and J. Zhang

5.1 Introductory Examples

We here use two examples to illustrate how to use the propositions given in
Section 2 and Section 4 to prove geometry theorems.

Example 5 (Nine-point Circle). In triangle ABC, let D, E and F be the mid-
points of sides AB, BC and CA respectively, G be the foot from C to side AB.
Show that D, E, F and G are concyclic (Fig.6).

Fig. 6. Nine-point Circle

The construction steps and proof steps:

1. Take two distinct points A, B arbitrarily;
2. Take another point C (C does not belong to line AB) arbitrarily, by Defini-

tion 3 in Sect. 4.1, we can let C = (1− a− bi)A + (a + bi)B ;
3. Take the midpoint D of AB , by Proposition 2.1, D = 1

2A + 1
2B;

4. Take the midpoint E of BC , by Proposition 2.1, E = 1
2B+ 1

2C, and further,
E = 1−a−bi

2 A + 1+a+bi
2 B;

5. Take the midpoint F of AC , by Proposition 2.1, F = 1
2A+ 1

2C, and further,
F = (1− a+bi

2)A + a+bi
2 B;

6. Take the foot G from C to side AB, by Proposition 4.3, G = (1− a)A+ aB;
7. To prove the conclusion, we need to find the specific relationship of the four

points D, E, F and G. Firstly, by Step3, Step4 and Step5, it is not difficult
to get

E =
(

1− 1− a + bi

(1 − a)2 + b2

)
F +

1− a + bi

(1− a)2 + b2
D . (1)

Secondly, by Step3, Step4 and Step6, it is not difficult to get

E =
a + bi

2a− 1
G− 1− a + bi

2a− 1
D . (2)

By Proposition 4.7, D, E, F and G are concyclic.

Automated Generation of Readable Proofs for Constructive Geometry 241

Notes. In Step3, Step4 and Step5 above, D, E and F are expressed as the stan-
dard forms wrt A, B, which is convenient for eliminating points. For instance, in
Step7, to get (1), we actually eliminate points A, B from the three related mass
point relations, i.e.,⎛⎝E = 1−a−bi

2 A + 1+a+bi
2 B

F = (1 − a+bi
2)A + a+bi

2 B
D = 1

2A + 1
2B

⎞⎠ eliminate

A,B
��

E =
(

1− 1− a + bi

(1− a)2 + b2

)
F +

1− a + bi

(1− a)2 + b2
D .

When checking the conclusion at the last step, by Proposition 4.7, we only
pay attention to the coefficients of D in (1) and (2), and actually compare the
absolute value of the real part and the imaginary part of the coefficients as well
as the ratio of the two absolute values.

Example 6 (Brahmagupta’s Theorem). Let A, B, C and D be four points on a
circle such that the two diagonals AB and CD are perpendicular. Let E be the
intersection of AB and CD, F the midpoint of AC, then EF ⊥ BD (Fig. 7).

Fig. 7. Brahmagupta’s Theorem

The construction steps and proof steps:

1. Take two distinct points A, B arbitrarily;
2. Take another point C (C does not belong to line AB) arbitrarily, by Defini-

tion 3 in Sect. 4.1, we can let C = (1− a− bi)A + (a + bi)B ;
3. Take the foot E from C to side AB, by Proposition 4.3, E = (1− a)A+ aB;
4. Take the midpoint F of AC , by Proposition 2.1, F = 1

2A+ 1
2C, and further,

F = (1− a+bi
2)A + a+bi

2 B;
5. Take the intersection point D(�= C) of line CE and the circumcircle of

triangle ABC. By Definition 5, �DEB is inverse similar to �AEC. By
Step2 and Step3, it is easy to get A = (1− a

b i)E + a
b iC. By Proposition 4.8,

D = (1 + a
b i)E − a

b iB, and further, D = (1− a + a−a2

b i)A + (a− a−a2

b i)B.
6. To prove the conclusion, by Step3, Step4 and Step5, we have F − E =

a−bi
2 (A−B), D−B = (1−a+ a−a2

b i)(A−B), thus D−B = 2(1−a)i
b (F −E).

By Proposition 4.4, EF ⊥ BD.

242 Y. Zou and J. Zhang

Notes. By Proposition 4.4, when checking whether EF ⊥ BD or not, we need
to find x, y such that D−B = (x+yi)(F −E), which is divided into three steps:

– firstly, find the relationship of F − E and A − B (where A, B are the two
initially introduced points);

– secondly, find the relationship of D −B and A−B ; and
– finally, find the relationship of F − E and D −B.

It is easy to find the relationship of D−B(or F −E) and A−B since all points
have been expressed as the standard form wrt A, B after all constructions.

5.2 Some Features

The two examples above show that the complex mass point method is also a
process of eliminating points.

The main steps of the complex mass point method are similar to those of the
mass point method discussed in Section 3, i.e., firstly, formulate the geometry
theorem in a constructive way; secondly, interpret the constructions into mass
point expressions; and finally, check whether the conclusion holds or not. But
there are some details which need to be explained:

1. The initial construction introduces only two points rather than three ones,
these two points are also called basis points, and the rest points introduced
by other constructions are usually expressed as the linear combination of
two basis points in the standard form.

2. When dealing with a two-line intersecting, though the method described in
Section 3 is sometimes applicable, we usually follow the method described by
Proposition 4.5, for instance, if O = PQ∩AB, four procedures are involved:
(a) Express P as the linear combination of A and B in the standard form

by eliminating points;
(b) Express Q as the linear combination of A and B in the standard form

by eliminating points;
(c) Compare the imaginary part of the coefficients of B (or A) in the above

two mass point relations;
(d) Express O as the linear combination of P and Q, and further, express O

as the linear combination of the basis points in standard form.

There are also other features, for example, we can check whether or not two
triangles are similar directly using the complex mass point method.

5.3 The Linear Constructive Geometry Statements

The complex mass point method is also used for proving constructive geometry
conjectures: statements about properties of objects constructed by some fixed
set of constructions. In this section, we first describe the set of available con-
structions and then the set of conjectures which can be expressed in the complex
mass point method.

Automated Generation of Readable Proofs for Constructive Geometry 243

The Constructions. The constructive geometry statements are assertions
about configurations that can be drawn only by ruler and compass. Using ruler
and compass, we can construct an arbitrary point, an arbitrary line, a line such
that two given points belong to it, a circle such that its center is one given point
and such that the second point belongs to it, the intersection of two lines (if such
point exists), the intersection of a given line and a given circle (if such points
exist) and the intersection of two given circles (if such points exist). However,
when a line intersecting a circle or two circles intersecting, there are possibly
two intersection points.

The complex mass point method cannot deal with all geometry statements
involving constructions by ruler and compass. Since the complex mass point
method always deals with points (only finding the relationship of points), it
does not support construction of an arbitrary line, and it supports intersections
of a line and a circle or two circles only in a limited way, i.e., when a line
intersects a circle or two circles intersect, we always assume that one of the
intersection points has been introduced at first, and we want to introduce the
second intersection point by the new construction (if such point exists).

In the complex mass point method, only lines and circles determined by spe-
cific points can be used. In the following text,

– Line(P, Q) will denote the line passing through two given points P and Q;
– Pline(W, U, V) will denote the line passing through a given point W and

parallel to Line(U, V);
– T line(W, U, V) will denote the line passing through a given point W and

perpendicular to Line(U, V)
– Bline(U, V) will denote the perpendicular bisector of segment with endpoints

U and V ; and
– Circle(O, U) will denote the circle with a given point O being its center and

passing a given point U .

Given below is the list of basic constructions covered by the complex mass point
method, along with some equivalent forms. The ndg-conditions should be satis-
fied, which are omitted here.

C1 Point(X): Take an arbitrary point X on a plane. Point X is a free point.
Taking the first two different free points A, B is usually denoted by

Points(A, B).

C2 Point1(X, A, B, a, b): Having taken two points A, B, take another point X
such that X = (1 − a − bi)A + (a + bi)B, where a, b are real numbers, rational
expressions or variables.

C3 Aratio(X, A, B, C, a, b): Having taken three points A, B, C, take another
point X such that X = aA + bB + (1 − a − b)C, where a, b are real numbers,
rational expressions or variables.

244 Y. Zou and J. Zhang

C4 Lratio(X, A, B, r): Take a point X on a line Line(A, B) such that AX =
rAB (or X = (1− r)A + rB), where r is a real number, a rational expression or
a variable.

There are three special cases: Mratio(X, A, B, r) ((1 + r)X = A + rB),
Midpoint1(X, A, B) (2X = A + B) and Symmetry(X, A, B) (X = 2B −A)).

C5 Pratio(X, U, A, B, r): Take a point X on a line Pline(U, A, B) such that
UX = rAB (or X = U + r(B −A)) where r is the same as C4.

A special case of C5 is Parallel(X, U, A, B) (X = U + B −A).

C6 Tratio(X, A, B, r): Take a point X on a line T line(A, A, B) such that AX =
rAC where C is introduced by Point1(C, A, B, 0, 1) (C = (1− i)A + iB).

Tratio(X, A, B, r) is equivalent to Point1(C, A, B, 0, r). An extended case of
C6 is Bratio(X, A, B, r) which means taking a point X on a line Bline(A, B)
such that Y X = rY C where C is introduced by Point1(C, A, B, 1

2 , 1) and Y is
introduced by Midpoint1(Y, A, B). Actually, Bratio(X, A, B, r) is equivalent to
Point1(C, A, B, 1

2 , r).

C7 Inter(X, U, V, A, B): Take the intersection point X of a line Line(U, V) and
a line Line(A, B).

C8 Foot1(X, C, A, B): Take the foot X from a given point C to a line Line(A, B).

C9 Cinter(X, O, A, P): Take the intersection X (other than A) of a line
Line(A, P) and a circle Circle(O, A).

Cinter(X, O, A, P) can be represented as a sequence of Foot1(Y, O, A, P) and
Symmetry(X, A, Y).

C10 CCinter(X, P, O1, O2): Take the intersection X (other than P) of a circle
Circle(O1, P) and a circle Circle(O2, P).

CCinter(X, P, O1, O2) can be represented as a sequence of Foot1(Y, P, O1, O2)
and Symmetry(X, P, Y).

C11 Similartrianglepoint(X, P, Q, A, B, C): Given a triangle ABC and two
points P, Q, take a point X such that �XPQ is normal similar to �ABC.

C12 Similartrianglepoint1(X, P, Q, A, B, C): Given a triangle ABC and two
points P, Q, take a point X such that �XPQ is inverse similar to �ABC.

The point X in each of the above basic constructions is said to be introduced
by that construction. C1 is called the initial construction.

To make the information of a geometry statement more concise, much clearer
or more readable, we package some of the basic constructions to be one combined
construction.

Automated Generation of Readable Proofs for Constructive Geometry 245

Firstly, since there are four kinds of lines, thus there are still other kinds of
two-line intersecting:

– Pinter(X, A, B, W, U, V): X = Line(A, B) ∩ Pline(W, U, V);
– PPinter(X, C, A, B, W, U, V): X = PLine(C, A, B) ∩ Pline(W, U, V);
– T inter(X, A, B, W, U, V): X = Line(A, B) ∩ T line(W, U, V);
– TT inter(X, C, A, B, W, U, V): X = T line(C, A, B) ∩ T line(W, U, V);
– Binter(X, A, B, U, V): X = Line(A, B) ∩Bline(U, V);
– BBinter(X, A, B, U, V): X = Bline(A, B) ∩Bline(U, V);
– PT inter(X, C, A, B, W, U, V): X = Pline(C, A, B) ∩ T line(W, U, V);
– TBinter(X, W, U, V, A, B): X = T line(W, U, V) ∩Bline(A, B);
– PBinter(X, W, U, V, A, B): X = Pline(W, U, V) ∩Bline(A, B).

All these kinds of two-line intersecting can be represented as a sequence of some
constructions of C2-C7, since Pline(W, U, V), T line(W, U, V) and Bline(U, V)
can be converted into lines each passing through two certain points.

Many other combined constructions are list below:

– Centroid(X, A, B, C): Take the centroid X of �ABC;
– Circumcenter(X, A, B, C): Take the circumcenter X of �ABC;
– Orthocenter(X, A, B, C): Take the orthocenter X of �ABC;
– Incenter(X, B, C, I): Given three points I, B, C, take a point X such that

I is the incenter of �XBC;
– Symmetricpoint(X, P, A, B): Take the symmetric point X of a given point

P wrt Line(A, B);
– Conjugatepoint(X, A, B, C, P): Take the isogonal conjugate point X of a

given point P wrt �ABC;
– Pointoncircle(X, A, B, C, P): Given �ABC and a point P on Line(A, B),

take the intersection point X (other than C) of Line(C, P) and the circum-
circle of �ABC.

– ASApoint(X, A, B, α, β): Given two points A, B and two angles α, β, take a
point X such that ∠XAB = α, ∠XBA = β, where 0 ≤ α, β, α + β < π and
the orientation of A−B − C is counterclockwise.

Given the above constructions, it is possible to construct an arbitrary point on
a plane by Point(X), Point1(X, A, B, a, b) or Aratio(X, A, B, C, a, b) where a
and b are indeterminate and A, B, C are free points, or on a line Line(U, V) by
Lratio(X, U, V, r) where r is indeterminate. For constructing an arbitrary point
on a circle, there are three ways:

– take an arbitrary point X on a given circle Circle(O, A) by Cinter(X, O, A, P)
where P is an arbitrary point on a plane;

– take an arbitrary point X on a given circle Circle(O, A) by Point1(X, O, A,
sin θ, cos θ) where θ is an arbitrary angle with 0 ≤ θ < 2π;

– take an arbitrary point X on the circumcircle of�ABC by Pointoncircle(X ,
A, B, C, P) where P is an arbitrary point on Line(A, B).

Now the constructions given in Example 6 in Sect. 5.1 can be represented in terms
of the given constructions above as follows: Points(A, B); Point1 (C, A, B, a, b);
Foot1(E, C, A, B); Midpoint1(F, A, C); Pointoncircle(D, A, B, C, E).

246 Y. Zou and J. Zhang

The Form of the Conclusions. Before we can describe a geometry statement
completely, it is still necessary to explain how we express the conclusions with the
complex mass point method. For all kinds of conclusions of constructive geometry
statements, there are still two kinds of things for us: checking or calculating.
Checking is to find the Boolean value and calculating is to find the numerical
value.

Given below is the list of main predicates expressing geometry conclusions
covered by the complex mass point method.

– relation3(P, Q, R): Check the linear relationship of three points P, Q, R, i.e.,
find a, b such that P = (1−a−bi)Q+(a+bi)R, where a, b are specific values
or expressions. We can judge the geometry relationship of P, Q, R according
to a, b:
• If b = 0, then P = (1 − a)Q + aR, thus P, Q, R are collinear and QP :

PR = a : (1 − a);
• If b = 0 and a = 1

2 , then P is the midpoint of QR;
• If a = 0, then ∠PQR = π

2 ; If a = 1, then ∠PRQ = π
2 ;

• If a = b, then ∠PQR = π
4 ; If a = −b, then ∠PQR = 3π

4 ;
• If b �= 0 and a = 1

2 , then P = (1
2 − bi)Q + (1

2 + bi)R, thus P lies on the
perpendicular bisector of QR;

• If a = 1
2 and b = ± 1

2 , then �PQR is an isosceles triangle with ∠RPQ =
π
2 and |QP | = |PR|;

• If a = 1
2 and b = ±

√
3

2 , then �PQR is an equilateral triangle.
– relation4(P, Q, M, N): Check the relationship of two vectors PQ, MN , i.e.,

find x, y such that P −Q = (x + yi)(M −N) where x, y are specific values
or expressions, and compute the value of t = |x + yi| or t2 = x2 + y2. We
can judge the geometry relationship of PQ, MN according to x, y:
• If y = 0, x �= 0, then PQ ‖ MN and PQ = xMN ;
• If x = 0, y �= 0, then PQ ⊥ MN and |PQ| = |y| · |MN |;
• If x �= 0, y �= 0, then |PQ| = t · |MN |;
• If t = 1, then |PQ| = |MN |.

– equalangle(P, Q, R, A, B, C): Check whether ∠PQR is equal to ∠ABC by
the method given in Proposition 4.6. If it holds, then output ∠PQR =
∠ABC, else output ∠PQR �= ∠ABC.

– cocircle(P, Q, R, S): Check whether P, Q, R, S are concyclic by the method
given in Proposition 4.7, and then output the corresponding mark.

– similartriangle(P, Q, R, A, B, C):Checkwhether�PQR is similar to�ABC
by the method given in Proposition 4.6 and then output the corresponding
mark.

– congruenttriangle(P, Q, R, A, B, C): Check whether �PQR is congruent to
�ABC by the method given in Proposition 4.6 and then output the corre-
sponding mark.

– cctangent(O1, P, O2, Q): Check whether two circles Circle(O1, P) and Circle
(O2, Q) are tangent, i.e., whether |O1O2|2 = (|O1P | ± |O2Q|)2 or not, and
then output the corresponding mark.

Automated Generation of Readable Proofs for Constructive Geometry 247

– onradical(X, O1, P, O2, Q): Check whether X lies on the axis of two circles
Circle(O1, P) and Circle (O2, Q), i.e., whether |O1X|2−|O2X|2 = |O1P |2−
|O2Q|2 or not, and then output the corresponding mark.

– inversion(P, Q, O, A): Check whether point P is the inversion of point Q
wrt the circle Circle(O, A), i.e., whether |OA|2 = |OP | · |OQ| or not, and
then output the corresponding mark.

– equalproduct(P, Q, M, N, U, V, S, T): Check whether |PQ| · |MN | is equal to
|UV | · |ST |.

– area3(P, Q, R): Find the relative signed area of �ABC by the method given
in Proposition 4.9.

– arearatio2(A, B, C, X, Y, Z): Find the ratio of two signed area of oriented
�ABC and �XY Z.

– lengthsquare1(P, Q): Find the relative distance of two points P and Q wrt
two basis points, i.e., find t such that |PQ|2 = t · |P1P2|2 where P1, P2 are
the two basis points.

– squaresum3(P, Q, M, N, U, V): Find the value of t such that t · |PQ|2 =
|MN |2 + |UV |2.

– ratiosum3(A, B, M, N, P, Q, X, Y, S, T, E, F): Find the value of t such that
AB
MN

+ PQ

XY
+ ST

EF
= t.

– ratioproduct2(A, B, M, N, P, Q, X, Y): Find the value of t such that AB
MN

·
PQ

XY
= t.

In order to satisfy all kinds of need when checking the conclusions, we can add
many other predicates. For instance, we can add more predicates for the sum
or product of ratios of segments, such as squaresum4, squaresum5, ratiosum4,
ratiosum5, ratioproduct3 and ratioproduct4 in the same way.

The Linear Constructive Geometry Statements. In the complex mass
point method, geometry statements have the following specific form.

Definition 6 (Linear Constructive Geometry Statement). A Linear Con-
structive Geometry Statements, is a list S = (C1, C2, . . . , Ck, G) where

a) Ci, for i = 1, . . . , k, are constructions given in this section such that the point
introduced by each Ci must be different from the points introduced by the
previous constructions and other points occurring in Ci must be introduced
by Cj(j = 1, . . . , i− 1); and

b) G = (E1, E2, . . .), is the conclusion of the statement, where Ei is one of the
predicates of conclusions.

The class of all linear constructive geometry statements is denoted by CL.
For a statement S = (C1, C2, . . . , Ck, G) of class CL, the ndg-conditions,

which are omitted here for the limitation of pages, must be satisfied.

248 Y. Zou and J. Zhang

Given the definition of statement of class CL, we can now describe Exam-
ple 5 in this way: Points(A, B); Point1(C, A, B, a, b); Midpoint1(D, A, B); Mid-
point1(E, B, C); Midpoint1(F, A, C); Foot1(G, C, A, B); cocircle(D, E, F, G).

5.4 The Algorithm Complex Mass Point Method

The complex mass point method can also be developed as an automated the-
orem proving method, whose algorithm is called Complex Mass Point Method
(CMPM) in this paper.

In the complex mass point method, the two points introduced by the initial
construction are called basis points. It is not difficult to prove that all points
introduced by the rest constructions could be expressed as the linear combination
of the basis points in the standard form. Let the basis points be P1 and P2, then
the newly introduced point, said X , can be expressed as X = (1−x−yi)P1+(x+
yi)P2 by some computations. In this way, each point X will be in a one-to-one
correspondence to a binary array (1− x− yi, x + yi) with x, y are real numbers,
expressions or independent variables. Obviously, P1 and P2 are corresponding to
(1, 0) and (0, 1) respectively.

Since every three binary arrays must be linearly dependent, thus we can always
find the linear relationship of three points and can express one of them as linear
combination of the other two ones in the standard form. By the propositions of
the complex mass point geometry, it is convenient for us to check all kinds of
conclusions.

Similar to the algorithm MPM, the algorithm CMPM also consists of three
parts: the construction function set (CCFS), the aim function set (CAFS) and
the controller (CMMC).

In algorithm CMPM, three global variables pnts, varlist and coordlist are
still needed to enable the controller CMMC to implement all involved steps
automatically, where varlist is used to store all points in the order in which
the points are introduced by constructions, coordlist is used to store all points’
corresponding binary arrays, and pnts is used to record the number of points in
varlist.

For each construction in Sect. 5.3, there is a corresponding homonymous con-
struction function in CCFS.

For each predicate of conclusion in Sect. 5.3, there is a corresponding homony-
mous function in CAFS.

Given a statement S = (C1, C2, . . . , Ck, G) in CL, the controller CMMC
reads the constructions Ci one by one; calls the corresponding function in CCFS
repeatedly to deal with the constructions; and finally calls the corresponding
function in CAFS to deal with the conclusion G.

For a given geometry statement, the functions in CCFS keep storing points
into varlist one by one, expressing the newly introduced points as the standard
form wrt the two basis points, and then storing all points’ corresponding binary
arrays into coordlist, where the location of a point in varlist is consistent with that
of its binary array in coordlist. Functions in CAFS check whether the conclusions
hold or not by dealing with the involved points’ corresponding binary arrays.

Automated Generation of Readable Proofs for Constructive Geometry 249

Algorithm: Complex Mass Point Method
Input: S = (C1, C2, . . . , Ck, G) is a statement in CL.
Output: The algorithm produces mass point relations and checks whether S is
a theorem or not.

1. Initially, pnts = 0 , varlist is a null list and coordlist is a null list;
2. After the initial construction, Points(P1, P2), pnts = 2 , varlist = {P1, P2},

coordlist = {(1, 0), (0, 1)};
3. For i = 2, . . . , k, call the corresponding functions in CCFS repeatedly to

process the construction Ci:
(a) Store the points into varlist ;
(b) Search and record the locations of previously introduced points

involved in Ci from varlist and call their binary arrays from coordilist;
(c) Express the newly introduced point as the linear combination of related

points and further as the standard form wrt the basis points;
(d) Store the newly introduced point’s binary array into coordilist;
(e) Output all related mass point relations;
(f) If there is no warning, then continue to run the next step;

4. Call the corresponding functions in CAFS to process the conclusion G:
(a) Search and record the locations of all points involved in G from varlist ;
(b) Call the involved points’ binary arrays of the corresponding locations

in coordlist and check if the conclusion holds or not by dealing with the
binary arrays;

(c) Output related mass point relations or other related results.

5.5 Implementing the Algorithm CMPM in Maple

The algorithm CMPM is also implemented in Maple. All steps involved in the
algorithm CMPM can be easily implemented in Maple, which we won’t go into
details.

Compared to the algorithm MPM, there are much more functions in CCFS
and CAFS to be dealt with. All the codes written for the functions are integrated
into a big program which is called the CMPMprover. After loading the program,
just input S = (C1, C2, . . . , Ck, G) directly in Maple and run, the machine proof
can be produced automatically.

To improve the readability of the machine proof, we ask the prover to insert
some signs, such as P = (AB)∩(UV) or P = (CP) ⊥ (AB), to tell what is going
on in the proof. It is also possible to add other kinds of signs. Actually, much
geometry information is implied in the mass point relation, such as 2M = A+B
implies that M is the midpoint of A and B.

To shorten the whole proof, only the most important and most necessary
mass point relations are generated. For instance, when dealing with a two-line
intersecting, by the method given in Sect. 5.2, four mass point relations would be
generated, but in the machine proof, only two mass point relations are generated:
one expresses the newly introduced point as the linear combination of the two
points which determine one of the intersecting line, another one expresses the

250 Y. Zou and J. Zhang

intersection point as the standard form wrt the two basis points. In other cases,
the newly introduced point is always expressed as the linear combination of
directly related points other than the standard form wrt the two basis points.

The techniques to shorten the proof are not always necessary. If we want to
check the proof more carefully, it is also convenient to let the prover generate
more detailed information.

5.6 Running Examples

Here are two examples whose proofs are generated by the CMPMprover entirely
mechanically.

Example 7 (Pascal’s Theorem on a Circle). Given six points A, B, C, D, E and
F on a circle, let AB ∩DE = P , BC ∩EF = Q, CD∩FA = R. Show that P, Q
and R are collinear (Fig. 8).

Notes. (1) For the input to the CMPMprover, the initial letters of functions in
CCFS are capital, while the initial letters of functions in CAFS are lowercase.

(2) The sign “∼” at the top right corner of each variable is generated by the
software Maple automatically, which means the variable is a real number.

(3) As shown in the machine proof, the imaginary unit “i” is usually denoted
by “I” in Maple automatically.

Example 8 (Morley’s Theorem). The three points of intersections of the adjacent
trisectors of angles of any triangle form an equilateral triangle (Fig. 9, Fig. 10
and Fig.11).

Table 2 below lists the time used to prove the examples in Section 5 by the
CMPMprover in Maple 12 in a Intel Pentium(R) Dual-Core Machine (CPU @
E5200 2.5GHz, 2GB RAM, Windows Vista).

Table 2. Proving time of examples in Section 5

Examples Example5 Example6 Example7 Example8

Time used(s) 0.093 0.046 1.544 1.778

It is worth mentioning that the time cost by the CMPMprover to prove a
geometry statement depends on two main factors to a great extent:

– the number of free points, especially the number of free points on the circle,
since each time when we introduce one more free point, we add one or two
more variables, which increase the amount of computation for the prover;

– the number of times of two-line intersecting or line-circle intersecting.

Automated Generation of Readable Proofs for Constructive Geometry 251

(a) Diagram for Pascal’s The-
orem on a Circle

(b) Input to the
CMPM-prover

(c) Machine proof for Pascal’s Theorem on a Circle

Fig. 8. Pascal’s Theorem on a Circle

252 Y. Zou and J. Zhang

(a) Diagram for Morley’s Theorem

(b) Input to the CMPMprover

Fig. 9. Morley’s Theorem

Automated Generation of Readable Proofs for Constructive Geometry 253

Fig. 10. Part 1 of the machine proof for Morley’s Theorem

254 Y. Zou and J. Zhang

Fig. 11. Part 2 of the machine proof for Morley’s Theorem

Automated Generation of Readable Proofs for Constructive Geometry 255

6 Experimental Results and Conclusions

In this section we summarize our experimental results and state conclusions.

6.1 Experimental Results

Statistics for the Proving Time. We have run 110 geometry theorems of
class CH by our MPMprover and 240 nontrivial geometry theorems of class
CL (not including statements of class CH) by our CMPMprover in Maple 12
on an Intel Pentium Dual-Core E5200 Machine. Table 3 and Table 4 contain
some information about the proving time of the 350 theorems.

Table 3. Statistics for the proving time of 110 theorems of class CH

Proving time(s) Number of theorems Percentage(%)

<0.1 88 80.0
<0.2 101 91.8
<0.5 109 99.1
<1.1 110 100.0

Table 4. Statistics for the proving time of 240 theorems of class CL

Proving time(s) Number of theorems Percentage(%)

≤0.1 49 20.4
≤0.2 103 42.9
≤0.3 144 60.0
≤0.5 200 83.3
≤1.0 227 94.6
≤2.0 236 98.3

<100.0 240 100.0

It can be seen from Table 3 and Table 4 that our provers are efficient.
For statements of class CH, it is obviously applicable for the CMPMprover

to generate the machine proofs, since CH is a subset of CL. But, for a certain
statement of class CH, the machine proof produced by the CMPMprover is
different from that produced by the MPMprover in some aspects which we
won’t go into details for the limitation of pages. Usually, if a statement is of
class CH, we often use the MPMprover to prove it, because the MPMprover
is made for class CH.

Features of the Machine Proof. It can also be seen from the running exam-
ples in the paper that the machine proofs produced by our provers are indeed
human-readable and easily understood by a mathematician. The readability is
reflected in the following aspects:

256 Y. Zou and J. Zhang

– Clear and concise: The mass point relations are generated one by one ac-
cording to the order in which points are introduced. For each mass point
relation, the capital letters denote geometric points, while the coefficients of
points are numbers, independent variables or rational expressions in lower-
case letters. There are also signs telling what is going on, and at last the
conclusions are checked and output.

– Easy to understand : All the mass point relations can be understood as long as
one understands the basic propositions of mass point geometry, although the
proofs generated by our provers are obviously different from the traditional
proof. To read the proof, we never need to remember any complex formulae.

– With clear geometric meaning: Each expression in a proof has clear and
intuitive geometrical meaning, although some of them may involve seemingly
huge expressions. Because the statements proved by the mass point method
are of the unordered geometry problems, it is not necessary to resort to
diagrams when reading the proof.

– Rich information included : In addition to the final conclusion, the proof
contains rich non-trivial information related to the geometry statement. The
quantitative relationship implied in each non-trivial mass point relation is
also a certain geometry statement.

6.2 Conclusions and Future Work

Conclusions. In this paper we first gave a detailed description of the mass
point method, a new method for automated theorem proving in geometry. The
method can efficiently prove many non-trivial theorems of affine geometry.

The algorithm of the mass point method is much more concise and simpler
than that of the area method. The algorithm of area method includes a lot of
eliminating point formulae because it can only deal with geometric quantities
other than the geometric point itself, so when eliminating the same point from
different quantities one has to use different formulae, while using the mass point
method, one eliminates points more freely, i.e., only eliminates those undesired
points at each step other than eliminates points one by one in reverse order.

We made an implementation of the algorithm in Maple, called MPMprover,
which can generate machine proof entirely mechanically for statements of affine
gemoentry. Theoretically, it is applicable for the mass point method described in
this paper to prove other kinds of geometry statements, not restricted to affine
geometry statements, given that one knows all points’ area coordinates of a
statement. How to implement this idea automatically is still under development.

To deal with metric geometry problems, we then developed the complex mass
point geometry, and gave a detailed description of the complex mass point
method which can efficiently prove many difficult statements of metric geome-
try. The algorithm CMPM, which is based on the complex mass point method,
is very similar to, but still different from the algorithm MPM. We also made
an implementation of the algorithm CMPM in Maple, called CMPMprover.
Many difficult theorems, which would cost the area method much time or could
not be proved within a reasonable time, can be proved by the CMPMprover

Automated Generation of Readable Proofs for Constructive Geometry 257

efficiently, for instance, the time cost for proving Morley’s Triangle Theorem is
less than 2 seconds.

The algebraic methods in automated reasoning in geometry root in the work
of Descartes and in the translation of geometric problems to algebraic problems,
thus deal with polynomials that are often extremely complex for a human to
understand, and also with no direct link to the geometric contents. However, the
(complex) mass point method takes points as geometric objects and only pays
attention to the quantitative relationship of geometric points. In the machine
proof generated by the CMPMprover or MPMprover, though there may be
large expressions, each mass point relation has clear geometrical meaning, since
all the large expressions are just the coefficients of certain points of certain mass
point relations.

Future Work. The two mass point methods described in the two parts of
this series provide us a new tool for automated theorem proving in geometry.
Ongoing work and future work include:

– Improving the MPMprover’s and the CMPMprover’s ability to solve prob-
lems such that they can deal with more geometry statements which are not
of class CH or CL;

– Continuing to develop the (complex) mass point geometry such that the
statements of solid geometry or higher-dimensional geometry could be cov-
ered;

– Continuing to develop or revisiting the existing machine proving methods
based on the mass point method, such as the area method, the vector
method, the complex number method, the forward search method, etc.

References

1. Zhang, J.Z., Li, Y.B.: Automaic theorem proving for three decades. Journal of
Systems Science and Mathematical Sciences (J. Sys. Sci. & Math. Scis.) 29,
1155–1168 (2009)

2. Wu, W.T.: On the Decision Problem and The Mechanization of Theorem Proving
in Elemengtary Geometry. In: Automated Theorem Proving: After 25 years, vol. 29,
pp. 213–214. American Mathematical Society (1984)

3. Chou, S.C.: Proving and dicoversing geometry theorems using Wu’s method. Ph.D.
thsis. The University of Texas, Austin (1985)

4. Wang, D.: Reasoning about geometric problems using an elimination method.
In: Pfalzgraf, J., Wang, D. (eds.) Automated Practical Reasoning, pp. 147–185.
Springer, New York (1995)

5. Kapur, D.: Using Gröbner bases to reason about geometry problems. Journal of
Symbolic Computation 2, 399–408 (1986)

6. Chou, S.C.: Automated reasoning in geometries using the characteristic set method
and Gröbner basis method. In: Proc. ISSAC 1990, Tokyo, pp. 255–260 (1990)

7. Li, H.: Clifford algebra approaches to mechanical geometry theorem proving.
In: Gao, X.S., Wang, D. (eds.) Mathematics Mechanization and Applications,
pp. 205–299. Academic Press, San Diego (2000)

258 Y. Zou and J. Zhang

8. Hong, J.: Can we prove geometry theorems by computing an example? Sci.
Sinica. 29, 824–834 (1986)

9. Yang, L., Zhang, J.Z., Li, C.Z.: A prover for parallel numerical verification of
a class of constructive geometry theorems. In: Proc. IWMM 1992, pp. 244–255.
Inter. Academic Publishers, Beijing (1992)

10. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated production of traditional proofs for
constructive geometry theorems. In: Vardi, M. (ed.) Proceedings of the 8th Annual
IEEE Symposium on Logic in Computer Science LICS, Montreal, pp. 48–56 (1993)

11. Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine proofs in geometry: Automated pro-
duction of readable proofs for geometry theorems. World Scientific, Singapore
(1994)

12. Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated
geometry theorem proving and discovering. Journal of Automated Reasoning 25,
219–246 (1996)

13. Chou, S.C., Gao, X.S., Zhang, J.Z.: Mechanical theorem proving by vector calcu-
lation. In: Proc ISSAC 1993, Keiv, pp. 284–291 (1993)

14. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated production of readable proofs with
geometric invariants, theorem proving with full-angles. Journal of Automated Rea-
soning 17, 349–370 (1996)

15. Li, H., Hestenes, D.: Rockwood A. Generalized homogeneous coordinates for com-
putational geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford
Algebra, pp. 27–60. Springer, Heidelberg (2000)

16. Li, H.: Automated Geometric Theorem Proving, Clifford bracket algebra and Clif-
ford expansions. In: Trends in Mathematics: Advances in Analysis and Geometry,
pp. 345–363. Birkhäuser, Basel (2004)

17. Li, H.: Symbolic computation in the homogeneous geometric model with Clifford
algebra. In: Gutierrez, J. (ed.) Proc. ISSAC 2004, pp. 221–228. ACM Press (2004)

18. Li, H.: Invariant algebras and geometric reasoning. World Scientific, Singapore
(2008)

19. Rhoad, R., Milauskas, G., Whipple, R.: Geometry for Enjoyment and Challenge.
McDougal, Littell & Company (1991)

20. Pedoe, D.: Notes on the History of Geometrical Ideas I: Homogeneous Coordinates.
Math. Magazine, 215–217 (1975)

21. Tom, R.: Mass point geometry,
http://mathcircle.berkeley.edu/archivedocs/2007 2008/lectures/

0708lecturesps/MassPointsBMC07.ps

22. Tom, R.: Mass point geometry (Barycentirc Coordinates),
http://mathcircle.berkeley.edu/archivedocs/1999 2000/lectures/

9900lecturespdf/mpgeo.pdf

23. Coxeter, H.S.M.: Introduction to Geometry, pp. 216–221. John Wiley & Sons, Inc.
(1969)

http://mathcircle.berkeley.edu/archivedocs/2007_2008/lectures/0708lecturesps/MassPointsBMC07.ps
http://mathcircle.berkeley.edu/archivedocs/2007_2008/lectures/0708lecturesps/MassPointsBMC07.ps
http://mathcircle.berkeley.edu/archivedocs/1999_2000/lectures/9900lecturespdf/mpgeo.pdf
http://mathcircle.berkeley.edu/archivedocs/1999_2000/lectures/9900lecturespdf/mpgeo.pdf

Author Index

Apel, Susanne 1

Fleuriot, Jacques 34, 182
Fuchs, Laurent 51

Gerhäuser, Michael 68
Ghourabi, Fadoua 78

Ida, Tetsuo 78

Janičić, Predrag 201

Kasem, Asem 78

Lichtblau, Daniel 98

Michelucci, Dominique 118, 132

Pavlović, Vesna 201
Pech, Pavel 152

Quaresma, Pedro 169

Richter-Gebert, Jürgen 1

Scott, Phil 182
Stojanović, Sana 201

Théry, Laurent 51

Wassermann, Alfred 68

Zhang, Jingzhong 221
Zou, Yu 221

	Title
	Preface
	Organization
	Table of Contents
	Cancellation Patterns in Automatic Geometric Theorem Proving
	Introduction
	Definitions: Theorems and Proving Techniques
	The Binomial Proving Method
	How to Represent a Theorem?
	The Ceva-Menelaus Proving Method
	Modeling Theorems by Ceva-Menelaus Constructions

	Fractions, Groups and Graphs
	The Base Graph
	Triangles in Ceva-Menelaus Proofs Are Triangles in
	Biquadratic Fractions Are Quadrangles in
	Chains of Quadrangles

	Equivalence!
	How to Derive a Ceva-Menelaus Proof from a Binomial Proof
	From a Ceva-Menelaus Proof to a Binomial Proof

	Conclusion
	References

	Exploring the Foundations of Discrete Analytical Geometry in Isabelle/HOL
	Introduction
	On Nonstandard Analysis in Isabelle
	Nonstandard Numbers
	Two New Relations on the Hyperreals

	The Harthong-Reeb System
	From HR to the (Limited) Hyperreals and Back

	Arithmetizing and Mechanizing Euler's Method
	Formally Verifying an Arithmetization at the Scale
	Interpreting the Arithmetization at the Scale

	A Verified Arithmetization of the Straight Line
	Discussion
	Conclusion and Further Work
	References

	A Formalization of Grassmann-Cayley Algebra in Coq and Its Application to Theorem Proving in Projective Geometry
	Introduction
	Formal Grassmann-Cayley Algebra
	The Underlying Vector Space
	The Join Product
	The Meet Product

	Data-Structures
	Representing the Vector Space Kn
	Representing the Algebra Gn
	Join Product
	Meet Product
	Duality

	Theorem Proving in Projective Geometry
	Modeling the Geometry of Incidence
	Automating Proofs

	Conclusion
	References

	Automatic Calculation of Plane Loci Using Gr\"{o}bner Bases and Integration into a Dynamic Geometry System
	Introduction
	Calculating Loci with Gröbner Bases
	The Algorithm
	Example

	Integration of Locus Computation in JSXGraph
	JSXGraph
	Calculating Loci with JSXGraph

	An Idea for Speed Improvements
	Conclusion
	References

	Proof Documents for Automated Origami Theorem Proving
	Introduction
	Motivation
	State of the Art of Origami Theorem Proving
	Reasoning about Origami
	Algorithm of Origami Construction and Proving
	A Simple Example of Construction
	Fold Principle
	Program of Construction
	Program of Proving

	Method of Proving
	Overview
	Need for Proof Document
	Local Geometrical Inference
	Transformation to Logical Formula
	Elimination of Unnecessary Predicates
	Forming Equivalence and Collinear Relations
	Algebraic Manipulation

	Proof Document
	Structure of Proof Document
	Program, Prover Computation and Result Sections
	Geometrical Reasoning Section
	Algebraic Transformation Section

	Conclusion
	References

	The Midpoint Locus of a Triangle in a Corner
	Introduction
	Setting up the Problem
	Approximating the Locus with a Graphic-Numeric Method
	Solving Algebraically
	Visualizing the Algebraic Surface
	The Rest of the Boundary
	Inverse Problems
	Summary and Open Questions
	Appendix: Mathematica Code
	References

	Some Lemmas to Hopefully Enable Search Methods to Find Short and Human Readable Proofs for Incidence Theorems of Projective Geometry
	Introduction
	Chasles, Pascal, Brianchon
	Desargue's Theorem
	Desargue's in Cevian Case
	The 3 Chords Theorem
	The Dual of 3 Chords Theorem
	The 3 Circles Theorem
	The 4 Circles Theorem
	Automatization
	Conclusion
	References

	What Is a Line ?
	Introduction: What Is a Line ?
	Pappus Geometry: A Summary
	Three Times Constrained Conics
	Conditions, or Vector-Based Constraints for Conics
	Examples of Non Naive Lines
	Circles through One Fixed Point
	Orthogonal Circles
	Poincaré Half Circles Are Lines
	Other Circles
	Some Parabolas Are Lines
	Conics through Three Fixed Points Are Lines

	Playing with Some Theorems
	Proof of the Three Circles Theorem
	The Four Circles Theorem
	A Butterfly Theorem

	What Is a Point ?
	Variants: A Zoo of Planes
	Conclusion
	References

	On One Method of Proving Inequalities in Automated Way
	Introduction
	Basic Method
	Parametrization of n-gons
	Proving Inequalities by Introduction of Auxiliary Polynomials
	Concluding Remarks
	References

	Thousands of Geometric Problems for Geometric Theorem Provers (TGTP)
	Introduction
	TGTP
	Realm
	The Web Interface
	The List of Problems
	Queries
	Performance Information

	Common File Format for Conjectures
	Future Work
	Conclusions
	References

	An Investigation of Hilbert’s Implicit Reasoning through Proof Discovery in Idle-Time
	Introduction
	Declarative Formalisation
	HOL Light
	Incidence Reasoning
	Incidence Rules
	Incidence and Pasch’s Axiom

	Idle-Time Discovery
	Overview of the System
	Analysing Hilbert’s Proofs
	Theorem 4
	Theorem 5

	Conclusion and Further Work
	References

	A Coherent Logic Based Geometry Theorem Prover Capable of Producing Formal and Readable Proofs
	Introduction
	Background
	ArgoCLP Proof Procedures
	Basic Proof Procedure
	Improved Proof Procedure
	Techniques That Do Not Preserve Completeness

	ArgoCLP Implementation
	Applications
	Related Work
	Conclusions and Further Work
	References

	Automated Generation of Readable Proofs for Constructive Geometry Statements with the Mass Point Method
	Introduction
	Mass Point Geometry
	Mass Point Geometry Preliminaries
	Basic Propositions of Mass Point Geometry

	Mass Point Method
	Introductory Examples
	The Hilbert Intersection Point Statesments
	The Algorithm and Its Features
	Implementing the Algorithm MPM in Maple
	Running Examples
	Further Discussion

	The Complex Mass Point Geometry
	The Basic Idea
	The Properties of the Complex Mass Point Geometry

	Complex Mass Point Method
	Introductory Examples
	Some Features
	The Linear Constructive Geometry Statements
	The Algorithm Complex Mass Point Method
	Implementing the Algorithm CMPM in Maple
	Running Examples

	Experimental Results and Conclusions
	Experimental Results
	Conclusions and Future Work

	References

	Author Index

